allenai-scibert_scivocab_uncased_20241230-091934

This model is a fine-tuned version of allenai/scibert_scivocab_uncased on an unknown dataset. It achieves the following results on the evaluation set:

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision@0.01 Recall@0.01 F1@0.01 Accuracy@0.01 Precision@0.02 Recall@0.02 F1@0.02 Accuracy@0.02 Precision@0.03 Recall@0.03 F1@0.03 Accuracy@0.03 Precision@0.04 Recall@0.04 F1@0.04 Accuracy@0.04 Precision@0.05 Recall@0.05 F1@0.05 Accuracy@0.05 Precision@0.06 Recall@0.06 F1@0.06 Accuracy@0.06 Precision@0.07 Recall@0.07 F1@0.07 Accuracy@0.07 Precision@0.08 Recall@0.08 F1@0.08 Accuracy@0.08 Precision@0.09 Recall@0.09 F1@0.09 Accuracy@0.09 Precision@0.1 Recall@0.1 F1@0.1 Accuracy@0.1 Precision@0.11 Recall@0.11 F1@0.11 Accuracy@0.11 Precision@0.12 Recall@0.12 F1@0.12 Accuracy@0.12 Precision@0.13 Recall@0.13 F1@0.13 Accuracy@0.13 Precision@0.14 Recall@0.14 F1@0.14 Accuracy@0.14 Precision@0.15 Recall@0.15 F1@0.15 Accuracy@0.15 Precision@0.16 Recall@0.16 F1@0.16 Accuracy@0.16 Precision@0.17 Recall@0.17 F1@0.17 Accuracy@0.17 Precision@0.18 Recall@0.18 F1@0.18 Accuracy@0.18 Precision@0.19 Recall@0.19 F1@0.19 Accuracy@0.19 Precision@0.2 Recall@0.2 F1@0.2 Accuracy@0.2 Precision@0.21 Recall@0.21 F1@0.21 Accuracy@0.21 Precision@0.22 Recall@0.22 F1@0.22 Accuracy@0.22 Precision@0.23 Recall@0.23 F1@0.23 Accuracy@0.23 Precision@0.24 Recall@0.24 F1@0.24 Accuracy@0.24 Precision@0.25 Recall@0.25 F1@0.25 Accuracy@0.25 Precision@0.26 Recall@0.26 F1@0.26 Accuracy@0.26 Precision@0.27 Recall@0.27 F1@0.27 Accuracy@0.27 Precision@0.28 Recall@0.28 F1@0.28 Accuracy@0.28 Precision@0.29 Recall@0.29 F1@0.29 Accuracy@0.29 Precision@0.3 Recall@0.3 F1@0.3 Accuracy@0.3 Precision@0.31 Recall@0.31 F1@0.31 Accuracy@0.31 Precision@0.32 Recall@0.32 F1@0.32 Accuracy@0.32 Precision@0.33 Recall@0.33 F1@0.33 Accuracy@0.33 Precision@0.34 Recall@0.34 F1@0.34 Accuracy@0.34 Precision@0.35 Recall@0.35 F1@0.35 Accuracy@0.35 Precision@0.36 Recall@0.36 F1@0.36 Accuracy@0.36 Precision@0.37 Recall@0.37 F1@0.37 Accuracy@0.37 Precision@0.38 Recall@0.38 F1@0.38 Accuracy@0.38 Precision@0.39 Recall@0.39 F1@0.39 Accuracy@0.39 Precision@0.4 Recall@0.4 F1@0.4 Accuracy@0.4 Precision@0.41 Recall@0.41 F1@0.41 Accuracy@0.41 Precision@0.42 Recall@0.42 F1@0.42 Accuracy@0.42 Precision@0.43 Recall@0.43 F1@0.43 Accuracy@0.43 Precision@0.44 Recall@0.44 F1@0.44 Accuracy@0.44 Precision@0.45 Recall@0.45 F1@0.45 Accuracy@0.45 Precision@0.46 Recall@0.46 F1@0.46 Accuracy@0.46 Precision@0.47 Recall@0.47 F1@0.47 Accuracy@0.47 Precision@0.48 Recall@0.48 F1@0.48 Accuracy@0.48 Precision@0.49 Recall@0.49 F1@0.49 Accuracy@0.49 Precision@0.5 Recall@0.5 F1@0.5 Accuracy@0.5 Precision@0.51 Recall@0.51 F1@0.51 Accuracy@0.51 Precision@0.52 Recall@0.52 F1@0.52 Accuracy@0.52 Precision@0.53 Recall@0.53 F1@0.53 Accuracy@0.53 Precision@0.54 Recall@0.54 F1@0.54 Accuracy@0.54 