Doctor-Shotgun commited on
Commit
cdc0930
·
verified ·
1 Parent(s): 4424419

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3SharedMoeForCausalLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen3_shared_moe.Qwen3SharedMoeConfig",
7
+ "AutoModel": "modeling_qwen3_shared_moe.Qwen3SharedMoeModel",
8
+ "AutoModelForCausalLM": "modeling_qwen3_shared_moe.Qwen3SharedMoeForCausalLM"
9
+ },
10
+ "attention_bias": false,
11
+ "attention_dropout": 0.0,
12
+ "decoder_sparse_step": 1,
13
+ "head_dim": 128,
14
+ "hidden_act": "silu",
15
+ "hidden_size": 2048,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 5472,
18
+ "max_position_embeddings": 262144,
19
+ "max_window_layers": 28,
20
+ "mlp_only_layers": [],
21
+ "model_type": "qwen3_shared_moe",
22
+ "moe_intermediate_size": 768,
23
+ "norm_topk_prob": true,
24
+ "num_attention_heads": 32,
25
+ "num_experts": 128,
26
+ "num_experts_per_tok": 8,
27
+ "num_hidden_layers": 48,
28
+ "num_key_value_heads": 4,
29
+ "output_router_logits": false,
30
+ "rms_norm_eps": 1e-06,
31
+ "rope_scaling": null,
32
+ "rope_theta": 10000000,
33
+ "router_aux_loss_coef": 0.0,
34
+ "shared_expert_intermediate_size": null,
35
+ "sliding_window": null,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.54.1",
39
+ "use_cache": true,
40
+ "use_sliding_window": false,
41
+ "vocab_size": 151936
42
+ }
configuration_qwen3_shared_moe.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Qwen3SharedMoE model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.modeling_rope_utils import rope_config_validation
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Qwen3SharedMoeConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Qwen3SharedMoeModel`]. It is used to instantiate a
28
+ Qwen3SharedMoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
29
+ with the defaults will yield a similar configuration to that of [Qwen/Qwen3-MoE-15B-A2B](https://huggingface.co/Qwen/Qwen3-15B-A2B).
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 151936):
37
+ Vocabulary size of the Qwen3SharedMoE model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`Qwen3SharedMoeModel`]
39
+ hidden_size (`int`, *optional*, defaults to 2048):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 6144):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 24):
44
+ Number of hidden layers in the Transformer encoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer encoder.
47
+ num_key_value_heads (`int`, *optional*, defaults to 4):
48
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
49
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
50
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
51
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
52
+ by meanpooling all the original heads within that group. For more details checkout [this
53
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
54
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
55
+ The non-linear activation function (function or string) in the decoder.
56
+ max_position_embeddings (`int`, *optional*, defaults to 32768):
57
+ The maximum sequence length that this model might ever be used with.
58
+ initializer_range (`float`, *optional*, defaults to 0.02):
59
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
60
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
61
+ The epsilon used by the rms normalization layers.
62
+ use_cache (`bool`, *optional*, defaults to `True`):
63
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
64
+ relevant if `config.is_decoder=True`.
65
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
66
+ Whether the model's input and output word embeddings should be tied.
67
+ rope_theta (`float`, *optional*, defaults to 10000.0):
68
+ The base period of the RoPE embeddings.
69
+ rope_scaling (`Dict`, *optional*):
70
+ Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
71
+ and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
72
+ accordingly.
73
+ Expected contents:
74
+ `rope_type` (`str`):
75
+ The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
76
+ 'llama3'], with 'default' being the original RoPE implementation.
77
+ `factor` (`float`, *optional*):
78
+ Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
79
+ most scaling types, a `factor` of x will enable the model to handle sequences of length x *
80
+ original maximum pre-trained length.
81
+ `original_max_position_embeddings` (`int`, *optional*):
82
+ Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
83
+ pretraining.
84
+ `attention_factor` (`float`, *optional*):
85
+ Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
86
+ computation. If unspecified, it defaults to value recommended by the implementation, using the
87
+ `factor` field to infer the suggested value.
88
+ `beta_fast` (`float`, *optional*):
89
+ Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
90
+ ramp function. If unspecified, it defaults to 32.
91
+ `beta_slow` (`float`, *optional*):
92
+ Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
93
+ ramp function. If unspecified, it defaults to 1.
94
+ `short_factor` (`List[float]`, *optional*):
95
+ Only used with 'longrope'. The scaling factor to be applied to short contexts (<
96
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
97
+ size divided by the number of attention heads divided by 2
98
+ `long_factor` (`List[float]`, *optional*):
99
+ Only used with 'longrope'. The scaling factor to be applied to long contexts (<
100
+ `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
101
+ size divided by the number of attention heads divided by 2
102
+ `low_freq_factor` (`float`, *optional*):
103
+ Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
104
+ `high_freq_factor` (`float`, *optional*):
105
+ Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
106
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
107
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
108
+ use_sliding_window (`bool`, *optional*, defaults to `False`):
109
+ Whether to use sliding window attention.
110
+ sliding_window (`int`, *optional*, defaults to 4096):
111
+ Sliding window attention (SWA) window size. If not specified, will default to `4096`.
112
+ max_window_layers (`int`, *optional*, defaults to 28):
113
+ The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
114
+ attention_dropout (`float`, *optional*, defaults to 0.0):
115
+ The dropout ratio for the attention probabilities.
116
+ decoder_sparse_step (`int`, *optional*, defaults to 1):
117
+ The frequency of the MoE layer.
118
+ moe_intermediate_size (`int`, *optional*, defaults to 768):
119
+ Intermediate size of the routed expert.
120
+ shared_expert_intermediate_size (`int`, *optional*, defaults to None):
121
+ Intermediate size of the shared expert. `None` means no shared expert.
122
+ num_experts_per_tok (`int`, *optional*, defaults to 8):
123
+ Number of selected experts.
124
+ num_experts (`int`, *optional*, defaults to 128):
125
+ Number of routed experts.
126
+ norm_topk_prob (`bool`, *optional*, defaults to `False`):
127
+ Whether to normalize the topk probabilities.
128
+ output_router_logits (`bool`, *optional*, defaults to `False`):
129
+ Whether or not the router logits should be returned by the model. Enabling this will also
130
+ allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
131
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
132
+ The aux loss factor for the total loss.
133
+ mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
134
+ Indicate which layers use Qwen3SharedMoeMLP rather than Qwen3SharedMoeSparseMoeBlock
135
+ The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
136
+ If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
137
+ """
138
+
139
+ model_type = "qwen3_shared_moe"
140
+ keys_to_ignore_at_inference = ["past_key_values"]
141
+
142
+ # Default tensor parallel plan for base model `Qwen3SharedMoe`
143
+ base_model_tp_plan = {
144
+ "layers.*.self_attn.q_proj": "colwise",
145
+ "layers.*.self_attn.k_proj": "colwise",
146
+ "layers.*.self_attn.v_proj": "colwise",
147
+ "layers.*.self_attn.o_proj": "rowwise",
148
+ "layers.*.mlp.gate_proj": "colwise",
149
+ "layers.*.mlp.up_proj": "colwise",
150
+ "layers.*.mlp.down_proj": "rowwise",
151
+ }
152
+ base_model_pp_plan = {
153
+ "embed_tokens": (["input_ids"], ["inputs_embeds"]),
154
+ "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
155
+ "norm": (["hidden_states"], ["hidden_states"]),
156
+ }
157
+
158
+ def __init__(
159
+ self,
160
+ vocab_size=151936,
161
+ hidden_size=2048,
162
+ intermediate_size=6144,
163
+ num_hidden_layers=24,
164
+ num_attention_heads=32,
165
+ num_key_value_heads=4,
166
+ hidden_act="silu",
167
+ max_position_embeddings=32768,
168
+ initializer_range=0.02,
169
+ rms_norm_eps=1e-6,
170
+ use_cache=True,
171
+ tie_word_embeddings=False,
172
+ rope_theta=10000.0,
173
+ rope_scaling=None,
174
+ attention_bias=False,
175
+ use_sliding_window=False,
176
+ sliding_window=4096,
177
+ max_window_layers=28,
178
+ attention_dropout=0.0,
179
+ decoder_sparse_step=1,
180
+ moe_intermediate_size=768,
181
+ shared_expert_intermediate_size=None,
182
+ num_experts_per_tok=8,
183
+ num_experts=128,
184
+ norm_topk_prob=False,
185
+ output_router_logits=False,
186
+ router_aux_loss_coef=0.001,
187
+ mlp_only_layers=None,
188
+ **kwargs,
189
+ ):
190
+ self.vocab_size = vocab_size
191
+ self.max_position_embeddings = max_position_embeddings
192
+ self.hidden_size = hidden_size
193
+ self.intermediate_size = intermediate_size
194
+ self.num_hidden_layers = num_hidden_layers
195
+ self.num_attention_heads = num_attention_heads
196
+ self.use_sliding_window = use_sliding_window
197
+ self.sliding_window = sliding_window if use_sliding_window else None
198
+ self.max_window_layers = max_window_layers
199
+
200
+ self.num_key_value_heads = num_key_value_heads
201
+ self.hidden_act = hidden_act
202
+ self.initializer_range = initializer_range
203
+ self.rms_norm_eps = rms_norm_eps
204
+ self.use_cache = use_cache
205
+ self.rope_theta = rope_theta
206
+ self.rope_scaling = rope_scaling
207
+ self.attention_bias = attention_bias
208
+ self.attention_dropout = attention_dropout
209
+ # Validate the correctness of rotary position embeddings parameters
210
+ # BC: if there is a 'type' field, move it to 'rope_type'.
