Wangchan Thai Instruction
Collection
WangchanThaiInstruct: An instruction-following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai (EMNLP'25)
•
46 items
•
Updated
WangchanThaiInstruct: An instruction-following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai (EMNLP'25)
This repository contains the model artifacts for gemma-2-9b-dolly-th-7.5k-wangchan-instruct-7.5k for the paper WangchanThaiInstruct.
The model is a google/gemma-2-9b finetuned on 7500 randomly sampled samples of a machine translated Dolly 15K and 7500 randomly samples samples of WangchanThaiInstruct's training set using the Llama Factory framework with the following hyperparameters:
Hyperparameter | Value |
---|---|
Learning Rate | 2 × 10⁻⁴ |
Learning Rate Schedule | Cosine |
Batch Size (effective) | 128 |
Max Token Length | 2048 |
Warm up Ratio | 0.1 |
Epochs | 3 |
The model was evaluate on Thai MTBench SeaCrowd's NLU and NLG Thai Split and WangchanThaiInstruct's test set
Model | MT Bench Average | NLU Accuracy (%) | NLG Translation (BLEU) | NLG Generation (RougeL) | WangchanThaiInstruct Fluency | WangchanThaiInstruct Accuracy (%) | WangchanThaiInstruct Rating |
---|---|---|---|---|---|---|---|
Llama-3.1-8B | |||||||
Alpaca 5k + WangchanThaiInstruct 5k | 3.00 | 47.22 | 3.12 | 8.59 | 4.08 | 39.84 | 4.16 |
Alpaca 10k | 3.05 | 46.54 | 4.08 | 11.05 | 3.36 | 28.39 | 3.23 |
Alpaca 10k + WangchanThaiInstruct 10k | 3.07 | 46.47 | 2.43 | 8.54 | 4.21 | 42.31 | 4.39 |
Alpaca 20k | 2.75 | 47.31 | 2.79 | 9.14 | 2.77 | 22.32 | 2.94 |
Alpaca 15k + WangchanThaiInstruct 15k | 3.26 | 46.45 | 3.47 | 8.58 | 4.35 | 42.16 | 4.46 |
Alpaca 30k | 2.88 | 47.67 | 3.65 | 9.65 | 2.83 | 21.83 | 2.95 |
Dolly 2.5k + WangchanThaiInstruct 2.5k | 2.40 | 46.43 | 3.75 | 8.72 | 3.57 | 35.93 | 3.72 |
Dolly 5k | 1.88 | 42.87 | 0.95 | 8.55 | 1.75 | 22.70 | 2.19 |
Dolly 5k + WangchanThaiInstruct 5k | 2.28 | 46.43 | 1.36 | 8.55 | 3.85 | 37.89 | 3.98 |
Dolly 10k | 1.99 | 42.41 | 1.35 | 8.64 | 1.69 | 22.35 | 2.14 |
Dolly 7.5k + WangchanThaiInstruct 7.5k | 2.31 | 46.37 | 1.48 | 8.59 | 3.96 | 39.63 | 4.11 |
Dolly 15k | 2.64 | 42.47 | 1.60 | 8.10 | 1.69 | 22.21 | 2.16 |
Gemma-2-9B | |||||||
Alpaca 5k + WangchanThaiInstruct 5k | 4.25 | 53.70 | 2.25 | 8.14 | 4.85 | 54.24 | 5.17 |
Alpaca 10k | 3.98 | 51.71 | 1.39 | 6.84 | 4.00 | 46.26 | 4.26 |
Alpaca 10k + WangchanThaiInstruct 10k | 4.02 | 53.81 | 2.02 | 8.09 | 4.97 | 55.33 | 5.30 |
Alpaca 20k | 4.14 | 52.40 | 1.45 | 6.95 | 3.53 | 38.07 | 3.90 |
Alpaca 15k + WangchanThaiInstruct 15k | 4.20 | 53.49 | 1.98 | 8.02 | 5.14 | 56.67 | 5.49 |
Alpaca 30k | 3.79 | 52.41 | 1.25 | 5.73 | 3.25 | 32.71 | 3.43 |
Dolly 2.5k + WangchanThaiInstruct 2.5k | 3.66 | 54.62 | 1.75 | 8.07 | 4.30 | 51.86 | 4.84 |
Dolly 5k | 2.59 | 53.36 | 1.39 | 7.58 | 1.71 | 42.35 | 2.45 |
Dolly 5k + WangchanThaiInstruct 5k | 3.99 | 53.50 | 1.54 | 8.12 | 4.59 | 54.31 | 5.08 |
Dolly 10k | 2.70 | 51.98 | 1.52 | 7.58 | 1.81 | 43.68 | 2.74 |
Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.13 | 53.34 | 1.63 | 8.12 | 4.72 | 55.09 | 5.24 |
Dolly 15k | 4.10 | 51.35 | 1.48 | 7.76 | 3.24 | 40.34 | 2.63 |
SEA-LIONv2-8B | |||||||
Alpaca 5k + WangchanThaiInstruct 5k | 4.52 | 43.76 | 34.47 | 19.39 | 5.62 | 52.84 | 5.57 |
Alpaca 10k | 4.54 | 43.31 | 28.01 | 25.35 | 4.61 | 48.88 | 4.73 |
Alpaca 10k + WangchanThaiInstruct 10k | 4.55 | 44.66 | 24.00 | 17.55 | 5.72 | 53.93 | 5.70 |
Alpaca 20k | 4.74 | 43.98 | 24.22 | 25.82 | 4.73 | 49.32 | 4.53 |
Alpaca 15k + WangchanThaiInstruct 15k | 4.44 | 44.51 | 20.58 | 16.31 | 5.54 | 53.94 | 5.61 |
Alpaca 30k | 4.60 | 42.96 | 15.58 | 25.68 | 5.11 | 49.66 | 4.78 |
Dolly 2.5k + WangchanThaiInstruct 2.5k | 4.25 | 44.89 | 36.60 | 26.82 | 5.10 | 50.25 | 5.28 |
Dolly 5k | 3.69 | 45.88 | 19.22 | 35.66 | 3.46 | 48.04 | 4.11 |
Dolly 5k + WangchanThaiInstruct 5k | 4.21 | 44.30 | 15.64 | 23.72 | 5.31 | 51.25 | 5.42 |
Dolly 10k | 3.83 | 46.57 | 14.07 | 37.35 | 4.09 | 46.81 | 4.04 |
Dolly 7.5k + WangchanThaiInstruct 7.5k | 4.31 | 45.31 | 13.54 | 22.00 | 5.54 | 53.81 | 5.57 |
Dolly 15k | 3.57 | 46.14 | 14.31 | 35.37 | 3.24 | 48.13 | 4.15 |
@inproceedings{limkonchotiwat2025thaiinstruct,
title = {WangchanThaiInstruct: An Instruction-Following Dataset for Culture-Aware, Multitask, and Multi-domain Evaluation in Thai},
author = {Limkonchotiwat, Peerat and Tuchinda, Pume and Lowphansirikul, Lalita and Nonesung, Surapon and Tasawong, Panuthep and Aji, Alham Fikri and Udomcharoenchaikit, Can and Nutanong, Sarana},
booktitle = {Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing},
year = {2025},
publisher = {Association for Computational Linguistics}
}
Base model
google/gemma-2-9b