SparseFusion

SparseFusion is a multimodal Mixture-of-Experts (MoE) model integrating a Vision Transformer (ViT) and transformer decoder for image-conditioned text generation. It is built entirely in PyTorch and extends SeeMOE.


🧠 Model Details

  • Name: SparseFusion
  • Author: Derrick Kirimi (GitHub Β· LinkedIn Β· Hugging Face)
  • Model Type: Vision-Language Model
  • Architecture:
    • Vision Encoder: ViT (96Γ—96 images, 16Γ—16 patches, 512-dim patch embeddings)
    • Decoder: Transformer with MoE layers (8 layers, 128-dim, 8 heads)
    • MoE Setup: 8 experts, top-2 routing, expert capacity control
    • Token Fusion: Concatenation of image tokens and character-level encoded text
  • License: Apache 2.0
  • Repository: GitHub - DerrickKirimi/SparseFusion

🌟 Intended Use

  • Primary Use Case: Image-conditioned text generation for educational and research experimentation
  • Intended Users: ML researchers, students, developers
  • Out-of-Scope Uses: Not suitable for deployment in production or for generating harmful content

πŸ‹οΈβ€β™‚οΈ Training & Evaluation

πŸ“… Dataset

  • Text: Tiny Shakespeare (character-level)
  • Images: 300 synthetic image-caption pairs

βš™οΈ Training

  • Trained for 2 epochs on Google Colab (1 GPU, 12 GB VRAM)
  • Logging via Weights & Biases (wandb)

πŸ“Š Hyperparameters

epochs: 2
batch_size: 16
learning_rate: 0.001
n_embd: 128
n_head: 8
n_layer: 8
num_experts: 8
top_k: 2
expert_capacity: 32
img_size: 96
patch_size: 16

πŸ“ˆ Evaluation

  • Validation Loss: 0.8 after 2 epochs
  • Summary:
    • Generates basic coherent text
    • Shows 15% improvement in expert utilization with routing control and load balancing

πŸš€ Usage

πŸ“¦ Installation

pip install torch torchvision transformers huggingface_hub wandb

πŸ”„ Inference

import torch
import pickle
from PIL import Image
import torchvision.transforms as transforms
from huggingface_hub import hf_hub_download

# Load vocabulary mappings
stoi = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "stoi.pkl"), "rb"))
itos = pickle.load(open(hf_hub_download("Aptheos/SparseFusion", "itos.pkl"), "rb"))
encode = lambda s: [stoi[c] for c in s]
decode = lambda l: ''.join([itos[i] for i in l])

# Define model architecture
model = VisionMoELanguageModel(
    n_embd=128, image_embed_dim=512, vocab_size=len(stoi), n_layer=8,
    img_size=96, patch_size=16, num_heads=8, num_blks=3,
    emb_dropout=0.1, blk_dropout=0.1, num_experts=8, top_k=2, expert_capacity=32
)
model.load_state_dict(torch.load(hf_hub_download("Aptheos/SparseFusion", "vision_moe_model.pth")))
model.eval().to("cuda")

# Preprocess image
transform = transforms.Compose([
    transforms.Resize((96, 96)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
image = transform(Image.open("example.jpg")).unsqueeze(0).to("cuda")
prompt = torch.tensor([encode("A photo of")], dtype=torch.long).to("cuda")

# Generate text
generated = model.generate(image, prompt, max_new_tokens=50)
print(decode(generated[0].tolist()))

To run on CPU:

model.eval().to("cpu")
image = image.to("cpu")
prompt = prompt.to("cpu")

⚠️ Limitations & Biases

Limitations

  • The model generates incoherent text (e.g., "A photo ofiecp ntti<pad><pad>...") due to training on a small, synthetic dataset of 300 identical images with simplistic captions.
  • Vision encoder (ViT) is not pre-trained, reducing visual feature quality.
  • Character-level tokenization limits text fluency and introduces <pad> tokens.
  • Limited training time (2 epochs) restricts deep multimodal learning.

Biases

  • Synthetic captions create bias toward repetitive language structures.
  • Lack of diverse image inputs may bias the model’s visual representation.

πŸ”­ Future Work

  • Train on larger datasets (e.g., COCO, Flickr30k) for better generalization
  • Use pre-trained ViT backbone (e.g., timm/vit_small_patch16_224)
  • Implement subword tokenization (e.g., SentencePiece, BPE)
  • Add modality type embeddings and rotary positional embeddings (RoPE)
  • Visualize expert routing and attention patterns for interpretability
  • Increase training epochs and perform hyperparameter tuning

πŸ“„ License

Licensed under the MIT License for open research and educational use.


πŸ“š Citation

@misc{sparsefusion2025,
  author = {Derrick Kirimi},
  title = {SparseFusion: A Multimodal Mixture-of-Experts Model},
  year = {2025},
  url = {https://huggingface.co/Aptheos/SparseFusion}
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support