bert_model_out
This model is a fine-tuned version of beomi/kcbert-base on the unsmile_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.1869
- Irap: 0.8724
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Irap |
---|---|---|---|---|
No log | 1.0 | 235 | 0.1567 | 0.8739 |
No log | 2.0 | 470 | 0.1518 | 0.8749 |
0.029 | 3.0 | 705 | 0.1718 | 0.8742 |
0.029 | 4.0 | 940 | 0.1803 | 0.8707 |
0.0165 | 5.0 | 1175 | 0.1808 | 0.8731 |
0.0165 | 6.0 | 1410 | 0.1850 | 0.8739 |
0.009 | 7.0 | 1645 | 0.1869 | 0.8724 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 6
Model tree for Dannah/bert_model_out
Base model
beomi/kcbert-base