|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
import glob |
|
import json |
|
import tempfile |
|
import math |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from torch.utils.data import DataLoader |
|
import numpy as np |
|
import commons |
|
import utils |
|
import argparse |
|
import subprocess |
|
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate |
|
from models import SynthesizerTrn |
|
from scipy.io.wavfile import write |
|
|
|
class TextMapper(object): |
|
def __init__(self, vocab_file): |
|
self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()] |
|
self.SPACE_ID = self.symbols.index(" ") |
|
self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)} |
|
self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)} |
|
|
|
def text_to_sequence(self, text, cleaner_names): |
|
'''Converts a string of text to a sequence of IDs corresponding to the symbols in the text. |
|
Args: |
|
text: string to convert to a sequence |
|
cleaner_names: names of the cleaner functions to run the text through |
|
Returns: |
|
List of integers corresponding to the symbols in the text |
|
''' |
|
sequence = [] |
|
clean_text = text.strip() |
|
for symbol in clean_text: |
|
symbol_id = self._symbol_to_id[symbol] |
|
sequence += [symbol_id] |
|
return sequence |
|
|
|
def uromanize(self, text, uroman_pl): |
|
iso = "xxx" |
|
with tempfile.NamedTemporaryFile() as tf, \ |
|
tempfile.NamedTemporaryFile() as tf2: |
|
with open(tf.name, "w") as f: |
|
f.write("\n".join([text])) |
|
cmd = f"perl " + uroman_pl |
|
cmd += f" -l {iso} " |
|
cmd += f" < {tf.name} > {tf2.name}" |
|
os.system(cmd) |
|
outtexts = [] |
|
with open(tf2.name) as f: |
|
for line in f: |
|
line = re.sub(r"\s+", " ", line).strip() |
|
outtexts.append(line) |
|
outtext = outtexts[0] |
|
return outtext |
|
|
|
def get_text(self, text, hps): |
|
text_norm = self.text_to_sequence(text, hps.data.text_cleaners) |
|
if hps.data.add_blank: |
|
text_norm = commons.intersperse(text_norm, 0) |
|
text_norm = torch.LongTensor(text_norm) |
|
return text_norm |
|
|
|
def filter_oov(self, text, lang=None): |
|
text = self.preprocess_char(text, lang=lang) |
|
val_chars = self._symbol_to_id |
|
txt_filt = "".join(list(filter(lambda x: x in val_chars, text))) |
|
print(f"text after filtering OOV: {txt_filt}") |
|
return txt_filt |
|
|
|
def preprocess_char(self, text, lang=None): |
|
""" |
|
Special treatement of characters in certain languages |
|
""" |
|
if lang == "ron": |
|
text = text.replace("ț", "ţ") |
|
print(f"{lang} (ț -> ţ): {text}") |
|
return text |
|
|
|
def generate(): |
|
parser = argparse.ArgumentParser(description='TTS inference') |
|
parser.add_argument('--model-dir', type=str, help='model checkpoint dir') |
|
parser.add_argument('--wav', type=str, help='output wav path') |
|
parser.add_argument('--txt', type=str, help='input text') |
|
parser.add_argument('--uroman-dir', type=str, default=None, help='uroman lib dir (will download if not specified)') |
|
parser.add_argument('--lang', type=str, default=None, help='language iso code (required for Romanian)') |
|
args = parser.parse_args() |
|
ckpt_dir, wav_path, txt = args.model_dir, args.wav, args.txt |
|
|
|
if torch.cuda.is_available(): |
|
device = torch.device("cuda") |
|
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built(): |
|
device = torch.device("mps") |
|
else: |
|
device = torch.device("cpu") |
|
|
|
print(f"Run inference with {device}") |
|
vocab_file = f"{ckpt_dir}/vocab.txt" |
|
config_file = f"{ckpt_dir}/config.json" |
|
assert os.path.isfile(config_file), f"{config_file} doesn't exist" |
|
hps = utils.get_hparams_from_file(config_file) |
|
text_mapper = TextMapper(vocab_file) |
|
net_g = SynthesizerTrn( |
|
len(text_mapper.symbols), |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model) |
|
net_g.to(device) |
|
_ = net_g.eval() |
|
|
|
g_pth = f"{ckpt_dir}/G_100000.pth" |
|
print(f"load {g_pth}") |
|
|
|
_ = utils.load_checkpoint(g_pth, net_g, None) |
|
|
|
print(f"text: {txt}") |
|
is_uroman = hps.data.training_files.split('.')[-1] == 'uroman' |
|
if is_uroman: |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
if args.uroman_dir is None: |
|
cmd = f"git clone git@github.com:isi-nlp/uroman.git {tmp_dir}" |
|
print(cmd) |
|
subprocess.check_output(cmd, shell=True) |
|
args.uroman_dir = tmp_dir |
|
uroman_pl = os.path.join(args.uroman_dir, "bin", "uroman.pl") |
|
print(f"uromanize") |
|
txt = text_mapper.uromanize(txt, uroman_pl) |
|
print(f"uroman text: {txt}") |
|
txt = txt.lower() |
|
txt = text_mapper.filter_oov(txt, lang=args.lang) |
|
stn_tst = text_mapper.get_text(txt, hps) |
|
with torch.no_grad(): |
|
x_tst = stn_tst.unsqueeze(0).to(device) |
|
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device) |
|
hyp = net_g.infer( |
|
x_tst, x_tst_lengths, noise_scale=.667, |
|
noise_scale_w=0.8, length_scale=1.0 |
|
)[0][0,0].cpu().float().numpy() |
|
|
|
os.makedirs(os.path.dirname(wav_path), exist_ok=True) |
|
print(f"wav: {wav_path}") |
|
write(wav_path, hps.data.sampling_rate, hyp) |
|
return |
|
|
|
|
|
if __name__ == '__main__': |
|
generate() |
|
|