Precision@0.55 Recall@0.55 F1@0.55 Accuracy@0.55 Precision@0.56 Recall@0.56 F1@0.56 Accuracy@0.56 Precision@0.57 Recall@0.57 F1@0.57 Accuracy@0.57 Precision@0.58 Recall@0.58 F1@0.58 Accuracy@0.58 Precision@0.59 Recall@0.59 F1@0.59 Accuracy@0.59 Precision@0.6 Recall@0.6 F1@0.6 Accuracy@0.6 Precision@0.61 Recall@0.61 F1@0.61 Accuracy@0.61 Precision@0.62 Recall@0.62 F1@0.62 Accuracy@0.62 Precision@0.63 Recall@0.63 F1@0.63 Accuracy@0.63 Precision@0.64 Recall@0.64 F1@0.64 Accuracy@0.64 Precision@0.65 Recall@0.65 F1@0.65 Accuracy@0.65 Precision@0.66 Recall@0.66 F1@0.66 Accuracy@0.66 Precision@0.67 Recall@0.67 F1@0.67 Accuracy@0.67 Precision@0.68 Recall@0.68 F1@0.68 Accuracy@0.68 Precision@0.69 Recall@0.69 F1@0.69 Accuracy@0.69 Precision@0.7 Recall@0.7 F1@0.7 Accuracy@0.7 Precision@0.71 Recall@0.71 F1@0.71 Accuracy@0.71 Precision@0.72 Recall@0.72 F1@0.72 Accuracy@0.72 Precision@0.73 Recall@0.73 F1@0.73 Accuracy@0.73 Precision@0.74 Recall@0.74 F1@0.74 Accuracy@0.74 Precision@0.75 Recall@0.75 F1@0.75 Accuracy@0.75 Precision@0.76 Recall@0.76 F1@0.76 Accuracy@0.76 Precision@0.77 Recall@0.77 F1@0.77 Accuracy@0.77 Precision@0.78 Recall@0.78 F1@0.78 Accuracy@0.78 Precision@0.79 Recall@0.79 F1@0.79 Accuracy@0.79 Precision@0.8 Recall@0.8 F1@0.8 Accuracy@0.8 Precision@0.81 Recall@0.81 F1@0.81 Accuracy@0.81 Precision@0.82 Recall@0.82 F1@0.82 Accuracy@0.82 Precision@0.83 Recall@0.83 F1@0.83 Accuracy@0.83 Precision@0.84 Recall@0.84 F1@0.84 Accuracy@0.84 Precision@0.85 Recall@0.85 F1@0.85 Accuracy@0.85 Precision@0.86 Recall@0.86 F1@0.86 Accuracy@0.86 Precision@0.87 Recall@0.87 F1@0.87 Accuracy@0.87 Precision@0.88 Recall@0.88 F1@0.88 Accuracy@0.88 Precision@0.89 Recall@0.89 F1@0.89 Accuracy@0.89 Precision@0.9 Recall@0.9 F1@0.9 Accuracy@0.9 Precision@0.91 Recall@0.91 F1@0.91 Accuracy@0.91 Precision@0.92 Recall@0.92 F1@0.92 Accuracy@0.92 Precision@0.93 Recall@0.93 F1@0.93 Accuracy@0.93 Precision@0.94 Recall@0.94 F1@0.94 Accuracy@0.94 Precision@0.95 Recall@0.95 F1@0.95 Accuracy@0.95 Precision@0.96 Recall@0.96 F1@0.96 Accuracy@0.96 Precision@0.97 Recall@0.97 F1@0.97 Accuracy@0.97 Precision@0.98 Recall@0.98 F1@0.98 Accuracy@0.98 Precision@0.99 Recall@0.99 F1@0.99 Accuracy@0.99
0.6601 1.0 2436 0.6623 0.4313 1.0 0.6027 0.4313 0.4313 1.0 0.6027 0.4313 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.4498 0.9989 0.6203 0.4725 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687
0.2161 2.0 4872 0.3014 0.4313 1.0 0.6027 0.4313 0.4313 1.0 0.6027 0.4313 0.4313 1.0 0.6027 0.4313 0.8328 0.9731 0.8975 0.9042 0.8331 0.9722 0.8973 0.9040 0.8332 0.9722 0.8974 0.9041 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8332 0.9721 0.8973 0.9040 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9721 0.8973 0.9041 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8333 0.9720 0.8973 0.9040 0.8332 0.9719 0.8972 0.9040 0.8332 0.9719 0.8972 0.9040 0.8332 0.9719 0.8972 0.9040 0.8332 0.9718 0.8972 0.9039 0.8333 0.9716 0.8971 0.9039 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687 0.0 0.0 0.0 0.5687
