Upload folder using huggingface_hub
Browse files- __init__.py +22 -0
- config.json +45 -0
- config.yaml +238 -0
- model.pt +3 -0
- model/__pycache__/aliases.cpython-312.pyc +0 -0
- model/__pycache__/beam_search.cpython-312.pyc +0 -0
- model/__pycache__/config.cpython-312.pyc +0 -0
- model/__pycache__/configuration_olmo.cpython-312.pyc +0 -0
- model/__pycache__/exceptions.cpython-312.pyc +0 -0
- model/__pycache__/initialization.cpython-312.pyc +0 -0
- model/__pycache__/model.cpython-312.pyc +0 -0
- model/__pycache__/modeling_olmo.cpython-312.pyc +0 -0
- model/__pycache__/tokenization_olmo_fast.cpython-312.pyc +0 -0
- model/__pycache__/tokenizer.cpython-312.pyc +0 -0
- model/__pycache__/torch_util.cpython-312.pyc +0 -0
- model/__pycache__/util.cpython-312.pyc +0 -0
- model/aliases.py +7 -0
- model/beam_search.py +1078 -0
- model/checkpoint.py +1732 -0
- model/config.py +1113 -0
- model/configuration_olmo.py +44 -0
- model/exceptions.py +50 -0
- model/initialization.py +95 -0
- model/model.py +1625 -0
- model/modeling_olmo.py +570 -0
- model/optim.py +778 -0
- model/py.typed +0 -0
- model/safetensors_util.py +81 -0
- model/tokenization_olmo_fast.py +16 -0
- model/tokenizer.py +180 -0
- model/torch_util.py +139 -0
- model/train.py +1231 -0
- model/util.py +681 -0
- model/version.py +11 -0
- optim.pt +3 -0
- pytorch_model.bin +3 -0
- train.pt +3 -0
__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from .model.config import *
|
4 |
+
from .model.model import *
|
5 |
+
from .model.tokenizer import *
|
6 |
+
from .model.configuration_olmo import OLMoConfig
|
7 |
+
from .model.modeling_olmo import OLMoForCausalLM
|
8 |
+
from .model.modeling_olmo import OLMoForSequenceCLS
|
9 |
+
from .model.tokenization_olmo_fast import OLMoTokenizerFast
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def check_install(cuda: bool = False):
|
14 |
+
import torch
|
15 |
+
|
16 |
+
from .version import VERSION
|
17 |
+
|
18 |
+
if cuda:
|
19 |
+
assert torch.cuda.is_available(), "CUDA is not available!"
|
20 |
+
print("CUDA available")
|
21 |
+
|
22 |
+
print(f"OLMo v{VERSION} installed")
|
config.json
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_type": "swiglu",
|
3 |
+
"alibi": false,
|
4 |
+
"alibi_bias_max": 8.0,
|
5 |
+
"architectures": [
|
6 |
+
"OLMoModelForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"attention_layer_norm": false,
|
10 |
+
"attention_layer_norm_with_affine": false,
|
11 |
+
"bias_for_layer_norm": false,
|
12 |
+
"block_group_size": 1,
|
13 |
+
"block_type": "sequential",
|
14 |
+
"clip_qkv": null,
|
15 |
+
"d_model": 512,
|
16 |
+
"embedding_dropout": 0.0,
|
17 |
+
"embedding_size": 4096,
|
18 |
+
"eos_token_id": 3,
|
19 |
+
"flash_attention": false,
|
20 |
+
"include_bias": false,
|
21 |
+
"init_cutoff_factor": null,
|
22 |
+
"init_device": "meta",
|
23 |
+
"init_fn": "mitchell",
|
24 |
+
"init_std": 0.02,
|
25 |
+
"layer_norm_type": "rms",
|
26 |
+
"layer_norm_with_affine": true,
|
27 |
+
"max_sequence_length": 250,
|
28 |
+
"mlp_hidden_size": null,
|
29 |
+
"mlp_ratio": 8,
|
30 |
+
"model_type": "olmo-gfm",
|
31 |
+
"multi_query_attention": false,
|
32 |
+
"n_heads": 8,
|
33 |
+
"n_kv_heads": null,
|
34 |
+
"n_layers": 8,
|
35 |
+
"pad_token_id": 3,
|
36 |
+
"precision": "amp_bf16",
|
37 |
+
"residual_dropout": 0.0,
|
38 |
+
"rope": true,
|
39 |
+
"rope_full_precision": true,
|
40 |
+
"scale_logits": false,
|
41 |
+
"transformers_version": "4.47.1",
|
42 |
+
"use_cache": true,
|
43 |
+
"vocab_size": 4096,
|
44 |
+
"weight_tying": false
|
45 |
+
}
|
config.yaml
ADDED
@@ -0,0 +1,238 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
run_name: OLMO-250-40GB-700M-10-epoch
|
2 |
+
seed: 6198
|
3 |
+
epoch: null
|
4 |
+
dry_run: false
|
5 |
+
model:
|
6 |
+
d_model: 512
|
7 |
+
n_heads: 8
|
8 |
+
n_kv_heads: null
|
9 |
+
clip_qkv: null
|
10 |
+
n_layers: 8
|
11 |
+
mlp_ratio: 8
|
12 |
+
mlp_hidden_size: null
|
13 |
+
activation_type: swiglu
|
14 |
+
block_type: sequential
|
15 |
+
block_group_size: 1
|
16 |
+
alibi: false
|
17 |
+
alibi_bias_max: 8.0
|
18 |
+
rope: true
|
19 |
+
rope_full_precision: true
|
20 |
+
flash_attention: false
|
21 |
+
attention_dropout: 0.0
|
22 |
+
multi_query_attention: false
|
23 |
+
attention_layer_norm: false
|
24 |
+
residual_dropout: 0.0
|
25 |
+
embedding_dropout: 0.0
|
26 |
+
layer_norm_type: rms
|
27 |
+
layer_norm_with_affine: true
|
28 |
+
attention_layer_norm_with_affine: false
|
29 |
+
max_sequence_length: 250
|
30 |
+
include_bias: false
|
31 |
+
bias_for_layer_norm: false
|
32 |
+
scale_logits: false
|
33 |
+
vocab_size: 4096
|
34 |
+
embedding_size: 4096
|
35 |
+
weight_tying: false
|
36 |
+
eos_token_id: 3
|
37 |
+
pad_token_id: 3
|
38 |
+
init_device: meta
|
39 |
+
init_fn: mitchell
|
40 |
+
init_std: 0.02
|
41 |
+
init_cutoff_factor: null
|
42 |
+
precision: amp_bf16
|
43 |
+
optimizer:
|
44 |
+
name: adamw
|
45 |
+
learning_rate: 0.0006
|
46 |
+
weight_decay: 0.1
|
47 |
+
betas:
|
48 |
+
- 0.9
|
49 |
+
- 0.95
|
50 |
+
no_decay_norm_and_bias: null
|
51 |
+
decay_norm_and_bias: false
|
52 |
+
decay_embeddings: false
|
53 |
+
metrics_log_interval: 10
|
54 |
+
scheduler:
|
55 |
+
name: cosine_with_warmup
|
56 |
+
units: steps
|
57 |
+
t_warmup: 5000
|
58 |
+
t_max: null
|
59 |
+
alpha_f: 0.1
|
60 |
+
grad_clip_warmup_steps: null
|
61 |
+
grad_clip_warmup_factor: null
|
62 |
+
warmup_min_lr: null
|
63 |
+
data:
|
64 |
+
paths:
|
65 |
+
- /mnt/data/tokenized_data/train_input_ids_1.npy
|
66 |
+
- /mnt/data/tokenized_data/train_input_ids_2.npy
|
67 |
+
- /mnt/data/tokenized_data/train_input_ids_3.npy
|
68 |
+
- /mnt/data/tokenized_data/train_input_ids_4.npy
|
69 |
+
- /mnt/data/tokenized_data/train_input_ids_5.npy
|
70 |
+
- /mnt/data/tokenized_data/train_input_ids_6.npy
|
71 |
+
- /mnt/data/tokenized_data/train_input_ids_7.npy
|
72 |
+
- /mnt/data/tokenized_data/train_input_ids_8.npy
|
73 |
+
- /mnt/data/tokenized_data/train_input_ids_9.npy
|
74 |
+
- /mnt/data/tokenized_data/train_input_ids_10.npy
|
75 |
+
- /mnt/data/tokenized_data/train_input_ids_11.npy
|
76 |
+
- /mnt/data/tokenized_data/train_input_ids_12.npy
|
77 |
+
- /mnt/data/tokenized_data/train_input_ids_13.npy
|
78 |
+
- /mnt/data/tokenized_data/train_input_ids_14.npy
|
79 |
+
- /mnt/data/tokenized_data/train_input_ids_15.npy
|
80 |
+
- /mnt/data/tokenized_data/train_input_ids_16.npy
|
81 |
+
- /mnt/data/tokenized_data/train_input_ids_17.npy
|
82 |
+
- /mnt/data/tokenized_data/train_input_ids_18.npy
|
83 |
+
- /mnt/data/tokenized_data/train_input_ids_19.npy
|
84 |
+
- /mnt/data/tokenized_data/train_input_ids_20.npy
|
85 |
+
- /mnt/data/tokenized_data/train_input_ids_21.npy
|
86 |
+
- /mnt/data/tokenized_data/train_input_ids_22.npy
|
87 |
+
- /mnt/data/tokenized_data/train_input_ids_23.npy
|
88 |
+
- /mnt/data/tokenized_data/train_input_ids_24.npy
|
89 |
+
- /mnt/data/tokenized_data/train_input_ids_25.npy
|
90 |
+
- /mnt/data/tokenized_data/train_input_ids_26.npy
|
91 |
+
- /mnt/data/tokenized_data/train_input_ids_27.npy
|
92 |
+
- /mnt/data/tokenized_data/train_input_ids_28.npy
|
93 |
+
- /mnt/data/tokenized_data/train_input_ids_29.npy
|
94 |
+
- /mnt/data/tokenized_data/train_input_ids_30.npy
|
95 |
+
- /mnt/data/tokenized_data/train_input_ids_31.npy
|
96 |
+
- /mnt/data/tokenized_data/train_input_ids_32.npy
|
97 |
+
- /mnt/data/tokenized_data/train_input_ids_33.npy
|
98 |
+
- /mnt/data/tokenized_data/train_input_ids_34.npy
|
99 |
+
- /mnt/data/tokenized_data/train_input_ids_35.npy
|
100 |
+
- /mnt/data/tokenized_data/train_input_ids_36.npy
|
101 |
+
- /mnt/data/tokenized_data/train_input_ids_37.npy
|
102 |
+
- /mnt/data/tokenized_data/train_input_ids_38.npy
|
103 |
+
- /mnt/data/tokenized_data/train_input_ids_39.npy
|
104 |
+
- /mnt/data/tokenized_data/train_input_ids_40.npy
|
105 |
+
- /mnt/data/tokenized_data/train_input_ids_41.npy
|
106 |
+
- /mnt/data/tokenized_data/train_input_ids_42.npy
|
107 |
+
- /mnt/data/tokenized_data/train_input_ids_43.npy
|
108 |
+
- /mnt/data/tokenized_data/train_input_ids_44.npy
|
109 |
+
- /mnt/data/tokenized_data/train_input_ids_45.npy
|
110 |
+
- /mnt/data/tokenized_data/train_input_ids_46.npy
|
111 |
+
- /mnt/data/tokenized_data/train_input_ids_47.npy
|
112 |
+
- /mnt/data/tokenized_data/train_input_ids_48.npy
|
113 |
+
- /mnt/data/tokenized_data/train_input_ids_49.npy
|
114 |
+
- /mnt/data/tokenized_data/train_input_ids_50.npy
|
115 |
+
- /mnt/data/tokenized_data/train_input_ids_51.npy
|
116 |
+
- /mnt/data/tokenized_data/train_input_ids_52.npy
|
117 |
+
- /mnt/data/tokenized_data/train_input_ids_53.npy
|
118 |
+
- /mnt/data/tokenized_data/train_input_ids_54.npy
|
119 |
+
- /mnt/data/tokenized_data/train_input_ids_55.npy
|
120 |
+
- /mnt/data/tokenized_data/train_input_ids_56.npy
|
121 |
+
- /mnt/data/tokenized_data/train_input_ids_57.npy
|
122 |
+
- /mnt/data/tokenized_data/train_input_ids_58.npy
|
123 |
+
- /mnt/data/tokenized_data/train_input_ids_59.npy
|
124 |
+
- /mnt/data/tokenized_data/train_input_ids_60.npy
|
125 |
+
- /mnt/data/tokenized_data/train_input_ids_61.npy
|
126 |
+
- /mnt/data/tokenized_data/train_input_ids_62.npy
|
127 |
+
- /mnt/data/tokenized_data/train_input_ids_63.npy
|
128 |
+
- /mnt/data/tokenized_data/train_input_ids_64.npy
|
129 |
+
- /mnt/data/tokenized_data/train_input_ids_65.npy
|
130 |
+
- /mnt/data/tokenized_data/train_input_ids_66.npy
|
131 |
+
- /mnt/data/tokenized_data/train_input_ids_67.npy
|
132 |
+
- /mnt/data/tokenized_data/train_input_ids_68.npy
|
133 |
+
- /mnt/data/tokenized_data/train_input_ids_69.npy
|
134 |
+
- /mnt/data/tokenized_data/train_input_ids_70.npy
|
135 |
+
- /mnt/data/tokenized_data/train_input_ids_71.npy
|
136 |
+
- /mnt/data/tokenized_data/train_input_ids_72.npy
|
137 |
+
- /mnt/data/tokenized_data/train_input_ids_73.npy
|
138 |
+
- /mnt/data/tokenized_data/train_input_ids_74.npy
|
139 |
+
- /mnt/data/tokenized_data/val_input_ids_2.npy
|
140 |
+
- /mnt/data/tokenized_data/val_input_ids_3.npy
|
141 |
+
- /mnt/data/tokenized_data/val_input_ids_4.npy
|
142 |
+
datasets: null
|
143 |
+
label_mask_paths: null
|
144 |
+
pad_direction: right
|
145 |
+
generate_attention_mask: false
|
146 |
+
num_workers: 16
|
147 |
+
drop_last: true
|
148 |
+
pin_memory: true
|
149 |
+
prefetch_factor: 16
|
150 |
+
persistent_workers: true
|
151 |
+
timeout: 0
|
152 |
+
seed: null
|
153 |
+
restore_dataloader: true
|
154 |
+
fast_forward_batches: null
|
155 |
+
evaluators:
|
156 |
+
- label: human-chunk
|
157 |
+
type: lm
|
158 |
+
data:
|
159 |
+
paths: null
|
160 |
+
datasets:
|
161 |
+
dna-bert2-eval:
|
162 |
+
- /mnt/data/tokenized_data/val_input_ids_1.npy
|
163 |
+
label_mask_paths: null
|
164 |
+
pad_direction: right
|
165 |
+
generate_attention_mask: false
|
166 |
+
num_workers: 16
|
167 |
+
drop_last: true
|
168 |
+
pin_memory: false
|
169 |
+
prefetch_factor: null
|
170 |
+
persistent_workers: false
|
171 |
+
timeout: 0
|
172 |
+
seed: null
|
173 |
+
device_eval_batch_size: null
|
174 |
+
subset_num_batches: null
|
175 |
+
eval_interval: 10000
|
176 |
+
tokenizer:
|
177 |
+
identifier: tokenizers/allenai_eleuther-ai-gpt-neox-20b-pii-special.json
|
178 |
+
truncate_direction: right
|
179 |
+
save_folder: /mnt/data/pretrain_formal_60M
|
180 |
+
remote_save_folder: null
|
181 |
+
canceled_check_interval: 50
|
182 |
+
save_interval: 10000
|
183 |
+
save_interval_unsharded: 20000
|
184 |
+
save_interval_ephemeral: null
|
185 |
+
save_num_checkpoints_to_keep: 1
|
186 |
+
save_num_unsharded_checkpoints_to_keep: 10
|
187 |
+
save_overwrite: true
|
188 |
+
force_save_unsharded: false
|
189 |
+
no_pre_train_checkpoint: false
|
190 |
+
load_path: null
|
191 |
+
load_path_sharded_checkpointer: null
|
192 |
+
reset_optimizer_state: false
|
193 |
+
reset_trainer_state: false
|
194 |
+
sharded_checkpointer: torch_legacy
|
195 |
+
new_style_checkpoints: null
|
196 |
+
max_duration: 10ep
|
197 |
+
global_train_batch_size: 384
|
198 |
+
device_train_batch_size: 48
|
199 |
+
device_train_microbatch_size: 48
|
200 |
+
device_eval_batch_size: 48
|
201 |
+
eval_subset_num_batches: -1
|
202 |
+
eval_on_load: false
|
203 |
+
device_train_grad_accum: 1
|
204 |
+
max_grad_norm: 1.0
|
205 |
+
max_grad_norm_ratio: null
|
206 |
+
precision: amp_bf16
|
207 |
+
wandb:
|
208 |
+
project: olmo-dna
|
209 |
+
entity: zehui127-imperial-college-london
|
210 |
+
group: null
|
211 |
+
name: OLMO-250-40GB-700M-10-epoch
|
212 |
+
tags:
|
213 |
+
- watching
|
214 |
+
log_artifacts: false
|
215 |
+
rank_zero_only: true
|
216 |
+
log_interval: 1
|
217 |
+
speed_monitor:
|
218 |
+
window_size: 3
|
219 |
+
gpu_flops_available: null
|
220 |
+
console_log_interval: 1
|
221 |
+
gen1_gc_interval: 1
|
222 |
+
compile: null
|
223 |
+
fsdp:
|
224 |
+
use_orig_params: true
|
225 |
+
sharding_strategy: FULL_SHARD
|
226 |
+
wrapping_strategy: null
|
227 |
+
precision: mixed
|
228 |
+
softmax_auxiliary_loss: false
|
229 |
+
time_limit: 964000.0
|
230 |
+
extra_steps_after_cancel: 10
|
231 |
+
early_stopping_factor: null
|
232 |
+
save_data_indices: true
|
233 |
+
python_profiling: false
|
234 |
+
torch_profiling: false
|
235 |
+
stop_at: null
|
236 |
+
stop_after: null
|
237 |
+
activation_checkpointing: null
|
238 |
+
fused_loss: null
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:204b4ffc81fe15e3c58ef8462cf9336525c53dd3cd835fd82d8949e439a8367a
|
3 |
+
size 151049935
|
model/__pycache__/aliases.cpython-312.pyc
ADDED
Binary file (316 Bytes). View file
|
|
model/__pycache__/beam_search.cpython-312.pyc
ADDED
Binary file (45.5 kB). View file
|
|
model/__pycache__/config.cpython-312.pyc
ADDED
Binary file (25.1 kB). View file
|
|
model/__pycache__/configuration_olmo.cpython-312.pyc
ADDED
Binary file (2.14 kB). View file
|
|
model/__pycache__/exceptions.cpython-312.pyc
ADDED
Binary file (1.7 kB). View file
|
|
model/__pycache__/initialization.cpython-312.pyc
ADDED
Binary file (5.09 kB). View file
|
|
model/__pycache__/model.cpython-312.pyc
ADDED
Binary file (77 kB). View file
|
|
model/__pycache__/modeling_olmo.cpython-312.pyc
ADDED
Binary file (21.4 kB). View file
|
|
model/__pycache__/tokenization_olmo_fast.cpython-312.pyc
ADDED
Binary file (611 Bytes). View file
|
|
model/__pycache__/tokenizer.cpython-312.pyc
ADDED
Binary file (9.05 kB). View file
|
|
model/__pycache__/torch_util.cpython-312.pyc
ADDED
Binary file (8.1 kB). View file
|
|
model/__pycache__/util.cpython-312.pyc
ADDED
Binary file (34.8 kB). View file
|
|
model/aliases.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from os import PathLike
|
2 |
+
from typing import Union
|
3 |
+
|
4 |
+
__all__ = ["PathOrStr"]
|
5 |
+
|
6 |
+
|
7 |
+
PathOrStr = Union[str, PathLike]
|
model/beam_search.py
ADDED
@@ -0,0 +1,1078 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This is a self-contained and flexible beam search implementation adapted from
|
3 |
+
AllenNLP's beam search: https://github.com/allenai/allennlp/blob/main/allennlp/nn/beam_search.py
|
4 |
+
"""
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import warnings
|
8 |
+
from abc import abstractmethod
|
9 |
+
from inspect import signature
|
10 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, cast
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"Sampler",
|
16 |
+
"DeterministicSampler",
|
17 |
+
"MultinomialSampler",
|
18 |
+
"TopKSampler",
|
19 |
+
"TopPSampler",
|
20 |
+
"GumbelSampler",
|
21 |
+
"FinalSequenceScorer",
|
22 |
+
"SequenceLogProbabilityScorer",
|
23 |
+
"LengthNormalizedSequenceLogProbabilityScorer",
|
24 |
+
"Constraint",
|
25 |
+
"RepeatedNGramBlockingConstraint",
|
26 |
+
"BeamSearch",
|
27 |
+
]
|
28 |
+
|
29 |
+
StateType = Dict[str, torch.Tensor]
|
30 |
+
StepFunctionTypeWithTimestep = Callable[[torch.Tensor, StateType, int], Tuple[torch.Tensor, StateType]]
|
31 |
+
StepFunctionTypeNoTimestep = Callable[[torch.Tensor, StateType], Tuple[torch.Tensor, StateType]]
|
32 |
+
|
33 |
+
StepFunctionType = TypeVar("StepFunctionType", StepFunctionTypeWithTimestep, StepFunctionTypeNoTimestep)
|
34 |
+
"""
|
35 |
+
The type of step function that can be passed to [`BeamSearch.search`](#search).
|
36 |
+
|
37 |
+
This can either be [`StepFunctionTypeWithTimestep`](#stepfunctiontypewithtimestep)
|
38 |
+
or [`StepFunctionTypeNoTimestep`](#stepfunctiontypenotimestep).
|
39 |
+
"""
|
40 |
+
|
41 |
+
ConstraintStateType = List[List[Dict[str, Any]]]
|
42 |
+
|
43 |
+
|
44 |
+
class Sampler:
|
45 |
+
"""
|
46 |
+
An abstract class that can be used to sample candidates (either nodes or beams)
|
47 |
+
within `BeamSearch`.
|
48 |
+
|
49 |
+
A `Sampler` just has three methods, `init_state()`, `sample_nodes()` and `sample_beams()`.
|
50 |
+
|
51 |
+
`init_state()` takes three arguments:
|
52 |
+
|
53 |
+
- a tensor of starting log probs with shape `(batch_size,, num_classes)`,
|
54 |
+
- the batch size, an int,
|
55 |
+
- and the number of classes, also an int.
|
56 |
+
|
57 |
+
It returns a state dictionary with any state tensors needed for subsequent
|
58 |
+
calls to `sample_nodes()` and `sample_beams()`.
|
59 |
+
|
60 |
+
By default this method just returns an empty dictionary.
|
61 |
+
|
62 |
+
Both `sample_nodes()` and `sample_beams()` should take three arguments:
|
63 |
+
|
64 |
+
- tensor of normalized log probabilities with shape `(batch_size, num_examples)`,
|
65 |
+
- an integer representing the number of samples to take for each example in the batch,
|
66 |
+
- and a state dictionary which could contain any tensors needed for the `Sampler` to keep
|
67 |
+
track of state.
|
68 |
+
|
69 |
+
For `sample_nodes()`, `num_examples = num_classes`, but for `sample_beams`,
|
70 |
+
`num_examples = beam_size * per_node_beam_size`.
|
71 |
+
|
72 |
+
The return value should be a tuple containing:
|
73 |
+
|
74 |
+
- a tensor of log probabilities of the sampled examples with shape `(batch_size, num_samples)`,
|
75 |
+
- a tensor of indices of the sampled examples with shape `(batch_size, num_samples)`,
|
76 |
+
- and the updated state dictionary.
|
77 |
+
|
78 |
+
A default implementation of `sample_beams` is provided, which just deterministically
|
79 |
+
picks the `k` examples with highest log probability.
|
80 |
+
"""
|
81 |
+
|
82 |
+
def init_state(
|
83 |
+
self, start_class_log_probabilities: torch.Tensor, batch_size: int, num_classes: int
|
84 |
+
) -> StateType:
|
85 |
+
del start_class_log_probabilities, batch_size, num_classes
|
86 |
+
return {}
|
87 |
+
|
88 |
+
@abstractmethod
|
89 |
+
def sample_nodes(
|
90 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
91 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
92 |
+
raise NotImplementedError
|
93 |
+
|
94 |
+
def sample_beams(
|
95 |
+
self, log_probs: torch.Tensor, beam_size: int, state: StateType
|
96 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
97 |
+
del state
|
98 |
+
selected_log_probs, selected_indices = torch.topk(log_probs, beam_size, dim=-1)
|
99 |
+
return selected_log_probs, selected_indices, {}
|
100 |
+
|
101 |
+
|
102 |
+
class DeterministicSampler(Sampler):
|
103 |
+
"""
|
104 |
+
A `Sampler` that just deterministically returns the `k` nodes or beams with highest
|
105 |
+
log probability.
|
106 |
+
"""
|
107 |
+
|
108 |
+
def sample_nodes(
|
109 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
110 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
111 |
+
del state
|
112 |
+
selected_log_probs, selected_indices = torch.topk(log_probs, per_node_beam_size, dim=-1)
|
113 |
+
return selected_log_probs, selected_indices, {}
|
114 |
+
|
115 |
+
|
116 |
+
class MultinomialSampler(Sampler):
|
117 |
+
"""
|
118 |
+
A `Sampler` which samples nodes from the given multinomial distribution. Beams are sampled
|
119 |
+
in the default, non-deterministic way.
|
120 |
+
|
121 |
+
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
122 |
+
above 1.0 produces a flatter probability distribution.
|
123 |
+
:param with_replacement: Whether to sample with replacement.
|
124 |
+
|
125 |
+
"""
|
126 |
+
|
127 |
+
def __init__(
|
128 |
+
self,
|
129 |
+
temperature: float = 1.0,
|
130 |
+
with_replacement: bool = False,
|
131 |
+
) -> None:
|
132 |
+
self.temperature = temperature
|
133 |
+
self.with_replacement = with_replacement
|
134 |
+
|
135 |
+
def sample_nodes(
|
136 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
137 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
138 |
+
if self.temperature != 1.0:
|
139 |
+
_probabilities = torch.nn.functional.softmax(log_probs / self.temperature, dim=-1)
|
140 |
+
else:
|
141 |
+
_probabilities = log_probs.exp()
|
142 |
+
|
143 |
+
selected_indices = torch.multinomial(_probabilities, per_node_beam_size, replacement=self.with_replacement)
|
144 |
+
|
145 |
+
return torch.gather(log_probs, 1, selected_indices), selected_indices, state
|
146 |
+
|
147 |
+
|
148 |
+
class TopKSampler(Sampler):
|
149 |
+
"""
|
150 |
+
A `Sampler` which redistributes the probability mass function for nodes among the
|
151 |
+
top `k` choices, then samples from that subset after re-normalizing the probabilities.
|
152 |
+
|
153 |
+
Beams are sampled in the default, deterministic way.
|
154 |
+
|
155 |
+
:param k: The number of top choices to be selected from.
|
156 |
+
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
157 |
+
above 1.0 produces a flatter probability distribution.
|
158 |
+
:param with_replacement: If set to `True`, samples will be selected with replacement from the top k choices.
|
159 |
+
"""
|
160 |
+
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
k: int = 1,
|
164 |
+
temperature: float = 1.0,
|
165 |
+
with_replacement: bool = False,
|
166 |
+
):
|
167 |
+
self.k = k
|
168 |
+
self.temperature = temperature or 1.0
|
169 |
+
self.with_replacement = with_replacement
|
170 |
+
|
171 |
+
def sample_nodes(
|
172 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
173 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
174 |
+
if not per_node_beam_size <= self.k <= log_probs.size()[1]:
|
175 |
+
raise ValueError(
|
176 |
+
"k must be a postive integer no less than per_node_beam_size and no greater than vocabulary size"
|
177 |
+
)
|
178 |
+
|
179 |
+
# shape (both): (batch_size, k)
|
180 |
+
top_k_log_probs, top_k_indices = log_probs.topk(self.k, dim=-1)
|
181 |
+
|
182 |
+
# Apply temperature if necessary.
|
183 |
+
# shape: (batch_size, k)
|
184 |
+
if self.temperature != 1.0:
|
185 |
+
top_k_log_probs = top_k_log_probs / self.temperature
|
186 |
+
|
187 |
+
# Re-normalize the subset.
|
188 |
+
# shape: (batch_size, k)
|
189 |
+
normalized_top_k_probs = torch.nn.functional.softmax(top_k_log_probs, dim=-1)
|
190 |
+
|
191 |
+
# Sample from the re-normalized subset.
|
192 |
+
# NOTE: These indices are not indices into `log_probs`, they are indices into `top_k_log_probs`.
|
193 |
+
# shape: (batch_size, per_node_beam_size)
|
194 |
+
sampled_indices = torch.multinomial(
|
195 |
+
normalized_top_k_probs, per_node_beam_size, replacement=self.with_replacement
|
196 |
+
)
|
197 |
+
|
198 |
+
# Convert `sampled_indices` back to indices in the original `log_probs` tensor.
|
199 |
+
# shape: (batch_size, per_node_beam_size)
|
200 |
+
indices = top_k_indices.gather(-1, sampled_indices)
|
201 |
+
|
202 |
+
return log_probs.gather(1, indices), indices, state
|
203 |
+
|
204 |
+
|
205 |
+
class TopPSampler(Sampler):
|
206 |
+
"""
|
207 |
+
A `Sampler` which redistributes the probability mass function for nodes among
|
208 |
+
the top choices with a cumulative probability of at least `p`, then samples from that subset
|
209 |
+
after re-normalizing the probabilities.
|
210 |
+
|
211 |
+
Beams are sampled in the default, deterministic way.
|
212 |
+
|
213 |
+
:param p:
|
214 |
+
The cumulative probability cutoff threshold. A higher value of `p` will result in more possible
|
215 |
+
examples to sample from. If `with_replacement` is `False` and the number of possible samples is
|
216 |
+
insufficient to sample without replacement from when calling `sample_nodes`, then the top
|
217 |
+
`per_node_beam_size` examples will be chosen.
|
218 |
+
:param temperature:
|
219 |
+
A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
220 |
+
above 1.0 produces a flatter probability distribution.
|
221 |
+
:param with_replacement:
|
222 |
+
If set to `True`, samples will be selected with replacement from the top choices.
|
223 |
+
|
224 |
+
"""
|
225 |
+
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
p: float = 0.9,
|
229 |
+
temperature: float = 1.0,
|
230 |
+
with_replacement: bool = False,
|
231 |
+
):
|
232 |
+
if p < 0.0 or p > 1.0:
|
233 |
+
raise ValueError("p must be a positive float no greater than 1.0")
|
234 |
+
self.p = p
|
235 |
+
self.temperature = temperature or 1.0
|
236 |
+
self.with_replacement = with_replacement
|
237 |
+
|
238 |
+
def sample_nodes(
|
239 |
+
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
240 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
241 |
+
if not per_node_beam_size <= log_probs.size()[1]:
|
242 |
+
raise ValueError("per_node_beam_size cannot be greater than vocabulary size")
|
243 |
+
|
244 |
+
# First apply temperature coefficient:
|
245 |
+
if self.temperature != 1.0:
|
246 |
+
_log_probs = torch.nn.functional.log_softmax(log_probs / self.temperature, dim=-1)
|
247 |
+
else:
|
248 |
+
_log_probs = log_probs
|
249 |
+
|
250 |
+
# Sort the probabilities in descending order to then find cumulative sum
|
251 |
+
log_probs_descending, sorting_indices = torch.sort(_log_probs, descending=True)
|
252 |
+
|
253 |
+
# shape: (batch_size, num_classes)
|
254 |
+
probabilities_descending = log_probs_descending.exp()
|
255 |
+
probabilities_summed = torch.cumsum(probabilities_descending, dim=-1)
|
256 |
+
|
257 |
+
# Create a mask for filtering out probabilities that don't make the top `p`.
|
258 |
+
# shape: (batch_size, num_classes)
|
259 |
+
exclusion_mask = probabilities_summed >= self.p
|
260 |
+
|
261 |
+
# We want to include the first index where probabilities_summed >= p, so we shift over one.
|
262 |
+
exclusion_mask[..., 1:] = exclusion_mask[..., :-1].clone()
|
263 |
+
exclusion_mask[..., 0] = False
|
264 |
+
|
265 |
+
# Make sure there's at least `per_node_beam_size` options to be selected.
|
266 |
+
if not self.with_replacement:
|
267 |
+
exclusion_mask[..., :per_node_beam_size] = False
|
268 |
+
|
269 |
+
log_probs_descending[exclusion_mask] = torch.finfo(log_probs.dtype).min
|
270 |
+
|
271 |
+
# Now re-normalized the included log probs.
|
272 |
+
# shape: (batch_size, num_classes)
|
273 |
+
filtered_probabilities = torch.nn.functional.softmax(log_probs_descending, dim=-1)
|
274 |
+
|
275 |
+
# Sample from the re-normalized subset.
|
276 |
+
# NOTE: These indices are not indices into `log_probs`, they are indices into `log_probs_descending`.
|
277 |
+
# shape: (batch_size, per_node_beam_size)
|
278 |
+
sampled_indices = torch.multinomial(
|
279 |
+
filtered_probabilities, per_node_beam_size, replacement=self.with_replacement
|
280 |
+
)
|
281 |
+
|
282 |
+
# Convert `sampled_indices` back to indices in the original `log_probs` tensor.
|
283 |
+
# shape: (batch_size, per_node_beam_size)
|
284 |
+
selected_indices = sorting_indices.gather(-1, sampled_indices)
|
285 |
+
|
286 |
+
# Return (selected log probabilities, selected classes)
|
287 |
+
# shape: (len(log_probs),1) , (len(log_probs), 1)
|
288 |
+
return torch.gather(log_probs, 1, selected_indices), selected_indices, state
|
289 |
+
|
290 |
+
|
291 |
+
class GumbelSampler(Sampler):
|
292 |
+
"""
|
293 |
+
A `Sampler` which uses the Gumbel-Top-K trick to sample without replacement. See
|
294 |
+
[*Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling
|
295 |
+
Sequences Without Replacement*, W Kool, H Van Hoof and M Welling, 2010]
|
296 |
+
(https://api.semanticscholar.org/CorpusID:76662039).
|
297 |
+
|
298 |
+
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
299 |
+
above 1.0 produces a flatter probability distribution.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, temperature: float = 1.0):
|
303 |
+
self.temperature = temperature
|
304 |
+
|
305 |
+
def init_state(
|
306 |
+
self, start_class_log_probabilities: torch.Tensor, batch_size: int, num_classes: int
|
307 |
+
) -> StateType:
|
308 |
+
# shape: (batch_size, num_classes)
|
309 |
+
zeros = start_class_log_probabilities.new_zeros((batch_size, num_classes))
|
310 |
+
|
311 |
+
# shape: (batch_size, num_classes)
|
312 |
+
G_phi_S = self.gumbel_with_max(start_class_log_probabilities, zeros)
|
313 |
+
|
314 |
+
return {"G_phi_S": G_phi_S}
|
315 |
+
|
316 |
+
def sample_nodes(
|
317 |
+
self,
|
318 |
+
log_probs: torch.Tensor,
|
319 |
+
per_node_beam_size: int,
|
320 |
+
state: StateType,
|
321 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
322 |
+
# First apply temperature coefficient:
|
323 |
+
# shape: (batch_size * beam_size, num_classes)
|
324 |
+
if self.temperature != 1.0:
|
325 |
+
_log_probs = torch.nn.functional.log_softmax(log_probs / self.temperature, dim=-1)
|
326 |
+
else:
|
327 |
+
_log_probs = log_probs
|
328 |
+
|
329 |
+
# shape: (group_size,)
|
330 |
+
phi_S = state["phi_S"]
|
331 |
+
|
332 |
+
# shape: (group_size, num_classes)
|
333 |
+
phi_S = phi_S.unsqueeze(-1).expand_as(_log_probs)
|
334 |
+
|
335 |
+
# shape: (group_size, num_classes)
|
336 |
+
phi_S_new = phi_S + _log_probs
|
337 |
+
|
338 |
+
# shape: (group_size, 1)
|
339 |
+
G_phi_S = state["G_phi_S"].unsqueeze(-1)
|
340 |
+
|
341 |
+
# shape: (group_size, num_classes)
|
342 |
+
G_phi_S_new = self.gumbel_with_max(phi_S_new, G_phi_S)
|
343 |
+
|
344 |
+
# Replace NaNs with very negative number.
|
345 |
+
# shape: (group_size, num_classes)
|
346 |
+
# G_phi_S_new[G_phi_S_new.isnan()] = torch.finfo(G_phi_S_new.dtype).min
|
347 |
+
|
348 |
+
# shape (both): (group_size, per_node_beam_size)
|
349 |
+
top_G_phi_S_new, top_indices = torch.topk(G_phi_S_new, per_node_beam_size, dim=-1)
|
350 |
+
|
351 |
+
# shape: (group_size, per_node_beam_size)
|
352 |
+
top_log_probs = log_probs.gather(1, top_indices)
|
353 |
+
|
354 |
+
return top_log_probs, top_indices, {"G_phi_S": top_G_phi_S_new}
|
355 |
+
|
356 |
+
def sample_beams(
|
357 |
+
self,
|
358 |
+
log_probs: torch.Tensor,
|
359 |
+
beam_size: int,
|
360 |
+
state: StateType,
|
361 |
+
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
362 |
+
"""
|
363 |
+
Returns the beams with the highest perturbed log probabilities.
|
364 |
+
"""
|
365 |
+
# shape (log_probs): (batch_size, beam_size * per_node_beam_size)
|
366 |
+
|
367 |
+
batch_size = log_probs.size()[0]
|
368 |
+
|
369 |
+
# shape: (batch_size * beam_size, per_node_beam_size)
|
370 |
+
G_phi_S = state["G_phi_S"]
|
371 |
+
|
372 |
+
# shape: (batch_size, beam_size * per_node_beam_size)
|
373 |
+
G_phi_S = G_phi_S.reshape_as(log_probs)
|
374 |
+
|
375 |
+
# shape (both): (batch_size, beam_size)
|
376 |
+
G_phi_S_new, selected_indices = torch.topk(G_phi_S, beam_size, dim=-1)
|
377 |
+
|
378 |
+
# shape: (batch_size, beam_size)
|
379 |
+
selected_log_probs = log_probs.gather(1, selected_indices)
|
380 |
+
|
381 |
+
# Now sort the selected beams by their true log prob.
|
382 |
+
# shape (all): (batch_size, beam_size)
|
383 |
+
selected_log_probs, sort_indices = selected_log_probs.sort(dim=-1, descending=True)
|
384 |
+
selected_indices = selected_indices.gather(1, sort_indices)
|
385 |
+
G_phi_S_new = G_phi_S_new.gather(1, sort_indices)
|
386 |
+
|
387 |
+
# shape: (batch_size * beam_size,)
|
388 |
+
G_phi_S_new = G_phi_S_new.reshape(batch_size * beam_size)
|
389 |
+
|
390 |
+
# shape: (batch_size * beam_size,)
|
391 |
+
phi_S = selected_log_probs.reshape(batch_size * beam_size)
|
392 |
+
|
393 |
+
return selected_log_probs, selected_indices, {"G_phi_S": G_phi_S_new, "phi_S": phi_S}
|
394 |
+
|
395 |
+
def gumbel(self, phi) -> torch.Tensor:
|
396 |
+
"""
|
397 |
+
Sample `Gumbel(phi)`.
|
398 |
+
|
399 |
+
`phi` should have shape `(batch_size, num_classes)`.
|
400 |
+
"""
|
401 |
+
return -torch.log(-torch.log(torch.rand_like(phi))) + phi
|
402 |
+
|
403 |
+
def gumbel_with_max(self, phi, T) -> torch.Tensor:
|
404 |
+
"""
|
405 |
+
Sample `Gumbel(phi)` conditioned on the maximum value being equal to `T`.
|
406 |
+
|
407 |
+
`phi` should have shape `(batch_size, num_classes)` and `T` should have
|
408 |
+
shape `(batch_size, 1)`.
|
409 |
+
"""
|
410 |
+
# Shape: (batch_size, num_classes)
|
411 |
+
G_phi = self.gumbel(phi)
|
412 |
+
|
413 |
+
# Now we find the maximum from these samples.
|
414 |
+
# Shape: (batch_size, )
|
415 |
+
Z, _ = G_phi.max(dim=-1)
|
416 |
+
|
417 |
+
# Shape: (batch_size, num_classes)
|
418 |
+
v = T - G_phi + torch.log1p(-torch.exp(G_phi - Z.unsqueeze(-1)))
|
419 |
+
|
420 |
+
# Shape: (batch_size, num_classes)
|
421 |
+
return T - torch.nn.functional.relu(v) - torch.log1p(torch.exp(-v.abs()))
|
422 |
+
|
423 |
+
|
424 |
+
class FinalSequenceScorer:
|
425 |
+
"""
|
426 |
+
An abstract class that can be used to score the final generated sequences found
|
427 |
+
by beam search. Given the predicted sequences and the corresponding log probabilities of
|
428 |
+
those sequences, the class calculates and returns the final score of the sequences.
|
429 |
+
|
430 |
+
The default implementation scores the sequences using the sum of the log probabilities of
|
431 |
+
the sequence, which is passed as input.
|
432 |
+
"""
|
433 |
+
|
434 |
+
@abstractmethod
|
435 |
+
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
436 |
+
"""
|
437 |
+
Score the final predictions found by beam search.
|
438 |
+
Returns a tensor of the final sequence scores of shape `(batch_size, beam_size)`.
|
439 |
+
|
440 |
+
:param predictions: A tensor containing the initial predictions with shape `(batch_size, beam_size, max_steps)`.
|
441 |
+
:param log_probabilities: A tensor containing the log probabilities of the sequence, defined as the sum
|
442 |
+
of the log probabilities per token, with shape `(batch_size, beam_size)`.
|
443 |
+
:param end_index: The index of the end symbol.
|
444 |
+
|
445 |
+
"""
|
446 |
+
raise NotImplementedError
|
447 |
+
|
448 |
+
|
449 |
+
class SequenceLogProbabilityScorer(FinalSequenceScorer):
|
450 |
+
"""
|
451 |
+
A :class:`FinalSequenceScorer` which scores the sequences by the sum of the log probabilities
|
452 |
+
across the sequence's tokens.
|
453 |
+
"""
|
454 |
+
|
455 |
+
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
456 |
+
del predictions, end_index
|
457 |
+
# The sum of the sequence log probabilities is the input parameter, so just
|
458 |
+
# return it.
|
459 |
+
return log_probabilities
|
460 |
+
|
461 |
+
|
462 |
+
class LengthNormalizedSequenceLogProbabilityScorer(FinalSequenceScorer):
|
463 |
+
"""
|
464 |
+
A :class:`FinalSequenceScorer` which scores the sequences by the average log probability of the
|
465 |
+
tokens in the sequence. It optionally includes a length penalty which promotes
|
466 |
+
or demotes sequences based on their lengths. The final score for a sequence will
|
467 |
+
be `(sequence_log_probability) / (sequence_length ** length_penalty)`. The sequence length
|
468 |
+
here includes the end token.
|
469 |
+
|
470 |
+
:param length_penalty: The length penalty to use. A value of 1.0 means no length penalty is used.
|
471 |
+
A value > 1.0 favors longer sequences, and < 1.0 favors shorter sequences.
|
472 |
+
"""
|
473 |
+
|
474 |
+
def __init__(self, length_penalty: float = 1.0):
|
475 |
+
super().__init__()
|
476 |
+
self.length_penalty = length_penalty
|
477 |
+
|
478 |
+
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
479 |
+
# shape: (batch_size, beam_size)
|
480 |
+
lengths = (predictions != end_index).long().sum(dim=2)
|
481 |
+
|
482 |
+
# If the sequence ended during beam search, the `log_probabilities` will include
|
483 |
+
# the transition to the end token. Therefore, in such situations, `lengths` is
|
484 |
+
# actually off by 1. This corrects for that.
|
485 |
+
# shape: (batch_size, beam_size)
|
486 |
+
is_end_token = predictions[:, :, -1] == end_index
|
487 |
+
lengths += is_end_token.long()
|
488 |
+
|
489 |
+
# shape: (batch_size, beam_size)
|
490 |
+
average_log_probs = log_probabilities / (lengths**self.length_penalty)
|
491 |
+
return average_log_probs
|
492 |
+
|
493 |
+
|
494 |
+
class Constraint:
|
495 |
+
"""
|
496 |
+
An abstract class that can be used to enforce constraints on the output predictions
|
497 |
+
by manipulating the class log probabilities during beam search.
|
498 |
+
|
499 |
+
A `Constraint` just has three methods that need to be implemented by subclasses:
|
500 |
+
`init_state()`, `apply()` and `_update_state()`.
|
501 |
+
|
502 |
+
`init_state()` takes one argument:
|
503 |
+
|
504 |
+
- the batch size, an int
|
505 |
+
|
506 |
+
It returns a constraint state, which is a nested list of dictionaries, with any state needed for subsequent
|
507 |
+
calls to `apply()` and `update_state()`. The length of the outer list should be equal to `batch_size`.
|
508 |
+
Each inner list should be of length 1.
|
509 |
+
|
510 |
+
`apply()` takes two arguments:
|
511 |
+
|
512 |
+
- the constraint state, which is a nested list of dictionaries. The length of the outer list is `batch_size`
|
513 |
+
and the length of each inner list is `beam_size` except on the first time `apply()` is called when it is 1.
|
514 |
+
- `class_log_probabilities`, a tensor of shape `(batch_size, beam_size, num_classes)` that contains the
|
515 |
+
log probabilities for the classes during search. The first time `apply()` is called, `beam_size = 1`.
|
516 |
+
|
517 |
+
The `apply()` method should return new `class_log_probabilities` that enforce the constraint
|
518 |
+
for this step of beam search. For instance, it may prevent a specific class from being selected by setting
|
519 |
+
the corresponding log probability to a negligible value such as `float("-inf")` or
|
520 |
+
`torch.finfo(class_log_probabilities.dtype).min`.
|
521 |
+
|
522 |
+
`_update_state()` takes two arguments:
|
523 |
+
|
524 |
+
- the copied parent constraint state, which is a nested list of dictionaries. `state[i][j]` contains the
|
525 |
+
copied state for the parent of `last_prediction[i, j]`. It is unique to that batch and beam, so it can be
|
526 |
+
directly edited in-place without affecting the others.
|
527 |
+
- last_prediction, a tensor of shape `(batch_size, beam_size)` containing the predictions from the last
|
528 |
+
step of beam search.
|
529 |
+
|
530 |
+
The `_update_state()` function should return a new constraint state, a nested list of dictionaries of
|
531 |
+
length `batch_size` and inner list of length `beam_size`, one for each of the predictions in `last_prediction`.
|
532 |
+
|
533 |
+
"""
|
534 |
+
|
535 |
+
@abstractmethod
|
536 |
+
def init_state(
|
537 |
+
self,
|
538 |
+
batch_size: int,
|
539 |
+
) -> ConstraintStateType:
|
540 |
+
raise NotImplementedError
|
541 |
+
|
542 |
+
@abstractmethod
|
543 |
+
def apply(
|
544 |
+
self,
|
545 |
+
state: ConstraintStateType,
|
546 |
+
class_log_probabilities: torch.Tensor,
|
547 |
+
) -> torch.Tensor:
|
548 |
+
raise NotImplementedError
|
549 |
+
|
550 |
+
@staticmethod
|
551 |
+
def _copy_state(
|
552 |
+
state: ConstraintStateType,
|
553 |
+
batch_size: int,
|
554 |
+
beam_size: int,
|
555 |
+
last_backpointer: Optional[torch.Tensor] = None,
|
556 |
+
) -> ConstraintStateType:
|
557 |
+
"""
|
558 |
+
Copies the `state` . This method copies the data in `state` using `copy.deepcopy()`. If this
|
559 |
+
is not appropriate for your constraint, you will need to implement the copying yourself.
|
560 |
+
"""
|
561 |
+
new_state = []
|
562 |
+
for i in range(batch_size):
|
563 |
+
batch_state = []
|
564 |
+
for j in range(beam_size):
|
565 |
+
if last_backpointer is None:
|
566 |
+
# This is the first prediction, so the backpointer is 0
|
567 |
+
backpointer = 0
|
568 |
+
else:
|
569 |
+
backpointer = last_backpointer[i, j].item()
|
570 |
+
batch_state.append(copy.deepcopy(state[i][backpointer])) # type: ignore
|
571 |
+
new_state.append(batch_state)
|
572 |
+
return new_state
|
573 |
+
|
574 |
+
def update_state(
|
575 |
+
self,
|
576 |
+
state: ConstraintStateType,
|
577 |
+
last_prediction: torch.Tensor,
|
578 |
+
last_backpointer: Optional[torch.Tensor] = None,
|
579 |
+
) -> ConstraintStateType:
|
580 |
+
batch_size, beam_size = last_prediction.size()
|
581 |
+
new_state = self._copy_state(state, batch_size, beam_size, last_backpointer)
|
582 |
+
return self._update_state(new_state, last_prediction)
|
583 |
+
|
584 |
+
@abstractmethod
|
585 |
+
def _update_state(
|
586 |
+
self,
|
587 |
+
state: ConstraintStateType,
|
588 |
+
last_prediction: torch.Tensor,
|
589 |
+
) -> ConstraintStateType:
|
590 |
+
raise NotImplementedError
|
591 |
+
|
592 |
+
|
593 |
+
class RepeatedNGramBlockingConstraint(Constraint):
|
594 |
+
def __init__(self, ngram_size: int, **kwargs) -> None:
|
595 |
+
super().__init__(**kwargs)
|
596 |
+
self.ngram_size = ngram_size
|
597 |
+
|
598 |
+
def init_state(
|
599 |
+
self,
|
600 |
+
batch_size: int,
|
601 |
+
) -> ConstraintStateType:
|
602 |
+
return [[{"seen_ngrams": {}, "current_prefix": []}] for _ in range(batch_size)]
|
603 |
+
|
604 |
+
def apply(
|
605 |
+
self,
|
606 |
+
state: ConstraintStateType,
|
607 |
+
class_log_probabilities: torch.Tensor,
|
608 |
+
) -> torch.Tensor:
|
609 |
+
for i, batch in enumerate(state):
|
610 |
+
for j, beam in enumerate(batch):
|
611 |
+
current_prefix = tuple(beam["current_prefix"])
|
612 |
+
seen_ngrams = beam["seen_ngrams"]
|
613 |
+
try:
|
614 |
+
disallowed_indices = seen_ngrams[current_prefix]
|
615 |
+
class_log_probabilities[i, j, disallowed_indices] = torch.finfo(
|
616 |
+
class_log_probabilities.dtype
|
617 |
+
).min
|
618 |
+
except KeyError:
|
619 |
+
# We have not seen this prefix before, so there is no index
|
620 |
+
# that needs to be blocked
|
621 |
+
pass
|
622 |
+
return class_log_probabilities
|
623 |
+
|
624 |
+
def _update_state(
|
625 |
+
self,
|
626 |
+
state: ConstraintStateType,
|
627 |
+
last_prediction: torch.Tensor,
|
628 |
+
) -> ConstraintStateType:
|
629 |
+
for i, batch in enumerate(state):
|
630 |
+
for j, beam in enumerate(batch):
|
631 |
+
prediction = last_prediction[i, j].item()
|
632 |
+
prefix = beam["current_prefix"]
|
633 |
+
seen_ngrams = beam["seen_ngrams"]
|
634 |
+
|
635 |
+
if len(prefix) == self.ngram_size - 1:
|
636 |
+
# This is a new ngram that we have to remember
|
637 |
+
if tuple(prefix) not in seen_ngrams:
|
638 |
+
seen_ngrams[tuple(prefix)] = []
|
639 |
+
seen_ngrams[tuple(prefix)].append(prediction)
|
640 |
+
|
641 |
+
# Create the new prefix, removing the oldest index if the prefix
|
642 |
+
# is too long
|
643 |
+
prefix.append(prediction)
|
644 |
+
if len(prefix) == self.ngram_size:
|
645 |
+
prefix.pop(0)
|
646 |
+
return state
|
647 |
+
|
648 |
+
|
649 |
+
class BeamSearch:
|
650 |
+
"""
|
651 |
+
Implements the beam search algorithm for decoding the most likely sequences.
|
652 |
+
|
653 |
+
:param end_index: The index of the "stop" or "end" token in the vocabulary. Usually the EOS token ID.
|
654 |
+
|
655 |
+
:param max_steps: The maximum number of decoding steps to take, i.e. the maximum length
|
656 |
+
of the predicted sequences.
|
657 |
+
|
658 |
+
:param beam_size: The width of the beam used.
|
659 |
+
|
660 |
+
:param per_node_beam_size: The maximum number of candidates to consider per node, at each step in the search.
|
661 |
+
If not given, this just defaults to `beam_size`. Setting this parameter
|
662 |
+
to a number smaller than `beam_size` may give better results, as it can introduce
|
663 |
+
more diversity into the search. See
|
664 |
+
[*Beam Search Strategies for Neural Machine Translation*, Freitag and Al-Onaizan, 2017]
|
665 |
+
(https://api.semanticscholar.org/CorpusID:2229477).
|
666 |
+
|
667 |
+
:param sampler: An optional `Sampler` which is used to pick next candidate nodes and beams.
|
668 |
+
If not specified, `DeterministicSampler` will be used, which just takes the
|
669 |
+
`per_node_beam_size` most likely nodes and the `beam_size` most likely beams.
|
670 |
+
|
671 |
+
Using the [`GumbelSampler`](#gumbelsampler), on the other hand, will give you
|
672 |
+
[Stochastic Beam Search](https://api.semanticscholar.org/CorpusID:76662039).
|
673 |
+
|
674 |
+
:param min_steps: The minimum number of decoding steps to take, i.e. the minimum length of
|
675 |
+
the predicted sequences. This does not include the start or end tokens. If `None`,
|
676 |
+
no minimum is enforced.
|
677 |
+
|
678 |
+
:param final_sequence_scorer: An optional `FinalSequenceScorer` which is used to score the final generated sequences.
|
679 |
+
The output from this module is what is returned by the `search` method. If not
|
680 |
+
specified, `SequenceLogProbabilityScorer` will be used, which scores the sequences
|
681 |
+
by the sum of the token log probabilities.
|
682 |
+
|
683 |
+
:param constraints: An optional list of `Constraint`s which should be applied during beam search. If not
|
684 |
+
provided, no constraints will be enforced.
|
685 |
+
|
686 |
+
"""
|
687 |
+
|
688 |
+
def __init__(
|
689 |
+
self,
|
690 |
+
end_index: int,
|
691 |
+
*,
|
692 |
+
max_steps: int = 50,
|
693 |
+
beam_size: int = 10,
|
694 |
+
per_node_beam_size: Optional[int] = None,
|
695 |
+
sampler: Optional[Sampler] = None,
|
696 |
+
min_steps: Optional[int] = None,
|
697 |
+
final_sequence_scorer: Optional[FinalSequenceScorer] = None,
|
698 |
+
constraints: Optional[List[Constraint]] = None,
|
699 |
+
) -> None:
|
700 |
+
if not max_steps > 0:
|
701 |
+
raise ValueError("max_steps must be positive")
|
702 |
+
if not beam_size > 0:
|
703 |
+
raise ValueError("beam_size must be positive")
|
704 |
+
if per_node_beam_size is not None and not per_node_beam_size > 0:
|
705 |
+
raise ValueError("per_node_beam_size must be positive")
|
706 |
+
if min_steps is not None:
|
707 |
+
if not min_steps >= 0:
|
708 |
+
raise ValueError("min_steps must be non-negative")
|
709 |
+
if not min_steps <= max_steps:
|
710 |
+
raise ValueError("min_steps must be less than or equal to max_steps")
|
711 |
+
|
712 |
+
self._end_index = end_index
|
713 |
+
self.max_steps = max_steps
|
714 |
+
self.beam_size = beam_size
|
715 |
+
self.per_node_beam_size = per_node_beam_size or beam_size
|
716 |
+
self.sampler = sampler or DeterministicSampler()
|
717 |
+
self.min_steps = min_steps or 0
|
718 |
+
self.final_sequence_scorer = final_sequence_scorer or SequenceLogProbabilityScorer()
|
719 |
+
self.constraints = constraints or []
|
720 |
+
|
721 |
+
@staticmethod
|
722 |
+
def _reconstruct_sequences(predictions, backpointers):
|
723 |
+
# Reconstruct the sequences.
|
724 |
+
# shape: [(batch_size, beam_size, 1)]
|
725 |
+
reconstructed_predictions = [predictions[-1].unsqueeze(2)]
|
726 |
+
|
727 |
+
if not backpointers:
|
728 |
+
return reconstructed_predictions
|
729 |
+
|
730 |
+
# shape: (batch_size, beam_size)
|
731 |
+
cur_backpointers = backpointers[-1]
|
732 |
+
|
733 |
+
for timestep in range(len(predictions) - 2, 0, -1):
|
734 |
+
# shape: (batch_size, beam_size, 1)
|
735 |
+
cur_preds = predictions[timestep].gather(1, cur_backpointers).unsqueeze(2)
|
736 |
+
|
737 |
+
reconstructed_predictions.append(cur_preds)
|
738 |
+
|
739 |
+
# shape: (batch_size, beam_size)
|
740 |
+
cur_backpointers = backpointers[timestep - 1].gather(1, cur_backpointers)
|
741 |
+
|
742 |
+
# shape: (batch_size, beam_size, 1)
|
743 |
+
final_preds = predictions[0].gather(1, cur_backpointers).unsqueeze(2)
|
744 |
+
|
745 |
+
reconstructed_predictions.append(final_preds)
|
746 |
+
|
747 |
+
return reconstructed_predictions
|
748 |
+
|
749 |
+
def search(
|
750 |
+
self,
|
751 |
+
start_predictions: torch.Tensor,
|
752 |
+
start_state: StateType,
|
753 |
+
step: StepFunctionType,
|
754 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
755 |
+
"""
|
756 |
+
Given a starting state and a step function, apply beam search to find the
|
757 |
+
most likely target sequences.
|
758 |
+
|
759 |
+
Returns a tuple of `(predictions, final_scores)`, where `predictions`
|
760 |
+
has shape `(batch_size, beam_size, max_steps)` and `final_scores`
|
761 |
+
has shape `(batch_size, beam_size)`.
|
762 |
+
|
763 |
+
.. note::
|
764 |
+
If your step function returns `-inf` for some log probabilities
|
765 |
+
(like if you're using a masked log-softmax) then some of the "best"
|
766 |
+
sequences returned may also have `-inf` log probability. Specifically
|
767 |
+
this happens when the beam size is smaller than the number of actions
|
768 |
+
with finite log probability (non-zero probability) returned by the step function.
|
769 |
+
Therefore if you're using a mask you may want to check the results from `search`
|
770 |
+
and potentially discard sequences with non-finite log probability.
|
771 |
+
|
772 |
+
:param start_predictions: A tensor containing the initial predictions with shape `(batch_size,)`.
|
773 |
+
Usually the initial predictions are just the index of the "start" token
|
774 |
+
in the target vocabulary.
|
775 |
+
|
776 |
+
:param start_state: The initial state passed to the `step` function. Each value of the state dict
|
777 |
+
should be a tensor of shape `(batch_size, *)`, where `*` means any other
|
778 |
+
number of dimensions.
|
779 |
+
|
780 |
+
:param step: A function that is responsible for computing the next most likely tokens,
|
781 |
+
given the current state and the predictions from the last time step.
|
782 |
+
The function should accept two or three arguments:
|
783 |
+
|
784 |
+
- a tensor of shape `(group_size,)` or representing the index of the predicted
|
785 |
+
tokens from the last time step,
|
786 |
+
- the current state, a `StateType`, and
|
787 |
+
- optionally, the timestep, an `int`.
|
788 |
+
|
789 |
+
The `group_size` will be `batch_size * beam_size`, except in the initial
|
790 |
+
step, for which it will just be `batch_size`.
|
791 |
+
|
792 |
+
The function is expected to return a tuple, where the first element
|
793 |
+
is a tensor of shape `(group_size, vocab_size)` containing
|
794 |
+
the log probabilities of the tokens for the next step, and the second
|
795 |
+
element is the updated state. The tensor in the state should have shape
|
796 |
+
`(group_size, *)`, where `*` means any other number of dimensions.
|
797 |
+
|
798 |
+
"""
|
799 |
+
step_signature = signature(step)
|
800 |
+
if len(step_signature.parameters) < 3:
|
801 |
+
# If the step function we're given does not take the time step argument, wrap it
|
802 |
+
# in one that does.
|
803 |
+
old_step = cast(StepFunctionTypeNoTimestep, step)
|
804 |
+
|
805 |
+
def new_step(last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], time_step: int):
|
806 |
+
del time_step
|
807 |
+
return old_step(last_predictions, state)
|
808 |
+
|
809 |
+
return self._search(start_predictions, start_state, new_step)
|
810 |
+
else:
|
811 |
+
return self._search(start_predictions, start_state, cast(StepFunctionTypeWithTimestep, step))
|
812 |
+
|
813 |
+
def _search(
|
814 |
+
self,
|
815 |
+
start_predictions: torch.Tensor,
|
816 |
+
start_state: StateType,
|
817 |
+
step: StepFunctionTypeWithTimestep,
|
818 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
819 |
+
batch_size = start_predictions.size()[0]
|
820 |
+
|
821 |
+
# List of (batch_size, beam_size) tensors. One for each time step. Does not
|
822 |
+
# include the start symbols, which are implicit.
|
823 |
+
predictions: List[torch.Tensor] = []
|
824 |
+
|
825 |
+
# List of (batch_size, beam_size) tensors. One for each time step. None for
|
826 |
+
# the first. Stores the index n for the parent prediction, i.e.
|
827 |
+
# predictions[t-1][i][n], that it came from.
|
828 |
+
backpointers: List[torch.Tensor] = []
|
829 |
+
|
830 |
+
constraint_states = [constraint.init_state(batch_size) for constraint in self.constraints]
|
831 |
+
|
832 |
+
# Calculate the first timestep. This is done outside the main loop
|
833 |
+
# because we are going from a single decoder input (the output from the
|
834 |
+
# encoder) to the top `beam_size` decoder outputs. On the other hand,
|
835 |
+
# within the main loop we are going from the `beam_size` elements of the
|
836 |
+
# beam to `beam_size`^2 candidates from which we will select the top
|
837 |
+
# `beam_size` elements for the next iteration.
|
838 |
+
# shape: (batch_size, num_classes)
|
839 |
+
start_class_log_probabilities, state = step(start_predictions, start_state, 0)
|
840 |
+
|
841 |
+
num_classes = start_class_log_probabilities.size()[1]
|
842 |
+
|
843 |
+
# Make sure `per_node_beam_size` is not larger than `num_classes`.
|
844 |
+
if self.per_node_beam_size > num_classes:
|
845 |
+
raise ValueError(
|
846 |
+
f"Vocab size ({num_classes:d}) too small "
|
847 |
+
f"relative to per_node_beam_size ({self.per_node_beam_size:d}).\n"
|
848 |
+
f"Please decrease beam_size or per_node_beam_size."