211
+ if self.rope_scaling is not None and "type" in self.rope_scaling:
212
+ self.rope_scaling["rope_type"] = self.rope_scaling["type"]
213
+ rope_config_validation(self)
214
+
215
+ # MoE arguments
216
+ self.decoder_sparse_step = decoder_sparse_step
217
+ self.moe_intermediate_size = moe_intermediate_size
218
+ self.shared_expert_intermediate_size = shared_expert_intermediate_size
219
+ self.num_experts_per_tok = num_experts_per_tok
220
+ self.num_experts = num_experts
221
+ self.norm_topk_prob = norm_topk_prob
222
+ self.output_router_logits = output_router_logits
223
+ self.router_aux_loss_coef = router_aux_loss_coef
224
+ self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
225
+
226
+ super().__init__(
227
+ tie_word_embeddings=tie_word_embeddings,
228
+ **kwargs,
229
+ )
230
+
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.54.1"
4
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e4bc51223729e7e94e46819a7ad47bc605e0004ceb2afdc1f1cc158b6f7412a
3
+ size 4399332008
model-00002-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0abfac116abb48dafc3989c05a006613aa159288391987c5afc7ed552d1c0358
3
+ size 4984970264
model-00003-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9e0839d2e34a7f9fc2f81460d838a4c9273a5be6b9fff0551feee6c802f273a
3
+ size 4984970272
model-00004-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0fa85af58064c6226847717dad61f64ec7ba325710140a9f916f5843e40451d8
3
+ size 4984970312
model-00005-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3f6e9fe1e4366945748ea4129b243b97d702dfa7cf560a9383bd283d1f6a4c9
3
+ size 4984970312
model-00006-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5dccf2dbcb28d881f9b80904c8948430f54bc6d47d6825e7312eb1ae6027bdf5
3
+ size 4984970312
model-00007-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edcb72301e7d2dbd6a8512fdf364e17f527fa91707feb72a83726772cdf1316c
3
+ size 4984970312
model-00008-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0334caf6b8e9124e85801fd6a41961e4aa892342f0b2bbba065e1e167b0c2567
3
+ size 4984970312
model-00009-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9429fb9ea9d57f1a5ec32dfa49e0434b8cba6bb7855f7c20a681503e559d78a2
3
+ size 4984970312
model-00010-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755719f4dd11111c0037dc923043af8338ee3d8b2c045dd6fae87ae0c0dc7658
3
+ size 4984970312
model-00011-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c417dd8b3e5168b62fccfd70dc1be6d7f6c8743104d58805b24e02ad544af90
3
+ size 4984970312
model-00012-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60496189195377cd81eb74843c0f184ad6f0ebd0a6cc34a02f7fdfcabdbc1a29
3
+ size 4984970312
model-00013-of-00013.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ea4a7adc5c961c45d3273bd52e71c8bed2a54d70ff18596e066bfd77c46cb92
3
+ size 1830302400
model.safetensors.index.json ADDED
@@ -0,0 +1,539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_parameters": 30532122624,
4
+ "total_size": 61064245248
5
+ },
6
+ "weight_map": {
7
+ "lm_head.weight": "model-00013-of-00013.safetensors",
8
+ "model.embed_tokens.weight": "model-00001-of-00013.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00013.safetensors",
10
+ "model.layers.0.mlp.gate.weight": "model-00001-of-00013.safetensors",
11
+ "model.layers.0.mlp.moe_mlp.experts.weight": "model-00001-of-00013.safetensors",
12
+ "model.layers.0.mlp.moe_mlp.output_experts.weight": "model-00001-of-00013.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00013.safetensors",
14
+ "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00013.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00013.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00013.safetensors",
17
+ "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00013.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00013.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00013.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00013.safetensors",
21
+ "model.layers.1.mlp.gate.weight": "model-00001-of-00013.safetensors",
22
+ "model.layers.1.mlp.moe_mlp.experts.weight": "model-00001-of-00013.safetensors",
23
+ "model.layers.1.mlp.moe_mlp.output_experts.weight": "model-00001-of-00013.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00013.safetensors",
25
+ "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00013.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00013.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00013.safetensors",
28
+ "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00013.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00013.safetensors",
30
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00013.safetensors",
31
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00013.safetensors",
32
+ "model.layers.10.mlp.gate.weight": "model-00003-of-00013.safetensors",
33
+ "model.layers.10.mlp.moe_mlp.experts.weight": "model-00003-of-00013.safetensors",
34
+ "model.layers.10.mlp.moe_mlp.output_experts.weight": "model-00003-of-00013.safetensors",
35
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00013.safetensors",
36
+ "model.layers.10.self_attn.k_norm.weight": "model-00003-of-00013.safetensors",
37
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00013.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
39
+ "model.layers.10.self_attn.q_norm.weight": "model-00003-of-00013.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00013.safetensors",
41
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00013.safetensors",
42
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00013.safetensors",
43
+ "model.layers.11.mlp.gate.weight": "model-00003-of-00013.safetensors",
44
+ "model.layers.11.mlp.moe_mlp.experts.weight": "model-00004-of-00013.safetensors",
45
+ "model.layers.11.mlp.moe_mlp.output_experts.weight": "model-00004-of-00013.safetensors",
46
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00013.safetensors",
47
+ "model.layers.11.self_attn.k_norm.weight": "model-00003-of-00013.safetensors",
48
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00013.safetensors",
49
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
50
+ "model.layers.11.self_attn.q_norm.weight": "model-00003-of-00013.safetensors",
51
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00013.safetensors",
52
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00013.safetensors",
53
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00013.safetensors",
54
+ "model.layers.12.mlp.gate.weight": "model-00004-of-00013.safetensors",
55
+ "model.layers.12.mlp.moe_mlp.experts.weight": "model-00004-of-00013.safetensors",
56
+ "model.layers.12.mlp.moe_mlp.output_experts.weight": "model-00004-of-00013.safetensors",
57
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00013.safetensors",
58
+ "model.layers.12.self_attn.k_norm.weight": "model-00004-of-00013.safetensors",
59
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00013.safetensors",
60
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00013.safetensors",
61
+ "model.layers.12.self_attn.q_norm.weight": "model-00004-of-00013.safetensors",
62
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00013.safetensors",
63
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00013.safetensors",
64
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00013.safetensors",
65
+ "model.layers.13.mlp.gate.weight": "model-00004-of-00013.safetensors",
66
+ "model.layers.13.mlp.moe_mlp.experts.weight": "model-00004-of-00013.safetensors",
67
+ "model.layers.13.mlp.moe_mlp.output_experts.weight": "model-00004-of-00013.safetensors",
68
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00013.safetensors",
69
+ "model.layers.13.self_attn.k_norm.weight": "model-00004-of-00013.safetensors",
70
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00013.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00013.safetensors",
72
+ "model.layers.13.self_attn.q_norm.weight": "model-00004-of-00013.safetensors",
73
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00013.safetensors",
74
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00013.safetensors",
75
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00013.safetensors",
76
+ "model.layers.14.mlp.gate.weight": "model-00004-of-00013.safetensors",
77
+ "model.layers.14.mlp.moe_mlp.experts.weight": "model-00004-of-00013.safetensors",
78
+ "model.layers.14.mlp.moe_mlp.output_experts.weight": "model-00004-of-00013.safetensors",
79
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00013.safetensors",
80
+ "model.layers.14.self_attn.k_norm.weight": "model-00004-of-00013.safetensors",
81
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00013.safetensors",
82
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00013.safetensors",
83
+ "model.layers.14.self_attn.q_norm.weight": "model-00004-of-00013.safetensors",
84
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00013.safetensors",
85
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00013.safetensors",
86
+ "model.layers.15.input_layernorm.weight": "model-00005-of-00013.safetensors",
87
+ "model.layers.15.mlp.gate.weight": "model-00004-of-00013.safetensors",
88
+ "model.layers.15.mlp.moe_mlp.experts.weight": "model-00005-of-00013.safetensors",
89
+ "model.layers.15.mlp.moe_mlp.output_experts.weight": "model-00005-of-00013.safetensors",
90
+ "model.layers.15.post_attention_layernorm.weight": "model-00005-of-00013.safetensors",
