Update modeling_zeranker.py
Browse files- modeling_zeranker.py +39 -13
modeling_zeranker.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from sentence_transformers import CrossEncoder as _CE
|
2 |
|
3 |
import math
|
4 |
-
from typing import cast
|
5 |
import types
|
6 |
|
7 |
import torch
|
@@ -21,8 +21,11 @@ from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
|
21 |
# pyright: reportUnknownMemberType=false
|
22 |
# pyright: reportUnknownVariableType=false
|
23 |
|
24 |
-
MODEL_PATH = "zeroentropy/
|
25 |
PER_DEVICE_BATCH_SIZE_TOKENS = 15_000
|
|
|
|
|
|
|
26 |
|
27 |
|
28 |
def format_pointwise_datapoints(
|
@@ -67,7 +70,7 @@ def load_model(
|
|
67 |
| Qwen3ForCausalLM,
|
68 |
]:
|
69 |
if device is None:
|
70 |
-
device =
|
71 |
|
72 |
config = AutoConfig.from_pretrained(MODEL_PATH)
|
73 |
assert isinstance(config, PretrainedConfig)
|
@@ -80,7 +83,6 @@ def load_model(
|
|
80 |
)
|
81 |
if config.model_type == "llama":
|
82 |
model.config.attn_implementation = "flash_attention_2"
|
83 |
-
print(f"Model Type: {config.model_type}")
|
84 |
assert isinstance(
|
85 |
model,
|
86 |
LlamaForCausalLM
|
@@ -104,13 +106,30 @@ def load_model(
|
|
104 |
return tokenizer, model
|
105 |
|
106 |
|
107 |
-
def predict(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
if not hasattr(self, "inner_model"):
|
109 |
-
self.inner_tokenizer, self.inner_model = load_model(
|
110 |
self.inner_model.gradient_checkpointing_enable()
|
111 |
self.inner_model.eval()
|
112 |
-
self.inner_yes_token_id = self.inner_tokenizer.encode(
|
113 |
-
|
|
|
114 |
|
115 |
model = self.inner_model
|
116 |
tokenizer = self.inner_tokenizer
|
@@ -120,11 +139,11 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
120 |
]
|
121 |
# Sort
|
122 |
permutation = list(range(len(query_documents)))
|
123 |
-
permutation.sort(
|
|
|
|
|
124 |
query_documents = [query_documents[i] for i in permutation]
|
125 |
|
126 |
-
device = torch.device("cuda")
|
127 |
-
|
128 |
# Extract document batches from this line of datapoints
|
129 |
max_length = 0
|
130 |
batches: list[list[tuple[str, str]]] = []
|
@@ -148,7 +167,7 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
148 |
batch,
|
149 |
)
|
150 |
|
151 |
-
batch_inputs = batch_inputs.to(
|
152 |
|
153 |
try:
|
154 |
outputs = model(**batch_inputs, use_cache=False)
|
@@ -164,7 +183,7 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
164 |
last_positions = attention_mask.sum(dim=1) - 1
|
165 |
|
166 |
batch_size = logits.shape[0]
|
167 |
-
batch_indices = torch.arange(batch_size, device=
|
168 |
last_logits = logits[batch_indices, last_positions]
|
169 |
|
170 |
yes_logits = last_logits[:, self.inner_yes_token_id]
|
@@ -181,8 +200,15 @@ def predict(self, query_documents: list[tuple[str, str]]) -> list[float]:
|
|
181 |
return scores
|
182 |
|
183 |
|
|
|
|
|
|
|
|
|
|
|
184 |
_CE.predict = predict
|
185 |
|
186 |
from transformers import Qwen3Config
|
187 |
|
188 |
ZEConfig = Qwen3Config
|
|
|
|
|
|
1 |
from sentence_transformers import CrossEncoder as _CE
|
2 |
|
3 |
import math
|
4 |
+
from typing import cast, Any
|
5 |
import types
|
6 |
|
7 |
import torch
|