|
849 |
+
)
|
850 |
+
|
851 |
+
sampler_state = self.sampler.init_state(start_class_log_probabilities, batch_size, num_classes)
|
852 |
+
|
853 |
+
# Apply all constraints.
|
854 |
+
if self.constraints:
|
855 |
+
# shape: (batch_size, 1, num_classes)
|
856 |
+
expanded_start_class_log_probabilities = start_class_log_probabilities.unsqueeze(1)
|
857 |
+
for constraint, constraint_state in zip(self.constraints, constraint_states):
|
858 |
+
expanded_start_class_log_probabilities = constraint.apply(
|
859 |
+
constraint_state, expanded_start_class_log_probabilities
|
860 |
+
)
|
861 |
+
start_class_log_probabilities = expanded_start_class_log_probabilities.squeeze(1)
|
862 |
+
|
863 |
+
# Prevent selecting the end symbol if there is any min_steps constraint
|
864 |
+
if self.min_steps >= 1:
|
865 |
+
start_class_log_probabilities[:, self._end_index] = torch.finfo(
|
866 |
+
start_class_log_probabilities.dtype
|
867 |
+
).min
|
868 |
+
|
869 |
+
# Get the initial predicted classed and their log probabilities.
|
870 |
+
# shape: (batch_size, beam_size), (batch_size, beam_size)
|
871 |
+
(
|
872 |
+
start_top_log_probabilities,
|
873 |
+
start_predicted_classes,
|
874 |
+
sampler_state,
|
875 |
+
) = self.sampler.sample_beams(start_class_log_probabilities, self.beam_size, sampler_state)
|
876 |
+
|
877 |
+
if self.beam_size == 1 and (start_predicted_classes == self._end_index).all():
|
878 |
+
warnings.warn(
|
879 |
+
"Empty sequences predicted. You may want to increase the beam size or ensure "
|
880 |
+
"your step function is working properly.",
|
881 |
+
RuntimeWarning,
|
882 |
+
)
|
883 |
+
return start_predicted_classes.unsqueeze(-1), start_top_log_probabilities
|
884 |
+
|
885 |
+
# The log probabilities for the last time step.
|
886 |
+
# shape: (batch_size, beam_size)
|
887 |
+
last_log_probabilities = start_top_log_probabilities
|
888 |
+
|
889 |
+
# shape: [(batch_size, beam_size)]
|
890 |
+
predictions.append(start_predicted_classes)
|
891 |
+
|
892 |
+
# Log probability tensor that mandates that the end token is selected.
|
893 |
+
# shape: (batch_size * beam_size, num_classes)
|
894 |
+
log_probs_after_end = start_class_log_probabilities.new_full(
|
895 |
+
(batch_size * self.beam_size, num_classes),
|
896 |
+
torch.finfo(start_class_log_probabilities.dtype).min,
|
897 |
+
)
|
898 |
+
log_probs_after_end[:, self._end_index] = 0.0
|
899 |
+
|
900 |
+
# Set the same state for each element in the beam.
|
901 |
+
self._update_initial_state(state, batch_size)
|
902 |
+
|
903 |
+
for i, constraint in enumerate(self.constraints):
|
904 |
+
constraint_states[i] = constraint.update_state(constraint_states[i], start_predicted_classes)
|
905 |
+
|
906 |
+
for timestep in range(self.max_steps - 1):
|
907 |
+
# shape: (batch_size * beam_size,)
|
908 |
+
last_predictions = predictions[-1].reshape(batch_size * self.beam_size)
|
909 |
+
|
910 |
+
# If every predicted token from the last step is `self._end_index`,
|
911 |
+
# then we can stop early.
|
912 |
+
if (last_predictions == self._end_index).all():
|
913 |
+
break
|
914 |
+
# Take a step. This get the predicted log probs of the next classes
|
915 |
+
# and updates the state.
|
916 |
+
# shape: (batch_size * beam_size, num_classes)
|
917 |
+
class_log_probabilities, state = step(last_predictions, state, timestep + 1)
|
918 |
+
|
919 |
+
# Apply all constraints.
|
920 |
+
if self.constraints:
|
921 |
+
# shape: (batch_size, beam_size, num_classes)
|
922 |
+
reshaped_class_log_probabilities = class_log_probabilities.view(batch_size, self.beam_size, -1)
|
923 |
+
for constraint, constraint_state in zip(self.constraints, constraint_states):
|
924 |
+
reshaped_class_log_probabilities = constraint.apply(
|
925 |
+
constraint_state, reshaped_class_log_probabilities
|
926 |
+
)
|
927 |
+
# shape: (batch_size * beam_size, num_classes)
|
928 |
+
class_log_probabilities = reshaped_class_log_probabilities.view(batch_size * self.beam_size, -1)
|
929 |
+
|
930 |
+
# The `timestep`-th iteration of the for loop is generating the `timestep + 2`-th token
|
931 |
+
# of the sequence (because `timestep` is 0-indexed and we generated the first token
|
932 |
+
# before the for loop). Here we block the end index if the search is not allowed to
|
933 |
+
# terminate on this iteration.
|
934 |
+
if timestep + 2 <= self.min_steps:
|
935 |
+
class_log_probabilities[:, self._end_index] = torch.finfo(class_log_probabilities.dtype).min
|
936 |
+
|
937 |
+
# shape: (batch_size * beam_size, num_classes)
|
938 |
+
last_predictions_expanded = last_predictions.unsqueeze(-1).expand(
|
939 |
+
batch_size * self.beam_size, num_classes
|
940 |
+
)
|
941 |
+
|
942 |
+
# Here we are finding any beams where we predicted the end token in
|
943 |
+
# the previous timestep and replacing the distribution with a
|
944 |
+
# one-hot distribution, forcing the beam to predict the end token
|
945 |
+
# this timestep as well.
|
946 |
+
# shape: (batch_size * beam_size, num_classes)
|
947 |
+
cleaned_log_probabilities = torch.where(
|
948 |
+
last_predictions_expanded == self._end_index,
|
949 |
+
log_probs_after_end,
|
950 |
+
class_log_probabilities,
|
951 |
+
)
|
952 |
+
|
953 |
+
# shape (both): (batch_size * beam_size, per_node_beam_size)
|
954 |
+
top_log_probabilities, predicted_classes, sampler_state = self.sampler.sample_nodes(
|
955 |
+
cleaned_log_probabilities, self.per_node_beam_size, sampler_state
|
956 |
+
)
|
957 |
+
|
958 |
+
# Here we expand the last log probabilities to (batch_size * beam_size, per_node_beam_size)
|
959 |
+
# so that we can add them to the current log probs for this timestep.
|
960 |
+
# This lets us maintain the log probability of each element on the beam.
|
961 |
+
# shape: (batch_size * beam_size, per_node_beam_size)
|
962 |
+
expanded_last_log_probabilities = (
|
963 |
+
last_log_probabilities.unsqueeze(2)
|
964 |
+
.expand(batch_size, self.beam_size, self.per_node_beam_size)
|
965 |
+
.reshape(batch_size * self.beam_size, self.per_node_beam_size)
|
966 |
+
)
|
967 |
+
|
968 |
+
# shape: (batch_size * beam_size, per_node_beam_size)
|
969 |
+
summed_top_log_probabilities = top_log_probabilities + expanded_last_log_probabilities
|
970 |
+
|
971 |
+
# shape: (batch_size, beam_size * per_node_beam_size)
|
972 |
+
reshaped_summed = summed_top_log_probabilities.reshape(
|
973 |
+
batch_size, self.beam_size * self.per_node_beam_size
|
974 |
+
)
|
975 |
+
|
976 |
+
# shape: (batch_size, beam_size * per_node_beam_size)
|
977 |
+
reshaped_predicted_classes = predicted_classes.reshape(
|
978 |
+
batch_size, self.beam_size * self.per_node_beam_size
|
979 |
+
)
|
980 |
+
|
981 |
+
# Keep only the top `beam_size` beam indices.
|
982 |
+
# shape (both): (batch_size, beam_size)
|
983 |
+
(
|
984 |
+
restricted_beam_log_probs,
|
985 |
+
restricted_beam_indices,
|
986 |
+
sampler_state,
|
987 |
+
) = self.sampler.sample_beams(reshaped_summed, self.beam_size, sampler_state)
|
988 |
+
|
989 |
+
# Use the beam indices to extract the corresponding classes.
|
990 |
+
# shape: (batch_size, beam_size)
|
991 |
+
restricted_predicted_classes = reshaped_predicted_classes.gather(1, restricted_beam_indices)
|
992 |
+
|
993 |
+
predictions.append(restricted_predicted_classes)
|
994 |
+
|
995 |
+
# shape: (batch_size, beam_size)
|
996 |
+
last_log_probabilities = restricted_beam_log_probs
|
997 |
+
|
998 |
+
# The beam indices come from a `beam_size * per_node_beam_size` dimension where the
|
999 |
+
# indices with a common ancestor are grouped together. Hence
|
1000 |
+
# dividing by per_node_beam_size gives the ancestor. (Note that this is integer
|
1001 |
+
# division as the tensor is a LongTensor.)
|
1002 |
+
# shape: (batch_size, beam_size)
|
1003 |
+
backpointer = torch.divide(restricted_beam_indices, self.per_node_beam_size, rounding_mode="trunc")
|
1004 |
+
backpointers.append(backpointer)
|
1005 |
+
|
1006 |
+
# Keep only the pieces of the state tensors corresponding to the
|
1007 |
+
# ancestors created this iteration.
|
1008 |
+
self._update_state(state, backpointer)
|
1009 |
+
|
1010 |
+
for i, constraint in enumerate(self.constraints):
|
1011 |
+
constraint_states[i] = constraint.update_state(
|
1012 |
+
constraint_states[i], restricted_predicted_classes, last_backpointer=backpointer
|
1013 |
+
)
|
1014 |
+
|
1015 |
+
# Warn about "-inf" log probabilities if not using any constraints (negligible
|
1016 |
+
# log probabilities are expected when using constraints).
|
1017 |
+
if not self.constraints and (
|
1018 |
+
not torch.isfinite(last_log_probabilities).all()
|
1019 |
+
or (last_log_probabilities == torch.finfo(last_log_probabilities.dtype).min).any()
|
1020 |
+
):
|
1021 |
+
warnings.warn(
|
1022 |
+
"Negligible log probabilities encountered ('-inf' or equivalent). "
|
1023 |
+
"Some final sequences may not make sense. "
|
1024 |
+
"This can happen when the beam size is larger than the number of valid (non-zero "
|
1025 |
+
"probability) transitions that the step function produces.",
|
1026 |
+
RuntimeWarning,
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
reconstructed_predictions = self._reconstruct_sequences(predictions, backpointers)
|
1030 |
+
|
1031 |
+
# shape: (batch_size, beam_size, max_steps)
|
1032 |
+
all_predictions = torch.cat(list(reversed(reconstructed_predictions)), 2)
|
1033 |
+
|
1034 |
+
# Calculate the final sequence scores
|
1035 |
+
# shape: (batch_size, beam_size)
|
1036 |
+
final_scores = self.final_sequence_scorer.score(all_predictions, last_log_probabilities, self._end_index)
|
1037 |
+
|
1038 |
+
# Sort the sequences based on the final scores so the best scoring
|
1039 |
+
# sequence is at index 0
|
1040 |
+
sorted_final_scores, sorted_indices = torch.sort(final_scores, dim=1, descending=True)
|
1041 |
+
sorted_all_predictions = torch.gather(
|
1042 |
+
all_predictions, 1, sorted_indices.unsqueeze(-1).expand_as(all_predictions)
|
1043 |
+
)
|
1044 |
+
|
1045 |
+
return sorted_all_predictions, sorted_final_scores
|
1046 |
+
|
1047 |
+
def _update_initial_state(self, state: StateType, batch_size: int):
|
1048 |
+
"""
|
1049 |
+
Expand tensors in a state dictionary from `(batch_size, *)` to `(batch_size * beam_size, *)`.
|
1050 |
+
"""
|
1051 |
+
for key, state_tensor in state.items():
|
1052 |
+
if state_tensor is None:
|
1053 |
+
continue
|
1054 |
+
# shape: (batch_size * beam_size, *)
|
1055 |
+
_, *last_dims = state_tensor.size()
|
1056 |
+
state[key] = (
|
1057 |
+
state_tensor.unsqueeze(1)
|
1058 |
+
.expand(batch_size, self.beam_size, *last_dims)
|
1059 |
+
.reshape(batch_size * self.beam_size, *last_dims)
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
def _update_state(self, state: StateType, backpointer: torch.Tensor):
|
1063 |
+
batch_size = backpointer.size()[0]
|
1064 |
+
|
1065 |
+
for key, state_tensor in state.items():
|
1066 |
+
if state_tensor is None:
|
1067 |
+
continue
|
1068 |
+
_, *last_dims = state_tensor.size()
|
1069 |
+
# shape: (batch_size, beam_size, *)
|
1070 |
+
expanded_backpointer = backpointer.view(batch_size, self.beam_size, *([1] * len(last_dims))).expand(
|
1071 |
+
batch_size, self.beam_size, *last_dims
|
1072 |
+
)
|
1073 |
+
# shape: (batch_size * beam_size, *)
|
1074 |
+
state[key] = (
|
1075 |
+
state_tensor.reshape(batch_size, self.beam_size, *last_dims)
|
1076 |
+
.gather(1, expanded_backpointer)
|
1077 |
+
.reshape(batch_size * self.beam_size, *last_dims)
|
1078 |
+
)
|
model/checkpoint.py
ADDED
@@ -0,0 +1,1732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
import pickle
|
5 |
+
import shutil
|
6 |
+
import traceback
|
7 |
+
from abc import ABCMeta, abstractmethod
|
8 |
+
from collections import defaultdict
|
9 |
+
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
|
10 |
+
from contextlib import contextmanager
|
11 |
+
from copy import deepcopy
|
12 |
+
from dataclasses import dataclass, field, replace
|
13 |
+
from functools import reduce
|
14 |
+
from multiprocessing import shared_memory
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Any, Dict, Generator, List, Optional, Set, Tuple, cast
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.distributed.checkpoint as dist_cp
|
21 |
+
import torch.multiprocessing as mp
|
22 |
+
from packaging import version
|
23 |
+
from torch.distributed import _remote_device
|
24 |
+
from torch.distributed._shard._utils import narrow_tensor_by_index
|
25 |
+
from torch.distributed._shard.metadata import ShardMetadata
|
26 |
+
from torch.distributed._shard.sharded_tensor import ShardedTensor
|
27 |
+
from torch.distributed.checkpoint.filesystem import WriteResult, _StorageInfo
|
28 |
+
from torch.distributed.checkpoint.metadata import Metadata, MetadataIndex
|
29 |
+
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
|
30 |
+
from torch.distributed.checkpoint.planner import LoadItemType, ReadItem
|
31 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
32 |
+
from torch.distributed.fsdp import StateDictType
|
33 |
+
from torch.distributed.fsdp.api import (
|
34 |
+
FullOptimStateDictConfig,
|
35 |
+
FullStateDictConfig,
|
36 |
+
ShardedOptimStateDictConfig,
|
37 |
+
ShardedStateDictConfig,
|
38 |
+
)
|
39 |
+
from torch.futures import Future
|
40 |
+
|
41 |
+
try:
|
42 |
+
from torch.distributed.fsdp.flat_param import FlatParamHandle # type: ignore
|
43 |
+
except ModuleNotFoundError:
|
44 |
+
from torch.distributed.fsdp._flat_param import FlatParamHandle # type: ignore
|
45 |
+
|
46 |
+
from olmo import util
|
47 |
+
|
48 |
+
from .aliases import PathOrStr
|
49 |
+
from .config import BaseConfig, ShardedCheckpointerType, TrainConfig
|
50 |
+
from .exceptions import OLMoCheckpointError
|
51 |
+
from .optim import Optimizer, fix_optim_state_dict
|
52 |
+
from .safetensors_util import safetensors_file_to_state_dict
|
53 |
+
from .torch_util import (
|
54 |
+
barrier,
|
55 |
+
gc_cuda,
|
56 |
+
get_fs_local_rank,
|
57 |
+
get_global_rank,
|
58 |
+
get_world_size,
|
59 |
+
)
|
60 |
+
from .util import (
|
61 |
+
_get_s3_client,
|
62 |
+
default_thread_count,
|
63 |
+
dir_is_empty,
|
64 |
+
get_bytes_range,
|
65 |
+
get_progress_bar,
|
66 |
+
resource_path,
|
67 |
+
upload,
|
68 |
+
wait_for,
|
69 |
+
)
|
70 |
+
|
71 |
+
__all__ = [
|
72 |
+
"save_fsdp_model_and_optim_state",
|
73 |
+
"load_fsdp_model_and_optim_state",
|
74 |
+
"load_fsdp_optim_state",
|
75 |
+
"save_state_dict",
|
76 |
+
"load_state_dict",
|
77 |
+
"load_model_state",
|
78 |
+
"RemoteFileSystemWriter",
|
79 |
+
"RemoteFileSystemReader",
|
80 |
+
"Checkpointer",
|
81 |
+
"FullCheckpointer",
|
82 |
+
"TorchNewStyleShardedCheckpointer",
|
83 |
+
"TorchLegacyShardedCheckpointer",
|
84 |
+
"LocalShardedCheckpointer",
|
85 |
+
"build_sharded_checkpointer",
|
86 |
+
]
|
87 |
+
|
88 |
+
|
89 |
+
log = logging.getLogger(__name__)
|
90 |
+
|
91 |
+
MODEL_AND_OPTIM_FOLDER = "model_and_optim"
|
92 |
+
|
93 |
+
|
94 |
+
def save_fsdp_model_and_optim_state(
|
95 |
+
checkpoint_dir: PathOrStr,
|
96 |
+
fsdp_model: FSDP,
|
97 |
+
optim: Optimizer,
|
98 |
+
*,
|
99 |
+
upload_to: Optional[str] = None,
|
100 |
+
save_overwrite: bool = False,
|
101 |
+
):
|
102 |
+
"""
|
103 |
+
Use this to save a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
|
104 |
+
functions. This should be used during distributed training and should be called by all ranks.
|
105 |
+
|
106 |
+
:param checkpoint_dir: The directory to save to.
|
107 |
+
:param fsdp_model: The FSDP model.
|
108 |
+
:param optim: The FSDP model's optimizer.
|
109 |
+
:param upload_to: Optional, a remote "directory" to upload the checkpoint files to.
|
110 |
+
:param save_overwrite: Overwrite existing files.
|
111 |
+
|
112 |
+
:raises FileExistsError: If a model and optim checkpoint already exists in ``checkpoint_dir`` and ``save_overwrite=False``.
|
113 |
+
"""
|
114 |
+
checkpoint_dir = Path(checkpoint_dir)
|
115 |
+
target_dir = checkpoint_dir / MODEL_AND_OPTIM_FOLDER
|
116 |
+
if save_overwrite:
|
117 |
+
if get_fs_local_rank() == 0:
|
118 |
+
shutil.rmtree(target_dir, ignore_errors=True)
|
119 |
+
elif not dir_is_empty(target_dir):
|
120 |
+
raise FileExistsError(target_dir)
|
121 |
+
barrier()
|
122 |
+
if get_fs_local_rank() == 0:
|
123 |
+
target_dir.mkdir(exist_ok=True, parents=True)
|
124 |
+
barrier()
|
125 |
+
with FSDP.state_dict_type(
|
126 |
+
fsdp_model,
|
127 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
128 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
129 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
130 |
+
):
|
131 |
+
model_and_optim_state = {
|
132 |
+
"model": fsdp_model.state_dict(),
|
133 |
+
"optim": FSDP.optim_state_dict(fsdp_model, optim),
|
134 |
+
}
|
135 |
+
dist_cp.save_state_dict(
|
136 |
+
model_and_optim_state,
|
137 |
+
RemoteFileSystemWriter(
|
138 |
+
target_dir,
|
139 |
+
upload_to=None if upload_to is None else f"{upload_to.rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}",
|
140 |
+
save_overwrite=save_overwrite,
|
141 |
+
),
|
142 |
+
)
|
143 |
+
|
144 |
+
|
145 |
+
def load_fsdp_model_and_optim_state(
|
146 |
+
checkpoint_dir: PathOrStr,
|
147 |
+
fsdp_model: FSDP,
|
148 |
+
optim: Optimizer,
|
149 |
+
*,
|
150 |
+
local_cache: Optional[PathOrStr] = None,
|
151 |
+
load_optimizer_state: bool = True,
|
152 |
+
):
|
153 |
+
"""
|
154 |
+
Use this to load a state dict for an FSDP model and its optimizer via :module:`torch.distributed.checkpoint`
|
155 |
+
functions. This should be used during distributed training and should be called by all ranks.
|
156 |
+
|
157 |
+
:param checkpoint_dir: The checkpoint directory to load from. This can be a local or remote directory.
|
158 |
+
:param fsdp_model: The FSDP model.
|
159 |
+
:param optim: The FSDP model's optimizer.
|
160 |
+
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
|
161 |
+
remote "directory" but there might be a cached version of the same artifacts.
|
162 |
+
:param load_optimizer_state: Set to ``False`` to skip loading the optimizer state.
|
163 |
+
|
164 |
+
:raises FileNotFoundError: If the ``checkpoint_dir`` doesn't contain a model and optimizer checkpoint.
|
165 |
+
"""
|
166 |
+
load_path = str(checkpoint_dir).rstrip("/")
|
167 |
+
local_cache = None if local_cache is None else Path(local_cache)
|
168 |
+
with FSDP.state_dict_type(
|
169 |
+
fsdp_model,
|
170 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
171 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
172 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
173 |
+
):
|
174 |
+
# Load the model state dict in place.
|
175 |
+
log.info("Loading model state...")
|
176 |
+
model_state = {"model": fsdp_model.state_dict()}
|
177 |
+
dist_cp.load_state_dict(
|
178 |
+
model_state,
|
179 |
+
RemoteFileSystemReader(
|
180 |
+
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
|
181 |
+
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
|
182 |
+
),
|
183 |
+
)
|
184 |
+
fsdp_model.load_state_dict(model_state["model"])
|
185 |
+
|
186 |
+
if not load_optimizer_state:
|
187 |
+
return
|
188 |
+
|
189 |
+
# Load optim state dict in place.
|
190 |
+
log.info("Loading sharded optimizer state...")
|
191 |
+
optim_state = load_sharded_optimizer_state_dict(
|
192 |
+
model_state_dict=model_state["model"],
|
193 |
+
optimizer_key="optim",
|
194 |
+
storage_reader=RemoteFileSystemReader(
|
195 |
+
f"{load_path}/{MODEL_AND_OPTIM_FOLDER}",
|
196 |
+
local_cache=None if local_cache is None else local_cache / MODEL_AND_OPTIM_FOLDER,
|
197 |
+
),
|
198 |
+
)
|
199 |
+
del model_state
|
200 |
+
gc_cuda()
|
201 |
+
load_fsdp_optim_state(fsdp_model, optim, optim_state["optim"])
|
202 |
+
|
203 |
+
|
204 |
+
def load_fsdp_optim_state(fsdp_model: FSDP, optim: Optimizer, optim_state: Dict[str, Any]):
|
205 |
+
log.info("Flattening sharded optimizer state...")
|
206 |
+
# NOTE: Careful! The order of the these arguments has changed from 2.0 to 2.1... ¯\_(ツ)_/¯
|
207 |
+
if version.parse(torch.__version__) < version.parse("2.1.0"):
|
208 |
+
flattened_osd = FSDP.optim_state_dict_to_load(optim_state, fsdp_model, optim) # type: ignore
|
209 |
+
else:
|
210 |
+
flattened_osd = FSDP.optim_state_dict_to_load(fsdp_model, optim, optim_state) # type: ignore
|
211 |
+
del optim_state
|
212 |
+
gc.collect()
|
213 |
+
log.info("Loading flattened optimizer state...")
|
214 |
+
# Put optim state on CPU since `Optimizer.load_state_dict()` will create a deepcopy of the whole state dict,
|
215 |
+
# which takes up unnecessary GPU memory.
|
216 |
+
for state in flattened_osd["state"].values():
|
217 |
+
for k in state.keys():
|
218 |
+
v = state[k]
|
219 |
+
if isinstance(v, torch.Tensor):
|
220 |
+
state[k] = v.to(device="cpu")
|
221 |
+
gc_cuda()
|
222 |
+
optim.load_state_dict(fix_optim_state_dict(optim, flattened_osd))
|
223 |
+
|
224 |
+
|
225 |
+
def save_state_dict(
|
226 |
+
checkpoint_dir: PathOrStr,
|
227 |
+
fname: str,
|
228 |
+
state_dict: Dict[str, Any],
|
229 |
+
*,
|
230 |
+
upload_to: Optional[str] = None,
|
231 |
+
save_overwrite: bool = False,
|
232 |
+
synchronize: bool = True,
|
233 |
+
):
|
234 |
+
"""
|
235 |
+
Save a regular state dict to the file ``fname`` within ``checkpoint_dir`` using :func:`torch.save()`.
|
236 |
+
This can be used during distributed training or not. If during distributed training the ``fname`` should be unique
|
237 |
+
for each rank.
|
238 |
+
|
239 |
+
:param checkpoint_dir: The directory to save to.
|
240 |
+
:param fname: The target file within ``checkpoint_dir`` to save to. This should be a path relative to the ``checkpoint_dir``.
|
241 |
+
:param state_dict: The state dict to save.
|
242 |
+
:param upload_to: Optional, a remote "directory" to upload the file to.
|
243 |
+
:param save_overwrite: Overwrite existing files.
|
244 |
+
:param synchronize: If ``False``, don't do any distributed synchronization. Use this when only calling
|
245 |
+
this function from a single rank.
|
246 |
+
|
247 |
+
:raises FileExistsError: If the ``fname`` already exists within ``checkpoint_dir`` and ``save_overwrite=False``.
|
248 |
+
"""
|
249 |
+
checkpoint_dir = Path(checkpoint_dir)
|
250 |
+
target_path = checkpoint_dir / fname
|
251 |
+
if save_overwrite:
|
252 |
+
target_path.unlink(missing_ok=True)
|
253 |
+
elif target_path.is_file():
|
254 |
+
raise FileExistsError(target_path)
|
255 |
+
if synchronize:
|
256 |
+
barrier()
|
257 |
+
target_path.parent.mkdir(exist_ok=True, parents=True)
|
258 |
+
if synchronize:
|
259 |
+
barrier()
|
260 |
+
torch.save(state_dict, target_path)
|
261 |
+
if upload_to is not None:
|
262 |
+
upload_target = f"{upload_to.rstrip('/')}/{fname}"
|
263 |
+
log.info(f"Uploading {target_path} to {upload_target}...")
|
264 |
+
upload(target_path, upload_target, save_overwrite=save_overwrite)
|
265 |
+
|
266 |
+
|
267 |
+
def load_state_dict(
|
268 |
+
checkpoint_dir: PathOrStr,
|
269 |
+
fname: str,
|
270 |
+
*,
|
271 |
+
local_cache: Optional[PathOrStr] = None,
|
272 |
+
map_location: Optional[str] = None,
|
273 |
+
):
|
274 |
+
"""
|
275 |
+
Load a regular state dict from the file ``fname`` within ``checkpoint_dir`` using :func:`torch.load()`.
|
276 |
+
This can be used during distributed training or not.
|
277 |
+
|
278 |
+
:param checkpoint_dir: A local or remote checkpoint directory.
|
279 |
+
:param fname: The target file within the ``checkpoint_dir``. This should be a path relative to the ``checkpoint_dir``.
|
280 |
+
:param local_cache: A local cache of the checkpoint directory. Use this when the ``checkpoint_dir`` is a
|
281 |
+
remote "directory" but there might be a cached version of the same artifacts.
|
282 |
+
|
283 |
+
:raises FileNotFoundError: If ``fname`` doesn't exist in the ``checkpoint_dir`` or the local cache.
|
284 |
+
"""
|
285 |
+
if fname.endswith(".pt"):
|
286 |
+
# Try safetensors version first.
|
287 |
+
try:
|
288 |
+
path = resource_path(
|
289 |
+
str(checkpoint_dir).rstrip("/"), fname[:-2] + "safetensors", local_cache=local_cache
|
290 |
+
)
|
291 |
+
return safetensors_file_to_state_dict(path, map_location=map_location)
|
292 |
+
except FileNotFoundError:
|
293 |
+
pass
|
294 |
+
|
295 |
+
path = resource_path(str(checkpoint_dir).rstrip("/"), fname, local_cache=local_cache)
|
296 |
+
return torch.load(path, map_location=map_location)
|
297 |
+
|
298 |
+
|
299 |
+
def load_model_state(checkpoint_dir: PathOrStr, model: torch.nn.Module):
|
300 |
+
"""
|
301 |
+
Load model state from a distributed FSDP model checkpoint created from :func:`save_fsdp_model_and_optim_state()`.
|
302 |
+
Note that ``model`` should not be wrapped with FSDP.
|
303 |
+
"""
|
304 |
+
state_dict = {"model": model.state_dict()}
|
305 |
+
dist_cp.load_state_dict(
|
306 |
+
state_dict,
|
307 |
+
RemoteFileSystemReader(f"{str(checkpoint_dir).rstrip('/')}/{MODEL_AND_OPTIM_FOLDER}"),
|
308 |
+
no_dist=True,
|
309 |
+
)
|
310 |
+
model.load_state_dict(state_dict["model"])
|
311 |
+
|
312 |
+
|
313 |
+
class RemoteFileSystemWriter(dist_cp.FileSystemWriter):
|
314 |
+
"""
|
315 |
+
A subclass of :class:`~torch.distributed.checkpoint.FileSystemWriter` that can upload files
|
316 |
+
directly to a cloud bucket when ``upload_to`` is specified.
|
317 |
+
"""
|
318 |
+
|
319 |
+
def __init__(
|
320 |
+
self,
|
321 |
+
path: PathOrStr,
|
322 |
+
single_file_per_rank: bool = True,
|
323 |
+
sync_files: bool = True,
|
324 |
+
thread_count: Optional[int] = None,
|
325 |
+
per_thread_copy_ahead: int = 10_000_000,
|
326 |
+
upload_to: Optional[str] = None,
|
327 |
+
save_overwrite: bool = False,
|
328 |
+
) -> None:
|
329 |
+
if thread_count is not None and thread_count <= 0:
|
330 |
+
raise ValueError("thread count must be at least 1")
|
331 |
+
super().__init__(
|
332 |
+
path,
|
333 |
+
single_file_per_rank=single_file_per_rank,
|
334 |
+
sync_files=sync_files,
|
335 |
+
# NOTE: we default to 1 thread here instead of whatever `default_thread_count()`
|
336 |
+
# returns because uploading big checkpoint files with multiple threads causes
|
337 |
+
# boto3 to fail in weird ways.
|
338 |
+
thread_count=thread_count or 1,
|
339 |
+
per_thread_copy_ahead=per_thread_copy_ahead,
|
340 |
+
)
|
341 |
+
self.upload_to = None if upload_to is None else upload_to.rstrip("/")
|
342 |
+
self.save_overwrite = save_overwrite
|
343 |
+
|
344 |
+
def write_data(
|
345 |
+
self,
|
346 |
+
plan: dist_cp.SavePlan,
|
347 |
+
planner: dist_cp.SavePlanner,
|
348 |
+
) -> Future[List[WriteResult]]:
|
349 |
+
fut = super().write_data(plan, planner)
|
350 |
+
if self.upload_to is not None:
|
351 |
+
files_to_upload = set()
|
352 |
+
for write_result in fut.wait():
|
353 |
+
files_to_upload.add(write_result.storage_data.relative_path)
|
354 |
+
|
355 |
+
# Create the global S3 client up front to work around a threading issue in boto.
|
356 |
+
if self.upload_to.startswith("s3://"):
|
357 |
+
_get_s3_client("s3")
|
358 |
+
elif self.upload_to.startswith("r2://"):
|
359 |
+
_get_s3_client("r2")
|
360 |
+
|
361 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
362 |
+
futures = []
|
363 |
+
for fname in files_to_upload:
|
364 |
+
source = self.path / fname
|
365 |
+
target = f"{self.upload_to}/{fname}"
|
366 |
+
log.info(f"Uploading {source} to {target}...")
|
367 |
+
futures.append(executor.submit(upload, source, target, save_overwrite=self.save_overwrite))
|
368 |
+
for f in as_completed(futures):
|
369 |
+
try:
|
370 |
+
f.result()
|
371 |
+
except BaseException:
|
372 |
+
# NOTE: we might get an error here that can't be pickled, which causes a different failure
|
373 |
+
# later when PyTorch tries to reduce that error across ranks. So here we just make
|
374 |
+
# sure we're raising a simple error type that can be pickled.
|
375 |
+
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
|
376 |
+
return fut
|
377 |
+
|
378 |
+
def finish(self, metadata: Metadata, results: List[List[WriteResult]]) -> None:
|
379 |
+
super().finish(metadata, results)
|
380 |
+
if self.upload_to is not None:
|
381 |
+
source = self.path / ".metadata"
|
382 |
+
target = f"{self.upload_to}/.metadata"
|
383 |
+
log.info(f"Uploading {source} to {target}...")
|
384 |
+
upload(source, target, save_overwrite=self.save_overwrite)
|
385 |
+
|
386 |
+
|
387 |
+
class RemoteFileSystemReader(dist_cp.StorageReader):
|
388 |
+
"""
|
389 |
+
A :class:`~torch.distributed.checkpoint.StorageReader` based on :class:`~torch.distributed.checkpoint.FileSystemReader`
|
390 |
+
that can read data directly from cloud storage as well as a local directory.
|
391 |
+
"""
|
392 |
+
|
393 |
+
def __init__(
|
394 |
+
self, path: PathOrStr, *, local_cache: Optional[PathOrStr] = None, thread_count: Optional[int] = None
|
395 |
+
):
|
396 |
+
super().__init__()
|
397 |
+
if thread_count is not None and thread_count <= 0:
|
398 |
+
raise ValueError("thread count must be at least 1")
|
399 |
+
self.path = str(path).rstrip("/")
|
400 |
+
self.cache = None if local_cache is None else Path(local_cache)
|
401 |
+
self.thread_count = thread_count or default_thread_count()
|
402 |
+
self.storage_data: Dict[MetadataIndex, _StorageInfo] = dict()
|
403 |
+
self._metadata: Optional[Metadata] = None
|
404 |
+
|
405 |
+
def _get_bytes(self, relative_path: str, offset: int, length: int) -> bytes:
|
406 |
+
if self.cache is not None and (path := self.cache / relative_path).is_file():
|
407 |
+
return get_bytes_range(path, offset, length)
|
408 |
+
else:
|
409 |
+
return get_bytes_range(f"{self.path}/{relative_path}", offset, length)
|
410 |
+
|
411 |
+
def _get_content_for_read(self, read_item: ReadItem) -> Tuple[ReadItem, bytes]:
|
412 |
+
sinfo = self.storage_data[read_item.storage_index]
|
413 |
+
content = self._get_bytes(sinfo.relative_path, sinfo.offset, sinfo.length)
|
414 |
+
return (read_item, content)
|
415 |
+
|
416 |
+
def read_data(self, plan: dist_cp.LoadPlan, planner: dist_cp.LoadPlanner) -> Future[None]:
|
417 |
+
# Create the global S3 client up front to work around a threading issue in boto.
|
418 |
+
if isinstance(self.path, str):
|
419 |
+
if self.path.startswith("s3://"):
|
420 |
+
_get_s3_client("s3")
|
421 |
+
elif self.path.startswith("r2://"):
|
422 |
+
_get_s3_client("r2")
|
423 |
+
|
424 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
425 |
+
read_item_content_futures = []
|
426 |
+
for read_item in plan.items:
|
427 |
+
read_item_content_futures.append(executor.submit(self._get_content_for_read, read_item))
|
428 |
+
read_item_content_results = []
|
429 |
+
for f in as_completed(read_item_content_futures):
|
430 |
+
try:
|
431 |
+
read_item_content_results.append(f.result())
|
432 |
+
except BaseException:
|
433 |
+
# NOTE: we might get an error here that can't be pickled, which causes a different failure
|
434 |
+
# later when PyTorch tries to reduce that error across ranks. So here we just make
|
435 |
+
# sure we're raising a simple error type that can be pickled.
|
436 |
+
raise OLMoCheckpointError(f"Original error:\n{traceback.format_exc()}")
|
437 |
+
|
438 |
+
# Modified from `FileSystemReader.read_data()`
|
439 |
+
for read_item, content in read_item_content_results:
|
440 |
+
bytes = io.BytesIO(content)
|
441 |
+
bytes.seek(0)
|
442 |
+
if read_item.type == LoadItemType.BYTE_IO:
|
443 |
+
planner.load_bytes(read_item, bytes)
|
444 |
+
else:
|
445 |
+
tensor = cast(torch.Tensor, torch.load(bytes, map_location="cpu"))
|
446 |
+
tensor = narrow_tensor_by_index(tensor, read_item.storage_offsets, read_item.lengths)
|
447 |
+
target_tensor = planner.resolve_tensor(read_item).detach()
|
448 |
+
|
449 |
+
assert (
|
450 |
+
target_tensor.size() == tensor.size()
|
451 |
+
), f"req {read_item.storage_index} mismatch sizes {target_tensor.size()} vs {tensor.size()}"
|
452 |
+
target_tensor.copy_(tensor)
|
453 |
+
planner.commit_tensor(read_item, target_tensor)
|
454 |
+
|
455 |
+
fut: Future = Future()
|
456 |
+
fut.set_result(None)
|
457 |
+
return fut
|
458 |
+
|
459 |
+
def read_metadata(self) -> Metadata:
|
460 |
+
if self._metadata is None:
|
461 |
+
with resource_path(self.path, ".metadata", local_cache=self.cache).open("rb") as metadata_file:
|
462 |
+
self._metadata = pickle.load(metadata_file)
|
463 |
+
return self._metadata
|
464 |
+
|
465 |
+
def set_up_storage_reader(self, metadata: Metadata, is_coordinator: bool) -> None:
|
466 |
+
del is_coordinator
|
467 |
+
self.storage_data = metadata.storage_data
|
468 |
+
assert self.storage_data is not None
|
469 |
+
|
470 |
+
def prepare_local_plan(self, plan: dist_cp.LoadPlan) -> dist_cp.LoadPlan:
|
471 |
+
return plan
|
472 |
+
|
473 |
+
def prepare_global_plan(self, global_plan: List[dist_cp.LoadPlan]) -> List[dist_cp.LoadPlan]:
|
474 |
+
return global_plan
|
475 |
+
|
476 |
+
|
477 |
+
class Checkpointer(metaclass=ABCMeta):
|
478 |
+
def __init__(self, cfg: TrainConfig, thread_count: Optional[int] = None):
|
479 |
+
self.cfg = cfg
|
480 |
+
self.thread_count = thread_count or default_thread_count()
|
481 |
+
|
482 |
+
@abstractmethod
|
483 |
+
def save_checkpoint(
|
484 |
+
self,
|
485 |
+
dir: PathOrStr,
|
486 |
+
fsdp_model: FSDP,
|
487 |
+
optim: Optimizer,
|
488 |
+
train_state: Dict[str, Any],
|
489 |
+
*,
|
490 |
+
upload_to: Optional[str] = None,
|
491 |
+
) -> None:
|
492 |
+
raise NotImplementedError
|
493 |
+
|
494 |
+
@abstractmethod
|
495 |
+
def restore_checkpoint(
|
496 |
+
self,
|
497 |
+
load_path: PathOrStr,
|
498 |
+
fsdp_model: FSDP,
|
499 |
+
optim: Optimizer,
|
500 |
+
*,
|
501 |
+
local_cache: Optional[PathOrStr] = None,
|
502 |
+
load_optimizer_state: bool = True,
|
503 |
+
) -> Dict[str, Any]:
|
504 |
+
"""
|
505 |
+
Restores a checkpoint to the model and optimizer. Returns the remaining trainer state.
|
506 |
+
"""
|
507 |
+
raise NotImplementedError
|
508 |
+
|
509 |
+
def unshard_checkpoint(
|
510 |
+
self,
|
511 |
+
load_path: PathOrStr,
|
512 |
+
*,
|
513 |
+
local_cache: Optional[PathOrStr] = None,
|
514 |
+
load_optimizer_state: bool = True,
|
515 |
+
load_trainer_state: bool = True,
|
516 |
+
device: Optional[torch.device] = None,
|
517 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
518 |
+
"""
|
519 |
+
Unshard a checkpoint.
|
520 |
+
|
521 |
+
Note this is not marked abstract because child classes are not required to implemented this.
|
522 |
+
"""
|
523 |
+
del load_path, local_cache, load_optimizer_state, load_trainer_state, device
|
524 |
+
raise NotImplementedError
|
525 |
+
|
526 |
+
@contextmanager
|
527 |
+
def _temporary_wd(self, dir: PathOrStr) -> Generator[Path, None, None]:
|
528 |
+
# Make sure checkpoint directory doesn't exist unless it's okay to overwrite it.
|
529 |
+
checkpoint_dir = Path(dir)
|
530 |
+
if not dir_is_empty(checkpoint_dir):
|
531 |
+
if self.cfg.save_overwrite:
|
532 |
+
if get_fs_local_rank() == 0:
|
533 |
+
shutil.rmtree(checkpoint_dir, ignore_errors=True)
|
534 |
+
else:
|
535 |
+
raise FileExistsError(checkpoint_dir)
|
536 |
+
# No need to mkdir here since we'll directly replace the temporary directory with
|
537 |
+
# this directory below.
|
538 |
+
barrier()
|
539 |
+
|
540 |
+
# Prepare temporary directory. We don't have to be as careful here, we can
|
541 |
+
# just remove it if it already exists.
|
542 |
+
checkpoint_dir_tmp = checkpoint_dir.with_name(checkpoint_dir.name + "-tmp")
|
543 |
+
if get_fs_local_rank() == 0:
|
544 |
+
shutil.rmtree(checkpoint_dir_tmp, ignore_errors=True)
|
545 |
+
checkpoint_dir_tmp.mkdir(exist_ok=True, parents=True)
|
546 |
+
|
547 |
+
barrier()
|
548 |
+
|
549 |
+
# Yield temporary directory for `.save_checkpoint()` to use.
|
550 |
+
yield checkpoint_dir_tmp
|
551 |
+
|
552 |
+
barrier()
|
553 |
+
|
554 |
+
# Finally if all went well replace the temporary directory with the actual
|
555 |
+
# checkpoint directory.
|
556 |
+
if get_fs_local_rank() == 0:
|
557 |
+
# Replace temp directory with target checkpoint directory.
|
558 |
+
try:
|
559 |
+
checkpoint_dir_tmp.replace(checkpoint_dir)
|
560 |
+
except FileNotFoundError:
|
561 |
+
# Caught when another (file-system) local rank 0 has already replaced the tmp directory.
|
562 |
+
# This can happen when nodes are saving to a common NFS drive but otherwise have distinct
|
563 |
+
# file-systems.
|
564 |
+
if not checkpoint_dir.exists():
|
565 |
+
raise
|
566 |
+
|
567 |
+
# In the cases where we're using a shared NFS drive between ranks to save checkpoints,
|
568 |
+
# replacing the temp directory with the final directory from rank 0 might not be immediately
|
569 |
+
# realized in the file systems of the other ranks.
|
570 |
+
# So we wait here across all ranks until that final checkpoint directory is visible.
|
571 |
+
wait_for(lambda: checkpoint_dir.exists(), "Waiting for checkpoint directory", timeout=10.0)
|
572 |
+
|
573 |
+
barrier()
|
574 |
+
|
575 |
+
def _save_config(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
|
576 |
+
if get_global_rank() == 0:
|
577 |
+
log.info("Saving config...")
|
578 |
+
self.cfg.save(config_path := Path(dir) / "config.yaml")
|
579 |
+
if upload_to is not None:
|
580 |
+
upload_target = f"{upload_to}/config.yaml"
|
581 |
+
log.info(f"Uploading {config_path} to {upload_target}")
|
582 |
+
upload(config_path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
583 |
+
|
584 |
+
|
585 |
+
class FullCheckpointer(Checkpointer):
|
586 |
+
"""
|
587 |
+
A :class:`Checkpointer` that saves a single full model and optimizer state dictionary.
|
588 |
+
"""
|
589 |
+
|
590 |
+
def save_checkpoint(
|
591 |
+
self,
|
592 |
+
dir: PathOrStr,
|
593 |
+
fsdp_model: FSDP,
|
594 |
+
optim: Optimizer,
|
595 |
+
trainer_state: Dict[str, Any],
|
596 |
+
*,
|
597 |
+
upload_to: Optional[str] = None,
|
598 |
+
) -> None:
|
599 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
600 |
+
with FSDP.state_dict_type(
|
601 |
+
fsdp_model,
|
602 |
+
state_dict_type=StateDictType.FULL_STATE_DICT,
|
603 |
+
state_dict_config=FullStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
604 |
+
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=True, offload_to_cpu=True),
|
605 |
+
):
|
606 |
+
# We'll write the model and optimizer state dicts individually to reduce (CPU) memory consumption.
|
607 |
+
# First the model state.
|
608 |
+
model_state_dict = fsdp_model.state_dict()
|
609 |
+
if get_global_rank() == 0:
|
610 |
+
log.info("Saving model state...")
|
611 |
+
save_state_dict(
|
612 |
+
checkpoint_dir,
|
613 |
+
"model.pt",
|
614 |
+
model_state_dict,
|
615 |
+
upload_to=upload_to,
|
616 |
+
save_overwrite=self.cfg.save_overwrite,
|
617 |
+
synchronize=False,
|
618 |
+
)
|
619 |
+
del model_state_dict
|
620 |
+
barrier()
|
621 |
+
|
622 |
+
# Then the optimizer state.
|
623 |
+
optim_state_dict = FSDP.optim_state_dict(fsdp_model, optim)
|
624 |
+
if get_global_rank() == 0:
|
625 |
+
log.info("Saving optim state...")
|
626 |
+
save_state_dict(
|
627 |
+
checkpoint_dir,
|
628 |
+
"optim.pt",
|
629 |
+
optim_state_dict,
|
630 |
+
upload_to=upload_to,
|
631 |
+
save_overwrite=self.cfg.save_overwrite,
|
632 |
+
synchronize=False,
|
633 |
+
)
|
634 |
+
del optim_state_dict
|
635 |
+
barrier()
|
636 |
+
|
637 |
+
# Save trainer state.
|
638 |
+
if get_global_rank() == 0:
|
639 |
+
log.info("Saving trainer state...")
|
640 |
+
save_state_dict(
|
641 |
+
checkpoint_dir,
|
642 |
+
"train.pt",
|
643 |
+
trainer_state,
|
644 |
+
upload_to=upload_to,
|
645 |
+
save_overwrite=self.cfg.save_overwrite,
|
646 |
+
synchronize=False,
|
647 |
+
)
|
648 |
+
# Save config.
|
649 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
650 |
+
|
651 |
+
def restore_checkpoint(
|
652 |
+
self,
|
653 |
+
load_path: PathOrStr,
|
654 |
+
fsdp_model: FSDP,
|
655 |
+
optim: Optimizer,
|
656 |
+
*,
|
657 |
+
local_cache: Optional[PathOrStr] = None,
|
658 |
+
load_optimizer_state: bool = True,
|
659 |
+
) -> Dict[str, Any]:
|
660 |
+
with FSDP.state_dict_type(
|
661 |
+
fsdp_model,
|
662 |
+
state_dict_type=StateDictType.FULL_STATE_DICT,
|
663 |
+
state_dict_config=FullStateDictConfig(rank0_only=False, offload_to_cpu=True),
|
664 |
+
optim_state_dict_config=FullOptimStateDictConfig(rank0_only=False, offload_to_cpu=True),
|
665 |
+
):
|
666 |
+
with torch.no_grad():
|
667 |
+
# fill everything with NaN, so we can check afterwards that every parameter has been restored
|
668 |
+
for module_name, module in fsdp_model.named_modules():
|
669 |
+
if not isinstance(module, FSDP):
|
670 |
+
continue
|
671 |
+
for param in module.params:
|
672 |
+
param.fill_(torch.nan)
|
673 |
+
|
674 |
+
# restore params from checkpoint
|
675 |
+
state_dict_to_load = load_state_dict(
|
676 |
+
load_path, "model.pt", local_cache=local_cache, map_location="cpu"
|
677 |
+
)
|
678 |
+
(
|
679 |
+
state_dict_to_load,
|
680 |
+
og_keys_to_new,
|
681 |
+
) = fsdp_model._fsdp_wrapped_module._make_state_dict_compatible(state_dict_to_load)
|
682 |
+
|
683 |
+
for module_name, module in fsdp_model.named_modules():
|
684 |
+
if not isinstance(module, FSDP):
|
685 |
+
continue
|
686 |
+
for param in module.params:
|
687 |
+
assert param._is_flat_param
|
688 |
+
for fqn, spi in zip(param._fqns, param._shard_param_infos):
|
689 |
+
if not spi.in_shard:
|
690 |
+
continue
|
691 |
+
key = f"{module_name}.{fqn}"
|
692 |
+
key = key.replace("_fsdp_wrapped_module.", "")
|
693 |
+
key = key.lstrip(".")
|
694 |
+
t = state_dict_to_load[key]
|
695 |
+
t = t.flatten()
|
696 |
+
param[spi.offset_in_shard : spi.offset_in_shard + spi.numel_in_shard].copy_(
|
697 |
+
t[spi.intra_param_start_idx : spi.intra_param_end_idx + 1]
|
698 |
+
)
|
699 |
+
|
700 |
+
# make sure that every parameter has been restored
|
701 |
+
for module_name, module in fsdp_model.named_modules():
|
702 |
+
if not isinstance(module, FSDP):
|
703 |
+
continue
|
704 |
+
for param in module.params:
|
705 |
+
if torch.isnan(param).any():
|
706 |
+
raise ValueError(
|
707 |
+
f"Module '{module_name}' contains NaNs, this is likely a bug restoring from full checkpoints"
|
708 |
+
)
|
709 |
+
|
710 |
+
# Load optimizer state.
|
711 |
+
if load_optimizer_state:
|
712 |
+
optim_state_dict_to_load = load_state_dict(
|
713 |
+
load_path, "optim.pt", local_cache=local_cache, map_location="cpu"
|
714 |
+
)
|
715 |
+
optim_state_dict_to_load = self._make_optim_state_dict_compatible(
|
716 |
+
optim_state_dict_to_load,
|
717 |
+
og_keys_to_new,
|
718 |
+
)
|
719 |
+
load_fsdp_optim_state(fsdp_model, optim, optim_state_dict_to_load)
|
720 |
+
del optim_state_dict_to_load
|
721 |
+
|
722 |
+
# Load other state.
|
723 |
+
try:
|
724 |
+
trainer_state = load_state_dict(load_path, "train.pt", local_cache=local_cache)
|
725 |
+
except FileNotFoundError:
|
726 |
+
# for backwards compatibility
|
727 |
+
trainer_state = load_state_dict(load_path, "other.pt", local_cache=local_cache)
|
728 |
+
barrier()
|
729 |
+
return trainer_state
|
730 |
+
|
731 |
+
def _make_optim_state_dict_compatible(
|
732 |
+
self, optim_state_dict: Dict[str, Any], og_keys_to_new: Dict[str, Set[str]]
|
733 |
+
) -> Dict[str, Any]:
|
734 |
+
# This state dict comes in two forms: one where the state keys are integers and one where the
|
735 |
+
# keys are fully qualified parameter names. The latter case is easier to deal with here so we
|
736 |
+
# first transform the integer key form into the FQN key form.
|
737 |
+
if isinstance(optim_state_dict["param_groups"][0]["params"][0], int):
|
738 |
+
id_to_fqn: Dict[int, str] = {}
|
739 |
+
for group in optim_state_dict["param_groups"]:
|
740 |
+
new_param_names = []
|
741 |
+
for fqn, id in zip(group["param_names"], group["params"]):
|
742 |
+
fqn = fqn.replace("_fsdp_wrapped_module.", "")
|
743 |
+
id_to_fqn[id] = fqn
|
744 |
+
new_param_names.append(fqn)
|
745 |
+
group["param_names"] = new_param_names
|
746 |
+
group["params"] = new_param_names
|
747 |
+
for id in list(optim_state_dict["state"].keys()):
|
748 |
+
optim_state_dict["state"][id_to_fqn[id]] = optim_state_dict["state"].pop(id)
|
749 |
+
else:
|
750 |
+
# Otherwise we still want to clean up the param names to remove the "_fsdp_wrapped_module." prefix.
|
751 |
+
for group in optim_state_dict["param_groups"]:
|
752 |
+
group["param_names"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["param_names"]]
|
753 |
+
group["params"] = [fqn.replace("_fsdp_wrapped_module.", "") for fqn in group["params"]]
|
754 |
+
assert group["param_names"] == group["params"]
|
755 |
+
for key in list(optim_state_dict["state"].keys()):
|
756 |
+
optim_state_dict["state"][key.replace("_fsdp_wrapped_module.", "")] = optim_state_dict[
|
757 |
+
"state"
|
758 |
+
].pop(key)
|
759 |
+
|
760 |
+
# Now we can transform the state dict by renaming parameters according to `og_keys_to_new`.
|
761 |
+
# First fix param names in the state.
|
762 |
+
for og_key, new_keys in og_keys_to_new.items():
|
763 |
+
og_state = optim_state_dict["state"].pop(og_key, None)
|
764 |
+
if og_state is None:
|
765 |
+
continue
|
766 |
+
for i, new_key in enumerate(new_keys):
|
767 |
+
if i == len(new_keys) - 1:
|
768 |
+
optim_state_dict["state"][new_key] = og_state
|
769 |
+
else:
|
770 |
+
optim_state_dict["state"][new_key] = deepcopy(og_state)
|
771 |
+
# Now fix param names in the param groups.
|
772 |
+
for group in optim_state_dict["param_groups"]:
|
773 |
+
og_names = group["params"]
|
774 |
+
new_names = []
|
775 |
+
for og_key in og_names:
|
776 |
+
for new_key in og_keys_to_new[og_key]:
|
777 |
+
new_names.append(new_key)
|
778 |
+
group["params"] = new_names
|
779 |
+
group["param_names"] = new_names
|
780 |
+
|
781 |
+
return optim_state_dict
|
782 |
+
|
783 |
+
def load_checkpoint(
|
784 |
+
self,
|
785 |
+
load_path: PathOrStr,
|
786 |
+
*,
|
787 |
+
local_cache: Optional[PathOrStr] = None,
|
788 |
+
load_optimizer_state: bool = True,
|
789 |
+
device: Optional[torch.device] = None,
|
790 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]]]:
|
791 |
+
device = device if device is not None else torch.device("cpu")
|
792 |
+
model_state = load_state_dict(load_path, "model.pt", local_cache=local_cache, map_location=device) # type: ignore
|
793 |
+
optim_state = None
|
794 |
+
if load_optimizer_state:
|
795 |
+
optim_state = load_state_dict(load_path, "optim.pt", local_cache=local_cache, map_location=device) # type: ignore
|
796 |
+
return model_state, optim_state
|
797 |
+
|
798 |
+
|
799 |
+
class TorchNewStyleShardedCheckpointer(Checkpointer):
|
800 |
+
"""
|
801 |
+
A sharded :class:`Checkpointer` that uses PyTorch's new distributed checkpointing functionality.
|
802 |
+
"""
|
803 |
+
|
804 |
+
def save_checkpoint(
|
805 |
+
self,
|
806 |
+
dir: PathOrStr,
|
807 |
+
fsdp_model: FSDP,
|
808 |
+
optim: Optimizer,
|
809 |
+
trainer_state: Dict[str, Any],
|
810 |
+
*,
|
811 |
+
upload_to: Optional[str] = None,
|
812 |
+
) -> None:
|
813 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
814 |
+
# Save model and optim state.
|
815 |
+
save_fsdp_model_and_optim_state(
|
816 |
+
checkpoint_dir,
|
817 |
+
fsdp_model,
|
818 |
+
optim,
|
819 |
+
upload_to=upload_to,
|
820 |
+
save_overwrite=self.cfg.save_overwrite,
|
821 |
+
)
|
822 |
+
|
823 |
+
# Save trainer state.
|
824 |
+
log.info("Saving trainer state...")
|
825 |
+
save_state_dict(
|
826 |
+
checkpoint_dir,
|
827 |
+
f"train/rank{get_global_rank()}.pt",
|
828 |
+
trainer_state,
|
829 |
+
upload_to=upload_to,
|
830 |
+
save_overwrite=self.cfg.save_overwrite,
|
831 |
+
)
|
832 |
+
|
833 |
+
# Save config.
|
834 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
835 |
+
|
836 |
+
def restore_checkpoint(
|
837 |
+
self,
|
838 |
+
load_path: PathOrStr,
|
839 |
+
fsdp_model: FSDP,
|
840 |
+
optim: Optimizer,
|
841 |
+
*,
|
842 |
+
local_cache: Optional[PathOrStr] = None,
|
843 |
+
load_optimizer_state: bool = True,
|
844 |
+
) -> Dict[str, Any]:
|
845 |
+
# Load model and optimizer state in place.
|
846 |
+
log.info("Loading model and optimizer state...")
|
847 |
+
load_fsdp_model_and_optim_state(
|
848 |
+
load_path,
|
849 |
+
fsdp_model,
|
850 |
+
optim,
|
851 |
+
local_cache=local_cache,
|
852 |
+
load_optimizer_state=load_optimizer_state,
|
853 |
+
)
|
854 |
+
|
855 |
+
# Load trainer state dict.
|
856 |
+
log.info("Loading trainer state...")
|
857 |
+
try:
|
858 |
+
trainer_state = load_state_dict(
|
859 |
+
load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache
|
860 |
+
)
|
861 |
+
except FileNotFoundError:
|
862 |
+
# Fall back to rank 0 train state.
|
863 |
+
# This can happen when we're restoring a checkpoint with a different world size.
|
864 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
865 |
+
barrier()
|
866 |
+
return trainer_state
|
867 |
+
|
868 |
+
|
869 |
+
class TorchLegacyShardedCheckpointer(Checkpointer):
|
870 |
+
"""
|
871 |
+
A sharded :class:`Checkpointer` that just uses `torch.save()` with extra logic for handling FSDP model
|
872 |
+
and optim state.
|
873 |
+
|
874 |
+
The world size must be kept consistent when using this checkpointer.
|
875 |
+
"""
|
876 |
+
|
877 |
+
def save_checkpoint(
|
878 |
+
self,
|
879 |
+
dir: PathOrStr,
|
880 |
+
fsdp_model: FSDP,
|
881 |
+
optim: Optimizer,
|
882 |
+
trainer_state: Dict[str, Any],
|
883 |
+
*,
|
884 |
+
upload_to: Optional[str] = None,
|
885 |
+
) -> None:
|
886 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
887 |
+
with FSDP.state_dict_type(
|
888 |
+
fsdp_model,
|
889 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
890 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
891 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
892 |
+
):
|
893 |
+
state_dict = {
|
894 |
+
"model": fsdp_model.state_dict(),
|
895 |
+
"optim": FSDP.optim_state_dict(fsdp_model, optim),
|
896 |
+
**trainer_state,
|
897 |
+
}
|
898 |
+
save_state_dict(
|
899 |
+
checkpoint_dir,
|
900 |
+
f"rank{get_global_rank()}.pt",
|
901 |
+
state_dict,
|
902 |
+
upload_to=upload_to,
|
903 |
+
save_overwrite=self.cfg.save_overwrite,
|
904 |
+
)
|
905 |
+
|
906 |
+
# Save config.
|
907 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
908 |
+
|
909 |
+
def restore_checkpoint(
|
910 |
+
self,
|
911 |
+
load_path: PathOrStr,
|
912 |
+
fsdp_model: FSDP,
|
913 |
+
optim: Optimizer,
|
914 |
+
*,
|
915 |
+
local_cache: Optional[PathOrStr] = None,
|
916 |
+
load_optimizer_state: bool = True,
|
917 |
+
) -> Dict[str, Any]:
|
918 |
+
with FSDP.state_dict_type(
|
919 |
+
fsdp_model,
|
920 |
+
state_dict_type=StateDictType.SHARDED_STATE_DICT,
|
921 |
+
state_dict_config=ShardedStateDictConfig(offload_to_cpu=True),
|
922 |
+
optim_state_dict_config=ShardedOptimStateDictConfig(offload_to_cpu=True),
|
923 |
+
):
|
924 |
+
# Deserialize state dict.
|
925 |
+
state_dict = load_state_dict(
|
926 |
+
load_path, f"rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
927 |
+
)
|
928 |
+
|
929 |
+
# Load model and optimizer state.
|
930 |
+
log.info("Loading model state...")
|
931 |
+
fsdp_model.load_state_dict(state_dict["model"])
|
932 |
+
del state_dict["model"]
|
933 |
+
if load_optimizer_state:
|
934 |
+
log.info("Loading optimizer state...")
