VIT_fourclass_classifier

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0945
  • Validation Loss: 1.7241
  • Train Accuracy: 0.6974
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'SGD', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': np.float32(0.01), 'momentum': 0.0, 'nesterov': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
0.7946 1.1484 0.6272 0
0.3246 1.1792 0.6769 1
0.2266 1.2812 0.6842 2
0.1841 1.5085 0.6754 3
0.1589 1.4224 0.6944 4
0.1244 1.4229 0.6901 5
0.1174 1.4858 0.6784 6
0.1133 1.4221 0.6974 7
0.1026 1.4273 0.7003 8
0.1083 1.5406 0.7003 9
0.1038 1.6223 0.6974 10
0.0876 1.5613 0.6959 11
0.1018 1.4540 0.7149 12
0.0808 1.4853 0.7193 13
0.0945 1.7241 0.6974 14

Framework versions

  • Transformers 4.52.4
  • TensorFlow 2.18.0
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for akar49/VIT_fourclass_classifier

Finetuned
(2366)
this model