CodeLlama Unit Test Generator
This is a LoRA adapter for CodeLlama-7b-Instruct-hf, fine-tuned to generate comprehensive unit tests for C/C++ code.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
import torch
# Load base model and tokenizer
base_model = AutoModelForCausalLM.from_pretrained(
"codellama/CodeLlama-7b-Instruct-hf",
device_map="auto",
torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("athrv/codellama_utests_adapter")
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "athrv/codellama_utests_adapter")
# Generate unit tests
system_prompt = "Generate comprehensive unit tests for C/C++ code."
user_prompt = "Create unit tests for: [YOUR_CODE_HERE]"
prompt = f"<<SYS>>\n{system_prompt}\n<</SYS>>\n\n[INST] {user_prompt} [/INST]"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
Training Details
- Base Model: CodeLlama-7b-Instruct-hf
- Dataset: Embedded_Unittest2
- Training Method: LoRA fine-tuning
- Target Modules: Attention layers
- Sequence Length: 4096-6144 tokens
Model Performance
This model generates comprehensive unit tests covering:
- Function testing and edge cases
- Boundary conditions
- Error scenarios
- Proper test naming conventions
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for athrv/codellama_utests_adapter
Base model
codellama/CodeLlama-7b-Instruct-hf