Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
datasets:
|
4 |
+
- UCSC-VLAA/Recap-DataComp-1B
|
5 |
+
- mlfoundations/datacomp_1b
|
6 |
+
library_name: open_clip
|
7 |
+
---
|
8 |
+
[[Paper]](https://arxiv.org/abs/2501.09446)
|
9 |
+
|
10 |
+
A DeltaCLIP-H/14-336 Model that is adversarially pre-trained with web-scale image-text data to reach non-robust-VLM helpfulness levels on clean data while being robust on adversarially attacked data.
|
11 |
+
|
12 |
+
## Model Usage
|
13 |
+
### With OpenCLIP
|
14 |
+
```
|
15 |
+
import torch
|
16 |
+
import torch.nn.functional as F
|
17 |
+
from urllib.request import urlopen
|
18 |
+
from PIL import Image
|
19 |
+
from open_clip import create_model_from_pretrained, get_tokenizer
|
20 |
+
|
21 |
+
model, preprocess = create_model_from_pretrained('hf-hub:zw123/delta_clip_l14_224')
|
22 |
+
tokenizer = get_tokenizer('hf-hub:zw123/delta_clip_l14_224')
|
23 |
+
|
24 |
+
image = Image.open(urlopen(
|
25 |
+
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
|
26 |
+
))
|
27 |
+
image = preprocess(image).unsqueeze(0)
|
28 |
+
|
29 |
+
text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length)
|
30 |
+
|
31 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
32 |
+
image_features = model.encode_image(image)
|
33 |
+
text_features = model.encode_text(text)
|
34 |
+
image_features = F.normalize(image_features, dim=-1)
|
35 |
+
text_features = F.normalize(text_features, dim=-1)
|
36 |
+
|
37 |
+
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
38 |
+
|
39 |
+
print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]]
|
40 |
+
```
|
41 |
+
|
42 |
+
## Release
|
43 |
+
These models are released under the Creative Commons Attribution 4.0 license.
|
44 |
+
LLNL-DATA- 2003001
|
45 |
+
|
46 |
+
## Citation
|
47 |
+
If you find this model useful, please consider citing our paper:
|
48 |
+
```bibtex
|
49 |
+
@article{wang2025double,
|
50 |
+
title={Double Visual Defense: Adversarial Pre-training and Instruction Tuning for Improving Vision-Language Model Robustness},
|
51 |
+
author={Wang, Zeyu and Xie, Cihang and Bartoldson, Brian and Kailkhura, Bhavya},
|
52 |
+
journal={arXiv preprint arXiv:2501.09446},
|
53 |
+
year={2025}
|
54 |
+
}
|
55 |
+
```
|