Se124M100KInfPrompt_WT
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7371
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.2505 | 0.0082 | 20 | 2.8871 |
3.1482 | 0.0164 | 40 | 2.8898 |
3.1815 | 0.0246 | 60 | 2.8780 |
3.1657 | 0.0327 | 80 | 2.8574 |
3.0926 | 0.0409 | 100 | 2.8249 |
3.1184 | 0.0491 | 120 | 2.7654 |
3.0128 | 0.0573 | 140 | 2.7067 |
2.9348 | 0.0655 | 160 | 2.6351 |
2.7728 | 0.0737 | 180 | 2.5450 |
2.6372 | 0.0819 | 200 | 2.4318 |
2.4966 | 0.0901 | 220 | 2.2950 |
2.3591 | 0.0982 | 240 | 2.1465 |
2.2302 | 0.1064 | 260 | 2.0135 |
2.0753 | 0.1146 | 280 | 1.8699 |
1.9052 | 0.1228 | 300 | 1.7487 |
1.8 | 0.1310 | 320 | 1.6347 |
1.7122 | 0.1392 | 340 | 1.5290 |
1.6217 | 0.1474 | 360 | 1.4386 |
1.5754 | 0.1555 | 380 | 1.3520 |
1.4438 | 0.1637 | 400 | 1.2721 |
1.4155 | 0.1719 | 420 | 1.2061 |
1.3491 | 0.1801 | 440 | 1.1527 |
1.2966 | 0.1883 | 460 | 1.1089 |
1.2319 | 0.1965 | 480 | 1.0730 |
1.2031 | 0.2047 | 500 | 1.0470 |
1.1872 | 0.2129 | 520 | 1.0232 |
1.1362 | 0.2210 | 540 | 1.0026 |
1.13 | 0.2292 | 560 | 0.9844 |
1.0864 | 0.2374 | 580 | 0.9677 |
1.0712 | 0.2456 | 600 | 0.9563 |
1.0732 | 0.2538 | 620 | 0.9418 |
1.0519 | 0.2620 | 640 | 0.9327 |
1.0337 | 0.2702 | 660 | 0.9218 |
1.0408 | 0.2783 | 680 | 0.9093 |
1.004 | 0.2865 | 700 | 0.9030 |
0.9896 | 0.2947 | 720 | 0.8942 |
0.9668 | 0.3029 | 740 | 0.8870 |
0.9539 | 0.3111 | 760 | 0.8814 |
0.953 | 0.3193 | 780 | 0.8736 |
0.9388 | 0.3275 | 800 | 0.8696 |
0.9497 | 0.3357 | 820 | 0.8647 |
0.9309 | 0.3438 | 840 | 0.8619 |
0.9326 | 0.3520 | 860 | 0.8568 |
0.9272 | 0.3602 | 880 | 0.8519 |
0.9355 | 0.3684 | 900 | 0.8498 |
0.9147 | 0.3766 | 920 | 0.8460 |
0.9189 | 0.3848 | 940 | 0.8431 |
0.9061 | 0.3930 | 960 | 0.8394 |
0.9121 | 0.4011 | 980 | 0.8376 |
0.9007 | 0.4093 | 1000 | 0.8373 |
0.8897 | 0.4175 | 1020 | 0.8344 |
0.9037 | 0.4257 | 1040 | 0.8326 |
0.8987 | 0.4339 | 1060 | 0.8282 |
0.8968 | 0.4421 | 1080 | 0.8260 |
0.8906 | 0.4503 | 1100 | 0.8258 |
0.8915 | 0.4585 | 1120 | 0.8231 |
0.8911 | 0.4666 | 1140 | 0.8194 |
0.892 | 0.4748 | 1160 | 0.8171 |
0.8725 | 0.4830 | 1180 | 0.8169 |
0.8732 | 0.4912 | 1200 | 0.8168 |
