PyTorch
ssl-aasist
custom_code
ssl-aasist / fairseq /examples /data2vec /models /mae_image_classification.py
ash56's picture
Add files using upload-large-folder tool
6789f6f verified
raw
history blame
13.9 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# The code in this file is adapted from the BeiT implementation which can be found here:
# https://github.com/microsoft/unilm/tree/master/beit
import logging
from dataclasses import dataclass
from enum import Enum, auto
from typing import Any, Optional
import numpy as np
from omegaconf import II, MISSING
import torch
import torch.nn as nn
import torch.nn.functional as F
from fairseq import checkpoint_utils, tasks
from omegaconf import open_dict
from fairseq.dataclass import FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from .mae import interpolate_pos_embed
logger = logging.getLogger(__name__)
class PredictionMode(Enum):
MEAN_POOLING = auto()
CLS_TOKEN = auto()
LIN_SOFTMAX = auto()
@dataclass
class MaeImageClassificationConfig(FairseqDataclass):
model_path: str = MISSING
no_pretrained_weights: bool = False
linear_classifier: bool = False
num_classes: int = 1000
mixup: float = 0.8
cutmix: float = 1.0
label_smoothing: float = 0.1
drop_path_rate: float = 0.1
layer_decay: float = 0.65
mixup_prob: float = 1.0
mixup_switch_prob: float = 0.5
mixup_mode: str = "batch"
pretrained_model_args: Any = None
data: str = II("task.data")
norm_eps: Optional[float] = None
remove_alibi: bool = False
# regularization overwrites
encoder_dropout: float = 0
post_mlp_drop: float = 0
attention_dropout: float = 0
activation_dropout: float = 0.0
dropout_input: float = 0.0
layerdrop: float = 0.0
prenet_layerdrop: float = 0
prenet_dropout: float = 0
use_fc_norm: bool = True
prediction_mode: PredictionMode = PredictionMode.MEAN_POOLING
no_decay_blocks: bool = True
def get_layer_id_for_vit(name, num_layers):
"""
Assign a parameter with its layer id
Following BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
"""
if name in ["cls_token", "pos_embed"]:
return 0
elif name.startswith("patch_embed"):
return 0
elif name.startswith("rel_pos_bias"):
return num_layers - 1
elif name.startswith("blocks"):
return int(name.split(".")[1]) + 1
else:
return num_layers
@register_model("mae_image_classification", dataclass=MaeImageClassificationConfig)
class MaeImageClassificationModel(BaseFairseqModel):
def __init__(self, cfg: MaeImageClassificationConfig):
super().__init__()
self.cfg = cfg
if cfg.pretrained_model_args is None:
state = checkpoint_utils.load_checkpoint_to_cpu(cfg.model_path, {})
pretrained_args = state.get("cfg", None)
pretrained_args.criterion = None
pretrained_args.lr_scheduler = None
logger.info(pretrained_args.model)
with open_dict(pretrained_args.model):
pretrained_args.model.drop_path_rate = cfg.drop_path_rate
if cfg.norm_eps is not None:
pretrained_args.model.norm_eps = cfg.norm_eps
cfg.pretrained_model_args = pretrained_args
logger.info(pretrained_args)
else:
state = None
pretrained_args = cfg.pretrained_model_args
if "data" in pretrained_args.task:
pretrained_args.task.data = cfg.data
elif "image" in pretrained_args.task:
pretrained_args.task.image.data = cfg.data
if "modalities" in pretrained_args.model:
prenet_blocks = pretrained_args.model["modalities"]["image"]["prenet_depth"]
model_blocks = pretrained_args.model["depth"]
with open_dict(pretrained_args):
dpr = np.linspace(0, cfg.drop_path_rate, model_blocks).tolist()
pretrained_args.model["modalities"]["image"][
