File size: 25,757 Bytes
ded00f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import logging
from dataclasses import fields
from typing import List, Optional, Tuple, Union

import torch
from transformers import PreTrainedModel
from transformers.cache_utils import Cache
from transformers.modeling_outputs import CausalLMOutputWithPast, SequenceClassifierOutputWithPast
from transformers.models.auto import AutoModelForCausalLM, AutoModelForSequenceClassification

from .config import ModelConfig
from .model import OLMo
import sys
import os

from .configuration_olmo import OLMoConfig

log = logging.getLogger(__name__)


def create_model_config_from_pretrained_config(config: OLMoConfig, is_cls = False):
    """
    Utility function
    """
    kwargs = {}
    for field in fields(ModelConfig):
        kwargs[field.name] = getattr(config, field.name)
    # add num_labels for being compatible with the AutoSeqClassification downstream task
    model_config = ModelConfig(**kwargs)
    if is_cls:
        num_labels = len(getattr(config,'label2id'))
        # print(f"{config}")
        return model_config, num_labels
    return model_config


class OLMoForCausalLM(PreTrainedModel):
    """
    Extremely barebones HF model wrapper.
    """

    config_class = OLMoConfig
    base_model_prefix = "model"
    _no_split_modules = ["OLMoBlock"]

    def __init__(self, config: OLMoConfig, model: Optional[OLMo] = None, init_params: bool = False):
        super().__init__(config)

        if not model:
            model_config = create_model_config_from_pretrained_config(config)
            # Initialize model (always on CPU to start with so we don't run out of GPU memory).
            model_config.init_device = "cpu"
            self.model = OLMo(model_config, init_params=init_params)
        else:
            self.model = model
        self.word_embeddings = self.model.transformer.wte
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_bias: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,  # Added parameter
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = True,
        return_dict: Optional[bool] = None,
        cache_position: Optional[
            Cache
        ] = None,  # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if use_cache is None:
            use_cache = self.config.use_cache

        if output_attentions:
            raise ValueError("output_attentions is not yet supported in OLMo")

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        ######
        # Create attention bias only if it's not provided for bidirectional finetuning
        # Should only uncomment when performing MNTP finetuning
        ######
        # if attention_bias is None:
        #     seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        #     attention_bias = self.get_bidirectional_attention_bias(seq_len=seq_len, device=input_ids.device)

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.forward(
            input_ids=input_ids,
            input_embeddings=inputs_embeds,
            attention_mask=attention_mask,
            attention_bias=attention_bias,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
        )

        logits = outputs.logits
        hidden_states = outputs.hidden_states

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = torch.nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.embedding_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.attn_key_values,
            hidden_states=hidden_states,
        )

    def can_generate(self) -> bool:
        return True

    def get_bidirectional_attention_bias(self, seq_len: int, device: torch.device):
        """
        Create a bidirectional attention bias for full sequence attention.
        The bias matrix will not restrict attention in any direction.
        """
        # Bias shape: (1, 1, seq_len, seq_len)
        bias = torch.zeros(1, 1, seq_len, seq_len, device=device)
        return bias

    def prepare_inputs_for_generation(
        self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
    ):
        if past_key_values:
            # This is because we want the model to only process the last generated token.
            input_ids = input_ids[:, -1:]
        model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}

        model_inputs.update(kwargs)
        model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
        return model_inputs

    # TODO: these are required to make the implementation complete.
    # def resize_position_embeddings(self, new_num_position_embeddings: int):
    #     pass
    #
    # def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
    #     pass
    #
    # def _reorder_cache(self, past_key_values, beam_idx):
    #     pass

    def get_input_embeddings(self) -> torch.nn.Module:
        return self.model.transformer.wte

    def set_input_embeddings(self, value: torch.nn.Module):
        self.model.transformer.wte = value

    def get_output_embeddings(self):
        if self.config.weight_tying:
            return self.model.transformer.wte
        else:
            return self.model.transformer.ff_out

    def set_output_embeddings(self, value: torch.nn.Module):
        if self.config.weight_tying:
            self.model.transformer.wte = value
        else:
            self.model.transformer.ff_out = value

    def tie_weights(self):
        """
        This function is intentionally left as a no-op.

        Weight tying is handled as follows:
        - When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
        See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
        - When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
        See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.

        Therefore, there is no need to explicitly tie the weights in this function.
        """
        pass

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> torch.nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.

        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.

        Arguments:
            new_num_tokens (`int`, *optional*):
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

        Return:
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.