91
+ "model.layers.15.self_attn.k_norm.weight": "model-00004-of-00013.safetensors",
92
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00013.safetensors",
93
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00013.safetensors",
94
+ "model.layers.15.self_attn.q_norm.weight": "model-00004-of-00013.safetensors",
95
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00013.safetensors",
96
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00013.safetensors",
97
+ "model.layers.16.input_layernorm.weight": "model-00005-of-00013.safetensors",
98
+ "model.layers.16.mlp.gate.weight": "model-00005-of-00013.safetensors",
99
+ "model.layers.16.mlp.moe_mlp.experts.weight": "model-00005-of-00013.safetensors",
100
+ "model.layers.16.mlp.moe_mlp.output_experts.weight": "model-00005-of-00013.safetensors",
101
+ "model.layers.16.post_attention_layernorm.weight": "model-00005-of-00013.safetensors",
102
+ "model.layers.16.self_attn.k_norm.weight": "model-00005-of-00013.safetensors",
103
+ "model.layers.16.self_attn.k_proj.weight": "model-00005-of-00013.safetensors",
104
+ "model.layers.16.self_attn.o_proj.weight": "model-00005-of-00013.safetensors",
105
+ "model.layers.16.self_attn.q_norm.weight": "model-00005-of-00013.safetensors",
106
+ "model.layers.16.self_attn.q_proj.weight": "model-00005-of-00013.safetensors",
107
+ "model.layers.16.self_attn.v_proj.weight": "model-00005-of-00013.safetensors",
108
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00013.safetensors",
109
+ "model.layers.17.mlp.gate.weight": "model-00005-of-00013.safetensors",
110
+ "model.layers.17.mlp.moe_mlp.experts.weight": "model-00005-of-00013.safetensors",
111
+ "model.layers.17.mlp.moe_mlp.output_experts.weight": "model-00005-of-00013.safetensors",
112
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00013.safetensors",
113
+ "model.layers.17.self_attn.k_norm.weight": "model-00005-of-00013.safetensors",
114
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00013.safetensors",
115
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00013.safetensors",
116
+ "model.layers.17.self_attn.q_norm.weight": "model-00005-of-00013.safetensors",
117
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00013.safetensors",
118
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00013.safetensors",
119
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00013.safetensors",
120
+ "model.layers.18.mlp.gate.weight": "model-00005-of-00013.safetensors",
121
+ "model.layers.18.mlp.moe_mlp.experts.weight": "model-00005-of-00013.safetensors",
122
+ "model.layers.18.mlp.moe_mlp.output_experts.weight": "model-00005-of-00013.safetensors",
123
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00013.safetensors",
124
+ "model.layers.18.self_attn.k_norm.weight": "model-00005-of-00013.safetensors",
125
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00013.safetensors",
126
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00013.safetensors",
127
+ "model.layers.18.self_attn.q_norm.weight": "model-00005-of-00013.safetensors",
128
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00013.safetensors",
129
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00013.safetensors",
130
+ "model.layers.19.input_layernorm.weight": "model-00006-of-00013.safetensors",
131
+ "model.layers.19.mlp.gate.weight": "model-00005-of-00013.safetensors",
132
+ "model.layers.19.mlp.moe_mlp.experts.weight": "model-00006-of-00013.safetensors",
133
+ "model.layers.19.mlp.moe_mlp.output_experts.weight": "model-00006-of-00013.safetensors",
134
+ "model.layers.19.post_attention_layernorm.weight": "model-00006-of-00013.safetensors",
135
+ "model.layers.19.self_attn.k_norm.weight": "model-00005-of-00013.safetensors",
136
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00013.safetensors",
137
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00013.safetensors",
138
+ "model.layers.19.self_attn.q_norm.weight": "model-00005-of-00013.safetensors",
139
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00013.safetensors",
140
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00013.safetensors",
141
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00013.safetensors",
142
+ "model.layers.2.mlp.gate.weight": "model-00001-of-00013.safetensors",
143
+ "model.layers.2.mlp.moe_mlp.experts.weight": "model-00001-of-00013.safetensors",
144
+ "model.layers.2.mlp.moe_mlp.output_experts.weight": "model-00001-of-00013.safetensors",
145
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00013.safetensors",
146
+ "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00013.safetensors",
147
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00013.safetensors",
148
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00013.safetensors",
149
+ "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00013.safetensors",
150
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00013.safetensors",
151
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00013.safetensors",
152
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00013.safetensors",
153
+ "model.layers.20.mlp.gate.weight": "model-00006-of-00013.safetensors",
154
+ "model.layers.20.mlp.moe_mlp.experts.weight": "model-00006-of-00013.safetensors",
155
+ "model.layers.20.mlp.moe_mlp.output_experts.weight": "model-00006-of-00013.safetensors",
156
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00013.safetensors",
157
+ "model.layers.20.self_attn.k_norm.weight": "model-00006-of-00013.safetensors",
158
+ "model.layers.20.self_attn.k_proj.weight": "model-00006-of-00013.safetensors",
159
+ "model.layers.20.self_attn.o_proj.weight": "model-00006-of-00013.safetensors",
160
+ "model.layers.20.self_attn.q_norm.weight": "model-00006-of-00013.safetensors",
161
+ "model.layers.20.self_attn.q_proj.weight": "model-00006-of-00013.safetensors",
162
+ "model.layers.20.self_attn.v_proj.weight": "model-00006-of-00013.safetensors",
163
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00013.safetensors",
164
+ "model.layers.21.mlp.gate.weight": "model-00006-of-00013.safetensors",
165
+ "model.layers.21.mlp.moe_mlp.experts.weight": "model-00006-of-00013.safetensors",
166
+ "model.layers.21.mlp.moe_mlp.output_experts.weight": "model-00006-of-00013.safetensors",
167
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00013.safetensors",
168
+ "model.layers.21.self_attn.k_norm.weight": "model-00006-of-00013.safetensors",
169
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00013.safetensors",
170
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00013.safetensors",
171
+ "model.layers.21.self_attn.q_norm.weight": "model-00006-of-00013.safetensors",
172
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00013.safetensors",
173
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00013.safetensors",
174
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00013.safetensors",
175
+ "model.layers.22.mlp.gate.weight": "model-00006-of-00013.safetensors",
176
+ "model.layers.22.mlp.moe_mlp.experts.weight": "model-00006-of-00013.safetensors",
177
+ "model.layers.22.mlp.moe_mlp.output_experts.weight": "model-00006-of-00013.safetensors",
178
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00013.safetensors",
179
+ "model.layers.22.self_attn.k_norm.weight": "model-00006-of-00013.safetensors",
180
+ "model.layers.22.self_attn.k_proj.weight": "model-00006-of-00013.safetensors",
181
+ "model.layers.22.self_attn.o_proj.weight": "model-00006-of-00013.safetensors",
182
+ "model.layers.22.self_attn.q_norm.weight": "model-00006-of-00013.safetensors",
183
+ "model.layers.22.self_attn.q_proj.weight": "model-00006-of-00013.safetensors",
184
+ "model.layers.22.self_attn.v_proj.weight": "model-00006-of-00013.safetensors",
185
+ "model.layers.23.input_layernorm.weight": "model-00007-of-00013.safetensors",
186
+ "model.layers.23.mlp.gate.weight": "model-00006-of-00013.safetensors",
187
+ "model.layers.23.mlp.moe_mlp.experts.weight": "model-00007-of-00013.safetensors",
188
+ "model.layers.23.mlp.moe_mlp.output_experts.weight": "model-00007-of-00013.safetensors",
189
+ "model.layers.23.post_attention_layernorm.weight": "model-00007-of-00013.safetensors",
190
+ "model.layers.23.self_attn.k_norm.weight": "model-00006-of-00013.safetensors",
191
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00013.safetensors",
192
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00013.safetensors",
193
+ "model.layers.23.self_attn.q_norm.weight": "model-00006-of-00013.safetensors",
194
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00013.safetensors",
195
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00013.safetensors",
196
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00013.safetensors",
197
+ "model.layers.24.mlp.gate.weight": "model-00007-of-00013.safetensors",
198
+ "model.layers.24.mlp.moe_mlp.experts.weight": "model-00007-of-00013.safetensors",
199
+ "model.layers.24.mlp.moe_mlp.output_experts.weight": "model-00007-of-00013.safetensors",
200
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00013.safetensors",
201
+ "model.layers.24.self_attn.k_norm.weight": "model-00007-of-00013.safetensors",
202
+ "model.layers.24.self_attn.k_proj.weight": "model-00007-of-00013.safetensors",
203
+ "model.layers.24.self_attn.o_proj.weight": "model-00007-of-00013.safetensors",
204
+ "model.layers.24.self_attn.q_norm.weight": "model-00007-of-00013.safetensors",