"start_drop_path_rate"
] = dpr[0]
pretrained_args.model["modalities"]["image"][
"end_drop_path_rate"
] = max(0, dpr[prenet_blocks - 1])
pretrained_args.model["start_drop_path_rate"] = dpr[prenet_blocks]
pretrained_args.model["end_drop_path_rate"] = dpr[-1]
if "mae_masking" in pretrained_args.model["modalities"]["image"]:
del pretrained_args.model["modalities"]["image"]["mae_masking"]
if cfg.remove_alibi:
pretrained_args.model["modalities"]["image"][
"use_alibi_encoder"
] = False
if (
state is not None
and "modality_encoders.IMAGE.alibi_bias" in state["model"]
):
del state["model"]["modality_encoders.IMAGE.alibi_bias"]
pretrained_args.model["encoder_dropout"] = cfg.encoder_dropout
pretrained_args.model["post_mlp_drop"] = cfg.post_mlp_drop
pretrained_args.model["attention_dropout"] = cfg.attention_dropout
pretrained_args.model["activation_dropout"] = cfg.activation_dropout
pretrained_args.model["dropout_input"] = cfg.dropout_input
pretrained_args.model["layerdrop"] = cfg.layerdrop
pretrained_args.model["modalities"]["image"][
"prenet_layerdrop"
] = cfg.prenet_layerdrop
pretrained_args.model["modalities"]["image"][
"prenet_dropout"
] = cfg.prenet_dropout
else:
# not d2v multi
with open_dict(pretrained_args):
pretrained_args.model["drop_path_rate"] = cfg.drop_path_rate
pretrained_args.model["block_dropout"] = cfg.encoder_dropout
pretrained_args.model["attention_dropout"] = cfg.attention_dropout
pretrained_args.model["activation_dropout"] = cfg.activation_dropout
task = tasks.setup_task(pretrained_args.task)
model = task.build_model(pretrained_args.model, from_checkpoint=True)
self.d2v_multi = "data2vec_multi" in pretrained_args.model._name
self.linear_classifier = cfg.linear_classifier
self.model = model
if state is not None and not cfg.no_pretrained_weights:
interpolate_pos_embed(model, state)
if "modality_encoders.IMAGE.positional_encoder.pos_embed" in state["model"]:
state["model"][
"modality_encoders.IMAGE.positional_encoder.positions"
] = state["model"][
"modality_encoders.IMAGE.positional_encoder.pos_embed"
]
del state["model"][
"modality_encoders.IMAGE.positional_encoder.pos_embed"
]
if "modality_encoders.IMAGE.encoder_mask" in state["model"]:
del state["model"]["modality_encoders.IMAGE.encoder_mask"]
model.load_state_dict(state["model"], strict=True)
if self.d2v_multi:
model.remove_pretraining_modules(modality="image")
else:
model.remove_pretraining_modules()
if self.linear_classifier:
model.requires_grad_(False)
self.fc_norm = None
if self.cfg.use_fc_norm:
self.fc_norm = nn.LayerNorm(pretrained_args.model.embed_dim, eps=1e-6)
nn.init.constant_(self.fc_norm.bias, 0)
nn.init.constant_(self.fc_norm.weight, 1.0)
self.head = nn.Linear(pretrained_args.model.embed_dim, cfg.num_classes)
nn.init.trunc_normal_(self.head.weight, std=0.02)
nn.init.constant_(self.head.bias, 0)
self.mixup_fn = None
if cfg.mixup > 0 or cfg.cutmix > 0:
from timm.data import Mixup
self.mixup_fn = Mixup(
mixup_alpha=cfg.mixup,
cutmix_alpha=cfg.cutmix,
cutmix_minmax=None,
prob=cfg.mixup_prob,
switch_prob=cfg.mixup_switch_prob,
mode=cfg.mixup_mode,
label_smoothing=cfg.label_smoothing,
num_classes=cfg.num_classes,
)
if self.model.norm is not None:
for pn, p in self.model.norm.named_parameters():
if len(p.shape) == 1 or pn.endswith(".bias"):
p.optim_overrides = {"optimizer": {"weight_decay_scale": 0}}
if self.fc_norm is not None:
for pn, p in self.fc_norm.named_parameters():
if len(p.shape) == 1 or pn.endswith(".bias"):
