Doctor-Shotgun commited on
Commit
f97eef1
·
verified ·
1 Parent(s): cdc0930

New conversion scripts

Browse files
Files changed (2) hide show
  1. convert_hf_to_scm.py +115 -0
  2. convert_scm_to_hf.py +94 -0
convert_hf_to_scm.py ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import re
3
+ import shutil
4
+ import sys
5
+
6
+ import accelerate
7
+ import torch
8
+ from configuration_qwen3_shared_moe import Qwen3SharedMoeConfig
9
+ from modeling_qwen3_shared_moe import Qwen3SharedMoeForCausalLM
10
+ from safetensors import safe_open
11
+ from transformers.models.qwen3_moe.configuration_qwen3_moe import Qwen3MoeConfig
12
+
13
+ input_model = sys.argv[1]
14
+ output_model_path = sys.argv[2]
15
+
16
+ cfg_standard_moe = Qwen3MoeConfig.from_pretrained(input_model)
17
+ cfg_shared_moe = Qwen3SharedMoeConfig(
18
+ vocab_size=cfg_standard_moe.vocab_size,
19
+ hidden_size=cfg_standard_moe.hidden_size,
20
+ intermediate_size=cfg_standard_moe.intermediate_size,
21
+ num_hidden_layers=cfg_standard_moe.num_hidden_layers,
22
+ num_attention_heads=cfg_standard_moe.num_attention_heads,
23
+ num_key_value_heads=cfg_standard_moe.num_key_value_heads,
24
+ hidden_act=cfg_standard_moe.hidden_act,
25
+ max_position_embeddings=cfg_standard_moe.max_position_embeddings,
26
+ initializer_range=cfg_standard_moe.initializer_range,
27
+ rms_norm_eps=cfg_standard_moe.rms_norm_eps,
28
+ use_cache=cfg_standard_moe.use_cache,
29
+ tie_word_embeddings=cfg_standard_moe.tie_word_embeddings,
30
+ rope_theta=cfg_standard_moe.rope_theta,
31
+ rope_scaling=cfg_standard_moe.rope_scaling,
32
+ attention_bias=cfg_standard_moe.attention_bias,
33
+ use_sliding_window=cfg_standard_moe.use_sliding_window,
34
+ sliding_window=cfg_standard_moe.sliding_window,
35
+ max_window_layers=cfg_standard_moe.max_window_layers,
36
+ attention_dropout=cfg_standard_moe.attention_dropout,
37
+ decoder_sparse_step=cfg_standard_moe.decoder_sparse_step,
38
+ moe_intermediate_size=cfg_standard_moe.moe_intermediate_size,
39
+ num_experts_per_tok=cfg_standard_moe.num_experts_per_tok,
40
+ num_experts=cfg_standard_moe.num_experts,
41
+ norm_topk_prob=cfg_standard_moe.norm_topk_prob,
42
+ output_router_logits=cfg_standard_moe.output_router_logits,
43
+ router_aux_loss_coef=cfg_standard_moe.router_aux_loss_coef,
44
+ shared_expert_intermediate_size=None,
45
+ mlp_only_layers=cfg_standard_moe.mlp_only_layers,
46
+ head_dim=cfg_standard_moe.head_dim,
47
+ )
48
+
49
+ num_experts = cfg_standard_moe.num_experts
50
+
51
+ with accelerate.init_empty_weights():
52
+ model_shared_moe = Qwen3SharedMoeForCausalLM(cfg_shared_moe)
53
+
54
+ model_shared_moe = model_shared_moe.to(torch.bfloat16)
55
+ new_state_dict = {}
56
+ pattern = f"{input_model}/model-*-of-*.safetensors"
57
+ files = sorted(glob.glob(pattern))
58
+
59
+ if len(files) == 0:
60
+ raise FileNotFoundError
61
+ tensors = {}
62
+
63
+ for file_path in files:
64
+ print(f"processing {file_path}")
65
+ with safe_open(file_path, framework="pt", device="cpu") as f:
66
+ for key in f.keys():
67
+ tensor = f.get_tensor(key)
68
+ tensors[key] = tensor
69
+
70
+ for key in tensors:
71
+ if "experts" not in key:
72
+ new_state_dict[key] = tensors[key]
73
+ elif "experts.0" in key:
74
+ layer_num = int(re.search(r"\d+", key).group())
75
+ new_state_dict[
76
+ f"model.layers.{layer_num}.mlp.moe_mlp.output_experts.weight"
77
+ ] = torch.stack(
78
+ [
79
+ tensors[f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight"]
80
+ for i in range(num_experts)
81
+ ]
82
+ )
83
+ new_state_dict[f"model.layers.{layer_num}.mlp.moe_mlp.experts.weight"] = (
84
+ torch.stack(
85
+ [
86
+ torch.cat(
87
+ [
88
+ tensors[
89
+ f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight"
90
+ ],
91
+ tensors[
92
+ f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight"
93
+ ],
94
+ ],
95
+ dim=0,
96
+ )
97
+ for i in range(num_experts)
98
+ ]
99
+ )
100
+ )
101
+ model_shared_moe.load_state_dict(new_state_dict, strict=True, assign=True)
102
+ model_shared_moe.save_pretrained(output_model_path)
103
+ cfg_shared_moe.save_pretrained(output_model_path)
104
+
105
+
106
+ shutil.copy(
107
+ "modeling_qwen3_shared_moe.py",
108
+ output_model_path + "/" + "modeling_qwen3_shared_moe.py",
