diff --git a/config.json b/config.json new file mode 100644 index 0000000000000000000000000000000000000000..fd81c02a600b51187a93565cc4524779538310c0 --- /dev/null +++ b/config.json @@ -0,0 +1,72 @@ +{ + "_name_or_path": "/fs/archive/share/yulan/data/aa_mini/output/minicpm-2B-final-stage19/checkpoint-184750", + "architectures": [ + "MiniCPMForCausalLM" + ], +"auto_map": { +"AutoConfig": "configuration_minicpm.MiniCPMConfig", +"AutoModel": "modeling_minicpm.MiniCPMModel", +"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM", +"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM", +"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification" +}, + "attention_bias": true, + "attention_dropout": 0.0, + "bos_token_id": 1, + "dim_model_base": 1920, + "dim_model_base_attn": 64, + "dim_model_base_init": null, + "dim_model_base_lmh": 1, + "dim_model_base_logits": 1920.0, + "dim_model_base_lr": 256.0, + "down_proj_alpha": 0.03450327796711771, + "embed_tokens_alpha": 1, + "embedding_ln": false, + "embedding_rmsln": false, + "eos_token_id": 2, + "gate_up_proj_alpha": 0.3651483716701107, + "gradient_checkpointing_step": 11, + "hidden_act": "silu", + "hidden_size": 1920, + "hidden_states_shrink": 0.18708286933869706, + "init_scale_o": 1, + "initializer_range": 5e-05, + "input_layernorm_alpha": 1.0, + "intermediate_size": 4800, + "k_proj_alpha": 0.3651483716701107, + "layer_norm_eps": 1e-06, + "lm_head_alpha": 1.0, + "ln_scale": 1, + "max_position_embeddings": 4096, + "model_reproduce": "transformer", + "model_type": "minicpm", + "norm_alpha": 1.0, + "num_attention_heads": 30, + "num_epochs_trained_before_this_epoch": 18.0, + "num_hidden_layers": 56, + "num_key_value_heads": 6, + "num_steps_trained_before_this_epoch": 175608, + "o_proj_alpha": 0.03450327796711771, + "post_attention_layernorm_alpha": 1.0, + "q_proj_alpha": 0.3651483716701107, + "qk_layernorm": false, + "rms_norm_eps": 1e-06, + "rms_type": "llama", + "rope_scaling": null, + "rope_theta": 10000.0, + "scale_emb": 10.0, + "shrink_alpha": 1, + "sliding_window": null, + "tie_word_embeddings": false, + "torch_dtype": "bfloat16", + "transformers_version": "4.44.2", + "use_cache": true, + "use_emb_alpha": true, + "use_liger": true, + "use_norm_alpha": false, + "use_sliding_window": false, + "v_proj_alpha": 0.3651483716701107, + "vocab_size": 99000, + "wesar_weights": false, + "z_loss": 0.0001 +} diff --git a/configuration_minicpm.py b/configuration_minicpm.py new file mode 100644 index 0000000000000000000000000000000000000000..21eb158572ad0cfbfdf51072106d5018c2ff8ca5 --- /dev/null +++ b/configuration_minicpm.py @@ -0,0 +1,202 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MiniCPM model configuration""" + +from transformers.configuration_utils import PretrainedConfig +from transformers.utils import logging + + +logger = logging.get_logger(__name__) + +MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} + + +class MiniCPMConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the MiniCPM-7B. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 32000): + Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MiniCPMModel`] + hidden_size (`int`, *optional*, defaults to 4096): + Dimension of the hidden representations. + intermediate_size (`int`, *optional*, defaults to 11008): + Dimension of the MLP representations. + num_hidden_layers (`int`, *optional*, defaults to 32): + Number of hidden layers in the Transformer decoder. + num_attention_heads (`int`, *optional*, defaults to 32): + Number of attention heads for each attention layer in the Transformer decoder. + num_key_value_heads (`int`, *optional*): + This is the number of key_value heads that should be used to implement Grouped Query Attention. If + `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if + `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When + converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed + by meanpooling all the original heads within that group. For more details checkout [this + paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to + `num_attention_heads`. + hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): + The non-linear activation function (function or string) in the decoder. + max_position_embeddings (`int`, *optional*, defaults to 2048): + The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens, + MiniCPM 2 up to 4096, CodeMiniCPM up to 16384. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + rms_norm_eps (`float`, *optional*, defaults to 1e-06): + The epsilon used by the rms normalization layers. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). Only + relevant if `config.is_decoder=True`. + pad_token_id (`int`, *optional*): + Padding token id. + bos_token_id (`int`, *optional*, defaults to 1): + Beginning of stream token id. + eos_token_id (`int`, *optional*, defaults to 2): + End of stream token id. + pretraining_tp (`int`, *optional*, defaults to 1): + Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this + document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is + necessary to ensure exact reproducibility of the pretraining results. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). + tie_word_embeddings (`bool`, *optional*, defaults to `False`): + Whether to tie weight embeddings + rope_theta (`float`, *optional*, defaults to 10000.0): + The base period of the RoPE embeddings. + rope_scaling (`Dict`, *optional*): + Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling + strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is + `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update + `max_position_embeddings` to the expected new maximum. See the following thread for more information on how + these scaling strategies behave: + https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an + experimental feature, subject to breaking API changes in future versions. + attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): + Whether to use a bias in the query, key, value and output projection layers during self-attention. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + + ```python + >>> from transformers import MiniCPMModel, MiniCPMConfig + + >>> # Initializing a MiniCPM minicpm-7b style configuration + >>> configuration = MiniCPMConfig() + + >>> # Initializing a model from the minicpm-7b style configuration + >>> model = MiniCPMModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "minicpm" + keys_to_ignore_at_inference = ["past_key_values"] + + def __init__( + self, + vocab_size=32000, + hidden_size=4096, + intermediate_size=11008, + num_hidden_layers=32, + num_attention_heads=32, + num_key_value_heads=None, + hidden_act="silu", + max_position_embeddings=2048, + initializer_range=0.02, + rms_norm_eps=1e-6, + use_cache=True, + pad_token_id=None, + bos_token_id=1, + eos_token_id=2, + pretraining_tp=1, + tie_word_embeddings=True, + rope_theta=10000.0, + rope_scaling=None, + attention_bias=False, + attention_dropout=0.0, + scale_emb=1, + dim_model_base=1, + scale_depth=1, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.hidden_size = hidden_size + self.intermediate_size = intermediate_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + + # for backward compatibility + if num_key_value_heads is None: + num_key_value_heads = num_attention_heads + + self.num_key_value_heads = num_key_value_heads + self.hidden_act = hidden_act + self.initializer_range = initializer_range + self.rms_norm_eps = rms_norm_eps + self.pretraining_tp = pretraining_tp + self.use_cache = use_cache + self.rope_theta = rope_theta + self.rope_scaling = rope_scaling + self._rope_scaling_validation() + self.attention_bias = attention_bias + self.attention_dropout = attention_dropout + self.scale_emb = scale_emb + self.dim_model_base = dim_model_base + self.scale_depth = scale_depth + + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + tie_word_embeddings=tie_word_embeddings, + **kwargs, + ) + try: + import flash_attn + self._attn_implementation = "flash_attention_2" + except: + pass + + def _rope_scaling_validation(self): + """ + Validate the `rope_scaling` configuration. + """ + if self.rope_scaling is None: + return + + if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: + raise ValueError( + "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " + f"got {self.rope_scaling}" + ) + rope_scaling_type = self.rope_scaling.get("type", None) + rope_scaling_factor = self.rope_scaling.get("factor", None) + if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: + raise ValueError( + f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" + ) + if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: + raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}") diff --git a/global_step68166/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..c2b737fd2a5c1838cc0dbb77ba7f05e6a4e64650 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:23de090089436053b657e2092ef6bcebd582bbaef2083bb2ca3f79ba6adf8c20 +size 478761842 diff --git a/global_step68166/bf16_zero_pp_rank_10_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_10_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..0a13267d92f7f2d3d8749fe8842f930349faeea4 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_10_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:74caa2097bd27225897a566b5258ce09c79caaebdd338822c8efcecdfe6c9dc4 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_11_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_11_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..7cb5640dccb825182388d0d61c22281812f0e4e3 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_11_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8dfb06bdde501933a2f5f651dec1081107748524fef7e9257016159c2c2c7d42 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_12_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_12_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..ef525acf7e8bd5adac0251d946b09882467332e2 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_12_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4c1b892c1ae349c3e552f933adc8029ea8ed19f968e9ad4e1359f504ae2c3e37 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_13_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_13_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..cd160d89581db0994f7fa31886fca09f610ccf11 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_13_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5809bc715665d3970f684454fdc208a59aa6fc08ce5ba89e7cb080015ac5a914 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_14_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_14_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..713e5f54a93dbb349ba8ce946d73061908b1f8d6 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_14_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3d9a63884f48bb52578c2eaa0c983c98a89ad8f063a9e903cb5396318f065229 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_15_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_15_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..c58f4261e330f2ea17ed361e7e7d392d9b24ed97 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_15_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:aba1374ae7f3e3dfc5f704a8fb8e7dfff06a3aa715e6f1231801278ca38e8073 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..849661900c179f55c5872f1e0a65b02876444ea8 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_16_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ada575ef9767fd32df1642f5f735a9fca65444308ff2ed8f876e6d5c9b25ee0e +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_17_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_17_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..f64ffa05184c10bf864ffc047dc31673bddac318 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_17_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:be335c8a85c92ab24496cdba84de8186e715cfe1655d8da809e3b359223c6edf +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_18_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_18_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..4d4ca402725ed32ba54fa4d2028cf92ebab2bf7a --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_18_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:88957db2572dd1707a72c7b50ce7f1c079bb040ef1e11817ad7411e8dfaec62e +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_19_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_19_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..361080c69df02f901a0ce04cb7292129d50c5402 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_19_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8eaf7315a811a8ae031231072f5981dce67eba24ecae1c13d592bfcdbd6ba601 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..26940fa223139b8d28c7b5754a38fa2f8bcdace8 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a0738b410c67ac77d5ebb0ea230a387b32ceb93af929a3537f9472447eae3b97 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_20_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_20_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..09cdc0f42244c7adba2774b09f5a2dab175dc010 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_20_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3cbd781aeacca310c0a34c6ef68009b239351313b8275d0b44e5bffa76726e50 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_21_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_21_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..9feaeb7ea4d7239d11fc89bca227f932e2bbe933 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_21_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9375d83bd4b1bf163b45c76784a49aa2e3d992c8414205b729fb07bf7357cf84 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_22_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_22_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..38d930c8ee60e3d4184365a8db89bd737b242a08 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_22_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f73513915b06a3d10beff037b60fa1a8ce9be651a903e8497c9d092ebf91277a +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_23_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_23_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..7d5ee9404f401bb4c755731624ce82f3cea10fbb --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_23_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:458a44b14c1f18f59f04864b5b2c18e7eef9711dd5b3492784dbadc175a45d8a +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..eecf5c072908d7d5211aeb843ef339ae2562cac7 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_24_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:98dc8e7fa605696ecabfd8660c1e59c6bdfe34fe8864a41268bfc806192a074c +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_25_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_25_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..024666b81035b7b95a4baf90de24cf276940884c --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_25_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3bc734e6dfee31d73d1bbc6bccda8516a7eb18857874558896a012dd33020685 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_26_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_26_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..27850f6190a0bcb53ebd720d2aca880b1c29ea48 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_26_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:76765968958508e9cdfb33d6a6ee42f334bcda111a3d765bc2809bcfd110bb29 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_27_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_27_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..799770d9e5c0519aa91e309d9724527f42d064a7 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_27_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cf236c34a5314e4d0d1e4f2dcc52958b6e4ef91d405a8d9776f28f82c0c0cf2a +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_28_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_28_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..816fea2bb5f971a78e32a850a8938afce38104ee --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_28_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f4ee8e41102a04e692287e3fd1418bef889834cdbcb3c2b08cd2f01ae19eb396 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_29_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_29_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..15bdbc423d042cedb20becedfa4b14c582306f11 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_29_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3d33fd6525687337879ae9de251b32146ccb24c50a54c6e705792153f0d0b24c +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..b74fb755530dea46966b29086b0eb9e5f841c7b6 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2684d1df7fdfbadb3dd70f17409f71d7fce39e81e4cb44290e829c3fe9acf991 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_30_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_30_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..5e69cfc929e41c80f4841416a8276e10f8108270 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_30_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:37aa3991bd73ec9d3ed1c505fe59714aa0f52de5fc5dc6776889d76ff5f50442 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_31_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_31_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..27236dc45b399d70dcb6118fadfa2fc5102a74c7 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_31_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:18b34ad6c2f6288922e7e1177961717f87477b8e54520391b484e6747456d834 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..01a6b6fbcfb9eb0387c0ed0d34ec2dcb58169905 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_32_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:945644421e8490fbb2858f6770f746593dfb8b343966a00cb203e80168df4e6d +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_33_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_33_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..e6a90dc62b061c7a0d410fcad6ae6635d568ee4a --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_33_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:040e93f62ac12ec7b7fd38b97efa35e35d0ccfa2edede75e0312526b7afeea64 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_34_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_34_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..90b2271856f5cb8f8d3bc8ce4ca27c67b83aaf3e --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_34_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f44c4ff315d90745e8a78b5d192b06832824bc27fa200558a561006bb3bc695c +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_35_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_35_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..79427e949dc73f8442f1b865f4d9bac16b7a959c --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_35_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:92cb3d93b3da7401862e6e2884baccf740bedbc9d7b71c456118fbdf8fcabdf7 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_36_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_36_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..eab982e7b6eb6bc90b9f599e86d2db870c0a31bc --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_36_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7ffa1902db5090b58e686cd691877a9d10193d34553135f07165ea7f5766e0af +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_37_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_37_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..48e6e96eafb38cbd1bdb53d6e7717d4eb1a4a208 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_37_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:637be37f40e8fa400839b217519eac1ed4a48c52beff3255b1ca56c8427c0797 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_38_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_38_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..e7d9b7c4e0e719da0043188e4e8bb5bc5a17dae6 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_38_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0eaa278f7834a06a149ed05e8b69e7b0e5b1f70004b5efbee208cefa41aa0890 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_39_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_39_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..78eba95c3506977ac5274eefaf3ff7987dddeb09 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_39_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f67c12ded9ee037d1e459286ffb084060fc62fc965dec1670c62305a5c461ebf +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..94ae1723038c0d35827868a9ef08cd4785bc5690 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d609c3edd9fe0092f6a6189093ef0b9be989814d56932a2c3c53ad244f64e7e8 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..3270896a418d6e7d3694ef98987dc735c5bd7f0e --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_40_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1fecd75fc69b5991ed750667b9af934a9a5da71945fdf03baebf383da4e54887 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_41_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_41_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..6424a9b7c850b9bc95c37841dc5c419e4d550cb2 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_41_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39b10c90f77176c810ed7f7c297a5ff670b92b8c85d709e99e853bbaffde86a0 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_42_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_42_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..b6f1b1663685fcaffe8243c71c0f794b65f40f57 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_42_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:330e47a3b7db86d2e2a73b212fbc3241db1f69300db5369ebbf1644c19e8b24e +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_43_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_43_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..8f5d25e3c25fb0439357bce186c26f9e05991d5e --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_43_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:44df925b83c25b0c67cafa7593da6350cbe48a0a65d57d756f588d3c9bbf1843 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_44_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_44_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..cca439ace50e58491dcb8dc3975317adf5831162 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_44_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cb3e3e92087aed817f6261b45e2d77a1d20095a333572493867dddd2b6b082f7 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_45_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_45_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..b28a32be7007fa67d090330c549fd062c8af8a47 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_45_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:45a01305cdebfe8c35d20cff9b383634edf4e161d0d7347e8b43465304be07ba +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_46_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_46_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..e34e801fe5326bbfb2eaa42825ba2737cdcd7c41 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_46_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4fe28f32b062f3f1c93c4fec2a9a215d824f1421397f1ffd517f33bbc4c12fc5 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_47_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_47_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..fc0ae85fe0202668df6f05d8214fde2a63bec906 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_47_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6d0b0f0b88faa0df4e60987369e89dffa73ece4b6fa893c28f272dde90ea93fb +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..03175e48159ccb1d201ca50b977fd0b86bc77055 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_48_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:466cf9e2f731c11c00f85156457eca89bd82760de0d15213befb879cfd4d179f +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_49_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_49_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..a90d1fbda2ce58893f12a3a317f090f1656de1b9 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_49_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e0b74770fafcc94de75be8a0121793559e564de82e36dac37c7b1be257f94b7a +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..9af52c4934c156952d4e6bb8736f91f8a17b69a0 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:05e306c9196ab5244dadd49df974ec9b757248bfb62d120d9eb845f88abef8a8 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_50_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_50_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..a8dcae2b550e44b514d87fee542395900e535de2 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_50_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:220d7c936ad260d76c177d7c31877f0666bc881b984344d3adc3eac356123842 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_51_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_51_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..3ddeec31b18d668df4a5cb552d4fcca3dad3c053 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_51_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:460762c0e0c79cf149d4789a68d0cf479b97cacfee88eb63cda04c7e864024b1 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_52_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_52_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..d16a0cc020dfdc52216a4c48a80c8e2901bcd963 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_52_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b4299a8c72532244b6c6eae3e2250deea366d8035fb68d46dd16543808acba95 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_53_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_53_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..42ef38c1c3f0b4663c0811e20e367c691d79bcab --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_53_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f1fea93505e7a9ca69c113ebd9ac680bf10f1fe46471a6ee0aa213a33cfbacea +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_54_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_54_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..4bfed9c27e96174bdb3f992ec30b9842c573ea51 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_54_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a454711c102d5eac02fed236235f1b3c200370cc3acb0d013b1aabe0c01a1e84 +size 478761794 diff --git a/global_step68166/bf16_zero_pp_rank_55_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_55_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..077516ea60dd9d16275ca72a1570c0f0d75a0c12 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_55_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7174af5f461fb991a043b33cc8dae971d3e94634693a440af913809f4fba0a16 +size 478818050 diff --git a/global_step68166/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..c2f4dbd0a30928427d38bfc91a78ad47bb8aeeb7 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8730fc70156364edd3c4383780b796bef04fb915751ef436b70c4f938c2997a9 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..870b96b8820df1694f47f15e497a326d2a0f9068 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ded6a37edf02550f0a0797a5e83e6d56b12bf68284cb65c5a4ffc8acf23ef7e5 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..e6dea69cd8bf70549f94f17417de30c2d33140a1 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b6c9b3c8f6024a2591a18fe670b8ee31a4ccaa22f6cd30637f7948444ecf76d7 +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..b43a4d88d947dead0e3ac8f7ab310a8475bfa052 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_8_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f90ef184205a1ebb855aac4c6c66efcda976ec1b74409adefcc747bbf3056ebb +size 478761778 diff --git a/global_step68166/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt b/global_step68166/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..0bd78fd5fbd995a52467d44115824f3d3c7c46c4 --- /dev/null +++ b/global_step68166/bf16_zero_pp_rank_9_mp_rank_00_optim_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9b1da57ac03e9e51eb10dc249cd5d1ee32f177e8d97912a3182e5d72806b7c95 +size 478761778 diff --git a/global_step68166/mp_rank_00_model_states.pt b/global_step68166/mp_rank_00_model_states.pt new file mode 100644 index 0000000000000000000000000000000000000000..37692756e65b80b8dbdb883b6f9f19a0b79d009a --- /dev/null +++ b/global_step68166/mp_rank_00_model_states.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:95a651fa241676f2d757773be03e3912c52ae1d22af6655b4ceb460cba68b2ef +size 4468641264 diff --git a/latest b/latest new file mode 100644 index 0000000000000000000000000000000000000000..375c47e3193bfad81310b4e92e5e14447bafb9e2 --- /dev/null +++ b/latest @@ -0,0 +1 @@ +global_step68166 \ No newline at end of file diff --git a/model.safetensors b/model.safetensors new file mode 100644 index 0000000000000000000000000000000000000000..ab318da2f4a4fd92f7ab4411bb7a9bd70f61c04e --- /dev/null +++ b/model.safetensors @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2c506a15997ea00bf03ab255084f15101f3d3485abc37277ca7626e3e5dd3fc0 +size 4848661852 diff --git a/modeling_minicpm.py b/modeling_minicpm.py new file mode 100644 index 0000000000000000000000000000000000000000..5336996eb0221a3d7f9dee84c067799e4b12f4b0 --- /dev/null +++ b/modeling_minicpm.py @@ -0,0 +1,1453 @@ +# coding=utf-8 +# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. +# +# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX +# and OPT implementations in this library. It has been modified from its +# original forms to accommodate minor architectural differences compared +# to GPT-NeoX and OPT used by the Meta AI team that trained the model. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MiniCPM model.""" +import math +import warnings +from typing import List, Optional, Tuple, Union, Dict + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from transformers.activations import ACT2FN +from transformers.cache_utils import Cache, DynamicCache +from transformers.modeling_attn_mask_utils import ( + AttentionMaskConverter, + _prepare_4d_attention_mask, + _prepare_4d_causal_attention_mask, + _prepare_4d_causal_attention_mask_for_sdpa, +) +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast +from transformers.modeling_utils import PreTrainedModel +from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13 +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from transformers.utils.import_utils import is_torch_fx_available +from .configuration_minicpm import MiniCPMConfig +import re + +try: + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa +except: + pass + + +# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. +# It means that the function will not be traced through and simply appear as a node in the graph. +if is_torch_fx_available(): + if not is_torch_greater_or_equal_than_1_13: + import torch.fx + + _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "MiniCPMConfig" + + +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): + warnings.warn( + "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask" + ) + return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len) + + +def _make_causal_mask( + input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 +): + warnings.warn( + "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask" + ) + return AttentionMaskConverter._make_causal_mask( + input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length + ) + +# @torch.jit.script # type: ignore +def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float): + old_dtype = hidden.dtype + variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True) + hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype) + return hidden * weight + + +class MiniCPMRMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + MiniCPMRMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + return rms_layernorm(hidden_states, self.weight, self.variance_epsilon) + + +ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm) + + +class MiniCPMRotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() + seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32 + ) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding): + """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding): + """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + # cos = cos[position_ids].unsqueeze(unsqueeze_dim) + # sin = sin[position_ids].unsqueeze(unsqueeze_dim) + # q_embed = (q * cos) + (rotate_half(q) * sin) + # k_embed = (k * cos) + (rotate_half(k) * sin) + orig_dtype = k.dtype + cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] + sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim] + q_fp32 = q.to(dtype=torch.float32, device=q.device) + k_fp32 = k.to(dtype=torch.float32, device=k.device) + q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin) + k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin) + return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype) + +class MiniCPMMLP(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + if self.config.pretraining_tp > 1: + slice = self.intermediate_size // self.config.pretraining_tp + gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) + up_proj_slices = self.up_proj.weight.split(slice, dim=0) + down_proj_slices = self.down_proj.weight.split(slice, dim=1) + + gate_proj = torch.cat( + [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 + ) + up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) + + intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) + down_proj = [ + F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) + ] + down_proj = sum(down_proj) + else: + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + + return down_proj + + +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + + +class MiniCPMAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + self.head_dim = self.hidden_size // self.num_heads + self.num_key_value_heads = config.num_key_value_heads + self.num_key_value_groups = self.num_heads // self.num_key_value_heads + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.is_causal = True + + if (self.head_dim * self.num_heads) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + + self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias) + self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias) + self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias) + self._init_rope() + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = MiniCPMRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding( + self.head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + bsz, q_len, _ = hidden_states.size() + + if self.config.pretraining_tp > 1: + key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp + query_slices = self.q_proj.weight.split( + (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 + ) + key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) + value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) + + query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] + query_states = torch.cat(query_states, dim=-1) + + key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] + key_states = torch.cat(key_states, dim=-1) + + value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] + value_states = torch.cat(value_states, dim=-1) + + else: + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) + attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + if self.config.pretraining_tp > 1: + attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) + o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) + attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) + else: + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +class MiniCPMFlashAttention2(MiniCPMAttention): + """ + MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # MiniCPMFlashAttention2 attention does not support output_attentions + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (MiniCPMRMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + # Handle the case where the model is quantized + if hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate + ) + + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +class MiniCPMSdpaAttention(MiniCPMAttention): + """ + MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from + `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to + SDPA API. + """ + + # Adapted from MiniCPMAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented. + logger.warning_once( + "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, " + 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' + ) + return super().forward( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = self.q_proj(hidden_states) + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) + key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) + + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + + # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask, + # Reference: https://github.com/pytorch/pytorch/issues/112577. + if query_states.device.type == "cuda" and attention_mask is not None: + query_states = query_states.contiguous() + key_states = key_states.contiguous() + value_states = value_states.contiguous() + + attn_output = torch.nn.functional.scaled_dot_product_attention( + query_states, + key_states, + value_states, + attn_mask=attention_mask, + dropout_p=self.attention_dropout if self.training else 0.0, + # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1. + is_causal=self.is_causal and attention_mask is None and q_len > 1, + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) + + attn_output = self.o_proj(attn_output) + + return attn_output, None, past_key_value + + +MINICPM_ATTENTION_CLASSES = { + "eager": MiniCPMAttention, + "flash_attention_2": MiniCPMFlashAttention2, + "sdpa": MiniCPMSdpaAttention, +} + + +class MiniCPMDecoderLayer(nn.Module): + def __init__(self, config: MiniCPMConfig, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx) + + self.mlp = MiniCPMMLP(config) + self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.scale_depth = config.scale_depth + self.num_hidden_layers = config.num_hidden_layers + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + + hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers)) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +MINICPM_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MiniCPMConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.", + MINICPM_START_DOCSTRING, +) +class MiniCPMPreTrainedModel(PreTrainedModel): + config_class = MiniCPMConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["MiniCPMDecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_sdpa = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +MINICPM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.", + MINICPM_START_DOCSTRING, +) +class MiniCPMModel(MiniCPMPreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`] + + Args: + config: MiniCPMConfig + """ + + def __init__(self, config: MiniCPMConfig): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) + self.layers = nn.ModuleList( + [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] + ) + self._use_sdpa = config._attn_implementation == "sdpa" + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + + self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + elif self._use_sdpa and not output_attentions: + # output_attentions=True can not be supported when using SDPA, and we fall back on + # the manual implementation that requires a 4D causal mask in all cases. + attention_mask = _prepare_4d_causal_attention_mask_for_sdpa( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + position_ids, + past_key_values, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache + if not return_dict: + return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class MiniCPMForCausalLM(MiniCPMPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = MiniCPMModel(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MiniCPMForCausalLM + + >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + if self.config.pretraining_tp > 1: + lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) + logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] + logits = torch.cat(logits, dim=-1) + else: + logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base)) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_max_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past + + @torch.inference_mode() + def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user", + max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None, + **kwargs): + if history is None: + history = [] + if logits_processor: + gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, + "temperature": temperature, "logits_processor": logits_processor, **kwargs} + else: + gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, + "temperature": temperature, "logits_processor": logits_processor, **kwargs} + + history.append({"role": role, "content": query}) + history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False) + inputs = tokenizer(history_str, return_tensors='pt').to(self.device) + outputs = self.generate(**inputs, **gen_kwargs) + outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1] + response = tokenizer.decode(outputs) + pattern = re.compile(r".*?(?=|<用户>)", re.DOTALL) + matches = pattern.findall(response) + if len(matches) > 0: + response = matches[0] + history.append({"role": "assistant", "content": response}) + return response, history + + +@add_start_docstrings( + """ + The MiniCPM Model transformer with a sequence classification head on top (linear layer). + + [`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models + (e.g. GPT-2) do. + + Since it does classification on the last token, it requires to know the position of the last token. If a + `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If + no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the + padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in + each row of the batch). + """, + MINICPM_START_DOCSTRING, +) +class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + self.model = MiniCPMModel(config) + self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, SequenceClassifierOutputWithPast]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + transformer_outputs = self.model( + input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + logits = self.score(hidden_states) + + if input_ids is not None: + batch_size = input_ids.shape[0] + else: + batch_size = inputs_embeds.shape[0] + + if self.config.pad_token_id is None and batch_size != 1: + raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") + if self.config.pad_token_id is None: + sequence_lengths = -1 + else: + if input_ids is not None: + sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( + logits.device + ) + else: + sequence_lengths = -1 + + pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(pooled_logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(pooled_logits, labels) + if not return_dict: + output = (pooled_logits,) + transformer_outputs[1:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutputWithPast( + loss=loss, + logits=pooled_logits, + past_key_values=transformer_outputs.past_key_values, + hidden_states=transformer_outputs.hidden_states, + attentions=transformer_outputs.attentions, + ) diff --git a/special_tokens_map.json b/special_tokens_map.json new file mode 100644 index 0000000000000000000000000000000000000000..a782b2f1cdab4d0bacb2dc0f85d02c4b1e31f0bd --- /dev/null +++ b/special_tokens_map.json @@ -0,0 +1,30 @@ +{ + "bos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "eos_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "pad_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + }, + "unk_token": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false + } +} diff --git a/tokenizer.json b/tokenizer.json new file mode 100644 index 0000000000000000000000000000000000000000..93efa0d862564bfac68cec7e18d2b451fa56f1aa --- /dev/null +++ b/tokenizer.json @@ -0,0 +1,226270 @@ +{ + "version": "1.0", + "truncation": null, + "padding": null, + "added_tokens": [ + { + "id": 0, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 1, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 2, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + }, + { + "id": 102, + "content": "", + "single_word": false, + "lstrip": false, + "rstrip": false, + "normalized": false, + "special": true + } + ], + "normalizer": { + "type": "Sequence", + "normalizers": [ + { + "type": "Prepend", + "prepend": "▁" + }, + { + "type": "Replace", + "pattern": { + "String": " " + }, + "content": "▁" + }, + { + "type": "Replace", + "pattern": { + "String": " " + }, + "content": "▁" + } + ] + }, + "pre_tokenizer": null, + "post_processor": { + "type": "TemplateProcessing", + "single": [ + { + "SpecialToken": { + "id": "", + "type_id": 0 + } + }, + { + "Sequence": { + "id": "A", + "type_id": 0 + } + } + ], + "pair": [ + { + "SpecialToken": { + "id": "", + "type_id": 0 + } + }, + { + "Sequence": { + "id": "A", + "type_id": 0 + } + }, + { + "SpecialToken": { + "id": "", + "type_id": 1 + } + }, + { + "Sequence": { + "id": "B", + "type_id": 1 + } + } + ], + "special_tokens": { + "": { + "id": "", + "ids": [ + 1 + ], + "tokens": [ + "" + ] + } + } + }, + "decoder": { + "type": "Sequence", + "decoders": [ + { + "type": "Replace", + "pattern": { + "String": "▁" + }, + "content": " " + }, + { + "type": "ByteFallback" + }, + { + "type": "Fuse" + }, + { + "type": "Strip", + "content": " ", + "start": 1, + "stop": 0 + } + ] + }, + "model": { + "type": "BPE", + "dropout": null, + "unk_token": "", + "continuing_subword_prefix": null, + "end_of_word_suffix": null, + "fuse_unk": true, + "byte_fallback": true, + "ignore_merges": false, + "vocab": { + "": 0, + "": 1, + "": 2, + "": 3, + "": 4, + "\n": 5, + "\t": 6, + "": 7, + "": 8, + "": 9, + "

": 10, + "

": 11, + "

": 12, + "": 13, + "": 14, + "": 15, + "": 16, + "": 17, + "": 18, + "": 19, + "
": 20, + "
": 21, + "": 22, + "": 23, + "": 24, + "
  • ": 25, + "
  • ": 26, + "
  • ": 27, + "": 28, + "": 29, + "": 30, + "

    ": 31, + "

    ": 32, + "

    ": 33, + "
    ": 34, + "
    ": 35, + "
    ": 36, + "

    ": 37, + "

    ": 38, + "

    ": 39, + "
    ": 40, + "
    ": 41, + "
    ": 42, + "

    ": 43, + "

    ": 44, + "

    ": 45, + "

    ": 46, + "

    ": 47, + "

