ClinLinker-KB-GP
Model Description
ClinLinker-KB-GP is a state-of-the-art bi-encoder model for medical entity linking (MEL) in Spanish, optimized for clinical domain tasks. It enriches concept representations by incorporating not only synonyms but also hierarchical relationships (parents and grandparents) from the UMLS and SNOMED-CT ontologies. The model was trained with a contrastive-learning strategy using hard negative mining and multi-similarity loss.
π‘ Intended Use
- Domain: Spanish Clinical NLP
- Tasks: Entity linking (diseases, symptoms, procedures) to SNOMED-CT
- Evaluated On: DisTEMIST, MedProcNER, SympTEMIST
- Users: Researchers and practitioners working in clinical NLP
π Performance Summary (Top-25 Accuracy)
Model | DisTEMIST | MedProcNER | SympTEMIST |
---|---|---|---|
ClinLinker | 0.845 | 0.898 | 0.909 |
ClinLinker-KB-P | 0.853 | 0.891 | 0.918 |
ClinLinker-KB-GP | 0.864 | 0.901 | 0.922 |
SapBERT-XLM-R-large | 0.800 | 0.850 | 0.827 |
RoBERTa biomedical | 0.600 | 0.668 | 0.609 |
Results correspond to the cleaned gold-standard version (no "NO CODE" or "COMPOSITE").
π§ͺ Usage
from transformers import AutoModel, AutoTokenizer
import torch
model = AutoModel.from_pretrained("ICB-UMA/ClinLinker-KB-GP")
tokenizer = AutoTokenizer.from_pretrained("ICB-UMA/ClinLinker-KB-GP")
mention = "insuficiencia renal aguda"
inputs = tokenizer(mention, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
embedding = outputs.last_hidden_state[:, 0, :]
print(embedding.shape)
For scalable retrieval, use Faiss or the FaissEncoder
class.
β οΈ Limitations
- The model is optimized for Spanish clinical data and may underperform outside this domain.
- Expert validation is advised in critical applications.
π Citation
Gallego, Fernando and LΓ³pez-GarcΓa, Guillermo and Gasco, Luis and Krallinger, Martin and Veredas, Francisco J., Clinlinker-Kb: Clinical Entity Linking in Spanish with Knowledge-Graph Enhanced Biencoders. Available at SSRN:http://dx.doi.org/10.2139/ssrn.4939986.
Authors
Fernando Gallego, Guillermo LΓ³pez-GarcΓa, Luis Gasco-SΓ‘nchez, Martin Krallinger, Francisco J Veredas
- Downloads last month
- 26