Swahili Gemma 1B

A fine-tuned Gemma 3 1B instruction model specialized for English-to-Swahili translation and Swahili conversational AI. The model accepts input in both English and Swahili but outputs responses exclusively in Swahili.

πŸ“Š Translation Performance

Translation Performance Comparison

Model Comparison

Model Parameters BLEU chrF++ Efficiency*
Gemma 3 4B 4B 10.9 44.1 2.7
Swahili Gemma 1B 1B 27.6 56.8 27.6
Gemma 3 27B 27B 29.4 60.0 1.1
GPT-5 Mini ~8B 31.8 62.4 4.0
Gemini 2.0 Flash Large 35.6 64.6 N/A

*Efficiency = BLEU Score / Parameters (in billions)

Key Performance Insights

🎯 Efficiency Leader: Achieves the highest BLEU-to-parameter ratio (27.6 BLEU per billion parameters)
πŸš€ Size Advantage: Outperforms Gemma 3 4B (4x larger) by 153% on BLEU score
πŸ’Ž Competitive Quality: Achieves 94% of Gemma 3 27B performance with 27x fewer parameters
⚑ Practical Deployment: Runs efficiently on consumer hardware while maintaining quality

Evaluation Details

  • Dataset: FLORES-200 Englishβ†’Swahili (1,012 translation pairs)
  • Metrics: BLEU (bilingual evaluation understudy) and chrF++ (character F-score)
  • Evaluation: Zero-shot translation performance

πŸš€ Quick Start

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("CraneAILabs/swahili-gemma-1b")
tokenizer = AutoTokenizer.from_pretrained("CraneAILabs/swahili-gemma-1b")

# Translate to Swahili
prompt = "Translate to Swahili: Hello, how are you today?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

🌍 Language Capabilities

  • Input Languages: English + Swahili
  • Output Language: Swahili only
  • Primary Focus: English-to-Swahili translation and Swahili conversation

🎯 Capabilities

  • Translation: English-to-Swahili translation
  • Conversational AI: Natural dialogue in Swahili
  • Summarization: Text summarization in Swahili
  • Writing: Creative and informational writing in Swahili
  • Question Answering: General knowledge responses in Swahili

πŸ’» Usage Examples

Basic Translation

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("CraneAILabs/swahili-gemma-1b")
tokenizer = AutoTokenizer.from_pretrained("CraneAILabs/swahili-gemma-1b")

# English to Swahili translation
prompt = "Translate to Swahili: Good morning, how did you sleep?"
inputs = tokenizer(prompt, return_tensors="pt")

with torch.no_grad():
    outputs = model.generate(
        inputs.input_ids,
        max_length=128,
        temperature=0.3,
        top_p=0.95,
        top_k=64,
        repetition_penalty=1.1,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Swahili Conversation

# Direct Swahili conversation
prompt = "Hujambo! Je, unaweza kunisaidia leo?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Using the Pipeline

from transformers import pipeline

# Create a text generation pipeline
generator = pipeline(
    "text-generation",
    model="CraneAILabs/swahili-gemma-1b",
    tokenizer="CraneAILabs/swahili-gemma-1b",
    device=0 if torch.cuda.is_available() else -1
)

# Generate Swahili text
result = generator(
    "Translate to Swahili: Welcome to our school",
    max_length=100,
    temperature=0.3,
    do_sample=True
)
print(result[0]['generated_text'])

Ollama Usage

# Run the recommended Q4_K_M quantization
ollama run crane-ai-labs/swahili-gemma-1b:q4-k-m

# Try different quantizations based on your needs
ollama run crane-ai-labs/swahili-gemma-1b:q8-0    # Higher quality
ollama run crane-ai-labs/swahili-gemma-1b:q4-k-s  # Smaller size
ollama run crane-ai-labs/swahili-gemma-1b:f16     # Original quality

Available Quantizations

Quantization Size Quality Use Case
f16 ~1.9GB Highest Maximum quality inference
f32 ~3.8GB Highest Research & benchmarking
q8-0 ~1.0GB Very High Production with ample resources
q5-k-m ~812MB High Balanced quality/size
q4-k-m ~769MB Good Recommended for most users
q4-k-s ~745MB Good Resource-constrained environments
q3-k-m ~689MB Fair Mobile/edge deployment
q2-k ~658MB Lower Minimal resource usage

πŸ’‘ Generation Parameters

Recommended settings for optimal results:

generation_config = {
    "temperature": 0.3,      # Focused, coherent responses
    "top_p": 0.95,          # Nucleus sampling
    "top_k": 64,            # Top-k sampling
    "max_length": 128,      # Response length limit
    "repetition_penalty": 1.1,  # Reduces repetition
    "do_sample": True,
    "pad_token_id": tokenizer.eos_token_id
}

πŸ”— Related Models

🎨 Use Cases

  • Language Learning: Practice English-Swahili translation
  • Cultural Preservation: Create and document Swahili content
  • Educational Tools: Swahili learning assistants
  • Content Localization: Translate materials to Swahili
  • Conversational Practice: Improve Swahili dialogue skills
  • Text Summarization: Summarize content in Swahili

⚠️ Limitations

  • Language Output: Responds only in Swahili
  • Factual Knowledge: General knowledge only, not trained on specific factual datasets
  • No Coding/Math: Not designed for programming or mathematical tasks
  • Context Length: Limited to 4,096 tokens for optimal performance
  • Specialized Domains: May require domain-specific fine-tuning

πŸ“„ License

This model is released under the Gemma Terms of Use. Please review the terms before use.

πŸ™ Acknowledgments

  • Google: For the Gemma 3 base model, support and guidance.
  • Community: For Swahili language resources and datasets
  • Gilbert Korir (Msingi AI, Nairobi, Kenya)
  • Alfred Malengo Kondoro (Hanyang University, Seoul, South Korea)

Citation

If you use this model in your research or applications, please cite:

@misc{crane_ai_labs_2025,
    author    = {Bakunga Bronson and Kato Steven Mubiru and Lwanga Caleb and Gimei Alex and Kavuma Lameck and Roland Ganafa and Sibomana Glorry and Atuhaire Collins and JohnRoy Nangeso and Tukamushaba Catherine},
    title     = {Swahili Gemma: A Fine-tuned Gemma 3 1B Model for Swahili conversational AI},
    year      = {2025},
    url       = {https://huggingface.co/CraneAILabs/swahili-gemma-1b},
    organization = {Crane AI Labs}
}

Built with ❀️ by Crane AI Labs

Swahili Gemma - Your helpful Swahili AI companion

Downloads last month
13
Safetensors
Model size
1,000M params
Tensor type
BF16
Β·
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for CraneAILabs/swahili-gemma-1b

Finetuned
(244)
this model
Finetunes
1 model
Quantizations
1 model

Collection including CraneAILabs/swahili-gemma-1b