0.8752 | 0.4994 | 1220 | 0.8154 |
0.8679 | 0.5076 | 1240 | 0.8147 |
0.8519 | 0.5158 | 1260 | 0.8139 |
0.8621 | 0.5239 | 1280 | 0.8092 |
0.8516 | 0.5321 | 1300 | 0.8093 |
0.8588 | 0.5403 | 1320 | 0.8070 |
0.8777 | 0.5485 | 1340 | 0.8080 |
0.8517 | 0.5567 | 1360 | 0.8050 |
0.8572 | 0.5649 | 1380 | 0.8032 |
0.8408 | 0.5731 | 1400 | 0.8052 |
0.8509 | 0.5813 | 1420 | 0.8042 |
0.8478 | 0.5894 | 1440 | 0.8039 |
0.8422 | 0.5976 | 1460 | 0.7995 |
0.8348 | 0.6058 | 1480 | 0.7999 |
0.8328 | 0.6140 | 1500 | 0.7998 |
0.8358 | 0.6222 | 1520 | 0.7988 |
0.825 | 0.6304 | 1540 | 0.7978 |
0.8342 | 0.6386 | 1560 | 0.7975 |
0.839 | 0.6467 | 1580 | 0.7963 |
0.8294 | 0.6549 | 1600 | 0.7954 |
0.8523 | 0.6631 | 1620 | 0.7958 |
0.8294 | 0.6713 | 1640 | 0.7922 |
0.8279 | 0.6795 | 1660 | 0.7939 |
0.8094 | 0.6877 | 1680 | 0.7951 |
0.8388 | 0.6959 | 1700 | 0.7914 |
0.8256 | 0.7041 | 1720 | 0.7907 |
0.8303 | 0.7122 | 1740 | 0.7906 |
0.8196 | 0.7204 | 1760 | 0.7901 |
0.8139 | 0.7286 | 1780 | 0.7891 |
0.8269 | 0.7368 | 1800 | 0.7880 |
0.8265 | 0.7450 | 1820 | 0.7868 |
0.835 | 0.7532 | 1840 | 0.7838 |
0.8354 | 0.7614 | 1860 | 0.7852 |
0.8209 | 0.7695 | 1880 | 0.7842 |
0.8135 | 0.7777 | 1900 | 0.7823 |
0.8207 | 0.7859 | 1920 | 0.7823 |
0.8251 | 0.7941 | 1940 | 0.7820 |
0.8063 | 0.8023 | 1960 | 0.7822 |
0.829 | 0.8105 | 1980 | 0.7800 |
0.8163 | 0.8187 | 2000 | 0.7815 |
0.8266 | 0.8269 | 2020 | 0.7792 |
0.835 | 0.8350 | 2040 | 0.7786 |
0.8102 | 0.8432 | 2060 | 0.7779 |
0.8296 | 0.8514 | 2080 | 0.7771 |
0.7994 | 0.8596 | 2100 | 0.7776 |
0.8085 | 0.8678 | 2120 | 0.7744 |
0.8123 | 0.8760 | 2140 | 0.7738 |
0.811 | 0.8842 | 2160 | 0.7748 |
0.8232 | 0.8923 | 2180 | 0.7738 |
0.8053 | 0.9005 | 2200 | 0.7740 |
0.82 | 0.9087 | 2220 | 0.7719 |
0.8112 | 0.9169 | 2240 | 0.7726 |
0.832 | 0.9251 | 2260 | 0.7712 |
0.8147 | 0.9333 | 2280 | 0.7711 |
0.7964 | 0.9415 | 2300 | 0.7715 |
0.8108 | 0.9497 | 2320 | 0.7688 |
0.8086 | 0.9578 | 2340 | 0.7703 |
0.7982 | 0.9660 | 2360 | 0.7698 |
0.8012 | 0.9742 | 2380 | 0.7681 |
0.8217 | 0.9824 | 2400 | 0.7668 |
0.8001 | 0.9906 | 2420 | 0.7677 |
0.8066 | 0.9988 | 2440 | 0.7676 |
