w2v-bert-2.0-chichewa_34_34h
This model is a fine-tuned version of facebook/w2v-bert-2.0 on the CLEAR-GLOBAL/CHICHEWA_34_34H - NA dataset. It achieves the following results on the evaluation set:
- Loss: 0.3084
- Wer: 0.3910
- Cer: 0.1127
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
1.2884 | 1.8458 | 1000 | 1.3872 | 1.0113 | 0.3808 |
0.092 | 3.6907 | 2000 | 0.5229 | 0.5397 | 0.1527 |
0.0604 | 5.5355 | 3000 | 0.4211 | 0.4785 | 0.1347 |
0.2837 | 7.3804 | 4000 | 0.3645 | 0.4376 | 0.1248 |
0.0217 | 9.2253 | 5000 | 0.3404 | 0.4469 | 0.1232 |
0.0299 | 11.0702 | 6000 | 0.3288 | 0.4160 | 0.1173 |
0.0162 | 12.9160 | 7000 | 0.3320 | 0.3983 | 0.1139 |
0.0436 | 14.7608 | 8000 | 0.3125 | 0.3847 | 0.1099 |
0.0205 | 16.6057 | 9000 | 0.3084 | 0.3910 | 0.1126 |
0.0198 | 18.4506 | 10000 | 0.4008 | 0.4002 | 0.1135 |
0.0516 | 20.2955 | 11000 | 0.3086 | 0.3701 | 0.1075 |
0.0057 | 22.1404 | 12000 | 0.3458 | 0.3847 | 0.1114 |
0.0041 | 23.9861 | 13000 | 0.3829 | 0.3899 | 0.1137 |
0.0142 | 25.8310 | 14000 | 0.4180 | 0.4121 | 0.1168 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for CLEAR-Global/w2v-bert-2.0-chichewa_34_34h
Base model
facebook/w2v-bert-2.0