|
935 |
+
load_fsdp_optim_state(fsdp_model, optim, state_dict["optim"])
|
936 |
+
del state_dict["optim"]
|
937 |
+
|
938 |
+
barrier()
|
939 |
+
return state_dict
|
940 |
+
|
941 |
+
def unshard_checkpoint(
|
942 |
+
self,
|
943 |
+
load_path: PathOrStr,
|
944 |
+
*,
|
945 |
+
local_cache: Optional[PathOrStr] = None,
|
946 |
+
load_optimizer_state: bool = True,
|
947 |
+
load_trainer_state: bool = True,
|
948 |
+
device: Optional[torch.device] = None,
|
949 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
950 |
+
assert local_cache is None, "this method currently only supports local files"
|
951 |
+
full_state_dict = self._unshard(load_path, device or torch.device("cpu"), skip_keys={"rng"})
|
952 |
+
model_state = full_state_dict.pop("model")
|
953 |
+
optim_state = full_state_dict.pop("optim")
|
954 |
+
return (
|
955 |
+
model_state,
|
956 |
+
optim_state if load_optimizer_state else None,
|
957 |
+
full_state_dict if load_trainer_state else None,
|
958 |
+
)
|
959 |
+
|
960 |
+
def _copy_sharded_tensors_to_shared_mem(self, state: Dict, world_size: int, rank: int, key: Tuple):
|
961 |
+
key = tuple() if key is None else key
|
962 |
+
if isinstance(state, (list, tuple, set)):
|
963 |
+
for i, sub_state in enumerate(state):
|
964 |
+
self._copy_sharded_tensors_to_shared_mem(sub_state, world_size, rank, key + (i,))
|
965 |
+
elif isinstance(state, dict):
|
966 |
+
for name in state.keys():
|
967 |
+
self._copy_sharded_tensors_to_shared_mem(state[name], world_size, rank, key + (name,))
|
968 |
+
elif isinstance(state, ShardedTensor):
|
969 |
+
self._copy_sharded_tensor_to_shared_mem(state, world_size, rank, key)
|
970 |
+
return
|
971 |
+
else:
|
972 |
+
return
|
973 |
+
|
974 |
+
def _get_shard_placement_and_rank_sizes(
|
975 |
+
self, shards_metadata: List[ShardMetadata], world_size: int
|
976 |
+
) -> Tuple[Dict[ShardMetadata, Tuple[int, int]], List[int]]:
|
977 |
+
def shard_size(shard_md):
|
978 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
979 |
+
|
980 |
+
rank_sizes = [0 for _ in range(world_size)]
|
981 |
+
shard_placement: Dict[ShardMetadata, Tuple[int, int]] = {}
|
982 |
+
for shard_md in shards_metadata:
|
983 |
+
shard_rank = cast(_remote_device, shard_md.placement).rank()
|
984 |
+
assert shard_rank is not None
|
985 |
+
if shard_rank >= world_size:
|
986 |
+
raise RuntimeError(f"Shard rank {shard_rank} exceeds world size {world_size}")
|
987 |
+
|
988 |
+
shard_placement[shard_md] = (shard_rank, rank_sizes[shard_rank])
|
989 |
+
rank_sizes[shard_rank] += shard_size(shard_md)
|
990 |
+
|
991 |
+
return shard_placement, rank_sizes
|
992 |
+
|
993 |
+
def _copy_sharded_tensor_to_shared_mem(
|
994 |
+
self, sharded_tensor: ShardedTensor, world_size: int, rank: int, key: Tuple
|
995 |
+
) -> Any:
|
996 |
+
shard0_md = sharded_tensor.metadata()
|
997 |
+
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
|
998 |
+
shard0_md.shards_metadata, world_size
|
999 |
+
)
|
1000 |
+
|
1001 |
+
rank_size = rank_sizes[rank]
|
1002 |
+
assert rank_size >= 0
|
1003 |
+
if rank_size == 0:
|
1004 |
+
return
|
1005 |
+
|
1006 |
+
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
|
1007 |
+
numpy_type = np.float32
|
1008 |
+
|
1009 |
+
sharded_memory_name = "-".join(key + (str(rank),))
|
1010 |
+
|
1011 |
+
shm = shared_memory.SharedMemory(
|
1012 |
+
create=True, size=rank_size * np.dtype(numpy_type).itemsize, name=sharded_memory_name
|
1013 |
+
)
|
1014 |
+
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
|
1015 |
+
|
1016 |
+
for local_shard in sharded_tensor.local_shards():
|
1017 |
+
shard_rank = cast(_remote_device, local_shard.metadata.placement).rank()
|
1018 |
+
assert shard_rank == rank
|
1019 |
+
|
1020 |
+
src = local_shard.tensor.flatten()
|
1021 |
+
shard_offset = shard_placement[local_shard.metadata][1]
|
1022 |
+
|
1023 |
+
np_arr[shard_offset : shard_offset + src.numel()] = src.numpy()
|
1024 |
+
|
1025 |
+
shm.close()
|
1026 |
+
|
1027 |
+
def _copy_sharded_data_to_shared_mem(self, world_size: int, shard_filepath: Path):
|
1028 |
+
shard_number = int(shard_filepath.name[4:-3])
|
1029 |
+
log.info("Starting unsharding shard number %d to shared memory", shard_number)
|
1030 |
+
|
1031 |
+
with self._patch_sharded_tensor_load():
|
1032 |
+
shard = torch.load(shard_filepath, map_location="cpu")
|
1033 |
+
log.debug("Done loading shard number %d", shard_number)
|
1034 |
+
|
1035 |
+
self._copy_sharded_tensors_to_shared_mem(
|
1036 |
+
shard, world_size, shard_number, (str(shard_filepath.parent).replace("/", "_"),)
|
1037 |
+
)
|
1038 |
+
log.info("Done unsharding shard number %d to shared memory", shard_number)
|
1039 |
+
|
1040 |
+
def _unshard_using_sharded_mem(
|
1041 |
+
self, state: Any, world_size: int, device: torch.device, shard_dir: PathOrStr
|
1042 |
+
) -> Any:
|
1043 |
+
return self._unshard_state_using_shared_mem(state, world_size, device, (str(shard_dir).replace("/", "_"),))
|
1044 |
+
|
1045 |
+
def _unshard_state_using_shared_mem(
|
1046 |
+
self, state: Any, world_size: int, device: torch.device, key: Tuple
|
1047 |
+
) -> Any:
|
1048 |
+
if isinstance(state, (list, tuple, set)):
|
1049 |
+
return state.__class__(
|
1050 |
+
self._unshard_state_using_shared_mem(sub_state, world_size, device, key + (i,))
|
1051 |
+
for i, sub_state in enumerate(state)
|
1052 |
+
)
|
1053 |
+
elif isinstance(state, dict):
|
1054 |
+
return {
|
1055 |
+
name: self._unshard_state_using_shared_mem(state[name], world_size, device, key + (name,))
|
1056 |
+
for name in state.keys()
|
1057 |
+
}
|
1058 |
+
elif isinstance(state, ShardedTensor):
|
1059 |
+
return self._unshard_tensor_using_shared_mem(state, world_size, device, key)
|
1060 |
+
elif isinstance(state, torch.Tensor):
|
1061 |
+
return state.to(device=device)
|
1062 |
+
else:
|
1063 |
+
return state
|
1064 |
+
|
1065 |
+
def _unshard_tensor_using_shared_mem(
|
1066 |
+
self, sharded_tensor: ShardedTensor, world_size: int, device: torch.device, key: Tuple
|
1067 |
+
) -> torch.Tensor:
|
1068 |
+
shard0_md = sharded_tensor.metadata()
|
1069 |
+
|
1070 |
+
def shard_size(shard_md):
|
1071 |
+
return reduce((lambda x, y: x * y), shard_md.shard_sizes) # type: ignore[attr-defined]
|
1072 |
+
|
1073 |
+
shard_placement, rank_sizes = self._get_shard_placement_and_rank_sizes(
|
1074 |
+
shard0_md.shards_metadata, world_size
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
assert shard0_md.tensor_properties.dtype == torch.float32, "Expected sharded tensor to be fp32"
|
1078 |
+
numpy_type = np.float32
|
1079 |
+
|
1080 |
+
out = torch.empty(
|
1081 |
+
*sharded_tensor.metadata().size, dtype=sharded_tensor.metadata().tensor_properties.dtype, device=device
|
1082 |
+
)
|
1083 |
+
dims = len(sharded_tensor.metadata().size)
|
1084 |
+
for shard_md, (rank, rank_offset) in shard_placement.items():
|
1085 |
+
if rank >= world_size:
|
1086 |
+
raise RuntimeError(f"Shard rank {rank} exceeds world size {world_size}")
|
1087 |
+
|
1088 |
+
sharded_memory_name = "-".join(key + (str(rank),))
|
1089 |
+
shm = shared_memory.SharedMemory(name=sharded_memory_name)
|
1090 |
+
|
1091 |
+
rank_size = rank_sizes[rank]
|
1092 |
+
assert rank_size >= 0
|
1093 |
+
if rank_size == 0:
|
1094 |
+
continue
|
1095 |
+
|
1096 |
+
np_arr = np.ndarray((rank_size,), dtype=numpy_type, buffer=shm.buf)
|
1097 |
+
|
1098 |
+
tensor = torch.from_numpy(np_arr)[rank_offset : rank_offset + shard_size(shard_md)]
|
1099 |
+
tensor = tensor.view(shard_md.shard_sizes)
|
1100 |
+
|
1101 |
+
out_narrow_view = out
|
1102 |
+
for dim in range(dims):
|
1103 |
+
out_narrow_view = out_narrow_view.narrow(
|
1104 |
+
dim,
|
1105 |
+
shard_md.shard_offsets[dim],
|
1106 |
+
shard_md.shard_sizes[dim],
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
out_narrow_view.copy_(tensor)
|
1110 |
+
|
1111 |
+
shm.close()
|
1112 |
+
shm.unlink()
|
1113 |
+
|
1114 |
+
return out
|
1115 |
+
|
1116 |
+
@contextmanager
|
1117 |
+
def _patch_sharded_tensor_load(self):
|
1118 |
+
"""
|
1119 |
+
Monkeypatch for torch's ShardedTensor, so we can unpickle without having torch.distributed set up.
|
1120 |
+
"""
|
1121 |
+
|
1122 |
+
def _rebuild_from_type_v2_monkey(func, new_type, args, state):
|
1123 |
+
ret = func(*args)
|
1124 |
+
if type(ret) is not new_type:
|
1125 |
+
ret = ret.as_subclass(new_type)
|
1126 |
+
|
1127 |
+
# Shortcut the construction of ShardedTensor
|
1128 |
+
# This is in the top 5 of my worst hacks.
|
1129 |
+
if isinstance(ret, ShardedTensor):
|
1130 |
+
ret._local_shards, ret._metadata, _, ret._sharding_spec, ret._init_rrefs = state
|
1131 |
+
return ret
|
1132 |
+
|
1133 |
+
# The rest of this function ought to be in the top 5 of somebody else's worst hacks.
|
1134 |
+
# Tensor does define __setstate__ even though it doesn't define
|
1135 |
+
# __getstate__. So only use __setstate__ if it is NOT the one defined
|
1136 |
+
# on Tensor
|
1137 |
+
if getattr(ret.__class__, "__setstate__", torch.Tensor.__setstate__) is not torch.Tensor.__setstate__:
|
1138 |
+
ret.__setstate__(state)
|
1139 |
+
else:
|
1140 |
+
ret = torch._utils._set_obj_state(ret, state)
|
1141 |
+
return ret
|
1142 |
+
|
1143 |
+
original_rebuild_from_type_v2 = torch._tensor._rebuild_from_type_v2
|
1144 |
+
try:
|
1145 |
+
torch._tensor._rebuild_from_type_v2 = _rebuild_from_type_v2_monkey
|
1146 |
+
yield
|
1147 |
+
finally:
|
1148 |
+
torch._tensor._rebuild_from_type_v2 = original_rebuild_from_type_v2
|
1149 |
+
|
1150 |
+
def _unshard(self, input_dir: PathOrStr, device: torch.device, skip_keys: Optional[Set[str]] = None):
|
1151 |
+
"""
|
1152 |
+
The current unsharding implementation consists of:
|
1153 |
+
|
1154 |
+
1. Loading each shard on a separate process and copying their sharded tensors to shared memory.
|
1155 |
+
2. Loading 1 shard on the main process as a base unsharded object.
|
1156 |
+
3. Using the sharded tensors in shared memory to populate the base unsharded object.
|
1157 |
+
|
1158 |
+
This implementation replaced a prior implementation that instead loaded
|
1159 |
+
all shards using threads, because that implementation turned out to
|
1160 |
+
be extremely slow (e.g. 6+ hours) sometimes when the world size was 1024.
|
1161 |
+
The current implementation is slower than the old one in many scenarios,
|
1162 |
+
but is significantly faster in the above mentioned case (e.g. 30 minutes)
|
1163 |
+
if there are enough CPUs.
|
1164 |
+
"""
|
1165 |
+
|
1166 |
+
input_dir = Path(input_dir)
|
1167 |
+
skip_keys = skip_keys or set()
|
1168 |
+
|
1169 |
+
shard_filepaths = list(input_dir.glob("rank*.pt"))
|
1170 |
+
world_size = len(shard_filepaths)
|
1171 |
+
if world_size == 0:
|
1172 |
+
raise RuntimeError("No shards found for unsharding")
|
1173 |
+
|
1174 |
+
log.info("Number of shards: %d", world_size)
|
1175 |
+
shard_size_gb = shard_filepaths[0].stat().st_size / (1024 * 1024 * 1024)
|
1176 |
+
min_ram_required_estimate_gb = shard_size_gb * world_size
|
1177 |
+
log.info(
|
1178 |
+
"Shards are %.2fGB each, at least %.2fGB RAM is required", shard_size_gb, min_ram_required_estimate_gb
|
1179 |
+
)
|
1180 |
+
|
1181 |
+
log.info("Copying sharded tensors to shared memory using multiple processes")
|
1182 |
+
# Copy sharded data to shared memory using multiple processes, so this process can load
|
1183 |
+
# from memory rather than disk. We spawn a new process instead of forking since shared memory
|
1184 |
+
# appears to get deleted when forked processes end for some reason.
|
1185 |
+
executor = ProcessPoolExecutor(
|
1186 |
+
mp_context=mp.get_context("spawn"), initializer=util.prepare_cli_environment
|
1187 |
+
)
|
1188 |
+
futures = []
|
1189 |
+
for shard_filepath in shard_filepaths:
|
1190 |
+
shard_rank = int(shard_filepath.name[4:-3])
|
1191 |
+
|
1192 |
+
if shard_rank >= world_size:
|
1193 |
+
raise RuntimeError(
|
1194 |
+
f"Shard rank {shard_rank} of file {shard_filepath} exceeds world size {world_size}"
|
1195 |
+
)
|
1196 |
+
|
1197 |
+
futures.append(executor.submit(self._copy_sharded_data_to_shared_mem, world_size, shard_filepath))
|
1198 |
+
|
1199 |
+
for f in as_completed(futures):
|
1200 |
+
f.result()
|
1201 |
+
executor.shutdown()
|
1202 |
+
|
1203 |
+
log.info("Loading a shard on the main process to be unsharded state")
|
1204 |
+
with self._patch_sharded_tensor_load():
|
1205 |
+
state = torch.load(shard_filepaths[0], map_location="cpu")
|
1206 |
+
|
1207 |
+
for key in skip_keys:
|
1208 |
+
if key in state:
|
1209 |
+
del state[key]
|
1210 |
+
|
1211 |
+
log.info("Unsharding from %d shards ...", world_size)
|
1212 |
+
return self._unshard_using_sharded_mem(state, world_size, device, input_dir)
|
1213 |
+
|
1214 |
+
|
1215 |
+
@dataclass
|
1216 |
+
class _LocalShardedCheckpointerMetadata(BaseConfig):
|
1217 |
+
world_size: int = field(default_factory=get_world_size)
|
1218 |
+
|
1219 |
+
|
1220 |
+
@dataclass
|
1221 |
+
class _FlatParamShard:
|
1222 |
+
full_shape: torch.Size
|
1223 |
+
shard_offsets: Tuple[int, int]
|
1224 |
+
shard_data: Optional[torch.Tensor]
|
1225 |
+
|
1226 |
+
def copy_into(self, full_tensor: torch.Tensor) -> None:
|
1227 |
+
assert self.shard_data is not None
|
1228 |
+
full_tensor_shard_view = full_tensor.view(-1)[self.shard_offsets[0] : self.shard_offsets[1] + 1]
|
1229 |
+
assert self.shard_data.shape == full_tensor_shard_view.shape
|
1230 |
+
full_tensor_shard_view.copy_(self.shard_data)
|
1231 |
+
|
1232 |
+
|
1233 |
+
class LocalShardedCheckpointer(Checkpointer):
|
1234 |
+
"""
|
1235 |
+
A sharded :class:`Checkpointer` that directly saves the local FSDP flat params data.
|
1236 |
+
The optimizer state is saved directly with `torch.save()` without reformatting via FSDP methods.
|
1237 |
+
|
1238 |
+
The world size must be kept consistent when using this checkpointer. However, you can easily
|
1239 |
+
reconstruct a full unsharded model and/or optimizer state dictionary from a single Python process
|
1240 |
+
using :meth:`unshard_checkpoint()` (no distributed initialization required).
|
1241 |
+
"""
|
1242 |
+
|
1243 |
+
# These correspond to metadata attributes on `torch.distributed.fsdp.flat_param.FlatParameter`.
|
1244 |
+
_FLAT_PARAM_METADATA_TO_SAVE = (
|
1245 |
+
"_fqns",
|
1246 |
+
"_shard_param_offsets",
|
1247 |
+
"_shard_indices",
|
1248 |
+
"_numels",
|
1249 |
+
"_numels_with_padding",
|
1250 |
+
"_shapes",
|
1251 |
+
"_shard_numel_padded",
|
1252 |
+
"_shard_param_infos",
|
1253 |
+
)
|
1254 |
+
|
1255 |
+
def _fsdp_modules(self, fsdp_model: FSDP) -> List[Tuple[str, FSDP]]:
|
1256 |
+
"""
|
1257 |
+
Returns a list of FSDP modules with their FQN.
|
1258 |
+
"""
|
1259 |
+
modules = []
|
1260 |
+
for name, module in fsdp_model.named_modules():
|
1261 |
+
if isinstance(module, FSDP):
|
1262 |
+
modules.append((name, module))
|
1263 |
+
return modules
|
1264 |
+
|
1265 |
+
def _prepare_fsdp_model(self, fsdp_model: FSDP) -> None:
|
1266 |
+
from torch.distributed.fsdp._runtime_utils import _lazy_init
|
1267 |
+
|
1268 |
+
# TODO (epwalsh): I'm not sure if this is necessary, but this is what PyTorch does before saving/loading
|
1269 |
+
# an FSDP state dict through the built-in methods.
|
1270 |
+
if torch.cuda.is_available():
|
1271 |
+
torch.cuda.synchronize()
|
1272 |
+
_lazy_init(fsdp_model, fsdp_model)
|
1273 |
+
|
1274 |
+
def _fsdp_handles(self, fsdp_model: FSDP) -> List[FlatParamHandle]:
|
1275 |
+
if version.parse(torch.__version__) < version.parse("2.1.0"):
|
1276 |
+
return fsdp_model._handles # type: ignore
|
1277 |
+
elif version.parse(torch.__version__) < version.parse("2.3.0"):
|
1278 |
+
# Handle could be None if the FSDP wrapper doesn't manage any parameters.
|
1279 |
+
if hasattr(fsdp_model, "_handle") and fsdp_model._handle is not None:
|
1280 |
+
return [fsdp_model._handle] # type: ignore
|
1281 |
+
else:
|
1282 |
+
return []
|
1283 |
+
else:
|
1284 |
+
# Need to verify FSDP internals with newer versions.
|
1285 |
+
raise NotImplementedError
|
1286 |
+
|
1287 |
+
@torch.no_grad()
|
1288 |
+
def _get_flat_param_state_to_save(self, fsdp_model: FSDP) -> Dict[str, Any]:
|
1289 |
+
self._prepare_fsdp_model(fsdp_model)
|
1290 |
+
module_data = []
|
1291 |
+
for module_fqn, fsdp_module in self._fsdp_modules(fsdp_model):
|
1292 |
+
handle_data = []
|
1293 |
+
for handle in self._fsdp_handles(fsdp_module):
|
1294 |
+
data: Dict[str, Any] = {}
|
1295 |
+
# This is a `FlatParameter` instance.
|
1296 |
+
# See `torch.distributed.fsdp.flat_param` for the API.
|
1297 |
+
flat_param = handle.flat_param
|
1298 |
+
data["flat_param.data"] = flat_param.detach()
|
1299 |
+
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
|
1300 |
+
if hasattr(flat_param, key):
|
1301 |
+
data[f"flat_param.{key}"] = getattr(flat_param, key)
|
1302 |
+
handle_data.append(data)
|
1303 |
+
module_data.append({"handles": handle_data, "name": module_fqn})
|
1304 |
+
return {"modules": module_data}
|
1305 |
+
|
1306 |
+
@torch.no_grad()
|
1307 |
+
def _load_flat_param_state(self, fsdp_model: FSDP, model_state: Dict[str, Any]):
|
1308 |
+
"""Load the state produced from `self._get_flat_param_state_to_save()`."""
|
1309 |
+
self._prepare_fsdp_model(fsdp_model)
|
1310 |
+
fsdp_modules = self._fsdp_modules(fsdp_model)
|
1311 |
+
assert len(model_state["modules"]) == len(fsdp_modules)
|
1312 |
+
for (_, fsdp_module), module_data in zip(fsdp_modules, model_state["modules"]):
|
1313 |
+
handles = self._fsdp_handles(fsdp_module)
|
1314 |
+
assert len(handles) == len(module_data["handles"])
|
1315 |
+
for handle, data in zip(handles, module_data["handles"]):
|
1316 |
+
flat_param = handle.flat_param
|
1317 |
+
# Make sure metadata matches.
|
1318 |
+
for key in self._FLAT_PARAM_METADATA_TO_SAVE:
|
1319 |
+
if hasattr(flat_param, key):
|
1320 |
+
assert getattr(flat_param, key) == data[f"flat_param.{key}"]
|
1321 |
+
# Load the flat sharded data.
|
1322 |
+
flat_param.copy_(data["flat_param.data"])
|
1323 |
+
|
1324 |
+
def _save_metadata(self, dir: PathOrStr, *, upload_to: Optional[str] = None) -> None:
|
1325 |
+
if get_fs_local_rank() == 0:
|
1326 |
+
log.info("Saving metadata...")
|
1327 |
+
metadata = _LocalShardedCheckpointerMetadata()
|
1328 |
+
metadata.save(metadata_path := Path(dir) / "metadata.yaml")
|
1329 |
+
if upload_to is not None and get_global_rank() == 0:
|
1330 |
+
upload_target = f"{upload_to}/metadata.yaml"
|
1331 |
+
log.info(f"Uploading {metadata_path} to {upload_target}")
|
1332 |
+
upload(metadata_path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
1333 |
+
|
1334 |
+
def _load_metadata(
|
1335 |
+
self, load_path: PathOrStr, *, local_cache: Optional[PathOrStr] = None
|
1336 |
+
) -> _LocalShardedCheckpointerMetadata:
|
1337 |
+
metadata_path = resource_path(load_path, "metadata.yaml", local_cache=local_cache)
|
1338 |
+
return _LocalShardedCheckpointerMetadata.load(metadata_path)
|
1339 |
+
|
1340 |
+
def save_checkpoint(
|
1341 |
+
self,
|
1342 |
+
dir: PathOrStr,
|
1343 |
+
fsdp_model: FSDP,
|
1344 |
+
optim: Optimizer,
|
1345 |
+
trainer_state: Dict[str, Any],
|
1346 |
+
*,
|
1347 |
+
upload_to: Optional[str] = None,
|
1348 |
+
) -> None:
|
1349 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
1350 |
+
# Gather local FSDP flat params data to save.
|
1351 |
+
# We also save some flat param metadata like the corresponding fully qualified names (fqns)
|
1352 |
+
# of each original parameter so we can validate that the sharding is the same when loading
|
1353 |
+
# one of these checkpoints.
|
1354 |
+
log.info("Saving local FSDP flat params data...")
|
1355 |
+
save_state_dict(
|
1356 |
+
checkpoint_dir,
|
1357 |
+
f"model/rank{get_global_rank()}.pt",
|
1358 |
+
self._get_flat_param_state_to_save(fsdp_model),
|
1359 |
+
upload_to=upload_to,
|
1360 |
+
save_overwrite=self.cfg.save_overwrite,
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
# Save optimizer state.
|
1364 |
+
log.info("Saving local optimizer state...")
|
1365 |
+
save_state_dict(
|
1366 |
+
checkpoint_dir,
|
1367 |
+
f"optim/rank{get_global_rank()}.pt",
|
1368 |
+
optim.state_dict(),
|
1369 |
+
upload_to=upload_to,
|
1370 |
+
save_overwrite=self.cfg.save_overwrite,
|
1371 |
+
)
|
1372 |
+
|
1373 |
+
# Save trainer state.
|
1374 |
+
log.info("Saving trainer state...")
|
1375 |
+
save_state_dict(
|
1376 |
+
checkpoint_dir,
|
1377 |
+
f"train/rank{get_global_rank()}.pt",
|
1378 |
+
trainer_state,
|
1379 |
+
upload_to=upload_to,
|
1380 |
+
save_overwrite=self.cfg.save_overwrite,
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
# Save metadata.
|
1384 |
+
self._save_metadata(checkpoint_dir, upload_to=upload_to)
|
1385 |
+
|
1386 |
+
# Save config. We do this last b/c the presence of a config in a remote checkpoint
|
1387 |
+
# "directory" indicates that the folder is valid, as a opposed to a partially
|
1388 |
+
# uploaded checkpoint directory that failed before completing.
|
1389 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
1390 |
+
|
1391 |
+
def restore_checkpoint(
|
1392 |
+
self,
|
1393 |
+
load_path: PathOrStr,
|
1394 |
+
fsdp_model: FSDP,
|
1395 |
+
optim: Optimizer,
|
1396 |
+
*,
|
1397 |
+
local_cache: Optional[PathOrStr] = None,
|
1398 |
+
load_optimizer_state: bool = True,
|
1399 |
+
) -> Dict[str, Any]:
|
1400 |
+
# Load metadata and make sure checkpoint is compatible.
|
1401 |
+
metadata = self._load_metadata(load_path, local_cache=local_cache)
|
1402 |
+
assert metadata.world_size == get_world_size()
|
1403 |
+
|
1404 |
+
# Load local FSDP flat param data.
|
1405 |
+
log.info("Loading local FSDP flat params data...")
|
1406 |
+
model_state = load_state_dict(
|
1407 |
+
load_path, f"model/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1408 |
+
)
|
1409 |
+
self._load_flat_param_state(fsdp_model, model_state)
|
1410 |
+
del model_state
|
1411 |
+
|
1412 |
+
# Load local optim state.
|
1413 |
+
if load_optimizer_state:
|
1414 |
+
log.info("Loading local optimizer state...")
|
1415 |
+
optim_state = load_state_dict(
|
1416 |
+
load_path, f"optim/rank{get_global_rank()}.pt", local_cache=local_cache, map_location="cpu"
|
1417 |
+
)
|
1418 |
+
# HACK/TODO (epwalsh): When we use adaptive clipping we track the 'grad_norm_exp_avg' for every param
|
1419 |
+
# in every rank, and keep this in the optimizer state. But this causes issues when loading the
|
1420 |
+
# state since torch sees the state is non-empty for some params which would normally be empty,
|
1421 |
+
# and then assumes it should have all of the other state tensors for that param, which is doesn't.
|
1422 |
+
# So for now we just remove 'grad_norm_exp_avg' everywhere from the state, which resets that metric.
|
1423 |
+
# Not the end of the world but there's probably a better way around this without resetting
|
1424 |
+
# the metric.
|
1425 |
+
for param_id in list(optim_state["state"].keys()):
|
1426 |
+
state = optim_state["state"][param_id]
|
1427 |
+
if "grad_norm_exp_avg" in state:
|
1428 |
+
del state["grad_norm_exp_avg"]
|
1429 |
+
if len(state) == 0:
|
1430 |
+
del optim_state["state"][param_id]
|
1431 |
+
optim.load_state_dict(optim_state)
|
1432 |
+
del optim_state
|
1433 |
+
|
1434 |
+
# Load local trainer state.
|
1435 |
+
log.info("Loading local trainer state...")
|
1436 |
+
trainer_state = load_state_dict(load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache)
|
1437 |
+
barrier()
|
1438 |
+
return trainer_state
|
1439 |
+
|
1440 |
+
def _iter_flat_param_shards(
|
1441 |
+
self, model_state: Dict[str, Any]
|
1442 |
+
) -> Generator[Tuple[str, _FlatParamShard], None, None]:
|
1443 |
+
for module_data in model_state["modules"]:
|
1444 |
+
module_prefix = module_data["name"].replace("_fsdp_wrapped_module.", "")
|
1445 |
+
for handle in module_data["handles"]:
|
1446 |
+
flat_data = handle["flat_param.data"]
|
1447 |
+
if (num_padding := handle["flat_param._shard_numel_padded"]) > 0:
|
1448 |
+
# If there's padding in the flat param it should be on the right.
|
1449 |
+
assert (flat_data[-num_padding:] == 0).all()
|
1450 |
+
# NOTE: this changes depending on the torch version, but we don't do a version
|
1451 |
+
# check since we might be trying to unshard an old checkpoint that was stored
|
1452 |
+
# with a different torch version than we're currently running with.
|
1453 |
+
if "flat_param._shard_indices" in handle:
|
1454 |
+
# torch <=2.0.1
|
1455 |
+
param_start = handle["flat_param._shard_indices"][0]
|
1456 |
+
current_flat_index = 0
|
1457 |
+
for relative_fqn, full_shape, (offset_start, offset_end) in zip(
|
1458 |
+
handle["flat_param._fqns"][param_start:],
|
1459 |
+
handle["flat_param._shapes"][param_start:],
|
1460 |
+
handle["flat_param._shard_param_offsets"],
|
1461 |
+
):
|
1462 |
+
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
|
1463 |
+
numel_shard = offset_end - offset_start + 1
|
1464 |
+
flat_param_shard = _FlatParamShard(
|
1465 |
+
full_shape=full_shape,
|
1466 |
+
shard_offsets=(offset_start, offset_end),
|
1467 |
+
shard_data=flat_data[current_flat_index : current_flat_index + numel_shard],
|
1468 |
+
)
|
1469 |
+
current_flat_index += numel_shard
|
1470 |
+
yield root_fqn, flat_param_shard
|
1471 |
+
else:
|
1472 |
+
# torch >=2.1.0
|
1473 |
+
for relative_fqn, full_shape, shard_param_info in zip(
|
1474 |
+
handle["flat_param._fqns"],
|
1475 |
+
handle["flat_param._shapes"],
|
1476 |
+
handle["flat_param._shard_param_infos"],
|
1477 |
+
):
|
1478 |
+
if not shard_param_info.in_shard:
|
1479 |
+
continue
|
1480 |
+
root_fqn = relative_fqn if not module_prefix else f"{module_prefix}.{relative_fqn}"
|
1481 |
+
flat_param_shard = _FlatParamShard(
|
1482 |
+
full_shape=full_shape,
|
1483 |
+
shard_offsets=(
|
1484 |
+
shard_param_info.intra_param_start_idx,
|
1485 |
+
shard_param_info.intra_param_end_idx,
|
1486 |
+
),
|
1487 |
+
shard_data=flat_data[
|
1488 |
+
shard_param_info.offset_in_shard : shard_param_info.offset_in_shard
|
1489 |
+
+ shard_param_info.numel_in_shard
|
1490 |
+
],
|
1491 |
+
)
|
1492 |
+
yield root_fqn, flat_param_shard
|
1493 |
+
|
1494 |
+
def unshard_checkpoint(
|
1495 |
+
self,
|
1496 |
+
load_path: PathOrStr,
|
1497 |
+
*,
|
1498 |
+
local_cache: Optional[PathOrStr] = None,
|
1499 |
+
load_optimizer_state: bool = True,
|
1500 |
+
load_trainer_state: bool = True,
|
1501 |
+
device: Optional[torch.device] = None,
|
1502 |
+
) -> Tuple[Dict[str, torch.Tensor], Optional[Dict[str, Any]], Optional[Dict[str, Any]]]:
|
1503 |
+
device = device or torch.device("cpu")
|
1504 |
+
metadata = self._load_metadata(load_path, local_cache=local_cache)
|
1505 |
+
|
1506 |
+
# Gather paths model state, potentially downloading them.
|
1507 |
+
log.info("Gathering model state dicts...")
|
1508 |
+
model_state_paths = self._gather_state_dict_paths(
|
1509 |
+
load_path, "model", metadata.world_size, local_cache=local_cache
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
# Load model state dicts one-by-one, materializing and populating the full parameters as we go.
|
1513 |
+
log.info("Materializing full parameters...")
|
1514 |
+
full_model_state: Dict[str, torch.Tensor] = {}
|
1515 |
+
# We keep a copy of the flat param metadata minus the actual tensors so we can reconstruct
|
1516 |
+
# the full optimizer state below without having to reload the model state dicts.
|
1517 |
+
flat_params_data: Dict[int, Dict[str, _FlatParamShard]] = defaultdict(dict)
|
1518 |
+
for rank, path in enumerate(model_state_paths):
|
1519 |
+
log.info(f"Loading shards from rank {rank}...")
|
1520 |
+
model_state = torch.load(path, map_location="cpu")
|
1521 |
+
for root_fqn, flat_param_shard in self._iter_flat_param_shards(model_state):
|
1522 |
+
if root_fqn not in full_model_state:
|
1523 |
+
log.info(
|
1524 |
+
f"Materializing full parameter '{root_fqn}' with shape {flat_param_shard.full_shape}..."
|
1525 |
+
)
|
1526 |
+
assert flat_param_shard.shard_data is not None
|
1527 |
+
full_model_state[root_fqn] = torch.empty(
|
1528 |
+
flat_param_shard.full_shape, dtype=flat_param_shard.shard_data.dtype, device=device
|
1529 |
+
)
|
1530 |
+
# Fill with NaNs so we can validate that the whole parameter has been populated
|
1531 |
+
# afterwards.
|
1532 |
+
full_model_state[root_fqn].fill_(torch.nan)
|
1533 |
+
# Copy over the local shard to the relevant part of the full parameter.
|
1534 |
+
full_param = full_model_state[root_fqn]
|
1535 |
+
log.info(f"Loading rank {rank} shard for '{root_fqn}'...")
|
1536 |
+
flat_param_shard.copy_into(full_param)
|
1537 |
+
flat_params_data[rank][root_fqn] = replace(flat_param_shard, shard_data=None)
|
1538 |
+
|
1539 |
+
log.info("Validating full parameters...")
|
1540 |
+
for key, tensor in full_model_state.items():
|
1541 |
+
if torch.isnan(tensor).any():
|
1542 |
+
raise ValueError(f"Parameter '{key}' contains NaNs, this is likely a bug with the unsharder")
|
1543 |
+
|
1544 |
+
trainer_state: Optional[Dict[str, Any]] = None
|
1545 |
+
if load_trainer_state:
|
1546 |
+
trainer_state = load_state_dict(load_path, "train/rank0.pt", local_cache=local_cache)
|
1547 |
+
|
1548 |
+
if not load_optimizer_state:
|
1549 |
+
return full_model_state, None, trainer_state
|
1550 |
+
|
1551 |
+
log.info("Gathering optim state dicts...")
|
1552 |
+
optim_state_paths = self._gather_state_dict_paths(
|
1553 |
+
load_path, "optim", metadata.world_size, local_cache=local_cache
|
1554 |
+
)
|
1555 |
+
|
1556 |
+
log.info("Materializing full optim state...")
|
1557 |
+
full_optim_state: Dict[str, Any] = {"state": defaultdict(dict)}
|
1558 |
+
fqn_to_id: Dict[str, int] = {}
|
1559 |
+
id_to_fqn: Dict[int, str] = {}
|
1560 |
+
for rank, path in enumerate(optim_state_paths):
|
1561 |
+
log.info(f"Loading sharded optim state from rank {rank}...")
|
1562 |
+
optim_state = torch.load(path, map_location="cpu")
|
1563 |
+
|
1564 |
+
# Initialize param groups.
|
1565 |
+
# We assume parameter groups are the same across all ranks.
|
1566 |
+
# The only thing that differs across ranks is the state for each local sharded param.
|
1567 |
+
if "param_groups" not in full_optim_state:
|
1568 |
+
full_optim_state["param_groups"] = optim_state["param_groups"]
|
1569 |
+
else:
|
1570 |
+
assert full_optim_state["param_groups"] == optim_state["param_groups"]
|
1571 |
+
|
1572 |
+
# Generate mapping of parameter FQNs to optimizer param IDs and vice-versa.
|
1573 |
+
if not fqn_to_id or not id_to_fqn:
|
1574 |
+
for group in full_optim_state["param_groups"]:
|
1575 |
+
for fqn, id in zip(group["param_names"], group["params"]):
|
1576 |
+
fqn = fqn.replace("_fsdp_wrapped_module.", "")
|
1577 |
+
fqn_to_id[fqn] = id
|
1578 |
+
id_to_fqn[id] = fqn
|
1579 |
+
|
1580 |
+
# Iterate over local shard state and copy into the full state.
|
1581 |
+
for id, shard_state in optim_state["state"].items():
|
1582 |
+
fqn = id_to_fqn[id]
|
1583 |
+
flat_param_shard = flat_params_data[rank].get(fqn) # type: ignore[assignment]
|
1584 |
+
full_state = full_optim_state["state"][id]
|
1585 |
+
for key, shard_value in shard_state.items():
|
1586 |
+
assert isinstance(shard_value, torch.Tensor)
|
1587 |
+
if shard_value.shape == torch.Size([]):
|
1588 |
+
# Add singleton tensors directly to full state. These should be the same across
|
1589 |
+
# all ranks.
|
1590 |
+
assert key in ("step", "grad_norm_exp_avg") # sanity check
|
1591 |
+
if key not in full_state:
|
1592 |
+
full_state[key] = shard_value.to(device)
|
1593 |
+
else:
|
1594 |
+
assert full_state[key] == shard_value
|
1595 |
+
else:
|
1596 |
+
# Otherwise we have a sharded param state.
|
1597 |
+
# If the corresponding full param state hasn't been materialized yet, do so now.
|
1598 |
+
assert flat_param_shard is not None, f"missing flat_params_data for {fqn} from rank {rank}"
|
1599 |
+
if key not in full_state:
|
1600 |
+
log.info(
|
1601 |
+
f"Materializing full state '{key}' for '{fqn}' with shape {flat_param_shard.full_shape}..."
|
1602 |
+
)
|
1603 |
+
full_state[key] = torch.empty(
|
1604 |
+
flat_param_shard.full_shape, dtype=shard_value.dtype, device=device
|
1605 |
+
)
|
1606 |
+
full_state_value = full_state[key]
|
1607 |
+
|
1608 |
+
# Copy over the local shard state to the relevant part of the full parameter state.
|
1609 |
+
log.info(f"Loading rank {rank} shard state of '{key}' for '{fqn}'...")
|
1610 |
+
replace(flat_param_shard, shard_data=shard_value).copy_into(full_state_value)
|
1611 |
+
|
1612 |
+
# Lastly, clean up the parameter names in param groups.
|
1613 |
+
for group in full_optim_state["param_groups"]:
|
1614 |
+
group["param_names"] = [n.replace("_fsdp_wrapped_module.", "") for n in group["param_names"]]
|
1615 |
+
|
1616 |
+
return full_model_state, full_optim_state, trainer_state
|
1617 |
+
|
1618 |
+
def _get_state_dict_path(
|
1619 |
+
self,
|
1620 |
+
load_path: PathOrStr,
|
1621 |
+
state_dict_type: str,
|
1622 |
+
rank: int,
|
1623 |
+
*,
|
1624 |
+
local_cache: Optional[PathOrStr] = None,
|
1625 |
+
progress=None,
|
1626 |
+
) -> Tuple[int, Path]:
|
1627 |
+
fname = f"{state_dict_type}/rank{rank}.pt"
|
1628 |
+
return rank, resource_path(str(load_path).rstrip("/"), fname, local_cache=local_cache, progress=progress)
|
1629 |
+
|
1630 |
+
def _gather_state_dict_paths(
|
1631 |
+
self,
|
1632 |
+
load_path: PathOrStr,
|
1633 |
+
state_dict_type: str,
|
1634 |
+
world_size: int,
|
1635 |
+
*,
|
1636 |
+
local_cache: Optional[PathOrStr] = None,
|
1637 |
+
) -> List[Path]:
|
1638 |
+
progress = get_progress_bar()
|
1639 |
+
with ThreadPoolExecutor(max_workers=self.thread_count) as executor:
|
1640 |
+
futures = []
|
1641 |
+
for rank in range(world_size):
|
1642 |
+
future = executor.submit(
|
1643 |
+
self._get_state_dict_path,
|
1644 |
+
load_path,
|
1645 |
+
state_dict_type,
|
1646 |
+
rank,
|
1647 |
+
local_cache=local_cache,
|
1648 |
+
progress=progress,
|
1649 |
+
)
|
1650 |
+
futures.append(future)
|
1651 |
+
|
1652 |
+
results: Dict[int, Path] = {}
|
1653 |
+
for future in as_completed(futures):
|
1654 |
+
rank, path = future.result()
|
1655 |
+
results[rank] = path
|
1656 |
+
|
1657 |
+
return [results[rank] for rank in range(world_size)]
|
1658 |
+
|
1659 |
+
|
1660 |
+
class OlmoCoreCheckpointer(Checkpointer):
|
1661 |
+
def save_checkpoint(
|
1662 |
+
self,
|
1663 |
+
dir: PathOrStr,
|
1664 |
+
fsdp_model: FSDP,
|
1665 |
+
optim: Optimizer,
|
1666 |
+
trainer_state: Dict[str, Any],
|
1667 |
+
*,
|
1668 |
+
upload_to: Optional[str] = None,
|
1669 |
+
) -> None:
|
1670 |
+
from olmo_core.distributed.checkpoint import ( # type: ignore
|
1671 |
+
save_model_and_optim_state,
|
1672 |
+
)
|
1673 |
+
|
1674 |
+
with self._temporary_wd(dir) as checkpoint_dir:
|
1675 |
+
log.info("Saving model and optim state...")
|
1676 |
+
save_model_and_optim_state(checkpoint_dir, fsdp_model, optim, save_overwrite=self.cfg.save_overwrite)
|
1677 |
+
if upload_to is not None and get_fs_local_rank() == 0:
|
1678 |
+
for path in Path(checkpoint_dir).glob("**/*"):
|
1679 |
+
if not path.is_file():
|
1680 |
+
continue
|
1681 |
+
upload_target = f"{upload_to.rstrip('/')}/{path.relative_to(checkpoint_dir)}"
|
1682 |
+
log.info(f"Uploading {path} to {upload_target}...")
|
1683 |
+
upload(path, upload_target, save_overwrite=self.cfg.save_overwrite)
|
1684 |
+
|
1685 |
+
log.info("Saving trainer state...")
|
1686 |
+
save_state_dict(
|
1687 |
+
checkpoint_dir,
|
1688 |
+
f"train/rank{get_global_rank()}.pt",
|
1689 |
+
trainer_state,
|
1690 |
+
save_overwrite=self.cfg.save_overwrite,
|
1691 |
+
upload_to=upload_to,
|
1692 |
+
)
|
1693 |
+
|
1694 |
+
self._save_config(checkpoint_dir, upload_to=upload_to)
|
1695 |
+
|
1696 |
+
def restore_checkpoint(
|
1697 |
+
self,
|
1698 |
+
load_path: PathOrStr,
|
1699 |
+
fsdp_model: FSDP,
|
1700 |
+
optim: Optimizer,
|
1701 |
+
*,
|
1702 |
+
local_cache: Optional[PathOrStr] = None,
|
1703 |
+
load_optimizer_state: bool = True,
|
1704 |
+
) -> Dict[str, Any]:
|
1705 |
+
from olmo_core.distributed.checkpoint import ( # type: ignore
|
1706 |
+
load_model_and_optim_state,
|
1707 |
+
)
|
1708 |
+
|
1709 |
+
log.info("Loading model and optim state...")
|
1710 |
+
load_model_and_optim_state(load_path, fsdp_model, optim if load_optimizer_state else None)
|
1711 |
+
|
1712 |
+
log.info("Loading trainer state...")
|
1713 |
+
trainer_state = load_state_dict(load_path, f"train/rank{get_global_rank()}.pt", local_cache=local_cache)
|
1714 |
+
|
1715 |
+
barrier()
|
1716 |
+
return trainer_state
|
1717 |
+
|
1718 |
+
|
1719 |
+
def build_sharded_checkpointer(
|
1720 |
+
cfg: TrainConfig, *, name: Optional[ShardedCheckpointerType] = None
|
1721 |
+
) -> Checkpointer:
|
1722 |
+
name = name or cfg.sharded_checkpointer
|
1723 |
+
if name == ShardedCheckpointerType.torch_new:
|
1724 |
+
return TorchNewStyleShardedCheckpointer(cfg)
|
1725 |
+
elif name == ShardedCheckpointerType.torch_legacy:
|
1726 |
+
return TorchLegacyShardedCheckpointer(cfg)
|
1727 |
+
elif name == ShardedCheckpointerType.local:
|
1728 |
+
return LocalShardedCheckpointer(cfg)
|
1729 |
+
elif name == ShardedCheckpointerType.olmo_core:
|
1730 |
+
return OlmoCoreCheckpointer(cfg)
|
1731 |
+
else:
|
1732 |
+
raise NotImplementedError(name)
|
model/config.py
ADDED
@@ -0,0 +1,1113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from dataclasses import asdict, dataclass, field
|
4 |
+
from glob import glob
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
Dict,
|
9 |
+
Iterable,
|
10 |
+
List,
|
11 |
+
Optional,
|
12 |
+
Tuple,
|
13 |
+
Type,
|
14 |
+
TypeVar,
|
15 |
+
Union,
|
16 |
+
cast,
|
17 |
+
)
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from omegaconf import DictConfig, ListConfig
|
21 |
+
from omegaconf import OmegaConf as om
|
22 |
+
from omegaconf.errors import OmegaConfBaseException
|
23 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
24 |
+
|
25 |
+
from .aliases import PathOrStr
|
26 |
+
from .exceptions import OLMoConfigurationError
|
27 |
+
from .util import StrEnum
|
28 |
+
|
29 |
+
__all__ = [
|
30 |
+
"ActivationType",
|
31 |
+
"ActivationCheckpointingStrategy",
|
32 |
+
"BlockType",
|
33 |
+
"LayerNormType",
|
34 |
+
"InitFnType",
|
35 |
+
"ModelConfig",
|
36 |
+
"OptimizerType",
|
37 |
+
"OptimizerConfig",
|
38 |
+
"SchedulerType",
|
39 |
+
"SchedulerConfig",
|
40 |
+
"DataConfig",
|
41 |
+
"EvaluatorConfig",
|
42 |
+
"TokenizerConfig",
|
43 |
+
"TrainConfig",
|
44 |
+
"PaddingDirection",
|
45 |
+
"TruncationDirection",
|
46 |
+
"SpeedMonitorConfig",
|
47 |
+
"WandbConfig",
|
48 |
+
"CompilerConfig",
|
49 |
+
"WandbConfig",
|
50 |
+
"FSDPPrecision",
|
51 |
+
"FSDPWrapStrategy",
|
52 |
+
"FSDPConfig",
|
53 |
+
"CheckpointType",
|
54 |
+
]
|
55 |
+
|
56 |
+
C = TypeVar("C", bound="BaseConfig")
|
57 |
+
D = TypeVar("D", bound="DictConfig|ListConfig")
|
58 |
+
|
59 |
+
|
60 |
+
class BaseConfig:
|
61 |
+
@classmethod
|
62 |
+
def _register_resolvers(cls, validate_paths: bool = True):
|
63 |
+
# Expands path globs into a list.
|
64 |
+
def path_glob(*paths) -> List[str]:
|
65 |
+
out = []
|
66 |
+
for path in paths:
|
67 |
+
matches = sorted(glob(path))
|
68 |
+
if not matches and validate_paths:
|
69 |
+
raise FileNotFoundError(f"{path} does not match any files or dirs")
|
70 |
+
out.extend(matches)
|
71 |
+
return out
|
72 |
+
|
73 |
+
# Chooses the first path in the arguments that exists.
|
74 |
+
def path_choose(*paths) -> str:
|
75 |
+
from .util import is_url
|
76 |
+
|
77 |
+
for path in paths:
|
78 |
+
if is_url(path) or Path(path).exists():
|
79 |
+
return path
|
80 |
+
if validate_paths:
|
81 |
+
raise FileNotFoundError(", ".join(paths))
|
82 |
+
else:
|
83 |
+
return ""
|
84 |
+
|
85 |
+
# Finds the latest checkpoint in a folder.
|
86 |
+
def path_last_checkpoint(path) -> str:
|
87 |
+
from .util import find_latest_checkpoint
|
88 |
+
|
89 |
+
latest_checkpoint = find_latest_checkpoint(path)
|
90 |
+
if latest_checkpoint is None:
|
91 |
+
if validate_paths:
|
92 |
+
raise FileNotFoundError(f"Could not find a latest checkpoint at {path}")
|
93 |
+
else:
|
94 |
+
return ""
|
95 |
+
else:
|
96 |
+
return str(latest_checkpoint)
|
97 |
+
|
98 |
+
om.register_new_resolver("path.glob", path_glob, replace=True)
|
99 |
+
om.register_new_resolver("path.choose", path_choose, replace=True)
|
100 |
+
om.register_new_resolver("path.last_checkpoint", path_last_checkpoint, replace=True)
|
101 |
+
|
102 |
+
@classmethod
|
103 |
+
def update_legacy_settings(cls, config: D) -> D:
|
104 |
+
"""
|
105 |
+
Update the legacy config settings whose schemas have undergone backwards-incompatible changes.
|
106 |
+
"""
|
107 |
+
return config
|
108 |
+
|
109 |
+
@classmethod
|
110 |
+
def new(cls: Type[C], **kwargs) -> C:
|
111 |
+
cls._register_resolvers()
|
112 |
+
conf = om.structured(cls)
|
113 |
+
try:
|
114 |
+
if kwargs:
|
115 |
+
conf = om.merge(conf, kwargs)
|
116 |
+
return cast(C, om.to_object(conf))
|
117 |
+
except OmegaConfBaseException as e:
|
118 |
+
raise OLMoConfigurationError(str(e))
|
119 |
+
|
120 |
+
@classmethod
|
121 |
+
def load(
|
122 |
+
cls: Type[C],
|
123 |
+
path: PathOrStr,
|
124 |
+
overrides: Optional[List[str]] = None,
|
125 |
+
key: Optional[str] = None,
|
126 |
+
validate_paths: bool = True,
|
127 |
+
) -> C:
|
128 |
+
"""Load from a YAML file."""
|
129 |
+
cls._register_resolvers(validate_paths=validate_paths)
|
130 |
+
schema = om.structured(cls)
|
131 |
+
try:
|
132 |
+
raw = om.load(str(path))
|
133 |
+
if key is not None:
|
134 |
+
raw = raw[key] # type: ignore
|
135 |
+
raw = cls.update_legacy_settings(raw)
|
136 |
+
conf = om.merge(schema, raw)
|
137 |
+
if overrides:
|
138 |
+
conf = om.merge(conf, om.from_dotlist(overrides))
|
139 |
+
return cast(C, om.to_object(conf))
|
140 |
+
except OmegaConfBaseException as e:
|
141 |
+
raise OLMoConfigurationError(str(e))
|
142 |
+
|
143 |
+
def save(self, path: PathOrStr) -> None:
|
144 |
+
"""Save to a YAML file."""
|
145 |
+
om.save(config=self, f=str(path))
|
146 |
+
|
147 |
+
def asdict(self, exclude: Optional[Iterable[str]] = None) -> Dict[str, Any]:
|
148 |
+
out = asdict(self) # type: ignore
|
149 |
+
if exclude is not None:
|
150 |
+
for name in exclude:
|
151 |
+
if name in out:
|
152 |
+
del out[name]
|
153 |
+
return out
|
154 |
+
|
155 |
+
|
156 |
+
class LayerNormType(StrEnum):
|
157 |
+
default = "default"
|
158 |
+
"""
|
159 |
+
The default LayerNorm implementation, equivalent to PyTorch's built-in version.
|
160 |
+
"""
|
161 |
+
|
162 |
+
low_precision = "low_precision"
|
163 |
+
"""
|
164 |
+
A low-precision version of the default LayerNorm.
|
165 |
+
"""
|
166 |
+
|
167 |
+
rms = "rms"
|
168 |
+
"""
|
169 |
+
An RMSNorm implementation. When using ``torch.compile`` this is
|
170 |
+
probably the fastest implementation.
|
171 |
+
"""
|
172 |
+
|
173 |
+
|
174 |
+
class ActivationType(StrEnum):
|
175 |
+
gelu = "gelu"
|
176 |
+
relu = "relu"
|
177 |
+
swiglu = "swiglu"
|
178 |
+
|
179 |
+
|
180 |
+
class BlockType(StrEnum):
|
181 |
+
sequential = "sequential"
|
182 |
+
|
183 |
+
llama = "llama"
|
184 |
+
"""
|
185 |
+
A block similar to the sequential block with slightly different
|
186 |
+
implementations of operations like attention to imitate the behavior of Llama.
|
187 |
+
"""
|
188 |
+
|
189 |
+
|
190 |
+
class InitFnType(StrEnum):
|
191 |
+
mitchell = "mitchell"
|
192 |
+
"""
|
193 |
+
The strategy suggested to us by Mitchell Wortsman from UW.
|
194 |
+
This uses a truncated normal distribution with an adaptive standard deviation that depends
|
195 |
+
on the size of the weights as well as the depth of the layer.
|
196 |
+
"""
|
197 |
+
|
198 |
+
normal = "normal"
|
199 |
+
"""
|
200 |
+
All weights are initialized from the same normal distribution.
|
201 |
+
"""
|
202 |
+
|
203 |
+
kaiming_normal = "kaiming_normal"
|
204 |
+
"""
|
205 |
+
All weights are initialized with the Kaiming method from a normal distribution.
|
206 |
+
Note this currently won't work with FSDP.
|
207 |
+
"""
|
208 |
+
|
209 |
+
fan_in = "fan_in"
|
210 |
+
"""
|
211 |
+
"Fan-in variance scaling", i.e. normal with a standard deviation of ``1/sqrt(d_in)`` where ``d_in``
|
212 |
+
is the input dimensionality of the kernel.
|
213 |
+
"""
|
214 |
+
|
215 |
+
full_megatron = "full_megatron"
|
216 |
+
"""
|
217 |
+
This is what metaseq calls "full megatron init". It is the init used for Llama 2.
|
218 |
+
"""
|
219 |
+
|
220 |
+
|
221 |
+
@dataclass
|
222 |
+
class ModelConfig(BaseConfig):
|
223 |
+
"""
|
224 |
+
OLMo (model) configuration.
|
225 |
+
"""
|
226 |
+
|
227 |
+
# Note that the defaults for these attributes are equivalent to the base GPT2 model.
|
228 |
+
|
229 |
+
d_model: int = 768
|
230 |
+
"""
|
231 |
+
The hidden size of the model.
|
232 |
+
"""
|
233 |
+
|
234 |
+
n_heads: int = 12
|
235 |
+
"""
|
236 |
+
The number of self-attention heads.
|
237 |
+
"""
|
238 |
+
|
239 |
+
n_kv_heads: Optional[int] = None
|
240 |
+
"""
|
241 |
+
The number of heads to use for keys and values. Defaults to `n_heads`.
|
242 |
+
Set this to ``None`` or ``n_heads`` for normal multi-head attention.
|
243 |
+
Set this to 1 for multi-query attention.
|
244 |
+
Set it to some in-between value for Llama2-style grouped query attention.
|
245 |
+
"""
|
246 |
+
|
247 |
+
clip_qkv: Optional[float] = None
|
248 |
+
"""
|
249 |
+
Clip QKV to this value when set.
|
250 |
+
"""
|
251 |
+
|
252 |
+
n_layers: int = 12
|
253 |
+
"""
|
254 |
+
The number of layers/blocks.
|
255 |
+
"""
|
256 |
+
|
257 |
+
mlp_ratio: int = 4
|
258 |
+
"""
|
259 |
+
The ratio of the inner MLP dimensionality to ``d_model``.
|
260 |
+
This is only used when ``mlp_hidden_size`` is not set.
|
261 |
+
"""
|
262 |
+
|
263 |
+
mlp_hidden_size: Optional[int] = None
|
264 |
+
"""
|
265 |
+
Set the exact hidden size for the MLP. Otherwise the inner MLP hidden size will be set to `mlp_ratio * d_model`.
|
266 |
+
"""
|
267 |
+
|
268 |
+
activation_type: ActivationType = ActivationType.swiglu
|
269 |
+
"""
|
270 |
+
The activation function to use within the MLP layers.
|
271 |
+
"""
|
272 |
+
|
273 |
+
block_type: BlockType = BlockType.sequential
|
274 |
+
"""
|
275 |
+
The transformer block implementation.
|
276 |
+
"""
|
277 |
+
|
278 |
+
block_group_size: int = 1
|
279 |
+
"""
|
280 |
+
The number of blocks to group together into a single parent block.
|
281 |
+
This has no affect on the number of parameters in the model and is only used to wrap groups
|
282 |
+
of blocks together with a single FSDP wrapper during training.
|
283 |
+
"""
|
284 |
+
|
285 |
+
alibi: bool = False
|
286 |
+
"""
|
287 |
+
If ``True``, use ALiBi embeddings. Mutually exclusive with ``rope``.
|
288 |
+
"""
|
289 |
+
|
290 |
+
alibi_bias_max: float = 8.0
|
291 |
+
"""
|
292 |
+
Maximum absolute value of ALiBi bias.
|
293 |
+
"""
|
294 |
+
|
295 |
+
rope: bool = False
|
296 |
+
"""
|
297 |
+
Use rotary positional embeddings (RoPE). Mutually exclusive with ``alibi``.
|
298 |
+
"""
|
299 |
+
|
300 |
+
rope_full_precision: bool = True
|
301 |
+
"""
|
302 |
+
If ``True``, apply RoPE embeddings at full precision regardless of the input type. Otherwise,
|
303 |
+
apply RoPE at the precision of the input.
|
304 |
+
"""
|
305 |
+
|
306 |
+
flash_attention: bool = False
|
307 |
+
"""
|
308 |
+
If ``True``, use ``FlashAttention``.
|
309 |
+
"""
|
310 |
+
|
311 |
+
attention_dropout: float = 0.1
|
312 |
+
"""
|
313 |
+
The dropout probability within the attention modules.
|
314 |
+
"""
|
315 |
+
|
316 |
+
multi_query_attention: Optional[bool] = None
|
317 |
+
"""
|
318 |
+
Deprecated. Use n_kv_heads instead.
|
319 |
+
"""
|
320 |
+
|
321 |
+
attention_layer_norm: bool = False
|
322 |
+
"""
|
323 |
+
Apply layer norm to the keys and queries within the attention mechanism.
|
324 |
+
This can help stabilize training.
|
325 |
+
"""
|
326 |
+
|
327 |
+
residual_dropout: float = 0.1
|
328 |
+
"""
|
329 |
+
The dropout probability for the MLP and attention output within each block.
|
330 |
+
"""
|
331 |
+
|
332 |
+
embedding_dropout: float = 0.1
|
333 |
+
"""
|
334 |
+
The dropout probability for embeddings.
|
335 |
+
"""
|
336 |
+
|
337 |
+
layer_norm_type: LayerNormType = LayerNormType.default
|
338 |
+
"""
|
339 |
+
The layernorm implementation to use.
|
340 |
+
"""
|
341 |
+
|
342 |
+
layer_norm_with_affine: bool = True
|
343 |
+
"""
|
344 |
+
Whether to include bias and weight parameters for the layer norms.
|
345 |
+
This only affects layer norms that are immediately followed by a linear layer in the forward pass,
|
346 |
+
so everything except QK-norms. To turn off affines for QK norms as well, set :attr:`attention_layer_norm_with_affine`
|
347 |
+
to ``False``.
|
348 |
+
"""
|
349 |
+
|
350 |
+
attention_layer_norm_with_affine: bool = True
|
351 |
+
"""
|
352 |
+
Toggle affine transform for the QK norms.
|
353 |
+
"""
|
354 |
+
|
355 |
+
max_sequence_length: int = 1024
|
356 |
+
"""
|
357 |
+
The maximum input sequence length supported by the model.
|
358 |
+
"""
|
359 |
+
|
360 |
+
include_bias: bool = True
|
361 |
+
"""
|
362 |
+
Whether or not to include bias parameters in linear layers.
|
363 |
+
In PaLM, they got rid of all bias terms because they found that large
|
364 |
+
models tend to have near 0 bias terms anyway.
|
365 |
+
"""
|
366 |
+
|
367 |
+
bias_for_layer_norm: Optional[bool] = None
|
368 |
+
"""
|
369 |
+
Whether or not to include bias parameters in layer norm.
|
370 |
+
This is separate from the include_bias parameter, because of a ROCm crash when biases are disabled in
|
371 |
+
layer norm.
|
372 |
+
When this is None (the default), it inherits the setting from include_bias.
|
373 |
+
"""
|
374 |
+
|
375 |
+
scale_logits: bool = False
|
376 |
+
"""
|
377 |
+
If ``True``, scale the output logits by ``1 / sqrt(d_model)``.
|
378 |
+
"""
|
379 |
+
|
380 |
+
vocab_size: int = 50257
|
381 |
+
"""
|
382 |
+
Vocabulary size of the model.
|
383 |
+
"""
|
384 |
+
|
385 |
+
embedding_size: Optional[int] = 50304
|
386 |
+
"""
|
387 |
+
The number of embeddings, i.e. the number of tokens. If set to ``None`` it will default
|
388 |
+
to ``vocab_size``. If ``vocab_size`` is not a multiple of 128, setting this to the
|
389 |
+
next multiple of 128 that's greater than ``vocab_size`` can improve throughput
|
390 |
+
substantially.
|
391 |
+
"""
|
392 |
+
|
393 |
+
weight_tying: bool = True
|
394 |
+
"""
|
395 |
+
Whether to tie output linear weights to the input embedding.
|
396 |
+
"""
|
397 |
+
|
398 |
+
eos_token_id: int = 50256
|
399 |
+
"""
|
400 |
+
The ID of the end-of-sentence special token.
|
401 |
+
"""
|
402 |
+
|
403 |
+
pad_token_id: int = 50256
|
404 |
+
"""
|
405 |
+
The ID of the token to use for padding. Defaults to the ID of the EOS token.
|
406 |
+
"""
|
407 |
+
|
408 |
+
init_device: Optional[str] = None
|
409 |
+
"""
|
410 |
+
The torch device to use when initializing the model parameters, e.g. "cpu", "cuda:0", "meta".
|
411 |
+
"""
|
412 |
+
|
413 |
+
init_fn: InitFnType = InitFnType.normal
|
414 |
+
"""
|
415 |
+
The weight initialization strategy.
|
416 |
+
"""
|
417 |
+
|
418 |
+
init_std: float = 0.02
|
419 |
+
"""
|
420 |
+
The standard deviation to use when initializing weights with a "fixed distribution" ``init_fn``, such
|
421 |
+
as "normal".