205
+ "model.layers.24.self_attn.q_proj.weight": "model-00007-of-00013.safetensors",
206
+ "model.layers.24.self_attn.v_proj.weight": "model-00007-of-00013.safetensors",
207
+ "model.layers.25.input_layernorm.weight": "model-00007-of-00013.safetensors",
208
+ "model.layers.25.mlp.gate.weight": "model-00007-of-00013.safetensors",
209
+ "model.layers.25.mlp.moe_mlp.experts.weight": "model-00007-of-00013.safetensors",
210
+ "model.layers.25.mlp.moe_mlp.output_experts.weight": "model-00007-of-00013.safetensors",
211
+ "model.layers.25.post_attention_layernorm.weight": "model-00007-of-00013.safetensors",
212
+ "model.layers.25.self_attn.k_norm.weight": "model-00007-of-00013.safetensors",
213
+ "model.layers.25.self_attn.k_proj.weight": "model-00007-of-00013.safetensors",
214
+ "model.layers.25.self_attn.o_proj.weight": "model-00007-of-00013.safetensors",
215
+ "model.layers.25.self_attn.q_norm.weight": "model-00007-of-00013.safetensors",
216
+ "model.layers.25.self_attn.q_proj.weight": "model-00007-of-00013.safetensors",
217
+ "model.layers.25.self_attn.v_proj.weight": "model-00007-of-00013.safetensors",
218
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00013.safetensors",
219
+ "model.layers.26.mlp.gate.weight": "model-00007-of-00013.safetensors",
220
+ "model.layers.26.mlp.moe_mlp.experts.weight": "model-00007-of-00013.safetensors",
221
+ "model.layers.26.mlp.moe_mlp.output_experts.weight": "model-00007-of-00013.safetensors",
222
+ "model.layers.26.post_attention_layernorm.weight": "model-00007-of-00013.safetensors",
223
+ "model.layers.26.self_attn.k_norm.weight": "model-00007-of-00013.safetensors",
224
+ "model.layers.26.self_attn.k_proj.weight": "model-00007-of-00013.safetensors",
225
+ "model.layers.26.self_attn.o_proj.weight": "model-00007-of-00013.safetensors",
226
+ "model.layers.26.self_attn.q_norm.weight": "model-00007-of-00013.safetensors",
227
+ "model.layers.26.self_attn.q_proj.weight": "model-00007-of-00013.safetensors",
228
+ "model.layers.26.self_attn.v_proj.weight": "model-00007-of-00013.safetensors",
229
+ "model.layers.27.input_layernorm.weight": "model-00008-of-00013.safetensors",
230
+ "model.layers.27.mlp.gate.weight": "model-00007-of-00013.safetensors",
231
+ "model.layers.27.mlp.moe_mlp.experts.weight": "model-00008-of-00013.safetensors",
232
+ "model.layers.27.mlp.moe_mlp.output_experts.weight": "model-00008-of-00013.safetensors",
233
+ "model.layers.27.post_attention_layernorm.weight": "model-00008-of-00013.safetensors",
234
+ "model.layers.27.self_attn.k_norm.weight": "model-00007-of-00013.safetensors",
235
+ "model.layers.27.self_attn.k_proj.weight": "model-00007-of-00013.safetensors",
236
+ "model.layers.27.self_attn.o_proj.weight": "model-00007-of-00013.safetensors",
237
+ "model.layers.27.self_attn.q_norm.weight": "model-00007-of-00013.safetensors",
238
+ "model.layers.27.self_attn.q_proj.weight": "model-00007-of-00013.safetensors",
239
+ "model.layers.27.self_attn.v_proj.weight": "model-00007-of-00013.safetensors",
240
+ "model.layers.28.input_layernorm.weight": "model-00008-of-00013.safetensors",
241
+ "model.layers.28.mlp.gate.weight": "model-00008-of-00013.safetensors",
242
+ "model.layers.28.mlp.moe_mlp.experts.weight": "model-00008-of-00013.safetensors",
243
+ "model.layers.28.mlp.moe_mlp.output_experts.weight": "model-00008-of-00013.safetensors",
244
+ "model.layers.28.post_attention_layernorm.weight": "model-00008-of-00013.safetensors",
245
+ "model.layers.28.self_attn.k_norm.weight": "model-00008-of-00013.safetensors",
246
+ "model.layers.28.self_attn.k_proj.weight": "model-00008-of-00013.safetensors",
247
+ "model.layers.28.self_attn.o_proj.weight": "model-00008-of-00013.safetensors",
248
+ "model.layers.28.self_attn.q_norm.weight": "model-00008-of-00013.safetensors",
249
+ "model.layers.28.self_attn.q_proj.weight": "model-00008-of-00013.safetensors",
250
+ "model.layers.28.self_attn.v_proj.weight": "model-00008-of-00013.safetensors",
251
+ "model.layers.29.input_layernorm.weight": "model-00008-of-00013.safetensors",
252
+ "model.layers.29.mlp.gate.weight": "model-00008-of-00013.safetensors",
253
+ "model.layers.29.mlp.moe_mlp.experts.weight": "model-00008-of-00013.safetensors",
254
+ "model.layers.29.mlp.moe_mlp.output_experts.weight": "model-00008-of-00013.safetensors",
255
+ "model.layers.29.post_attention_layernorm.weight": "model-00008-of-00013.safetensors",
256
+ "model.layers.29.self_attn.k_norm.weight": "model-00008-of-00013.safetensors",
257
+ "model.layers.29.self_attn.k_proj.weight": "model-00008-of-00013.safetensors",
258
+ "model.layers.29.self_attn.o_proj.weight": "model-00008-of-00013.safetensors",
259
+ "model.layers.29.self_attn.q_norm.weight": "model-00008-of-00013.safetensors",
260
+ "model.layers.29.self_attn.q_proj.weight": "model-00008-of-00013.safetensors",
261
+ "model.layers.29.self_attn.v_proj.weight": "model-00008-of-00013.safetensors",
262
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00013.safetensors",
263
+ "model.layers.3.mlp.gate.weight": "model-00001-of-00013.safetensors",
264
+ "model.layers.3.mlp.moe_mlp.experts.weight": "model-00002-of-00013.safetensors",
265
+ "model.layers.3.mlp.moe_mlp.output_experts.weight": "model-00002-of-00013.safetensors",
266
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
267
+ "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00013.safetensors",
268
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00013.safetensors",
269
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00013.safetensors",
270
+ "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00013.safetensors",
271
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00013.safetensors",
272
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00013.safetensors",
273
+ "model.layers.30.input_layernorm.weight": "model-00008-of-00013.safetensors",
274
+ "model.layers.30.mlp.gate.weight": "model-00008-of-00013.safetensors",
275
+ "model.layers.30.mlp.moe_mlp.experts.weight": "model-00008-of-00013.safetensors",
276
+ "model.layers.30.mlp.moe_mlp.output_experts.weight": "model-00008-of-00013.safetensors",
277
+ "model.layers.30.post_attention_layernorm.weight": "model-00008-of-00013.safetensors",
278
+ "model.layers.30.self_attn.k_norm.weight": "model-00008-of-00013.safetensors",
279
+ "model.layers.30.self_attn.k_proj.weight": "model-00008-of-00013.safetensors",
280
+ "model.layers.30.self_attn.o_proj.weight": "model-00008-of-00013.safetensors",
281
+ "model.layers.30.self_attn.q_norm.weight": "model-00008-of-00013.safetensors",
282
+ "model.layers.30.self_attn.q_proj.weight": "model-00008-of-00013.safetensors",
283
+ "model.layers.30.self_attn.v_proj.weight": "model-00008-of-00013.safetensors",
284
+ "model.layers.31.input_layernorm.weight": "model-00009-of-00013.safetensors",
285
+ "model.layers.31.mlp.gate.weight": "model-00008-of-00013.safetensors",
286
+ "model.layers.31.mlp.moe_mlp.experts.weight": "model-00009-of-00013.safetensors",
287
+ "model.layers.31.mlp.moe_mlp.output_experts.weight": "model-00009-of-00013.safetensors",
288
+ "model.layers.31.post_attention_layernorm.weight": "model-00009-of-00013.safetensors",
289
+ "model.layers.31.self_attn.k_norm.weight": "model-00008-of-00013.safetensors",
290
+ "model.layers.31.self_attn.k_proj.weight": "model-00008-of-00013.safetensors",
291
+ "model.layers.31.self_attn.o_proj.weight": "model-00008-of-00013.safetensors",
292
+ "model.layers.31.self_attn.q_norm.weight": "model-00008-of-00013.safetensors",
293
+ "model.layers.31.self_attn.q_proj.weight": "model-00008-of-00013.safetensors",
294
+ "model.layers.31.self_attn.v_proj.weight": "model-00008-of-00013.safetensors",
295
+ "model.layers.32.input_layernorm.weight": "model-00009-of-00013.safetensors",
296
+ "model.layers.32.mlp.gate.weight": "model-00009-of-00013.safetensors",
297
+ "model.layers.32.mlp.moe_mlp.experts.weight": "model-00009-of-00013.safetensors",
298
+ "model.layers.32.mlp.moe_mlp.output_experts.weight": "model-00009-of-00013.safetensors",
299
+ "model.layers.32.post_attention_layernorm.weight": "model-00009-of-00013.safetensors",
300
+ "model.layers.32.self_attn.k_norm.weight": "model-00009-of-00013.safetensors",
301
+ "model.layers.32.self_attn.k_proj.weight": "model-00009-of-00013.safetensors",
302
+ "model.layers.32.self_attn.o_proj.weight": "model-00009-of-00013.safetensors",
303
+ "model.layers.32.self_attn.q_norm.weight": "model-00009-of-00013.safetensors",
304
+ "model.layers.32.self_attn.q_proj.weight": "model-00009-of-00013.safetensors",
305
+ "model.layers.32.self_attn.v_proj.weight": "model-00009-of-00013.safetensors",
306
+ "model.layers.33.input_layernorm.weight": "model-00009-of-00013.safetensors",
307
+ "model.layers.33.mlp.gate.weight": "model-00009-of-00013.safetensors",
308
+ "model.layers.33.mlp.moe_mlp.experts.weight": "model-00009-of-00013.safetensors",
309
+ "model.layers.33.mlp.moe_mlp.output_experts.weight": "model-00009-of-00013.safetensors",
310
+ "model.layers.33.post_attention_layernorm.weight": "model-00009-of-00013.safetensors",
311
+ "model.layers.33.self_attn.k_norm.weight": "model-00009-of-00013.safetensors",
312
+ "model.layers.33.self_attn.k_proj.weight": "model-00009-of-00013.safetensors",
313
+ "model.layers.33.self_attn.o_proj.weight": "model-00009-of-00013.safetensors",
314
+ "model.layers.33.self_attn.q_norm.weight": "model-00009-of-00013.safetensors",
315
