SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v2.0 on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m-v2.0
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • train

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BjarneNPO/finetune_21_08_2025_11_16_02")
# Run inference
queries = [
    "fragt wie der Stand zu dem aktuellen Problem ist",
]
documents = [
    'In Klärung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran',
    'findet diese in der Übersicht der Gruppen.',
    'Userin muss sich an die Bistums IT wenden.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.2668, 0.0872, 0.0995]])

Evaluation

Metrics

Information Retrieval

  • Dataset: Snowflake/snowflake-arctic-embed-m-v2.0
  • Evaluated with scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom with these parameters:
    {
        "query_prompt_name": "query",
        "corpus_prompt_name": "query"
    }
    
Metric Value
cosine_accuracy@1 0.3277
cosine_accuracy@3 0.4874
cosine_accuracy@5 0.5462
cosine_accuracy@10 0.6471
cosine_precision@1 0.3277
cosine_precision@3 0.2185
cosine_precision@5 0.2303
cosine_precision@10 0.2143
cosine_recall@1 0.006
cosine_recall@3 0.0227
cosine_recall@5 0.0348
cosine_recall@10 0.0741
cosine_ndcg@10 0.2372
cosine_mrr@10 0.4209
cosine_map@100 0.0889

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 19,964 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 4 tokens
    • mean: 27.77 tokens
    • max: 615 tokens
    • min: 3 tokens
    • mean: 22.87 tokens
    • max: 151 tokens
  • Samples:
    query answer
    Wie kann man die Jahresurlaubsübersicht exportieren? über das 3 Punkte Menü rechts oben. Mitarbeiter auswählen und exportieren
    1. Vertragsabschlüsse werden nicht übertragen

    2. Kinder kommen nicht von nach

    3. Absage kann bei Portalstatus nicht erstellt werden.
    Ticket

    Userin gebeten sich an den Support zu wenden, da der Fehler liegt.
    Wird im Anmeldeportal nicht gefunden. Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10
0.0641 10 2.1446 -
0.1282 20 2.1454 -
0.1923 30 1.8973 -
0.2564 40 1.7238 -
0.3205 50 1.7305 -
0.3846 60 1.5496 -
0.4487 70 1.4557 -
0.5128 80 1.406 -
0.5769 90 1.3067 -
0.6410 100 1.2727 -
0.7051 110 1.215 -
0.7692 120 1.1902 -
0.8333 130 1.218 -
0.8974 140 1.1271 -
0.9615 150 1.0909 -
1.0 156 - 0.2589
1.0256 160 1.0408 -
1.0897 170 1.0112 -
1.1538 180 1.0683 -
1.2179 190 0.9405 -
1.2821 200 0.933 -
1.3462 210 0.9533 -
1.4103 220 0.9144 -
1.4744 230 0.8618 -
1.5385 240 0.8624 -
1.6026 250 0.8649 -
1.6667 260 0.8646 -
1.7308 270 0.8307 -
1.7949 280 0.8522 -
1.8590 290 0.8566 -
1.9231 300 0.8389 -
1.9872 310 0.806 -
2.0 312 - 0.2421
2.0513 320 0.7134 -
2.1154 330 0.7545 -
2.1795 340 0.8033 -
2.2436 350 0.7402 -
2.3077 360 0.7876 -
2.3718 370 0.7185 -
2.4359 380 0.7391 -
2.5 390 0.7362 -
2.5641 400 0.7276 -
2.6282 410 0.6953 -
2.6923 420 0.6853 -
2.7564 430 0.7337 -
2.8205 440 0.7704 -
2.8846 450 0.6922 -
2.9487 460 0.7153 -
3.0 468 - 0.2372
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.2
  • PyTorch: 2.8.0+cu129
  • Accelerate: 1.10.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
305M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BjarneNPO/finetune_21_08_2025_11_16_02

Finetuned
(24)
this model

Evaluation results

  • Cosine Accuracy@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.328
  • Cosine Accuracy@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.487
  • Cosine Accuracy@5 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.546
  • Cosine Accuracy@10 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.647
  • Cosine Precision@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.328
  • Cosine Precision@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.218
  • Cosine Precision@5 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.230
  • Cosine Precision@10 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.214
  • Cosine Recall@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.006
  • Cosine Recall@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.023