Text Generation
Transformers
Safetensors
mixtral
conversational
text-generation-inference

xLAM

[AgentOhana Paper] | [Github] | [Discord] | [Homepage] | [Community Demo]


License: cc-by-nc-4.0

If you already know Mixtral, xLAM-v0.1 is a significant upgrade and better at many things. For the same number of parameters, the model have been fine-tuned across a wide range of agent tasks and scenarios, all while preserving the capabilities of the original model.

xLAM-v0.1-r represents the version 0.1 of the Large Action Model series, with the "-r" indicating it's tagged for research. This model is compatible with VLLM and FastChat platforms.

Model # Total Params Context Length Release Date Category Download Model Download GGUF files
xLAM-7b-r 7.24B 32k Sep. 5, 2024 General, Function-calling πŸ€— Link --
xLAM-8x7b-r 46.7B 32k Sep. 5, 2024 General, Function-calling πŸ€— Link --
xLAM-8x22b-r 141B 64k Sep. 5, 2024 General, Function-calling πŸ€— Link --
xLAM-1b-fc-r 1.35B 16k July 17, 2024 Function-calling πŸ€— Link πŸ€— Link
xLAM-7b-fc-r 6.91B 4k July 17, 2024 Function-calling πŸ€— Link πŸ€— Link
xLAM-v0.1-r 46.7B 32k Mar. 18, 2024 General, Function-calling πŸ€— Link --
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("Salesforce/xLAM-v0.1-r")
model = AutoModelForCausalLM.from_pretrained("Salesforce/xLAM-v0.1-r", device_map="auto")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")

outputs = model.generate(inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

You may need to tune the Temperature setting for different applications. Typically, a lower Temperature is helpful for tasks that require deterministic outcomes. Additionally, for tasks demanding adherence to specific formats or function calls, explicitly including formatting instructions is advisable.

Ethical Considerations

This release is for research purposes only in support of an academic paper. Our models, datasets, and code are not specifically designed or evaluated for all downstream purposes. We strongly recommend users evaluate and address potential concerns related to accuracy, safety, and fairness before deploying this model. We encourage users to consider the common limitations of AI, comply with applicable laws, and leverage best practices when selecting use cases, particularly for high-risk scenarios where errors or misuse could significantly impact people’s lives, rights, or safety. For further guidance on use cases, refer to our AUP and AI AUP.

Benchmarks

BOLAA

Webshop

LLM NameZSZSTReaActPlanActPlanReActBOLAA
Llama-2-70B-chat 0.0089 0.01020.42730.28090.39660.4986
Vicuna-33B 0.1527 0.21220.19710.37660.40320.5618
Mixtral-8x7B-Instruct-v0.1 0.4634 0.45920.56380.47380.33390.5342
GPT-3.5-Turbo 0.4851 0.50580.50470.49300.54360.6354
GPT-3.5-Turbo-Instruct 0.3785 0.41950.43770.36040.48510.5811
GPT-4-06130.50020.4783 0.46160.79500.46350.6129
xLAM-v0.1-r0.52010.52680.64860.65730.66110.6556

HotpotQA

LLM NameZSZSTReaActPlanActPlanReAct
Mixtral-8x7B-Instruct-v0.1 0.3912 0.39710.37140.31950.3039
GPT-3.5-Turbo 0.4196 0.39370.38680.41820.3960
GPT-4-06130.58010.5709 0.61290.57780.5716
xLAM-v0.1-r0.54920.47760.50200.55830.5030

AgentLite

Please note: All prompts provided by AgentLite are considered "unseen prompts" for xLAM-v0.1-r, meaning the model has not been trained with data related to these prompts.

