|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: ReasonFlux-F1-14B |
|
results: [] |
|
--- |
|
|
|
# ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates |
|
Revolutionary template-augmented reasoning paradigm enpowers a 32B model to outperform o1-mini and DeepSeek-R1 distilled models in reasoning tasks. |
|
|
|
| Task/Pass@1 | **ReasonFlux-F1-32B** | **ReasonFlux-Zero-32B** | **R1-Distill-32B** | **o1-mini** | **LIMO -32B** | **s1-32B** | |
|
| :------------- | :----------------: | :-------------: | :-------------------: | :-----------------: | :--------: | :--------: | |
|
| MATH500 | **96.0** | 91.2 | 94.3 | 90.0 | 90.6 | 93.0 | |
|
| AIME 2024 | **76.7** | 56.7 | 72.6 | 56.7 | 50.0 | 56.7 | |
|
| AIME 2025 | **53.3** | 37.2 | 46.67 | 50.8 | 37.2 | 49.3 | |
|
| GPQA-Diamond | **67.2** | 61.2 | 62.1 | 60.0 | 65.2 | 59.6 | |
|
|
|
# ReasonFlux-F1-14B |
|
|
|
> ReasonFlux-F1-14B is our finetuned SOTA-level reasoning LLM by leveraging the template-augmented reasoning trajectories from our [ReasonFlux-Zero](https://arxiv.org/abs/2502.06772). |
|
|
|
* Github Repository: [Gen-Verse/ReasonFlux](https://github.com/Gen-Verse/ReasonFlux) |
|
* Paper:[ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates](https://arxiv.org/abs/2502.06772) |
|
* Dataset: [Gen-Verse/ReasonFlux-F1-SFT](https://huggingface.co/datasets/Gen-Verse/ReasonFlux-F1-SFT) |
|
|
|
|
|
## Evaluation |
|
We present the evaluation results of our ReasonFlux-F1-32B on challenging reasoning tasks including AIME2024,AIM2025,MATH500 and GPQA-Diamond. To make a fair comparison, we report the results of the LLMs on our evaluation scripts in [ReasonFlux-F1](https://github.com/Gen-Verse/ReasonFlux). |
|
|
|
| Model | AIME2024@pass1 | AIME2025@pass1 | MATH500@pass1 | GPQA@pass1 | |
|
| --------------------------------------- | :--------------: | :--------------: | :-------------: | :----------: | |
|
| QwQ-32B-Preview | 46.7 | 37.2 | 90.6 | 65.2 | |
|
| LIMO-32B | 56.3 | 44.5 | 94.8 | 58.1 | |
|
| s1-32B | 56.7 | 49.3 | 93.0 | 59.6 | |
|
| OpenThinker-32B | 66.0 | 53.3 | 94.8 | 60.1 | |
|
| R1-Distill-32B | 70.0 | 46.7 | 92.0 | 59.6 | |
|
| ReasonFlux-Zero-32B | 56.7 | 37.2 | 91.2 | 61.2 | |
|
| **ReasonFlux-F1-32B** | **76.7** | **53.3** | **96.0** | **67.2** | |
|
|
|
|
|
## Quick start with VLLM |
|
```python |
|
from vllm import LLM, SamplingParams |
|
from transformers import AutoTokenizer |
|
|
|
model_id = 'Gen-Verse/ReasonFlux-F1-14B' |
|
|
|
model = LLM( |
|
model_id, |
|
tensor_parallel_size=8, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
|
|
sampling_params = SamplingParams( |
|
max_tokens=32768, |
|
) |
|
# 2022 AIME I Problems/Problem 15 |
|
question = """Let \(x, y\), and \(z\) be positive real numbers satisfying the system of equations: |
|
\[ |
|
\begin{array}{c} |
|
\sqrt{2 x-x y}+\sqrt{2 y-x y}=1 \\ |
|
\sqrt{2 y-y z}+\sqrt{2 z-y z}=\sqrt{2} \\ |
|
\sqrt{2 z-z x}+\sqrt{2 x-z x}=\sqrt{3} . |
|
\end{array} |
|
\] |
|
Then \(\left[(1-x)(1-y)(1-z)\right]^{2}\) can be written as \(\frac{m}{n}\), where \(m\) and \(n\) are relatively prime positive integers. Find \(m+n\).""" |
|
ds_prompt="<|User|>\n" + question + "<|Assistant|>\n" |
|
output = model.generate(ds_prompt, sampling_params=sampling_params) |
|
print(output[0].outputs[0].text) |
|
|
|
``` |
|
## Citation |
|
|
|
```bash |
|
@article{yang2025reasonflux, |
|
title={ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates}, |
|
author={Yang, Ling and Yu, Zhaochen and Cui, Bin and Wang, Mengdi}, |
|
journal={arXiv preprint arXiv:2502.06772}, |
|
year={2025} |
|
} |
|
``` |