    ": 48, + "": 49, + "": 50, + "": 51, + "0": 52, + "1": 53, + "2": 54, + "3": 55, + "4": 56, + "5": 57, + "6": 58, + "7": 59, + "8": 60, + "9": 61, + "+": 62, + "-": 63, + "=": 64, + ",": 65, + "。": 66, + "!": 67, + "?": 68, + "、": 69, + ":": 70, + "¥": 71, + ".": 72, + "!": 73, + "?": 74, + "...": 75, + "。。。": 76, + "。。。。。。": 77, + "《": 78, + "》": 79, + "【": 80, + "】": 81, + "『": 82, + "』": 83, + "```": 84, + "": 86, + "---": 87, + "": 88, + ";": 89, + ".": 90, + "=": 91, + "<": 92, + ">": 93, + "-": 94, + "+": 95, + "%": 96, + "‼": 97, + "㊣": 98, + "/": 99, + "|": 100, + "": 101, + "": 102, + "": 103, + "": 104, + "": 105, + "": 106, + "": 107, + "": 108, + "": 109, + "": 110, + "": 111, + "": 112, + "": 113, + "": 114, + "": 115, + "": 116, + "": 117, + "": 118, + "": 119, + "": 120, + "": 121, + "": 122, + "": 123, + "": 124, + "": 125, + "": 126, + "": 127, + "": 128, + "": 129, + "": 130, + "": 131, + "": 132, + "": 133, + "": 134, + "": 135, + "": 136, + "": 137, + "": 138, + "": 139, + "": 140, + "": 141, + "": 142, + "": 143, + "": 144, + "": 145, + "": 146, + "": 147, + "": 148, + "": 149, + "": 150, + "": 151, + "": 152, + "": 153, + "": 154, + "": 155, + "": 156, + "": 157, + "": 158, + "": 159, + "": 160, + "": 161, + "": 162, + "": 163, + "": 164, + "": 165, + "": 166, + "": 167, + "": 168, + "": 169, + "": 170, + "": 171, + "": 172, + "": 173, + "": 174, + "": 175, + "": 176, + "": 177, + "": 178, + "": 179, + "": 180, + "": 181, + "": 182, + "": 183, + "": 184, + "": 185, + "": 186, + "": 187, + "": 188, + "": 189, + "": 190, + "": 191, + "": 192, + "": 193, + "": 194, + "": 195, + "": 196, + "": 197, + "": 198, + "": 199, + "": 200, + "": 201, + "": 202, + "": 203, + "": 204, + "": 205, + "": 206, + "": 207, + "": 208, + "": 209, + "": 210, + "": 211, + "": 212, + "": 213, + "": 214, + "": 215, + "": 216, + "": 217, + "": 218, + "": 219, + "": 220, + "": 221, + "": 222, + "": 223, + "": 224, + "": 225, + "": 226, + "": 227, + "": 228, + "": 229, + "": 230, + "": 231, + "": 232, + "": 233, + "": 234, + "": 235, + "": 236, + "": 237, + "": 238, + "": 239, + "": 240, + "": 241, + "": 242, + "": 243, + "": 244, + "": 245, + "": 246, + "": 247, + "": 248, + "": 249, + "": 250, + "": 251, + "": 252, + "": 253, + "": 254, + "": 255, + "": 256, + "": 257, + "": 258, + "": 259, + "": 260, + "": 261, + "": 262, + "": 263, + "": 264, + "": 265, + "": 266, + "": 267, + "": 268, + "": 269, + "": 270, + "": 271, + "": 272, + "": 273, + "": 274, + "": 275, + "": 276, + "": 277, + "": 278, + "": 279, + "": 280, + "": 281, + "": 282, + "": 283, + "": 284, + "": 285, + "": 286, + "": 287, + "": 288, + "": 289, + "": 290, + "": 291, + "": 292, + "": 293, + "": 294, + "": 295, + "": 296, + "": 297, + "": 298, + "": 299, + "": 300, + "": 301, + "": 302, + "": 303, + "": 304, + "": 305, + "": 306, + "": 307, + "": 308, + "": 309, + "": 310, + "": 311, + "": 312, + "": 313, + "": 314, + "": 315, + "": 316, + "": 317, + "": 318, + "": 319, + "": 320, + "": 321, + "": 322, + "": 323, + "": 324, + "": 325, + "": 326, + "": 327, + "": 328, + "": 329, + "": 330, + "": 331, + "": 332, + "": 333, + "": 334, + "": 335, + "": 336, + "": 337, + "": 338, + "": 339, + "": 340, + "": 341, + "": 342, + "": 343, + "": 344, + "": 345, + "": 346, + "": 347, + "": 348, + "": 349, + "": 350, + "": 351, + "": 352, + "": 353, + "": 354, + "": 355, + "": 356, + "": 357, + "": 358, + "": 359, + "": 360, + "": 361, + "": 362, + "": 363, + "": 364, + "": 365, + "": 366, + "": 367, + "": 368, + "": 369, + "": 370, + "": 371, + "": 372, + "": 373, + "": 374, + "": 375, + "": 376, + "": 377, + "": 378, + "": 379, + "": 380, + "": 381, + "": 382, + "": 383, + "": 384, + "": 385, + "": 386, + "": 387, + "": 388, + "": 389, + "": 390, + "": 391, + "": 392, + "": 393, + "": 394, + "": 395, + "": 396, + "": 397, + "": 398, + "": 399, + "": 400, + "": 401, + "": 402, + "": 403, + "": 404, + "": 405, + "": 406, + "": 407, + "": 408, + "": 409, + "": 410, + "": 411, + "": 412, + "": 413, + "": 414, + "": 415, + "": 416, + "": 417, + "": 418, + "": 419, + "": 420, + "": 421, + "": 422, + "": 423, + "": 424, + "": 425, + "": 426, + "": 427, + "": 428, + "": 429, + "": 430, + "": 431, + "": 432, + "": 433, + "": 434, + "": 435, + "": 436, + "": 437, + "": 438, + "": 439, + "": 440, + "": 441, + "": 442, + "": 443, + "": 444, + "": 445, + "": 446, + "": 447, + "": 448, + "": 449, + "": 450, + "": 451, + "": 452, + "": 453, + "": 454, + "": 455, + "": 456, + "": 457, + "": 458, + "": 459, + "": 460, + "": 461, + "": 462, + "": 463, + "": 464, + "": 465, + "": 466, + "": 467, + "": 468, + "": 469, + "": 470, + "": 471, + "": 472, + "": 473, + "": 474, + "": 475, + "": 476, + "": 477, + "": 478, + "": 479, + "": 480, + "": 481, + "": 482, + "": 483, + "": 484, + "": 485, + "": 486, + "": 487, + "": 488, + "": 489, + "": 490, + "": 491, + "": 492, + "": 493, + "": 494, + "": 495, + "": 496, + "": 497, + "": 498, + "": 499, + "": 500, + "": 501, + "": 502, + "": 503, + "": 504, + "": 505, + "": 506, + "": 507, + "": 508, + "": 509, + "": 510, + "": 511, + "": 512, + "": 513, + "": 514, + "": 515, + "": 516, + "": 517, + "": 518, + "": 519, + "": 520, + "": 521, + "": 522, + "": 523, + "": 524, + "": 525, + "": 526, + "": 527, + "": 528, + "": 529, + "": 530, + "": 531, + "": 532, + "": 533, + "": 534, + "": 535, + "": 536, + "": 537, + "": 538, + "": 539, + "": 540, + "": 541, + "": 542, + "": 543, + "": 544, + "": 545, + "": 546, + "": 547, + "": 548, + "": 549, + "": 550, + "": 551, + "": 552, + "": 553, + "": 554, + "": 555, + "": 556, + "": 557, + "": 558, + "": 559, + "": 560, + "": 561, + "": 562, + "": 563, + "": 564, + "": 565, + "": 566, + "": 567, + "": 568, + "": 569, + "": 570, + "": 571, + "": 572, + "": 573, + "": 574, + "": 575, + "": 576, + "": 577, + "": 578, + "": 579, + "": 580, + "": 581, + "": 582, + "": 583, + "": 584, + "": 585, + "": 586, + "": 587, + "": 588, + "": 589, + "": 590, + "": 591, + "": 592, + "": 593, + "": 594, + "": 595, + "": 596, + "": 597, + "": 598, + "": 599, + "": 600, + "": 601, + "": 602, + "": 603, + "": 604, + "": 605, + "": 606, + "": 607, + "": 608, + "": 609, + "": 610, + "": 611, + "": 612, + "": 613, + "": 614, + "": 615, + "": 616, + "": 617, + "": 618, + "": 619, + "": 620, + "": 621, + "": 622, + "": 623, + "": 624, + "": 625, + "": 626, + "": 627, + "": 628, + "": 629, + "": 630, + "": 631, + "": 632, + "": 633, + "": 634, + "": 635, + "": 636, + "": 637, + "": 638, + "": 639, + "": 640, + "": 641, + "": 642, + "": 643, + "": 644, + "": 645, + "": 646, + "": 647, + "": 648, + "": 649, + "": 650, + "": 651, + "": 652, + "": 653, + "": 654, + "": 655, + "": 656, + "": 657, + "": 658, + "": 659, + "": 660, + "": 661, + "": 662, + "": 663, + "": 664, + "": 665, + "": 666, + "": 667, + "": 668, + "": 669, + "": 670, + "": 671, + "": 672, + "": 673, + "": 674, + "": 675, + "": 676, + "": 677, + "": 678, + "": 679, + "": 680, + "": 681, + "": 682, + "": 683, + "": 684, + "": 685, + "": 686, + "": 687, + "": 688, + "": 689, + "": 690, + "": 691, + "": 692, + "": 693, + "": 694, + "": 695, + "": 696, + "": 697, + "": 698, + "": 699, + "": 700, + "": 701, + "": 702, + "": 703, + "": 704, + "": 705, + "": 706, + "": 707, + "": 708, + "": 709, + "": 710, + "": 711, + "": 712, + "": 713, + "": 714, + "": 715, + "": 716, + "": 717, + "": 718, + "": 719, + "": 720, + "": 721, + "": 722, + "": 723, + "": 724, + "": 725, + "": 726, + "": 727, + "": 728, + "": 729, + "": 730, + "": 731, + "": 732, + "": 733, + "": 734, + "": 735, + "": 736, + "": 737, + "": 738, + "": 739, + "": 740, + "": 741, + "": 742, + "": 743, + "": 744, + "": 745, + "": 746, + "": 747, + "": 748, + "": 749, + "": 750, + "": 751, + "": 752, + "": 753, + "": 754, + "": 755, + "": 756, + "": 757, + "": 758, + "": 759, + "": 760, + "": 761, + "": 762, + "": 763, + "": 764, + "": 765, + "": 766, + "": 767, + "": 768, + "": 769, + "": 770, + "": 771, + "": 772, + "": 773, + "": 774, + "": 775, + "": 776, + "": 777, + "": 778, + "": 779, + "": 780, + "": 781, + "": 782, + "": 783, + "": 784, + "": 785, + "": 786, + "": 787, + "": 788, + "": 789, + "": 790, + "": 791, + "": 792, + "": 793, + "": 794, + "": 795, + "": 796, + "": 797, + "": 798, + "": 799, + "": 800, + "": 801, + "": 802, + "": 803, + "": 804, + "": 805, + "": 806, + "": 807, + "": 808, + "": 809, + "": 810, + "": 811, + "": 812, + "": 813, + "": 814, + "": 815, + "": 816, + "": 817, + "": 818, + "": 819, + "": 820, + "": 821, + "": 822, + "": 823, + "": 824, + "": 825, + "": 826, + "": 827, + "": 828, + "": 829, + "": 830, + "": 831, + "": 832, + "": 833, + "": 834, + "": 835, + "": 836, + "": 837, + "": 838, + "": 839, + "": 840, + "": 841, + "": 842, + "": 843, + "": 844, + "": 845, + "": 846, + "": 847, + "": 848, + "": 849, + "": 850, + "": 851, + "": 852, + "": 853, + "": 854, + "": 855, + "": 856, + "": 857, + "": 858, + "": 859, + "": 860, + "": 861, + "": 862, + "": 863, + "": 864, + "": 865, + "": 866, + "": 867, + "": 868, + "": 869, + "": 870, + "": 871, + "": 872, + "": 873, + "": 874, + "": 875, + "": 876, + "": 877, + "": 878, + "": 879, + "": 880, + "": 881, + "": 882, + "": 883, + "": 884, + "": 885, + "": 886, + "": 887, + "": 888, + "": 889, + "": 890, + "": 891, + "": 892, + "": 893, + "": 894, + "": 895, + "": 896, + "": 897, + "": 898, + "": 899, + "": 900, + "": 901, + "": 902, + "": 903, + "": 904, + "": 905, + "": 906, + "": 907, + "": 908, + "": 909, + "": 910, + "": 911, + "": 912, + "": 913, + "": 914, + "": 915, + "": 916, + "": 917, + "": 918, + "": 919, + "": 920, + "": 921, + "": 922, + "": 923, + "": 924, + "": 925, + "": 926, + "": 927, + "": 928, + "": 929, + "": 930, + "": 931, + "": 932, + "": 933, + "": 934, + "": 935, + "": 936, + "": 937, + "": 938, + "": 939, + "": 940, + "": 941, + "": 942, + "": 943, + "": 944, + "": 945, + "": 946, + "": 947, + "": 948, + "": 949, + "": 950, + "": 951, + "": 952, + "": 953, + "": 954, + "": 955, + "": 956, + "": 957, + "": 958, + "": 959, + "": 960, + "": 961, + "": 962, + "": 963, + "": 964, + "": 965, + "": 966, + "": 967, + "": 968, + "": 969, + "": 970, + "": 971, + "": 972, + "": 973, + "": 974, + "": 975, + "": 976, + "": 977, + "": 978, + "": 979, + "": 980, + "": 981, + "": 982, + "": 983, + "": 984, + "": 985, + "": 986, + "": 987, + "": 988, + "": 989, + "": 990, + "": 991, + "": 992, + "": 993, + "": 994, + "": 995, + "": 996, + "": 997, + "": 998, + "": 999, + "": 1000, + "": 1001, + "": 1002, + "": 1003, + "": 1004, + "": 1005, + "": 1006, + "": 1007, + "": 1008, + "": 1009, + "": 1010, + "": 1011, + "": 1012, + "": 1013, + "": 1014, + "": 1015, + "": 1016, + "": 1017, + "": 1018, + "": 1019, + "": 1020, + "": 1021, + "": 1022, + "": 1023, + "": 1024, + "": 1025, + "": 1026, + "": 1027, + "": 1028, + "": 1029, + "": 1030, + "": 1031, + "": 1032, + "": 1033, + "": 1034, + "": 1035, + "": 1036, + "": 1037, + "": 1038, + "": 1039, + "": 1040, + "": 1041, + "": 1042, + "": 1043, + "": 1044, + "": 1045, + "": 1046, + "": 1047, + "": 1048, + "": 1049, + "": 1050, + "": 1051, + "": 1052, + "": 1053, + "": 1054, + "": 1055, + "": 1056, + "": 1057, + "": 1058, + "": 1059, + "": 1060, + "": 1061, + "": 1062, + "": 1063, + "": 1064, + "": 1065, + "": 1066, + "": 1067, + "": 1068, + "": 1069, + "": 1070, + "": 1071, + "": 1072, + "": 1073, + "": 1074, + "": 1075, + "": 1076, + "": 1077, + "": 1078, + "": 1079, + "": 1080, + "": 1081, + "": 1082, + "": 1083, + "": 1084, + "": 1085, + "": 1086, + "": 1087, + "": 1088, + "<0x00>": 1089, + "<0x01>": 1090, + "<0x02>": 1091, + "<0x03>": 1092, + "<0x04>": 1093, + "<0x05>": 1094, + "<0x06>": 1095, + "<0x07>": 1096, + "<0x08>": 1097, + "<0x09>": 1098, + "<0x0A>": 1099, + "<0x0B>": 1100, + "<0x0C>": 1101, + "<0x0D>": 1102, + "<0x0E>": 1103, + "<0x0F>": 1104, + "<0x10>": 1105, + "<0x11>": 1106, + "<0x12>": 1107, + "<0x13>": 1108, + "<0x14>": 1109, + "<0x15>": 1110, + "<0x16>": 1111, + "<0x17>": 1112, + "<0x18>": 1113, + "<0x19>": 1114, + "<0x1A>": 1115, + "<0x1B>": 1116, + "<0x1C>": 1117, + "<0x1D>": 1118, + "<0x1E>": 1119, + "<0x1F>": 1120, + "<0x20>": 1121, + "<0x21>": 1122, + "<0x22>": 1123, + "<0x23>": 1124, + "<0x24>": 1125, + "<0x25>": 1126, + "<0x26>": 1127, + "<0x27>": 1128, + "<0x28>": 1129, + "<0x29>": 1130, + "<0x2A>": 1131, + "<0x2B>": 1132, + "<0x2C>": 1133, + "<0x2D>": 1134, + "<0x2E>": 1135, + "<0x2F>": 1136, + "<0x30>": 1137, + "<0x31>": 1138, + "<0x32>": 1139, + "<0x33>": 1140, + "<0x34>": 1141, + "<0x35>": 1142, + "<0x36>": 1143, + "<0x37>": 1144, + "<0x38>": 1145, + "<0x39>": 1146, + "<0x3A>": 1147, + "<0x3B>": 1148, + "<0x3C>": 1149, + "<0x3D>": 1150, + "<0x3E>": 1151, + "<0x3F>": 1152, + "<0x40>": 1153, + "<0x41>": 1154, + "<0x42>": 1155, + "<0x43>": 1156, + "<0x44>": 1157, + "<0x45>": 1158, + "<0x46>": 1159, + "<0x47>": 1160, + "<0x48>": 1161, + "<0x49>": 1162, + "<0x4A>": 1163, + "<0x4B>": 1164, + "<0x4C>": 1165, + "<0x4D>": 1166, + "<0x4E>": 1167, + "<0x4F>": 1168, + "<0x50>": 1169, + "<0x51>": 1170, + "<0x52>": 1171, + "<0x53>": 1172, + "<0x54>": 1173, + "<0x55>": 1174, + "<0x56>": 1175, + "<0x57>": 1176, + "<0x58>": 1177, + "<0x59>": 1178, + "<0x5A>": 1179, + "<0x5B>": 1180, + "<0x5C>": 1181, + "<0x5D>": 1182, + "<0x5E>": 1183, + "<0x5F>": 1184, + "<0x60>": 1185, + "<0x61>": 1186, + "<0x62>": 1187, + "<0x63>": 1188, + "<0x64>": 1189, + "<0x65>": 1190, + "<0x66>": 1191, + "<0x67>": 1192, + "<0x68>": 1193, + "<0x69>": 1194, + "<0x6A>": 1195, + "<0x6B>": 1196, + "<0x6C>": 1197, + "<0x6D>": 1198, + "<0x6E>": 1199, + "<0x6F>": 1200, + "<0x70>": 1201, + "<0x71>": 1202, + "<0x72>": 1203, + "<0x73>": 1204, + "<0x74>": 1205, + "<0x75>": 1206, + "<0x76>": 1207, + "<0x77>": 1208, + "<0x78>": 1209, + "<0x79>": 1210, + "<0x7A>": 1211, + "<0x7B>": 1212, + "<0x7C>": 1213, + "<0x7D>": 1214, + "<0x7E>": 1215, + "<0x7F>": 1216, + "<0x80>": 1217, + "<0x81>": 1218, + "<0x82>": 1219, + "<0x83>": 1220, + "<0x84>": 1221, + "<0x85>": 1222, + "<0x86>": 1223, + "<0x87>": 1224, + "<0x88>": 1225, + "<0x89>": 1226, + "<0x8A>": 1227, + "<0x8B>": 1228, + "<0x8C>": 1229, + "<0x8D>": 1230, + "<0x8E>": 1231, + "<0x8F>": 1232, + "<0x90>": 1233, + "<0x91>": 1234, + "<0x92>": 1235, + "<0x93>": 1236, + "<0x94>": 1237, + "<0x95>": 1238, + "<0x96>": 1239, + "<0x97>": 1240, + "<0x98>": 1241, + "<0x99>": 1242, + "<0x9A>": 1243, + "<0x9B>": 1244, + "<0x9C>": 1245, + "<0x9D>": 1246, + "<0x9E>": 1247, + "<0x9F>": 1248, + "<0xA0>": 1249, + "<0xA1>": 1250, + "<0xA2>": 1251, + "<0xA3>": 1252, + "<0xA4>": 1253, + "<0xA5>": 1254, + "<0xA6>": 1255, + "<0xA7>": 1256, + "<0xA8>": 1257, + "<0xA9>": 1258, + "<0xAA>": 1259, + "<0xAB>": 1260, + "<0xAC>": 1261, + "<0xAD>": 1262, + "<0xAE>": 1263, + "<0xAF>": 1264, + "<0xB0>": 1265, + "<0xB1>": 1266, + "<0xB2>": 1267, + "<0xB3>": 1268, + "<0xB4>": 1269, + "<0xB5>": 1270, + "<0xB6>": 1271, + "<0xB7>": 1272, + "<0xB8>": 1273, + "<0xB9>": 1274, + "<0xBA>": 1275, + "<0xBB>": 1276, + "<0xBC>": 1277, + "<0xBD>": 1278, + "<0xBE>": 1279, + "<0xBF>": 1280, + "<0xC0>": 1281, + "<0xC1>": 1282, + "<0xC2>": 1283, + "<0xC3>": 1284, + "<0xC4>": 1285, + "<0xC5>": 1286, + "<0xC6>": 1287, + "<0xC7>": 1288, + "<0xC8>": 1289, + "<0xC9>": 1290, + "<0xCA>": 1291, + "<0xCB>": 1292, + "<0xCC>": 1293, + "<0xCD>": 1294, + "<0xCE>": 1295, + "<0xCF>": 1296, + "<0xD0>": 1297, + "<0xD1>": 1298, + "<0xD2>": 1299, + "<0xD3>": 1300, + "<0xD4>": 1301, + "<0xD5>": 1302, + "<0xD6>": 1303, + "<0xD7>": 1304, + "<0xD8>": 1305, + "<0xD9>": 1306, + "<0xDA>": 1307, + "<0xDB>": 1308, + "<0xDC>": 1309, + "<0xDD>": 1310, + "<0xDE>": 1311, + "<0xDF>": 1312, + "<0xE0>": 1313, + "<0xE1>": 1314, + "<0xE2>": 1315, + "<0xE3>": 1316, + "<0xE4>": 1317, + "<0xE5>": 1318, + "<0xE6>": 1319, + "<0xE7>": 1320, + "<0xE8>": 1321, + "<0xE9>": 1322, + "<0xEA>": 1323, + "<0xEB>": 1324, + "<0xEC>": 1325, + "<0xED>": 1326, + "<0xEE>": 1327, + "<0xEF>": 1328, + "<0xF0>": 1329, + "<0xF1>": 1330, + "<0xF2>": 1331, + "<0xF3>": 1332, + "<0xF4>": 1333, + "<0xF5>": 1334, + "<0xF6>": 1335, + "<0xF7>": 1336, + "<0xF8>": 1337, + "<0xF9>": 1338, + "<0xFA>": 1339, + "<0xFB>": 1340, + "<0xFC>": 1341, + "<0xFD>": 1342, + "<0xFE>": 1343, + "<0xFF>": 1344, + "▁▁": 1345, + "▁t": 1346, + "in": 1347, + "▁a": 1348, + "er": 1349, + "on": 1350, + "he": 1351, + "re": 1352, + "at": 1353, + "▁▁▁▁": 1354, + "or": 1355, + "en": 1356, + "▁s": 1357, + "▁the": 1358, + "es": 1359, + "is": 1360, + "▁c": 1361, + "it": 1362, + "an": 1363, + "al": 1364, + "▁o": 1365, + "▁w": 1366, + "ed": 1367, + "▁f": 1368, + "▁p": 1369, + "ar": 1370, + "ing": 1371, + "nd": 1372, + "ion": 1373, + "ic": 1374, + "ou": 1375, + "▁b": 1376, + "▁in": 1377, + "le": 1378, + "▁of": 1379, + "▁m": 1380, + "ro": 1381, + "as": 1382, + "▁d": 1383, + "▁and": 1384, + "▁to": 1385, + "ent": 1386, + "ct": 1387, + "et": 1388, + "st": 1389, + "om": 1390, + "el": 1391, + "▁h": 1392, + "▁th": 1393, + "il": 1394, + "▁▁▁▁▁▁▁▁": 1395, + "▁re": 1396, + "▁n": 1397, + "am": 1398, + "▁l": 1399, + "im": 1400, + "▁e": 1401, + "id": 1402, + "ut": 1403, + "ol": 1404, + "ac": 1405, + "us": 1406, + "ur": 1407, + "▁T": 1408, + "ation": 1409, + "▁is": 1410, + "ot": 1411, + "ve": 1412, + "▁S": 1413, + "▁g": 1414, + "\\\\": 1415, + "ig": 1416, + "▁I": 1417, + "\\'": 1418, + "▁C": 1419, + "▁A": 1420, + "▁for": 1421, + "ad": 1422, + "ul": 1423, + "ow": 1424, + "▁|": 1425, + "▁(": 1426, + "▁y": 1427, + ";\\": 1428, + "ith": 1429, + "ver": 1430, + "ay": 1431, + "▁on": 1432, + "▁st": 1433, + "ly": 1434, + "se": 1435, + "if": 1436, + "ce": 1437, + "od": 1438, + "ch": 1439, + "th": 1440, + "▁be": 1441, + "ag": 1442, + "ter": 1443, + "un": 1444, + "▁M": 1445, + "ate": 1446, + "est": 1447, + "ir": 1448, + "▁you": 1449, + "▁with": 1450, + "um": 1451, + "▁P": 1452, + "▁pro": 1453, + "em": 1454, + ")\\": 1455, + "ab": 1456, + "▁that": 1457, + "▁an": 1458, + "ort": 1459, + "ri": 1460, + "ap": 1461, + "qu": 1462, + "▁con": 1463, + "op": 1464, + "ers": 1465, + "ist": 1466, + "▁as": 1467, + "ect": 1468, + "▁B": 1469, + "res": 1470, + "▁v": 1471, + "os": 1472, + "oc": 1473, + "▁al": 1474, + "rom": 1475, + "▁it": 1476, + "▁wh": 1477, + "ht": 1478, + "▁D": 1479, + "▁com": 1480, + "ess": 1481, + "ment": 1482, + "and": 1483, + "ub": 1484, + "ain": 1485, + "ere": 1486, + "ill": 1487, + "▁r": 1488, + "ame": 1489, + "▁R": 1490, + "▁H": 1491, + "▁ex": 1492, + "▁F": 1493, + "▁L": 1494, + "▁W": 1495, + "▁\"": 1496, + "up": 1497, + "iv": 1498, + "ity": 1499, + "port": 1500, + "ec": 1501, + "▁are": 1502, + "pl": 1503, + "▁{": 1504, + "ew": 1505, + "ex": 1506, + "▁The": 1507, + "▁or": 1508, + "ke": 1509, + "▁at": 1510, + "ue": 1511, + "ore": 1512, + "nt": 1513, + "og": 1514, + "▁N": 1515, + "ant": 1516, + "end": 1517, + "act": 1518, + "ive": 1519, + "▁by": 1520, + "ef": 1521, + "art": 1522, + "▁was": 1523, + "pt": 1524, + "▁from": 1525, + ",\\": 1526, + "▁G": 1527, + "ud": 1528, + "▁E": 1529, + ":\\": 1530, + "▁us": 1531, + "ies": 1532, + "age": 1533, + "ine": 1534, + "▁▁▁▁▁▁▁▁▁▁▁▁": 1535, + "▁this": 1536, + "ass": 1537, + "▁$": 1538, + "ure": 1539, + "ld": 1540, + "all": 1541, + "}\\": 1542, + "ave": 1543, + "▁he": 1544, + ");\\": 1545, + "ial": 1546, + "com": 1547, + "▁ch": 1548, + "▁O": 1549, + "ight": 1550, + "cl": 1551, + "ction": 1552, + "nT": 1553, + "▁we": 1554, + "##": 1555, + "ated": 1556, + "iz": 1557, + "ack": 1558, + "ult": 1559, + "▁tr": 1560, + "ge": 1561, + "ip": 1562, + "our": 1563, + "▁de": 1564, + "int": 1565, + "//": 1566, + "for": 1567, + "ell": 1568, + "ust": 1569, + "▁sh": 1570, + "▁can": 1571, + "ost": 1572, + "▁not": 1573, + "out": 1574, + "▁\\\\": 1575, + "per": 1576, + "▁se": 1577, + "ard": 1578, + "are": 1579, + "▁have": 1580, + "▁im": 1581, + "ase": 1582, + "ical": 1583, + "▁cl": 1584, + "ind": 1585, + "tr": 1586, + "▁{\\": 1587, + "**": 1588, + "rou": 1589, + "pe": 1590, + "av": 1591, + "ions": 1592, + "▁le": 1593, + "▁pl": 1594, + "ff": 1595, + "con": 1596, + "able": 1597, + "ath": 1598, + "ib": 1599, + "ide": 1600, + "▁will": 1601, + "▁comp": 1602, + "ile": 1603, + "ire": 1604, + "urn": 1605, + "ast": 1606, + "ok": 1607, + "▁res": 1608, + "▁J": 1609, + "ork": 1610, + "ans": 1611, + "▁U": 1612, + "ice": 1613, + "▁*": 1614, + "▁your": 1615, + "▁j": 1616, + "▁ad": 1617, + "▁sp": 1618, + "ould": 1619, + "ich": 1620, + "▁k": 1621, + "ak": 1622, + "ign": 1623, + "ime": 1624, + "du": 1625, + "ret": 1626, + "ia": 1627, + "▁ab": 1628, + "ary": 1629, + "ail": 1630, + "▁\\": 1631, + "▁Th": 1632, + "ace": 1633, + "执行": 1634, + "ong": 1635, + "ep": 1636, + "elf": 1637, + "ents": 1638, + "one": 1639, + "ber": 1640, + "ations": 1641, + "ear": 1642, + "ens": 1643, + "pro": 1644, + "▁all": 1645, + "▁In": 1646, + "ence": 1647, + "▁ap": 1648, + "▁has": 1649, + "▁int": 1650, + "ext": 1651, + ">\\": 1652, + "ome": 1653, + "nI": 1654, + "ord": 1655, + "so": 1656, + "ang": 1657, + "form": 1658, + "ance": 1659, + "und": 1660, + "lic": 1661, + "▁cont": 1662, + "ata": 1663, + "▁me": 1664, + "cc": 1665, + "▁|\\": 1666, + "fer": 1667, + "hen": 1668, + "()": 1669, + "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁": 1670, + "ite": 1671, + "人民": 1672, + "enc": 1673, + "ress": 1674, + "▁do": 1675, + "nA": 1676, + "iss": 1677, + "ject": 1678, + "ous": 1679, + "erv": 1680, + "▁K": 1681, + "ther": 1682, + "str": 1683, + "ach": 1684, + "lo": 1685, + "get": 1686, + "ry": 1687, + "name": 1688, + "tp": 1689, + "▁V": 1690, + "▁ne": 1691, + "vel": 1692, + "ory": 1693, + "▁un": 1694, + "gh": 1695, + "▁but": 1696, + "▁which": 1697, + "ors": 1698, + "ll": 1699, + "nThe": 1700, + "ition": 1701, + "nS": 1702, + "▁per": 1703, + "▁▁▁▁▁▁": 1704, + "▁en": 1705, + "公司": 1706, + "▁out": 1707, + "fr": 1708, + "▁[": 1709, + "ake": 1710, + "▁\\'": 1711, + "▁up": 1712, + "▁qu": 1713, + "ount": 1714, + "▁new": 1715, + "▁St": 1716, + "▁go": 1717, + "ook": 1718, + "ug": 1719, + "return": 1720, + "ose": 1721, + "▁ar": 1722, + "ublic": 1723, + "import": 1724, + "ft": 1725, + "▁dis": 1726, + "▁were": 1727, + "ple": 1728, + "ys": 1729, + "vers": 1730, + "": 2496, + "cer": 2497, + "▁%": 2498, + "aining": 2499, + "url": 2500, + "ME": 2501, + "主要": 2502, + "▁techn": 2503, + "nfrom": 2504, + "▁perform": 2505, + "▁state": 2506, + "▁cent": 2507, + "ium": 2508, + "oh": 2509, + "▁met": 2510, + "rivate": 2511, + "bers": 2512, + "▁program": 2513, + "ified": 2514, + "▁project": 2515, + "提供": 2516, + "▁again": 2517, + "▁Re": 2518, + "ask": 2519, + "action": 2520, + "ains": 2521, + "▁For": 2522, + "wh": 2523, + "▁down": 2524, + "时候": 2525, + "教育": 2526, + "▁mat": 2527, + "ces": 2528, + "roll": 2529, + "▁current": 2530, + "资料": 2531, + "play": 2532, + "▁before": 2533, + "▁Cl": 2534, + "▁err": 2535, + "lex": 2536, + "Id": 2537, + "bs": 2538, + "选择": 2539, + "▁z": 2540, + "AN": 2541, + "▁partic": 2542, + "如下": 2543, + "ustom": 2544, + "ters": 2545, + "pp": 2546, + "▁gen": 2547, + "▁Ar": 2548, + "aj": 2549, + "ved": 2550, + "▁mult": 2551, + "ams": 2552, + "back": 2553, + "▁second": 2554, + "▁dep": 2555, + "],": 2556, + "ually": 2557, + "▁best": 2558, + "Con": 2559, + "▁being": 2560, + "test": 2561, + "eferences": 2562, + "▁made": 2563, + "bl": 2564, + "usiness": 2565, + "▁three": 2566, + "参考": 2567, + "▁care": 2568, + "▁provid": 2569, + "大学": 2570, + "Com": 2571, + "▁Z": 2572, + "▁“": 2573, + "****": 2574, + "String": 2575, + "ior": 2576, + "ID": 2577, + "ote": 2578, + "▁did": 2579, + "ression": 2580, + "▁mark": 2581, + "可能": 2582, + "ism": 2583, + "▁Con": 2584, + "dfrac": 2585, + "CT": 2586, + "▁hand": 2587, + "yle": 2588, + "▁direct": 2589, + "ribut": 2590, + "ital": 2591, + "社会": 2592, + "ability": 2593, + "ccess": 2594, + "▁product": 2595, + "▁while": 2596, + "sq": 2597, + "wer": 2598, + "▁count": 2599, + "他们": 2600, + "发生": 2601, + "nReferences": 2602, + "▁dr": 2603, + "国家": 2604, + "ithub": 2605, + "ackage": 2606, + "▁lead": 2607, + "▁those": 2608, + "生活": 2609, + "▁build": 2610, + "ane": 2611, + "方法": 2612, + "▁fin": 2613, + "LE": 2614, + "acter": 2615, + "clude": 2616, + "▁open": 2617, + "▁*/\\": 2618, + "arn": 2619, + ",\"": 2620, + "审理": 2621, + "情况": 2622, + "ends": 2623, + "▁results": 2624, + "abel": 2625, + "ball": 2626, + "但是": 2627, + "nG": 2628, + "▁think": 2629, + "py": 2630, + "using": 2631, + "nThis": 2632, + "诉讼法": 2633, + "现在": 2634, + "▁non": 2635, + "▁much": 2636, + "▁ins": 2637, + "ross": 2638, + "经济": 2639, + "的一": 2640, + "arm": 2641, + "be": 2642, + "var": 2643, + "▁child": 2644, + "by": 2645, + "net": 2646, + "org": 2647, + "face": 2648, + "是一": 2649, + "▁report": 2650, + "alc": 2651, + "▁last": 2652, + "▁#": 2653, + "提出": 2654, + "▁How": 2655, + "▁commun": 2656, + "icro": 2657, + "itive": 2658, + "▁cap": 2659, + "ength": 2660, + "▁take": 2661, + "ained": 2662, + "lish": 2663, + "▁del": 2664, + "\")\\": 2665, + "atus": 2666, + "ograph": 2667, + "已经": 2668, + "设计": 2669, + "▁poss": 2670, + "▁present": 2671, + "ta": 2672, + "▁invest": 2673, + "come": 2674, + "▁order": 2675, + "▁day": 2676, + "IC": 2677, + "▁书": 2678, + "▁oper": 2679, + "上诉": 2680, + "ows": 2681, + "equ": 2682, + "ger": 2683, + "▁som": 2684, + "▁As": 2685, + "▁research": 2686, + "分析": 2687, + "出生": 2688, + "stand": 2689, + "▁opt": 2690, + "ervice": 2691, + "\\\\)": 2692, + "time": 2693, + "arget": 2694, + "▁iss": 2695, + "vir": 2696, + "▁home": 2697, + "还是": 2698, + "▁vis": 2699, + "ather": 2700, + "▁own": 2701, + "▁return": 2702, + "▁ant": 2703, + "github": 2704, + "▁top": 2705, + "代表": 2706, + "▁Americ": 2707, + "uthor": 2708, + "▁sk": 2709, + "ailable": 2710, + "html": 2711, + "▁http": 2712, + "math": 2713, + "ness": 2714, + "▁treat": 2715, + "Tr": 2716, + "▁proper": 2717, + "▁small": 2718, + "引用": 2719, + "▁cr": 2720, + "))\\": 2721, + "▁applic": 2722, + "EF": 2723, + "汉族": 2724, + "内容": 2725, + "left": 2726, + "rr": 2727, + "ma": 2728, + "ugg": 2729, + "▁chang": 2730, + "ively": 2731, + "▁Sc": 2732, + "duct": 2733, + "oad": 2734, + "util": 2735, + "ception": 2736, + "iversity": 2737, + "▁And": 2738, + "Th": 2739, + "要求": 2740, + "new": 2741, + "ream": 2742, + "市场": 2743, + "▁pop": 2744, + "▁sing": 2745, + "orth": 2746, + "Cl": 2747, + "▁De": 2748, + "ES": 2749, + "▁without": 2750, + "akes": 2751, + "▁ident": 2752, + "出版": 2753, + "▁including": 2754, + "AS": 2755, + "ems": 2756, + "ysis": 2757, + "▁Col": 2758, + "▁true": 2759, + "▁health": 2760, + "过程": 2761, + "其他": 2762, + "reg": 2763, + "▁Ind": 2764, + "▁_": 2765, + "med": 2766, + "string": 2767, + "bin": 2768, + "申请执行人": 2769, + "ister": 2770, + "}}": 2771, + "▁string": 2772, + "引用日期": 2773, + "dit": 2774, + "start": 2775, + "uro": 2776, + "lement": 2777, + "Ch": 2778, + "▁path": 2779, + "▁elect": 2780, + "List": 2781, + "▁tri": 2782, + "▁cle": 2783, + "代理": 2784, + "▁X": 2785, + "▁based": 2786, + "▁person": 2787, + "AL": 2788, + "alk": 2789, + "ats": 2790, + "cription": 2791, + "\">": 2792, + "include": 2793, + "\">\\": 2794, + "民事诉讼法": 2795, + "erg": 2796, + "ava": 2797, + "tract": 2798, + "”\\": 2799, + "▁following": 2800, + "yt": 2801, + "ives": 2802, + "Type": 2803, + "Res": 2804, + "审判员": 2805, + "reen": 2806, + "ths": 2807, + "ocument": 2808, + "▁world": 2809, + "▁life": 2810, + "arge": 2811, + "oin": 2812, + "中华人民共和国民事诉讼法": 2813, + "▁Wh": 2814, + "ivid": 2815, + "li": 2816, + "word": 2817, + "▁signific": 2818, + "ety": 2819, + "▁ke": 2820, + "omen": 2821, + "less": 2822, + "▁中文": 2823, + "sqrt": 2824, + "ey": 2825, + "▁meas": 2826, + "pose": 2827, + "▁const": 2828, + "irc": 2829, + "▁Res": 2830, + "olution": 2831, + "▁struct": 2832, + "amet": 2833, + "▁business": 2834, + "▁aut": 2835, + "▁Pl": 2836, + "▁eas": 2837, + "▁ear": 2838, + "都是": 2839, + "▁team": 2840, + "ref": 2841, + "por": 2842, + "▁pass": 2843, + "▁case": 2844, + "文化": 2845, + "ven": 2846, + "ury": 2847, + "▁bu": 2848, + "▁free": 2849, + "ration": 2850, + "aces": 2851, + "▁writ": 2852, + "很多": 2853, + "中的": 2854, + "财产": 2855, + "oard": 2856, + "ways": 2857, + "▁adv": 2858, + "项目": 2859, + "人的": 2860, + "▁Fr": 2861, + "▁License": 2862, + "▁中文名": 2863, + "▁field": 2864, + "▁rece": 2865, + "ission": 2866, + "学习": 2867, + "二〇": 2868, + "},\\": 2869, + "▁Sp": 2870, + "aut": 2871, + "▁available": 2872, + "▁control": 2873, + "au": 2874, + "urs": 2875, + "aper": 2876, + "rem": 2877, + "SUP": 2878, + "▁contin": 2879, + "▁cells": 2880, + "np": 2881, + "学生": 2882, + "二〇一": 2883, + "数据": 2884, + "▁place": 2885, + "nY": 2886, + "或者": 2887, + "ina": 2888, + "▁provide": 2889, + "依照": 2890, + "dis": 2891, + "ache": 2892, + "建设": 2893, + "专业": 2894, + "mod": 2895, + "ape": 2896, + "不同": 2897, + "ternal": 2898, + "▁Is": 2899, + "lob": 2900, + "开始": 2901, + "▁real": 2902, + "ush": 2903, + "][": 2904, + "▁problem": 2905, + "▁dem": 2906, + "向本院": 2907, + "index": 2908, + "icle": 2909, + "rc": 2910, + "▁still": 2911, + "ived": 2912, + "作者": 2913, + "▁around": 2914, + "▁tem": 2915, + "js": 2916, + "FIG": 2917, + "lete": 2918, + "▁cour": 2919, + "▁stand": 2920, + "ope": 2921, + "书记": 2922, + "\\'\\": 2923, + "viron": 2924, + "世界": 2925, + "aster": 2926, + "▁hum": 2927, + "not": 2928, + "▁organ": 2929, + "▁expl": 2930, + "vert": 2931, + "这样": 2932, + "outh": 2933, + "cm": 2934, + "ploy": 2935, + "inks": 2936, + "til": 2937, + "活动": 2938, + "rite": 2939, + "▁key": 2940, + "知道": 2941, + "参考资料": 2942, + "tem": 2943, + "▁Ph": 2944, + "▁log": 2945, + "ww": 2946, + "▁significant": 2947, + "resent": 2948, + "工程": 2949, + "init": 2950, + "ails": 2951, + "银行": 2952, + "{\\\\": 2953, + "▁book": 2954, + "▁grow": 2955, + "▁development": 2956, + "▁area": 2957, + "关于": 2958, + "▁impro": 2959, + "▁ve": 2960, + "▁determ": 2961, + "重要": 2962, + "▁lim": 2963, + "iving": 2964, + "▁Let": 2965, + "att": 2966, + "aving": 2967, + "els": 2968, + "list": 2969, + "以及": 2970, + "arent": 2971, + "▁There": 2972, + "的是": 2973, + "ots": 2974, + "ndef": 2975, + "ification": 2976, + "▁sever": 2977, + "af": 2978, + "安全": 2979, + "▁important": 2980, + "rel": 2981, + "angu": 2982, + "关系": 2983, + "oss": 2984, + "www": 2985, + "方式": 2986, + "好的": 2987, + "ait": 2988, + "▁Se": 2989, + "本案": 2990, + "▁mus": 2991, + "游戏": 2992, + "▁redu": 2993, + "▁family": 2994, + "▁him": 2995, + "crib": 2996, + "▁conf": 2997, + "▁bi": 2998, + "中心": 2999, + "mun": 3000, + "部分": 3001, + "▁addition": 3002, + "na": 3003, + "value": 3004, + "▁head": 3005, + "▁定": 3006, + "opt": 3007, + "nal": 3008, + "),\\": 3009, + "依法": 3010, + "▁local": 3011, + "比较": 3012, + "▁Le": 3013, + "lu": 3014, + "▁To": 3015, + "ott": 3016, + "struct": 3017, + "影响": 3018, + "▁within": 3019, + "▁change": 3020, + "▁since": 3021, + "uck": 3022, + "——": 3023, + "ique": 3024, + "自己的": 3025, + "lished": 3026, + "ately": 3027, + "不能": 3028, + "ght": 3029, + "▁All": 3030, + "▁object": 3031, + "发现": 3032, + "▁manag": 3033, + "同时": 3034, + "▁imp": 3035, + "▁consider": 3036, + "怎么": 3037, + "vious": 3038, + "model": 3039, + "(\\": 3040, + "▁given": 3041, + "rror": 3042, + "▁associ": 3043, + "ION": 3044, + "相关": 3045, + "▁,": 3046, + "IS": 3047, + "生产": 3048, + "▁public": 3049, + "▁beh": 3050, + "etwork": 3051, + "▁Q": 3052, + "▁pot": 3053, + "▁bas": 3054, + "▁So": 3055, + "egr": 3056, + "Data": 3057, + "▁custom": 3058, + "▁service": 3059, + "▁user": 3060, + "ler": 3061, + "nEx": 3062, + "▁University": 3063, + "',\\": 3064, + "▁void": 3065, + "UT": 3066, + "▁What": 3067, + "计算": 3068, + "▁require": 3069, + "▁next": 3070, + "num": 3071, + "▁sit": 3072, + "▁bre": 3073, + "第一百": 3074, + "ember": 3075, + "fess": 3076, + "▁specific": 3077, + "▁code": 3078, + "▁try": 3079, + "ently": 3080, + "▁cou": 3081, + "AC": 3082, + "北京": 3083, + "▁power": 3084, + "ird": 3085, + "▁ide": 3086, + "\"\"\"\\": 3087, + "mp": 3088, + "▁view": 3089, + "能力": 3090, + "方面": 3091, + "umm": 3092, + "Question": 3093, + "▁must": 3094, + "字第": 3095, + "ftware": 3096, + "ern": 3097, + "▁really": 3098, + "被告人": 3099, + "ename": 3100, + "/**\\": 3101, + "lev": 3102, + "▁interest": 3103, + "也是": 3104, + "▁school": 3105, + "head": 3106, + "然后": 3107, + "一定": 3108, + "▁sl": 3109, + "▁hist": 3110, + "nWe": 3111, + "export": 3112, + "结果": 3113, + "▁let": 3114, + "osed": 3115, + "co": 3116, + "▁appe": 3117, + "参加": 3118, + "met": 3119, + "如何": 3120, + "epend": 3121, + "▁understand": 3122, + "网络": 3123, + "作为": 3124, + "▁pur": 3125, + "▁water": 3126, + "ples": 3127, + "go": 3128, + "▁week": 3129, + "AP": 3130, + "RO": 3131, + "履行": 3132, + "▁version": 3133, + "环境": 3134, + "的时候": 3135, + "itor": 3136, + "纠纷": 3137, + "▁range": 3138, + "\\')\\": 3139, + "ological": 3140, + "▁At": 3141, + "uff": 3142, + "ormal": 3143, + "\\',\\": 3144, + "▁create": 3145, + "pace": 3146, + "nclass": 3147, + "unc": 3148, + "期间": 3149, + "支持": 3150, + "▁four": 3151, + "aff": 3152, + "order": 3153, + "▁On": 3154, + "▁few": 3155, + "\");\\": 3156, + "idth": 3157, + "nREF": 3158, + "ured": 3159, + "iver": 3160, + "thon": 3161, + "▁better": 3162, + "▁But": 3163, + "程序": 3164, + "chan": 3165, + "];\\": 3166, + "▁prote": 3167, + "ules": 3168, + "ially": 3169, + "Col": 3170, + "▁prot": 3171, + "▁init": 3172, + "raw": 3173, + "vironment": 3174, + "▁record": 3175, + "▁offer": 3176, + "ET": 3177, + "▁company": 3178, + "表示": 3179, + "▁text": 3180, + "▁arg": 3181, + "大家": 3182, + "ither": 3183, + "▁event": 3184, + "组织": 3185, + "▁dise": 3186, + "▁character": 3187, + "这些": 3188, + "了一": 3189, + "rop": 3190, + "idd": 3191, + "孩子": 3192, + "▁check": 3193, + "合同": 3194, + "▁conn": 3195, + "ference": 3196, + "ething": 3197, + "yd": 3198, + "大的": 3199, + "▁dev": 3200, + "类型": 3201, + "政府": 3202, + "▁ref": 3203, + "ittle": 3204, + "▁occ": 3205, + "alcul": 3206, + "ene": 3207, + "那么": 3208, + "▁▁▁▁▁▁▁▁▁▁▁▁▁▁": 3209, + "isk": 3210, + "▁foot": 3211, + "个人": 3212, + "ideo": 3213, + "科学": 3214, + "eb": 3215, + "所有": 3216, + "▁treatment": 3217, + "答案": 3218, + "第三": 3219, + "▁going": 3220, + "▁sure": 3221, + ")$": 3222, + "aterial": 3223, + "▁Ap": 3224, + "开发": 3225, + "选项": 3226, + "▁Ad": 3227, + "hib": 3228, + "atures": 3229, + "loc": 3230, + "ajor": 3231, + "uf": 3232, + "▁old": 3233, + "nU": 3234, + "▁access": 3235, + "▁null": 3236, + "▁cost": 3237, + "▁裁": 3238, + "ides": 3239, + "一案": 3240, + "裁定如下": 3241, + "学校": 3242, + "ai": 3243, + "基本": 3244, + "▁typ": 3245, + "AD": 3246, + "urther": 3247, + "▁orig": 3248, + "▁less": 3249, + "▁low": 3250, + "受理": 3251, + "nJ": 3252, + "对于": 3253, + "anguage": 3254, + "▁say": 3255, + "▁analysis": 3256, + "▁happ": 3257, + "▁prom": 3258, + "▁possible": 3259, + "ibr": 3260, + "▁__": 3261, + "bject": 3262, + "▁known": 3263, + "作品": 3264, + "▁too": 3265, + "▁size": 3266, + "acy": 3267, + "▁example": 3268, + "ves": 3269, + "▁cho": 3270, + "▁Or": 3271, + "px": 3272, + "plement": 3273, + "平台": 3274, + "▁sugg": 3275, + "ours": 3276, + "案件": 3277, + "某某": 3278, + "treturn": 3279, + "应用": 3280, + "[\\'": 3281, + "▁large": 3282, + "▁String": 3283, + "▁players": 3284, + "▁law": 3285, + "▁tot": 3286, + "inter": 3287, + "▁Te": 3288, + "▁mov": 3289, + "ocial": 3290, + "▁ans": 3291, + "▁against": 3292, + "ump": 3293, + "serv": 3294, + "▁American": 3295, + "▁investig": 3296, + "size": 3297, + "▁common": 3298, + "▁game": 3299, + "ung": 3300, + "cle": 3301, + "日出生": 3302, + "▁site": 3303, + "▁full": 3304, + "ume": 3305, + "iod": 3306, + "):": 3307, + "▁She": 3308, + "▁System": 3309, + "▁es": 3310, + "▁exam": 3311, + "处理": 3312, + "assert": 3313, + "非常": 3314, + "ised": 3315, + "alu": 3316, + "▁Br": 3317, + "▁Mar": 3318, + "▁fac": 3319, + "单位": 3320, + "imal": 3321, + "▁children": 3322, + "科技": 3323, + "IL": 3324, + "ering": 3325, + "▁gl": 3326, + "▁Pr": 3327, + "▁success": 3328, + "▁vol": 3329, + "▁They": 3330, + "▁single": 3331, + "▁spe": 3332, + "uction": 3333, + "▁request": 3334, + "ources": 3335, + "具有": 3336, + "ales": 3337, + "ctor": 3338, + "thing": 3339, + "ental": 3340, + "▁mean": 3341, + "这种": 3342, + "▁plan": 3343, + "▁eng": 3344, + "喜欢": 3345, + "▁Eng": 3346, + "▁propos": 3347, + "▁These": 3348, + "des": 3349, + "uary": 3350, + "▁another": 3351, + "ators": 3352, + "ponse": 3353, + "上海": 3354, + "ination": 3355, + "ED": 3356, + "inc": 3357, + ");": 3358, + "\",\"": 3359, + "wit": 3360, + "▁question": 3361, + "ny": 3362, + "▁rad": 3363, + "▁links": 3364, + "pi": 3365, + "上的": 3366, + "还有": 3367, + "mit": 3368, + "View": 3369, + "▁put": 3370, + "atory": 3371, + "到了": 3372, + "朋友": 3373, + "▁able": 3374, + "▁something": 3375, + "▁suggest": 3376, + "成为": 3377, + "▁light": 3378, + "▁phot": 3379, + "▁aff": 3380, + "▁market": 3381, + "▁include": 3382, + "nIt": 3383, + "▁u": 3384, + "▁experience": 3385, + "▁keep": 3386, + "▁pract": 3387, + "ended": 3388, + "ley": 3389, + "Error": 3390, + "mber": 3391, + "▁services": 3392, + "▁gover": 3393, + "Ar": 3394, + "><": 3395, + "agn": 3396, + "功能": 3397, + "ables": 3398, + "▁page": 3399, + "州市": 3400, + "\";\\": 3401, + "▁give": 3402, + "不会": 3403, + "private": 3404, + "即可": 3405, + "rix": 3406, + "Test": 3407, + "基础": 3408, + "AB": 3409, + "▁always": 3410, + "anks": 3411, + "▁studies": 3412, + "▁et": 3413, + "觉得": 3414, + "ories": 3415, + "▁whe": 3416, + "ries": 3417, + "arr": 3418, + "出现": 3419, + "iter": 3420, + "ivity": 3421, + "▁allow": 3422, + "ilar": 3423, + "▁days": 3424, + "MA": 3425, + "▁Can": 3426, + "▁might": 3427, + "▁left": 3428, + "▁working": 3429, + "▁invol": 3430, + "责任": 3431, + "▁install": 3432, + "ands": 3433, + "omet": 3434, + "ties": 3435, + "nIf": 3436, + "nusing": 3437, + "终结": 3438, + "ought": 3439, + "▁el": 3440, + "▁human": 3441, + "used": 3442, + "but": 3443, + "▁Cent": 3444, + "dict": 3445, + "▁false": 3446, + "▁prob": 3447, + "ouble": 3448, + "▁Count": 3449, + "▁changes": 3450, + "andom": 3451, + "▁la": 3452, + "▁id": 3453, + "HE": 3454, + "▁response": 3455, + "ground": 3456, + "To": 3457, + "gen": 3458, + "UR": 3459, + "($": 3460, + "'\\": 3461, + "▁error": 3462, + "成立": 3463, + "ividual": 3464, + "美国": 3465, + "▁quality": 3466, + "amespace": 3467, + "},": 3468, + "me": 3469, + "▁role": 3470, + "人员": 3471, + "两个": 3472, + "ript": 3473, + "▁Bl": 3474, + "▁special": 3475, + "直接": 3476, + "▁bro": 3477, + "rec": 3478, + "其中": 3479, + "国际": 3480, + "],\\": 3481, + "▁final": 3482, + "config": 3483, + "ici": 3484, + "ored": 3485, + "纠纷一案": 3486, + "mon": 3487, + "▁*\\": 3488, + "uration": 3489, + "申请人": 3490, + "▁May": 3491, + "eff": 3492, + "ling": 3493, + "ertain": 3494, + "▁ann": 3495, + "条件": 3496, + "▁mechan": 3497, + "inf": 3498, + "▁target": 3499, + "▁describ": 3500, + "iple": 3501, + "amb": 3502, + "一些": 3503, + "with": 3504, + "▁several": 3505, + "送达": 3506, + "▁paper": 3507, + "db": 3508, + "▁Gr": 3509, + "▁big": 3510, + "▁clin": 3511, + "▁series": 3512, + "你的": 3513, + "umn": 3514, + "▁little": 3515, + "▁action": 3516, + "▁obt": 3517, + "日起": 3518, + "▁However": 3519, + "apt": 3520, + "简介": 3521, + "城市": 3522, + "合作": 3523, + "uture": 3524, + "事实": 3525, + "▁ter": 3526, + "▁review": 3527, + "HO": 3528, + "rect": 3529, + "▁models": 3530, + "▁love": 3531, + "▁United": 3532, + "提高": 3533, + "ids": 3534, + "▁max": 3535, + "aps": 3536, + "▁inc": 3537, + "▁hard": 3538, + "';\\": 3539, + "idence": 3540, + "ording": 3541, + "▁US": 3542, + "▁potential": 3543, + "args": 3544, + "▁women": 3545, + "{{": 3546, + "▁rest": 3547, + "field": 3548, + "我的": 3549, + "知识": 3550, + "ending": 3551, + "\":\"": 3552, + "oph": 3553, + "▁short": 3554, + "fe": 3555, + "ably": 3556, + "▁estab": 3557, + "MP": 3558, + "范围": 3559, + "my": 3560, + "投资": 3561, + "▁foc": 3562, + "▁Sup": 3563, + "▁profess": 3564, + "ances": 3565, + "▁**": 3566, + "}\\\\)": 3567, + "▁major": 3568, + "▁either": 3569, + "▁ca": 3570, + "▁integr": 3571, + "raft": 3572, + "法定": 3573, + "▁bo": 3574, + "▁pay": 3575, + "api": 3576, + "▁required": 3577, + "sy": 3578, + "▁bir": 3579, + "▁exc": 3580, + "▁select": 3581, + "nn": 3582, + "▁season": 3583, + "ift": 3584, + "tt": 3585, + "▁card": 3586, + "sl": 3587, + "▁along": 3588, + "ention": 3589, + "一般": 3590, + "tif": 3591, + "▁evalu": 3592, + "▁represent": 3593, + "▁Be": 3594, + "rist": 3595, + "▁got": 3596, + "▁space": 3597, + "///": 3598, + "来的": 3599, + "ux": 3600, + "plate": 3601, + "目前": 3602, + "▁判": 3603, + "最高": 3604, + "适用": 3605, + "nter": 3606, + "▁default": 3607, + "治疗": 3608, + "▁}\\": 3609, + "借款": 3610, + "▁come": 3611, + "▁age": 3612, + "▁phys": 3613, + "▁step": 3614, + "ension": 3615, + "▁total": 3616, + "小说": 3617, + "利用": 3618, + "ival": 3619, + "▁fri": 3620, + "▁network": 3621, + "▁ben": 3622, + "▁事": 3623, + "anag": 3624, + "质量": 3625, + "书记员": 3626, + "为了": 3627, + "▁things": 3628, + "book": 3629, + "})": 3630, + "最后": 3631, + "▁org": 3632, + "委托": 3633, + "▁webs": 3634, + "标准": 3635, + "▁individual": 3636, + "ponent": 3637, + "▁called": 3638, + "▁until": 3639, + "cript": 3640, + "rict": 3641, + "▁due": 3642, + "▁static": 3643, + "ready": 3644, + "osis": 3645, + "leg": 3646, + "设备": 3647, + "};\\": 3648, + "▁der": 3649, + "▁students": 3650, + "▁times": 3651, + "介绍": 3652, + "count": 3653, + "二十": 3654, + "state": 3655, + "OS": 3656, + "机关": 3657, + "OT": 3658, + "▁turn": 3659, + "▁content": 3660, + "▁later": 3661, + "ply": 3662, + "作用": 3663, + "资源": 3664, + "illion": 3665, + "实现": 3666, + "});\\": 3667, + "off": 3668, + "}^{": 3669, + "▁leg": 3670, + "▁feel": 3671, + "nexport": 3672, + "\\')": 3673, + "\\':": 3674, + "ieve": 3675, + "cular": 3676, + "律师": 3677, + "定的": 3678, + "▁near": 3679, + "ogn": 3680, + "filename": 3681, + "▁sy": 3682, + "▁pub": 3683, + "▁Car": 3684, + "包括": 3685, + "▁else": 3686, + "▁complet": 3687, + "存在": 3688, + "param": 3689, + "abor": 3690, + "code": 3691, + "gin": 3692, + "▁comput": 3693, + "Problem": 3694, + "json": 3695, + "▁rate": 3696, + "▁disease": 3697, + "▁https": 3698, + "经营": 3699, + "▁side": 3700, + "行政": 3701, + "ING": 3702, + "而且": 3703, + "File": 3704, + "roid": 3705, + "sin": 3706, + "NAME": 3707, + "▁energ": 3708, + "Model": 3709, + "estions": 3710, + "▁Cont": 3711, + "起诉": 3712, + "连载": 3713, + "▁period": 3714, + "uit": 3715, + "▁ask": 3716, + "▁term": 3717, + "▁lot": 3718, + "verage": 3719, + "……": 3720, + "▁No": 3721, + "mb": 3722, + "Title": 3723, + "▁micro": 3724, + "$\\": 3725, + "lobal": 3726, + "ession": 3727, + "ribution": 3728, + "▁tool": 3729, + "input": 3730, + "cd": 3731, + "▁indic": 3732, + "解决": 3733, + "▁online": 3734, + "▁meet": 3735, + "▁enc": 3736, + "struction": 3737, + "五十": 3738, + "▁general": 3739, + "mm": 3740, + "符合": 3741, + "oney": 3742, + "一次": 3743, + "function": 3744, + "wards": 3745, + "效力": 3746, + "Sc": 3747, + "color": 3748, + "void": 3749, + "▁pain": 3750, + "▁standard": 3751, + "应该": 3752, + "ayer": 3753, + "ogle": 3754, + "教学": 3755, + "▁values": 3756, + "▁complex": 3757, + "arning": 3758, + "title": 3759, + "之规定": 3760, + "hel": 3761, + "content": 3762, + "urity": 3763, + "bum": 3764, + "max": 3765, + "▁image": 3766, + "本院认为": 3767, + "no": 3768, + "控制": 3769, + "ae": 3770, + "▁exist": 3771, + "tings": 3772, + "ography": 3773, + "pec": 3774, + "▁account": 3775, + "uk": 3776, + "nconst": 3777, + "▁community": 3778, + "md": 3779, + "▁discuss": 3780, + "本裁定": 3781, + "面积": 3782, + "ones": 3783, + "▁compet": 3784, + "行业": 3785, + "nder": 3786, + "▁environment": 3787, + "map": 3788, + "代理人": 3789, + "第二百": 3790, + "▁respect": 3791, + "民初": 3792, + "▁prim": 3793, + "▁football": 3794, + "▁body": 3795, + "▁associated": 3796, + "▁men": 3797, + "ising": 3798, + "ober": 3799, + "之后": 3800, + "US": 3801, + "材料": 3802, + "▁AN": 3803, + "▁Our": 3804, + "▁tre": 3805, + "▁above": 3806, + "函数": 3807, + "])\\": 3808, + "▁effects": 3809, + "▁sym": 3810, + "side": 3811, + "能够": 3812, + "▁activity": 3813, + "ney": 3814, + "▁ep": 3815, + "▁risk": 3816, + "aring": 3817, + "▁mar": 3818, + "▁solution": 3819, + ")/": 3820, + "▁material": 3821, + "▁sens": 3822, + "▁IS": 3823, + "usion": 3824, + "▁particular": 3825, + "error": 3826, + "▁air": 3827, + "品牌": 3828, + "▁early": 3829, + "nment": 3830, + "▁performance": 3831, + "lib": 3832, + "真的": 3833, + "mat": 3834, + "▁link": 3835, + "▁among": 3836, + "Par": 3837, + "全国": 3838, + "oms": 3839, + "from": 3840, + "ibility": 3841, + "出版社": 3842, + "▁issue": 3843, + "▁crit": 3844, + "box": 3845, + "ze": 3846, + "的规定": 3847, + "▁word": 3848, + "完成": 3849, + "olic": 3850, + "▁dat": 3851, + "********": 3852, + "inary": 3853, + "▁energy": 3854, + "正确": 3855, + "ero": 3856, + "▁base": 3857, + "▁port": 3858, + "▁move": 3859, + "ilt": 3860, + "une": 3861, + "▁previous": 3862, + "▁looking": 3863, + "asing": 3864, + "ender": 3865, + "odes": 3866, + "▁With": 3867, + "▁Jan": 3868, + "▁educ": 3869, + "▁similar": 3870, + "▁below": 3871, + "Set": 3872, + "Value": 3873, + "(\\\\": 3874, + "▁relations": 3875, + "plied": 3876, + "▁respons": 3877, + "一起": 3878, + "▁mot": 3879, + "inst": 3880, + "▁why": 3881, + "其实": 3882, + "▁course": 3883, + "icient": 3884, + "roller": 3885, + "▁fix": 3886, + "ores": 3887, + "▁County": 3888, + "cos": 3889, + "mission": 3890, + "▁creat": 3891, + "价格": 3892, + "ipp": 3893, + "▁approach": 3894, + "▁products": 3895, + "▁making": 3896, + "Service": 3897, + "top": 3898, + "代表人": 3899, + "四十": 3900, + "Im": 3901, + "da": 3902, + "nExternal": 3903, + "不要": 3904, + "委员": 3905, + "fl": 3906, + "ights": 3907, + "▁systems": 3908, + "支付": 3909, + "▁today": 3910, + "▁flo": 3911, + "▁software": 3912, + "▁means": 3913, + "rodu": 3914, + "▁indust": 3915, + "建议": 3916, + "main": 3917, + "▁config": 3918, + "▁dom": 3919, + "▁observ": 3920, + "CO": 3921, + "▁needs": 3922, + "▁source": 3923, + "Field": 3924, + "▁improve": 3925, + "tra": 3926, + "有效": 3927, + "Requ": 3928, + "地区": 3929, + "imum": 3930, + "▁having": 3931, + "▁lo": 3932, + "▁—": 3933, + "gor": 3934, + "过程中": 3935, + "建筑": 3936, + "pass": 3937, + "oken": 3938, + "Sh": 3939, + "pha": 3940, + "label": 3941, + "▁already": 3942, + "▁ther": 3943, + "ica": 3944, + "▁never": 3945, + "▁address": 3946, + "trans": 3947, + "证据": 3948, + "IP": 3949, + "pre": 3950, + "▁done": 3951, + "▁levels": 3952, + "oper": 3953, + "nb": 3954, + "istic": 3955, + "utions": 3956, + "indows": 3957, + "▁job": 3958, + "▁members": 3959, + "▁offic": 3960, + "Int": 3961, + "▁nec": 3962, + "职业": 3963, + "▁whether": 3964, + "ague": 3965, + "result": 3966, + "ribute": 3967, + "▁Joh": 3968, + "hold": 3969, + "dir": 3970, + "ino": 3971, + "nYou": 3972, + "▁Ass": 3973, + "一下": 3974, + "采用": 3975, + "一直": 3976, + "▁answer": 3977, + "▁circ": 3978, + "▁behav": 3979, + "ributed": 3980, + "▁toget": 3981, + "php": 3982, + "iation": 3983, + "▁together": 3984, + "▁document": 3985, + "▁death": 3986, + "Exception": 3987, + "一样": 3988, + "ports": 3989, + "表现": 3990, + "▁expression": 3991, + "▁employ": 3992, + "操作": 3993, + "▁lik": 3994, + "▁groups": 3995, + "Text": 3996, + "行为": 3997, + "▁least": 3998, + "▁press": 3999, + "▁video": 4000, + "▁Par": 4001, + "▁win": 4002, + "alf": 4003, + "DE": 4004, + "ills": 4005, + "▁–\\": 4006, + "▁application": 4007, + "artment": 4008, + "结构": 4009, + "进行了": 4010, + "▁National": 4011, + "based": 4012, + "thers": 4013, + "▁copy": 4014, + "▁Im": 4015, + "▁various": 4016, + "earch": 4017, + "▁experim": 4018, + "▁features": 4019, + "atter": 4020, + "▁often": 4021, + "各种": 4022, + "▁website": 4023, + "▁States": 4024, + "ainer": 4025, + "▁fail": 4026, + "place": 4027, + "User": 4028, + "▁paramet": 4029, + "▁higher": 4030, + "▁sequ": 4031, + "arrow": 4032, + "▁social": 4033, + "之间": 4034, + "▁vir": 4035, + "Object": 4036, + "▁//": 4037, + "oor": 4038, + "了解": 4039, + "获得": 4040, + "lor": 4041, + "/*": 4042, + "决定": 4043, + "ounc": 4044, + "Key": 4045, + "▁trad": 4046, + "▁cur": 4047, + "▁related": 4048, + "oo": 4049, + "罪犯": 4050, + "ummary": 4051, + "now": 4052, + "item": 4053, + "▁cases": 4054, + "▁implement": 4055, + "bb": 4056, + "osp": 4057, + "以下": 4058, + "▁Aust": 4059, + "健康": 4060, + "oud": 4061, + "▁Fe": 4062, + "▁dig": 4063, + "▁simple": 4064, + "utes": 4065, + "自然": 4066, + "▁Med": 4067, + "ging": 4068, + "第一款": 4069, + "交通": 4070, + "ogen": 4071, + "▁across": 4072, + "以上": 4073, + "法定代表人": 4074, + "积极": 4075, + "法律效力": 4076, + "nWhat": 4077, + "▁won": 4078, + "egin": 4079, + "run": 4080, + "▁员": 4081, + "Time": 4082, + "注意": 4083, + "ditions": 4084, + "由于": 4085, + "▁sum": 4086, + "▁Des": 4087, + "ags": 4088, + "▁None": 4089, + "gorith": 4090, + "▁flow": 4091, + "erc": 4092, + "amed": 4093, + "amm": 4094, + "omic": 4095, + "lim": 4096, + "▁Reg": 4097, + "nV": 4098, + "request": 4099, + "▁film": 4100, + "bar": 4101, + "▁Int": 4102, + "▁clear": 4103, + "▁input": 4104, + "Pl": 4105, + "blems": 4106, + "ches": 4107, + "▁past": 4108, + "▁()": 4109, + "▁cult": 4110, + "▁fund": 4111, + "学院": 4112, + "▁house": 4113, + "year": 4114, + "stit": 4115, + "pen": 4116, + "SS": 4117, + "▁Min": 4118, + "作出": 4119, + "▁compon": 4120, + "point": 4121, + "▁further": 4122, + "▁host": 4123, + "ison": 4124, + "ude": 4125, + "~~": 4126, + "▁please": 4127, + "发生法律效力": 4128, + "part": 4129, + "plit": 4130, + "style": 4131, + "▁normal": 4132, + "▁increase": 4133, + "分钟": 4134, + "▁fun": 4135, + "aim": 4136, + "运动": 4137, + "▁When": 4138, + "lin": 4139, + "万元": 4140, + "ips": 4141, + "avel": 4142, + "xy": 4143, + "comp": 4144, + "body": 4145, + "plication": 4146, + "▁points": 4147, + "dom": 4148, + "个月": 4149, + "▁contact": 4150, + "▁abs": 4151, + "True": 4152, + "▁Co": 4153, + "▁che": 4154, + "▁Jul": 4155, + "▁works": 4156, + "icult": 4157, + "▁dri": 4158, + "((": 4159, + "dition": 4160, + "▁My": 4161, + "产业": 4162, + "▁factors": 4163, + "▁assess": 4164, + "ride": 4165, + "irm": 4166, + "▁South": 4167, + "amework": 4168, + "#\\": 4169, + "价值": 4170, + "ving": 4171, + "▁months": 4172, + "▁subject": 4173, + "义务": 4174, + "indow": 4175, + "▁multiple": 4176, + "▁World": 4177, + "▁clinical": 4178, + "cin": 4179, + "▁IN": 4180, + "▁deg": 4181, + "lege": 4182, + "这是": 4183, + "▁cancer": 4184, + "▁food": 4185, + "希望": 4186, + "不过": 4187, + "▁terms": 4188, + "特别": 4189, + "atform": 4190, + "down": 4191, + "▁style": 4192, + "用户": 4193, + "▁bit": 4194, + "患者": 4195, + "条第一款": 4196, + "▁express": 4197, + "▁search": 4198, + "▁State": 4199, + "▁strong": 4200, + "aging": 4201, + "组成": 4202, + "▁measure": 4203, + "予以": 4204, + "IV": 4205, + "########": 4206, + "));\\": 4207, + "▁fore": 4208, + "机构": 4209, + "std": 4210, + "group": 4211, + "起来": 4212, + "astic": 4213, + "src": 4214, + "▁larg": 4215, + "imate": 4216, + "actions": 4217, + "verse": 4218, + "▁Am": 4219, + "We": 4220, + "fect": 4221, + "onstr": 4222, + "df": 4223, + "▁diff": 4224, + "▁conditions": 4225, + "这一": 4226, + "实际": 4227, + "ilit": 4228, + "效果": 4229, + "ector": 4230, + "▁Gener": 4231, + "irl": 4232, + "▁School": 4233, + "nint": 4234, + "gress": 4235, + "perty": 4236, + "ford": 4237, + "▁Euro": 4238, + "▁mass": 4239, + "ython": 4240, + "历史": 4241, + "手机": 4242, + "▁future": 4243, + "\\']": 4244, + "▁methods": 4245, + "综合": 4246, + "eful": 4247, + "Log": 4248, + "是否": 4249, + "ama": 4250, + "▁particip": 4251, + "State": 4252, + "CH": 4253, + "▁Gu": 4254, + "为什么": 4255, + "PI": 4256, + "▁far": 4257, + "保护": 4258, + "joy": 4259, + "▁<<": 4260, + "apy": 4261, + "ada": 4262, + "▁music": 4263, + "住所": 4264, + "酒店": 4265, + "级人民法院": 4266, + "This": 4267, + "Get": 4268, + "ana": 4269, + "empt": 4270, + "▁protein": 4271, + "iate": 4272, + "base": 4273, + "多少": 4274, + "▁&&": 4275, + "▁doesn": 4276, + "▁stre": 4277, + "▁kind": 4278, + "▁load": 4279, + "▁increased": 4280, + "nFor": 4281, + "老师": 4282, + "abase": 4283, + "UL": 4284, + "▁Qu": 4285, + "ynam": 4286, + "▁compared": 4287, + "状态": 4288, + "▁message": 4289, + "▁miss": 4290, + "▁continu": 4291, + "只有": 4292, + "▁print": 4293, + "得到": 4294, + "length": 4295, + "though": 4296, + "集团": 4297, + "cho": 4298, + "oute": 4299, + "nK": 4300, + "▁easy": 4301, + "▁table": 4302, + "▁Oct": 4303, + "isc": 4304, + "▁album": 4305, + "board": 4306, + "因此": 4307, + "▁aim": 4308, + "▁position": 4309, + "▁strateg": 4310, + "object": 4311, + "▁makes": 4312, + "image": 4313, + "leased": 4314, + "atural": 4315, + "create": 4316, + "▁visit": 4317, + "▁benef": 4318, + "rior": 4319, + "atal": 4320, + "link": 4321, + "▁Apr": 4322, + "eta": 4323, + "ication": 4324, + "sec": 4325, + "nusername": 4326, + "销售": 4327, + "▁training": 4328, + "看到": 4329, + "▁lower": 4330, + "ependent": 4331, + "▁coll": 4332, + "CL": 4333, + "▁cy": 4334, + "感觉": 4335, + "▁os": 4336, + "▁learn": 4337, + "▁ach": 4338, + "▁polit": 4339, + "eger": 4340, + "▁city": 4341, + "era": 4342, + "lood": 4343, + "anced": 4344, + "不断": 4345, + "build": 4346, + "ilities": 4347, + ">>": 4348, + "▁limit": 4349, + "▁color": 4350, + "年的": 4351, + "日内": 4352, + "依据": 4353, + "aken": 4354, + "▁become": 4355, + "ibrary": 4356, + "bit": 4357, + "利息": 4358, + "etic": 4359, + "股份": 4360, + "原因": 4361, + "十二": 4362, + "▁production": 4363, + "ersion": 4364, + "应当": 4365, + "劳动": 4366, + "oman": 4367, + "▁via": 4368, + "▁track": 4369, + "部门": 4370, + "ategory": 4371, + "ounds": 4372, + "面的": 4373, + "$$\\": 4374, + "enn": 4375, + "annel": 4376, + "core": 4377, + "plac": 4378, + "负责": 4379, + "){\\": 4380, + "bre": 4381, + "▁relationship": 4382, + "nce": 4383, + "创新": 4384, + "▁squ": 4385, + "▁Intern": 4386, + "▁structure": 4387, + "orage": 4388, + "AM": 4389, + "▁Me": 4390, + "▁frequ": 4391, + "ires": 4392, + "oll": 4393, + "▁Go": 4394, + "▁Ge": 4395, + "南省": 4396, + "计划": 4397, + "Config": 4398, + "▁added": 4399, + "▁II": 4400, + "▁correct": 4401, + "虽然": 4402, + "▁作者": 4403, + "▁cover": 4404, + "▁Add": 4405, + "▁Rec": 4406, + "解释": 4407, + "ledge": 4408, + "stars": 4409, + "eral": 4410, + "住所地": 4411, + "▁events": 4412, + "nswer": 4413, + "width": 4414, + "▁immun": 4415, + "ops": 4416, + "default": 4417, + "$,": 4418, + "▁demonstr": 4419, + "▁hy": 4420, + "▁problems": 4421, + "omy": 4422, + "▁growth": 4423, + "有关": 4424, + "▁连载": 4425, + "▁red": 4426, + "地方": 4427, + "▁Rep": 4428, + "▁received": 4429, + "ding": 4430, + "ament": 4431, + "▁positive": 4432, + "的话": 4433, + "begin": 4434, + "▁York": 4435, + "tpublic": 4436, + "Re": 4437, + "安装": 4438, + "▁java": 4439, + "▁That": 4440, + "成功": 4441, + "iles": 4442, + "spec": 4443, + "▁feature": 4444, + "▁language": 4445, + "IR": 4446, + "回答": 4447, + "受理费": 4448, + "▁Dr": 4449, + "▁country": 4450, + "▁length": 4451, + "It": 4452, + "iddle": 4453, + "▁thought": 4454, + "▁factor": 4455, + "▁hom": 4456, + "package": 4457, + "ENT": 4458, + "医院": 4459, + "▁admin": 4460, + "▁away": 4461, + "水平": 4462, + "也不": 4463, + "▁hyp": 4464, + "本次": 4465, + "\\\\(\\\\": 4466, + "post": 4467, + "Un": 4468, + "▁Part": 4469, + "▁population": 4470, + "nTo": 4471, + "▁refer": 4472, + "▁neg": 4473, + "▁block": 4474, + "▁output": 4475, + "istics": 4476, + "▁proposed": 4477, + "▁management": 4478, + "most": 4479, + "que": 4480, + "消费": 4481, + "▁questions": 4482, + "医学": 4483, + "▁drug": 4484, + "Request": 4485, + "▁third": 4486, + "▁five": 4487, + "艺术": 4488, + "必须": 4489, + "array": 4490, + "uments": 4491, + "eter": 4492, + "▁web": 4493, + "国内": 4494, + "分别": 4495, + "▁option": 4496, + "▁Do": 4497, + "sk": 4498, + "sole": 4499, + "之一": 4500, + "▁One": 4501, + "▁amount": 4502, + "来说": 4503, + "▁certain": 4504, + "ites": 4505, + "只是": 4506, + "方程": 4507, + "十一": 4508, + "open": 4509, + "▁provides": 4510, + "▁created": 4511, + "▁Aug": 4512, + "▁North": 4513, + "▁hold": 4514, + "▁Christ": 4515, + "▁song": 4516, + "请求": 4517, + "▁List": 4518, + "▁located": 4519, + "repon": 4520, + "▁determine": 4521, + "▁mor": 4522, + "▁included": 4523, + "AG": 4524, + "▁developed": 4525, + "电子": 4526, + "▁author": 4527, + "▁land": 4528, + "format": 4529, + "stract": 4530, + "▁)": 4531, + "▁ang": 4532, + "portun": 4533, + "reponame": 4534, + "ners": 4535, + "▁history": 4536, + "elling": 4537, + "▁young": 4538, + "▁rat": 4539, + "▁chall": 4540, + "Path": 4541, + "uses": 4542, + "▁Cal": 4543, + "▁complete": 4544, + "他的": 4545, + "▁mole": 4546, + "▁month": 4547, + "press": 4548, + "itory": 4549, + "▁predict": 4550, + "umb": 4551, + "izing": 4552, + "mail": 4553, + "▁calcul": 4554, + "npublic": 4555, + "doc": 4556, + "ried": 4557, + "撤诉": 4558, + "生效": 4559, + "unch": 4560, + "▁thing": 4561, + "精神": 4562, + "aling": 4563, + "node": 4564, + "▁ens": 4565, + "▁money": 4566, + "UN": 4567, + "itions": 4568, + "▁index": 4569, + "Or": 4570, + "▁options": 4571, + "PS": 4572, + "结合": 4573, + "▁sat": 4574, + "一步": 4575, + "LO": 4576, + "▁valid": 4577, + "中级人民法院": 4578, + "▁provided": 4579, + "sequ": 4580, + "▁issues": 4581, + "汽车": 4582, + "section": 4583, + "无法": 4584, + "▁once": 4585, + "山东": 4586, + "ula": 4587, + "▁Ab": 4588, + "▁OF": 4589, + "icles": 4590, + "▁Pol": 4591, + "MS": 4592, + "▁[\\": 4593, + "istance": 4594, + "By": 4595, + "▁$$\\\\": 4596, + "▁camp": 4597, + "▁City": 4598, + "▁property": 4599, + "ike": 4600, + "▁impact": 4601, + "▁started": 4602, + "Add": 4603, + "alt": 4604, + "▁building": 4605, + "itional": 4606, + "增加": 4607, + "hest": 4608, + "[]": 4609, + "▁original": 4610, + "▁Not": 4611, + "urch": 4612, + "info": 4613, + "这里": 4614, + "angle": 4615, + "irection": 4616, + "ui": 4617, + "双方": 4618, + "amples": 4619, + "itted": 4620, + "▁Europe": 4621, + "ered": 4622, + "ults": 4623, + "script": 4624, + "▁parent": 4625, + "▁ver": 4626, + "模式": 4627, + "ram": 4628, + "▁percent": 4629, + "▁context": 4630, + "判决书": 4631, + "▁mag": 4632, + "____": 4633, + "message": 4634, + "iction": 4635, + "▁teach": 4636, + "▁Ser": 4637, + "▁q": 4638, + "anies": 4639, + "▁super": 4640, + "▁files": 4641, + "ango": 4642, + "active": 4643, + "目标": 4644, + "政策": 4645, + "display": 4646, + "▁others": 4647, + "▁sex": 4648, + "▁technology": 4649, + "oding": 4650, + "▁Art": 4651, + "文件": 4652, + "icon": 4653, + "`\\": 4654, + "▁release": 4655, + "▁mix": 4656, + "▁match": 4657, + "$\\\\": 4658, + "▁areas": 4659, + "可供": 4660, + "atest": 4661, + "▁random": 4662, + "▁hot": 4663, + "olve": 4664, + "系列": 4665, + "[\"": 4666, + "▁CO": 4667, + "客户": 4668, + "while": 4669, + "软件": 4670, + "▁div": 4671, + "我国": 4672, + "▁opportun": 4673, + "这么": 4674, + "继续": 4675, + "lements": 4676, + "▁functions": 4677, + "|\\": 4678, + "▁hours": 4679, + "▁yet": 4680, + "uation": 4681, + "ulated": 4682, + "▁grad": 4683, + "Form": 4684, + "▁currently": 4685, + "anch": 4686, + "osph": 4687, + "sum": 4688, + "ensive": 4689, + "▁species": 4690, + "▁engine": 4691, + "img": 4692, + "▁government": 4693, + "▁article": 4694, + "iff": 4695, + "▁live": 4696, + "▁types": 4697, + "工业": 4698, + "avor": 4699, + "位置": 4700, + "▁reason": 4701, + "▁member": 4702, + "▁pick": 4703, + "Map": 4704, + "进入": 4705, + "▁Stud": 4706, + "▁enough": 4707, + "ayout": 4708, + "▁regard": 4709, + "mark": 4710, + "▁date": 4711, + "Ser": 4712, + "▁clos": 4713, + "▁exec": 4714, + "}}{": 4715, + "▁Austral": 4716, + "▁getting": 4717, + "▁though": 4718, + "▁After": 4719, + "conn": 4720, + "')\\": 4721, + "农村": 4722, + "▁price": 4723, + "inding": 4724, + "expect": 4725, + "room": 4726, + "urg": 4727, + "▁comes": 4728, + "pat": 4729, + "})\\": 4730, + "urb": 4731, + "▁numbers": 4732, + "rm": 4733, + "出来": 4734, + "案件受理费": 4735, + "opyright": 4736, + "▁room": 4737, + "ML": 4738, + "▁enjoy": 4739, + "obile": 4740, + "简单": 4741, + "▁designed": 4742, + "▁inhib": 4743, + "证明": 4744, + "▁six": 4745, + "股份有限公司": 4746, + "▁quant": 4747, + "自动": 4748, + "');\\": 4749, + "nLet": 4750, + "电影": 4751, + "~\\": 4752, + "准许": 4753, + "▁seen": 4754, + "▁personal": 4755, + "▁doing": 4756, + "▁Sec": 4757, + "▁sw": 4758, + "▁minutes": 4759, + "▁autom": 4760, + "where": 4761, + "▁pattern": 4762, + "ming": 4763, + "umber": 4764, + "▁quick": 4765, + "▁necess": 4766, + "ese": 4767, + "▁OR": 4768, + "${": 4769, + "按照": 4770, + "Inf": 4771, + "▁properties": 4772, + "ony": 4773, + "reate": 4774, + "产生": 4775, + "更多": 4776, + "▁graph": 4777, + "dev": 4778, + "▁actually": 4779, + "▁close": 4780, + "\\';\\": 4781, + "完全": 4782, + "通知": 4783, + "▁influ": 4784, + "▁unique": 4785, + "浙江": 4786, + "{\"": 4787, + "▁million": 4788, + "▁bar": 4789, + "▁initial": 4790, + "soft": 4791, + "▁surface": 4792, + "▁mom": 4793, + "▁perfect": 4794, + "istry": 4795, + "ges": 4796, + "sing": 4797, + "▁introdu": 4798, + "▁diagn": 4799, + "▁John": 4800, + "▁clean": 4801, + "CC": 4802, + "▁cut": 4803, + "▁std": 4804, + "gn": 4805, + "▁heart": 4806, + "▁users": 4807, + "新的": 4808, + "之前": 4809, + "▁decre": 4810, + "▁details": 4811, + "nAs": 4812, + "▁Per": 4813, + "host": 4814, + "▁buy": 4815, + "▁High": 4816, + "PO": 4817, + "▁separ": 4818, + "nm": 4819, + "领导": 4820, + "位于": 4821, + "Al": 4822, + "上述": 4823, + "inally": 4824, + "oma": 