SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v2.0 on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-m-v2.0
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- train
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("BjarneNPO/finetune_21_08_2025_11_16_02")
# Run inference
queries = [
"fragt wie der Stand zu dem aktuellen Problem ist",
]
documents = [
'In Klärung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran',
'findet diese in der Übersicht der Gruppen.',
'Userin muss sich an die Bistums IT wenden.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.2668, 0.0872, 0.0995]])
Evaluation
Metrics
Information Retrieval
- Dataset:
Snowflake/snowflake-arctic-embed-m-v2.0
- Evaluated with
scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom
with these parameters:{ "query_prompt_name": "query", "corpus_prompt_name": "query" }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.3277 |
cosine_accuracy@3 | 0.4874 |
cosine_accuracy@5 | 0.5462 |
cosine_accuracy@10 | 0.6471 |
cosine_precision@1 | 0.3277 |
cosine_precision@3 | 0.2185 |
cosine_precision@5 | 0.2303 |
cosine_precision@10 | 0.2143 |
cosine_recall@1 | 0.006 |
cosine_recall@3 | 0.0227 |
cosine_recall@5 | 0.0348 |
cosine_recall@10 | 0.0741 |
cosine_ndcg@10 | 0.2372 |
cosine_mrr@10 | 0.4209 |
cosine_map@100 | 0.0889 |
Training Details
Training Dataset
train
- Dataset: train
- Size: 19,964 training samples
- Columns:
query
andanswer
- Approximate statistics based on the first 1000 samples:
query answer type string string details - min: 4 tokens
- mean: 27.77 tokens
- max: 615 tokens
- min: 3 tokens
- mean: 22.87 tokens
- max: 151 tokens
- Samples:
query answer Wie kann man die Jahresurlaubsübersicht exportieren?
über das 3 Punkte Menü rechts oben. Mitarbeiter auswählen und exportieren
1. Vertragsabschlüsse werden nicht übertragen
2. Kinder kommen nicht von nach
3. Absage kann bei Portalstatus nicht erstellt werden.Ticket
Userin gebeten sich an den Support zu wenden, da der Fehler liegt.Wird im Anmeldeportal nicht gefunden.
Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 16per_device_eval_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 2e-05lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10 |
---|---|---|---|
0.0641 | 10 | 2.1446 | - |
0.1282 | 20 | 2.1454 | - |
0.1923 | 30 | 1.8973 | - |
0.2564 | 40 | 1.7238 | - |
0.3205 | 50 | 1.7305 | - |
0.3846 | 60 | 1.5496 | - |
0.4487 | 70 | 1.4557 | - |
0.5128 | 80 | 1.406 | - |
0.5769 | 90 | 1.3067 | - |
0.6410 | 100 | 1.2727 | - |
0.7051 | 110 | 1.215 | - |
0.7692 | 120 | 1.1902 | - |
0.8333 | 130 | 1.218 | - |
0.8974 | 140 | 1.1271 | - |
0.9615 | 150 | 1.0909 | - |
1.0 | 156 | - | 0.2589 |
1.0256 | 160 | 1.0408 | - |
1.0897 | 170 | 1.0112 | - |
1.1538 | 180 | 1.0683 | - |
1.2179 | 190 | 0.9405 | - |
1.2821 | 200 | 0.933 | - |
1.3462 | 210 | 0.9533 | - |
1.4103 | 220 | 0.9144 | - |
1.4744 | 230 | 0.8618 | - |
1.5385 | 240 | 0.8624 | - |
1.6026 | 250 | 0.8649 | - |
1.6667 | 260 | 0.8646 | - |
1.7308 | 270 | 0.8307 | - |
1.7949 | 280 | 0.8522 | - |
1.8590 | 290 | 0.8566 | - |
1.9231 | 300 | 0.8389 | - |
1.9872 | 310 | 0.806 | - |
2.0 | 312 | - | 0.2421 |
2.0513 | 320 | 0.7134 | - |
2.1154 | 330 | 0.7545 | - |
2.1795 | 340 | 0.8033 | - |
2.2436 | 350 | 0.7402 | - |
2.3077 | 360 | 0.7876 | - |
2.3718 | 370 | 0.7185 | - |
2.4359 | 380 | 0.7391 | - |
2.5 | 390 | 0.7362 | - |
2.5641 | 400 | 0.7276 | - |
2.6282 | 410 | 0.6953 | - |
2.6923 | 420 | 0.6853 | - |
2.7564 | 430 | 0.7337 | - |
2.8205 | 440 | 0.7704 | - |
2.8846 | 450 | 0.6922 | - |
2.9487 | 460 | 0.7153 | - |
3.0 | 468 | - | 0.2372 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.2
- PyTorch: 2.8.0+cu129
- Accelerate: 1.10.0
- Datasets: 3.6.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Model tree for BjarneNPO/finetune_21_08_2025_11_16_02
Base model
Snowflake/snowflake-arctic-embed-m-v2.0Evaluation results
- Cosine Accuracy@1 on Snowflake/snowflake arctic embed m v2.0self-reported0.328
- Cosine Accuracy@3 on Snowflake/snowflake arctic embed m v2.0self-reported0.487
- Cosine Accuracy@5 on Snowflake/snowflake arctic embed m v2.0self-reported0.546
- Cosine Accuracy@10 on Snowflake/snowflake arctic embed m v2.0self-reported0.647
- Cosine Precision@1 on Snowflake/snowflake arctic embed m v2.0self-reported0.328
- Cosine Precision@3 on Snowflake/snowflake arctic embed m v2.0self-reported0.218
- Cosine Precision@5 on Snowflake/snowflake arctic embed m v2.0self-reported0.230
- Cosine Precision@10 on Snowflake/snowflake arctic embed m v2.0self-reported0.214
- Cosine Recall@1 on Snowflake/snowflake arctic embed m v2.0self-reported0.006
- Cosine Recall@3 on Snowflake/snowflake arctic embed m v2.0self-reported0.023