|
|
21 |
# pyright: reportUnknownMemberType=false
|
22 |
# pyright: reportUnknownVariableType=false
|
23 |
|
24 |
+
MODEL_PATH = "zeroentropy/zerank-1-small"
|
25 |
PER_DEVICE_BATCH_SIZE_TOKENS = 15_000
|
26 |
+
global_device = (
|
27 |
+
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
28 |
+
)
|
29 |
|
30 |
|
31 |
def format_pointwise_datapoints(
|
|
|
70 |
| Qwen3ForCausalLM,
|
71 |
]:
|
72 |
if device is None:
|
73 |
+
device = global_device
|
74 |
|
75 |
config = AutoConfig.from_pretrained(MODEL_PATH)
|
76 |
assert isinstance(config, PretrainedConfig)
|
|
|
83 |
)
|
84 |
if config.model_type == "llama":
|
85 |
model.config.attn_implementation = "flash_attention_2"
|
|
|
86 |
assert isinstance(
|
87 |
model,
|
88 |
LlamaForCausalLM
|
|
|
106 |
return tokenizer, model
|
107 |
|
108 |
|
109 |
+
def predict(
|
110 |
+
self,
|
111 |
+
query_documents: list[tuple[str, str]] | None = None,
|
112 |
+
*,
|
113 |
+
sentences: Any = None,
|
114 |
+
batch_size: Any = None,
|
115 |
+
show_progress_bar: Any = None,
|
116 |
+
activation_fn: Any = None,
|
117 |
+
apply_softmax: Any = None,
|
118 |
+
convert_to_numpy: Any = None,
|
119 |
+
convert_to_tensor: Any = None,
|
120 |
+
) -> list[float]:
|
121 |
+
if query_documents is None:
|
122 |
+
if sentences is None:
|
123 |
+
raise ValueError("query_documents or sentences must be provided")
|
124 |
+
query_documents = [[sentence[0], sentence[1]] for sentence in sentences]
|
125 |
+
|
126 |
if not hasattr(self, "inner_model"):
|
127 |
+
self.inner_tokenizer, self.inner_model = load_model(global_device)
|
128 |
self.inner_model.gradient_checkpointing_enable()
|
129 |
self.inner_model.eval()
|
130 |
+
self.inner_yes_token_id = self.inner_tokenizer.encode(
|
131 |
+
"Yes", add_special_tokens=False
|
132 |
+
)[0]
|
133 |
|
134 |
model = self.inner_model
|
135 |
tokenizer = self.inner_tokenizer
|
|
|
139 |
]
|
140 |
# Sort
|
141 |
permutation = list(range(len(query_documents)))
|
142 |
+
permutation.sort(
|
143 |
+
key=lambda i: -len(query_documents[i][0]) - len(query_documents[i][1])
|
144 |
+
)
|
145 |
query_documents = [query_documents[i] for i in permutation]
|
146 |
|
|
|
|
|
147 |
# Extract document batches from this line of datapoints
|
148 |
max_length = 0
|
149 |
batches: list[list[tuple[str, str]]] = []
|
|
|
167 |
batch,
|
168 |
)
|
169 |
|
170 |
+
batch_inputs = batch_inputs.to(global_device)
|
171 |
|
172 |
try:
|
173 |
outputs = model(**batch_inputs, use_cache=False)
|
|
|
183 |
last_positions = attention_mask.sum(dim=1) - 1
|
184 |
|
185 |
batch_size = logits.shape[0]
|
186 |
+
batch_indices = torch.arange(batch_size, device=global_device)
|
187 |
last_logits = logits[batch_indices, last_positions]
|
188 |
|
189 |
yes_logits = last_logits[:, self.inner_yes_token_id]
|
|
|
200 |
return scores
|
201 |
|
202 |
|
203 |
+
def to_device(self: _CE, new_device: torch.device) -> None:
|
204 |
+
global global_device
|
205 |
+
global_device = new_device
|
206 |
+
|
207 |
+
|
208 |
_CE.predict = predict
|
209 |
|
210 |
from transformers import Qwen3Config
|
211 |
|
212 |
ZEConfig = Qwen3Config
|
213 |
+
|
214 |
+
_CE.to = to_device
|