combined-finetuned
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7790
- Accuracy: 0.6966
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6898 | 0.0556 | 10 | 1.9771 | 0.1348 |
1.8961 | 0.1111 | 20 | 1.8402 | 0.2472 |
1.8259 | 0.1667 | 30 | 1.7101 | 0.3146 |
1.3534 | 0.2222 | 40 | 1.5978 | 0.3371 |
1.4887 | 0.2778 | 50 | 1.5017 | 0.3371 |
1.4251 | 0.3333 | 60 | 1.4178 | 0.3371 |
1.4539 | 0.3889 | 70 | 1.3337 | 0.3483 |
1.2221 | 0.4444 | 80 | 1.2563 | 0.3708 |
1.2487 | 0.5 | 90 | 1.1889 | 0.4157 |
1.1406 | 0.5556 | 100 | 1.1331 | 0.4607 |
1.0978 | 0.6111 | 110 | 1.0826 | 0.4944 |
1.068 | 0.6667 | 120 | 1.0459 | 0.5393 |
0.9636 | 0.7222 | 130 | 1.0139 | 0.6292 |
0.9899 | 0.7778 | 140 | 0.9942 | 0.6180 |
0.9764 | 0.8333 | 150 | 0.9711 | 0.6629 |
1.0178 | 0.8889 | 160 | 0.9448 | 0.6517 |
0.8486 | 0.9444 | 170 | 0.9202 | 0.6629 |
0.923 | 1.0 | 180 | 0.8977 | 0.6067 |
1.0081 | 1.0556 | 190 | 0.8822 | 0.6180 |
0.9016 | 1.1111 | 200 | 0.8715 | 0.6292 |
0.8923 | 1.1667 | 210 | 0.8647 | 0.6292 |
0.8144 | 1.2222 | 220 | 0.8550 | 0.6180 |
0.8705 | 1.2778 | 230 | 0.8464 | 0.6629 |
0.8513 | 1.3333 | 240 | 0.8390 | 0.6629 |
0.7723 | 1.3889 | 250 | 0.8327 | 0.6742 |
0.8737 | 1.4444 | 260 | 0.8282 | 0.6629 |
0.752 | 1.5 | 270 | 0.8257 | 0.6180 |
0.8057 | 1.5556 | 280 | 0.8208 | 0.6180 |
0.8247 | 1.6111 | 290 | 0.8156 | 0.6404 |
0.8664 | 1.6667 | 300 | 0.8096 | 0.6629 |
0.8615 | 1.7222 | 310 | 0.8044 | 0.6854 |
0.6972 | 1.7778 | 320 | 0.8010 | 0.6742 |
0.8843 | 1.8333 | 330 | 0.7969 | 0.6517 |
0.6894 | 1.8889 | 340 | 0.7941 | 0.6404 |
0.7269 | 1.9444 | 350 | 0.7922 | 0.6517 |
0.7956 | 2.0 | 360 | 0.7920 | 0.6854 |
0.7205 | 2.0556 | 370 | 0.7912 | 0.6966 |
0.7218 | 2.1111 | 380 | 0.7903 | 0.6966 |
0.9249 | 2.1667 | 390 | 0.7880 | 0.6966 |
0.8235 | 2.2222 | 400 | 0.7864 | 0.6854 |
0.8147 | 2.2778 | 410 | 0.7857 | 0.6966 |
0.8336 | 2.3333 | 420 | 0.7845 | 0.6854 |
0.7546 | 2.3889 | 430 | 0.7835 | 0.6966 |
0.6565 | 2.4444 | 440 | 0.7829 | 0.6966 |
0.7907 | 2.5 | 450 | 0.7817 | 0.6966 |
0.7389 | 2.5556 | 460 | 0.7808 | 0.6966 |
0.7064 | 2.6111 | 470 | 0.7805 | 0.6966 |
0.8611 | 2.6667 | 480 | 0.7804 | 0.6966 |
0.8771 | 2.7222 | 490 | 0.7802 | 0.6966 |
0.8697 | 2.7778 | 500 | 0.7797 | 0.6966 |
0.7718 | 2.8333 | 510 | 0.7795 | 0.6966 |
0.7465 | 2.8889 | 520 | 0.7793 | 0.6966 |
0.7693 | 2.9444 | 530 | 0.7791 | 0.6966 |
0.7886 | 3.0 | 540 | 0.7790 | 0.6966 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.