GenEx: Generating an Explorable World
Collection
6 items
β’
Updated
β’
1
GenEx World Initializer is panorama generation pipeline built on top of the FluxFillPipeline.
It transforms a single view image into a 360Β° panoramic image using vision-conditioned inpainting.
from diffusers import DiffusionPipeline
from PIL import Image
import torch
pipe = DiffusionPipeline.from_pretrained(
"TaiMingLu/GenEx-World-Initializer",
custom_pipeline="genex_world_initializer_pipeline",
torch_dtype=torch.bfloat16,
trust_remote_code=True
).to("cuda")
# Load your image (any resolution)
image = Image.open("example_input.jpg")
# Run inference
front_view, output = pipe(image=image)
output.images[0]
The following mask is used to train the inpainting diffuser.
diffusers>=0.33.1
transformers
numpy
pillow
sentencepiece
@misc{lu2025genexgeneratingexplorableworld,
title={GenEx: Generating an Explorable World},
author={Taiming Lu and Tianmin Shu and Junfei Xiao and Luoxin Ye and Jiahao Wang and Cheng Peng and Chen Wei and Daniel Khashabi and Rama Chellappa and Alan Yuille and Jieneng Chen},
year={2025},
eprint={2412.09624},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.09624},
}
Base model
black-forest-labs/FLUX.1-Fill-dev