启明(QiMing)


重新定义了逻辑的AI,只为更智能.

An AI that rewrites its own rules for greater intelligence.


声明

模型产生的内容仅供参考,请认真核实后使用

此为4B底层模型,会出现信息不足和幻觉错误

若觉得此AI模型太像"人",请务必认清,这只是一个更智能的AI模型


DISCLAIMER

The content generated by this model is for reference purposes only. Users are advised to verify its accuracy independently before use.

This is a 4-billion-parameter foundation model (4B). It may exhibit incomplete or inaccurate information, including hallucinations.

If you find this AI too human-like, please remember: it is merely a more intelligent model — not an actual person.


感谢mradermacher制作的gguf版本

Thanks mradermacher: For creating the GGUF versions of these models

https://huggingface.co/mradermacher/QiMing-Plus-v1-GGUF

https://huggingface.co/mradermacher/QiMing-Plus-v1-i1-GGUF

感谢Qwen团队制作的模型

The Qwen Team: For developing the foundational model (Qwen/Qwen3-4B-Thinking-2507) used in this project.

https://qwen.ai

感谢unsloth,能够让模型调整在3070 8G的显卡上流畅运行

unsloth.ai (Unsloth): For their work enabling smooth operation of these models on standard hardware like NVIDIA GeForce RTX 3070 GPU with 8GB VRAM.

https://unsloth.ai

QiMing-Plus-v1基于Qwen/Qwen3-4B-Thinking-2507构建

QiMing-Plus-v1 is built upon Qwen/Qwen3-4B-Thinking-2507 as its base model.

Dataset

https://huggingface.co/datasets/aifeifei798/QiMing_Plus_dataset


如何使用 (how to use)

from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "aifeifei798/QiMing-Plus-v1"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 
# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content) # no opening <think> tag
print("content:", content)
Downloads last month
28
Safetensors
Model size
4.02B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for aifeifei798/QiMing-Plus-v1

Adapters
2 models

Collection including aifeifei798/QiMing-Plus-v1