PyTorch
ssl-aasist
custom_code
File size: 13,877 Bytes
6789f6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# The code in this file is adapted from the BeiT implementation which can be found here:
# https://github.com/microsoft/unilm/tree/master/beit

import logging

from dataclasses import dataclass
from enum import Enum, auto
from typing import Any, Optional

import numpy as np
from omegaconf import II, MISSING

import torch
import torch.nn as nn
import torch.nn.functional as F

from fairseq import checkpoint_utils, tasks
from omegaconf import open_dict

from fairseq.dataclass import FairseqDataclass
from fairseq.models import BaseFairseqModel, register_model
from .mae import interpolate_pos_embed


logger = logging.getLogger(__name__)


class PredictionMode(Enum):
    MEAN_POOLING = auto()
    CLS_TOKEN = auto()
    LIN_SOFTMAX = auto()


@dataclass
class MaeImageClassificationConfig(FairseqDataclass):
    model_path: str = MISSING
    no_pretrained_weights: bool = False
    linear_classifier: bool = False
    num_classes: int = 1000
    mixup: float = 0.8
    cutmix: float = 1.0
    label_smoothing: float = 0.1

    drop_path_rate: float = 0.1
    layer_decay: float = 0.65

    mixup_prob: float = 1.0
    mixup_switch_prob: float = 0.5
    mixup_mode: str = "batch"

    pretrained_model_args: Any = None
    data: str = II("task.data")

    norm_eps: Optional[float] = None

    remove_alibi: bool = False

    # regularization overwrites
    encoder_dropout: float = 0
    post_mlp_drop: float = 0
    attention_dropout: float = 0
    activation_dropout: float = 0.0
    dropout_input: float = 0.0
    layerdrop: float = 0.0

    prenet_layerdrop: float = 0
    prenet_dropout: float = 0

    use_fc_norm: bool = True
    prediction_mode: PredictionMode = PredictionMode.MEAN_POOLING

    no_decay_blocks: bool = True


def get_layer_id_for_vit(name, num_layers):
    """
    Assign a parameter with its layer id
    Following BEiT: https://github.com/microsoft/unilm/blob/master/beit/optim_factory.py#L33
    """
    if name in ["cls_token", "pos_embed"]:
        return 0
    elif name.startswith("patch_embed"):
        return 0
    elif name.startswith("rel_pos_bias"):
        return num_layers - 1
    elif name.startswith("blocks"):
        return int(name.split(".")[1]) + 1
    else:
        return num_layers


@register_model("mae_image_classification", dataclass=MaeImageClassificationConfig)
class MaeImageClassificationModel(BaseFairseqModel):
    def __init__(self, cfg: MaeImageClassificationConfig):
        super().__init__()
        self.cfg = cfg

        if cfg.pretrained_model_args is None:
            state = checkpoint_utils.load_checkpoint_to_cpu(cfg.model_path, {})
            pretrained_args = state.get("cfg", None)

            pretrained_args.criterion = None
            pretrained_args.lr_scheduler = None

            logger.info(pretrained_args.model)

            with open_dict(pretrained_args.model):
                pretrained_args.model.drop_path_rate = cfg.drop_path_rate
                if cfg.norm_eps is not None:
                    pretrained_args.model.norm_eps = cfg.norm_eps

            cfg.pretrained_model_args = pretrained_args

            logger.info(pretrained_args)
        else:
            state = None
            pretrained_args = cfg.pretrained_model_args

        if "data" in pretrained_args.task:
            pretrained_args.task.data = cfg.data
        elif "image" in pretrained_args.task:
            pretrained_args.task.image.data = cfg.data

        if "modalities" in pretrained_args.model:
            prenet_blocks = pretrained_args.model["modalities"]["image"]["prenet_depth"]
            model_blocks = pretrained_args.model["depth"]
            with open_dict(pretrained_args):
                dpr = np.linspace(0, cfg.drop_path_rate, model_blocks).tolist()
                pretrained_args.model["modalities"]["image"][
                    "start_drop_path_rate"
                ] = dpr[0]
                pretrained_args.model["modalities"]["image"][
                    "end_drop_path_rate"
                ] = max(0, dpr[prenet_blocks - 1])
                pretrained_args.model["start_drop_path_rate"] = dpr[prenet_blocks]
                pretrained_args.model["end_drop_path_rate"] = dpr[-1]