Webshop

LLM NameActReActBOLAA
GPT-3.5-Turbo-16k 0.6158 0.60050.6652
GPT-4-06130.6989 0.67320.7154
xLAM-v0.1-r0.65630.66400.6854

HotpotQA

EasyMediumHard
LLM NameF1 ScoreAccuracyF1 ScoreAccuracyF1 ScoreAccuracy
GPT-3.5-Turbo-16k-0613 0.410 0.3500.3300.250.2830.20
GPT-4-06130.6110.47 0.6100.4800.5270.38
xLAM-v0.1-r0.5320.450.5470.460.4550.36

ToolBench

LLM NameUnseen Insts & Same SetUnseen Tools & Seen CatUnseen Tools & Unseen Cat
TooLlama V2 0.4385 0.43000.4350
GPT-3.5-Turbo-0125 0.5000 0.51500.4900
GPT-4-0125-preview0.54620.54500.5050
xLAM-v0.1-r0.50770.56500.5200

MINT-BENCH

LLM Name1-step2-step3-step4-step5-step
GPT-4-0613----69.45
Claude-Instant-112.1232.2539.2544.3745.90
xLAM-v0.1-r4.1028.5036.0142.6643.96
Claude-2 26.45 35.4936.0139.7639.93
Lemur-70b-Chat-v1 3.75 26.9635.6737.5437.03
GPT-3.5-Turbo-0613 2.7316.8924.0631.7436.18
AgentLM-70b 6.4817.7524.9128.1628.67
CodeLlama-34b 0.1716.2123.0425.9428.16
Llama-2-70b-chat 4.2714.3315.7016.5517.92

Tool-Query

LLM NameSuccess RateProgress Rate
xLAM-v0.1-r0.5330.766
DeepSeek-67B 0.400 0.714
GPT-3.5-Turbo-0613 0.367 0.627
GPT-3.5-Turbo-16k 0.3170.591
Lemur-70B 0.2830.720
CodeLlama-13B 0.2500.525
CodeLlama-34B 0.1330.600
Mistral-7B 0.0330.510
Vicuna-13B-16K 0.0330.343
Llama-2-70B 0.0000.483

Licenses

This code is licensed under Apache 2.0. For models based on the deepseek model, which require you to follow the use based restrictions in the linked deepseek license. This is a research only project.

Acknowledgement

We want to acknowledge the work which have made contributions to our paper and the agent research community! If you find our work useful, please consider to cite

@article{zhang2024agentohana,
  title={AgentOhana: Design Unified Data and Training Pipeline for Effective Agent Learning},
  author={Zhang, Jianguo and Lan, Tian and Murthy, Rithesh and Liu, Zhiwei and Yao, Weiran and Tan, Juntao and Hoang, Thai and Yang, Liangwei and Feng, Yihao and Liu, Zuxin and others},
  journal={arXiv preprint arXiv:2402.15506},
  year={2024}
}
@article{liu2024apigen,
  title={APIGen: Automated PIpeline for Generating Verifiable and Diverse Function-Calling Datasets},
  author={Liu, Zuxin and Hoang, Thai and Zhang, Jianguo and Zhu, Ming and Lan, Tian and Kokane, Shirley and Tan, Juntao and Yao, Weiran and Liu, Zhiwei and Feng, Yihao and others},
  journal={arXiv preprint arXiv:2406.18518},
  year={2024}
}
@article{zhang2024xlamfamilylargeaction,
  title={xLAM: A Family of Large Action Models to Empower AI Agent Systems}, 
  author={Zhang, Jianguo  and Lan, Tian  and Zhu, Ming  and Liu, Zuxin and Hoang, Thai and Kokane, Shirley and Yao, Weiran and Tan, Juntao and Prabhakar, Akshara and Chen, Haolin and Liu, Zhiwei and Feng, Yihao and Awalgaonkar, Tulika and Murthy, Rithesh and Hu, Eric and Chen, Zeyuan and Xu, Ran and Niebles, Juan Carlos and Heinecke, Shelby and Wang, Huan and Savarese, Silvio and Xiong, Caiming},
  journal={arXiv preprint arXiv:2409.03215}
  year={2024}
}
Downloads last month
66
Safetensors
Model size
46.7B params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for Salesforce/xLAM-v0.1-r

Quantizations
1 model

Collection including Salesforce/xLAM-v0.1-r