Swahili Gemma 1B
A fine-tuned Gemma 3 1B instruction model specialized for English-to-Swahili translation and Swahili conversational AI. The model accepts input in both English and Swahili but outputs responses exclusively in Swahili.
π Translation Performance
Model Comparison
Model | Parameters | BLEU | chrF++ | Efficiency* |
---|---|---|---|---|
Gemma 3 4B | 4B | 10.9 | 44.1 | 2.7 |
Swahili Gemma 1B | 1B | 27.6 | 56.8 | 27.6 |
Gemma 3 27B | 27B | 29.4 | 60.0 | 1.1 |
GPT-5 Mini | ~8B | 31.8 | 62.4 | 4.0 |
Gemini 2.0 Flash | Large | 35.6 | 64.6 | N/A |
*Efficiency = BLEU Score / Parameters (in billions)
Key Performance Insights
π― Efficiency Leader: Achieves the highest BLEU-to-parameter ratio (27.6 BLEU per billion parameters)
π Size Advantage: Outperforms Gemma 3 4B (4x larger) by 153% on BLEU score
π Competitive Quality: Achieves 94% of Gemma 3 27B performance with 27x fewer parameters
β‘ Practical Deployment: Runs efficiently on consumer hardware while maintaining quality
Evaluation Details
- Dataset: FLORES-200 EnglishβSwahili (1,012 translation pairs)
- Metrics: BLEU (bilingual evaluation understudy) and chrF++ (character F-score)
- Evaluation: Zero-shot translation performance
π Quick Start
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained("CraneAILabs/swahili-gemma-1b")
tokenizer = AutoTokenizer.from_pretrained("CraneAILabs/swahili-gemma-1b")
# Translate to Swahili
prompt = "Translate to Swahili: Hello, how are you today?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
π Language Capabilities
- Input Languages: English + Swahili
- Output Language: Swahili only
- Primary Focus: English-to-Swahili translation and Swahili conversation
π― Capabilities
- Translation: English-to-Swahili translation
- Conversational AI: Natural dialogue in Swahili
- Summarization: Text summarization in Swahili
- Writing: Creative and informational writing in Swahili
- Question Answering: General knowledge responses in Swahili
π» Usage Examples
Basic Translation
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("CraneAILabs/swahili-gemma-1b")
tokenizer = AutoTokenizer.from_pretrained("CraneAILabs/swahili-gemma-1b")
# English to Swahili translation
prompt = "Translate to Swahili: Good morning, how did you sleep?"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
inputs.input_ids,
max_length=128,
temperature=0.3,
top_p=0.95,
top_k=64,
repetition_penalty=1.1,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Swahili Conversation
# Direct Swahili conversation
prompt = "Hujambo! Je, unaweza kunisaidia leo?"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100, temperature=0.3)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Using the Pipeline
from transformers import pipeline
# Create a text generation pipeline
generator = pipeline(
"text-generation",
model="CraneAILabs/swahili-gemma-1b",
tokenizer="CraneAILabs/swahili-gemma-1b",
device=0 if torch.cuda.is_available() else -1
)
# Generate Swahili text
result = generator(
"Translate to Swahili: Welcome to our school",
max_length=100,
temperature=0.3,
do_sample=True
)
print(result[0]['generated_text'])
Ollama Usage
# Run the recommended Q4_K_M quantization
ollama run crane-ai-labs/swahili-gemma-1b:q4-k-m
# Try different quantizations based on your needs
ollama run crane-ai-labs/swahili-gemma-1b:q8-0 # Higher quality
ollama run crane-ai-labs/swahili-gemma-1b:q4-k-s # Smaller size
ollama run crane-ai-labs/swahili-gemma-1b:f16 # Original quality
Available Quantizations
Quantization | Size | Quality | Use Case |
---|---|---|---|
f16 |
~1.9GB | Highest | Maximum quality inference |
f32 |
~3.8GB | Highest | Research & benchmarking |
q8-0 |
~1.0GB | Very High | Production with ample resources |
q5-k-m |
~812MB | High | Balanced quality/size |
q4-k-m |
~769MB | Good | Recommended for most users |
q4-k-s |
~745MB | Good | Resource-constrained environments |
q3-k-m |
~689MB | Fair | Mobile/edge deployment |
q2-k |
~658MB | Lower | Minimal resource usage |
π‘ Generation Parameters
Recommended settings for optimal results:
generation_config = {
"temperature": 0.3, # Focused, coherent responses
"top_p": 0.95, # Nucleus sampling
"top_k": 64, # Top-k sampling
"max_length": 128, # Response length limit
"repetition_penalty": 1.1, # Reduces repetition
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id
}
π Related Models
- GGUF Quantizations: CraneAILabs/swahili-gemma-1b-GGUF - Optimized for llama.cpp/Ollama
- LiteRT Mobile: CraneAILabs/swahili-gemma-1b-litert - Mobile deployment
- Ollama: crane-ai-labs/swahili-gemma-1b - Ready-to-run with Ollama
π¨ Use Cases
- Language Learning: Practice English-Swahili translation
- Cultural Preservation: Create and document Swahili content
- Educational Tools: Swahili learning assistants
- Content Localization: Translate materials to Swahili
- Conversational Practice: Improve Swahili dialogue skills
- Text Summarization: Summarize content in Swahili
β οΈ Limitations
- Language Output: Responds only in Swahili
- Factual Knowledge: General knowledge only, not trained on specific factual datasets
- No Coding/Math: Not designed for programming or mathematical tasks
- Context Length: Limited to 4,096 tokens for optimal performance
- Specialized Domains: May require domain-specific fine-tuning
π License
This model is released under the Gemma Terms of Use. Please review the terms before use.
π Acknowledgments
- Google: For the Gemma 3 base model, support and guidance.
- Community: For Swahili language resources and datasets
- Gilbert Korir (Msingi AI, Nairobi, Kenya)
- Alfred Malengo Kondoro (Hanyang University, Seoul, South Korea)
Citation
If you use this model in your research or applications, please cite:
@misc{crane_ai_labs_2025,
author = {Bakunga Bronson and Kato Steven Mubiru and Lwanga Caleb and Gimei Alex and Kavuma Lameck and Roland Ganafa and Sibomana Glorry and Atuhaire Collins and JohnRoy Nangeso and Tukamushaba Catherine},
title = {Swahili Gemma: A Fine-tuned Gemma 3 1B Model for Swahili conversational AI},
year = {2025},
url = {https://huggingface.co/CraneAILabs/swahili-gemma-1b},
organization = {Crane AI Labs}
}
Built with β€οΈ by Crane AI Labs
Swahili Gemma - Your helpful Swahili AI companion
- Downloads last month
- 13
Model tree for CraneAILabs/swahili-gemma-1b
Base model
google/gemma-3-1b-pt