+ "model.layers.33.self_attn.q_proj.weight": "model-00009-of-00013.safetensors",
316
+ "model.layers.33.self_attn.v_proj.weight": "model-00009-of-00013.safetensors",
317
+ "model.layers.34.input_layernorm.weight": "model-00009-of-00013.safetensors",
318
+ "model.layers.34.mlp.gate.weight": "model-00009-of-00013.safetensors",
319
+ "model.layers.34.mlp.moe_mlp.experts.weight": "model-00009-of-00013.safetensors",
320
+ "model.layers.34.mlp.moe_mlp.output_experts.weight": "model-00009-of-00013.safetensors",
321
+ "model.layers.34.post_attention_layernorm.weight": "model-00009-of-00013.safetensors",
322
+ "model.layers.34.self_attn.k_norm.weight": "model-00009-of-00013.safetensors",
323
+ "model.layers.34.self_attn.k_proj.weight": "model-00009-of-00013.safetensors",
324
+ "model.layers.34.self_attn.o_proj.weight": "model-00009-of-00013.safetensors",
325
+ "model.layers.34.self_attn.q_norm.weight": "model-00009-of-00013.safetensors",
326
+ "model.layers.34.self_attn.q_proj.weight": "model-00009-of-00013.safetensors",
327
+ "model.layers.34.self_attn.v_proj.weight": "model-00009-of-00013.safetensors",
328
+ "model.layers.35.input_layernorm.weight": "model-00010-of-00013.safetensors",
329
+ "model.layers.35.mlp.gate.weight": "model-00009-of-00013.safetensors",
330
+ "model.layers.35.mlp.moe_mlp.experts.weight": "model-00010-of-00013.safetensors",
331
+ "model.layers.35.mlp.moe_mlp.output_experts.weight": "model-00010-of-00013.safetensors",
332
+ "model.layers.35.post_attention_layernorm.weight": "model-00010-of-00013.safetensors",
333
+ "model.layers.35.self_attn.k_norm.weight": "model-00009-of-00013.safetensors",
334
+ "model.layers.35.self_attn.k_proj.weight": "model-00009-of-00013.safetensors",
335
+ "model.layers.35.self_attn.o_proj.weight": "model-00009-of-00013.safetensors",
336
+ "model.layers.35.self_attn.q_norm.weight": "model-00009-of-00013.safetensors",
337
+ "model.layers.35.self_attn.q_proj.weight": "model-00009-of-00013.safetensors",
338
+ "model.layers.35.self_attn.v_proj.weight": "model-00009-of-00013.safetensors",
339
+ "model.layers.36.input_layernorm.weight": "model-00010-of-00013.safetensors",
340
+ "model.layers.36.mlp.gate.weight": "model-00010-of-00013.safetensors",
341
+ "model.layers.36.mlp.moe_mlp.experts.weight": "model-00010-of-00013.safetensors",
342
+ "model.layers.36.mlp.moe_mlp.output_experts.weight": "model-00010-of-00013.safetensors",
343
+ "model.layers.36.post_attention_layernorm.weight": "model-00010-of-00013.safetensors",
344
+ "model.layers.36.self_attn.k_norm.weight": "model-00010-of-00013.safetensors",
345
+ "model.layers.36.self_attn.k_proj.weight": "model-00010-of-00013.safetensors",
346
+ "model.layers.36.self_attn.o_proj.weight": "model-00010-of-00013.safetensors",
347
+ "model.layers.36.self_attn.q_norm.weight": "model-00010-of-00013.safetensors",
348
+ "model.layers.36.self_attn.q_proj.weight": "model-00010-of-00013.safetensors",
349
+ "model.layers.36.self_attn.v_proj.weight": "model-00010-of-00013.safetensors",
350
+ "model.layers.37.input_layernorm.weight": "model-00010-of-00013.safetensors",
351
+ "model.layers.37.mlp.gate.weight": "model-00010-of-00013.safetensors",
352
+ "model.layers.37.mlp.moe_mlp.experts.weight": "model-00010-of-00013.safetensors",
353
+ "model.layers.37.mlp.moe_mlp.output_experts.weight": "model-00010-of-00013.safetensors",
354
+ "model.layers.37.post_attention_layernorm.weight": "model-00010-of-00013.safetensors",
355
+ "model.layers.37.self_attn.k_norm.weight": "model-00010-of-00013.safetensors",
356
+ "model.layers.37.self_attn.k_proj.weight": "model-00010-of-00013.safetensors",
357
+ "model.layers.37.self_attn.o_proj.weight": "model-00010-of-00013.safetensors",
358
+ "model.layers.37.self_attn.q_norm.weight": "model-00010-of-00013.safetensors",
359
+ "model.layers.37.self_attn.q_proj.weight": "model-00010-of-00013.safetensors",
360
+ "model.layers.37.self_attn.v_proj.weight": "model-00010-of-00013.safetensors",
361
+ "model.layers.38.input_layernorm.weight": "model-00010-of-00013.safetensors",
362
+ "model.layers.38.mlp.gate.weight": "model-00010-of-00013.safetensors",
363
+ "model.layers.38.mlp.moe_mlp.experts.weight": "model-00010-of-00013.safetensors",
364
+ "model.layers.38.mlp.moe_mlp.output_experts.weight": "model-00010-of-00013.safetensors",
365
+ "model.layers.38.post_attention_layernorm.weight": "model-00010-of-00013.safetensors",
366
+ "model.layers.38.self_attn.k_norm.weight": "model-00010-of-00013.safetensors",
367
+ "model.layers.38.self_attn.k_proj.weight": "model-00010-of-00013.safetensors",
368
+ "model.layers.38.self_attn.o_proj.weight": "model-00010-of-00013.safetensors",
369
+ "model.layers.38.self_attn.q_norm.weight": "model-00010-of-00013.safetensors",
370
+ "model.layers.38.self_attn.q_proj.weight": "model-00010-of-00013.safetensors",
371
+ "model.layers.38.self_attn.v_proj.weight": "model-00010-of-00013.safetensors",
372
+ "model.layers.39.input_layernorm.weight": "model-00011-of-00013.safetensors",
373
+ "model.layers.39.mlp.gate.weight": "model-00010-of-00013.safetensors",
374
+ "model.layers.39.mlp.moe_mlp.experts.weight": "model-00011-of-00013.safetensors",
375
+ "model.layers.39.mlp.moe_mlp.output_experts.weight": "model-00011-of-00013.safetensors",
376
+ "model.layers.39.post_attention_layernorm.weight": "model-00011-of-00013.safetensors",
377
+ "model.layers.39.self_attn.k_norm.weight": "model-00010-of-00013.safetensors",
378
+ "model.layers.39.self_attn.k_proj.weight": "model-00010-of-00013.safetensors",
379
+ "model.layers.39.self_attn.o_proj.weight": "model-00010-of-00013.safetensors",
380
+ "model.layers.39.self_attn.q_norm.weight": "model-00010-of-00013.safetensors",
381
+ "model.layers.39.self_attn.q_proj.weight": "model-00010-of-00013.safetensors",
382
+ "model.layers.39.self_attn.v_proj.weight": "model-00010-of-00013.safetensors",
383
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00013.safetensors",
384
+ "model.layers.4.mlp.gate.weight": "model-00002-of-00013.safetensors",
385
+ "model.layers.4.mlp.moe_mlp.experts.weight": "model-00002-of-00013.safetensors",
386
+ "model.layers.4.mlp.moe_mlp.output_experts.weight": "model-00002-of-00013.safetensors",
387
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
388
+ "model.layers.4.self_attn.k_norm.weight": "model-00002-of-00013.safetensors",
389
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
390
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00013.safetensors",
391
+ "model.layers.4.self_attn.q_norm.weight": "model-00002-of-00013.safetensors",
392
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
393
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
394
+ "model.layers.40.input_layernorm.weight": "model-00011-of-00013.safetensors",
395
+ "model.layers.40.mlp.gate.weight": "model-00011-of-00013.safetensors",
396
+ "model.layers.40.mlp.moe_mlp.experts.weight": "model-00011-of-00013.safetensors",
397
+ "model.layers.40.mlp.moe_mlp.output_experts.weight": "model-00011-of-00013.safetensors",
398
+ "model.layers.40.post_attention_layernorm.weight": "model-00011-of-00013.safetensors",
399
+ "model.layers.40.self_attn.k_norm.weight": "model-00011-of-00013.safetensors",
400
+ "model.layers.40.self_attn.k_proj.weight": "model-00011-of-00013.safetensors",
401
+ "model.layers.40.self_attn.o_proj.weight": "model-00011-of-00013.safetensors",
402
+ "model.layers.40.self_attn.q_norm.weight": "model-00011-of-00013.safetensors",
403
+ "model.layers.40.self_attn.q_proj.weight": "model-00011-of-00013.safetensors",
404
+ "model.layers.40.self_attn.v_proj.weight": "model-00011-of-00013.safetensors",
405
+ "model.layers.41.input_layernorm.weight": "model-00011-of-00013.safetensors",
406
+ "model.layers.41.mlp.gate.weight": "model-00011-of-00013.safetensors",
407
+ "model.layers.41.mlp.moe_mlp.experts.weight": "model-00011-of-00013.safetensors",
408
+ "model.layers.41.mlp.moe_mlp.output_experts.weight": "model-00011-of-00013.safetensors",
409
+ "model.layers.41.post_attention_layernorm.weight": "model-00011-of-00013.safetensors",
410
+ "model.layers.41.self_attn.k_norm.weight": "model-00011-of-00013.safetensors",
411
+ "model.layers.41.self_attn.k_proj.weight": "model-00011-of-00013.safetensors",
412
+ "model.layers.41.self_attn.o_proj.weight": "model-00011-of-00013.safetensors",
413
+ "model.layers.41.self_attn.q_norm.weight": "model-00011-of-00013.safetensors",
414
+ "model.layers.41.self_attn.q_proj.weight": "model-00011-of-00013.safetensors",
415
+ "model.layers.41.self_attn.v_proj.weight": "model-00011-of-00013.safetensors",
416
+ "model.layers.42.input_layernorm.weight": "model-00011-of-00013.safetensors",
417
+ "model.layers.42.mlp.gate.weight": "model-00011-of-00013.safetensors",
418
+ "model.layers.42.mlp.moe_mlp.experts.weight": "model-00011-of-00013.safetensors",
419
+ "model.layers.42.mlp.moe_mlp.output_experts.weight": "model-00011-of-00013.safetensors",
420
+ "model.layers.42.post_attention_layernorm.weight": "model-00011-of-00013.safetensors",
421
+ "model.layers.42.self_attn.k_norm.weight": "model-00011-of-00013.safetensors",
422
+ "model.layers.42.self_attn.k_proj.weight": "model-00011-of-00013.safetensors",
423
+ "model.layers.42.self_attn.o_proj.weight": "model-00011-of-00013.safetensors",
424
+ "model.layers.42.self_attn.q_norm.weight": "model-00011-of-00013.safetensors",
425
+ "model.layers.42.self_attn.q_proj.weight": "model-00011-of-00013.safetensors",
426