0.7948 | 1.0070 | 2460 | 0.7648 |
0.8126 | 1.0151 | 2480 | 0.7648 |
0.8062 | 1.0233 | 2500 | 0.7639 |
0.8094 | 1.0315 | 2520 | 0.7665 |
0.7977 | 1.0397 | 2540 | 0.7648 |
0.8154 | 1.0479 | 2560 | 0.7635 |
0.7989 | 1.0561 | 2580 | 0.7645 |
0.7976 | 1.0643 | 2600 | 0.7642 |
0.8038 | 1.0725 | 2620 | 0.7624 |
0.7932 | 1.0806 | 2640 | 0.7615 |
0.8001 | 1.0888 | 2660 | 0.7625 |
0.8049 | 1.0970 | 2680 | 0.7617 |
0.7959 | 1.1052 | 2700 | 0.7601 |
0.8094 | 1.1134 | 2720 | 0.7623 |
0.7935 | 1.1216 | 2740 | 0.7619 |
0.7844 | 1.1298 | 2760 | 0.7620 |
0.7842 | 1.1379 | 2780 | 0.7605 |
0.789 | 1.1461 | 2800 | 0.7626 |
0.7963 | 1.1543 | 2820 | 0.7606 |
0.7908 | 1.1625 | 2840 | 0.7578 |
0.7906 | 1.1707 | 2860 | 0.7588 |
0.7819 | 1.1789 | 2880 | 0.7611 |
0.8136 | 1.1871 | 2900 | 0.7594 |
0.8006 | 1.1953 | 2920 | 0.7598 |
0.8006 | 1.2034 | 2940 | 0.7585 |
0.7933 | 1.2116 | 2960 | 0.7571 |
0.7872 | 1.2198 | 2980 | 0.7595 |
0.7915 | 1.2280 | 3000 | 0.7560 |
0.7963 | 1.2362 | 3020 | 0.7557 |
0.7911 | 1.2444 | 3040 | 0.7577 |
0.788 | 1.2526 | 3060 | 0.7562 |
0.7883 | 1.2607 | 3080 | 0.7558 |
0.7901 | 1.2689 | 3100 | 0.7555 |
0.7839 | 1.2771 | 3120 | 0.7551 |
0.8046 | 1.2853 | 3140 | 0.7560 |
0.7944 | 1.2935 | 3160 | 0.7547 |
0.7909 | 1.3017 | 3180 | 0.7547 |
0.7867 | 1.3099 | 3200 | 0.7554 |
0.7877 | 1.3181 | 3220 | 0.7537 |
0.781 | 1.3262 | 3240 | 0.7531 |
0.7902 | 1.3344 | 3260 | 0.7531 |
0.788 | 1.3426 | 3280 | 0.7555 |
0.7906 | 1.3508 | 3300 | 0.7555 |
0.7856 | 1.3590 | 3320 | 0.7544 |
0.7877 | 1.3672 | 3340 | 0.7532 |
0.7925 | 1.3754 | 3360 | 0.7525 |
0.7841 | 1.3835 | 3380 | 0.7534 |
0.799 | 1.3917 | 3400 | 0.7520 |
0.7876 | 1.3999 | 3420 | 0.7500 |
0.7769 | 1.4081 | 3440 | 0.7510 |
0.8041 | 1.4163 | 3460 | 0.7500 |
0.7893 | 1.4245 | 3480 | 0.7526 |
0.7774 | 1.4327 | 3500 | 0.7503 |
0.782 | 1.4409 | 3520 | 0.7501 |
0.7824 | 1.4490 | 3540 | 0.7510 |
0.7813 | 1.4572 | 3560 | 0.7505 |
0.7919 | 1.4654 | 3580 | 0.7513 |
0.7801 | 1.4736 | 3600 | 0.7505 |
0.7751 | 1.4818 | 3620 | 0.7502 |
0.7723 | 1.4900 | 3640 | 0.7488 |
0.7841 | 1.4982 | 3660 | 0.7484 |
0.7938 | 1.5063 | 3680 | 0.7490 |