4825, + "东西": 4826, + "web": 4827, + "容易": 4828, + "ius": 4829, + "▁econ": 4830, + "经过": 4831, + "▁shows": 4832, + "共同": 4833, + "平方": 4834, + "resh": 4835, + "▁comb": 4836, + "业务": 4837, + "日本": 4838, + "▁arch": 4839, + "▁novel": 4840, + "PE": 4841, + "nSt": 4842, + "ises": 4843, + "▁beaut": 4844, + "▁tum": 4845, + "▁intern": 4846, + "▁begin": 4847, + "理论": 4848, + "开展": 4849, + "信用": 4850, + "Item": 4851, + "▁title": 4852, + "委托代理人": 4853, + "▁break": 4854, + "table": 4855, + "ucle": 4856, + "▁blood": 4857, + "▁concent": 4858, + "传统": 4859, + "hand": 4860, + "之日起": 4861, + "最高人民法院": 4862, + "网站": 4863, + "env": 4864, + "处罚": 4865, + "Mod": 4866, + "▁games": 4867, + "cast": 4868, + "▁took": 4869, + "onal": 4870, + "▁conduct": 4871, + "▁loss": 4872, + "的大": 4873, + "valid": 4874, + "家庭": 4875, + "▁reported": 4876, + "月二十": 4877, + "具体": 4878, + "ugin": 4879, + "istration": 4880, + "▁polic": 4881, + "委员会": 4882, + "ydro": 4883, + "ached": 4884, + "nWh": 4885, + "领域": 4886, + "▁recomm": 4887, + "▁distributed": 4888, + "append": 4889, + "light": 4890, + "意义": 4891, + "Context": 4892, + "BC": 4893, + "▁successful": 4894, + "encies": 4895, + "县人民法院": 4896, + "isms": 4897, + "▁extends": 4898, + "ube": 4899, + "idge": 4900, + "检察": 4901, + "client": 4902, + "有一": 4903, + "撤回": 4904, + "▁prevent": 4905, + "▁needed": 4906, + "▁Cor": 4907, + "▁significantly": 4908, + "▁showed": 4909, + "政治": 4910, + "inate": 4911, + "▁temper": 4912, + "▁released": 4913, + "▁En": 4914, + "形成": 4915, + "▁region": 4916, + "ged": 4917, + "目的": 4918, + "ief": 4919, + "的事": 4920, + "module": 4921, + "nown": 4922, + "▁media": 4923, + "▁screen": 4924, + "oring": 4925, + "jango": 4926, + "ync": 4927, + "▁equation": 4928, + "aid": 4929, + "▁email": 4930, + "▁according": 4931, + "主任": 4932, + "▁says": 4933, + "prot": 4934, + "▁industry": 4935, + "aur": 4936, + "▁collection": 4937, + "rest": 4938, + "ros": 4939, + "adem": 4940, + "现代": 4941, + "bt": 4942, + "▁however": 4943, + "▁knowledge": 4944, + "▁ess": 4945, + "nThere": 4946, + "aches": 4947, + "▁former": 4948, + "图书": 4949, + "lected": 4950, + "ring": 4951, + "gorithm": 4952, + "▁share": 4953, + "illed": 4954, + "▁professional": 4955, + "▁played": 4956, + "▁chem": 4957, + "dat": 4958, + "▁learning": 4959, + "actory": 4960, + "承担": 4961, + "需求": 4962, + "▁ever": 4963, + "▁recent": 4964, + "电视": 4965, + "ampions": 4966, + "status": 4967, + "当事": 4968, + "负担": 4969, + "%)": 4970, + "显示": 4971, + "▁||": 4972, + "▁Dist": 4973, + "▁night": 4974, + "▁stop": 4975, + "igned": 4976, + "rew": 4977, + "▁Get": 4978, + "anager": 4979, + "努力": 4980, + "▁THE": 4981, + "属于": 4982, + "▁talk": 4983, + "underline": 4984, + "可供执行": 4985, + "▁March": 4986, + "会议": 4987, + "▁career": 4988, + "Ph": 4989, + "nHe": 4990, + "教师": 4991, + "今天": 4992, + "不到": 4993, + "rows": 4994, + "接受": 4995, + "Event": 4996, + "try": 4997, + "▁patient": 4998, + "▁agre": 4999, + "nuse": 5000, + "▁mut": 5001, + "数的": 5002, + "change": 5003, + "任何": 5004, + "小时": 5005, + "iol": 5006, + "▁built": 5007, + "pring": 5008, + "▁idea": 5009, + "公里": 5010, + "▁writing": 5011, + "人民币": 5012, + "flow": 5013, + "▁published": 5014, + "帮助": 5015, + ",”": 5016, + "['": 5017, + "提升": 5018, + "收入": 5019, + "导致": 5020, + "最大": 5021, + "▁shown": 5022, + "▁story": 5023, + "登记": 5024, + "iated": 5025, + "ects": 5026, + "TE": 5027, + "确定": 5028, + "position": 5029, + "ha": 5030, + "▁goal": 5031, + "ched": 5032, + "olean": 5033, + "ronic": 5034, + "有的": 5035, + "CE": 5036, + "▁array": 5037, + "毕业": 5038, + "▁cross": 5039, + "imens": 5040, + "lying": 5041, + "▁pack": 5042, + "故事": 5043, + "▁Brit": 5044, + "apan": 5045, + "▁half": 5046, + "▁update": 5047, + "])": 5048, + "▁ir": 5049, + "▁expected": 5050, + "eed": 5051, + "普通": 5052, + "HT": 5053, + "hesis": 5054, + "▁pict": 5055, + "born": 5056, + "query": 5057, + "▁whole": 5058, + "▁companies": 5059, + "▁inj": 5060, + "comes": 5061, + "AA": 5062, + "static": 5063, + "▁primary": 5064, + "▁write": 5065, + "重庆": 5066, + "iday": 5067, + "▁natural": 5068, + "CR": 5069, + "Class": 5070, + "任务": 5071, + "▁spect": 5072, + "ele": 5073, + "▁recogn": 5074, + "▁effective": 5075, + "▁map": 5076, + "\\\\\\\\": 5077, + "illi": 5078, + "甚至": 5079, + "ocol": 5080, + "▁By": 5081, + "▁described": 5082, + "送达后": 5083, + "SUB": 5084, + "▁href": 5085, + "▁status": 5086, + "thern": 5087, + "▁Comp": 5088, + "▁average": 5089, + "▁April": 5090, + "▁tw": 5091, + "bol": 5092, + "空间": 5093, + "do": 5094, + "term": 5095, + "与被告": 5096, + "▁Sim": 5097, + "ANT": 5098, + "server": 5099, + "▁Off": 5100, + "▁Germ": 5101, + "author": 5102, + "▁▁▁": 5103, + "iven": 5104, + ")(": 5105, + "▁ey": 5106, + "nthe": 5107, + "▁stat": 5108, + "▁Test": 5109, + "__(": 5110, + "▁additional": 5111, + "本判决": 5112, + "iful": 5113, + "▁appear": 5114, + "ln": 5115, + "mand": 5116, + "▁black": 5117, + "▁indu": 5118, + "▁condition": 5119, + "▁births": 5120, + "刑事": 5121, + "▁ago": 5122, + "百科": 5123, + "▁center": 5124, + "ades": 5125, + "());\\": 5126, + "▁seems": 5127, + "▁Dep": 5128, + "▁dam": 5129, + "uz": 5130, + "lick": 5131, + "tx": 5132, + "金融": 5133, + "span": 5134, + "旅游": 5135, + "cs": 5136, + "IM": 5137, + "思想": 5138, + "\"\"\"": 5139, + "▁fem": 5140, + "ided": 5141, + "unt": 5142, + "▁January": 5143, + "▁tour": 5144, + "▁concer": 5145, + "推荐": 5146, + "▁running": 5147, + "上诉人": 5148, + "变化": 5149, + "文章": 5150, + "▁mach": 5151, + "sm": 5152, + "aries": 5153, + "pack": 5154, + "▁likely": 5155, + "▁weight": 5156, + "▁pers": 5157, + "▁sent": 5158, + "▁Sept": 5159, + "▁depend": 5160, + "▁Bar": 5161, + "Over": 5162, + "培训": 5163, + "Node": 5164, + "保险": 5165, + "▁command": 5166, + "日向本院": 5167, + "四川": 5168, + "农业": 5169, + "rown": 5170, + "times": 5171, + "output": 5172, + "▁Man": 5173, + "▁didn": 5174, + "nSo": 5175, + "▁display": 5176, + "▁established": 5177, + "▁distribution": 5178, + "nHow": 5179, + "关键": 5180, + "ospital": 5181, + "▁gene": 5182, + "ensity": 5183, + "just": 5184, + "nSee": 5185, + "For": 5186, + "case": 5187, + "nAl": 5188, + "▁fig": 5189, + "▁behavior": 5190, + "××": 5191, + "pecially": 5192, + "eks": 5193, + "▁June": 5194, + "like": 5195, + "local": 5196, + "cal": 5197, + "时代": 5198, + "▁etc": 5199, + "Ind": 5200, + "▁ge": 5201, + "ille": 5202, + "▁consist": 5203, + "ournal": 5204, + "明显": 5205, + "▁includes": 5206, + "▁identify": 5207, + "随着": 5208, + "是一个": 5209, + "▁reve": 5210, + "aph": 5211, + "OD": 5212, + "不服": 5213, + "视频": 5214, + "▁App": 5215, + "Message": 5216, + "fort": 5217, + "▁deal": 5218, + "▁trying": 5219, + "xim": 5220, + "▁enh": 5221, + "的问题": 5222, + "png": 5223, + "▁front": 5224, + "kg": 5225, + "Ent": 5226, + "▁instead": 5227, + "经验": 5228, + "▁held": 5229, + "▁War": 5230, + "vis": 5231, + "▁involved": 5232, + "事务": 5233, + "▁exact": 5234, + "icrosoft": 5235, + "江苏": 5236, + "nCh": 5237, + "▁item": 5238, + "aker": 5239, + "description": 5240, + "▁wr": 5241, + "音乐": 5242, + "▁bring": 5243, + "当事人": 5244, + "▁Mon": 5245, + "gy": 5246, + "▁came": 5247, + "▁accept": 5248, + "Ad": 5249, + "▁aud": 5250, + "typ": 5251, + "▁util": 5252, + "▁taking": 5253, + "重点": 5254, + "关注": 5255, + "▁aw": 5256, + "ining": 5257, + "istory": 5258, + "性的": 5259, + "eople": 5260, + "la": 5261, + "ECT": 5262, + "条之规定": 5263, + "summary": 5264, + "▁ill": 5265, + "费用": 5266, + "一点": 5267, + "aged": 5268, + "respon": 5269, + "▁Mat": 5270, + "▁effort": 5271, + "Fr": 5272, + "▁offers": 5273, + "距离": 5274, + "▁happen": 5275, + "current": 5276, + "▁taken": 5277, + "▁El": 5278, + "apter": 5279, + "▁Mc": 5280, + "▁feed": 5281, + "Se": 5282, + "cing": 5283, + "▁Trans": 5284, + "ovember": 5285, + "igr": 5286, + "正常": 5287, + "project": 5288, + "达到": 5289, + "Info": 5290, + "](/": 5291, + "witch": 5292, + "CD": 5293, + "▁multi": 5294, + "的小": 5295, + "▁General": 5296, + "▁combin": 5297, + "▁ra": 5298, + "▁lines": 5299, + "rad": 5300, + "context": 5301, + "unk": 5302, + "airs": 5303, + "oles": 5304, + "(),": 5305, + "▁someone": 5306, + "▁West": 5307, + "制作": 5308, + "▁useful": 5309, + "TR": 5310, + "▁Sm": 5311, + "nov": 5312, + "pri": 5313, + "All": 5314, + "}_{": 5315, + "ios": 5316, + "▁记": 5317, + "():\\": 5318, + "▁tell": 5319, + "商品": 5320, + "▁difficult": 5321, + "oe": 5322, + "▁understanding": 5323, + "广东": 5324, + "Hand": 5325, + "调查": 5326, + "法律规定": 5327, + "och": 5328, + "▁box": 5329, + "▁element": 5330, + "▁label": 5331, + "find": 5332, + "▁became": 5333, + "▁Afr": 5334, + "▁written": 5335, + "号民事": 5336, + "alpha": 5337, + "▁consum": 5338, + "▁compl": 5339, + "icip": 5340, + "}$\\": 5341, + "Equ": 5342, + "otes": 5343, + "uid": 5344, + "▁experi": 5345, + ")\\\\": 5346, + "▁entire": 5347, + "▁white": 5348, + "权利": 5349, + "方案": 5350, + "ouch": 5351, + "主义": 5352, + "▁national": 5353, + "lation": 5354, + "不仅": 5355, + "page": 5356, + "▁Inter": 5357, + "font": 5358, + "iting": 5359, + "▁performed": 5360, + "aint": 5361, + "▁np": 5362, + "▁upd": 5363, + "▁mind": 5364, + "你们": 5365, + "商业": 5366, + "公开": 5367, + "理由": 5368, + "▁insp": 5369, + "▁double": 5370, + "立案": 5371, + "▁prior": 5372, + "以后": 5373, + "▁其": 5374, + "▁estim": 5375, + "alls": 5376, + "▁Mark": 5377, + "▁\\\\\\\\": 5378, + "check": 5379, + "bo": 5380, + "▁famil": 5381, + "oved": 5382, + "cember": 5383, + "安徽": 5384, + "特点": 5385, + "▁July": 5386, + "发布": 5387, + "Date": 5388, + "▁connect": 5389, + "rip": 5390, + "一种": 5391, + "代码": 5392, + "检查": 5393, + "▁purch": 5394, + "文学": 5395, + "enced": 5396, + "aves": 5397, + "ham": 5398, + "Up": 5399, + "related": 5400, + "▁active": 5401, + "uel": 5402, + "离婚": 5403, + "▁October": 5404, + "▁education": 5405, + "造成": 5406, + "▁行": 5407, + "App": 5408, + "▁especially": 5409, + "atives": 5410, + "▁und": 5411, + "ufact": 5412, + "实验": 5413, + "Is": 5414, + "Code": 5415, + "▁suff": 5416, + "▁news": 5417, + "ani": 5418, + "TP": 5419, + "减刑": 5420, + "▁den": 5421, + "ottom": 5422, + "拥有": 5423, + "▁club": 5424, + "▁sem": 5425, + "▁replac": 5426, + "名称": 5427, + "▁medical": 5428, + "▁Red": 5429, + "aily": 5430, + "▁cannot": 5431, + "▁Park": 5432, + "▁Ac": 5433, + "upt": 5434, + "▁Act": 5435, + "▁claim": 5436, + "语言": 5437, + "现场": 5438, + "▁tax": 5439, + "卫生": 5440, + "miss": 5441, + "▁saf": 5442, + "▁expect": 5443, + "▁August": 5444, + "rypt": 5445, + "▁focus": 5446, + "len": 5447, + "▁pret": 5448, + "▁dest": 5449, + "alid": 5450, + "▁regular": 5451, + "▁fast": 5452, + "aled": 5453, + "▁Center": 5454, + "▁films": 5455, + "OL": 5456, + "▁September": 5457, + "ees": 5458, + "write": 5459, + "▁location": 5460, + "▁(\\": 5461, + "▁recept": 5462, + "▁round": 5463, + "▁difference": 5464, + "process": 5465, + "▁cause": 5466, + "最高人民法院关于": 5467, + "files": 5468, + "▁speed": 5469, + "▁private": 5470, + "经理": 5471, + "join": 5472, + "ancial": 5473, + "物业": 5474, + "aven": 5475, + "▁tests": 5476, + "hemat": 5477, + "形式": 5478, + "align": 5479, + "ceed": 5480, + "▁platform": 5481, + "bor": 5482, + "ards": 5483, + "▁practice": 5484, + "▁bound": 5485, + "▁client": 5486, + "▁observed": 5487, + "比如": 5488, + "▁probably": 5489, + "十五": 5490, + "保证": 5491, + "对方": 5492, + "roph": 5493, + "▁images": 5494, + "▁office": 5495, + "andid": 5496, + "▁contract": 5497, + "▁player": 5498, + "▁rather": 5499, + "▁considered": 5500, + "rial": 5501, + "▁living": 5502, + "efore": 5503, + "otal": 5504, + "▁root": 5505, + "▁weeks": 5506, + "▁vill": 5507, + "方向": 5508, + "▁unit": 5509, + "▁band": 5510, + "今年": 5511, + "▁activities": 5512, + "▁hope": 5513, + "本院于": 5514, + "全部": 5515, + "iet": 5516, + "vey": 5517, + "▁English": 5518, + "ailed": 5519, + "leep": 5520, + "nif": 5521, + "call": 5522, + "next": 5523, + "En": 5524, + "▁fit": 5525, + "Build": 5526, + "▁defined": 5527, + "BA": 5528, + "▁went": 5529, + "event": 5530, + "ping": 5531, + "ij": 5532, + "▁friend": 5533, + "全面": 5534, + "ocal": 5535, + "▁ability": 5536, + "▁solutions": 5537, + "数字": 5538, + "并且": 5539, + "▁Sub": 5540, + "izer": 5541, + "iance": 5542, + "才能": 5543, + "nnamespace": 5544, + "ken": 5545, + "▁More": 5546, + "▁Group": 5547, + "▁format": 5548, + "首先": 5549, + "左右": 5550, + "▁accur": 5551, + "REF": 5552, + "lock": 5553, + "aul": 5554, + "▁obtained": 5555, + "char": 5556, + "▁face": 5557, + "农民": 5558, + "nes": 5559, + "Des": 5560, + "▁House": 5561, + "▁Pres": 5562, + "bed": 5563, + "atur": 5564, + "null": 5565, + "▁mid": 5566, + "He": 5567, + "ective": 5568, + "response": 5569, + "身体": 5570, + "▁November": 5571, + "▁stress": 5572, + "▁sil": 5573, + "iques": 5574, + "▁maint": 5575, + "▁everything": 5576, + "▁Public": 5577, + "ocket": 5578, + "当然": 5579, + "ii": 5580, + "▁prec": 5581, + "▁Pat": 5582, + "▁analy": 5583, + "ql": 5584, + "一年": 5585, + "都有": 5586, + "Client": 5587, + "')": 5588, + "augh": 5589, + "▁compos": 5590, + "Not": 5591, + "现已": 5592, + "▁parameters": 5593, + "loat": 5594, + "ools": 5595, + "([": 5596, + "准备": 5597, + "▁regul": 5598, + "▁staff": 5599, + "▁node": 5600, + "▁popular": 5601, + "inition": 5602, + "EL": 5603, + "▁ut": 5604, + "nOn": 5605, + "▁Ag": 5606, + "▁allows": 5607, + "▁ful": 5608, + "▁pressure": 5609, + "▁See": 5610, + "TH": 5611, + "apping": 5612, + "儿童": 5613, + "acc": 5614, + "▁La": 5615, + "argin": 5616, + "▁recently": 5617, + "▁True": 5618, + "ado": 5619, + "▁]": 5620, + "说明": 5621, + "▁highly": 5622, + "▁store": 5623, + "enu": 5624, + "▁global": 5625, + "▁dynam": 5626, + "SD": 5627, + "阅读": 5628, + "last": 5629, + "参数": 5630, + "▁applications": 5631, + "Response": 5632, + "heme": 5633, + "就会": 5634, + "che": 5635, + "▁named": 5636, + "PL": 5637, + "▁len": 5638, + "▁sus": 5639, + "\\');\\": 5640, + "source": 5641, + "dec": 5642, + "协议": 5643, + "▁late": 5644, + "gs": 5645, + "Component": 5646, + "智能": 5647, + "▁forward": 5648, + "▁surg": 5649, + "enses": 5650, + "也有": 5651, + "bug": 5652, + "十九": 5653, + "本次执行": 5654, + "充分": 5655, + "▁Sw": 5656, + "▁December": 5657, + "▁customers": 5658, + "实施": 5659, + "▁matrix": 5660, + "Controller": 5661, + "ico": 5662, + "▁intr": 5663, + "进一步": 5664, + "▁inside": 5665, + "▁directly": 5666, + "▁League": 5667, + "({": 5668, + "Inter": 5669, + "▁stay": 5670, + "▁server": 5671, + "▁package": 5672, + "////": 5673, + "▁click": 5674, + "commit": 5675, + "创建": 5676, + "▁acid": 5677, + "ampionship": 5678, + "加强": 5679, + "▁vers": 5680, + "▁official": 5681, + "button": 5682, + "超过": 5683, + "hood": 5684, + "十三": 5685, + "▁concept": 5686, + "▁town": 5687, + "▁section": 5688, + "cell": 5689, + "人们": 5690, + "models": 5691, + "民族": 5692, + "▁walk": 5693, + "▁girl": 5694, + "rl": 5695, + "rench": 5696, + "▁international": 5697, + "▁bed": 5698, + "eline": 5699, + "▁Japan": 5700, + "规划": 5701, + "level": 5702, + "':": 5703, + "建立": 5704, + "▁continue": 5705, + "是在": 5706, + "审查": 5707, + "下的": 5708, + "同学": 5709, + "ipe": 5710, + "办公": 5711, + "true": 5712, + "IF": 5713, + "满足": 5714, + "▁attempt": 5715, + "公安": 5716, + "优秀": 5717, + "rome": 5718, + "older": 5719, + "System": 5720, + "ypes": 5721, + "▁ways": 5722, + "ondon": 5723, + "rote": 5724, + "▁uses": 5725, + "Def": 5726, + "▁长": 5727, + "▁anything": 5728, + "gl": 5729, + "▁security": 5730, + "▁Ne": 5731, + "isf": 5732, + "几个": 5733, + "▁increasing": 5734, + "email": 5735, + "▁ensure": 5736, + "▁almost": 5737, + "closed": 5738, + "▁download": 5739, + "评价": 5740, + "OP": 5741, + "▁liter": 5742, + "▁Post": 5743, + "ds": 5744, + "措施": 5745, + "ifier": 5746, + "▁hyper": 5747, + "判断": 5748, + "long": 5749, + "▁sites": 5750, + "只要": 5751, + "未来": 5752, + "coming": 5753, + "reet": 5754, + "MM": 5755, + "期限": 5756, + "▁Cr": 5757, + "七年": 5758, + "▁‘": 5759, + "▁comment": 5760, + "Pr": 5761, + "acity": 5762, + "abled": 5763, + "问题的": 5764, + "考虑": 5765, + "体系": 5766, + "驾驶": 5767, + "▁surv": 5768, + "每天": 5769, + "bruary": 5770, + "▁contains": 5771, + "eration": 5772, + "▁draw": 5773, + "▁leading": 5774, + "De": 5775, + "第四": 5776, + "报告": 5777, + "Array": 5778, + "第一百四十": 5779, + "With": 5780, + "▁ste": 5781, + "bon": 5782, + "每个": 5783, + "性能": 5784, + "▁constant": 5785, + "▁quite": 5786, + "▁veh": 5787, + "地址": 5788, + "▁proced": 5789, + "▁wond": 5790, + "▁Here": 5791, + "▁told": 5792, + "平均": 5793, + "react": 5794, + "izes": 5795, + "调解": 5796, + "nAnd": 5797, + "▁evidence": 5798, + "▁road": 5799, + "除了": 5800, + "▁takes": 5801, + "▁seem": 5802, + "给出": 5803, + "▁station": 5804, + "公诉": 5805, + "输入": 5806, + "▁arr": 5807, + "▁simply": 5808, + "▁device": 5809, + "fit": 5810, + "ambda": 5811, + "▁ground": 5812, + "ocker": 5813, + "known": 5814, + "▁Up": 5815, + "▁Set": 5816, + "ara": 5817, + ")*": 5818, + "▁interface": 5819, + "bf": 5820, + "▁CD": 5821, + "▁neuro": 5822, + "▁PR": 5823, + "SC": 5824, + "oon": 5825, + "检测": 5826, + "▁sequence": 5827, + "▁wait": 5828, + "制度": 5829, + "▁Dec": 5830, + "▁items": 5831, + "pty": 5832, + "▁necessary": 5833, + "交流": 5834, + "rightarrow": 5835, + "sych": 5836, + "▁contr": 5837, + "ociation": 5838, + "不知道": 5839, + "ocr": 5840, + "▁believe": 5841, + "培养": 5842, + "define": 5843, + "▁gas": 5844, + "▁College": 5845, + "有些": 5846, + "▁travel": 5847, + "徒刑": 5848, + "立即": 5849, + "▁brain": 5850, + "▁therapy": 5851, + "▁Data": 5852, + "参与": 5853, + "考试": 5854, + "What": 5855, + "But": 5856, + "As": 5857, + "▁Russ": 5858, + "▁elements": 5859, + "期徒刑": 5860, + "▁que": 5861, + "五年": 5862, + "那个": 5863, + "▁capt": 5864, + "Be": 5865, + "▁projects": 5866, + "oke": 5867, + "本院在": 5868, + "不可": 5869, + "▁sample": 5870, + "arter": 5871, + "合同纠纷一案": 5872, + "▁respectively": 5873, + "otic": 5874, + "本裁定送达后": 5875, + "css": 5876, + "▁Then": 5877, + "联网": 5878, + "人物": 5879, + "只能": 5880, + "%,": 5881, + "▁friends": 5882, + "▁His": 5883, + "merc": 5884, + "程度": 5885, + "ican": 5886, + "▁direction": 5887, + "hema": 5888, + "())\\": 5889, + "▁Ang": 5890, + "▁anim": 5891, + "▁choose": 5892, + "New": 5893, + "▁commit": 5894, + "当时": 5895, + "事务所": 5896, + "的财产": 5897, + "机械": 5898, + "六年": 5899, + "▁worked": 5900, + "lymp": 5901, + "root": 5902, + "PC": 5903, + "速度": 5904, + "数量": 5905, + "II": 5906, + "▁produced": 5907, + "atively": 5908, + "改革": 5909, + "itude": 5910, + "raz": 5911, + "▁International": 5912, + "市中级人民法院": 5913, + "]:": 5914, + "▁board": 5915, + "▁latest": 5916, + "Of": 5917, + "▁beautiful": 5918, + "iforn": 5919, + "avid": 5920, + "ster": 5921, + "nWhen": 5922, + "tual": 5923, + "estern": 5924, + "Element": 5925, + "igen": 5926, + "本次执行程序": 5927, + "▁Ed": 5928, + "mathbb": 5929, + "urance": 5930, + "▁deriv": 5931, + "clus": 5932, + "olar": 5933, + "▁instance": 5934, + "▁looks": 5935, + ",\\\\": 5936, + "more": 5937, + "ington": 5938, + "ancy": 5939, + "▁emer": 5940, + "认定": 5941, + "课程": 5942, + "▁establish": 5943, + "▁temperature": 5944, + "电话": 5945, + "ued": 5946, + "ians": 5947, + "自治": 5948, + "▁soon": 5949, + "▁Copyright": 5950, + "制造": 5951, + "grad": 5952, + "理解": 5953, + "avy": 5954, + "}{\\\\": 5955, + "▁isn": 5956, + "exp": 5957, + "▁prep": 5958, + "心理": 5959, + "媒体": 5960, + "英语": 5961, + "▁bad": 5962, + "▁Please": 5963, + "成本": 5964, + "▁altern": 5965, + "▁Sch": 5966, + "nTr": 5967, + "▁plac": 5968, + "▁>>": 5969, + "保持": 5970, + "▁basis": 5971, + "ociety": 5972, + "坚持": 5973, + "lections": 5974, + "分享": 5975, + "▁blog": 5976, + "▁broad": 5977, + "idget": 5978, + "ocks": 5979, + "下来": 5980, + "适合": 5981, + "▁tim": 5982, + "▁favor": 5983, + "oes": 5984, + "▁receive": 5985, + "▁District": 5986, + "elta": 5987, + "▁compar": 5988, + "▁obtain": 5989, + "针对": 5990, + "哪些": 5991, + "▁variety": 5992, + "ellow": 5993, + "▁India": 5994, + "update": 5995, + "▁wide": 5996, + "▁fire": 5997, + "service": 5998, + "社区": 5999, + "▁send": 6000, + "An": 6001, + "第六": 6002, + "▁presented": 6003, + "semb": 6004, + "}(": 6005, + "▁degree": 6006, + "▁transfer": 6007, + "▁identified": 6008, + "的情况": 6009, + "ifornia": 6010, + "▁parts": 6011, + "wise": 6012, + "SP": 6013, + "风险": 6014, + "Manager": 6015, + "icians": 6016, + "cel": 6017, + "许多": 6018, + "▁party": 6019, + "▁王": 6020, + "hing": 6021, + "中央": 6022, + "eader": 6023, + "联合": 6024, + "持续": 6025, + "Input": 6026, + "▁resid": 6027, + "▁attack": 6028, + "etime": 6029, + "▁sort": 6030, + "▁ult": 6031, + "严重": 6032, + "资金": 6033, + "▁computer": 6034, + "orph": 6035, + "auth": 6036, + "交易": 6037, + "▁greater": 6038, + "▁gives": 6039, + "\"]": 6040, + "▁stage": 6041, + "加入": 6042, + "Base": 6043, + "▁numer": 6044, + "ka": 6045, + "▁rates": 6046, + "丰富": 6047, + "▁qual": 6048, + "iers": 6049, + "▁From": 6050, + "▁born": 6051, + "▁usually": 6052, + "▁physical": 6053, + "深圳": 6054, + "意见": 6055, + "▁throughout": 6056, + "itect": 6057, + "指导": 6058, + "▁Mus": 6059, + "CP": 6060, + "内容简介": 6061, + "比赛": 6062, + "▁ax": 6063, + "parse": 6064, + "▁Str": 6065, + "▁Dis": 6066, + "▁moment": 6067, + "duc": 6068, + "咨询": 6069, + "▁poly": 6070, + "初字第": 6071, + "ship": 6072, + "合法": 6073, + "▁February": 6074, + "▁hypot": 6075, + "iciency": 6076, + "▁Just": 6077, + "全球": 6078, + "▁tools": 6079, + "▁secret": 6080, + "▁deliver": 6081, + "None": 6082, + "▁studied": 6083, + "增长": 6084, + "收取": 6085, + "▁theory": 6086, + "▁male": 6087, + "▁longer": 6088, + "oz": 6089, + "▁oil": 6090, + "▁watch": 6091, + "▁district": 6092, + "▁matter": 6093, + "设置": 6094, + "Trans": 6095, + "▁RE": 6096, + "▁London": 6097, + "▁existing": 6098, + "不得": 6099, + "▁wor": 6100, + "asons": 6101, + "▁skin": 6102, + "itation": 6103, + "感情": 6104, + "erve": 6105, + "▁Inc": 6106, + "java": 6107, + "▁CON": 6108, + "den": 6109, + "tic": 6110, + "▁manufact": 6111, + "北省": 6112, + "document": 6113, + "▁Rev": 6114, + "abs": 6115, + "Override": 6116, + "▁Char": 6117, + "hy": 6118, + "method": 6119, + "nw": 6120, + "▁construct": 6121, + "target": 6122, + "Rep": 6123, + "▁reading": 6124, + "msg": 6125, + "nBut": 6126, + "anel": 6127, + "stream": 6128, + "细胞": 6129, + "▁resources": 6130, + "▁King": 6131, + "▁anti": 6132, + "▁states": 6133, + "▁Spec": 6134, + "DS": 6135, + "river": 6136, + "▁upon": 6137, + "医学百科": 6138, + "▁Your": 6139, + "▁words": 6140, + "更加": 6141, + "itc": 6142, + "▁rights": 6143, + "生物": 6144, + "\\\\_": 6145, + "▁Air": 6146, + "正在": 6147, + "except": 6148, + "稳定": 6149, + "检察院": 6150, + "▁PM": 6151, + "TS": 6152, + "三角": 6153, + "查明": 6154, + "特色": 6155, + "律师事务所": 6156, + "ias": 6157, + "这样的": 6158, + "越来": 6159, + "▁Inst": 6160, + "▁nucle": 6161, + "取得": 6162, + "~~~\\": 6163, + "西省": 6164, + "有期徒刑": 6165, + "gener": 6166, + "If": 6167, + "oice": 6168, + "asks": 6169, + "Ap": 6170, + "▁plant": 6171, + "▁approxim": 6172, + "ptions": 6173, + "监狱": 6174, + "▁${": 6175, + "▁techniques": 6176, + "▁save": 6177, + "▁equal": 6178, + "▁nil": 6179, + "nh": 6180, + "▁::": 6181, + "▁Now": 6182, + "保障": 6183, + "Gener": 6184, + "▁AM": 6185, + "▁force": 6186, + "▁except": 6187, + "pm": 6188, + "▁materials": 6189, + "越来越": 6190, + "购买": 6191, + "区域": 6192, + "样的": 6193, + "▁linear": 6194, + "td": 6195, + "目录": 6196, + "▁essential": 6197, + "体验": 6198, + "▁optim": 6199, + "用于": 6200, + "专家": 6201, + "▁Health": 6202, + "git": 6203, + "ighest": 6204, + "提交": 6205, + "代理审判员": 6206, + "▁outside": 6207, + "点击": 6208, + "运行": 6209, + "▁challeng": 6210, + "▁First": 6211, + "▁China": 6212, + "新闻": 6213, + "阶段": 6214, + "▁fall": 6215, + "▁algorithm": 6216, + "ATE": 6217, + "▁extra": 6218, + "因素": 6219, + "那些": 6220, + "▁Acc": 6221, + "求出": 6222, + "▁wrong": 6223, + "后的": 6224, + "为主": 6225, + "▁Pre": 6226, + "输出": 6227, + "▁DNA": 6228, + "广告": 6229, + "▁British": 6230, + "▁pretty": 6231, + "cdot": 6232, + "elves": 6233, + "改造": 6234, + "▁phone": 6235, + "▁Thanks": 6236, + "▁testing": 6237, + "▁\\\\\\": 6238, + "iece": 6239, + "▁李": 6240, + "alle": 6241, + "▁mechanisms": 6242, + "合理": 6243, + "第七": 6244, + "▁remain": 6245, + "▁basic": 6246, + "▁Har": 6247, + "▁Out": 6248, + "促进": 6249, + "▁served": 6250, + "出了": 6251, + "CA": 6252, + "▁distance": 6253, + "▁task": 6254, + "▁selected": 6255, + "aign": 6256, + "erved": 6257, + "plications": 6258, + "第五": 6259, + "人才": 6260, + "RA": 6261, + "▁America": 6262, + "▁Some": 6263, + "▁birth": 6264, + "▁promot": 6265, + "▁reach": 6266, + "食品": 6267, + "受到": 6268, + "uccess": 6269, + "▁programs": 6270, + "pg": 6271, + "▁sn": 6272, + "▁God": 6273, + "ran": 6274, + "▁apply": 6275, + "改变": 6276, + "▁url": 6277, + "▁Def": 6278, + "▁overall": 6279, + "▁$(": 6280, + "vider": 6281, + "▁bal": 6282, + "有人": 6283, + "▁central": 6284, + "merican": 6285, + "]);\\": 6286, + "▁itself": 6287, + "测试": 6288, + "▁providing": 6289, + "不同的": 6290, + "stitute": 6291, + "▁California": 6292, + "options": 6293, + "▁Mich": 6294, + "▁critical": 6295, + "▁hit": 6296, + "员工": 6297, + "▁fib": 6298, + "TO": 6299, + "century": 6300, + "GB": 6301, + "▁phase": 6302, + "KE": 6303, + "▁policy": 6304, + "▁transform": 6305, + "解答": 6306, + "都会": 6307, + "ooth": 6308, + "levant": 6309, + "▁decision": 6310, + "▁San": 6311, + "宣传": 6312, + "Inst": 6313, + "▁doc": 6314, + "犯罪": 6315, + "yles": 6316, + "▁negative": 6317, + "统计": 6318, + "以来": 6319, + "设施": 6320, + "▁entry": 6321, + "▁Class": 6322, + "ponents": 6323, + "▁presence": 6324, + "我们的": 6325, + "eps": 6326, + "▁component": 6327, + "win": 6328, + "量的": 6329, + "And": 6330, + "▁individuals": 6331, + "admin": 6332, + "▁mer": 6333, + "mercial": 6334, + "▁height": 6335, + "优势": 6336, + "uge": 6337, + "())": 6338, + "▁张": 6339, + "民间": 6340, + "plies": 6341, + "ca": 6342, + "▁choice": 6343, + "人民检察院": 6344, + "▁vit": 6345, + "的发展": 6346, + "▁variables": 6347, + "block": 6348, + "直线": 6349, + "▁cal": 6350, + "▁avoid": 6351, + "utils": 6352, + "▁Google": 6353, + "快速": 6354, + "恢复": 6355, + "see": 6356, + "levision": 6357, + "▁applied": 6358, + "eturn": 6359, + "▁candid": 6360, + "身份": 6361, + "▁Fl": 6362, + "Size": 6363, + "性质": 6364, + "ords": 6365, + "是一种": 6366, + "记者": 6367, + "▁everyone": 6368, + "ulations": 6369, + "images": 6370, + "▁sal": 6371, + "number": 6372, + "▁src": 6373, + "nCom": 6374, + "▁satisf": 6375, + "▁easily": 6376, + "▁synt": 6377, + "hent": 6378, + "▁sound": 6379, + "ounced": 6380, + "成绩": 6381, + "土地": 6382, + "▁Bro": 6383, + "▁Found": 6384, + "协会": 6385, + "体育": 6386, + "VER": 6387, + "▁limited": 6388, + "enge": 6389, + "▁reduce": 6390, + "▁stim": 6391, + "免费": 6392, + "▁Work": 6393, + "▁progress": 6394, + "▁deep": 6395, + "nand": 6396, + "show": 6397, + "ytes": 6398, + "▁places": 6399, + "办法": 6400, + "的高": 6401, + "申请执行": 6402, + "▁Open": 6403, + "▁Det": 6404, + "告诉": 6405, + "▁transport": 6406, + "别人": 6407, + "▁financial": 6408, + "▁son": 6409, + "height": 6410, + "▁shop": 6411, + "▁cam": 6412, + "再次": 6413, + "▁divid": 6414, + "\">\\": 7098, + "▁cardi": 7099, + "▁net": 7100, + "RANT": 7101, + "▁produce": 7102, + "▁regarding": 7103, + "道路": 7104, + "annot": 7105, + "▁tag": 7106, + "的重要": 7107, + "PA": 7108, + "vest": 7109, + "ounter": 7110, + "▁tree": 7111, + "打开": 7112, + "形的": 7113, + "graph": 7114, + "ught": 7115, + "plant": 7116, + "引起": 7117, + "tee": 7118, + "观察": 7119, + "▁Republic": 7120, + "uffer": 7121, + "▁sympt": 7122, + "matrix": 7123, + "▁wood": 7124, + "▁json": 7125, + "文名": 7126, + "▁Version": 7127, + "▁handle": 7128, + "▁towards": 7129, + "特征": 7130, + "描述": 7131, + "sem": 7132, + "▁deaths": 7133, + "▁organization": 7134, + "冻结": 7135, + "必要": 7136, + "▁park": 7137, + "我是": 7138, + "温度": 7139, + "▁names": 7140, + "▁innov": 7141, + "技能": 7142, + "▁expand": 7143, + "▁ox": 7144, + "▁channel": 7145, + "rier": 7146, + "▁hospital": 7147, + "ART": 7148, + "▁signal": 7149, + "高的": 7150, + "▁inform": 7151, + "▁sales": 7152, + "▁selection": 7153, + "ensor": 7154, + "iki": 7155, + "▁Willi": 7156, + "Us": 7157, + "▁technique": 7158, + "▁ball": 7159, + "▁damage": 7160, + "▁resource": 7161, + "化学": 7162, + "▁Hel": 7163, + "params": 7164, + "▁Program": 7165, + "icated": 7166, + "▁advant": 7167, + "header": 7168, + "From": 7169, + "perties": 7170, + "▁nor": 7171, + "▁political": 7172, + "EM": 7173, + "▁var": 7174, + "inner": 7175, + "▁bank": 7176, + "日立案": 7177, + "▁worth": 7178, + "▁interview": 7179, + "▁ur": 7180, + "▁affect": 7181, + "ician": 7182, + "nhttps": 7183, + "规模": 7184, + "▁lif": 7185, + "▁flex": 7186, + "里面": 7187, + "Str": 7188, + "▁Form": 7189, + "▁Software": 7190, + "▁genes": 7191, + "rid": 7192, + "▁structures": 7193, + "nvar": 7194, + "▁Di": 7195, + "has": 7196, + "成了": 7197, + "世纪": 7198, + "icensed": 7199, + "相对": 7200, + "▁campaign": 7201, + "Command": 7202, + "并不": 7203, + "▁police": 7204, + "▁页": 7205, + "之间的": 7206, + "FL": 7207, + "▁River": 7208, + "inese": 7209, + "iment": 7210, + "itch": 7211, + "▁Mor": 7212, + "ho": 7213, + "▁score": 7214, + "Factory": 7215, + "从事": 7216, + "▁restr": 7217, + "ymph": 7218, + "Module": 7219, + "Let": 7220, + "nfor": 7221, + "一份": 7222, + "pret": 7223, + "beta": 7224, + "free": 7225, + "igration": 7226, + "uate": 7227, + "▁auto": 7228, + "▁goals": 7229, + "stack": 7230, + "撤回起诉": 7231, + "Att": 7232, + "▁gold": 7233, + "▁devices": 7234, + "ishing": 7235, + "▁Law": 7236, + "分为": 7237, + "rive": 7238, + "las": 7239, + "weight": 7240, + "▁sell": 7241, + "▁goes": 7242, + "▁strategy": 7243, + "减半收取": 7244, + "判处": 7245, + "▁creating": 7246, + "▁correl": 7247, + "平方米": 7248, + "▁announced": 7249, + "起点": 7250, + "成长": 7251, + "夫妻": 7252, + "香港": 7253, + "台湾": 7254, + "acebook": 7255, + "help": 7256, + "margin": 7257, + "人类": 7258, + "nAnswer": 7259, + "确定的": 7260, + "▁green": 7261, + "nAfter": 7262, + "时期": 7263, + "home": 7264, + "▁appropriate": 7265, + "ederal": 7266, + "▁catch": 7267, + "工资": 7268, + "spring": 7269, + "▁Suppose": 7270, + "adding": 7271, + "useum": 7272, + "房地产": 7273, + "istor": 7274, + "▁Bel": 7275, + "如此": 7276, + "▁quickly": 7277, + "nel": 7278, + "Token": 7279, + "子的": 7280, + "CI": 7281, + "有点": 7282, + "采取": 7283, + "On": 7284, + "▁labor": 7285, + "相信": 7286, + "不少": 7287, + "办理": 7288, + "aine": 7289, + "▁Vir": 7290, + "▁rout": 7291, + "Sup": 7292, + "▁adapt": 7293, + "▁HT": 7294, + "▁gets": 7295, + "有限责任": 7296, + "▁interested": 7297, + "▁relevant": 7298, + "RNA": 7299, + "商务": 7300, + "▁Bo": 7301, + "▁Street": 7302, + "roy": 7303, + "nUn": 7304, + "adian": 7305, + "RI": 7306, + "lamm": 7307, + "▁contain": 7308, + "ummer": 7309, + "ests": 7310, + "第一百四十五": 7311, + "super": 7312, + "imer": 7313, + "Query": 7314, + "CON": 7315, + "Aut": 7316, + "adata": 7317, + "▁Ear": 7318, + "推进": 7319, + "解题": 7320, + "居民": 7321, + "ini": 7322, + "▁connection": 7323, + "RL": 7324, + "重要的": 7325, + "exec": 7326, + "有限责任公司": 7327, + "▁infection": 7328, + "教授": 7329, + "对象": 7330, + "妈妈": 7331, + "hedul": 7332, + "▁views": 7333, + "▁Sing": 7334, + "▁wonder": 7335, + "ographic": 7336, + "接口": 7337, + "▁steps": 7338, + "▁Div": 7339, + "▁Mal": 7340, + "opic": 7341, + "▁les": 7342, + "▁lives": 7343, + "▁requires": 7344, + "▁treated": 7345, + "确实": 7346, + "手术": 7347, + "▁relative": 7348, + "gebra": 7349, + "▁Over": 7350, + "▁WARRANT": 7351, + "ago": 7352, + "陪审": 7353, + "▁NOT": 7354, + "parser": 7355, + "▁Fil": 7356, + "Builder": 7357, + "▁appoint": 7358, + "▁influence": 7359, + "结束": 7360, + "urt": 7361, + "▁evaluate": 7362, + "条的规定": 7363, + "▁larger": 7364, + "▁moved": 7365, + "issues": 7366, + "详细": 7367, + "aby": 7368, + "▁Ben": 7369, + "FF": 7370, + "lambda": 7371, + "训练": 7372, + "ki": 7373, + "到庭参加": 7374, + "ni": 7375, + "▁healthy": 7376, + "Dis": 7377, + "enty": 7378, + "ano": 7379, + "UI": 7380, + "igma": 7381, + "nhttp": 7382, + "Entity": 7383, + "规范": 7384, + "▁caused": 7385, + "当前": 7386, + "▁particularly": 7387, + "陪审员": 7388, + "掌握": 7389, + "▁implementation": 7390, + "nprint": 7391, + "▁plas": 7392, + "▁commercial": 7393, + "▁hol": 7394, + "reated": 7395, + "▁Home": 7396, + "涉及": 7397, + "erate": 7398, + "▁session": 7399, + "▁pul": 7400, + "nth": 7401, + "odies": 7402, + "报道": 7403, + "netic": 7404, + "公共": 7405, + "nvoid": 7406, + "的最": 7407, + "▁er": 7408, + "kw": 7409, + "尤其": 7410, + "Equal": 7411, + "ayers": 7412, + "以前": 7413, + "▁architect": 7414, + "Run": 7415, + "▁reports": 7416, + "ria": 7417, + "日止": 7418, + "危险": 7419, + "▁conver": 7420, + "▁pair": 7421, + "本文": 7422, + "▁injury": 7423, + "公式": 7424, + "iat": 7425, + "instance": 7426, + "▁tested": 7427, + "上诉状": 7428, + "UE": 7429, + "nav": 7430, + "她的": 7431, + "nPeople": 7432, + "ester": 7433, + "Util": 7434, + "▁plans": 7435, + "onday": 7436, + "▁Find": 7437, + "避免": 7438, + "▁legal": 7439, + "的值": 7440, + "circ": 7441, + "agon": 7442, + "本裁定送达后即发生法律效力": 7443, + "▁female": 7444, + "▁revealed": 7445, + "▁Solution": 7446, + "▁celebr": 7447, + "行的": 7448, + "EO": 7449, + "▁poor": 7450, + "偿还": 7451, + "ouncil": 7452, + "▁derivative": 7453, + "人民陪审员": 7454, + "▁Ste": 7455, + "微信": 7456, + "iding": 7457, + "astr": 7458, + "河南省": 7459, + "mas": 7460, + "▁capacity": 7461, + "▁television": 7462, + "▁classes": 7463, + "四川省": 7464, + "▁serious": 7465, + "▁python": 7466, + "ITY": 7467, + "运输": 7468, + "▁equipment": 7469, + "▁Vol": 7470, + "Create": 7471, + "本书": 7472, + "▁planning": 7473, + "独立": 7474, + "nWith": 7475, + "ped": 7476, + "的新": 7477, + "四年": 7478, + "sim": 7479, + "bi": 7480, + "审判长": 7481, + "▁train": 7482, + "▁Using": 7483, + "Stream": 7484, + "▁fa": 7485, + "绝对": 7486, + "▁rules": 7487, + "uced": 7488, + "xml": 7489, + "▁Association": 7490, + "▁Ill": 7491, + "▁developing": 7492, + "▁receptor": 7493, + "创造": 7494, + "面对": 7495, + "▁formation": 7496, + "produ": 7497, + "机制": 7498, + "▁sen": 7499, + "{%": 7500, + "▁Friday": 7501, + "force": 7502, + "力量": 7503, + "▁enzym": 7504, + "ibly": 7505, + "orders": 7506, + "维护": 7507, + "▁density": 7508, + "▁公司": 7509, + "深入": 7510, + "文明": 7511, + "ci": 7512, + "▁generate": 7513, + "▁shape": 7514, + "nms": 7515, + "▁science": 7516, + "fix": 7517, + "▁Foundation": 7518, + "Version": 7519, + "▁moving": 7520, + "ITE": 7521, + "整体": 7522, + "▁David": 7523, + "▁($": 7524, + "▁syn": 7525, + "ifically": 7526, + "▁hair": 7527, + "▁benefits": 7528, + "Web": 7529, + "消费者": 7530, + "delete": 7531, + "card": 7532, + "ses": 7533, + "NO": 7534, + "▁middle": 7535, + "▁picture": 7536, + "Load": 7537, + "皮肤": 7538, + "理念": 7539, + "▁parents": 7540, + "Table": 7541, + "▁TO": 7542, + "指控": 7543, + "undle": 7544, + "▁stream": 7545, + "EC": 7546, + "$$\\\\": 7547, + "▁cert": 7548, + "sg": 7549, + "▁largest": 7550, + "erry": 7551, + "ua": 7552, + "贸易": 7553, + "▁Time": 7554, + "nIs": 7555, + "rum": 7556, + "sw": 7557, + "自身": 7558, + "hedule": 7559, + "▁reduction": 7560, + "▁Trump": 7561, + "itchen": 7562, + "分布": 7563, + "讨论": 7564, + "▁Great": 7565, + "▁Anal": 7566, + "▁electric": 7567, + "特殊": 7568, + "ryst": 7569, + "acters": 7570, + "▁Model": 7571, + "vector": 7572, + "▁cat": 7573, + "▁fresh": 7574, + "一定要": 7575, + "req": 7576, + "▁actual": 7577, + "▁responses": 7578, + "PD": 7579, + "▁repe": 7580, + "float": 7581, + "▁although": 7582, + "▁jud": 7583, + "nAll": 7584, + "▁Wash": 7585, + "uy": 7586, + "包含": 7587, + "▁figure": 7588, + "▁formula": 7589, + "▁Use": 7590, + "角色": 7591, + "▁bus": 7592, + "▁bud": 7593, + "▁serve": 7594, + "多次": 7595, + "南京": 7596, + "合议": 7597, + "ello": 7598, + "▁wrote": 7599, + "重新": 7600, + "lines": 7601, + "false": 7602, + "eria": 7603, + "利率": 7604, + "地点": 7605, + "ien": 7606, + "google": 7607, + "了一个": 7608, + "▁England": 7609, + "▁fat": 7610, + "▁py": 7611, + "▁binding": 7612, + "推动": 7613, + "▁allowed": 7614, + "它们": 7615, + "sys": 7616, + "MO": 7617, + "oom": 7618, + "▁sources": 7619, + "▁remember": 7620, + "发挥": 7621, + "▁chance": 7622, + "cases": 7623, + "ky": 7624, + "property": 7625, + "计算机": 7626, + "▁cm": 7627, + "风格": 7628, + "ideos": 7629, + "▁Book": 7630, + "先生": 7631, + "▁measures": 7632, + "displaystyle": 7633, + "emplate": 7634, + "限制": 7635, + "olf": 7636, + "osc": 7637, + "▁processing": 7638, + "▁saw": 7639, + "十日内": 7640, + "武汉": 7641, + "相同": 7642, + "▁surgery": 7643, + "▁decided": 7644, + "▁sou": 7645, + "IES": 7646, + "▁button": 7647, + "store": 7648, + "负责人": 7649, + "slant": 7650, + "center": 7651, + "▁rock": 7652, + "▁Tex": 7653, + "无论": 7654, + "▁Council": 7655, + "资产": 7656, + "LL": 7657, + "▁extract": 7658, + "▁improved": 7659, + "king": 7660, + "berg": 7661, + "▁experimental": 7662, + "▁woman": 7663, + "三年": 7664, + "nAt": 7665, + "▁master": 7666, + "ivil": 7667, + "合议庭": 7668, + "▁ST": 7669, + "▁therefore": 7670, + "▁Del": 7671, + "▁delivery": 7672, + "▁mys": 7673, + "▁touch": 7674, + "▁partners": 7675, + "数是": 7676, + "▁listed": 7677, + "▁divided": 7678, + "nThanks": 7679, + "esh": 7680, + "营养": 7681, + "▁transl": 7682, + "消息": 7683, + "▁Wed": 7684, + "▁helps": 7685, + "▁giving": 7686, + "normal": 7687, + "ifying": 7688, + "▁Institute": 7689, + "patch": 7690, + "▁encour": 7691, + "Number": 7692, + "▁vict": 7693, + "rief": 7694, + "年轻": 7695, + "▁definit": 7696, + "现象": 7697, + "可是": 7698, + "Fil": 7699, + "cout": 7700, + "图片": 7701, + "异议": 7702, + "My": 7703, + "开放": 7704, + "坐标": 7705, + "▁attract": 7706, + "二〇一五年": 7707, + "props": 7708, + "▁Object": 7709, + "让人": 7710, + "\\\\\"": 7711, + "then": 7712, + "▁roll": 7713, + "arant": 7714, + "发展的": 7715, + "▁Nov": 7716, + "▁hous": 7717, + "▁Further": 7718, + "▁外文名": 7719, + "ston": 7720, + "▁characteristics": 7721, + "▁calc": 7722, + "▁mort": 7723, + "照片": 7724, + "ATH": 7725, + "▁sleep": 7726, + "phone": 7727, + "oyal": 7728, + "PR": 7729, + "▁schools": 7730, + "创业": 7731, + "▁连载平台": 7732, + "亿元": 7733, + "▁adjust": 7734, + "haps": 7735, + "▁中国": 7736, + "antic": 7737, + "▁sun": 7738, + "anges": 7739, + "asket": 7740, + "▁thanks": 7741, + "少年": 7742, + "基于": 7743, + "▁responsible": 7744, + "▁Sund": 7745, + "▁rapid": 7746, + "pan": 7747, + "option": 7748, + "▁define": 7749, + "▁Cam": 7750, + "▁sys": 7751, + "▁Two": 7752, + "Char": 7753, + "▁internal": 7754, + "江苏省": 7755, + "Server": 7756, + "▁growing": 7757, + "▁Prov": 7758, + "▁TH": 7759, + "range": 7760, + "logger": 7761, + "▁resistance": 7762, + "install": 7763, + "分类": 7764, + "该公司": 7765, + "etimes": 7766, + "isation": 7767, + "▁equations": 7768, + "成都": 7769, + "▁Mag": 7770, + "▁sports": 7771, + "会有": 7772, + "▁neur": 7773, + "ESS": 7774, + "而是": 7775, + "rim": 7776, + "元素": 7777, + "我觉得": 7778, + "▁analyz": 7779, + "▁excellent": 7780, + "▁occur": 7781, + "效率": 7782, + "仔细": 7783, + "▁phosph": 7784, + "▁刘": 7785, + "▁century": 7786, + "连续": 7787, + "遇到": 7788, + "▁Any": 7789, + "等等": 7790, + "▁android": 7791, + "abet": 7792, + "▁profile": 7793, + "attr": 7794, + "行动": 7795, + "▁eight": 7796, + "▁lib": 7797, + "▁Pal": 7798, + "数学": 7799, + "car": 7800, + "▁counter": 7801, + "igger": 7802, + "不了": 7803, + "值得": 7804, + "比例": 7805, + "mselves": 7806, + "安排": 7807, + "PT": 7808, + "最高人民法院关于适用": 7809, + "▁operations": 7810, + "重庆市": 7811, + "rete": 7812, + ")}": 7813, + "▁star": 7814, + "▁vent": 7815, + "▁reaction": 7816, + "▁React": 7817, + "▁piece": 7818, + "青年": 7819, + "▁Paul": 7820, + "▁trust": 7821, + "▁kin": 7822, + "▁stock": 7823, + "ributes": 7824, + "▁situation": 7825, + "items": 7826, + "构成": 7827, + "▁membr": 7828, + "nNow": 7829, + "力的": 7830, + "rical": 7831, + "icine": 7832, + "▁Date": 7833, + "广东省": 7834, + "▁Que": 7835, + "符合法律规定": 7836, + "▁alter": 7837, + "aud": 7838, + "▁pen": 7839, + "可得": 7840, + "▁\\\\(": 7841, + "Json": 7842, + "▁firm": 7843, + "arden": 7844, + "▁Ke": 7845, + "▁posted": 7846, + "aughter": 7847, + "根本": 7848, + "raise": 7849, + "进行了审理": 7850, + "▁adding": 7851, + "保全": 7852, + "北京市": 7853, + "▁approximately": 7854, + "nor": 7855, + "aser": 7856, + "ufeff": 7857, + "▁containing": 7858, + "委会": 7859, + "oday": 7860, + "▁combined": 7861, + "▁older": 7862, + "▁Run": 7863, + "幸福": 7864, + "工商": 7865, + "▁earlier": 7866, + "▁Green": 7867, + "主题": 7868, + "▁remains": 7869, + "van": 7870, + "▁morning": 7871, + "akers": 7872, + "▁themselves": 7873, + "ech": 7874, + "fa": 7875, + "ona": 7876, + "values": 7877, + "▁carry": 7878, + "▁German": 7879, + "的一个": 7880, + "ository": 7881, + "▁column": 7882, + "rey": 7883, + "▁strategies": 7884, + "吉林": 7885, + "▁dim": 7886, + "▁Club": 7887, + "的影响": 7888, + "icate": 7889, + "▁license": 7890, + "成果": 7891, + "球队": 7892, + "▁north": 7893, + "▁communication": 7894, + "法律文书": 7895, + "试验": 7896, + "▁race": 7897, + "▁supply": 7898, + "apeut": 7899, + "ded": 7900, + "ucture": 7901, + "▁comments": 7902, + "▁conducted": 7903, + "house": 7904, + "rian": 7905, + "▁Although": 7906, + "大多": 7907, + "▁credit": 7908, + "现实": 7909, + "^{\\\\": 7910, + "▁meaning": 7911, + "▁aware": 7912, + "▁activation": 7913, + "EMA": 7914, + "▁vehicle": 7915, + "▁errors": 7916, + "本身": 7917, + "apped": 7918, + "▁appears": 7919, + "连接": 7920, + "▁photos": 7921, + "▁lip": 7922, + "omial": 7923, + "urrenc": 7924, + "▁detection": 7925, + "▁Hall": 7926, + "▁django": 7927, + "▁boolean": 7928, + "porary": 7929, + "di": 7930, + "▁kids": 7931, + "ils": 7932, + "▁animals": 7933, + "▁Microsoft": 7934, + "▁subjects": 7935, + "▁Gover": 7936, + "蛋白": 7937, + "差异": 7938, + "▁insurance": 7939, + "▁south": 7940, + "原则": 7941, + ")/(": 7942, + ":\"": 7943, + "non": 7944, + "▁hour": 7945, + "算法": 7946, + "所在": 7947, + "FI": 7948, + "iveness": 7949, + "的工作": 7950, + "▁convert": 7951, + "完善": 7952, + "▁Check": 7953, + "▁genetic": 7954, + "民间借贷": 7955, + "▁chemical": 7956, + "▁parameter": 7957, + "send": 7958, + "▁investigate": 7959, + "证实": 7960, + "undred": 7961, + "▁tal": 7962, + "自治区": 7963, + "']": 7964, + "▁directory": 7965, + "AV": 7966, + "ker": 7967, + "机器": 7968, + "ULL": 7969, + "▁plus": 7970, + "背景": 7971, + "▁demand": 7972, + "改善": 7973, + "年代": 7974, + "▁sometimes": 7975, + "ategories": 7976, + "▁dark": 7977, + "Call": 7978, + "百度": 7979, + "rought": 7980, + "uman": 7981, + "▁economic": 7982, + "本题": 7983, + "CK": 7984, + "nPl": 7985, + "▁concentration": 7986, + "组成合议庭": 7987, + "▁AD": 7988, + "▁Rel": 7989, + "which": 7990, + "▁Sur": 7991, + "▁rank": 7992, + "overrightarrow": 7993, + "▁apprec": 7994, + "以为": 7995, + "▁stri": 7996, + "运营": 7997, + "作出的": 7998, + "▁ord": 7999, + "▁info": 8000, + "▁coach": 8001, + "女性": 8002, + "cp": 8003, + "欢迎": 8004, + "推广": 8005, + "▁tra": 8006, + "▁epis": 8007, + "事情": 8008, + "来源": 8009, + "▁pi": 8010, + "▁demonstrated": 8011, + "▁Most": 8012, + "Link": 8013, + "olved": 8014, + "▁Design": 8015, + "▁mm": 8016, + "inity": 8017, + "上海市": 8018, + "arts": 8019, + "pol": 8020, + "幼儿": 8021, + "▁gave": 8022, + "▁pages": 8023, + "▁{\\\\": 8024, + "eal": 8025, + "▁notice": 8026, + "的时间": 8027, + "▁smaller": 8028, + "▁rule": 8029, + "▁Bay": 8030, + "爱情": 8031, + "SI": 8032, + "illa": 8033, + "▁failure": 8034, + "▁float": 8035, + "Hz": 8036, + "我就": 8037, + "▁mg": 8038, + "▁supported": 8039, + "不用": 8040, + "dep": 8041, + "▁situ": 8042, + "▁consult": 8043, + "}/": 8044, + "▁bur": 8045, + "front": 8046, + "}^": 8047, + "▁Arch": 8048, + "abilities": 8049, + "hemical": 8050, + ">(": 9077, + "▁conv": 9078, + "anta": 9079, + "▁ign": 9080, + "另一": 9081, + "▁explain": 9082, + "▁compre": 9083, + "WA": 9084, + "期间的": 9085, + "▁pregn": 9086, + "此外": 9087, + "DIT": 9088, + "▁Services": 9089, + "▁operator": 9090, + "▁wed": 9091, + "▁symbol": 9092, + "abin": 9093, + "▁guarant": 9094, + "▁minor": 9095, + "▁Show": 9096, + "▁budget": 9097, + "婚姻": 9098, + "动车": 9099, + "革命": 9100, + "▁Business": 9101, + "歌曲": 9102, + "▁Its": 9103, + "draw": 9104, + "mid": 9105, + "▁Key": 9106, + "▁unknown": 9107, + "▁compare": 9108, + "公示": 9109, + "▁liver": 9110, + "▁corresponding": 9111, + "▁delay": 9112, + "▁Michael": 9113, + "▁sin": 9114, + "广大": 9115, + "elines": 9116, + "装修": 9117, + "inite": 9118, + "民间借贷纠纷一案": 9119, + "Sim": 9120, + "的人数": 9121, + "▁becomes": 9122, + "ura": 9123, + "▁affected": 9124, + "ROM": 9125, + "循环": 9126, + "多个": 9127, + "下降": 9128, + "八年": 9129, + "▁branch": 9130, + "eli": 9131, + "▁AR": 9132, + "中华人民共和国刑法": 9133, + "▁instruction": 9134, + "plements": 9135, + "▁Sam": 9136, + "▁Development": 9137, + "Post": 9138, + "文字": 9139, + "#####": 9140, + "微博": 9141, + "▁businesses": 9142, + "required": 9143, + "生育": 9144, + "▁pictures": 9145, + "几乎": 9146, + "road": 9147, + "outer": 9148, + "▁deb": 9149, + "评估": 9150, + "选出": 9151, + "direct": 9152, + "Fl": 9153, + "英雄": 9154, + "▁Line": 9155, + "▁decreased": 9156, + "▁Good": 9157, + "ORD": 9158, + "搜索": 9159, + "erman": 9160, + "plan": 9161, + "▁statist": 9162, + "language": 9163, + "是因为": 9164, + "azine": 9165, + "▁pet": 9166, + "▁neut": 9167, + "▁stories": 9168, + "ustr": 9169, + "pay": 9170, + ")\\\\)": 9171, + "▁offered": 9172, + "▁[\"": 9173, + "▁border": 9174, + "shire": 9175, + "▁GNU": 9176, + "▁networks": 9177, + "良好的": 9178, + "应予": 9179, + "blog": 9180, + "Red": 9181, + "▁controls": 9182, + "▁appeared": 9183, + "大量": 9184, + "的好": 9185, + "上了": 9186, + "total": 9187, + "高校": 9188, + "具备": 9189, + "▁Board": 9190, + "▁internet": 9191, + "▁investment": 9192, + "贵州": 9193, + "向本院申请": 9194, + "▁Jer": 9195, + "▁dress": 9196, + "▁finish": 9197, + "del": 9198, + "主席": 9199, + "▁feedback": 9200, + "blob": 9201, + "plugin": 9202, + "▁Franc": 9203, + "▁external": 9204, + "▁fish": 9205, + "接触": 9206, + "iences": 9207, + "▁adults": 9208, + "自我": 9209, + "▁workers": 9210, + "生长": 9211, + "boot": 9212, + "agen": 9213, + "▁furn": 9214, + "▁选项": 9215, + "▁[\\'": 9216, + "▁examine": 9217, + "在服刑": 9218, + "神经": 9219, + "▁elev": 9220, + "BO": 9221, + "▁argument": 9222, + "▁Angel": 9223, + "导演": 9224, + "唯一": 9225, + "对其": 9226, + "▁(\"": 9227, + "▁opening": 9228, + "▁Step": 9229, + "▁Tuesday": 9230, + "WS": 9231, + "roke": 9232, + "▁investigation": 9233, + "▁department": 9234, + "Bl": 9235, + "▁detail": 9236, + "refix": 9237, + "ups": 9238, + "\\':\\": 9239, + "▁Att": 9240, + "挑战": 9241, + "▁Sy": 9242, + "eries": 9243, + "iture": 9244, + "▁shot": 9245, + "inates": 9246, + "▁sides": 9247, + "▁du": 9248, + "▁mil": 9249, + "通知书": 9250, + "男人": 9251, + "▁removed": 9252, + "Open": 9253, + "users": 9254, + "nSh": 9255, + "▁demonstrate": 9256, + "会计": 9257, + "connect": 9258, + "ignment": 9259, + "▁wind": 9260, + "irt": 9261, + "amil": 9262, + "▁coeff": 9263, + "cmd": 9264, + "ander": 9265, + "roc": 9266, + "▁insert": 9267, + "▁immune": 9268, + "▁camera": 9269, + "线索": 9270, + "▁Second": 9271, + "▁Sl": 9272, + "ulty": 9273, + "▁pan": 9274, + "公路": 9275, + "aks": 9276, + "ilon": 9277, + "西安": 9278, + "一定的": 9279, + "▁fol": 9280, + "▁Ann": 9281, + "dr": 9282, + "▁Carol": 9283, + "esome": 9284, + "下午": 9285, + "给我": 9286, + "▁confirm": 9287, + "▁objective": 9288, + "should": 9289, + "▁interpret": 9290, + "数列": 9291, + "▁brought": 9292, + "ums": 9293, + "▁Thank": 9294, + "LICENSE": 9295, + "▁spot": 9296, + "▁seconds": 9297, + "▁regulation": 9298, + "本院在审理原告": 9299, + "ipping": 9300, + "edy": 9301, + "Resource": 9302, + "月份": 9303, + "▁comparison": 9304, + "向原告": 9305, + "▁letters": 9306, + "bal": 9307, + "受理后": 9308, + "▁出版社": 9309, + "▁acute": 9310, + "ened": 9311, + "Integer": 9312, + "asketball": 9313, + "供应": 9314, + "终结本次执行程序": 9315, + "▁Olympics": 9316, + "aming": 9317, + "考核": 9318, + "放弃": 9319, + "ena": 9320, + "含量": 9321, + "▁changing": 9322, + "▁advantage": 9323, + "▁plants": 9324, + "▁articles": 9325, + "mathcal": 9326, + "tn": 9327, + "▁integral": 9328, + "before": 9329, + "重视": 9330, + "▁Tur": 9331, + "ACK": 9332, + "▁cit": 9333, + "activ": 9334, + "step": 9335, + "▁leads": 9336, + "管辖": 9337, + "ursor": 9338, + "▁grand": 9339, + "做出": 9340, + "allow": 9341, + "▁income": 9342, + "ologic": 9343, + "愿意": 9344, + "更好": 9345, + "▁aspects": 9346, + "▁Bank": 9347, + "▁async": 9348, + "▁heavy": 9349, + "色的": 9350, + "在一起": 9351, + "种植": 9352, + "感受": 9353, + "iro": 9354, + "▁ring": 9355, + "▁offering": 9356, + "Project": 9357, + "*(": 9358, + "第一百四十五条第一款": 9359, + "▁magn": 9360, + "PRO": 9361, + "▁catal": 9362, + "EE": 9363, + "nQ": 9364, + "Per": 9365, + "ye": 9366, + "agment": 9367, + "Edit": 9368, + "amine": 9369, + "▁synd": 9370, + "Pass": 9371, + "▁trip": 9372, + "fill": 9373, + "random": 9374, + "▁liqu": 9375, + "▁carbon": 9376, + "▁Thursday": 9377, + "电池": 9378, + "▁confirmed": 9379, + "▁Code": 9380, + "▁beta": 9381, + "▁Av": 9382, + "组合": 9383, + "▁consequ": 9384, + "▁Lake": 9385, + "▁attend": 9386, + "▁operating": 9387, + "哈哈": 9388, + "河北省": 9389, + "▁van": 9390, + "nCon": 9391, + "▁driver": 9392, + "▁Equ": 9393, + "vol": 9394, + "方面的": 9395, + "节目": 9396, + "▁kitchen": 9397, + "▁drink": 9398, + "▁topic": 9399, + "做到": 9400, + "▁specified": 9401, + "________": 9402, + "▁prepared": 9403, + "▁Mad": 9404, + "▁Western": 9405, + "category": 9406, + "▁constr": 9407, + "cloud": 9408, + "趋势": 9409, + "▁Every": 9410, + "▁causes": 9411, + "会员": 9412, + "配合": 9413, + "cut": 9414, + "固定": 9415, + "故选": 9416, + "▁metabol": 9417, + "经典": 9418, + "▁focused": 9419, + "▁的": 9420, + "venue": 9421, + "▁footballers": 9422, + "ying": 9423, + "▁Call": 9424, + "▁Color": 9425, + "iling": 9426, + "dt": 9427, + "▁Tor": 9428, + "▁rent": 9429, + "▁membrane": 9430, + "(),\\": 9431, + "article": 9432, + "素质": 9433, + "▁successfully": 9434, + "声音": 9435, + "▁Music": 9436, + "本金": 9437, + "unte": 9438, + "fast": 9439, + "网络小说": 9440, + "▁relationships": 9441, + "▁Ob": 9442, + "▁editor": 9443, + "////////": 9444, + "▁eyes": 9445, + "▁enable": 9446, + "▁weekend": 9447, + "▁outcome": 9448, + "▁detailed": 9449, + "▁wants": 9450, + "brid": 9451, + "tension": 9452, + "ogenesis": 9453, + "entry": 9454, + "zen": 9455, + "▁suggested": 9456, + ")),\\": 9457, + "cribe": 9458, + "态度": 9459, + "投入": 9460, + "优质": 9461, + "那种": 9462, + "吸引": 9463, + ")$\\": 9464, + "▁alt": 9465, + "▁主要": 9466, + "Update": 9467, + "准确": 9468, + "▁cas": 9469, + "▁wasn": 9470, + "▁Conn": 9471, + "经本院": 9472, + "▁Wednesday": 9473, + "ingu": 9474, + "的方式": 9475, + "rie": 9476, + "怎样": 9477, + "estamp": 9478, + "装饰": 9479, + "▁advance": 9480, + "的一种": 9481, + "BU": 9482, + "sect": 9483, + "▁transition": 9484, + "▁Roman": 9485, + "实力": 9486, + "orter": 9487, + "▁Office": 9488, + "▁Tour": 9489, + "▁cloud": 9490, + "研究生": 9491, + "romise": 9492, + "▁Management": 9493, + "othing": 9494, + "追求": 9495, + "django": 9496, + "您的": 9497, + "▁feet": 9498, + "认罪": 9499, + "逐渐": 9500, + "▁maintain": 9501, + "例如": 9502, + "湖南省": 9503, + "▁batter": 9504, + "tprivate": 9505, + "物流": 9506, + "oul": 9507, + "▁requests": 9508, + "▁Press": 9509, + "▁traffic": 9510, + "▁Requ": 9511, + "springframework": 9512, + "▁measurements": 9513, + "anal": 9514, + "我也": 9515, + "nHistory": 9516, + "号刑事": 9517, + "▁Ver": 9518, + "inant": 9519, + "与被执行人": 9520, + "▁covered": 9521, + "task": 9522, + "arc": 9523, + "▁Cle": 9524, + "上市": 9525, + "资格": 9526, + "quare": 9527, + "高速": 9528, + "▁thick": 9529, + "让你": 9530, + "found": 9531, + "▁paid": 9532, + "▁出版时间": 9533, + "lets": 9534, + "▁Mass": 9535, + "▁biggest": 9536, + "▁severe": 9537, + "收到": 9538, + "▁Comput": 9539, + "▁otherwise": 9540, + "▁powerful": 9541, + "最小": 9542, + "公司的": 9543, + "Net": 9544, + "tm": 9545, + "去年": 9546, + "%\\": 9547, + "▁Tom": 9548, + "▁artist": 9549, + "永远": 9550, + "asion": 9551, + "▁Dev": 9552, + "dem": 9553, + "▁Sil": 9554, + "认证": 9555, + "clusive": 9556, + "▁URL": 9557, + "称为": 9558, + "▁onto": 9559, + "nergy": 9560, + "▁£": 9561, + "指数": 9562, + "Fe": 9563, + "污染": 9564, + "自行": 9565, + "▁pip": 9566, + "▁unc": 9567, + "传奇": 9568, + "▁cellular": 9569, + "美术": 9570, + "geq": 9571, + "iller": 9572, + "ooks": 9573, + "原理": 9574, + "工作的": 9575, + "points": 9576, + "房产": 9577, + "▁▁▁▁▁": 9578, + "▁游戏": 9579, + "指出": 9580, + "▁kid": 9581, + "mathbf": 9582, + "osa": 9583, + ")$$": 9584, + "名单": 9585, + "检验": 9586, + "Acc": 9587, + "▁specifically": 9588, + "▁token": 9589, + "OK": 9590, + "简易": 9591, + "mg": 9592, + "riz": 9593, + "▁George": 9594, + "▁derived": 9595, + "▁plate": 9596, + "cur": 9597, + "▁calls": 9598, + "提供了": 9599, + "yan": 9600, + "护理": 9601, + "获取": 9602, + "▁\"\"": 9603, + "豆瓣": 9604, + "▁Canadian": 9605, + "▁alpha": 9606, + "▁Well": 9607, + "▁Commit": 9608, + "▁Scott": 9609, + "多年": 9610, + "缴纳": 9611, + "我想": 9612, + "▁ice": 9613, + "access": 9614, + "▁majority": 9615, + "▁Why": 9616, + "▁extremely": 9617, + "big": 9618, + "▁exchange": 9619, + "▁comprehens": 9620, + "ansion": 9621, + "▁gar": 9622, + "ictor": 9623, + "▁automatically": 9624, + "有着": 9625, + "▁Both": 9626, + "主持": 9627, + "burg": 9628, + "iant": 9629, + "▁Exper": 9630, + "格式": 9631, + "Work": 9632, + "power": 9633, + "Val": 9634, + "就不": 9635, + "广场": 9636, + "▁obvious": 9637, + "▁daughter": 9638, + "KEY": 9639, + "▁WARRANTIES": 9640, + "一位": 9641, + "修改": 9642, + "throw": 9643, + "▁theme": 9644, + "官方": 9645, + "▁Oper": 9646, + "校园": 9647, + "▁owner": 9648, + "▁%}\\": 9649, + ">:": 9650, + "frame": 9651, + "▁cash": 9652, + "▁Division": 9653, + "mor": 9654, + "▁conference": 9655, + "出版的": 9656, + "agement": 9657, + "▁corpor": 9658, + "umer": 9659, + "||": 9660, + "PP": 9661, + "▁albums": 9662, + "aml": 9663, + "urrency": 9664, + "ali": 9665, + "▁facilit": 9666, + "批准": 9667, + "他人": 9668, + "nto": 9669, + "replace": 9670, + "名的": 9671, + "▁definitely": 9672, + "有哪些": 9673, + "lab": 9674, + "▁Under": 9675, + "ady": 9676, + "uce": 9677, + "▁ven": 9678, + "▁turned": 9679, + "反映": 9680, + "▁accuracy": 9681, + "fol": 9682, + "▁国": 9683, + "爱的": 9684, + "▁elim": 9685, + "▁achieved": 9686, + "”“": 9687, + "▁maintenance": 9688, + "▁balance": 9689, + "▁deploy": 9690, + "上面": 9691, + "scri": 9692, + "欧洲": 9693, + "ims": 9694, + "▁advice": 9695, + "ocytes": 9696, + "▁advert": 9697, + "▁integration": 9698, + "美的": 9699, + "oder": 9700, + "至于": 9701, + "nNo": 9702, + "▁strict": 9703, + "▁spend": 9704, + "被害": 9705, + "nCan": 9706, + "avis": 9707, + "pdf": 9708, + "总部": 9709, + "▁hab": 9710, + "▁heard": 9711, + "rint": 9712, + "正当": 9713, + "inn": 9714, + "担任": 9715, + "nSup": 9716, + "晚上": 9717, + "▁concentrations": 9718, + "▁represents": 9719, + "好了": 9720, + "如今": 9721, + "ami": 9722, + "▁Women": 9723, + "eck": 9724, + "MC": 9725, + "▁billion": 9726, + "▁relax": 9727, + "▁mixed": 9728, + "多了": 9729, + "▁restrict": 9730, + "▁IL": 9731, + "ynomial": 9732, + "]]": 9733, + "▁Cap": 9734, + "rot": 9735, + "确定的义务": 9736, + "double": 9737, + "▁morph": 9738, + "的不": 9739, + "▁emerg": 9740, + "(_": 9741, + "▁permissions": 9742, + "enter": 9743, + "▁Florida": 9744, + "职务": 9745, + "ett": 9746, + "essions": 9747, + "▁organizations": 9748, + "abetes": 9749, + "▁therapeutic": 9750, + "ested": 9751, + "▁William": 9752, + "此次": 9753, + "**(": 9754, + "TC": 9755, + "递交上诉状": 9756, + "河南": 9757, + "性和": 9758, + "▁harm": 9759, + "太阳": 9760, + "▁split": 9761, + "发行": 9762, + "同样": 9763, + "▁Japanese": 9764, + "所属": 9765, + "公园": 9766, + "▁Many": 9767, + "▁Sep": 9768, + "都能": 9769, + "Task": 9770, + "▁wire": 9771, + "oded": 9772, + "司法": 9773, + "Listener": 9774, + "▁candidate": 9775, + "德国": 9776, + "▁involve": 9777, + "DI": 9778, + "▁weather": 9779, + "iders": 9780, + "▁motion": 9781, + "avour": 9782, + "linear": 9783, + "VE": 9784, + "Pre": 9785, + "适应": 9786, + "▁leader": 9787, + "Sp": 9788, + "println": 9789, + "各项": 9790, + "▁^": 9791, + "atever": 9792, + "mic": 9793, + "即使": 9794, + "家里": 9795, + "选项中": 9796, + "ipl": 9797, + "▁decor": 9798, + "▁respond": 9799, + "ventional": 9800, + "高度": 9801, + "相比": 9802, + "▁analyzed": 9803, + "总是": 9804, + "▁agreement": 9805, + "▁accel": 9806, + "实行": 9807, + "▁manage": 9808, + "▁ped": 9809, + "▁girls": 9810, + "▁Robert": 9811, + "night": 9812, + "▁belong": 9813, + "Thread": 9814, + "▁nearest": 9815, + "▁plot": 9816, + "door": 9817, + "▁afford": 9818, + "▁dedicated": 9819, + "How": 9820, + "想到": 9821, + "遵守": 9822, + "▁Mont": 9823, + "ellular": 9824, + "▁Sun": 9825, + "VD": 9826, + "FO": 9827, + "贡献": 9828, + "▁font": 9829, + "我不": 9830, + "▁practices": 9831, + "▁Child": 9832, + "▁conven": 9833, + "udo": 9834, + "\\\\)\\": 9835, + "▁Christmas": 9836, + "MI": 9837, + "▁improvement": 9838, + "▁Gen": 9839, + "一段": 9840, + "{}": 9841, + "手段": 9842, + "edit": 9843, + "提示": 9844, + "▁decrease": 9845, + "make": 9846, + "▁Because": 9847, + "▁stable": 9848, + "相互": 9849, + "村民": 9850, + "其它": 9851, + "clear": 9852, + "战争": 9853, + "▁Alex": 9854, + "▁estimated": 9855, + "▁scheme": 9856, + "▁messages": 9857, + "玻璃": 9858, + "Click": 9859, + "▁thank": 9860, + "&#": 9861, + "custom": 9862, + "Back": 9863, + "nDes": 9864, + "▁native": 9865, + "▁driving": 9866, + "Filter": 9867, + "▁interval": 9868, + "罗斯": 9869, + "hr": 9870, + "▁doll": 9871, + "▁Profess": 9872, + "▁finite": 9873, + "▁);\\": 9874, + "确有悔改表现": 9875, + "▁AS": 9876, + "▁Will": 9877, + "▁{}": 9878, + "names": 9879, + "▁Grand": 9880, + "流程": 9881, + "▁schedul": 9882, + "gorithms": 9883, + "▁alcohol": 9884, + "aked": 9885, + "endif": 9886, + "▁reviews": 9887, + "uted": 9888, + "才是": 9889, + "Function": 9890, + "上诉于": 9891, + "▁Russian": 9892, + "acks": 9893, + "各类": 9894, + "▁DO": 9895, + "……\\": 9896, + "▁Inf": 9897, + "▁delete": 9898, + "Logger": 9899, + "就像": 9900, + "anning": 9901, + "iological": 9902, + "最新": 9903, + "Application": 9904, + "▁reached": 9905, + "▁identity": 9906, + "razil": 9907, + "系统的": 9908, + "iled": 9909, + "▁calculate": 9910, + "很难": 9911, + "AGE": 9912, + "管理有限公司": 9913, + "过的": 9914, + "dated": 9915, + "oi": 9916, + "辽宁": 9917, + "▁Make": 9918, + "▁tend": 9919, + "变得": 9920, + "志愿": 9921, + "信号": 9922, + "▁Apple": 9923, + "对方当事人": 9924, + "opath": 9925, + "▁MA": 9926, + "▁teaching": 9927, + "▁virtual": 9928, + "▁himself": 9929, + "pa": 9930, + "element": 9931, + "stop": 9932, + "lam": 9933, + "▁mission": 9934, + "unately": 9935, + "变成": 9936, + "shop": 9937, + "▁structural": 9938, + "▁pal": 9939, + "onymous": 9940, + "离开": 9941, + "▁ON": 9942, + "哪里": 9943, + "▁happens": 9944, + "▁End": 9945, + "▁relation": 9946, + "最佳": 9947, + "▁contribute": 9948, + "▁facilities": 9949, + "▁secure": 9950, + "▁hotel": 9951, + "LS": 9952, + "▁serum": 9953, + "▁represented": 9954, + "大陆": 9955, + "INE": 9956, + "结案": 9957, + "nis": 9958, + "扩大": 9959, + "▁diss": 9960, + "ernel": 9961, + "思维": 9962, + "品种": 9963, + "▁flag": 9964, + "full": 9965, + "违反": 9966, + "扣押": 9967, + "▁buildings": 9968, + "Spec": 9969, + "Co": 9970, + "otherapy": 9971, + "时的": 9972, + "大型": 9973, + "helial": 9974, + "▁USA": 9975, + "▁detected": 9976, + "tage": 9977, + "▁Journal": 9978, + "等于": 9979, + "▁bow": 9980, + "▁numerous": 9981, + "▁throw": 9982, + "本科": 9983, + "进步": 9984, + "▁relatively": 9985, + "很大": 9986, + "padding": 9987, + "▁[]": 9988, + "}$$\\": 9989, + "ulating": 9990, + "还能": 9991, + "二〇一四年": 9992, + "▁secondary": 9993, + "▁flat": 9994, + "经营范围": 9995, + "身边": 9996, + "策略": 9997, + "▁discussion": 9998, + "ipal": 9999, + "mode": 10000, + "exit": 10001, + "tree": 10002, + "▁suitable": 10003, + "ader": 10004, + "集体": 10005, + "▁toward": 10006, + "依然": 10007, + "▁governing": 10008, + "reshold": 10009, + "▁homes": 10010, + "山区": 10011, + "GET": 10012, + "盗窃": 10013, + "院校": 10014, + "往往": 10015, + "▁Stand": 10016, + "unched": 10017, + "▁modify": 10018, + "▁equivalent": 10019, + "财政": 10020, + "▁Virgin": 10021, + "容量": 10022, + "规律": 10023, + "TV": 10024, + "CITE": 10025, + "原来": 10026, + "iology": 10027, + "▁whereas": 10028, + "▁pow": 10029, + "gt": 10030, + "上述事实": 10031, + "oral": 10032, + "并按": 10033, + "istan": 10034, + "_\\": 10035, + "▁ok": 10036, + "▁experiences": 10037, + "ras": 10038, + "▁occup": 10039, + "名字": 10040, + "父亲": 10041, + "astructure": 10042, + "▁schedule": 10043, + "的前": 10044, + "▁Even": 10045, + "uv": 10046, + "people": 10047, + "ported": 10048, + "▁partial": 10049, + "眼睛": 10050, + "屏幕": 10051, + "▁gift": 10052, + "物理": 10053, + "▁artists": 10054, + "▁Team": 10055, + "▁colors": 10056, + "▁Star": 10057, + "Serial": 10058, + "减去": 10059, + "person": 10060, + "idae": 10061, + "▁Error": 10062, + "icing": 10063, + "styles": 10064, + ">,": 10065, + "▁intervention": 10066, + "天下": 10067, + "acts": 10068, + "Wh": 10069, + "END": 10070, + "病毒": 10071, + "▁Mel": 10072, + "▁suggests": 10073, + "电源": 10074, + "▁ahead": 10075, + "▁quarter": 10076, + "▁Lear": 10077, + "▁shift": 10078, + "efined": 10079, + "kl": 10080, + "▁Hill": 10081, + "日向本院提出撤诉申请": 10082, + "▁helped": 10083, + "▁mal": 10084, + "好像": 10085, + "▁Card": 10086, + "先后": 10087, + "地理": 10088, + "中共": 10089, + "Windows": 10090, + "处于": 10091, + "的生活": 10092, + "▁administr": 10093, + "作业": 10094, + "▁dys": 10095, + "▁mentioned": 10096, + "未按": 10097, + "▁monitoring": 10098, + "终于": 10099, + "不知": 10100, + "▁Camp": 10101, + "模拟": 10102, + "udio": 10103, + "\":\\": 10104, + "▁wear": 10105, + "zip": 10106, + "▁standards": 10107, + "▁senior": 10108, + "▁Zeal": 10109, + "ogene": 10110, + "TI": 10111, + "idential": 10112, + "application": 10113, + "▁extended": 