SentenceTransformer based on intfloat/multilingual-e5-base

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("AhmedZaky1/arabic-e5-multilingual-finetuned-20250530")
# Run inference
sentences = [
    'كيف يمكنني الترويج لموقعك الإلكتروني؟',
    'ما هي أفضل طريقة للترويج لموقعك الإلكتروني؟',
    'امرأة ترقص',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric sts17-arabic sts17-arabic-final
pearson_cosine 0.8012 0.8012
spearman_cosine 0.803 0.8031

Training Details

Training Dataset

Unnamed Dataset

  • Size: 685,672 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 19.49 tokens
    • max: 83 tokens
    • min: 4 tokens
    • mean: 15.81 tokens
    • max: 70 tokens
  • Samples:
    anchor positive
    فتاة في قميص أزرق تمشي مع رجل. الفتاة ترتدي قميصاً أزرق
    ما هو أفضل ماجستير في إدارة الأعمال أو كاليفورنيا؟ ما هو أفضل CA أو ماجستير في الإدارة؟
    الناس يبنيون منزلاً الأفراد يقومون ببناء منزل.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 15,000 evaluation samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 5 tokens
    • mean: 19.16 tokens
    • max: 75 tokens
    • min: 4 tokens
    • mean: 15.45 tokens
    • max: 85 tokens
  • Samples:
    anchor positive
    ثلاثة رجال أعمال يسيرون في شارع مزدحم الناس يتحركون في الشارع
    أين يمكنني أن أحصل على أفضل نظام رذاذ الحريق في سيدني؟ أين يمكنني الحصول على خدمات رشاشات الحريق ذات الجودة العالية في سيدني؟
    كم تبلغ مساحة نوفا سكوشا؟ كم تصل المساحة الجغرافية لولاية نوفا سكوشا؟
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • gradient_accumulation_steps: 4
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • dataloader_drop_last: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss sts17-arabic_spearman_cosine sts17-arabic-final_spearman_cosine
0.0747 100 5.7187 - - -
0.1494 200 1.199 - - -
0.2240 300 1.0422 - - -
0.2987 400 0.9514 - - -
0.3734 500 0.9002 0.0478 0.8091 -
0.4481 600 0.848 - - -
0.5228 700 0.8298 - - -
0.5975 800 0.7915 - - -
0.6721 900 0.7906 - - -
0.7468 1000 0.7534 0.0375 0.7950 -
0.8215 1100 0.7384 - - -
0.8962 1200 0.7252 - - -
0.9709 1300 0.7311 - - -
1.0456 1400 0.7006 - - -
1.1202 1500 0.6611 0.0334 0.8026 -
1.1949 1600 0.6279 - - -
1.2696 1700 0.6072 - - -
1.3443 1800 0.596 - - -
1.4190 1900 0.5614 - - -
1.4937 2000 0.5721 0.0300 0.8041 -
1.5683 2100 0.5681 - - -
1.6430 2200 0.5531 - - -
1.7177 2300 0.5564 - - -
1.7924 2400 0.564 - - -
1.8671 2500 0.5395 0.0288 0.8066 -
1.9417 2600 0.5729 - - -
2.0164 2700 0.5436 - - -
2.0911 2800 0.5365 - - -
2.1658 2900 0.5087 - - -
2.2405 3000 0.4991 0.0267 0.8009 -
2.3152 3100 0.4761 - - -
2.3898 3200 0.4711 - - -
2.4645 3300 0.4795 - - -
2.5392 3400 0.4732 - - -
2.6139 3500 0.4735 0.0264 0.8029 -
2.6886 3600 0.483 - - -
2.7633 3700 0.4755 - - -
2.8379 3800 0.4783 - - -
2.9126 3900 0.4854 - - -
2.9873 4000 0.4884 0.0260 0.8030 -
3.0 4017 - - - 0.8031

Framework Versions

  • Python: 3.12.7
  • Sentence Transformers: 3.3.1
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.4.0
  • Datasets: 3.3.2
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
278M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for AhmedZaky1/DIMI-embedding-v3

Finetuned
(85)
this model
Quantizations
1 model

Evaluation results