+ "model.layers.42.self_attn.v_proj.weight": "model-00011-of-00013.safetensors",
427
+ "model.layers.43.input_layernorm.weight": "model-00012-of-00013.safetensors",
428
+ "model.layers.43.mlp.gate.weight": "model-00011-of-00013.safetensors",
429
+ "model.layers.43.mlp.moe_mlp.experts.weight": "model-00012-of-00013.safetensors",
430
+ "model.layers.43.mlp.moe_mlp.output_experts.weight": "model-00012-of-00013.safetensors",
431
+ "model.layers.43.post_attention_layernorm.weight": "model-00012-of-00013.safetensors",
432
+ "model.layers.43.self_attn.k_norm.weight": "model-00011-of-00013.safetensors",
433
+ "model.layers.43.self_attn.k_proj.weight": "model-00011-of-00013.safetensors",
434
+ "model.layers.43.self_attn.o_proj.weight": "model-00011-of-00013.safetensors",
435
+ "model.layers.43.self_attn.q_norm.weight": "model-00011-of-00013.safetensors",
436
+ "model.layers.43.self_attn.q_proj.weight": "model-00011-of-00013.safetensors",
437
+ "model.layers.43.self_attn.v_proj.weight": "model-00011-of-00013.safetensors",
438
+ "model.layers.44.input_layernorm.weight": "model-00012-of-00013.safetensors",
439
+ "model.layers.44.mlp.gate.weight": "model-00012-of-00013.safetensors",
440
+ "model.layers.44.mlp.moe_mlp.experts.weight": "model-00012-of-00013.safetensors",
441
+ "model.layers.44.mlp.moe_mlp.output_experts.weight": "model-00012-of-00013.safetensors",
442
+ "model.layers.44.post_attention_layernorm.weight": "model-00012-of-00013.safetensors",
443
+ "model.layers.44.self_attn.k_norm.weight": "model-00012-of-00013.safetensors",
444
+ "model.layers.44.self_attn.k_proj.weight": "model-00012-of-00013.safetensors",
445
+ "model.layers.44.self_attn.o_proj.weight": "model-00012-of-00013.safetensors",
446
+ "model.layers.44.self_attn.q_norm.weight": "model-00012-of-00013.safetensors",
447
+ "model.layers.44.self_attn.q_proj.weight": "model-00012-of-00013.safetensors",
448
+ "model.layers.44.self_attn.v_proj.weight": "model-00012-of-00013.safetensors",
449
+ "model.layers.45.input_layernorm.weight": "model-00012-of-00013.safetensors",
450
+ "model.layers.45.mlp.gate.weight": "model-00012-of-00013.safetensors",
451
+ "model.layers.45.mlp.moe_mlp.experts.weight": "model-00012-of-00013.safetensors",
452
+ "model.layers.45.mlp.moe_mlp.output_experts.weight": "model-00012-of-00013.safetensors",
453
+ "model.layers.45.post_attention_layernorm.weight": "model-00012-of-00013.safetensors",
454
+ "model.layers.45.self_attn.k_norm.weight": "model-00012-of-00013.safetensors",
455
+ "model.layers.45.self_attn.k_proj.weight": "model-00012-of-00013.safetensors",
456
+ "model.layers.45.self_attn.o_proj.weight": "model-00012-of-00013.safetensors",
457
+ "model.layers.45.self_attn.q_norm.weight": "model-00012-of-00013.safetensors",
458
+ "model.layers.45.self_attn.q_proj.weight": "model-00012-of-00013.safetensors",
459
+ "model.layers.45.self_attn.v_proj.weight": "model-00012-of-00013.safetensors",
460
+ "model.layers.46.input_layernorm.weight": "model-00012-of-00013.safetensors",
461
+ "model.layers.46.mlp.gate.weight": "model-00012-of-00013.safetensors",
462
+ "model.layers.46.mlp.moe_mlp.experts.weight": "model-00012-of-00013.safetensors",
463
+ "model.layers.46.mlp.moe_mlp.output_experts.weight": "model-00012-of-00013.safetensors",
464
+ "model.layers.46.post_attention_layernorm.weight": "model-00012-of-00013.safetensors",
465
+ "model.layers.46.self_attn.k_norm.weight": "model-00012-of-00013.safetensors",
466
+ "model.layers.46.self_attn.k_proj.weight": "model-00012-of-00013.safetensors",
467
+ "model.layers.46.self_attn.o_proj.weight": "model-00012-of-00013.safetensors",
468
+ "model.layers.46.self_attn.q_norm.weight": "model-00012-of-00013.safetensors",
469
+ "model.layers.46.self_attn.q_proj.weight": "model-00012-of-00013.safetensors",
470
+ "model.layers.46.self_attn.v_proj.weight": "model-00012-of-00013.safetensors",
471
+ "model.layers.47.input_layernorm.weight": "model-00013-of-00013.safetensors",
472
+ "model.layers.47.mlp.gate.weight": "model-00012-of-00013.safetensors",
473
+ "model.layers.47.mlp.moe_mlp.experts.weight": "model-00013-of-00013.safetensors",
474
+ "model.layers.47.mlp.moe_mlp.output_experts.weight": "model-00013-of-00013.safetensors",
475
+ "model.layers.47.post_attention_layernorm.weight": "model-00013-of-00013.safetensors",
476
+ "model.layers.47.self_attn.k_norm.weight": "model-00012-of-00013.safetensors",
477
+ "model.layers.47.self_attn.k_proj.weight": "model-00012-of-00013.safetensors",
478
+ "model.layers.47.self_attn.o_proj.weight": "model-00012-of-00013.safetensors",
479
+ "model.layers.47.self_attn.q_norm.weight": "model-00012-of-00013.safetensors",
480
+ "model.layers.47.self_attn.q_proj.weight": "model-00012-of-00013.safetensors",
481
+ "model.layers.47.self_attn.v_proj.weight": "model-00012-of-00013.safetensors",
482
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00013.safetensors",
483
+ "model.layers.5.mlp.gate.weight": "model-00002-of-00013.safetensors",
484
+ "model.layers.5.mlp.moe_mlp.experts.weight": "model-00002-of-00013.safetensors",
485
+ "model.layers.5.mlp.moe_mlp.output_experts.weight": "model-00002-of-00013.safetensors",
486
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
487
+ "model.layers.5.self_attn.k_norm.weight": "model-00002-of-00013.safetensors",
488
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
489
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00013.safetensors",
490
+ "model.layers.5.self_attn.q_norm.weight": "model-00002-of-00013.safetensors",
491
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
492
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
493
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00013.safetensors",
494
+ "model.layers.6.mlp.gate.weight": "model-00002-of-00013.safetensors",
495
+ "model.layers.6.mlp.moe_mlp.experts.weight": "model-00002-of-00013.safetensors",
496
+ "model.layers.6.mlp.moe_mlp.output_experts.weight": "model-00002-of-00013.safetensors",
497
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00013.safetensors",
498
+ "model.layers.6.self_attn.k_norm.weight": "model-00002-of-00013.safetensors",
499
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
500
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00013.safetensors",
501
+ "model.layers.6.self_attn.q_norm.weight": "model-00002-of-00013.safetensors",
502
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
503
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
504
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00013.safetensors",
505
+ "model.layers.7.mlp.gate.weight": "model-00002-of-00013.safetensors",
506
+ "model.layers.7.mlp.moe_mlp.experts.weight": "model-00003-of-00013.safetensors",
507
+ "model.layers.7.mlp.moe_mlp.output_experts.weight": "model-00003-of-00013.safetensors",
508
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00013.safetensors",
509
+ "model.layers.7.self_attn.k_norm.weight": "model-00002-of-00013.safetensors",
510
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00013.safetensors",
511
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00013.safetensors",
512
+ "model.layers.7.self_attn.q_norm.weight": "model-00002-of-00013.safetensors",
513
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00013.safetensors",
514
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00013.safetensors",
515
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00013.safetensors",
516
+ "model.layers.8.mlp.gate.weight": "model-00003-of-00013.safetensors",
517
+ "model.layers.8.mlp.moe_mlp.experts.weight": "model-00003-of-00013.safetensors",
518
+ "model.layers.8.mlp.moe_mlp.output_experts.weight": "model-00003-of-00013.safetensors",
519
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00013.safetensors",
520
+ "model.layers.8.self_attn.k_norm.weight": "model-00003-of-00013.safetensors",
521
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00013.safetensors",
522
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
523
+ "model.layers.8.self_attn.q_norm.weight": "model-00003-of-00013.safetensors",
524
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00013.safetensors",
525
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00013.safetensors",
526
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00013.safetensors",
527
+ "model.layers.9.mlp.gate.weight": "model-00003-of-00013.safetensors",
528
+ "model.layers.9.mlp.moe_mlp.experts.weight": "model-00003-of-00013.safetensors",
529
+ "model.layers.9.mlp.moe_mlp.output_experts.weight": "model-00003-of-00013.safetensors",
530
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00013.safetensors",
531
+ "model.layers.9.self_attn.k_norm.weight": "model-00003-of-00013.safetensors",
532
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00013.safetensors",
533
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00013.safetensors",
534
+ "model.layers.9.self_attn.q_norm.weight": "model-00003-of-00013.safetensors",
535
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00013.safetensors",
536
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00013.safetensors",
537
+ "model.norm.weight": "model-00013-of-00013.safetensors"
538
+ }
539
+ }
modeling_qwen3_shared_moe.py ADDED
@@ -0,0 +1,253 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 Charles O. Goddard, The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """PyTorch Qwen3 model with shared expert support."""
