UBC-NLP-MARBERT-arabic-fp16-allagree
This model is a fine-tuned version of UBC-NLP/MARBERT on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1775
- Accuracy: 0.9440
- Precision: 0.9445
- Recall: 0.9440
- F1: 0.9440
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.9593 | 0.7463 | 50 | 0.6199 | 0.8153 | 0.8360 | 0.8153 | 0.7805 |
0.3511 | 1.4925 | 100 | 0.2241 | 0.9338 | 0.9355 | 0.9338 | 0.9343 |
0.1848 | 2.2388 | 150 | 0.2002 | 0.9384 | 0.9388 | 0.9384 | 0.9383 |
0.1449 | 2.9851 | 200 | 0.1775 | 0.9440 | 0.9445 | 0.9440 | 0.9440 |
0.0841 | 3.7313 | 250 | 0.2298 | 0.9319 | 0.9344 | 0.9319 | 0.9326 |
0.0504 | 4.4776 | 300 | 0.2429 | 0.9422 | 0.9422 | 0.9422 | 0.9415 |
0.0398 | 5.2239 | 350 | 0.2608 | 0.9384 | 0.9391 | 0.9384 | 0.9387 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.7.0+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for abdulrahman-nuzha/UBC-NLP-MARBERT-arabic-fp16-allagree
Base model
UBC-NLP/MARBERT