|
422 |
+
"""
|
423 |
+
|
424 |
+
init_cutoff_factor: Optional[float] = None
|
425 |
+
"""
|
426 |
+
A positive factor used to scale the cutoff values when initializing weights with a "fixed distribution" ``init_fn``, such
|
427 |
+
as "normal". Setting this to None means values are not cutoff.
|
428 |
+
"""
|
429 |
+
|
430 |
+
precision: Optional[str] = None
|
431 |
+
"""
|
432 |
+
Precision used to train/evaluate with. You shouldn't set this directly.
|
433 |
+
See :data:`TrainConfig.precision` instead.
|
434 |
+
"""
|
435 |
+
|
436 |
+
@property
|
437 |
+
def effective_n_kv_heads(self) -> int:
|
438 |
+
if self.n_kv_heads is None:
|
439 |
+
if self.multi_query_attention is True:
|
440 |
+
return 1
|
441 |
+
else:
|
442 |
+
return self.n_heads
|
443 |
+
else:
|
444 |
+
if self.multi_query_attention is None:
|
445 |
+
return self.n_kv_heads
|
446 |
+
if self.multi_query_attention:
|
447 |
+
n_kv_heads_should_be = 1
|
448 |
+
else:
|
449 |
+
n_kv_heads_should_be = self.n_heads
|
450 |
+
if self.n_kv_heads == n_kv_heads_should_be:
|
451 |
+
return n_kv_heads_should_be
|
452 |
+
else:
|
453 |
+
raise OLMoConfigurationError(
|
454 |
+
"You can't set `multi_query_attention` and `n_kv_heads` at the same time."
|
455 |
+
)
|
456 |
+
|
457 |
+
|
458 |
+
class OptimizerType(StrEnum):
|
459 |
+
lionw = "lionw"
|
460 |
+
adamw = "adamw"
|
461 |
+
|
462 |
+
|
463 |
+
@dataclass
|
464 |
+
class OptimizerConfig(BaseConfig):
|
465 |
+
name: OptimizerType = OptimizerType.lionw
|
466 |
+
learning_rate: float = 1.0e-4
|
467 |
+
weight_decay: float = 0.01
|
468 |
+
betas: Tuple[float, float] = (0.9, 0.95)
|
469 |
+
|
470 |
+
no_decay_norm_and_bias: Optional[bool] = None
|
471 |
+
"""
|
472 |
+
Deprecated. Use ``decay_norm_and_bias`` and ``decay_embeddings`` instead.
|
473 |
+
"""
|
474 |
+
|
475 |
+
decay_norm_and_bias: bool = False
|
476 |
+
decay_embeddings: bool = False
|
477 |
+
metrics_log_interval: Optional[int] = None
|
478 |
+
"""
|
479 |
+
The interval with which to collect and log detailed parameter-specific metrics.
|
480 |
+
This only applies when logging to W&B, since these metrics won't be logged to the console.
|
481 |
+
If not set, defaults to the wandb `log_interval`.
|
482 |
+
"""
|
483 |
+
|
484 |
+
def __post_init__(self):
|
485 |
+
self.betas = tuple(self.betas) # type: ignore[assignment]
|
486 |
+
|
487 |
+
@classmethod
|
488 |
+
def update_legacy_settings(cls, config: D) -> D:
|
489 |
+
new_config = config.copy()
|
490 |
+
if om.is_dict(new_config):
|
491 |
+
assert isinstance(new_config, DictConfig)
|
492 |
+
|
493 |
+
if hasattr(new_config, "name") and new_config.name == "decoupled_lionw":
|
494 |
+
new_config.name = "lionw"
|
495 |
+
if hasattr(new_config, "eps"):
|
496 |
+
del new_config.eps
|
497 |
+
|
498 |
+
return new_config
|
499 |
+
|
500 |
+
|
501 |
+
class SchedulerType(StrEnum):
|
502 |
+
cosine_with_warmup = "cosine_with_warmup"
|
503 |
+
linear_with_warmup = "linear_with_warmup"
|
504 |
+
inverse_sqrt_with_warmup = "inverse_sqrt_with_warmup"
|
505 |
+
max_scheduler = "max_scheduler"
|
506 |
+
constant = "constant"
|
507 |
+
|
508 |
+
|
509 |
+
class SchedulerUnits(StrEnum):
|
510 |
+
steps = "steps"
|
511 |
+
tokens = "tokens"
|
512 |
+
|
513 |
+
|
514 |
+
@dataclass
|
515 |
+
class SchedulerConfig(BaseConfig):
|
516 |
+
name: SchedulerType = SchedulerType.cosine_with_warmup
|
517 |
+
units: SchedulerUnits = SchedulerUnits.steps
|
518 |
+
t_warmup: Union[int, float] = 100
|
519 |
+
t_max: Optional[Union[int, float]] = None
|
520 |
+
alpha_f: float = 0.1
|
521 |
+
|
522 |
+
grad_clip_warmup_steps: Optional[Union[int, float]] = None
|
523 |
+
"""
|
524 |
+
The warmup period for which the max grad norm (or norm ratio) will be set to its
|
525 |
+
warmup value of `max_grad_norm * grad_clip_warmup_factor`.
|
526 |
+
"""
|
527 |
+
|
528 |
+
grad_clip_warmup_factor: Optional[float] = None
|
529 |
+
"""
|
530 |
+
The ratio of the max allowed gradient norm (or norm ratio) for clipping during the warmup period
|
531 |
+
vs after the warmup period.
|
532 |
+
"""
|
533 |
+
|
534 |
+
warmup_min_lr: Optional[float] = None
|
535 |
+
"""
|
536 |
+
The starting LR during the warmup period. If not set this defaults to 10% of
|
537 |
+
the target LR.
|
538 |
+
"""
|
539 |
+
|
540 |
+
|
541 |
+
class PaddingDirection(StrEnum):
|
542 |
+
right = "right"
|
543 |
+
left = "left"
|
544 |
+
|
545 |
+
|
546 |
+
@dataclass
|
547 |
+
class DataConfig(BaseConfig):
|
548 |
+
paths: Optional[List[str]] = None
|
549 |
+
datasets: Optional[Dict[str, List[str]]] = None
|
550 |
+
label_mask_paths: Optional[List[str]] = None
|
551 |
+
pad_direction: PaddingDirection = PaddingDirection.right
|
552 |
+
generate_attention_mask: bool = False
|
553 |
+
num_workers: int = 0
|
554 |
+
drop_last: bool = False
|
555 |
+
pin_memory: bool = False
|
556 |
+
prefetch_factor: Optional[int] = None
|
557 |
+
persistent_workers: bool = False
|
558 |
+
timeout: int = 0
|
559 |
+
seed: Optional[int] = None
|
560 |
+
|
561 |
+
|
562 |
+
class EvaluatorType(StrEnum):
|
563 |
+
downstream = "downstream"
|
564 |
+
lm = "lm"
|
565 |
+
|
566 |
+
|
567 |
+
@dataclass
|
568 |
+
class EvaluatorConfig(BaseConfig):
|
569 |
+
label: str
|
570 |
+
type: EvaluatorType = EvaluatorType.lm
|
571 |
+
data: DataConfig = field(default_factory=DataConfig)
|
572 |
+
device_eval_batch_size: Optional[int] = None
|
573 |
+
subset_num_batches: Optional[int] = None
|
574 |
+
|
575 |
+
|
576 |
+
class TruncationDirection(StrEnum):
|
577 |
+
right = "right"
|
578 |
+
left = "left"
|
579 |
+
|
580 |
+
|
581 |
+
@dataclass
|
582 |
+
class TokenizerConfig(BaseConfig):
|
583 |
+
identifier: str = "gpt2"
|
584 |
+
truncate_direction: TruncationDirection = TruncationDirection.right
|
585 |
+
|
586 |
+
|
587 |
+
@dataclass
|
588 |
+
class WandbConfig(BaseConfig):
|
589 |
+
project: Optional[str] = None
|
590 |
+
entity: Optional[str] = "zehui127-imperial-college-london"
|
591 |
+
group: Optional[str] = None
|
592 |
+
name: Optional[str] = None
|
593 |
+
tags: Optional[List[str]] = field(default_factory=lambda: ["watching"])
|
594 |
+
log_artifacts: bool = False
|
595 |
+
rank_zero_only: bool = True
|
596 |
+
log_interval: int = 50
|
597 |
+
|
598 |
+
|
599 |
+
@dataclass
|
600 |
+
class SpeedMonitorConfig(BaseConfig):
|
601 |
+
window_size: int = 100
|
602 |
+
gpu_flops_available: Optional[Union[float, int]] = None
|
603 |
+
|
604 |
+
|
605 |
+
@dataclass
|
606 |
+
class CompilerConfig(BaseConfig):
|
607 |
+
mode: Optional[str] = None
|
608 |
+
"""
|
609 |
+
The mode to compile the model in. At the moment this can be "default",
|
610 |
+
"reduce-overhead" (useful for smaller models/batches), or "max-autotune"
|
611 |
+
(the fastest for larger models, but takes a long time to compile).
|
612 |
+
"""
|
613 |
+
|
614 |
+
fullgraph: bool = False
|
615 |
+
"""
|
616 |
+
Whether it is OK to break model into several subgraphs when compiling.
|
617 |
+
Note that this is not compatible with FSDP.
|
618 |
+
"""
|
619 |
+
|
620 |
+
backend: str = "inductor"
|
621 |
+
"""
|
622 |
+
The backend to use.
|
623 |
+
"""
|
624 |
+
|
625 |
+
|
626 |
+
class FSDPWrapStrategy(StrEnum):
|
627 |
+
by_block = "by_block"
|
628 |
+
"""
|
629 |
+
Wrap each OLMo block with its own FSDP instance.
|
630 |
+
"""
|
631 |
+
|
632 |
+
by_block_and_size = "by_block_and_size"
|
633 |
+
"""
|
634 |
+
Like 'by_block' but `wte` and `ff_out` will be wrapped separately as well.
|
635 |
+
"""
|
636 |
+
|
637 |
+
by_block_group = "by_block_group"
|
638 |
+
"""
|
639 |
+
Wrap each block group together into its own FSDP instance.
|
640 |
+
This requires :attr:`~ModelConfig.block_group_size` to be bigger than 1.
|
641 |
+
"""
|
642 |
+
|
643 |
+
by_block_group_and_size = "by_block_group_and_size"
|
644 |
+
"""
|
645 |
+
Like 'by_block_group' but `wte` and `ff_out` will be wrapped separately as well.
|
646 |
+
"""
|
647 |
+
|
648 |
+
size_based = "size_based"
|
649 |
+
"""
|
650 |
+
Used PyTorch's default size-based auto wrap policy.
|
651 |
+
"""
|
652 |
+
|
653 |
+
one_in_two = "one_in_two"
|
654 |
+
one_in_three = "one_in_three"
|
655 |
+
one_in_four = "one_in_four"
|
656 |
+
one_in_five = "one_in_five"
|
657 |
+
|
658 |
+
|
659 |
+
class FSDPPrecision(StrEnum):
|
660 |
+
pure = "pure"
|
661 |
+
"""
|
662 |
+
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, ``reduce_dtype``,
|
663 |
+
and ``buffer_dtype`` all set to the autocast precision data type.
|
664 |
+
"""
|
665 |
+
|
666 |
+
mixed = "mixed"
|
667 |
+
"""
|
668 |
+
Equivalent to :class:`torch.distributed.fsdp.MixedPrecision` with ``param_dtype``, and ``buffer_dtype``
|
669 |
+
set to the autocast precision data type, while ``reduce_dtype`` is set to fp32.
|
670 |
+
"""
|
671 |
+
|
672 |
+
|
673 |
+
@dataclass
|
674 |
+
class FSDPConfig(BaseConfig):
|
675 |
+
use_orig_params: bool = True
|
676 |
+
"""
|
677 |
+
This must be ``True`` if using ``compile`` or you want to track the parameter norm during training.
|
678 |
+
"""
|
679 |
+
|
680 |
+
sharding_strategy: ShardingStrategy = ShardingStrategy.FULL_SHARD
|
681 |
+
|
682 |
+
wrapping_strategy: Optional[FSDPWrapStrategy] = None
|
683 |
+
"""
|
684 |
+
The wrapping strategy to use. If ``None``, the default, the model is wrapped with a single top-level
|
685 |
+
FSDP instance.
|
686 |
+
"""
|
687 |
+
|
688 |
+
precision: FSDPPrecision = FSDPPrecision.pure
|
689 |
+
|
690 |
+
|
691 |
+
class CheckpointType(StrEnum):
|
692 |
+
sharded = "sharded"
|
693 |
+
unsharded = "unsharded"
|
694 |
+
sharded_ephemeral = "sharded_ephemeral"
|
695 |
+
|
696 |
+
|
697 |
+
class ShardedCheckpointerType(StrEnum):
|
698 |
+
torch_new = "torch_new"
|
699 |
+
torch_legacy = "torch_legacy"
|
700 |
+
local = "local"
|
701 |
+
olmo_core = "olmo_core"
|
702 |
+
|
703 |
+
|
704 |
+
class ActivationCheckpointingStrategy(StrEnum):
|
705 |
+
whole_layer = "whole_layer"
|
706 |
+
"""
|
707 |
+
Checkpoint every transformer layer.
|
708 |
+
"""
|
709 |
+
|
710 |
+
one_in_two = "one_in_two"
|
711 |
+
"""
|
712 |
+
Checkpoint one in two transformer layers.
|
713 |
+
"""
|
714 |
+
|
715 |
+
one_in_three = "one_in_three"
|
716 |
+
"""
|
717 |
+
Checkpoint one in three transformer layers.
|
718 |
+
"""
|
719 |
+
|
720 |
+
one_in_four = "one_in_four"
|
721 |
+
"""
|
722 |
+
Checkpoint one in four transformer layers.
|
723 |
+
"""
|
724 |
+
|
725 |
+
two_in_three = "two_in_three"
|
726 |
+
"""
|
727 |
+
Checkpoint two out of every three transformer layers.
|
728 |
+
"""
|
729 |
+
|
730 |
+
three_in_four = "three_in_four"
|
731 |
+
"""
|
732 |
+
Checkpoint three out of four of every transformer layers.
|
733 |
+
"""
|
734 |
+
|
735 |
+
fine_grained = "fine_grained"
|
736 |
+
"""
|
737 |
+
Focus checkpointing on where it is cheap to recompute and saves most memory.
|
738 |
+
"""
|
739 |
+
|
740 |
+
|
741 |
+
@dataclass
|
742 |
+
class TrainConfig(BaseConfig):
|
743 |
+
"""
|
744 |
+
OLMo training configuration.
|
745 |
+
"""
|
746 |
+
|
747 |
+
run_name: Optional[str] = None
|
748 |
+
"""
|
749 |
+
The name of the run.
|
750 |
+
"""
|
751 |
+
|
752 |
+
seed: int = 6198
|
753 |
+
"""
|
754 |
+
Used to seed all initial RNG states.
|
755 |
+
"""
|
756 |
+
|
757 |
+
epoch: Optional[int] = None
|
758 |
+
"""
|
759 |
+
Increment this when starting a new epoch.
|
760 |
+
"""
|
761 |
+
|
762 |
+
dry_run: bool = False
|
763 |
+
"""
|
764 |
+
If ``True``, don't actually train.
|
765 |
+
"""
|
766 |
+
|
767 |
+
model: ModelConfig = field(default_factory=ModelConfig)
|
768 |
+
"""
|
769 |
+
OLMo Model configuration.
|
770 |
+
"""
|
771 |
+
|
772 |
+
optimizer: OptimizerConfig = field(default_factory=OptimizerConfig)
|
773 |
+
"""
|
774 |
+
Optimizer configuration.
|
775 |
+
"""
|
776 |
+
|
777 |
+
scheduler: SchedulerConfig = field(default_factory=SchedulerConfig)
|
778 |
+
"""
|
779 |
+
Learning rate scheduler configuration.
|
780 |
+
"""
|
781 |
+
|
782 |
+
data: DataConfig = field(default_factory=DataConfig)
|
783 |
+
"""
|
784 |
+
Training data configuration.
|
785 |
+
"""
|
786 |
+
|
787 |
+
restore_dataloader: bool = True
|
788 |
+
"""
|
789 |
+
When restarting, restore the data loader to where it left off.
|
790 |
+
If you restarting in order to train on a different dataset, set this to ``False``.
|
791 |
+
"""
|
792 |
+
|
793 |
+
fast_forward_batches: Optional[int] = None
|
794 |
+
"""
|
795 |
+
When restarting, use this to fast-forward the dataloader beyond the last checkpoint.
|
796 |
+
This can be useful when restarting due to a loss spike in order to skip the data that
|
797 |
+
corresponded to the spike.
|
798 |
+
"""
|
799 |
+
|
800 |
+
evaluators: List[EvaluatorConfig] = field(default_factory=list)
|
801 |
+
"""
|
802 |
+
Evaluation configurations.
|
803 |
+
"""
|
804 |
+
|
805 |
+
eval_interval: int = 1000
|
806 |
+
"""
|
807 |
+
How often (in terms of batches) to run evaluations.
|
808 |
+
"""
|
809 |
+
|
810 |
+
tokenizer: TokenizerConfig = field(default_factory=TokenizerConfig)
|
811 |
+
"""
|
812 |
+
Tokenizer configuration.
|
813 |
+
"""
|
814 |
+
|
815 |
+
save_folder: str = "./"
|
816 |
+
"""
|
817 |
+
The directory to save checkpoints to.
|
818 |
+
"""
|
819 |
+
|
820 |
+
remote_save_folder: Optional[str] = None
|
821 |
+
"""
|
822 |
+
A folder in a cloud bucket to upload saved checkpoints to.
|
823 |
+
"""
|
824 |
+
|
825 |
+
canceled_check_interval: int = 50
|
826 |
+
"""
|
827 |
+
How often (in batches) to check if the run has been canceled or reached its time limit.
|
828 |
+
"""
|
829 |
+
|
830 |
+
save_interval: int = 1000
|
831 |
+
"""
|
832 |
+
How often (in terms of steps) to save sharded training state checkpoints.
|
833 |
+
"""
|
834 |
+
|
835 |
+
save_interval_unsharded: Optional[int] = None
|
836 |
+
"""
|
837 |
+
How often (if at all) to save unsharded training state checkpoint.
|
838 |
+
For large models it can be costly to save these, so it usually makes sense to save
|
839 |
+
these less often than regular (sharded) training checkpoints.
|
840 |
+
"""
|
841 |
+
|
842 |
+
save_interval_ephemeral: Optional[int] = None
|
843 |
+
"""
|
844 |
+
How often (if at all) to save ephemeral sharded checkpoints. These checkpoints are the same
|
845 |
+
as those saved every `save_interval` except that at most only the most recent one of these is kept.
|
846 |
+
This is useful when you want to checkpoint often for restarts in case of failures, but don't
|
847 |
+
want to keep the majority of these checkpoints.
|
848 |
+
|
849 |
+
For example, suppose you want to keep your checkpoints at every 1000 steps, but you also want to save
|
850 |
+
a temporary checkpoint every 100 steps in case your job fails. In that case you would
|
851 |
+
set `save_interval=1000` and `save_interval_ephemeral=100`.
|
852 |
+
"""
|
853 |
+
|
854 |
+
save_num_checkpoints_to_keep: int = -1
|
855 |
+
"""
|
856 |
+
How many sharded checkpoints to keep.
|
857 |
+
"""
|
858 |
+
|
859 |
+
save_num_unsharded_checkpoints_to_keep: int = -1
|
860 |
+
"""
|
861 |
+
How many unsharded checkpoints to keep.
|
862 |
+
"""
|
863 |
+
|
864 |
+
save_overwrite: bool = False
|
865 |
+
"""
|
866 |
+
If ``True``, overwrite any conflicting checkpoint files.
|
867 |
+
"""
|
868 |
+
|
869 |
+
force_save_unsharded: bool = False
|
870 |
+
"""
|
871 |
+
Save an unsharded checkpoint before training (even during a dry run).
|
872 |
+
Use this option with `--load-path={PATH}` and `--dry_run` to convert a sharded
|
873 |
+
checkpoint into an unsharded checkpoint.
|
874 |
+
"""
|
875 |
+
|
876 |
+
no_pre_train_checkpoint: bool = False
|
877 |
+
"""
|
878 |
+
Skip saving pre-train checkpoint.
|
879 |
+
"""
|
880 |
+
|
881 |
+
load_path: Optional[str] = None
|
882 |
+
"""
|
883 |
+
The path to a training checkpoint to restore/resume from.
|
884 |
+
|
885 |
+
Note that you can make use of the "path.last_checkpoint" Omegaconfig YAML resolver here, which takes
|
886 |
+
a local or remote directory and resolves to the latest checkpoint (sharded or unsharded) in that directory.
|
887 |
+
For example,
|
888 |
+
|
889 |
+
```bash
|
890 |
+
--load_path='${path.last_checkpoint:s3://ai2-llm/checkpoints/7b/v1_5-mix-run-001}'
|
891 |
+
```
|
892 |
+
"""
|
893 |
+
|
894 |
+
load_path_sharded_checkpointer: Optional[ShardedCheckpointerType] = None
|
895 |
+
"""
|
896 |
+
The sharded checkpointer type to use to load the initial checkpoint from ``load_path``.
|
897 |
+
"""
|
898 |
+
|
899 |
+
reset_optimizer_state: bool = False
|
900 |
+
"""
|
901 |
+
When this is set, we restore the model from a checkpoint (if given), but we leave the optimizer uninitialized.
|
902 |
+
We also set a new learning rate schedule that does a new warmup, such that it intercepts the original learning
|
903 |
+
curve (according to the current learning rate schedule settings), and continues from there.
|
904 |
+
"""
|
905 |
+
|
906 |
+
reset_trainer_state: bool = False
|
907 |
+
"""
|
908 |
+
When this is set we don't restore the trainer state from a checkpoint.
|
909 |
+
"""
|
910 |
+
|
911 |
+
sharded_checkpointer: ShardedCheckpointerType = ShardedCheckpointerType.torch_legacy
|
912 |
+
"""
|
913 |
+
The name of the sharded checkpointer to use to save (sharded) checkpoints throughout training.
|
914 |
+
"""
|
915 |
+
|
916 |
+
new_style_checkpoints: Optional[bool] = None
|
917 |
+
"""
|
918 |
+
Deprecated. Use ``sharded_checkpointer`` instead.
|
919 |
+
"""
|
920 |
+
|
921 |
+
max_duration: Union[int, str] = 10000
|
922 |
+
"""
|
923 |
+
How long to train for.
|
924 |
+
|
925 |
+
If specified without a unit (the default), the units are assumed to be steps.
|
926 |
+
You can also specify this in terms of tokens, for example: `max_duration="2e12T"` means train until
|
927 |
+
2 trillion tokens.
|
928 |
+
"""
|
929 |
+
|
930 |
+
global_train_batch_size: int = 512
|
931 |
+
"""
|
932 |
+
The effective global batch size.
|
933 |
+
"""
|
934 |
+
|
935 |
+
device_train_batch_size: Optional[int] = None # calculated automatically
|
936 |
+
"""
|
937 |
+
Don't set this manually. This will be set to ``global_train_batch_size // world_size``.
|
938 |
+
"""
|
939 |
+
|
940 |
+
device_train_microbatch_size: int = 16
|
941 |
+
"""
|
942 |
+
The number of instances passed to the model in a single forward-backward pass. You should set
|
943 |
+
this as large as you can based on available GPU memory.
|
944 |
+
"""
|
945 |
+
|
946 |
+
device_eval_batch_size: int = 16
|
947 |
+
"""
|
948 |
+
The number of evaluation instances passed to the model in a single forward pass on each device.
|
949 |
+
"""
|
950 |
+
|
951 |
+
eval_subset_num_batches: int = -1
|
952 |
+
"""
|
953 |
+
The number of batches to use for downstream evaluation from each dataset.
|
954 |
+
"""
|
955 |
+
|
956 |
+
eval_on_load: bool = False
|
957 |
+
"""
|
958 |
+
When resuming from a checkpoint, run the evaluation loop right away.
|
959 |
+
"""
|
960 |
+
|
961 |
+
device_train_grad_accum: Optional[int] = None # calculated automatically
|
962 |
+
"""
|
963 |
+
Don't set this manually. This will be set to ``device_train_batch_size // device_train_microbatch_size``.
|
964 |
+
"""
|
965 |
+
|
966 |
+
max_grad_norm: Optional[float] = None
|
967 |
+
"""
|
968 |
+
Clip gradient norms to this value if set.
|
969 |
+
"""
|
970 |
+
|
971 |
+
max_grad_norm_ratio: Optional[float] = None
|
972 |
+
"""
|
973 |
+
If set, gradient norms will be clipped to `max_grad_norm_ratio * exp_avg(norm(grad))`.
|
974 |
+
This takes priority over `max_grad_norm` when set.
|
975 |
+
"""
|
976 |
+
|
977 |
+
precision: Optional[str] = None
|
978 |
+
"""
|
979 |
+
Precision to train with (e.g. "amp_bf16", "amp_fp16", or "fp32").
|
980 |
+
"""
|
981 |
+
|
982 |
+
wandb: Optional[WandbConfig] = None
|
983 |
+
"""
|
984 |
+
Weights & Biases configuration.
|
985 |
+
"""
|
986 |
+
|
987 |
+
speed_monitor: SpeedMonitorConfig = field(default_factory=SpeedMonitorConfig)
|
988 |
+
"""
|
989 |
+
Speed monitor configuration.
|
990 |
+
"""
|
991 |
+
|
992 |
+
console_log_interval: int = 1
|
993 |
+
"""
|
994 |
+
How often to log to the console.
|
995 |
+
"""
|
996 |
+
|
997 |
+
gen1_gc_interval: Optional[int] = 1
|
998 |
+
"""
|
999 |
+
How often (in steps) to run generation 1 garbage collection.
|
1000 |
+
Set to ``None`` to use automatic garbage collection (i.e. we don't mess with it).
|
1001 |
+
"""
|
1002 |
+
|
1003 |
+
compile: Optional[CompilerConfig] = None
|
1004 |
+
"""
|
1005 |
+
Settings for compiling the model with ``torch.compile()``.
|
1006 |
+
"""
|
1007 |
+
|
1008 |
+
fsdp: FSDPConfig = field(default_factory=FSDPConfig)
|
1009 |
+
"""
|
1010 |
+
Fully sharded data parallel settings.
|
1011 |
+
"""
|
1012 |
+
|
1013 |
+
softmax_auxiliary_loss: bool = False
|
1014 |
+
"""
|
1015 |
+
If ``True``, we add the auxiliary loss function from PaLM that encourages the softmax
|
1016 |
+
normalizing term to be close to 0.
|
1017 |
+
"""
|
1018 |
+
|
1019 |
+
time_limit: Optional[float] = 60 * 60 * 47.5
|
1020 |
+
"""
|
1021 |
+
The maximum amount of time to train for before saving a checkpoint and ending early.
|
1022 |
+
On LUMI we have 48 hours max per job, so we default to just under 48 hours to give us time
|
1023 |
+
to write out a final checkpoint.
|
1024 |
+
"""
|
1025 |
+
|
1026 |
+
extra_steps_after_cancel: int = 10
|
1027 |
+
"""
|
1028 |
+
Under certain conditions when a run is canceled we train for a few extra steps after saving
|
1029 |
+
the final checkpoint so that when the run is restarted from the latest checkpoint we have some
|
1030 |
+
overlap in metrics.
|
1031 |
+
"""
|
1032 |
+
|
1033 |
+
early_stopping_factor: Optional[float] = None
|
1034 |
+
|
1035 |
+
save_data_indices: bool = True
|
1036 |
+
"""
|
1037 |
+
Save training data indices from each batch for each worker.
|
1038 |
+
"""
|
1039 |
+
|
1040 |
+
python_profiling: bool = False
|
1041 |
+
"""
|
1042 |
+
Whether to run the Python profiler on batches 6, 7, and 8.
|
1043 |
+
"""
|
1044 |
+
|
1045 |
+
torch_profiling: bool = False
|
1046 |
+
"""
|
1047 |
+
Whether to run the PyTorch profiler on batches 6, 7, and 8.
|
1048 |
+
"""
|
1049 |
+
|
1050 |
+
stop_at: Optional[int] = None
|
1051 |
+
"""
|
1052 |
+
Stop at a specific step.
|
1053 |
+
"""
|
1054 |
+
|
1055 |
+
stop_after: Optional[int] = None
|
1056 |
+
"""
|
1057 |
+
Stop after a specific number of steps.
|
1058 |
+
"""
|
1059 |
+
|
1060 |
+
activation_checkpointing: Optional[ActivationCheckpointingStrategy] = None
|
1061 |
+
"""
|
1062 |
+
The activation checkpointing strategy to use.
|
1063 |
+
"""
|
1064 |
+
|
1065 |
+
fused_loss: Optional[bool] = None
|
1066 |
+
"""
|
1067 |
+
Whether to use the fused CE loss function from `flash-attn`.
|
1068 |
+
"""
|
1069 |
+
|
1070 |
+
@property
|
1071 |
+
def autocast_precision(self) -> torch.dtype:
|
1072 |
+
if self.precision == "amp_bf16":
|
1073 |
+
return torch.bfloat16
|
1074 |
+
elif self.precision == "amp_fp16":
|
1075 |
+
return torch.float16
|
1076 |
+
elif self.precision == "fp32":
|
1077 |
+
return torch.float32
|
1078 |
+
else:
|
1079 |
+
raise ValueError(f"Unexpected precision type '{self.precision}'")
|
1080 |
+
|
1081 |
+
@property
|
1082 |
+
def fsdp_precision(self) -> MixedPrecision:
|
1083 |
+
if self.fsdp.precision == FSDPPrecision.pure:
|
1084 |
+
return MixedPrecision(
|
1085 |
+
param_dtype=self.autocast_precision,
|
1086 |
+
reduce_dtype=self.autocast_precision,
|
1087 |
+
buffer_dtype=self.autocast_precision,
|
1088 |
+
)
|
1089 |
+
elif self.fsdp.precision == FSDPPrecision.mixed:
|
1090 |
+
return MixedPrecision(
|
1091 |
+
param_dtype=self.autocast_precision,
|
1092 |
+
reduce_dtype=torch.float32,
|
1093 |
+
buffer_dtype=self.autocast_precision,
|
1094 |
+
)
|
1095 |
+
else:
|
1096 |
+
raise NotImplementedError(f"{self.fsdp.precision}")
|
1097 |
+
|
1098 |
+
@classmethod
|
1099 |
+
def update_legacy_settings(cls, config: D) -> D:
|
1100 |
+
new_config = config.copy()
|
1101 |
+
if om.is_dict(new_config):
|
1102 |
+
assert isinstance(new_config, DictConfig)
|
1103 |
+
|
1104 |
+
if hasattr(new_config, "activation_checkpointing"):
|
1105 |
+
if new_config.activation_checkpointing is False:
|
1106 |
+
new_config.activation_checkpointing = None
|
1107 |
+
if new_config.activation_checkpointing is True:
|
1108 |
+
new_config.activation_checkpointing = ActivationCheckpointingStrategy.whole_layer
|
1109 |
+
|
1110 |
+
if hasattr(new_config, "optimizer"):
|
1111 |
+
new_config.optimizer = OptimizerConfig.update_legacy_settings(new_config.optimizer)
|
1112 |
+
|
1113 |
+
return new_config
|
model/configuration_olmo.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OLMo configuration
|
3 |
+
"""
|
4 |
+
|
5 |
+
from transformers import AutoConfig, PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
from .config import ModelConfig
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
class OLMoConfig(PretrainedConfig):
|
14 |
+
model_type = "olmo-gfm"
|
15 |
+
keys_to_ignore_at_inference = ["past_key_values"] # TODO: confirm
|
16 |
+
|
17 |
+
def __init__(self, use_cache: bool = False, num_labels: int = 2,**kwargs):
|
18 |
+
model_config = ModelConfig()
|
19 |
+
all_kwargs = model_config.asdict()
|
20 |
+
all_kwargs.update(kwargs)
|
21 |
+
all_kwargs.update({"use_cache": use_cache, "num_labels": num_labels})
|
22 |
+
all_kwargs.update(
|
23 |
+
{
|
24 |
+
"architectures": all_kwargs.get("architectures", ["OLMoModelForCausalLM"])
|
25 |
+
or ["OLMoModelForCausalLM"]
|
26 |
+
}
|
27 |
+
)
|
28 |
+
super().__init__(**all_kwargs)
|
29 |
+
|
30 |
+
@property
|
31 |
+
def num_attention_heads(self):
|
32 |
+
return self.n_heads
|
33 |
+
|
34 |
+
@property
|
35 |
+
def num_hidden_layers(self):
|
36 |
+
return self.n_layers
|
37 |
+
|
38 |
+
@property
|
39 |
+
def hidden_size(self):
|
40 |
+
return self.d_model
|
41 |
+
|
42 |
+
|
43 |
+
# Register the config class so that it is available for transformer pipelines, auto-loading etc.
|
44 |
+
AutoConfig.register("olmo-gfm", OLMoConfig)
|
model/exceptions.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"OLMoError",
|
3 |
+
"OLMoConfigurationError",
|
4 |
+
"OLMoCliError",
|
5 |
+
"OLMoEnvironmentError",
|
6 |
+
"OLMoNetworkError",
|
7 |
+
"OLMoCheckpointError",
|
8 |
+
]
|
9 |
+
|
10 |
+
|
11 |
+
class OLMoError(Exception):
|
12 |
+
"""
|
13 |
+
Base class for all custom OLMo exceptions.
|
14 |
+
"""
|
15 |
+
|
16 |
+
|
17 |
+
class OLMoConfigurationError(OLMoError):
|
18 |
+
"""
|
19 |
+
An error with a configuration file.
|
20 |
+
"""
|
21 |
+
|
22 |
+
|
23 |
+
class OLMoCliError(OLMoError):
|
24 |
+
"""
|
25 |
+
An error from incorrect CLI usage.
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
class OLMoEnvironmentError(OLMoError):
|
30 |
+
"""
|
31 |
+
An error from incorrect environment variables.
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
class OLMoNetworkError(OLMoError):
|
36 |
+
"""
|
37 |
+
An error with a network request.
|
38 |
+
"""
|
39 |
+
|
40 |
+
|
41 |
+
class OLMoCheckpointError(OLMoError):
|
42 |
+
"""
|
43 |
+
An error occurred reading or writing from a checkpoint.
|
44 |
+
"""
|
45 |
+
|
46 |
+
|
47 |
+
class OLMoThreadError(Exception):
|
48 |
+
"""
|
49 |
+
Raised when a thread fails.
|
50 |
+
"""
|
model/initialization.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
|
7 |
+
from .config import InitFnType, ModelConfig
|
8 |
+
from .util import StrEnum
|
9 |
+
|
10 |
+
__all__ = ["init_weights", "ModuleType"]
|
11 |
+
|
12 |
+
|
13 |
+
class ModuleType(StrEnum):
|
14 |
+
in_module = "in"
|
15 |
+
out_module = "out"
|
16 |
+
emb = "emb"
|
17 |
+
final_out = "final_out"
|
18 |
+
|
19 |
+
|
20 |
+
def init_weights(
|
21 |
+
config: ModelConfig,
|
22 |
+
module: Union[nn.Linear, nn.Embedding],
|
23 |
+
d: Optional[int] = None,
|
24 |
+
layer_id: Optional[int] = None,
|
25 |
+
std_factor: float = 1.0,
|
26 |
+
type_of_module: Optional[ModuleType] = None,
|
27 |
+
) -> None:
|
28 |
+
"""
|
29 |
+
Initialize weights of a linear or embedding module.
|
30 |
+
|
31 |
+
:param config: The model config.
|
32 |
+
:param module: The linear or embedding submodule to initialize.
|
33 |
+
:param d: The effective input dimensionality of the weights. This could be smaller than the actual dimensions
|
34 |
+
for fused layers.
|
35 |
+
:param layer_id: When set, the standard deviation for the "mitchell" method will be adjusted by
|
36 |
+
``1 / sqrt(2 * (layer_id + 1))``.
|
37 |
+
"""
|
38 |
+
d = d if d is not None else config.d_model
|
39 |
+
if config.init_fn == InitFnType.normal:
|
40 |
+
std = config.init_std * std_factor
|
41 |
+
if config.init_cutoff_factor is not None:
|
42 |
+
cutoff_value = config.init_cutoff_factor * std
|
43 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-cutoff_value, b=cutoff_value)
|
44 |
+
else:
|
45 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
46 |
+
elif config.init_fn == InitFnType.mitchell:
|
47 |
+
std = std_factor / math.sqrt(d)
|
48 |
+
if layer_id is not None:
|
49 |
+
std = std / math.sqrt(2 * (layer_id + 1))
|
50 |
+
nn.init.trunc_normal_(module.weight, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
51 |
+
elif config.init_fn == InitFnType.kaiming_normal:
|
52 |
+
nn.init.kaiming_normal_(module.weight, nonlinearity="relu")
|
53 |
+
elif config.init_fn == InitFnType.fan_in:
|
54 |
+
std = std_factor / math.sqrt(d)
|
55 |
+
nn.init.normal_(module.weight, mean=0.0, std=std)
|
56 |
+
elif config.init_fn == InitFnType.full_megatron:
|
57 |
+
if type_of_module is None:
|
58 |
+
raise RuntimeError(f"When using the {InitFnType.full_megatron} init, every module must have a type.")
|
59 |
+
|
60 |
+
cutoff_factor = config.init_cutoff_factor
|
61 |
+
if cutoff_factor is None:
|
62 |
+
cutoff_factor = 3
|
63 |
+
|
64 |
+
if type_of_module == ModuleType.in_module:
|
65 |
+
# for att_proj (same as QKV), ff_proj
|
66 |
+
std = config.init_std
|
67 |
+
elif type_of_module == ModuleType.out_module:
|
68 |
+
# for attn_out, ff_out
|
69 |
+
std = config.init_std / math.sqrt(2.0 * config.n_layers)
|
70 |
+
elif type_of_module == ModuleType.emb:
|
71 |
+
# positional embeddings (wpe)
|
72 |
+
# token embeddings (wte)
|
73 |
+
std = config.init_std
|
74 |
+
elif type_of_module == ModuleType.final_out:
|
75 |
+
# final output (ff_out)
|
76 |
+
std = config.d_model**-0.5
|
77 |
+
else:
|
78 |
+
raise RuntimeError(f"Unknown module type '{type_of_module}'")
|
79 |
+
nn.init.trunc_normal_(
|
80 |
+
module.weight,
|
81 |
+
mean=0.0,
|
82 |
+
std=std,
|
83 |
+
a=-cutoff_factor * std,
|
84 |
+
b=cutoff_factor * std,
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
raise NotImplementedError(config.init_fn)
|
88 |
+
|
89 |
+
if isinstance(module, nn.Linear):
|
90 |
+
if module.bias is not None:
|
91 |
+
nn.init.zeros_(module.bias)
|
92 |
+
|
93 |
+
if config.init_fn == InitFnType.normal and getattr(module, "_is_residual", False):
|
94 |
+
with torch.no_grad():
|
95 |
+
module.weight.div_(math.sqrt(2 * config.n_layers))
|
model/model.py
ADDED
@@ -0,0 +1,1625 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from
|
3 |
+
[MosaiclML](https://github.com/mosaicml/examples.git) and
|
4 |
+
[minGPT](https://github.com/karpathy/minGPT.git)
|
5 |
+
"""
|
6 |
+
|
7 |
+
from __future__ import annotations
|
8 |
+
|
9 |
+
import logging
|
10 |
+
import math
|
11 |
+
import sys
|
12 |
+
from abc import abstractmethod
|
13 |
+
from collections import defaultdict
|
14 |
+
from functools import partial
|
15 |
+
from typing import (
|
16 |
+
Callable,
|
17 |
+
Dict,
|
18 |
+
Iterable,
|
19 |
+
List,
|
20 |
+
NamedTuple,
|
21 |
+
Optional,
|
22 |
+
Sequence,
|
23 |
+
Set,
|
24 |
+
Tuple,
|
25 |
+
cast,
|
26 |
+
)
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.backends.cuda
|
30 |
+
import torch.nn as nn
|
31 |
+
import torch.nn.functional as F
|
32 |
+
from torch import einsum
|
33 |
+
|
34 |
+
from .aliases import PathOrStr
|
35 |
+
from .beam_search import BeamSearch, Constraint, FinalSequenceScorer, Sampler
|
36 |
+
from .config import (
|
37 |
+
ActivationCheckpointingStrategy,
|
38 |
+
ActivationType,
|
39 |
+
BlockType,
|
40 |
+
CheckpointType,
|
41 |
+
FSDPWrapStrategy,
|
42 |
+
LayerNormType,
|
43 |
+
ModelConfig,
|
44 |
+
)
|
45 |
+
from .exceptions import OLMoConfigurationError
|
46 |
+
from .initialization import ModuleType, init_weights
|
47 |
+
from .torch_util import ensure_finite_
|
48 |
+
|
49 |
+
if sys.version_info.minor > 8:
|
50 |
+
from collections.abc import MutableMapping
|
51 |
+
elif sys.version_info.minor == 8:
|
52 |
+
from typing import MutableMapping
|
53 |
+
else:
|
54 |
+
raise SystemExit("This script supports Python 3.8 or higher")
|
55 |
+
|
56 |
+
__all__ = [
|
57 |
+
"LayerNormBase",
|
58 |
+
"LayerNorm",
|
59 |
+
"RMSLayerNorm",
|
60 |
+
"RotaryEmbedding",
|
61 |
+
"Activation",
|
62 |
+
"GELU",
|
63 |
+
"ReLU",
|
64 |
+
"SwiGLU",
|
65 |
+
"OLMoBlock",
|
66 |
+
"OLMoSequentialBlock",
|
67 |
+
"OLMo",
|
68 |
+
"OLMoOutput",
|
69 |
+
"OLMoGenerateOutput",
|
70 |
+
]
|
71 |
+
|
72 |
+
|
73 |
+
log = logging.getLogger(__name__)
|
74 |
+
|
75 |
+
|
76 |
+
def activation_checkpoint_function(cfg: ModelConfig):
|
77 |
+
preserve_rng_state = (
|
78 |
+
(cfg.attention_dropout == 0.0) and (cfg.embedding_dropout == 0.0) and (cfg.residual_dropout == 0.0)
|
79 |
+
)
|
80 |
+
from torch.utils.checkpoint import checkpoint
|
81 |
+
|
82 |
+
return partial(
|
83 |
+
checkpoint,
|
84 |
+
preserve_rng_state=preserve_rng_state,
|
85 |
+
use_reentrant=False,
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def should_checkpoint_block(strategy: Optional[ActivationCheckpointingStrategy], block_idx: int) -> bool:
|
90 |
+
if strategy is None:
|
91 |
+
return False
|
92 |
+
elif (
|
93 |
+
(strategy == ActivationCheckpointingStrategy.whole_layer)
|
94 |
+
or (strategy == ActivationCheckpointingStrategy.one_in_two and block_idx % 2 == 0)
|
95 |
+
or (strategy == ActivationCheckpointingStrategy.one_in_three and block_idx % 3 == 0)
|
96 |
+
or (strategy == ActivationCheckpointingStrategy.one_in_four and block_idx % 4 == 0)
|
97 |
+
or (strategy == ActivationCheckpointingStrategy.two_in_three and block_idx % 3 != 0)
|
98 |
+
or (strategy == ActivationCheckpointingStrategy.three_in_four and block_idx % 4 != 0)
|
99 |
+
):
|
100 |
+
return True
|
101 |
+
else:
|
102 |
+
return False
|
103 |
+
|
104 |
+
|
105 |
+
class BufferCache(dict, MutableMapping[str, torch.Tensor]):
|
106 |
+
"""
|
107 |
+
Cache for attention biases and other things that would normally be stored as buffers.
|
108 |
+
We avoid using buffers because we've run into various issues doing so with FSDP.
|
109 |
+
In general it appears the way FSDP handles buffers is not well-defined.
|
110 |
+
It doesn't shard them but apparently it does synchronize them across processes, which we want to avoid
|
111 |
+
since (A) it isn't necessary, and (B) we sometimes have `-inf` in these biases which might get turned into
|
112 |
+
NaNs when they're synchronized due to casting or some other issue.
|
113 |
+
"""
|
114 |
+
|
115 |
+
|
116 |
+
def _non_meta_init_device(config: ModelConfig) -> torch.device:
|
117 |
+
if config.init_device is not None and config.init_device != "meta":
|
118 |
+
return torch.device(config.init_device)
|
119 |
+
else:
|
120 |
+
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
121 |
+
|
122 |
+
|
123 |
+
class Dropout(nn.Dropout):
|
124 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
125 |
+
if self.p == 0.0:
|
126 |
+
return input
|
127 |
+
else:
|
128 |
+
return F.dropout(input, self.p, self.training, self.inplace)
|
129 |
+
|
130 |
+
|
131 |
+
class LayerNormBase(nn.Module):
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
config: ModelConfig,
|
135 |
+
*,
|
136 |
+
size: Optional[int] = None,
|
137 |
+
elementwise_affine: Optional[bool] = True,
|
138 |
+
eps: float = 1e-05,
|
139 |
+
):
|
140 |
+
super().__init__()
|
141 |
+
self.config = config
|
142 |
+
self.eps = eps
|
143 |
+
self.normalized_shape = (size or config.d_model,)
|
144 |
+
if elementwise_affine or (elementwise_affine is None and self.config.layer_norm_with_affine):
|
145 |
+
self.weight = nn.Parameter(torch.ones(self.normalized_shape, device=config.init_device))
|
146 |
+
use_bias = self.config.bias_for_layer_norm
|
147 |
+
if use_bias is None:
|
148 |
+
use_bias = self.config.include_bias
|
149 |
+
if use_bias:
|
150 |
+
self.bias = nn.Parameter(torch.zeros(self.normalized_shape, device=config.init_device))
|
151 |
+
else:
|
152 |
+
self.register_parameter("bias", None)
|
153 |
+
else:
|
154 |
+
self.register_parameter("bias", None)
|
155 |
+
self.register_parameter("weight", None)
|
156 |
+
|
157 |
+
@abstractmethod
|
158 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
159 |
+
raise NotImplementedError
|
160 |
+
|
161 |
+
@classmethod
|
162 |
+
def build(cls, config: ModelConfig, size: Optional[int] = None, **kwargs) -> LayerNormBase:
|
163 |
+
if config.layer_norm_type == LayerNormType.default:
|
164 |
+
return LayerNorm(config, size=size, low_precision=False, **kwargs)
|
165 |
+
elif config.layer_norm_type == LayerNormType.low_precision:
|
166 |
+
return LayerNorm(config, size=size, low_precision=True, **kwargs)
|
167 |
+
elif config.layer_norm_type == LayerNormType.rms:
|
168 |
+
return RMSLayerNorm(config, size=size, **kwargs)
|
169 |
+
else:
|
170 |
+
raise NotImplementedError(f"Unknown LayerNorm type: '{config.layer_norm_type}'")
|
171 |
+
|
172 |
+
def _cast_if_autocast_enabled(self, tensor: torch.Tensor, dtype: Optional[torch.dtype] = None) -> torch.Tensor:
|
173 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
174 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
175 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
176 |
+
if tensor.device.type == "cuda" and torch.is_autocast_enabled():
|
177 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_gpu_dtype())
|
178 |
+
elif tensor.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
179 |
+
return tensor.to(dtype=dtype if dtype is not None else torch.get_autocast_cpu_dtype())
|
180 |
+
else:
|
181 |
+
return tensor
|
182 |
+
|
183 |
+
def reset_parameters(self):
|
184 |
+
if self.weight is not None:
|
185 |
+
torch.nn.init.ones_(self.weight) # type: ignore
|
186 |
+
if self.bias is not None:
|
187 |
+
torch.nn.init.zeros_(self.bias) # type: ignore
|
188 |
+
|
189 |
+
|
190 |
+
class LayerNorm(LayerNormBase):
|
191 |
+
"""
|
192 |
+
The default :class:`LayerNorm` implementation which can optionally run in low precision.
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(
|
196 |
+
self,
|
197 |
+
config: ModelConfig,
|
198 |
+
size: Optional[int] = None,
|
199 |
+
low_precision: bool = False,
|
200 |
+
elementwise_affine: Optional[bool] = None,
|
201 |
+
eps: float = 1e-05,
|
202 |
+
):
|
203 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
204 |
+
self.low_precision = low_precision
|
205 |
+
|
206 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
207 |
+
if self.low_precision:
|
208 |
+
module_device = x.device
|
209 |
+
downcast_x = self._cast_if_autocast_enabled(x)
|
210 |
+
downcast_weight = (
|
211 |
+
self._cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
212 |
+
)
|
213 |
+
downcast_bias = self._cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
214 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
215 |
+
return F.layer_norm(
|
216 |
+
downcast_x, self.normalized_shape, weight=downcast_weight, bias=downcast_bias, eps=self.eps
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
return F.layer_norm(x, self.normalized_shape, weight=self.weight, bias=self.bias, eps=self.eps)
|
220 |
+
|
221 |
+
|
222 |
+
class RMSLayerNorm(LayerNormBase):
|
223 |
+
"""
|
224 |
+
RMS layer norm, a simplified :class:`LayerNorm` implementation
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
config: ModelConfig,
|
230 |
+
size: Optional[int] = None,
|
231 |
+
elementwise_affine: Optional[bool] = None,
|
232 |
+
eps: float = 1e-5,
|
233 |
+
):
|
234 |
+
super().__init__(config, size=size, elementwise_affine=elementwise_affine, eps=eps)
|
235 |
+
|
236 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
237 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
238 |
+
og_dtype = x.dtype
|
239 |
+
x = x.to(torch.float32)
|
240 |
+
variance = x.pow(2).mean(-1, keepdim=True)
|
241 |
+
x = x * torch.rsqrt(variance + self.eps)
|
242 |
+
x = x.to(og_dtype)
|
243 |
+
|
244 |
+
if self.weight is not None:
|
245 |
+
if self.bias is not None:
|
246 |
+
return self.weight * x + self.bias
|
247 |
+
else:
|
248 |
+
return self.weight * x
|
249 |
+
else:
|
250 |
+
return x
|
251 |
+
|
252 |
+
|
253 |
+
class RotaryEmbedding(nn.Module):
|
254 |
+
"""
|
255 |
+
[Rotary positional embeddings (RoPE)](https://arxiv.org/abs/2104.09864).
|
256 |
+
"""
|
257 |
+
|
258 |
+
def __init__(self, config: ModelConfig, cache: BufferCache):
|
259 |
+
super().__init__()
|
260 |
+
self.config = config
|
261 |
+
self.__cache = cache
|
262 |
+
# Warm up cache.
|
263 |
+
self.get_rotary_embedding(config.max_sequence_length, _non_meta_init_device(config))
|
264 |
+
|
265 |
+
def get_rotary_embedding(self, seq_len: int, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
266 |
+
if (
|
267 |
+
(pos_sin := self.__cache.get("rope_pos_sin")) is not None
|
268 |
+
and (pos_cos := self.__cache.get("rope_pos_cos")) is not None
|
269 |
+
and pos_sin.shape[-2] >= seq_len
|
270 |
+
and pos_cos.shape[-2] >= seq_len
|
271 |
+
):
|
272 |
+
if pos_sin.device != device:
|
273 |
+
pos_sin = pos_sin.to(device)
|
274 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
275 |
+
if pos_cos.device != device:
|
276 |
+
pos_cos = pos_cos.to(device)
|
277 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
278 |
+
return pos_sin[:, :, :seq_len, :], pos_cos[:, :, :seq_len, :]
|
279 |
+
|
280 |
+
with torch.autocast(device.type, enabled=False):
|
281 |
+
dim = self.config.d_model // self.config.n_heads
|
282 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device, dtype=torch.float) / dim))
|
283 |
+
seq = torch.arange(seq_len, device=device, dtype=torch.float)
|
284 |
+
freqs = einsum("i , j -> i j", seq, inv_freq)
|
285 |
+
positions = torch.cat((freqs, freqs), dim=-1)
|
286 |
+
pos_sin, pos_cos = positions.sin()[None, None, :, :], positions.cos()[None, None, :, :]
|
287 |
+
self.__cache["rope_pos_sin"] = pos_sin
|
288 |
+
self.__cache["rope_pos_cos"] = pos_cos
|
289 |
+
return pos_sin, pos_cos
|
290 |
+
|
291 |
+
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
292 |
+
B, nh, T, hs = x.size()
|
293 |
+
x = x.view(B, nh, T, 2, hs // 2)
|
294 |
+
x1, x2 = x.unbind(dim=-2)
|
295 |
+
return torch.cat((-x2, x1), dim=-1)
|
296 |
+
|
297 |
+
def apply_rotary_pos_emb(self, pos_sin: torch.Tensor, pos_cos: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
298 |
+
return ((t * pos_cos) + (self.rotate_half(t) * pos_sin)).to(t.dtype)
|
299 |
+
|
300 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
301 |
+
if self.config.rope_full_precision:
|
302 |
+
q_, k_ = q.float(), k.float()
|
303 |
+
else:
|
304 |
+
q_, k_ = q, k
|
305 |
+
|
306 |
+
with torch.autocast(q.device.type, enabled=False):
|
307 |
+
query_len, key_len = q_.shape[-2], k_.shape[-2] # could be different if layer_past not None
|
308 |
+
pos_sin, pos_cos = self.get_rotary_embedding(key_len, q_.device)
|
309 |
+
pos_sin = pos_sin.type_as(q_)
|
310 |
+
pos_cos = pos_cos.type_as(q_)
|
311 |
+
q_ = self.apply_rotary_pos_emb(
|
312 |
+
pos_sin[:, :, key_len - query_len : key_len, :],
|
313 |
+
pos_cos[:, :, key_len - query_len : key_len, :],
|
314 |
+
q_,
|
315 |
+
)
|
316 |
+
k_ = self.apply_rotary_pos_emb(pos_sin, pos_cos, k_)
|
317 |
+
return q_.type_as(q), k_.type_as(k)
|
318 |
+
|
319 |
+
|
320 |
+
class Activation(nn.Module):
|
321 |
+
def __init__(self, config: ModelConfig):
|
322 |
+
super().__init__()
|
323 |
+
self.config = config
|
324 |
+
|
325 |
+
@abstractmethod
|
326 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
327 |
+
raise NotImplementedError
|
328 |
+
|
329 |
+
@property
|
330 |
+
@abstractmethod
|
331 |
+
def output_multiplier(self) -> float:
|
332 |
+
raise NotImplementedError
|
333 |
+
|
334 |
+
@classmethod
|
335 |
+
def build(cls, config: ModelConfig) -> Activation:
|
336 |
+
if config.activation_type == ActivationType.gelu:
|
337 |
+
return cast(Activation, GELU(approximate="none"))
|
338 |
+
elif config.activation_type == ActivationType.relu:
|
339 |
+
return cast(Activation, ReLU(inplace=False))
|
340 |
+
elif config.activation_type == ActivationType.swiglu:
|
341 |
+
return SwiGLU(config)
|
342 |
+
else:
|
343 |
+
raise NotImplementedError(f"Unknown activation: '{config.activation_type}'")
|
344 |
+
|
345 |
+
|
346 |
+
class GELU(nn.GELU):
|
347 |
+
@property
|
348 |
+
def output_multiplier(self) -> float:
|
349 |
+
return 1.0
|
350 |
+
|
351 |
+
|
352 |
+
class ReLU(nn.ReLU):
|
353 |
+
@property
|
354 |
+
def output_multiplier(self) -> float:
|
355 |
+
return 1.0
|
356 |
+
|
357 |
+
|
358 |
+
class SwiGLU(Activation):
|
359 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
360 |
+
x, gate = x.chunk(2, dim=-1)
|
361 |
+
return F.silu(gate) * x
|
362 |
+
|
363 |
+
@property
|
364 |
+
def output_multiplier(self) -> float:
|
365 |
+
return 0.5
|
366 |
+
|
367 |
+
|
368 |
+
def causal_attention_bias(seq_len: int, device: torch.device) -> torch.FloatTensor:
|
369 |
+
att_bias = torch.triu(
|
370 |
+
torch.ones(seq_len, seq_len, device=device, dtype=torch.float),
|
371 |
+
diagonal=1,
|
372 |
+
)
|
373 |
+
att_bias.masked_fill_(att_bias == 1, torch.finfo(att_bias.dtype).min)
|
374 |
+
return att_bias.view(1, 1, seq_len, seq_len) # type: ignore
|
375 |
+
|
376 |
+
|
377 |
+
def get_causal_attention_bias(cache: BufferCache, seq_len: int, device: torch.device) -> torch.Tensor:
|
378 |
+
if (causal_bias := cache.get("causal_attention_bias")) is not None and causal_bias.shape[-1] >= seq_len:
|
379 |
+
if causal_bias.device != device:
|
380 |
+
causal_bias = causal_bias.to(device)
|
381 |
+
cache["causal_attention_bias"] = causal_bias
|
382 |
+
return causal_bias
|
383 |
+
with torch.autocast(device.type, enabled=False):
|
384 |
+
causal_bias = causal_attention_bias(seq_len, device)
|
385 |
+
cache["causal_attention_bias"] = causal_bias
|
386 |
+
return causal_bias
|
387 |
+
|
388 |
+
|
389 |
+
def alibi_attention_bias(seq_len: int, config: ModelConfig, device: torch.device) -> torch.FloatTensor:
|
390 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, 1, seq_len)
|
391 |
+
|
392 |
+
# shape: (1, 1, seq_len, seq_len)
|
393 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.float, device=device).view(1, 1, seq_len, 1)
|
394 |
+
alibi_bias.abs_().mul_(-1)
|
395 |
+
|
396 |
+
# shape: (n_heads,)
|
397 |
+
m = torch.arange(1, config.n_heads + 1, dtype=torch.float, device=device)
|
398 |
+
m.mul_(config.alibi_bias_max / config.n_heads)
|
399 |
+
|
400 |
+
# shape: (1, n_heads, seq_len, seq_len)
|
401 |
+
return alibi_bias * (1.0 / (2 ** m.view(1, config.n_heads, 1, 1))) # type: ignore
|
402 |
+
|
403 |
+
|
404 |
+
class OLMoBlock(nn.Module):
|
405 |
+
"""
|
406 |
+
A base class for transformer block implementations.
|
407 |
+
"""
|
408 |
+
|
409 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
410 |
+
super().__init__()
|
411 |
+
self.layer_id = layer_id
|
412 |
+
self.config = config
|
413 |
+
self.hidden_size = (
|
414 |
+
config.mlp_hidden_size if config.mlp_hidden_size is not None else config.mlp_ratio * config.d_model
|
415 |
+
)
|
416 |
+
self.__cache = cache
|
417 |
+
assert config.d_model % config.n_heads == 0
|
418 |
+
|
419 |
+
self._activation_checkpoint_fn = None
|
420 |
+
|
421 |
+
# Dropout.
|
422 |
+
self.dropout = Dropout(config.residual_dropout)
|
423 |
+
|
424 |
+
# Layer norms.
|
425 |
+
self.k_norm: Optional[LayerNormBase] = None
|
426 |
+
self.q_norm: Optional[LayerNormBase] = None
|
427 |
+
if config.attention_layer_norm:
|
428 |
+
assert config.effective_n_kv_heads is not None
|
429 |
+
self.k_norm = LayerNormBase.build(
|
430 |
+
config,
|
431 |
+
size=(config.d_model // config.n_heads) * config.effective_n_kv_heads,
|
432 |
+
elementwise_affine=config.attention_layer_norm_with_affine,
|
433 |
+
)
|
434 |
+
self.q_norm = LayerNormBase.build(config, elementwise_affine=config.attention_layer_norm_with_affine)
|
435 |
+
|
436 |
+
# Make sure QKV clip coefficient is positive, otherwise it's not well-defined.
|
437 |
+
if config.clip_qkv is not None:
|
438 |
+
assert config.clip_qkv > 0
|
439 |
+
|
440 |
+
# Activation function.
|
441 |
+
self.act = Activation.build(config)
|
442 |
+
assert (self.act.output_multiplier * self.hidden_size) % 1 == 0
|
443 |
+
|
444 |
+
# Attention output projection.
|
445 |
+
self.attn_out = nn.Linear(
|
446 |
+
config.d_model, config.d_model, bias=config.include_bias, device=config.init_device
|
447 |
+
)
|
448 |
+
|
449 |
+
# Feed-forward output projection.
|
450 |
+
self.ff_out = nn.Linear(
|
451 |
+
int(self.act.output_multiplier * self.hidden_size),
|
452 |
+
config.d_model,
|
453 |
+
bias=config.include_bias,
|
454 |
+
device=config.init_device,
|
455 |
+
)
|
456 |
+
self.ff_out._is_residual = True # type: ignore
|
457 |
+
|
458 |
+
# Rotary embeddings.
|
459 |
+
if self.config.rope:
|
460 |
+
self.rotary_emb = RotaryEmbedding(config, self.__cache)
|
461 |
+
|
462 |
+
self.flash_attn_func = None
|
463 |
+
if config.flash_attention:
|
464 |
+
try:
|
465 |
+
from flash_attn import flash_attn_func # type: ignore
|
466 |
+
|
467 |
+
self.flash_attn_func = flash_attn_func
|
468 |
+
except ModuleNotFoundError:
|
469 |
+
pass
|
470 |
+
|
471 |
+
def reset_parameters(self):
|
472 |
+
if self.k_norm is not None:
|
473 |
+
self.k_norm.reset_parameters()
|
474 |
+
if self.q_norm is not None:
|
475 |
+
self.q_norm.reset_parameters()
|
476 |
+
init_weights(
|
477 |
+
self.config,
|
478 |
+
self.attn_out,
|
479 |
+
d=self.config.d_model,
|
480 |
+
layer_id=self.layer_id,
|
481 |
+
type_of_module=ModuleType.out_module,
|
482 |
+
)
|
483 |
+
init_weights(
|
484 |
+
self.config,
|
485 |
+
self.ff_out,
|
486 |
+
d=self.ff_out.in_features,
|
487 |
+
layer_id=self.layer_id,
|
488 |
+
type_of_module=ModuleType.out_module,
|
489 |
+
)
|
490 |
+
|
491 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
492 |
+
if strategy == ActivationCheckpointingStrategy.fine_grained:
|
493 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
494 |
+
else:
|
495 |
+
self._activation_checkpoint_fn = None
|
496 |
+
|
497 |
+
@classmethod
|
498 |
+
def _cast_attn_bias(cls, bias: torch.Tensor, input_dtype: torch.dtype) -> torch.Tensor:
|
499 |
+
target_dtype = input_dtype
|
500 |
+
# NOTE: `is_autocast_enabled()` only checks for CUDA autocast, so we use the separate function
|
501 |
+
# `is_autocast_cpu_enabled()` for CPU autocast.
|
502 |
+
# See https://github.com/pytorch/pytorch/issues/110966.
|
503 |
+
if bias.device.type == "cuda" and torch.is_autocast_enabled():
|
504 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
505 |
+
elif bias.device.type == "cpu" and torch.is_autocast_cpu_enabled():
|
506 |
+
target_dtype = torch.get_autocast_cpu_dtype()
|
507 |
+
if bias.dtype != target_dtype:
|
508 |
+
bias = bias.to(target_dtype)
|
509 |
+
ensure_finite_(bias, check_neg_inf=True, check_pos_inf=False)
|
510 |
+
return bias
|
511 |
+
|
512 |
+
def _scaled_dot_product_attention(
|
513 |
+
self,
|
514 |
+
q: torch.Tensor,
|
515 |
+
k: torch.Tensor,
|
516 |
+
v: torch.Tensor,
|
517 |
+
attn_mask: Optional[torch.Tensor] = None,
|
518 |
+
dropout_p: float = 0.0,
|
519 |
+
is_causal: bool = False,
|
520 |
+
) -> torch.Tensor:
|
521 |
+
"""
|
522 |
+
Computes scaled dot product attention on query, key and value tensors, using an optional
|
523 |
+
attention mask if passed, and applying dropout if a probability greater than 0.0 is specified.