        Note:
            This method differs from the base class implementation by resizing the `embedding_size` attribute of the
            model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
            is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
            embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
        """
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        if new_num_tokens is None and pad_to_multiple_of is None:
            return model_embeds

        # Update base model and current model config
        self.config.embedding_size = model_embeds.weight.shape[0]
        self.model.config.embedding_size = model_embeds.weight.shape[0]

        # Check if the embedding size is less than the vocab size
        if self.config.embedding_size < self.config.vocab_size:
            warning_message = (
                f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
                f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
                "size is less than or equal to the new token embedding size."
            )
            log.warning(warning_message)

        # Tie weights again if needed
        self.tie_weights()

        return model_embeds


# Register the model so that it is available for transformer pipelines, auto-loading, etc.
AutoModelForCausalLM.register(OLMoConfig, OLMoForCausalLM)


from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
class OLMoForSequenceCLS(PreTrainedModel):
    """
    Extremely barebones HF model wrapper.
    """

    config_class = OLMoConfig
    base_model_prefix = "model"
    _no_split_modules = ["OLMoBlock"]

    def __init__(self, config: OLMoConfig, model: Optional[OLMo] = None, init_params: bool = False):
        super().__init__(config)
        if not model:
            model_config,num_labels = create_model_config_from_pretrained_config(config,is_cls=True)
            # Initialize model (always on CPU to start with so we don't run out of GPU memory).
            model_config.init_device = "cpu"
            self.model = OLMo(model_config, init_params=init_params)
        else:
            self.model = model
        self.word_embeddings = self.model.transformer.wte
        self.num_labels = num_labels
        print(f"num_labels: {self.num_labels}")
        self.score = torch.nn.Linear(config.hidden_size, self.num_labels, bias=False)


        ###############
        # mix resolution head
        ################
        # self.CNN = CNN_Head(output_size=self.num_labels,cnn_output_dim=config.hidden_size, kernel_sizes=[4,9],dropout_rate=0.11,
        #                     num_cnn_layers=2)
    def get_bidirectional_attention_bias(self, seq_len: int, device: torch.device):
        """
        Create a bidirectional attention bias for full sequence attention.
        The bias matrix will not restrict attention in any direction.
        """
        # Bias shape: (1, 1, seq_len, seq_len)
        bias = torch.zeros(1, 1, seq_len, seq_len, device=device)
        return bias
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_bias: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[
            Cache
        ] = None,  # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if use_cache is None:
            use_cache = self.config.use_cache

        if output_attentions:
            raise ValueError("output_attentions is not yet supported in OLMo")
        ######
        # Create attention bias only if it's not provided
        ######
        # if attention_bias is None:
        #     seq_len = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
        #     attention_bias = self.get_bidirectional_attention_bias(seq_len=seq_len, device=input_ids.device)
        ######
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        ########
        # The output_hidden_states flag is set as the output format of olmo is the following:
        # return OLMoOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None)
        # so we have to forcely set the output hidden_states flag
        ########
        output_hidden_states = True
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model.forward(
            input_ids=input_ids,
            input_embeddings=inputs_embeds,
            attention_mask=attention_mask,
            attention_bias=attention_bias,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_hidden_states=output_hidden_states,
        )
        hidden_states = outputs.hidden_states[-1]
        # assume that the padding is done by prepadding at the left of the input sequence
        # the logit of the last non-padding token is logit[:,-1,:]
        logits = self.score(hidden_states)
        ##########
        seq_lengths = attention_mask.sum(dim=-1)
        # instead of taking the mean, we can also take the last token, taking the length of the sequence
        pooled_logits = torch.stack(
                [
                    logits[i, length - 1, :]
                    for i, length in enumerate(seq_lengths)
                ],
                dim=0,
            )
        ##########
        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))

        if not return_dict:
            output = (pooled_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output
        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=outputs.attn_key_values,
            hidden_states=hidden_states,
        )
    def forward_new(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        attention_bias: Optional[torch.Tensor] = None,
        onehot: Optional[torch.Tensor] = None, # New field
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[
            Cache
        ] = None,  # This is a hack mitigation of an issue in transformers `4.39.x` https://github.com/huggingface/transformers/issues/29426
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if use_cache is None:
            use_cache = self.config.use_cache

        if output_attentions:
            raise ValueError("output_attentions is not yet supported in OLMo")
        ######
        # input_ids shape
        ######

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        ########
        # The output_hidden_states flag is set as the output format of olmo is the following:
        # return OLMoOutput(logits=logits, attn_key_values=attn_key_values, hidden_states=tuple(all_hidden_states) if output_hidden_states else None)
        # so we have to forcely set the output hidden_states flag
        ########
        output_hidden_states = True
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        #----------
        # outputs = self.model.forward(
        #     input_ids=input_ids,
        #     input_embeddings=inputs_embeds,
        #     attention_mask=attention_mask,
        #     attention_bias=attention_bias,
        #     past_key_values=past_key_values,
        #     use_cache=use_cache,
        #     output_hidden_states=output_hidden_states,
        # )
        # hidden_states = outputs.hidden_states[-1]
        #-------------
        # assume that the padding is done by prepadding at the left of the input sequence
        # the logit of the last non-padding token is logit[:,-1,:]
        # logits = self.score(hidden_states)
        # pooled_logits = hidden_states[:,-1,:]
        pooled_logits = self.CNN(onehot)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))