                if "mae_masking" in pretrained_args.model["modalities"]["image"]:
                    del pretrained_args.model["modalities"]["image"]["mae_masking"]

                if cfg.remove_alibi:
                    pretrained_args.model["modalities"]["image"][
                        "use_alibi_encoder"
                    ] = False
                    if (
                        state is not None
                        and "modality_encoders.IMAGE.alibi_bias" in state["model"]
                    ):
                        del state["model"]["modality_encoders.IMAGE.alibi_bias"]

                pretrained_args.model["encoder_dropout"] = cfg.encoder_dropout
                pretrained_args.model["post_mlp_drop"] = cfg.post_mlp_drop
                pretrained_args.model["attention_dropout"] = cfg.attention_dropout
                pretrained_args.model["activation_dropout"] = cfg.activation_dropout
                pretrained_args.model["dropout_input"] = cfg.dropout_input
                pretrained_args.model["layerdrop"] = cfg.layerdrop

                pretrained_args.model["modalities"]["image"][
                    "prenet_layerdrop"
                ] = cfg.prenet_layerdrop
                pretrained_args.model["modalities"]["image"][
                    "prenet_dropout"
                ] = cfg.prenet_dropout
        else:
            # not d2v multi
            with open_dict(pretrained_args):
                pretrained_args.model["drop_path_rate"] = cfg.drop_path_rate
                pretrained_args.model["block_dropout"] = cfg.encoder_dropout
                pretrained_args.model["attention_dropout"] = cfg.attention_dropout
                pretrained_args.model["activation_dropout"] = cfg.activation_dropout

        task = tasks.setup_task(pretrained_args.task)
        model = task.build_model(pretrained_args.model, from_checkpoint=True)

        self.d2v_multi = "data2vec_multi" in pretrained_args.model._name
        self.linear_classifier = cfg.linear_classifier

        self.model = model

        if state is not None and not cfg.no_pretrained_weights:
            interpolate_pos_embed(model, state)

            if "modality_encoders.IMAGE.positional_encoder.pos_embed" in state["model"]:
                state["model"][
                    "modality_encoders.IMAGE.positional_encoder.positions"
                ] = state["model"][
                    "modality_encoders.IMAGE.positional_encoder.pos_embed"
                ]
                del state["model"][
                    "modality_encoders.IMAGE.positional_encoder.pos_embed"
                ]
            if "modality_encoders.IMAGE.encoder_mask" in state["model"]:
                del state["model"]["modality_encoders.IMAGE.encoder_mask"]

            model.load_state_dict(state["model"], strict=True)

        if self.d2v_multi:
            model.remove_pretraining_modules(modality="image")
        else:
            model.remove_pretraining_modules()

        if self.linear_classifier:
            model.requires_grad_(False)

        self.fc_norm = None
        if self.cfg.use_fc_norm:
            self.fc_norm = nn.LayerNorm(pretrained_args.model.embed_dim, eps=1e-6)
            nn.init.constant_(self.fc_norm.bias, 0)
            nn.init.constant_(self.fc_norm.weight, 1.0)

        self.head = nn.Linear(pretrained_args.model.embed_dim, cfg.num_classes)

        nn.init.trunc_normal_(self.head.weight, std=0.02)
        nn.init.constant_(self.head.bias, 0)

        self.mixup_fn = None

        if cfg.mixup > 0 or cfg.cutmix > 0:
            from timm.data import Mixup

            self.mixup_fn = Mixup(
                mixup_alpha=cfg.mixup,
                cutmix_alpha=cfg.cutmix,
                cutmix_minmax=None,
                prob=cfg.mixup_prob,
                switch_prob=cfg.mixup_switch_prob,
                mode=cfg.mixup_mode,
                label_smoothing=cfg.label_smoothing,
                num_classes=cfg.num_classes,
            )

        if self.model.norm is not None:
            for pn, p in self.model.norm.named_parameters():
                if len(p.shape) == 1 or pn.endswith(".bias"):
                    p.optim_overrides = {"optimizer": {"weight_decay_scale": 0}}

        if self.fc_norm is not None:
            for pn, p in self.fc_norm.named_parameters():
                if len(p.shape) == 1 or pn.endswith(".bias"):
                    p.optim_overrides = {"optimizer": {"weight_decay_scale": 0}}

        for pn, p in self.head.named_parameters():
            if len(p.shape) == 1 or pn.endswith(".bias"):
                p.optim_overrides = {"optimizer": {"weight_decay_scale": 0}}

