BanglaByT5: Byte-Level Modelling for Bangla is an encoder–decoder transformer model pretrained at the byte level specifically for Bangla language understanding and generation tasks. By operating on raw bytes rather than subword tokens, BanglaByT5 captures fine-grained morphological and orthographic patterns, making it highly effective in handling diverse Bangla text sources.
Usage Example
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("Vacaspati/BanglaByT5")
model = AutoModelForSeq2SeqLM.from_pretrained("Vacaspati/BanglaByT5")
# Tokenize input
input_text = "আমার নাম প্রমিত।"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
# Generate text
outputs = model.generate(input_ids, max_length=50)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Citation
If you are using this model please cite:
@inproceedings{bhattacharyya-etal-2023-vacaspati,
title = "{VACASPATI}: A Diverse Corpus of {B}angla Literature",
author = "Bhattacharyya, Pramit and
Mondal, Joydeep and
Maji, Subhadip and
Bhattacharya, Arnab",
editor = "Park, Jong C. and
Arase, Yuki and
Hu, Baotian and
Lu, Wei and
Wijaya, Derry and
Purwarianti, Ayu and
Krisnadhi, Adila Alfa",
booktitle = "Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = nov,
year = "2023",
address = "Nusa Dua, Bali",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.ijcnlp-main.72/",
doi = "10.18653/v1/2023.ijcnlp-main.72",
pages = "1118--1130"
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Vacaspati/BanglaByT5
Base model
google/byt5-small