10114, + "tests": 10115, + "是由": 10116, + "organ": 10117, + "▁substant": 10118, + "▁mental": 10119, + "▁连载状态": 10120, + "UB": 10121, + "处罚金": 10122, + "规则": 10123, + "▁helping": 10124, + "▁haven": 10125, + "女生": 10126, + "grid": 10127, + "在这": 10128, + "▁centre": 10129, + "urban": 10130, + "▁magnetic": 10131, + "Off": 10132, + "uri": 10133, + "scope": 10134, + ")]": 10135, + "▁Histor": 10136, + "▁obj": 10137, + "▁beg": 10138, + "▁roles": 10139, + "的心": 10140, + "nAcc": 10141, + "高中": 10142, + "etry": 10143, + "下面的": 10144, + "Bar": 10145, + "▁absolute": 10146, + "▁Calculate": 10147, + "eq": 10148, + "存储": 10149, + "het": 10150, + "▁Start": 10151, + "可能会": 10152, + "情绪": 10153, + "isl": 10154, + "▁Italian": 10155, + "定位": 10156, + "resource": 10157, + ")<": 10158, + "xygen": 10159, + "▁tasks": 10160, + "ickets": 10161, + "zh": 10162, + "▁Game": 10163, + "dependent": 10164, + "aws": 10165, + "Output": 10166, + "icago": 10167, + "▁loop": 10168, + "rich": 10169, + "Met": 10170, + "看了": 10171, + "nOr": 10172, + "▁Review": 10173, + "▁notes": 10174, + "igrations": 10175, + "▁raised": 10176, + "▁Android": 10177, + "在于": 10178, + "动作": 10179, + "▁mainly": 10180, + "account": 10181, + "▁KIND": 10182, + "SQL": 10183, + "美丽": 10184, + "▁Education": 10185, + "▁division": 10186, + "有所": 10187, + "▁fans": 10188, + "▁replace": 10189, + "就要": 10190, + "▁Fire": 10191, + "umin": 10192, + "▁IP": 10193, + "▁edit": 10194, + "printf": 10195, + "tmp": 10196, + "compl": 10197, + "Props": 10198, + "▁residents": 10199, + "Parser": 10200, + "公告": 10201, + "▁Back": 10202, + "▁Zealand": 10203, + "RC": 10204, + "▁velocity": 10205, + "▁spring": 10206, + "长度": 10207, + "azz": 10208, + "步骤": 10209, + "财务": 10210, + "▁laws": 10211, + "探索": 10212, + "▁Exception": 10213, + "▁成立": 10214, + "▁Twitter": 10215, + "▁aren": 10216, + "业有限公司": 10217, + "传唤": 10218, + "plates": 10219, + "uries": 10220, + "po": 10221, + "明白": 10222, + "儿子": 10223, + "人家": 10224, + "▁disorders": 10225, + "▁Academy": 10226, + "handle": 10227, + "window": 10228, + "kr": 10229, + "▁buff": 10230, + "\\',\\'": 10231, + "湖北省": 10232, + "▁hel": 10233, + "▁cold": 10234, + "▁signaling": 10235, + "龙江": 10236, + "迅速": 10237, + "▁fourth": 10238, + "日被": 10239, + "▁sand": 10240, + "dest": 10241, + "▁perspect": 10242, + "ognitive": 10243, + "ugins": 10244, + "▁sexual": 10245, + "arrant": 10246, + "Rem": 10247, + "▁oxid": 10248, + "▁measurement": 10249, + "''": 10250, + "十年": 10251, + "igan": 10252, + "成就": 10253, + "▁Ir": 10254, + "ishes": 10255, + "MD": 10256, + "ymbol": 10257, + "▁Lim": 10258, + "_{\\\\": 10259, + "特性": 10260, + "深圳市": 10261, + "reens": 10262, + "线的": 10263, + "ffee": 10264, + "▁cryst": 10265, + "Block": 10266, + "life": 10267, + "nShe": 10268, + "Container": 10269, + "▁cards": 10270, + "轻松": 10271, + "完毕": 10272, + "▁promote": 10273, + "▁agree": 10274, + "本人": 10275, + "▁Max": 10276, + "▁mostly": 10277, + "▁rich": 10278, + "▁isolated": 10279, + "▁tun": 10280, + "在中国": 10281, + "ostream": 10282, + "▁Life": 10283, + "一家": 10284, + "ERS": 10285, + "iot": 10286, + "LED": 10287, + "体现": 10288, + "日作出": 10289, + "奖励": 10290, + "omer": 10291, + "▁baby": 10292, + "▁fashion": 10293, + "判处有期徒刑": 10294, + "▁starts": 10295, + "▁Royal": 10296, + "每年": 10297, + "▁weak": 10298, + "原告的": 10299, + "▁technologies": 10300, + "积极参加": 10301, + "▁ion": 10302, + "▁Function": 10303, + "▁CA": 10304, + "强的": 10305, + "▁hus": 10306, + "▁gly": 10307, + "▁cart": 10308, + "omes": 10309, + "▁sea": 10310, + "▁scientific": 10311, + "客房": 10312, + "▁engineering": 10313, + "向本院递交上诉状": 10314, + "▁mel": 10315, + "▁Director": 10316, + "],[": 10317, + "ipher": 10318, + "omal": 10319, + "▁jobs": 10320, + "▁modified": 10321, + "empty": 10322, + "▁tub": 10323, + "▁highlight": 10324, + "HS": 10325, + "▁locations": 10326, + "Return": 10327, + "▁mist": 10328, + "命令": 10329, + "async": 10330, + "句话": 10331, + "ogenic": 10332, + "▁recovery": 10333, + "▁cred": 10334, + "网友": 10335, + "bur": 10336, + "▁brief": 10337, + "forms": 10338, + "▁Map": 10339, + "Oper": 10340, + "▁picked": 10341, + "aria": 10342, + "Address": 10343, + "bind": 10344, + "▁scene": 10345, + "▁Sign": 10346, + "是我": 10347, + "▁experts": 10348, + "各个": 10349, + "▁书名": 10350, + "▁consistent": 10351, + "▁practical": 10352, + "▁{\"": 10353, + "pped": 10354, + "文献": 10355, + "ads": 10356, + "▁Information": 10357, + "▁CI": 10358, + "emia": 10359, + "annotation": 10360, + "执行过程中": 10361, + "▁Which": 10362, + "▁opin": 10363, + "第一百零": 10364, + "▁Market": 10365, + "▁consists": 10366, + "cons": 10367, + "domain": 10368, + "▁ship": 10369, + "▁lock": 10370, + "cean": 10371, + "▁Java": 10372, + "理想": 10373, + "▁da": 10374, + "interface": 10375, + ")*(": 10376, + "请你": 10377, + "▁Mot": 10378, + "韩国": 10379, + "记得": 10380, + "▁stations": 10381, + "▁documents": 10382, + "三角形": 10383, + "uma": 10384, + "也没有": 10385, + "liament": 10386, + "▁Care": 10387, + "▁Christian": 10388, + "▁miles": 10389, + "▁tor": 10390, + "几年": 10391, + "▁relig": 10392, + "Change": 10393, + "▁Image": 10394, + "Mat": 10395, + "▁lab": 10396, + "▁odd": 10397, + "▁Mo": 10398, + "▁susp": 10399, + "▁procedures": 10400, + "队伍": 10401, + "endar": 10402, + "不予": 10403, + "▁accurate": 10404, + "▁Message": 10405, + "保存": 10406, + "居住": 10407, + "▁parallel": 10408, + "await": 10409, + "hot": 10410, + "▁coverage": 10411, + "▁correlation": 10412, + "满意": 10413, + "player": 10414, + "DP": 10415, + "ented": 10416, + "success": 10417, + "共有": 10418, + "mult": 10419, + "▁remaining": 10420, + "▁certainly": 10421, + "▁Admin": 10422, + "中间": 10423, + "▁Minister": 10424, + "的水": 10425, + "▁plane": 10426, + "▁summ": 10427, + "▁somew": 10428, + "▁photograph": 10429, + "even": 10430, + "大利": 10431, + "idx": 10432, + "▁Play": 10433, + "▁Feb": 10434, + "foot": 10435, + "adr": 10436, + "公众": 10437, + "ohn": 10438, + "nRes": 10439, + "▁synthesis": 10440, + "召开": 10441, + "▁simulation": 10442, + "▁becoming": 10443, + "estic": 10444, + "▁menu": 10445, + "igital": 10446, + "机的": 10447, + "▁cort": 10448, + "▁pieces": 10449, + "▁biological": 10450, + "▁welcome": 10451, + "▁despite": 10452, + "hether": 10453, + "Process": 10454, + "简易程序": 10455, + "▁Fre": 10456, + "▁PRO": 10457, + "▁Smith": 10458, + "];": 10459, + "▁por": 10460, + "▁voice": 10461, + "诊断": 10462, + "▁esc": 10463, + "情形": 10464, + "维持": 10465, + "下去": 10466, + "▁panel": 10467, + "▁Note": 10468, + "Layout": 10469, + "▁integrated": 10470, + "▁lots": 10471, + "▁Lib": 10472, + "▁proport": 10473, + "▁forces": 10474, + "母亲": 10475, + "[\\": 10476, + "▁implemented": 10477, + "appro": 10478, + "▁linked": 10479, + "▁occurs": 10480, + "achine": 10481, + "慢慢": 10482, + "尤其是": 10483, + "onald": 10484, + "▁controlled": 10485, + "▁vary": 10486, + "urer": 10487, + "GL": 10488, + "相应的": 10489, + "▁:\\": 10490, + "▁felt": 10491, + "water": 10492, + "▁Finally": 10493, + "hematical": 10494, + "strap": 10495, + "So": 10496, + "▁greatest": 10497, + "plicated": 10498, + "Column": 10499, + "icacy": 10500, + "智慧": 10501, + "时尚": 10502, + "自愿": 10503, + "▁Register": 10504, + "主张": 10505, + "▁versions": 10506, + "▁matches": 10507, + "▁sharing": 10508, + "▁Love": 10509, + "青春": 10510, + "ILITY": 10511, + "心里": 10512, + "kit": 10513, + "▁Den": 10514, + "技巧": 10515, + "▁manif": 10516, + "▁Bill": 10517, + "▁arrest": 10518, + "There": 10519, + "四个": 10520, + "▁absor": 10521, + "▁minim": 10522, + "anda": 10523, + "Vis": 10524, + "▁federal": 10525, + "▁underlying": 10526, + "的执行": 10527, + "▁Commission": 10528, + "scopy": 10529, + "Auth": 10530, + "argv": 10531, + "▁optimal": 10532, + "▁foreign": 10533, + "HER": 10534, + "▁Isra": 10535, + "▁binary": 10536, + "而言": 10537, + "▁league": 10538, + "签订": 10539, + "▁Mer": 10540, + "的情况下": 10541, + "突出": 10542, + "emporary": 10543, + "▁occurred": 10544, + "女人": 10545, + "利润": 10546, + "停止": 10547, + "类似": 10548, + "▁managed": 10549, + "制定": 10550, + "▁alumni": 10551, + "▁convers": 10552, + "friend": 10553, + "▁Committee": 10554, + "未履行": 10555, + "vm": 10556, + "法国": 10557, + "▁meant": 10558, + "Order": 10559, + "岗位": 10560, + "▁Order": 10561, + "监管": 10562, + "▁Mil": 10563, + "hav": 10564, + "更是": 10565, + "解得": 10566, + "▁architecture": 10567, + "▁segment": 10568, + "iatric": 10569, + "的事实": 10570, + "Go": 10571, + "▁stability": 10572, + "▁icon": 10573, + "cluded": 10574, + "▁Gal": 10575, + "▁allowing": 10576, + "IE": 10577, + "放入": 10578, + "▁prosp": 10579, + "bound": 10580, + "企业的": 10581, + "等证据": 10582, + "shape": 10583, + "Hub": 10584, + "科学院": 10585, + "▁成立时间": 10586, + "地位": 10587, + "dimensional": 10588, + ":(": 10589, + "Format": 10590, + "▁clearly": 10591, + "Me": 10592, + "▁digit": 10593, + "dot": 10594, + "npm": 10595, + "▁feeling": 10596, + "流量": 10597, + "查看": 10598, + "空调": 10599, + "Search": 10600, + "Arg": 10601, + "等级": 10602, + "▁estate": 10603, + "▁·": 10604, + "被上诉人": 10605, + "▁confidence": 10606, + "给予": 10607, + "突破": 10608, + "NT": 10609, + "还款": 10610, + "Right": 10611, + "▁Water": 10612, + "得出": 10613, + "记忆": 10614, + "Br": 10615, + "▁guys": 10616, + "ABLE": 10617, + "强调": 10618, + "▁emph": 10619, + "utter": 10620, + "axis": 10621, + "▁Core": 10622, + "▁fant": 10623, + "▁gluc": 10624, + "▁vacc": 10625, + "▁funding": 10626, + "ctx": 10627, + "▁estimate": 10628, + "HA": 10629, + "▁slightly": 10630, + "▁parse": 10631, + "▁throws": 10632, + "日在": 10633, + "DL": 10634, + "▁perhaps": 10635, + "显着": 10636, + "人数": 10637, + "复议": 10638, + "posite": 10639, + "▁posts": 10640, + "▁programming": 10641, + "Write": 10642, + "profile": 10643, + "iger": 10644, + "icious": 10645, + "Store": 10646, + "成熟": 10647, + "▁typically": 10648, + "▁bill": 10649, + "▁logging": 10650, + "layout": 10651, + "垃圾": 10652, + "▁regional": 10653, + "▁sector": 10654, + "分配": 10655, + "ione": 10656, + "词条": 10657, + "装备": 10658, + "学历": 10659, + "created": 10660, + "并处罚金": 10661, + "矛盾": 10662, + ")]\\": 10663, + "▁Wil": 10664, + "Interface": 10665, + "▁electro": 10666, + "▁reserved": 10667, + "late": 10668, + "▁tele": 10669, + "摄影": 10670, + "▁sensitivity": 10671, + "观众": 10672, + "▁Louis": 10673, + "预防": 10674, + "▁academic": 10675, + "▁Frank": 10676, + "▁professionals": 10677, + "lt": 10678, + "完整": 10679, + "▁Custom": 10680, + "va": 10681, + "访问": 10682, + "writ": 10683, + "区别": 10684, + "感谢": 10685, + "uint": 10686, + "views": 10687, + "Dev": 10688, + "▁utf": 10689, + "▁retail": 10690, + "atial": 10691, + "▁founded": 10692, + "▁ast": 10693, + "Length": 10694, + "ucky": 10695, + "\"]\\": 10696, + "十七": 10697, + "衣服": 10698, + "▁payment": 10699, + "▁wonderful": 10700, + "ontal": 10701, + "▁Rock": 10702, + "Label": 10703, + "ega": 10704, + "青岛": 10705, + "做的": 10706, + "▁syndrome": 10707, + "▁Francis": 10708, + "使得": 10709, + "▁mortality": 10710, + "▁thousands": 10711, + "anguages": 10712, + "▁Wood": 10713, + "▁mur": 10714, + "ATA": 10715, + "长的": 10716, + "▁duration": 10717, + "aters": 10718, + "tself": 10719, + "Part": 10720, + "本题考查": 10721, + "▁Furthermore": 10722, + "一张": 10723, + "astern": 10724, + "▁Land": 10725, + "▁guitar": 10726, + "测量": 10727, + "omorph": 10728, + "▁Point": 10729, + "▁Ins": 10730, + "▁Licensed": 10731, + "▁noise": 10732, + "plt": 10733, + "▁Technology": 10734, + "充满": 10735, + "arian": 10736, + "bose": 10737, + "adow": 10738, + "▁vote": 10739, + "exports": 10740, + "▁BAS": 10741, + "黑龙江": 10742, + "news": 10743, + "▁differential": 10744, + "▁leaves": 10745, + "也没": 10746, + "ugar": 10747, + "uminate": 10748, + "APP": 10749, + "bits": 10750, + "湖南": 10751, + "MT": 10752, + "阳光": 10753, + "▁curve": 10754, + "可能是": 10755, + "▁cars": 10756, + "出版的图书": 10757, + "/**": 10758, + "▁noted": 10759, + "eless": 10760, + "▁strugg": 10761, + "发现被执行人有": 10762, + "itionally": 10763, + "在服刑期间": 10764, + "铁路": 10765, + "▁concerns": 10766, + "tw": 10767, + "不再": 10768, + "sigma": 10769, + "教材": 10770, + "成分": 10771, + "▁DE": 10772, + "nBy": 10773, + "▁Football": 10774, + "展开": 10775, + "Max": 10776, + "营业": 10777, + "chron": 10778, + "出去": 10779, + "周期": 10780, + "▁comprehensive": 10781, + "▁Ent": 10782, + "See": 10783, + "实在": 10784, + "可供执行财产": 10785, + "证书": 10786, + "对比": 10787, + "unct": 10788, + "▁civil": 10789, + "▁calculated": 10790, + "▁creative": 10791, + "RS": 10792, + "之外": 10793, + "media": 10794, + "▁appearance": 10795, + "ressed": 10796, + "引导": 10797, + "▁Product": 10798, + "BI": 10799, + "gricult": 10800, + "对称": 10801, + "AY": 10802, + "▁Thomas": 10803, + "▁whom": 10804, + "ading": 10805, + "▁jav": 10806, + "▁sq": 10807, + "▁transmission": 10808, + "成的": 10809, + "来到": 10810, + "duction": 10811, + "小组": 10812, + "▁rect": 10813, + "▁society": 10814, + "▁liquid": 10815, + "nWhile": 10816, + "▁intended": 10817, + "▁##": 10818, + "Header": 10819, + "▁OS": 10820, + "▁Real": 10821, + "▁Enter": 10822, + "uplic": 10823, + "▁adj": 10824, + "大于": 10825, + "裁定书": 10826, + "▁extensive": 10827, + "英文": 10828, + "平面": 10829, + "▁researchers": 10830, + "已经发生法律效力": 10831, + "ockey": 10832, + "itud": 10833, + "▁indicated": 10834, + "的原因": 10835, + "的作用": 10836, + "abil": 10837, + "▁remote": 10838, + "▁writer": 10839, + "逾期": 10840, + "分公司": 10841, + "黄金": 10842, + "uty": 10843, + "构建": 10844, + "heet": 10845, + "▁Social": 10846, + "▁mo": 10847, + "▁algebra": 10848, + "AI": 10849, + "Dir": 10850, + "做法": 10851, + "并按对方当事人": 10852, + "并不是": 10853, + "▁AT": 10854, + "ateral": 10855, + "▁gather": 10856, + "人士": 10857, + "▁characterized": 10858, + "▁…": 10859, + "▁continues": 10860, + "不如": 10861, + "十五日内": 10862, + "▁answers": 10863, + "重量": 10864, + "一致": 10865, + "人工": 10866, + "▁Value": 10867, + "我在": 10868, + "ben": 10869, + "▁talking": 10870, + "▁Control": 10871, + "▁carcin": 10872, + "▁fraction": 10873, + "▁Hand": 10874, + "▁marked": 10875, + "dc": 10876, + "▁circle": 10877, + "▁RNA": 10878, + "transform": 10879, + "▁{{": 10880, + "▁seeing": 10881, + "▁sam": 10882, + "▁Number": 10883, + "▁discovered": 10884, + "排名": 10885, + "违法": 10886, + "▁Name": 10887, + "▁nit": 10888, + "▁recommended": 10889, + "chain": 10890, + "▁upload": 10891, + "yg": 10892, + "amental": 10893, + "▁epit": 10894, + "动态": 10895, + "▁manner": 10896, + "集合": 10897, + "ourse": 10898, + "经审查": 10899, + "olit": 10900, + "一十九": 10901, + "是一款": 10902, + "提出了": 10903, + "还可以": 10904, + "▁内容简介": 10905, + "ktop": 10906, + "防止": 10907, + "▁Hen": 10908, + "▁Author": 10909, + "就算": 10910, + "▁properly": 10911, + "产品的": 10912, + "▁rain": 10913, + "提出副本": 10914, + "iostream": 10915, + "Min": 10916, + "▁Array": 10917, + "此时": 10918, + "▁diabetes": 10919, + "▁EX": 10920, + "▁burn": 10921, + "▁polynomial": 10922, + "杭州": 10923, + "wiki": 10924, + "强化": 10925, + "▁pept": 10926, + "子女": 10927, + "▁steel": 10928, + "reland": 10929, + "▁voc": 10930, + "Level": 10931, + "▁Museum": 10932, + "▁facility": 10933, + "fin": 10934, + "▁evolution": 10935, + "生效法律文书": 10936, + "▁wedding": 10937, + "leqslant": 10938, + "▁famous": 10939, + "Configuration": 10940, + "▁国籍": 10941, + "▁Field": 10942, + "▁installation": 10943, + "imensions": 10944, + "被害人": 10945, + "都要": 10946, + "通道": 10947, + "utch": 10948, + "hentication": 10949, + "单元": 10950, + "▁submit": 10951, + "▁eat": 10952, + "▁serving": 10953, + "acle": 10954, + "▁enzyme": 10955, + "适用简易程序": 10956, + "▁},\\": 10957, + "Assert": 10958, + "▁nodes": 10959, + "SL": 10960, + "出来的": 10961, + "▁husband": 10962, + "允许": 10963, + "▁Series": 10964, + "▁Community": 10965, + "▁Wal": 10966, + "nCl": 10967, + "带着": 10968, + "bc": 10969, + "ogg": 10970, + "equal": 10971, + "metric": 10972, + "氧化": 10973, + "解析": 10974, + "tab": 10975, + "攻击": 10976, + "▁sustain": 10977, + "high": 10978, + "second": 10979, + "PATH": 10980, + "▁合作": 10981, + "相等": 10982, + "补充": 10983, + "独特": 10984, + "ongo": 10985, + "还在": 10986, + "不多": 10987, + "类别": 10988, + "▁electronic": 10989, + "▁depth": 10990, + "俄罗斯": 10991, + "▁(": 10992, + "▁depending": 10993, + "各地": 10994, + "func": 10995, + "nap": 10996, + "▁Pan": 10997, + "\"><": 10998, + "pled": 10999, + "▁apparent": 11000, + "▁nuclear": 11001, + "▁Blue": 11002, + "伙伴": 11003, + "▁browser": 11004, + "▁volunte": 11005, + "\\\\{": 11006, + "副主任": 11007, + "▁tail": 11008, + "ira": 11009, + "案例": 11010, + "▁chosen": 11011, + "NN": 11012, + "主体": 11013, + "通信": 11014, + "▁widely": 11015, + "scape": 11016, + "rogen": 11017, + "▁presents": 11018, + "▁Pub": 11019, + "ilation": 11020, + "▁Tem": 11021, + "plex": 11022, + "天然": 11023, + "}}\\": 11024, + "packages": 11025, + "近日": 11026, + "并给出": 11027, + "▁transcription": 11028, + "▁neighbor": 11029, + "战斗": 11030, + "btn": 11031, + "▁Tim": 11032, + "身上": 11033, + "条第二": 11034, + "债权": 11035, + "▁il": 11036, + "▁People": 11037, + "▁Congress": 11038, + "depend": 11039, + "Description": 11040, + "▁fif": 11041, + "▁Fort": 11042, + "Control": 11043, + "▁yes": 11044, + "Init": 11045, + "fold": 11046, + "temp": 11047, + "umes": 11048, + "不变": 11049, + "▁heter": 11050, + "DC": 11051, + "▁warrant": 11052, + "ilot": 11053, + "▁purs": 11054, + "平衡": 11055, + "▁stack": 11056, + "▁fabric": 11057, + "基因": 11058, + "▁sufficient": 11059, + "▁helpful": 11060, + "▁Event": 11061, + "svg": 11062, + "▁economy": 11063, + "▁provider": 11064, + "芯片": 11065, + "▁folder": 11066, + "争议": 11067, + "▁eventually": 11068, + "ador": 11069, + "特别是": 11070, + "▁waiting": 11071, + "nNot": 11072, + "▁household": 11073, + "utf": 11074, + "▁NULL": 11075, + "▁vision": 11076, + "▁launched": 11077, + "▁youth": 11078, + "第一个": 11079, + "非法": 11080, + "▁io": 11081, + "搭配": 11082, + "▁channels": 11083, + "▁在": 11084, + "▁updates": 11085, + "▁municip": 11086, + "▁assume": 11087, + "二〇一八年": 11088, + "▁faster": 11089, + "▁recon": 11090, + "▁assessed": 11091, + "queue": 11092, + "▁container": 11093, + "tc": 11094, + "role": 11095, + "▁parties": 11096, + "▁shall": 11097, + "▁ment": 11098, + "▁gradu": 11099, + "▁implements": 11100, + "nv": 11101, + "bad": 11102, + "▁Ref": 11103, + "ko": 11104, + "期待": 11105, + "▁oxygen": 11106, + "▁learned": 11107, + "global": 11108, + "学生的": 11109, + "eft": 11110, + "ptr": 11111, + "▁horm": 11112, + "▁Russia": 11113, + "▁anc": 11114, + "▁trials": 11115, + "LOG": 11116, + "▁boy": 11117, + "month": 11118, + "Eff": 11119, + "(:": 11120, + "当代": 11121, + "EA": 11122, + "天的": 11123, + "▁criteria": 11124, + "▁winning": 11125, + "csv": 11126, + "▁arguments": 11127, + "Mode": 11128, + "kins": 11129, + "物品": 11130, + "直播": 11131, + "都可以": 11132, + "bridge": 11133, + "号码": 11134, + "assets": 11135, + "insert": 11136, + "▁Medical": 11137, + "▁fan": 11138, + "ji": 11139, + "▁Disc": 11140, + "▁Based": 11141, + "▁supports": 11142, + "▁medal": 11143, + "▁axis": 11144, + "ws": 11145, + "ears": 11146, + "▁recognition": 11147, + "▁motiv": 11148, + "Utils": 11149, + "交纳": 11150, + "▁Once": 11151, + "▁pathway": 11152, + "▁truly": 11153, + "(*": 11154, + "neg": 11155, + "▁杨": 11156, + "▁minute": 11157, + "manager": 11158, + "▁looked": 11159, + "'),\\": 11160, + "是有": 11161, + "哪个": 11162, + "▁teacher": 11163, + "▁representation": 11164, + "▁rise": 11165, + "▁sport": 11166, + "usercontent": 11167, + "▁出生日期": 11168, + "人体": 11169, + "▁twice": 11170, + "▁According": 11171, + "atre": 11172, + "▁Page": 11173, + "nmodule": 11174, + "浏览": 11175, + "FILE": 11176, + "性格": 11177, + "▁chair": 11178, + "▁fluid": 11179, + "▁Georg": 11180, + "poses": 11181, + "最多": 11182, + "ictionary": 11183, + "练习": 11184, + "channel": 11185, + "okes": 11186, + "▁override": 11187, + "▁comfortable": 11188, + "▁CH": 11189, + "device": 11190, + "▁loved": 11191, + "▁laboratory": 11192, + "delta": 11193, + "▁CONDIT": 11194, + "Tag": 11195, + "硕士": 11196, + "▁Mexico": 11197, + "▁windows": 11198, + "权益": 11199, + "hester": 11200, + "的东西": 11201, + "gression": 11202, + "echo": 11203, + "▁sweet": 11204, + "▁originally": 11205, + "审批": 11206, + "金钱": 11207, + "▁Los": 11208, + "▁biom": 11209, + "顺利": 11210, + "ochemical": 11211, + "▁coffee": 11212, + "的基本": 11213, + "▁Cath": 11214, + "租赁": 11215, + "后面": 11216, + "人在": 11217, + "覆盖": 11218, + "提取": 11219, + "初始": 11220, + "▁happened": 11221, + "▁III": 11222, + "nThese": 11223, + "▁Paris": 11224, + "本案现已审理终结": 11225, + "▁designs": 11226, + "nSince": 11227, + "大多数": 11228, + "还会": 11229, + "▁leaving": 11230, + "▁reliable": 11231, + "▁analyses": 11232, + "nNew": 11233, + "推出": 11234, + "nAccording": 11235, + "请回答": 11236, + "▁Peter": 11237, + "▁molecules": 11238, + "menu": 11239, + "▁Chicago": 11240, + "▁stick": 11241, + "▁echo": 11242, + "▁multip": 11243, + "▁Victor": 11244, + "东方": 11245, + "▁bio": 11246, + "\"),": 11247, + "inds": 11248, + "人大": 11249, + "▁Bet": 11250, + "▁Valley": 11251, + "▁theorem": 11252, + "bottom": 11253, + "▁Their": 11254, + "release": 11255, + "的人数提出副本": 11256, + "日前": 11257, + "ACT": 11258, + "▁Sou": 11259, + "▁ha": 11260, + "world": 11261, + "成年": 11262, + "nit": 11263, + "▁mail": 11264, + "报名": 11265, + "▁Earth": 11266, + "更多的": 11267, + "objects": 11268, + "▁spirit": 11269, + "有没有": 11270, + "▁alleg": 11271, + "rooms": 11272, + "第二百四十": 11273, + "机场": 11274, + "证券": 11275, + "回家": 11276, + "维修": 11277, + "lers": 11278, + "▁effectively": 11279, + "Attribute": 11280, + "iddleware": 11281, + "uits": 11282, + "elled": 11283, + "Args": 11284, + "▁BASIS": 11285, + "ila": 11286, + "eference": 11287, + "▁initi": 11288, + "▁Army": 11289, + "▁CONDITIONS": 11290, + "形态": 11291, + "协调": 11292, + "日起至": 11293, + "▁preval": 11294, + "▁nic": 11295, + "▁conflic": 11296, + "▁plastic": 11297, + "iana": 11298, + "晋江": 11299, + "column": 11300, + "▁copyright": 11301, + "▁univers": 11302, + "也许": 11303, + "新疆": 11304, + "Stack": 11305, + "bles": 11306, + "百分": 11307, + "项之规定": 11308, + "rat": 11309, + "▁involving": 11310, + "▁industrial": 11311, + "ifies": 11312, + "自主": 11313, + "▁raw": 11314, + "良好": 11315, + "▁jump": 11316, + "▁Hy": 11317, + "合并": 11318, + "▁unless": 11319, + "▁Brazil": 11320, + "股票": 11321, + "▁calling": 11322, + "▁educational": 11323, + "▁classic": 11324, + "▁连载中": 11325, + "和谐": 11326, + "Connection": 11327, + "▁Light": 11328, + "▁Special": 11329, + "▁Government": 11330, + "▁loan": 11331, + "Sl": 11332, + ">();\\": 11333, + "ema": 11334, + "提前": 11335, + "yte": 11336, + "nj": 11337, + "Menu": 11338, + "也能": 11339, + "▁nine": 11340, + "(__": 11341, + "▁kept": 11342, + "▁instrument": 11343, + "RT": 11344, + "▁Current": 11345, + "oking": 11346, + "ceived": 11347, + "utorial": 11348, + "仲裁": 11349, + "▁Hospital": 11350, + "平时": 11351, + "▁compounds": 11352, + "▁earth": 11353, + "▁decisions": 11354, + "nHowever": 11355, + "results": 11356, + "面临": 11357, + "Access": 11358, + "edom": 11359, + "AND": 11360, + "▁Only": 11361, + "读者": 11362, + "▁spin": 11363, + "▁Virginia": 11364, + "nList": 11365, + "▁Na": 11366, + "copy": 11367, + "▁climate": 11368, + "overs": 11369, + "leton": 11370, + "▁seat": 11371, + "▁frequently": 11372, + "▁Ma": 11373, + "Mon": 11374, + "并没有": 11375, + "(&": 11376, + "Product": 11377, + "▁bird": 11378, + ";\\\\": 11379, + "▁couldn": 11380, + "大学生": 11381, + "▁Carolina": 11382, + "▁oral": 11383, + "红色": 11384, + "▁algorithms": 11385, + "不够": 11386, + "▁Sand": 11387, + "ailability": 11388, + "Comp": 11389, + "▁tab": 11390, + "cles": 11391, + "▁street": 11392, + "commod": 11393, + "orough": 11394, + "engine": 11395, + "▁winter": 11396, + "scribe": 11397, + "▁'@": 11398, + "▁pure": 11399, + "Collections": 11400, + "等奖": 11401, + "整理": 11402, + "vents": 11403, + "▁asking": 11404, + "ABILITY": 11405, + "▁depends": 11406, + "▁Jose": 11407, + "区间": 11408, + "ixed": 11409, + "screen": 11410, + "▁sensitive": 11411, + "策划": 11412, + "asp": 11413, + "配套": 11414, + "原料": 11415, + "▁forest": 11416, + "授权": 11417, + "route": 11418, + "IGHT": 11419, + "ruit": 11420, + "▁positions": 11421, + "▁Swed": 11422, + "▁\"<": 11423, + "也很": 11424, + "▁elected": 11425, + "逻辑": 11426, + "▁shell": 11427, + "▁targets": 11428, + "cluding": 11429, + "anes": 11430, + "故答案": 11431, + "有个": 11432, + "▁commonly": 11433, + "Delta": 11434, + "▁cities": 11435, + "icular": 11436, + "————": 11437, + "JSON": 11438, + "():": 11439, + "▁delet": 11440, + "同志": 11441, + "▁receiving": 11442, + "▁humans": 11443, + "Admin": 11444, + "stitution": 11445, + "法的": 11446, + "吉林省": 11447, + "天津市": 11448, + "公开开庭进行了审理": 11449, + "Option": 11450, + "▁composition": 11451, + "住房": 11452, + "融合": 11453, + "可以在": 11454, + "令人": 11455, + "利于": 11456, + "har": 11457, + "ntype": 11458, + "▁orient": 11459, + "向本院提出": 11460, + "一个月": 11461, + "▁abstract": 11462, + "▁trees": 11463, + "▁['": 11464, + "ollowing": 11465, + "hal": 11466, + "▁Yes": 11467, + "优惠": 11468, + "▁circum": 11469, + "▁keeping": 11470, + "argument": 11471, + "▁holds": 11472, + "▁receptors": 11473, + "▁innovative": 11474, + "服装": 11475, + "tvar": 11476, + "始终": 11477, + "Found": 11478, + "制品": 11479, + "两年": 11480, + "论坛": 11481, + "formance": 11482, + "▁±": 11483, + "也要": 11484, + "▁regression": 11485, + "}_": 11486, + "类的": 11487, + "拍摄": 11488, + "▁corner": 11489, + "Widget": 11490, + "▁Jes": 11491, + "▁iron": 11492, + "imb": 11493, + "周围": 11494, + "▁circuit": 11495, + "▁JSON": 11496, + "老年": 11497, + "eper": 11498, + "nab": 11499, + "▁cere": 11500, + "wd": 11501, + "▁numpy": 11502, + "Reader": 11503, + "Port": 11504, + "▁Init": 11505, + "nDo": 11506, + "上午": 11507, + "情节": 11508, + "lose": 11509, + "▁craft": 11510, + "▁journey": 11511, + "▁页数": 11512, + "Hash": 11513, + "女儿": 11514, + "▁grid": 11515, + "poss": 11516, + "朋友圈": 11517, + "▁reality": 11518, + "不想": 11519, + "istent": 11520, + "▁vehicles": 11521, + "▁faculty": 11522, + "▁Old": 11523, + ")))\\": 11524, + "▁km": 11525, + "千万": 11526, + "寻找": 11527, + "房间": 11528, + "utely": 11529, + "▁expansion": 11530, + "纤维": 11531, + "内蒙古": 11532, + "▁studio": 11533, + "血管": 11534, + "activity": 11535, + "cers": 11536, + "drop": 11537, + "▁Aim": 11538, + "▁Records": 11539, + "▁Organ": 11540, + "▁treatments": 11541, + "她们": 11542, + "预测": 11543, + "▁dict": 11544, + "family": 11545, + "rog": 11546, + "产权": 11547, + "范围内": 11548, + "ikip": 11549, + "Window": 11550, + "中文网": 11551, + "装置": 11552, + "inical": 11553, + "Template": 11554, + "随机": 11555, + "eding": 11556, + "接到": 11557, + "pool": 11558, + "▁Analysis": 11559, + "ati": 11560, + "▁conventional": 11561, + "陈述": 11562, + "Exec": 11563, + "apes": 11564, + "▁edition": 11565, + "本来": 11566, + "Session": 11567, + "prise": 11568, + "▁reprodu": 11569, + "Unit": 11570, + "riage": 11571, + "▁contribution": 11572, + "▁trail": 11573, + "▁possibly": 11574, + "▁correctly": 11575, + "小的": 11576, + "Tree": 11577, + "itz": 11578, + "机动车": 11579, + "arks": 11580, + "ificate": 11581, + "rf": 11582, + "▁header": 11583, + "edge": 11584, + "的内容": 11585, + "Equals": 11586, + "对照组": 11587, + "半年": 11588, + "也就": 11589, + "▁п": 11590, + "▁colour": 11591, + "▁usage": 11592, + "▁bag": 11593, + "函数的": 11594, + "nNote": 11595, + "附近": 11596, + "NF": 11597, + "电力": 11598, + "▁forget": 11599, + "▁scores": 11600, + "Lin": 11601, + "新区": 11602, + "▁replaced": 11603, + "▁killed": 11604, + "Icon": 11605, + "▁Energy": 11606, + "高等": 11607, + "ufeffusing": 11608, + "thread": 11609, + "▁accompl": 11610, + "you": 11611, + "近年来": 11612, + "impl": 11613, + "超级": 11614, + "天气": 11615, + "Direct": 11616, + "▁fract": 11617, + "▁plugin": 11618, + "▁courses": 11619, + "高效": 11620, + "▁Ter": 11621, + "▁identification": 11622, + "地图": 11623, + "ById": 11624, + "吸收": 11625, + "▁cultural": 11626, + "▁laser": 11627, + "做了": 11628, + "apse": 11629, + "账户": 11630, + "IVE": 11631, + "▁garden": 11632, + "▁west": 11633, + "翻译": 11634, + "▁coast": 11635, + "▁nurs": 11636, + "▁cer": 11637, + "rize": 11638, + "idity": 11639, + "▁Conference": 11640, + "▁gone": 11641, + "▁excited": 11642, + "千克": 11643, + "条规定": 11644, + "▁Richard": 11645, + "▁serial": 11646, + "中国的": 11647, + "▁Does": 11648, + "出发": 11649, + "cence": 11650, + "周边": 11651, + "▁agency": 11652, + "aching": 11653, + "ito": 11654, + "▁surgical": 11655, + "aniel": 11656, + "▁Moreover": 11657, + "▁colon": 11658, + "uls": 11659, + "ointer": 11660, + "房子": 11661, + "▁Jew": 11662, + "介绍了": 11663, + "JECT": 11664, + "acket": 11665, + "▁lawy": 11666, + "train": 11667, + "$$,": 11668, + "▁Bur": 11669, + "▁consumption": 11670, + "▁arm": 11671, + "SM": 11672, + "strip": 11673, + "HR": 11674, + "▁Brown": 11675, + "葡萄": 11676, + "明星": 11677, + "zz": 11678, + "银行存款": 11679, + "▁Secret": 11680, + "三十": 11681, + "基层": 11682, + "环节": 11683, + "▁brother": 11684, + "中国人民": 11685, + "oston": 11686, + "network": 11687, + "▁Spring": 11688, + "▁Kingdom": 11689, + "▁coron": 11690, + "POST": 11691, + "渠道": 11692, + "nInd": 11693, + "AF": 11694, + "达成": 11695, + "现任": 11696, + "▁Stat": 11697, + "女孩": 11698, + "用品": 11699, + "▁Corpor": 11700, + "▁friendly": 11701, + "开心": 11702, + "一名": 11703, + "scription": 11704, + "转化": 11705, + "▁soc": 11706, + "交付": 11707, + "▁reject": 11708, + "休闲": 11709, + "mosph": 11710, + "enger": 11711, + "ikipedia": 11712, + "▁claims": 11713, + "▁Centre": 11714, + "▁efficacy": 11715, + "▁university": 11716, + "Style": 11717, + "▁presentation": 11718, + "▁enhanced": 11719, + "▁divers": 11720, + "▁signs": 11721, + "fn": 11722, + "国土": 11723, + "▁supporting": 11724, + "UP": 11725, + "▁trigger": 11726, + "▁chart": 11727, + "▁officials": 11728, + "]{": 11729, + "hu": 11730, + "omics": 11731, + "▁island": 11732, + "ntitle": 11733, + "▁funds": 11734, + "______": 11735, + "▁radius": 11736, + "▁retro": 11737, + "uality": 11738, + "nAbstract": 11739, + "nk": 11740, + "治理": 11741, + "Card": 11742, + "▁Command": 11743, + "▁attached": 11744, + "widget": 11745, + "▁substr": 11746, + "▁Tre": 11747, + "难以": 11748, + "调节": 11749, + "▁Pass": 11750, + "剧情": 11751, + "刺激": 11752, + "▁neurons": 11753, + "▁policies": 11754, + "供述": 11755, + "EG": 11756, + "▁ended": 11757, + "▁UN": 11758, + "▁east": 11759, + "▁Search": 11760, + "▁pathways": 11761, + "foo": 11762, + "isor": 11763, + "OM": 11764, + "▁Lo": 11765, + "nu": 11766, + "专门": 11767, + "nThey": 11768, + "▁valu": 11769, + "▁sounds": 11770, + "▁emergency": 11771, + "▁bright": 11772, + "由此": 11773, + "icode": 11774, + "这个问题": 11775, + "失败": 11776, + "acellular": 11777, + "▁creation": 11778, + "scan": 11779, + "Frame": 11780, + "aired": 11781, + "When": 11782, + "license": 11783, + "公交": 11784, + "mi": 11785, + "▁statistics": 11786, + "▁expertise": 11787, + "▁percentage": 11788, + "什么是": 11789, + "货币": 11790, + "▁accomp": 11791, + "(\\'/": 11792, + "饮食": 11793, + "本地": 11794, + "▁Wall": 11795, + "Settings": 11796, + "▁dynamics": 11797, + "▁registered": 11798, + "强度": 11799, + "iability": 11800, + "▁embed": 11801, + "▁Ireland": 11802, + "转移": 11803, + "好好": 11804, + "▁inner": 11805, + "▁sensor": 11806, + "合同纠纷一案中": 11807, + "▁apps": 11808, + "混合": 11809, + "ERR": 11810, + "▁featured": 11811, + "▁voltage": 11812, + "nZ": 11813, + "现金": 11814, + "▁episode": 11815, + "▁Bal": 11816, + "▁minimal": 11817, + "▁fold": 11818, + "Do": 11819, + "roud": 11820, + "▁Championships": 11821, + "外的": 11822, + "▁Media": 11823, + "Are": 11824, + "▁dependent": 11825, + "▁citiz": 11826, + "▁grade": 11827, + "▁incred": 11828, + "▁considering": 11829, + "运算": 11830, + "nr": 11831, + "Schema": 11832, + "▁leadership": 11833, + "怎么办": 11834, + "说是": 11835, + "体积": 11836, + "第一百五十四条第一款第": 11837, + "荣誉": 11838, + "▁Italy": 11839, + "mal": 11840, + "gamma": 11841, + "决策": 11842, + "▁suspect": 11843, + "高考": 11844, + "IST": 11845, + "▁conj": 11846, + "▁clar": 11847, + "▁History": 11848, + "▁Scot": 11849, + "▁Atl": 11850, + "prop": 11851, + "white": 11852, + "▁audience": 11853, + "nThank": 11854, + "▁Three": 11855, + "tools": 11856, + "▁Amazon": 11857, + "children": 11858, + "冠军": 11859, + "为由": 11860, + "收益": 11861, + "▁Ret": 11862, + "主要是": 11863, + "▁fuel": 11864, + "内存": 11865, + "器的": 11866, + "▁fundamental": 11867, + "▁HD": 11868, + "实用": 11869, + "率为": 11870, + "▁Library": 11871, + "否则": 11872, + "▁ris": 11873, + "aka": 11874, + "avity": 11875, + "▁Iran": 11876, + "事项": 11877, + "▁shopping": 11878, + "▁Security": 11879, + "aturing": 11880, + "▁versus": 11881, + "▁knew": 11882, + "▁institution": 11883, + "▁subset": 11884, + "▁stem": 11885, + "路径": 11886, + "estyle": 11887, + "▁advent": 11888, + "▁screening": 11889, + "▁Pay": 11890, + "\"),\\": 11891, + "Game": 11892, + "▁epid": 11893, + "▁doctor": 11894, + "呈现": 11895, + "▁swim": 11896, + "combin": 11897, + "mac": 11898, + "代入": 11899, + "elect": 11900, + "▁neural": 11901, + "加快": 11902, + "室内": 11903, + "最好的": 11904, + "▁sequences": 11905, + "有多": 11906, + "▁Unless": 11907, + "ventions": 11908, + "再审": 11909, + "▁Non": 11910, + "SV": 11911, + "umps": 11912, + "▁teachers": 11913, + "ima": 11914, + "工作人员": 11915, + "一体": 11916, + "迟延": 11917, + "ODO": 11918, + "回到": 11919, + "指定的": 11920, + "仍然": 11921, + "▁stars": 11922, + "爸爸": 11923, + "▁Arts": 11924, + "过来": 11925, + "上下": 11926, + "在此": 11927, + "\\'),\\": 11928, + "▁raise": 11929, + "▁keys": 11930, + "▁whatever": 11931, + "tags": 11932, + "金额": 11933, + "都没有": 11934, + "eds": 11935, + "▁Spanish": 11936, + "▁人物": 11937, + "▁cardiac": 11938, + "SUL": 11939, + "ibraries": 11940, + "▁draft": 11941, + "▁TR": 11942, + "▁defe": 11943, + "omega": 11944, + "untu": 11945, + "▁wouldn": 11946, + "creen": 11947, + "\"{{": 11948, + "▁soil": 11949, + "色彩": 11950, + "izontal": 11951, + "onia": 11952, + "▁Server": 11953, + "byte": 11954, + "wan": 11955, + "};": 11956, + "▁proceed": 11957, + "很有": 11958, + "nAss": 11959, + "细节": 11960, + "发动": 11961, + "Empty": 11962, + "bro": 11963, + "▁Aff": 11964, + "博物": 11965, + "Buffer": 11966, + "▁tips": 11967, + "开发区": 11968, + "▁evening": 11969, + "uple": 11970, + "▁vot": 11971, + "▁crow": 11972, + "▁discount": 11973, + "有很多": 11974, + "iy": 11975, + "▁passion": 11976, + "}$,": 11977, + "甘肃": 11978, + "▁appointed": 11979, + "ipt": 11980, + "controller": 11981, + "知名": 11982, + "omatic": 11983, + "}}\\\\": 11984, + "▁extent": 11985, + "claim": 11986, + "▁Ha": 11987, + "▁stores": 11988, + "▁phil": 11989, + "mean": 11990, + "▁pharmac": 11991, + "信用卡": 11992, + "▁salt": 11993, + "internal": 11994, + "的同时": 11995, + "▁cognitive": 11996, + "故答案为": 11997, + "登录": 11998, + "▁signals": 11999, + "download": 12000, + "学位": 12001, + "回来": 12002, + "性别": 12003, + "},{\"": 12004, + "▁potentially": 12005, + "正当理由": 12006, + "▁na": 12007, + "精彩": 12008, + "omain": 12009, + "▁packages": 12010, + "▁basketball": 12011, + "数据库": 12012, + "▁CR": 12013, + "▁Asian": 12014, + "▁typical": 12015, + "▁candidates": 12016, + "▁hem": 12017, + "▁Cross": 12018, + "Generic": 12019, + "▁hearing": 12020, + "印度": 12021, + "oves": 12022, + "entials": 12023, + "TeX": 12024, + "tical": 12025, + "宁波": 12026, + "Ob": 12027, + "▁historical": 12028, + "▁optical": 12029, + "的关键": 12030, + "Can": 12031, + "▁Config": 12032, + "刑初字第": 12033, + "丰富的": 12034, + "▁recognized": 12035, + "专业的": 12036, + "预交": 12037, + "▁formal": 12038, + "lar": 12039, + "EFA": 12040, + "▁Abstract": 12041, + "▁ce": 12042, + "情况下": 12043, + "▁accum": 12044, + "▁populations": 12045, + "▁mir": 12046, + "上升": 12047, + "dig": 12048, + "▁variation": 12049, + "▁Prem": 12050, + "▁uniform": 12051, + "ifts": 12052, + "lint": 12053, + "▁Update": 12054, + "师范": 12055, + "▁mic": 12056, + "老人": 12057, + "房地产开发": 12058, + "▁boot": 12059, + "解题过程": 12060, + "▁diverse": 12061, + "▁dream": 12062, + "▁tumors": 12063, + "▁Kar": 12064, + "梦想": 12065, + "▁speech": 12066, + "▁params": 12067, + "未能": 12068, + "不起": 12069, + "共享": 12070, + "Body": 12071, + "▁veget": 12072, + "eller": 12073, + "化工": 12074, + "▁accommod": 12075, + "取消": 12076, + "型的": 12077, + "GR": 12078, + "▁holiday": 12079, + "idents": 12080, + "▁hash": 12081, + "tri": 12082, + "▁union": 12083, + "迟延履行": 12084, + "WORD": 12085, + "▁cleaning": 12086, + "▁disorder": 12087, + "▁Angeles": 12088, + "答辩": 12089, + "▁dir": 12090, + "地球": 12091, + "▁Online": 12092, + "▁bott": 12093, + "▁Global": 12094, + "▁urban": 12095, + "contrib": 12096, + "connection": 12097, + "▁closely": 12098, + "▁ww": 12099, + "hydro": 12100, + "▁remained": 12101, + "▁surrounding": 12102, + "▁lig": 12103, + "ennis": 12104, + "BD": 12105, + "SION": 12106, + "▁rooms": 12107, + "▁compact": 12108, + "互动": 12109, + "的研究": 12110, + "HTML": 12111, + "dl": 12112, + "agr": 12113, + "uous": 12114, + "emon": 12115, + "▁analog": 12116, + "生活中": 12117, + "第八": 12118, + "uke": 12119, + "oving": 12120, + "▁NE": 12121, + "▁toler": 12122, + "▁decide": 12123, + "artments": 12124, + "▁Eff": 12125, + "▁rub": 12126, + "INT": 12127, + "▁gender": 12128, + "▁roof": 12129, + "▁env": 12130, + "IX": 12131, + "▁audio": 12132, + "新华": 12133, + "▁Ep": 12134, + "审核": 12135, + "▁chief": 12136, + "▁wine": 12137, + "^\\\\": 12138, + "▁amb": 12139, + "▁accounts": 12140, + "iano": 12141, + "免疫": 12142, + "▁organic": 12143, + "▁pod": 12144, + "android": 12145, + "▁Adv": 12146, + "道德": 12147, + "▁newly": 12148, + "▁Cast": 12149, + "属性": 12150, + "ucket": 12151, + "sol": 12152, + "现在的": 12153, + "docker": 12154, + "cher": 12155, + "县人": 12156, + "无正当理由": 12157, + "▁radiation": 12158, + "▁Asia": 12159, + "▁reverse": 12160, + "nFil": 12161, + "▁Festival": 12162, + "mock": 12163, + "图书馆": 12164, + "东北": 12165, + "▁stages": 12166, + "直到": 12167, + "isters": 12168, + "许可": 12169, + "nThen": 12170, + "Child": 12171, + "▁river": 12172, + "▁instant": 12173, + "ascript": 12174, + "▁intellig": 12175, + "示范": 12176, + "HD": 12177, + "▁filled": 12178, + "▁Men": 12179, + "收费": 12180, + "Collection": 12181, + "的其他": 12182, + "▁×": 12183, + "归还": 12184, + "▁rac": 12185, + "▁classification": 12186, + "MR": 12187, + "看待": 12188, + "▁transformation": 12189, + "工作者": 12190, + "▁snow": 12191, + "nRec": 12192, + "▁Action": 12193, + "每一个": 12194, + "ixel": 12195, + "▁covers": 12196, + "▁tissues": 12197, + "▁seasons": 12198, + "▁adopt": 12199, + ")}{": 12200, + "▁YO": 12201, + "▁compat": 12202, + "每一": 12203, + "Position": 12204, + "▁prepare": 12205, + "▁scope": 12206, + "nex": 12207, + "▁Bas": 12208, + "故意": 12209, + "▁resulted": 12210, + "▁poll": 12211, + "进口": 12212, + "幼儿园": 12213, + "▁cris": 12214, + "▁explan": 12215, + "monary": 12216, + "河北": 12217, + "▁ton": 12218, + "▁compr": 12219, + "责令": 12220, + "▁peak": 12221, + "在我": 12222, + "▁Return": 12223, + "感到": 12224, + "不良": 12225, + "Program": 12226, + "ashboard": 12227, + "▁Times": 12228, + "ais": 12229, + "▁renal": 12230, + "Users": 12231, + "pred": 12232, + "▁owned": 12233, + "▁crypt": 12234, + "该犯": 12235, + "jo": 12236, + "▁markets": 12237, + "▁Tw": 12238, + "SR": 12239, + "ugby": 12240, + "roduction": 12241, + "▁dimension": 12242, + "loor": 12243, + "估计": 12244, + "场景": 12245, + "▁medicine": 12246, + "▁complement": 12247, + "▁mess": 12248, + "nLast": 12249, + "cha": 12250, + "羁押": 12251, + "▁CT": 12252, + "▁limits": 12253, + "ulum": 12254, + "▁Province": 12255, + "orney": 12256, + "本院在执行": 12257, + "大道": 12258, + "Database": 12259, + "能量": 12260, + "Enum": 12261, + "BP": 12262, + "iples": 12263, + "干净": 12264, + "真是": 12265, + "nAdd": 12266, + "▁Prot": 12267, + "▁cluster": 12268, + "▁destroy": 12269, + "▁silver": 12270, + "执行通知书": 12271, + "等方面": 12272, + "时刻": 12273, + "▁possibility": 12274, + "▁Solve": 12275, + "和平": 12276, + "表演": 12277, + "lat": 12278, + "▁remainder": 12279, + "WE": 12280, + "监测": 12281, + "Print": 12282, + "uis": 12283, + "解放": 12284, + "▁behaviour": 12285, + "购物": 12286, + "(\"/": 12287, + "▁Table": 12288, + "▁LO": 12289, + "Route": 12290, + "▁recover": 12291, + "▁console": 12292, + "判决书送达之日起": 12293, + "bel": 12294, + "appy": 12295, + "testing": 12296, + "缺乏": 12297, + "nson": 12298, + "terior": 12299, + "reatment": 12300, + "轴承": 12301, + "ICE": 12302, + "▁restaurant": 12303, + "江西省": 12304, + "UM": 12305, + "%;\\": 12306, + "READ": 12307, + "食用": 12308, + "▁topics": 12309, + "的产品": 12310, + "条第二款": 12311, + "area": 12312, + "联盟": 12313, + "▁primarily": 12314, + "▁vul": 12315, + "▁accident": 12316, + "适当": 12317, + "▁hybrid": 12318, + "似乎": 12319, + "餐厅": 12320, + "errors": 12321, + "CF": 12322, + "▁Git": 12323, + "宠物": 12324, + "男生": 12325, + "aped": 12326, + "▁ta": 12327, + "▁Arab": 12328, + "▁stated": 12329, + "▁listing": 12330, + "过了": 12331, + "▁Exec": 12332, + "二条": 12333, + "mes": 12334, + "汉语": 12335, + "咖啡": 12336, + "▁prolif": 12337, + "▁Ram": 12338, + "ULT": 12339, + "担心": 12340, + "▁Last": 12341, + "▁reducing": 12342, + "▁Ken": 12343, + "▁ER": 12344, + "rh": 12345, + "▁\"\\\\": 12346, + "航空": 12347, + "▁describes": 12348, + "社会主义": 12349, + "rawn": 12350, + "▁electrical": 12351, + "▁perspective": 12352, + "▁merge": 12353, + "求解": 12354, + "shot": 12355, + "utor": 12356, + "▁polar": 12357, + "▁Edit": 12358, + "ocard": 12359, + "atar": 12360, + "共产": 12361, + "▁awarded": 12362, + "▁Language": 12363, + "nEng": 12364, + "▁www": 12365, + "Storage": 12366, + "ycle": 12367, + "▁ran": 12368, + "前的": 12369, + "穿越": 12370, + "nFirst": 12371, + "部长": 12372, + "▁cruc": 12373, + "ova": 12374, + "现状": 12375, + "▁speak": 12376, + "大众": 12377, + "erts": 12378, + "▁independ": 12379, + "某些": 12380, + "期的": 12381, + "含有": 12382, + "▁interact": 12383, + "▁improving": 12384, + "ст": 12385, + "Each": 12386, + "▁sizes": 12387, + "▁所属": 12388, + "辅助": 12389, + "合适的": 12390, + "舒适": 12391, + "▁pp": 12392, + "services": 12393, + "▁Pop": 12394, + "prefix": 12395, + "etics": 12396, + "较大": 12397, + "▁Pac": 12398, + "tdef": 12399, + "ti": 12400, + "PG": 12401, + "▁javax": 12402, + "下面的问题": 12403, + "star": 12404, + "una": 12405, + "厦门": 12406, + "imation": 12407, + "Custom": 12408, + "nCont": 12409, + "不在": 12410, + "ircraft": 12411, + "这款": 12412, + "▁median": 12413, + "schema": 12414, + "湖北": 12415, + "美食": 12416, + "lf": 12417, + "▁Master": 12418, + "位数": 12419, + "▁flight": 12420, + "协助": 12421, + "老板": 12422, + "▁spectrum": 12423, + "iography": 12424, + "zone": 12425, + "平行": 12426, + "▁Click": 12427, + "▁phenomen": 12428, + "生存": 12429, + "异常": 12430, + "▁para": 12431, + "▁strongly": 12432, + "生效后": 12433, + "▁accepted": 12434, + "单调": 12435, + "想法": 12436, + "请回答下面的问题": 12437, + "▁Link": 12438, + "分别为": 12439, + "第九": 12440, + "plus": 12441, + "ONE": 12442, + "lower": 12443, + "ynamic": 12444, + "▁familiar": 12445, + "Que": 12446, + "bling": 12447, + "兄弟": 12448, + "▁knows": 12449, + "一旦": 12450, + "NG": 12451, + "nBe": 12452, + "Player": 12453, + "zy": 12454, + "的要求": 12455, + "\\\\()": 12456, + "▁effectiveness": 12457, + "▁favour": 12458, + "密码": 12459, + "embers": 12460, + "▁blocks": 12461, + "▁api": 12462, + "这就是": 12463, + "take": 12464, + "相应": 12465, + "就在": 12466, + "ospit": 12467, + "指定": 12468, + "▁guy": 12469, + "▁Est": 12470, + "▁executive": 12471, + "▁BE": 12472, + "▁rough": 12473, + "▁announce": 12474, + "陕西省": 12475, + "太多": 12476, + "有机": 12477, + "riev": 12478, + "▁delivered": 12479, + "债务利息": 12480, + "▁competitive": 12481, + "认可": 12482, + "白色": 12483, + "▁prevention": 12484, + "▁incidence": 12485, + "▁prompt": 12486, + "▁infrastructure": 12487, + "▁Martin": 12488, + "▁solar": 12489, + "链接": 12490, + "LECT": 12491, + "▁tables": 12492, + "问题的答案": 12493, + "rub": 12494, + "▁insulin": 12495, + "课堂": 12496, + "Width": 12497, + "适用于": 12498, + "Ab": 12499, + "部署": 12500, + "方式结案": 12501, + "尝试": 12502, + "▁Vari": 12503, + "▁mechanical": 12504, + "用来": 12505, + "集成": 12506, + "▁battery": 12507, + "规格": 12508, + "▁ingred": 12509, + "项的规定": 12510, + "▁cup": 12511, + "党的": 12512, + "采购": 12513, + "dp": 12514, + "Car": 12515, + "▁styles": 12516, + "irus": 12517, + "纪念": 12518, + "不住": 12519, + "围绕": 12520, + "▁charges": 12521, + "▁institutions": 12522, + "router": 12523, + "▁Human": 12524, + "元及": 12525, + "▁trained": 12526, + "nSome": 12527, + "全体": 12528, + "▁latter": 12529, + "uh": 12530, + "▁Beach": 12531, + "解除": 12532, + "或许": 12533, + "ylvan": 12534, + "orrect": 12535, + "拒绝": 12536, + "cpp": 12537, + "leases": 12538, + "▁categories": 12539, + "▁beauty": 12540, + "本裁定书": 12541, + "sa": 12542, + "都市": 12543, + "Home": 12544, + "▁selling": 12545, + "▁danger": 12546, + "Graph": 12547, + "▁enum": 12548, + "nAlso": 12549, + "清洁": 12550, + "ansas": 12551, + "出版社出版的图书": 12552, + "nAny": 12553, + "anth": 12554, + "人力": 12555, + "▁exposed": 12556, + "▁出": 12557, + "▁inhibition": 12558, + "▁decades": 12559, + "身份证": 12560, + "味道": 12561, + "bsite": 12562, + "说话": 12563, + "我会": 12564, + "Cache": 12565, + "旅行": 12566, + "观点": 12567, + "▁lat": 12568, + "▁excess": 12569, + "▁tournament": 12570, + "等待": 12571, + "▁DC": 12572, + "▁stimul": 12573, + "▁dating": 12574, + "▁furniture": 12575, + "Vari": 12576, + "不一样": 12577, + "收藏": 12578, + "▁subsequent": 12579, + "rollers": 12580, + "▁html": 12581, + "▁Charles": 12582, + "nDe": 12583, + "▁committed": 12584, + "▁msg": 12585, + "Password": 12586, + "晋江文学": 12587, + "▁lit": 12588, + "edu": 12589, + "▁aggreg": 12590, + "▁simult": 12591, + "▁beat": 12592, + "▁deals": 12593, + "▁perman": 12594, + "服务器": 12595, + "nic": 12596, + "宣布": 12597, + "plet": 12598, + "▁choices": 12599, + "upy": 12600, + "▁Head": 12601, + "邀请": 12602, + "×××": 12603, + "tool": 12604, + "nSuppose": 12605, + "▁Mur": 12606, + "▁valuable": 12607, + "tex": 12608, + "▁athlet": 12609, + "▁bought": 12610, + "两人": 12611, + "应该是": 12612, + "可靠": 12613, + "家人": 12614, + "华为": 12615, + "ersonal": 12616, + "▁ends": 12617, + "▁scored": 12618, + "▁asym": 12619, + "note": 12620, + "▁hardware": 12621, + "itness": 12622, + "▁Film": 12623, + "开启": 12624, + "生素": 12625, + "achment": 12626, + "logging": 12627, + "vals": 12628, + "识别": 12629, + "ressive": 12630, + "▁pig": 12631, + ")(": 12632, + "生于": 12633, + "blue": 12634, + "▁particles": 12635, + "ussian": 12636, + "说了": 12637, + "▁vess": 12638, + "Am": 12639, + "▁reson": 12640, + "撤销": 12641, + "▁tempor": 12642, + "▁collaboration": 12643, + "总体": 12644, + "nSubject": 12645, + "第五十": 12646, + "准予": 12647, + "▁thr": 12648, + "onds": 12649, + "cludes": 12650, + "writer": 12651, + "乡村": 12652, + "▁spons": 12653, + "▁spatial": 12654, + "▁seek": 12655, + "aya": 12656, + "handler": 12657, + "第二百五十七条": 12658, + "▁Study": 12659, + "legal": 12660, + "urable": 12661, + "▁assistance": 12662, + "融资": 12663, + "heast": 12664, + "PH": 12665, + "手续": 12666, + "ifferent": 12667, + "▁robust": 12668, + "决定书": 12669, + "当年": 12670, + "更好的": 12671, + "物业服务": 12672, + "▁exciting": 12673, + "中小": 12674, + "▁coh": 12675, + "osoph": 12676, + "ea": 12677, + "pull": 12678, + "的关系": 12679, + "足够": 12680, + "▁NS": 12681, + "▁datetime": 12682, + "▁rural": 12683, + "这道": 12684, + "▁proud": 12685, + "▁maps": 12686, + "立即生效": 12687, + "评审": 12688, + "▁lin": 12689, + "笔记": 12690, + "Mark": 12691, + "▁inher": 12692, + "▁Young": 12693, + "Art": 12694, + "uing": 12695, + "Helper": 12696, + "▁transplant": 12697, + "icken": 12698, + "以调解": 12699, + "▁hypothes": 12700, + "公民": 12701, + "转换": 12702, + "▁Invest": 12703, + "正确的答案": 12704, + "olds": 12705, + "▁purposes": 12706, + "▁Indust": 12707, + "▁Historic": 12708, + "各位": 12709, + "war": 12710, + "接下来": 12711, + "▁approved": 12712, + "obs": 12713, + "ión": 12714, + "以调解方式结案": 12715, + "盗窃罪": 12716, + "▁statistical": 12717, + "之中": 12718, + "▁职业": 12719, + "▁Py": 12720, + "▁aged": 12721, + "判令": 12722, + "▁expensive": 12723, + "watch": 12724, + "CV": 12725, + "sha": 12726, + "▁guests": 12727, + "元的": 12728, + "▁atmosph": 12729, + "古代": 12730, + "是对": 12731, + "虚拟": 12732, + "HOU": 12733, + "zure": 12734, + "▁dogs": 12735, + "▁partnership": 12736, + "▁stone": 12737, + "asts": 12738, + "▁complications": 12739, + "▁examination": 12740, + "POSE": 12741, + "Sign": 12742, + "▁\\'/": 12743, + "wa": 12744, + "日子": 12745, + "▁Description": 12746, + "cb": 12747, + "停车": 12748, + "▁suc": 12749, + "同一": 12750, + "合格": 12751, + "Author": 12752, + "ooking": 12753, + "怎么样": 12754, + "并按对方当事人的人数提出副本": 12755, + "▁attended": 12756, + "Engine": 12757, + "曲线": 12758, + "写作": 12759, + "众多": 12760, + "▁Net": 12761, + "▁capable": 12762, + "}]": 12763, + "车程": 12764, + "ORM": 12765, + "▁cin": 12766, + "vironments": 12767, + "nYour": 12768, + "▁listen": 12769, + "▁usual": 12770, + "▁officer": 12771, + "arly": 12772, + "ategor": 12773, + "▁黄": 12774, + "以调解方式结案的": 12775, + "▁establishments": 12776, + "判决书送达之日起十五日内": 12777, + "▁shut": 12778, + "▁boundary": 12779, + "▁mRNA": 12780, + "保留": 12781, + "headers": 12782, + "官网": 12783, + "Account": 12784, + "面试": 12785, + "胜利": 12786, + "毫米": 12787, + "血液": 12788, + "▁broken": 12789, + "▁nom": 12790, + "exists": 12791, + "▁Pak": 12792, + "▁Path": 12793, + "▁主": 12794, + "TD": 12795, + "▁MS": 12796, + "isted": 12797, + "ylvania": 12798, + "黑色": 12799, + "eah": 12800, + "彻底": 12801, + "eric": 12802, + "ongs": 12803, + "标的": 12804, + "笔录": 12805, + "节点": 12806, + "▁tow": 12807, + "sample": 12808, + "危害": 12809, + "outs": 12810, + "&&": 12811, + "▁sed": 12812, + "恋爱": 12813, + "经营范围包括": 12814, + "Activity": 12815, + "民主": 12816, + "%),": 12817, + "report": 12818, + "创作的": 12819, + "▁Local": 12820, + "▁explicit": 12821, + "进程": 12822, + "▁waste": 12823, + "aylor": 12824, + "Models": 12825, + "▁brings": 12826, + "orem": 12827, + "▁neighborhood": 12828, + "etal": 12829, + "会上": 12830, + "▁HTML": 12831, + "▁regulatory": 12832, + "▁worldwide": 12833, + "Current": 12834, + "▁Haw": 12835, + "征收": 12836, + "▁extend": 12837, + "platform": 12838, + "rand": 12839, + "gi": 12840, + "在这里": 12841, + "▁entity": 12842, + "Bo": 12843, + "不等式": 12844, + "aced": 12845, + "执行员": 12846, + "▁trav": 12847, + "|\\\\": 12848, + "▁Ohio": 12849, + "动画": 12850, + "▁uncertain": 12851, + "ND": 12852, + "▁assay": 12853, + "▁interior": 12854, + "▁IF": 12855, + "\"))\\": 12856, + "RON": 12857, + "考生": 12858, + "▁plenty": 12859, + "▁repeated": 12860, + "▁Access": 12861, + "iration": 12862, + "▁vascular": 12863, + "toString": 12864, + "▁Ga": 12865, + "完美": 12866, + "▁quantum": 12867, + "security": 12868, + "▁Hi": 12869, + "Plugin": 12870, + "的故事": 12871, + "igin": 12872, + "▁SD": 12873, + "usic": 12874, + "▁explained": 12875, + "ovascular": 12876, + "▁stored": 12877, + "Document": 12878, + "普遍": 12879, + "夫妻感情": 12880, + "情感": 12881, + "损伤": 12882, + "▁tight": 12883, + "注重": 12884, + "▁Process": 12885, + "▁Tri": 12886, + "▁persons": 12887, + "向被执行人": 12888, + "车站": 12889, + "▁Four": 12890, + "加倍": 12891, + "▁rig": 12892, + "jav": 12893, + "▁chat": 12894, + "uilt": 12895, + "一场": 12896, + "型号": 12897, + "▁stret": 12898, + "▁Install": 12899, + "▁zone": 12900, + "▁instructions": 12901, + "▁Northern": 12902, + "pin": 12903, + "▁writers": 12904, + "stood": 12905, + "uite": 12906, + "消防": 12907, + "二年": 12908, + "▁作品": 12909, + "▁Li": 12910, + "▁Environment": 12911, + "pages": 12912, + "▁bin": 12913, + "▁incident": 12914, + "fire": 12915, + "▁Lee": 12916, + "尽量": 12917, + "region": 12918, + "tor": 12919, + "一边": 12920, + "ifiers": 12921, + "▁Boston": 12922, + "▁participate": 12923, + "区人民检察院": 12924, + "ancel": 12925, + "有限公司于": 12926, + "频率": 12927, + "▁Nav": 12928, + "熟悉": 12929, + "公司经营范围包括": 12930, + ")[": 12931, + "▁aimed": 12932, + "▁abnormal": 12933, + "▁beach": 12934, + "一路": 12935, + "Mult": 12936, + "户籍": 12937, + "发的": 12938, + "▁hidden": 12939, + "ela": 12940, + "ndes": 12941, + "▁manual": 12942, + "▁providers": 12943, + "综上": 12944, + "并在": 12945, + "▁diagnostic": 12946, + "▁Assembly": 12947, + "深度": 12948, + "ACE": 12949, + "▁Systems": 12950, + "▁Ltd": 12951, + "数组": 12952, + "▁eld": 12953, + "Ge": 12954, + "▁constructed": 12955, + "诉讼费用": 12956, + "便宜": 12957, + "▁differentiation": 12958, + "▁profit": 12959, + "▁drivers": 12960, + "ucks": 12961, + "▁awesome": 12962, + "另一个": 12963, + "cover": 12964, + "”,": 12965, + "▁Help": 12966, + "一审": 12967, + "adium": 12968, + "诉称": 12969, + "Target": 12970, + "▁assigned": 12971, + "的设计": 12972, + "▁scheduled": 12973, + "nAr": 12974, + "Enc": 12975, + "时光": 12976, + "▁Catholic": 12977, + "DNA": 12978, + "▁Jim": 12979, + "▁mes": 12980, + "SER": 12981, + "云南省": 12982, + "▁spending": 12983, + "复合": 12984, + "▁particle": 12985, + "人间": 12986, + "的基础上": 12987, + "▁func": 12988, + "▁pand": 12989, + "▁Rest": 12990, + "驱动": 12991, + "▁depos": 12992, + "毒品": 12993, + "gers": 12994, + "▁Columb": 12995, + "▁distribut": 12996, + "{(": 12997, + "▁entered": 12998, + "deg": 12999, + "rolling": 13000, + "blank": 13001, + "森林": 13002, + "国外": 13003, + "▁housing": 13004, + "▁fruit": 13005, + "oids": 13006, + "安市": 13007, + "字符": 13008, + "▁illustr": 13009, + "mo": 13010, + "支撑": 13011, + "而不是": 13012, + "mediate": 13013, + "不上": 13014, + "▁ec": 13015, + "▁walking": 13016, + "score": 13017, + "▁involves": 13018, + "▁sessions": 13019, + "▁layout": 13020, + "▁PDF": 13021, + "▁aid": 13022, + "▁trading": 13023, + "▁merg": 13024, + "说法": 13025, + "▁repository": 13026, + "不太": 13027, + "agger": 13028, + "▁Ro": 13029, + "▁pm": 13030, + "Man": 13031, + "operator": 13032, + "reme": 13033, + "▁desired": 13034, + "▁undefined": 13035, + "operation": 13036, + "▁analyze": 13037, + "▁planned": 13038, + "博物馆": 13039, + "▁progression": 13040, + "塑料": 13041, + "video": 13042, + "nRE": 13043, + "sur": 13044, + "ulator": 13045, + "▁serves": 13046, + "metadata": 13047, + "▁corporate": 13048, + "现住": 13049, + "▁complexity": 13050, + "▁conversion": 13051, + "分解": 13052, + "理事": 13053, + "▁Plan": 13054, + "调解书": 13055, + "▁recording": 13056, + "▁inspired": 13057, + "ez": 13058, + "轻处罚": 13059, + "(`": 13060, + "▁utility": 13061, + "gence": 13062, + "prov": 13063, + "层次": 13064, + "破坏": 13065, + "foreach": 13066, + "随时": 13067, + "record": 13068, + "dirname": 13069, + "▁pump": 13070, + "epsilon": 13071, + "顾客": 13072, + "oir": 13073, + "▁iter": 13074, + "merce": 13075, + "▁gun": 13076, + "ells": 13077, + "▁lies": 13078, + "借条": 13079, + "▁Econ": 13080, + "▁NY": 13081, + "Location": 13082, + "贯彻": 13083, + "▁putting": 13084, + "icker": 13085, + "ferences": 13086, + "▁commission": 13087, + "▁cheap": 13088, + "Main": 13089, + "▁}}\\": 13090, + "ampion": 13091, + "Record": 13092, + "ocus": 13093, + "▁capture": 13094, + "拼音": 13095, + "▁AL": 13096, + "重复": 13097, + "让我们": 13098, + "杂志": 13099, + "同年": 13100, + "的一些": 13101, + "中国科学院": 13102, + "▁定价": 13103, + "人均": 13104, + "▁Have": 13105, + "Params": 13106, + "buffer": 13107, + "awa": 13108, + "▁lose": 13109, + "▁manufacturing": 13110, + "▁mamm": 13111, + "▁ongoing": 13112, + "▁initially": 13113, + "First": 13114, + "BL": 13115, + "蔬菜": 13116, + "cli": 13117, + "▁analyt": 13118, + "short": 13119, + "打车": 13120, + "对外": 13121, + "▁edited": 13122, + "constructor": 13123, + "▁genus": 13124, + "▁supposed": 13125, + "▁其一": 13126, + "日至": 13127, + "▁politician": 13128, + "别的": 13129, + "▁logic": 13130, + "▁boost": 13131, + "▁Sar": 13132, + "ighter": 13133, + "Match": 13134, + "tprint": 13135, + "possible": 13136, + "▁lists": 13137, + "▁glucose": 13138, + "▁outdoor": 13139, + "▁thin": 13140, + "▁optimization": 13141, + "▁Mi": 13142, + "▁copies": 13143, + "▁translation": 13144, + "家具": 13145, + "▁scal": 13146, + "期间的债务利息": 13147, + "oa": 13148, + "ен": 13149, + "有效的": 13150, + "乐部": 13151, + "▁charged": 13152, + "图像": 13153, + "inois": 13154, + "Email": 13155, + "▁Bul": 13156, + "▁triangle": 13157, + "▁lesions": 13158, + "▁crim": 13159, + "▁contained": 13160, + "▁removal": 13161, + "bec": 13162, + "验证": 13163, + "线上": 13164, + "▁turns": 13165, + "▁radi": 13166, + "▁preparation": 13167, + "▁buying": 13168, + "▁Application": 13169, + "ibilities": 13170, + "▁Michigan": 13171, + "hetic": 13172, + "FS": 13173, + "setup": 13174, + "nsylvania": 13175, + "metry": 13176, + "▁vertical": 13177, + "upload": 13178, + "▁guidelines": 13179, + "▁existence": 13180, + "▁controller": 13181, + "small": 13182, + "That": 13183, + "样例": 13184, + "▁classical": 13185, + "▁Bob": 13186, + "你要": 13187, + "gian": 13188, + "lik": 13189, + "▁Girl": 13190, + "esterday": 13191, + "▁Bud": 13192, + "▁MO": 13193, + "▁porn": 13194, + "orship": 13195, + "▁truth": 13196, + "chem": 13197, + "live": 13198, + "▁orders": 13199, + "俱乐部": 13200, + "nGe": 13201, + "▁Chief": 13202, + "nTrue": 13203, + "ocyte": 13204, + "▁employed": 13205, + "足以": 13206, + "▁kg": 13207, + "▁contents": 13208, + "PY": 13209, + "删除": 13210, + "▁thoughts": 13211, + "iph": 13212, + "如果是": 13213, + "▁align": 13214, + "▁平": 13215, + "会在": 13216, + "VAL": 13217, + "Local": 13218, + "▁cache": 13219, + "pres": 13220, + "不动": 13221, + "件事": 13222, + "Show": 13223, + "istence": 13224, + "▁fear": 13225, + "▁semi": 13226, + "现有": 13227, + "▁musical": 13228, + "▁fellow": 13229, + "▁commands": 13230, + "▁pairs": 13231, + "均匀": 13232, + "首次": 13233, + "stud": 13234, + "破裂": 13235, + "▁ri": 13236, + "是一家": 13237, + "▁encoding": 13238, + "▁milk": 13239, + "提醒": 13240, + "交通事故": 13241, + "▁swe": 13242, + "▁Like": 13243, + "▁Node": 13244, + "▁willing": 13245, + "offset": 13246, + "SET": 13247, + "共计": 13248, + "▁Determ": 13249, + "处分": 13250, + "▁protected": 13251, + "VA": 13252, + "起点中文网": 13253, + "lg": 13254, + "▁consumer": 13255, + "nof": 13256, + "贵州省": 13257, + "riers": 13258, + "最低": 13259, + "本院依法组成合议庭": 13260, + "生成": 13261, + "uj": 13262, + "pons": 13263, + "Ext": 13264, + "▁dram": 13265, + "▁displayed": 13266, + "肿瘤": 13267, + "nPost": 13268, + "▁Circ": 13269, + "▁indicates": 13270, + "▁Support": 13271, + "▁Option": 13272, + "primary": 13273, + "egers": 13274, + "▁公司名称": 13275, + "国民": 13276, + "货物": 13277, + "无人": 13278, + "continue": 13279, + "返回": 13280, + "▁reporting": 13281, + "when": 13282, + "▁observations": 13283, + "▁threshold": 13284, + "国务": 13285, + "花园": 13286, + "零售": 13287, + "execute": 13288, + "▁worry": 13289, + "意味": 13290, + "Row": 13291, + "Entry": 13292, + "印象": 13293, + "irms": 13294, + "uber": 13295, + "▁fee": 13296, + "folio": 13297, + "▁diameter": 13298, + "▁hundreds": 13299, + "缓刑": 13300, + "▁rational": 13301, + "cnt": 13302, + "ociated": 13303, + "▁Fed": 13304, + "▁Word": 13305, + "哲学": 13306, + "深刻": 13307, + "groups": 13308, + "▁antibodies": 13309, + "涉嫌": 13310, + "▁languages": 13311, + "endor": 13312, + "执法": 13313, + "▁SC": 13314, + "▁strain": 13315, + "yped": 13316, + "▁offset": 13317, + "院长": 13318, + "▁HE": 13319, + "▁Area": 13320, + "▁lived": 13321, + "oxy": 13322, + "▁dimensions": 13323, + "▁sections": 13324, + "▁counc": 13325, + "ban": 13326, + "述了": 13327, + "▁brown": 13328, + "pare": 13329, + "nthetic": 13330, + "stone": 13331, + "Render": 13332, + "Bundle": 13333, + "▁lux": 13334, + "UND": 13335, + "▁Wild": 13336, + "ра": 13337, + "▁opinion": 13338, + "高于": 13339, + "▁});\\": 13340, + "样子": 13341, + "▁\",": 13342, + "▁Er": 13343, + "▁Engineering": 13344, + "▁pin": 13345, + "igate": 13346, + "▁aer": 13347, + "监规": 13348, + "在这个": 13349, + "刚刚": 13350, + "▁CEO": 13351, + "▁quadr": 13352, + "鼓励": 13353, + "gov": 13354, + "Next": 13355, + "运动员": 13356, + "erves": 13357, + "连载于": 13358, + "▁Way": 13359, + "appe": 13360, + "▁locally": 13361, + "的感觉": 13362, + "互相": 13363, + "▁\"$": 13364, + "▁representing": 13365, + "流行": 13366, + "▁dual": 13367, + "▁mapping": 13368, + "She": 13369, + "Enron": 13370, + "\":{\"": 13371, + "▁git": 13372, + "▁absence": 13373, + "▁composite": 13374, + "▁fly": 13375, + "Top": 13376, + "物业管理有限公司": 13377, + "▁ads": 13378, + "DM": 13379, + "▁Lab": 13380, + "PASS": 13381, + "that": 13382, + "即将": 13383, + "这个问题的答案": 13384, + "▁metabolism": 13385, + "▁taste": 13386, + "Rel": 13387, + "▁Van": 13388, + "otox": 13389, + "bell": 13390, + "▁Give": 13391, + "▁Today": 13392, + "cam": 13393, + "aneously": 13394, + "就有": 13395, + "故障": 13396, + "▁columns": 13397, + "悔罪": 13398, + "sis": 13399, + "▁Through": 13400, + "▁Input": 13401, + "▁rom": 13402, + "▁Family": 13403, + "▁concern": 13404, + "▁watching": 13405, + "▁cabin": 13406, + ",,": 13407, + "行驶": 13408, + "▁renew": 13409, + "(()": 13410, + "eh": 13411, + "千米": 13412, + "▁metast": 13413, + "▁visitors": 13414, + "喜欢的": 13415, + "vin": 13416, + "▁Food": 13417, + "Dialog": 13418, + "看见": 13419, + "▁Next": 13420, + "专辑": 13421, + "▁SE": 13422, + "进而": 13423, + "无限": 13424, + "▁blank": 13425, + "GO": 13426, + "▁ordered": 13427, + "▁depression": 13428, + "写的": 13429, + "▁dance": 13430, + "难度": 13431, + "▁演员": 13432, + "我说": 13433, + "档案": 13434, + "黑龙江省": 13435, + "调研": 13436, + "▁Police": 13437, + "▁pregnancy": 13438, + "olver": 13439, + "▁chapter": 13440, + "▁functionality": 13441, + "实数": 13442, + "▁AC": 13443, + "▁assign": 13444, + "NET": 13445, + "▁其二": 13446, + "▁actor": 13447, + "oun": 13448, + "▁denomin": 13449, + "▁smallest": 13450, + "对手": 13451, + "▁matching": 13452, + "▁Mid": 13453, + "virtual": 13454, + "▁introduction": 13455, + "▁Jeff": 