GTE Multilingual fine-tuned on clinical-to-drug mapping
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: multilingual
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Keluhan: nan\nAnamnesa Pemeriksaan Dokter: mual pusing',
'Obat: Buscopan\nDeskripsi Obat: Obat untuk mengurangi kejang otot polos saluran pencernaan',
'Obat: Blocand 16 mg\nDeskripsi Obat: Obat antihipertensi golongan ARB dosis tinggi untuk menurunkan tekanan darah',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 217,680 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 17 tokens
- mean: 42.44 tokens
- max: 177 tokens
- min: 15 tokens
- mean: 22.55 tokens
- max: 38 tokens
- Samples:
anchor positive Keluhan: nan
Anamnesa Pemeriksaan Dokter: gusi kiri bengkak
nyeri tenggorokan, ada amandel 2 hari yang lalu
puisngObat: Eflagen 50 mg
Deskripsi Obat: Obat antiinflamasi nonsteroid (NSAID) untuk mengurangi nyeriKeluhan: pasien mengatakan kuku kaki jempol kiri merah dan nyeri sejak 1 bulan yll hilang timbul
Anamnesa Pemeriksaan Dokter: pasien mengatakan kuku kaki jempol kiri merah dan nyeri sejak 1 bulan yll hilang timbul. merah + bengkak +Obat: Mefinal 500 mg
Deskripsi Obat: Obat antiinflamasi nonsteroid (NSAID) untuk mengurangi nyeriKeluhan: batuk dahak sudah 1 minggu
Anamnesa Pemeriksaan Dokter: batuk dahak sejak 1 minggu
RPO : Acetylcystein, OBHObat: Cefixime 200 mg
Deskripsi Obat: Antibiotik golongan sefalosporin untuk mengobati infeksi bakteri - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 24,187 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 16 tokens
- mean: 42.79 tokens
- max: 112 tokens
- min: 15 tokens
- mean: 22.79 tokens
- max: 38 tokens
- Samples:
anchor positive Keluhan: NYERI PERUT, MUAL, MUNTAH 1KALI HARI INI,
Anamnesa Pemeriksaan Dokter: NYERI PERUT, MUAL, MUNTAH 1KALI HARI INI, tenggorokan gatla
rpo myalanta
alergi obat dsiangkalObat: Lambucid
Deskripsi Obat: Antasida untuk meredakan gejala asam lambung berlebihKeluhan: badan lemas tadi pagi, mual- muntah- batuk pilek-
Anamnesa Pemeriksaan Dokter: lemas sejak pagi ini. demam - pingsan - sempat terjatuh karena lemas. pola makan tidak teratur.
rpo tablet tambah darah. riw anemia + dikatakan saat SMA 3 tahun yll. tidak ingat hb berapa.Obat: Caviplex
Deskripsi Obat: Suplemen multivitamin untuk memenuhi kebutuhan vitamin dan mineralKeluhan: rencana rujukan rsMD spP tgl 23-04-24
keluhan hari ini kepala pusing terasa berat, batuk, nyeri badan.
Anamnesa Pemeriksaan Dokter: rencana rujukan rsMD spP tgl 23-04-24 keluhan hari ini kepala pusing terasa berat, batuk, nyeri badan.Obat: Profat sirup
Deskripsi Obat: Suplemen penambah darah sirup untuk anak - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0073 | 50 | 3.3431 | - |
0.0147 | 100 | 3.1904 | - |
0.0220 | 150 | 3.0541 | - |
0.0294 | 200 | 2.972 | - |
0.0367 | 250 | 2.8877 | - |
0.0441 | 300 | 2.8234 | - |
0.0514 | 350 | 2.749 | - |
0.0588 | 400 | 2.7435 | - |
0.0661 | 450 | 2.7368 | - |
0.0735 | 500 | 2.6943 | - |
0.0808 | 550 | 2.7168 | - |
0.0882 | 600 | 2.7194 | - |
0.0955 | 650 | 2.6096 | - |
0.1029 | 700 | 2.7118 | - |
0.1102 | 750 | 2.7036 | - |
0.1176 | 800 | 2.6625 | - |
0.1249 | 850 | 2.6362 | - |
0.1323 | 900 | 2.599 | - |
0.1396 | 950 | 2.572 | - |
0.1470 | 1000 | 2.6124 | 2.0072 |
0.1543 | 1050 | 2.5467 | - |
0.1617 | 1100 | 2.5713 | - |
0.1690 | 1150 | 2.5741 | - |
0.1764 | 1200 | 2.5794 | - |
0.1837 | 1250 | 2.5231 | - |
0.1911 | 1300 | 2.5312 | - |
0.1984 | 1350 | 2.4483 | - |
0.2058 | 1400 | 2.5178 | - |
