PyTorch
ssl-aasist
custom_code
File size: 5,802 Bytes
9742bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import re
import glob
import json
import tempfile
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import numpy as np
import commons
import utils
import argparse
import subprocess
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from scipy.io.wavfile import write

class TextMapper(object):
    def __init__(self, vocab_file):
        self.symbols = [x.replace("\n", "") for x in open(vocab_file, encoding="utf-8").readlines()]
        self.SPACE_ID = self.symbols.index(" ")
        self._symbol_to_id = {s: i for i, s in enumerate(self.symbols)}
        self._id_to_symbol = {i: s for i, s in enumerate(self.symbols)}

    def text_to_sequence(self, text, cleaner_names):
        '''Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
        Args:
        text: string to convert to a sequence
        cleaner_names: names of the cleaner functions to run the text through
        Returns:
        List of integers corresponding to the symbols in the text
        '''
        sequence = []
        clean_text = text.strip()
        for symbol in clean_text:
            symbol_id = self._symbol_to_id[symbol]
            sequence += [symbol_id]
        return sequence

    def uromanize(self, text, uroman_pl):
        iso = "xxx"
        with tempfile.NamedTemporaryFile() as tf, \
             tempfile.NamedTemporaryFile() as tf2:
            with open(tf.name, "w") as f:
                f.write("\n".join([text]))
            cmd = f"perl " + uroman_pl
            cmd += f" -l {iso} "
            cmd +=  f" < {tf.name} > {tf2.name}"
            os.system(cmd)
            outtexts = []
            with open(tf2.name) as f:
                for line in f:
                    line =  re.sub(r"\s+", " ", line).strip()
                    outtexts.append(line)
            outtext = outtexts[0]
        return outtext

    def get_text(self, text, hps):
        text_norm = self.text_to_sequence(text, hps.data.text_cleaners)
        if hps.data.add_blank:
            text_norm = commons.intersperse(text_norm, 0)
        text_norm = torch.LongTensor(text_norm)
        return text_norm

    def filter_oov(self, text, lang=None):
        text = self.preprocess_char(text, lang=lang)
        val_chars = self._symbol_to_id
        txt_filt = "".join(list(filter(lambda x: x in val_chars, text)))
        print(f"text after filtering OOV: {txt_filt}")
        return txt_filt

    def preprocess_char(self, text, lang=None):
        """
        Special treatement of characters in certain languages
        """
        if lang == "ron":
            text = text.replace("ț", "ţ")
            print(f"{lang} (ț -> ţ): {text}")
        return text

def generate():
    parser = argparse.ArgumentParser(description='TTS inference')
    parser.add_argument('--model-dir', type=str, help='model checkpoint dir')
    parser.add_argument('--wav', type=str, help='output wav path')
    parser.add_argument('--txt', type=str, help='input text')
    parser.add_argument('--uroman-dir', type=str, default=None, help='uroman lib dir (will download if not specified)')
    parser.add_argument('--lang', type=str, default=None, help='language iso code (required for Romanian)')
    args = parser.parse_args()
    ckpt_dir, wav_path, txt = args.model_dir, args.wav, args.txt

    if torch.cuda.is_available():
        device = torch.device("cuda")
    elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and torch.backends.mps.is_built():
        device = torch.device("mps")
    else:
        device = torch.device("cpu")

    print(f"Run inference with {device}")
    vocab_file = f"{ckpt_dir}/vocab.txt"
    config_file = f"{ckpt_dir}/config.json"
    assert os.path.isfile(config_file), f"{config_file} doesn't exist"
    hps = utils.get_hparams_from_file(config_file)
    text_mapper = TextMapper(vocab_file)
    net_g = SynthesizerTrn(
        len(text_mapper.symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        **hps.model)
    net_g.to(device)
    _ = net_g.eval()

    g_pth = f"{ckpt_dir}/G_100000.pth"
    print(f"load {g_pth}")

    _ = utils.load_checkpoint(g_pth, net_g, None)

    print(f"text: {txt}")
    is_uroman = hps.data.training_files.split('.')[-1] == 'uroman'
    if is_uroman:
        with tempfile.TemporaryDirectory() as tmp_dir:
            if args.uroman_dir is None:
                cmd = f"git clone git@github.com:isi-nlp/uroman.git {tmp_dir}"
                print(cmd)
                subprocess.check_output(cmd, shell=True)
                args.uroman_dir = tmp_dir
            uroman_pl = os.path.join(args.uroman_dir, "bin", "uroman.pl")
            print(f"uromanize")
            txt = text_mapper.uromanize(txt, uroman_pl)
            print(f"uroman text: {txt}")
    txt = txt.lower()
    txt = text_mapper.filter_oov(txt, lang=args.lang)
    stn_tst = text_mapper.get_text(txt, hps)
    with torch.no_grad():
        x_tst = stn_tst.unsqueeze(0).to(device)
        x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
        hyp = net_g.infer(
            x_tst, x_tst_lengths, noise_scale=.667,
            noise_scale_w=0.8, length_scale=1.0
        )[0][0,0].cpu().float().numpy()

    os.makedirs(os.path.dirname(wav_path), exist_ok=True)
    print(f"wav: {wav_path}")
    write(wav_path, hps.data.sampling_rate, hyp)
    return


if __name__ == '__main__':
    generate()