Macaron_lora / README.md
Xsong123's picture
Update README.md
310cf20 verified
---
language:
- en
base_model:
- black-forest-labs/FLUX.1-Kontext-dev
pipeline_tag: image-to-image
library_name: diffusers
tags:
- Style
- lora
- Macaron
- FluxKontext
- Image-to-Image
---
# Macaron Style LoRA for FLUX.1 Kontext Model
This repository provides the **Macaron** style LoRA adapter for the [FLUX.1 Kontext Model](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev).
This LoRA is part of a collection of 20+ style LoRAs trained on high-quality paired data generated by GPT-4o from the [OmniConsistency](https://huggingface.co/datasets/showlab/OmniConsistency) dataset.
Contributor: Tian YE & Song FEI, HKUST Guangzhou.
## Style Showcase
Here are some examples of images generated using this style LoRA:
![Macaron Style Example](./example-1.png)
![Macaron Style Example](./example-2.png)
![Macaron Style Example](./example-3.png)
![Macaron Style Example](./example-4.png)
![Macaron Style Example](./example-5.png)
![Macaron Style Example](./example-6.png)
## Inference Example
```python
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
import torch
# Load the base pipeline
pipeline = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=torch.bfloat16
).to('cuda')
# Load the LoRA adapter for the Macaron style directly from the Hub
pipeline.load_lora_weights("Kontext-Style/Macaron_lora", weight_name="Macaron_lora_weights.safetensors", adapter_name="lora")
pipeline.set_adapters(["lora"], adapter_weights=[1])
# Load a source image (you can use any image)
image = load_image("https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg").resize((1024, 1024))
# Prepare the prompt
# The style_name is used in the prompt and for the output filename.
style_name = "Macaron"
prompt = f"Turn this image into the Macaron style."
# Run inference
result_image = pipeline(
image=image,
prompt=prompt,
height=1024,
width=1024,
num_inference_steps=24
).images[0]
# Save the result
output_filename = f"{style_name.replace(' ', '_')}.png"
result_image.save(output_filename)
print(f"Image saved as {output_filename}")
```
Feel free to open an issue or contact us for feedback or collaboration!