0.7888 | 1.5145 | 3700 | 0.7496 |
0.7831 | 1.5227 | 3720 | 0.7487 |
0.7881 | 1.5309 | 3740 | 0.7491 |
0.7933 | 1.5391 | 3760 | 0.7464 |
0.781 | 1.5473 | 3780 | 0.7491 |
0.7885 | 1.5555 | 3800 | 0.7474 |
0.7856 | 1.5637 | 3820 | 0.7475 |
0.7871 | 1.5718 | 3840 | 0.7471 |
0.7829 | 1.5800 | 3860 | 0.7464 |
0.8159 | 1.5882 | 3880 | 0.7464 |
0.7836 | 1.5964 | 3900 | 0.7466 |
0.7825 | 1.6046 | 3920 | 0.7472 |
0.7689 | 1.6128 | 3940 | 0.7466 |
0.776 | 1.6210 | 3960 | 0.7476 |
0.7718 | 1.6291 | 3980 | 0.7461 |
0.7905 | 1.6373 | 4000 | 0.7462 |
0.7776 | 1.6455 | 4020 | 0.7475 |
0.7743 | 1.6537 | 4040 | 0.7462 |
0.7778 | 1.6619 | 4060 | 0.7455 |
0.7928 | 1.6701 | 4080 | 0.7449 |
0.8031 | 1.6783 | 4100 | 0.7451 |
0.7845 | 1.6865 | 4120 | 0.7440 |
0.7763 | 1.6946 | 4140 | 0.7453 |
0.7841 | 1.7028 | 4160 | 0.7455 |
0.7814 | 1.7110 | 4180 | 0.7450 |
0.7843 | 1.7192 | 4200 | 0.7441 |
0.7733 | 1.7274 | 4220 | 0.7449 |
0.7779 | 1.7356 | 4240 | 0.7437 |
0.7855 | 1.7438 | 4260 | 0.7448 |
0.7775 | 1.7519 | 4280 | 0.7443 |
0.7802 | 1.7601 | 4300 | 0.7432 |
0.783 | 1.7683 | 4320 | 0.7431 |
0.7753 | 1.7765 | 4340 | 0.7441 |
0.7772 | 1.7847 | 4360 | 0.7433 |
0.7813 | 1.7929 | 4380 | 0.7432 |
0.7817 | 1.8011 | 4400 | 0.7423 |
0.7769 | 1.8093 | 4420 | 0.7426 |
0.7843 | 1.8174 | 4440 | 0.7428 |
0.7719 | 1.8256 | 4460 | 0.7428 |
0.7872 | 1.8338 | 4480 | 0.7427 |
0.7741 | 1.8420 | 4500 | 0.7421 |
0.7683 | 1.8502 | 4520 | 0.7422 |
0.7844 | 1.8584 | 4540 | 0.7433 |
0.7705 | 1.8666 | 4560 | 0.7425 |
0.7838 | 1.8747 | 4580 | 0.7427 |
0.7822 | 1.8829 | 4600 | 0.7422 |
0.7867 | 1.8911 | 4620 | 0.7415 |
0.7742 | 1.8993 | 4640 | 0.7428 |
0.7683 | 1.9075 | 4660 | 0.7420 |
0.7706 | 1.9157 | 4680 | 0.7413 |
0.7804 | 1.9239 | 4700 | 0.7420 |
0.7951 | 1.9321 | 4720 | 0.7417 |
0.7686 | 1.9402 | 4740 | 0.7411 |
0.7798 | 1.9484 | 4760 | 0.7400 |
0.7885 | 1.9566 | 4780 | 0.7402 |
0.7757 | 1.9648 | 4800 | 0.7408 |
0.7783 | 1.9730 | 4820 | 0.7408 |
0.7679 | 1.9812 | 4840 | 0.7404 |
0.7767 | 1.9894 | 4860 | 0.7409 |
0.7676 | 1.9975 | 4880 | 0.7415 |
0.7548 | 2.0057 | 4900 | 0.7410 |
0.7687 | 2.0139 | 4920 | 0.7414 |