|
524 |
+
"""
|
525 |
+
if self.flash_attn_func is not None and attn_mask is None:
|
526 |
+
r = self.flash_attn_func(
|
527 |
+
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), dropout_p=dropout_p, causal=is_causal
|
528 |
+
)
|
529 |
+
return r.transpose(1, 2)
|
530 |
+
else:
|
531 |
+
# torch's sdpa doesn't support GQA, so we're doing this
|
532 |
+
assert k.size(1) == v.size(1)
|
533 |
+
num_kv_heads = k.size(1)
|
534 |
+
num_q_heads = q.size(1)
|
535 |
+
if num_q_heads != num_kv_heads:
|
536 |
+
assert num_q_heads % num_kv_heads == 0
|
537 |
+
k = k.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
538 |
+
v = v.repeat_interleave(num_q_heads // num_kv_heads, dim=1, output_size=num_q_heads)
|
539 |
+
|
540 |
+
return F.scaled_dot_product_attention(
|
541 |
+
q,
|
542 |
+
k,
|
543 |
+
v,
|
544 |
+
attn_mask=attn_mask,
|
545 |
+
dropout_p=dropout_p,
|
546 |
+
is_causal=is_causal,
|
547 |
+
)
|
548 |
+
|
549 |
+
def attention(
|
550 |
+
self,
|
551 |
+
q: torch.Tensor,
|
552 |
+
k: torch.Tensor,
|
553 |
+
v: torch.Tensor,
|
554 |
+
attention_bias: Optional[torch.Tensor] = None,
|
555 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
556 |
+
use_cache: bool = False,
|
557 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
558 |
+
B, T, C = q.size() # batch size, sequence length, d_model
|
559 |
+
dtype = k.dtype
|
560 |
+
|
561 |
+
# Optionally apply layer norm to keys and queries.
|
562 |
+
if self.q_norm is not None and self.k_norm is not None:
|
563 |
+
q = self.q_norm(q).to(dtype=dtype)
|
564 |
+
k = self.k_norm(k).to(dtype=dtype)
|
565 |
+
|
566 |
+
# Move head forward to be next to the batch dim.
|
567 |
+
# shape: (B, nh, T, hs)
|
568 |
+
q = q.view(B, T, self.config.n_heads, C // self.config.n_heads).transpose(1, 2)
|
569 |
+
# shape: (B, n_kv_h, T, hs)
|
570 |
+
k = k.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
571 |
+
# shape: (B, n_kv_h, T, hs)
|
572 |
+
v = v.view(B, T, self.config.effective_n_kv_heads, C // self.config.n_heads).transpose(1, 2)
|
573 |
+
|
574 |
+
if layer_past is not None:
|
575 |
+
past_key, past_value = layer_past
|
576 |
+
k = torch.cat((past_key, k), dim=-2)
|
577 |
+
v = torch.cat((past_value, v), dim=-2)
|
578 |
+
|
579 |
+
present = (k, v) if use_cache else None
|
580 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
581 |
+
|
582 |
+
if self.config.rope:
|
583 |
+
# Apply rotary embeddings.
|
584 |
+
q, k = self.rotary_emb(q, k)
|
585 |
+
|
586 |
+
if attention_bias is not None:
|
587 |
+
# Resize and cast attention bias.
|
588 |
+
# The current dtype of the attention bias might not match the dtype that the SDP attn function will
|
589 |
+
# run in if AMP is enabled, and this can be a problem if some tokens are masked out due to padding
|
590 |
+
# as down-casting the attention bias to the autocast precision will result in -infs, which will
|
591 |
+
# cause the SDP attn function to produce NaNs.
|
592 |
+
attention_bias = self._cast_attn_bias(
|
593 |
+
attention_bias[:, :, key_len - query_len : key_len, :key_len], dtype
|
594 |
+
)
|
595 |
+
|
596 |
+
# Get the attention scores.
|
597 |
+
# shape: (B, nh, T, hs)
|
598 |
+
att = self._scaled_dot_product_attention(
|
599 |
+
q,
|
600 |
+
k,
|
601 |
+
v,
|
602 |
+
attn_mask=attention_bias,
|
603 |
+
dropout_p=0.0 if not self.training else self.config.attention_dropout,
|
604 |
+
is_causal=attention_bias is None,
|
605 |
+
)
|
606 |
+
|
607 |
+
# Re-assemble all head outputs side-by-side.
|
608 |
+
att = att.transpose(1, 2).contiguous().view(B, T, C)
|
609 |
+
|
610 |
+
# Apply output projection.
|
611 |
+
return self.attn_out(att), present
|
612 |
+
|
613 |
+
@abstractmethod
|
614 |
+
def forward(
|
615 |
+
self,
|
616 |
+
x: torch.Tensor,
|
617 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
618 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
619 |
+
use_cache: bool = False,
|
620 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
621 |
+
raise NotImplementedError
|
622 |
+
|
623 |
+
@classmethod
|
624 |
+
def build(cls, layer_id: int, config: ModelConfig, cache: BufferCache) -> OLMoBlock:
|
625 |
+
if config.block_type == BlockType.sequential:
|
626 |
+
return OLMoSequentialBlock(layer_id, config, cache)
|
627 |
+
elif config.block_type == BlockType.llama:
|
628 |
+
return OLMoLlamaBlock(layer_id, config, cache)
|
629 |
+
else:
|
630 |
+
raise NotImplementedError(f"Unknown block type: '{config.block_type}'")
|
631 |
+
|
632 |
+
|
633 |
+
class OLMoSequentialBlock(OLMoBlock):
|
634 |
+
"""
|
635 |
+
This is a typical transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
636 |
+
(plus another skip connection).
|
637 |
+
"""
|
638 |
+
|
639 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
640 |
+
super().__init__(layer_id, config, cache)
|
641 |
+
# Layer norms.
|
642 |
+
self.attn_norm = LayerNorm.build(config)
|
643 |
+
self.ff_norm = LayerNorm.build(config)
|
644 |
+
# Attention input projection. Projects x -> (q, k, v)
|
645 |
+
|
646 |
+
head_dim = config.d_model // config.n_heads
|
647 |
+
self.fused_dims = (
|
648 |
+
config.d_model,
|
649 |
+
config.effective_n_kv_heads * head_dim,
|
650 |
+
config.effective_n_kv_heads * head_dim,
|
651 |
+
)
|
652 |
+
self.att_proj = nn.Linear(
|
653 |
+
config.d_model, sum(self.fused_dims), bias=config.include_bias, device=config.init_device
|
654 |
+
)
|
655 |
+
# Feed-forward input projection.
|
656 |
+
self.ff_proj = nn.Linear(
|
657 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
658 |
+
)
|
659 |
+
|
660 |
+
def reset_parameters(self):
|
661 |
+
super().reset_parameters()
|
662 |
+
self.attn_norm.reset_parameters()
|
663 |
+
self.ff_norm.reset_parameters()
|
664 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
665 |
+
init_weights(
|
666 |
+
self.config, self.att_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
667 |
+
)
|
668 |
+
init_weights(
|
669 |
+
self.config, self.ff_proj, d=self.config.d_model, layer_id=None, type_of_module=ModuleType.in_module
|
670 |
+
)
|
671 |
+
|
672 |
+
def forward(
|
673 |
+
self,
|
674 |
+
x: torch.Tensor,
|
675 |
+
attention_bias: Optional[torch.Tensor] = None,
|
676 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
677 |
+
use_cache: bool = False,
|
678 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
679 |
+
# Get query, key, value projections.
|
680 |
+
# shape:
|
681 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
682 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
683 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
684 |
+
# - for group query attn q: (batch_size, seq_len, d_model)
|
685 |
+
# k, v: (batch_size, seq_len, d_model // n_kv_heads)
|
686 |
+
if self._activation_checkpoint_fn is not None:
|
687 |
+
qkv = self.att_proj(self._activation_checkpoint_fn(self.attn_norm, x))
|
688 |
+
else:
|
689 |
+
qkv = self.att_proj(self.attn_norm(x))
|
690 |
+
|
691 |
+
if self.config.clip_qkv is not None:
|
692 |
+
qkv.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
693 |
+
|
694 |
+
q, k, v = qkv.split(self.fused_dims, dim=-1)
|
695 |
+
|
696 |
+
# Get attention scores.
|
697 |
+
if self._activation_checkpoint_fn is not None:
|
698 |
+
att, cache = self._activation_checkpoint_fn( # type: ignore
|
699 |
+
self.attention, q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache
|
700 |
+
)
|
701 |
+
else:
|
702 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
703 |
+
|
704 |
+
# Add attention scores.
|
705 |
+
# shape: (B, T, C)
|
706 |
+
x = x + self.dropout(att)
|
707 |
+
|
708 |
+
# Add feed-forward projection.
|
709 |
+
# shape: (batch_size, seq_len, d_model)
|
710 |
+
og_x = x
|
711 |
+
if self._activation_checkpoint_fn is not None:
|
712 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
713 |
+
else:
|
714 |
+
x = self.ff_norm(x)
|
715 |
+
x = self.ff_proj(x)
|
716 |
+
if self._activation_checkpoint_fn is not None:
|
717 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
718 |
+
else:
|
719 |
+
x = self.act(x)
|
720 |
+
x = self.ff_out(x)
|
721 |
+
x = self.dropout(x)
|
722 |
+
x = og_x + x
|
723 |
+
|
724 |
+
return x, cache
|
725 |
+
|
726 |
+
|
727 |
+
class OLMoLlamaBlock(OLMoBlock):
|
728 |
+
"""
|
729 |
+
This is a transformer block where the output is computed as ``MLP(LN(x + Attention(LN(x))))``
|
730 |
+
(plus another skip connection). This block is similar to `OLMoSequentialBlock`
|
731 |
+
but some operations have slightly different implementations to imitate the
|
732 |
+
behavior of Llama.
|
733 |
+
"""
|
734 |
+
|
735 |
+
def __init__(self, layer_id: int, config: ModelConfig, cache: BufferCache):
|
736 |
+
super().__init__(layer_id, config, cache)
|
737 |
+
# Layer norms.
|
738 |
+
self.attn_norm = LayerNorm.build(config)
|
739 |
+
self.ff_norm = LayerNorm.build(config)
|
740 |
+
self.__cache = cache
|
741 |
+
|
742 |
+
# Attention input projection. Projects x -> (q, k, v)
|
743 |
+
if config.multi_query_attention:
|
744 |
+
q_proj_out_dim = config.d_model
|
745 |
+
k_proj_out_dim = config.d_model // config.n_heads
|
746 |
+
v_proj_out_dim = config.d_model // config.n_heads
|
747 |
+
else:
|
748 |
+
q_proj_out_dim = config.d_model
|
749 |
+
k_proj_out_dim = config.d_model
|
750 |
+
v_proj_out_dim = config.d_model
|
751 |
+
self.q_proj = nn.Linear(
|
752 |
+
config.d_model, q_proj_out_dim, bias=config.include_bias, device=config.init_device
|
753 |
+
)
|
754 |
+
self.k_proj = nn.Linear(
|
755 |
+
config.d_model, k_proj_out_dim, bias=config.include_bias, device=config.init_device
|
756 |
+
)
|
757 |
+
self.v_proj = nn.Linear(
|
758 |
+
config.d_model, v_proj_out_dim, bias=config.include_bias, device=config.init_device
|
759 |
+
)
|
760 |
+
|
761 |
+
# Feed-forward input projection.
|
762 |
+
self.ff_proj = nn.Linear(
|
763 |
+
config.d_model, self.hidden_size, bias=config.include_bias, device=config.init_device
|
764 |
+
)
|
765 |
+
|
766 |
+
def reset_parameters(self):
|
767 |
+
super().reset_parameters()
|
768 |
+
self.attn_norm.reset_parameters()
|
769 |
+
self.ff_norm.reset_parameters()
|
770 |
+
# NOTE: the standard deviation for these weights does not depend on the layer.
|
771 |
+
init_weights(self.config, self.q_proj, d=self.config.d_model, layer_id=None)
|
772 |
+
init_weights(self.config, self.k_proj, d=self.config.d_model, layer_id=None)
|
773 |
+
init_weights(self.config, self.v_proj, d=self.config.d_model, layer_id=None)
|
774 |
+
init_weights(self.config, self.ff_proj, d=self.config.d_model, layer_id=None)
|
775 |
+
|
776 |
+
def _scaled_dot_product_attention(
|
777 |
+
self,
|
778 |
+
q: torch.Tensor,
|
779 |
+
k: torch.Tensor,
|
780 |
+
v: torch.Tensor,
|
781 |
+
attn_mask: Optional[torch.Tensor] = None,
|
782 |
+
dropout_p: float = 0.0,
|
783 |
+
is_causal: bool = False,
|
784 |
+
) -> torch.Tensor:
|
785 |
+
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(q.size(-1))
|
786 |
+
|
787 |
+
if is_causal:
|
788 |
+
assert attn_mask is None
|
789 |
+
|
790 |
+
query_len, key_len = q.shape[-2], k.shape[-2] # could be different if layer_past not None
|
791 |
+
attn_bias = get_causal_attention_bias(self.__cache, key_len, q.device)[:, :, :query_len, :key_len]
|
792 |
+
elif attn_mask is not None:
|
793 |
+
attn_bias = attn_mask.to(q.dtype)
|
794 |
+
else:
|
795 |
+
attn_bias = torch.zeros_like(attn_weights)
|
796 |
+
|
797 |
+
attn_weights += attn_bias
|
798 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1).to(q.dtype)
|
799 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout_p)
|
800 |
+
return torch.matmul(attn_weights, v)
|
801 |
+
|
802 |
+
def forward(
|
803 |
+
self,
|
804 |
+
x: torch.Tensor,
|
805 |
+
attention_bias: Optional[torch.Tensor] = None,
|
806 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
807 |
+
use_cache: bool = False,
|
808 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]:
|
809 |
+
# Get query, key, value projections.
|
810 |
+
# shape:
|
811 |
+
# - for regular attn q, k, v: (batch_size, seq_len, d_model)
|
812 |
+
# - for multi-query attn q: (batch_size, seq_len, d_model)
|
813 |
+
# k, v: (batch_size, seq_len, d_model // n_heads)
|
814 |
+
x_normed = self.attn_norm(x)
|
815 |
+
q = self.q_proj(x_normed)
|
816 |
+
k = self.k_proj(x_normed)
|
817 |
+
v = self.v_proj(x_normed)
|
818 |
+
|
819 |
+
if self.config.clip_qkv is not None:
|
820 |
+
q.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
821 |
+
k.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
822 |
+
v.clamp_(min=-self.config.clip_qkv, max=self.config.clip_qkv)
|
823 |
+
|
824 |
+
# Get attention scores.
|
825 |
+
att, cache = self.attention(q, k, v, attention_bias, layer_past=layer_past, use_cache=use_cache)
|
826 |
+
|
827 |
+
# Add attention scores.
|
828 |
+
# shape: (B, T, C)
|
829 |
+
x = x + self.dropout(att)
|
830 |
+
|
831 |
+
# Add feed-forward projection.
|
832 |
+
# shape: (batch_size, seq_len, d_model)
|
833 |
+
og_x = x
|
834 |
+
if self._activation_checkpoint_fn is not None:
|
835 |
+
x = self._activation_checkpoint_fn(self.ff_norm, x) # type: ignore
|
836 |
+
else:
|
837 |
+
x = self.ff_norm(x)
|
838 |
+
x = self.ff_proj(x)
|
839 |
+
if self._activation_checkpoint_fn is not None:
|
840 |
+
x = self._activation_checkpoint_fn(self.act, x) # type: ignore
|
841 |
+
else:
|
842 |
+
x = self.act(x)
|
843 |
+
x = self.ff_out(x)
|
844 |
+
x = self.dropout(x)
|
845 |
+
x = og_x + x
|
846 |
+
|
847 |
+
return x, cache
|
848 |
+
|
849 |
+
|
850 |
+
class OLMoOutput(NamedTuple):
|
851 |
+
logits: torch.FloatTensor
|
852 |
+
"""
|
853 |
+
A tensor of shape `(batch_size, seq_len, vocab_size)` representing the log probabilities
|
854 |
+
for the next token *before* normalization via (log) softmax.
|
855 |
+
"""
|
856 |
+
|
857 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]]
|
858 |
+
"""
|
859 |
+
Attention keys and values from each block.
|
860 |
+
"""
|
861 |
+
|
862 |
+
hidden_states: Optional[Tuple[torch.Tensor]]
|
863 |
+
"""
|
864 |
+
Hidden states from each block.
|
865 |
+
"""
|
866 |
+
|
867 |
+
|
868 |
+
class OLMoGenerateOutput(NamedTuple):
|
869 |
+
token_ids: torch.LongTensor
|
870 |
+
"""
|
871 |
+
The generated token IDs, a tensor of shape `(batch_size, beam_size, max_steps)`.
|
872 |
+
These do *not* include the original input IDs.
|
873 |
+
"""
|
874 |
+
|
875 |
+
scores: torch.FloatTensor
|
876 |
+
"""
|
877 |
+
The scores of the generated sequences, a tensor of shape `(batch_size, beam_size)`.
|
878 |
+
"""
|
879 |
+
|
880 |
+
|
881 |
+
class OLMoBlockGroup(nn.ModuleList):
|
882 |
+
def __init__(self, config: ModelConfig, layer_offset: int, modules: Optional[Iterable[nn.Module]] = None):
|
883 |
+
super().__init__(modules)
|
884 |
+
self.config = config
|
885 |
+
self.layer_offset = layer_offset
|
886 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
887 |
+
self._activation_checkpoint_fn = activation_checkpoint_function(self.config)
|
888 |
+
|
889 |
+
def forward(
|
890 |
+
self,
|
891 |
+
x: torch.Tensor,
|
892 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
893 |
+
layers_past: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
894 |
+
use_cache: bool = False,
|
895 |
+
) -> Tuple[torch.Tensor, Optional[List[Tuple[torch.Tensor, torch.Tensor]]]]:
|
896 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
897 |
+
for block_idx, block in enumerate(self):
|
898 |
+
layer_past = None if layers_past is None else layers_past[block_idx]
|
899 |
+
block_idx += self.layer_offset
|
900 |
+
if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx):
|
901 |
+
# shape: (batch_size, seq_len, d_model)
|
902 |
+
x, cache = self._activation_checkpoint_fn( # type: ignore
|
903 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
904 |
+
)
|
905 |
+
else:
|
906 |
+
# shape: (batch_size, seq_len, d_model)
|
907 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
908 |
+
if attn_key_values is not None:
|
909 |
+
assert cache is not None
|
910 |
+
attn_key_values.append(cache)
|
911 |
+
return x, attn_key_values
|
912 |
+
|
913 |
+
def reset_parameters(self):
|
914 |
+
for block in self:
|
915 |
+
block.reset_parameters()
|
916 |
+
|
917 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
918 |
+
self.activation_checkpointing_strategy = strategy
|
919 |
+
for block in self:
|
920 |
+
block.set_activation_checkpointing(strategy)
|
921 |
+
|
922 |
+
|
923 |
+
class OLMo(nn.Module):
|
924 |
+
def __init__(self, config: ModelConfig, init_params: bool = True):
|
925 |
+
super().__init__()
|
926 |
+
self.config = config
|
927 |
+
self.__cache = BufferCache()
|
928 |
+
|
929 |
+
# Validate config.
|
930 |
+
if self.config.alibi and self.config.flash_attention:
|
931 |
+
raise OLMoConfigurationError("ALiBi is currently not supported with FlashAttention")
|
932 |
+
|
933 |
+
if self.config.alibi and self.config.rope:
|
934 |
+
raise OLMoConfigurationError("ALiBi and RoPE are mutually exclusive")
|
935 |
+
|
936 |
+
if self.config.embedding_size is not None and self.config.embedding_size != self.config.vocab_size:
|
937 |
+
if self.config.embedding_size < self.config.vocab_size:
|
938 |
+
raise OLMoConfigurationError("embedding size should be at least as big as vocab size")
|
939 |
+
elif self.config.embedding_size % 128 != 0:
|
940 |
+
import warnings
|
941 |
+
|
942 |
+
warnings.warn(
|
943 |
+
"Embedding size is not a multiple of 128! This could hurt throughput performance.", UserWarning
|
944 |
+
)
|
945 |
+
|
946 |
+
self.activation_checkpointing_strategy: Optional[ActivationCheckpointingStrategy] = None
|
947 |
+
self._activation_checkpoint_fn: Callable = activation_checkpoint_function(self.config)
|
948 |
+
|
949 |
+
if not (
|
950 |
+
0 < self.config.block_group_size <= self.config.n_layers
|
951 |
+
and self.config.n_layers % self.config.block_group_size == 0
|
952 |
+
):
|
953 |
+
raise OLMoConfigurationError("n layers must be divisible by block group size")
|
954 |
+
|
955 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
956 |
+
torch.backends.cuda.enable_mem_efficient_sdp(False) # this is super slow so make sure torch won't use it
|
957 |
+
|
958 |
+
self.transformer = nn.ModuleDict(
|
959 |
+
dict(
|
960 |
+
wte=nn.Embedding(
|
961 |
+
config.embedding_size or config.vocab_size, config.d_model, device=config.init_device
|
962 |
+
),
|
963 |
+
emb_drop=Dropout(config.embedding_dropout),
|
964 |
+
ln_f=LayerNorm.build(config),
|
965 |
+
)
|
966 |
+
)
|
967 |
+
|
968 |
+
blocks = [OLMoBlock.build(i, config, self.__cache) for i in range(config.n_layers)]
|
969 |
+
if self.config.block_group_size > 1:
|
970 |
+
block_groups = [
|
971 |
+
OLMoBlockGroup(config, i, blocks[i : i + config.block_group_size])
|
972 |
+
for i in range(0, config.n_layers, config.block_group_size)
|
973 |
+
]
|
974 |
+
self.transformer.update({"block_groups": nn.ModuleList(block_groups)})
|
975 |
+
else:
|
976 |
+
self.transformer.update({"blocks": nn.ModuleList(blocks)})
|
977 |
+
|
978 |
+
if not (self.config.alibi or self.config.rope):
|
979 |
+
self.transformer.update(
|
980 |
+
{"wpe": nn.Embedding(config.max_sequence_length, config.d_model, device=config.init_device)}
|
981 |
+
)
|
982 |
+
if not config.weight_tying:
|
983 |
+
self.transformer.update(
|
984 |
+
{
|
985 |
+
"ff_out": nn.Linear(
|
986 |
+
config.d_model,
|
987 |
+
config.embedding_size or config.vocab_size,
|
988 |
+
bias=config.include_bias,
|
989 |
+
device=config.init_device,
|
990 |
+
)
|
991 |
+
}
|
992 |
+
)
|
993 |
+
# When `init_device="meta"` FSDP will call `reset_parameters()` to initialize weights.
|
994 |
+
if init_params and self.config.init_device != "meta":
|
995 |
+
self.reset_parameters()
|
996 |
+
self.__num_fwd_flops: Optional[int] = None
|
997 |
+
|
998 |
+
# Warm up cache.
|
999 |
+
if self.config.alibi:
|
1000 |
+
get_causal_attention_bias(self.__cache, config.max_sequence_length, _non_meta_init_device(config))
|
1001 |
+
self.get_alibi_attention_bias(config.max_sequence_length, _non_meta_init_device(config))
|
1002 |
+
|
1003 |
+
def set_activation_checkpointing(self, strategy: Optional[ActivationCheckpointingStrategy]):
|
1004 |
+
self.activation_checkpointing_strategy = strategy
|
1005 |
+
if self.config.block_group_size != 1:
|
1006 |
+
for block_group in self.transformer.block_groups:
|
1007 |
+
block_group.set_activation_checkpointing(strategy)
|
1008 |
+
else:
|
1009 |
+
for block in self.transformer.blocks:
|
1010 |
+
block.set_activation_checkpointing(strategy)
|
1011 |
+
|
1012 |
+
@property
|
1013 |
+
def device(self) -> torch.device:
|
1014 |
+
device: torch.device = self.transformer.wte.weight.device # type: ignore
|
1015 |
+
if device.type == "meta":
|
1016 |
+
return _non_meta_init_device(self.config)
|
1017 |
+
else:
|
1018 |
+
return device
|
1019 |
+
|
1020 |
+
def reset_parameters(self):
|
1021 |
+
log.info("Initializing model parameters...")
|
1022 |
+
# Top-level embeddings / linear layers.
|
1023 |
+
init_weights(
|
1024 |
+
self.config,
|
1025 |
+
self.transformer.wte, # type: ignore
|
1026 |
+
std_factor=(0.5 * math.sqrt(self.config.d_model)) if self.config.scale_logits else 1.0,
|
1027 |
+
type_of_module=ModuleType.emb,
|
1028 |
+
)
|
1029 |
+
if hasattr(self.transformer, "wpe"):
|
1030 |
+
init_weights(self.config, self.transformer.wpe, type_of_module=ModuleType.emb) # type: ignore
|
1031 |
+
|
1032 |
+
# Top-level layer norm.
|
1033 |
+
self.transformer.ln_f.reset_parameters() # type: ignore
|
1034 |
+
|
1035 |
+
# Output weights.
|
1036 |
+
if hasattr(self.transformer, "ff_out"):
|
1037 |
+
init_weights(self.config, self.transformer.ff_out, type_of_module=ModuleType.final_out) # type: ignore
|
1038 |
+
|
1039 |
+
# Let the blocks handle themselves.
|
1040 |
+
if self.config.block_group_size == 1:
|
1041 |
+
for block in self.transformer.blocks:
|
1042 |
+
block.reset_parameters()
|
1043 |
+
else:
|
1044 |
+
for block_group in self.transformer.block_groups:
|
1045 |
+
block_group.reset_parameters()
|
1046 |
+
|
1047 |
+
def get_alibi_attention_bias(self, seq_len: int, device: torch.device) -> torch.Tensor:
|
1048 |
+
if (alibi_bias := self.__cache.get("alibi_attention_bias")) is not None and alibi_bias.shape[
|
1049 |
+
-1
|
1050 |
+
] >= seq_len:
|
1051 |
+
if alibi_bias.device != device:
|
1052 |
+
alibi_bias = alibi_bias.to(device)
|
1053 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
1054 |
+
return alibi_bias
|
1055 |
+
with torch.autocast(device.type, enabled=False):
|
1056 |
+
alibi_bias = alibi_attention_bias(seq_len, self.config, device)
|
1057 |
+
self.__cache["alibi_attention_bias"] = alibi_bias
|
1058 |
+
return alibi_bias
|
1059 |
+
|
1060 |
+
def forward(
|
1061 |
+
self,
|
1062 |
+
input_ids: torch.LongTensor,
|
1063 |
+
input_embeddings: Optional[torch.FloatTensor] = None,
|
1064 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1065 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1066 |
+
past_key_values: Optional[Sequence[Tuple[torch.Tensor, torch.Tensor]]] = None,
|
1067 |
+
use_cache: bool = False,
|
1068 |
+
last_logits_only: bool = False,
|
1069 |
+
output_hidden_states: Optional[bool] = None,
|
1070 |
+
) -> OLMoOutput:
|
1071 |
+
"""
|
1072 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1073 |
+
:param input_embeddings: A tensor of shape `(batch_size, seq_len, d_model)` with input
|
1074 |
+
embeddings. When provided, it is treated as the output of the input embedding layer.
|
1075 |
+
:param attention_mask: A tensor of shape `(batch_size, seq_len)` that indicates
|
1076 |
+
which input IDs are masked. A `1` value in the mask means that
|
1077 |
+
the corresponding input ID should *not* be ignored. A `0` means
|
1078 |
+
that the corresponding input ID is masked.
|
1079 |
+
|
1080 |
+
This has the same meaning as the `attention_mask` in HuggingFace's `transformers`
|
1081 |
+
library.
|
1082 |
+
:param attention_bias: A tensor of shape `(batch_size, 1, seq_len, seq_len)`,
|
1083 |
+
`(1, 1, seq_len, seq_len)`, or `(seq_len, seq_len)`. This is used
|
1084 |
+
to introduce causal or other biases.
|
1085 |
+
|
1086 |
+
If the tensor is a bool or byte tensor, a `True` or `1` at `attention_bias[:, :, i, j]`
|
1087 |
+
indicates that the i-th element in the sequence is allowed to attend to the j-th
|
1088 |
+
element in the sequence.
|
1089 |
+
|
1090 |
+
If the tensor is a float tensor, it will just be added to the attention
|
1091 |
+
scores before the softmax.
|
1092 |
+
|
1093 |
+
The default is causal, which corresponds to a lower-diagonal byte matrix of ones.
|
1094 |
+
:param past_key_values: Pre-computed keys and values for each attention block.
|
1095 |
+
Can be used to speed up sequential decoding. The `input_ids` which have
|
1096 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
1097 |
+
:param use_cache: If `True`, return key and value tensors for each block.
|
1098 |
+
:param last_logits_only: If `True`, only compute the logits for the last token of each sequence.
|
1099 |
+
This can speed up decoding when you only care about the next token.
|
1100 |
+
"""
|
1101 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else False
|
1102 |
+
|
1103 |
+
if past_key_values:
|
1104 |
+
assert len(past_key_values) == self.config.n_layers
|
1105 |
+
|
1106 |
+
batch_size, seq_len = input_ids.size() if input_embeddings is None else input_embeddings.size()[:2]
|
1107 |
+
if past_key_values is None:
|
1108 |
+
past_length = 0
|
1109 |
+
else:
|
1110 |
+
past_length = past_key_values[0][0].size(-2)
|
1111 |
+
|
1112 |
+
# Get embeddings of input.
|
1113 |
+
# shape: (batch_size, seq_len, d_model)
|
1114 |
+
x = self.transformer.wte(input_ids) if input_embeddings is None else input_embeddings # type: ignore
|
1115 |
+
|
1116 |
+
if not (self.config.alibi or self.config.rope):
|
1117 |
+
# Get positional embeddings.
|
1118 |
+
# shape: (1, seq_len)
|
1119 |
+
pos = torch.arange(past_length, past_length + seq_len, dtype=torch.long, device=x.device).unsqueeze(0)
|
1120 |
+
# shape: (1, seq_len, d_model)
|
1121 |
+
pos_emb = self.transformer.wpe(pos) # type: ignore
|
1122 |
+
x = pos_emb + x
|
1123 |
+
|
1124 |
+
# Add input + positional embeddings and apply dropout.
|
1125 |
+
# shape: (batch_size, seq_len, d_model)
|
1126 |
+
x = self.transformer.emb_drop(x) # type: ignore
|
1127 |
+
|
1128 |
+
# Transform the attention mask into what the blocks expect.
|
1129 |
+
if attention_mask is not None:
|
1130 |
+
# shape: (batch_size, 1, 1, seq_len)
|
1131 |
+
attention_mask = attention_mask.to(dtype=torch.float).view(batch_size, -1)[:, None, None, :]
|
1132 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(attention_mask.dtype).min
|
1133 |
+
|
1134 |
+
# Merge attention mask with attention bias.
|
1135 |
+
if (
|
1136 |
+
attention_bias is not None
|
1137 |
+
or attention_mask is not None
|
1138 |
+
or self.config.alibi
|
1139 |
+
# NOTE (epwalsh): we need to initialize the attn bias in order for attn to work properly
|
1140 |
+
# with key+value cache. Otherwise `F.scaled_dot_product_attention()` doesn't seem to compute
|
1141 |
+
# scores correctly.
|
1142 |
+
or past_key_values is not None
|
1143 |
+
):
|
1144 |
+
if attention_bias is None and self.config.alibi:
|
1145 |
+
attention_bias = get_causal_attention_bias(
|
1146 |
+
self.__cache, past_length + seq_len, x.device
|
1147 |
+
) + self.get_alibi_attention_bias(past_length + seq_len, x.device)
|
1148 |
+
elif attention_bias is None:
|
1149 |
+
attention_bias = get_causal_attention_bias(self.__cache, past_length + seq_len, x.device)
|
1150 |
+
elif attention_bias.dtype in (torch.int8, torch.bool):
|
1151 |
+
attention_bias = attention_bias.to(dtype=torch.float)
|
1152 |
+
attention_bias.masked_fill_(attention_bias == 0.0, torch.finfo(attention_bias.dtype).min)
|
1153 |
+
|
1154 |
+
# Transform to the right shape and data type.
|
1155 |
+
mask_len = seq_len
|
1156 |
+
if attention_mask is not None:
|
1157 |
+
mask_len = attention_mask.shape[-1]
|
1158 |
+
elif past_key_values is not None:
|
1159 |
+
mask_len = past_key_values[0][0].shape[-2] + seq_len
|
1160 |
+
attention_bias = attention_bias[:, :, :mask_len, :mask_len].to(dtype=torch.float)
|
1161 |
+
|
1162 |
+
# Add in the masking bias.
|
1163 |
+
if attention_mask is not None:
|
1164 |
+
attention_bias = attention_bias + attention_mask
|
1165 |
+
# Might get -infs after adding attention mask, since dtype.min + dtype.min = -inf.
|
1166 |
+
# `F.scaled_dot_product_attention()` doesn't handle -inf like you'd expect, instead
|
1167 |
+
# it can produce NaNs.
|
1168 |
+
ensure_finite_(attention_bias, check_neg_inf=True, check_pos_inf=False)
|
1169 |
+
|
1170 |
+
attn_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = [] if use_cache else None
|
1171 |
+
|
1172 |
+
# decoder layers
|
1173 |
+
all_hidden_states = []
|
1174 |
+
|
1175 |
+
# Apply blocks one-by-one.
|
1176 |
+
if self.config.block_group_size == 1:
|
1177 |
+
for block_idx, block in enumerate(self.transformer.blocks):
|
1178 |
+
if output_hidden_states:
|
1179 |
+
# add hidden states
|
1180 |
+
all_hidden_states.append(x)
|
1181 |
+
|
1182 |
+
layer_past = None if past_key_values is None else past_key_values[block_idx]
|
1183 |
+
if should_checkpoint_block(self.activation_checkpointing_strategy, block_idx):
|
1184 |
+
# shape: (batch_size, seq_len, d_model)
|
1185 |
+
x, cache = self._activation_checkpoint_fn(
|
1186 |
+
block, x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache
|
1187 |
+
)
|
1188 |
+
else:
|
1189 |
+
# shape: (batch_size, seq_len, d_model)
|
1190 |
+
x, cache = block(x, attention_bias=attention_bias, layer_past=layer_past, use_cache=use_cache)
|
1191 |
+
|
1192 |
+
if attn_key_values is not None:
|
1193 |
+
assert cache is not None
|
1194 |
+
attn_key_values.append(cache)
|
1195 |
+
else:
|
1196 |
+
for group_idx, block_group in enumerate(self.transformer.block_groups):
|
1197 |
+
if output_hidden_states:
|
1198 |
+
# add hidden states
|
1199 |
+
all_hidden_states.append(x)
|
1200 |
+
|
1201 |
+
layers_past = (
|
1202 |
+
None
|
1203 |
+
if past_key_values is None
|
1204 |
+
else past_key_values[
|
1205 |
+
group_idx * self.config.block_group_size : (group_idx + 1) * self.config.block_group_size
|
1206 |
+
]
|
1207 |
+
)
|
1208 |
+
x, cache = block_group(
|
1209 |
+
x, attention_bias=attention_bias, layers_past=layers_past, use_cache=use_cache
|
1210 |
+
)
|
1211 |
+
if attn_key_values is not None:
|
1212 |
+
assert cache is not None
|
1213 |
+
attn_key_values.extend(cache)
|
1214 |
+
|
1215 |
+
if last_logits_only:
|
1216 |
+
# shape: (batch_size, 1, d_model)
|
1217 |
+
x = x[:, -1, :].unsqueeze(1)
|
1218 |
+
|
1219 |
+
# Apply final layer norm.
|
1220 |
+
# shape: (batch_size, seq_len or 1, d_model)
|
1221 |
+
x = self.transformer.ln_f(x) # type: ignore
|
1222 |
+
if output_hidden_states:
|
1223 |
+
# add final hidden state post-final-layernorm, following HuggingFace's convention
|
1224 |
+
all_hidden_states.append(x)
|
1225 |
+
|
1226 |
+
# Get logits.
|
1227 |
+
# shape: (batch_size, seq_len or 1, vocab_size)
|
1228 |
+
if self.config.weight_tying:
|
1229 |
+
logits = F.linear(x, self.transformer.wte.weight, None) # type: ignore
|
1230 |
+
else:
|
1231 |
+
logits = self.transformer.ff_out(x) # type: ignore
|
1232 |
+
if self.config.scale_logits:
|
1233 |
+
logits.mul_(1 / math.sqrt(self.config.d_model))
|
1234 |
+
|
1235 |
+
return OLMoOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None) # type: ignore[arg-type]
|
1236 |
+
|
1237 |
+
def get_fsdp_wrap_policy(self, wrap_strategy: Optional[FSDPWrapStrategy] = None):
|
1238 |
+
if wrap_strategy is None:
|
1239 |
+
return None
|
1240 |
+
|
1241 |
+
# The 'recurse' mode for the wrap function does not behave like you'd expect.
|
1242 |
+
# Even if we return False, it may still recurse because PyTorch does what it wants,
|
1243 |
+
# not what you want. This causes issues when, for example, we want to wrap 'ff_out' (a linear layer)
|
1244 |
+
# but not other linear layers within a block.
|
1245 |
+
# So we have to explicitly tell PyTorch which linear layers to wrap, and we also just
|
1246 |
+
# return True in 'recurse' mode for simplicity.
|
1247 |
+
size_based_module_to_wrap = {self.transformer.wte}
|
1248 |
+
if hasattr(self.transformer, "ff_out"):
|
1249 |
+
size_based_module_to_wrap.add(self.transformer.ff_out)
|
1250 |
+
|
1251 |
+
if wrap_strategy == FSDPWrapStrategy.by_block:
|
1252 |
+
|
1253 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1254 |
+
del nonwrapped_numel
|
1255 |
+
wrap = isinstance(module, OLMoBlock)
|
1256 |
+
if recurse:
|
1257 |
+
return True
|
1258 |
+
else:
|
1259 |
+
return wrap
|
1260 |
+
|
1261 |
+
return fsdp_wrap_fn
|
1262 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_and_size:
|
1263 |
+
|
1264 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1265 |
+
del nonwrapped_numel
|
1266 |
+
wrap = isinstance(module, (OLMoBlock,)) or module in size_based_module_to_wrap
|
1267 |
+
if recurse:
|
1268 |
+
return True
|
1269 |
+
else:
|
1270 |
+
return wrap
|
1271 |
+
|
1272 |
+
return fsdp_wrap_fn
|
1273 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_group:
|
1274 |
+
if self.config.block_group_size <= 1:
|
1275 |
+
raise OLMoConfigurationError(
|
1276 |
+
"'by_block_group' FSDP wrapping strategy requires block group size greater than 1"
|
1277 |
+
)
|
1278 |
+
|
1279 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1280 |
+
del nonwrapped_numel
|
1281 |
+
wrap = isinstance(module, OLMoBlockGroup)
|
1282 |
+
if recurse:
|
1283 |
+
return True
|
1284 |
+
else:
|
1285 |
+
return wrap
|
1286 |
+
|
1287 |
+
return fsdp_wrap_fn
|
1288 |
+
elif wrap_strategy == FSDPWrapStrategy.by_block_group_and_size:
|
1289 |
+
if self.config.block_group_size <= 1:
|
1290 |
+
raise OLMoConfigurationError(
|
1291 |
+
"'by_block_group_and_size' FSDP wrapping strategy requires block group size greater than 1"
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1295 |
+
del nonwrapped_numel
|
1296 |
+
wrap = isinstance(module, (OLMoBlockGroup,)) or module in size_based_module_to_wrap
|
1297 |
+
if recurse:
|
1298 |
+
return True
|
1299 |
+
else:
|
1300 |
+
return wrap
|
1301 |
+
|
1302 |
+
return fsdp_wrap_fn
|
1303 |
+
elif wrap_strategy == FSDPWrapStrategy.size_based:
|
1304 |
+
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
|
1305 |
+
|
1306 |
+
return size_based_auto_wrap_policy
|
1307 |
+
elif wrap_strategy in {
|
1308 |
+
FSDPWrapStrategy.one_in_two,
|
1309 |
+
FSDPWrapStrategy.one_in_three,
|
1310 |
+
FSDPWrapStrategy.one_in_four,
|
1311 |
+
FSDPWrapStrategy.one_in_five,
|
1312 |
+
}:
|
1313 |
+
c = {
|
1314 |
+
FSDPWrapStrategy.one_in_two: 2,
|
1315 |
+
FSDPWrapStrategy.one_in_three: 3,
|
1316 |
+
FSDPWrapStrategy.one_in_four: 4,
|
1317 |
+
FSDPWrapStrategy.one_in_five: 5,
|
1318 |
+
}[wrap_strategy]
|
1319 |
+
|
1320 |
+
def fsdp_wrap_fn(module, recurse: bool = True, nonwrapped_numel: int = 0):
|
1321 |
+
del nonwrapped_numel
|
1322 |
+
wrap = isinstance(module, OLMoBlock) and module.layer_id % c == 0
|
1323 |
+
if recurse:
|
1324 |
+
return True
|
1325 |
+
else:
|
1326 |
+
return wrap
|
1327 |
+
|
1328 |
+
return fsdp_wrap_fn
|
1329 |
+
else:
|
1330 |
+
raise NotImplementedError(wrap_strategy)
|
1331 |
+
|
1332 |
+
def num_params(self, include_embedding: bool = True) -> int:
|
1333 |
+
"""
|
1334 |
+
Get the total number of parameters.
|
1335 |
+
"""
|
1336 |
+
params = (np for np in self.named_parameters())
|
1337 |
+
if not include_embedding:
|
1338 |
+
params = filter( # type: ignore
|
1339 |
+
lambda np: ".wte." not in np[0] and ".wpe." not in np[0],
|
1340 |
+
params,
|
1341 |
+
)
|
1342 |
+
return sum(p.numel() for _, p in params)
|
1343 |
+
|
1344 |
+
@property
|
1345 |
+
def num_fwd_flops(self):
|
1346 |
+
if self.__num_fwd_flops:
|
1347 |
+
return self.__num_fwd_flops
|
1348 |
+
n_params = self.num_params()
|
1349 |
+
# the number of parameters is approximately the number of multiply-accumulates (MAC) in the network
|
1350 |
+
# each MAC has 2 FLOPs - we multiply by 2 ie 2 * n_param
|
1351 |
+
# this gets us FLOPs / token
|
1352 |
+
params_flops_per_token = 2 * n_params
|
1353 |
+
params_flops_per_seq = params_flops_per_token * self.config.max_sequence_length
|
1354 |
+
# there are 2 FLOPS per mac; there is A=Q*K^T and out=A*V ops (ie mult by 2)
|
1355 |
+
attn_flops_per_seq = (
|
1356 |
+
self.config.n_layers * 2 * 2 * (self.config.d_model * (self.config.max_sequence_length**2))
|
1357 |
+
)
|
1358 |
+
self.__num_fwd_flops = params_flops_per_seq + attn_flops_per_seq
|
1359 |
+
return self.__num_fwd_flops
|
1360 |
+
|
1361 |
+
def generate(
|
1362 |
+
self,
|
1363 |
+
input_ids: torch.LongTensor,
|
1364 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1365 |
+
attention_bias: Optional[torch.Tensor] = None,
|
1366 |
+
max_steps: int = 10,
|
1367 |
+
beam_size: int = 1,
|
1368 |
+
per_node_beam_size: Optional[int] = None,
|
1369 |
+
sampler: Optional[Sampler] = None,
|
1370 |
+
min_steps: Optional[int] = None,
|
1371 |
+
final_sequence_scorer: Optional[FinalSequenceScorer] = None,
|
1372 |
+
constraints: Optional[List[Constraint]] = None,
|
1373 |
+
) -> OLMoGenerateOutput:
|
1374 |
+
"""
|
1375 |
+
Generate token IDs using beam search.
|
1376 |
+
|
1377 |
+
Note that by default ``beam_size`` is set to 1, which is greedy decoding.
|
1378 |
+
|
1379 |
+
:param input_ids: A tensor of shape `(batch_size, seq_len)`.
|
1380 |
+
:param attention_mask: A optional tensor of shape `(batch_size, seq_len)`, the same
|
1381 |
+
as for the forward method.
|
1382 |
+
:param attention_bias: A tensor of shape
|
1383 |
+
`(batch_size, 1, seq_len + tokens_to_generate, seq_len + tokens_to_generate)`,
|
1384 |
+
the same as for the forward method except only one shape is excepted here.
|
1385 |
+
|
1386 |
+
For an explanation of the other arguments, see :class:`BeamSearch`.
|
1387 |
+
"""
|
1388 |
+
beam_search = BeamSearch(
|
1389 |
+
self.config.eos_token_id,
|
1390 |
+
max_steps=max_steps,
|
1391 |
+
beam_size=beam_size,
|
1392 |
+
per_node_beam_size=per_node_beam_size,
|
1393 |
+
sampler=sampler,
|
1394 |
+
min_steps=min_steps,
|
1395 |
+
final_sequence_scorer=final_sequence_scorer,
|
1396 |
+
constraints=constraints,
|
1397 |
+
)
|
1398 |
+
|
1399 |
+
# Validate inputs.
|
1400 |
+
batch_size, seq_len = input_ids.shape
|
1401 |
+
if attention_mask is not None:
|
1402 |
+
assert attention_mask.shape == (batch_size, seq_len)
|
1403 |
+
if attention_bias is not None:
|
1404 |
+
assert len(attention_bias.shape) == 4
|
1405 |
+
assert attention_bias.shape[:2] == (batch_size, 1)
|
1406 |
+
assert (
|
1407 |
+
seq_len + beam_search.max_steps
|
1408 |
+
<= attention_bias.shape[2]
|
1409 |
+
== attention_bias.shape[3]
|
1410 |
+
<= self.config.max_sequence_length
|
1411 |
+
)
|
1412 |
+
|
1413 |
+
tokens_generated = 0
|
1414 |
+
|
1415 |
+
def flatten_past_key_values(
|
1416 |
+
past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
|
1417 |
+
) -> Dict[str, torch.Tensor]:
|
1418 |
+
out = {}
|
1419 |
+
for i, (key, value) in enumerate(past_key_values):
|
1420 |
+
out[f"past_key_{i}"] = key
|
1421 |
+
out[f"past_value_{i}"] = value
|
1422 |
+
return out
|
1423 |
+
|
1424 |
+
def unflatten_past_key_values(
|
1425 |
+
past_key_values: Dict[str, torch.Tensor],
|
1426 |
+
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
|
1427 |
+
out = []
|
1428 |
+
for i in range(self.config.n_layers):
|
1429 |
+
past_key = past_key_values[f"past_key_{i}"]
|
1430 |
+
past_value = past_key_values[f"past_value_{i}"]
|
1431 |
+
out.append((past_key, past_value))
|
1432 |
+
return out
|
1433 |
+
|
1434 |
+
def step(
|
1435 |
+
last_predictions: torch.Tensor, state: dict[str, torch.Tensor]
|
1436 |
+
) -> tuple[torch.Tensor, dict[str, torch.Tensor]]:
|
1437 |
+
nonlocal tokens_generated
|
1438 |
+
|
1439 |
+
attention_mask = state.get("attention_mask")
|
1440 |
+
attention_bias = state.get("attention_bias")
|
1441 |
+
|
1442 |
+
if tokens_generated > 0:
|
1443 |
+
past_key_values = unflatten_past_key_values(state)
|
1444 |
+
input_ids = last_predictions.unsqueeze(1)
|
1445 |
+
if attention_mask is not None:
|
1446 |
+
group_size = input_ids.shape[0]
|
1447 |
+
attention_mask = torch.cat((attention_mask, attention_mask.new_ones((group_size, 1))), dim=-1)
|
1448 |
+
else:
|
1449 |
+
past_key_values = None
|
1450 |
+
input_ids = state["input_ids"]
|
1451 |
+
|
1452 |
+
tokens_generated += 1
|
1453 |
+
|
1454 |
+
# Run forward pass of model to get logits, then normalize to get log probs.
|
1455 |
+
output = self(
|
1456 |
+
input_ids,
|
1457 |
+
attention_mask=attention_mask,
|
1458 |
+
attention_bias=attention_bias,
|
1459 |
+
past_key_values=past_key_values,
|
1460 |
+
use_cache=True,
|
1461 |
+
last_logits_only=True,
|
1462 |
+
)
|
1463 |
+
log_probs = F.log_softmax(output.logits[:, -1, :], dim=-1)
|
1464 |
+
|
1465 |
+
# Create new state.
|
1466 |
+
state = flatten_past_key_values(output.attn_key_values)
|
1467 |
+
if attention_mask is not None:
|
1468 |
+
state["attention_mask"] = attention_mask
|
1469 |
+
if attention_bias is not None:
|
1470 |
+
state["attention_bias"] = attention_bias
|
1471 |
+
|
1472 |
+
return log_probs, state
|
1473 |
+
|
1474 |
+
initial_preds = input_ids.new_zeros((batch_size,)) # This is arbitrary, we won't use this.
|
1475 |
+
state: dict[str, torch.Tensor] = {"input_ids": input_ids}
|
1476 |
+
if attention_mask is not None:
|
1477 |
+
state["attention_mask"] = attention_mask
|
1478 |
+
if attention_bias is not None:
|
1479 |
+
state["attention_bias"] = attention_bias
|
1480 |
+
with torch.no_grad():
|
1481 |
+
token_ids, scores = beam_search.search(initial_preds, state, step)
|
1482 |
+
|
1483 |
+
return OLMoGenerateOutput(
|
1484 |
+
token_ids=token_ids, # type: ignore[arg-type]
|
1485 |
+
scores=scores, # type: ignore[arg-type]
|
1486 |
+
)
|
1487 |
+
|
1488 |
+
@classmethod
|
1489 |
+
def from_checkpoint(
|
1490 |
+
cls, checkpoint_dir: PathOrStr, device: str = "cpu", checkpoint_type: Optional[CheckpointType] = None
|
1491 |
+
) -> OLMo:
|
1492 |
+
"""
|
1493 |
+
Load an OLMo model from a checkpoint.
|
1494 |
+
"""
|
1495 |
+
from .util import resource_path
|
1496 |
+
|
1497 |
+
# Guess checkpoint type.
|
1498 |
+
if checkpoint_type is None:
|
1499 |
+
try:
|
1500 |
+
if resource_path(checkpoint_dir, "model.pt").is_file():
|
1501 |
+
checkpoint_type = CheckpointType.unsharded
|
1502 |
+
else:
|
1503 |
+
checkpoint_type = CheckpointType.sharded
|
1504 |
+
except FileNotFoundError:
|
1505 |
+
checkpoint_type = CheckpointType.sharded
|
1506 |
+
|
1507 |
+
# Load config.
|
1508 |
+
config_path = resource_path(checkpoint_dir, "config.yaml")
|
1509 |
+
model_config = ModelConfig.load(config_path, key="model", validate_paths=False)
|
1510 |
+
|
1511 |
+
if checkpoint_type == CheckpointType.unsharded:
|
1512 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
1513 |
+
model_config.init_device = "cpu"
|
1514 |
+
model = OLMo(model_config)
|
1515 |
+
|
1516 |
+
# Load state dict directly to target device.
|
1517 |
+
state_dict_path = resource_path(checkpoint_dir, "model.pt")
|
1518 |
+
state_dict = torch.load(state_dict_path, map_location="cpu")
|
1519 |
+
model.load_state_dict(model._make_state_dict_compatible(state_dict)[0])
|
1520 |
+
model = model.to(torch.device(device))
|
1521 |
+
else:
|
1522 |
+
from .checkpoint import load_model_state
|
1523 |
+
|
1524 |
+
# Initialize model on target device. In this case the state dict is loaded in-place
|
1525 |
+
# so it's not necessary to start on CPU if the target device is a GPU.
|
1526 |
+
model_config.init_device = device
|
1527 |
+
model = OLMo(model_config)
|
1528 |
+
|
1529 |
+
# Load state dict in place.
|
1530 |
+
load_model_state(checkpoint_dir, model)
|
1531 |
+
|
1532 |
+
return model.eval()
|
1533 |
+
|
1534 |
+
def _make_state_dict_compatible(
|
1535 |
+
self, state_dict: Dict[str, torch.Tensor]
|
1536 |
+
) -> Tuple[Dict[str, torch.Tensor], Dict[str, Set[str]]]:
|
1537 |
+
"""
|
1538 |
+
Handles some cases where the state dict is valid yet may need to be transformed in order to
|
1539 |
+
be loaded.
|
1540 |
+
|
1541 |
+
This modifies the state dict in-place and also returns it, along with a mapping of original key
|
1542 |
+
names to new key names in cases where the keys were simply renamed. That mapping can be used
|
1543 |
+
to make a corresponding optimizer state dict compatible as well.
|
1544 |
+
"""
|
1545 |
+
import re
|
1546 |
+
from fnmatch import fnmatch
|
1547 |
+
|
1548 |
+
new_keys_to_og_keys: Dict[str, str] = {}
|
1549 |
+
|
1550 |
+
# Remove "_fsdp_wrapped_module." prefix from all keys. We don't want this prefix when the model is
|
1551 |
+
# not wrapped in FSDP. And when the model is wrapped in FSDP, loading this state dict will still work
|
1552 |
+
# fine without the prefixes. This also simplifies the other steps below.
|
1553 |
+
for key in list(state_dict.keys()):
|
1554 |
+
state_dict[(new_key := key.replace("_fsdp_wrapped_module.", ""))] = state_dict.pop(key)
|
1555 |
+
new_keys_to_og_keys[new_key] = key
|
1556 |
+
|
1557 |
+
# For backwards compatibility prior to fixing https://github.com/allenai/LLM/issues/222
|
1558 |
+
if self.config.block_type == BlockType.sequential:
|
1559 |
+
for key in list(state_dict.keys()):
|
1560 |
+
if fnmatch(key, "transformer.*.norm.weight"):
|
1561 |
+
tensor = state_dict.pop(key)
|
1562 |
+
state_dict[(new_key := key.replace("norm.weight", "attn_norm.weight"))] = tensor
|
1563 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1564 |
+
state_dict[(new_key := key.replace("norm.weight", "ff_norm.weight"))] = tensor.clone()
|
1565 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1566 |
+
del new_keys_to_og_keys[key]
|
1567 |
+
elif fnmatch(key, "transformer.*.norm.bias"):
|
1568 |
+
tensor = state_dict.pop(key)
|
1569 |
+
state_dict[(new_key := key.replace("norm.bias", "attn_norm.bias"))] = tensor
|
1570 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1571 |
+
state_dict[(new_key := key.replace("norm.bias", "ff_norm.bias"))] = tensor.clone()
|
1572 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys[key]
|
1573 |
+
del new_keys_to_og_keys[key]
|
1574 |
+
|
1575 |
+
# For loading a state dict that was saved with a different `block_group_size`.
|
1576 |
+
if "transformer.block_groups.0.0.attn_out.weight" in state_dict.keys():
|
1577 |
+
state_dict_block_group_size = len(
|
1578 |
+
[k for k in state_dict.keys() if fnmatch(k, "transformer.block_groups.0.*.attn_out.weight")]
|
1579 |
+
)
|
1580 |
+
else:
|
1581 |
+
state_dict_block_group_size = 1
|
1582 |
+
if self.config.block_group_size != state_dict_block_group_size:
|
1583 |
+
log.info(
|
1584 |
+
f"Regrouping state dict blocks from group size {state_dict_block_group_size} to "
|
1585 |
+
f"group size {self.config.block_group_size}"
|
1586 |
+
)
|
1587 |
+
# For simplicity we're first going to flatten out the block groups in the state dict (if necessary)
|
1588 |
+
# and then (re-)group them into the right block sizes.
|
1589 |
+
if state_dict_block_group_size > 1:
|
1590 |
+
for key in list(state_dict.keys()):
|
1591 |
+
if (m := re.match(r"transformer.block_groups\.(\d+)\.(\d+)\..*", key)) is not None:
|
1592 |
+
group_idx, group_block_idx = int(m.group(1)), int(m.group(2))
|
1593 |
+
block_idx = (group_idx * state_dict_block_group_size) + group_block_idx
|
1594 |
+
state_dict[
|
1595 |
+
(
|
1596 |
+
new_key := key.replace(
|
1597 |
+
f"block_groups.{group_idx}.{group_block_idx}.", f"blocks.{block_idx}."
|
1598 |
+
)
|
1599 |
+
)
|
1600 |
+
] = state_dict.pop(key)
|
1601 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
|
1602 |
+
|
1603 |
+
if self.config.block_group_size > 1:
|
1604 |
+
# Group the state dict blocks into the right block size.
|
1605 |
+
for key in list(state_dict.keys()):
|
1606 |
+
if (m := re.match(r"transformer.blocks\.(\d+)\..*", key)) is not None:
|
1607 |
+
block_idx = int(m.group(1))
|
1608 |
+
group_idx, group_block_idx = (
|
1609 |
+
block_idx // self.config.block_group_size,
|
1610 |
+
block_idx % self.config.block_group_size,
|
1611 |
+
)
|
1612 |
+
state_dict[
|
1613 |
+
(
|
1614 |
+
new_key := key.replace(
|
1615 |
+
f"blocks.{block_idx}.", f"block_groups.{group_idx}.{group_block_idx}."
|
1616 |
+
)
|
1617 |
+
)
|
1618 |
+
] = state_dict.pop(key)
|
1619 |
+
new_keys_to_og_keys[new_key] = new_keys_to_og_keys.pop(key)
|
1620 |
+
|
1621 |
+
og_keys_to_new: Dict[str, Set[str]] = defaultdict(set)
|
1622 |
+
for new_key, og_key in new_keys_to_og_keys.items():
|
1623 |
+
og_keys_to_new[og_key].add(new_key)
|
1624 |
+
|
1625 |
+
return state_dict, og_keys_to_new
|
model/modeling_olmo.py
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from dataclasses import fields
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import PreTrainedModel
|
7 |
+
from transformers.cache_utils import Cache
|
8 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
9 |
+
from transformers.models.auto import AutoModelForCausalLM, AutoModelForSequenceClassification
|
10 |
+
|
11 |
+
from .config import ModelConfig
|
12 |
+
from .model import OLMo
|
13 |
+
import sys
|
14 |
+
import os
|
15 |
+
|
16 |
+
# Add the parent directory to sys.path
|
17 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
18 |
+
|
19 |
+
from .configuration_olmo import OLMoConfig
|
20 |
+
|
21 |
+
log = logging.getLogger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
def create_model_config_from_pretrained_config(config: OLMoConfig, is_cls = False):
|
25 |
+
"""
|
26 |
+
Utility function
|
27 |
+
"""
|
28 |
+
kwargs = {}
|
29 |
+
for field in fields(ModelConfig):
|
30 |
+
kwargs[field.name] = getattr(config, field.name)
|
31 |
+
# add num_labels for being compatible with the AutoSeqClassification downstream task
|
32 |
+
model_config = ModelConfig(**kwargs)
|
33 |
+
if is_cls:
|
34 |
+
num_labels = len(getattr(config,'label2id'))
|
35 |
+
# print(f"{config}")
|
36 |
+
return model_config, num_labels
|
37 |
+
return model_config
|
38 |
+
|
39 |
+
|
40 |
+
class OLMoForCausalLM(PreTrainedModel):
|
41 |
+
"""
|
42 |
+
Extremely barebones HF model wrapper.