13456, + "正方": 13457, + "▁btn": 13458, + "清晰": 13459, + "▁IV": 13460, + "flu": 13461, + "▁Israel": 13462, + "两次": 13463, + "第五百": 13464, + "▁Jud": 13465, + "这个问题的答案是": 13466, + "▁creates": 13467, + "▁seeking": 13468, + "预计": 13469, + "▁gap": 13470, + "画面": 13471, + "▁tickets": 13472, + "inv": 13473, + "▁mutations": 13474, + "URE": 13475, + "▁inn": 13476, + "▁基本": 13477, + "▁Die": 13478, + "Async": 13479, + "王某": 13480, + "▁元": 13481, + "▁Common": 13482, + "rection": 13483, + "住宅": 13484, + "▁papers": 13485, + "porter": 13486, + "可知": 13487, + "week": 13488, + "▁manip": 13489, + "pand": 13490, + "oplas": 13491, + "步行": 13492, + "▁desc": 13493, + "PV": 13494, + "got": 13495, + "▁totally": 13496, + "名为": 13497, + "减刑建议": 13498, + "人群": 13499, + "实际上": 13500, + "odo": 13501, + "▁induction": 13502, + "WN": 13503, + "returns": 13504, + "Sm": 13505, + "风景": 13506, + "BM": 13507, + "nsel": 13508, + "migrations": 13509, + "收集": 13510, + "▁absolutely": 13511, + "▁anywhere": 13512, + "usep": 13513, + "的热": 13514, + "▁Graph": 13515, + "▁mand": 13516, + "wait": 13517, + "▁Sem": 13518, + "Num": 13519, + "功率": 13520, + "iginally": 13521, + "▁Jones": 13522, + "agent": 13523, + "▁injuries": 13524, + "▁Index": 13525, + "rent": 13526, + "▁newsp": 13527, + "▁permission": 13528, + "▁referred": 13529, + "的起诉": 13530, + "研究所": 13531, + "飞机": 13532, + "不需要": 13533, + "▁Mic": 13534, + "▁websites": 13535, + "GS": 13536, + "简单的": 13537, + "▁Bang": 13538, + "Ke": 13539, + "地的": 13540, + "▁Studies": 13541, + "▁habit": 13542, + "迟延履行期间的债务利息": 13543, + "展现": 13544, + "ework": 13545, + "ARY": 13546, + "▁yellow": 13547, + "▁Southern": 13548, + "▁battle": 13549, + "▁performing": 13550, + "▁viral": 13551, + "▁acquired": 13552, + "对罪犯": 13553, + "▁Week": 13554, + "▁compute": 13555, + "ortunately": 13556, + "▁exit": 13557, + "标志": 13558, + "▁в": 13559, + "ASE": 13560, + "孩子的": 13561, + "▁crucial": 13562, + "▁therap": 13563, + "database": 13564, + "localhost": 13565, + "storage": 13566, + "哈尔": 13567, + "hpp": 13568, + "onto": 13569, + "减去有期徒刑": 13570, + "▁sqrt": 13571, + "▁bridge": 13572, + "小说网": 13573, + "flex": 13574, + "告诉我": 13575, + "▁singer": 13576, + "▁actress": 13577, + "条文": 13578, + "Nav": 13579, + "小于": 13580, + "尽管": 13581, + "charge": 13582, + "▁assets": 13583, + "清单": 13584, + "▁Download": 13585, + "电器": 13586, + "▁Live": 13587, + "secret": 13588, + "中有": 13589, + "平安": 13590, + "TYPE": 13591, + "流动": 13592, + "gb": 13593, + "none": 13594, + "lie": 13595, + "▁Full": 13596, + "latest": 13597, + "▁Report": 13598, + "你是": 13599, + "到达": 13600, + "今日": 13601, + "创意": 13602, + "know": 13603, + "▁recruit": 13604, + "ocated": 13605, + "▁encounter": 13606, + "云南": 13607, + "军事": 13608, + "▁modules": 13609, + "▁gran": 13610, + "十七条": 13611, + "▁bigger": 13612, + "▁studying": 13613, + "▁lowest": 13614, + "不出": 13615, + "考察": 13616, + "▁Task": 13617, + "Host": 13618, + "▁Awards": 13619, + "usepackage": 13620, + "future": 13621, + "个体": 13622, + "▁Coast": 13623, + "▁bench": 13624, + "▁visible": 13625, + "▁Ox": 13626, + "pkg": 13627, + "地下": 13628, + "身高": 13629, + "▁;\\": 13630, + "▁Gar": 13631, + "▁introduce": 13632, + "工人": 13633, + "~~~~": 13634, + "专利": 13635, + "损害": 13636, + "east": 13637, + "▁thermal": 13638, + "岁的": 13639, + "bitr": 13640, + "▁sugar": 13641, + "▁infections": 13642, + "而已": 13643, + "Long": 13644, + "西方": 13645, + "▁Response": 13646, + "▁login": 13647, + "▁codes": 13648, + "是以": 13649, + "济南": 13650, + "microsoft": 13651, + "分局": 13652, + "rick": 13653, + "▁Force": 13654, + "几天": 13655, + "▁Linux": 13656, + "▁magazine": 13657, + "作家": 13658, + "ori": 13659, + "▁bon": 13660, + "的行为": 13661, + "实习": 13662, + "任意": 13663, + "▁Po": 13664, + "长沙": 13665, + "lay": 13666, + "市民": 13667, + "▁Source": 13668, + "警察": 13669, + "▁abuse": 13670, + "告知": 13671, + "▁mob": 13672, + "占地": 13673, + "BR": 13674, + "▁Fund": 13675, + "▁•": 13676, + "▁wal": 13677, + "properties": 13678, + "所得": 13679, + "efully": 13680, + "清洗": 13681, + "▁Station": 13682, + "▁suggesting": 13683, + "ilib": 13684, + "▁stroke": 13685, + "变量": 13686, + "asi": 13687, + "ecraft": 13688, + "Cs": 13689, + "▁superior": 13690, + "ando": 13691, + "▁appreciate": 13692, + "有时": 13693, + "▁healthcare": 13694, + "脂肪": 13695, + "低于": 13696, + "nJust": 13697, + "▁theoretical": 13698, + "路上": 13699, + "▁PART": 13700, + "石油": 13701, + "爱好": 13702, + "日报": 13703, + "LY": 13704, + "hol": 13705, + "vely": 13706, + "▁critic": 13707, + "▁winner": 13708, + "广州市": 13709, + "nCol": 13710, + "▁Creat": 13711, + "长方": 13712, + "QU": 13713, + "▁consumers": 13714, + "设定": 13715, + "边的": 13716, + "每个人": 13717, + "▁singles": 13718, + "nCON": 13719, + "▁aircraft": 13720, + "是最": 13721, + "▁roots": 13722, + "MENT": 13723, + "▁broadcast": 13724, + "teen": 13725, + "een": 13726, + "▁anonymous": 13727, + "▁oste": 13728, + "tons": 13729, + "▁ju": 13730, + "Math": 13731, + "kt": 13732, + "▁Member": 13733, + "▁compens": 13734, + "▁clust": 13735, + "行政处罚": 13736, + "▁Mike": 13737, + "▁Http": 13738, + "}`": 13739, + "办事": 13740, + "实验室": 13741, + "▁entertain": 13742, + "▁tracks": 13743, + "Deb": 13744, + "nan": 13745, + "美好": 13746, + "▁Pennsylvania": 13747, + "Tests": 13748, + "将其": 13749, + "▁southern": 13750, + "效益": 13751, + "nCare": 13752, + "一代": 13753, + "▁hack": 13754, + "▁govern": 13755, + "想象": 13756, + "unning": 13757, + "repository": 13758, + "公寓": 13759, + "副书记": 13760, + "大队": 13761, + "▁rul": 13762, + "家族": 13763, + "▁Chris": 13764, + "▁buffer": 13765, + "打印": 13766, + "urers": 13767, + "utable": 13768, + "适宜": 13769, + "Vector": 13770, + "La": 13771, + "▁vectors": 13772, + "callback": 13773, + "▁Appro": 13774, + "URPOSE": 13775, + "罚金": 13776, + "redu": 13777, + "WARE": 13778, + "▁migr": 13779, + "▁Jersey": 13780, + "编号": 13781, + "▁filename": 13782, + "price": 13783, + "\\'\\'\\'\\": 13784, + "onom": 13785, + "rium": 13786, + "uts": 13787, + "▁forced": 13788, + "▁reader": 13789, + "在执行过程中": 13790, + "iverse": 13791, + "▁figures": 13792, + "▁Hard": 13793, + "▁Request": 13794, + "ZE": 13795, + "▁movies": 13796, + "omp": 13797, + "reams": 13798, + "▁cream": 13799, + "override": 13800, + "他说": 13801, + "▁prevalence": 13802, + "▁faith": 13803, + "课题": 13804, + "▁adds": 13805, + "▁Rh": 13806, + "anna": 13807, + "模块": 13808, + "布局": 13809, + "体重": 13810, + "新技术": 13811, + "▁exceed": 13812, + "女子": 13813, + "mega": 13814, + "tk": 13815, + "rons": 13816, + "▁sister": 13817, + "防控": 13818, + "你可以": 13819, + "▁Cost": 13820, + "resources": 13821, + "▁contemporary": 13822, + "很快": 13823, + "鸡蛋": 13824, + "▁装": 13825, + "▁Lord": 13826, + "留下": 13827, + "▁kinds": 13828, + "ushed": 13829, + "▁modeling": 13830, + "很好的": 13831, + "外国": 13832, + "▁Spain": 13833, + "▁principal": 13834, + "▁Bow": 13835, + "▁FC": 13836, + "▁paint": 13837, + "页面": 13838, + "fd": 13839, + "riate": 13840, + "真的是": 13841, + "repre": 13842, + "本院受理后": 13843, + "造型": 13844, + "监控": 13845, + "builder": 13846, + "▁qualified": 13847, + "}\"": 13848, + "▁illness": 13849, + "bat": 13850, + "▁sav": 13851, + "体制": 13852, + "▁houses": 13853, + "▁Jesus": 13854, + "Last": 13855, + "▁wheel": 13856, + "基本上": 13857, + "▁county": 13858, + "dim": 13859, + "oned": 13860, + "hyth": 13861, + "▁encourage": 13862, + "工厂": 13863, + "的主": 13864, + "▁Ell": 13865, + "▁Integr": 13866, + "名下": 13867, + "rev": 13868, + "的应用": 13869, + "ategy": 13870, + "▁fell": 13871, + "▁succeed": 13872, + "知乎": 13873, + "当中": 13874, + "Java": 13875, + "应予准许": 13876, + "电动": 13877, + "assertEquals": 13878, + "剥夺": 13879, + "ovie": 13880, + "▁ticket": 13881, + "顺序": 13882, + "天天": 13883, + "▁featuring": 13884, + "第五百一十九": 13885, + "commun": 13886, + "▁Methods": 13887, + "▁Phot": 13888, + "nFalse": 13889, + "pip": 13890, + ">>>": 13891, + "▁Take": 13892, + "▁patch": 13893, + "将会": 13894, + "nwith": 13895, + "▁correlated": 13896, + "nset": 13897, + "▁unable": 13898, + "ployment": 13899, + "▁employee": 13900, + "▁holding": 13901, + "});": 13902, + "▁orth": 13903, + "计划生育": 13904, + "Gr": 13905, + "▁bron": 13906, + "Height": 13907, + "program": 13908, + "通讯": 13909, + "amber": 13910, + "▁concepts": 13911, + "▁Where": 13912, + "▁teen": 13913, + "nEnglish": 13914, + "azure": 13915, + "nWhy": 13916, + "▁Hom": 13917, + "▁ride": 13918, + "▁massive": 13919, + "药品": 13920, + "改进": 13921, + "CG": 13922, + "ologist": 13923, + "▁insight": 13924, + "▁vulner": 13925, + "无线": 13926, + "▁Integer": 13927, + "noon": 13928, + "▁opposite": 13929, + "指南": 13930, + "分数": 13931, + "fun": 13932, + "题主": 13933, + "▁dataset": 13934, + "oprote": 13935, + "ishop": 13936, + "▁earned": 13937, + "漂亮": 13938, + "▁substantial": 13939, + "▁α": 13940, + "uset": 13941, + "','": 13942, + "nFind": 13943, + "▁officers": 13944, + "▁situations": 13945, + "园区": 13946, + "我要": 13947, + "▁kick": 13948, + "▁mine": 13949, + "▁Manager": 13950, + "评为": 13951, + "lan": 13952, + "loop": 13953, + "mann": 13954, + "▁scientists": 13955, + "▁largely": 13956, + "▁consec": 13957, + "Parameter": 13958, + "reprene": 13959, + "stat": 13960, + "分离": 13961, + "days": 13962, + "▁passing": 13963, + "▁challenging": 13964, + "▁suppress": 13965, + "clusions": 13966, + "景观": 13967, + "对应": 13968, + "防治": 13969, + "sf": 13970, + "适量": 13971, + "topic": 13972, + "障碍": 13973, + "▁lect": 13974, + "▁PA": 13975, + "▁Prop": 13976, + "▁shock": 13977, + "▁nearby": 13978, + "▁composed": 13979, + "▁temp": 13980, + "▁FROM": 13981, + "▁females": 13982, + "▁rapidly": 13983, + "也不是": 13984, + "▁intensity": 13985, + "▁Senate": 13986, + "izable": 13987, + "▁invent": 13988, + "▁Standard": 13989, + "对此": 13990, + "ummy": 13991, + "▁Hor": 13992, + "车程约": 13993, + "随后": 13994, + "三月": 13995, + "付款": 13996, + "▁AP": 13997, + "▁Opt": 13998, + "好看": 13999, + "▁drama": 14000, + "nYes": 14001, + "一级": 14002, + "▁normally": 14003, + "yled": 14004, + "▁PO": 14005, + "▁guest": 14006, + "odium": 14007, + "ULAR": 14008, + "秘书": 14009, + "途径": 14010, + "不见": 14011, + "海洋": 14012, + "致力": 14013, + "lass": 14014, + "ogether": 14015, + "第一节": 14016, + "▁с": 14017, + "男子": 14018, + "▁Wis": 14019, + "cn": 14020, + "diff": 14021, + "▁environments": 14022, + "▁resolve": 14023, + "itage": 14024, + "意外": 14025, + "加倍支付": 14026, + "推理": 14027, + "ownt": 14028, + "Book": 14029, + "硬件": 14030, + "▁(\\'": 14031, + "awn": 14032, + "▁portion": 14033, + "▁Americans": 14034, + "El": 14035, + "场所": 14036, + "餐饮": 14037, + "▁Hotel": 14038, + "▁acting": 14039, + "▁prelim": 14040, + "书法": 14041, + "逐步": 14042, + "三大": 14043, + "李某": 14044, + "看来": 14045, + "如不服本裁定": 14046, + "American": 14047, + "▁Dub": 14048, + "▁iPhone": 14049, + "▁coordinates": 14050, + "acr": 14051, + "▁issued": 14052, + "REE": 14053, + "养殖": 14054, + "▁attacks": 14055, + "关心": 14056, + "▁prison": 14057, + "▁wa": 14058, + "▁Jac": 14059, + "isa": 14060, + "▁MIT": 14061, + "群体": 14062, + "team": 14063, + "小编": 14064, + "▁saved": 14065, + "▁begins": 14066, + "mond": 14067, + "从来": 14068, + "概率": 14069, + "▁northern": 14070, + "关节": 14071, + "玉米": 14072, + "接近": 14073, + "个数": 14074, + "▁causing": 14075, + "▁{\\'": 14076, + "▁understood": 14077, + "第二百零": 14078, + "yes": 14079, + "修复": 14080, + "layer": 14081, + "预算": 14082, + "Please": 14083, + "▁entr": 14084, + "▁Illinois": 14085, + "相关的": 14086, + "▁flowers": 14087, + "个性": 14088, + "▁san": 14089, + "那样": 14090, + "▁targeted": 14091, + "也不会": 14092, + "▁${\\\\": 14093, + "Pay": 14094, + "andy": 14095, + "▁monthly": 14096, + "USER": 14097, + "▁personnel": 14098, + "▁availability": 14099, + "第二节": 14100, + "elly": 14101, + "阳县": 14102, + "材质": 14103, + "东南": 14104, + "水果": 14105, + "▁Corporation": 14106, + "▁producer": 14107, + "▁narrow": 14108, + "azy": 14109, + "▁estimates": 14110, + "▁Contact": 14111, + "以上的": 14112, + "cert": 14113, + "一道": 14114, + "▁ble": 14115, + "▁references": 14116, + "还没": 14117, + "▁eating": 14118, + "医师": 14119, + "lights": 14120, + "可爱": 14121, + "▁significance": 14122, + "▁Physics": 14123, + "Writer": 14124, + "asm": 14125, + "▁grown": 14126, + "VERSION": 14127, + "辽宁省": 14128, + "竟然": 14129, + "▁strings": 14130, + "etc": 14131, + "其次": 14132, + "▁honest": 14133, + "spect": 14134, + "UID": 14135, + "▁distingu": 14136, + "公益": 14137, + "nIm": 14138, + "limit": 14139, + "Doc": 14140, + "▁username": 14141, + "▁pH": 14142, + "必然": 14143, + "的申请": 14144, + "nAd": 14145, + "▁operators": 14146, + ")\"": 14147, + "icients": 14148, + "/\\\\": 14149, + "交换": 14150, + "otion": 14151, + "Properties": 14152, + "▁IO": 14153, + "陕西": 14154, + "▁convenient": 14155, + "▁responsibility": 14156, + "为此": 14157, + "▁foundation": 14158, + "▁Children": 14159, + "esting": 14160, + "amic": 14161, + "▁revers": 14162, + "▁summary": 14163, + "保健": 14164, + "▁spl": 14165, + "Category": 14166, + "▁Korea": 14167, + "▁Wales": 14168, + "ificial": 14169, + "▁MP": 14170, + "▁###": 14171, + "▁integers": 14172, + "UTH": 14173, + "emy": 14174, + "alian": 14175, + "超市": 14176, + "▁antigen": 14177, + "▁Radio": 14178, + "▁privacy": 14179, + "▁handling": 14180, + "▁stimulation": 14181, + "▁peace": 14182, + "▁Georgia": 14183, + "把握": 14184, + "PORT": 14185, + "▁arrang": 14186, + "氛围": 14187, + "nfortunately": 14188, + "▁platforms": 14189, + "呼吸": 14190, + "NC": 14191, + "▁ours": 14192, + "▁Jo": 14193, + "▁Kh": 14194, + "▁quantitative": 14195, + "▁Maybe": 14196, + "的中": 14197, + "▁occasion": 14198, + "HL": 14199, + "▁concerned": 14200, + "▁tracking": 14201, + "国务院": 14202, + "释放": 14203, + "\"#": 14204, + "▁reactions": 14205, + "CharField": 14206, + "HC": 14207, + "nQu": 14208, + "▁polymer": 14209, + "▁risks": 14210, + "很少": 14211, + "张某": 14212, + "bash": 14213, + "fetch": 14214, + "你会": 14215, + "姐姐": 14216, + "▁parking": 14217, + "小米": 14218, + "▁Micro": 14219, + "eting": 14220, + "resolve": 14221, + "▁Store": 14222, + "verter": 14223, + "▁reviewed": 14224, + "▁Saint": 14225, + "▁guarantee": 14226, + "取值": 14227, + "iest": 14228, + "▁implications": 14229, + "的能力": 14230, + "系数": 14231, + "结果表明": 14232, + "从轻处罚": 14233, + "▁purchased": 14234, + "ERROR": 14235, + "erly": 14236, + "▁busy": 14237, + "▁hence": 14238, + "▁Francisco": 14239, + "▁assembly": 14240, + "大连": 14241, + "▁总部": 14242, + "不错的": 14243, + "▁/>": 14244, + "▁programme": 14245, + "携带": 14246, + "exe": 14247, + "详情": 14248, + "large": 14249, + "部位": 14250, + "▁Who": 14251, + "comput": 14252, + "imately": 14253, + "▁compound": 14254, + "▁Mah": 14255, + "▁Saf": 14256, + "▁Ul": 14257, + "tint": 14258, + "NESS": 14259, + "inals": 14260, + "hemistry": 14261, + "ieves": 14262, + "可见": 14263, + "也在": 14264, + "都没": 14265, + "▁Unit": 14266, + "▁callback": 14267, + "▁clubs": 14268, + "真正的": 14269, + "EFAULT": 14270, + "▁respir": 14271, + "▁flexible": 14272, + "加速": 14273, + "带来的": 14274, + "舞台": 14275, + "和解": 14276, + "▁interests": 14277, + "▁destination": 14278, + "累计": 14279, + "erior": 14280, + "/>\\": 14281, + "▁proved": 14282, + "actic": 14283, + "▁bathroom": 14284, + "sex": 14285, + "承诺": 14286, + "▁Space": 14287, + "五月": 14288, + "▁react": 14289, + "劳务": 14290, + "播放": 14291, + "节能": 14292, + "▁citizens": 14293, + "▁pitch": 14294, + "ista": 14295, + "▁managers": 14296, + "游客": 14297, + "尊重": 14298, + "▁entirely": 14299, + "▁tip": 14300, + "▁dates": 14301, + "▁applying": 14302, + "可在判决书送达之日起十五日内": 14303, + "危机": 14304, + "▁commitment": 14305, + "▁machines": 14306, + "地铁": 14307, + "▁entries": 14308, + "▁surfaces": 14309, + "展览": 14310, + "▁Video": 14311, + "ipheral": 14312, + "▁\"\"\\": 14313, + "▁Kent": 14314, + "nas": 14315, + "▁Johnson": 14316, + "▁Illuminate": 14317, + "十二月": 14318, + "▁Pacific": 14319, + "为何": 14320, + "▁周": 14321, + "间的": 14322, + "shared": 14323, + "接受教育": 14324, + "加大": 14325, + "▁violence": 14326, + "▁mountain": 14327, + "▁Democratic": 14328, + "namespace": 14329, + "▁domestic": 14330, + "小数": 14331, + "ochond": 14332, + "十八条": 14333, + "▁coc": 14334, + "第二百五十三": 14335, + "▁dental": 14336, + "▁Low": 14337, + "视觉": 14338, + "junit": 14339, + "▁Problem": 14340, + "▁enabled": 14341, + "近期": 14342, + "nTe": 14343, + "国的": 14344, + "▁eg": 14345, + "iner": 14346, + "抚养费": 14347, + "\")]\\": 14348, + "站在": 14349, + "Tube": 14350, + "initial": 14351, + "ometimes": 14352, + "▁fle": 14353, + "战士": 14354, + "ju": 14355, + "ellite": 14356, + "总统": 14357, + "▁surve": 14358, + "的本次执行程序": 14359, + "▁assuming": 14360, + "常规": 14361, + "bd": 14362, + "assertEqual": 14363, + "III": 14364, + "▁bacteria": 14365, + "▁ABC": 14366, + "▁weap": 14367, + "bian": 14368, + "法律法规": 14369, + "▁antibody": 14370, + "Fi": 14371, + "Mock": 14372, + "外观": 14373, + "电压": 14374, + "养老": 14375, + "istered": 14376, + "设立": 14377, + "▁Ide": 14378, + "补偿": 14379, + "▁pert": 14380, + "得到了": 14381, + "mir": 14382, + "Ne": 14383, + "▁inflammatory": 14384, + "vc": 14385, + "▁Mathematics": 14386, + "isition": 14387, + "plugins": 14388, + "婚后": 14389, + "▁museum": 14390, + "混凝": 14391, + "明的": 14392, + "不然": 14393, + "消失": 14394, + "▁Far": 14395, + "bury": 14396, + "ibli": 14397, + "▁verify": 14398, + "SULTS": 14399, + "VM": 14400, + "▁SU": 14401, + "▁Little": 14402, + "▁export": 14403, + "xiety": 14404, + "ido": 14405, + "联赛": 14406, + "black": 14407, + "长春": 14408, + "▁sheet": 14409, + "▁Level": 14410, + "▁factory": 14411, + "▁terminal": 14412, + "申报": 14413, + "▁awards": 14414, + "▁About": 14415, + "疗效": 14416, + "优点": 14417, + "▁registration": 14418, + "icted": 14419, + "▁总部地点": 14420, + "Our": 14421, + "广播": 14422, + "iox": 14423, + "clean": 14424, + "术后": 14425, + "SF": 14426, + "▁Parliament": 14427, + "▁inflammation": 14428, + "▁我": 14429, + "rowse": 14430, + "▁Irish": 14431, + "acent": 14432, + "本院审理": 14433, + "▁concrete": 14434, + "inton": 14435, + "DateTime": 14436, + "▁Studio": 14437, + "▁reveal": 14438, + "review": 14439, + "▁Sports": 14440, + "▁NC": 14441, + "▁administrative": 14442, + "八日": 14443, + "▁ages": 14444, + "▁immediate": 14445, + "扩展": 14446, + "▁railway": 14447, + "▁Example": 14448, + "▁injection": 14449, + "inson": 14450, + "material": 14451, + "▁warranty": 14452, + "面前": 14453, + "圆的": 14454, + "▁▁▁▁▁▁▁": 14455, + "▁Ig": 14456, + "▁hospit": 14457, + "账号": 14458, + "rices": 14459, + "和社会": 14460, + "▁EU": 14461, + "江西": 14462, + "oggle": 14463, + "▁Coll": 14464, + "vo": 14465, + "▁preliminary": 14466, + "▁Account": 14467, + "承包": 14468, + "▁fantastic": 14469, + "native": 14470, + "▁SP": 14471, + "illy": 14472, + "▁Represent": 14473, + "aus": 14474, + "▁loading": 14475, + "那里": 14476, + "Head": 14477, + "▁defense": 14478, + "应对": 14479, + "nCareer": 14480, + "▁accessible": 14481, + "拘留": 14482, + "的第二": 14483, + "市委": 14484, + "Items": 14485, + "工程师": 14486, + "▁leuk": 14487, + "期限内": 14488, + "休息": 14489, + "▁bringing": 14490, + "内心": 14491, + "loader": 14492, + "八月": 14493, + "指挥": 14494, + "▁ster": 14495, + "▁emotional": 14496, + "▁enjoyed": 14497, + "ih": 14498, + "▁Promise": 14499, + "▁UI": 14500, + "指控被告人": 14501, + "▁baseline": 14502, + "图形": 14503, + "CLUS": 14504, + "▁Middle": 14505, + "nthat": 14506, + "▁characteristic": 14507, + "forward": 14508, + "▁breath": 14509, + "仪式": 14510, + "geqslant": 14511, + "▁pulmonary": 14512, + "提出上诉": 14513, + "ов": 14514, + "货款": 14515, + "孩子们": 14516, + "麻烦": 14517, + "▁census": 14518, + "气候": 14519, + "ocolate": 14520, + "商标": 14521, + "▁professor": 14522, + "gar": 14523, + "▁producing": 14524, + "▁um": 14525, + "tar": 14526, + "▁pup": 14527, + "著名": 14528, + "\\'],": 14529, + "▁recipe": 14530, + "远程": 14531, + "客观": 14532, + "aze": 14533, + "▁contributions": 14534, + "▁fault": 14535, + "▁amino": 14536, + "▁validate": 14537, + "irth": 14538, + "▁affordable": 14539, + "▁Labor": 14540, + "▁é": 14541, + "海外": 14542, + "iser": 14543, + "▁cohort": 14544, + "垂直": 14545, + "合肥": 14546, + "ifer": 14547, + "武器": 14548, + "▁metabolic": 14549, + "/)": 14550, + "submit": 14551, + "健身": 14552, + "近代": 14553, + "▁markers": 14554, + "subject": 14555, + "学的": 14556, + "该村": 14557, + "asters": 14558, + "年底": 14559, + "如实": 14560, + "校长": 14561, + "▁LI": 14562, + "▁younger": 14563, + "▁feas": 14564, + "▁interventions": 14565, + "anol": 14566, + "Queue": 14567, + "▁acids": 14568, + "▁agricult": 14569, + "于本判决": 14570, + "原审被告": 14571, + "LP": 14572, + "bral": 14573, + "chat": 14574, + "二审": 14575, + "▁赵": 14576, + "▁layers": 14577, + "▁awareness": 14578, + "▁calcium": 14579, + "\"}": 14580, + "▁attribute": 14581, + "维生素": 14582, + "产量": 14583, + "▁consequences": 14584, + "Ac": 14585, + "▁veter": 14586, + "▁migration": 14587, + "_\\\\": 14588, + "hom": 14589, + "纷纷": 14590, + "sid": 14591, + "▁Load": 14592, + "▁brands": 14593, + "enders": 14594, + "\"<": 14595, + "▁crime": 14596, + "▁fluores": 14597, + "▁trends": 14598, + "icons": 14599, + "▁endot": 14600, + "▁Williams": 14601, + "▁hepat": 14602, + "很大的": 14603, + "hus": 14604, + "投资者": 14605, + "NE": 14606, + "▁doubt": 14607, + "complete": 14608, + "▁supplement": 14609, + "▁greatly": 14610, + "▁Try": 14611, + "吃饭": 14612, + "图象": 14613, + "▁Iss": 14614, + "后期": 14615, + "紧张": 14616, + "▁noticed": 14617, + "Use": 14618, + "而不": 14619, + "▁trouble": 14620, + "▁regularly": 14621, + "▁Put": 14622, + "▁nutr": 14623, + "PASSWORD": 14624, + "纠纷一案中": 14625, + "▁Ray": 14626, + "ologists": 14627, + "合同法": 14628, + "▁tags": 14629, + "演唱": 14630, + "看起来": 14631, + "出现了": 14632, + "▁tells": 14633, + "▁males": 14634, + "▁refr": 14635, + "生活的": 14636, + "***": 14637, + "市场的": 14638, + "解决方案": 14639, + "▁Kim": 14640, + "▁Hon": 14641, + "▁operated": 14642, + "▁insights": 14643, + "条款": 14644, + "LD": 14645, + "▁acts": 14646, + "occ": 14647, + "izers": 14648, + "isting": 14649, + "▁actors": 14650, + "Gu": 14651, + "esc": 14652, + "odec": 14653, + "▁mixture": 14654, + "nrequire": 14655, + "车的": 14656, + "%;": 14657, + "血压": 14658, + "▁Ukr": 14659, + "neq": 14660, + "▁readers": 14661, + "wall": 14662, + "集团有限公司": 14663, + "▁Ren": 14664, + "issions": 14665, + "unting": 14666, + "▁missed": 14667, + "je": 14668, + "▁indeed": 14669, + "fc": 14670, + "▁terr": 14671, + "温暖": 14672, + "▁reput": 14673, + "和分析": 14674, + "不宜": 14675, + "是中国": 14676, + "星级": 14677, + "asty": 14678, + "强烈": 14679, + "▁Kn": 14680, + "苏州": 14681, + "团体": 14682, + "oga": 14683, + "▁connections": 14684, + "文艺": 14685, + "▁strains": 14686, + "食材": 14687, + "estinal": 14688, + "▁elections": 14689, + "Fore": 14690, + "六月": 14691, + "界面": 14692, + "Delete": 14693, + "zero": 14694, + "▁ms": 14695, + "▁visiting": 14696, + "bet": 14697, + "▁cutting": 14698, + "▁labels": 14699, + "命运": 14700, + "▁Whether": 14701, + "▁fro": 14702, + "otypes": 14703, + "▁FIT": 14704, + "cls": 14705, + "混凝土": 14706, + "▁Expl": 14707, + "izz": 14708, + "新型": 14709, + "不到庭": 14710, + "有时候": 14711, + "▁discrim": 14712, + "catch": 14713, + "After": 14714, + "▁facing": 14715, + "STR": 14716, + "或是": 14717, + "Files": 14718, + "▁committee": 14719, + "Python": 14720, + "▁collections": 14721, + "▁COVID": 14722, + "▁diversity": 14723, + "▁Es": 14724, + "山西": 14725, + "▁boys": 14726, + "接受教育改造": 14727, + "▁(\\\\": 14728, + "意味着": 14729, + "危险驾驶": 14730, + "▁TODO": 14731, + "reference": 14732, + "加倍支付迟延履行期间的债务利息": 14733, + "everal": 14734, + "ulture": 14735, + "events": 14736, + "Callback": 14737, + "oked": 14738, + "encode": 14739, + "是一道": 14740, + "▁pilot": 14741, + "▁Cur": 14742, + "▁proven": 14743, + "▁Cloud": 14744, + "▁req": 14745, + "\\'))\\": 14746, + "同步": 14747, + "诉讼费": 14748, + "\"));\\": 14749, + "上涨": 14750, + "▁developers": 14751, + "Non": 14752, + "ateway": 14753, + "repo": 14754, + "▁centers": 14755, + "Root": 14756, + "较为": 14757, + "法律条文": 14758, + "udden": 14759, + "支部": 14760, + "▁Vill": 14761, + "contact": 14762, + "走了": 14763, + "都很": 14764, + "线路": 14765, + "世界上": 14766, + "▁dial": 14767, + "aki": 14768, + "每月": 14769, + "▁politicians": 14770, + "▁freedom": 14771, + "opes": 14772, + "厨房": 14773, + "▁Sea": 14774, + "[[": 14775, + "刑事诉讼法": 14776, + "大师": 14777, + "▁painting": 14778, + "使用的": 14779, + "▁solving": 14780, + "▁moth": 14781, + "berry": 14782, + "▁routine": 14783, + "▁rid": 14784, + "电路": 14785, + "▁Learning": 14786, + "▁upcoming": 14787, + "▁Among": 14788, + "▁apopt": 14789, + "▁walls": 14790, + "瞬间": 14791, + "处的": 14792, + "\\'])\\": 14793, + "▁Ham": 14794, + "letter": 14795, + "▁mini": 14796, + "漫画": 14797, + "主角": 14798, + "green": 14799, + "ouston": 14800, + "▁shipping": 14801, + "传票": 14802, + "Pad": 14803, + "▁saving": 14804, + "相反": 14805, + "▁Auto": 14806, + "灵活": 14807, + "给了": 14808, + "▁Luc": 14809, + "▁descript": 14810, + "学者": 14811, + "Param": 14812, + "▁glob": 14813, + "▁Sym": 14814, + "福利": 14815, + "▁edges": 14816, + "▁realize": 14817, + "▁ingredients": 14818, + "▁teeth": 14819, + "月至": 14820, + "▁panc": 14821, + "about": 14822, + "▁Patients": 14823, + "物的": 14824, + "▁bot": 14825, + "优先": 14826, + "▁vocals": 14827, + "▁nerve": 14828, + "details": 14829, + "入住": 14830, + "forcement": 14831, + "审计": 14832, + "申请撤诉": 14833, + "▁maintained": 14834, + "\\\\((\\\\)": 14835, + "认知": 14836, + "履行给付": 14837, + "▁Such": 14838, + "▁denominator": 14839, + "▁gal": 14840, + "水的": 14841, + "▁closer": 14842, + "国内外": 14843, + "政治权利": 14844, + "▁Box": 14845, + "▁MR": 14846, + "▁magnitude": 14847, + "电机": 14848, + "linux": 14849, + "▁Emp": 14850, + "▁increasingly": 14851, + "}>\\": 14852, + "▁装帧": 14853, + "EP": 14854, + "又是": 14855, + "▁rows": 14856, + "▁paths": 14857, + "学员": 14858, + "scripts": 14859, + "▁standing": 14860, + "▁ban": 14861, + "move": 14862, + "feature": 14863, + "▁clock": 14864, + "bul": 14865, + "更有": 14866, + "男性": 14867, + "nBack": 14868, + "nPh": 14869, + "上一": 14870, + "▁Federal": 14871, + "除以": 14872, + "endl": 14873, + "tv": 14874, + "选手": 14875, + "▁bodies": 14876, + "▁warning": 14877, + "▁believed": 14878, + "▁Carl": 14879, + "▁behavioral": 14880, + "(@": 14881, + "▁dent": 14882, + "分行": 14883, + "▁conclusion": 14884, + "fall": 14885, + "▁Places": 14886, + "▁superv": 14887, + "民警": 14888, + "▁Another": 14889, + "quality": 14890, + "OB": 14891, + "全市": 14892, + "tle": 14893, + "▁Cond": 14894, + "他在": 14895, + "▁cro": 14896, + "▁margin": 14897, + "教程": 14898, + "根据题意": 14899, + "抑制": 14900, + "号刑事判决": 14901, + "Mar": 14902, + "西南": 14903, + "paper": 14904, + "▁shares": 14905, + "▁Spe": 14906, + "▁Sciences": 14907, + "▁elig": 14908, + "▁characterize": 14909, + "▁fiber": 14910, + "▁Op": 14911, + "▁PARTIC": 14912, + "▁Cou": 14913, + "CHANT": 14914, + "▁prediction": 14915, + "▁guidance": 14916, + "痛苦": 14917, + "知识的": 14918, + "▁repo": 14919, + "▁historic": 14920, + "了吗": 14921, + "hemes": 14922, + "bootstrap": 14923, + "▁organized": 14924, + "▁sole": 14925, + "▁bedroom": 14926, + "▁高": 14927, + "百年": 14928, + "▁promin": 14929, + "upyter": 14930, + "articles": 14931, + "DD": 14932, + "▁mouth": 14933, + "usetts": 14934, + "idal": 14935, + "▁amounts": 14936, + "▁polym": 14937, + "oly": 14938, + "achusetts": 14939, + "那就": 14940, + "▁Henry": 14941, + "nDuring": 14942, + "▁execute": 14943, + "▁goods": 14944, + "土壤": 14945, + "▁facilitate": 14946, + "nSc": 14947, + "▁complicated": 14948, + "▁domains": 14949, + "TF": 14950, + "▁Dan": 14951, + "积累": 14952, + "oust": 14953, + "hour": 14954, + "锻炼": 14955, + "Range": 14956, + "eras": 14957, + "nHi": 14958, + "▁scan": 14959, + "▁publication": 14960, + "剥夺政治权利": 14961, + "▁involvement": 14962, + "oop": 14963, + "▁attributes": 14964, + "icture": 14965, + "ANCE": 14966, + "依赖": 14967, + "Pat": 14968, + "omething": 14969, + "▁Jon": 14970, + "▁合作作品": 14971, + "专项": 14972, + "▁lay": 14973, + "stein": 14974, + "▁Walk": 14975, + "▁afternoon": 14976, + "▁religious": 14977, + "UC": 14978, + "Mapping": 14979, + "ANG": 14980, + "还没有": 14981, + "Git": 14982, + "拒不到庭": 14983, + "▁arbitr": 14984, + "浓度": 14985, + "▁validation": 14986, + "面向": 14987, + "▁中": 14988, + "ilateral": 14989, + "▁mi": 14990, + "▁Document": 14991, + "公主": 14992, + "ERCHANT": 14993, + "▁underw": 14994, + "design": 14995, + "五日": 14996, + "▁aden": 14997, + "ika": 14998, + "▁focuses": 14999, + "chi": 15000, + "▁pit": 15001, + "九日": 15002, + "不受": 15003, + "从小": 15004, + "▁Component": 15005, + "iga": 15006, + "▁predicted": 15007, + "▁Auth": 15008, + "中华人民共和国行政": 15009, + "关闭": 15010, + "▁mathematics": 15011, + "人为": 15012, + "无异议": 15013, + "谢谢": 15014, + "▁HN": 15015, + "▁searching": 15016, + "▁signature": 15017, + "▁dinner": 15018, + "▁perfectly": 15019, + "▁advertising": 15020, + "acer": 15021, + "▁enables": 15022, + "言情": 15023, + "%%": 15024, + "nbsp": 15025, + "yaml": 15026, + "▁maxim": 15027, + "away": 15028, + "▁numerical": 15029, + "acker": 15030, + "▁小": 15031, + "▁Fair": 15032, + "▁agencies": 15033, + "Values": 15034, + "▁neck": 15035, + "▁PURPOSE": 15036, + "▁Joe": 15037, + "接着": 15038, + "农户": 15039, + "财产可供执行": 15040, + "同期": 15041, + "burgh": 15042, + "serial": 15043, + "consin": 15044, + "的朋友": 15045, + "对被告": 15046, + "support": 15047, + "上去": 15048, + "山西省": 15049, + "赚钱": 15050, + "driver": 15051, + "▁Andrew": 15052, + "▁discovery": 15053, + "▁priority": 15054, + "反正": 15055, + "▁profiles": 15056, + "▁championship": 15057, + "▁kil": 15058, + "▁constitu": 15059, + "rophy": 15060, + "▁warn": 15061, + "▁inhibitors": 15062, + "相似": 15063, + "▁Greek": 15064, + "▁proliferation": 15065, + "提出的": 15066, + "定理": 15067, + "theme": 15068, + "各自": 15069, + "▁marriage": 15070, + "hor": 15071, + "quir": 15072, + "的技术": 15073, + "▁stands": 15074, + "▁revenue": 15075, + "▁Digital": 15076, + "\\\\,": 15077, + "第二百六": 15078, + "▁exclusive": 15079, + "aver": 15080, + "outes": 15081, + "大大": 15082, + "▁degrad": 15083, + "flag": 15084, + "desc": 15085, + "▁Dou": 15086, + "▁Joseph": 15087, + "▁produces": 15088, + "▁attr": 15089, + "意大利": 15090, + "ropy": 15091, + "▁malign": 15092, + "辅导": 15093, + "框架": 15094, + "▁mathematical": 15095, + "万人": 15096, + "scanf": 15097, + "危险驾驶罪": 15098, + "enth": 15099, + "][\\'": 15100, + "ricular": 15101, + "▁drawn": 15102, + "上班": 15103, + "大赛": 15104, + "\"],": 15105, + "▁doors": 15106, + "question": 15107, + "若干问题": 15108, + "早期": 15109, + "▁concerning": 15110, + "九月": 15111, + "sen": 15112, + "切实": 15113, + "餐馆": 15114, + "▁bass": 15115, + "Login": 15116, + "worth": 15117, + "▁appointment": 15118, + "密度": 15119, + "▁'/": 15120, + "fusion": 15121, + "jar": 15122, + "}\\\\)\\": 15123, + "ERCHANTABILITY": 15124, + "mediated": 15125, + "plays": 15126, + "▁endl": 15127, + "depth": 15128, + "化妆": 15129, + "▁beam": 15130, + "ynt": 15131, + "Ident": 15132, + "▁plain": 15133, + "develop": 15134, + "一是": 15135, + "hard": 15136, + "named": 15137, + "FR": 15138, + "居然": 15139, + "工程有限公司": 15140, + "▁Bol": 15141, + "观念": 15142, + "ods": 15143, + "▁crisis": 15144, + "▁temperatures": 15145, + "nOther": 15146, + "纳入": 15147, + "▁dx": 15148, + "ulpt": 15149, + "stage": 15150, + "eness": 15151, + "Cor": 15152, + "▁Connect": 15153, + "на": 15154, + "整合": 15155, + "▁principles": 15156, + "业主": 15157, + "京东": 15158, + "有权": 15159, + "本质": 15160, + "▁transaction": 15161, + "serve": 15162, + "这两": 15163, + "▁wet": 15164, + "library": 15165, + "▁coefficient": 15166, + "中华人民共和国刑事诉讼法": 15167, + "\"`\\": 15168, + "\"))": 15169, + "▁dollars": 15170, + "FTWARE": 15171, + "ivari": 15172, + "▁negot": 15173, + "JS": 15174, + "▁rein": 15175, + "电视剧": 15176, + "欠款": 15177, + "▁PARTICULAR": 15178, + "▁operate": 15179, + "mys": 15180, + "('/": 15181, + "便利": 15182, + "irement": 15183, + "▁improvements": 15184, + "▁divide": 15185, + "立方": 15186, + "pur": 15187, + "▁scholar": 15188, + "▁Win": 15189, + "placement": 15190, + "▁redirect": 15191, + "▁Import": 15192, + "▁checked": 15193, + "形势": 15194, + "▁adoles": 15195, + "用途": 15196, + "▁drawing": 15197, + "▁optional": 15198, + "▁footballer": 15199, + "agues": 15200, + "起了": 15201, + "传递": 15202, + "nSe": 15203, + "▁geometry": 15204, + "▁feels": 15205, + "country": 15206, + "esides": 15207, + "▁observation": 15208, + "联社": 15209, + "小心": 15210, + "▁Islam": 15211, + "agraph": 15212, + "婴儿": 15213, + "feed": 15214, + "▁coefficients": 15215, + "▁fort": 15216, + "]:\\": 15217, + "▁DA": 15218, + "称号": 15219, + "州市中级人民法院": 15220, + "▁kinase": 15221, + "族自治": 15222, + "nAre": 15223, + "nNotes": 15224, + "gressive": 15225, + "▁campus": 15226, + "``": 15227, + "马上": 15228, + "▁capabilities": 15229, + "七日": 15230, + "求得": 15231, + "用了": 15232, + "▁suppl": 15233, + "▁Af": 15234, + "Role": 15235, + "▁chromos": 15236, + "▁decade": 15237, + "恢复执行": 15238, + "tb": 15239, + "▁大": 15240, + "elen": 15241, + "▁mock": 15242, + "▁\"#": 15243, + "aga": 15244, + "▁arrived": 15245, + "▁Taylor": 15246, + "Adapter": 15247, + "▁scatter": 15248, + "▁reasonable": 15249, + "▁boat": 15250, + "▁moves": 15251, + "▁FA": 15252, + "功效": 15253, + "▁permanent": 15254, + "Ver": 15255, + "▁Navy": 15256, + "▁fees": 15257, + "消化": 15258, + "如何看待": 15259, + "助理": 15260, + "elle": 15261, + "vs": 15262, + "致力于": 15263, + "▁completion": 15264, + "EST": 15265, + "▁tough": 15266, + "▁rib": 15267, + "express": 15268, + "orrow": 15269, + "▁Pot": 15270, + "▁Britain": 15271, + "不可能": 15272, + "回收": 15273, + "){": 15274, + "同学们": 15275, + "▁Change": 15276, + "iley": 15277, + "▁Scotland": 15278, + "视为": 15279, + "▁butter": 15280, + "算是": 15281, + "CRE": 15282, + "部队": 15283, + "▁Trust": 15284, + "▁landscape": 15285, + "定期": 15286, + "▁Cro": 15287, + "将在": 15288, + "yroid": 15289, + "▁king": 15290, + "NP": 15291, + "▁Univers": 15292, + "既然": 15293, + "▁ele": 15294, + "▁hall": 15295, + "factory": 15296, + "yo": 15297, + "ailing": 15298, + "▁SH": 15299, + "▁diagnosed": 15300, + "▁computing": 15301, + "▁infinite": 15302, + "庭审": 15303, + "ulous": 15304, + "Abstract": 15305, + "Original": 15306, + "大量的": 15307, + "上诉的": 15308, + "▁Fac": 15309, + "▁graduate": 15310, + "▁eleg": 15311, + "禁止": 15312, + "并处罚金人民币": 15313, + "力度": 15314, + "依法组成合议庭": 15315, + "▁bytes": 15316, + "▁Dar": 15317, + "timestamp": 15318, + "十一月": 15319, + "不行": 15320, + "▁Mean": 15321, + "▁dining": 15322, + "▁medi": 15323, + "▁Ont": 15324, + "▁kill": 15325, + "semble": 15326, + "▁Santa": 15327, + "赛季": 15328, + "方的": 15329, + "人都": 15330, + "▁intent": 15331, + "走向": 15332, + "orb": 15333, + "▁proportion": 15334, + "axy": 15335, + "Display": 15336, + "▁ultimately": 15337, + "▁taught": 15338, + "牺牲": 15339, + "借款本金": 15340, + "oured": 15341, + "hex": 15342, + "▁licensed": 15343, + "owa": 15344, + "scious": 15345, + "▁Should": 15346, + "▁participation": 15347, + "▁upgrade": 15348, + "▁residential": 15349, + "rovers": 15350, + "▁indicating": 15351, + "▁promising": 15352, + "回归": 15353, + "selected": 15354, + "CTION": 15355, + "ookie": 15356, + "▁kidney": 15357, + "▁Despite": 15358, + "rank": 15359, + "▁requirement": 15360, + "pu": 15361, + "}}$": 15362, + "\"_": 15363, + "Grid": 15364, + "▁Mir": 15365, + "nwhere": 15366, + "▁Vector": 15367, + "Impl": 15368, + "▁Medicine": 15369, + "依旧": 15370, + "▁Poland": 15371, + "▁recommendations": 15372, + "inations": 15373, + "的特点": 15374, + "▁Airport": 15375, + "▁artery": 15376, + "承认": 15377, + "传输": 15378, + "教育部": 15379, + "秘密": 15380, + "▁western": 15381, + "影视": 15382, + "引发": 15383, + "▁kne": 15384, + "▁Night": 15385, + "多项": 15386, + "▁debt": 15387, + "返还": 15388, + "随便": 15389, + "ald": 15390, + "季度": 15391, + "Selector": 15392, + "▁carcinoma": 15393, + "全省": 15394, + "ETHO": 15395, + "▁embry": 15396, + "▁authorities": 15397, + "PER": 15398, + "生涯": 15399, + "▁Aud": 15400, + "▁hockey": 15401, + "职责": 15402, + "区的": 15403, + "▁Default": 15404, + "▁开本": 15405, + "aux": 15406, + "Effect": 15407, + "ORS": 15408, + "pping": 15409, + "专题": 15410, + "▁explo": 15411, + "Device": 15412, + "▁eigen": 15413, + "影片": 15414, + "分享到": 15415, + "evin": 15416, + ")$,": 15417, + "MAX": 15418, + "▁innovation": 15419, + "▁ease": 15420, + "同比": 15421, + "▁quote": 15422, + "▁WH": 15423, + "▁assert": 15424, + "stra": 15425, + "▁scr": 15426, + "▁episodes": 15427, + "以下简称": 15428, + "一直在": 15429, + "wt": 15430, + "等证据证实": 15431, + "新生": 15432, + "▁apart": 15433, + "▁adequ": 15434, + "▁Cat": 15435, + "two": 15436, + "tain": 15437, + "演出": 15438, + "▁attempts": 15439, + "▁representative": 15440, + "▁Simple": 15441, + "▁metric": 15442, + "传统的": 15443, + "▁asset": 15444, + "房地产开发有限公司": 15445, + "…\\": 15446, + "iber": 15447, + "十三条": 15448, + "rosis": 15449, + "RESS": 15450, + "▁LIC": 15451, + "answer": 15452, + "bytes": 15453, + "Active": 15454, + "emp": 15455, + "▁ham": 15456, + "领先": 15457, + "初中": 15458, + "ambig": 15459, + "▁alongside": 15460, + "ucid": 15461, + "▁submitted": 15462, + "▁Express": 15463, + "▁Bern": 15464, + "▁styl": 15465, + "进去": 15466, + "▁Obama": 15467, + "自信": 15468, + "▁conversation": 15469, + "则是": 15470, + "政协": 15471, + "▁mask": 15472, + "反而": 15473, + "显得": 15474, + "gypt": 15475, + "▁periods": 15476, + "cred": 15477, + "amount": 15478, + "加盟": 15479, + "三日": 15480, + "▁Title": 15481, + "▁honor": 15482, + "▁hosted": 15483, + "他是": 15484, + "▁tech": 15485, + "赢得": 15486, + "▁weekly": 15487, + "]$": 15488, + "▁sitting": 15489, + "▁trace": 15490, + "分辨": 15491, + "▁remark": 15492, + "全村": 15493, + "▁stopped": 15494, + "directory": 15495, + "▁reward": 15496, + "▁dysfunction": 15497, + "▁addresses": 15498, + "▁gon": 15499, + "▁Region": 15500, + "▁EV": 15501, + "▁Stan": 15502, + "requency": 15503, + "原式": 15504, + "寿命": 15505, + "▁Ba": 15506, + "books": 15507, + "▁meetings": 15508, + "▁Sir": 15509, + "▁Rights": 15510, + "听到": 15511, + "敏感": 15512, + "▁Republican": 15513, + "▁explanation": 15514, + "nPop": 15515, + "Ed": 15516, + "inline": 15517, + "三条": 15518, + "若干问题的规定": 15519, + "owner": 15520, + "▁myst": 15521, + "OH": 15522, + "产生的": 15523, + "▁Sus": 15524, + "odynam": 15525, + "▁Eth": 15526, + "▁throm": 15527, + "▁马": 15528, + "▁skill": 15529, + "缺点": 15530, + "metic": 15531, + "违约": 15532, + "▁belief": 15533, + "▁biology": 15534, + "▁knock": 15535, + "wrap": 15536, + "acking": 15537, + "adel": 15538, + "族自治区": 15539, + "▁Spr": 15540, + "▁placeholder": 15541, + "}^{\\\\": 15542, + "▁Tree": 15543, + "了本案": 15544, + "▁Cas": 15545, + "▁satisfaction": 15546, + "▁screens": 15547, + "rine": 15548, + "rho": 15549, + "wing": 15550, + "▁chlor": 15551, + "▁duplic": 15552, + "GT": 15553, + "atomic": 15554, + "高端": 15555, + "boolean": 15556, + "onomy": 15557, + "\\'],\\": 15558, + "▁Chair": 15559, + "▁combine": 15560, + "▁carefully": 15561, + "liter": 15562, + "ruption": 15563, + "argo": 15564, + "▁peripheral": 15565, + "ois": 15566, + "▁rotation": 15567, + "▁Der": 15568, + "▁caught": 15569, + "▁mild": 15570, + "▁FITNESS": 15571, + "▁suscept": 15572, + "的那": 15573, + "Dr": 15574, + "大力": 15575, + "鼠标": 15576, + "ierarch": 15577, + "才会": 15578, + "Const": 15579, + "planation": 15580, + "的过程": 15581, + "cler": 15582, + "▁von": 15583, + "▁physics": 15584, + "hs": 15585, + "▁lights": 15586, + "ipse": 15587, + "▁consecutive": 15588, + "让他": 15589, + "延长": 15590, + "不敢": 15591, + "▁PD": 15592, + "仪器": 15593, + "fish": 15594, + "nesota": 15595, + "▁{@": 15596, + "规定的": 15597, + "▁吴": 15598, + "遭遇": 15599, + "▁Bad": 15600, + "地震": 15601, + "▁Creek": 15602, + "正是": 15603, + "▁Additionally": 15604, + "▁premium": 15605, + "orer": 15606, + "不懂": 15607, + "nGet": 15608, + "宇宙": 15609, + "无正当理由拒不到庭": 15610, + "▁pars": 15611, + "人力资源": 15612, + "▁Watch": 15613, + "▁Rub": 15614, + "▁decom": 15615, + "转变": 15616, + "BUG": 15617, + "member": 15618, + "的数": 15619, + "zo": 15620, + "指定的期间": 15621, + "▁synthes": 15622, + "▁employment": 15623, + "▁ancient": 15624, + "表扬": 15625, + "▁permit": 15626, + "正确答案": 15627, + "ologically": 15628, + "yard": 15629, + "▁Massachusetts": 15630, + "星期": 15631, + "很容易": 15632, + "▁activated": 15633, + "▁elevated": 15634, + "的企业": 15635, + "▁docker": 15636, + "dart": 15637, + "一只": 15638, + "起点网": 15639, + "▁nm": 15640, + "rule": 15641, + "太平": 15642, + "▁authent": 15643, + "▁printed": 15644, + "更为": 15645, + "▁expanded": 15646, + "发病": 15647, + "validate": 15648, + "▁SQL": 15649, + "▁interactive": 15650, + "iva": 15651, + "és": 15652, + "���": 15653, + "▁yesterday": 15654, + "继承": 15655, + "▁promise": 15656, + "的结果": 15657, + "▁cardiovascular": 15658, + "usher": 15659, + "▁Round": 15660, + "lot": 15661, + "▁Plus": 15662, + "ogeneous": 15663, + "iem": 15664, + "直径": 15665, + "巨大": 15666, + "classes": 15667, + "▁Jackson": 15668, + "▁fifth": 15669, + "▁Kong": 15670, + "▁Korean": 15671, + "havior": 15672, + "▁worse": 15673, + "百姓": 15674, + "▁airport": 15675, + "犯盗窃罪": 15676, + "▁precision": 15677, + "▁birthday": 15678, + "▁Brook": 15679, + "nyou": 15680, + "▁quantity": 15681, + "收获": 15682, + "▁Emer": 15683, + "▁Instead": 15684, + "企业信用": 15685, + "面上": 15686, + "舞蹈": 15687, + "要求被告": 15688, + "▁territ": 15689, + "▁restaurants": 15690, + "▁Mill": 15691, + "天地": 15692, + "部的": 15693, + "▁inverse": 15694, + "传说": 15695, + "radius": 15696, + "分析了": 15697, + "telse": 15698, + "▁je": 15699, + "前往": 15700, + "Argument": 15701, + "amps": 15702, + "发育": 15703, + "▁Sat": 15704, + "razy": 15705, + "▁planet": 15706, + "▁loaded": 15707, + "Anal": 15708, + "写出": 15709, + "olecular": 15710, + "▁discipl": 15711, + "效应": 15712, + "▁cricket": 15713, + "直接向": 15714, + "变形": 15715, + "镜头": 15716, + "斯特": 15717, + "▁tack": 15718, + "这位": 15719, + "▁readonly": 15720, + "若干问题的": 15721, + "▁Prime": 15722, + "▁Professor": 15723, + "著作": 15724, + "次数": 15725, + "电商": 15726, + "▁specify": 15727, + "onomic": 15728, + "▁investigators": 15729, + "▁parser": 15730, + "▁radical": 15731, + "obe": 15732, + "▁glo": 15733, + "lywood": 15734, + "▁basically": 15735, + "▁ske": 15736, + "疼痛": 15737, + "▁ng": 15738, + "报送": 15739, + "▁uint": 15740, + "ocate": 15741, + "获奖": 15742, + "bserv": 15743, + "reset": 15744, + "▁investors": 15745, + "▁grew": 15746, + "号民事调解书": 15747, + "datetime": 15748, + "▁circumst": 15749, + "▁OK": 15750, + "萝卜": 15751, + "▁rating": 15752, + "adi": 15753, + "三种": 15754, + "买了": 15755, + "十月": 15756, + "anches": 15757, + "▁checking": 15758, + "导师": 15759, + "▁};\\": 15760, + "aturally": 15761, + "▁truck": 15762, + "▁philosoph": 15763, + "napp": 15764, + "转型": 15765, + "ogenous": 15766, + "▁objectives": 15767, + "考研": 15768, + "▁murder": 15769, + "应急": 15770, + "老公": 15771, + "七月": 15772, + "▁trick": 15773, + "六日": 15774, + "Find": 15775, + "▁abund": 15776, + "的形式": 15777, + "▁sending": 15778, + "pattern": 15779, + "公务": 15780, + "ermal": 15781, + "▁heav": 15782, + "Mapper": 15783, + "▁anxiety": 15784, + "▁batch": 15785, + "▁vital": 15786, + "讲解": 15787, + "▁gained": 15788, + "沒有": 15789, + "▁implant": 15790, + "请您": 15791, + "vy": 15792, + "nYear": 15793, + "▁hyd": 15794, + "▁lovely": 15795, + "豆瓣读书": 15796, + "心情": 15797, + "▁dialog": 15798, + "对被执行人": 15799, + "▁supplies": 15800, + "▁Place": 15801, + "environment": 15802, + "管道": 15803, + "Profile": 15804, + "▁Cancer": 15805, + "▁sle": 15806, + "仓库": 15807, + "▁principle": 15808, + "Loader": 15809, + "adv": 15810, + "alo": 15811, + "▁requested": 15812, + "▁Right": 15813, + "▁Steve": 15814, + "▁criminal": 15815, + "▁Ball": 15816, + "▁knowing": 15817, + "Debug": 15818, + "▁Less": 15819, + "一片": 15820, + "Microsoft": 15821, + "暴力": 15822, + "共产党": 15823, + "热情": 15824, + "VS": 15825, + "▁lic": 15826, + "▁desire": 15827, + "heel": 15828, + "ydney": 15829, + "Big": 15830, + "测定": 15831, + "取值范围": 15832, + "▁libraries": 15833, + "ção": 15834, + "▁childhood": 15835, + "Rest": 15836, + "本裁定书送达后": 15837, + "▁closest": 15838, + "第一百四十四": 15839, + "igue": 15840, + "ieving": 15841, + "THER": 15842, + "xs": 15843, + "nX": 15844, + "大约": 15845, + "差不多": 15846, + "▁})": 15847, + "adesh": 15848, + "少女": 15849, + "bus": 15850, + "财富": 15851, + "每日": 15852, + "tail": 15853, + "回复": 15854, + "Ins": 15855, + "algorithm": 15856, + "▁rab": 15857, + "▁Cert": 15858, + "▁aging": 15859, + "bas": 15860, + "是连载于": 15861, + "▁advantages": 15862, + "stats": 15863, + "AK": 15864, + "[\\\\": 15865, + "▁frequent": 15866, + "履行给付金钱": 15867, + "nMay": 15868, + "▁上": 15869, + "shell": 15870, + "▁managing": 15871, + "Channel": 15872, + "种类": 15873, + "西北": 15874, + "ponential": 15875, + "▁unus": 15876, + "农村商业": 15877, + "▁Determine": 15878, + "农村信用": 15879, + "ervative": 15880, + "原创": 15881, + "▁decimal": 15882, + "inating": 15883, + "▁automatic": 15884, + "subset": 15885, + "了一些": 15886, + "logo": 15887, + "主办": 15888, + "▁alleged": 15889, + "▁forecast": 15890, + "▁mitochond": 15891, + "▁happening": 15892, + "▁glut": 15893, + "PK": 15894, + "离子": 15895, + "▁robot": 15896, + "▁comedy": 15897, + "税务": 15898, + "加床": 15899, + "XT": 15900, + "oli": 15901, + "利亚": 15902, + "病人": 15903, + "▁spr": 15904, + "Console": 15905, + "无数": 15906, + "▁meat": 15907, + "▁mining": 15908, + "▁necessarily": 15909, + "▁tea": 15910, + "缓解": 15911, + "done": 15912, + "▁thorough": 15913, + "▁outstanding": 15914, + "摄像": 15915, + "▁anticip": 15916, + "▁Case": 15917, + "▁Status": 15918, + "arry": 15919, + "▁smoking": 15920, + "▁execution": 15921, + "OC": 15922, + "▁driven": 15923, + "拍卖": 15924, + "一套": 15925, + "配件": 15926, + "舒服": 15927, + "中华人民共和国合同法": 15928, + "▁neutral": 15929, + "▁Zbl": 15930, + "同事": 15931, + "Hello": 15932, + "alert": 15933, + "▁LICENSE": 15934, + "带领": 15935, + "▁Edition": 15936, + "▁retired": 15937, + "▁meta": 15938, + "宿舍": 15939, + "审理过程中": 15940, + "▁Wisconsin": 15941, + "apos": 15942, + "多人": 15943, + "第三款": 15944, + "▁Colorado": 15945, + "▁seemed": 15946, + "aska": 15947, + "监狱服刑": 15948, + "▁designer": 15949, + "▁redist": 15950, + "▁Before": 15951, + "判决执行": 15952, + "▁conflict": 15953, + "ussion": 15954, + "窗口": 15955, + "Rev": 15956, + "办学": 15957, + "退休": 15958, + "fb": 15959, + "一句": 15960, + "ustral": 15961, + "小型": 15962, + "回忆": 15963, + "主管": 15964, + "▁informed": 15965, + "科学技术": 15966, + "▁CM": 15967, + "▁victory": 15968, + "ugs": 15969, + "▁fo": 15970, + "如实供述": 15971, + "▁granted": 15972, + "场上": 15973, + "▁measuring": 15974, + "▁sampling": 15975, + "nlet": 15976, + "Sing": 15977, + "▁Room": 15978, + "人事": 15979, + "appoint": 15980, + "▁wearing": 15981, + "▁era": 15982, + "nMembers": 15983, + "▁progn": 15984, + "////////////////": 15985, + "▁BC": 15986, + "提供被执行人": 15987, + "▁lighting": 15988, + "▁rail": 15989, + "认罪悔罪": 15990, + "后果": 15991, + "▁intersection": 15992, + "▁checks": 15993, + "城镇": 15994, + "payload": 15995, + "Note": 15996, + "▁Building": 15997, + "▁Contin": 15998, + "分享到朋友圈": 15999, + "VC": 16000, + "sdk": 16001, + "nReg": 16002, + "跟着": 16003, + "▁matters": 16004, + "▁Bon": 16005, + "▁Shop": 16006, + "前面": 16007, + "▁stretch": 16008, + "nMore": 16009, + "小孩": 16010, + "▁Ash": 16011, + "三角形的": 16012, + "▁Small": 16013, + "▁Columbia": 16014, + "名词": 16015, + "Tool": 16016, + "▁Element": 16017, + "对应的": 16018, + "▁hydrogen": 16019, + "▁Turn": 16020, + "▁Bed": 16021, + "amilton": 16022, + "▁lie": 16023, + "长时间": 16024, + "新建": 16025, + "▁determination": 16026, + "新鲜": 16027, + "高兴": 16028, + "allenge": 16029, + "▁Fox": 16030, + "▁speaking": 16031, + "激光": 16032, + "nAm": 16033, + "apore": 16034, + "▁HTTP": 16035, + "thal": 16036, + "▁Queen": 16037, + "▁trig": 16038, + "hematic": 16039, + "出席": 16040, + "球员": 16041, + "Av": 16042, + "condition": 16043, + "questions": 16044, + "打击": 16045, + "▁spectro": 16046, + "rase": 16047, + "▁statements": 16048, + "itus": 16049, + "▁WARRANTY": 16050, + "美容": 16051, + "▁kernel": 16052, + "eties": 16053, + "nClick": 16054, + "▁tube": 16055, + "▁entertainment": 16056, + "▁expectations": 16057, + "▁SOFTWARE": 16058, + "pton": 16059, + "哥哥": 16060, + "▁zip": 16061, + "印刷": 16062, + "hm": 16063, + "之日起计算": 16064, + "▁Daniel": 16065, + "speed": 16066, + "无论是": 16067, + "▁impossible": 16068, + "socket": 16069, + "拓展": 16070, + "▁filed": 16071, + "▁paying": 16072, + "▁ty": 16073, + "又有": 16074, + "▁respiratory": 16075, + "atom": 16076, + "Stud": 16077, + "cue": 16078, + "▁Ut": 16079, + "amond": 16080, + "将文章": 16081, + "▁hole": 16082, + "国庆": 16083, + "电子商务": 16084, + "前后": 16085, + "messages": 16086, + "生日": 16087, + "▁contest": 16088, + "profit": 16089, + "▁affects": 16090, + "Left": 16091, + "▁sorry": 16092, + "ilst": 16093, + "冲击": 16094, + "单纯": 16095, + "▁Block": 16096, + "onda": 16097, + "fmt": 16098, + "▁meal": 16099, + "▁moments": 16100, + "kes": 16101, + "athan": 16102, + "▁Hop": 16103, + "▁coronary": 16104, + "少数": 16105, + "照顾": 16106, + "\\\\\\": 16107, + "生效法律文书确定的义务": 16108, + "腾讯": 16109, + "审理了本案": 16110, + "OUT": 16111, + "nPre": 16112, + "财产保全": 16113, + "▁banks": 16114, + "▁determining": 16115, + "团结": 16116, + "addr": 16117, + "的就是": 16118, + "▁diagram": 16119, + "▁judge": 16120, + "eph": 16121, + "▁routes": 16122, + "▁Ok": 16123, + "机器人": 16124, + "的有": 16125, + "▁solved": 16126, + "之路": 16127, + "了吧": 16128, + "Any": 16129, + "Mem": 16130, + "▁IC": 16131, + "所需": 16132, + "将文章分享到朋友圈": 16133, + "▁Latin": 16134, + "arters": 16135, + "BB": 16136, + "stable": 16137, + "半径": 16138, + "多元": 16139, + "collection": 16140, + "▁nerv": 16141, + "▁ip": 16142, + "▁Print": 16143, + "的效果": 16144, + "▁简介": 16145, + "otyp": 16146, + "▁cov": 16147, + "inx": 16148, + "▁Ly": 16149, + "hh": 16150, + "并非": 16151, + "acon": 16152, + "switch": 16153, + "粮食": 16154, + "▁stuck": 16155, + "匹配": 16156, + "第三节": 16157, + "▁claimed": 16158, + "合金": 16159, + "▁Rod": 16160, + "psi": 16161, + "▁suggestions": 16162, + "江南": 16163, + "legate": 16164, + "▁recognize": 16165, + "arios": 16166, + "windows": 16167, + "▁repeat": 16168, + "Auto": 16169, + "男女": 16170, + "▁debug": 16171, + "哈尔滨": 16172, + "abeth": 16173, + "orous": 16174, + "▁coal": 16175, + "▁breaking": 16176, + "seud": 16177, + "▁Know": 16178, + "▁Training": 16179, + "▁leaf": 16180, + "和其他": 16181, + "六个月": 16182, + "▁province": 16183, + "▁alert": 16184, + "姑娘": 16185, + "▁Enc": 16186, + "▁dealing": 16187, + "tip": 16188, + "保修": 16189, + "未按本判决": 16190, + "▁``": 16191, + "adder": 16192, + "▁keeps": 16193, + "昨天": 16194, + "要是": 16195, + "what": 16196, + "信息公示": 16197, + "同类": 16198, + "▁sudden": 16199, + "生意": 16200, + "的解": 16201, + "下了": 16202, + "公斤": 16203, + "贫困": 16204, + "Step": 16205, + "aret": 16206, + "履行给付金钱义务": 16207, + "▁moderate": 16208, + "acher": 16209, + "regon": 16210, + "刑罚": 16211, + "直角": 16212, + "▁lunch": 16213, + "zech": 16214, + "失去": 16215, + "忘记": 16216, + "成人": 16217, + "当天": 16218, + "▁Pakistan": 16219, + "▁Harr": 16220, + "▁inhibitor": 16221, + "▁Eastern": 16222, + "scill": 16223, + "ulp": 16224, + "▁hormone": 16225, + "▁Justice": 16226, + "']\\": 16227, + "二日": 16228, + "▁wireless": 16229, + "▁estimation": 16230, + "▁Donald": 16231, + "▁flash": 16232, + "▁picking": 16233, + "所在地": 16234, + "▁stead": 16235, + "这两个": 16236, + "▁modification": 16237, + "▁bacterial": 16238, + "▁ourselves": 16239, + "batch": 16240, + "种子": 16241, + "ecl": 16242, + "▁maintaining": 16243, + "上有": 16244, + "Err": 16245, + "▁HO": 16246, + "▁Sa": 16247, + "到期": 16248, + "发表于": 16249, + "的一部": 16250, + "▁crew": 16251, + "▁arts": 16252, + "▁lipid": 16253, + "充电": 16254, + "bean": 16255, + "▁wrap": 16256, + "▁Gi": 16257, + "\");": 16258, + "▁Stock": 16259, + "gz": 16260, + "▁Dutch": 16261, + "nCONCLUS": 16262, + "医药": 16263, + "▁logo": 16264, + "▁covering": 16265, + "▁Winter": 16266, + "▁joining": 16267, + "▁constraints": 16268, + "integr": 16269, + "olester": 16270, + "including": 16271, + "主编": 16272, + "▁prefix": 16273, + "四月": 16274, + "fi": 16275, + "▁Select": 16276, + "诚信": 16277, + "IME": 16278, + "▁Jr": 16279, + "Common": 16280, + "▁politics": 16281, + "hidden": 16282, + "vi": 16283, + "vue": 16284, + "语文": 16285, + "周长": 16286, + "▁atmosphere": 16287, + "GC": 16288, + "ENRON": 16289, + "道理": 16290, + "▁Os": 16291, + "▁infected": 16292, + "反对": 16293, + "西亚": 16294, + "复印": 16295, + "精准": 16296, + "▁Theory": 16297, + "▁meth": 16298, + "奋斗": 16299, + "sleep": 16300, + "常用": 16301, + "压缩": 16302, + "存在的": 16303, + "信息化": 16304, + "▁wat": 16305, + "中药": 16306, + "水泥": 16307, + "原本": 16308, + "自动化": 16309, + "▁imagine": 16310, + "▁vaccine": 16311, + "厂商": 16312, + "▁Given": 16313, + "社交": 16314, + "防护": 16315, + "tures": 16316, + "▁Short": 16317, + "▁Section": 16318, + "▁competed": 16319, + "▁Ak": 16320, + "▁equipped": 16321, + "▁underwent": 16322, + "▁bind": 16323, + "▁lift": 16324, + "nPer": 16325, + "▁Route": 16326, + "尚未": 16327, + "labels": 16328, + "▁terror": 16329, + "▁fed": 16330, + "irty": 16331, + "▁Hong": 16332, + "▁cock": 16333, + "▁council": 16334, + "典型": 16335, + "▁Broad": 16336, + "的相关": 16337, + "反复": 16338, + "uting": 16339, + "旋转": 16340, + "▁allerg": 16341, + "▁tutorial": 16342, + "一行": 16343, + "▁vast": 16344, + "▁graduated": 16345, + "dam": 16346, + "javascript": 16347, + "神秘": 16348, + "其行为": 16349, + "▁lens": 16350, + "键盘": 16351, + "NOT": 16352, + "▁[[": 16353, + "keep": 16354, + "▁Kr": 16355, + "README": 16356, + "ifi": 16357, + "Job": 16358, + "复制": 16359, + "ogram": 16360, + "Reference": 16361, + "地质": 16362, + "成立于": 16363, + "esity": 16364, + "▁identifying": 16365, + "twitter": 16366, + "▁tro": 16367, + "xad": 16368, + "olid": 16369, + "小游戏": 16370, + "▁strip": 16371, + "eek": 16372, + "▁membership": 16373, + "tconst": 16374, + "一生": 16375, + "活性": 16376, + "地理位置": 16377, + "▁visited": 16378, + "Rule": 16379, + "一款": 16380, + "prom": 16381, + "景区": 16382, + "患者的": 16383, + "厉害": 16384, + "资讯": 16385, + "主人": 16386, + "▁Ext": 16387, + "▁entreprene": 16388, + "▁shel": 16389, + "Close": 16390, + "所示": 16391, + "公平": 16392, + "▁à": 16393, + "▁iOS": 16394, + "pload": 16395, + "changed": 16396, + "二级": 16397, + "▁colle": 16398, + "Many": 16399, + "▁wealth": 16400, + "epage": 16401, + "parameters": 16402, + "asset": 16403, + "究竟": 16404, + "▁fuck": 16405, + "▁possess": 16406, + "▁econom": 16407, + "国有": 16408, + "出庭": 16409, + "男孩": 16410, + "AMP": 16411, + "▁tall": 16412, + "局部": 16413, + "▁randomized": 16414, + "Press": 16415, + "创作的网络小说": 16416, + "Required": 16417, + "的两": 16418, + "妇女": 16419, + "uda": 16420, + "▁faces": 16421, + "▁Computer": 16422, + "山县": 16423, + "ashed": 16424, + "▁reliability": 16425, + "路线": 16426, + "马克": 16427, + "专用": 16428, + "▁dropped": 16429, + "▁Boy": 16430, + "▁assistant": 16431, + "▁Pract": 16432, + "through": 16433, + "cost": 16434, + "营造": 16435, + "截至": 16436, + "inator": 16437, + "▁Country": 16438, + "▁Down": 16439, + "你说": 16440, + "▁calculation": 16441, + "▁Valid": 16442, + "▁lifestyle": 16443, + "projects": 16444, + "SN": 16445, + "▁molecule": 16446, + "holders": 16447, + "信息公示系统": 16448, + "nOver": 16449, + "▁millions": 16450, + "▁urg": 16451, + "▁affil": 16452, + "▁isinstance": 16453, + "▁reply": 16454, + "▁Content": 16455, + "▁LED": 16456, + "each": 16457, + "▁shooting": 16458, + "对我": 16459, + "UST": 16460, + "周年": 16461, + "有利于": 16462, + "▁seats": 16463, + "飞行": 16464, + "▁产品": 16465, + "▁horse": 16466, + "nWhich": 16467, + "▁Ontario": 16468, + "▁gallery": 16469, + "▁sql": 16470, + "的条件": 16471, + "使命": 16472, + "加油": 16473, + "▁muc": 16474, + "▁engagement": 16475, + "▁complexes": 16476, + "▁preferred": 16477, + "这段": 16478, + "atile": 16479, + "seq": 16480, + "aternal": 16481, + "gment": 16482, + "是要": 16483, + "研究院": 16484, + "加热": 16485, + "▁choosing": 16486, + "▁Conf": 16487, + "▁Toronto": 16488, + "▁controvers": 16489, + "考验": 16490, + "▁tank": 16491, + "沈阳": 16492, + "企业信用信息公示系统": 16493, + "▁waves": 16494, + "级的": 16495, + "yield": 16496, + "▁Nic": 16497, + "宁夏": 16498, + "▁shouldn": 16499, + "家居": 16500, + "绿化": 16501, + "▁cytok": 16502, + "ante": 16503, + "对该": 16504, + "▁Self": 16505, + "BE": 16506, + "▁parad": 16507, + "▁golf": 16508, + "negative": 16509, + "欠条": 16510, + "▁emerging": 16511, + "▁adopted": 16512, + "nDef": 16513, + "▁bike": 16514, + "转让": 16515, + "▁Arg": 16516, + "▁fairly": 16517, + "的选择": 16518, + "▁nonlinear": 16519, + "apply": 16520, + "▁平装": 16521, + ",$": 16522, + "▁fitness": 16523, + "教练": 16524, + "取得了": 16525, + "elihood": 16526, + "▁YouTube": 16527, + "商家": 16528, + "给大家": 16529, + "你就": 16530, + "▁____": 16531, + "▁pred": 16532, + "聊天": 16533, + "▁Rs": 16534, + "▁addressed": 16535, + "▁precise": 16536, + "▁和": 16537, + "传承": 16538, + "▁rounded": 16539, + "请仔细": 16540, + "▁sustainable": 16541, + "OLD": 16542, + "ibration": 16543, + "文物": 16544, + "loom": 16545, + "也可": 16546, + "rait": 16547, + "强大": 16548, + "immun": 16549, + "▁witness": 16550, + "opl": 16551, + "Details": 16552, + "▁Collection": 16553, + "▁Has": 16554, + "TestCase": 16555, + "kind": 16556, + "▁chicken": 16557, + "Parameters": 16558, + "▁sulf": 16559, + "▁forum": 16560, + "▁drinking": 16561, + "▁bread": 16562, + "▁minister": 16563, + "▁horizontal": 16564, + "▁]\\": 16565, + "capt": 16566, + "业绩": 16567, + "开了": 16568, + "独任": 16569, + "▁guard": 16570, + "的变化": 16571, + "▁YOU": 16572, + "▁\"\\": 16573, + "▁losing": 16574, + "百万": 16575, + "邮政": 16576, + "▁bear": 16577, + "▁delicious": 16578, + "▁prof": 16579, + "▁quiet": 16580, + "显卡": 16581, + "厂家": 16582, + "Ag": 16583, + "mk": 16584, + "▁fetch": 16585, + "▁ranging": 16586, + "之下": 16587, + "▁los": 16588, + "招生": 16589, + "大家都": 16590, + "Cons": 16591, + "领域的": 16592, + "并将": 16593, + "Cell": 16594, + "proxy": 16595, + "oose": 16596, + "Vert": 16597, + "enda": 16598, + "expression": 16599, + "▁festival": 16600, + "法师": 16601, + "节奏": 16602, + "city": 16603, + "ldots": 16604, + "硬盘": 16605, + "强大的": 16606, + "eneration": 16607, + "Prot": 16608, + "▁appreciated": 16609, + "▁cable": 16610, + "▁代码": 16611, + "▁titles": 16612, + "▁queue": 16613, + "▁μ": 16614, + "nWell": 16615, + "norm": 16616, + "▁firms": 16617, + "国家企业信用信息公示系统": 16618, + "▁crash": 16619, + "nLe": 16620, + "Gen": 16621, + "▁adverse": 16622, + "\":[": 16623, + "▁marks": 16624, + "▁Material": 16625, + "地上": 16626, + "▁ampl": 16627, + "▁returning": 16628, + "provider": 16629, + "社会的": 16630, + "bing": 16631, + "ilibrium": 16632, + "rizona": 16633, + "fail": 16634, + "yz": 16635, + "▁Posted": 16636, + "▁hint": 16637, + "正本": 16638, + "MIT": 16639, + "▁\"%": 16640, + "Sync": 16641, + "▁grass": 16642, + "本裁定送达后立即生效": 16643, + "▁identical": 16644, + "abling": 16645, + "sn": 16646, + "建筑面积": 16647, + "exception": 16648, + "起诉书": 16649, + "gage": 16650, + "▁Lead": 16651, + "anti": 16652, + "▁separated": 16653, + "▁methodology": 16654, + "▁图书": 16655, + "lov": 16656, + "▁acquisition": 16657, + "▁Minnesota": 16658, + "▁extreme": 16659, + "▁consideration": 16660, + "▁Chapter": 16661, + "发送": 16662, + "▁whenever": 16663, + "Dep": 16664, + "▁physiological": 16665, + "毕业于": 16666, + "▁everyday": 16667, + "called": 16668, + "▁genome": 16669, + "aren": 16670, + "▁nursing": 16671, + "▁OTHER": 16672, + "▁peptide": 16673, + "自觉": 16674, + "▁Lew": 16675, + "此题": 16676, + "rin": 16677, + "Network": 16678, + "默认": 16679, + "▁Mountain": 16680, + "叫做": 16681, + "▁propag": 16682, + "消除": 16683, + "未成年": 16684, + "▁neighb": 16685, + "▁Victoria": 16686, + "地面": 16687, + "建成": 16688, + "▁coordinate": 16689, + "án": 16690, + "▁sentence": 16691, + "FP": 16692, + "▁interviews": 16693, + "▁acet": 16694, + "▁clot": 16695, + "equality": 16696, + "href": 16697, + "modal": 16698, + "▁cyl": 16699, + "\";": 16700, + "▁»": 16701, + "的外": 16702, + "▁somewhat": 16703, + "▁tang": 16704, + "▁realized": 16705, + "▁simultaneously": 16706, + "▁wound": 16707, + "奥运": 16708, + "▁disk": 16709, + "过滤": 16710, + "▁Ministry": 16711, + "▁Portug": 16712, + "pler": 16713, + "LR": 16714, + "ennes": 16715, + "发放": 16716, + "难道": 16717, + "igure": 16718, + "Names": 16719, + "▁appl": 16720, + "▁curves": 16721, + "enum": 16722, + "编制": 16723, + "owntown": 16724, + "TT": 16725, + "出租": 16726, + "otted": 16727, + "证人": 16728, + "ulus": 16729, + "▁Clean": 16730, + "▁props": 16731, + "▁fails": 16732, + "▁moist": 16733, + "▁converted": 16734, + "nSports": 16735, + "▁closing": 16736, + "▁民族": 16737, + "agic": 16738, + "从选项中": 16739, + "定制": 16740, + "nCons": 16741, + "▁Band": 16742, + "▁nam": 16743, + "▁Lat": 16744, + "▁AB": 16745, + "AE": 16746, + "▁Egypt": 16747, + "▁Six": 16748, + "▁是": 16749, + "best": 16750, + "冲突": 16751, + "郑州": 16752, + "rangle": 16753, + "anz": 16754, + "协商": 16755, + "▁inputs": 16756, + "▁bits": 16757, + "▁participated": 16758, + "▁disturb": 16759, + "传媒": 16760, + "ouri": 16761, + "▁focusing": 16762, + "高温": 16763, + "▁marg": 16764, + "竞赛": 16765, + "▁turning": 16766, + "ouses": 16767, + "▁bat": 16768, + "▁cultures": 16769, + "的价格": 16770, + "ordan": 16771, + "祖国": 16772, + "▁Pos": 16773, + "▁reduces": 16774, + "▁penal": 16775, + "▁Client": 16776, + "▁behaviors": 16777, + "截止": 16778, + "超越": 16779, + "找出": 16780, + "nplt": 16781, + "▁transportation": 16782, + ",\\'": 16783, + "folder": 