CodeLlama Unit Test Generator

This is a LoRA adapter for CodeLlama-7b-Instruct-hf, fine-tuned to generate comprehensive unit tests for C/C++ code.

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch

# Load base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained(
    "codellama/CodeLlama-7b-Instruct-hf",
    device_map="auto",
    torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("athrv/codellama_utests_adapter")

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "athrv/codellama_utests_adapter")

# Generate unit tests
system_prompt = "Generate comprehensive unit tests for C/C++ code."
user_prompt = "Create unit tests for: [YOUR_CODE_HERE]"

prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n[INST] {user_prompt} [/INST]"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)

Training Details

  • Base Model: CodeLlama-7b-Instruct-hf
  • Dataset: Embedded_Unittest2
  • Training Method: LoRA fine-tuning
  • Target Modules: Attention layers
  • Sequence Length: 4096-6144 tokens

Model Performance

This model generates comprehensive unit tests covering:

  • Function testing and edge cases
  • Boundary conditions
  • Error scenarios
  • Proper test naming conventions
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for athrv/codellama_utests_adapter

Adapter
(330)
this model