16
+
17
+ from typing import List, Optional, Union
18
+
19
+ import torch
20
+ from torch import nn
21
+ import torch.nn.functional as F
22
+
23
+ from transformers.modeling_outputs import (
24
+ MoeCausalLMOutputWithPast,
25
+ MoeModelOutputWithPast,
26
+ )
27
+ from transformers.activations import ACT2FN
28
+ from transformers.utils import logging
29
+ from transformers.models.mixtral.modeling_mixtral import (
30
+ load_balancing_loss_func,
31
+ )
32
+ from transformers.models.qwen3_moe.modeling_qwen3_moe import (
33
+ Qwen3MoeMLP,
34
+ Qwen3MoeRMSNorm,
35
+ Qwen3MoeAttention,
36
+ Qwen3MoeDecoderLayer,
37
+ Qwen3MoeModel,
38
+ Qwen3MoeForCausalLM,
39
+ )
40
+ from .configuration_qwen3_shared_moe import Qwen3SharedMoeConfig
41
+
42
+ import scattermoe
43
+
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+
48
+ class Qwen3SharedMoeSparseMoeBlock(nn.Module):
49
+ def __init__(self, config: Qwen3SharedMoeConfig):
50
+ super().__init__()
51
+ self.config = config
52
+ self.gate = nn.Linear(config.hidden_size, config.num_experts, bias=False)
53
+ if config.shared_expert_intermediate_size is not None:
54
+ self.shared_expert = Qwen3MoeMLP(
55
+ config, intermediate_size=config.shared_expert_intermediate_size
56
+ )
57
+ else:
58
+ self.shared_expert = None
59
+ self.moe_mlp = scattermoe.mlp.GLUMLP(
60
+ input_size=self.config.hidden_size,
61
+ hidden_size=self.config.moe_intermediate_size,
62
+ num_experts=self.config.num_experts,
63
+ top_k=self.config.num_experts_per_tok,
64
+ activation=ACT2FN[config.hidden_act],
65
+ )
66
+
67
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
68
+ # handling of gate/router logits copied from Qwen3MoeSparseMoeBlock
69
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
70
+ hidden_states = hidden_states.view(-1, hidden_dim)
71
+ # router_logits: (batch * sequence_length, n_experts)
72
+ router_logits = self.gate(hidden_states)
73
+
74
+ routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
75
+ routing_weights, selected_experts = torch.topk(
76
+ routing_weights, self.config.num_experts_per_tok, dim=-1
77
+ )
78
+ if self.config.norm_topk_prob: # only diff with mixtral sparse moe block!
79
+ routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
80
+ # we cast back to the input dtype
81
+ routing_weights = routing_weights.to(hidden_states.dtype)
82
+
83
+ # modified here to use scattermoe + shared_expert
84
+ hs_0 = self.moe_mlp(hidden_states, routing_weights, selected_experts)
85
+
86
+ if self.shared_expert is not None:
87
+ shared_res = self.shared_expert(hidden_states)
88
+ res = hs_0 + shared_res
89
+ else:
90
+ res = hs_0
91
+ res = res.reshape(batch_size, sequence_length, hidden_dim)
92
+ return res, router_logits
93
+
94
+
95
+ class Qwen3SharedMoeDecoderLayer(Qwen3MoeDecoderLayer, nn.Module):
96
+ def __init__(self, config: Qwen3SharedMoeConfig, layer_idx: int):
97
+ super().__init__(config, layer_idx)
98
+ self.hidden_size = config.hidden_size
99
+
100
+ self.self_attn = Qwen3MoeAttention(config, layer_idx)
101
+
102
+ if (layer_idx not in config.mlp_only_layers) and (
103
+ config.num_experts > 0 and (layer_idx + 1) % config.decoder_sparse_step == 0
104
+ ):
105
+ self.mlp = Qwen3SharedMoeSparseMoeBlock(config)
106
+ else:
107
+ self.mlp = Qwen3MoeMLP(config, intermediate_size=config.intermediate_size)
108
+
109
+ self.input_layernorm = Qwen3MoeRMSNorm(
110
+ config.hidden_size, eps=config.rms_norm_eps
111
+ )
112
+ self.post_attention_layernorm = Qwen3MoeRMSNorm(
113
+ config.hidden_size, eps=config.rms_norm_eps
114
+ )
115
+
116
+
117
+ class Qwen3SharedMoeModel(Qwen3MoeModel):
118
+ config_class = Qwen3SharedMoeConfig
119
+
120
+ def __init__(self, config: Qwen3SharedMoeConfig):
121
+ super().__init__(config)
122
+ self.layers = nn.ModuleList(
123
+ [
124
+ Qwen3SharedMoeDecoderLayer(config, layer_idx)
125
+ for layer_idx in range(config.num_hidden_layers)
126
+ ]
127
+ )
128
+
129
+
130
+ class Qwen3SharedMoeForCausalLM(Qwen3MoeForCausalLM):
131
+ config_class = Qwen3SharedMoeConfig
132
+
133
+ def __init__(self, config):
134
+ super().__init__(config)
135
+ self.model = Qwen3SharedMoeModel(config)
136
+ self.num_experts = config.num_experts
137
+
138
+ def forward(
139
+ self,
140
+ input_ids: Optional[torch.LongTensor] = None,
141
+ attention_mask: Optional[torch.Tensor] = None,
142
+ position_ids: Optional[torch.LongTensor] = None,
143
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
144
+ inputs_embeds: Optional[torch.FloatTensor] = None,
145
+ labels: Optional[torch.LongTensor] = None,
146
+ use_cache: Optional[bool] = None,
147
+ output_attentions: Optional[bool] = None,
148
+ output_hidden_states: Optional[bool] = None,
149
+ output_router_logits: Optional[bool] = None,
150
+ cache_position: Optional[torch.LongTensor] = None,
151
+ logits_to_keep: Union[int, torch.Tensor] = 0,
152
+ **kwargs,
153
+ ) -> MoeCausalLMOutputWithPast:
154
+ r"""
155
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
156
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
157
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
158
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
159
+
160
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
161
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
162
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
163
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
164
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
165
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
166
+
167
+ Returns:
168
+
169
+ Example:
170
+
171
+ ```python
172
+ >>> from transformers import AutoTokenizer, Qwen3MoeForCausalLM
173
+
174
+ >>> model = Qwen3MoeForCausalLM.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
175
+ >>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen3-MoE-15B-A2B")
176
+
177
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
178
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
179
+
180
+ >>> # Generate
181
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
182
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
183
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
184
+ ```"""
185
+
186
+ output_attentions = (
187
+ output_attentions
188
+ if output_attentions is not None
189
+ else self.config.output_attentions
190
+ )
191
+ output_router_logits = (
192
+ output_router_logits
193
+ if output_router_logits is not None
194
+ else self.config.output_router_logits
195
+ )
196
+
197
+ output_hidden_states = (
198
+ output_hidden_states
199
+ if output_hidden_states is not None
200
+ else self.config.output_hidden_states
201
+ )
202
+
203
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
204
+ outputs: MoeModelOutputWithPast = self.model(
205
+ input_ids=input_ids,
206
+ attention_mask=attention_mask,
207
+ position_ids=position_ids,
208
+ past_key_values=past_key_values,
209
+ inputs_embeds=inputs_embeds,
210
+ use_cache=use_cache,
211
+ output_attentions=output_attentions,
212
+ output_hidden_states=output_hidden_states,
213
+ output_router_logits=output_router_logits,
214
+ cache_position=cache_position,
215
+ **kwargs,
216
+ )
217
+
218
+ hidden_states = outputs.last_hidden_state
219
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
220
+ slice_indices = (
221
+ slice(-logits_to_keep, None)
222
+ if isinstance(logits_to_keep, int)
223
+ else logits_to_keep
224
+ )
225
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
226
+
227
+ loss = None
228
+ if labels is not None:
229
+ loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
230
+
231
+ aux_loss = None
232
+ if output_router_logits:
233