0.7895 | 2.0221 | 4940 | 0.7403 |
0.7826 | 2.0303 | 4960 | 0.7403 |
0.7675 | 2.0385 | 4980 | 0.7419 |
0.7714 | 2.0467 | 5000 | 0.7401 |
0.7686 | 2.0549 | 5020 | 0.7417 |
0.7645 | 2.0630 | 5040 | 0.7408 |
0.7792 | 2.0712 | 5060 | 0.7403 |
0.77 | 2.0794 | 5080 | 0.7396 |
0.7752 | 2.0876 | 5100 | 0.7390 |
0.7797 | 2.0958 | 5120 | 0.7398 |
0.7785 | 2.1040 | 5140 | 0.7401 |
0.7727 | 2.1122 | 5160 | 0.7403 |
0.7748 | 2.1203 | 5180 | 0.7395 |
0.7657 | 2.1285 | 5200 | 0.7396 |
0.7709 | 2.1367 | 5220 | 0.7405 |
0.7947 | 2.1449 | 5240 | 0.7394 |
0.7758 | 2.1531 | 5260 | 0.7396 |
0.779 | 2.1613 | 5280 | 0.7397 |
0.7727 | 2.1695 | 5300 | 0.7395 |
0.7841 | 2.1777 | 5320 | 0.7394 |
0.7809 | 2.1858 | 5340 | 0.7391 |
0.7722 | 2.1940 | 5360 | 0.7398 |
0.7703 | 2.2022 | 5380 | 0.7391 |
0.7845 | 2.2104 | 5400 | 0.7390 |
0.7691 | 2.2186 | 5420 | 0.7392 |
0.7781 | 2.2268 | 5440 | 0.7397 |
0.7719 | 2.2350 | 5460 | 0.7382 |
0.7829 | 2.2431 | 5480 | 0.7383 |
0.7839 | 2.2513 | 5500 | 0.7391 |
0.7666 | 2.2595 | 5520 | 0.7384 |
0.782 | 2.2677 | 5540 | 0.7390 |
0.7773 | 2.2759 | 5560 | 0.7389 |
0.7844 | 2.2841 | 5580 | 0.7385 |
0.7522 | 2.2923 | 5600 | 0.7388 |
0.7645 | 2.3005 | 5620 | 0.7394 |
0.7921 | 2.3086 | 5640 | 0.7377 |
0.7716 | 2.3168 | 5660 | 0.7378 |
0.7699 | 2.3250 | 5680 | 0.7384 |
0.7812 | 2.3332 | 5700 | 0.7385 |
0.7853 | 2.3414 | 5720 | 0.7387 |
0.7898 | 2.3496 | 5740 | 0.7384 |
0.7727 | 2.3578 | 5760 | 0.7376 |
0.7752 | 2.3659 | 5780 | 0.7374 |
0.7723 | 2.3741 | 5800 | 0.7379 |
0.7611 | 2.3823 | 5820 | 0.7383 |
0.7733 | 2.3905 | 5840 | 0.7380 |
0.7733 | 2.3987 | 5860 | 0.7382 |
0.7723 | 2.4069 | 5880 | 0.7375 |
0.777 | 2.4151 | 5900 | 0.7379 |
0.7733 | 2.4233 | 5920 | 0.7379 |
0.7788 | 2.4314 | 5940 | 0.7379 |
0.769 | 2.4396 | 5960 | 0.7371 |
0.7832 | 2.4478 | 5980 | 0.7385 |
0.763 | 2.4560 | 6000 | 0.7380 |
0.7807 | 2.4642 | 6020 | 0.7380 |
0.7875 | 2.4724 | 6040 | 0.7374 |
0.7711 | 2.4806 | 6060 | 0.7376 |
0.7774 | 2.4887 | 6080 | 0.7384 |
0.7843 | 2.4969 | 6100 | 0.7377 |
0.7717 | 2.5051 | 6120 | 0.7375 |
0.7611 | 2.5133 | 6140 | 0.7372 |
0.7804 | 2.5215 | 6160 | 0.7373 |