p.optim_overrides = {"optimizer": {"weight_decay_scale": 0}}
for pn, p in self.head.named_parameters():
if len(p.shape) == 1 or pn.endswith(".bias"):
p.optim_overrides = {"optimizer": {"weight_decay_scale": 0}}
if self.d2v_multi:
mod_encs = list(model.modality_encoders.values())
assert len(mod_encs) == 1, len(mod_encs)
blocks = list(mod_encs[0].context_encoder.blocks) + list(model.blocks)
else:
blocks = model.blocks
num_layers = len(blocks) + 1
layer_scales = list(
cfg.layer_decay ** (num_layers - i) for i in range(num_layers + 1)
)
if self.d2v_multi:
for n, p in self.model.named_parameters():
optimizer_override_dict = {}
if len(p.shape) == 1 or n.endswith(".bias"):
optimizer_override_dict["weight_decay_scale"] = 0
p.optim_overrides = {"optimizer": optimizer_override_dict}
if cfg.layer_decay > 0:
for i, b in enumerate(blocks):
lid = i + 1
if layer_scales[lid] == 1.0:
continue
for n, p in b.named_parameters():
optim_override = getattr(p, "optim_overrides", {})
if "optimizer" not in optim_override:
optim_override["optimizer"] = {}
if cfg.no_decay_blocks:
optim_override["optimizer"]["lr_scale"] = layer_scales[lid]
p.optim_overrides = optim_override
else:
optim_override["optimizer"] = {
"lr_scale": layer_scales[lid]
}
p.optim_overrides = optim_override
else:
for n, p in self.model.named_parameters():
optimizer_override_dict = {}
layer_id = get_layer_id_for_vit(n, num_layers)
if len(p.shape) == 1 or n.endswith(".bias"):
optimizer_override_dict["weight_decay_scale"] = 0
if cfg.layer_decay > 0:
optimizer_override_dict["lr_scale"] = layer_scales[layer_id]
p.optim_overrides = {"optimizer": optimizer_override_dict}
@classmethod
def build_model(cls, cfg: MaeImageClassificationConfig, task=None):
"""Build a new model instance."""
return cls(cfg)
def forward(
self,
imgs,
labels=None,
):
if self.training and self.mixup_fn is not None and labels is not None:
imgs, labels = self.mixup_fn(imgs, labels)
if self.linear_classifier:
with torch.no_grad():
x = self.model_forward(imgs)
else:
x = self.model_forward(imgs)
if self.cfg.prediction_mode == PredictionMode.MEAN_POOLING:
x = x.mean(dim=1)
elif self.cfg.prediction_mode == PredictionMode.CLS_TOKEN:
x = x[:, 0]
elif self.cfg.prediction_mode == PredictionMode.LIN_SOFTMAX:
dtype = x.dtype
x = F.logsigmoid(x.float())
x = torch.logsumexp(x + x, dim=1) - torch.logsumexp(x + 1e-6, dim=1)
x = x.clamp(max=0)
x = x - torch.log(-(torch.expm1(x)))
x = torch.nan_to_num(x, nan=0, posinf=0, neginf=0)
x = x.to(dtype=dtype)
else:
raise Exception(f"unknown prediction mode {self.cfg.prediction_mode.name}")
if self.fc_norm is not None:
x = self.fc_norm(x)
x = self.head(x)
if labels is None:
return x
if self.training and self.mixup_fn is not None:
loss = -labels * F.log_softmax(x.float(), dim=-1)
else:
loss = F.cross_entropy(
x.float(),
labels,
label_smoothing=self.cfg.label_smoothing if self.training else 0,
reduction="none",
)
result = {
"losses": {"regression": loss},
"sample_size": imgs.size(0),
}
if not self.training:
with torch.no_grad():
pred = x.argmax(-1)
correct = (pred == labels).sum()
result["correct"] = correct
return result
def model_forward(self, imgs):
if self.d2v_multi:
x = self.model.extract_features(
imgs,
mode="IMAGE",
mask=False,
remove_extra_tokens=(
self.cfg.prediction_mode != PredictionMode.CLS_TOKEN
),
)["x"]
else:
x = self.model(imgs, predictions_only=True)
if (
"no_cls" not in self.model.cfg or not self.model.cfg.no_cls
) and not self.cfg.prediction_mode == PredictionMode.CLS_TOKEN:
x = x[:, 1:]
return x