GenEx-World-Initializer 🧭🌍

GenEx World Initializer is panorama generation pipeline built on top of the FluxFillPipeline.

It transforms a single view image into a 360Β° panoramic image using vision-conditioned inpainting.

  • πŸ–ΌοΈ Input: One image (any size, will be center-cropped to square)
  • 🧠 Prompt: Optional text to guide panoramic generation
  • 🎯 Output: 2048 Γ— 1024 equirectangular image
  • 🧩 Mask: Uses a fixed panoramic mask

πŸ“¦ Usage

from diffusers import DiffusionPipeline
from PIL import Image
import torch

pipe = DiffusionPipeline.from_pretrained(
    "TaiMingLu/GenEx-World-Initializer",
    custom_pipeline="genex_world_initializer_pipeline",  
    torch_dtype=torch.bfloat16,
    trust_remote_code=True
).to("cuda")

# Load your image (any resolution)
image = Image.open("example_input.jpg")

# Run inference
front_view, output = pipe(image=image)
output.images[0]

🏁 Mask

The following mask is used to train the inpainting diffuser.

πŸ”§ Requirements

diffusers>=0.33.1
transformers
numpy
pillow
sentencepiece 

✨ BibTex

@misc{lu2025genexgeneratingexplorableworld,
      title={GenEx: Generating an Explorable World}, 
      author={Taiming Lu and Tianmin Shu and Junfei Xiao and Luoxin Ye and Jiahao Wang and Cheng Peng and Chen Wei and Daniel Khashabi and Rama Chellappa and Alan Yuille and Jieneng Chen},
      year={2025},
      eprint={2412.09624},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2412.09624}, 
}
Downloads last month
16
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ 1 Ask for provider support

Model tree for TaiMingLu/GenEx-World-Initializer

Finetuned
(12)
this model

Dataset used to train TaiMingLu/GenEx-World-Initializer

Collection including TaiMingLu/GenEx-World-Initializer