0.7818 | 2.5297 | 6180 | 0.7377 |
0.7635 | 2.5379 | 6200 | 0.7373 |
0.7699 | 2.5460 | 6220 | 0.7381 |
0.7751 | 2.5542 | 6240 | 0.7378 |
0.7729 | 2.5624 | 6260 | 0.7384 |
0.7645 | 2.5706 | 6280 | 0.7375 |
0.7653 | 2.5788 | 6300 | 0.7381 |
0.7776 | 2.5870 | 6320 | 0.7383 |
0.7812 | 2.5952 | 6340 | 0.7376 |
0.7597 | 2.6034 | 6360 | 0.7374 |
0.7627 | 2.6115 | 6380 | 0.7370 |
0.7722 | 2.6197 | 6400 | 0.7378 |
0.7832 | 2.6279 | 6420 | 0.7373 |
0.7723 | 2.6361 | 6440 | 0.7370 |
0.7655 | 2.6443 | 6460 | 0.7372 |
0.7825 | 2.6525 | 6480 | 0.7373 |
0.7677 | 2.6607 | 6500 | 0.7377 |
0.7728 | 2.6688 | 6520 | 0.7376 |
0.779 | 2.6770 | 6540 | 0.7370 |
0.7693 | 2.6852 | 6560 | 0.7369 |
0.7601 | 2.6934 | 6580 | 0.7374 |
0.7768 | 2.7016 | 6600 | 0.7373 |
0.7792 | 2.7098 | 6620 | 0.7373 |
0.7678 | 2.7180 | 6640 | 0.7374 |
0.7822 | 2.7262 | 6660 | 0.7376 |
0.7774 | 2.7343 | 6680 | 0.7371 |
0.7689 | 2.7425 | 6700 | 0.7373 |
0.7681 | 2.7507 | 6720 | 0.7373 |
0.7665 | 2.7589 | 6740 | 0.7374 |
0.7718 | 2.7671 | 6760 | 0.7372 |
0.7708 | 2.7753 | 6780 | 0.7375 |
0.7703 | 2.7835 | 6800 | 0.7374 |
0.7611 | 2.7916 | 6820 | 0.7372 |
0.7702 | 2.7998 | 6840 | 0.7375 |
0.7736 | 2.8080 | 6860 | 0.7376 |
0.7767 | 2.8162 | 6880 | 0.7371 |
0.7913 | 2.8244 | 6900 | 0.7369 |
0.7761 | 2.8326 | 6920 | 0.7375 |
0.7805 | 2.8408 | 6940 | 0.7377 |
0.7715 | 2.8490 | 6960 | 0.7374 |
0.77 | 2.8571 | 6980 | 0.7377 |
0.7688 | 2.8653 | 7000 | 0.7377 |
0.7721 | 2.8735 | 7020 | 0.7374 |
0.7834 | 2.8817 | 7040 | 0.7371 |
0.7747 | 2.8899 | 7060 | 0.7377 |
0.7817 | 2.8981 | 7080 | 0.7375 |
0.773 | 2.9063 | 7100 | 0.7371 |
0.7694 | 2.9144 | 7120 | 0.7377 |
0.7961 | 2.9226 | 7140 | 0.7374 |
0.7653 | 2.9308 | 7160 | 0.7377 |
0.7582 | 2.9390 | 7180 | 0.7375 |
0.775 | 2.9472 | 7200 | 0.7375 |
0.7741 | 2.9554 | 7220 | 0.7373 |
0.7789 | 2.9636 | 7240 | 0.7382 |
0.7632 | 2.9718 | 7260 | 0.7373 |
0.777 | 2.9799 | 7280 | 0.7370 |
0.7652 | 2.9881 | 7300 | 0.7370 |
0.7671 | 2.9963 | 7320 | 0.7371 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for augustocsc/Se124M100KInfPrompt_WT
Base model
openai-community/gpt2