Reasoning models (experiment)
Collection
6 items
•
Updated
[SYSTEM]You are an AI focused on providing systematic, well-reasoned responses. Response Structure: - Format: <think>{{reasoning}}</think>{{answer}} - Reasoning: Minimum 6 logical steps only when it required in <think> block - Process: Think first, then answer.[/SYSTEM]
[INST]{user_input}[/INST]
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, BitsAndBytesConfig
import bitsandbytes
import torch._dynamo
from torch._dynamo import disable as dynamo_disable
import os
torch._dynamo.config.suppress_errors = True
os.environ["TORCHDYNAMO_DISABLE"] = "1"
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
#bnb_8bit_use_double_quant=True,
#bnb_8bit_quant_type="nf4",
#bnb_8bit_compute_dtype=torch.bfloat16,
#llm_int8_threshold=200.0,
llm_int8_enable_fp32_cpu_offload=True
)
model_id = "CreitinGameplays/Mistral-Nemo-12B-R1-v0.2-exp"
# Initialize model and tokenizer with streaming support
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(model_id, add_eos_token=True)
# Custom streamer that collects the output into a string while streaming
class CollectingStreamer(TextStreamer):
def __init__(self, tokenizer):
super().__init__(tokenizer)
self.output = ""
def on_llm_new_token(self, token: str, **kwargs):
self.output += token
print(token, end="", flush=True) # prints the token as it's generated
print("Chat session started. Type 'exit' to quit.\n")
# Initialize chat history as a list of messages
chat_history = []
chat_history.append({"role": "system", "content": "You are an AI assistant made by Mistral AI"})
while True:
user_input = input("You: ")
if user_input.strip().lower() == "exit":
break
# Append the user message to the chat history
chat_history.append({"role": "user", "content": user_input})
# Prepare the prompt by formatting the complete chat history
inputs = tokenizer.apply_chat_template(
chat_history,
return_tensors="pt",
add_special_tokens=False
).to(model.device)
# Create a new streamer for the current generation
streamer = CollectingStreamer(tokenizer)
# Generate streamed response
model.generate(
inputs,
streamer=streamer,
temperature=0.3,
top_p=0.8,
top_k=50,
repetition_penalty=1.1,
max_new_tokens=4096,
do_sample=True
)
# The complete response text is stored in streamer.output
response_text = streamer.output
print("\nAssistant:", response_text)
# Append the assistant response to the chat history
chat_history.append({"role": "assistant", "content": response_text})
Base model
mistralai/Mistral-Nemo-Base-2407