16784, + "nodes": 16785, + "Rad": 16786, + "▁invited": 16787, + "oda": 16788, + "一方": 16789, + "武汉市": 16790, + "ermission": 16791, + "浪费": 16792, + "这部": 16793, + "▁outer": 16794, + "▁matrices": 16795, + "IDS": 16796, + "▁Mobile": 16797, + "明天": 16798, + "enron": 16799, + "▁manifest": 16800, + "▁thickness": 16801, + "▁Specific": 16802, + "antly": 16803, + "bourne": 16804, + "▁hook": 16805, + "▁directions": 16806, + "▁enzymes": 16807, + "的数据": 16808, + "信任": 16809, + "▁offices": 16810, + "▁Price": 16811, + "▁boxes": 16812, + "电气": 16813, + "ropical": 16814, + "成都市": 16815, + "▁tomor": 16816, + "剩余": 16817, + "si": 16818, + "▁neither": 16819, + "▁developer": 16820, + "黄色": 16821, + "made": 16822, + "ür": 16823, + "消耗": 16824, + "Na": 16825, + "反馈": 16826, + "acet": 16827, + "▁MD": 16828, + "▁Develop": 16829, + "ifndef": 16830, + "顾问": 16831, + "nRESULTS": 16832, + "▁somewhere": 16833, + "发动机": 16834, + "不得不": 16835, + "▁Philipp": 16836, + "▁arrested": 16837, + "то": 16838, + "第一章": 16839, + "▁一": 16840, + "青少年": 16841, + "phal": 16842, + "ques": 16843, + "▁payments": 16844, + "更换": 16845, + "▁Need": 16846, + "▁vibr": 16847, + "▁fer": 16848, + "don": 16849, + "▁meters": 16850, + "的服务": 16851, + "▁lawyer": 16852, + "▁variations": 16853, + "uer": 16854, + "就行": 16855, + "nOut": 16856, + "▁continuing": 16857, + "大厦": 16858, + "明明": 16859, + "▁variant": 16860, + "aron": 16861, + "▁socket": 16862, + "权的": 16863, + "nre": 16864, + "起到": 16865, + "肌肉": 16866, + "overflow": 16867, + "▁correction": 16868, + "sky": 16869, + "招聘": 16870, + "妻子": 16871, + "▁gall": 16872, + "▁dil": 16873, + "▁attractive": 16874, + "▁cub": 16875, + "甘肃省": 16876, + "ushing": 16877, + "bg": 16878, + "多样": 16879, + "Only": 16880, + "ectors": 16881, + "agonal": 16882, + "World": 16883, + "技术的": 16884, + "▁exhibit": 16885, + "▁hosting": 16886, + "▁consisting": 16887, + "▁ignore": 16888, + "▁decline": 16889, + "部件": 16890, + "positive": 16891, + "▁徐": 16892, + "你在": 16893, + "▁adhes": 16894, + "▁Princ": 16895, + "HERE": 16896, + "▁turb": 16897, + "law": 16898, + "neum": 16899, + "▁tomorrow": 16900, + "▁bab": 16901, + "经济发展": 16902, + "▁Subject": 16903, + "公众号": 16904, + "nUse": 16905, + "some": 16906, + "▁subsequently": 16907, + "▁DB": 16908, + "nDon": 16909, + "农村商业银行股份有限公司": 16910, + "不开": 16911, + "干燥": 16912, + "▁bold": 16913, + "发言": 16914, + "share": 16915, + "_,": 16916, + "▁baseball": 16917, + "illary": 16918, + "ucl": 16919, + "▁sear": 16920, + "obby": 16921, + "Down": 16922, + "歌手": 16923, + "引进": 16924, + "合法权益": 16925, + "▁graft": 16926, + "▁keyboard": 16927, + "IH": 16928, + "▁intake": 16929, + "▁tensor": 16930, + "Generator": 16931, + "彼此": 16932, + "atalog": 16933, + "合成": 16934, + "这类": 16935, + "▁rear": 16936, + "▁strategic": 16937, + "差距": 16938, + "engers": 16939, + "nTwo": 16940, + "▁infer": 16941, + "▁byte": 16942, + "ARD": 16943, + "links": 16944, + "ortic": 16945, + "▁Raj": 16946, + "apl": 16947, + "HTTP": 16948, + "▁Visual": 16949, + "发达": 16950, + "假设": 16951, + "城乡": 16952, + "▁substance": 16953, + "▁Sex": 16954, + "东莞": 16955, + "通过本院": 16956, + "editor": 16957, + "mn": 16958, + "角的": 16959, + "otor": 16960, + "▁inspiration": 16961, + "▁Pur": 16962, + "▁calculations": 16963, + "欣赏": 16964, + "气温": 16965, + "▁foods": 16966, + "▁apoptosis": 16967, + "扮演": 16968, + "imit": 16969, + "icer": 16970, + "▁finds": 16971, + "县人民检察院": 16972, + "footer": 16973, + "▁Created": 16974, + "▁Avenue": 16975, + "aug": 16976, + "EV": 16977, + "$)": 16978, + "▁regardless": 16979, + "▁−": 16980, + "Wrapper": 16981, + "living": 16982, + "imental": 16983, + "没什么": 16984, + "equiv": 16985, + "▁synthetic": 16986, + "▁Civil": 16987, + "▁Sydney": 16988, + "我院": 16989, + "Sk": 16990, + "▁Clinical": 16991, + "▁severity": 16992, + "▁beer": 16993, + "binding": 16994, + "astro": 16995, + "▁administered": 16996, + "吃的": 16997, + "实现了": 16998, + "ashes": 16999, + "▁healing": 17000, + "oviet": 17001, + "outube": 17002, + "给他": 17003, + "打算": 17004, + "naire": 17005, + "▁Daily": 17006, + "▁nervous": 17007, + "耕地": 17008, + "▁glad": 17009, + "职业技术": 17010, + "魅力": 17011, + "unique": 17012, + "itled": 17013, + "igm": 17014, + "▁Forest": 17015, + "本院经审查": 17016, + "psy": 17017, + "▁elucid": 17018, + "▁momentum": 17019, + "▁dependencies": 17020, + "▁Les": 17021, + "条例": 17022, + "慢性": 17023, + "lean": 17024, + "nAlthough": 17025, + "▁wondering": 17026, + "常务": 17027, + "gal": 17028, + "urls": 17029, + "being": 17030, + "bow": 17031, + "▁generator": 17032, + "▁intelligence": 17033, + "是多少": 17034, + "▁recall": 17035, + "ETHODS": 17036, + "tau": 17037, + "▁cord": 17038, + "compile": 17039, + "国土资源": 17040, + "我和": 17041, + "但在": 17042, + "odd": 17043, + "热度": 17044, + "season": 17045, + "nOnce": 17046, + "▁Secretary": 17047, + "毫无": 17048, + "两组": 17049, + "icide": 17050, + "各级": 17051, + "选择的": 17052, + "▁myocard": 17053, + "▁substrate": 17054, + "对话": 17055, + "Rightarrow": 17056, + "ometer": 17057, + "▁/*": 17058, + "的历史": 17059, + "价比": 17060, + "▁soci": 17061, + "▁compatible": 17062, + "▁finger": 17063, + "iary": 17064, + "罪名": 17065, + "▁wel": 17066, + "earing": 17067, + "▁beneficial": 17068, + "▁Bridge": 17069, + "专注": 17070, + "暂无": 17071, + "之日止": 17072, + "▁hypertension": 17073, + "▁ell": 17074, + "%(": 17075, + "▁Guide": 17076, + "▁promotion": 17077, + "▁arms": 17078, + "nOff": 17079, + "jet": 17080, + "要么": 17081, + "批发": 17082, + "▁luck": 17083, + "较高": 17084, + "arse": 17085, + "▁expat": 17086, + "(\"\\\\": 17087, + "▁Beaut": 17088, + "农村信用合作": 17089, + "bial": 17090, + "▁passes": 17091, + "present": 17092, + "▁Major": 17093, + "糖尿": 17094, + "一线": 17095, + "朝鲜": 17096, + "▁comparing": 17097, + "▁Dam": 17098, + "▁dop": 17099, + "▁generic": 17100, + "老婆": 17101, + "▁adjacent": 17102, + "marks": 17103, + "▁opens": 17104, + "pected": 17105, + "▁phosphory": 17106, + "▁incredible": 17107, + "▁worst": 17108, + "了很多": 17109, + "cursor": 17110, + "注射": 17111, + "一开始": 17112, + "▁Argent": 17113, + "极速": 17114, + "▁texture": 17115, + "全新": 17116, + "wrapper": 17117, + "宗旨": 17118, + "子里": 17119, + "亿美元": 17120, + "orts": 17121, + "的使用": 17122, + "▁Similar": 17123, + "Mac": 17124, + "▁Imp": 17125, + "They": 17126, + "师范大学": 17127, + "圆形": 17128, + "不大": 17129, + "ships": 17130, + "nMost": 17131, + "imet": 17132, + "▁Oxford": 17133, + "ritis": 17134, + "▁Output": 17135, + "▁©": 17136, + "▁Ther": 17137, + "的取值范围": 17138, + "股权": 17139, + "▁tiny": 17140, + "▁assumed": 17141, + "toBe": 17142, + "▁Premier": 17143, + "▁Hence": 17144, + "▁generating": 17145, + "进展": 17146, + "▁simulations": 17147, + "号民事判决": 17148, + "常见的": 17149, + "▁mutation": 17150, + "▁communications": 17151, + "▁till": 17152, + "simple": 17153, + "▁shower": 17154, + "▁acceler": 17155, + "边形": 17156, + "▁attorney": 17157, + "▁prospective": 17158, + "心中": 17159, + "电流": 17160, + "精度": 17161, + "\\'),": 17162, + "蛋白质": 17163, + "▁asc": 17164, + "tein": 17165, + "PUT": 17166, + "▁spokes": 17167, + "基础上": 17168, + "▁correspond": 17169, + "▁macro": 17170, + "▁GitHub": 17171, + "unsigned": 17172, + "前期": 17173, + "pal": 17174, + "▁sculpt": 17175, + "Success": 17176, + "实体": 17177, + "dm": 17178, + "reader": 17179, + "▁cancel": 17180, + "demo": 17181, + "后续": 17182, + "▁approval": 17183, + "我们可以": 17184, + "enable": 17185, + "▁carrying": 17186, + "otton": 17187, + "的人生": 17188, + "▁cum": 17189, + "redit": 17190, + "诉至": 17191, + "▁kit": 17192, + "overset": 17193, + "▁Those": 17194, + "▁virt": 17195, + "应当依照": 17196, + "采访": 17197, + "Play": 17198, + "oker": 17199, + "积分": 17200, + "大幅": 17201, + "▁computational": 17202, + "纺织": 17203, + "而在": 17204, + "位的": 17205, + "▁Heart": 17206, + "门口": 17207, + "分支": 17208, + "▁toxic": 17209, + "aha": 17210, + "▁emphas": 17211, + "发现被执行人有可供执行财产": 17212, + "detail": 17213, + "▁altered": 17214, + "”)": 17215, + "vex": 17216, + "▁Keep": 17217, + "heng": 17218, + "▁Berlin": 17219, + "二是": 17220, + "▁ul": 17221, + "某个": 17222, + "ERT": 17223, + "▁talks": 17224, + "▁dangerous": 17225, + "▁reproduce": 17226, + "▁counsel": 17227, + "会长": 17228, + "▁blow": 17229, + "▁prominent": 17230, + "收录": 17231, + "▁crystal": 17232, + "▁circumstances": 17233, + "▁Turkey": 17234, + "opher": 17235, + "icking": 17236, + "▁Total": 17237, + "▁performances": 17238, + "▁cooking": 17239, + "▁*/": 17240, + "▁USB": 17241, + "▁Double": 17242, + "长江": 17243, + "省级": 17244, + "构造": 17245, + "出血": 17246, + "▁AI": 17247, + "tech": 17248, + "的位置": 17249, + "▁Official": 17250, + "nAnother": 17251, + "buf": 17252, + "▁rend": 17253, + "▁soph": 17254, + "精品": 17255, + "的最大": 17256, + "nMany": 17257, + "▁dish": 17258, + "▁unexpected": 17259, + "▁instances": 17260, + "▁systemic": 17261, + "▁microscopy": 17262, + "支出": 17263, + "▁winners": 17264, + "如何评价": 17265, + "▁hers": 17266, + "▁dot": 17267, + "▁apartment": 17268, + "▁concert": 17269, + "四日": 17270, + "▁Site": 17271, + "▁debate": 17272, + "缺席": 17273, + "▁Player": 17274, + "orient": 17275, + "▁Ni": 17276, + "气的": 17277, + "course": 17278, + "▁integrate": 17279, + "股东": 17280, + "making": 17281, + "▁MERCHANTABILITY": 17282, + "一人": 17283, + "▁solo": 17284, + "▁tf": 17285, + "orne": 17286, + "威胁": 17287, + "▁Indones": 17288, + "林业": 17289, + "会的": 17290, + "卫星": 17291, + "▁bands": 17292, + "Socket": 17293, + "▁Publish": 17294, + "▁justice": 17295, + "angel": 17296, + "▁scenario": 17297, + "▁defects": 17298, + "这时": 17299, + "并发": 17300, + "▁hire": 17301, + "▁manufacturer": 17302, + "▁hits": 17303, + "exper": 17304, + "ntyped": 17305, + "传票传唤": 17306, + "▁impressive": 17307, + "温馨": 17308, + "▁infants": 17309, + "灵魂": 17310, + "简直": 17311, + "▁apparently": 17312, + "不喜欢": 17313, + "们的": 17314, + "▁escape": 17315, + "总裁": 17316, + "日向本院提起": 17317, + "指定的期间履行给付金钱义务": 17318, + "Qt": 17319, + "Matrix": 17320, + "▁disappe": 17321, + "丛书": 17322, + "▁constantly": 17323, + "▁BY": 17324, + "暂时": 17325, + "第二百五十三条之规定": 17326, + "▁volunteers": 17327, + "肌肤": 17328, + "▁votes": 17329, + "urname": 17330, + "分米": 17331, + "▁admitted": 17332, + "礼物": 17333, + "equals": 17334, + "▁三": 17335, + "▁intra": 17336, + "oline": 17337, + "ambiguation": 17338, + "冰箱": 17339, + "▁drag": 17340, + "dependencies": 17341, + "▁potent": 17342, + "▁Son": 17343, + "tvoid": 17344, + "板块": 17345, + "扶贫": 17346, + "▁pd": 17347, + "CB": 17348, + "▁Bell": 17349, + "▁sick": 17350, + "不明": 17351, + "▁Fix": 17352, + "正文": 17353, + "dots": 17354, + "第二百五十七条第": 17355, + "▁Oregon": 17356, + "助于": 17357, + "ternational": 17358, + "▁anyway": 17359, + "MIN": 17360, + "igo": 17361, + "▁出生地": 17362, + "终端": 17363, + "▁hosts": 17364, + "itter": 17365, + "排列": 17366, + "独任审判": 17367, + "化简": 17368, + "▁Pa": 17369, + "毕业生": 17370, + "全力": 17371, + "▁narr": 17372, + "Screen": 17373, + "水利": 17374, + "▁fert": 17375, + "死了": 17376, + "▁onset": 17377, + "▁handler": 17378, + "▁Administration": 17379, + "日向本院申请": 17380, + "▁variance": 17381, + "▁newspaper": 17382, + "▁IMP": 17383, + "▁impair": 17384, + "riends": 17385, + "▁manually": 17386, + "财产保险": 17387, + "Tim": 17388, + "nEarly": 17389, + "▁computed": 17390, + "▁transferred": 17391, + "Iter": 17392, + "园林": 17393, + "民一": 17394, + "akh": 17395, + "▁talent": 17396, + "日的": 17397, + "里面的": 17398, + "\\\\()\\\\)": 17399, + "ophys": 17400, + "便是": 17401, + "yml": 17402, + "▁tur": 17403, + ")](": 17404, + "有趣": 17405, + "减肥": 17406, + "季节": 17407, + "减刑建议书": 17408, + "提交上诉状": 17409, + "triangle": 17410, + "温柔": 17411, + "清华": 17412, + "行业的": 17413, + "▁posit": 17414, + "ORK": 17415, + "▁PS": 17416, + "apol": 17417, + "▁Houston": 17418, + "▁gradient": 17419, + "绝对值": 17420, + "overline": 17421, + "▁graphics": 17422, + "摩托": 17423, + "▁engage": 17424, + "Directory": 17425, + "features": 17426, + "标题": 17427, + "nst": 17428, + "chant": 17429, + "Simple": 17430, + "asets": 17431, + "ateur": 17432, + "不符合": 17433, + "▁hur": 17434, + "▁stabil": 17435, + "检察员": 17436, + "▁Rose": 17437, + "▁targeting": 17438, + "正本一份": 17439, + "▁merged": 17440, + "字母": 17441, + "pid": 17442, + "alities": 17443, + "defined": 17444, + "но": 17445, + "千元": 17446, + "abetic": 17447, + "islative": 17448, + "▁luxury": 17449, + "▁Senior": 17450, + "▁viewed": 17451, + "ée": 17452, + "▁Si": 17453, + "英寸": 17454, + "ritish": 17455, + "能否": 17456, + "▁surprise": 17457, + "▁reset": 17458, + "etherlands": 17459, + "序列": 17460, + "▁workshop": 17461, + "体会": 17462, + "ceptor": 17463, + "内置": 17464, + "统计学": 17465, + "▁grab": 17466, + "nDr": 17467, + "了一下": 17468, + "TEST": 17469, + "▁overview": 17470, + "从此": 17471, + "Cal": 17472, + "▁hospitals": 17473, + "▁temporary": 17474, + "▁Ros": 17475, + "▁founder": 17476, + "▁jun": 17477, + "IGN": 17478, + "IAL": 17479, + "篮球": 17480, + "▁Did": 17481, + "ogs": 17482, + "▁目录": 17483, + "original": 17484, + "Framework": 17485, + "runtime": 17486, + "常常": 17487, + "timeout": 17488, + "nDescription": 17489, + "引擎": 17490, + "较好": 17491, + "▁Square": 17492, + "yll": 17493, + "Invalid": 17494, + "nAssociation": 17495, + "糖尿病": 17496, + "早上": 17497, + "家庄": 17498, + "牛奶": 17499, + "rock": 17500, + "nTrans": 17501, + "▁hip": 17502, + "刘某": 17503, + "预期": 17504, + "▁lake": 17505, + "农村信用合作联社": 17506, + "是为了": 17507, + "书面上诉的": 17508, + "izabeth": 17509, + "▁incorrect": 17510, + "▁portfolio": 17511, + "仅仅": 17512, + "司机": 17513, + "mc": 17514, + "刑诉": 17515, + "▁accomplish": 17516, + "WI": 17517, + "helper": 17518, + "▁Machine": 17519, + "▁sodium": 17520, + "counter": 17521, + "▁spac": 17522, + "▁slope": 17523, + "olving": 17524, + "also": 17525, + "ntypedef": 17526, + "▁biochemical": 17527, + "西部": 17528, + "年轻人": 17529, + "▁haz": 17530, + "▁append": 17531, + "VR": 17532, + "▁McC": 17533, + "▁powder": 17534, + "habilit": 17535, + "ро": 17536, + "anny": 17537, + "权限": 17538, + "▁Sab": 17539, + "密切": 17540, + "▁Rog": 17541, + "ittest": 17542, + "islation": 17543, + "nso": 17544, + "▁essay": 17545, + "Pool": 17546, + "uuid": 17547, + "动的": 17548, + "房价": 17549, + "▁mile": 17550, + "sens": 17551, + "请问": 17552, + "▁\\'__": 17553, + "\\\\}": 17554, + "▁Olympic": 17555, + "更高": 17556, + "MAT": 17557, + "Services": 17558, + "▁eligible": 17559, + "▁Theatre": 17560, + "▁municipality": 17561, + "例子": 17562, + "Media": 17563, + "▁jew": 17564, + "一流": 17565, + "未来的": 17566, + "▁cyst": 17567, + "Meta": 17568, + "▁chose": 17569, + "接收": 17570, + "nStep": 17571, + "▁surge": 17572, + "▁gel": 17573, + "▁}{": 17574, + "一辆": 17575, + "stdout": 17576, + "▁nomin": 17577, + "可在接到": 17578, + "受伤": 17579, + "▁Scottish": 17580, + ">\"": 17581, + "颗粒": 17582, + "▁ischem": 17583, + "▁stake": 17584, + "▁selective": 17585, + "活动的": 17586, + "怎样的": 17587, + "斗争": 17588, + "perm": 17589, + "aded": 17590, + "idine": 17591, + "▁Tok": 17592, + "▁capac": 17593, + "updated": 17594, + "▁variants": 17595, + "参观": 17596, + "响应": 17597, + "我很": 17598, + "▁counts": 17599, + "▁essentially": 17600, + "▁sad": 17601, + "}[": 17602, + "▁Never": 17603, + "县委": 17604, + "临时": 17605, + "▁Wi": 17606, + "日起十日内": 17607, + "▁fn": 17608, + "形状": 17609, + "▁第二": 17610, + "▁Ven": 17611, + "容器": 17612, + "▁separation": 17613, + "raq": 17614, + "▁dust": 17615, + "▁Policy": 17616, + "实时": 17617, + "频道": 17618, + "▁marker": 17619, + "Vol": 17620, + "lectric": 17621, + "▁GO": 17622, + "▁Ol": 17623, + "决赛": 17624, + "车型": 17625, + "':\\": 17626, + "▁ub": 17627, + "Parse": 17628, + "ikes": 17629, + "监察": 17630, + "抛物": 17631, + "宁市": 17632, + "▁doses": 17633, + "▁性别": 17634, + "但被执行人": 17635, + "▁undert": 17636, + "▁shoes": 17637, + "▁ultimate": 17638, + "▁sought": 17639, + "apps": 17640, + "▁invalid": 17641, + "加拿": 17642, + "▁Ford": 17643, + "签约": 17644, + "经济学": 17645, + "agnetic": 17646, + "Copyright": 17647, + "▁ME": 17648, + "▁vice": 17649, + "lined": 17650, + "nOlymp": 17651, + "▁suffering": 17652, + "▁Jean": 17653, + "斯坦": 17654, + "phia": 17655, + "ders": 17656, + "▁Gro": 17657, + "▁temporal": 17658, + "均为": 17659, + "ctic": 17660, + "▁resonance": 17661, + "通过对": 17662, + "▁interpretation": 17663, + "▁NA": 17664, + "Del": 17665, + "和计划生育": 17666, + "▁inches": 17667, + "Py": 17668, + "▁Instagram": 17669, + "▁breakfast": 17670, + "▁overl": 17671, + "睡觉": 17672, + "ados": 17673, + "▁Matt": 17674, + "▁naturally": 17675, + "ENV": 17676, + "夏天": 17677, + "stylesheet": 17678, + "的需求": 17679, + "▁fragment": 17680, + "▁magic": 17681, + "nEvery": 17682, + "Support": 17683, + "▁celebrate": 17684, + "UG": 17685, + "扫描": 17686, + "▁twenty": 17687, + "oprotein": 17688, + "▁epithelial": 17689, + "独特的": 17690, + "pend": 17691, + "了我": 17692, + "itudes": 17693, + "真的很": 17694, + "▁clone": 17695, + "▁gam": 17696, + "巨大的": 17697, + "▁Ident": 17698, + "▁lifetime": 17699, + "派出": 17700, + "bolic": 17701, + "closure": 17702, + "keywords": 17703, + "▁flav": 17704, + "▁cir": 17705, + "▁angles": 17706, + "▁Prom": 17707, + "阿里": 17708, + "imp": 17709, + "▁elderly": 17710, + ",'": 17711, + "jan": 17712, + "▁strengthen": 17713, + "▁injured": 17714, + "走进": 17715, + "标签": 17716, + "无效": 17717, + "在家": 17718, + "verbose": 17719, + "处置": 17720, + "结算": 17721, + "ocom": 17722, + "▁[];\\": 17723, + ":/": 17724, + "ership": 17725, + "VP": 17726, + "dispatch": 17727, + "▁arbitrary": 17728, + "nAp": 17729, + "fox": 17730, + "怀疑": 17731, + "拿到": 17732, + "▁heating": 17733, + "Boolean": 17734, + "lon": 17735, + "处理器": 17736, + "晋江文学网": 17737, + "▁printing": 17738, + "▁obviously": 17739, + "Router": 17740, + "slug": 17741, + "由题意": 17742, + "▁Executive": 17743, + "▁chocolate": 17744, + "▁Capt": 17745, + "建材": 17746, + "hello": 17747, + "▁Phase": 17748, + "▁Muslim": 17749, + "今后": 17750, + "Serializer": 17751, + "书画": 17752, + "报警": 17753, + "辈子": 17754, + "▁acknow": 17755, + "▁Fish": 17756, + "idays": 17757, + "▁birds": 17758, + "号起诉书": 17759, + "className": 17760, + "▁js": 17761, + "级别": 17762, + "itable": 17763, + "▁sorted": 17764, + "荣获": 17765, + "▁coupled": 17766, + "▁heads": 17767, + "现代化": 17768, + "不当": 17769, + "▁Rom": 17770, + "足以认定": 17771, + "监护": 17772, + "▁situated": 17773, + "arring": 17774, + "国家的": 17775, + "▁efficiently": 17776, + "▁absorption": 17777, + "▁headers": 17778, + "irk": 17779, + "▁Pers": 17780, + "的大小": 17781, + "Op": 17782, + "信心": 17783, + "待遇": 17784, + "decode": 17785, + "dataset": 17786, + "▁filters": 17787, + "olesterol": 17788, + "▁Resource": 17789, + "▁schema": 17790, + "cluster": 17791, + "▁ending": 17792, + "▁LLC": 17793, + "▁oscill": 17794, + "▁Lie": 17795, + "agma": 17796, + "mask": 17797, + "▁и": 17798, + "generate": 17799, + "enabled": 17800, + "传感": 17801, + "▁THIS": 17802, + "电信": 17803, + "皇帝": 17804, + "Expression": 17805, + ")**": 17806, + "▁rely": 17807, + "透明": 17808, + "▁Cambridge": 17809, + "▁bounded": 17810, + "▁asympt": 17811, + "party": 17812, + "CN": 17813, + "\"@": 17814, + "的定义": 17815, + "▁Tele": 17816, + "中华人民共和国行政诉讼法": 17817, + "留学": 17818, + "▁tom": 17819, + "story": 17820, + "Timeout": 17821, + "▁Singapore": 17822, + "▁Quant": 17823, + "▁recombin": 17824, + "这也是": 17825, + "abases": 17826, + "的学生": 17827, + "▁hat": 17828, + "本院予以支持": 17829, + "▁relief": 17830, + "讲话": 17831, + "figure": 17832, + "urrence": 17833, + "▁\"__": 17834, + "▁发": 17835, + "▁enthus": 17836, + "▁classified": 17837, + "Ret": 17838, + "adelphia": 17839, + "已发生法律效力": 17840, + "▁Supreme": 17841, + "npub": 17842, + "▁cond": 17843, + "▁decreasing": 17844, + "▁Property": 17845, + "▁WITH": 17846, + "要注意": 17847, + "coll": 17848, + "笔记本": 17849, + "性价比": 17850, + "▁Ale": 17851, + "相当于": 17852, + "江湖": 17853, + "▁delta": 17854, + "▁intermediate": 17855, + "▁Silver": 17856, + "▁illust": 17857, + "▁expressions": 17858, + "明显的": 17859, + "▁lessons": 17860, + "Tab": 17861, + "一块": 17862, + "▁officially": 17863, + "▁param": 17864, + "城县": 17865, + "inos": 17866, + "内涵": 17867, + "▁si": 17868, + "ulatory": 17869, + "iments": 17870, + "▁fusion": 17871, + "▁Hamilton": 17872, + "▁regulations": 17873, + "browser": 17874, + "▁hal": 17875, + "TM": 17876, + "ABC": 17877, + "▁nur": 17878, + "ORY": 17879, + "ixin": 17880, + "▁reaching": 17881, + "▁Consider": 17882, + "清理": 17883, + "▁explains": 17884, + "还不": 17885, + "BASE": 17886, + "usal": 17887, + "▁Soc": 17888, + "ensis": 17889, + "商场": 17890, + "的过程中": 17891, + "notation": 17892, + "▁artificial": 17893, + "ige": 17894, + "▁Arizona": 17895, + "Arr": 17896, + "viously": 17897, + "▁therapies": 17898, + "▁conclude": 17899, + "▁delight": 17900, + "Policy": 17901, + "耳机": 17902, + "▁▁▁▁▁▁▁▁▁": 17903, + "▁telling": 17904, + "▁manufacturers": 17905, + "Med": 17906, + "疫苗": 17907, + "Transform": 17908, + "▁savings": 17909, + "邮件": 17910, + "▁calendar": 17911, + "STRA": 17912, + "High": 17913, + "▁derivatives": 17914, + "▁vertex": 17915, + "▁instruments": 17916, + "不但": 17917, + "▁Multi": 17918, + "▁Ocean": 17919, + "▁giant": 17920, + "Now": 17921, + "nWork": 17922, + "auge": 17923, + "nJohn": 17924, + "▁Jewish": 17925, + "失信": 17926, + "▁Indiana": 17927, + "archive": 17928, + "avelength": 17929, + "组成员": 17930, + "▁endothelial": 17931, + "纪律": 17932, + "▁engaged": 17933, + "开关": 17934, + "associated": 17935, + "年在": 17936, + "▁Anton": 17937, + "十二条第二款": 17938, + "成交": 17939, + "*;\\": 17940, + "SELECT": 17941, + "QUE": 17942, + "VI": 17943, + "ía": 17944, + "cfg": 17945, + "头发": 17946, + "angers": 17947, + "▁respective": 17948, + "▁frag": 17949, + "Android": 17950, + "线性": 17951, + "三个月": 17952, + "ritical": 17953, + "▁CF": 17954, + "▁modes": 17955, + "销量": 17956, + "nz": 17957, + "密封": 17958, + "estab": 17959, + "validation": 17960, + "oustic": 17961, + "▁implies": 17962, + "▁champion": 17963, + "▁Transport": 17964, + "▁Smart": 17965, + "PAR": 17966, + "▁Questions": 17967, + "物资": 17968, + "nHis": 17969, + "▁Students": 17970, + "已有": 17971, + "\\'):\\": 17972, + "▁athletes": 17973, + "▁HR": 17974, + "▁mature": 17975, + "standard": 17976, + "终审": 17977, + "etary": 17978, + "pk": 17979, + "▁accompan": 17980, + "cv": 17981, + "回顾": 17982, + "▁arth": 17983, + "▁Final": 17984, + "Package": 17985, + "hythm": 17986, + "rieve": 17987, + "别名": 17988, + "health": 17989, + "square": 17990, + "这篇": 17991, + "▁pic": 17992, + "▁industries": 17993, + "终结执行": 17994, + "南方": 17995, + "▁photography": 17996, + "下一": 17997, + "Serv": 17998, + "ellect": 17999, + "fly": 18000, + "▁gang": 18001, + "▁stronger": 18002, + "圆柱": 18003, + "nMed": 18004, + "并从": 18005, + "▁wins": 18006, + "▁intracellular": 18007, + "中国人": 18008, + "cribed": 18009, + "▁apt": 18010, + "▁ownership": 18011, + "杭州市": 18012, + "disambiguation": 18013, + "Day": 18014, + "地区的": 18015, + "朝阳": 18016, + "向上": 18017, + "▁arrive": 18018, + "perature": 18019, + "▁支持": 18020, + "▁cheese": 18021, + "动脉": 18022, + "元及利息": 18023, + "▁Cop": 18024, + "江市": 18025, + "Domain": 18026, + "生理": 18027, + "treated": 18028, + "声明": 18029, + "▁Wat": 18030, + "在一个": 18031, + "▁Hash": 18032, + "概述": 18033, + "▁Boolean": 18034, + "eros": 18035, + "▁Farm": 18036, + "▁Could": 18037, + "iors": 18038, + "Bytes": 18039, + "rivial": 18040, + "问题和": 18041, + "▁gest": 18042, + "设计师": 18043, + "▁Database": 18044, + "过于": 18045, + "▁flows": 18046, + "民众": 18047, + "补贴": 18048, + "enz": 18049, + "nNational": 18050, + "实例": 18051, + "Editor": 18052, + "▁Natural": 18053, + "unes": 18054, + "▁concluded": 18055, + "Bean": 18056, + "▁resistant": 18057, + "Obj": 18058, + "▁docs": 18059, + "▁('": 18060, + "▁promoting": 18061, + "works": 18062, + "▁EN": 18063, + "▁embedded": 18064, + "▁discrete": 18065, + "网页": 18066, + "logical": 18067, + "▁displays": 18068, + "etr": 18069, + "▁LA": 18070, + "columns": 18071, + "Sort": 18072, + "辐射": 18073, + "porters": 18074, + "的世界": 18075, + "排除": 18076, + "________________": 18077, + "▁randomly": 18078, + "乘法": 18079, + "▁sky": 18080, + "SW": 18081, + "Operation": 18082, + "▁finance": 18083, + "▁degradation": 18084, + "参考文献": 18085, + "'],\\": 18086, + "▁anten": 18087, + "海南": 18088, + "▁wrt": 18089, + "inking": 18090, + "configuration": 18091, + "Definition": 18092, + "▁inequality": 18093, + "linked": 18094, + "▁google": 18095, + "▁partially": 18096, + "▁img": 18097, + "的知识": 18098, + "▁eggs": 18099, + "isations": 18100, + "orption": 18101, + "Depend": 18102, + "▁worker": 18103, + "izza": 18104, + "creat": 18105, + "nSent": 18106, + "害怕": 18107, + "plify": 18108, + "▁specificity": 18109, + "asive": 18110, + "oen": 18111, + "市长": 18112, + "▁hoping": 18113, + "▁peer": 18114, + "▁unusual": 18115, + "▁intervals": 18116, + "▁cancell": 18117, + "日上午": 18118, + "nArt": 18119, + "nEn": 18120, + "▁о": 18121, + "▁carb": 18122, + "▁swimming": 18123, + "peat": 18124, + "秩序": 18125, + "important": 18126, + "▁孙": 18127, + "作物": 18128, + "无锡": 18129, + "▁refresh": 18130, + "unter": 18131, + "▁disabled": 18132, + "▁developmental": 18133, + "工作中": 18134, + "ivariate": 18135, + "▁Writ": 18136, + "▁orientation": 18137, + "*)": 18138, + "▁egg": 18139, + "appa": 18140, + "▁methyl": 18141, + "▁favourite": 18142, + "新冠": 18143, + "▁verbose": 18144, + "Di": 18145, + "▁reputation": 18146, + "证言": 18147, + "提高了": 18148, + "彩票": 18149, + "attributes": 18150, + "Omega": 18151, + "副局长": 18152, + "撤回上诉": 18153, + "音频": 18154, + "▁antagon": 18155, + "attribute": 18156, + "equence": 18157, + "reation": 18158, + "ichael": 18159, + "nOlympic": 18160, + "▁adventure": 18161, + "拘役": 18162, + "国产": 18163, + "幸运": 18164, + "aba": 18165, + "▁empir": 18166, + "odge": 18167, + "▁rh": 18168, + "诈骗": 18169, + "▁Cub": 18170, + "见过": 18171, + "判决书的第二": 18172, + "第一百七": 18173, + "单独": 18174, + "因被执行人": 18175, + "▁reform": 18176, + "gres": 18177, + "百度百科": 18178, + "▁Brand": 18179, + "Handle": 18180, + "Google": 18181, + "别人的": 18182, + "▁出处": 18183, + "coord": 18184, + "spective": 18185, + "▁processed": 18186, + "优良": 18187, + "它是": 18188, + "各大": 18189, + ">;\\": 18190, + "▁systematic": 18191, + "能不能": 18192, + "将军": 18193, + "nUsing": 18194, + "Total": 18195, + "一系列": 18196, + "IMIT": 18197, + "▁Viet": 18198, + "construct": 18199, + "▁chemotherapy": 18200, + "ighth": 18201, + "▁seriously": 18202, + "编写": 18203, + "patient": 18204, + "▁RO": 18205, + "收购": 18206, + "▁prostate": 18207, + "适用法律": 18208, + "riculum": 18209, + "看的": 18210, + "美女": 18211, + "的专业": 18212, + "iversary": 18213, + "▁nob": 18214, + "监督管理局": 18215, + "wikipedia": 18216, + "▁Edward": 18217, + "Don": 18218, + "激励": 18219, + "我知道": 18220, + "看法": 18221, + "▁certified": 18222, + "necho": 18223, + "▁authority": 18224, + "▁Look": 18225, + "住安徽省": 18226, + "▁obesity": 18227, + "▁tens": 18228, + "背后": 18229, + "▁assays": 18230, + "复习": 18231, + "判令被告": 18232, + "本院经审查认为": 18233, + "锈钢": 18234, + "不久": 18235, + "履行义务": 18236, + "口味": 18237, + "清偿": 18238, + "built": 18239, + "nGiven": 18240, + "订单": 18241, + "Example": 18242, + "▁confident": 18243, + "▁listening": 18244, + "▁uptake": 18245, + "要素": 18246, + "direction": 18247, + "nAb": 18248, + "loss": 18249, + "是非常": 18250, + "▁Tag": 18251, + "▁Hung": 18252, + "▁Write": 18253, + "dh": 18254, + "睡眠": 18255, + "▁confused": 18256, + "YPE": 18257, + "▁nums": 18258, + "riority": 18259, + "细菌": 18260, + "▁medication": 18261, + "USE": 18262, + "▁\\'@": 18263, + "uclear": 18264, + "▁\\\\\"": 18265, + "▁rose": 18266, + "▁Sound": 18267, + "高质量": 18268, + "▁riv": 18269, + "'),": 18270, + "公开开庭审理了本案": 18271, + "▁Davis": 18272, + "gly": 18273, + "ocyt": 18274, + "▁promoted": 18275, + "erd": 18276, + "▁CPU": 18277, + "洗衣": 18278, + "▁occas": 18279, + "wal": 18280, + "▁spectral": 18281, + "▁公司类型": 18282, + "▁span": 18283, + "▁Cy": 18284, + "癫痫": 18285, + "plotlib": 18286, + "新增": 18287, + "anga": 18288, + "▁SA": 18289, + "▁Athlet": 18290, + "disc": 18291, + "▁eastern": 18292, + "▁joy": 18293, + "aza": 18294, + "Loc": 18295, + "▁Quality": 18296, + "Cr": 18297, + "pag": 18298, + "▁posting": 18299, + "工会": 18300, + "▁pour": 18301, + "尼亚": 18302, + "Changed": 18303, + "imen": 18304, + "引领": 18305, + "▁_{": 18306, + "wich": 18307, + "因涉嫌": 18308, + "▁surprising": 18309, + "交付执行": 18310, + "初步": 18311, + "买卖合同纠纷一案": 18312, + "试行": 18313, + "▁拼音": 18314, + "▁powers": 18315, + "▁Ra": 18316, + "▁toxicity": 18317, + "被评为": 18318, + "▁electricity": 18319, + "▁likes": 18320, + "uto": 18321, + "▁capability": 18322, + "这是一个": 18323, + "▁\\\\{": 18324, + "项目的": 18325, + "YS": 18326, + "learn": 18327, + "▁preced": 18328, + "emony": 18329, + "人文": 18330, + "▁influenced": 18331, + "▁cute": 18332, + "▁Channel": 18333, + "昆明": 18334, + "快递": 18335, + "mx": 18336, + "期刊": 18337, + "ryption": 18338, + "Created": 18339, + "质证": 18340, + "▁pep": 18341, + "available": 18342, + "搅拌": 18343, + "▁personality": 18344, + "isely": 18345, + "▁graphs": 18346, + "orable": 18347, + "nbut": 18348, + "世界的": 18349, + "凤凰": 18350, + "▁Remove": 18351, + "erty": 18352, + "haust": 18353, + "所谓的": 18354, + "▁extraction": 18355, + "mysql": 18356, + "▁fighting": 18357, + "没想到": 18358, + "eman": 18359, + "letal": 18360, + "▁gear": 18361, + "电视台": 18362, + "▁Calcul": 18363, + "报送本院审理": 18364, + "▁dos": 18365, + "▁arc": 18366, + "Global": 18367, + "值为": 18368, + "宣告": 18369, + "编剧": 18370, + "一大": 18371, + "西班": 18372, + "▁tract": 18373, + "▁用": 18374, + "▁bid": 18375, + "▁exhibition": 18376, + "analysis": 18377, + "回应": 18378, + "▁clinic": 18379, + "▁deck": 18380, + "SIZE": 18381, + "树立": 18382, + "good": 18383, + "▁bowl": 18384, + "刑执字第": 18385, + "sit": 18386, + "TIME": 18387, + "话题": 18388, + "▁settlement": 18389, + "▁legislation": 18390, + "▁Governor": 18391, + "一共": 18392, + "依靠": 18393, + "▁caps": 18394, + "▁automated": 18395, + "完了": 18396, + "▁streets": 18397, + "▁\\'\\\\": 18398, + "▁matched": 18399, + "信息的": 18400, + "▁Golden": 18401, + "ivation": 18402, + "}|": 18403, + "ulo": 18404, + "▁})\\": 18405, + "<%": 18406, + "GER": 18407, + "phase": 18408, + "▁integrity": 18409, + "▁synchron": 18410, + "seed": 18411, + "▁Following": 18412, + "▁Cell": 18413, + "▁reconstruction": 18414, + "深化": 18415, + "trace": 18416, + "▁engineer": 18417, + "▁careful": 18418, + "▁emission": 18419, + "显然": 18420, + "▁loves": 18421, + "保养": 18422, + "西班牙": 18423, + "mol": 18424, + "apters": 18425, + "▁Greg": 18426, + "进度": 18427, + "ни": 18428, + "parts": 18429, + "CLUD": 18430, + "publish": 18431, + "▁gym": 18432, + "▁rod": 18433, + "普及": 18434, + "icit": 18435, + "▁Netherlands": 18436, + "▁disappoint": 18437, + "领取": 18438, + "▁alle": 18439, + "disable": 18440, + "病例": 18441, + "关联": 18442, + "Byte": 18443, + "宗教": 18444, + "▁distributions": 18445, + "▁induce": 18446, + "nMar": 18447, + "▁herself": 18448, + "理工": 18449, + "边缘": 18450, + "通用": 18451, + "▁tolerance": 18452, + "▁Agency": 18453, + "▁approximation": 18454, + "Space": 18455, + "ulas": 18456, + "▁suffered": 18457, + "判决书的第二日起十日内": 18458, + "nFilms": 18459, + "▁bundle": 18460, + "quis": 18461, + "Inv": 18462, + "▁ships": 18463, + "Ang": 18464, + "▁protective": 18465, + "ardens": 18466, + "商贸": 18467, + "▁fishing": 18468, + "▁Ban": 18469, + "▁Ped": 18470, + "中医药": 18471, + "Cloud": 18472, + "消毒": 18473, + "短期": 18474, + "大街": 18475, + "急性": 18476, + "疯狂": 18477, + "▁CS": 18478, + "──": 18479, + "anchester": 18480, + "▁DVD": 18481, + "▁exhibited": 18482, + "▁lets": 18483, + "BT": 18484, + "your": 18485, + "ко": 18486, + "▁stunning": 18487, + "▁rental": 18488, + "代表作品": 18489, + "十四条": 18490, + "▁mediated": 18491, + "▁segments": 18492, + "抓住": 18493, + "prod": 18494, + "▁amplit": 18495, + "师生": 18496, + "▁pandemic": 18497, + "一件": 18498, + "表情": 18499, + "听说": 18500, + "▁legs": 18501, + "▁considerable": 18502, + "▁rice": 18503, + "▁namely": 18504, + "▁satellite": 18505, + "Cam": 18506, + "▁flux": 18507, + "▁weights": 18508, + "commands": 18509, + "notes": 18510, + "心脏": 18511, + "日下午": 18512, + "文化的": 18513, + "Enter": 18514, + "其余": 18515, + "▁wer": 18516, + "stan": 18517, + "大了": 18518, + "▁racing": 18519, + "▁chest": 18520, + "Float": 18521, + "▁mistake": 18522, + "▁emphasis": 18523, + "▁regulated": 18524, + "▁cmd": 18525, + "posts": 18526, + "▁slowly": 18527, + "▁sensors": 18528, + "日成立": 18529, + "原始": 18530, + "wegian": 18531, + "▁contributed": 18532, + "ourier": 18533, + "号起诉书指控被告人": 18534, + "的管理": 18535, + "▁Pack": 18536, + "▁Iowa": 18537, + "▁secretion": 18538, + "mits": 18539, + "▁psychological": 18540, + "之处": 18541, + "的手": 18542, + "挖掘": 18543, + "RED": 18544, + "Opt": 18545, + "了个": 18546, + "作品简介": 18547, + "(\"#": 18548, + "▁Sweden": 18549, + "▁Eval": 18550, + "▁dependence": 18551, + "tl": 18552, + "▁Kal": 18553, + ")}^{": 18554, + "ceive": 18555, + "▁Article": 18556, + "plementation": 18557, + "shift": 18558, + "▁Tra": 18559, + "▁servers": 18560, + "丈夫": 18561, + "▁DI": 18562, + "▁Guard": 18563, + "理财": 18564, + "cup": 18565, + "纪录": 18566, + "Panel": 18567, + "▁predom": 18568, + "nPar": 18569, + "▁OUT": 18570, + "队员": 18571, + "常委": 18572, + "▁contributing": 18573, + "相结合": 18574, + "around": 18575, + "nBackground": 18576, + "▁utilize": 18577, + "岁月": 18578, + "avirus": 18579, + "typeof": 18580, + "是很": 18581, + "设计的": 18582, + "western": 18583, + "yy": 18584, + "苏联": 18585, + "RES": 18586, + "付出": 18587, + "ancies": 18588, + "和我": 18589, + "/)\\": 18590, + "带动": 18591, + "loading": 18592, + "orgeous": 18593, + "inch": 18594, + "▁snap": 18595, + "oni": 18596, + "有可能": 18597, + "▁Student": 18598, + "▁ocean": 18599, + "中国农业": 18600, + "模板": 18601, + "▁musicians": 18602, + "并对": 18603, + "▁macroph": 18604, + "代谢": 18605, + "▁Modern": 18606, + "无需": 18607, + "rient": 18608, + "▁protocols": 18609, + "▁conservation": 18610, + "▁probe": 18611, + "▁Queens": 18612, + "nSim": 18613, + "intage": 18614, + "▁statistically": 18615, + "ployee": 18616, + "▁scoring": 18617, + "▁Unfortunately": 18618, + "▁Buy": 18619, + "nat": 18620, + "新能源": 18621, + "sheet": 18622, + "录取": 18623, + "hook": 18624, + "▁surf": 18625, + "phere": 18626, + "Db": 18627, + "hma": 18628, + "千年": 18629, + "看出": 18630, + "▁overcome": 18631, + "▁restricted": 18632, + "nWhere": 18633, + "几十": 18634, + "财产保险股份有限公司": 18635, + "我们在": 18636, + "▁Corp": 18637, + "刑期自": 18638, + "诉讼权利": 18639, + "Report": 18640, + "▁varying": 18641, + "▁Share": 18642, + "▁crowd": 18643, + "端口": 18644, + "▁copper": 18645, + "Pub": 18646, + "豆腐": 18647, + "▁appeal": 18648, + "想着": 18649, + "▁losses": 18650, + "符号": 18651, + "▁doctors": 18652, + "▁computation": 18653, + "▁Gh": 18654, + "omat": 18655, + "ortion": 18656, + "achelor": 18657, + "▁Nig": 18658, + "usc": 18659, + "认真遵守": 18660, + "▁retirement": 18661, + "bes": 18662, + "Layer": 18663, + "▁utilized": 18664, + "enant": 18665, + "▁squad": 18666, + "redirect": 18667, + "对本案": 18668, + "Middleware": 18669, + "词汇": 18670, + "jupyter": 18671, + "branch": 18672, + "▁cv": 18673, + "已构成": 18674, + "▁\"@": 18675, + "公安机关": 18676, + "内外": 18677, + "aptic": 18678, + "▁victim": 18679, + "lyn": 18680, + "爱国": 18681, + "convert": 18682, + "▁specialist": 18683, + "▁Basic": 18684, + "恐怖": 18685, + "▁Gra": 18686, + "▁Thread": 18687, + "▁Malays": 18688, + "激发": 18689, + "法律服务": 18690, + "▁movements": 18691, + "UTF": 18692, + "合理的": 18693, + "▁mutant": 18694, + "▁paras": 18695, + "▁Algebra": 18696, + "▁Islands": 18697, + "全程": 18698, + "×(": 18699, + "ingham": 18700, + "Price": 18701, + "driv": 18702, + "LINE": 18703, + "tcase": 18704, + "▁declared": 18705, + "前景": 18706, + "女士": 18707, + "方程为": 18708, + "▁certificate": 18709, + "▁Random": 18710, + "▁gate": 18711, + "history": 18712, + "FM": 18713, + "第三章": 18714, + "▁tooth": 18715, + "memory": 18716, + "▁bonus": 18717, + "▁Swedish": 18718, + "▁Garden": 18719, + "已经发生法律效力的": 18720, + "ILL": 18721, + "otrop": 18722, + "▁marine": 18723, + "rend": 18724, + "▁demo": 18725, + "再次申请执行": 18726, + "nGo": 18727, + "澳门": 18728, + "▁trim": 18729, + "aping": 18730, + "▁thereby": 18731, + "▁victims": 18732, + "Returns": 18733, + "ifact": 18734, + "▁faced": 18735, + "对你": 18736, + "aptop": 18737, + "编程": 18738, + ">)": 18739, + "什么的": 18740, + "▁Empire": 18741, + "▁entering": 18742, + "分泌": 18743, + "▁redistribute": 18744, + "Dem": 18745, + "▁difficulty": 18746, + "▁CL": 18747, + "▁Age": 18748, + "这就": 18749, + "▁Nick": 18750, + "可能性": 18751, + "▁garage": 18752, + "pad": 18753, + "先行": 18754, + "AGS": 18755, + "有两个": 18756, + "pic": 18757, + "tz": 18758, + "▁quot": 18759, + "distance": 18760, + "▁pricing": 18761, + "心态": 18762, + "▁publications": 18763, + "▁flexibility": 18764, + "一百": 18765, + "▁pleased": 18766, + "▁transactions": 18767, + "volume": 18768, + "nFurther": 18769, + "气体": 18770, + "优秀的": 18771, + "▁anymore": 18772, + "▁Il": 18773, + "▁\"\"\"\\": 18774, + "pot": 18775, + "一月": 18776, + "▁BBC": 18777, + "▁bias": 18778, + "\\\\;": 18779, + "pair": 18780, + "▁dominant": 18781, + "Has": 18782, + "内核": 18783, + "▁visits": 18784, + "/#": 18785, + "asant": 18786, + "stock": 18787, + "dfs": 18788, + "▁ensuring": 18789, + "nCalculate": 18790, + "公务员": 18791, + "需要的": 18792, + "Creat": 18793, + "ytics": 18794, + "friendly": 18795, + ":%": 18796, + "sets": 18797, + ";//": 18798, + "Fragment": 18799, + "middleware": 18800, + "▁leather": 18801, + "sb": 18802, + "attice": 18803, + "ка": 18804, + "nTrack": 18805, + "inar": 18806, + "▁affecting": 18807, + "▁angular": 18808, + "回去": 18809, + "引入": 18810, + "▁provision": 18811, + "([\\": 18812, + "哪怕": 18813, + "高达": 18814, + "分割": 18815, + "ench": 18816, + "▁Single": 18817, + "▁LaTeX": 18818, + "▁fewer": 18819, + "jection": 18820, + "rus": 18821, + "头的": 18822, + "浏览器": 18823, + "▁blind": 18824, + "stdio": 18825, + "▁suite": 18826, + "▁skip": 18827, + "▁Fall": 18828, + "教室": 18829, + "▁falls": 18830, + "是怎么": 18831, + "blast": 18832, + "激烈": 18833, + "ARCH": 18834, + "撤回对被告": 18835, + "▁metrics": 18836, + "acht": 18837, + "作为一个": 18838, + "▁oxide": 18839, + "▁folks": 18840, + "▁dies": 18841, + "▁acceleration": 18842, + "售后": 18843, + "INK": 18844, + "flat": 18845, + "Metadata": 18846, + "变更": 18847, + "▁bulk": 18848, + "▁specimens": 18849, + "▁physician": 18850, + "▁Lind": 18851, + "出现在": 18852, + "提交上诉状正本一份": 18853, + "▁captured": 18854, + "▁deleted": 18855, + "气象": 18856, + "opathy": 18857, + "▁Record": 18858, + "ер": 18859, + "ols": 18860, + "对待": 18861, + "GM": 18862, + "▁Sav": 18863, + "lear": 18864, + "▁decay": 18865, + "▁\\'\\'\\": 18866, + "▁communicate": 18867, + "ceptions": 18868, + "▁cake": 18869, + "▁bare": 18870, + "opts": 18871, + "▁Brad": 18872, + "▁IR": 18873, + "nPart": 18874, + "▁syntax": 18875, + "▁removing": 18876, + "浪漫": 18877, + "中国共产党": 18878, + "rowth": 18879, + "forEach": 18880, + "外出": 18881, + "▁Several": 18882, + "操作系统": 18883, + "Dto": 18884, + "Var": 18885, + "vard": 18886, + "选用": 18887, + "GRO": 18888, + "因式": 18889, + "力和": 18890, + "uum": 18891, + "▁Missouri": 18892, + "▁medalists": 18893, + "▁payload": 18894, + "坐在": 18895, + "▁investigations": 18896, + ">&": 18897, + "分辨率": 18898, + "yal": 18899, + "类型的": 18900, + "▁operational": 18901, + "connected": 18902, + "焦点": 18903, + "▁exponential": 18904, + "▁Ta": 18905, + "iral": 18906, + "▁restriction": 18907, + "iO": 18908, + "izon": 18909, + "graduate": 18910, + "奶奶": 18911, + "sym": 18912, + "▁PropTypes": 18913, + "Dat": 18914, + "▁fra": 18915, + "▁inclusion": 18916, + "安全生产": 18917, + "▁朱": 18918, + "▁spark": 18919, + "▁Cart": 18920, + "prototype": 18921, + "▁dipl": 18922, + "scopic": 18923, + "nQuestion": 18924, + "▁pathogenesis": 18925, + "▁林": 18926, + "▁descent": 18927, + "▁swit": 18928, + "出门": 18929, + "lux": 18930, + "quer": 18931, + "▁Volume": 18932, + "疫情防控": 18933, + "Save": 18934, + "不含": 18935, + "▁tradition": 18936, + "权威": 18937, + "▁Item": 18938, + "▁Disney": 18939, + "我现在": 18940, + "▁Corn": 18941, + "nbool": 18942, + "管理的": 18943, + "贵的": 18944, + "▁revolution": 18945, + "▁vo": 18946, + "▁PL": 18947, + "▁个": 18948, + "▁controlling": 18949, + "aco": 18950, + "hd": 18951, + "mers": 18952, + "arma": 18953, + "▁spinal": 18954, + "数为": 18955, + "Tasks": 18956, + "Sw": 18957, + "▁Vo": 18958, + "shops": 18959, + "▁applies": 18960, + "▁Prince": 18961, + "▁Moh": 18962, + "erving": 18963, + "不锈钢": 18964, + "字符串": 18965, + "Draw": 18966, + "inic": 18967, + "市公安局": 18968, + "职能": 18969, + "病情": 18970, + "MW": 18971, + "▁aug": 18972, + "there": 18973, + "▁participating": 18974, + "▁regulate": 18975, + "分别是": 18976, + "Kit": 18977, + "附带": 18978, + "abc": 18979, + "dump": 18980, + "nUniversity": 18981, + "▁phenomenon": 18982, + "USB": 18983, + "一样的": 18984, + "\"],\\": 18985, + "kish": 18986, + "▁polymorph": 18987, + "信息均": 18988, + "outing": 18989, + "nec": 18990, + "▁forgot": 18991, + "▁symbols": 18992, + "南昌": 18993, + "backend": 18994, + "▁utilizing": 18995, + "的三": 18996, + "指派": 18997, + "▁rugby": 18998, + "志愿者": 18999, + "房型": 19000, + "日电": 19001, + "▁puts": 19002, + "▁bottle": 19003, + "ntr": 19004, + "Full": 19005, + "轿车": 19006, + "▁Active": 19007, + "▁independently": 19008, + "商初字第": 19009, + "▁Wars": 19010, + "▁disable": 19011, + "一批": 19012, + "▁Move": 19013, + "▁Person": 19014, + "妹妹": 19015, + "▁Due": 19016, + "学校的": 19017, + "▁ultr": 19018, + "不清": 19019, + "▁scenes": 19020, + "▁timing": 19021, + "▁PHP": 19022, + "授予": 19023, + "▁sight": 19024, + "▁Bath": 19025, + "只会": 19026, + "▁gastr": 19027, + "prove": 19028, + "▁Iraq": 19029, + "▁tweet": 19030, + "▁currency": 19031, + "cu": 19032, + "▁MT": 19033, + "因而": 19034, + "▁trib": 19035, + "▁barrier": 19036, + "成为了": 19037, + "▁obtaining": 19038, + "▁Tal": 19039, + "Font": 19040, + "日益": 19041, + "▁Railway": 19042, + "爆炸": 19043, + "Public": 19044, + "洗净": 19045, + "outheast": 19046, + "▁duty": 19047, + "hover": 19048, + "▁alumin": 19049, + "绘画": 19050, + "采集": 19051, + "▁transcript": 19052, + "nals": 19053, + "▁\\'\\'": 19054, + "cycle": 19055, + "公诉机关指控": 19056, + "▁circular": 19057, + "▁transf": 19058, + "▁progressive": 19059, + "▁clothing": 19060, + "出行": 19061, + "当初": 19062, + "终身": 19063, + "▁themes": 19064, + "nOh": 19065, + "▁cookies": 19066, + "不易": 19067, + "人和": 19068, + "本院依据": 19069, + "合计": 19070, + "▁Pu": 19071, + "Power": 19072, + "burn": 19073, + "分手": 19074, + "姓名": 19075, + "▁meets": 19076, + "文本": 19077, + "▁cerebral": 19078, + "tok": 19079, + "万里": 19080, + "▁Tel": 19081, + "malink": 19082, + "▁associations": 19083, + "▁bars": 19084, + "控股": 19085, + "春节": 19086, + "▁Hay": 19087, + "▁satisfy": 19088, + "这么多": 19089, + "dn": 19090, + "引自": 19091, + "▁Associ": 19092, + "esian": 19093, + "▁demands": 19094, + "科大": 19095, + "▁RT": 19096, + "iper": 19097, + "法庭": 19098, + "▁tel": 19099, + "▁varied": 19100, + "▁alk": 19101, + "Random": 19102, + "pb": 19103, + "▁frames": 19104, + "占地面积": 19105, + "加拿大": 19106, + "中文化": 19107, + "但我": 19108, + "▁twe": 19109, + "zi": 19110, + "▁constants": 19111, + "▁FL": 19112, + "牛肉": 19113, + "▁Kansas": 19114, + "▁Pi": 19115, + "▁legend": 19116, + "illance": 19117, + "职称": 19118, + "nauthor": 19119, + "▁pregnant": 19120, + "▁partition": 19121, + "▁accumulation": 19122, + "▁sauce": 19123, + "▁vacation": 19124, + "ISO": 19125, + "atted": 19126, + "▁gamma": 19127, + "▁breaks": 19128, + "▁Front": 19129, + "▁navigation": 19130, + "化为": 19131, + "▁grap": 19132, + "}{{": 19133, + "▁导演": 19134, + ")):\\": 19135, + "▁retriev": 19136, + "▁facts": 19137, + "▁pink": 19138, + "}\"\\": 19139, + "一段时间": 19140, + "nom": 19141, + "可以通过": 19142, + "accept": 19143, + "olor": 19144, + "▁Kat": 19145, + "更好地": 19146, + "dates": 19147, + "▁approx": 19148, + "Feature": 19149, + "▁convergence": 19150, + "panel": 19151, + "▁conform": 19152, + "▁documented": 19153, + "olute": 19154, + "感动": 19155, + "Modal": 19156, + "▁Wilson": 19157, + "^(": 19158, + "设有": 19159, + "▁sync": 19160, + "▁highlights": 19161, + "▁Financial": 19162, + "▁trou": 19163, + "▁pipeline": 19164, + "itcoin": 19165, + "▁desktop": 19166, + "emat": 19167, + "轨道": 19168, + "opter": 19169, + "ignore": 19170, + "的机会": 19171, + "看过": 19172, + "Conf": 19173, + "▁gent": 19174, + "询问": 19175, + "▁drain": 19176, + "参加了": 19177, + "▁depart": 19178, + "旗下": 19179, + "▁Future": 19180, + "examples": 19181, + "地板": 19182, + "本题考查了": 19183, + "办事处": 19184, + "▁translate": 19185, + "habilitation": 19186, + "ixels": 19187, + "itting": 19188, + "FORM": 19189, + "生效之日起": 19190, + "魔法": 19191, + "▁releases": 19192, + "▁Hu": 19193, + "大数据": 19194, + "▁Cook": 19195, + "▁anch": 19196, + "▁illegal": 19197, + "▁combinations": 19198, + "▁ALL": 19199, + "entral": 19200, + "▁elastic": 19201, + "▁Sn": 19202, + "▁pel": 19203, + "olitan": 19204, + "▁personally": 19205, + "▁vitamin": 19206, + "▁charts": 19207, + "到位": 19208, + "COL": 19209, + "▁hasn": 19210, + "市政府": 19211, + "LOW": 19212, + "口腔": 19213, + "▁餐馆": 19214, + "发明": 19215, + "▁EP": 19216, + "tg": 19217, + "▁clothes": 19218, + "▁tast": 19219, + "▁executed": 19220, + "▁CC": 19221, + "男朋友": 19222, + "防水": 19223, + "批评": 19224, + "凭借": 19225, + "▁vertices": 19226, + "*\\\\": 19227, + "▁mood": 19228, + "▁enterprise": 19229, + "对自己": 19230, + "上是": 19231, + "sed": 19232, + "▁adaptive": 19233, + "重的": 19234, + "▁PT": 19235, + "诞生": 19236, + "▁→": 19237, + "Suppose": 19238, + "netes": 19239, + "▁editing": 19240, + "▁Again": 19241, + "▁CP": 19242, + "itudinal": 19243, + "rypto": 19244, + "▁waters": 19245, + "▁hang": 19246, + "培育": 19247, + "放心": 19248, + "▁Eric": 19249, + "ennessee": 19250, + "ILD": 19251, + "ials": 19252, + "▁xml": 19253, + "二首": 19254, + "ingly": 19255, + "__\\':\\": 19256, + "▁resolved": 19257, + "排序": 19258, + "optional": 19259, + "})^{": 19260, + "urches": 19261, + "fx": 19262, + "contains": 19263, + "covery": 19264, + "Msg": 19265, + "事实清楚": 19266, + "otive": 19267, + "abad": 19268, + "thur": 19269, + "可在接到判决书的第二日起十日内": 19270, + "精心": 19271, + "那就是": 19272, + "一项": 19273, + "▁Tax": 19274, + "peg": 19275, + "ultural": 19276, + "▁ma": 19277, + "增加了": 19278, + "较大的": 19279, + "▁Const": 19280, + "军队": 19281, + "CAD": 19282, + "Two": 19283, + "olo": 19284, + "chrome": 19285, + "nwe": 19286, + "▁appearances": 19287, + "eur": 19288, + "▁Cu": 19289, + "入口": 19290, + "新华社": 19291, + "▁lateral": 19292, + "aton": 19293, + "▁comparable": 19294, + "▁Sport": 19295, + "▁有": 19296, + "静脉": 19297, + "▁Nations": 19298, + "▁:)": 19299, + "住院": 19300, + "▁neuronal": 19301, + "进行分析": 19302, + "▁refers": 19303, + "按摩": 19304, + "steps": 19305, + "▁crack": 19306, + "带有": 19307, + "basic": 19308, + "▁equally": 19309, + "诗人": 19310, + "oscopic": 19311, + "▁新": 19312, + "▁lambda": 19313, + "▁Performance": 19314, + "▁Township": 19315, + "SB": 19316, + "一部": 19317, + "县城": 19318, + "▁cry": 19319, + "duration": 19320, + "游泳": 19321, + "nthis": 19322, + "文档": 19323, + "词语": 19324, + "合法传唤": 19325, + "北方": 19326, + "▁muscles": 19327, + "那么多": 19328, + "▁seeds": 19329, + ")),": 19330, + "▁accompanied": 19331, + "psilon": 19332, + "多数": 19333, + "nums": 19334, + "▁everywhere": 19335, + "水中": 19336, + "apsed": 19337, + "▁shops": 19338, + "▁computers": 19339, + "▁Capital": 19340, + "ERE": 19341, + "▁spont": 19342, + "常委会": 19343, + "▁stain": 19344, + "▁damaged": 19345, + "两边": 19346, + "ghan": 19347, + "发电": 19348, + "aware": 19349, + "▁spots": 19350, + "▁Sher": 19351, + "海拔": 19352, + "▁crazy": 19353, + "▁Ah": 19354, + "▁districts": 19355, + "▁notation": 19356, + "▁withdraw": 19357, + "是你": 19358, + "brand": 19359, + "inyl": 19360, + "▁Would": 19361, + "场的": 19362, + "amer": 19363, + "ania": 19364, + "▁flavor": 19365, + "▁analytical": 19366, + "获得了": 19367, + "经纪": 19368, + "ectomy": 19369, + "gate": 19370, + "登记机关": 19371, + "▁Stephen": 19372, + "▁coaches": 19373, + "IBUT": 19374, + "▁Limited": 19375, + "itecture": 19376, + "▁funny": 19377, + "▁ps": 19378, + "expand": 19379, + "▁forth": 19380, + "▁Village": 19381, + "starts": 19382, + "▁races": 19383, + "merge": 19384, + "▁closure": 19385, + "quant": 19386, + "为止": 19387, + "\\'\"": 19388, + "发生了": 19389, + "▁storm": 19390, + "contents": 19391, + "mL": 19392, + "为例": 19393, + "▁Insp": 19394, + "▁github": 19395, + "审批表": 19396, + "▁funded": 19397, + "▁ru": 19398, + "▁restore": 19399, + "▁金": 19400, + "某种": 19401, + "}(\\\\": 19402, + "urations": 19403, + "喜爱": 19404, + "融入": 19405, + "▁metadata": 19406, + "oped": 19407, + "数额": 19408, + "增大": 19409, + "感兴趣": 19410, + "▁aver": 19411, + "▁unclear": 19412, + "二月": 19413, + "整治": 19414, + "爆发": 19415, + "▁Dise": 19416, + "cdots": 19417, + "ibliography": 19418, + "Member": 19419, + "用药": 19420, + "好多": 19421, + "ynchron": 19422, + "终字第": 19423, + "进出口": 19424, + "{\\'": 19425, + "创建通道": 19426, + "symbol": 19427, + "词条初始": 19428, + "oming": 19429, + "信息均引自": 19430, + "词条初始信息均引自": 19431, + "acco": 19432, + "▁bunch": 19433, + "企业词条": 19434, + "企业词条极速": 19435, + "企业词条极速创建通道": 19436, + "百度百科企业词条极速创建通道": 19437, + "▁Solutions": 19438, + "▁hide": 19439, + "▁destr": 19440, + "▁Currently": 19441, + "▁feeding": 19442, + "▁slot": 19443, + "▁neon": 19444, + "▁assignment": 19445, + "▁submission": 19446, + "ubernetes": 19447, + "company": 19448, + "adies": 19449, + "▁surprised": 19450, + "}}{\\\\": 19451, + "▁Amb": 19452, + "▁households": 19453, + "两位": 19454, + "▁Veg": 19455, + "May": 19456, + "Dict": 19457, + "的天": 19458, + "蛋糕": 19459, + "nerg": 19460, + "赶紧": 19461, + "nSpec": 19462, + "▁towns": 19463, + "的信息": 19464, + "▁gay": 19465, + "ignKey": 19466, + ">)": 19467, + "▁Scient": 19468, + "ocl": 19469, + "▁myel": 19470, + "isons": 19471, + "▁anth": 19472, + "herence": 19473, + "逮捕": 19474, + "PCR": 19475, + "▁compete": 19476, + "工商行政": 19477, + "Ca": 19478, + "▁Philadelphia": 19479, + "▁Forum": 19480, + "形成了": 19481, + "▁Alexander": 19482, + "_(": 19483, + "aceut": 19484, + "anted": 19485, + "▁cycles": 19486, + "▁wash": 19487, + "▁equilibrium": 19488, + "\\\\/": 19489, + "▁inhibited": 19490, + "▁accurately": 19491, + "▁Cos": 19492, + ":**": 19493, + "▁logger": 19494, + "▁Hal": 19495, + "陶瓷": 19496, + "irts": 19497, + "财经": 19498, + "skip": 19499, + "▁Flow": 19500, + "▁whilst": 19501, + "病的": 19502, + "asia": 19503, + "厚的": 19504, + "社会抚养费": 19505, + "▁北京": 19506, + "▁rising": 19507, + "法人": 19508, + "可以说": 19509, + "纪委": 19510, + "隐藏": 19511, + "▁fest": 19512, + "LEV": 19513, + "看到了": 19514, + "▁pulse": 19515, + "ntest": 19516, + "时许": 19517, + "▁Stone": 19518, + "最为": 19519, + "▁fractions": 19520, + "爱你": 19521, + "在外": 19522, + "▁sharp": 19523, + "nBuild": 19524, + "cod": 19525, + "残疾": 19526, + "▁Overall": 19527, + "书籍": 19528, + "精确": 19529, + "▁prize": 19530, + "高压": 19531, + "▁soul": 19532, + "▁tou": 19533, + "Flow": 19534, + "宝贝": 19535, + "▁recipient": 19536, + "▁universal": 19537, + "大气": 19538, + "十一日": 19539, + "▁tagged": 19540, + "▁Enron": 19541, + "nDoes": 19542, + "中山": 19543, + "assign": 19544, + "nia": 19545, + "▁Result": 19546, + "▁hopes": 19547, + "责令被执行人": 19548, + "▁explored": 19549, + "气质": 19550, + "▁atom": 19551, + "▁歌曲": 19552, + "rules": 19553, + "ureau": 19554, + "Func": 19555, + "▁Brian": 19556, + "uity": 19557, + "▁Diego": 19558, + "prime": 19559, + "安县": 19560, + "▁Professional": 19561, + "法则": 19562, + "州区": 19563, + "替代": 19564, + "iking": 19565, + "▁男": 19566, + "▁compile": 19567, + "▁intention": 19568, + "▁loans": 19569, + "动漫": 19570, + "▁satisfied": 19571, + "发射": 19572, + "被人": 19573, + "身为": 19574, + "opro": 19575, + "▁indices": 19576, + "▁Miller": 19577, + "]]\\": 19578, + "▁Battle": 19579, + "sea": 19580, + "▁initiative": 19581, + "inery": 19582, + "▁diver": 19583, + "▁pneum": 19584, + "服务的": 19585, + "Xml": 19586, + "造成的": 19587, + "▁Elizabeth": 19588, + "tasks": 19589, + "▁Living": 19590, + "入手": 19591, + "▁specialized": 19592, + "lem": 19593, + "▁deform": 19594, + "上网": 19595, + "▁Compar": 19596, + "敌人": 19597, + "▁Gallery": 19598, + "讨厌": 19599, + "▁irre": 19600, + "下来的": 19601, + "▁logs": 19602, + "▁Fun": 19603, + "偶尔": 19604, + "obic": 19605, + "▁Returns": 19606, + "STAT": 19607, + "illiant": 19608, + "▁venue": 19609, + "▁酒店": 19610, + "▁lang": 19611, + "▁Ho": 19612, + "reement": 19613, + "未知": 19614, + "留言": 19615, + "▁shed": 19616, + "changes": 19617, + "Detail": 19618, + "limited": 19619, + "▁Czech": 19620, + "ovo": 19621, + "相同的": 19622, + "不及": 19623, + "相关部门": 19624, + "▁Sort": 19625, + "康复": 19626, + "embed": 19627, + "▁implementing": 19628, + "的距离": 19629, + "第二百六十二条第二款": 19630, + "▁Unity": 19631, + "mount": 19632, + "▁transplantation": 19633, + "iotic": 19634, + "remote": 19635, + "opsy": 19636, + "▁*)": 19637, + "不对": 19638, + "usage": 19639, + "以此": 19640, + "}}}": 19641, + "oning": 19642, + "而成": 19643, + "▁Story": 19644, + "▁knee": 19645, + "▁expatriate": 19646, + "▁cholesterol": 19647, + "的第一": 19648, + "ASH": 19649, + "一方面": 19650, + "▁shapes": 19651, + "的目的": 19652, + "▁attending": 19653, + "假释": 19654, + "osity": 19655, + "describe": 19656, + "protocol": 19657, + "minute": 19658, + "▁Production": 19659, + "亚洲": 19660, + "奇怪": 19661, + "extension": 19662, + "▁consistently": 19663, + "▁Very": 19664, + "乡镇": 19665, + "豪华": 19666, + "ete": 19667, + "▁tone": 19668, + "▁spher": 19669, + "▁adequate": 19670, + "▁Pit": 19671, + "coin": 19672, + "▁volumes": 19673, + "▁infect": 19674, + "▁invari": 19675, + "Variable": 19676, + "▁vessels": 19677, + "想想": 19678, + "▁Ryan": 19679, + "RECT": 19680, + "▁chemistry": 19681, + "▁nick": 19682, + "节约": 19683, + "pletion": 19684, + "▁Polish": 19685, + "Word": 19686, + "]))\\": 19687, + "▁tile": 19688, + "owers": 19689, + "条件下": 19690, + "BF": 19691, + "▁las": 19692, + "白云": 19693, + "▁designing": 19694, + "立体": 19695, + "/{": 19696, + "nest": 19697, + "配有": 19698, + "陈某": 19699, + "移民": 19700, + "内蒙古自治区": 19701, + "▁templates": 19702, + "▁wing": 19703, + "▁spoke": 19704, + "▁Adam": 19705, + "▁tennis": 19706, + "▁BUT": 19707, + "▁Tool": 19708, + "▁β": 19709, + "umbn": 19710, + "▁д": 19711, + "将于": 19712, + "▁equals": 19713, + "management": 19714, + "[(": 19715, + "村委会": 19716, + "▁uncertainty": 19717, + "offs": 19718, + "INFO": 19719, + "▁discussions": 19720, + "第四十": 19721, + "ubble": 19722, + "为一": 19723, + "进攻": 19724, + "▁excit": 19725, + "▁organisation": 19726, + "一次性": 19727, + "aque": 19728, + "oku": 19729, + ">>\\": 19730, + "Some": 19731, + "▁Lewis": 19732, + "iw": 19733, + "Section": 19734, + "▁styled": 19735, + "paths": 19736, + "bmatrix": 19737, + "客服": 19738, + "▁productivity": 19739, + "坚定": 19740, + "▁imper": 19741, + "向原告借款": 19742, + "members": 19743, + "ethe": 19744, + "占有": 19745, + "trl": 19746, + "compat": 19747, + "Offset": 19748, + "cycl": 19749, + "uler": 19750, + "arth": 19751, + "▁Song": 19752, + "二手": 19753, + "▁Buff": 19754, + "▁replic": 19755, + "完成了": 19756, + "▁requiring": 19757, + "▁carrier": 19758, + "发出执行通知书": 19759, + "▁Website": 19760, + "▁burden": 19761, + "▁physicians": 19762, + "▁rings": 19763, + "▁delayed": 19764, + "组件": 19765, + "语音": 19766, + "随意": 19767, + "Ax": 19768, + "的安全": 19769, + "▁scrap": 19770, + "▁mirror": 19771, + "▁hex": 19772, + "▁Early": 19773, + "herit": 19774, + "inction": 19775, + "是谁": 19776, + "Transaction": 19777, + "变成了": 19778, + "nHave": 19779, + "售价": 19780, + "风雨": 19781, + "▁clip": 19782, + "快捷": 19783, + "chnology": 19784, + "▁atoms": 19785, + "▁Tech": 19786, + "的美": 19787, + "▁dietary": 19788, + "首发": 19789, + "▁Drive": 19790, + "energy": 19791, + "amination": 19792, + "iac": 19793, + "加载": 19794, + "颜值": 19795, + "▁connecting": 19796, + "▁consultation": 19797, + "ahoma": 19798, + "▁inventory": 19799, + "nOf": 19800, + "QQ": 19801, + "▁developments": 19802, + "列表": 19803, + "▁Las": 19804, + "nreturn": 19805, + "phones": 19806, + "酒精": 19807, + "▁clinically": 19808, + "▁胡": 19809, + "▁({": 19810, + "▁treating": 19811, + "abama": 19812, + "emet": 19813, + "▁stere": 19814, + "▁pun": 19815, + "ellectual": 19816, + "▁taxes": 19817, + "可惜": 19818, + "罗马": 19819, + "犯危险驾驶罪": 19820, + "全身": 19821, + "然后再": 19822, + "NING": 19823, + "或者直接向": 19824, + "Download": 19825, + "amsung": 19826, + "党组": 19827, + "lad": 19828, + "▁engines": 19829, + "扎实": 19830, + "Identifier": 19831, + "付费": 19832, + "▁fatty": 19833, + "▁Gas": 19834, + "▁entrance": 19835, + "▁colleagues": 19836, + "第四章": 19837, + "▁coat": 19838, + "rupted": 19839, + "▁注": 19840, + "aceutical": 19841, + "结局": 19842, + "争取": 19843, + "制的": 19844, + "的一切": 19845, + "patic": 19846, + "主流": 19847, + "▁pancreat": 19848, + "urope": 19849, + "▁Exchange": 19850, + "Library": 19851, + "Register": 19852, + "第二次": 19853, + "essment": 19854, + "Pop": 19855, + "厚度": 19856, + "▁Cit": 19857, + "Validator": 19858, + "gnu": 19859, + "像素": 19860, + "uzzy": 19861, + "条件的": 19862, + "aire": 19863, + "▁disp": 19864, + "▁obst": 19865, + "▁USE": 19866, + "▁believes": 19867, + "盈利": 19868, + "Parent": 19869, + "缺陷": 19870, + "▁trauma": 19871, + "nPopulated": 19872, + "以被告人": 19873, + "Remove": 19874, + "创办": 19875, + "essed": 19876, + "▁dependency": 19877, + "cancel": 19878, + "▁digits": 19879, + "llib": 19880, + "FE": 19881, + "Dist": 19882, + "▁yields": 19883, + "一把": 19884, + "▁orbit": 19885, + "的精神": 19886, + "locale": 19887, + "人心": 19888, + "nRem": 19889, + "Results": 19890, + "一看": 19891, + "▁sevent": 19892, + "抵押": 19893, + "日向本院提起公诉": 19894, + "▁clicking": 19895, + "▁broke": 19896, + "▁metres": 19897, + "{}\\": 19898, + "omorphic": 19899, + "▁incorporated": 19900, + "▁mesh": 19901, + "▁soccer": 19902, + "▁cnt": 19903, + "劳动任务": 19904, + "KEN": 19905, + "▁mineral": 19906, + "estone": 19907, + "▁Mexican": 19908, + "机遇": 19909, + "▁tmp": 19910, + "proof": 19911, + "裁决": 19912, + "kan": 19913, + "自行车": 19914, + "爷爷": 19915, + "▁aqu": 19916, + "oys": 19917, + "▁pill": 19918, + "上课": 19919, + "不论": 19920, + "▁Mu": 19921, + "▁schemes": 19922, + "Extension": 19923, + "criptor": 19924, + "▁Oak": 19925, + "▁Complex": 19926, + "#[": 19927, + "ет": 19928, + "}\\\\": 20448, + "bone": 20449, + "buntu": 20450, + "Before": 20451, + "▁Dun": 20452, + "'(": 20453, + "越南": 20454, + "举报": 20455, + "为人": 20456, + "▁pdf": 20457, + "▁admission": 20458, + "贩卖": 20459, + "面包": 20460, + "▁Oil": 20461, + "▁mol": 20462, + "▁combining": 20463, + "▁switching": 20464, + "minecraft": 20465, + "olk": 20466, + "欠原告": 20467, + "以便": 20468, + "hop": 20469, + "警方": 20470, + "▁:)\\": 20471, + "▁pipe": 20472, + "Html": 20473, + "▁Originally": 20474, + "不去": 20475, + "伟大": 20476, + "▁Members": 20477, + "omm": 20478, + "▁extensions": 20479, + "说道": 20480, + "▁Norway": 20481, + "会不会": 20482, + "应用于": 20483, + "▁Democrats": 20484, + "▁Jen": 20485, + "dor": 20486, + "▁alive": 20487, + "下落": 20488, + "荣耀": 20489, + "事业单位": 20490, + "ARS": 20491, + "几次": 20492, + "帮我": 20493, + "应当提交上诉状正本一份": 20494, + "饭店": 20495, + "Events": 20496, + "nBritish": 20497, + "遗产": 20498, + "▁liked": 20499, + "▁phases": 20500, + "时代的": 20501, + "弟弟": 20502, + "▁flower": 20503, + "▁tap": 20504, + "持有": 20505, + "计量": 20506, + "▁startup": 20507, + "origin": 20508, + "冬季": 20509, + "__)\\": 20510, + "几种": 20511, + "ли": 20512, + "cosystem": 20513, + "两条": 20514, + "risk": 20515, + "▁Electric": 20516, + "好处": 20517, + "single": 20518, + "影像": 20519, + "是一名": 20520, + "的多": 20521, + "▁army": 20522, + "▁epidem": 20523, + "▁junior": 20524, + "十二条": 20525, + "编码": 20526, + "航天": 20527, + "erver": 20528, + "ationship": 20529, + "▁placement": 20530, + "eno": 20531, + "没有任何": 20532, + "PF": 20533, + "腐蚀": 20534, + "▁Template": 20535, + "XXX": 20536, + "▁roughly": 20537, + "至今未履行": 20538, + "黑暗": 20539, + "服务中心": 20540, + "▁weird": 20541, + "inflamm": 20542, + "有多少": 20543, + "▁pri": 20544, + "月出生": 20545, + "elve": 20546, + "取保候审": 20547, + "民生": 20548, + "▁scanning": 20549, + "generated": 20550, + "▁presidential": 20551, + "▁Highway": 20552, + "▁Kentucky": 20553, + "generator": 20554, + "▁Intel": 20555, + "▁loads": 20556, + "▁adip": 20557, + "▁wavelength": 20558, + "▁RA": 20559, + "▁junction": 20560, + "▁emails": 20561, + "住址": 20562, + "▁categor": 20563, + "▁restrictions": 20564, + "故意伤害": 20565, + "▁inch": 20566, + "▁起点中文网": 20567, + "党支部": 20568, + "▁attach": 20569, + "▁killing": 20570, + "sch": 20571, + "因子": 20572, + "报考": 20573, + "▁fake": 20574, + "transfer": 20575, + "brew": 20576, + "切换": 20577, + "avit": 20578, + "原审原告": 20579, + "▁optimize": 20580, + "蓝色": 20581, + "不超过": 20582, + "主机": 20583, + "▁Rome": 20584, + "▁dictionary": 20585, + "▁Hind": 20586, + "ursive": 20587, + "国土资源局": 20588, + "▁climb": 20589, + "▁ML": 20590, + "▁Context": 20591, + "▁Issue": 20592, + "▁quadratic": 20593, + "▁Fast": 20594, + "▁Delhi": 20595, + "ein": 20596, + "辖区": 20597, + "饮料": 20598, + "与其": 20599, + "的钱": 20600, + "▁Rot": 20601, + "高新技术": 20602, + "▁Prize": 20603, + "▁exceptional": 20604, + "OF": 20605, + "rence": 20606, + "LES": 20607, + "却是": 20608, + "▁defend": 20609, + "▁ions": 20610, + "▁couples": 20611, + "▁Blog": 20612, + "▁DR": 20613, + "apor": 20614, + "▁encouraged": 20615, + "照明": 