|
43 |
+
"""
|
44 |
+
|
45 |
+
config_class = OLMoConfig
|
46 |
+
base_model_prefix = "model"
|
47 |
+
_no_split_modules = ["OLMoBlock"]
|
48 |
+
|
49 |
+
def __init__(self, config: OLMoConfig, model: Optional[OLMo] = None, init_params: bool = False):
|
50 |
+
super().__init__(config)
|
51 |
+
|
52 |
+
if not model:
|
53 |
+
model_config = create_model_config_from_pretrained_config(config)
|
54 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
55 |
+
model_config.init_device = "cpu"
|
56 |
+
self.model = OLMo(model_config, init_params=init_params)
|
57 |
+
else:
|
58 |
+
self.model = model
|
59 |
+
self.word_embeddings = self.model.transformer.wte
|
60 |
+
def forward(
|
61 |
+
self,
|
62 |
+
input_ids: torch.LongTensor = None,
|
63 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
64 |
+
attention_mask: Optional[torch.Tensor] = None,
|
65 |
+
attention_bias: Optional[torch.Tensor] = None,
|
66 |
+
token_type_ids: Optional[torch.LongTensor] = None, # Added parameter
|
67 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
68 |
+
labels: Optional[torch.LongTensor] = None,
|
69 |
+
use_cache: Optional[bool] = None,
|
70 |
+
output_attentions: Optional[bool] = None,
|
71 |
+
output_hidden_states: Optional[bool] = True,
|
72 |
+
return_dict: Optional[bool] = None,
|
73 |
+
cache_position: Optional[
|
74 |
+
Cache
|
75 |
+
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
|
76 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
77 |
+
if use_cache is None:
|
78 |
+
use_cache = self.config.use_cache
|
79 |
+
|
80 |
+
if output_attentions:
|
81 |
+
raise ValueError("output_attentions is not yet supported in OLMo")
|
82 |
+
|
83 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
84 |
+
|
85 |
+
######
|
86 |
+
# Create attention bias only if it's not provided for bidirectional finetuning
|
87 |
+
# Should only uncomment when performing MNTP finetuning
|
88 |
+
######
|
89 |
+
# if attention_bias is None:
|
90 |
+
# seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
91 |
+
# attention_bias = self.get_bidirectional_attention_bias(seq_len=seq_len, device=input_ids.device)
|
92 |
+
|
93 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
94 |
+
outputs = self.model.forward(
|
95 |
+
input_ids=input_ids,
|
96 |
+
input_embeddings=inputs_embeds,
|
97 |
+
attention_mask=attention_mask,
|
98 |
+
attention_bias=attention_bias,
|
99 |
+
past_key_values=past_key_values,
|
100 |
+
use_cache=use_cache,
|
101 |
+
output_hidden_states=output_hidden_states,
|
102 |
+
)
|
103 |
+
|
104 |
+
logits = outputs.logits
|
105 |
+
hidden_states = outputs.hidden_states
|
106 |
+
|
107 |
+
loss = None
|
108 |
+
if labels is not None:
|
109 |
+
# Shift so that tokens < n predict n
|
110 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
111 |
+
shift_labels = labels[..., 1:].contiguous()
|
112 |
+
# Flatten the tokens
|
113 |
+
loss_fct = torch.nn.CrossEntropyLoss()
|
114 |
+
shift_logits = shift_logits.view(-1, self.config.embedding_size)
|
115 |
+
shift_labels = shift_labels.view(-1)
|
116 |
+
# Enable model parallelism
|
117 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
118 |
+
loss = loss_fct(shift_logits, shift_labels)
|
119 |
+
|
120 |
+
if not return_dict:
|
121 |
+
output = (logits,) + outputs[1:]
|
122 |
+
return (loss,) + output if loss is not None else output
|
123 |
+
|
124 |
+
return CausalLMOutputWithPast(
|
125 |
+
loss=loss,
|
126 |
+
logits=logits,
|
127 |
+
past_key_values=outputs.attn_key_values,
|
128 |
+
hidden_states=hidden_states,
|
129 |
+
)
|
130 |
+
|
131 |
+
def can_generate(self) -> bool:
|
132 |
+
return True
|
133 |
+
|
134 |
+
def get_bidirectional_attention_bias(self, seq_len: int, device: torch.device):
|
135 |
+
"""
|
136 |
+
Create a bidirectional attention bias for full sequence attention.
|
137 |
+
The bias matrix will not restrict attention in any direction.
|
138 |
+
"""
|
139 |
+
# Bias shape: (1, 1, seq_len, seq_len)
|
140 |
+
bias = torch.zeros(1, 1, seq_len, seq_len, device=device)
|
141 |
+
return bias
|
142 |
+
|
143 |
+
def prepare_inputs_for_generation(
|
144 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
145 |
+
):
|
146 |
+
if past_key_values:
|
147 |
+
# This is because we want the model to only process the last generated token.
|
148 |
+
input_ids = input_ids[:, -1:]
|
149 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
150 |
+
|
151 |
+
model_inputs.update(kwargs)
|
152 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
153 |
+
return model_inputs
|
154 |
+
|
155 |
+
# TODO: these are required to make the implementation complete.
|
156 |
+
# def resize_position_embeddings(self, new_num_position_embeddings: int):
|
157 |
+
# pass
|
158 |
+
#
|
159 |
+
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
|
160 |
+
# pass
|
161 |
+
#
|
162 |
+
# def _reorder_cache(self, past_key_values, beam_idx):
|
163 |
+
# pass
|
164 |
+
|
165 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
166 |
+
return self.model.transformer.wte
|
167 |
+
|
168 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
169 |
+
self.model.transformer.wte = value
|
170 |
+
|
171 |
+
def get_output_embeddings(self):
|
172 |
+
if self.config.weight_tying:
|
173 |
+
return self.model.transformer.wte
|
174 |
+
else:
|
175 |
+
return self.model.transformer.ff_out
|
176 |
+
|
177 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
178 |
+
if self.config.weight_tying:
|
179 |
+
self.model.transformer.wte = value
|
180 |
+
else:
|
181 |
+
self.model.transformer.ff_out = value
|
182 |
+
|
183 |
+
def tie_weights(self):
|
184 |
+
"""
|
185 |
+
This function is intentionally left as a no-op.
|
186 |
+
|
187 |
+
Weight tying is handled as follows:
|
188 |
+
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
|
189 |
+
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
|
190 |
+
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
|
191 |
+
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
|
192 |
+
|
193 |
+
Therefore, there is no need to explicitly tie the weights in this function.
|
194 |
+
"""
|
195 |
+
pass
|
196 |
+
|
197 |
+
def resize_token_embeddings(
|
198 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
199 |
+
) -> torch.nn.Embedding:
|
200 |
+
"""
|
201 |
+
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
|
202 |
+
|
203 |
+
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
204 |
+
|
205 |
+
Arguments:
|
206 |
+
new_num_tokens (`int`, *optional*):
|
207 |
+
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
|
208 |
+
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
|
209 |
+
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
|
210 |
+
pad_to_multiple_of (`int`, *optional*):
|
211 |
+
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
|
212 |
+
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
213 |
+
|
214 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
215 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
216 |
+
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
217 |
+
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
218 |
+
|
219 |
+
Return:
|
220 |
+
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
|
221 |
+
|
222 |
+
Note:
|
223 |
+
This method differs from the base class implementation by resizing the `embedding_size` attribute of the
|
224 |
+
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
|
225 |
+
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
|
226 |
+
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
|
227 |
+
"""
|
228 |
+
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
229 |
+
if new_num_tokens is None and pad_to_multiple_of is None:
|
230 |
+
return model_embeds
|
231 |
+
|
232 |
+
# Update base model and current model config
|
233 |
+
self.config.embedding_size = model_embeds.weight.shape[0]
|
234 |
+
self.model.config.embedding_size = model_embeds.weight.shape[0]
|
235 |
+
|
236 |
+
# Check if the embedding size is less than the vocab size
|
237 |
+
if self.config.embedding_size < self.config.vocab_size:
|
238 |
+
warning_message = (
|
239 |
+
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
|
240 |
+
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
|
241 |
+
"size is less than or equal to the new token embedding size."
|
242 |
+
)
|
243 |
+
log.warning(warning_message)
|
244 |
+
|
245 |
+
# Tie weights again if needed
|
246 |
+
self.tie_weights()
|
247 |
+
|
248 |
+
return model_embeds
|
249 |
+
|
250 |
+
|
251 |
+
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
252 |
+
AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)
|
253 |
+
|
254 |
+
|
255 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
256 |
+
class OLMoForSequenceCLS(PreTrainedModel):
|
257 |
+
"""
|
258 |
+
Extremely barebones HF model wrapper.
|
259 |
+
"""
|
260 |
+
|
261 |
+
config_class = OLMoConfig
|
262 |
+
base_model_prefix = "model"
|
263 |
+
_no_split_modules = ["OLMoBlock"]
|
264 |
+
|
265 |
+
def __init__(self, config: OLMoConfig, model: Optional[OLMo] = None, init_params: bool = False):
|
266 |
+
super().__init__(config)
|
267 |
+
if not model:
|
268 |
+
model_config,num_labels = create_model_config_from_pretrained_config(config,is_cls=True)
|
269 |
+
# Initialize model (always on CPU to start with so we don't run out of GPU memory).
|
270 |
+
model_config.init_device = "cpu"
|
271 |
+
self.model = OLMo(model_config, init_params=init_params)
|
272 |
+
else:
|
273 |
+
self.model = model
|
274 |
+
self.word_embeddings = self.model.transformer.wte
|
275 |
+
self.num_labels = num_labels
|
276 |
+
print(f"num_labels: {self.num_labels}")
|
277 |
+
self.score = torch.nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
278 |
+
|
279 |
+
|
280 |
+
###############
|
281 |
+
# mix resolution head
|
282 |
+
################
|
283 |
+
# self.CNN = CNN_Head(output_size=self.num_labels,cnn_output_dim=config.hidden_size, kernel_sizes=[4,9],dropout_rate=0.11,
|
284 |
+
# num_cnn_layers=2)
|
285 |
+
def get_bidirectional_attention_bias(self, seq_len: int, device: torch.device):
|
286 |
+
"""
|
287 |
+
Create a bidirectional attention bias for full sequence attention.
|
288 |
+
The bias matrix will not restrict attention in any direction.
|
289 |
+
"""
|
290 |
+
# Bias shape: (1, 1, seq_len, seq_len)
|
291 |
+
bias = torch.zeros(1, 1, seq_len, seq_len, device=device)
|
292 |
+
return bias
|
293 |
+
def forward(
|
294 |
+
self,
|
295 |
+
input_ids: torch.LongTensor = None,
|
296 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
297 |
+
attention_mask: Optional[torch.Tensor] = None,
|
298 |
+
attention_bias: Optional[torch.Tensor] = None,
|
299 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
300 |
+
labels: Optional[torch.LongTensor] = None,
|
301 |
+
use_cache: Optional[bool] = None,
|
302 |
+
output_attentions: Optional[bool] = None,
|
303 |
+
output_hidden_states: Optional[bool] = None,
|
304 |
+
return_dict: Optional[bool] = None,
|
305 |
+
cache_position: Optional[
|
306 |
+
Cache
|
307 |
+
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
|
308 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
309 |
+
if use_cache is None:
|
310 |
+
use_cache = self.config.use_cache
|
311 |
+
|
312 |
+
if output_attentions:
|
313 |
+
raise ValueError("output_attentions is not yet supported in OLMo")
|
314 |
+
######
|
315 |
+
# Create attention bias only if it's not provided
|
316 |
+
######
|
317 |
+
# if attention_bias is None:
|
318 |
+
# seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
319 |
+
# attention_bias = self.get_bidirectional_attention_bias(seq_len=seq_len, device=input_ids.device)
|
320 |
+
######
|
321 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
322 |
+
########
|
323 |
+
# The output_hidden_states flag is set as the output format of olmo is the following:
|
324 |
+
# return OLMoOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None)
|
325 |
+
# so we have to forcely set the output hidden_states flag
|
326 |
+
########
|
327 |
+
output_hidden_states = True
|
328 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
329 |
+
outputs = self.model.forward(
|
330 |
+
input_ids=input_ids,
|
331 |
+
input_embeddings=inputs_embeds,
|
332 |
+
attention_mask=attention_mask,
|
333 |
+
attention_bias=attention_bias,
|
334 |
+
past_key_values=past_key_values,
|
335 |
+
use_cache=use_cache,
|
336 |
+
output_hidden_states=output_hidden_states,
|
337 |
+
)
|
338 |
+
hidden_states = outputs.hidden_states[-1]
|
339 |
+
# assume that the padding is done by prepadding at the left of the input sequence
|
340 |
+
# the logit of the last non-padding token is logit[:,-1,:]
|
341 |
+
logits = self.score(hidden_states)
|
342 |
+
##########
|
343 |
+
seq_lengths = attention_mask.sum(dim=-1)
|
344 |
+
# instead of taking the mean, we can also take the last token, taking the length of the sequence
|
345 |
+
pooled_logits = torch.stack(
|
346 |
+
[
|
347 |
+
logits[i, length - 1, :]
|
348 |
+
for i, length in enumerate(seq_lengths)
|
349 |
+
],
|
350 |
+
dim=0,
|
351 |
+
)
|
352 |
+
##########
|
353 |
+
loss = None
|
354 |
+
if labels is not None:
|
355 |
+
if self.config.problem_type is None:
|
356 |
+
if self.num_labels == 1:
|
357 |
+
self.config.problem_type = "regression"
|
358 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
359 |
+
self.config.problem_type = "single_label_classification"
|
360 |
+
|
361 |
+
if self.config.problem_type == "regression":
|
362 |
+
loss_fct = MSELoss()
|
363 |
+
if self.num_labels == 1:
|
364 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
365 |
+
else:
|
366 |
+
loss = loss_fct(pooled_logits, labels)
|
367 |
+
elif self.config.problem_type == "single_label_classification":
|
368 |
+
loss_fct = CrossEntropyLoss()
|
369 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
370 |
+
|
371 |
+
if not return_dict:
|
372 |
+
output = (pooled_logits,) + outputs[1:]
|
373 |
+
return ((loss,) + output) if loss is not None else output
|
374 |
+
return SequenceClassifierOutputWithPast(
|
375 |
+
loss=loss,
|
376 |
+
logits=pooled_logits,
|
377 |
+
past_key_values=outputs.attn_key_values,
|
378 |
+
hidden_states=hidden_states,
|
379 |
+
)
|
380 |
+
def forward_new(
|
381 |
+
self,
|
382 |
+
input_ids: torch.LongTensor = None,
|
383 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
384 |
+
attention_mask: Optional[torch.Tensor] = None,
|
385 |
+
attention_bias: Optional[torch.Tensor] = None,
|
386 |
+
onehot: Optional[torch.Tensor] = None, # New field
|
387 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
388 |
+
labels: Optional[torch.LongTensor] = None,
|
389 |
+
use_cache: Optional[bool] = None,
|
390 |
+
output_attentions: Optional[bool] = None,
|
391 |
+
output_hidden_states: Optional[bool] = None,
|
392 |
+
return_dict: Optional[bool] = None,
|
393 |
+
cache_position: Optional[
|
394 |
+
Cache
|
395 |
+
] = None, # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
|
396 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
397 |
+
if use_cache is None:
|
398 |
+
use_cache = self.config.use_cache
|
399 |
+
|
400 |
+
if output_attentions:
|
401 |
+
raise ValueError("output_attentions is not yet supported in OLMo")
|
402 |
+
######
|
403 |
+
# input_ids shape
|
404 |
+
######
|
405 |
+
|
406 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
407 |
+
########
|
408 |
+
# The output_hidden_states flag is set as the output format of olmo is the following:
|
409 |
+
# return OLMoOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None)
|
410 |
+
# so we have to forcely set the output hidden_states flag
|
411 |
+
########
|
412 |
+
output_hidden_states = True
|
413 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
414 |
+
#----------
|
415 |
+
# outputs = self.model.forward(
|
416 |
+
# input_ids=input_ids,
|
417 |
+
# input_embeddings=inputs_embeds,
|
418 |
+
# attention_mask=attention_mask,
|
419 |
+
# attention_bias=attention_bias,
|
420 |
+
# past_key_values=past_key_values,
|
421 |
+
# use_cache=use_cache,
|
422 |
+
# output_hidden_states=output_hidden_states,
|
423 |
+
# )
|
424 |
+
# hidden_states = outputs.hidden_states[-1]
|
425 |
+
#-------------
|
426 |
+
# assume that the padding is done by prepadding at the left of the input sequence
|
427 |
+
# the logit of the last non-padding token is logit[:,-1,:]
|
428 |
+
# logits = self.score(hidden_states)
|
429 |
+
# pooled_logits = hidden_states[:,-1,:]
|
430 |
+
pooled_logits = self.CNN(onehot)
|
431 |
+
|
432 |
+
loss = None
|
433 |
+
if labels is not None:
|
434 |
+
if self.config.problem_type is None:
|
435 |
+
if self.num_labels == 1:
|
436 |
+
self.config.problem_type = "regression"
|
437 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
438 |
+
self.config.problem_type = "single_label_classification"
|
439 |
+
|
440 |
+
if self.config.problem_type == "regression":
|
441 |
+
loss_fct = MSELoss()
|
442 |
+
if self.num_labels == 1:
|
443 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
444 |
+
else:
|
445 |
+
loss = loss_fct(pooled_logits, labels)
|
446 |
+
elif self.config.problem_type == "single_label_classification":
|
447 |
+
loss_fct = CrossEntropyLoss()
|
448 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
449 |
+
|
450 |
+
# if not return_dict:
|
451 |
+
# output = (pooled_logits,) + outputs[1:] #------
|
452 |
+
# return ((loss,) + output) if loss is not None else output
|
453 |
+
return SequenceClassifierOutputWithPast(
|
454 |
+
loss=loss,
|
455 |
+
logits=pooled_logits,
|
456 |
+
# past_key_values=outputs.attn_key_values,
|
457 |
+
# hidden_states=hidden_states,
|
458 |
+
)
|
459 |
+
|
460 |
+
def can_generate(self) -> bool:
|
461 |
+
return True
|
462 |
+
|
463 |
+
def prepare_inputs_for_generation(
|
464 |
+
self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
|
465 |
+
):
|
466 |
+
if past_key_values:
|
467 |
+
# This is because we want the model to only process the last generated token.
|
468 |
+
input_ids = input_ids[:, -1:]
|
469 |
+
model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}
|
470 |
+
|
471 |
+
model_inputs.update(kwargs)
|
472 |
+
model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
|
473 |
+
return model_inputs
|
474 |
+
|
475 |
+
# TODO: these are required to make the implementation complete.
|
476 |
+
# def resize_position_embeddings(self, new_num_position_embeddings: int):
|
477 |
+
# pass
|
478 |
+
#
|
479 |
+
# def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
|
480 |
+
# pass
|
481 |
+
#
|
482 |
+
# def _reorder_cache(self, past_key_values, beam_idx):
|
483 |
+
# pass
|
484 |
+
|
485 |
+
def get_input_embeddings(self) -> torch.nn.Module:
|
486 |
+
return self.model.transformer.wte
|
487 |
+
|
488 |
+
def set_input_embeddings(self, value: torch.nn.Module):
|
489 |
+
self.model.transformer.wte = value
|
490 |
+
|
491 |
+
def get_output_embeddings(self):
|
492 |
+
if self.config.weight_tying:
|
493 |
+
return self.model.transformer.wte
|
494 |
+
else:
|
495 |
+
return self.model.transformer.ff_out
|
496 |
+
|
497 |
+
def set_output_embeddings(self, value: torch.nn.Module):
|
498 |
+
if self.config.weight_tying:
|
499 |
+
self.model.transformer.wte = value
|
500 |
+
else:
|
501 |
+
self.model.transformer.ff_out = value
|
502 |
+
|
503 |
+
def tie_weights(self):
|
504 |
+
"""
|
505 |
+
This function is intentionally left as a no-op.
|
506 |
+
|
507 |
+
Weight tying is handled as follows:
|
508 |
+
- When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
|
509 |
+
See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
|
510 |
+
- When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
|
511 |
+
See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.
|
512 |
+
|
513 |
+
Therefore, there is no need to explicitly tie the weights in this function.
|
514 |
+
"""
|
515 |
+
pass
|
516 |
+
|
517 |
+
def resize_token_embeddings(
|
518 |
+
self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
|
519 |
+
) -> torch.nn.Embedding:
|
520 |
+
"""
|
521 |
+
Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.
|
522 |
+
|
523 |
+
Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.
|
524 |
+
|
525 |
+
Arguments:
|
526 |
+
new_num_tokens (`int`, *optional*):
|
527 |
+
The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
|
528 |
+
vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
|
529 |
+
returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
|
530 |
+
pad_to_multiple_of (`int`, *optional*):
|
531 |
+
If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
|
532 |
+
`None` will just pad the embedding to a multiple of `pad_to_multiple_of`.
|
533 |
+
|
534 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
535 |
+
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
|
536 |
+
details about this, or help on choosing the correct value for resizing, refer to this guide:
|
537 |
+
https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc
|
538 |
+
|
539 |
+
Return:
|
540 |
+
`torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.
|
541 |
+
|
542 |
+
Note:
|
543 |
+
This method differs from the base class implementation by resizing the `embedding_size` attribute of the
|
544 |
+
model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
|
545 |
+
is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
|
546 |
+
embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
|
547 |
+
"""
|
548 |
+
model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
549 |
+
if new_num_tokens is None and pad_to_multiple_of is None:
|
550 |
+
return model_embeds
|
551 |
+
|
552 |
+
# Update base model and current model config
|
553 |
+
self.config.embedding_size = model_embeds.weight.shape[0]
|
554 |
+
self.model.config.embedding_size = model_embeds.weight.shape[0]
|
555 |
+
|
556 |
+
# Check if the embedding size is less than the vocab size
|
557 |
+
if self.config.embedding_size < self.config.vocab_size:
|
558 |
+
warning_message = (
|
559 |
+
f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
|
560 |
+
f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
|
561 |
+
"size is less than or equal to the new token embedding size."
|
562 |
+
)
|
563 |
+
log.warning(warning_message)
|
564 |
+
|
565 |
+
# Tie weights again if needed
|
566 |
+
self.tie_weights()
|
567 |
+
|
568 |
+
return model_embeds
|
569 |
+
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
|
570 |
+
AutoModelForSequenceClassification.register(OLMoConfig, OLMoForSequenceCLS)
|
model/optim.py
ADDED
@@ -0,0 +1,778 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from abc import ABCMeta, abstractmethod
|
3 |
+
from dataclasses import dataclass, replace
|
4 |
+
from math import cos, pi, sqrt
|
5 |
+
from typing import Any, Dict, List, Optional, Tuple
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.distributed as dist
|
9 |
+
import torch.nn as nn
|
10 |
+
from torch.distributed.fsdp import FullyShardedDataParallel
|
11 |
+
from torch.optim.optimizer import Optimizer as OptimizerBase
|
12 |
+
|
13 |
+
from . import LayerNormBase
|
14 |
+
from .config import OptimizerType, SchedulerConfig, SchedulerType, TrainConfig
|
15 |
+
from .torch_util import get_default_device, is_distributed
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"Optimizer",
|
19 |
+
"LionW",
|
20 |
+
"AdamW",
|
21 |
+
"Scheduler",
|
22 |
+
"CosWithWarmup",
|
23 |
+
"LinearWithWarmup",
|
24 |
+
"InvSqrtWithWarmup",
|
25 |
+
"MaxScheduler",
|
26 |
+
"ConstantScheduler",
|
27 |
+
"BoltOnWarmupScheduler",
|
28 |
+
"build_optimizer",
|
29 |
+
"build_scheduler",
|
30 |
+
]
|
31 |
+
|
32 |
+
|
33 |
+
log = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class Optimizer(OptimizerBase):
|
37 |
+
def _clean_param_name(self, name: str) -> str:
|
38 |
+
return name.replace("_fsdp_wrapped_module.", "")
|
39 |
+
|
40 |
+
@torch.no_grad()
|
41 |
+
def clip_grads_and_collect_metrics(
|
42 |
+
self, global_step: int, collect_param_metrics: bool = True
|
43 |
+
) -> Dict[str, torch.Tensor]:
|
44 |
+
"""
|
45 |
+
Clips gradients for every group that has the field `max_grad_norm`.
|
46 |
+
At the same time collect metrics for each parameter and its gradient.
|
47 |
+
"""
|
48 |
+
device = get_default_device()
|
49 |
+
|
50 |
+
# NOTE (epwalsh): during distributed training we're making an assumption that the order of
|
51 |
+
# the param groups and the params within each group are the same across all ranks.
|
52 |
+
# This is justified since we initialize the parameter groups in every rank by iterating over
|
53 |
+
# `module.parameters()` or `module.named_modules()` / `module.named_parameters()`, each of which
|
54 |
+
# provides a consistent order.
|
55 |
+
# For each parameter (with a gradient) we'll collect:
|
56 |
+
# - min, max, avg, norm of the param itself
|
57 |
+
# - min, max, avg, norm of the param's gradient
|
58 |
+
# - min, max, avg, norm of any additional per-parameter optimizer state metrics returned from
|
59 |
+
# `self.get_state_for_param()`.
|
60 |
+
# Afterwards we'll reduce these all over all ranks.
|
61 |
+
per_param_min_metrics: List[torch.Tensor] = []
|
62 |
+
per_param_max_metrics: List[torch.Tensor] = []
|
63 |
+
per_param_sum_metrics: List[torch.Tensor] = []
|
64 |
+
per_param_norm_metrics: List[torch.Tensor] = []
|
65 |
+
per_param_numel_metrics: List[torch.Tensor] = []
|
66 |
+
|
67 |
+
per_param_min_metric_names: List[str] = []
|
68 |
+
per_param_max_metric_names: List[str] = []
|
69 |
+
per_param_avg_metric_names: List[str] = []
|
70 |
+
per_param_norm_metric_names: List[str] = []
|
71 |
+
|
72 |
+
# Collect metrics locally.
|
73 |
+
for group in self.param_groups:
|
74 |
+
if is_distributed():
|
75 |
+
# TODO (epwalsh): handle non-sharded params. We don't have any right now but we would
|
76 |
+
# with ReLoRa, for example.
|
77 |
+
assert group.get("sharded", True) is True
|
78 |
+
|
79 |
+
for name, p in zip(group["param_names"], group["params"]):
|
80 |
+
name = self._clean_param_name(name)
|
81 |
+
# Always need to collect the norm of gradients for clipping, even if we're not collecting
|
82 |
+
# other metrics.
|
83 |
+
tensors: List[Optional[torch.Tensor]] = [p.grad]
|
84 |
+
prefixes: List[str] = [f"grad/{name}"]
|
85 |
+
if collect_param_metrics:
|
86 |
+
state = self.get_state_for_param(p)
|
87 |
+
sorted_state_keys = sorted([k for k in state.keys()])
|
88 |
+
tensors.extend([p] + [state[key] for key in sorted_state_keys])
|
89 |
+
prefixes.extend([f"param/{name}"] + [f"{key}/{name}" for key in sorted_state_keys])
|
90 |
+
assert len(tensors) == len(prefixes)
|
91 |
+
|
92 |
+
# Get min, max, avg, and norm for all `tensors` associated with the parameter.
|
93 |
+
for x, prefix in zip(tensors, prefixes):
|
94 |
+
# grad or state tensors could be none for params that have their shards completely on
|
95 |
+
# other ranks.
|
96 |
+
if x is not None and x.numel() > 0:
|
97 |
+
if collect_param_metrics:
|
98 |
+
x_abs = x.abs()
|
99 |
+
per_param_min_metrics.append(x_abs.min().unsqueeze(0).to(dtype=torch.float32))
|
100 |
+
per_param_max_metrics.append(x_abs.max().unsqueeze(0).to(dtype=torch.float32))
|
101 |
+
per_param_sum_metrics.append(x.sum().unsqueeze(0).to(dtype=torch.float32))
|
102 |
+
per_param_numel_metrics.append(
|
103 |
+
torch.tensor([x.numel()], device=device, dtype=torch.float32)
|
104 |
+
)
|
105 |
+
per_param_norm_metrics.append(
|
106 |
+
torch.linalg.vector_norm(x, 2.0, dtype=torch.float32).unsqueeze(0)
|
107 |
+
)
|
108 |
+
else:
|
109 |
+
if collect_param_metrics:
|
110 |
+
per_param_min_metrics.append(
|
111 |
+
torch.tensor([float("inf")], device=device, dtype=torch.float32)
|
112 |
+
)
|
113 |
+
per_param_max_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
|
114 |
+
per_param_sum_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
|
115 |
+
per_param_numel_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
|
116 |
+
per_param_norm_metrics.append(torch.tensor([0.0], device=device, dtype=torch.float32))
|
117 |
+
if collect_param_metrics:
|
118 |
+
per_param_min_metric_names.append(f"{prefix}.min")
|
119 |
+
per_param_max_metric_names.append(f"{prefix}.max")
|
120 |
+
per_param_avg_metric_names.append(f"{prefix}.avg")
|
121 |
+
per_param_norm_metric_names.append(f"{prefix}.norm")
|
122 |
+
|
123 |
+
assert (
|
124 |
+
len(per_param_min_metrics)
|
125 |
+
== len(per_param_min_metric_names)
|
126 |
+
== len(per_param_max_metrics)
|
127 |
+
== len(per_param_max_metric_names)
|
128 |
+
== len(per_param_sum_metrics)
|
129 |
+
== len(per_param_numel_metrics)
|
130 |
+
== len(per_param_avg_metric_names)
|
131 |
+
)
|
132 |
+
assert len(per_param_norm_metrics) == len(per_param_norm_metric_names)
|
133 |
+
|
134 |
+
def is_grad_norm_metric(metric_name: str) -> bool:
|
135 |
+
return metric_name.startswith("grad/") and metric_name.endswith(".norm")
|
136 |
+
|
137 |
+
# Now reduce metrics over all ranks.
|
138 |
+
total_grad_norm: torch.Tensor
|
139 |
+
per_param_avg_metrics: List[torch.Tensor] = []
|
140 |
+
if is_distributed(): # TODO (epwalsh): skip for non-sharded params
|
141 |
+
# Reduce metrics across all ranks. Note that we can use a `reduce` for most cases
|
142 |
+
# instead of an `all_reduce`, but we need `all_reduce` for norms so that all ranks
|
143 |
+
# get the right value for gradient norms so they can clip correctly.
|
144 |
+
# Reduce mins.
|
145 |
+
if per_param_min_metrics:
|
146 |
+
all_mins = torch.cat(per_param_min_metrics).to(device)
|
147 |
+
dist.reduce(all_mins, 0, op=dist.ReduceOp.MIN)
|
148 |
+
per_param_min_metrics = all_mins.split(1)
|
149 |
+
# Reduce maxs.
|
150 |
+
if per_param_max_metrics:
|
151 |
+
all_maxs = torch.cat(per_param_max_metrics).to(device)
|
152 |
+
dist.reduce(all_maxs, 0, op=dist.ReduceOp.MAX)
|
153 |
+
per_param_max_metrics = all_maxs.split(1)
|
154 |
+
# Reduce sums or just norms.
|
155 |
+
all_norms = torch.cat(per_param_norm_metrics).to(device) ** 2.0
|
156 |
+
if per_param_sum_metrics and per_param_numel_metrics:
|
157 |
+
all_sums = torch.cat(per_param_sum_metrics).to(device)
|
158 |
+
all_numels = torch.cat(per_param_numel_metrics).to(device)
|
159 |
+
all_sums_norms_numels = torch.cat(
|
160 |
+
[all_sums.unsqueeze(0), all_norms.unsqueeze(0), all_numels.unsqueeze(0)], dim=0
|
161 |
+
)
|
162 |
+
dist.all_reduce(all_sums_norms_numels, op=dist.ReduceOp.SUM)
|
163 |
+
all_sums, all_norms, all_numels = all_sums_norms_numels.split(1)
|
164 |
+
# Get averages.
|
165 |
+
# NOTE: could get infs for non-rank0 processes but that's okay.
|
166 |
+
per_param_avg_metrics = (all_sums / all_numels).squeeze(0).split(1)
|
167 |
+
else:
|
168 |
+
dist.all_reduce(all_norms, op=dist.ReduceOp.SUM)
|
169 |
+
grad_norm_metric_mask = torch.tensor(
|
170 |
+
[float(is_grad_norm_metric(n)) for n in per_param_norm_metric_names], device=all_norms.device
|
171 |
+
)
|
172 |
+
total_grad_norm = (all_norms * grad_norm_metric_mask).sum() ** 0.5
|
173 |
+
per_param_norm_metrics = (all_norms ** (0.5)).squeeze(0).split(1)
|
174 |
+
else:
|
175 |
+
total_grad_norm = (
|
176 |
+
torch.cat(
|
177 |
+
[
|
178 |
+
m
|
179 |
+
for m, n in zip(per_param_norm_metrics, per_param_norm_metric_names)
|
180 |
+
if is_grad_norm_metric(n)
|
181 |
+
]
|
182 |
+
)
|
183 |
+
** 2.0
|
184 |
+
).sum() ** 0.5
|
185 |
+
per_param_avg_metrics = [x / n for x, n in zip(per_param_sum_metrics, per_param_numel_metrics)]
|
186 |
+
|
187 |
+
assert len(per_param_avg_metrics) == len(per_param_avg_metric_names)
|
188 |
+
|
189 |
+
# Collect all metrics into a single dict.
|
190 |
+
all_metrics: Dict[str, torch.Tensor] = {}
|
191 |
+
for metric_name, metric in zip(per_param_min_metric_names, per_param_min_metrics):
|
192 |
+
all_metrics[metric_name] = metric.squeeze(0)
|
193 |
+
for metric_name, metric in zip(per_param_max_metric_names, per_param_max_metrics):
|
194 |
+
all_metrics[metric_name] = metric.squeeze(0)
|
195 |
+
for metric_name, metric in zip(per_param_avg_metric_names, per_param_avg_metrics):
|
196 |
+
all_metrics[metric_name] = metric.squeeze(0)
|
197 |
+
for metric_name, metric in zip(per_param_norm_metric_names, per_param_norm_metrics):
|
198 |
+
all_metrics[metric_name] = metric.squeeze(0)
|
199 |
+
all_metrics["total_grad_norm"] = total_grad_norm
|
200 |
+
|
201 |
+
# Clip gradients.
|
202 |
+
num_grads_clipped = 0
|
203 |
+
num_eligible_grads = 0
|
204 |
+
for group in self.param_groups:
|
205 |
+
if (max_norm_ratio := group.get("max_grad_norm_ratio")) is not None:
|
206 |
+
num_clipped = self._do_adaptive_clipping(
|
207 |
+
group, max_norm_ratio, global_step, all_metrics, collect_param_metrics=collect_param_metrics
|
208 |
+
)
|
209 |
+
elif (max_norm := group.get("max_grad_norm")) is not None:
|
210 |
+
num_clipped = self._do_global_fixed_clipping(
|
211 |
+
group, max_norm, all_metrics, collect_param_metrics=collect_param_metrics
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
# No clipping needed.
|
215 |
+
continue
|
216 |
+
num_eligible_grads += len(group["params"])
|
217 |
+
if num_clipped is not None:
|
218 |
+
num_grads_clipped += num_clipped
|
219 |
+
|
220 |
+
if collect_param_metrics:
|
221 |
+
if num_eligible_grads > 0:
|
222 |
+
clipping_rate = torch.tensor(num_grads_clipped / num_eligible_grads, device="cpu")
|
223 |
+
else:
|
224 |
+
clipping_rate = torch.tensor(0.0, device="cpu")
|
225 |
+
all_metrics["clipping_rate"] = clipping_rate
|
226 |
+
return all_metrics
|
227 |
+
else:
|
228 |
+
return {}
|
229 |
+
|
230 |
+
@torch.no_grad()
|
231 |
+
def _do_adaptive_clipping(
|
232 |
+
self,
|
233 |
+
group: Dict[str, Any],
|
234 |
+
max_norm_ratio: float,
|
235 |
+
global_step: int,
|
236 |
+
all_metrics: Dict[str, torch.Tensor],
|
237 |
+
collect_param_metrics: bool = True,
|
238 |
+
) -> Optional[int]:
|
239 |
+
"""
|
240 |
+
Do adaptive gradient clipping on a param group.
|
241 |
+
|
242 |
+
If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped.
|
243 |
+
"""
|
244 |
+
device = get_default_device()
|
245 |
+
num_grads_clipped = 0
|
246 |
+
# We'll use the bigger of beta1 and beta2 to update the exponential average of the norm of
|
247 |
+
# the gradient (a scalar), not to be confused with the exponential average of the gradient.
|
248 |
+
# TODO (epwalsh): handle optimizers that don't have betas.
|
249 |
+
beta1, beta2 = group["betas"]
|
250 |
+
beta = max(beta1, beta2)
|
251 |
+
for name, p in zip(group["param_names"], group["params"]):
|
252 |
+
name = self._clean_param_name(name)
|
253 |
+
grad_norm = all_metrics.get(f"grad/{name}.norm")
|
254 |
+
if grad_norm is None:
|
255 |
+
continue
|
256 |
+
|
257 |
+
# Get or initialize the exponential average of grad norm.
|
258 |
+
# TODO: The way we have it right now, every rank tracks the `grad_norm_exp_avg` of every parameter,
|
259 |
+
# even parameters for which the corresponding local shard is empty. This has the potential to
|
260 |
+
# cause some issues with the optimizer, as we ran into with https://github.com/allenai/LLM/pull/372.
|
261 |
+
# So we should consider changing how we do this at some point so that we don't add any state
|
262 |
+
# to parameters for which the local shard is empty. That would probably add extra distributed
|
263 |
+
# communication, at least on steps where we have to log (i.e. when `collect_param_metrics=True`).
|
264 |
+
state = self.state[p]
|
265 |
+
grad_norm_exp_avg = state.get("grad_norm_exp_avg")
|
266 |
+
if grad_norm_exp_avg is None:
|
267 |
+
grad_norm_exp_avg = grad_norm.clone().to(device)
|
268 |
+
# We don't want to add anything to `state` until `state` has been initialized, otherwise
|
269 |
+
# this will crash some optimizers which rely on checking `len(state)`. The downside here
|
270 |
+
# is that we won't start tracking `grad_norm_exp_avg` until the 2nd training step.
|
271 |
+
if global_step > 1:
|
272 |
+
state["grad_norm_exp_avg"] = grad_norm_exp_avg
|
273 |
+
|
274 |
+
max_allowed_norm = max_norm_ratio * grad_norm_exp_avg
|
275 |
+
clip_coef = max_allowed_norm / (grad_norm + 1e-6)
|
276 |
+
|
277 |
+
# Clip the gradients and update the exponential average.
|
278 |
+
# Note that multiplying by the clamped coefficient is meaningless when it is
|
279 |
+
# equal to 1, but it avoids the host-device sync that would result from `if clip_coef_clamped < 1`.
|
280 |
+
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
|
281 |
+
if p.grad is not None:
|
282 |
+
# p.grad could be none for some ranks when using FSDP.
|
283 |
+
p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype))
|
284 |
+
|
285 |
+
# Update the exponential average of the norm of the gradient with the clipped norm of the gradient.
|
286 |
+
grad_norm_exp_avg.lerp_((grad_norm * clip_coef_clamped).to(grad_norm_exp_avg.device), 1 - beta)
|
287 |
+
# Alternative: update with the *unclipped* norm of the gradient.
|
288 |
+
# grad_norm_exp_avg.lerp_(grad_norm.to(grad_norm_exp_avg.device), 1 - beta)
|
289 |
+
|
290 |
+
if collect_param_metrics:
|
291 |
+
# Can't avoid host-device sync here.
|
292 |
+
if clip_coef_clamped < 1.0:
|
293 |
+
num_grads_clipped += 1
|
294 |
+
all_metrics[f"grad_norm_exp_avg/{name}"] = grad_norm_exp_avg
|
295 |
+
return num_grads_clipped if collect_param_metrics else None
|
296 |
+
|
297 |
+
@torch.no_grad()
|
298 |
+
def _do_global_fixed_clipping(
|
299 |
+
self,
|
300 |
+
group: Dict[str, Any],
|
301 |
+
max_norm: float,
|
302 |
+
all_metrics: Dict[str, torch.Tensor],
|
303 |
+
collect_param_metrics: bool = True,
|
304 |
+
) -> Optional[int]:
|
305 |
+
"""
|
306 |
+
Do global fixed gradient clipping on a param group.
|
307 |
+
|
308 |
+
If ``collect_param_metrics`` is ``True`` this will return the total number of gradients clipped.
|
309 |
+
"""
|
310 |
+
device = get_default_device()
|
311 |
+
total_grad_norm = all_metrics["total_grad_norm"]
|
312 |
+
clip_coef = max_norm / (total_grad_norm.to(device) + 1e-6)
|
313 |
+
clip_coef_clamped = torch.clamp(clip_coef, max=1.0)
|
314 |
+
num_grads_clipped: Optional[int] = None
|
315 |
+
if collect_param_metrics:
|
316 |
+
# Can't avoid host-device sync here.
|
317 |
+
if clip_coef_clamped < 1.0:
|
318 |
+
num_grads_clipped = len(group["params"])
|
319 |
+
for p in group["params"]:
|
320 |
+
# Clip the gradients.
|
321 |
+
# Note that multiplying by the clamped coefficient is meaningless when it is
|
322 |
+
# equal to 1, but it avoids the host-device sync that would result from `if clip_coef_clamped < 1`.
|
323 |
+
if p.grad is not None:
|
324 |
+
# p.grad could be none for some ranks when using FSDP.
|
325 |
+
p.grad.detach().mul_(clip_coef_clamped.to(p.grad.device, p.grad.dtype))
|
326 |
+
return num_grads_clipped
|
327 |
+
|
328 |
+
def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]:
|
329 |
+
del module
|
330 |
+
return {}
|
331 |
+
|
332 |
+
def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]:
|
333 |
+
del param
|
334 |
+
return {}
|
335 |
+
|
336 |
+
|
337 |
+
class LionW(Optimizer):
|
338 |
+
"""
|
339 |
+
Adapted from https://github.com/google/automl/blob/master/lion/lion_pytorch.py
|
340 |
+
"""
|
341 |
+
|
342 |
+
def __init__(
|
343 |
+
self,
|
344 |
+
params,
|
345 |
+
lr: float = 1e-4,
|
346 |
+
betas: Tuple[float, float] = (0.9, 0.99),
|
347 |
+
weight_decay: float = 0.0,
|
348 |
+
):
|
349 |
+
assert lr > 0.0
|
350 |
+
assert all([0.0 <= beta <= 1.0 for beta in betas])
|
351 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
352 |
+
super().__init__(params, defaults)
|
353 |
+
for group in self.param_groups:
|
354 |
+
group["initial_lr"] = group["lr"]
|
355 |
+
self._update_total_dot_prod: Optional[torch.Tensor] = None
|
356 |
+
self._update_total_norm: Optional[torch.Tensor] = None
|
357 |
+
self._signed_update_total_norm: Optional[torch.Tensor] = None
|
358 |
+
|
359 |
+
def get_post_step_metrics(self, module: nn.Module) -> Dict[str, torch.Tensor]:
|
360 |
+
update_total_dot_prod = self._update_total_dot_prod
|
361 |
+
update_total_norm = self._update_total_norm
|
362 |
+
signed_update_total_norm = self._signed_update_total_norm
|
363 |
+
if update_total_dot_prod is None or update_total_norm is None or signed_update_total_norm is None:
|
364 |
+
return {}
|
365 |
+
|
366 |
+
if is_distributed() and isinstance(module, FullyShardedDataParallel):
|
367 |
+
# Reduce total dot prod and norms across all ranks.
|
368 |
+
update_total_norm = update_total_norm**2.0
|
369 |
+
signed_update_total_norm = signed_update_total_norm**2.0
|
370 |
+
# Reduce all together to avoid multiple communication calls.
|
371 |
+
all_together = torch.stack([update_total_dot_prod, update_total_norm, signed_update_total_norm])
|
372 |
+
# Only need the final result on rank0, since that's where we log from.
|
373 |
+
dist.reduce(all_together, 0)
|
374 |
+
update_total_dot_prod, update_total_norm, signed_update_total_norm = all_together
|
375 |
+
update_total_norm = update_total_norm**0.5
|
376 |
+
signed_update_total_norm = signed_update_total_norm**0.5
|
377 |
+
|
378 |
+
update_cos_sim = update_total_dot_prod / torch.max(
|
379 |
+
update_total_norm * signed_update_total_norm, torch.tensor(1e-8, device=get_default_device())
|
380 |
+
)
|
381 |
+
return {"update_cos_sim": update_cos_sim}
|
382 |
+
|
383 |
+
@torch.no_grad()
|
384 |
+
def step(self, closure=None) -> None:
|
385 |
+
if closure is not None:
|
386 |
+
with torch.enable_grad():
|
387 |
+
closure()
|
388 |
+
|
389 |
+
update_total_dot_prod = torch.tensor(0.0, dtype=torch.float32)
|
390 |
+
update_norms = []
|
391 |
+
signed_update_norms = []
|
392 |
+
|
393 |
+
for group in self.param_groups:
|
394 |
+
for p in group["params"]:
|
395 |
+
if p.grad is None:
|
396 |
+
continue
|
397 |
+
|
398 |
+
# Perform step weight decay
|
399 |
+
p.data.mul_(1 - group["lr"] * group["weight_decay"])
|
400 |
+
|
401 |
+
grad = p.grad
|
402 |
+
state = self.state[p]
|
403 |
+
|
404 |
+
# State initialization
|
405 |
+
if len(state) == 0:
|
406 |
+
# Exponential moving average of gradient values
|
407 |
+
state["exp_avg"] = torch.zeros_like(p)
|
408 |
+
|
409 |
+
exp_avg = state["exp_avg"]
|
410 |
+
beta1, beta2 = group["betas"]
|
411 |
+
|
412 |
+
# Weight update
|
413 |
+
update = exp_avg * beta1 + grad * (1 - beta1)
|
414 |
+
signed_update = torch.sign(update)
|
415 |
+
p.add_(signed_update, alpha=-group["lr"])
|
416 |
+
|
417 |
+
# Decay the momentum running average coefficient
|
418 |
+
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
419 |
+
|
420 |
+
# Track dot product and norms of update vs signed update in order to calculate
|
421 |
+
# their cosine similarity.
|
422 |
+
update_total_dot_prod = update_total_dot_prod.to(update.device)
|
423 |
+
update_total_dot_prod += torch.tensordot(update, signed_update, dims=len(update.shape))
|
424 |
+
update_norms.append(torch.linalg.vector_norm(update, 2.0, dtype=torch.float32))
|
425 |
+
signed_update_norms.append(torch.linalg.vector_norm(signed_update, 2.0, dtype=torch.float32))
|
426 |
+
|
427 |
+
# Compute cosine similarity between update and signed update.
|
428 |
+
self._update_total_dot_prod = update_total_dot_prod.to(get_default_device())
|
429 |
+
self._update_total_norm = torch.linalg.vector_norm(
|
430 |
+
torch.stack(update_norms),
|
431 |
+
2.0,
|
432 |
+
dtype=torch.float32,
|
433 |
+
).to(get_default_device())
|
434 |
+
self._signed_update_total_norm = torch.linalg.vector_norm(
|
435 |
+
torch.stack(signed_update_norms),
|
436 |
+
2.0,
|
437 |
+
dtype=torch.float32,
|
438 |
+
).to(get_default_device())
|
439 |
+
|
440 |
+
|
441 |
+
class AdamW(torch.optim.AdamW, Optimizer):
|
442 |
+
def get_state_for_param(self, param: nn.Parameter) -> Dict[str, Optional[torch.Tensor]]:
|
443 |
+
return {key: self.state[param].get(key) for key in ("exp_avg", "exp_avg_sq")} # type: ignore
|
444 |
+
|
445 |
+
|
446 |
+
@dataclass
|
447 |
+
class Scheduler(metaclass=ABCMeta):
|
448 |
+
# NOTE: these fields are not given default values because otherwise dataclasses complains
|
449 |
+
# about how the scheduler subclasses are defined.
|
450 |
+
grad_clip_warmup_steps: Optional[int]
|
451 |
+
grad_clip_warmup_factor: Optional[float]
|
452 |
+
warmup_min_lr: Optional[float]
|
453 |
+
|
454 |
+
@abstractmethod
|
455 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
456 |
+
raise NotImplementedError
|
457 |
+
|
458 |
+
def _get_max_grad_norm_coeff(
|
459 |
+
self, initial_value: Optional[float], step: int, max_steps: int
|
460 |
+
) -> Optional[float]:
|
461 |
+
del max_steps # might need this in the future, but for now I just wanted to match the API of `get_lr()`.
|
462 |
+
if initial_value is None:
|
463 |
+
return None
|
464 |
+
elif (
|
465 |
+
self.grad_clip_warmup_steps is None
|
466 |
+
or self.grad_clip_warmup_factor is None
|
467 |
+
or step > self.grad_clip_warmup_steps
|
468 |
+
):
|
469 |
+
return initial_value
|
470 |
+
else:
|
471 |
+
return self.grad_clip_warmup_factor * initial_value
|
472 |
+
|
473 |
+
def get_max_grad_norm(
|
474 |
+
self, initial_max_grad_norm: Optional[float], step: int, max_steps: int
|
475 |
+
) -> Optional[float]:
|
476 |
+
return self._get_max_grad_norm_coeff(initial_max_grad_norm, step, max_steps)
|
477 |
+
|
478 |
+
def get_max_grad_norm_ratio(
|
479 |
+
self, initial_max_grad_norm_ratio: Optional[float], step: int, max_steps: int
|
480 |
+
) -> Optional[float]:
|
481 |
+
return self._get_max_grad_norm_coeff(initial_max_grad_norm_ratio, step, max_steps)
|
482 |
+
|
483 |
+
def _linear_warmup(self, initial_lr: float, step: int, warmup_steps: int = 2000) -> float:
|
484 |
+
warmup_min_lr = self.warmup_min_lr if self.warmup_min_lr is not None else initial_lr * 0.10
|
485 |
+
assert 0 <= warmup_min_lr < initial_lr
|
486 |
+
return warmup_min_lr + (initial_lr - warmup_min_lr) * min(step, warmup_steps) / warmup_steps
|
487 |
+
|
488 |
+
|
489 |
+
@dataclass
|
490 |
+
class CosWithWarmup(Scheduler):
|
491 |
+
warmup_steps: int
|
492 |
+
alpha_f: float = 0.1
|
493 |
+
t_max: Optional[int] = None
|
494 |
+
|
495 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
496 |
+
max_steps = max_steps if self.t_max is None else self.t_max
|
497 |
+
eta_min = initial_lr * self.alpha_f
|
498 |
+
if step < self.warmup_steps:
|
499 |
+
return self._linear_warmup(initial_lr, step, self.warmup_steps)
|
500 |
+
elif step >= max_steps:
|
501 |
+
return eta_min
|
502 |
+
else:
|
503 |
+
step = step - self.warmup_steps
|
504 |
+
max_steps = max_steps - self.warmup_steps
|
505 |
+
return eta_min + (initial_lr - eta_min) * (1 + cos(pi * step / max_steps)) / 2
|
506 |
+
|
507 |
+
|
508 |
+
@dataclass
|
509 |
+
class LinearWithWarmup(Scheduler):
|
510 |
+
warmup_steps: int
|
511 |
+
alpha_f: float = 0.1
|
512 |
+
t_max: Optional[int] = None
|
513 |
+
|
514 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
515 |
+
max_steps = max_steps if self.t_max is None else self.t_max
|
516 |
+
eta_min = initial_lr * self.alpha_f
|
517 |
+
if step < self.warmup_steps:
|
518 |
+
return self._linear_warmup(initial_lr, step, self.warmup_steps)
|
519 |
+
elif step >= max_steps:
|
520 |
+
return eta_min
|
521 |
+
else:
|
522 |
+
step = step - self.warmup_steps
|
523 |
+
max_steps = max_steps - self.warmup_steps
|
524 |
+
return initial_lr - (initial_lr - eta_min) * (step / max_steps)
|
525 |
+
|
526 |
+
|
527 |
+
@dataclass
|
528 |
+
class InvSqrtWithWarmup(Scheduler):
|
529 |
+
warmup_steps: int
|
530 |
+
|
531 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
532 |
+
if step < self.warmup_steps:
|
533 |
+
return self._linear_warmup(initial_lr, step, self.warmup_steps)
|
534 |
+
del max_steps
|
535 |
+
return initial_lr * sqrt(self.warmup_steps / max(self.warmup_steps, step))
|
536 |
+
|
537 |
+
|
538 |
+
@dataclass
|
539 |
+
class MaxScheduler(Scheduler):
|
540 |
+
sched1: Scheduler
|
541 |
+
sched2: Scheduler
|
542 |
+
|
543 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
544 |
+
return max(
|
545 |
+
self.sched1.get_lr(initial_lr, step, max_steps), self.sched2.get_lr(initial_lr, step, max_steps)
|
546 |
+
)
|
547 |
+
|
548 |
+
|
549 |
+
@dataclass
|
550 |
+
class BoltOnWarmupScheduler(Scheduler):
|
551 |
+
inner: Scheduler
|
552 |
+
warmup_start: int
|
553 |
+
warmup_end: int
|
554 |
+
|
555 |
+
@classmethod
|
556 |
+
def wrap(cls, scheduler: Scheduler, warmup_start: int, warmup_end: int) -> "BoltOnWarmupScheduler":
|
557 |
+
return cls(
|
558 |
+
grad_clip_warmup_steps=None,
|
559 |
+
grad_clip_warmup_factor=None,
|
560 |
+
inner=scheduler,
|
561 |
+
warmup_start=warmup_start,
|
562 |
+
warmup_end=warmup_end,
|
563 |
+
warmup_min_lr=None,
|
564 |
+
)
|
565 |
+
|
566 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
567 |
+
if step < self.warmup_start:
|
568 |
+
return 0.0
|
569 |
+
if step < self.warmup_end:
|
570 |
+
lr_at_intercept = self.inner.get_lr(initial_lr, self.warmup_end, max_steps)
|
571 |
+
return lr_at_intercept * (step - self.warmup_start) / (self.warmup_end - self.warmup_start)
|
572 |
+
else:
|
573 |
+
return self.inner.get_lr(initial_lr, step, max_steps)
|
574 |
+
|
575 |
+
def _get_max_grad_norm_coeff(
|
576 |
+
self, initial_value: Optional[float], step: int, max_steps: int
|
577 |
+
) -> Optional[float]:
|
578 |
+
return self.inner._get_max_grad_norm_coeff(initial_value, step, max_steps)
|
579 |
+
|
580 |
+
|
581 |
+
@dataclass
|
582 |
+
class ConstantScheduler(Scheduler):
|
583 |
+
def get_lr(self, initial_lr: float, step: int, max_steps: int) -> float:
|
584 |
+
del step, max_steps
|
585 |
+
return initial_lr
|
586 |
+
|
587 |
+
|
588 |
+
PARAM_GROUP_FIELDS = ("sharded", "max_grad_norm", "max_grad_norm_ratio", "param_names")
|
589 |
+
|
590 |
+
|
591 |
+
def get_param_groups(cfg: TrainConfig, model: nn.Module) -> List[Dict[str, Any]]:
|
592 |
+
"""
|
593 |
+
Separate parameters into weight decay and non weight decay groups.
|
594 |
+
"""
|
595 |
+
param_groups: List[Dict[str, Any]]
|
596 |
+
param_group_defaults = {
|
597 |
+
"sharded": isinstance(model, FullyShardedDataParallel),
|
598 |
+
"max_grad_norm": cfg.max_grad_norm,
|
599 |
+
"max_grad_norm_ratio": cfg.max_grad_norm_ratio,
|
600 |
+
}
|
601 |
+
|
602 |
+
# Separate out parameters that we don't want to apply weight decay to, like norms and biases.
|
603 |
+
decay = set()
|
604 |
+
no_decay = set()
|
605 |
+
all_params = {}
|
606 |
+
for mn, m in model.named_modules():
|
607 |
+
for pn, p in m.named_parameters():
|
608 |
+
# NOTE: because named_modules and named_parameters are recursive
|
609 |
+
# we will see the same tensors p many many times, but doing it this way
|
610 |
+
# allows us to know which parent module any tensor p belongs to...
|
611 |
+
if not p.requires_grad:
|
612 |
+
continue
|
613 |
+
|
614 |
+
fpn = f"{mn}.{pn}" if mn else pn
|
615 |
+
all_params[fpn] = p
|
616 |
+
|
617 |
+
if pn.endswith("bias"):
|
618 |
+
if cfg.optimizer.decay_norm_and_bias:
|
619 |
+
decay.add(fpn)
|
620 |
+
else:
|
621 |
+
no_decay.add(fpn)
|
622 |
+
elif pn.endswith("weight") and isinstance(m, nn.Linear):
|
623 |
+
decay.add(fpn)
|
624 |
+
elif pn.endswith("weight") and isinstance(m, (LayerNormBase, nn.LayerNorm)):
|
625 |
+
if cfg.optimizer.decay_norm_and_bias:
|
626 |
+
decay.add(fpn)
|
627 |
+
else:
|
628 |
+
no_decay.add(fpn)
|
629 |
+
elif pn.endswith("weight") and isinstance(m, nn.Embedding):
|
630 |
+
if cfg.optimizer.decay_embeddings:
|
631 |
+
decay.add(fpn)
|
632 |
+
else:
|
633 |
+
no_decay.add(fpn)
|
634 |
+
|
635 |
+
# Validate that we've considered every parameter
|
636 |
+
inter_params = decay & no_decay
|
637 |
+
union_params = decay | no_decay
|
638 |
+
assert len(inter_params) == 0, f"parameters {inter_params} made it into both decay/no_decay sets!"
|
639 |
+
assert (
|
640 |
+
len(all_params.keys() - union_params) == 0
|
641 |
+
), f"parameters {all_params.keys() - union_params} were not separated into either decay/no_decay set!"
|
642 |
+
|
643 |
+
# Create the pytorch optimizer groups.
|
644 |
+
decay_sorted = sorted(list(decay))
|
645 |
+
no_decay_sorted = sorted(list(no_decay))
|
646 |
+
param_groups = []
|
647 |
+
if len(decay_sorted) > 0:
|
648 |
+
param_groups.append(
|
649 |
+
{
|
650 |
+
"params": [all_params[pn] for pn in decay_sorted],
|
651 |
+
"param_names": decay_sorted,
|
652 |
+
**param_group_defaults,
|
653 |
+
}
|
654 |
+
)
|
655 |
+
if len(no_decay_sorted) > 0:
|
656 |
+
param_groups.append(
|
657 |
+
{
|
658 |
+
"params": [all_params[pn] for pn in no_decay_sorted],
|
659 |
+
"param_names": no_decay_sorted,
|
660 |
+
"weight_decay": 0.0,
|
661 |
+
**param_group_defaults,
|
662 |
+
}
|
663 |
+
)
|
664 |
+
|
665 |
+
# Validate fields.
|
666 |
+
for group in param_groups:
|
667 |
+
for key in PARAM_GROUP_FIELDS:
|
668 |
+
assert key in group
|
669 |
+
|
670 |
+
return param_groups
|
671 |
+
|
672 |
+
|
673 |
+
def fix_optim_state_dict(optimizer: Optimizer, state_dict: Dict[str, Any]) -> Dict[str, Any]:
|
674 |
+
"""
|
675 |
+
Make sure old optim state dicts are compatible with new versions.