0.0569 3.0 7308 0.1032 0.8166 0.9988 0.8985 0.9027 0.8430 0.9980 0.9140 0.9190 0.8560 0.9973 0.9213 0.9265 0.8666 0.9966 0.9271 0.9324 0.8740 0.9960 0.9310 0.9364 0.8810 0.9959 0.9350 0.9402 0.8870 0.9950 0.9379 0.9431 0.8914 0.9950 0.9404 0.9456 0.8959 0.9947 0.9427 0.9479 0.9000 0.9942 0.9448 0.9499 0.9031 0.9938 0.9463 0.9513 0.9066 0.9931 0.9479 0.9529 0.9089 0.9929 0.9491 0.9540 0.9108 0.9923 0.9498 0.9548 0.9138 0.9918 0.9512 0.9561 0.9163 0.9913 0.9524 0.9572 0.9184 0.9912 0.9534 0.9582 0.9206 0.9908 0.9544 0.9592 0.9218 0.9902 0.9548 0.9596 0.9231 0.9899 0.9553 0.9601 0.9244 0.9896 0.9559 0.9606 0.9257 0.9893 0.9564 0.9611 0.9268 0.9890 0.9569 0.9615 0.9274 0.9889 0.9571 0.9618 0.9284 0.9884 0.9575 0.9621 0.9293 0.9882 0.9579 0.9625 0.9302 0.9881 0.9583 0.9629 0.9310 0.9881 0.9587 0.9633 0.9320 0.9879 0.9591 0.9637 0.9331 0.9876 0.9596 0.9641 0.9338 0.9875 0.9599 0.9644 0.9346 0.9874 0.9603 0.9648 0.9353 0.9872 0.9605 0.9650 0.9357 0.9872 0.9608 0.9652 0.9364 0.9871 0.9611 0.9655 0.9367 0.9869 0.9612 0.9656 0.9373 0.9867 0.9613 0.9658 0.9380 0.9863 0.9616 0.9660 0.9388 0.9860 0.9618 0.9662 0.9397 0.9852 0.9619 0.9663 0.9408 0.9850 0.9624 0.9668 0.9414 0.9849 0.9627 0.9671 0.9414 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9840 0.9623 0.9667 0.9415 0.9839 0.9622 0.9667 0.9416 0.9839 0.9623 0.9667 0.9416 0.9839 0.9623 0.9667 0.9417 0.9839 0.9623 0.9668 0.9417 0.9838 0.9623 0.9667 0.9417 0.9838 0.9623 0.9667 0.9417 0.9837 0.9622 0.9667 0.9418 0.9837 0.9623 0.9667 0.9418 0.9835 0.9622 0.9667 0.9421 0.9834 0.9623 0.9668 0.9442 0.9827 0.9631 0.9675 0.9462 0.9812 0.9634 0.9678 0.9469 0.9806 0.9634 0.9679 0.9477 0.9801 0.9636 0.9681 0.9491 0.9794 0.9640 0.9685 0.9504 0.9792 0.9646 0.9690 0.9509 0.9787 0.9646 0.9690 0.9523 0.9782 0.9651 0.9695 0.9532 0.9775 0.9652 0.9696 0.9538 0.9771 0.9653 0.9697 0.9547 0.9767 0.9656 0.9700 0.9552 0.9757 0.9653 0.9698 0.9558 0.9752 0.9654 0.9698 0.9564 0.9741 0.9652 0.9697 0.9569 0.9737 0.9652 0.9697 0.9574 0.9729 0.9651 0.9697 0.9584 0.9726 0.9654 0.9700 0.9591 0.9719 0.9655 0.9700 0.9599 0.9714 0.9656 0.9701 0.9605 0.9705 0.9655 0.9701 0.9618 0.9693 0.9656 0.9702 0.9625 0.9681 0.9653 0.9700 0.9630 0.9670 0.9650 0.9697 0.9644 0.9662 0.9653 0.9700 0.9661 0.9649 0.9655 0.9703 0.9666 0.9636 0.9651 0.9699 0.9679 0.9612 0.9645 0.9695 0.9691 0.9585 0.9638 0.9689 0.9712 0.9550 0.9630 0.9684 0.9736 0.9493 0.9613 0.9670 0.9769 0.9414 0.9588 0.9651 0.9805 0.9291 0.9541 0.9615 0.9845 0.9055 0.9434 0.9531 0.9891 0.8632 0.9219 0.9369

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
5
Safetensors
Model size
110M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Kyle1668/allenai-scibert_scivocab_uncased_20241230-091934

Finetuned
(85)
this model