20616, + "离婚诉讼": 20617, + "▁discharge": 20618, + "▁strike": 20619, + "我自己": 20620, + "入选": 20621, + "MG": 20622, + "的光": 20623, + "oment": 20624, + "imeter": 20625, + "pleted": 20626, + "igator": 20627, + "▁yours": 20628, + "期货": 20629, + "Lib": 20630, + "依法由": 20631, + "▁\\'<": 20632, + "extract": 20633, + "scroll": 20634, + "在使用": 20635, + "放松": 20636, + "DES": 20637, + "▁deficiency": 20638, + "▁Youth": 20639, + "Area": 20640, + "▁memories": 20641, + ">`": 20642, + "手动": 20643, + "▁Independent": 20644, + "▁convenience": 20645, + "variable": 20646, + "▁occurrence": 20647, + "解读": 20648, + "除外": 20649, + "▁cerv": 20650, + "青海": 20651, + "遗传": 20652, + "▁ratings": 20653, + "erator": 20654, + "▁gorgeous": 20655, + "配备": 20656, + "ptic": 20657, + "看完": 20658, + "ophil": 20659, + "▁shots": 20660, + "▁perceived": 20661, + "▁biomark": 20662, + "Term": 20663, + "我认为": 20664, + "xt": 20665, + "号楼": 20666, + "提到": 20667, + "▁Motor": 20668, + "▁maternal": 20669, + "行长": 20670, + "祝福": 20671, + "东京": 20672, + "▁Draw": 20673, + "监狱于": 20674, + "▁delivering": 20675, + "▁widget": 20676, + "神奇": 20677, + "干扰": 20678, + "▁smoke": 20679, + "心灵": 20680, + "正规": 20681, + "theless": 20682, + "▁Inv": 20683, + "▁Bat": 20684, + "functions": 20685, + "▁ml": 20686, + "▁Burn": 20687, + "nNext": 20688, + "租金": 20689, + "▁sophistic": 20690, + "生产的": 20691, + "▁cortex": 20692, + "▁disput": 20693, + "▁multiply": 20694, + "很高": 20695, + "基础设施": 20696, + "▁variability": 20697, + "▁hierarch": 20698, + "东风": 20699, + "years": 20700, + "发现被执行人有可供执行财产的": 20701, + "资质": 20702, + "▁Photo": 20703, + "▁animation": 20704, + "market": 20705, + "period": 20706, + "cart": 20707, + "▁Observ": 20708, + "买的": 20709, + "initely": 20710, + "▁universities": 20711, + "Rect": 20712, + "▁franch": 20713, + "▁mobility": 20714, + "nUp": 20715, + "栽培": 20716, + "▁anterior": 20717, + "大学出版社": 20718, + "▁Recent": 20719, + "▁Mechan": 20720, + "rett": 20721, + "nSolve": 20722, + "▁establishment": 20723, + "▁Chrome": 20724, + "mos": 20725, + "建设的": 20726, + "摄像头": 20727, + "rik": 20728, + "▁unf": 20729, + "振兴": 20730, + "有一种": 20731, + "▁Ast": 20732, + "antom": 20733, + "▁fs": 20734, + "ysts": 20735, + "▁chains": 20736, + "▁Rap": 20737, + "供应商": 20738, + "acial": 20739, + "长安": 20740, + "lla": 20741, + "▁然后": 20742, + "在大": 20743, + "文件夹": 20744, + "MF": 20745, + "带来了": 20746, + "▁asthma": 20747, + "▁workflow": 20748, + "▁backup": 20749, + "不仅仅": 20750, + "复印件": 20751, + "稍微": 20752, + ")|": 20753, + "路由": 20754, + "▁describing": 20755, + "ulative": 20756, + "▁router": 20757, + "▁engineers": 20758, + "架构": 20759, + "recip": 20760, + "享有": 20761, + "快的": 20762, + "Comment": 20763, + "interest": 20764, + "ingers": 20765, + "严重的": 20766, + "服饰": 20767, + "▁FO": 20768, + "▁arrival": 20769, + "难题": 20770, + "▁stats": 20771, + "activation": 20772, + "wp": 20773, + "身材": 20774, + "Bit": 20775, + "价值观": 20776, + "改为": 20777, + "▁Size": 20778, + "流通": 20779, + "pathy": 20780, + "▁observe": 20781, + "emetery": 20782, + "ithmetic": 20783, + "tit": 20784, + "sequence": 20785, + ">{": 20786, + "风机": 20787, + "▁Mun": 20788, + "▁farmers": 20789, + "▁Treatment": 20790, + "某乙": 20791, + "罚款": 20792, + "高层": 20793, + "▁plt": 20794, + "English": 20795, + "▁arterial": 20796, + "▁Profile": 20797, + "张家": 20798, + "广西壮": 20799, + "通报": 20800, + "▁bronze": 20801, + "交叉": 20802, + "▁builds": 20803, + "模具": 20804, + "的发生": 20805, + "Security": 20806, + "▁kw": 20807, + "rous": 20808, + "overty": 20809, + "▁Native": 20810, + "以外": 20811, + "体内": 20812, + "▁indirect": 20813, + "▁traveling": 20814, + "十九条": 20815, + "▁smile": 20816, + "▁designers": 20817, + "▁meaningful": 20818, + "博客": 20819, + "诸多": 20820, + "▁scales": 20821, + "隐患": 20822, + "水分": 20823, + "一会": 20824, + "witzer": 20825, + "yrics": 20826, + "掉了": 20827, + "▁determin": 20828, + "▁Tai": 20829, + "Lock": 20830, + "plane": 20831, + "挑选": 20832, + "透露": 20833, + "秘书长": 20834, + "brace": 20835, + "nAct": 20836, + "TRIBUT": 20837, + "▁Miami": 20838, + "ahoo": 20839, + "▁ultra": 20840, + "nExample": 20841, + "向被告": 20842, + "▁Maria": 20843, + "▁separately": 20844, + "DATA": 20845, + "最早": 20846, + "▁Resources": 20847, + "▁vessel": 20848, + "研讨": 20849, + "管辖权": 20850, + "澳大利": 20851, + "▁quotes": 20852, + "getLogger": 20853, + "wind": 20854, + "▁DJ": 20855, + "▁defeated": 20856, + "(\\'#": 20857, + "▁topology": 20858, + "▁harvest": 20859, + "拍照": 20860, + "nBiography": 20861, + "▁holes": 20862, + "▁divisor": 20863, + "nBefore": 20864, + "zhe": 20865, + "▁thesis": 20866, + "gmail": 20867, + "Enabled": 20868, + "phosph": 20869, + "▁laugh": 20870, + "▁SR": 20871, + "▁AA": 20872, + "roit": 20873, + "stim": 20874, + "山水": 20875, + "walk": 20876, + "))/": 20877, + "\"/>\\": 20878, + "relation": 20879, + "广西壮族自治区": 20880, + "让自己": 20881, + "clerosis": 20882, + "▁interfer": 20883, + "澳大利亚": 20884, + "▁Still": 20885, + "有关法律规定": 20886, + "ال": 20887, + "▁answered": 20888, + "▁Third": 20889, + "BV": 20890, + "就没有": 20891, + "▁hub": 20892, + "▁raising": 20893, + "▁coli": 20894, + "▁oldest": 20895, + "\\'))": 20896, + "icator": 20897, + "Join": 20898, + "较低": 20899, + "otide": 20900, + "nCar": 20901, + "▁adapted": 20902, + "短信": 20903, + "开设": 20904, + "对原告": 20905, + "[:,": 20906, + "▁JS": 20907, + "擅长": 20908, + "多么": 20909, + "▁Style": 20910, + "▁expanding": 20911, + "flags": 20912, + "紧急": 20913, + "▁shortly": 20914, + "▁Marketing": 20915, + "整改": 20916, + "社会信用": 20917, + "consum": 20918, + "▁scenarios": 20919, + "的质量": 20920, + "本院不予": 20921, + "▁speakers": 20922, + "Scope": 20923, + "quot": 20924, + "napshot": 20925, + "▁singular": 20926, + "▁Staff": 20927, + "templates": 20928, + "rup": 20929, + "相识": 20930, + "audi": 20931, + "\\'][\\'": 20932, + "外部": 20933, + "oscow": 20934, + "dialog": 20935, + "数码": 20936, + "redis": 20937, + "为什么要": 20938, + "懂得": 20939, + "Eval": 20940, + "bx": 20941, + "▁fetal": 20942, + "▁Advanced": 20943, + "▁ordinary": 20944, + "Send": 20945, + "▁(@": 20946, + "▁subsid": 20947, + "的最小": 20948, + "失信被执行人": 20949, + "▁privile": 20950, + "▁dump": 20951, + "能在": 20952, + "这条": 20953, + "一半": 20954, + "▁desk": 20955, + "饲料": 20956, + "▁finishing": 20957, + "lav": 20958, + "▁PI": 20959, + "binary": 20960, + ";;": 20961, + "▁ranked": 20962, + "▁graphic": 20963, + "▁cuts": 20964, + "▁phenotype": 20965, + "iden": 20966, + "▁flags": 20967, + "▁curriculum": 20968, + "▁Hawai": 20969, + "阿拉": 20970, + "▁Hope": 20971, + "▁assault": 20972, + "附加": 20973, + "▁enrolled": 20974, + "▁ATP": 20975, + "▁vec": 20976, + "▁substit": 20977, + "▁Harry": 20978, + "跟我": 20979, + "▁Hart": 20980, + "▁inhab": 20981, + "Win": 20982, + "Cond": 20983, + "▁panels": 20984, + "boy": 20985, + "odynamic": 20986, + "裁判": 20987, + "相关法律条文": 20988, + "▁不": 20989, + "▁downtown": 20990, + "stdc": 20991, + "▁philosophy": 20992, + "淘宝": 20993, + "oton": 20994, + "储蓄": 20995, + "aceae": 20996, + "越来越多": 20997, + "iev": 20998, + "▁宋": 20999, + "前进": 21000, + "段时间": 21001, + "选答案": 21002, + "此前": 21003, + "Runtime": 21004, + "may": 21005, + "另一方面": 21006, + "▁Private": 21007, + "▁deviation": 21008, + "▁Moon": 21009, + "▁Trade": 21010, + "人大常委会": 21011, + "opens": 21012, + "▁aside": 21013, + "▁bounds": 21014, + "ocon": 21015, + "will": 21016, + "orses": 21017, + "▁elegant": 21018, + "▁receiver": 21019, + "▁afr": 21020, + "()`": 21021, + "▁residence": 21022, + "delet": 21023, + "前提": 21024, + "可供执行的财产线索": 21025, + "CPU": 21026, + "▁blend": 21027, + "诗词": 21028, + "▁ArrayList": 21029, + "▁红": 21030, + "火车": 21031, + "学名": 21032, + "组织的": 21033, + "▁wooden": 21034, + "摩托车": 21035, + "▁Hello": 21036, + "脱贫": 21037, + "▁universe": 21038, + "非洲": 21039, + "供给": 21040, + "▁poorly": 21041, + "jquery": 21042, + "依托": 21043, + "such": 21044, + "▁Ever": 21045, + "▁undergoing": 21046, + "党组成员": 21047, + "▁Comment": 21048, + "▁endpoint": 21049, + "▁weapons": 21050, + "▁announcement": 21051, + "MHz": 21052, + "▁Alabama": 21053, + "附件": 21054, + "▁}^{": 21055, + "出场": 21056, + "落地": 21057, + "是从": 21058, + "witzerland": 21059, + "ForeignKey": 21060, + "▁Dat": 21061, + "▁perf": 21062, + "▁proxy": 21063, + "spe": 21064, + "Just": 21065, + "▁combat": 21066, + "]*": 21067, + "亦未": 21068, + "▁Lev": 21069, + "第二天": 21070, + "▁Advis": 21071, + "ski": 21072, + "▁Federation": 21073, + "▁Stadium": 21074, + "加以": 21075, + "大地": 21076, + "理性": 21077, + "▁genu": 21078, + "▁conscious": 21079, + "▁enforcement": 21080, + "▁登记机关": 21081, + "rypted": 21082, + "▁supplied": 21083, + "▁prototype": 21084, + "olin": 21085, + "wave": 21086, + "见到": 21087, + "巴黎": 21088, + "▁preview": 21089, + "▁generalized": 21090, + "×××××": 21091, + "净化": 21092, + "会被": 21093, + "电梯": 21094, + "idad": 21095, + "uties": 21096, + "Driver": 21097, + "线下": 21098, + "Light": 21099, + "▁Sant": 21100, + "我都": 21101, + "之所以": 21102, + "四大": 21103, + "参赛": 21104, + "无关": 21105, + "▁configure": 21106, + "吃了": 21107, + "▁deployment": 21108, + "sent": 21109, + "的长": 21110, + "amous": 21111, + "klahoma": 21112, + "忘了": 21113, + "▁infant": 21114, + "第四百": 21115, + "Here": 21116, + "在北京": 21117, + "▁intense": 21118, + "经查": 21119, + "Fail": 21120, + "CRIPT": 21121, + "辩称": 21122, + "退出": 21123, + "Install": 21124, + "错了": 21125, + "Exp": 21126, + "▁feelings": 21127, + "Pol": 21128, + "▁notable": 21129, + "▁Han": 21130, + "▁ft": 21131, + "括号": 21132, + "NULL": 21133, + "▁resort": 21134, + "其他的": 21135, + "▁hurt": 21136, + "小姐": 21137, + "▁dip": 21138, + "友好": 21139, + "omorphism": 21140, + "AVE": 21141, + "▁unicode": 21142, + "▁Du": 21143, + "▁操作": 21144, + "▁tok": 21145, + "▁oc": 21146, + "借鉴": 21147, + "▁reads": 21148, + "effective": 21149, + "Linux": 21150, + "视野": 21151, + "progress": 21152, + "活跃": 21153, + "ROOT": 21154, + "chart": 21155, + "▁Jay": 21156, + "▁agricultural": 21157, + "建造": 21158, + "排放": 21159, + "Cap": 21160, + "dark": 21161, + "ör": 21162, + "▁Pier": 21163, + "界的": 21164, + "▁Json": 21165, + "ATED": 21166, + "十五日": 21167, + "▁pointer": 21168, + "ammar": 21169, + "▁Learn": 21170, + "民间借贷纠纷一案中": 21171, + "Validation": 21172, + "零件": 21173, + "keeper": 21174, + "款项": 21175, + "手册": 21176, + "▁Job": 21177, + "▁precisely": 21178, + "嫌疑": 21179, + "▁Indonesia": 21180, + "iaz": 21181, + "▁Cape": 21182, + "exchange": 21183, + "▁Chen": 21184, + "was": 21185, + "高级人民法院": 21186, + "mobile": 21187, + "▁attempted": 21188, + "党建": 21189, + "出具的": 21190, + "expr": 21191, + "▁Officer": 21192, + "▁boundaries": 21193, + "打破": 21194, + "重组": 21195, + "不容易": 21196, + "国家级": 21197, + "有一天": 21198, + "▁nucleus": 21199, + "▁somehow": 21200, + "攻坚": 21201, + "▁collagen": 21202, + "langle": 21203, + "▁hotels": 21204, + "总局": 21205, + "▁spray": 21206, + "▁timeout": 21207, + "第五章": 21208, + "▁wider": 21209, + "Dest": 21210, + "▁indoor": 21211, + "机电": 21212, + "工商行政管理局": 21213, + "▁defining": 21214, + "▁bases": 21215, + "▁unfort": 21216, + "▁improves": 21217, + "▁Theorem": 21218, + "▁amplitude": 21219, + "nMr": 21220, + "insic": 21221, + "分成": 21222, + "▁phosphorylation": 21223, + "已成为": 21224, + "EEE": 21225, + "▁retain": 21226, + "如果有": 21227, + "弹性": 21228, + "helpers": 21229, + "getElementById": 21230, + "象限": 21231, + "举证": 21232, + "▁una": 21233, + "▁Spect": 21234, + "醉酒": 21235, + "▁df": 21236, + "▁lawyers": 21237, + "▁dp": 21238, + "▁photographs": 21239, + "uris": 21240, + "执行费": 21241, + "urious": 21242, + "▁dt": 21243, + "▁chances": 21244, + "Agent": 21245, + "▁struggle": 21246, + "纽约": 21247, + "美好的": 21248, + "关系的": 21249, + "Contact": 21250, + "找不到": 21251, + "▁tie": 21252, + "尽快": 21253, + "▁validated": 21254, + "▁Az": 21255, + "▁metall": 21256, + "浦东": 21257, + "平方公里": 21258, + "▁Books": 21259, + "ogens": 21260, + "透过": 21261, + "posing": 21262, + "一本": 21263, + "▁lucky": 21264, + "打电话": 21265, + "Programming": 21266, + "▁questionnaire": 21267, + "▁overw": 21268, + "▁ski": 21269, + "完成劳动任务": 21270, + "mates": 21271, + "pick": 21272, + "nRead": 21273, + "▁peptides": 21274, + "▁Liter": 21275, + "西安市": 21276, + "tainment": 21277, + "据悉": 21278, + "DU": 21279, + "▁cout": 21280, + "▁meals": 21281, + "coln": 21282, + "养生": 21283, + "▁subscription": 21284, + "▁bic": 21285, + "nBl": 21286, + "也未": 21287, + "这件事": 21288, + "光明": 21289, + "移送": 21290, + "afka": 21291, + "走到": 21292, + "thew": 21293, + "给自己": 21294, + "渐渐": 21295, + "micro": 21296, + "hai": 21297, + "经本院合法传唤": 21298, + "▁reception": 21299, + "▁publishing": 21300, + "▁expenses": 21301, + "罪名成立": 21302, + "▁olig": 21303, + "▁GR": 21304, + "nBecause": 21305, + "ioxid": 21306, + "once": 21307, + "▁residual": 21308, + "的范围": 21309, + "▁symmetric": 21310, + "▁enhancement": 21311, + "过度": 21312, + "youtube": 21313, + "▁ctx": 21314, + "师傅": 21315, + "抑郁": 21316, + "▁bes": 21317, + "▁Altern": 21318, + "elastic": 21319, + "结束后": 21320, + "已被": 21321, + "LIB": 21322, + "▁cooperation": 21323, + "▁_,": 21324, + "▁transient": 21325, + "▁transformed": 21326, + "▁BO": 21327, + "▁dont": 21328, + "ulates": 21329, + "▁Da": 21330, + "▁cant": 21331, + "▁Michel": 21332, + "事实上": 21333, + "textcolor": 21334, + "到来": 21335, + "Ptr": 21336, + "ación": 21337, + "Failed": 21338, + "Chat": 21339, + "▁Affairs": 21340, + "▁Magazine": 21341, + "▁likelihood": 21342, + ";&": 21343, + "▁cul": 21344, + "▁anest": 21345, + "▁Bit": 21346, + "▁streaming": 21347, + "代表大会": 21348, + "▁PK": 21349, + "期限为": 21350, + "▁verified": 21351, + "物业管理": 21352, + "ordon": 21353, + "尴尬": 21354, + "▁lum": 21355, + "我家": 21356, + "的项目": 21357, + "▁Cover": 21358, + "解答即可": 21359, + "▁packaging": 21360, + "▁torch": 21361, + "▁arranged": 21362, + "likely": 21363, + "采纳": 21364, + "▁Controller": 21365, + "▁gonna": 21366, + "珍惜": 21367, + "▁colours": 21368, + "Blue": 21369, + "▁empirical": 21370, + "hl": 21371, + "▁deeper": 21372, + "▁Nev": 21373, + "idespread": 21374, + "三次": 21375, + "OSS": 21376, + "▁Gil": 21377, + "▁Statistics": 21378, + "__\":\\": 21379, + "▁balls": 21380, + "▁preventing": 21381, + "派出所": 21382, + "四条": 21383, + "那是": 21384, + "▁Factor": 21385, + "Keys": 21386, + "▁上海": 21387, + "输送": 21388, + "nToday": 21389, + "andra": 21390, + "▁Mas": 21391, + "从业": 21392, + "干预": 21393, + "穿着": 21394, + "nRel": 21395, + "人民法院裁定": 21396, + "▁SM": 21397, + "Holder": 21398, + "MODE": 21399, + "third": 21400, + "▁Spir": 21401, + "▁hero": 21402, + "▁rated": 21403, + "▁sixth": 21404, + "三星": 21405, + "hyper": 21406, + "science": 21407, + "turn": 21408, + "▁exclusively": 21409, + "▁по": 21410, + "olly": 21411, + "▁Hil": 21412, + "▁abilities": 21413, + "▁compiled": 21414, + "▁dreams": 21415, + "Double": 21416, + "Gui": 21417, + "▁prosec": 21418, + "▁explicitly": 21419, + "eu": 21420, + "poly": 21421, + "讲述": 21422, + "▁EC": 21423, + "▁entities": 21424, + "▁abnormalities": 21425, + "审美": 21426, + "不履行": 21427, + "▁Hollywood": 21428, + "▁dollar": 21429, + "本院已": 21430, + "我还": 21431, + "海市": 21432, + "可以再次申请执行": 21433, + "上线": 21434, + "extend": 21435, + "青山": 21436, + "Import": 21437, + "方针": 21438, + "财产线索": 21439, + "obacter": 21440, + "▁entitled": 21441, + "leges": 21442, + "放大": 21443, + "的意义": 21444, + "的市场": 21445, + "▁tries": 21446, + "▁predominant": 21447, + "▁transparent": 21448, + "定价": 21449, + "Stat": 21450, + "rose": 21451, + "▁Stream": 21452, + "▁impl": 21453, + "▁achieving": 21454, + "sr": 21455, + "clock": 21456, + "▁safely": 21457, + "执行工作": 21458, + "▁Body": 21459, + "▁aggressive": 21460, + "▁vulnerable": 21461, + "empl": 21462, + "nWomen": 21463, + "少的": 21464, + "▁科": 21465, + "▁affinity": 21466, + "▁substitute": 21467, + "▁surname": 21468, + "iating": 21469, + "犯罪事实": 21470, + "▁literally": 21471, + "社会信用代码": 21472, + "以往": 21473, + "含义": 21474, + "iliary": 21475, + "Controllers": 21476, + "矩阵": 21477, + "都知道": 21478, + "试试": 21479, + "upper": 21480, + "协同": 21481, + "评分": 21482, + "acchar": 21483, + "▁midfield": 21484, + "燃烧": 21485, + "▁fixes": 21486, + "精致": 21487, + "▁Challenge": 21488, + "▁theatre": 21489, + "▁Castle": 21490, + "▁acceptable": 21491, + "▁resume": 21492, + "户外": 21493, + "▁responded": 21494, + "anim": 21495, + "天使": 21496, + "▁Sales": 21497, + "▁donor": 21498, + "▁oxidative": 21499, + "爱心": 21500, + "▁posterior": 21501, + "tlog": 21502, + "▁Austin": 21503, + "▁},": 21504, + "ognition": 21505, + "ropolitan": 21506, + "▁typing": 21507, + "nDisc": 21508, + "全世界": 21509, + "▁emissions": 21510, + "▁diabetic": 21511, + "▁fluorescence": 21512, + "说不": 21513, + "▁nas": 21514, + "terminal": 21515, + "▁Category": 21516, + "过敏": 21517, + "原判": 21518, + "并有": 21519, + "▁Fa": 21520, + "第十三": 21521, + "▁Doc": 21522, + "▁汉族": 21523, + "分工": 21524, + "差别": 21525, + "▁onc": 21526, + "NotFound": 21527, + "▁Different": 21528, + "HOST": 21529, + "法律服务所": 21530, + "genic": 21531, + "bled": 21532, + "Ow": 21533, + "Star": 21534, + "contract": 21535, + "淀粉": 21536, + "▁electroph": 21537, + "MOD": 21538, + "歌词": 21539, + "▁Sri": 21540, + "▁placebo": 21541, + "▁nutrition": 21542, + "到现在": 21543, + "牙齿": 21544, + "冬天": 21545, + "athon": 21546, + "babel": 21547, + "▁cod": 21548, + "▁Season": 21549, + "为你": 21550, + ":`": 21551, + "Sur": 21552, + "马克思": 21553, + "▁cameras": 21554, + "会出现": 21555, + "▁cow": 21556, + "积极参加劳动": 21557, + "等问题": 21558, + "▁Som": 21559, + "SK": 21560, + "原来的": 21561, + "pipe": 21562, + "¶\\": 21563, + "水电": 21564, + "法律工作者": 21565, + "▁notion": 21566, + "CLUDING": 21567, + "心理学": 21568, + "▁optimized": 21569, + "二维": 21570, + "眼前": 21571, + "▁intact": 21572, + "parameter": 21573, + "apple": 21574, + "统一社会信用代码": 21575, + "▁operates": 21576, + "冒险": 21577, + "▁Nigeria": 21578, + "▁telephone": 21579, + "打工": 21580, + "nPol": 21581, + "olves": 21582, + "▁Liver": 21583, + "▁yard": 21584, + "mate": 21585, + "▁notification": 21586, + "知识的选择题": 21587, + "eto": 21588, + "Fin": 21589, + "附录": 21590, + "▁(*": 21591, + "本院在执行申请执行人": 21592, + "nama": 21593, + "resentation": 21594, + "登记结婚": 21595, + "最后一": 21596, + "行情": 21597, + "月二十八日": 21598, + "导向": 21599, + "▁cats": 21600, + "spl": 21601, + "DEBUG": 21602, + "onical": 21603, + "/>": 21604, + "ntil": 21605, + "▁frozen": 21606, + "ochemistry": 21607, + "有序": 21608, + "▁surviv": 21609, + "▁elevation": 21610, + "摘要": 21611, + "XML": 21612, + "▁chairman": 21613, + "▁recruitment": 21614, + "▁Travel": 21615, + "▁Vice": 21616, + "Pal": 21617, + "也就是说": 21618, + "▁lesson": 21619, + "▁augment": 21620, + "陆续": 21621, + "每人": 21622, + "▁predictions": 21623, + "你能": 21624, + "南京市": 21625, + "▁investigating": 21626, + "▁spiritual": 21627, + "我们将": 21628, + "▁tons": 21629, + "▁Hur": 21630, + "▁Target": 21631, + "encoding": 21632, + "INGS": 21633, + "▁intestinal": 21634, + "孤独": 21635, + "nie": 21636, + "▁massage": 21637, + "▁relating": 21638, + "历程": 21639, + "执行完毕": 21640, + "▁nurses": 21641, + "绩效": 21642, + "数值": 21643, + "▁directors": 21644, + "▁PhD": 21645, + "▁类别": 21646, + "▁tar": 21647, + "的通知": 21648, + "升高": 21649, + "为准": 21650, + "来讲": 21651, + "的状态": 21652, + "日以": 21653, + "▁地理位置": 21654, + "谅解": 21655, + "▁Representatives": 21656, + "的和": 21657, + "▁forming": 21658, + "▁undergo": 21659, + "▁Jam": 21660, + "特定": 21661, + "▁enabling": 21662, + "▁Side": 21663, + "MMMM": 21664, + "mart": 21665, + "Real": 21666, + "▁explos": 21667, + "oco": 21668, + "留在": 21669, + "▁agreements": 21670, + "▁什么是": 21671, + "那一": 21672, + "▁incredibly": 21673, + "erk": 21674, + ")$$\\": 21675, + "orse": 21676, + "▁malignant": 21677, + "小程序": 21678, + "Servlet": 21679, + "orus": 21680, + "conv": 21681, + "nik": 21682, + "▁attitude": 21683, + "块钱": 21684, + "dominal": 21685, + "夏季": 21686, + "▁attachment": 21687, + "取决": 21688, + "的生产": 21689, + "registry": 21690, + "nPersonal": 21691, + "▁coaching": 21692, + "▁replacing": 21693, + "▁Autom": 21694, + "ortheast": 21695, + "对策": 21696, + "▁Stop": 21697, + ")<": 21698, + "驳回原告": 21699, + "关键词": 21700, + "ardo": 21701, + "▁Newton": 21702, + "▁flights": 21703, + "▁painted": 21704, + "nelse": 21705, + "▁Marc": 21706, + "station": 21707, + "————————": 21708, + "UNT": 21709, + "你想": 21710, + "▁Kenn": 21711, + "期望": 21712, + "两国": 21713, + "▁proposes": 21714, + "ascin": 21715, + "克斯": 21716, + "人人": 21717, + "科技大学": 21718, + "▁pocket": 21719, + "tration": 21720, + "人工智能": 21721, + "的中国": 21722, + "▁advoc": 21723, + "的所有": 21724, + "▁bios": 21725, + "▁boss": 21726, + "周末": 21727, + "从选项中选出": 21728, + "相机": 21729, + "在新": 21730, + "▁harder": 21731, + "posal": 21732, + "焊接": 21733, + "▁fraud": 21734, + "▁{};\\": 21735, + "/$": 21736, + "后再": 21737, + "为您": 21738, + "oro": 21739, + "▁flour": 21740, + "orms": 21741, + "▁workshops": 21742, + "▁databases": 21743, + "让她": 21744, + "万吨": 21745, + "比亚": 21746, + "icut": 21747, + "▁Dave": 21748, + "▁Bry": 21749, + "▁bomb": 21750, + "平移": 21751, + "回事": 21752, + "▁Sometimes": 21753, + "你不": 21754, + "▁recurrence": 21755, + "hou": 21756, + "azines": 21757, + "▁constructor": 21758, + "▁fmt": 21759, + "▁sew": 21760, + "▁pace": 21761, + "▁morbidity": 21762, + "bird": 21763, + "Theme": 21764, + "Gamma": 21765, + "多久": 21766, + "▁Though": 21767, + "▁Speed": 21768, + "lessly": 21769, + "齐全": 21770, + "▁Having": 21771, + "凭证": 21772, + "▁Hills": 21773, + "▁ecosystem": 21774, + "和发展": 21775, + "轻轻": 21776, + "▁neighbour": 21777, + "下一步": 21778, + "school": 21779, + "▁writes": 21780, + "防范": 21781, + "▁archive": 21782, + "婚礼": 21783, + "▁nod": 21784, + "nname": 21785, + "使其": 21786, + "▁fibr": 21787, + "▁modifications": 21788, + "可怜": 21789, + "elson": 21790, + "法官": 21791, + "实话": 21792, + "nFr": 21793, + "▁electrons": 21794, + "▁argparse": 21795, + "▁blocked": 21796, + "玫瑰": 21797, + "NR": 21798, + "▁jet": 21799, + "structure": 21800, + "▁Docker": 21801, + "includes": 21802, + "加坡": 21803, + "就开始": 21804, + "▁resist": 21805, + "▁bol": 21806, + "jack": 21807, + "路口": 21808, + "波动": 21809, + "了诉讼": 21810, + "▁gre": 21811, + "▁barriers": 21812, + "当庭": 21813, + "很久": 21814, + "实战": 21815, + "▁producers": 21816, + "一带": 21817, + "在开庭": 21818, + "初中文化": 21819, + "标准化": 21820, + "节日": 21821, + "▁minimize": 21822, + "▁immigr": 21823, + "由被告承担": 21824, + "Threading": 21825, + "▁theories": 21826, + "▁nitrogen": 21827, + "factor": 21828, + "层的": 21829, + "▁composer": 21830, + "▁destroyed": 21831, + "延伸": 21832, + "prev": 21833, + "YP": 21834, + "渗透": 21835, + "注意事项": 21836, + "▁ensures": 21837, + "ailand": 21838, + "▁organisations": 21839, + "▁Organization": 21840, + "显著": 21841, + "经销": 21842, + "▁Host": 21843, + "▁XML": 21844, + "▁Kitchen": 21845, + "借款合同纠纷一案": 21846, + "orporated": 21847, + "▁isolation": 21848, + "Rob": 21849, + "▁(<": 21850, + "▁Simon": 21851, + "NotNull": 21852, + "igious": 21853, + "最初": 21854, + "character": 21855, + "▁reflection": 21856, + "ouver": 21857, + "县公安局": 21858, + "点评": 21859, + "}:": 21860, + "桃花": 21861, + "▁Jane": 21862, + "ecture": 21863, + "driven": 21864, + "的权利": 21865, + "nHigh": 21866, + "演讲": 21867, + "组成的": 21868, + "anka": 21869, + "▁parliament": 21870, + "▁≤": 21871, + "▁软件": 21872, + "▁clim": 21873, + "高速公路": 21874, + "向本院提起": 21875, + "▁titled": 21876, + "▁projection": 21877, + "客人": 21878, + "▁gravity": 21879, + "▁Mand": 21880, + "▁sees": 21881, + "▁prohib": 21882, + "deep": 21883, + "等差": 21884, + "ás": 21885, + "▁Files": 21886, + "▁sustained": 21887, + "▁arrays": 21888, + "▁ultras": 21889, + "照时间": 21890, + "▁Notes": 21891, + "isode": 21892, + "▁Ur": 21893, + "badge": 21894, + "▁Eag": 21895, + "effect": 21896, + "以下的": 21897, + "未经": 21898, + "▁enjoying": 21899, + "fp": 21900, + "essary": 21901, + "▁recipes": 21902, + "一对": 21903, + "learning": 21904, + "▁Bitcoin": 21905, + "年纪": 21906, + "精力": 21907, + "ль": 21908, + "▁cooling": 21909, + "▁defines": 21910, + "平等": 21911, + "▁villages": 21912, + "校区": 21913, + "▁prev": 21914, + "amy": 21915, + "插入": 21916, + "▁Dor": 21917, + "▁overwhel": 21918, + "▁territory": 21919, + "cstring": 21920, + "▁pounds": 21921, + "▁Leon": 21922, + "▁belongs": 21923, + "etition": 21924, + "激素": 21925, + "点赞": 21926, + "React": 21927, + "中共党员": 21928, + "登记成立": 21929, + "▁anniversary": 21930, + "▁odds": 21931, + "▁Patrick": 21932, + "贝尔": 21933, + "ntry": 21934, + "nInst": 21935, + "▁Storage": 21936, + "audio": 21937, + "▁failing": 21938, + "▁holidays": 21939, + "guide": 21940, + "incial": 21941, + "▁Without": 21942, + "nDem": 21943, + "▁pursue": 21944, + "Move": 21945, + "▁passengers": 21946, + "助力": 21947, + "camp": 21948, + "minus": 21949, + "取决于": 21950, + "▁buttons": 21951, + "▁Philippines": 21952, + "Ill": 21953, + "forming": 21954, + "invalid": 21955, + "损坏": 21956, + "gba": 21957, + "▁oven": 21958, + "▁wake": 21959, + "的性质": 21960, + "▁Large": 21961, + "▁irrad": 21962, + "▁borrow": 21963, + "假如": 21964, + ")\"\\": 21965, + "nlayout": 21966, + "▁$$(": 21967, + "umatic": 21968, + "▁distribute": 21969, + "selector": 21970, + "▁Dead": 21971, + "▁scroll": 21972, + "▁Character": 21973, + "导航": 21974, + "plain": 21975, + "Fields": 21976, + "▁Bus": 21977, + "olars": 21978, + "▁tied": 21979, + "报酬": 21980, + "▁Emb": 21981, + "程度上": 21982, + "▁mortgage": 21983, + "colors": 21984, + "副主席": 21985, + "高血压": 21986, + "▁Come": 21987, + "供电": 21988, + "Why": 21989, + "Stop": 21990, + "hide": 21991, + "▁pas": 21992, + "([\\'": 21993, + "nSportspeople": 21994, + "▁Girls": 21995, + "inflammatory": 21996, + "oup": 21997, + "▁bonds": 21998, + "MPL": 21999, + "▁qualitative": 22000, + "▁argue": 22001, + "abb": 22002, + "▁restoration": 22003, + "omon": 22004, + "ensively": 22005, + "▁purchasing": 22006, + "▁Vegas": 22007, + "时间内": 22008, + "nch": 22009, + "做一个": 22010, + "Ask": 22011, + "伴随着": 22012, + "frequency": 22013, + "\"},{\"": 22014, + "▁PUB": 22015, + "▁casual": 22016, + "去除": 22017, + "shaped": 22018, + "组织机构代码": 22019, + "遇见": 22020, + "某的": 22021, + "kh": 22022, + "权力": 22023, + "▁indicator": 22024, + "▁Lyn": 22025, + "straint": 22026, + "▁Collect": 22027, + "更大": 22028, + "ndescribe": 22029, + "小时候": 22030, + "真相": 22031, + "到庭参加了诉讼": 22032, + "▁Foreign": 22033, + "▁prost": 22034, + "▁Duke": 22035, + "▁Follow": 22036, + "▁Seattle": 22037, + "▁widespread": 22038, + "发展有限公司": 22039, + "并于": 22040, + "阶级": 22041, + "▁surveillance": 22042, + "民事诉讼": 22043, + "More": 22044, + "看守": 22045, + "nadd": 22046, + "▁modulation": 22047, + "Pattern": 22048, + "▁susceptibility": 22049, + "▁simplify": 22050, + "和计划生育局": 22051, + "▁persistent": 22052, + "有关部门": 22053, + "piece": 22054, + "documentclass": 22055, + "ssh": 22056, + "▁Blu": 22057, + "aying": 22058, + "幅度": 22059, + "▁Range": 22060, + "▁riding": 22061, + "▁[],\\": 22062, + "▁initiatives": 22063, + "多少钱": 22064, + "warning": 22065, + "该公司董事长": 22066, + "▁parish": 22067, + "▁listings": 22068, + "onde": 22069, + "▁impaired": 22070, + "▁consisted": 22071, + "眼镜": 22072, + "▁fibro": 22073, + "▁divor": 22074, + "▁Boot": 22075, + "旁边": 22076, + "▁processor": 22077, + "▁extracellular": 22078, + "失信被执行人名单": 22079, + "▁accompany": 22080, + "Attributes": 22081, + "atio": 22082, + "▁Details": 22083, + "abi": 22084, + "最重要的": 22085, + "ippi": 22086, + "owed": 22087, + "热门": 22088, + "未到庭参加诉讼": 22089, + "nEven": 22090, + "奉献": 22091, + "防火": 22092, + "nPolit": 22093, + "need": 22094, + "▁EL": 22095, + "统计学意义": 22096, + "▁Finance": 22097, + "天空": 22098, + "predict": 22099, + "▁elsewhere": 22100, + "^^": 22101, + "ENCE": 22102, + "Loading": 22103, + "▁associate": 22104, + "▁emerged": 22105, + "相处": 22106, + "COMM": 22107, + "戏剧": 22108, + "nTax": 22109, + "song": 22110, + "▁kinetic": 22111, + "BJECT": 22112, + "▁initialize": 22113, + "▁remodel": 22114, + "超声": 22115, + "▁canvas": 22116, + "▁compilation": 22117, + "退还": 22118, + "▁competitions": 22119, + "婚姻法": 22120, + "tempt": 22121, + "eep": 22122, + "旅客": 22123, + "▁buyers": 22124, + "MAG": 22125, + "处处": 22126, + "期间不": 22127, + "hang": 22128, + "生态环境": 22129, + "初期": 22130, + "enez": 22131, + "▁sizeof": 22132, + "▁invasive": 22133, + "宁波市": 22134, + "列出": 22135, + "▁有限责任公司": 22136, + "Initial": 22137, + "▁Fourier": 22138, + "Registry": 22139, + "煤炭": 22140, + "▁小说": 22141, + "inea": 22142, + "tre": 22143, + "▁oxidation": 22144, + "▁Bible": 22145, + "▁sid": 22146, + "▁laptop": 22147, + "保温": 22148, + "Year": 22149, + "约束": 22150, + "▁Balt": 22151, + "进了": 22152, + "elenium": 22153, + "▁FI": 22154, + "cdn": 22155, + "warn": 22156, + "anion": 22157, + "附属": 22158, + "▁Dur": 22159, + "▁representatives": 22160, + "▁gaming": 22161, + "产地": 22162, + "▁WE": 22163, + "▁Tokyo": 22164, + "女朋友": 22165, + "▁preferences": 22166, + "和你": 22167, + "交警": 22168, + "onomous": 22169, + "家属": 22170, + "▁GA": 22171, + "第六十七条": 22172, + "守护": 22173, + "Collect": 22174, + "▁voters": 22175, + "▁selecting": 22176, + "▁rolling": 22177, + "▁PE": 22178, + "▁Plant": 22179, + "These": 22180, + "translation": 22181, + "服从": 22182, + "市场上": 22183, + "stroke": 22184, + "台北": 22185, + "日立案执行": 22186, + "高峰": 22187, + "美丽的": 22188, + "})$": 22189, + "▁Jacob": 22190, + "全县": 22191, + "只不过": 22192, + "花费": 22193, + "本案在执行过程中": 22194, + "协作": 22195, + "places": 22196, + "火锅": 22197, + "种种": 22198, + "家用": 22199, + "building": 22200, + "▁郑": 22201, + "▁handled": 22202, + "问我": 22203, + "▁Additional": 22204, + "电缆": 22205, + "\"\\\\": 22206, + "▁Nik": 22207, + "alam": 22208, + "▁Roy": 22209, + "ockets": 22210, + "▁Success": 22211, + "▁inspection": 22212, + "▁\"\",\\": 22213, + "便捷": 22214, + "科普": 22215, + "▁amongst": 22216, + "查找": 22217, + "▁ARE": 22218, + "▁contacts": 22219, + "arith": 22220, + "▁spectrom": 22221, + "VO": 22222, + "▁Particip": 22223, + "骨折": 22224, + "请给出": 22225, + "enh": 22226, + "rban": 22227, + "▁triple": 22228, + "▁GET": 22229, + "▁Holy": 22230, + "▁Dak": 22231, + "environ": 22232, + "acles": 22233, + "▁Module": 22234, + "abstract": 22235, + "▁indicators": 22236, + "紧密": 22237, + "policy": 22238, + "充足": 22239, + "ViewModel": 22240, + "▁hepatic": 22241, + "}{(": 22242, + "是我们": 22243, + "▁eq": 22244, + "社保": 22245, + "鉴于": 22246, + "复杂度": 22247, + "▁recru": 22248, + "气氛": 22249, + "▁HP": 22250, + "▁atomic": 22251, + "▁thyroid": 22252, + "▁trem": 22253, + "▁longitudinal": 22254, + "▁suggestion": 22255, + "家中": 22256, + "eval": 22257, + "▁maximal": 22258, + "被称为": 22259, + "▁traject": 22260, + "民国": 22261, + "flix": 22262, + "nMETHODS": 22263, + "布置": 22264, + "第一百四十五条第一款之规定": 22265, + "▁Atlanta": 22266, + "four": 22267, + "大战": 22268, + "ackets": 22269, + "arguments": 22270, + "下跌": 22271, + "幻想": 22272, + "PIO": 22273, + "四边形": 22274, + "▁identifier": 22275, + "*/": 22276, + "▁郭": 22277, + "▁deposit": 22278, + "▁elementary": 22279, + "elfare": 22280, + "▁Explanation": 22281, + "复杂的": 22282, + "考查了": 22283, + "本院予以确认": 22284, + "填写": 22285, + "侵权": 22286, + "▁bull": 22287, + "假期": 22288, + "艺术家": 22289, + "▁exercises": 22290, + "还是要": 22291, + "Make": 22292, + "′(": 22293, + "nFe": 22294, + "Converter": 22295, + "▁volunteer": 22296, + "少许": 22297, + "王子": 22298, + "sembl": 22299, + "retion": 22300, + "isp": 22301, + "eland": 22302, + "▁Tony": 22303, + "}}$\\": 22304, + "给人": 22305, + "▁Assistant": 22306, + "陷入": 22307, + "iscal": 22308, + "Person": 22309, + "首都": 22310, + "▁gut": 22311, + "oting": 22312, + "▁promoter": 22313, + "不违反": 22314, + "是真的": 22315, + "terr": 22316, + "▁crystall": 22317, + "▁Ger": 22318, + "quote": 22319, + "▁religion": 22320, + "stderr": 22321, + "建立了": 22322, + "ić": 22323, + "后悔": 22324, + "inine": 22325, + "宣判": 22326, + "rivacy": 22327, + "rophic": 22328, + "overnment": 22329, + "有钱": 22330, + "月底": 22331, + "▁revision": 22332, + "▁Ty": 22333, + "▁JavaScript": 22334, + "▁recordings": 22335, + "▁BB": 22336, + "和解协议": 22337, + "▁Temple": 22338, + "库存": 22339, + "琐事": 22340, + "▁∴": 22341, + "▁completing": 22342, + "▁chromosome": 22343, + "▁Stre": 22344, + "▁romantic": 22345, + "同一个": 22346, + "指令": 22347, + "微笑": 22348, + "erable": 22349, + "▁发照时间": 22350, + "▁cotton": 22351, + "▁kilomet": 22352, + "▁independence": 22353, + "▁gastric": 22354, + "▁derive": 22355, + "▁Credit": 22356, + "osin": 22357, + "其行为已构成": 22358, + "▁overse": 22359, + "lee": 22360, + "▁competing": 22361, + "的教学": 22362, + "鉴定表": 22363, + "▁acoustic": 22364, + "mq": 22365, + "一遍": 22366, + "本案按": 22367, + "全书": 22368, + "惊喜": 22369, + "iang": 22370, + "▁podcast": 22371, + "▁authentication": 22372, + "▁Poly": 22373, + "ogy": 22374, + "opsis": 22375, + "▁Switzerland": 22376, + "插件": 22377, + "▁balanced": 22378, + "二份": 22379, + "试点": 22380, + "▁Anderson": 22381, + "▁arrangement": 22382, + "Score": 22383, + "▁Products": 22384, + "▁Bureau": 22385, + "▁activate": 22386, + "▁squares": 22387, + "▁LIMIT": 22388, + "▁networking": 22389, + "▁Cov": 22390, + "▁Moscow": 22391, + "▁defect": 22392, + "面粉": 22393, + "细致": 22394, + "▁Ms": 22395, + "二被告": 22396, + "指示": 22397, + "acion": 22398, + "▁novels": 22399, + "说我": 22400, + "财物": 22401, + "太原": 22402, + "▁Iron": 22403, + "若干问题的解释": 22404, + "度假": 22405, + "▁acquire": 22406, + "脸上": 22407, + "bench": 22408, + "▁remarkable": 22409, + "Sql": 22410, + "频繁": 22411, + "igg": 22412, + "▁wrapper": 22413, + "善良": 22414, + "▁bills": 22415, + "▁marrow": 22416, + "▁interference": 22417, + "▁Fred": 22418, + "▁exploration": 22419, + "▁ov": 22420, + "eslint": 22421, + "一声": 22422, + "▁\\'%": 22423, + "▁journals": 22424, + "olip": 22425, + "成效": 22426, + "▁cru": 22427, + "assertTrue": 22428, + "oT": 22429, + "域名": 22430, + "对面": 22431, + "aly": 22432, + "▁Authors": 22433, + "jobs": 22434, + "rated": 22435, + "nSw": 22436, + "▁rehabilitation": 22437, + "mus": 22438, + "日提出": 22439, + "担当": 22440, + "第二百四十二条": 22441, + "▁dé": 22442, + "▁Images": 22443, + "▁Pred": 22444, + "▁Ali": 22445, + "▁drives": 22446, + "▁inhibitory": 22447, + "注销": 22448, + "第二个": 22449, + "LETE": 22450, + "Compar": 22451, + "正常的": 22452, + "只需": 22453, + "▁opposition": 22454, + "▁Kit": 22455, + "Language": 22456, + "▁intellectual": 22457, + "AX": 22458, + "▁facial": 22459, + "▁accomplished": 22460, + "Inject": 22461, + "正义": 22462, + "▁解释": 22463, + "判定": 22464, + "uru": 22465, + "忽略": 22466, + "必要的": 22467, + "▁skilled": 22468, + "▁feasibility": 22469, + "履历": 22470, + "接待": 22471, + "信息技术": 22472, + "▁Greece": 22473, + "微博热度": 22474, + "并发症": 22475, + "▁cabinet": 22476, + "▁Fif": 22477, + "地说": 22478, + "nConsider": 22479, + "冷却": 22480, + "▁Mix": 22481, + "▁OP": 22482, + "」\\": 22483, + "▁COPY": 22484, + "▁rum": 22485, + "▁Editor": 22486, + "ugu": 22487, + "▁sensory": 22488, + "得到的": 22489, + "▁Applications": 22490, + "▁Made": 22491, + "mith": 22492, + "URI": 22493, + "▁valve": 22494, + "▁invite": 22495, + "alone": 22496, + "的原则": 22497, + "▁regime": 22498, + "创始": 22499, + "信仰": 22500, + "逝世": 22501, + "▁coin": 22502, + "itories": 22503, + "ationally": 22504, + "第三方": 22505, + "备案": 22506, + "▁upgrad": 22507, + "第四节": 22508, + "▁drinks": 22509, + "早已": 22510, + "▁charset": 22511, + "/\"": 22512, + "Prov": 22513, + "▁sexy": 22514, + "自身的": 22515, + "▁formats": 22516, + "▁Button": 22517, + "▁ES": 22518, + "剩下": 22519, + "],\"": 22520, + "就被": 22521, + "izational": 22522, + "和他": 22523, + "▁Allen": 22524, + "vare": 22525, + "▁shoulder": 22526, + "的确": 22527, + "nBel": 22528, + "▁urinary": 22529, + "▁Display": 22530, + "dj": 22531, + "productive": 22532, + "ijing": 22533, + "lated": 22534, + "▁Moore": 22535, + "Every": 22536, + "▁strictly": 22537, + "▁finest": 22538, + "认同": 22539, + "转化为": 22540, + "▁aest": 22541, + "均有": 22542, + "▁urine": 22543, + "MAP": 22544, + "▁motivation": 22545, + "samples": 22546, + "边长": 22547, + "amide": 22548, + "amazon": 22549, + "▁cater": 22550, + "▁contributes": 22551, + "incess": 22552, + "恶心": 22553, + "▁Consult": 22554, + "▁Partners": 22555, + "▁validity": 22556, + "▁gem": 22557, + "提请": 22558, + "题材": 22559, + "▁tape": 22560, + "市场监督管理局": 22561, + "▁adoption": 22562, + "版权": 22563, + "投影": 22564, + "▁dramatic": 22565, + "▁mothers": 22566, + "▁relate": 22567, + "ACH": 22568, + "▁海": 22569, + "IDE": 22570, + "大脑": 22571, + "普通的": 22572, + "▁Course": 22573, + "真心": 22574, + "three": 22575, + "pus": 22576, + "istical": 22577, + "优雅": 22578, + "防御": 22579, + "▁ISO": 22580, + "▁agon": 22581, + "▁coinc": 22582, + "▁alignment": 22583, + "▁SW": 22584, + "▁subgroup": 22585, + "泰国": 22586, + "▁equity": 22587, + "符合有关法律规定": 22588, + "▁viruses": 22589, + "▁overlook": 22590, + "也将": 22591, + "绍兴": 22592, + "通风": 22593, + "▁utilization": 22594, + "▁continuously": 22595, + "液体": 22596, + "shadow": 22597, + "古典": 22598, + "arding": 22599, + "曾任": 22600, + "tery": 22601, + "这场": 22602, + "▁paragraph": 22603, + "nGener": 22604, + "qq": 22605, + "号为": 22606, + "▁survive": 22607, + "的具体": 22608, + "的目标": 22609, + "ustralian": 22610, + "日志": 22611, + "阳性": 22612, + "agan": 22613, + "History": 22614, + "▁departments": 22615, + "▁membranes": 22616, + "scene": 22617, + "▁periodic": 22618, + "▁booking": 22619, + "idi": 22620, + "▁Malaysia": 22621, + "这种情况": 22622, + "去做": 22623, + "▁Quick": 22624, + "除法": 22625, + "格兰": 22626, + "▁Brun": 22627, + "想起": 22628, + "optim": 22629, + "拿着": 22630, + "Spring": 22631, + "代替": 22632, + "diction": 22633, + "▁boards": 22634, + "茶叶": 22635, + "的样子": 22636, + "但是我": 22637, + "▁sha": 22638, + "两点": 22639, + "民政": 22640, + "两天": 22641, + "^*": 22642, + "dashboard": 22643, + "ivities": 22644, + "▁oct": 22645, + "▁Barn": 22646, + "categories": 22647, + "▁entrepreneur": 22648, + "ogr": 22649, + "Based": 22650, + "▁Enjoy": 22651, + "定了": 22652, + "▁Oklahoma": 22653, + "▁preference": 22654, + "▁smartphone": 22655, + "Ms": 22656, + "全新的": 22657, + "EY": 22658, + "▁antioxid": 22659, + "regulation": 22660, + "谈判": 22661, + "▁Mrs": 22662, + "▁slide": 22663, + "▁Ideas": 22664, + "▁Neuro": 22665, + "nView": 22666, + "inus": 22667, + "▁matplotlib": 22668, + "nRoute": 22669, + "帮忙": 22670, + "▁retention": 22671, + "判决发生法律效力后": 22672, + "▁combines": 22673, + "王某某": 22674, + "▁headed": 22675, + "一台": 22676, + "annotations": 22677, + "▁>\\": 22678, + "modified": 22679, + "不说": 22680, + "▁curious": 22681, + "▁limitation": 22682, + "实地": 22683, + "▁图书目录": 22684, + "Renderer": 22685, + "人与": 22686, + "单一": 22687, + "synt": 22688, + "▁Stack": 22689, + "disci": 22690, + "料的": 22691, + "两者": 22692, + "住了": 22693, + "▁Guys": 22694, + "书中": 22695, + "▁tonight": 22696, + "Mail": 22697, + "▁dense": 22698, + "▁Specifically": 22699, + "▁θ": 22700, + "场地": 22701, + "▁encountered": 22702, + "proc": 22703, + "▁Kelly": 22704, + "ат": 22705, + "▁reactive": 22706, + "增值": 22707, + "市区": 22708, + "把自己": 22709, + "年初": 22710, + "执行工作若干问题的规定": 22711, + "▁cc": 22712, + "respons": 22713, + "▁adjusted": 22714, + ">\\'": 22715, + "▁Andre": 22716, + "▁pushed": 22717, + "idase": 22718, + "loid": 22719, + "Arch": 22720, + "▁Entertainment": 22721, + "生气": 22722, + "表彰": 22723, + "▁packed": 22724, + "ermat": 22725, + "▁caption": 22726, + "的声音": 22727, + "健全": 22728, + "等差数列": 22729, + "▁relaxation": 22730, + "六条": 22731, + "discipl": 22732, + "凌晨": 22733, + "相遇": 22734, + "▁bearing": 22735, + "▁何": 22736, + "ncc": 22737, + "该公司总经理": 22738, + "▁Summary": 22739, + "▁别名": 22740, + "在美国": 22741, + "在互联网": 22742, + "第三人": 22743, + "rob": 22744, + "▁runner": 22745, + "nInit": 22746, + "遗憾": 22747, + "▁Norwegian": 22748, + "▁lesion": 22749, + "▁carpet": 22750, + "Notification": 22751, + "新浪": 22752, + "▁()\\": 22753, + "▁enthusi": 22754, + "发酵": 22755, + "将来": 22756, + "▁Must": 22757, + "积极参加思想": 22758, + "春风": 22759, + "inherit": 22760, + "的意思": 22761, + "▁Laure": 22762, + "wealth": 22763, + "▁vegetables": 22764, + "Folder": 22765, + "nexports": 22766, + "production": 22767, + "airy": 22768, + "▁Depend": 22769, + "案后": 22770, + "customer": 22771, + "delay": 22772, + "长大": 22773, + "▁soldiers": 22774, + "uition": 22775, + "褐色": 22776, + "nTHE": 22777, + "iative": 22778, + "webpack": 22779, + "▁Mathematical": 22780, + "▁Communications": 22781, + "▁Edge": 22782, + "便于": 22783, + "gun": 22784, + "▁calculator": 22785, + "▁Hold": 22786, + "iotics": 22787, + "中国人民银行": 22788, + "nCast": 22789, + "▁gastro": 22790, + "▁Alber": 22791, + "一元": 22792, + "月利率": 22793, + "udge": 22794, + "mill": 22795, + "后台": 22796, + "aline": 22797, + "▁______": 22798, + "的爱": 22799, + "职业技术教育": 22800, + "开幕": 22801, + "美味": 22802, + "▁ovar": 22803, + "Prefix": 22804, + "▁Blood": 22805, + "signal": 22806, + "疑问": 22807, + "▁sophisticated": 22808, + "▁convex": 22809, + "nge": 22810, + "车间": 22811, + "纳税": 22812, + "medium": 22813, + "▁grain": 22814, + "John": 22815, + "ductor": 22816, + "▁portal": 22817, + "人民法院认为": 22818, + "简历": 22819, + "backs": 22820, + "▁Gall": 22821, + "acular": 22822, + "▁invasion": 22823, + "fo": 22824, + "▁vas": 22825, + "▁basal": 22826, + "▁sender": 22827, + "Welcome": 22828, + "lists": 22829, + "你知道": 22830, + "递增": 22831, + "▁Harris": 22832, + "▁collision": 22833, + "▁Bor": 22834, + "▁impairment": 22835, + "▁pap": 22836, + "▁Examples": 22837, + "较高的": 22838, + "▁admit": 22839, + "罪行": 22840, + "▁Ans": 22841, + "金华": 22842, + "facebook": 22843, + "▁Ax": 22844, + "跟踪": 22845, + "wx": 22846, + "oft": 22847, + "addle": 22848, + "▁BR": 22849, + "aran": 22850, + "连带": 22851, + "邮箱": 22852, + "ét": 22853, + "]),": 22854, + "ilty": 22855, + "olec": 22856, + "▁consent": 22857, + "Disc": 22858, + "第六章": 22859, + "▁csv": 22860, + "Calculate": 22861, + "alling": 22862, + "ergic": 22863, + "▁heritage": 22864, + "bold": 22865, + "▁utils": 22866, + "▁mu": 22867, + "}),\\": 22868, + "▁Perhaps": 22869, + "ussy": 22870, + "Extensions": 22871, + "以下问题": 22872, + "为基础": 22873, + "▁Protection": 22874, + "去看": 22875, + "有些人": 22876, + "▁tet": 22877, + "▁Ott": 22878, + "▁题目": 22879, + "▁fitted": 22880, + "nCommun": 22881, + "\\'])": 22882, + "▁moon": 22883, + "计算即可": 22884, + "污水": 22885, + "▁ValueError": 22886, + "平米": 22887, + "heim": 22888, + "▁lon": 22889, + "Black": 22890, + "的两个": 22891, + "▁simulated": 22892, + "▁ultrasound": 22893, + "▁其三": 22894, + "▁Measure": 22895, + "要点": 22896, + "▁Islamic": 22897, + "▁legacy": 22898, + "▁voting": 22899, + "借助": 22900, + "ngit": 22901, + "经济技术": 22902, + "签字": 22903, + "rystal": 22904, + "执业": 22905, + "▁lact": 22906, + "emale": 22907, + "淄博": 22908, + "讲座": 22909, + "ifting": 22910, + "农产品": 22911, + "bras": 22912, + "▁refuge": 22913, + "▁Vietnam": 22914, + "nDis": 22915, + "录音": 22916, + "▁importantly": 22917, + "nun": 22918, + "三国": 22919, + "▁reb": 22920, + "▁conducting": 22921, + "▁surrounded": 22922, + "聚集": 22923, + "救援": 22924, + "▁toile": 22925, + "不动产": 22926, + "数据的": 22927, + "▁Dallas": 22928, + "研究中心": 22929, + "▁Khan": 22930, + "债券": 22931, + "DEFAULT": 22932, + "一等奖": 22933, + "▁conservative": 22934, + "▁Pear": 22935, + "▁代表作品": 22936, + "▁thromb": 22937, + "灾害": 22938, + "▁duct": 22939, + "▁pros": 22940, + "nwhich": 22941, + "月二十五日": 22942, + "▁engaging": 22943, + "▁时间": 22944, + "现有的": 22945, + "▁charity": 22946, + "Should": 22947, + "plicity": 22948, + "▁celebration": 22949, + "剩下的": 22950, + "▁Reference": 22951, + "ordered": 22952, + "uscript": 22953, + "▁plates": 22954, + "▁已": 22955, + "巴西": 22956, + "▁SS": 22957, + "Stand": 22958, + "▁cyclic": 22959, + "▁Forward": 22960, + "}\\'": 22961, + "Authentication": 22962, + "▁Grant": 22963, + "张某某": 22964, + "okin": 22965, + "▁Trail": 22966, + "▁venues": 22967, + "倾向": 22968, + "试题": 22969, + "nil": 22970, + "▁Annual": 22971, + "精英": 22972, + "enza": 22973, + "leet": 22974, + "▁rescue": 22975, + "塑造": 22976, + "nPublic": 22977, + "Rate": 22978, + "安卓": 22979, + "纳米": 22980, + "Actions": 22981, + "三分": 22982, + "的风": 22983, + "Ok": 22984, + "▁uniqu": 22985, + "▁xx": 22986, + "▁symmetry": 22987, + "▁政": 22988, + "黄河": 22989, + "cz": 22990, + "▁alarm": 22991, + "▁detector": 22992, + "quiry": 22993, + "▁structured": 22994, + "▁translated": 22995, + "设备的": 22996, + "loads": 22997, + "uther": 22998, + "dll": 22999, + "▁struggling": 23000, + "wick": 23001, + "esa": 23002, + "▁brothers": 23003, + "emit": 23004, + "▁READ": 23005, + "▁Dream": 23006, + "▁Rol": 23007, + "#{": 23008, + "▁suicide": 23009, + "接种": 23010, + "Div": 23011, + "执行中": 23012, + "枚举": 23013, + "道的": 23014, + "eder": 23015, + "▁multid": 23016, + "▁相关": 23017, + "vars": 23018, + "▁Incre": 23019, + "局局长": 23020, + "▁Hans": 23021, + "中午": 23022, + "两岸": 23023, + "▁年": 23024, + "▁ET": 23025, + "trim": 23026, + "新兴": 23027, + "▁输出": 23028, + "▁mold": 23029, + "执行申请": 23030, + "▁Mail": 23031, + "手指": 23032, + "这一切": 23033, + "PECT": 23034, + "oca": 23035, + "▁Brazilian": 23036, + "▁seeks": 23037, + "ictures": 23038, + "开户": 23039, + "▁morphology": 23040, + "nFrench": 23041, + "就这样": 23042, + "▁lengths": 23043, + "ochastic": 23044, + "▁天": 23045, + "玄幻": 23046, + "`;\\": 23047, + "用心": 23048, + "椭圆": 23049, + "▁discusses": 23050, + "PDATE": 23051, + "评审鉴定表": 23052, + "▁Within": 23053, + "血清": 23054, + "上学": 23055, + "▁Ky": 23056, + "子宫": 23057, + "deploy": 23058, + "urities": 23059, + "▁Industry": 23060, + "家园": 23061, + "▁proc": 23062, + "zheimer": 23063, + "▁antenna": 23064, + "▁staying": 23065, + "平凡": 23066, + "▁Logger": 23067, + "▁stops": 23068, + "udd": 23069, + "▁residues": 23070, + "▁generates": 23071, + "▁Num": 23072, + "General": 23073, + "▁SK": 23074, + "▁gray": 23075, + "▁arom": 23076, + "uming": 23077, + "transaction": 23078, + "▁conjunction": 23079, + "WT": 23080, + "日出生于": 23081, + "职位": 23082, + "▁alternatives": 23083, + "坐落": 23084, + "▁Bishop": 23085, + "遵循": 23086, + "▁Turkish": 23087, + "▁annually": 23088, + "▁chemicals": 23089, + "▁adolescents": 23090, + "五金": 23091, + "Selected": 23092, + "iri": 23093, + "▁Feature": 23094, + "还需要": 23095, + "human": 23096, + "Memory": 23097, + "封闭": 23098, + "ArrayList": 23099, + "告诉你": 23100, + "▁poverty": 23101, + "▁Alb": 23102, + "▁ligand": 23103, + "gium": 23104, + "slice": 23105, + "时间的": 23106, + "杀人": 23107, + "▁deeply": 23108, + "rio": 23109, + "在开庭审理过程中": 23110, + "▁crusher": 23111, + "▁quantities": 23112, + "违规": 23113, + "法律服务所法律工作者": 23114, + "▁twin": 23115, + "▁Hamp": 23116, + "▁inhibit": 23117, + "safe": 23118, + "Single": 23119, + "nAc": 23120, + "让他们": 23121, + "▁Platform": 23122, + "▁unlikely": 23123, + "formed": 23124, + "chr": 23125, + "mass": 23126, + "▁experiencing": 23127, + "▁rust": 23128, + "winning": 23129, + "小额": 23130, + "▁outputs": 23131, + "就没": 23132, + "ancell": 23133, + "汇报": 23134, + "processing": 23135, + "▁jazz": 23136, + "代数": 23137, + "CODE": 23138, + "侵犯": 23139, + "的角度": 23140, + "备用": 23141, + "要想": 23142, + "的其他情形": 23143, + "队的": 23144, + "▁Doctor": 23145, + "彩色": 23146, + "电磁": 23147, + "▁runtime": 23148, + "裁定书送达之日起": 23149, + "COMP": 23150, + "▁repairs": 23151, + "requires": 23152, + "▁Disease": 23153, + "复议一次": 23154, + "▁亚": 23155, + "writing": 23156, + "aval": 23157, + "▁Construction": 23158, + "品牌的": 23159, + "ENG": 23160, + "▁weigh": 23161, + "SY": 23162, + "▁relevance": 23163, + "▁conceptual": 23164, + "子女抚养": 23165, + "特朗": 23166, + "爱好者": 23167, + "OG": 23168, + "owned": 23169, + "生动": 23170, + "▁stom": 23171, + "▁minus": 23172, + "▁fibers": 23173, + "为终审裁定": 23174, + "力学": 23175, + "▁dishes": 23176, + "▁antigens": 23177, + "▁Domin": 23178, + "▁Mort": 23179, + "▁NF": 23180, + "▁unsigned": 23181, + "繁殖": 23182, + "老师的": 23183, + "▁talked": 23184, + "还原": 23185, + "ternet": 23186, + "▁Scale": 23187, + "recated": 23188, + "▁journalist": 23189, + "老年人": 23190, + "regulated": 23191, + "何处": 23192, + "Migration": 23193, + "xxx": 23194, + "▁incent": 23195, + "▁Swiss": 23196, + "interval": 23197, + "回头": 23198, + "热点": 23199, + "▁jewel": 23200, + "解决了": 23201, + "velope": 23202, + "OA": 23203, + "容积": 23204, + "放置": 23205, + "lc": 23206, + "▁blast": 23207, + "osomal": 23208, + "▁Wel": 23209, + "▁Working": 23210, + "形容": 23211, + "itan": 23212, + "二人": 23213, + "ifference": 23214, + "本裁定为终审裁定": 23215, + "加班": 23216, + "multi": 23217, + "▁attributed": 23218, + "气息": 23219, + "▁collective": 23220, + "▁fired": 23221, + "inject": 23222, + "抛物线": 23223, + "▁restart": 23224, + "edical": 23225, + "\")[": 23226, + "液压": 23227, + "纵横": 23228, + "回报": 23229, + "kee": 23230, + "血糖": 23231, + "▁Cer": 23232, + "国防": 23233, + "等人": 23234, + "▁sequencing": 23235, + "癜风": 23236, + "leasing": 23237, + "发起": 23238, + "辩护": 23239, + "据了解": 23240, + "▁opinions": 23241, + "▁okay": 23242, + "▁Bah": 23243, + "延续": 23244, + "▁cig": 23245, + "written": 23246, + "undefined": 23247, + "▁emotion": 23248, + "lia": 23249, + "▁Chile": 23250, + "▁sectors": 23251, + "桥梁": 23252, + "▁mistakes": 23253, + "▁%}": 23254, + "因与": 23255, + "花生": 23256, + "▁preserve": 23257, + "én": 23258, + "▁Bu": 23259, + "nOpen": 23260, + "▁pixel": 23261, + "▁arrangements": 23262, + "isible": 23263, + "resolution": 23264, + "Interval": 23265, + "▁Address": 23266, + "amento": 23267, + "为啥": 23268, + "的诉讼请求": 23269, + "activated": 23270, + "十字": 23271, + "▁floors": 23272, + "heter": 23273, + "投诉": 23274, + "inge": 23275, + "和小": 23276, + "▁astr": 23277, + "向量": 23278, + "identifier": 23279, + "umbnail": 23280, + "班级": 23281, + "helium": 23282, + "不算": 23283, + "ocar": 23284, + "▁cultured": 23285, + "▁ward": 23286, + "▁fascin": 23287, + "出来了": 23288, + "▁Kam": 23289, + "▁pride": 23290, + "▁brid": 23291, + "▁installing": 23292, + "Drop": 23293, + "oven": 23294, + "作了": 23295, + "Multi": 23296, + "▁synthesized": 23297, + "Da": 23298, + "▁sacr": 23299, + "▁scalar": 23300, + "▁abroad": 23301, + "▁罗": 23302, + "▁Initial": 23303, + "\">{{": 23304, + "▁regards": 23305, + "沈阳市": 23306, + "▁Nag": 23307, + "▁clearance": 23308, + "gray": 23309, + "多媒体": 23310, + "学习的": 23311, + "▁Ice": 23312, + "如果没有": 23313, + "earn": 23314, + "worker": 23315, + "▁ethnic": 23316, + "客户端": 23317, + "▁accommodation": 23318, + "立即执行": 23319, + "我校": 23320, + "nJoined": 23321, + "HECK": 23322, + "新时代": 23323, + "陌生": 23324, + "▁TE": 23325, + "IZ": 23326, + "ompson": 23327, + "▁gauge": 23328, + "▁workplace": 23329, + "除非": 23330, + "uper": 23331, + "▁poetry": 23332, + "▁Bull": 23333, + "在一": 23334, + "当下": 23335, + "▁perturb": 23336, + "卓越": 23337, + "eor": 23338, + "Normal": 23339, + "以免": 23340, + "白癜风": 23341, + "这个时候": 23342, + "▁Util": 23343, + "土豆": 23344, + "李某某": 23345, + "ente": 23346, + "nDet": 23347, + "主演": 23348, + "arity": 23349, + "余人": 23350, + "▁mountains": 23351, + "亦无异议": 23352, + "当日": 23353, + "▁Contract": 23354, + "▁acknowled": 23355, + "ementia": 23356, + "▁Antonio": 23357, + "▁consequence": 23358, + "heart": 23359, + "开口": 23360, + "comfort": 23361, + "dale": 23362, + "护士": 23363, + "TEXT": 23364, + "▁Thailand": 23365, + "ри": 23366, + "介质": 23367, + "充分发挥": 23368, + "▁mechanics": 23369, + "好评": 23370, + "服用": 23371, + "seconds": 23372, + "佐证": 23373, + "▁representations": 23374, + "不管是": 23375, + "有效地": 23376, + "治愈": 23377, + "too": 23378, + "辉煌": 23379, + "▁dismiss": 23380, + "▁compiler": 23381, + "▁reflected": 23382, + "▁Send": 23383, + "▁publisher": 23384, + "官员": 23385, + "▁Dog": 23386, + "▁batt": 23387, + "▁immunity": 23388, + "mia": 23389, + "▁wrest": 23390, + "▁Chap": 23391, + "▁incorporate": 23392, + "logs": 23393, + "传染": 23394, + "▁hearts": 23395, + "scala": 23396, + "▁recovered": 23397, + "因为我": 23398, + "得以": 23399, + "uese": 23400, + "之前的": 23401, + ")×": 23402, + "十六条": 23403, + "▁Beautiful": 23404, + "交通运输": 23405, + "▁loving": 23406, + "▁realistic": 23407, + "nsub": 23408, + "▁Lincoln": 23409, + "▁gathered": 23410, + "▁Economic": 23411, + "宾馆": 23412, + "层面": 23413, + "▁initiated": 23414, + "issippi": 23415, + "iere": 23416, + "Objects": 23417, + "kle": 23418, + "UV": 23419, + "水量": 23420, + "诗歌": 23421, + "▁],\\": 23422, + "队友": 23423, + "▁lattice": 23424, + "▁bip": 23425, + "eine": 23426, + "▁Join": 23427, + "▁connectivity": 23428, + "民二": 23429, + "▁singing": 23430, + "到处": 23431, + "中止": 23432, + "▁Nature": 23433, + "乘坐": 23434, + "第一时间": 23435, + "ateful": 23436, + "▁Samsung": 23437, + "节省": 23438, + "予以证实": 23439, + "▁stir": 23440, + "tu": 23441, + "实的": 23442, + "sun": 23443, + "同样的": 23444, + "fred": 23445, + "CCESS": 23446, + "\\\\}$": 23447, + "ancouver": 23448, + "钢琴": 23449, + "▁examines": 23450, + "日公开开庭进行了审理": 23451, + "▁buried": 23452, + "coma": 23453, + "要在": 23454, + "▁tropical": 23455, + "bucket": 23456, + "▁scattering": 23457, + "▁Was": 23458, + "商城": 23459, + "nHello": 23460, + "▁golden": 23461, + "友谊": 23462, + "法律法规及": 23463, + "烦恼": 23464, + "ritic": 23465, + "traction": 23466, + "▁investments": 23467, + "▁specialists": 23468, + "烟台": 23469, + "▁Queensland": 23470, + "juana": 23471, + "▁grows": 23472, + "提问": 23473, + "▁PCR": 23474, + "▁Together": 23475, + "之和": 23476, + "如有": 23477, + "▁trips": 23478, + "Tools": 23479, + "在哪里": 23480, + "nGeography": 23481, + "Where": 23482, + "时效": 23483, + "nInternational": 23484, + "占用": 23485, + "做什么": 23486, + "▁Gib": 23487, + "▁clarify": 23488, + "中等": 23489, + "nMat": 23490, + "的最佳": 23491, + "▁anomal": 23492, + "▁declar": 23493, + "清除": 23494, + "arijuana": 23495, + "elements": 23496, + "REG": 23497, + "▁tob": 23498, + "rowave": 23499, + "▁hopefully": 23500, + "人性": 23501, + "iously": 23502, + "ynthesis": 23503, + "晋江文学城": 23504, + "▁empower": 23505, + "▁specification": 23506, + "▁governor": 23507, + "综合性": 23508, + "你好": 23509, + "athers": 23510, + "oler": 23511, + "erals": 23512, + "▁Info": 23513, + "▁medications": 23514, + "▁Login": 23515, + "strument": 23516, + "作风": 23517, + "variant": 23518, + "××××": 23519, + "▁ure": 23520, + "▁nose": 23521, + "▁perme": 23522, + "的现象": 23523, + "▁aspir": 23524, + "visual": 23525, + "strings": 23526, + "▁powered": 23527, + "在了": 23528, + "larg": 23529, + "fessional": 23530, + "的游戏": 23531, + "DK": 23532, + "Dispatch": 23533, + "verify": 23534, + "ynamics": 23535, + "circle": 23536, + "▁fluct": 23537, + "这也": 23538, + "▁Afghan": 23539, + "▁substitution": 23540, + "我们就": 23541, + "▁Physical": 23542, + "热带": 23543, + "相邻": 23544, + "其中的": 23545, + "▁Matrix": 23546, + "have": 23547, + "▁slic": 23548, + "又称": 23549, + "▁increment": 23550, + "还好": 23551, + "男主": 23552, + "▁differently": 23553, + "▁Utah": 23554, + "▁passenger": 23555, + "民法": 23556, + "较多": 23557, + "▁vag": 23558, + "私人": 23559, + "▁assumptions": 23560, + "每周": 23561, + "ikz": 23562, + "姐妹": 23563, + "ISA": 23564, + "尽可能": 23565, + "能力和": 23566, + "▁reportedly": 23567, + "总理": 23568, + "▁renamed": 23569, + "▁arise": 23570, + "网易": 23571, + "nVill": 23572, + "phabet": 23573, + "▁ranking": 23574, + "陪伴": 23575, + "▁ignored": 23576, + "划拨": 23577, + "切成": 23578, + "临沂": 23579, + "▁Personal": 23580, + "你看": 23581, + "空中": 23582, + "▁certification": 23583, + "▁mim": 23584, + "▁IOException": 23585, + "▁chamber": 23586, + "▁cervical": 23587, + "用户的": 23588, + "▁Session": 23589, + "▁Ron": 23590, + "期间不停止": 23591, + "▁pil": 23592, + "境内": 23593, + "副本二份": 23594, + "canvas": 23595, + "▁MC": 23596, + "strong": 23597, + "▁packet": 23598, + "▁reflects": 23599, + "▁pyl": 23600, + "说到": 23601, + "▁Happy": 23602, + "实行独任审判": 23603, + "不同意": 23604, + "十大": 23605, + "▁makeup": 23606, + "耐心": 23607, + "Dao": 23608, + "▁白": 23609, + "▁Aqu": 23610, + "▁cand": 23611, + "标记": 23612, + "饰演": 23613, + "▁Aw": 23614, + "一口": 23615, + "再生": 23616, + "▁GT": 23617, + "大专": 23618, + "投票": 23619, + "调解协议": 23620, + "▁PUBLIC": 23621, + "▁infar": 23622, + "发作": 23623, + "▁Lu": 23624, + "▁pancreatic": 23625, + "投标": 23626, + "▁ethanol": 23627, + "号线": 23628, + "▁Mut": 23629, + "赋予": 23630, + "▁lear": 23631, + "MV": 23632, + "ów": 23633, + "nbl": 23634, + "去世": 23635, + "有一些": 23636, + "走势": 23637, + "▁oblig": 23638, + "▁iPad": 23639, + "▁tact": 23640, + "▁cube": 23641, + "无疑": 23642, + "▁portions": 23643, + "▁positively": 23644, + "届满": 23645, + "▁Bron": 23646, + "▁pione": 23647, + "南部": 23648, + "Visual": 23649, + "线段": 23650, + "strict": 23651, + "▁cytotox": 23652, + "atories": 23653, + "<<\"": 23654, + "那时候": 23655, + "nTake": 23656, + "▁trains": 23657, + "▁accommodate": 23658, + "▁dispatch": 23659, + "▁NIH": 23660, + "▁cyber": 23661, + "▁Monte": 23662, + "务工": 23663, + "石头": 23664, + "一个是": 23665, + "Comput": 23666, + "复议期间不停止": 23667, + "▁loyal": 23668, + "▁Sale": 23669, + "月二十七日": 23670, + "unks": 23671, + "自然科学": 23672, + "phy": 23673, + "▁Metro": 23674, + "▁Singh": 23675, + "igenous": 23676, + "龙头": 23677, + "均衡": 23678, + "▁downloaded": 23679, + "▁backend": 23680, + "花钱": 23681, + "▁brilliant": 23682, + "▁unlike": 23683, + "▁无": 23684, + "▁Republicans": 23685, + "储备": 23686, + "口罩": 23687, + "lit": 23688, + "▁Flo": 23689, + "功夫": 23690, + "化妆品": 23691, + "▁Toy": 23692, + "中华人民共和国婚姻法": 23693, + "安静": 23694, + "fund": 23695, + "▁paintings": 23696, + "ascade": 23697, + "ifacts": 23698, + "出台": 23699, + "吐槽": 23700, + "runner": 23701, + "▁traits": 23702, + "nSimpl": 23703, + "▁Intellig": 23704, + "Design": 23705, + "ainian": 23706, + "▁Fellow": 23707, + "也不知道": 23708, + "▁establishing": 23709, + "▁purified": 23710, + "alloc": 23711, + "▁Hyper": 23712, + "mv": 23713, + "▁Beng": 23714, + "▁tokens": 23715, + "决心": 23716, + "量刑": 23717, + "这时候": 23718, + "glas": 23719, + "本案受理费": 23720, + "▁Environmental": 23721, + "▁institutional": 23722, + "专科": 23723, + "默默": 23724, + "的思路": 23725, + "▁watched": 23726, + "▁isolates": 23727, + "小明": 23728, + "的路": 23729, + "支公司": 23730, + "▁circulation": 23731, + "running": 23732, + "负数": 23733, + "▁reporter": 23734, + "extensions": 23735, + "Uri": 23736, + "在国内": 23737, + "▁casino": 23738, + "佛山市": 23739, + "sequently": 23740, + "▁popularity": 23741, + "诉至法院": 23742, + "▁Whit": 23743, + "film": 23744, + "新手": 23745, + "社团": 23746, + "▁制作": 23747, + "Team": 23748, + "nEl": 23749, + "▁afraid": 23750, + "methyl": 23751, + "变换": 23752, + "组的": 23753, + "试图": 23754, + "\"):\\": 23755, + "▁updating": 23756, + "▁suppliers": 23757, + "▁drums": 23758, + "▁Later": 23759, + "ifferential": 23760, + "不成": 23761, + "▁gentle": 23762, + "heat": 23763, + "▁incub": 23764, + "dependency": 23765, + "体检": 23766, + "本院依据已经发生法律效力的": 23767, + "携手": 23768, + "mouth": 23769, + "▁venture": 23770, + "social": 23771, + "Resources": 23772, + "▁Connecticut": 23773, + "verted": 23774, + "▁bleeding": 23775, + "▁grounds": 23776, + "▁wanting": 23777, + "▁Options": 23778, + "靠谱": 23779, + "▁Sarah": 23780, + "▁trusted": 23781, + "▁Optim": 23782, + "▁walked": 23783, + "模糊": 23784, + "编译": 23785, + "给原告": 23786, + "balance": 23787, + "operatorname": 23788, + "▁asks": 23789, + ":#": 23790, + "富有": 23791, + "▁genomic": 23792, + "透支": 23793, + "交往": 23794, + "十八日": 23795, + "高职": 23796, + "▁cha": 23797, + "▁registry": 23798, + ">\",\\": 23799, + "偶像": 23800, + "▁formulas": 23801, + "configure": 23802, + "▁datasets": 23803, + "▁Laboratory": 23804, + "ordinary": 23805, + "plemented": 23806, + "企业管理": 23807, + "选择了": 23808, + "竞技": 23809, + "常用的": 23810, + "▁addressing": 23811, + "nUnited": 23812, + "很简单": 23813, + "深的": 23814, + "RF": 23815, + "filled": 23816, + "研制": 23817, + "涵盖": 23818, + "形成的": 23819, + "▁highlighted": 23820, + "▁Customer": 23821, + "▁Framework": 23822, + "▁tomat": 23823, + "亲自": 23824, + "itone": 23825, + "▁salary": 23826, + "Short": 23827, + "看守所": 23828, + "▁habitat": 23829, + "▁cone": 23830, + "▁Reserved": 23831, + "▁generations": 23832, + "▁Column": 23833, + "南海": 23834, + "translate": 23835, + "故意伤害罪": 23836, + "▁recipients": 23837, + "特朗普": 23838, + "approx": 23839, + "photo": 23840, + "▁labeled": 23841, + "民营": 23842, + "立足": 23843, + "apis": 23844, + "▁fitting": 23845, + "的我": 23846, + "Sum": 23847, + "actual": 23848, + "▁pseud": 23849, + "备选答案": 23850, + "▁suspected": 23851, + "▁[`": 23852, + "它们的": 23853, + "▁Tools": 23854, + "▁ordering": 23855, + "寻求": 23856, + "▁urllib": 23857, + "▁Revolution": 23858, + "▁credentials": 23859, + "▁ceiling": 23860, + "▁assessing": 23861, + "见面": 23862, + "郑州市": 23863, + "月二十六日": 23864, + "科目": 23865, + "▁Mach": 23866, + "Fire": 23867, + "联合国": 23868, + "destroy": 23869, + "▁Bos": 23870, + "和技术": 23871, + "endors": 23872, + "年后": 23873, + "asa": 23874, + "多多": 23875, + "LV": 23876, + "▁Authority": 23877, + "的表现": 23878, + "ruby": 23879, + "第一百三": 23880, + "▁convention": 23881, + "主要有": 23882, + "oriented": 23883, + "romagnetic": 23884, + "的孩子": 23885, + "▁Lower": 23886, + "▁stood": 23887, + "olph": 23888, + "nNe": 23889, + "▁ED": 23890, + "仪表": 23891, + "十几": 23892, + "三十日": 23893, + "NECT": 23894, + "bara": 23895, + "Basic": 23896, + "新加坡": 23897, + "olutions": 23898, + "QUEST": 23899, + "varphi": 23900, + "许可证": 23901, + "ре": 23902, + "”(": 23903, + "之际": 23904, + "对接": 23905, + "时空": 23906, + "人员的": 23907, + "▁bugs": 23908, + "pine": 23909, + "解决问题": 23910, + "bn": 23911, + "期内": 23912, + "▁juice": 23913, + "▁multiplication": 23914, + "azi": 23915, + "▁SV": 23916, + "▁irr": 