|
676 |
+
"""
|
677 |
+
if len(state_dict["param_groups"]) == 1 and len(optimizer.param_groups) == 2:
|
678 |
+
assert optimizer.param_groups[1]["weight_decay"] == 0.0
|
679 |
+
|
680 |
+
# Decay
|
681 |
+
decay_param_group = {k: v for k, v in state_dict["param_groups"][0].items() if k != "params"}
|
682 |
+
decay_param_group["params"] = optimizer.state_dict()["param_groups"][0]["params"]
|
683 |
+
|
684 |
+
# No decay.
|
685 |
+
no_decay_param_group = {k: v for k, v in state_dict["param_groups"][0].items() if k != "params"}
|
686 |
+
no_decay_param_group["weight_decay"] = 0.0
|
687 |
+
no_decay_param_group["params"] = optimizer.state_dict()["param_groups"][1]["params"]
|
688 |
+
|
689 |
+
state_dict["param_groups"] = [decay_param_group, no_decay_param_group]
|
690 |
+
|
691 |
+
assert len(optimizer.param_groups) == len(state_dict["param_groups"])
|
692 |
+
|
693 |
+
# Make sure:
|
694 |
+
# - All required fields are included in the state dict,
|
695 |
+
# - And that the values of those fields doesn't change from what's currently set in the optimizer,
|
696 |
+
# since we might have changed those fields on purpose after a restart.
|
697 |
+
for group, sd_group in zip(optimizer.param_groups, state_dict["param_groups"]):
|
698 |
+
for key in PARAM_GROUP_FIELDS:
|
699 |
+
sd_group[key] = group[key]
|
700 |
+
|
701 |
+
return state_dict
|
702 |
+
|
703 |
+
|
704 |
+
def build_optimizer(cfg: TrainConfig, model: nn.Module) -> Optimizer:
|
705 |
+
param_groups = get_param_groups(cfg, model)
|
706 |
+
log.info(f"Constructing optimizer with {len(param_groups)} param groups")
|
707 |
+
if cfg.optimizer.name == OptimizerType.lionw:
|
708 |
+
return LionW(
|
709 |
+
param_groups,
|
710 |
+
lr=cfg.optimizer.learning_rate,
|
711 |
+
betas=cfg.optimizer.betas,
|
712 |
+
weight_decay=cfg.optimizer.weight_decay,
|
713 |
+
)
|
714 |
+
elif cfg.optimizer.name == OptimizerType.adamw:
|
715 |
+
return AdamW(
|
716 |
+
param_groups,
|
717 |
+
lr=cfg.optimizer.learning_rate,
|
718 |
+
betas=cfg.optimizer.betas,
|
719 |
+
weight_decay=cfg.optimizer.weight_decay,
|
720 |
+
eps=1e-5,
|
721 |
+
)
|
722 |
+
else:
|
723 |
+
raise NotImplementedError
|
724 |
+
|
725 |
+
|
726 |
+
def build_scheduler(cfg: TrainConfig, sched_cfg: Optional[SchedulerConfig] = None) -> Scheduler:
|
727 |
+
sched_cfg = sched_cfg if sched_cfg is not None else cfg.scheduler
|
728 |
+
if sched_cfg.name == SchedulerType.cosine_with_warmup:
|
729 |
+
return CosWithWarmup(
|
730 |
+
grad_clip_warmup_steps=None
|
731 |
+
if sched_cfg.grad_clip_warmup_steps is None
|
732 |
+
else int(sched_cfg.grad_clip_warmup_steps),
|
733 |
+
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
|
734 |
+
warmup_steps=int(sched_cfg.t_warmup),
|
735 |
+
alpha_f=sched_cfg.alpha_f,
|
736 |
+
t_max=None if sched_cfg.t_max is None else int(sched_cfg.t_max),
|
737 |
+
warmup_min_lr=sched_cfg.warmup_min_lr,
|
738 |
+
)
|
739 |
+
elif sched_cfg.name == SchedulerType.linear_with_warmup:
|
740 |
+
return LinearWithWarmup(
|
741 |
+
grad_clip_warmup_steps=None
|
742 |
+
if sched_cfg.grad_clip_warmup_steps is None
|
743 |
+
else int(sched_cfg.grad_clip_warmup_steps),
|
744 |
+
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
|
745 |
+
warmup_steps=int(sched_cfg.t_warmup),
|
746 |
+
alpha_f=sched_cfg.alpha_f,
|
747 |
+
t_max=None if sched_cfg.t_max is None else int(sched_cfg.t_max),
|
748 |
+
warmup_min_lr=sched_cfg.warmup_min_lr,
|
749 |
+
)
|
750 |
+
elif sched_cfg.name == SchedulerType.inverse_sqrt_with_warmup:
|
751 |
+
return InvSqrtWithWarmup(
|
752 |
+
grad_clip_warmup_steps=None
|
753 |
+
if sched_cfg.grad_clip_warmup_steps is None
|
754 |
+
else int(sched_cfg.grad_clip_warmup_steps),
|
755 |
+
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
|
756 |
+
warmup_steps=int(sched_cfg.t_warmup),
|
757 |
+
warmup_min_lr=sched_cfg.warmup_min_lr,
|
758 |
+
)
|
759 |
+
elif sched_cfg.name == SchedulerType.max_scheduler:
|
760 |
+
return MaxScheduler(
|
761 |
+
grad_clip_warmup_steps=None
|
762 |
+
if sched_cfg.grad_clip_warmup_steps is None
|
763 |
+
else int(sched_cfg.grad_clip_warmup_steps),
|
764 |
+
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
|
765 |
+
sched1=build_scheduler(cfg, replace(sched_cfg, name=SchedulerType.cosine_with_warmup)),
|
766 |
+
sched2=build_scheduler(cfg, replace(sched_cfg, name=SchedulerType.inverse_sqrt_with_warmup)),
|
767 |
+
warmup_min_lr=sched_cfg.warmup_min_lr,
|
768 |
+
)
|
769 |
+
elif sched_cfg.name == SchedulerType.constant:
|
770 |
+
return ConstantScheduler(
|
771 |
+
grad_clip_warmup_steps=None
|
772 |
+
if sched_cfg.grad_clip_warmup_steps is None
|
773 |
+
else int(sched_cfg.grad_clip_warmup_steps),
|
774 |
+
grad_clip_warmup_factor=sched_cfg.grad_clip_warmup_factor,
|
775 |
+
warmup_min_lr=sched_cfg.warmup_min_lr,
|
776 |
+
)
|
777 |
+
else:
|
778 |
+
raise NotImplementedError
|
model/py.typed
ADDED
File without changes
|
model/safetensors_util.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import pickle
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Dict, Optional, Tuple
|
5 |
+
|
6 |
+
import safetensors.torch
|
7 |
+
import torch
|
8 |
+
|
9 |
+
from olmo.aliases import PathOrStr
|
10 |
+
|
11 |
+
__all__ = [
|
12 |
+
"state_dict_to_safetensors_file",
|
13 |
+
"safetensors_file_to_state_dict",
|
14 |
+
]
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass(eq=True, frozen=True)
|
18 |
+
class STKey:
|
19 |
+
keys: Tuple
|
20 |
+
value_is_pickled: bool
|
21 |
+
|
22 |
+
|
23 |
+
def encode_key(key: STKey) -> str:
|
24 |
+
b = pickle.dumps((key.keys, key.value_is_pickled))
|
25 |
+
b = base64.urlsafe_b64encode(b)
|
26 |
+
return str(b, "ASCII")
|
27 |
+
|
28 |
+
|
29 |
+
def decode_key(key: str) -> STKey:
|
30 |
+
b = base64.urlsafe_b64decode(key)
|
31 |
+
keys, value_is_pickled = pickle.loads(b)
|
32 |
+
return STKey(keys, value_is_pickled)
|
33 |
+
|
34 |
+
|
35 |
+
def flatten_dict(d: Dict) -> Dict[STKey, torch.Tensor]:
|
36 |
+
result = {}
|
37 |
+
for key, value in d.items():
|
38 |
+
if isinstance(value, torch.Tensor):
|
39 |
+
result[STKey((key,), False)] = value
|
40 |
+
elif isinstance(value, dict):
|
41 |
+
value = flatten_dict(value)
|
42 |
+
for inner_key, inner_value in value.items():
|
43 |
+
result[STKey((key,) + inner_key.keys, inner_key.value_is_pickled)] = inner_value
|
44 |
+
else:
|
45 |
+
pickled = bytearray(pickle.dumps(value))
|
46 |
+
pickled_tensor = torch.frombuffer(pickled, dtype=torch.uint8)
|
47 |
+
result[STKey((key,), True)] = pickled_tensor
|
48 |
+
return result
|
49 |
+
|
50 |
+
|
51 |
+
def unflatten_dict(d: Dict[STKey, torch.Tensor]) -> Dict:
|
52 |
+
result: Dict = {}
|
53 |
+
|
54 |
+
for key, value in d.items():
|
55 |
+
if key.value_is_pickled:
|
56 |
+
value = pickle.loads(value.numpy().data)
|
57 |
+
|
58 |
+
target_dict = result
|
59 |
+
for k in key.keys[:-1]:
|
60 |
+
new_target_dict = target_dict.get(k)
|
61 |
+
if new_target_dict is None:
|
62 |
+
new_target_dict = {}
|
63 |
+
target_dict[k] = new_target_dict
|
64 |
+
target_dict = new_target_dict
|
65 |
+
target_dict[key.keys[-1]] = value
|
66 |
+
|
67 |
+
return result
|
68 |
+
|
69 |
+
|
70 |
+
def state_dict_to_safetensors_file(state_dict: Dict, filename: PathOrStr):
|
71 |
+
state_dict = flatten_dict(state_dict)
|
72 |
+
state_dict = {encode_key(k): v for k, v in state_dict.items()}
|
73 |
+
safetensors.torch.save_file(state_dict, filename)
|
74 |
+
|
75 |
+
|
76 |
+
def safetensors_file_to_state_dict(filename: PathOrStr, map_location: Optional[str] = None) -> Dict:
|
77 |
+
if map_location is None:
|
78 |
+
map_location = "cpu"
|
79 |
+
state_dict = safetensors.torch.load_file(filename, device=map_location)
|
80 |
+
state_dict = {decode_key(k): v for k, v in state_dict.items()}
|
81 |
+
return unflatten_dict(state_dict)
|
model/tokenization_olmo_fast.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, PreTrainedTokenizerFast
|
2 |
+
|
3 |
+
from .configuration_olmo import OLMoConfig
|
4 |
+
|
5 |
+
|
6 |
+
class OLMoTokenizerFast(PreTrainedTokenizerFast):
|
7 |
+
# Note: OLMo's tokenizer is already a wrapper around huggingface. This is potentially unnecessary.
|
8 |
+
pass
|
9 |
+
|
10 |
+
# def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
11 |
+
# # This is required to make the implementation complete.
|
12 |
+
# pass
|
13 |
+
|
14 |
+
|
15 |
+
# Register the tokenizer class so that it is available for transformer pipelines, auto-loading etc.
|
16 |
+
AutoTokenizer.register(OLMoConfig, fast_tokenizer_class=OLMoTokenizerFast)
|
model/tokenizer.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import List, Optional, Union
|
6 |
+
|
7 |
+
from tokenizers import Tokenizer as BaseTokenizer
|
8 |
+
|
9 |
+
from .aliases import PathOrStr
|
10 |
+
from .config import ModelConfig, TokenizerConfig, TrainConfig, TruncationDirection
|
11 |
+
from .exceptions import OLMoConfigurationError
|
12 |
+
|
13 |
+
__all__ = ["Tokenizer"]
|
14 |
+
|
15 |
+
|
16 |
+
class Tokenizer:
|
17 |
+
"""
|
18 |
+
A :class:`Tokenizer` is a light-weight wrapper around a HuggingFace :class:`tokenizers.Tokenizer`.
|
19 |
+
|
20 |
+
:param base_tokenizer: The :class:`tokenizers.Tokenizer` to use.
|
21 |
+
:param eos_token_id: The token ID corresponding to the "end-of-sentence" token.
|
22 |
+
:param truncate_to: Truncate when tokenizing to this number of token IDs.
|
23 |
+
:param truncate_direction: The direction to truncate in. "right" means truncate the tokens
|
24 |
+
on the right. "left" means truncate the tokens on the left. If ``truncate_to`` is null,
|
25 |
+
this setting has no effect.
|
26 |
+
"""
|
27 |
+
|
28 |
+
def __init__(
|
29 |
+
self,
|
30 |
+
base_tokenizer: BaseTokenizer,
|
31 |
+
eos_token_id: int,
|
32 |
+
pad_token_id: Optional[int] = None,
|
33 |
+
truncate_to: Optional[int] = None,
|
34 |
+
truncate_direction: Union[str, TruncationDirection] = TruncationDirection.right,
|
35 |
+
):
|
36 |
+
self.base_tokenizer = base_tokenizer
|
37 |
+
self.base_tokenizer.no_truncation()
|
38 |
+
self.eos_token_id = eos_token_id
|
39 |
+
self.pad_token_id = pad_token_id if pad_token_id is not None else eos_token_id
|
40 |
+
self.truncate_to = truncate_to
|
41 |
+
self.truncate_direction = TruncationDirection(truncate_direction)
|
42 |
+
|
43 |
+
@property
|
44 |
+
def vocab_size(self) -> int:
|
45 |
+
return self.base_tokenizer.get_vocab_size()
|
46 |
+
|
47 |
+
@property
|
48 |
+
def eos_token(self) -> str:
|
49 |
+
return self.decode([self.eos_token_id], skip_special_tokens=False)
|
50 |
+
|
51 |
+
@property
|
52 |
+
def pad_token(self) -> str:
|
53 |
+
return self.decode([self.pad_token_id], skip_special_tokens=False)
|
54 |
+
|
55 |
+
@classmethod
|
56 |
+
def from_train_config(cls, config: TrainConfig) -> Tokenizer:
|
57 |
+
tokenizer_identifier = config.tokenizer.identifier
|
58 |
+
if Path(tokenizer_identifier).is_file():
|
59 |
+
tokenizer = cls.from_file(
|
60 |
+
tokenizer_identifier,
|
61 |
+
eos_token_id=config.model.eos_token_id,
|
62 |
+
pad_token_id=config.model.pad_token_id,
|
63 |
+
)
|
64 |
+
else:
|
65 |
+
tokenizer = cls.from_pretrained(
|
66 |
+
tokenizer_identifier,
|
67 |
+
eos_token_id=config.model.eos_token_id,
|
68 |
+
pad_token_id=config.model.pad_token_id,
|
69 |
+
)
|
70 |
+
if config.model.vocab_size != tokenizer.vocab_size:
|
71 |
+
raise OLMoConfigurationError("vocab size mismatch between config and tokenizer")
|
72 |
+
return tokenizer
|
73 |
+
|
74 |
+
@classmethod
|
75 |
+
def from_pretrained(cls, identifier: str, **kwargs) -> Tokenizer:
|
76 |
+
"""
|
77 |
+
Initialize a tokenizer from a pretrained tokenizer on the HuggingFace Hub.
|
78 |
+
|
79 |
+
:param identifier: The identifier of a model on the Hub that contains a
|
80 |
+
``tokenizer.json`` file.
|
81 |
+
:param kwargs: Other key word arguments passed to :class:`Tokenizer`.
|
82 |
+
"""
|
83 |
+
base_tokenizer = BaseTokenizer.from_pretrained(identifier)
|
84 |
+
eos_token_id = kwargs.pop("eos_token_id", base_tokenizer.get_vocab_size() - 1)
|
85 |
+
return cls(base_tokenizer, eos_token_id, **kwargs)
|
86 |
+
|
87 |
+
@classmethod
|
88 |
+
def from_file(cls, filename: PathOrStr, **kwargs) -> Tokenizer:
|
89 |
+
"""
|
90 |
+
Initialize a tokenizer from a file.
|
91 |
+
|
92 |
+
You can create those files with ``BaseTokenizer.save()``.
|
93 |
+
|
94 |
+
:param filename: The name of a file containing a tokenizer specification.
|
95 |
+
:param kwargs: Other key word arguments passed to :class:`Tokenizer`.
|
96 |
+
"""
|
97 |
+
base_tokenizer = BaseTokenizer.from_file(filename)
|
98 |
+
eos_token_id = kwargs.pop("eos_token_id", base_tokenizer.get_vocab_size() - 1)
|
99 |
+
return cls(base_tokenizer, eos_token_id, **kwargs)
|
100 |
+
|
101 |
+
@classmethod
|
102 |
+
def from_checkpoint(cls, checkpoint_dir: PathOrStr) -> Tokenizer:
|
103 |
+
"""
|
104 |
+
Load a tokenizer from a checkpoint.
|
105 |
+
"""
|
106 |
+
from cached_path import cached_path
|
107 |
+
|
108 |
+
# Load configs.
|
109 |
+
config_path = cached_path(os.path.join(checkpoint_dir, "config.yaml"))
|
110 |
+
tokenizer_config = TokenizerConfig.load(config_path, key="tokenizer")
|
111 |
+
model_config = ModelConfig.load(config_path, key="model")
|
112 |
+
|
113 |
+
# Initialize tokenizer and validate vocab size.
|
114 |
+
if Path(tokenizer_config.identifier).is_file():
|
115 |
+
tokenizer = cls.from_file(
|
116 |
+
tokenizer_config.identifier,
|
117 |
+
eos_token_id=model_config.eos_token_id,
|
118 |
+
pad_token_id=model_config.pad_token_id,
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
tokenizer = cls.from_pretrained(
|
122 |
+
tokenizer_config.identifier,
|
123 |
+
eos_token_id=model_config.eos_token_id,
|
124 |
+
pad_token_id=model_config.pad_token_id,
|
125 |
+
)
|
126 |
+
if model_config.vocab_size != tokenizer.vocab_size:
|
127 |
+
raise OLMoConfigurationError("vocab size mismatch between config and tokenizer")
|
128 |
+
return tokenizer
|
129 |
+
|
130 |
+
def add_special_tokens(self, input_ids: List[int]) -> List[int]:
|
131 |
+
"""
|
132 |
+
Add special tokens in-place (if not already present) to the given token IDs.
|
133 |
+
"""
|
134 |
+
if not input_ids or input_ids[-1] != self.eos_token_id:
|
135 |
+
input_ids.append(self.eos_token_id)
|
136 |
+
return input_ids
|
137 |
+
|
138 |
+
def num_special_tokens_to_add(self, is_pair: bool = False) -> int:
|
139 |
+
return 2 if is_pair else 1
|
140 |
+
|
141 |
+
def _truncate(
|
142 |
+
self, input_ids: List[int], truncate_to: Optional[int], direction: TruncationDirection
|
143 |
+
) -> list[int]:
|
144 |
+
if truncate_to is None or len(input_ids) <= truncate_to:
|
145 |
+
return input_ids
|
146 |
+
elif direction == TruncationDirection.left:
|
147 |
+
return input_ids[len(input_ids) - truncate_to :]
|
148 |
+
else:
|
149 |
+
return input_ids[: -(len(input_ids) - truncate_to)]
|
150 |
+
|
151 |
+
def encode(self, input: str, add_special_tokens: bool = True) -> List[int]:
|
152 |
+
"""
|
153 |
+
Encode a string into token IDs.
|
154 |
+
"""
|
155 |
+
return self.encode_batch([input], add_special_tokens=add_special_tokens)[0]
|
156 |
+
|
157 |
+
def encode_batch(self, inputs: List[str], add_special_tokens: bool = True) -> List[List[int]]:
|
158 |
+
"""
|
159 |
+
Encode a batch of strings into token IDs.
|
160 |
+
"""
|
161 |
+
truncate_to = self.truncate_to
|
162 |
+
if truncate_to is not None and add_special_tokens:
|
163 |
+
truncate_to -= self.num_special_tokens_to_add(False)
|
164 |
+
|
165 |
+
batch_encoding = self.base_tokenizer.encode_batch(inputs)
|
166 |
+
|
167 |
+
all_input_ids = []
|
168 |
+
for encoding in batch_encoding:
|
169 |
+
input_ids = self._truncate(encoding.ids, truncate_to, self.truncate_direction)
|
170 |
+
if add_special_tokens:
|
171 |
+
input_ids = self.add_special_tokens(input_ids)
|
172 |
+
all_input_ids.append(input_ids)
|
173 |
+
|
174 |
+
return all_input_ids
|
175 |
+
|
176 |
+
def decode(self, token_ids: List[int], skip_special_tokens: bool = True) -> str:
|
177 |
+
"""
|
178 |
+
Decode a list of token IDs to a string.
|
179 |
+
"""
|
180 |
+
return self.base_tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
model/torch_util.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gc
|
2 |
+
import os
|
3 |
+
from typing import Optional, TypeVar
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.distributed as dist
|
7 |
+
|
8 |
+
T = TypeVar("T")
|
9 |
+
|
10 |
+
|
11 |
+
def seed_all(seed: int):
|
12 |
+
"""Seed all rng objects."""
|
13 |
+
import random
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
if seed < 0 or seed > 2**32 - 1:
|
18 |
+
raise ValueError(f"Seed {seed} is invalid. It must be on [0; 2^32 - 1]")
|
19 |
+
random.seed(seed)
|
20 |
+
np.random.seed(seed)
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
# torch.manual_seed may call manual_seed_all but calling it again here
|
23 |
+
# to make sure it gets called at least once
|
24 |
+
torch.cuda.manual_seed_all(seed)
|
25 |
+
|
26 |
+
|
27 |
+
def is_distributed() -> bool:
|
28 |
+
return dist.is_available() and dist.is_initialized()
|
29 |
+
|
30 |
+
|
31 |
+
def get_node_rank() -> int:
|
32 |
+
return int(os.environ.get("NODE_RANK") or (get_global_rank() - get_local_rank()) // get_local_world_size())
|
33 |
+
|
34 |
+
|
35 |
+
def get_world_size() -> int:
|
36 |
+
if is_distributed():
|
37 |
+
return dist.get_world_size()
|
38 |
+
else:
|
39 |
+
return 1
|
40 |
+
|
41 |
+
|
42 |
+
def get_local_world_size() -> int:
|
43 |
+
return int(os.environ.get("LOCAL_WORLD_SIZE") or 1)
|
44 |
+
|
45 |
+
|
46 |
+
def get_global_rank() -> int:
|
47 |
+
return int(os.environ.get("RANK") or dist.get_rank())
|
48 |
+
|
49 |
+
|
50 |
+
def get_local_rank() -> int:
|
51 |
+
return int(os.environ.get("LOCAL_RANK") or 0)
|
52 |
+
|
53 |
+
|
54 |
+
def get_fs_local_rank() -> int:
|
55 |
+
"""Get the local rank per filesystem, meaning that, regardless of the number of nodes,
|
56 |
+
if all ranks share the same filesystem then `get_fs_local_rank()` will be equivalent to `get_global_rank()`,
|
57 |
+
but if nodes do not share the same filesystem then `get_fs_local_rank()` will be equivalent to `get_local_rank()`.
|
58 |
+
"""
|
59 |
+
return int(os.environ.get("FS_LOCAL_RANK") or get_local_rank())
|
60 |
+
|
61 |
+
|
62 |
+
def move_to_device(o: T, device: torch.device) -> T:
|
63 |
+
if isinstance(o, torch.Tensor):
|
64 |
+
return o.to(device) # type: ignore[return-value]
|
65 |
+
elif isinstance(o, dict):
|
66 |
+
return {k: move_to_device(v, device) for k, v in o.items()} # type: ignore[return-value]
|
67 |
+
elif isinstance(o, list):
|
68 |
+
return [move_to_device(x, device) for x in o] # type: ignore[return-value]
|
69 |
+
elif isinstance(o, tuple):
|
70 |
+
return tuple((move_to_device(x, device) for x in o)) # type: ignore[return-value]
|
71 |
+
else:
|
72 |
+
return o
|
73 |
+
|
74 |
+
|
75 |
+
def ensure_finite_(x: torch.Tensor, check_neg_inf: bool = True, check_pos_inf: bool = False):
|
76 |
+
"""
|
77 |
+
Modify ``x`` in place to replace ``float("-inf")`` with the minimum value of the dtype when ``check_neg_inf``
|
78 |
+
is ``True`` and to replace ``float("inf")`` with the maximum value of the dtype when ``check_pos_inf`` is ``True``.
|
79 |
+
"""
|
80 |
+
if check_neg_inf:
|
81 |
+
x.masked_fill_(x == float("-inf"), torch.finfo(x.dtype).min)
|
82 |
+
if check_pos_inf:
|
83 |
+
x.masked_fill_(x == float("inf"), torch.finfo(x.dtype).max)
|
84 |
+
|
85 |
+
|
86 |
+
def get_default_device() -> torch.device:
|
87 |
+
if torch.cuda.is_available() and torch.cuda.is_initialized():
|
88 |
+
return torch.device("cuda")
|
89 |
+
else:
|
90 |
+
return torch.device("cpu")
|
91 |
+
|
92 |
+
|
93 |
+
def barrier() -> None:
|
94 |
+
if is_distributed():
|
95 |
+
dist.barrier()
|
96 |
+
|
97 |
+
|
98 |
+
def peak_gpu_memory(reset: bool = False) -> Optional[float]:
|
99 |
+
"""
|
100 |
+
Get the peak GPU memory usage in MB across all ranks.
|
101 |
+
Only rank 0 will get the final result.
|
102 |
+
"""
|
103 |
+
if not torch.cuda.is_available():
|
104 |
+
return None
|
105 |
+
|
106 |
+
device = torch.device("cuda")
|
107 |
+
peak_mb = torch.cuda.max_memory_allocated(device) / 1000000
|
108 |
+
if is_distributed():
|
109 |
+
peak_mb_tensor = torch.tensor(peak_mb, device=device)
|
110 |
+
dist.reduce(peak_mb_tensor, 0, dist.ReduceOp.MAX)
|
111 |
+
peak_mb = peak_mb_tensor.item()
|
112 |
+
|
113 |
+
if reset:
|
114 |
+
# Reset peak stats.
|
115 |
+
torch.cuda.reset_max_memory_allocated(device)
|
116 |
+
|
117 |
+
return peak_mb
|
118 |
+
|
119 |
+
|
120 |
+
V = TypeVar("V", bool, int, float)
|
121 |
+
|
122 |
+
|
123 |
+
def synchronize_value(value: V, device: torch.device) -> V:
|
124 |
+
if dist.is_available() and dist.is_initialized():
|
125 |
+
value_tensor = torch.tensor(value, device=device)
|
126 |
+
dist.broadcast(value_tensor, 0)
|
127 |
+
return value_tensor.item() # type: ignore
|
128 |
+
else:
|
129 |
+
return value
|
130 |
+
|
131 |
+
|
132 |
+
def synchronize_flag(flag: bool, device: torch.device) -> bool:
|
133 |
+
return synchronize_value(flag, device)
|
134 |
+
|
135 |
+
|
136 |
+
def gc_cuda():
|
137 |
+
gc.collect()
|
138 |
+
if torch.cuda.is_available():
|
139 |
+
torch.cuda.empty_cache()
|
model/train.py
ADDED
@@ -0,0 +1,1231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import cProfile
|
4 |
+
import gc
|
5 |
+
import logging
|
6 |
+
import math
|
7 |
+
import os
|
8 |
+
import random
|
9 |
+
import shutil
|
10 |
+
import time
|
11 |
+
from collections import deque
|
12 |
+
from dataclasses import dataclass, field
|
13 |
+
from itertools import islice
|
14 |
+
from pathlib import Path
|
15 |
+
from pstats import SortKey
|
16 |
+
from typing import Any, Callable, Deque, Dict, List, Optional, TextIO, Tuple
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.distributed as dist
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import wandb
|
23 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
24 |
+
from torch.utils.data import DataLoader
|
25 |
+
|
26 |
+
from .aliases import PathOrStr
|
27 |
+
from .checkpoint import Checkpointer, FullCheckpointer, build_sharded_checkpointer
|
28 |
+
from .config import (
|
29 |
+
CheckpointType,
|
30 |
+
SchedulerUnits,
|
31 |
+
ShardedCheckpointerType,
|
32 |
+
SpeedMonitorConfig,
|
33 |
+
TrainConfig,
|
34 |
+
)
|
35 |
+
from .data import IterableDataset
|
36 |
+
from .eval import Evaluator
|
37 |
+
from .exceptions import OLMoConfigurationError
|
38 |
+
from .model import OLMo
|
39 |
+
from .optim import Optimizer, Scheduler
|
40 |
+
from .torch_util import (
|
41 |
+
barrier,
|
42 |
+
gc_cuda,
|
43 |
+
get_fs_local_rank,
|
44 |
+
get_global_rank,
|
45 |
+
get_world_size,
|
46 |
+
move_to_device,
|
47 |
+
peak_gpu_memory,
|
48 |
+
synchronize_flag,
|
49 |
+
synchronize_value,
|
50 |
+
)
|
51 |
+
from .util import upload
|
52 |
+
|
53 |
+
__all__ = ["SpeedMonitor", "LRMonitor", "Trainer"]
|
54 |
+
|
55 |
+
log = logging.getLogger(__name__)
|
56 |
+
|
57 |
+
|
58 |
+
@dataclass
|
59 |
+
class SpeedMonitor:
|
60 |
+
cfg: SpeedMonitorConfig
|
61 |
+
start_times: Deque[float] = field(default_factory=lambda: deque([]))
|
62 |
+
global_total_tokens: int = 0
|
63 |
+
device_interval_tokens: Deque[int] = field(default_factory=lambda: deque([]))
|
64 |
+
|
65 |
+
def batch_start(self, global_total_tokens: int, device_batch_num_tokens: int, record: bool = True) -> None:
|
66 |
+
self.global_total_tokens = global_total_tokens
|
67 |
+
if record:
|
68 |
+
if len(self.start_times) >= self.cfg.window_size:
|
69 |
+
self.start_times.popleft()
|
70 |
+
self.device_interval_tokens.popleft()
|
71 |
+
self.start_times.append(time.monotonic())
|
72 |
+
self.device_interval_tokens.append(device_batch_num_tokens)
|
73 |
+
|
74 |
+
def reset(self) -> None:
|
75 |
+
self.start_times.clear()
|
76 |
+
self.device_interval_tokens.clear()
|
77 |
+
|
78 |
+
def check(self) -> Dict[str, float]:
|
79 |
+
metrics: Dict[str, float] = {"throughput/total_tokens": self.global_total_tokens}
|
80 |
+
if self.start_times:
|
81 |
+
interval_seconds = time.monotonic() - self.start_times[0]
|
82 |
+
interval_batches = len(self.start_times)
|
83 |
+
interval_tokens = sum(self.device_interval_tokens)
|
84 |
+
metrics["throughput/device/tokens_per_second"] = interval_tokens / interval_seconds
|
85 |
+
metrics["throughput/device/batches_per_second"] = interval_batches / interval_seconds
|
86 |
+
return metrics
|
87 |
+
|
88 |
+
|
89 |
+
@dataclass
|
90 |
+
class LRMonitor:
|
91 |
+
optim: torch.optim.Optimizer
|
92 |
+
|
93 |
+
def check(self) -> Dict[str, float]:
|
94 |
+
lrs = [group["lr"] for group in self.optim.param_groups]
|
95 |
+
return {f"optim/learning_rate_group{idx}": lr for idx, lr in enumerate(lrs)}
|
96 |
+
|
97 |
+
|
98 |
+
def cross_entropy_loss(
|
99 |
+
logits, labels, ignore_index: int = -100, reduction: str = "mean", compute_z_loss: bool = False
|
100 |
+
):
|
101 |
+
loss = F.cross_entropy(logits, labels, ignore_index=ignore_index, reduction=reduction)
|
102 |
+
|
103 |
+
if not compute_z_loss:
|
104 |
+
return loss, None
|
105 |
+
|
106 |
+
z_squared = logits.logsumexp(-1).pow(2)
|
107 |
+
if reduction == "mean":
|
108 |
+
z_squared = (z_squared * (labels != ignore_index)).mean()
|
109 |
+
elif reduction == "sum":
|
110 |
+
z_squared = (z_squared * (labels != ignore_index)).sum()
|
111 |
+
|
112 |
+
z_loss = 1e-4 * z_squared
|
113 |
+
|
114 |
+
return loss, z_loss
|
115 |
+
|
116 |
+
|
117 |
+
@dataclass
|
118 |
+
class Trainer:
|
119 |
+
cfg: TrainConfig
|
120 |
+
model: OLMo
|
121 |
+
fsdp_model: FSDP
|
122 |
+
optim: Optimizer
|
123 |
+
scheduler: Scheduler
|
124 |
+
train_loader: DataLoader
|
125 |
+
device: torch.device
|
126 |
+
evaluators: List[Evaluator]
|
127 |
+
epoch: Optional[int] = None
|
128 |
+
global_step: int = 0
|
129 |
+
global_train_examples_seen_this_epoch: int = 0
|
130 |
+
"""Tracks the global number of training examples seen in the current epoch for the purpose of restoring
|
131 |
+
the data loader position on restarts."""
|
132 |
+
global_train_tokens_seen: int = 0
|
133 |
+
"""Tracks the global total number of tokens trained on."""
|
134 |
+
checkpoints: List[Path] = field(default_factory=list)
|
135 |
+
unsharded_checkpoints: List[Path] = field(default_factory=list)
|
136 |
+
ephemeral_checkpoints: List[Path] = field(default_factory=list)
|
137 |
+
min_train_loss: float = float("inf")
|
138 |
+
cur_train_loss: float = float("inf")
|
139 |
+
indices_file: Optional[TextIO] = None
|
140 |
+
_start_time: float = 0.0
|
141 |
+
_gc_init_state: bool = True
|
142 |
+
loss_fn: Callable[..., torch.Tensor] = field(default_factory=lambda: cross_entropy_loss) # type: ignore
|
143 |
+
last_sharded_checkpoint_step: Optional[int] = None
|
144 |
+
last_unsharded_checkpoint_step: Optional[int] = None
|
145 |
+
|
146 |
+
def __post_init__(self):
|
147 |
+
if self.cfg.fused_loss:
|
148 |
+
from flash_attn.ops.triton.cross_entropy import ( # type: ignore
|
149 |
+
cross_entropy_loss,
|
150 |
+
)
|
151 |
+
|
152 |
+
def fused_loss_fn(
|
153 |
+
logits, labels, ignore_index: int = -100, reduction: str = "mean", compute_z_loss: bool = False
|
154 |
+
):
|
155 |
+
loss, z_loss = cross_entropy_loss(
|
156 |
+
logits,
|
157 |
+
labels,
|
158 |
+
label_smoothing=0.0,
|
159 |
+
logit_scale=1.0,
|
160 |
+
lse_square_scale=0.0,
|
161 |
+
ignored_index=ignore_index,
|
162 |
+
inplace_backward=False,
|
163 |
+
process_group=None,
|
164 |
+
)
|
165 |
+
|
166 |
+
mask = labels != ignore_index
|
167 |
+
|
168 |
+
if reduction == "mean":
|
169 |
+
loss = loss.sum() / mask.sum()
|
170 |
+
elif reduction == "sum":
|
171 |
+
loss = loss.sum()
|
172 |
+
else:
|
173 |
+
loss = loss
|
174 |
+
|
175 |
+
if not compute_z_loss:
|
176 |
+
return loss, None
|
177 |
+
|
178 |
+
if reduction == "mean":
|
179 |
+
z_loss = z_loss.sum() / mask.sum()
|
180 |
+
elif reduction == "sum":
|
181 |
+
z_loss = z_loss.sum()
|
182 |
+
else:
|
183 |
+
z_loss = z_loss
|
184 |
+
|
185 |
+
return loss, z_loss
|
186 |
+
|
187 |
+
self.loss_fn = fused_loss_fn
|
188 |
+
|
189 |
+
@property
|
190 |
+
def dataset(self) -> IterableDataset:
|
191 |
+
assert isinstance(self.train_loader.dataset, IterableDataset)
|
192 |
+
return self.train_loader.dataset
|
193 |
+
|
194 |
+
@property
|
195 |
+
def tokens_per_batch(self) -> int:
|
196 |
+
return self.cfg.global_train_batch_size * self.cfg.model.max_sequence_length
|
197 |
+
|
198 |
+
@property
|
199 |
+
def batches_per_epoch(self) -> int:
|
200 |
+
return self.dataset.total_size // self.cfg.global_train_batch_size
|
201 |
+
|
202 |
+
@property
|
203 |
+
def max_epochs(self) -> int:
|
204 |
+
if isinstance(self.cfg.max_duration, str) and self.cfg.max_duration.endswith("ep"):
|
205 |
+
return int(self.cfg.max_duration[:-2].strip())
|
206 |
+
else:
|
207 |
+
return 1
|
208 |
+
|
209 |
+
@property
|
210 |
+
def max_steps(self) -> int:
|
211 |
+
if isinstance(self.cfg.max_duration, int):
|
212 |
+
return self.cfg.max_duration
|
213 |
+
elif isinstance(self.cfg.max_duration, str):
|
214 |
+
if self.cfg.max_duration.endswith("T"):
|
215 |
+
# convert to float *first* to handle scientific notation
|
216 |
+
max_tokens = int(float(self.cfg.max_duration[:-1].strip()))
|
217 |
+
tokens_remaining = max(max_tokens - self.global_train_tokens_seen, 0)
|
218 |
+
steps_remaining = tokens_remaining // self.tokens_per_batch
|
219 |
+
return self.global_step + steps_remaining
|
220 |
+
elif self.cfg.max_duration.endswith("ep"):
|
221 |
+
max_epochs = int(self.cfg.max_duration[:-2].strip())
|
222 |
+
return max_epochs * self.batches_per_epoch
|
223 |
+
else:
|
224 |
+
# convert to float *first* to handle scientific notation
|
225 |
+
return int(float(self.cfg.max_duration))
|
226 |
+
else:
|
227 |
+
raise TypeError(f"expected int or str for 'max_duration', found {type(self.cfg.max_duration)}")
|
228 |
+
|
229 |
+
@property
|
230 |
+
def max_tokens(self) -> int:
|
231 |
+
if isinstance(self.cfg.max_duration, int):
|
232 |
+
return (
|
233 |
+
self.global_train_tokens_seen
|
234 |
+
+ max(self.cfg.max_duration - self.global_step, 0) * self.tokens_per_batch
|
235 |
+
)
|
236 |
+
elif isinstance(self.cfg.max_duration, str):
|
237 |
+
if self.cfg.max_duration.endswith("T"):
|
238 |
+
# convert to float *first* to handle scientific notation
|
239 |
+
return int(float(self.cfg.max_duration[:-1].strip()))
|
240 |
+
elif self.cfg.max_duration.endswith("ep"):
|
241 |
+
max_epochs = int(self.cfg.max_duration[:-2].strip())
|
242 |
+
return max_epochs * self.batches_per_epoch * self.tokens_per_batch
|
243 |
+
else:
|
244 |
+
# convert to float *first* to handle scientific notation
|
245 |
+
return (
|
246 |
+
self.global_train_tokens_seen
|
247 |
+
+ max(int(float(self.cfg.max_duration)) - self.global_step, 0) * self.tokens_per_batch
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
raise TypeError(f"expected int or str for 'max_duration', found {type(self.cfg.max_duration)}")
|
251 |
+
|
252 |
+
@property
|
253 |
+
def scheduler_current(self) -> int:
|
254 |
+
if self.cfg.scheduler.units == SchedulerUnits.steps:
|
255 |
+
return self.global_step
|
256 |
+
elif self.cfg.scheduler.units == SchedulerUnits.tokens:
|
257 |
+
return self.global_train_tokens_seen
|
258 |
+
else:
|
259 |
+
raise NotImplementedError(self.cfg.scheduler.units)
|
260 |
+
|
261 |
+
@property
|
262 |
+
def scheduler_max(self) -> int:
|
263 |
+
if self.cfg.scheduler.units == SchedulerUnits.steps:
|
264 |
+
return self.max_steps
|
265 |
+
elif self.cfg.scheduler.units == SchedulerUnits.tokens:
|
266 |
+
return self.max_tokens
|
267 |
+
else:
|
268 |
+
raise NotImplementedError(self.cfg.scheduler.units)
|
269 |
+
|
270 |
+
def trainer_state_dict(self) -> Dict[str, Any]:
|
271 |
+
return {
|
272 |
+
"epoch": self.epoch,
|
273 |
+
"global_step": self.global_step,
|
274 |
+
"global_train_examples_seen_this_epoch": self.global_train_examples_seen_this_epoch,
|
275 |
+
"global_train_tokens_seen": self.global_train_tokens_seen,
|
276 |
+
"world_size": get_world_size(),
|
277 |
+
"checkpoints": self.checkpoints,
|
278 |
+
"unsharded_checkpoints": self.unsharded_checkpoints,
|
279 |
+
"ephemeral_checkpoints": self.ephemeral_checkpoints,
|
280 |
+
"rng": {
|
281 |
+
"python": random.getstate(),
|
282 |
+
"numpy": np.random.get_state(),
|
283 |
+
"torch": torch.random.get_rng_state(),
|
284 |
+
"cuda": torch.cuda.get_rng_state(),
|
285 |
+
},
|
286 |
+
}
|
287 |
+
|
288 |
+
def load_trainer_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
289 |
+
# Checkpoint paths.
|
290 |
+
self.checkpoints = [
|
291 |
+
path
|
292 |
+
for path in state_dict["checkpoints"]
|
293 |
+
if path.is_dir() and path.resolve().parent == Path(self.cfg.save_folder).resolve()
|
294 |
+
]
|
295 |
+
self.unsharded_checkpoints = [
|
296 |
+
path
|
297 |
+
for path in state_dict["unsharded_checkpoints"]
|
298 |
+
if path.is_dir() and path.resolve().parent == Path(self.cfg.save_folder).resolve()
|
299 |
+
]
|
300 |
+
self.ephemeral_checkpoints = [
|
301 |
+
path
|
302 |
+
for path in state_dict.get("ephemeral_checkpoints", [])
|
303 |
+
if path.is_dir() and path.resolve().parent == Path(self.cfg.save_folder).resolve()
|
304 |
+
]
|
305 |
+
|
306 |
+
# Dataset / dataloader position.
|
307 |
+
checkpoint_epoch = state_dict.get("epoch", 0)
|
308 |
+
self.global_step = state_dict["global_step"]
|
309 |
+
self.global_train_examples_seen_this_epoch = state_dict.get(
|
310 |
+
"global_train_examples_seen_this_epoch",
|
311 |
+
state_dict.get( # for backwards compatibility
|
312 |
+
"global_train_examples_seen",
|
313 |
+
state_dict.get("global_data_step", self.global_step) * self.cfg.global_train_batch_size,
|
314 |
+
),
|
315 |
+
)
|
316 |
+
self.global_train_tokens_seen = state_dict.get(
|
317 |
+
"global_train_tokens_seen",
|
318 |
+
state_dict.get("global_data_step", self.global_step) # for backwards compatibility
|
319 |
+
* self.cfg.global_train_batch_size
|
320 |
+
* self.cfg.model.max_sequence_length,
|
321 |
+
)
|
322 |
+
|
323 |
+
if not self.cfg.restore_dataloader:
|
324 |
+
self.epoch = 0
|
325 |
+
self.global_train_tokens_seen = 0
|
326 |
+
self.global_train_examples_seen_this_epoch = 0
|
327 |
+
elif self.epoch is None:
|
328 |
+
self.epoch = checkpoint_epoch
|
329 |
+
elif checkpoint_epoch != self.epoch:
|
330 |
+
log.info(f"Starting new epoch (epoch = {self.epoch})")
|
331 |
+
self.global_train_examples_seen_this_epoch = 0
|
332 |
+
|
333 |
+
if self.cfg.fast_forward_batches:
|
334 |
+
log.info(f"Fast-forwarding data loader by {self.cfg.fast_forward_batches:,d} steps")
|
335 |
+
# Technically we don't "see" these batches that we fast-forward through, but we use
|
336 |
+
# this variable to update the position of the dataset so we need to include them here.
|
337 |
+
self.global_train_examples_seen_this_epoch += (
|
338 |
+
self.cfg.fast_forward_batches * self.cfg.global_train_batch_size
|
339 |
+
)
|
340 |
+
# NOTE: on the other hand we don't add anything to 'self.global_train_tokens_seen' here because
|
341 |
+
# that variable is meant to track the actual number of tokens trained on.
|
342 |
+
|
343 |
+
if self.global_train_examples_seen_this_epoch > 0:
|
344 |
+
assert isinstance(self.dataset, IterableDataset)
|
345 |
+
log.info(f"Data loader will start at instance index {self.global_train_examples_seen_this_epoch:,d}")
|
346 |
+
self.dataset.start_index = self.global_train_examples_seen_this_epoch
|
347 |
+
|
348 |
+
# Reset learning rate and weight decay to the values from the config, not the checkpoint.
|
349 |
+
log.info("Resetting learning rate...")
|
350 |
+
new_learning_rate = self.scheduler.get_lr(
|
351 |
+
self.cfg.optimizer.learning_rate, self.scheduler_current, self.scheduler_max
|
352 |
+
)
|
353 |
+
for group in self.optim.param_groups:
|
354 |
+
group["lr"] = new_learning_rate
|
355 |
+
group["initial_lr"] = self.cfg.optimizer.learning_rate
|
356 |
+
if "weight_decay" in group and group["weight_decay"] > 0.0:
|
357 |
+
group["weight_decay"] = self.cfg.optimizer.weight_decay
|
358 |
+
|
359 |
+
# RNG states.
|
360 |
+
if "rng" in state_dict and state_dict.get("world_size", get_world_size()) == get_world_size():
|
361 |
+
log.info("Restoring RNG states...")
|
362 |
+
rng_state = state_dict["rng"]
|
363 |
+
self.restore_rng_state(rng_state)
|
364 |
+
else:
|
365 |
+
log.warning(
|
366 |
+
"Trainer will not restore RNG states since the RNG states in the checkpoint are missing or invalid. "
|
367 |
+
"This typically happens when restoring from an unsharded checkpoint or a checkpoint that was saved "
|
368 |
+
"with a different world size. If that's the case you can safely ignore this warning."
|
369 |
+
)
|
370 |
+
|
371 |
+
def restore_rng_state(self, rng_state: Dict[str, Any]) -> None:
|
372 |
+
random.setstate(rng_state["python"])
|
373 |
+
np.random.set_state(rng_state["numpy"])
|
374 |
+
torch.set_rng_state(rng_state["torch"])
|
375 |
+
torch.cuda.set_rng_state(rng_state["cuda"])
|
376 |
+
|
377 |
+
def _save_checkpoint(
|
378 |
+
self, checkpointer: Checkpointer, checkpoint_type: CheckpointType
|
379 |
+
) -> Tuple[PathOrStr, Optional[PathOrStr]]:
|
380 |
+
if checkpoint_type == CheckpointType.sharded:
|
381 |
+
suffix = ""
|
382 |
+
current_checkpoints = self.checkpoints
|
383 |
+
link_latest = get_fs_local_rank() == 0
|
384 |
+
num_checkpoints_to_keep = self.cfg.save_num_checkpoints_to_keep
|
385 |
+
elif checkpoint_type == CheckpointType.unsharded:
|
386 |
+
suffix = "-unsharded"
|
387 |
+
current_checkpoints = self.unsharded_checkpoints
|
388 |
+
link_latest = get_global_rank() == 0
|
389 |
+
num_checkpoints_to_keep = self.cfg.save_num_unsharded_checkpoints_to_keep
|
390 |
+
elif checkpoint_type == CheckpointType.sharded_ephemeral:
|
391 |
+
suffix = ""
|
392 |
+
current_checkpoints = self.ephemeral_checkpoints
|
393 |
+
link_latest = get_fs_local_rank() == 0
|
394 |
+
num_checkpoints_to_keep = 1
|
395 |
+
else:
|
396 |
+
raise NotImplementedError(checkpoint_type)
|
397 |
+
|
398 |
+
# Zero-gradients to avoid gathering them.
|
399 |
+
self.optim.zero_grad(set_to_none=True)
|
400 |
+
|
401 |
+
# Flush data indices file.
|
402 |
+
# TODO: upload the indices files?
|
403 |
+
if self.indices_file is not None:
|
404 |
+
self.indices_file.flush()
|
405 |
+
|
406 |
+
checkpoint_dir = Path(self.cfg.save_folder) / f"step{self.global_step}{suffix}"
|
407 |
+
remote_checkpoint_dir: Optional[str] = None
|
408 |
+
if self.cfg.remote_save_folder is not None:
|
409 |
+
remote_checkpoint_dir = f"{self.cfg.remote_save_folder.rstrip('/')}/{checkpoint_dir.name}"
|
410 |
+
current_checkpoints.append(checkpoint_dir)
|
411 |
+
|
412 |
+
# Save the checkpoint.
|
413 |
+
try:
|
414 |
+
checkpointer.save_checkpoint(
|
415 |
+
checkpoint_dir,
|
416 |
+
self.fsdp_model,
|
417 |
+
self.optim,
|
418 |
+
self.trainer_state_dict(),
|
419 |
+
upload_to=remote_checkpoint_dir,
|
420 |
+
)
|
421 |
+
except FileExistsError:
|
422 |
+
raise OLMoConfigurationError(
|
423 |
+
f"Checkpoint for step {self.global_step} already exists, use --save-overwrite to overwrite it"
|
424 |
+
)
|
425 |
+
|
426 |
+
if link_latest:
|
427 |
+
if get_global_rank() == 0:
|
428 |
+
# Link to 'latest'.
|
429 |
+
latest_path = Path(self.cfg.save_folder) / f"latest{suffix}"
|
430 |
+
latest_path.unlink(missing_ok=True)
|
431 |
+
try:
|
432 |
+
latest_path.symlink_to(checkpoint_dir.name, target_is_directory=True)
|
433 |
+
except FileExistsError:
|
434 |
+
# Same as above, caught when another (file-system) local rank 0 has already made the 'latest' symlink.
|
435 |
+
# This can happen when nodes are saving to a common NFS drive but otherwise have distinct
|
436 |
+
# file-systems.
|
437 |
+
if latest_path.resolve().name != checkpoint_dir.name:
|
438 |
+
raise
|
439 |
+
|
440 |
+
# Remove old checkpoints.
|
441 |
+
if num_checkpoints_to_keep > 0:
|
442 |
+
while len(current_checkpoints) > num_checkpoints_to_keep:
|
443 |
+
self.remove_checkpoint(0, checkpoint_type)
|
444 |
+
|
445 |
+
barrier()
|
446 |
+
|
447 |
+
if remote_checkpoint_dir is not None:
|
448 |
+
return remote_checkpoint_dir, checkpoint_dir
|
449 |
+
else:
|
450 |
+
return checkpoint_dir, None
|
451 |
+
|
452 |
+
def save_sharded_checkpoint(self) -> Tuple[PathOrStr, Optional[PathOrStr]]:
|
453 |
+
checkpointer = build_sharded_checkpointer(self.cfg)
|
454 |
+
result = self._save_checkpoint(checkpointer, CheckpointType.sharded)
|
455 |
+
self.last_sharded_checkpoint_step = self.global_step
|
456 |
+
return result
|
457 |
+
|
458 |
+
def save_ephemeral_checkpoint(self) -> Tuple[PathOrStr, Optional[PathOrStr]]:
|
459 |
+
checkpointer = build_sharded_checkpointer(self.cfg)
|
460 |
+
result = self._save_checkpoint(checkpointer, CheckpointType.sharded_ephemeral)
|
461 |
+
self.last_sharded_checkpoint_step = self.global_step
|
462 |
+
return result
|
463 |
+
|
464 |
+
def _remove_sharded_checkpoint(self, idx: int, checkpoints: List[Path]):
|
465 |
+
oldest_checkpoint = checkpoints.pop(idx)
|
466 |
+
barrier()
|
467 |
+
if get_global_rank() == 0 and oldest_checkpoint.is_dir():
|
468 |
+
shutil.rmtree(oldest_checkpoint, ignore_errors=True)
|
469 |
+
latest_path = Path(self.cfg.save_folder) / "latest"
|
470 |
+
if latest_path.resolve() == oldest_checkpoint.resolve():
|
471 |
+
latest_path.unlink()
|
472 |
+
barrier()
|
473 |
+
|
474 |
+
def remove_sharded_checkpoint(self, idx: int = 0):
|
475 |
+
self._remove_sharded_checkpoint(idx, self.checkpoints)
|
476 |
+
|
477 |
+
def remove_ephemeral_checkpoint(self, idx: int = 0):
|
478 |
+
self._remove_sharded_checkpoint(idx, self.ephemeral_checkpoints)
|
479 |
+
|
480 |
+
def restore_sharded_checkpoint(
|
481 |
+
self,
|
482 |
+
load_path: PathOrStr,
|
483 |
+
local_cache: Optional[PathOrStr] = None,
|
484 |
+
*,
|
485 |
+
load_optimizer_state: bool = True,
|
486 |
+
load_trainer_state: bool = True,
|
487 |
+
sharded_checkpointer: Optional[ShardedCheckpointerType] = None,
|
488 |
+
):
|
489 |
+
# Zero-gradients to avoid gathering them.
|
490 |
+
self.optim.zero_grad(set_to_none=True)
|
491 |
+
checkpointer = build_sharded_checkpointer(self.cfg, name=sharded_checkpointer)
|
492 |
+
trainer_state = checkpointer.restore_checkpoint(
|
493 |
+
load_path,
|
494 |
+
self.fsdp_model,
|
495 |
+
self.optim,
|
496 |
+
local_cache=local_cache,
|
497 |
+
load_optimizer_state=load_optimizer_state,
|
498 |
+
)
|
499 |
+
if load_trainer_state:
|
500 |
+
self.load_trainer_state_dict(trainer_state)
|
501 |
+
barrier()
|
502 |
+
|
503 |
+
def save_unsharded_checkpoint(self) -> Tuple[PathOrStr, Optional[PathOrStr]]:
|
504 |
+
checkpointer = FullCheckpointer(self.cfg)
|
505 |
+
result = self._save_checkpoint(checkpointer, CheckpointType.unsharded)
|
506 |
+
self.last_unsharded_checkpoint_step = self.global_step
|
507 |
+
return result
|
508 |
+
|
509 |
+
def remove_unsharded_checkpoint(self, idx: int = 0):
|
510 |
+
barrier()
|
511 |
+
oldest_checkpoint = self.unsharded_checkpoints.pop(idx)
|
512 |
+
if get_global_rank() == 0 and oldest_checkpoint.is_dir():
|
513 |
+
shutil.rmtree(oldest_checkpoint, ignore_errors=True)
|
514 |
+
latest_path = Path(self.cfg.save_folder) / "latest-unsharded"
|
515 |
+
if latest_path.resolve() == oldest_checkpoint.resolve():
|
516 |
+
latest_path.unlink()
|
517 |
+
barrier()
|
518 |
+
|
519 |
+
def restore_unsharded_checkpoint(
|
520 |
+
self,
|
521 |
+
load_path: PathOrStr,
|
522 |
+
local_cache: Optional[PathOrStr] = None,
|
523 |
+
*,
|
524 |
+
load_optimizer_state: bool = True,
|
525 |
+
load_trainer_state: bool = True,
|
526 |
+
):
|
527 |
+
# Zero-gradients to avoid gathering them.
|
528 |
+
self.optim.zero_grad(set_to_none=True)
|
529 |
+
checkpointer = FullCheckpointer(self.cfg)
|
530 |
+
trainer_state = checkpointer.restore_checkpoint(
|
531 |
+
load_path,
|
532 |
+
self.fsdp_model,
|
533 |
+
self.optim,
|
534 |
+
local_cache=local_cache,
|
535 |
+
load_optimizer_state=load_optimizer_state,
|
536 |
+
)
|
537 |
+
if load_trainer_state:
|
538 |
+
self.load_trainer_state_dict(trainer_state)
|
539 |
+
barrier()
|
540 |
+
|
541 |
+
def save_checkpoint(
|
542 |
+
self, checkpoint_type: CheckpointType = CheckpointType.sharded
|
543 |
+
) -> Tuple[PathOrStr, Optional[PathOrStr]]:
|
544 |
+
result: Tuple[PathOrStr, Optional[PathOrStr]]
|
545 |
+
if checkpoint_type == CheckpointType.sharded:
|
546 |
+
result = self.save_sharded_checkpoint()
|
547 |
+
elif checkpoint_type == CheckpointType.unsharded:
|
548 |
+
result = self.save_unsharded_checkpoint()
|
549 |
+
elif checkpoint_type == CheckpointType.sharded_ephemeral:
|
550 |
+
result = self.save_ephemeral_checkpoint()
|
551 |
+
else:
|
552 |
+
raise NotImplementedError(checkpoint_type)
|
553 |
+
|
554 |
+
gc_cuda()
|
555 |
+
return result
|
556 |
+
|
557 |
+
def restore_checkpoint(
|
558 |
+
self,
|
559 |
+
load_path: PathOrStr,
|
560 |
+
*,
|
561 |
+
checkpoint_type: Optional[CheckpointType] = None,
|
562 |
+
local_cache: Optional[PathOrStr] = None,
|
563 |
+
load_optimizer_state: bool = True,
|
564 |
+
load_trainer_state: bool = True,
|
565 |
+
sharded_checkpointer: Optional[ShardedCheckpointerType] = None,
|
566 |
+
):
|
567 |
+
if checkpoint_type == CheckpointType.unsharded or (
|
568 |
+
checkpoint_type is None and str(load_path).rstrip("/").endswith("-unsharded")
|
569 |
+
):
|
570 |
+
self.restore_unsharded_checkpoint(
|
571 |
+
load_path,
|
572 |
+
local_cache=local_cache,
|
573 |
+
load_optimizer_state=load_optimizer_state,
|
574 |
+
load_trainer_state=load_trainer_state,
|
575 |
+
)
|
576 |
+
elif checkpoint_type == CheckpointType.sharded or checkpoint_type is None:
|
577 |
+
self.restore_sharded_checkpoint(
|
578 |
+
load_path,
|
579 |
+
local_cache=local_cache,
|
580 |
+
load_optimizer_state=load_optimizer_state,
|
581 |
+
load_trainer_state=load_trainer_state,
|
582 |
+
sharded_checkpointer=sharded_checkpointer,
|
583 |
+
)
|
584 |
+
elif checkpoint_type is not None:
|
585 |
+
raise NotImplementedError(checkpoint_type)
|
586 |
+
|
587 |
+
gc_cuda()
|
588 |
+
|
589 |
+
def remove_checkpoint(self, idx: int = 0, checkpoint_type: CheckpointType = CheckpointType.sharded):
|
590 |
+
if checkpoint_type == CheckpointType.sharded:
|
591 |
+
self.remove_sharded_checkpoint(idx=idx)
|
592 |
+
elif checkpoint_type == CheckpointType.unsharded:
|
593 |
+
self.remove_unsharded_checkpoint(idx=idx)
|
594 |
+
elif checkpoint_type == CheckpointType.sharded_ephemeral:
|
595 |
+
self.remove_ephemeral_checkpoint(idx=idx)
|
596 |
+
else:
|
597 |
+
raise NotImplementedError(checkpoint_type)
|
598 |
+
|
599 |
+
def get_labels(self, batch: Dict[str, Any]) -> torch.Tensor:
|
600 |
+
# Labels are just input IDs shifted to the left (first item is ignored).
|
601 |
+
labels, label_mask, attention_mask = (
|
602 |
+
batch["input_ids"].clone(),
|
603 |
+
batch.get("label_mask"),
|
604 |
+
batch.get("attention_mask"),
|
605 |
+
)
|
606 |
+
if label_mask is not None:
|
607 |
+
labels.masked_fill_(~label_mask, -100)
|
608 |
+
if attention_mask is not None:
|
609 |
+
labels.masked_fill_(attention_mask == 0.0, -100)
|
610 |
+
return labels[..., 1:].contiguous()
|
611 |
+
|
612 |
+
def model_forward(
|
613 |
+
self, batch: Dict[str, Any], loss_reduction: str = "mean", compute_z_loss: bool = False
|
614 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], torch.Tensor]:
|
615 |
+
# shape: (batch_size, seq_len, vocab_size)
|
616 |
+
logits = self.fsdp_model(
|
617 |
+
input_ids=batch["input_ids"],
|
618 |
+
attention_mask=batch.get("attention_mask"),
|
619 |
+
attention_bias=batch.get("attention_bias"),
|
620 |
+
).logits
|
621 |
+
logits_for_loss = logits[..., :-1, :].contiguous()
|
622 |
+
# shape: (batch_size * seq_len, vocab_size)
|
623 |
+
logits_for_loss = logits_for_loss.view(-1, logits_for_loss.size(-1))
|
624 |
+
# shape: (batch_size, seq_len)
|
625 |
+
labels = self.get_labels(batch)
|
626 |
+
# shape: (batch_size * seq_len,)
|
627 |
+
labels = labels.view(-1)
|
628 |
+
ce_loss, z_loss = self.loss_fn(
|
629 |
+
logits_for_loss, labels, ignore_index=-100, reduction=loss_reduction, compute_z_loss=compute_z_loss
|
630 |
+
)
|
631 |
+
if loss_reduction == "none":
|
632 |
+
# Reshape (batch_size * seq_len,) -> (batch_size, seq_len)
|
633 |
+
ce_loss = ce_loss.view(batch["input_ids"].shape[0], -1)
|
634 |
+
if z_loss is not None:
|
635 |
+
z_loss = z_loss.view(batch["input_ids"].shape[0], -1)
|
636 |
+
return ce_loss, z_loss, logits
|
637 |
+
|
638 |
+
def train_batch(self, batch: Dict[str, Any]) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
639 |
+
# Split into micro-batches.
|
640 |
+
# print(f"Start preparing micro-batches at step {self.global_step}") if get_global_rank() == 0 else None
|
641 |
+
micro_batches = self.split_batch(batch)
|
642 |
+
|
643 |
+
# In case this helps with memory utilization.
|
644 |
+
del batch
|
645 |
+
|
646 |
+
ce_batch_loss = torch.tensor(0.0, device=self.device)
|
647 |
+
z_batch_loss = None if not self.cfg.softmax_auxiliary_loss else torch.tensor(0.0, device=self.device)
|
648 |
+
# print(f"Start training micro-batches at step {self.global_step}") if get_global_rank() == 0 else None
|
649 |
+
for micro_batch in micro_batches:
|
650 |
+
with torch.autocast("cuda", enabled=True, dtype=self.cfg.autocast_precision):
|
651 |
+
# Run forward pass.)
|
652 |
+
# print(f"Start forward pass at step {self.global_step}") if get_global_rank() == 0 else None
|
653 |
+
# print(f"micro_batch['input_ids'].shape: {micro_batch['input_ids'].shape}") if get_global_rank() == 0 else None
|
654 |
+
# print(f"min micro_batch['input_ids']: {micro_batch['input_ids'].min()}") if get_global_rank() == 0 else None
|
655 |
+
# print(f"max micro_batch['input_ids']: {micro_batch['input_ids'].max()}") if get_global_rank() == 0 else None
|
656 |
+
if get_fs_local_rank() == 0 and (self.global_step == 1421 or self.global_step == 1422 or self.global_step == 1423):
|
657 |
+
# save micro batch input_ids to file, which is a list of integers
|
658 |
+
with open(f"micro_batch_step{self.global_step}.txt", "w") as f:
|
659 |
+
for i in range(micro_batch["input_ids"].shape[0]):
|
660 |
+
f.write(f"{micro_batch['input_ids'][i].tolist()}\n")
|
661 |
+
ce_loss, z_loss, logits = self.model_forward(
|
662 |
+
micro_batch, compute_z_loss=self.cfg.softmax_auxiliary_loss
|
663 |
+
)
|
664 |
+
# print(f"End micro_batch at step {self.global_step} with ce_loss {ce_loss}, z_loss {z_loss}") if get_global_rank() == 0 else None
|
665 |
+
ce_loss = ce_loss / len(micro_batches)
|
666 |
+
|
667 |
+
# In case this helps with memory utilization.
|
668 |
+
del micro_batch
|
669 |
+
|
670 |
+
# Update overall CE batch loss.
|
671 |
+
ce_batch_loss += ce_loss.detach()
|
672 |
+
|
673 |
+
# Get loss to optimize for.
|
674 |
+
if self.cfg.softmax_auxiliary_loss:
|
675 |
+
assert z_loss is not None
|
676 |
+
assert z_batch_loss is not None
|
677 |
+
z_loss = z_loss / len(micro_batches)
|
678 |
+
loss = ce_loss + z_loss
|
679 |
+
|
680 |
+
# Update overall Z batch loss.
|
681 |
+
z_batch_loss += z_loss.detach()
|
682 |
+
else:
|
683 |
+
loss = ce_loss
|
684 |
+
|
685 |
+
del logits
|
686 |
+
# print(f"---before micro_batch backward at step {self.global_step}") if get_global_rank() == 0 else None
|
687 |
+
# print(f" loss value: {loss}") if get_global_rank() == 0 else None
|
688 |
+
# Run backward pass.
|
689 |
+
loss.backward()
|
690 |
+
# print(f"---after micro_batch backward at step {self.global_step}") if get_global_rank() == 0 else None
|
691 |
+
return ce_batch_loss, z_batch_loss
|
692 |
+
|
693 |
+
def train_step(self, batch: Dict[str, Any], reduce_global_loss: bool = True) -> Dict[str, float]:
|
694 |
+
metrics: Dict[str, float] = {}
|
695 |
+
|
696 |
+
# Write data-indices to file.
|
697 |
+
if self.indices_file is not None and "index" in batch:
|
698 |
+
indices = "\t".join(str(int(i)) for i in batch["index"])
|
699 |
+
self.indices_file.write(f"{self.global_step}\t{indices}\n")
|
700 |
+
|
701 |
+
# Zero-gradients.
|
702 |
+
self.optim.zero_grad(set_to_none=True)
|
703 |
+
|
704 |
+
# Move tensors to the right device.
|
705 |
+
batch = move_to_device(batch, self.device)
|
706 |
+
|
707 |
+
# Run forward-backward pass.
|
708 |
+
ce_batch_loss, z_batch_loss = self.train_batch(batch)
|
709 |
+
# Collect loss, potentially reducing over all ranks.
|
710 |
+
if reduce_global_loss:
|
711 |
+
dist.reduce(ce_batch_loss, 0)
|
712 |
+
ce_batch_loss.div_(get_world_size())
|
713 |
+
if z_batch_loss is not None:
|
714 |
+
dist.reduce(z_batch_loss, 0)
|
715 |
+
z_batch_loss.div_(get_world_size())
|
716 |
+
|
717 |
+
# Clip gradient norms and collect param/gradient/optim metrics.
|
718 |
+
should_log_optim_metrics_this_step = self.should_log_optim_metrics_this_step()
|
719 |
+
optim_metrics = self.optim.clip_grads_and_collect_metrics(
|
720 |
+
self.global_step, collect_param_metrics=should_log_optim_metrics_this_step
|
721 |
+
)
|
722 |
+
|
723 |
+
# Adjust the learning rate.
|
724 |
+
for group in self.optim.param_groups:
|
725 |
+
# TODO (epwalsh): if we want to enable different LRs or gradient clipping settings per group
|
726 |
+
# we should pass `group["initial_lr"]` or `group["initial_max_grad_norm"]` here instead of
|
727 |
+
# the corresponding values from `self.cfg`.
|
728 |
+
group["lr"] = self.scheduler.get_lr(
|
729 |
+
self.cfg.optimizer.learning_rate, self.scheduler_current, self.scheduler_max
|
730 |
+
)
|
731 |
+
group["max_grad_norm"] = self.scheduler.get_max_grad_norm(
|
732 |
+
self.cfg.max_grad_norm, self.scheduler_current, self.scheduler_max
|
733 |
+
)
|
734 |
+
group["max_grad_norm_ratio"] = self.scheduler.get_max_grad_norm(
|
735 |
+
self.cfg.max_grad_norm_ratio, self.scheduler_current, self.scheduler_max
|
736 |
+
)
|
737 |
+
|
738 |
+
# Optimizer step.
|
739 |
+
self.optim.step()
|
740 |
+
|
741 |
+
# Collect metrics and check for NaN loss.
|
742 |
+
# NOTE: this involves a bunch of host-device syncs so we wait until the last moment to do this.
|
743 |
+
if torch.isnan(ce_batch_loss):
|
744 |
+
raise ValueError("nan loss encountered")
|
745 |
+
if z_batch_loss is not None and torch.isnan(z_batch_loss):
|
746 |
+
raise ValueError("nan loss encountered")
|
747 |
+
for key, value in optim_metrics.items():
|
748 |
+
metrics[f"optim/{key}"] = value.item()
|
749 |
+
self.cur_train_loss = ce_batch_loss.item()
|
750 |
+
self.min_train_loss = min(self.min_train_loss, self.cur_train_loss)
|
751 |
+
metrics["train/CrossEntropyLoss"] = self.cur_train_loss
|
752 |
+
metrics["train/Perplexity"] = math.exp(self.cur_train_loss)
|
753 |
+
if z_batch_loss is not None:
|
754 |
+
metrics["train/ZLoss"] = z_batch_loss.item()
|
755 |
+
|
756 |
+
# Maybe collect post-step optimizer-specific metrics.
|
757 |
+
if should_log_optim_metrics_this_step:
|
758 |
+
optim_metrics = self.optim.get_post_step_metrics(self.fsdp_model)
|
759 |
+
for key, value in optim_metrics.items():
|
760 |
+
metrics[f"optim/{key}"] = value.item()
|
761 |
+
|
762 |
+
return metrics
|
763 |
+
|
764 |
+
def eval_batch(self, batch: Dict[str, Any]) -> Tuple[torch.Tensor, torch.Tensor]:
|
765 |
+
with torch.autocast("cuda", enabled=True, dtype=self.cfg.autocast_precision):
|
766 |
+
ce_loss, _, logits = self.model_forward(batch, loss_reduction="none")
|
767 |
+
return ce_loss.mean(dim=-1), logits
|
768 |
+
|
769 |
+
def eval_step(self, batch: Dict[str, Any], evaluator: Evaluator) -> None:
|
770 |
+
# Move tensors to the right device.
|
771 |
+
batch = move_to_device(batch, self.device)
|
772 |
+
|
773 |
+
# Run forward pass.
|
774 |
+
with torch.no_grad(): # NOTE: 'torch.inference_mode()' doesn't work with 'torch.compile()'.