        # if not return_dict:
            # output = (pooled_logits,) + outputs[1:] #------
            # return ((loss,) + output) if loss is not None else output
        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            # past_key_values=outputs.attn_key_values,
            # hidden_states=hidden_states,
        )

    def can_generate(self) -> bool:
        return True

    def prepare_inputs_for_generation(
        self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple]] = None, **kwargs
    ):
        if past_key_values:
            # This is because we want the model to only process the last generated token.
            input_ids = input_ids[:, -1:]
        model_inputs = {"input_ids": input_ids, "past_key_values": past_key_values}

        model_inputs.update(kwargs)
        model_inputs["use_cache"] = kwargs.pop("use_cache", self.config.use_cache)
        return model_inputs

    # TODO: these are required to make the implementation complete.
    # def resize_position_embeddings(self, new_num_position_embeddings: int):
    #     pass
    #
    # def get_position_embeddings(self) -> Union[nn.Embedding, Tuple[nn.Embedding]]:
    #     pass
    #
    # def _reorder_cache(self, past_key_values, beam_idx):
    #     pass

    def get_input_embeddings(self) -> torch.nn.Module:
        return self.model.transformer.wte

    def set_input_embeddings(self, value: torch.nn.Module):
        self.model.transformer.wte = value

    def get_output_embeddings(self):
        if self.config.weight_tying:
            return self.model.transformer.wte
        else:
            return self.model.transformer.ff_out

    def set_output_embeddings(self, value: torch.nn.Module):
        if self.config.weight_tying:
            self.model.transformer.wte = value
        else:
            self.model.transformer.ff_out = value

    def tie_weights(self):
        """
        This function is intentionally left as a no-op.

        Weight tying is handled as follows:
        - When the model is initialized, the `ff_out` layer is conditionally defined based on the `weight_tying` configuration.
        See: `if not config.weight_tying: self.transformer.update(...)` in `olmo/model.py`.
        - When computing logits, the `wte` weights are used directly if `weight_tying` is enabled.
        See: `if self.config.weight_tying: logits = F.linear(x, self.transformer.wte.weight, None)` in the `forward` method.

        Therefore, there is no need to explicitly tie the weights in this function.
        """
        pass

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> torch.nn.Embedding:
        """
        Resizes input token embeddings matrix of the model if `new_num_tokens != config.embedding_size`.

        Takes care of tying weights embeddings afterwards if the model class has a `tie_weights()` method.

        Arguments:
            new_num_tokens (`int`, *optional*):
                The new number of tokens in the embedding matrix. Increasing the size will add newly initialized
                vectors at the end. Reducing the size will remove vectors from the end. If not provided or `None`, just
                returns a pointer to the input tokens `torch.nn.Embedding` module of the model without doing anything.
            pad_to_multiple_of (`int`, *optional*):
                If set will pad the embedding matrix to a multiple of the provided value. If `new_num_tokens` is set to
                `None` will just pad the embedding to a multiple of `pad_to_multiple_of`.

                This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
                `>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128. For more
                details about this, or help on choosing the correct value for resizing, refer to this guide:
                https://docs.nvidia.com/deeplearning/performance/dl-performance-matrix-multiplication/index.html#requirements-tc

        Return:
            `torch.nn.Embedding`: Pointer to the input tokens Embeddings Module of the model.

        Note:
            This method differs from the base class implementation by resizing the `embedding_size` attribute of the
            model configuration instead of the `vocab_size`. It also includes a warning if the resized `embedding_size`
            is less than the `vocab_size`. In OLMo, `embedding_size` refers to the dimensionality of the model's token
            embeddings, while `vocab_size` refers to the number of unique tokens in the vocabulary.
        """
        model_embeds = self._resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        if new_num_tokens is None and pad_to_multiple_of is None:
            return model_embeds

        # Update base model and current model config
        self.config.embedding_size = model_embeds.weight.shape[0]
        self.model.config.embedding_size = model_embeds.weight.shape[0]

        # Check if the embedding size is less than the vocab size
        if self.config.embedding_size < self.config.vocab_size:
            warning_message = (
                f"Resizing token embeddings to size {self.config.embedding_size}, which is less than the vocab size "
                f"{self.config.vocab_size} defined in the model configuration. Make sure your tokenizer's vocabulary "
                "size is less than or equal to the new token embedding size."
            )
            log.warning(warning_message)

        # Tie weights again if needed
        self.tie_weights()

        return model_embeds
# Register the model so that it is available for transformer pipelines, auto-loading, etc.
AutoModelForSequenceClassification.register(OLMoConfig, OLMoForSequenceCLS)