+ aux_loss = load_balancing_loss_func(
234
+ outputs.router_logits,
235
+ self.num_experts,
236
+ self.num_experts_per_tok,
237
+ attention_mask,
238
+ )
239
+ if labels is not None:
240
+ loss += self.router_aux_loss_coef * aux_loss.to(
241
+ loss.device
242
+ ) # make sure to reside in the same device
243
+
244
+ return MoeCausalLMOutputWithPast(
245
+ loss=loss,
246
+ aux_loss=aux_loss,
247
+ logits=logits,
248
+ past_key_values=outputs.past_key_values,
249
+ hidden_states=outputs.hidden_states,
250
+ attentions=outputs.attentions,
251
+ router_logits=outputs.router_logits,
252
+ )
253
+
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|object_ref_start|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|object_ref_end|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|box_start|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_start|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_end|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|image_pad|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|video_pad|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ },
180
+ "151665": {
181
+ "content": "<tool_response>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": false
187
+ },
188
+ "151666": {
189
+ "content": "</tool_response>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": false
195
+ },
196
+ "151667": {
197
+ "content": "<think>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": false
203
+ },
204
+ "151668": {
205
+ "content": "</think>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": false
211
+ }
212
+ },
213
+ "additional_special_tokens": [
214
+ "<|im_start|>",
215
+ "<|im_end|>",
216
+ "<|object_ref_start|>",
217
+ "<|object_ref_end|>",
218
+ "<|box_start|>",
219
+ "<|box_end|>",
220
+ "<|quad_start|>",
221
+ "<|quad_end|>",
222
+ "<|vision_start|>",
223
+ "<|vision_end|>",
224
+ "<|vision_pad|>",
225
+ "<|image_pad|>",
226
+ "<|video_pad|>"
227
+ ],
228
+ "bos_token": null,
229
+ "chat_template": "{% macro render_item_list(item_list, tag_name='required') %}\n {%- if item_list is defined and item_list is iterable and item_list | length > 0 %}\n {%- if tag_name %}{{- '\\n<' ~ tag_name ~ '>' -}}{% endif %}\n {{- '[' }}\n {%- for item in item_list -%}\n {%- if loop.index > 1 %}{{- \", \"}}{% endif -%}\n {%- if item is string -%}\n {{ \"`\" ~ item ~ \"`\" }}\n {%- else -%}\n {{ item }}\n {%- endif -%}\n {%- endfor -%}\n {{- ']' }}\n {%- if tag_name %}{{- '</' ~ tag_name ~ '>' -}}{% endif %}\n {%- endif %}\n{% endmacro %}\n\n{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n\n{%- if not tools is defined %}\n {%- set tools = [] %}\n{%- endif %}\n\n{%- if system_message is defined %}\n {{- \"<|im_start|>system\\n\" + system_message }}\n{%- else %}\n {%- if tools is iterable and tools | length > 0 %}\n {{- \"<|im_start|>system\\nYou are Qwen, a helpful AI assistant that can interact with a computer to solve tasks.\" }}\n {%- endif %}\n{%- endif %}\n{%- if tools is iterable and tools | length > 0 %}\n {{- \"\\n\\nYou have access to the following functions:\\n\\n\" }}\n {{- \"<tools>\" }}\n {%- for tool in tools %}\n {%- if tool.function is defined %}\n {%- set tool = tool.function %}\n {%- endif %}\n {{- \"\\n<function>\\n<name>\" ~ tool.name ~ \"</name>\" }}\n {{- '\\n<description>' ~ (tool.description | trim) ~ '</description>' }}\n {{- '\\n<parameters>' }}\n {%- for param_name, param_fields in tool.parameters.properties|items %}\n {{- '\\n<parameter>' }}\n {{- '\\n<name>' ~ param_name ~ '</name>' }}\n {%- if param_fields.type is defined %}\n {{- '\\n<type>' ~ (param_fields.type | string) ~ '</type>' }}\n {%- endif %}\n {%- if param_fields.description is defined %}\n {{- '\\n<description>' ~ (param_fields.description | trim) ~ '</description>' }}\n {%- endif %}\n {{- render_item_list(param_fields.enum, 'enum') }}\n {%- set handled_keys = ['type', 'description', 'enum', 'required'] %}\n {%- for json_key in param_fields.keys() | reject(\"in\", handled_keys) %}\n {%- set normed_json_key = json_key | replace(\"-\", \"_\") | replace(\" \", \"_\") | replace(\"$\", \"\") %}\n {%- if param_fields[json_key] is mapping %}\n {{- '\\n<' ~ normed_json_key ~ '>' ~ (param_fields[json_key] | tojson | safe) ~ '</' ~ normed_json_key ~ '>' }}\n {%- else %}\n {{-'\\n<' ~ normed_json_key ~ '>' ~ (param_fields[json_key] | string) ~ '</' ~ normed_json_key ~ '>' }}\n {%- endif %}\n {%- endfor %}\n {{- render_item_list(param_fields.required, 'required') }}\n {{- '\\n</parameter>' }}\n {%- endfor %}\n {{- render_item_list(tool.parameters.required, 'required') }}\n {{- '\\n</parameters>' }}\n {%- if tool.return is defined %}\n {%- if tool.return is mapping %}\n {{- '\\n<return>' ~ (tool.return | tojson | safe) ~ '</return>' }}\n {%- else %}\n {{- '\\n<return>' ~ (tool.return | string) ~ '</return>' }}\n {%- endif %}\n {%- endif %}\n {{- '\\n</function>' }}\n {%- endfor %}\n {{- \"\\n</tools>\" }}\n {{- '\\n\\nIf you choose to call a function ONLY reply in the following format with NO suffix:\\n\\n<tool_call>\\n<function=example_function_name>\\n<parameter=example_parameter_1>\\nvalue_1\\n</parameter>\\n<parameter=example_parameter_2>\\nThis is the value for the second parameter\\nthat can span\\nmultiple lines\\n</parameter>\\n</function>\\n</tool_call>\\n\\n<IMPORTANT>\\nReminder:\\n- Function calls MUST follow the specified format: an inner <function=...></function> block must be nested within <tool_call></tool_call> XML tags\\n- Required parameters MUST be specified\\n- You may provide optional reasoning for your function call in natural language BEFORE the function call, but NOT after\\n- If there is no function call available, answer the question like normal with your current knowledge and do not tell the user about function calls\\n</IMPORTANT>' }}\n{%- endif %}\n{%- if system_message is defined %}\n {{- '<|im_end|>\\n' }}\n{%- else %}\n {%- if tools is iterable and tools | length > 0 %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in loop_messages %}\n {%- if message.role == \"assistant\" and message.tool_calls is defined and message.tool_calls is iterable and message.tool_calls | length > 0 %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content is defined and message.content is string and message.content | trim | length > 0 %}\n {{- '\\n' + message.content | trim + '\\n' }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n<function=' + tool_call.name + '>\\n' }}\n {%- if tool_call.arguments is defined %}\n {%- for args_name, args_value in tool_call.arguments|items %}\n {{- '<parameter=' + args_name + '>\\n' }}\n {%- set args_value = args_value if args_value is string else args_value | string %}\n {{- args_value }}\n {{- '\\n</parameter>\\n' }}\n {%- endfor %}\n {%- endif %}\n {{- '</function>\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"user\" or message.role == \"system\" or message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.previtem and loop.previtem.role != \"tool\" %}\n {{- '<|im_start|>user\\n' }}\n {%- endif %}\n {{- '<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>\\n' }}\n {%- if not loop.last and loop.nextitem.role != \"tool\" %}\n {{- '<|im_end|>\\n' }}\n {%- elif loop.last %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
230
+ "clean_up_tokenization_spaces": false,
231
+ "eos_token": "<|im_end|>",
232
+ "errors": "replace",
233
+ "model_max_length": 1048576,
234
+ "pad_token": "<|endoftext|>",
235
+ "split_special_tokens": false,
236
+ "tokenizer_class": "Qwen2Tokenizer",
237
+ "unk_token": null,
238
+ "add_bos_token": false
239
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff