DeepSeek-R1-quantized.w4a16
Model Overview
- Model Architecture: DeepseekV3ForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Activation quantization: None
- Weight quantization: INT4
- Release Date: 04/15/2025
- Version: 1.0
- Model Developers: Red Hat (Neural Magic)
Model Optimizations
This model was obtained by quantizing weights of DeepSeek-R1 to INT4 data type. This optimization reduces the number of bits used to represent weights from 8 to 4, reducing GPU memory requirements (by approximately 50%). Weight quantization also reduces disk size requirements by approximately 50%.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/DeepSeek-R1-quantized.w4a16"
number_gpus = 8
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompt, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM also supports OpenAI-compatible serving. See the documentation for more details.
Evaluation
The model was evaluated on the OpenLLM leaderboard task (v1) via lm-evaluation-harness, and on popular reasoning tasks (AIME 2024, MATH-500, GPQA-Diamond) via LightEval. For reasoning evaluations, we estimate pass@1 based on 10 runs with different seeds.
Evaluation details
OpenLLM v1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/DeepSeek-R1-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--batch_size auto
Reasoning Benchmarks
export MODEL_ARGS="pretrained=RedHatAI/DeepSeek-R1-quantized.w4a16,dtype=bfloat16,max_model_length=38768,gpu_memory_utilization=0.8,tensor_parallel_size=8,add_special_tokens=false,generation_parameters={\"max_new_tokens\":32768,\"temperature\":0.6,\"top_p\":0.95,\"seed\":42}"
export VLLM_WORKER_MULTIPROC_METHOD=spawn
lighteval vllm $MODEL_ARGS "custom|aime24|0|0,custom|math_500|0|0,custom|gpqa:diamond|0|0" \
--custom-tasks src/open_r1/evaluate.py \
--use-chat-template \
--output-dir $OUTPUT_DIR
Accuracy
Recovery (%) | deepseek/DeepSeek-R1 | RedHatAI/DeepSeek-R1-quantized.w4a16 (this model) |
|
---|---|---|---|
ARC-Challenge 25-shot |
100.00 | 72.53 | 72.53 |
GSM8k 5-shot |
99.76 | 95.91 | 95.68 |
HellaSwag 10-shot |
100.07 | 89.30 | 89.36 |
MMLU 5-shot |
99.74 | 87.22 | 86.99 |
TruthfulQA 0-shot |
100.83 | 59.28 | 59.77 |
WinoGrande 5-shot |
101.65 | 82.00 | 83.35 |
OpenLLM v1 Average Score |
100.30 | 81.04 | 81.28 |
AIME 2024 pass@1 |
98.30 | 78.33 | 77.00 |
MATH-500 pass@1 |
99.84 | 97.24 | 97.08 |
GPQA Diamond pass@1 |
98.01 | 73.38 | 71.92 |
Reasoning Average Score |
98.81 | 82.99 | 82.00 |
- Downloads last month
- 55
Model tree for RedHatAI/DeepSeek-R1-quantized.w4a16
Base model
deepseek-ai/DeepSeek-R1