109
+ )
110
+ shutil.copy(
111
+ "configuration_qwen3_shared_moe.py",
112
+ output_model_path + "/" + "configuration_qwen3_shared_moe.py",
113
+ )
114
+ for i in ["merges.txt", "tokenizer_config.json", "tokenizer.json", "vocab.json"]:
115
+ shutil.copy(input_model + "/" + i, output_model_path + "/" + i)
convert_scm_to_hf.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import re
3
+ import shutil
4
+ import sys
5
+
6
+ import accelerate
7
+ import torch
8
+ from configuration_qwen3_shared_moe import Qwen3SharedMoeConfig
9
+ from safetensors import safe_open
10
+ from transformers.models.qwen3_moe.configuration_qwen3_moe import Qwen3MoeConfig
11
+ from transformers.models.qwen3_moe.modeling_qwen3_moe import Qwen3MoeForCausalLM
12
+
13
+ input_model = sys.argv[1]
14
+ output_model_path = sys.argv[2]
15
+
16
+ cfg_shared_moe = Qwen3SharedMoeConfig.from_pretrained(input_model)
17
+ cfg_standard_moe = Qwen3MoeConfig(
18
+ vocab_size=cfg_shared_moe.vocab_size,
19
+ hidden_size=cfg_shared_moe.hidden_size,
20
+ intermediate_size=cfg_shared_moe.intermediate_size,
21
+ num_hidden_layers=cfg_shared_moe.num_hidden_layers,
22
+ num_attention_heads=cfg_shared_moe.num_attention_heads,
23
+ num_key_value_heads=cfg_shared_moe.num_key_value_heads,
24
+ hidden_act=cfg_shared_moe.hidden_act,
25
+ max_position_embeddings=cfg_shared_moe.max_position_embeddings,
26
+ initializer_range=cfg_shared_moe.initializer_range,
27
+ rms_norm_eps=cfg_shared_moe.rms_norm_eps,
28
+ use_cache=cfg_shared_moe.use_cache,
29
+ tie_word_embeddings=cfg_shared_moe.tie_word_embeddings,
30
+ rope_theta=cfg_shared_moe.rope_theta,
31
+ rope_scaling=cfg_shared_moe.rope_scaling,
32
+ attention_bias=cfg_shared_moe.attention_bias,
33
+ use_sliding_window=cfg_shared_moe.use_sliding_window,
34
+ sliding_window=cfg_shared_moe.sliding_window,
35
+ max_window_layers=cfg_shared_moe.max_window_layers,
36
+ attention_dropout=cfg_shared_moe.attention_dropout,
37
+ decoder_sparse_step=cfg_shared_moe.decoder_sparse_step,
38
+ moe_intermediate_size=cfg_shared_moe.moe_intermediate_size,
39
+ num_experts_per_tok=cfg_shared_moe.num_experts_per_tok,
40
+ num_experts=cfg_shared_moe.num_experts,
41
+ norm_topk_prob=cfg_shared_moe.norm_topk_prob,
42
+ output_router_logits=cfg_shared_moe.output_router_logits,
43
+ router_aux_loss_coef=cfg_shared_moe.router_aux_loss_coef,
44
+ mlp_only_layers=cfg_shared_moe.mlp_only_layers,
45
+ head_dim=cfg_shared_moe.head_dim,
46
+ )
47
+ num_experts = cfg_standard_moe.num_experts
48
+
49
+ with accelerate.init_empty_weights():
50
+ model_standard_moe = Qwen3MoeForCausalLM(cfg_shared_moe)
51
+
52
+ model_standard_moe = model_standard_moe.to(torch.bfloat16)
53
+ new_state_dict = {}
54
+ pattern = f"{input_model}/model-*-of-*.safetensors"
55
+ files = sorted(glob.glob(pattern))
56
+
57
+ if len(files) == 0:
58
+ raise FileNotFoundError
59
+ tensors = {}
60
+
61
+ for file_path in files:
62
+ print(f"processing {file_path}")
63
+ with safe_open(file_path, framework="pt", device="cpu") as f:
64
+ for key in f.keys():
65
+ tensor = f.get_tensor(key)
66
+ tensors[key] = tensor
67
+
68
+ for key in tensors:
69
+ if "moe_mlp" not in key:
70
+ new_state_dict[key] = tensors[key]
71
+ elif "moe_mlp.output_experts" in key:
72
+ layer_num = int(re.search(r"\d+", key).group())
73
+ for i, tensor in enumerate(torch.unbind(tensors[key])):
74
+ new_state_dict[
75
+ f"model.layers.{layer_num}.mlp.experts.{i}.down_proj.weight"
76
+ ] = tensor.contiguous()
77
+ elif "moe_mlp.experts" in key:
78
+ layer_num = int(re.search(r"\d+", key).group())
79
+ for i, tensor in enumerate(torch.unbind(tensors[key])):
80
+ (
81
+ new_state_dict[
82
+ f"model.layers.{layer_num}.mlp.experts.{i}.up_proj.weight"
83
+ ],
84
+ new_state_dict[
85
+ f"model.layers.{layer_num}.mlp.experts.{i}.gate_proj.weight"
86
+ ],
87
+ ) = torch.chunk(tensor, 2, dim=0)
88
+
89
+ model_standard_moe.load_state_dict(new_state_dict, strict=True, assign=True)
90
+ model_standard_moe.save_pretrained(output_model_path)
91
+ cfg_standard_moe.save_pretrained(output_model_path)
92
+
93
+ for i in ["merges.txt", "tokenizer_config.json", "tokenizer.json", "vocab.json"]:
94
+ shutil.copy(input_model + "/" + i, output_model_path + "/" + i)