# Med-R1 Med-R1 is a reinforcement learning (RL)-enhanced vision-language model (VLM) designed for medical reasoning across 8 imaging modalities (CT, MRI, Ultrasound, Dermoscopy, Fundus Photography, Optical Coherence Tomography (OCT), Microscopy, and X-ray) and 5 key tasks (modality recognition, anatomy identification, disease diagnosis, lesion grading, and biological attribute analysis). Using Group Relative Policy Optimization (GRPO), Med-R1 improves generalization and trustworthiness, surpassing Qwen2-VL-2B by 29.94% and even outperforming the much larger Qwen2-VL-72B. Our model checkpoints provide researchers with a powerful tool for advancing medical AI with RL-driven enhancements. ## Start with the Model ## Citation --- license: apache-2.0 datasets: - foreverbeliever/OmniMedVQA language: - en metrics: - accuracy base_model: - Qwen/Qwen2-VL-2B-Instruct ---