|
775 |
+
ce_loss, logits = self.eval_batch(batch)
|
776 |
+
|
777 |
+
# Update metrics.
|
778 |
+
evaluator.update_metrics(
|
779 |
+
batch, ce_loss, logits
|
780 |
+
) # batch includes all keys that the downstream evaluation needs
|
781 |
+
|
782 |
+
barrier()
|
783 |
+
|
784 |
+
def split_batch(self, batch: Dict[str, Any]) -> List[Dict[str, Any]]:
|
785 |
+
microbatch_size = self.cfg.device_train_microbatch_size
|
786 |
+
batch_size = batch["input_ids"].shape[0]
|
787 |
+
if batch_size <= microbatch_size:
|
788 |
+
return [batch]
|
789 |
+
else:
|
790 |
+
micro_batches = {}
|
791 |
+
for key, value in batch.items():
|
792 |
+
if isinstance(value, torch.Tensor):
|
793 |
+
micro_batches[key] = value.split(microbatch_size, dim=0)
|
794 |
+
elif isinstance(value, list):
|
795 |
+
micro_batches[key] = [
|
796 |
+
value[microbatch_size * i : microbatch_size * i + microbatch_size]
|
797 |
+
for i in range(math.ceil(batch_size / microbatch_size))
|
798 |
+
]
|
799 |
+
else:
|
800 |
+
raise ValueError(f"unexpected item in batch: '{key}={value}'")
|
801 |
+
return [
|
802 |
+
{key: value[i] for key, value in micro_batches.items()} # type: ignore
|
803 |
+
for i in range(len(micro_batches["input_ids"]))
|
804 |
+
]
|
805 |
+
|
806 |
+
def system_metrics(self) -> Dict[str, float]:
|
807 |
+
metrics = {}
|
808 |
+
if self.global_step < 3 or self.global_step % 10 == 0:
|
809 |
+
peak_gpu_mb = peak_gpu_memory()
|
810 |
+
if peak_gpu_mb is not None:
|
811 |
+
metrics["System/Peak GPU Memory (MB)"] = peak_gpu_mb
|
812 |
+
return metrics
|
813 |
+
|
814 |
+
def log_metrics_to_console(self, prefix: str, metrics: Dict[str, float]):
|
815 |
+
def format_float(value: float) -> str:
|
816 |
+
if value < 0.0001:
|
817 |
+
return str(value) # scientific notation
|
818 |
+
elif value > 1000:
|
819 |
+
return f"{int(value):,d}"
|
820 |
+
elif value > 100:
|
821 |
+
return f"{value:.1f}"
|
822 |
+
elif value > 10:
|
823 |
+
return f"{value:.2f}"
|
824 |
+
elif value > 1:
|
825 |
+
return f"{value:.3f}"
|
826 |
+
else:
|
827 |
+
return f"{value:.4f}"
|
828 |
+
|
829 |
+
log.info(
|
830 |
+
f"{prefix}\n"
|
831 |
+
+ "\n".join(
|
832 |
+
[
|
833 |
+
f" {name}={format_float(value)}"
|
834 |
+
for name, value in metrics.items()
|
835 |
+
if not name.startswith("optim/") # there's too many optimizer metrics
|
836 |
+
]
|
837 |
+
)
|
838 |
+
)
|
839 |
+
|
840 |
+
def should_log_optim_metrics_this_step(self) -> bool:
|
841 |
+
if self.cfg.wandb is None:
|
842 |
+
# We only log optimizer-specific metrics to W&B, since there are usually too many metrics
|
843 |
+
# to log to the console.
|
844 |
+
return False
|
845 |
+
optim_log_interval = self.cfg.optimizer.metrics_log_interval
|
846 |
+
if optim_log_interval is None:
|
847 |
+
optim_log_interval = self.cfg.wandb.log_interval
|
848 |
+
else:
|
849 |
+
optim_log_interval = max(optim_log_interval, self.cfg.wandb.log_interval)
|
850 |
+
return self.global_step % optim_log_interval == 0
|
851 |
+
|
852 |
+
def should_log_this_step(self) -> bool:
|
853 |
+
if self.global_step % self.cfg.console_log_interval == 0:
|
854 |
+
return True
|
855 |
+
elif self.cfg.wandb is not None and self.global_step % self.cfg.wandb.log_interval == 0:
|
856 |
+
return True
|
857 |
+
else:
|
858 |
+
return False
|
859 |
+
|
860 |
+
def eval(self) -> Dict[str, Any]:
|
861 |
+
# Zero gradients and set model to 'eval' mode.
|
862 |
+
self.optim.zero_grad(set_to_none=True)
|
863 |
+
self.fsdp_model.eval()
|
864 |
+
|
865 |
+
eval_metrics = {}
|
866 |
+
for evaluator in self.evaluators:
|
867 |
+
log.info(f"Running evaluation for '{evaluator.label}'...")
|
868 |
+
|
869 |
+
# Reset metrics.
|
870 |
+
evaluator.reset_metrics()
|
871 |
+
|
872 |
+
# Initialize data loader iterator.
|
873 |
+
eval_batches = iter(evaluator.eval_loader)
|
874 |
+
|
875 |
+
# Adjust how many batches to evaluate on.
|
876 |
+
num_eval_batches = (
|
877 |
+
evaluator.subset_num_batches
|
878 |
+
if evaluator.subset_num_batches is not None
|
879 |
+
else self.cfg.eval_subset_num_batches
|
880 |
+
)
|
881 |
+
if num_eval_batches > 0:
|
882 |
+
num_eval_batches = min(num_eval_batches, len(evaluator.eval_loader))
|
883 |
+
eval_batches = islice(eval_batches, num_eval_batches)
|
884 |
+
|
885 |
+
# Run model over batches.
|
886 |
+
for eval_step, eval_batch in enumerate(eval_batches):
|
887 |
+
self.eval_step(eval_batch, evaluator)
|
888 |
+
|
889 |
+
# Log to console.
|
890 |
+
if eval_step + 1 == num_eval_batches or (eval_step + 1) % self.cfg.console_log_interval == 0:
|
891 |
+
log.info(f"[eval_step={eval_step + 1}/{num_eval_batches}]")
|
892 |
+
|
893 |
+
# Get final metrics.
|
894 |
+
metrics = evaluator.compute_metrics()
|
895 |
+
eval_metrics.update(metrics)
|
896 |
+
self.log_metrics_to_console(f"{evaluator.label}", metrics)
|
897 |
+
|
898 |
+
del eval_batches
|
899 |
+
|
900 |
+
return eval_metrics
|
901 |
+
|
902 |
+
def check_if_cancelled(self) -> Tuple[bool, int]:
|
903 |
+
should_cancel = False
|
904 |
+
cancel_reason: Optional[str] = None
|
905 |
+
extra_steps = 0
|
906 |
+
if get_global_rank() == 0:
|
907 |
+
if self.cfg.time_limit is not None and time.time() - self._start_time >= self.cfg.time_limit:
|
908 |
+
# First check if we've reached the training time limit.
|
909 |
+
should_cancel = True
|
910 |
+
cancel_reason = "time limit reached"
|
911 |
+
extra_steps = self.cfg.extra_steps_after_cancel
|
912 |
+
elif (
|
913 |
+
self.cfg.early_stopping_factor is not None
|
914 |
+
and self.global_step > self.cfg.scheduler.t_warmup
|
915 |
+
and self.cur_train_loss > self.cfg.early_stopping_factor * self.min_train_loss
|
916 |
+
):
|
917 |
+
# Next check if early stopping loss criteria is met.
|
918 |
+
should_cancel = True
|
919 |
+
cancel_reason = "early stopping from loss increase"
|
920 |
+
elif wandb.run is not None and (api_key := os.environ.get("WANDB_API_KEY")) is not None:
|
921 |
+
# Finally, check if someone canceled the run from W&B by adding the 'cancel' / 'canceled' tag..
|
922 |
+
# We won't see it in the run object. So we have to use the import/export API to check.
|
923 |
+
from requests.exceptions import RequestException
|
924 |
+
|
925 |
+
try:
|
926 |
+
api = wandb.Api(api_key=api_key)
|
927 |
+
run = api.run(wandb.run.path)
|
928 |
+
for tag in run.tags or []:
|
929 |
+
if tag.lower() in {"cancel", "canceled", "cancelled"}:
|
930 |
+
should_cancel = True
|
931 |
+
cancel_reason = "Weights & Biases tag"
|
932 |
+
extra_steps = self.cfg.extra_steps_after_cancel
|
933 |
+
break
|
934 |
+
except RequestException:
|
935 |
+
pass
|
936 |
+
|
937 |
+
run_canceled = synchronize_flag(should_cancel, self.device)
|
938 |
+
if run_canceled:
|
939 |
+
extra_steps = synchronize_value(extra_steps, self.device)
|
940 |
+
if cancel_reason is None:
|
941 |
+
if extra_steps > 0:
|
942 |
+
log.warning(f"Run canceled, stopping in {extra_steps} more steps...")
|
943 |
+
else:
|
944 |
+
log.warning("Run canceled")
|
945 |
+
else:
|
946 |
+
if extra_steps > 0:
|
947 |
+
log.warning(f"Run canceled due to {cancel_reason}, stopping in {extra_steps} more steps...")
|
948 |
+
else:
|
949 |
+
log.warning(f"Run canceled due to {cancel_reason}")
|
950 |
+
|
951 |
+
return run_canceled, extra_steps
|
952 |
+
|
953 |
+
def fit(self):
|
954 |
+
if self.cfg.stop_after is not None:
|
955 |
+
if self.cfg.stop_at is None:
|
956 |
+
self.cfg.stop_at = self.global_step + self.cfg.stop_after
|
957 |
+
else:
|
958 |
+
self.cfg.stop_at = min(self.cfg.stop_at, self.global_step + self.cfg.stop_after)
|
959 |
+
|
960 |
+
self._start_time = time.time()
|
961 |
+
self._gc_init_state = gc.isenabled() # cache if garbage collection is enabled, reset on close.
|
962 |
+
|
963 |
+
# Disable automatic garbage collection, FSDP doesn't work well with it.
|
964 |
+
if self.cfg.gen1_gc_interval is not None:
|
965 |
+
gc.disable()
|
966 |
+
|
967 |
+
if self.cfg.load_path is not None and self.global_step > 0 and self.cfg.eval_on_load:
|
968 |
+
eval_metrics = self.eval()
|
969 |
+
if wandb.run is not None:
|
970 |
+
wandb.log(eval_metrics, step=self.global_step)
|
971 |
+
|
972 |
+
# Set model to 'train' mode.
|
973 |
+
self.fsdp_model.train()
|
974 |
+
|
975 |
+
# Initialize monitors.
|
976 |
+
assert self.cfg.device_train_batch_size is not None
|
977 |
+
speed_monitor = SpeedMonitor(self.cfg.speed_monitor)
|
978 |
+
lr_monitor = LRMonitor(self.optim)
|
979 |
+
|
980 |
+
# Log system metrics at the start of training.
|
981 |
+
sys_metrics = self.system_metrics()
|
982 |
+
if sys_metrics:
|
983 |
+
self.log_metrics_to_console("Pre-train system metrics", sys_metrics)
|
984 |
+
if wandb.run is not None:
|
985 |
+
wandb.log(sys_metrics, step=0)
|
986 |
+
|
987 |
+
# Python Profiler stuff
|
988 |
+
if self.cfg.python_profiling:
|
989 |
+
python_profiler = cProfile.Profile()
|
990 |
+
else:
|
991 |
+
python_profiler = None
|
992 |
+
|
993 |
+
# PyTorch Profiler stuff
|
994 |
+
if self.cfg.torch_profiling and get_global_rank() == 0:
|
995 |
+
from torch.profiler import schedule
|
996 |
+
|
997 |
+
profiling_schedule = schedule(wait=1, warmup=5, active=3, repeat=1)
|
998 |
+
|
999 |
+
def on_trace_ready(p):
|
1000 |
+
profiler_output_dir = Path(self.cfg.save_folder) / "profiler"
|
1001 |
+
profiler_output_dir.mkdir(exist_ok=True)
|
1002 |
+
|
1003 |
+
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=32)
|
1004 |
+
log.info(f"Profile by total GPU time at step {p.step_num}:\n{output}")
|
1005 |
+
output = p.key_averages().table(sort_by="self_cpu_time_total", row_limit=32)
|
1006 |
+
log.info(f"Profile by total CPU time at step {p.step_num}:\n{output}")
|
1007 |
+
|
1008 |
+
p.export_chrome_trace(
|
1009 |
+
str(trace_path := (profiler_output_dir / f"{p.step_num}.chrome_trace.json.gz"))
|
1010 |
+
)
|
1011 |
+
if self.cfg.remote_save_folder is not None:
|
1012 |
+
upload_folder = f"{self.cfg.remote_save_folder.rstrip('/')}/profiler"
|
1013 |
+
log.info(f"Tracing complete, uploading results to '{upload_folder}'...")
|
1014 |
+
upload(trace_path, f"{upload_folder}/{trace_path.name}")
|
1015 |
+
|
1016 |
+
from torch.profiler import ProfilerActivity
|
1017 |
+
|
1018 |
+
torch_profiler = torch.profiler.profile(
|
1019 |
+
activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
|
1020 |
+
record_shapes=False,
|
1021 |
+
profile_memory=False,
|
1022 |
+
with_stack=True,
|
1023 |
+
schedule=profiling_schedule,
|
1024 |
+
on_trace_ready=on_trace_ready,
|
1025 |
+
)
|
1026 |
+
del profiling_schedule
|
1027 |
+
else:
|
1028 |
+
import contextlib
|
1029 |
+
|
1030 |
+
torch_profiler = contextlib.nullcontext()
|
1031 |
+
|
1032 |
+
# Train.
|
1033 |
+
first_batch: bool = True
|
1034 |
+
cancel_initiated: bool = False
|
1035 |
+
stop_at: Optional[int] = self.cfg.stop_at
|
1036 |
+
save_checkpoints: bool = True
|
1037 |
+
|
1038 |
+
with torch_profiler as p:
|
1039 |
+
for epoch in range(self.epoch or 0, self.max_epochs):
|
1040 |
+
for batch in self.train_loader:
|
1041 |
+
# print(f" >>>>>>>>>>fit start with Global step: {self.global_step} <<<<<<<<<<<<<<<") if get_global_rank()==0 else None
|
1042 |
+
# Bookkeeping.
|
1043 |
+
# NOTE: To track the global batch size / number of tokens per batch we make the assumption that all
|
1044 |
+
# batches see the same number of tokens, which should be the case for language model pre-training
|
1045 |
+
# (at least when drop_last=True).
|
1046 |
+
# Alternatively we'd have to use a distributed all reduce over seq_len here, but I don't want that
|
1047 |
+
# overhead. So for now I'm putting these assertions here so if the assumption is violated it will
|
1048 |
+
# fail loudly.
|
1049 |
+
batch_size, seq_len = batch["input_ids"].shape
|
1050 |
+
assert seq_len == self.cfg.model.max_sequence_length
|
1051 |
+
assert batch_size == self.cfg.device_train_batch_size
|
1052 |
+
global_batch_size = batch_size * get_world_size() # assumes batch size equal across ranks
|
1053 |
+
self.global_step += 1
|
1054 |
+
self.global_train_examples_seen_this_epoch += global_batch_size
|
1055 |
+
self.global_train_tokens_seen += global_batch_size * seq_len
|
1056 |
+
speed_monitor.batch_start(
|
1057 |
+
self.global_train_tokens_seen,
|
1058 |
+
batch_size * seq_len, # num tokens in batch for this device
|
1059 |
+
# We start monitoring speed after the first batch since the first
|
1060 |
+
# batch might be an outlier due to compiling and other initialization overhead.
|
1061 |
+
record=not first_batch,
|
1062 |
+
)
|
1063 |
+
|
1064 |
+
should_log_this_step = self.should_log_this_step()
|
1065 |
+
|
1066 |
+
# Run train step on batch.
|
1067 |
+
metrics = self.train_step(batch, reduce_global_loss=should_log_this_step)
|
1068 |
+
# print(f" After train step with Global step: {self.global_step}") if get_global_rank()==0 else None
|
1069 |
+
|
1070 |
+
# Maybe collect other metrics.
|
1071 |
+
if should_log_this_step:
|
1072 |
+
# Speed metrics.
|
1073 |
+
metrics.update(speed_monitor.check())
|
1074 |
+
# System metrics.
|
1075 |
+
metrics.update(self.system_metrics())
|
1076 |
+
# Learning rate metrics.
|
1077 |
+
metrics.update(lr_monitor.check())
|
1078 |
+
|
1079 |
+
# Log metrics to console.
|
1080 |
+
if self.global_step % self.cfg.console_log_interval == 0:
|
1081 |
+
if get_global_rank() == 0:
|
1082 |
+
self.log_metrics_to_console(f"[step={self.global_step}/{self.max_steps}]", metrics)
|
1083 |
+
else:
|
1084 |
+
log.info(f"[step={self.global_step}/{self.max_steps}]")
|
1085 |
+
|
1086 |
+
# Log metrics to W&B.
|
1087 |
+
if (
|
1088 |
+
wandb.run is not None
|
1089 |
+
and self.cfg.wandb is not None
|
1090 |
+
and self.global_step % self.cfg.wandb.log_interval == 0
|
1091 |
+
):
|
1092 |
+
wandb.log(metrics, step=self.global_step)
|
1093 |
+
|
1094 |
+
# Check if/when run should be canceled.
|
1095 |
+
if not cancel_initiated and self.global_step % self.cfg.canceled_check_interval == 0:
|
1096 |
+
cancel_initiated, extra_steps = self.check_if_cancelled()
|
1097 |
+
if cancel_initiated:
|
1098 |
+
stop_at = (
|
1099 |
+
self.global_step + extra_steps
|
1100 |
+
if stop_at is None
|
1101 |
+
else min(self.global_step + extra_steps, stop_at)
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
# Maybe save sharded checkpoint.
|
1105 |
+
if save_checkpoints and (
|
1106 |
+
cancel_initiated
|
1107 |
+
or (
|
1108 |
+
self.global_step % self.cfg.save_interval == 0
|
1109 |
+
and self.cfg.save_num_checkpoints_to_keep != 0
|
1110 |
+
)
|
1111 |
+
):
|
1112 |
+
log.info("Saving checkpoint...")
|
1113 |
+
checkpoint_path, _ = self.save_checkpoint(CheckpointType.sharded)
|
1114 |
+
log.info(f"Checkpoint saved to {checkpoint_path}")
|
1115 |
+
|
1116 |
+
# Remove any ephemeral checkpoints.
|
1117 |
+
while self.ephemeral_checkpoints:
|
1118 |
+
self.remove_ephemeral_checkpoint()
|
1119 |
+
|
1120 |
+
# Reset speed monitor so that we don't count the time taken to save checkpoints.
|
1121 |
+
speed_monitor.reset()
|
1122 |
+
|
1123 |
+
# If the run was just canceled this will be the final checkpoint.
|
1124 |
+
if cancel_initiated:
|
1125 |
+
save_checkpoints = False
|
1126 |
+
elif (
|
1127 |
+
self.cfg.save_interval_ephemeral is not None
|
1128 |
+
and self.global_step % self.cfg.save_interval_ephemeral == 0
|
1129 |
+
):
|
1130 |
+
log.info("Saving ephemeral checkpoint...")
|
1131 |
+
checkpoint_path, _ = self.save_checkpoint(CheckpointType.sharded_ephemeral)
|
1132 |
+
log.info(f"Checkpoint saved to {checkpoint_path}")
|
1133 |
+
|
1134 |
+
# Reset speed monitor so that we don't count the time taken to save checkpoints.
|
1135 |
+
speed_monitor.reset()
|
1136 |
+
|
1137 |
+
# Maybe save unsharded checkpoint.
|
1138 |
+
if (
|
1139 |
+
save_checkpoints
|
1140 |
+
and self.cfg.save_interval_unsharded is not None
|
1141 |
+
and self.global_step % self.cfg.save_interval_unsharded == 0
|
1142 |
+
and self.cfg.save_num_unsharded_checkpoints_to_keep != 0
|
1143 |
+
):
|
1144 |
+
log.info("Saving unsharded checkpoint...")
|
1145 |
+
checkpoint_path, _ = self.save_checkpoint(CheckpointType.unsharded)
|
1146 |
+
log.info(f"Unsharded checkpoint saved to {checkpoint_path}")
|
1147 |
+
|
1148 |
+
# Reset speed monitor so that we don't count the time taken to save checkpoints.
|
1149 |
+
speed_monitor.reset()
|
1150 |
+
|
1151 |
+
# Maybe run evaluations.
|
1152 |
+
if not cancel_initiated and self.global_step % self.cfg.eval_interval == 0:
|
1153 |
+
eval_metrics = self.eval()
|
1154 |
+
|
1155 |
+
# Log metrics to W&B.
|
1156 |
+
if wandb.run is not None:
|
1157 |
+
wandb.log(eval_metrics, step=self.global_step)
|
1158 |
+
|
1159 |
+
# Reset speed monitor so that we don't count the time taken to run evaluations.
|
1160 |
+
speed_monitor.reset()
|
1161 |
+
|
1162 |
+
# Reset model to 'train' mode.
|
1163 |
+
self.fsdp_model.train()
|
1164 |
+
|
1165 |
+
# End of batch.
|
1166 |
+
first_batch = False
|
1167 |
+
if p is not None:
|
1168 |
+
p.step()
|
1169 |
+
|
1170 |
+
if stop_at is not None and self.global_step >= stop_at:
|
1171 |
+
break
|
1172 |
+
|
1173 |
+
# Run generation 1 garbage collection.
|
1174 |
+
if self.cfg.gen1_gc_interval is not None and self.global_step % self.cfg.gen1_gc_interval == 0:
|
1175 |
+
gc.collect(1)
|
1176 |
+
|
1177 |
+
# Python Profiler stuff
|
1178 |
+
# We do this now, at the bottom of this loop, so we capture the work of getting the next batch.
|
1179 |
+
if python_profiler is not None:
|
1180 |
+
if self.global_step == 5:
|
1181 |
+
python_profiler.enable()
|
1182 |
+
elif self.global_step == 8:
|
1183 |
+
python_profiler.disable()
|
1184 |
+
python_profiler.print_stats(sort=SortKey.CUMULATIVE)
|
1185 |
+
python_profiler = None
|
1186 |
+
else:
|
1187 |
+
log.info("Training epoch complete")
|
1188 |
+
self.epoch = epoch + 1
|
1189 |
+
self.global_train_examples_seen_this_epoch = 0
|
1190 |
+
if self.epoch < self.max_epochs:
|
1191 |
+
self.dataset.reshuffle()
|
1192 |
+
continue
|
1193 |
+
|
1194 |
+
break
|
1195 |
+
|
1196 |
+
# Save final checkpoint.
|
1197 |
+
if save_checkpoints:
|
1198 |
+
if (
|
1199 |
+
self.cfg.save_interval_unsharded is not None
|
1200 |
+
and self.last_unsharded_checkpoint_step != self.global_step
|
1201 |
+
):
|
1202 |
+
log.info("Saving final unsharded model checkpoint...")
|
1203 |
+
checkpoint_path, _ = self.save_checkpoint(CheckpointType.unsharded)
|
1204 |
+
log.info(f"Unsharded checkpoint saved to {checkpoint_path}")
|
1205 |
+
elif (
|
1206 |
+
self.cfg.save_num_checkpoints_to_keep != 0
|
1207 |
+
and self.last_sharded_checkpoint_step != self.global_step
|
1208 |
+
):
|
1209 |
+
log.info("Saving final checkpoint...")
|
1210 |
+
checkpoint_path, _ = self.save_checkpoint(CheckpointType.sharded)
|
1211 |
+
log.info(f"Checkpoint saved to {checkpoint_path}")
|
1212 |
+
|
1213 |
+
def close(self, exit_code: int = 0) -> None:
|
1214 |
+
gc_cuda()
|
1215 |
+
|
1216 |
+
if self.indices_file is not None:
|
1217 |
+
self.indices_file.flush()
|
1218 |
+
self.indices_file.close()
|
1219 |
+
if self._gc_init_state:
|
1220 |
+
gc.enable()
|
1221 |
+
else:
|
1222 |
+
gc.disable()
|
1223 |
+
if wandb.run is not None:
|
1224 |
+
wandb.finish(exit_code=exit_code, quiet=True)
|
1225 |
+
|
1226 |
+
def __enter__(self) -> Trainer:
|
1227 |
+
return self
|
1228 |
+
|
1229 |
+
def __exit__(self, exc_type, exc_val, exc_tb) -> None:
|
1230 |
+
del exc_val, exc_tb
|
1231 |
+
self.close(0 if exc_type is None else 1)
|
model/util.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
import socket
|
5 |
+
import sys
|
6 |
+
import time
|
7 |
+
import warnings
|
8 |
+
from datetime import datetime
|
9 |
+
from enum import Enum
|
10 |
+
from itertools import cycle, islice
|
11 |
+
from pathlib import Path
|
12 |
+
from queue import Queue
|
13 |
+
from threading import Thread
|
14 |
+
from typing import Any, Callable, Dict, Optional, Union
|
15 |
+
|
16 |
+
import boto3
|
17 |
+
import botocore.exceptions as boto_exceptions
|
18 |
+
import rich
|
19 |
+
from botocore.config import Config
|
20 |
+
from rich.console import Console, ConsoleRenderable
|
21 |
+
from rich.highlighter import NullHighlighter
|
22 |
+
from rich.progress import Progress
|
23 |
+
from rich.text import Text
|
24 |
+
from rich.traceback import Traceback
|
25 |
+
|
26 |
+
from .aliases import PathOrStr
|
27 |
+
from .exceptions import (
|
28 |
+
OLMoCliError,
|
29 |
+
OLMoEnvironmentError,
|
30 |
+
OLMoError,
|
31 |
+
OLMoNetworkError,
|
32 |
+
OLMoThreadError,
|
33 |
+
)
|
34 |
+
from .torch_util import get_global_rank, get_local_rank, get_node_rank, is_distributed
|
35 |
+
|
36 |
+
try:
|
37 |
+
from functools import cache
|
38 |
+
except ImportError:
|
39 |
+
from functools import lru_cache as cache
|
40 |
+
|
41 |
+
|
42 |
+
class StrEnum(str, Enum):
|
43 |
+
"""
|
44 |
+
This is equivalent to Python's :class:`enum.StrEnum` since version 3.11.
|
45 |
+
We include this here for compatibility with older version of Python.
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __str__(self) -> str:
|
49 |
+
return self.value
|
50 |
+
|
51 |
+
def __repr__(self) -> str:
|
52 |
+
return f"'{str(self)}'"
|
53 |
+
|
54 |
+
|
55 |
+
_log_extra_fields: Dict[str, Any] = {}
|
56 |
+
log = logging.getLogger(__name__)
|
57 |
+
|
58 |
+
|
59 |
+
class LogFilterType(StrEnum):
|
60 |
+
rank0_only = "rank0_only"
|
61 |
+
local_rank0_only = "local_rank0_only"
|
62 |
+
all_ranks = "all_ranks"
|
63 |
+
|
64 |
+
|
65 |
+
def log_extra_field(field_name: str, field_value: Any) -> None:
|
66 |
+
global _log_extra_fields
|
67 |
+
if field_value is None:
|
68 |
+
if field_name in _log_extra_fields:
|
69 |
+
del _log_extra_fields[field_name]
|
70 |
+
else:
|
71 |
+
_log_extra_fields[field_name] = field_value
|
72 |
+
|
73 |
+
|
74 |
+
def setup_logging(log_filter_type: LogFilterType = LogFilterType.rank0_only) -> None:
|
75 |
+
"""
|
76 |
+
:param rank0_only: INFO and below messages will only be emitted on the rank0 process.
|
77 |
+
"""
|
78 |
+
log_extra_field("hostname", socket.gethostname())
|
79 |
+
if is_distributed():
|
80 |
+
log_extra_field("node_rank", get_node_rank())
|
81 |
+
log_extra_field("local_rank", get_local_rank())
|
82 |
+
log_extra_field("global_rank", get_global_rank())
|
83 |
+
else:
|
84 |
+
log_extra_field("node_rank", 0)
|
85 |
+
log_extra_field("local_rank", 0)
|
86 |
+
log_extra_field("global_rank", 0)
|
87 |
+
|
88 |
+
old_log_record_factory = logging.getLogRecordFactory()
|
89 |
+
|
90 |
+
def log_record_factory(*args, **kwargs) -> logging.LogRecord:
|
91 |
+
record = old_log_record_factory(*args, **kwargs)
|
92 |
+
for field_name, field_value in _log_extra_fields.items():
|
93 |
+
setattr(record, field_name, field_value)
|
94 |
+
return record
|
95 |
+
|
96 |
+
logging.setLogRecordFactory(log_record_factory)
|
97 |
+
|
98 |
+
handler: logging.Handler
|
99 |
+
if (
|
100 |
+
os.environ.get("OLMo_NONINTERACTIVE", False)
|
101 |
+
or os.environ.get("DEBIAN_FRONTEND", None) == "noninteractive"
|
102 |
+
or not sys.stdout.isatty()
|
103 |
+
):
|
104 |
+
handler = logging.StreamHandler(sys.stdout)
|
105 |
+
formatter = logging.Formatter(
|
106 |
+
"%(asctime)s\t%(hostname)s:%(local_rank)s\t%(name)s:%(lineno)s\t%(levelname)s\t%(message)s"
|
107 |
+
)
|
108 |
+
formatter.default_time_format = "%Y-%m-%d %H:%M:%S"
|
109 |
+
formatter.default_msec_format = "%s.%03d"
|
110 |
+
handler.setFormatter(formatter)
|
111 |
+
else:
|
112 |
+
handler = RichHandler()
|
113 |
+
|
114 |
+
def rank0_filter(record: logging.LogRecord) -> int:
|
115 |
+
if record.levelno > logging.INFO:
|
116 |
+
return 1
|
117 |
+
if getattr(record, "global_rank", 0) == 0:
|
118 |
+
return 1
|
119 |
+
else:
|
120 |
+
return 0
|
121 |
+
|
122 |
+
def local_rank0_filter(record: logging.LogRecord) -> int:
|
123 |
+
if record.levelno > logging.INFO:
|
124 |
+
return 1
|
125 |
+
if getattr(record, "local_rank", 0) == 0:
|
126 |
+
return 1
|
127 |
+
else:
|
128 |
+
return 0
|
129 |
+
|
130 |
+
if log_filter_type == LogFilterType.rank0_only:
|
131 |
+
filter = rank0_filter
|
132 |
+
elif log_filter_type == LogFilterType.local_rank0_only:
|
133 |
+
filter = local_rank0_filter # type: ignore
|
134 |
+
elif log_filter_type == LogFilterType.all_ranks:
|
135 |
+
filter = None
|
136 |
+
else:
|
137 |
+
raise ValueError(log_filter_type)
|
138 |
+
|
139 |
+
if filter is not None:
|
140 |
+
handler.addFilter(filter) # type: ignore
|
141 |
+
logging.basicConfig(handlers=[handler], level=logging.INFO)
|
142 |
+
|
143 |
+
logging.captureWarnings(True)
|
144 |
+
logging.getLogger("urllib3").setLevel(logging.ERROR)
|
145 |
+
|
146 |
+
|
147 |
+
def excepthook(exctype, value, traceback):
|
148 |
+
"""
|
149 |
+
Used to patch `sys.excepthook` in order to log exceptions.
|
150 |
+
"""
|
151 |
+
if issubclass(exctype, KeyboardInterrupt):
|
152 |
+
sys.__excepthook__(exctype, value, traceback)
|
153 |
+
elif issubclass(exctype, OLMoCliError):
|
154 |
+
rich.get_console().print(f"[yellow]{value}[/]", highlight=False)
|
155 |
+
elif issubclass(exctype, OLMoError):
|
156 |
+
rich.get_console().print(Text(f"{exctype.__name__}:", style="red"), value, highlight=False)
|
157 |
+
else:
|
158 |
+
log.critical("Uncaught %s: %s", exctype.__name__, value, exc_info=(exctype, value, traceback))
|
159 |
+
|
160 |
+
|
161 |
+
def install_excepthook():
|
162 |
+
sys.excepthook = excepthook
|
163 |
+
|
164 |
+
|
165 |
+
def filter_warnings():
|
166 |
+
# Filter internal deprecation warnings from torch
|
167 |
+
warnings.filterwarnings(
|
168 |
+
action="ignore",
|
169 |
+
category=UserWarning,
|
170 |
+
message="torch.distributed.*_base is a private function and will be deprecated.*",
|
171 |
+
)
|
172 |
+
warnings.filterwarnings(
|
173 |
+
action="ignore",
|
174 |
+
category=UserWarning,
|
175 |
+
message="TypedStorage is deprecated.*",
|
176 |
+
)
|
177 |
+
warnings.filterwarnings(
|
178 |
+
action="ignore",
|
179 |
+
category=UserWarning,
|
180 |
+
message="Please use DTensor instead.*",
|
181 |
+
)
|
182 |
+
# Torchvision warnings. We don't actually use torchvision.
|
183 |
+
warnings.filterwarnings(
|
184 |
+
action="ignore",
|
185 |
+
message="failed to load.*",
|
186 |
+
module="torchvision.io.image",
|
187 |
+
)
|
188 |
+
|
189 |
+
|
190 |
+
def set_env_variables():
|
191 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
192 |
+
|
193 |
+
|
194 |
+
def prepare_cli_environment(log_filter_type: Optional[LogFilterType] = None):
|
195 |
+
if log_filter_type is None:
|
196 |
+
log_filter_type = LogFilterType(os.environ.get("LOG_FILTER_TYPE", "rank0_only"))
|
197 |
+
rich.reconfigure(width=max(rich.get_console().width, 180), soft_wrap=True)
|
198 |
+
setup_logging(log_filter_type=log_filter_type)
|
199 |
+
install_excepthook()
|
200 |
+
filter_warnings()
|
201 |
+
set_env_variables()
|
202 |
+
|
203 |
+
|
204 |
+
def clean_opt(arg: str) -> str:
|
205 |
+
if "=" not in arg:
|
206 |
+
arg = f"{arg}=True"
|
207 |
+
name, val = arg.split("=", 1)
|
208 |
+
name = name.strip("-").replace("-", "_")
|
209 |
+
return f"{name}={val}"
|
210 |
+
|
211 |
+
|
212 |
+
class RichHandler(logging.Handler):
|
213 |
+
"""
|
214 |
+
A simplified version of rich.logging.RichHandler from
|
215 |
+
https://github.com/Textualize/rich/blob/master/rich/logging.py
|
216 |
+
"""
|
217 |
+
|
218 |
+
def __init__(
|
219 |
+
self,
|
220 |
+
*,
|
221 |
+
level: Union[int, str] = logging.NOTSET,
|
222 |
+
console: Optional[Console] = None,
|
223 |
+
markup: bool = False,
|
224 |
+
) -> None:
|
225 |
+
super().__init__(level=level)
|
226 |
+
self.console = console or rich.get_console()
|
227 |
+
self.highlighter = NullHighlighter()
|
228 |
+
self.markup = markup
|
229 |
+
|
230 |
+
def emit(self, record: logging.LogRecord) -> None:
|
231 |
+
try:
|
232 |
+
if hasattr(record.msg, "__rich__") or hasattr(record.msg, "__rich_console__"):
|
233 |
+
self.console.print(record.msg)
|
234 |
+
else:
|
235 |
+
msg: Any = record.msg
|
236 |
+
if isinstance(record.msg, str):
|
237 |
+
msg = self.render_message(record=record, message=record.getMessage())
|
238 |
+
renderables = [
|
239 |
+
self.get_time_text(record),
|
240 |
+
self.get_level_text(record),
|
241 |
+
self.get_location_text(record),
|
242 |
+
msg,
|
243 |
+
]
|
244 |
+
if record.exc_info is not None:
|
245 |
+
tb = Traceback.from_exception(*record.exc_info) # type: ignore
|
246 |
+
renderables.append(tb)
|
247 |
+
self.console.print(*renderables)
|
248 |
+
except Exception:
|
249 |
+
self.handleError(record)
|
250 |
+
|
251 |
+
def render_message(self, *, record: logging.LogRecord, message: str) -> ConsoleRenderable:
|
252 |
+
use_markup = getattr(record, "markup", self.markup)
|
253 |
+
message_text = Text.from_markup(message) if use_markup else Text(message)
|
254 |
+
|
255 |
+
highlighter = getattr(record, "highlighter", self.highlighter)
|
256 |
+
if highlighter:
|
257 |
+
message_text = highlighter(message_text)
|
258 |
+
|
259 |
+
return message_text
|
260 |
+
|
261 |
+
def get_time_text(self, record: logging.LogRecord) -> Text:
|
262 |
+
log_time = datetime.fromtimestamp(record.created)
|
263 |
+
time_str = log_time.strftime("[%Y-%m-%d %X]")
|
264 |
+
return Text(time_str, style="log.time", end=" ")
|
265 |
+
|
266 |
+
def get_level_text(self, record: logging.LogRecord) -> Text:
|
267 |
+
level_name = record.levelname
|
268 |
+
level_text = Text.styled(level_name.ljust(8), f"logging.level.{level_name.lower()}")
|
269 |
+
level_text.style = "log.level"
|
270 |
+
level_text.end = " "
|
271 |
+
return level_text
|
272 |
+
|
273 |
+
def get_location_text(self, record: logging.LogRecord) -> Text:
|
274 |
+
name_and_line = f"{record.name}:{record.lineno}" if record.name != "root" else "root"
|
275 |
+
text = f"[{name_and_line}, rank={record.local_rank}]" # type: ignore
|
276 |
+
return Text(text, style="log.path")
|
277 |
+
|
278 |
+
|
279 |
+
def wait_for(condition: Callable[[], bool], description: str, timeout: float = 10.0):
|
280 |
+
"""Wait for the condition function to return True."""
|
281 |
+
start_time = time.monotonic()
|
282 |
+
while not condition():
|
283 |
+
time.sleep(0.5)
|
284 |
+
if time.monotonic() - start_time > timeout:
|
285 |
+
raise TimeoutError(f"{description} timed out")
|
286 |
+
|
287 |
+
|
288 |
+
def is_url(path: PathOrStr) -> bool:
|
289 |
+
return re.match(r"[a-z0-9]+://.*", str(path)) is not None
|
290 |
+
|
291 |
+
|
292 |
+
def dir_is_empty(dir: PathOrStr) -> bool:
|
293 |
+
dir = Path(dir)
|
294 |
+
if not dir.is_dir():
|
295 |
+
return True
|
296 |
+
try:
|
297 |
+
next(dir.glob("*"))
|
298 |
+
return False
|
299 |
+
except StopIteration:
|
300 |
+
return True
|
301 |
+
|
302 |
+
|
303 |
+
def get_progress_bar() -> Progress:
|
304 |
+
from cached_path import get_download_progress
|
305 |
+
|
306 |
+
return get_download_progress()
|
307 |
+
|
308 |
+
|
309 |
+
def resource_path(
|
310 |
+
folder: PathOrStr, fname: str, local_cache: Optional[PathOrStr] = None, progress: Optional[Progress] = None
|
311 |
+
) -> Path:
|
312 |
+
if local_cache is not None and (local_path := Path(local_cache) / fname).is_file():
|
313 |
+
log.info(f"Found local cache of {fname} at {local_path}")
|
314 |
+
return local_path
|
315 |
+
else:
|
316 |
+
from cached_path import cached_path
|
317 |
+
|
318 |
+
return cached_path(f"{str(folder).rstrip('/')}/{fname}", progress=progress)
|
319 |
+
|
320 |
+
|
321 |
+
def file_size(path: PathOrStr) -> int:
|
322 |
+
"""
|
323 |
+
Get the size of a local or remote file in bytes.
|
324 |
+
"""
|
325 |
+
if is_url(path):
|
326 |
+
from urllib.parse import urlparse
|
327 |
+
|
328 |
+
parsed = urlparse(str(path))
|
329 |
+
if parsed.scheme == "gs":
|
330 |
+
return _gcs_file_size(parsed.netloc, parsed.path.strip("/"))
|
331 |
+
elif parsed.scheme in ("s3", "r2"):
|
332 |
+
return _s3_file_size(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
|
333 |
+
elif parsed.scheme in ("http", "https"):
|
334 |
+
return _http_file_size(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
|
335 |
+
elif parsed.scheme == "file":
|
336 |
+
return file_size(str(path).replace("file://", "", 1))
|
337 |
+
else:
|
338 |
+
raise NotImplementedError(f"file size not implemented for '{parsed.scheme}' files")
|
339 |
+
else:
|
340 |
+
return os.stat(path).st_size
|
341 |
+
|
342 |
+
|
343 |
+
def upload(source: PathOrStr, target: str, save_overwrite: bool = False):
|
344 |
+
"""Upload source file to a target location on GCS or S3."""
|
345 |
+
from urllib.parse import urlparse
|
346 |
+
|
347 |
+
source = Path(source)
|
348 |
+
assert source.is_file()
|
349 |
+
parsed = urlparse(target)
|
350 |
+
if parsed.scheme == "gs":
|
351 |
+
_gcs_upload(source, parsed.netloc, parsed.path.strip("/"), save_overwrite=save_overwrite)
|
352 |
+
elif parsed.scheme in ("s3", "r2"):
|
353 |
+
_s3_upload(source, parsed.scheme, parsed.netloc, parsed.path.strip("/"), save_overwrite=save_overwrite)
|
354 |
+
else:
|
355 |
+
raise NotImplementedError(f"Upload not implemented for '{parsed.scheme}' scheme")
|
356 |
+
|
357 |
+
|
358 |
+
def get_bytes_range(source: PathOrStr, bytes_start: int, num_bytes: int) -> bytes:
|
359 |
+
if is_url(source):
|
360 |
+
from urllib.parse import urlparse
|
361 |
+
|
362 |
+
parsed = urlparse(str(source))
|
363 |
+
if parsed.scheme == "gs":
|
364 |
+
return _gcs_get_bytes_range(parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes)
|
365 |
+
elif parsed.scheme in ("s3", "r2"):
|
366 |
+
return _s3_get_bytes_range(
|
367 |
+
parsed.scheme, parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes
|
368 |
+
)
|
369 |
+
elif parsed.scheme in ("http", "https"):
|
370 |
+
return _http_get_bytes_range(
|
371 |
+
parsed.scheme, parsed.netloc, parsed.path.strip("/"), bytes_start, num_bytes
|
372 |
+
)
|
373 |
+
elif parsed.scheme == "file":
|
374 |
+
return get_bytes_range(str(source).replace("file://", "", 1), bytes_start, num_bytes)
|
375 |
+
else:
|
376 |
+
raise NotImplementedError(f"get bytes range not implemented for '{parsed.scheme}' files")
|
377 |
+
else:
|
378 |
+
with open(source, "rb") as f:
|
379 |
+
f.seek(bytes_start)
|
380 |
+
return f.read(num_bytes)
|
381 |
+
|
382 |
+
|
383 |
+
def find_latest_checkpoint(dir: PathOrStr) -> Optional[PathOrStr]:
|
384 |
+
if is_url(dir):
|
385 |
+
from urllib.parse import urlparse
|
386 |
+
|
387 |
+
parsed = urlparse(str(dir))
|
388 |
+
if parsed.scheme == "gs":
|
389 |
+
raise NotImplementedError
|
390 |
+
elif parsed.scheme in ("s3", "r2"):
|
391 |
+
return _s3_find_latest_checkpoint(parsed.scheme, parsed.netloc, parsed.path.strip("/"))
|
392 |
+
elif parsed.scheme == "file":
|
393 |
+
return find_latest_checkpoint(str(dir).replace("file://", "", 1))
|
394 |
+
else:
|
395 |
+
raise NotImplementedError(f"find_latest_checkpoint not implemented for '{parsed.scheme}' files")
|
396 |
+
else:
|
397 |
+
latest_step = 0
|
398 |
+
latest_checkpoint: Optional[Path] = None
|
399 |
+
for path in Path(dir).glob("step*"):
|
400 |
+
if path.is_dir():
|
401 |
+
try:
|
402 |
+
step = int(path.name.replace("step", "").replace("-unsharded", ""))
|
403 |
+
except ValueError:
|
404 |
+
continue
|
405 |
+
# We prioritize sharded checkpoints over unsharded checkpoints.
|
406 |
+
if step > latest_step or (step == latest_step and not path.name.endswith("-unsharded")):
|
407 |
+
latest_step = step
|
408 |
+
latest_checkpoint = path
|
409 |
+
return latest_checkpoint
|
410 |
+
|
411 |
+
|
412 |
+
def _gcs_upload(source: Path, bucket_name: str, key: str, save_overwrite: bool = False):
|
413 |
+
from google.cloud import storage as gcs
|
414 |
+
|
415 |
+
storage_client = gcs.Client()
|
416 |
+
bucket = storage_client.bucket(bucket_name)
|
417 |
+
blob = bucket.blob(key)
|
418 |
+
if not save_overwrite and blob.exists():
|
419 |
+
raise FileExistsError(f"gs://{bucket_name}/{key} already exists. Use save_overwrite to overwrite it.")
|
420 |
+
blob.upload_from_filename(source)
|
421 |
+
|
422 |
+
|
423 |
+
def _gcs_file_size(bucket_name: str, key: str) -> int:
|
424 |
+
from google.api_core.exceptions import NotFound
|
425 |
+
from google.cloud import storage as gcs
|
426 |
+
|
427 |
+
storage_client = gcs.Client()
|
428 |
+
bucket = storage_client.bucket(bucket_name)
|
429 |
+
blob = bucket.blob(key)
|
430 |
+
try:
|
431 |
+
blob.reload()
|
432 |
+
except NotFound:
|
433 |
+
raise FileNotFoundError(f"gs://{bucket_name}/{key}")
|
434 |
+
assert blob.size is not None
|
435 |
+
return blob.size
|
436 |
+
|
437 |
+
|
438 |
+
def _gcs_get_bytes_range(bucket_name: str, key: str, bytes_start: int, num_bytes: int) -> bytes:
|
439 |
+
from google.api_core.exceptions import NotFound
|
440 |
+
from google.cloud import storage as gcs
|
441 |
+
|
442 |
+
storage_client = gcs.Client()
|
443 |
+
bucket = storage_client.bucket(bucket_name)
|
444 |
+
blob = bucket.blob(key)
|
445 |
+
try:
|
446 |
+
blob.reload()
|
447 |
+
except NotFound:
|
448 |
+
raise FileNotFoundError(f"gs://{bucket_name}/{key}")
|
449 |
+
return blob.download_as_bytes(start=bytes_start, end=bytes_start + num_bytes - 1)
|
450 |
+
|
451 |
+
|
452 |
+
def _get_s3_profile_name(scheme: str) -> Optional[str]:
|
453 |
+
if scheme == "s3":
|
454 |
+
# For backwards compatibility, we assume S3 uses the default profile if S3_PROFILE is not set.
|
455 |
+
return os.environ.get("S3_PROFILE")
|
456 |
+
if scheme == "r2":
|
457 |
+
profile_name = os.environ.get("R2_PROFILE")
|
458 |
+
if profile_name is None:
|
459 |
+
raise OLMoEnvironmentError(
|
460 |
+
"R2 profile name is not set. Did you forget to set the 'R2_PROFILE' env var?"
|
461 |
+
)
|
462 |
+
|
463 |
+
return profile_name
|
464 |
+
|
465 |
+
raise NotImplementedError(f"Cannot get profile name for scheme {scheme}")
|
466 |
+
|
467 |
+
|
468 |
+
def _get_s3_endpoint_url(scheme: str) -> Optional[str]:
|
469 |
+
if scheme == "s3":
|
470 |
+
return None
|
471 |
+
if scheme == "r2":
|
472 |
+
r2_endpoint_url = os.environ.get("R2_ENDPOINT_URL")
|
473 |
+
if r2_endpoint_url is None:
|
474 |
+
raise OLMoEnvironmentError(
|
475 |
+
"R2 endpoint url is not set. Did you forget to set the 'R2_ENDPOINT_URL' env var?"
|
476 |
+
)
|
477 |
+
|
478 |
+
return r2_endpoint_url
|
479 |
+
|
480 |
+
raise NotImplementedError(f"Cannot get endpoint url for scheme {scheme}")
|
481 |
+
|
482 |
+
|
483 |
+
@cache
|
484 |
+
def _get_s3_client(scheme: str):
|
485 |
+
session = boto3.Session(profile_name=_get_s3_profile_name(scheme))
|
486 |
+
return session.client(
|
487 |
+
"s3",
|
488 |
+
endpoint_url=_get_s3_endpoint_url(scheme),
|
489 |
+
config=Config(retries={"max_attempts": 10, "mode": "standard"}),
|
490 |
+
use_ssl=not int(os.environ.get("OLMO_NO_SSL", "0")),
|
491 |
+
)
|
492 |
+
|
493 |
+
|
494 |
+
def _wait_before_retry(attempt: int):
|
495 |
+
time.sleep(min(0.5 * 2**attempt, 3.0))
|
496 |
+
|
497 |
+
|
498 |
+
def _s3_upload(
|
499 |
+
source: Path, scheme: str, bucket_name: str, key: str, save_overwrite: bool = False, max_attempts: int = 3
|
500 |
+
):
|
501 |
+
err: Optional[Exception] = None
|
502 |
+
if not save_overwrite:
|
503 |
+
for attempt in range(1, max_attempts + 1):
|
504 |
+
try:
|
505 |
+
_get_s3_client(scheme).head_object(Bucket=bucket_name, Key=key)
|
506 |
+
raise FileExistsError(
|
507 |
+
f"s3://{bucket_name}/{key} already exists. Use save_overwrite to overwrite it."
|
508 |
+
)
|
509 |
+
except boto_exceptions.ClientError as e:
|
510 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
511 |
+
err = None
|
512 |
+
break
|
513 |
+
err = e
|
514 |
+
|
515 |
+
if attempt < max_attempts:
|
516 |
+
log.warning("%s failed attempt %d with retriable error: %s", _s3_upload.__name__, attempt, err)
|
517 |
+
_wait_before_retry(attempt)
|
518 |
+
|
519 |
+
if err is not None:
|
520 |
+
raise OLMoNetworkError(f"Failed to check object existence during {scheme} upload") from err
|
521 |
+
|
522 |
+
try:
|
523 |
+
_get_s3_client(scheme).upload_file(source, bucket_name, key)
|
524 |
+
except boto_exceptions.ClientError as e:
|
525 |
+
raise OLMoNetworkError(f"Failed to upload to {scheme}") from e
|
526 |
+
|
527 |
+
|
528 |
+
def _s3_file_size(scheme: str, bucket_name: str, key: str, max_attempts: int = 3) -> int:
|
529 |
+
err: Optional[Exception] = None
|
530 |
+
for attempt in range(1, max_attempts + 1):
|
531 |
+
try:
|
532 |
+
return _get_s3_client(scheme).head_object(Bucket=bucket_name, Key=key)["ContentLength"]
|
533 |
+
except boto_exceptions.ClientError as e:
|
534 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
535 |
+
raise FileNotFoundError(f"s3://{bucket_name}/{key}") from e
|
536 |
+
err = e
|
537 |
+
|
538 |
+
if attempt < max_attempts:
|
539 |
+
log.warning("%s failed attempt %d with retriable error: %s", _s3_file_size.__name__, attempt, err)
|
540 |
+
_wait_before_retry(attempt)
|
541 |
+
|
542 |
+
raise OLMoNetworkError(f"Failed to get {scheme} file size") from err
|
543 |
+
|
544 |
+
|
545 |
+
def _s3_get_bytes_range(
|
546 |
+
scheme: str, bucket_name: str, key: str, bytes_start: int, num_bytes: int, max_attempts: int = 3
|
547 |
+
) -> bytes:
|
548 |
+
err: Optional[Exception] = None
|
549 |
+
for attempt in range(1, max_attempts + 1):
|
550 |
+
try:
|
551 |
+
return (
|
552 |
+
_get_s3_client(scheme)
|
553 |
+
.get_object(
|
554 |
+
Bucket=bucket_name, Key=key, Range=f"bytes={bytes_start}-{bytes_start + num_bytes - 1}"
|
555 |
+
)["Body"]
|
556 |
+
.read()
|
557 |
+
)
|
558 |
+
except boto_exceptions.ClientError as e:
|
559 |
+
if e.response["ResponseMetadata"]["HTTPStatusCode"] == 404:
|
560 |
+
raise FileNotFoundError(f"{scheme}://{bucket_name}/{key}") from e
|
561 |
+
err = e
|
562 |
+
except (boto_exceptions.HTTPClientError, boto_exceptions.ConnectionError) as e:
|
563 |
+
# ResponseStreamingError (subclass of HTTPClientError) can happen as
|
564 |
+
# a result of a failed read from the stream (http.client.IncompleteRead).
|
565 |
+
# Retrying can help in this case.
|
566 |
+
err = e
|
567 |
+
|
568 |
+
if attempt < max_attempts:
|
569 |
+
log.warning(
|
570 |
+
"%s failed attempt %d with retriable error: %s", _s3_get_bytes_range.__name__, attempt, err
|
571 |
+
)
|
572 |
+
_wait_before_retry(attempt)
|
573 |
+
|
574 |
+
# When torch's DataLoader intercepts exceptions, it may try to re-raise them
|
575 |
+
# by recalling their constructor with a single message arg. Torch has some
|
576 |
+
# logic to deal with the absence of a single-parameter constructor, but it
|
577 |
+
# doesn't gracefully handle other possible failures in calling such a constructor
|
578 |
+
# This can cause an irrelevant exception (e.g. KeyError: 'error'), resulting
|
579 |
+
# in us losing the true exception info. To avoid this, we change the exception
|
580 |
+
# to a type that has a single-parameter constructor.
|
581 |
+
raise OLMoNetworkError(f"Failed to get bytes range from {scheme}") from err
|
582 |
+
|
583 |
+
|
584 |
+
def _s3_find_latest_checkpoint(scheme: str, bucket_name: str, prefix: str) -> Optional[str]:
|
585 |
+
if not prefix.endswith("/"):
|
586 |
+
prefix = f"{prefix}/"
|
587 |
+
response = _get_s3_client(scheme).list_objects(Bucket=bucket_name, Prefix=prefix, Delimiter="/")
|
588 |
+
assert not response["IsTruncated"] # need to handle this if it happens
|
589 |
+
latest_step = 0
|
590 |
+
latest_checkpoint: Optional[str] = None
|
591 |
+
for item in response["CommonPrefixes"]:
|
592 |
+
prefix = item["Prefix"].strip("/")
|
593 |
+
checkpoint_name = os.path.split(prefix)[-1]
|
594 |
+
if not checkpoint_name.startswith("step"):
|
595 |
+
continue
|
596 |
+
try:
|
597 |
+
step = int(checkpoint_name.replace("step", "").replace("-unsharded", ""))
|
598 |
+
except ValueError:
|
599 |
+
continue
|
600 |
+
# Make sure the checkpoint dir contains a config, otherwise the checkpoint is incomplete
|
601 |
+
# (upload might have have failed part way through).
|
602 |
+
try:
|
603 |
+
_s3_file_size(scheme, bucket_name, f"{prefix}/config.yaml")
|
604 |
+
except FileNotFoundError:
|
605 |
+
continue
|
606 |
+
# We prioritize sharded checkpoints over unsharded ones.
|
607 |
+
if step > latest_step or (step == latest_step and not checkpoint_name.endswith("-unsharded")):
|
608 |
+
latest_step = step
|
609 |
+
latest_checkpoint = f"{scheme}://ai2-llm/{prefix}"
|
610 |
+
return latest_checkpoint
|
611 |
+
|
612 |
+
|
613 |
+
def _http_file_size(scheme: str, host_name: str, path: str) -> int:
|
614 |
+
import requests
|
615 |
+
|
616 |
+
response = requests.head(f"{scheme}://{host_name}/{path}", allow_redirects=True)
|
617 |
+
return int(response.headers.get("content-length"))
|
618 |
+
|
619 |
+
|
620 |
+
def _http_get_bytes_range(scheme: str, host_name: str, path: str, bytes_start: int, num_bytes: int) -> bytes:
|
621 |
+
import requests
|
622 |
+
|
623 |
+
response = requests.get(
|
624 |
+
f"{scheme}://{host_name}/{path}", headers={"Range": f"bytes={bytes_start}-{bytes_start+num_bytes-1}"}
|
625 |
+
)
|
626 |
+
result = response.content
|
627 |
+
assert (
|
628 |
+
len(result) == num_bytes
|
629 |
+
), f"expected {num_bytes} bytes, got {len(result)}" # Some web servers silently ignore range requests and send everything
|
630 |
+
return result
|
631 |
+
|
632 |
+
|
633 |
+
def default_thread_count() -> int:
|
634 |
+
return int(os.environ.get("OLMO_NUM_THREADS") or min(32, (os.cpu_count() or 1) + 4))
|
635 |
+
|
636 |
+
|
637 |
+
def pass_through_fn(fn, *args, **kwargs):
|
638 |
+
return fn(*args, **kwargs)
|
639 |
+
|
640 |
+
|
641 |
+
def threaded_generator(g, maxsize: int = 16, thread_name: Optional[str] = None):
|
642 |
+
q: Queue = Queue(maxsize=maxsize)
|
643 |
+
|
644 |
+
sentinel = object()
|
645 |
+
|
646 |
+
def fill_queue():
|
647 |
+
try:
|
648 |
+
for value in g:
|
649 |
+
q.put(value)
|
650 |
+
except Exception as e:
|
651 |
+
q.put(e)
|
652 |
+
finally:
|
653 |
+
q.put(sentinel)
|
654 |
+
|
655 |
+
thread_name = thread_name or repr(g)
|
656 |
+
thread = Thread(name=thread_name, target=fill_queue, daemon=True)
|
657 |
+
thread.start()
|
658 |
+
|
659 |
+
for x in iter(q.get, sentinel):
|
660 |
+
if isinstance(x, Exception):
|
661 |
+
raise OLMoThreadError(f"generator thread {thread_name} failed") from x
|
662 |
+
else:
|
663 |
+
yield x
|
664 |
+
|
665 |
+
|
666 |
+
def roundrobin(*iterables):
|
667 |
+
"""
|
668 |
+
Call the given iterables in a round-robin fashion. For example:
|
669 |
+
``roundrobin('ABC', 'D', 'EF') --> A D E B F C``
|
670 |
+
"""
|
671 |
+
# Adapted from https://docs.python.org/3/library/itertools.html#itertools-recipes
|
672 |
+
num_active = len(iterables)
|
673 |
+
nexts = cycle(iter(it).__next__ for it in iterables)
|
674 |
+
while num_active:
|
675 |
+
try:
|
676 |
+
for next in nexts:
|
677 |
+
yield next()
|
678 |
+
except StopIteration:
|
679 |
+
# Remove the iterator we just exhausted from the cycle.
|
680 |
+
num_active -= 1
|
681 |
+
nexts = cycle(islice(nexts, num_active))
|
model/version.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
_MAJOR = "0"
|
2 |
+
_MINOR = "3"
|
3 |
+
# On main and in a nightly release the patch should be one ahead of the last
|
4 |
+
# released build.
|
5 |
+
_PATCH = "0"
|
6 |
+
# This is mainly for nightly builds which have the suffix ".dev$DATE". See
|
7 |
+
# https://semver.org/#is-v123-a-semantic-version for the semantics.
|
8 |
+
_SUFFIX = ""
|
9 |
+
|
10 |
+
VERSION_SHORT = "{0}.{1}".format(_MAJOR, _MINOR)
|
11 |
+
VERSION = "{0}.{1}.{2}{3}".format(_MAJOR, _MINOR, _PATCH, _SUFFIX)
|
optim.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a93dfdd0bbd50edd0b30fba9adea180780e7010e4ba0b40a79034fdb48630a1f
|
3 |
+
size 302102214
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d27b5b4bdf76917ea2b9366e0db46c302d8d2441ba866ae55b9ecffd5c2bc034
|
3 |
+
size 151047623
|
train.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:591449343a28aa3f7c41b042d7416e76e1fa3d304d7e0037c64ad3169abde7e0
|
3 |
+
size 14988
|