GEM / README.md
LANSG's picture
Update README.md
69ae5d6 verified
---
license: apache-2.0
pipeline_tag: image-text-to-text
library_name: transformers
---
# GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images
<!-- <p align="left">
<img src="pics/fig1_v.png" width="90%">
</p> -->
## Introduction
GEM is a multimodal LLM unifying ECG time series, 12-lead ECG images and text for grounded and clinician-aligned ECG interpretation. GEM enables feature-grounded analysis, evidence-driven reasoning, and a clinician-like diagnostic process.
## πŸ”₯ Updates
#### Project Page: πŸ“– [Page](https://www.lanxplanet.com/GEM-ECG/)
#### Paper: πŸ“„ [Arxiv](https://arxiv.org/pdf/2503.06073)
#### Code: πŸ’» [GitHub](https://github.com/lanxiang1017/GEM)
#### Model: πŸ€— [GEM](https://huggingface.co/LANSG/GEM)
#### Data: πŸ€— [ECG-Grounding](https://huggingface.co/datasets/LANSG/ECG-Grounding)
## Citation
If you find GEM helpful for your research and applications, please cite our paper:
```bibtex
@misc{lan2025gemempoweringmllmgrounded,
title={GEM: Empowering MLLM for Grounded ECG Understanding with Time Series and Images},
author={Xiang Lan and Feng Wu and Kai He and Qinghao Zhao and Shenda Hong and Mengling Feng},
year={2025},
eprint={2503.06073},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.06073},
}
```