        if self.d2v_multi:
            mod_encs = list(model.modality_encoders.values())
            assert len(mod_encs) == 1, len(mod_encs)
            blocks = list(mod_encs[0].context_encoder.blocks) + list(model.blocks)
        else:
            blocks = model.blocks

        num_layers = len(blocks) + 1
        layer_scales = list(
            cfg.layer_decay ** (num_layers - i) for i in range(num_layers + 1)
        )

        if self.d2v_multi:
            for n, p in self.model.named_parameters():
                optimizer_override_dict = {}

                if len(p.shape) == 1 or n.endswith(".bias"):
                    optimizer_override_dict["weight_decay_scale"] = 0

                p.optim_overrides = {"optimizer": optimizer_override_dict}

            if cfg.layer_decay > 0:
                for i, b in enumerate(blocks):
                    lid = i + 1
                    if layer_scales[lid] == 1.0:
                        continue

                    for n, p in b.named_parameters():
                        optim_override = getattr(p, "optim_overrides", {})
                        if "optimizer" not in optim_override:
                            optim_override["optimizer"] = {}

                        if cfg.no_decay_blocks:
                            optim_override["optimizer"]["lr_scale"] = layer_scales[lid]
                            p.optim_overrides = optim_override
                        else:
                            optim_override["optimizer"] = {
                                "lr_scale": layer_scales[lid]
                            }
                            p.optim_overrides = optim_override

        else:
            for n, p in self.model.named_parameters():
                optimizer_override_dict = {}
                layer_id = get_layer_id_for_vit(n, num_layers)

                if len(p.shape) == 1 or n.endswith(".bias"):
                    optimizer_override_dict["weight_decay_scale"] = 0

                if cfg.layer_decay > 0:
                    optimizer_override_dict["lr_scale"] = layer_scales[layer_id]
                p.optim_overrides = {"optimizer": optimizer_override_dict}

    @classmethod
    def build_model(cls, cfg: MaeImageClassificationConfig, task=None):
        """Build a new model instance."""

        return cls(cfg)

    def forward(
        self,
        imgs,
        labels=None,
    ):
        if self.training and self.mixup_fn is not None and labels is not None:
            imgs, labels = self.mixup_fn(imgs, labels)

        if self.linear_classifier:
            with torch.no_grad():
                x = self.model_forward(imgs)
        else:
            x = self.model_forward(imgs)

        if self.cfg.prediction_mode == PredictionMode.MEAN_POOLING:
            x = x.mean(dim=1)
        elif self.cfg.prediction_mode == PredictionMode.CLS_TOKEN:
            x = x[:, 0]
        elif self.cfg.prediction_mode == PredictionMode.LIN_SOFTMAX:
            dtype = x.dtype
            x = F.logsigmoid(x.float())
            x = torch.logsumexp(x + x, dim=1) - torch.logsumexp(x + 1e-6, dim=1)
            x = x.clamp(max=0)
            x = x - torch.log(-(torch.expm1(x)))
            x = torch.nan_to_num(x, nan=0, posinf=0, neginf=0)
            x = x.to(dtype=dtype)
        else:
            raise Exception(f"unknown prediction mode {self.cfg.prediction_mode.name}")

        if self.fc_norm is not None:
            x = self.fc_norm(x)

        x = self.head(x)

        if labels is None:
            return x

        if self.training and self.mixup_fn is not None:
            loss = -labels * F.log_softmax(x.float(), dim=-1)
        else:
            loss = F.cross_entropy(
                x.float(),
                labels,
                label_smoothing=self.cfg.label_smoothing if self.training else 0,
                reduction="none",
            )

        result = {
            "losses": {"regression": loss},
            "sample_size": imgs.size(0),
        }

        if not self.training:
            with torch.no_grad():
                pred = x.argmax(-1)
                correct = (pred == labels).sum()
                result["correct"] = correct

        return result

    def model_forward(self, imgs):
        if self.d2v_multi:
            x = self.model.extract_features(
                imgs,
                mode="IMAGE",
                mask=False,
                remove_extra_tokens=(
                    self.cfg.prediction_mode != PredictionMode.CLS_TOKEN
                ),
            )["x"]
        else:
            x = self.model(imgs, predictions_only=True)
            if (
                "no_cls" not in self.model.cfg or not self.model.cfg.no_cls
            ) and not self.cfg.prediction_mode == PredictionMode.CLS_TOKEN:
                x = x[:, 1:]
        return x