0.2131 | 1450 | 2.4795 | - |
0.2205 | 1500 | 2.5426 | - |
0.2278 | 1550 | 2.502 | - |
0.2352 | 1600 | 2.5378 | - |
0.2425 | 1650 | 2.4746 | - |
0.2499 | 1700 | 2.4356 | - |
0.2572 | 1750 | 2.5303 | - |
0.2646 | 1800 | 2.514 | - |
0.2719 | 1850 | 2.5207 | - |
0.2793 | 1900 | 2.4671 | - |
0.2866 | 1950 | 2.4367 | - |
0.2940 | 2000 | 2.4873 | 1.9339 |
0.3013 | 2050 | 2.4513 | - |
0.3087 | 2100 | 2.4695 | - |
0.3160 | 2150 | 2.4309 | - |
0.3234 | 2200 | 2.4439 | - |
0.3307 | 2250 | 2.4242 | - |
0.3381 | 2300 | 2.4569 | - |
0.3454 | 2350 | 2.4157 | - |
0.3528 | 2400 | 2.4709 | - |
0.3601 | 2450 | 2.4202 | - |
0.3675 | 2500 | 2.4401 | - |
0.3748 | 2550 | 2.4096 | - |
0.3822 | 2600 | 2.3878 | - |
0.3895 | 2650 | 2.4766 | - |
0.3969 | 2700 | 2.4149 | - |
0.4042 | 2750 | 2.4197 | - |
0.4116 | 2800 | 2.3656 | - |
0.4189 | 2850 | 2.4679 | - |
0.4263 | 2900 | 2.3749 | - |
0.4336 | 2950 | 2.4146 | - |
0.4410 | 3000 | 2.3942 | 1.8871 |
0.4483 | 3050 | 2.418 | - |
0.4557 | 3100 | 2.4504 | - |
0.4630 | 3150 | 2.3759 | - |
0.4704 | 3200 | 2.3671 | - |
0.4777 | 3250 | 2.4433 | - |
0.4851 | 3300 | 2.4036 | - |
0.4924 | 3350 | 2.3539 | - |
0.4998 | 3400 | 2.3806 | - |
0.5071 | 3450 | 2.3737 | - |
0.5145 | 3500 | 2.4127 | - |
0.5218 | 3550 | 2.4243 | - |
0.5292 | 3600 | 2.3528 | - |
0.5365 | 3650 | 2.3788 | - |
0.5439 | 3700 | 2.3968 | - |
0.5512 | 3750 | 2.3896 | - |
0.5586 | 3800 | 2.3966 | - |
0.5659 | 3850 | 2.3571 | - |
0.5733 | 3900 | 2.3437 | - |
0.5806 | 3950 | 2.3353 | - |
0.5880 | 4000 | 2.3335 | 1.8599 |
0.5953 | 4050 | 2.3778 | - |
0.6027 | 4100 | 2.3929 | - |
0.6100 | 4150 | 2.3818 | - |
0.6174 | 4200 | 2.3874 | - |
0.6247 | 4250 | 2.3224 | - |
0.6321 | 4300 | 2.3317 | - |
0.6394 | 4350 | 2.3761 | - |
0.6468 | 4400 | 2.4066 | - |
0.6541 | 4450 | 2.3406 | - |
0.6615 | 4500 | 2.3844 | - |
0.6688 | 4550 | 2.2993 | - |
0.6762 | 4600 | 2.337 | - |
0.6835 | 4650 | 2.37 | - |
0.6909 | 4700 | 2.3126 | - |
0.6982 | 4750 | 2.3818 | - |
0.7056 | 4800 | 2.3849 | - |
0.7129 | 4850 | 2.3379 | - |
0.7203 | 4900 | 2.3518 | - |
0.7276 | 4950 | 2.3354 | - |
0.7350 | 5000 | 2.3443 | 1.8349 |
0.7423 | 5050 | 2.3396 | - |
0.7497 | 5100 | 2.3086 | - |
0.7570 | 5150 | 2.3392 | - |
0.7644 | 5200 | 2.3316 | - |
0.7717 | 5250 | 2.3092 | - |
0.7791 | 5300 | 2.3794 | - |
0.7864 | 5350 | 2.331 | - |
0.7938 | 5400 | 2.2554 | - |
0.8011 | 5450 | 2.3266 | - |
0.8085 | 5500 | 2.3314 | - |
0.8158 | 5550 | 2.3357 | - |
0.8232 | 5600 | 2.3523 | - |
0.8305 | 5650 | 2.3253 | - |
0.8379 | 5700 | 2.3021 | - |
0.8452 | 5750 | 2.3342 | - |
0.8526 | 5800 | 2.2839 | - |
0.8599 | 5850 | 2.3136 | - |
0.8673 | 5900 | 2.3562 | - |
0.8746 | 5950 | 2.2878 | - |
0.8820 | 6000 | 2.3219 | 1.8173 |
0.8893 | 6050 | 2.2941 | - |
0.8967 | 6100 | 2.3245 | - |
0.9040 | 6150 | 2.2561 | - |
0.9114 | 6200 | 2.3327 | - |
0.9187 | 6250 | 2.3047 | - |
0.9261 | 6300 | 2.2916 | - |
0.9334 | 6350 | 2.3495 | - |
0.9408 | 6400 | 1.9273 | - |
0.9481 | 6450 | 1.3917 | - |
0.9555 | 6500 | 1.4726 | - |
0.9628 | 6550 | 1.3922 | - |
0.9702 | 6600 | 1.4664 | - |
0.9775 | 6650 | 1.4329 | - |
0.9849 | 6700 | 1.4046 | - |
0.9922 | 6750 | 1.3891 | - |
0.9996 | 6800 | 1.4731 | - |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.53.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.8.1
- Datasets: 2.14.4
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 47
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for arulpm/gte-ipb-clinical
Base model
Alibaba-NLP/gte-multilingual-base