metadata
library_name: transformers
language:
- en
license: mit
base_model: lelapa/distill_whisper_call_center_en_merged
tags:
- generated_from_trainer
datasets:
- Luandrie/www_compliance_english_colab
metrics:
- wer
model-index:
- name: Distill Whisper Call Center Compliance
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: www_compliance_tforge
type: Luandrie/www_compliance_english_colab
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 7.317073170731707
Distill Whisper Call Center Compliance
This model is a fine-tuned version of lelapa/distill_whisper_call_center_en_merged on the www_compliance_tforge dataset. It achieves the following results on the evaluation set:
- Loss: 0.4256
- Wer: 7.3171
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- training_steps: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.0001 | 34.7826 | 100 | 0.4194 | 7.3171 |
0.0001 | 69.5652 | 200 | 0.4256 | 7.3171 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.20.3