SentenceTransformer based on intfloat/multilingual-e5-base
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("AhmedZaky1/arabic-e5-multilingual-finetuned-20250530")
# Run inference
sentences = [
'كيف يمكنني الترويج لموقعك الإلكتروني؟',
'ما هي أفضل طريقة للترويج لموقعك الإلكتروني؟',
'امرأة ترقص',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
sts17-arabic
andsts17-arabic-final
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | sts17-arabic | sts17-arabic-final |
---|---|---|
pearson_cosine | 0.8012 | 0.8012 |
spearman_cosine | 0.803 | 0.8031 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 685,672 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 19.49 tokens
- max: 83 tokens
- min: 4 tokens
- mean: 15.81 tokens
- max: 70 tokens
- Samples:
anchor positive فتاة في قميص أزرق تمشي مع رجل.
الفتاة ترتدي قميصاً أزرق
ما هو أفضل ماجستير في إدارة الأعمال أو كاليفورنيا؟
ما هو أفضل CA أو ماجستير في الإدارة؟
الناس يبنيون منزلاً
الأفراد يقومون ببناء منزل.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 15,000 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 19.16 tokens
- max: 75 tokens
- min: 4 tokens
- mean: 15.45 tokens
- max: 85 tokens
- Samples:
anchor positive ثلاثة رجال أعمال يسيرون في شارع مزدحم
الناس يتحركون في الشارع
أين يمكنني أن أحصل على أفضل نظام رذاذ الحريق في سيدني؟
أين يمكنني الحصول على خدمات رشاشات الحريق ذات الجودة العالية في سيدني؟
كم تبلغ مساحة نوفا سكوشا؟
كم تصل المساحة الجغرافية لولاية نوفا سكوشا؟
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64gradient_accumulation_steps
: 4learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: Truedataloader_drop_last
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 4eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | sts17-arabic_spearman_cosine | sts17-arabic-final_spearman_cosine |
---|---|---|---|---|---|
0.0747 | 100 | 5.7187 | - | - | - |
0.1494 | 200 | 1.199 | - | - | - |
0.2240 | 300 | 1.0422 | - | - | - |
0.2987 | 400 | 0.9514 | - | - | - |
0.3734 | 500 | 0.9002 | 0.0478 | 0.8091 | - |
0.4481 | 600 | 0.848 | - | - | - |
0.5228 | 700 | 0.8298 | - | - | - |
0.5975 | 800 | 0.7915 | - | - | - |
0.6721 | 900 | 0.7906 | - | - | - |
0.7468 | 1000 | 0.7534 | 0.0375 | 0.7950 | - |
0.8215 | 1100 | 0.7384 | - | - | - |
0.8962 | 1200 | 0.7252 | - | - | - |
0.9709 | 1300 | 0.7311 | - | - | - |
1.0456 | 1400 | 0.7006 | - | - | - |
1.1202 | 1500 | 0.6611 | 0.0334 | 0.8026 | - |
1.1949 | 1600 | 0.6279 | - | - | - |
1.2696 | 1700 | 0.6072 | - | - | - |
1.3443 | 1800 | 0.596 | - | - | - |
1.4190 | 1900 | 0.5614 | - | - | - |
1.4937 | 2000 | 0.5721 | 0.0300 | 0.8041 | - |
1.5683 | 2100 | 0.5681 | - | - | - |
1.6430 | 2200 | 0.5531 | - | - | - |
1.7177 | 2300 | 0.5564 | - | - | - |
1.7924 | 2400 | 0.564 | - | - | - |
1.8671 | 2500 | 0.5395 | 0.0288 | 0.8066 | - |
1.9417 | 2600 | 0.5729 | - | - | - |
2.0164 | 2700 | 0.5436 | - | - | - |
2.0911 | 2800 | 0.5365 | - | - | - |
2.1658 | 2900 | 0.5087 | - | - | - |
2.2405 | 3000 | 0.4991 | 0.0267 | 0.8009 | - |
2.3152 | 3100 | 0.4761 | - | - | - |
2.3898 | 3200 | 0.4711 | - | - | - |
2.4645 | 3300 | 0.4795 | - | - | - |
2.5392 | 3400 | 0.4732 | - | - | - |
2.6139 | 3500 | 0.4735 | 0.0264 | 0.8029 | - |
2.6886 | 3600 | 0.483 | - | - | - |
2.7633 | 3700 | 0.4755 | - | - | - |
2.8379 | 3800 | 0.4783 | - | - | - |
2.9126 | 3900 | 0.4854 | - | - | - |
2.9873 | 4000 | 0.4884 | 0.0260 | 0.8030 | - |
3.0 | 4017 | - | - | - | 0.8031 |
Framework Versions
- Python: 3.12.7
- Sentence Transformers: 3.3.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for AhmedZaky1/DIMI-embedding-v3
Evaluation results
- Pearson Cosine on sts17 arabicself-reported0.801
- Spearman Cosine on sts17 arabicself-reported0.803
- Pearson Cosine on sts17 arabic finalself-reported0.801
- Spearman Cosine on sts17 arabic finalself-reported0.803