GenEx-World-Initializer πŸš€πŸŒ

GenEx World Explorer is a video generation pipeline built on top of Stable Video Diffusion (SVD). . It takes a keyframe, and generates a temporally consistent video. This explorer version builds on SVD with a custom UNetSpatioTemporalConditionModel.

The diffuser generate a forward moving path of a panoramic input image, to explore a given scene.

πŸ“¦ Usage

from diffusers import UNetSpatioTemporalConditionModel, StableVideoDiffusionPipeline
import torch

model_id = 'TaiMingLu/GenEx-World-Explorer'

# Load the custom UNet
unet = UNetSpatioTemporalConditionModel.from_pretrained(
    model_id,
    subfolder='unet',
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
)

# Load the full pipeline with custom UNet
pipe = StableVideoDiffusionPipeline.from_pretrained(
    model_id,
    unet=unet,
    low_cpu_mem_usage=True,
    torch_dtype=torch.float16,
    local_files_only=True,
).to('cuda')

πŸ”§ Requirements

diffusers>=0.33.1
transformers
numpy
pillow

✨ BibTex

@misc{lu2025genexgeneratingexplorableworld,
      title={GenEx: Generating an Explorable World}, 
      author={Taiming Lu and Tianmin Shu and Junfei Xiao and Luoxin Ye and Jiahao Wang and Cheng Peng and Chen Wei and Daniel Khashabi and Rama Chellappa and Alan Yuille and Jieneng Chen},
      year={2025},
      eprint={2412.09624},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2412.09624}, 
}
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for TaiMingLu/GenEx-World-Explorer

Finetuned
(1)
this model

Dataset used to train TaiMingLu/GenEx-World-Explorer

Collection including TaiMingLu/GenEx-World-Explorer