23917, + "润滑": 23918, + "载体": 23919, + "十一章": 23920, + "中介": 23921, + "对抗": 23922, + "*}": 23923, + "把它": 23924, + "releases": 23925, + "cpu": 23926, + "建设工程": 23927, + "▁Rural": 23928, + "▁competitors": 23929, + "溶液": 23930, + "▁crop": 23931, + "▁evident": 23932, + "Constructor": 23933, + "不必": 23934, + "routes": 23935, + "▁Culture": 23936, + "人们的": 23937, + "pd": 23938, + "qual": 23939, + "seudo": 23940, + "graphics": 23941, + "▁elucidate": 23942, + "▁enumerate": 23943, + "oenix": 23944, + "▁shadow": 23945, + "顶点": 23946, + "▁Between": 23947, + "▁timestamp": 23948, + "▁deput": 23949, + "Constants": 23950, + "▁restored": 23951, + "选取": 23952, + "Elements": 23953, + "Sample": 23954, + "▁franchise": 23955, + "第一百四十四条之规定": 23956, + "▁campaigns": 23957, + "▁declare": 23958, + "▁governments": 23959, + "▁Innov": 23960, + "Character": 23961, + "早就": 23962, + "reach": 23963, + "▁Anthony": 23964, + "美人": 23965, + "resistant": 23966, + "▁analyzing": 23967, + "的点": 23968, + "uters": 23969, + "远远": 23970, + "目的是": 23971, + "▁Bra": 23972, + "navbar": 23973, + "▁ministry": 23974, + "不适": 23975, + "nDist": 23976, + "itored": 23977, + "▁Normal": 23978, + "▁defeat": 23979, + "▁brush": 23980, + "▁banking": 23981, + "至今未": 23982, + "开发商": 23983, + "上来": 23984, + "▁个人": 23985, + "▁minority": 23986, + "越大": 23987, + "▁denied": 23988, + "ilde": 23989, + "♪\\": 23990, + "News": 23991, + "组建": 23992, + "nmy": 23993, + "▁nu": 23994, + "淘汰": 23995, + "▁auction": 23996, + "市中级人民法院提出上诉": 23997, + "任免": 23998, + "年级": 23999, + "iu": 24000, + "ACC": 24001, + "fraction": 24002, + "hn": 24003, + "▁comic": 24004, + "个小时": 24005, + "sd": 24006, + "▁RF": 24007, + "Progress": 24008, + "▁双": 24009, + "催要": 24010, + "没有什么": 24011, + "立刻": 24012, + "giving": 24013, + "▁Query": 24014, + "▁Tournament": 24015, + "▁fastest": 24016, + "▁Match": 24017, + "urgical": 24018, + "金融机构": 24019, + "在校": 24020, + "sembled": 24021, + "▁pollution": 24022, + "\"{": 24023, + "▁Bird": 24024, + "先进的": 24025, + "south": 24026, + "[](": 24027, + "▁visitor": 24028, + "▁Lang": 24029, + "Upload": 24030, + "choice": 24031, + "▁parks": 24032, + "得很": 24033, + "…………": 24034, + "区块": 24035, + "极其": 24036, + "▁Su": 24037, + "▁Jason": 24038, + "Health": 24039, + "▁steam": 24040, + "激情": 24041, + "▁rounds": 24042, + "Runner": 24043, + "的小说": 24044, + "价的": 24045, + "eron": 24046, + "▁seam": 24047, + "潜力": 24048, + "▁instruct": 24049, + "▁lyrics": 24050, + "即便": 24051, + "等到": 24052, + "Scale": 24053, + "▁Sorry": 24054, + "▁Filter": 24055, + "istol": 24056, + "▁courts": 24057, + "Cred": 24058, + "▁lymphocytes": 24059, + "ongoose": 24060, + "多年来": 24061, + "服务有限公司": 24062, + "reak": 24063, + "riving": 24064, + "relative": 24065, + "▁Baseball": 24066, + "rell": 24067, + "额外": 24068, + "▁€": 24069, + "▁Agricult": 24070, + "▁constraint": 24071, + "▁Pap": 24072, + "ributions": 24073, + "▁discontin": 24074, + "▁duplicate": 24075, + "gui": 24076, + "incorporated": 24077, + "nMe": 24078, + "▁Kind": 24079, + "▁hill": 24080, + "▁advertis": 24081, + "▁distinguish": 24082, + "▁declined": 24083, + "▁Argentina": 24084, + "家电": 24085, + "的部分": 24086, + "XXXX": 24087, + "图案": 24088, + "▁Users": 24089, + "个人的": 24090, + "▁yeast": 24091, + "▁justify": 24092, + "▁scratch": 24093, + "▁mos": 24094, + "▁Lag": 24095, + "▁exterior": 24096, + "置业有限公司": 24097, + "icy": 24098, + "释义": 24099, + "Fac": 24100, + "Connect": 24101, + "▁subscrib": 24102, + "nLa": 24103, + "▁lady": 24104, + "▁sheets": 24105, + "籍贯": 24106, + "活动中": 24107, + "▁rubber": 24108, + "Topic": 24109, + "散热": 24110, + "合同纠纷": 24111, + "▁precip": 24112, + "▁disaster": 24113, + "▁tomography": 24114, + "▁Orange": 24115, + "佛教": 24116, + "▁Usage": 24117, + "▁\\\\;": 24118, + "截图": 24119, + "▁fet": 24120, + "loqu": 24121, + "深受": 24122, + "高铁": 24123, + "aden": 24124, + "plier": 24125, + "▁silent": 24126, + "▁Nation": 24127, + "▁virtually": 24128, + "kernel": 24129, + "loaded": 24130, + "▁artistic": 24131, + "优越": 24132, + "dynamic": 24133, + "发布的": 24134, + "像是": 24135, + "预约": 24136, + "调用": 24137, + "市人民检察院": 24138, + "uni": 24139, + "itol": 24140, + "▁initiation": 24141, + "XY": 24142, + "您认为": 24143, + "▁Marine": 24144, + "▁reaches": 24145, + "GI": 24146, + "▁Bh": 24147, + "水平的": 24148, + "记数": 24149, + "▁acceptance": 24150, + "不高": 24151, + "nSouth": 24152, + "Platform": 24153, + "UK": 24154, + "▁pad": 24155, + "▁Estate": 24156, + "▁Formula": 24157, + "▁唐": 24158, + "GD": 24159, + "▁Spirit": 24160, + "创立": 24161, + "▁congr": 24162, + "▁publicly": 24163, + "▁penalty": 24164, + "▁phrase": 24165, + "mag": 24166, + "这项": 24167, + "前言": 24168, + "制造业": 24169, + "flash": 24170, + "inance": 24171, + "▁Alzheimer": 24172, + "ippet": 24173, + "西藏": 24174, + "pes": 24175, + "▁Israeli": 24176, + "Secret": 24177, + "没有人": 24178, + "▁landing": 24179, + "的概念": 24180, + "招标": 24181, + "口碑": 24182, + "较好的": 24183, + "▁Introduction": 24184, + "oji": 24185, + "▁newest": 24186, + "recision": 24187, + "达到了": 24188, + "▁Easy": 24189, + "▁hypert": 24190, + "住四川省": 24191, + "TOKEN": 24192, + "liest": 24193, + "visible": 24194, + "明年": 24195, + "▁GP": 24196, + "可达": 24197, + "ndate": 24198, + "▁discrimination": 24199, + "▁Flu": 24200, + "▁vacuum": 24201, + "源于": 24202, + "▁Glass": 24203, + "▁Pain": 24204, + "▁Added": 24205, + "▁使用": 24206, + "的一部分": 24207, + "▁Wikipedia": 24208, + "▁Nap": 24209, + "工作室": 24210, + "Tem": 24211, + "▁stimuli": 24212, + "Span": 24213, + "mind": 24214, + "nCo": 24215, + "市政": 24216, + "职场": 24217, + "宏观": 24218, + "asures": 24219, + "LIED": 24220, + "▁Cut": 24221, + "Scene": 24222, + "▁sink": 24223, + "▁consistency": 24224, + "从中": 24225, + "nFull": 24226, + "▁TABLE": 24227, + "演技": 24228, + "▁pra": 24229, + "▁encoded": 24230, + "▁oh": 24231, + "▁backing": 24232, + "▁tackle": 24233, + "克服": 24234, + "▁bis": 24235, + "都不会": 24236, + "ridge": 24237, + "Hi": 24238, + "小白": 24239, + "readonly": 24240, + "▁Reserve": 24241, + "▁Bangl": 24242, + "\"])\\": 24243, + "病变": 24244, + "CONFIG": 24245, + "artz": 24246, + "▁dissemin": 24247, + "Si": 24248, + "nRev": 24249, + "▁fracture": 24250, + "完结": 24251, + "()[": 24252, + "▁talented": 24253, + "伦敦": 24254, + "法制": 24255, + "当今": 24256, + "百分之": 24257, + "巩固": 24258, + "开通": 24259, + "ourses": 24260, + "器材": 24261, + "transition": 24262, + "▁Pin": 24263, + "▁scar": 24264, + "经济的": 24265, + "▁kwargs": 24266, + "偿还原告": 24267, + "聚焦": 24268, + "本院作出的": 24269, + "nGerman": 24270, + "▁surveys": 24271, + "走出": 24272, + "▁FM": 24273, + "▁analysed": 24274, + "sized": 24275, + "▁brick": 24276, + "▁protest": 24277, + "▁Optional": 24278, + "缺少": 24279, + "特别授权": 24280, + "科学家": 24281, + "▁iso": 24282, + "第六十七条第三款": 24283, + "Ign": 24284, + "getName": 24285, + "Coll": 24286, + "▁Virtual": 24287, + "Usage": 24288, + "▁Him": 24289, + "▁Guid": 24290, + "▁spontaneous": 24291, + "ostics": 24292, + "efficient": 24293, + "apolis": 24294, + "Texture": 24295, + "概况": 24296, + "▁Cow": 24297, + "▁pathology": 24298, + "ARK": 24299, + "治疗组": 24300, + "▁Palest": 24301, + "客厅": 24302, + "▁organs": 24303, + "偿还借款": 24304, + "joint": 24305, + "nGood": 24306, + "建国": 24307, + "▁mayor": 24308, + "olen": 24309, + "同行": 24310, + "▁lam": 24311, + "`)": 24312, + "煤矿": 24313, + "lobin": 24314, + "ombok": 24315, + "申请符合法律规定": 24316, + "划分": 24317, + "odb": 24318, + "▁Maine": 24319, + "Bot": 24320, + "隧道": 24321, + "▁Nob": 24322, + "filters": 24323, + "▁settled": 24324, + "本报": 24325, + "extends": 24326, + "月二十三日": 24327, + "▁unw": 24328, + "▁gains": 24329, + "nGr": 24330, + "▁approximate": 24331, + "Yes": 24332, + "▁verification": 24333, + "▁proportional": 24334, + "▁technological": 24335, + "这句话": 24336, + "▁nights": 24337, + "▁SEO": 24338, + "anean": 24339, + "▁mutants": 24340, + "▁creativity": 24341, + "的标准": 24342, + "ajax": 24343, + "▁royal": 24344, + "▁manufactured": 24345, + "▁timely": 24346, + "▁▁▁▁▁▁▁▁▁▁▁": 24347, + "ptide": 24348, + "combinator": 24349, + "nGreat": 24350, + "Prop": 24351, + "判决生效后": 24352, + "一群": 24353, + "扩张": 24354, + "▁详情": 24355, + "▁Practice": 24356, + "地域": 24357, + "总数": 24358, + "amel": 24359, + "确诊": 24360, + "振动": 24361, + "及其他": 24362, + "▁merc": 24363, + "umat": 24364, + "▁Bag": 24365, + "▁Clark": 24366, + "▁Think": 24367, + "务必": 24368, + "手工": 24369, + "▁unnec": 24370, + "го": 24371, + "mel": 24372, + "毒品罪": 24373, + "▁Baron": 24374, + "▁texts": 24375, + "▁Multiple": 24376, + "▁churches": 24377, + "市人": 24378, + "nAB": 24379, + "家协会": 24380, + "▁Gab": 24381, + "▁Stage": 24382, + "otropic": 24383, + "把我": 24384, + "火车站": 24385, + "umar": 24386, + "的高度": 24387, + "▁secretary": 24388, + "▁collecting": 24389, + "球的": 24390, + "亮点": 24391, + "uffle": 24392, + "▁на": 24393, + "entially": 24394, + "▁feasible": 24395, + "inputs": 24396, + "哈哈哈": 24397, + "▁belt": 24398, + "nPosts": 24399, + "法律法规及监规": 24400, + "列车": 24401, + "Styles": 24402, + "▁nominated": 24403, + "}\\\\\\\\": 24404, + "网址": 24405, + "圆心": 24406, + "意的": 24407, + "PDF": 24408, + "▁Anne": 24409, + "Ids": 24410, + "▁comparative": 24411, + "▁convey": 24412, + "得了": 24413, + "▁cookie": 24414, + "追踪": 24415, + "▁sensing": 24416, + "▁floating": 24417, + "ulent": 24418, + "项和": 24419, + "组成部分": 24420, + "▁circuits": 24421, + "产物": 24422, + "有几": 24423, + "lovak": 24424, + "~~~~~~~~": 24425, + "▁prints": 24426, + "XR": 24427, + "孕妇": 24428, + "nKey": 24429, + "▁medic": 24430, + "nby": 24431, + "▁biopsy": 24432, + "▁Conc": 24433, + "环境保护": 24434, + "▁flask": 24435, + "▁Classic": 24436, + "▁legit": 24437, + "统治": 24438, + "▁hanging": 24439, + "▁illustrate": 24440, + "感冒": 24441, + "月参加": 24442, + "▁tobacco": 24443, + "▁passionate": 24444, + "▁bil": 24445, + "ercul": 24446, + "▁Release": 24447, + "▁emotions": 24448, + "Env": 24449, + "▁Rain": 24450, + "▁starring": 24451, + "▁threats": 24452, + "兴奋": 24453, + "质疑": 24454, + "sal": 24455, + "安置": 24456, + "eer": 24457, + "great": 24458, + "▁Role": 24459, + "▁substrates": 24460, + "外人": 24461, + "alias": 24462, + "'))": 24463, + "▁aluminum": 24464, + "▁confirmation": 24465, + "监护的": 24466, + "▁prox": 24467, + "EventListener": 24468, + "劳动力": 24469, + "尼斯": 24470, + "▁adhesion": 24471, + "MAGE": 24472, + "▁SDK": 24473, + "▁prospect": 24474, + "gp": 24475, + "用地": 24476, + "都被": 24477, + "uli": 24478, + "离婚纠纷一案": 24479, + "▁briefly": 24480, + "在全国": 24481, + "timer": 24482, + "▁Mother": 24483, + "▁Seg": 24484, + "Material": 24485, + "▁thrown": 24486, + "向本院申请复议一次": 24487, + "▁Bio": 24488, + "科学记数": 24489, + "▁Ka": 24490, + "中小企业": 24491, + "illiam": 24492, + "舆论": 24493, + "▁retrospective": 24494, + "比较好": 24495, + "▁hipp": 24496, + "▁islands": 24497, + "▁vintage": 24498, + "取出": 24499, + "Symbol": 24500, + "▁Settings": 24501, + "夫人": 24502, + "Feed": 24503, + "容纳": 24504, + "法治": 24505, + "话说": 24506, + "▁SER": 24507, + "IOException": 24508, + "▁contributor": 24509, + "apanese": 24510, + "也好": 24511, + "的作品": 24512, + "涉及未成年": 24513, + "▁everybody": 24514, + "对错": 24515, + "▁Advent": 24516, + "▁productive": 24517, + "克兰": 24518, + "<>();\\": 24519, + "controlled": 24520, + "暴露": 24521, + "iptic": 24522, + "rst": 24523, + "得知": 24524, + "▁nations": 24525, + "▁Vin": 24526, + "▁logical": 24527, + "▁Tun": 24528, + "Wait": 24529, + "▁fatal": 24530, + "▁Morgan": 24531, + "vg": 24532, + "Have": 24533, + "Optional": 24534, + "这点": 24535, + "sam": 24536, + "▁(,": 24537, + "的经济": 24538, + "厦门市": 24539, + "▁attempting": 24540, + "分散": 24541, + "ovies": 24542, + "▁Mayor": 24543, + "▁м": 24544, + "▁adjustment": 24545, + "又不": 24546, + "nMon": 24547, + "你自己": 24548, + "ceiver": 24549, + "的范围内": 24550, + "ividually": 24551, + "hire": 24552, + "▁dimin": 24553, + "▁Taiwan": 24554, + "▁portable": 24555, + "涉及未成年子女抚养": 24556, + "NY": 24557, + "可行": 24558, + "disabled": 24559, + "nType": 24560, + "为大家": 24561, + "离婚诉讼或者": 24562, + "▁Golf": 24563, + "▁socio": 24564, + "atum": 24565, + "nStart": 24566, + "离婚诉讼或者涉及未成年子女抚养": 24567, + "▁readily": 24568, + "▁sour": 24569, + "compass": 24570, + "atorial": 24571, + "这本书": 24572, + "▁formulation": 24573, + "成品": 24574, + "issa": 24575, + "maps": 24576, + "兼容": 24577, + "无力": 24578, + "没事": 24579, + "更大的": 24580, + "班子": 24581, + "Site": 24582, + "▁eryth": 24583, + "实质": 24584, + "精选": 24585, + "LOAD": 24586, + "▁refund": 24587, + "计算至": 24588, + "▁suppression": 24589, + "ulu": 24590, + "给出的": 24591, + "忽视": 24592, + "年开始": 24593, + "bundle": 24594, + "利的": 24595, + "kx": 24596, + "就可以了": 24597, + "提供担保": 24598, + "边界": 24599, + "▁expressing": 24600, + "本院依法组成合议庭进行了审理": 24601, + "economic": 24602, + "合伙": 24603, + "向前": 24604, + "ocamp": 24605, + "▁proton": 24606, + "精华": 24607, + "▁$[": 24608, + "annon": 24609, + "hesia": 24610, + "▁tourism": 24611, + "wei": 24612, + "comb": 24613, + "南通": 24614, + "▁Format": 24615, + "▁equality": 24616, + "▁nullable": 24617, + "Background": 24618, + "▁Rick": 24619, + "▁pole": 24620, + "叶片": 24621, + "包含了": 24622, + "同比增长": 24623, + "▁highway": 24624, + "▁swing": 24625, + "osterone": 24626, + "▁BSD": 24627, + "▁Script": 24628, + "Cmd": 24629, + "完整的": 24630, + "▁Things": 24631, + "▁Related": 24632, + "'))\\": 24633, + "▁WHERE": 24634, + "▁Dublin": 24635, + "凝聚": 24636, + "Duration": 24637, + "▁Industrial": 24638, + "▁subprocess": 24639, + "▁Louisiana": 24640, + "▁macrophages": 24641, + "▁Summ": 24642, + "nPub": 24643, + "▁Pharm": 24644, + "WD": 24645, + "owski": 24646, + "家乡": 24647, + "ipy": 24648, + "quet": 24649, + "DTO": 24650, + "▁Bush": 24651, + "urgery": 24652, + "▁hired": 24653, + "原子": 24654, + "▁Wy": 24655, + "▁permitted": 24656, + "bie": 24657, + "Messages": 24658, + "~\\": 24659, + "VICE": 24660, + "二次方程": 24661, + "nLike": 24662, + "ла": 24663, + "▁landsc": 24664, + "一起来": 24665, + "▁Phill": 24666, + "ogeneity": 24667, + "▁SF": 24668, + "▁coordination": 24669, + "%)": 24670, + "chunk": 24671, + "GV": 24672, + "词典": 24673, + "的前提": 24674, + "▁hypotheses": 24675, + "▁Nep": 24676, + "GitHub": 24677, + "▁chromatography": 24678, + "▁\"\",": 24679, + "/${": 24680, + "语法": 24681, + "itations": 24682, + "▁mounted": 24683, + "hosts": 24684, + "▁endogenous": 24685, + "十六日": 24686, + "可怕": 24687, + "签署": 24688, + "▁Definition": 24689, + "▁pepper": 24690, + "▁deployed": 24691, + "▁^{": 24692, + "不断的": 24693, + "▁SET": 24694, + "▁contrad": 24695, + "idel": 24696, + "oidal": 24697, + "▁impression": 24698, + "▁gross": 24699, + "monitor": 24700, + "▁keyword": 24701, + "▁cylinder": 24702, + "迎来": 24703, + "再根据": 24704, + "在他": 24705, + "business": 24706, + "▁stainless": 24707, + "未到庭": 24708, + "▁controversial": 24709, + "ubuntu": 24710, + "▁Works": 24711, + "▁Harvard": 24712, + "nbe": 24713, + "urchase": 24714, + "prises": 24715, + "▁Medal": 24716, + "HI": 24717, + "Watch": 24718, + "agers": 24719, + "\",&": 24720, + "下一个": 24721, + "组长": 24722, + "由原告负担": 24723, + "requests": 24724, + "irs": 24725, + "的公司": 24726, + "album": 24727, + "▁moisture": 24728, + "剂量": 24729, + "服法": 24730, + "▁Snow": 24731, + "commons": 24732, + "ographics": 24733, + "小麦": 24734, + "uki": 24735, + "oblast": 24736, + "活着": 24737, + "compose": 24738, + "▁varieties": 24739, + "局面": 24740, + "执行的": 24741, + "这家": 24742, + "▁thinks": 24743, + "ificant": 24744, + "一一": 24745, + "hots": 24746, + "▁lar": 24747, + "长春市": 24748, + "队长": 24749, + "▁longest": 24750, + "开车": 24751, + "▁fulfill": 24752, + "▁Bey": 24753, + "极限": 24754, + "双方当事人": 24755, + "▁employer": 24756, + "▁gradually": 24757, + "▁mammalian": 24758, + "▁infectious": 24759, + "▁Risk": 24760, + "▁slice": 24761, + "▁polynomials": 24762, + "王者": 24763, + "'],": 24764, + "采用了": 24765, + "▁corn": 24766, + "▁slip": 24767, + "验收": 24768, + "metrics": 24769, + "▁bund": 24770, + "▁Portland": 24771, + "潮流": 24772, + "▁chunk": 24773, + "',['": 24774, + "遍历": 24775, + "mix": 24776, + "二等奖": 24777, + "Good": 24778, + "aura": 24779, + "mitt": 24780, + "Submit": 24781, + "东路": 24782, + "IENT": 24783, + "村民委员会": 24784, + "卫生间": 24785, + "imore": 24786, + "▁linking": 24787, + "▁attitudes": 24788, + "日向本院申请执行": 24789, + "▁XX": 24790, + "aca": 24791, + "nOk": 24792, + "borne": 24793, + "because": 24794, + "承办": 24795, + "重生": 24796, + "glob": 24797, + "sil": 24798, + "座谈": 24799, + "▁Ju": 24800, + "▁trailer": 24801, + "▁weren": 24802, + "atility": 24803, + "死的": 24804, + "加深": 24805, + "▁globe": 24806, + "海上": 24807, + "nHer": 24808, + "远离": 24809, + "CES": 24810, + "出于": 24811, + "▁\\\\((": 24812, + "▁Wind": 24813, + "rx": 24814, + "tfmt": 24815, + "城市的": 24816, + "prite": 24817, + "Master": 24818, + "中原": 24819, + "published": 24820, + "▁dens": 24821, + "▁hazard": 24822, + "amo": 24823, + "Formatter": 24824, + "▁fluor": 24825, + "▁bandwidth": 24826, + "▁benchmark": 24827, + "Pi": 24828, + "▁Abs": 24829, + "iti": 24830, + "▁Josh": 24831, + "osine": 24832, + "牡丹": 24833, + "▁AWS": 24834, + "▁Alliance": 24835, + "ku": 24836, + "gender": 24837, + "成语": 24838, + "ndescription": 24839, + "town": 24840, + "▁Gaussian": 24841, + "▁interfaces": 24842, + "Second": 24843, + "▁Ach": 24844, + "anne": 24845, + "evalu": 24846, + "不为": 24847, + "的有效": 24848, + "▁examining": 24849, + "不一定": 24850, + "▁Cool": 24851, + "▁recurrent": 24852, + "Pack": 24853, + "日立案后": 24854, + "isson": 24855, + "▁durable": 24856, + "劳动争议": 24857, + "意思表示": 24858, + "了几": 24859, + "▁gotten": 24860, + "▁Schools": 24861, + "_;\\": 24862, + "▁题目描述": 24863, + "Che": 24864, + "\\'/": 24865, + "解析式": 24866, + "十二日": 24867, + "索引": 24868, + "过渡": 24869, + "▁SI": 24870, + "Bad": 24871, + "▁Tab": 24872, + "▁nurse": 24873, + "▁Immun": 24874, + "nChar": 24875, + "▁Stew": 24876, + "clinical": 24877, + "骑士": 24878, + "正面": 24879, + "约定的": 24880, + "需要注意": 24881, + "▁simpler": 24882, + "过多": 24883, + "限于": 24884, + "percent": 24885, + "摩擦": 24886, + "issing": 24887, + "▁Chairman": 24888, + "▁«": 24889, + "涂料": 24890, + "listen": 24891, + "▁Complete": 24892, + "本土": 24893, + "就已经": 24894, + "▁germ": 24895, + "精灵": 24896, + "Struct": 24897, + "▁promotes": 24898, + "▁hypox": 24899, + "▁fork": 24900, + "▁Token": 24901, + "从未": 24902, + "LAB": 24903, + "▁prognosis": 24904, + "▁physically": 24905, + "付清": 24906, + "欢乐": 24907, + "constants": 24908, + "▁Being": 24909, + "眼里": 24910, + "▁Bot": 24911, + "▁Coord": 24912, + "▁struck": 24913, + "猪肉": 24914, + "▁paste": 24915, + "nBest": 24916, + "nEnter": 24917, + "WriteLine": 24918, + "▁instanceof": 24919, + "PLC": 24920, + "七日内": 24921, + "▁diagonal": 24922, + "▁Nan": 24923, + "月二十二日": 24924, + "▁referring": 24925, + "TB": 24926, + "去的": 24927, + "的图象": 24928, + "该如何": 24929, + "手法": 24930, + ">\"\\": 24931, + "第七章": 24932, + ")÷": 24933, + "▁shaped": 24934, + "▁cortical": 24935, + "nMake": 24936, + "养成": 24937, + "▁regarded": 24938, + "▁displacement": 24939, + "placeholder": 24940, + "Internal": 24941, + "产生了": 24942, + "实际情况": 24943, + "▁°": 24944, + "说过": 24945, + "▁Hub": 24946, + "▁LIMITED": 24947, + "▁loose": 24948, + "一个小": 24949, + "湿度": 24950, + "▁Administr": 24951, + "一层": 24952, + "武装": 24953, + "给定": 24954, + "我有": 24955, + "nComp": 24956, + "▁captain": 24957, + "▁pixels": 24958, + "▁racial": 24959, + "一组": 24960, + "外面": 24961, + "AST": 24962, + "▁Baby": 24963, + "▁dimensional": 24964, + "日晚": 24965, + "登场": 24966, + "▁tunnel": 24967, + "trigger": 24968, + "▁Labour": 24969, + "不止": 24970, + "north": 24971, + "▁Howard": 24972, + "工委": 24973, + "▁bash": 24974, + "物业服务有限公司": 24975, + "▁az": 24976, + "最后的": 24977, + "第三百": 24978, + "了他": 24979, + "美观": 24980, + "▁Saudi": 24981, + "▁stayed": 24982, + "▁Parent": 24983, + "▁Technical": 24984, + "意志": 24985, + "▁dispar": 24986, + "▁cultiv": 24987, + "▁[(": 24988, + "折抵": 24989, + "half": 24990, + "'));\\": 24991, + "之旅": 24992, + "▁Location": 24993, + "▁arrange": 24994, + "added": 24995, + "ophag": 24996, + "北部": 24997, + "▁outbreak": 24998, + "▁confusion": 24999, + "spir": 25000, + "▁Ask": 25001, + "▁presentations": 25002, + "拉斯": 25003, + "里斯": 25004, + "bps": 25005, + "受害": 25006, + "than": 25007, + "ioid": 25008, + "▁Roc": 25009, + "dw": 25010, + "▁elabor": 25011, + "Compat": 25012, + "▁(_": 25013, + "Copy": 25014, + "▁consensus": 25015, + "▁tired": 25016, + "于本判决生效后": 25017, + "乃至": 25018, + "宽度": 25019, + "刑更": 25020, + "▁distr": 25021, + "▁Mock": 25022, + "▁credits": 25023, + "▁timer": 25024, + "Release": 25025, + "doi": 25026, + "立法": 25027, + "▁achievement": 25028, + "才有": 25029, + "aler": 25030, + "▁Got": 25031, + "▁stiff": 25032, + "拿出": 25033, + "Thanks": 25034, + "▁placing": 25035, + "荷兰": 25036, + "了解到": 25037, + "wear": 25038, + "nSimplify": 25039, + "panic": 25040, + "▁hiring": 25041, + "ologous": 25042, + "Strategy": 25043, + "▁devoted": 25044, + "移植": 25045, + "nSet": 25046, + "合作社": 25047, + "▁prolonged": 25048, + "ncy": 25049, + "▁Galaxy": 25050, + "iao": 25051, + "▁amen": 25052, + "▁presum": 25053, + "\\\\()\\\\)\\": 25054, + "改革开放": 25055, + "联想": 25056, + "claimed": 25057, + "lr": 25058, + "isco": 25059, + "iologic": 25060, + "▁formerly": 25061, + "▁letting": 25062, + "重启": 25063, + "]\\\\": 25064, + "nCONCLUSIONS": 25065, + "rans": 25066, + "寂寞": 25067, + "▁suspended": 25068, + "太大": 25069, + "感恩": 25070, + "HF": 25071, + "病理": 25072, + "的态度": 25073, + "语种": 25074, + "▁Mississippi": 25075, + "救助": 25076, + "▁Recently": 25077, + "放到": 25078, + "▁Package": 25079, + "student": 25080, + "▁\"\";\\": 25081, + "八条": 25082, + "平常": 25083, + "选出正确的答案": 25084, + "有理": 25085, + "▁Rab": 25086, + "统筹": 25087, + "makers": 25088, + "梅花": 25089, + "缩小": 25090, + "▁varies": 25091, + "考虑到": 25092, + "▁TX": 25093, + "throws": 25094, + "象征": 25095, + "欧盟": 25096, + "内容介绍": 25097, + "▁protecting": 25098, + "tensor": 25099, + "▁Runtime": 25100, + "命名": 25101, + "▁din": 25102, + "izoph": 25103, + "▁DateTime": 25104, + "setting": 25105, + "占据": 25106, + "@@": 25107, + "人民医院": 25108, + "problem": 25109, + "performance": 25110, + "▁Vel": 25111, + "▁platelet": 25112, + "目光": 25113, + "▁Nut": 25114, + "▁aux": 25115, + "是没有": 25116, + "nBoth": 25117, + "Integr": 25118, + "nObject": 25119, + "special": 25120, + "▁organisms": 25121, + "▁entert": 25122, + "▁Sud": 25123, + "▁abundance": 25124, + "排水": 25125, + "▁accordance": 25126, + "这是一": 25127, + "▁Rule": 25128, + "▁Gun": 25129, + "GBT": 25130, + "▁suddenly": 25131, + "HEAD": 25132, + "的首": 25133, + "emed": 25134, + "compare": 25135, + "attrs": 25136, + "▁dB": 25137, + "面板": 25138, + "▁THAT": 25139, + "gebras": 25140, + "tax": 25141, + "▁Orth": 25142, + "confirm": 25143, + "重建": 25144, + "▁excessive": 25145, + "▁阿": 25146, + "▁introducing": 25147, + "登陆": 25148, + "船舶": 25149, + "proto": 25150, + "Lab": 25151, + "映时间": 25152, + "nstatic": 25153, + "▁counting": 25154, + "我个人": 25155, + "而来": 25156, + "▁begun": 25157, + "班主任": 25158, + "▁crown": 25159, + "书写": 25160, + "Binding": 25161, + "▁carries": 25162, + "▁headquarters": 25163, + "自从": 25164, + "▁jo": 25165, + "▁decent": 25166, + "▁ovarian": 25167, + "月二十九日": 25168, + "▁Jos": 25169, + "▁Django": 25170, + "商品房": 25171, + "十七日": 25172, + "经费": 25173, + "▁explores": 25174, + "真诚": 25175, + "▁Lam": 25176, + "▁foss": 25177, + "▁Veter": 25178, + "新人": 25179, + "heduler": 25180, + "Side": 25181, + "觉得自己": 25182, + "党校": 25183, + "into": 25184, + "VALUE": 25185, + "isi": 25186, + "经济社会": 25187, + "aurant": 25188, + "`,\\": 25189, + "的不同": 25190, + "▁SL": 25191, + "FLAGS": 25192, + "▁survived": 25193, + "▁Rober": 25194, + "如同": 25195, + "十二章": 25196, + "\\');": 25197, + "CTYPE": 25198, + "▁Philip": 25199, + "公积": 25200, + "▁Detroit": 25201, + "十三日": 25202, + "▁ein": 25203, + "▁Manufact": 25204, + "amped": 25205, + "reverse": 25206, + "▁Events": 25207, + "▁frustr": 25208, + "具体的": 25209, + "Information": 25210, + "▁donation": 25211, + "music": 25212, + "▁Available": 25213, + "学士": 25214, + "监会": 25215, + "irable": 25216, + "时不": 25217, + "▁Conclusions": 25218, + "▁bedrooms": 25219, + "ounding": 25220, + "恐惧": 25221, + "abul": 25222, + "的全": 25223, + "眼神": 25224, + "配方": 25225, + "在本": 25226, + "separ": 25227, + "▁stocks": 25228, + "▁Alan": 25229, + "▁Heritage": 25230, + "disciplinary": 25231, + "着力": 25232, + "lag": 25233, + "▁monitored": 25234, + "][\"": 25235, + "▁将": 25236, + "▁beds": 25237, + "▁occasionally": 25238, + "▁Hockey": 25239, + "▁striking": 25240, + "太平洋": 25241, + "▁Mini": 25242, + "▁specifications": 25243, + "▁Talk": 25244, + "▁localized": 25245, + "▁tablet": 25246, + "▁similarity": 25247, + "▁tear": 25248, + "公元": 25249, + "后卫": 25250, + "▁streams": 25251, + "▁bypass": 25252, + "▁abdominal": 25253, + "▁fragments": 25254, + "发性": 25255, + "▁Wire": 25256, + "usk": 25257, + "学家": 25258, + "ogonal": 25259, + "▁guilty": 25260, + "▁merely": 25261, + "▁artwork": 25262, + "并无": 25263, + "▁addiction": 25264, + "啤酒": 25265, + "ipeline": 25266, + "Sch": 25267, + "online": 25268, + "ufficient": 25269, + "▁distances": 25270, + "双手": 25271, + "▁Albert": 25272, + "addy": 25273, + "ifiable": 25274, + "pmatrix": 25275, + "细腻": 25276, + "调控": 25277, + "和管理": 25278, + "Mixin": 25279, + "ainers": 25280, + "▁Colomb": 25281, + "▁refused": 25282, + "▁propri": 25283, + "▁musician": 25284, + "ohyd": 25285, + "▁burst": 25286, + "▁Remember": 25287, + "▁Serial": 25288, + "bp": 25289, + "明确的": 25290, + "▁infinity": 25291, + "减刑条件": 25292, + "▁$|": 25293, + "▁ana": 25294, + "immune": 25295, + "Processor": 25296, + "▁substances": 25297, + "外形": 25298, + "破碎": 25299, + "判处拘役": 25300, + "向本院提起上诉": 25301, + "▁decomposition": 25302, + "给我们": 25303, + "▁photographer": 25304, + "▁Kin": 25305, + "▁Walker": 25306, + "▁belonging": 25307, + "借款人": 25308, + "illo": 25309, + "▁blocking": 25310, + "向本院申请执行": 25311, + "就是一个": 25312, + "▁Carib": 25313, + "▁shirt": 25314, + "regex": 25315, + "▁Break": 25316, + "[$": 25317, + "计数": 25318, + "▁Fixed": 25319, + "一度": 25320, + "繁荣": 25321, + "一体化": 25322, + "甲基": 25323, + "▁padding": 25324, + "▁Arthur": 25325, + "高等教育": 25326, + "tokens": 25327, + "标准的": 25328, + "Protocol": 25329, + "弘扬": 25330, + "▁Dick": 25331, + "▁Entity": 25332, + "用人": 25333, + "▁hell": 25334, + "▁tours": 25335, + "举措": 25336, + "))/(": 25337, + "▁hesit": 25338, + "concept": 25339, + "▁Past": 25340, + "owners": 25341, + ":\\'": 25342, + "ylation": 25343, + "ilization": 25344, + "▁sons": 25345, + "▁Belgium": 25346, + "▁pushing": 25347, + "碰撞": 25348, + "的速度": 25349, + "▁rendering": 25350, + "▁horses": 25351, + "▁运动": 25352, + "▁Merc": 25353, + "变革": 25354, + "ycombinator": 25355, + "nVillages": 25356, + "▁regulating": 25357, + "认罪服法": 25358, + "är": 25359, + "Does": 25360, + "▁Mars": 25361, + "▁recombinant": 25362, + "tox": 25363, + "Center": 25364, + "年间": 25365, + "日立案受理": 25366, + "体质": 25367, + "十四日": 25368, + "▁Kids": 25369, + "▁Track": 25370, + "有一定的": 25371, + "▁aggregate": 25372, + "▁occasions": 25373, + "▁resection": 25374, + "酒店的": 25375, + "涉案": 25376, + "▁Finland": 25377, + "▁hypothesize": 25378, + "leveland": 25379, + "▁swap": 25380, + "▁Previous": 25381, + "促销": 25382, + "分析和": 25383, + "▁Dakota": 25384, + "阐述": 25385, + "▁god": 25386, + "▁rejected": 25387, + "份额": 25388, + "▁Agreement": 25389, + "两侧": 25390, + "▁Choose": 25391, + "hole": 25392, + "izophren": 25393, + "Direction": 25394, + "▁Death": 25395, + "chell": 25396, + "VED": 25397, + "leyball": 25398, + "creens": 25399, + "ANGE": 25400, + "▁Rio": 25401, + "external": 25402, + "nTherefore": 25403, + "气管": 25404, + "▁tuple": 25405, + "给她": 25406, + "puts": 25407, + "ohist": 25408, + "▁Tests": 25409, + "▁lombok": 25410, + "enerative": 25411, + "]}": 25412, + "以上事实": 25413, + "网卡": 25414, + "行政处罚决定书": 25415, + "LOC": 25416, + "▁reproductive": 25417, + "BY": 25418, + "用量": 25419, + "注入": 25420, + "▁Lane": 25421, + "▁基本信息": 25422, + "看似": 25423, + "heastern": 25424, + "属实": 25425, + "phot": 25426, + "▁Qual": 25427, + "▁licenses": 25428, + "nUnder": 25429, + "▁enemy": 25430, + "▁Denmark": 25431, + "电动车": 25432, + "▁weapon": 25433, + "anche": 25434, + "配送": 25435, + "GROUND": 25436, + "▁Bowl": 25437, + "endpoint": 25438, + "应当按照": 25439, + "▁AG": 25440, + "厕所": 25441, + "时间为": 25442, + "▁seiz": 25443, + "▁Franklin": 25444, + "▁employers": 25445, + "▁liv": 25446, + "人气": 25447, + "约为": 25448, + "▁NCAA": 25449, + "ATCH": 25450, + "麦克": 25451, + "▁Dom": 25452, + "▁\\\\$": 25453, + "▁Nash": 25454, + "▁Lux": 25455, + "ны": 25456, + "▁\"[": 25457, + "▁poet": 25458, + "桂林": 25459, + "oba": 25460, + "▁constitution": 25461, + "iii": 25462, + "homepage": 25463, + "欧美": 25464, + "▁revised": 25465, + "nde": 25466, + "▁focal": 25467, + "下方": 25468, + "▁Root": 25469, + "▁Vancouver": 25470, + "▁permut": 25471, + "▁Behavior": 25472, + "面貌": 25473, + "later": 25474, + "说出": 25475, + "催化": 25476, + "百货": 25477, + "Live": 25478, + "▁Trib": 25479, + "за": 25480, + "\\'\\\\": 25481, + "\"}\\": 25482, + "▁confront": 25483, + "▁CB": 25484, + "▁cls": 25485, + "▁maximize": 25486, + "osures": 25487, + "解放军": 25488, + "▁CV": 25489, + "发现了": 25490, + "nOBJECT": 25491, + "▁navigate": 25492, + "▁loud": 25493, + "iche": 25494, + "▁conditioning": 25495, + "Ra": 25496, + "▁时": 25497, + "进球": 25498, + "▁defensive": 25499, + "tsburgh": 25500, + "火灾": 25501, + "▁Movie": 25502, + "▁ather": 25503, + "▁Hz": 25504, + "第一百一十九": 25505, + "▁Zone": 25506, + "established": 25507, + "bital": 25508, + "launch": 25509, + "inburgh": 25510, + "enezuel": 25511, + "样品": 25512, + "再说": 25513, + "法律保护": 25514, + "▁Money": 25515, + "nAbout": 25516, + "的教育": 25517, + "月二十一日": 25518, + "上半年": 25519, + "nCanadian": 25520, + "▁globally": 25521, + "等比": 25522, + "青岛市": 25523, + "▁hung": 25524, + "▁Arkansas": 25525, + "贯彻落实": 25526, + "不下": 25527, + "▁Quebec": 25528, + "tM": 25529, + "区分": 25530, + "▁stomach": 25531, + "▁fruits": 25532, + "▁logged": 25533, + "圆锥": 25534, + "▁Sel": 25535, + "后面的": 25536, + "forced": 25537, + "▁Flash": 25538, + "的通": 25539, + "nFollowing": 25540, + "股市": 25541, + "▁Jenn": 25542, + "道路上": 25543, + "ttry": 25544, + "▁scaling": 25545, + "是大": 25546, + "存在的问题": 25547, + "努力完成劳动任务": 25548, + "community": 25549, + "▁Magic": 25550, + "without": 25551, + "前列": 25552, + "▁Chat": 25553, + "▁coins": 25554, + "春天": 25555, + "▁foo": 25556, + "nem": 25557, + "ени": 25558, + "forge": 25559, + "nAwards": 25560, + "▁merch": 25561, + "明月": 25562, + "必须要": 25563, + "persistence": 25564, + "依法由审判员": 25565, + "路面": 25566, + "▁bucket": 25567, + "▁DEFAULT": 25568, + "▁narrative": 25569, + "发了": 25570, + "希腊": 25571, + "疲劳": 25572, + "观测": 25573, + "买房": 25574, + "师资": 25575, + "▁Verm": 25576, + "ocrine": 25577, + "▁agenda": 25578, + "Analysis": 25579, + "▁ancest": 25580, + "▁yoga": 25581, + "Amount": 25582, + "和服务": 25583, + "floor": 25584, + "事实和": 25585, + "nextern": 25586, + "▁Struct": 25587, + "▁Military": 25588, + "物体": 25589, + "▁wheels": 25590, + "▁helper": 25591, + "名人": 25592, + "▁supporters": 25593, + "erranean": 25594, + "满满": 25595, + "scriber": 25596, + "储存": 25597, + "▁gathering": 25598, + "桌面": 25599, + "COM": 25600, + "father": 25601, + "草原": 25602, + "decor": 25603, + "▁LL": 25604, + "Speed": 25605, + "▁Clear": 25606, + "FD": 25607, + "吸毒": 25608, + "erald": 25609, + "残疾人": 25610, + "▁Numer": 25611, + ">,\\": 25612, + "▁somebody": 25613, + "评选": 25614, + "▁Pick": 25615, + "UA": 25616, + "仅供": 25617, + "ighters": 25618, + "\"\\'": 25619, + "子上": 25620, + "白天": 25621, + "一时": 25622, + "▁Audio": 25623, + "Ga": 25624, + "▁handles": 25625, + "ionic": 25626, + "tuple": 25627, + "缩短": 25628, + "olang": 25629, + "▁receives": 25630, + "以其": 25631, + "福州": 25632, + "▁flood": 25633, + "Resolver": 25634, + "▁Austria": 25635, + "勇敢": 25636, + "tom": 25637, + "▁celebrated": 25638, + "月二十四日": 25639, + "ONG": 25640, + "单价": 25641, + "号刑事裁定": 25642, + "ozilla": 25643, + "▁Mind": 25644, + "▁temple": 25645, + "内在": 25646, + "中毒": 25647, + "▁mutual": 25648, + "▁metals": 25649, + "▁nanoparticles": 25650, + "▁Experience": 25651, + "▁configured": 25652, + "先锋": 25653, + "教研": 25654, + "otypic": 25655, + "▁secrets": 25656, + "就读": 25657, + "exceptions": 25658, + "▁Vent": 25659, + "About": 25660, + "内地": 25661, + "herent": 25662, + "▁coastal": 25663, + "膨胀": 25664, + "offee": 25665, + "encer": 25666, + "toEqual": 25667, + "▁skeletal": 25668, + "户型": 25669, + "▁#{": 25670, + "olia": 25671, + "qa": 25672, + "▁leukemia": 25673, + "▁Pod": 25674, + "▁Bart": 25675, + "tier": 25676, + "▁lean": 25677, + "encil": 25678, + "▁Memory": 25679, + "▁Transform": 25680, + "我对": 25681, + "redux": 25682, + "真空": 25683, + "TL": 25684, + "▁dur": 25685, + "▁Attorney": 25686, + "感的": 25687, + "Flag": 25688, + "▁supplier": 25689, + "十一条": 25690, + "yer": 25691, + ">}": 25692, + "与此": 25693, + "▁customized": 25694, + "▁发行": 25695, + "▁guided": 25696, + "发热": 25697, + "月生": 25698, + "GHz": 25699, + "▁vi": 25700, + "},\\\\": 25701, + "私服": 25702, + "▁succeeded": 25703, + "乐趣": 25704, + "▁Portugal": 25705, + "美国的": 25706, + "▁limiting": 25707, + "导弹": 25708, + "(['": 25709, + "cov": 25710, + "nMark": 25711, + "erculosis": 25712, + "总额": 25713, + "pher": 25714, + "oscopy": 25715, + "vendor": 25716, + "标识": 25717, + "这份": 25718, + "▁pose": 25719, + "左边": 25720, + "氨基": 25721, + "▁trivial": 25722, + "▁Otherwise": 25723, + "▁suspension": 25724, + "ctl": 25725, + "▁literary": 25726, + "nick": 25727, + "我只": 25728, + "▁individually": 25729, + "liver": 25730, + "Sequence": 25731, + "▁Lawrence": 25732, + "aceful": 25733, + "栏目": 25734, + "nPlace": 25735, + "抱着": 25736, + "uario": 25737, + "▁VS": 25738, + "nim": 25739, + "▁obl": 25740, + "东部": 25741, + "十九日": 25742, + "URCE": 25743, + "姆斯": 25744, + "▁genera": 25745, + "nMin": 25746, + "嘉宾": 25747, + "orters": 25748, + "picture": 25749, + "tString": 25750, + "总会": 25751, + "正确的是": 25752, + "▁bullet": 25753, + "chrom": 25754, + "▁meter": 25755, + "▁personalized": 25756, + "综艺": 25757, + "hill": 25758, + "isan": 25759, + "su": 25760, + "潜在": 25761, + "▁`${": 25762, + "护肤": 25763, + "▁beliefs": 25764, + "▁dementia": 25765, + "advant": 25766, + "▁solely": 25767, + "▁surely": 25768, + "她说": 25769, + "Flags": 25770, + "公顷": 25771, + "▁stadium": 25772, + "’,": 25773, + "▁mart": 25774, + "repeat": 25775, + "开奖": 25776, + "▁CE": 25777, + "AUTH": 25778, + "InputStream": 25779, + "Jan": 25780, + "hene": 25781, + "选择的依据": 25782, + "精细": 25783, + "compute": 25784, + "▁practitioners": 25785, + "▁suck": 25786, + "▁lacking": 25787, + "我妈": 25788, + "nStud": 25789, + "raig": 25790, + "WAR": 25791, + "酱油": 25792, + "▁NP": 25793, + "aughters": 25794, + "▁printer": 25795, + "▁consolid": 25796, + "物料": 25797, + "▁wrapped": 25798, + "全民": 25799, + "▁Pun": 25800, + "▁chron": 25801, + "nwhile": 25802, + "约翰": 25803, + "▁locate": 25804, + "etically": 25805, + "的花": 25806, + "Bus": 25807, + "就是在": 25808, + "裁定的执行": 25809, + "rawer": 25810, + "▁Inn": 25811, + "勇气": 25812, + "gon": 25813, + "ayan": 25814, + "henyl": 25815, + "初级": 25816, + "▁qualify": 25817, + "yset": 25818, + "▁Defense": 25819, + "▁incl": 25820, + "ère": 25821, + "ITH": 25822, + "JsonProperty": 25823, + "Permission": 25824, + "five": 25825, + "▁Nord": 25826, + "▁Testing": 25827, + "攻略": 25828, + "▁Nich": 25829, + "exc": 25830, + "▁Bulg": 25831, + "▁Grade": 25832, + "中国农业银行股份有限公司": 25833, + "激活": 25834, + "▁lands": 25835, + "调味": 25836, + "事物": 25837, + "▁worship": 25838, + "▁Migration": 25839, + "创始人": 25840, + "▁ves": 25841, + "utures": 25842, + "▁transcriptional": 25843, + "▁VA": 25844, + "▁enorm": 25845, + "▁Mission": 25846, + "长得": 25847, + "eton": 25848, + "差的": 25849, + "▁batteries": 25850, + "libs": 25851, + "研究了": 25852, + "▁TNF": 25853, + "▁Changes": 25854, + "▁grateful": 25855, + "问题和选项": 25856, + "clone": 25857, + "她是": 25858, + "出国": 25859, + "公正": 25860, + "▁enroll": 25861, + "▁magazines": 25862, + "联络": 25863, + "男友": 25864, + "memset": 25865, + "▁Danish": 25866, + "▁tan": 25867, + "DOCTYPE": 25868, + "▁delivers": 25869, + "▁Imm": 25870, + "nClub": 25871, + "能认罪悔罪": 25872, + "之地": 25873, + "adic": 25874, + "全年": 25875, + "在其": 25876, + "公积金": 25877, + "▁judges": 25878, + "▁marijuana": 25879, + "▁colleges": 25880, + "▁Linked": 25881, + "▁containers": 25882, + "▁noteb": 25883, + "inae": 25884, + "▁McG": 25885, + "ivals": 25886, + "与其他": 25887, + "Descriptor": 25888, + "不怕": 25889, + "还清": 25890, + "▁retinal": 25891, + "情的": 25892, + "数字化": 25893, + "▁assessments": 25894, + "▁Mos": 25895, + "encia": 25896, + "谨慎": 25897, + "Autow": 25898, + "▁Month": 25899, + "▁lasting": 25900, + "▁ware": 25901, + "▁imped": 25902, + "▁orche": 25903, + "就很": 25904, + "dose": 25905, + "低温": 25906, + "南县": 25907, + "▁spoken": 25908, + "政务": 25909, + "Lower": 25910, + "▁authentic": 25911, + "etooth": 25912, + "▁Planning": 25913, + "▁Kath": 25914, + "▁annoy": 25915, + "ruct": 25916, + "▁Configuration": 25917, + "uplicate": 25918, + "▁contributors": 25919, + "材料的": 25920, + "的银行存款": 25921, + "general": 25922, + "五日内": 25923, + "积极分子": 25924, + "▁Cole": 25925, + "nMedal": 25926, + "▁Networks": 25927, + "▁execut": 25928, + "违约金": 25929, + "详细的": 25930, + "▁seasonal": 25931, + "versely": 25932, + "就好了": 25933, + "▁wings": 25934, + "▁Roll": 25935, + "▁cytokines": 25936, + "roles": 25937, + "Pod": 25938, + "iquid": 25939, + "▁Twenty": 25940, + "▁Label": 25941, + "vd": 25942, + "cop": 25943, + "▁straightforward": 25944, + "户口": 25945, + "剧本": 25946, + "完美的": 25947, + "▁Gon": 25948, + "信念": 25949, + "icht": 25950, + "镜像": 25951, + "▁Besides": 25952, + "не": 25953, + "▁performs": 25954, + "就不会": 25955, + "textbf": 25956, + "▁Champions": 25957, + "酌情": 25958, + "▁AF": 25959, + "▁tort": 25960, + "versions": 25961, + "▁plugins": 25962, + "ferred": 25963, + "▁genre": 25964, + "身心": 25965, + "▁appearing": 25966, + "RY": 25967, + "▁toys": 25968, + "▁([": 25969, + "oplasmic": 25970, + "$_": 25971, + "▁Cin": 25972, + "路人": 25973, + "电网": 25974, + "▁typeof": 25975, + "▁dad": 25976, + "▁substantially": 25977, + "交互": 25978, + "▁Pages": 25979, + "江县": 25980, + "▁destruction": 25981, + "ssl": 25982, + "白酒": 25983, + "jax": 25984, + "repos": 25985, + "▁工作": 25986, + "欲望": 25987, + "影响力": 25988, + "中华民族": 25989, + "情报": 25990, + "为其": 25991, + "被执行人王": 25992, + "servers": 25993, + "▁Posts": 25994, + "的一款": 25995, + "世界杯": 25996, + "▁Functions": 25997, + "之上": 25998, + "▁threads": 25999, + "▁enhancing": 26000, + "City": 26001, + "在你": 26002, + "罢了": 26003, + "登记表": 26004, + "▁theater": 26005, + "▁pointing": 26006, + "手的": 26007, + "安区": 26008, + "第二百一": 26009, + "Shell": 26010, + "一同": 26011, + "可以说是": 26012, + "arin": 26013, + "上市公司": 26014, + "nWorld": 26015, + "斯拉": 26016, + "安全性": 26017, + "▁implicit": 26018, + "▁jail": 26019, + "地处": 26020, + "leen": 26021, + "一眼": 26022, + "加密": 26023, + "▁lith": 26024, + "Did": 26025, + "ALTH": 26026, + "平稳": 26027, + "▁Nam": 26028, + "▁encouraging": 26029, + "▁lightweight": 26030, + "Oct": 26031, + "等多种": 26032, + "ammad": 26033, + "▁organizational": 26034, + "nOfficial": 26035, + "nRep": 26036, + "▁alternate": 26037, + "加重": 26038, + "rors": 26039, + "nSources": 26040, + "▁Unc": 26041, + "Sn": 26042, + "抖音": 26043, + "▁Fab": 26044, + "gel": 26045, + "Asset": 26046, + "沙发": 26047, + "▁[],": 26048, + "▁Wolf": 26049, + "▁infusion": 26050, + "▁habits": 26051, + "向本院提出诉讼请求": 26052, + "▁Font": 26053, + "购房": 26054, + "▁dramatically": 26055, + "▁undergraduate": 26056, + "历史上": 26057, + "assador": 26058, + "开展了": 26059, + "iquit": 26060, + "极大": 26061, + "学期": 26062, + "业内": 26063, + "concat": 26064, + "▁prest": 26065, + "画家": 26066, + "任职": 26067, + "Iterator": 26068, + "行程": 26069, + "Pair": 26070, + "Username": 26071, + "即可得出": 26072, + "▁quit": 26073, + "法学": 26074, + "▁champions": 26075, + "ousing": 26076, + "后者": 26077, + "转向": 26078, + "▁Gre": 26079, + "implies": 26080, + "的活动": 26081, + ";}\\": 26082, + "Customer": 26083, + "stringify": 26084, + "▁investigator": 26085, + "▁migrations": 26086, + "▁moder": 26087, + "▁poster": 26088, + "▁算法": 26089, + "▁BL": 26090, + "▁sac": 26091, + "▁Hero": 26092, + "▁hepatitis": 26093, + "ducer": 26094, + "Bal": 26095, + "微软": 26096, + "Static": 26097, + "▁aortic": 26098, + "▁induces": 26099, + "▁Original": 26100, + "▁intraven": 26101, + "▁rabbit": 26102, + "▁Sens": 26103, + "基准": 26104, + "▁reper": 26105, + "▁downstream": 26106, + "内角": 26107, + "的利息": 26108, + "▁friction": 26109, + "的日子": 26110, + "洛阳": 26111, + "水稻": 26112, + "为中心": 26113, + "西湖": 26114, + "在职": 26115, + "神话": 26116, + "意思是": 26117, + "▁Delta": 26118, + "ococc": 26119, + "Switch": 26120, + "nFinally": 26121, + "ogly": 26122, + "')),\\": 26123, + "▁Technologies": 26124, + "大桥": 26125, + "▁dc": 26126, + "▁baking": 26127, + "芝麻": 26128, + "ninterface": 26129, + "▁intelligent": 26130, + "KS": 26131, + "▁corresponds": 26132, + "both": 26133, + "▁immigration": 26134, + "upiter": 26135, + "YY": 26136, + "sender": 26137, + "▁Dance": 26138, + "海关": 26139, + "borough": 26140, + "长城": 26141, + "▁(;": 26142, + "――": 26143, + "▁Gordon": 26144, + "▁curl": 26145, + "Autowired": 26146, + "▁McK": 26147, + "Capt": 26148, + "名义": 26149, + "visit": 26150, + "遗址": 26151, + "太阳能": 26152, + "一般的": 26153, + "庆祝": 26154, + "▁topological": 26155, + "▁fatigue": 26156, + "器械": 26157, + "ishment": 26158, + "▁broader": 26159, + "nDespite": 26160, + "▁Connection": 26161, + "payment": 26162, + "▁painter": 26163, + "一颗": 26164, + "再用": 26165, + "▁attractions": 26166, + "参演": 26167, + "列入": 26168, + "▁pie": 26169, + "entries": 26170, + "Timer": 26171, + "▁Nothing": 26172, + "nIN": 26173, + "▁chairs": 26174, + "▁unlock": 26175, + "▁sail": 26176, + "▁charging": 26177, + "pendicular": 26178, + "▁COPYRIGHT": 26179, + "Tags": 26180, + "著名的": 26181, + "▁inhabit": 26182, + "nen": 26183, + "▁Mess": 26184, + "ascul": 26185, + "nIndian": 26186, + "▁Hum": 26187, + "要把": 26188, + "▁cited": 26189, + "万平方米": 26190, + "celona": 26191, + "▁euro": 26192, + "▁piv": 26193, + "补助": 26194, + "▁locom": 26195, + "tprotected": 26196, + "切除": 26197, + "阵容": 26198, + "毕业院校": 26199, + "▁Grid": 26200, + "向本院申请恢复执行": 26201, + "阳台": 26202, + "▁walks": 26203, + "不是很": 26204, + "▁subtle": 26205, + "nAtt": 26206, + "▁epile": 26207, + "▁subjected": 26208, + "Subject": 26209, + "atherine": 26210, + "自首": 26211, + "▁sciences": 26212, + "▁ال": 26213, + "▁第三": 26214, + "折抵刑期": 26215, + "▁duties": 26216, + "▁Conclusion": 26217, + "旗舰": 26218, + "错过": 26219, + "顶级": 26220, + "iates": 26221, + "▁Urban": 26222, + "する": 26223, + "场合": 26224, + "▁newer": 26225, + "没收": 26226, + "选购": 26227, + "poser": 26228, + "▁Finn": 26229, + "▁≥": 26230, + "▁$_": 26231, + "▁fav": 26232, + "审定": 26233, + "矫正": 26234, + "`](": 26235, + "tele": 26236, + "▁hitting": 26237, + "这边": 26238, + "▁coloring": 26239, + "▁disag": 26240, + "Chart": 26241, + "▁multic": 26242, + "国家和": 26243, + "▁induct": 26244, + "圆满": 26245, + "建筑工程": 26246, + "▁Chel": 26247, + "的上": 26248, + "▁recommendation": 26249, + "▁scheduling": 26250, + "▁complaint": 26251, + "▁Bab": 26252, + "\\'\\'\\'": 26253, + "▁fibrosis": 26254, + "▁♪\\": 26255, + "PRESS": 26256, + "▁troops": 26257, + "入学": 26258, + "初心": 26259, + "unicode": 26260, + "失望": 26261, + "▁earnings": 26262, + "emen": 26263, + "▁Visit": 26264, + "▁centuries": 26265, + "▁exhibits": 26266, + "修正": 26267, + "▁undertaken": 26268, + "小儿": 26269, + "问题是": 26270, + "invas": 26271, + "香味": 26272, + "(\\'\\\\": 26273, + "触摸": 26274, + "guard": 26275, + "女友": 26276, + "▁integrating": 26277, + "变动": 26278, + "fits": 26279, + "▁uncover": 26280, + "米的": 26281, + "游戏中": 26282, + "▁constituency": 26283, + "▁mast": 26284, + "▁Hug": 26285, + "▁tradem": 26286, + "Illuminate": 26287, + "Seg": 26288, + "▁extensively": 26289, + "▁arthritis": 26290, + "▁Manag": 26291, + "多名": 26292, + "leading": 26293, + "四季": 26294, + "Help": 26295, + "▁circles": 26296, + "months": 26297, + "▁Od": 26298, + "▁SN": 26299, + "▁manuscript": 26300, + "应力": 26301, + "nFilm": 26302, + "撤诉处理": 26303, + "暂停": 26304, + "负荷": 26305, + "送到": 26306, + "}^\\\\": 26307, + "必备": 26308, + "夫妻关系": 26309, + "▁二": 26310, + "▁Sie": 26311, + "来源于": 26312, + "驾驶机动车": 26313, + "Phys": 26314, + "oclonal": 26315, + "南路": 26316, + "食堂": 26317, + "endment": 26318, + "乐观": 26319, + "极为": 26320, + "▁tailored": 26321, + "同等": 26322, + "▁Tro": 26323, + "▁allocation": 26324, + "yster": 26325, + "乙醇": 26326, + "▁agriculture": 26327, + "▁conditional": 26328, + "Review": 26329, + "▁suited": 26330, + "nTop": 26331, + "urring": 26332, + "▁inaug": 26333, + "可谓": 26334, + "codes": 26335, + "ugged": 26336, + "upid": 26337, + "先行羁押": 26338, + "分管": 26339, + "boost": 26340, + "icits": 26341, + "unches": 26342, + "▁华": 26343, + "清新": 26344, + "▁Lore": 26345, + "▁speeds": 26346, + "▁Phone": 26347, + "▁thoroughly": 26348, + "uffix": 26349, + "安全的": 26350, + "▁broker": 26351, + "人是": 26352, + "▁depict": 26353, + "natal": 26354, + "的数量": 26355, + "▁Convert": 26356, + "运转": 26357, + "我市": 26358, + ";\"": 26359, + "所确定的义务": 26360, + "scriptions": 26361, + "复议期间不停止裁定的执行": 26362, + "Kind": 26363, + "指派检察员": 26364, + "travis": 26365, + "▁rectangle": 26366, + "▁liability": 26367, + "WM": 26368, + "ACKGROUND": 26369, + "▁IMPLIED": 26370, + "灯光": 26371, + "▁Solar": 26372, + "发生在": 26373, + "▁wildlife": 26374, + "Cart": 26375, + "operations": 26376, + "oglobin": 26377, + "卧室": 26378, + "▁electronics": 26379, + "情侣": 26380, + "robot": 26381, + "▁arrow": 26382, + "machine": 26383, + "艰难": 26384, + "▁bladder": 26385, + "阐述了": 26386, + "▁crossing": 26387, + "▁Dal": 26388, + "▁Syria": 26389, + "avatar": 26390, + "ducible": 26391, + "▁gaps": 26392, + "▁Cabin": 26393, + "▁Captain": 26394, + "▁locked": 26395, + "博览": 26396, + "三是": 26397, + "奖金": 26398, + "▁masses": 26399, + "▁concurrent": 26400, + "价值的": 26401, + "日语": 26402, + "首歌": 26403, + "▁zones": 26404, + "▁neurological": 26405, + "imon": 26406, + "▁animated": 26407, + "▁Api": 26408, + "▁unders": 26409, + "▁od": 26410, + "▁rocks": 26411, + "▁babies": 26412, + "{\\\\,\\\\": 26413, + "近似": 26414, + "outine": 26415, + "▁advise": 26416, + "判决执行之日起计算": 26417, + "▁calculating": 26418, + "▁useState": 26419, + "enta": 26420, + "priate": 26421, + "patriate": 26422, + "省委": 26423, + "geometry": 26424, + "三级": 26425, + "▁digest": 26426, + "erial": 26427, + "Statement": 26428, + "联邦": 26429, + "风云": 26430, + ">$": 26431, + "一分": 26432, + "antry": 26433, + "▁burning": 26434, + "平板": 26435, + "ativity": 26436, + "西路": 26437, + "▁Alaska": 26438, + "出自": 26439, + "aho": 26440, + "orted": 26441, + "▁worn": 26442, + "INST": 26443, + "▁ruling": 26444, + "Raw": 26445, + "yi": 26446, + "永久": 26447, + "▁spell": 26448, + "▁warnings": 26449, + "TRACT": 26450, + "今年的": 26451, + "反弹": 26452, + "情人": 26453, + "参加诉讼": 26454, + "Donald": 26455, + "潍坊": 26456, + "住重庆市": 26457, + "▁complaints": 26458, + "▁reconstruct": 26459, + "这不是": 26460, + "rying": 26461, + "▁Fine": 26462, + "大学的": 26463, + "▁modular": 26464, + "frak": 26465, + "dB": 26466, + "▁Activity": 26467, + "刚开始": 26468, + "生前": 26469, + "imated": 26470, + "▁Chamber": 26471, + "iko": 26472, + "ificates": 26473, + "一支": 26474, + "kov": 26475, + "orac": 26476, + "▁genuine": 26477, + "落后": 26478, + "ching": 26479, + "抢劫": 26480, + "▁参考文献": 26481, + "不妨": 26482, + "▁une": 26483, + "early": 26484, + "▁Anna": 26485, + "Identity": 26486, + "MRI": 26487, + "Counter": 26488, + "轻易": 26489, + "▁Late": 26490, + "▁Neg": 26491, + "▁Dean": 26492, + "单项": 26493, + "nSing": 26494, + "▁Animal": 26495, + "▁evil": 26496, + "▁grades": 26497, + "quick": 26498, + "▁Gulf": 26499, + "在法定": 26500, + "▁Upper": 26501, + "nApp": 26502, + "incre": 26503, + "▁weakness": 26504, + "进来": 26505, + "找到了": 26506, + "▁cricketers": 26507, + "即自": 26508, + "▁Prior": 26509, + "▁cavity": 26510, + "retty": 26511, + "变为": 26512, + "▁cycling": 26513, + "RR": 26514, + "▁apple": 26515, + "素养": 26516, + "硬化": 26517, + "Edge": 26518, + "▁Beat": 26519, + "供应链": 26520, + "风吹": 26521, + "为主题": 26522, + "▁carriers": 26523, + "▁deposition": 26524, + "野生": 26525, + "▁drops": 26526, + "▁DM": 26527, + "▁honey": 26528, + "▁expense": 26529, + "focus": 26530, + "eda": 26531, + "Pred": 26532, + "交通事故责任": 26533, + "▁Reading": 26534, + "▁为": 26535, + "webkit": 26536, + "▁forests": 26537, + "▁stopping": 26538, + ")`": 26539, + "gulp": 26540, + "我看": 26541, + "教堂": 26542, + "notations": 26543, + "首席": 26544, + "▁Mom": 26545, + "▁correlations": 26546, + "kn": 26547, + "复兴": 26548, + "gem": 26549, + "▁prevents": 26550, + "▁sponsored": 26551, + "lotte": 26552, + "▁Puerto": 26553, + "existing": 26554, + "nextInt": 26555, + "▁hypoth": 26556, + "相交": 26557, + "forall": 26558, + "性强": 26559, + "}×": 26560, + "urd": 26561, + "健康的": 26562, + "▁Ring": 26563, + "中路": 26564, + "▁passive": 26565, + "Pers": 26566, + "OO": 26567, + "▁Dictionary": 26568, + "()))\\": 26569, + "orect": 26570, + "在开庭审理过程中亦无异议": 26571, + "始建于": 26572, + "aq": 26573, + "cards": 26574, + "车主": 26575, + "rowing": 26576, + "LIST": 26577, + "▁extending": 26578, + "ndo": 26579, + "▁extracts": 26580, + "KA": 26581, + "▁responsive": 26582, + ":\\\\(": 26583, + "oka": 26584, + "产品质量": 26585, + "achel": 26586, + "▁explaining": 26587, + "INTER": 26588, + "▁covari": 26589, + "Vir": 26590, + "疾病的": 26591, + "scr": 26592, + "▁journalists": 26593, + "所以在": 26594, + "▁Delete": 26595, + "▁psychiatric": 26596, + "”(": 26597, + "gow": 26598, + "▁地址": 26599, + "astrop": 26600, + "Private": 26601, + "▁Exp": 26602, + "fixed": 26603, + "▁locks": 26604, + "▁fever": 26605, + "▁conject": 26606, + "建筑物": 26607, + "切割": 26608, + "rene": 26609, + "正数": 26610, + "边形的": 26611, + "的义务": 26612, + "▁Judge": 26613, + "copyright": 26614, + "placed": 26615, + "几点": 26616, + "报价": 26617, + "isure": 26618, + "▁Pad": 26619, + "树脂": 26620, + "▁androidx": 26621, + "▁DES": 26622, + "简体": 26623, + "胡萝卜": 26624, + "起来的": 26625, + "Look": 26626, + "▁Years": 26627, + "nABSTRACT": 26628, + "methods": 26629, + "▁donors": 26630, + "▁angi": 26631, + "门诊": 26632, + "iolet": 26633, + "nExpatriate": 26634, + "Coord": 26635, + "归来": 26636, + "▁Legislative": 26637, + "▁shr": 26638, + "ieval": 26639, + "▁shifts": 26640, + "▁Pradesh": 26641, + "▁Lock": 26642, + "做事": 26643, + "logy": 26644, + "▁prescription": 26645, + "dog": 26646, + "▁cd": 26647, + "***\\": 26648, + "▁Bou": 26649, + "Convert": 26650, + "更改": 26651, + "直至": 26652, + "▁Had": 26653, + "新一": 26654, + "▁Figure": 26655, + "床上": 26656, + "squ": 26657, + "itarian": 26658, + "当当": 26659, + "贷款利率": 26660, + "digit": 26661, + "▁tangent": 26662, + "▁Gets": 26663, + "势力": 26664, + "GFR": 26665, + "流畅": 26666, + "union": 26667, + "▁simultaneous": 26668, + "uplex": 26669, + "ikh": 26670, + "flutter": 26671, + "据说": 26672, + "listed": 26673, + "去掉": 26674, + "nBuildings": 26675, + "nMult": 26676, + "▁architectural": 26677, + "rag": 26678, + "蓝牙": 26679, + "▁bay": 26680, + "Exper": 26681, + "筛选": 26682, + "▁absent": 26683, + "▁Studios": 26684, + "▁coronavirus": 26685, + "说实话": 26686, + "▁municipal": 26687, + "综上所述": 26688, + "▁Gran": 26689, + "▁tent": 26690, + "▁Indeed": 26691, + "▁unnecessary": 26692, + "先行羁押的": 26693, + "两大": 26694, + "液晶": 26695, + "▁illustrated": 26696, + "▁Chart": 26697, + "▁Sony": 26698, + "本院将": 26699, + "人民群众": 26700, + "imals": 26701, + "nix": 26702, + "Audio": 26703, + "▁Window": 26704, + "微生物": 26705, + "variables": 26706, + "NH": 26707, + "irmingham": 26708, + "调试": 26709, + "GH": 26710, + "字典": 26711, + "那天": 26712, + "▁Fly": 26713, + "rig": 26714, + "▁Cant": 26715, + "▁thym": 26716, + "▁synaptic": 26717, + "三天": 26718, + "情怀": 26719, + "▁intro": 26720, + "Unknown": 26721, + "应在": 26722, + "温泉": 26723, + "支付利息": 26724, + "单位的": 26725, + "secure": 26726, + "上面的": 26727, + "号之一": 26728, + "我还是": 26729, + ")/((": 26730, + "▁guides": 26731, + "▁scholars": 26732, + "▁hi": 26733, + "错误的": 26734, + "▁Matthew": 26735, + "▁searched": 26736, + "nAustralian": 26737, + "▁Bangladesh": 26738, + "号案件": 26739, + "iam": 26740, + "iza": 26741, + "▁Excel": 26742, + "▁deleg": 26743, + "▁legisl": 26744, + "nall": 26745, + "▁苏": 26746, + "对了": 26747, + "▁compatibility": 26748, + "最具": 26749, + "查获": 26750, + "▁Device": 26751, + "▁Typ": 26752, + "假日": 26753, + "tend": 26754, + "caption": 26755, + "现原告": 26756, + "▁%>\\": 26757, + "▁Caribbean": 26758, + "▁Cel": 26759, + "制备": 26760, + "▁其他": 26761, + "十条": 26762, + "▁Cab": 26763, + "ierra": 26764, + "nSecond": 26765, + "processor": 26766, + "▁injected": 26767, + "▁Medic": 26768, + "▁financing": 26769, + "▁arithmetic": 26770, + "Pa": 26771, + "▁triggered": 26772, + "▁multim": 26773, + "羁押一日": 26774, + "▁Used": 26775, + "agine": 26776, + "uated": 26777, + "分开": 26778, + "▁Cre": 26779, + "▁programmes": 26780, + "热烈": 26781, + "▁offensive": 26782, + "贸易有限公司": 26783, + "して": 26784, + "产业发展": 26785, + "conduct": 26786, + "▁partly": 26787, + "当场": 26788, + "的存在": 26789, + "头部": 26790, + "股价": 26791, + "gre": 26792, + "最大值": 26793, + "等比数列": 26794, + "没办法": 26795, + "▁claiming": 26796, + "▁toy": 26797, + "的力量": 26798, + "资助": 26799, + "看到的": 26800, + "inely": 26801, + "▁careers": 26802, + "上级": 26803, + "▁retrieve": 26804, + "研究员": 26805, + "▁unre": 26806, + "实业有限公司": 26807, + "▁Beijing": 26808, + "中所": 26809, + "驳回上诉": 26810, + "parency": 26811, + "拆除": 26812, + "术语": 26813, + "danger": 26814, + "preview": 26815, + "ICAL": 26816, + "却被": 26817, + "nBorn": 26818, + "▁motivated": 26819, + "▁Edinburgh": 26820, + "分期": 26821, + "▁\"{{": 26822, + "新城": 26823, + "激动": 26824, + "▁viable": 26825, + "Mo": 26826, + "▁calm": 26827, + "最多的": 26828, + "▁folk": 26829, + "▁verte": 26830, + "典型的": 26831, + "arium": 26832, + "▁hind": 26833, + "thead": 26834, + "▁Drug": 26835, + "▁occupied": 26836, + "门户": 26837, + "第一百一": 26838, + "这张": 26839, + "▁MI": 26840, + "states": 26841, + ")));\\": 26842, + "▁pathological": 26843, + "Self": 26844, + "误差": 26845, + "▁cheaper": 26846, + "▁Valent": 26847, + "除此": 26848, + "quin": 26849, + "光学": 26850, + "▁rhe": 26851, + "再审申请人": 26852, + "▁Switch": 26853, + "减去有期徒刑一年": 26854, + "htm": 26855, + "▁pharmaceutical": 26856, + "要看": 26857, + "▁ACT": 26858, + "▁fantasy": 26859, + "的面积": 26860, + "正方形": 26861, + "aras": 26862, + "Article": 26863, + "▁moral": 26864, + "training": 26865, + "▁evolved": 26866, + "动手": 26867, + "无可": 26868, + "模范": 26869, + "折抵刑期一日": 26870, + "礼品": 26871, + "▁Left": 26872, + "rays": 26873, + "rena": 26874, + "经历了": 26875, + "lining": 26876, + "▁Fern": 26877, + "▁Mountains": 26878, + "▁quest": 26879, + "calc": 26880, + "▁西": 26881, + "红旗": 26882, + "▁subsets": 26883, + "▁Hampshire": 26884, + "▁cement": 26885, + "▁makers": 26886, + "▁vein": 26887, + "靠近": 26888, + "▁curv": 26889, + "▁conserved": 26890, + "精密": 26891, + "office": 26892, + "nSource": 26893, + "▁Much": 26894, + "leans": 26895, + "▁configurations": 26896, + "bach": 26897, + "frastructure": 26898, + "于本判决生效之日起": 26899, + "▁analytics": 26900, + "tT": 26901, + "各界": 26902, + "TON": 26903, + "notification": 26904, + "andal": 26905, + "渴望": 26906, + "你有": 26907, + "▁actresses": 26908, + "物种": 26909, + "行政区": 26910, + "▁tiles": 26911, + "红包": 26912, + "West": 26913, + "▁Excell": 26914, + "▁Pow": 26915, + "▁tourist": 26916, + "omi": 26917, + "▁VM": 26918, + "▁Dest": 26919, + "▁outfit": 26920, + "▁stylish": 26921, + "▁Springs": 26922, + "ANS": 26923, + "客户的": 26924, + "WF": 26925, + "▁pizza": 26926, + "▁confidential": 26927, + "愿望": 26928, + "cht": 26929, + "显存": 26930, + "refresh": 26931, + "wifi": 26932, + "ften": 26933, + "▁figured": 26934, + "{{\\\\": 26935, + "▁neighbors": 26936, + "]\"": 26937, + "WIN": 26938, + "accur": 26939, + "▁Berg": 26940, + "管理工作": 26941, + "avi": 26942, + "scar": 26943, + "▁MSC": 26944, + "▁advised": 26945, + "▁donations": 26946, + "▁(`": 26947, + "大规模": 26948, + "也是一": 26949, + "quit": 26950, + "~/": 26951, + "▁sheep": 26952, + "▁Kings": 26953, + "下次": 26954, + "]/": 26955, + "大人": 26956, + "抵抗": 26957, + "mands": 26958, + "oil": 26959, + "rche": 26960, + "志愿服务": 26961, + "▁Greater": 26962, + "istically": 26963, + "结构的": 26964, + "终结本院": 26965, + "▁EVENT": 26966, + "Headers": 26967, + "版的": 26968, + "nEnd": 26969, + "indent": 26970, + "avage": 26971, + "▁weighted": 26972, + "▁compliment": 26973, + "考点": 26974, + "fony": 26975, + "▁Bec": 26976, + "▁Brooklyn": 26977, + "你怎么": 26978, + "▁accessed": 26979, + "在卷": 26980, + "nabla": 26981, + "▁spine": 26982, + "▁subtract": 26983, + "开始了": 26984, + "Software": 26985, + "在互联网公布": 26986, + "PROJECT": 26987, + "▁worried": 26988, + "吸附": 26989, + "第二百零六条": 26990, + "kappa": 26991, + "unate": 26992, + "一座": 26993, + "天然气": 26994, + "doors": 26995, + "▁staining": 26996, + "还将": 26997, + "▁passage": 26998, + "ellers": 26999, + "隐私": 27000, + "▁Vit": 27001, + "民二初字第": 27002, + "claimer": 27003, + "我去": 27004, + "ALSE": 27005, + "已经成为": 27006, + "▁collisions": 27007, + "及相关": 27008, + "Station": 27009, + "ér": 27010, + "全方位": 27011, + "Limit": 27012, + "ulence": 27013, + "▁ports": 27014, + "▁demonstration": 27015, + "▁cursor": 27016, + "▁Condition": 27017, + "毕业后": 27018, + "经济损失": 27019, + "十足": 27020, + "gets": 27021, + "▁Mall": 27022, + "如果不": 27023, + "insp": 27024, + "▁php": 27025, + "制冷": 27026, + "口市": 27027, + "▁Days": 27028, + "善于": 27029, + "▁antibiotics": 27030, + "▁consulting": 27031, + "▁Archive": 27032, + "及利息": 27033, + "”)": 27034, + "就把": 27035, + "刑期从": 27036, + "▁fuzzy": 27037, + "▁GB": 27038, + "最新的": 27039, + "▁flip": 27040, + "主力": 27041, + "等腰": 27042, + "▁stimulus": 27043, + "一句话": 27044, + "▁comprised": 27045, + "infected": 27046, + "有的人": 27047, + "▁marginal": 27048, + "看得": 27049, + "▁商品": 27050, + "▁centres": 27051, + "nCONCLUSION": 27052, + "▁critically": 27053, + "▁similarly": 27054, + "▁Enterprise": 27055, + "分居": 27056, + "参照": 27057, + "▁chips": 27058, + "会导致": 27059, + "▁Drop": 27060, + "妊娠": 27061, + "maker": 27062, + "breaking": 27063, + "刚好": 27064, + "▁escap": 27065, + "▁patent": 27066, + "化合物": 27067, + "▁argued": 27068, + "▁centered": 27069, + "startswith": 27070, + "说什么": 27071, + "ducational": 27072, + "射击": 27073, + "nFC": 27074, + "iterator": 27075, + "▁ink": 27076, + "assium": 27077, + "废弃": 27078, + "▁entropy": 27079, + "▁Trad": 27080, + "严谨": 27081, + "的比": 27082, + "联合会": 27083, + "▁considers": 27084, + "▁intrinsic": 27085, + "kar": 27086, + "▁satisfying": 27087, + "fff": 27088, + "▁complementary": 27089, + "Quant": 27090, + "HB": 27091, + "好奇": 27092, + "反射": 27093, + "骨干": 27094, + "between": 27095, + "所有人": 27096, + "▁Kaz": 27097, + "可以使用": 27098, + "▁Everything": 27099, + "三维": 27100, + "▁做法": 27101, + "те": 27102, + "▁Madrid": 27103, + "受益": 27104, + "▁hunting": 27105, + "不宜在互联网公布": 27106, + "▁ethical": 27107, + "政法": 27108, + "nSp": 27109, + "▁Esc": 27110, + "▁Slo": 27111, + "之一的": 27112, + "▁Gary": 27113, + "▁analytic": 27114, + "gency": 27115, + "▁cust": 27116, + "▁resp": 27117, + "在服刑期间确有悔改表现": 27118, + "**:": 27119, + "大鼠": 27120, + "nCopyright": 27121, + "fluid": 27122, + "▁Effect": 27123, + "entities": 27124, + "Gl": 27125, + "▁bg": 27126, + "▁NT": 27127, + "nOriginally": 27128, + "时时": 27129, + "▁Cycl": 27130, + "立场": 27131, + "▁für": 27132, + "淋浴": 27133, + "sensitive": 27134, + "▁discussing": 27135, + "acs": 27136, + "MAKE": 27137, + "▁Deg": 27138, + "▁Occ": 27139, + "Circ": 27140, + "番茄": 27141, + "签名": 27142, + "▁Buck": 27143, + "▁Wait": 27144, + "nRailway": 27145, + "Cu": 27146, + "是用": 27147, + "Weight": 27148, + "▁thro": 27149, + "▁assisted": 27150, + "到大": 27151, + "口服": 27152, + "区块链": 27153, + "说说": 27154, + "▁ker": 27155, + "经传票传唤": 27156, + "OPT": 27157, + "产业链": 27158, + "▁failures": 27159, + "高手": 27160, + "▁Meeting": 27161, + "tha": 27162, + "▁毕业院校": 27163, + "有一定": 27164, + "Best": 27165, + "iour": 27166, + "▁grat": 27167, + "特种": 27168, + "mapping": 27169, + "▁governed": 27170, + "▁travelling": 27171, + "▁stakeholders": 27172, + "或查封": 27173, + "▁beef": 27174, + "▁cure": 27175, + "utenant": 27176, + "▁Corps": 27177, + "▁instantly": 27178, + "▁hippocamp": 27179, + "极端": 27180, + "▁rivers": 27181, + "arms": 27182, + "跑步": 27183, + "总监": 27184, + "GG": 27185, + "申请人的": 27186, + "▁interpol": 27187, + "第一百四十五条第一款的规定": 27188, + "heading": 27189, + "自学": 27190, + "脾气": 27191, + "▁BP": 27192, + "▁ties": 27193, + "质保": 27194, + "riel": 27195, + "rex": 27196, + "▁compass": 27197, + "▁Circle": 27198, + "▁gardens": 27199, + "▁ladies": 27200, + "斯科": 27201, + "nos": 27202, + "▁adren": 27203, + "自来": 27204, + "唯一的": 27205, + "developer": 27206, + "rame": 27207, + "▁Kay": 27208, + "▁proposals": 27209, + "普通人": 27210, + "根据您的": 27211, + "第七十九条": 27212, + "有力": 27213, + "▁Bruce": 27214, + "Components": 27215, + "防腐": 27216, + "▁isot": 27217, + "▁profound": 27218, + "染色": 27219, + "此类": 27220, + "职权": 27221, + "▁Kir": 27222, + "▁HERE": 27223, + "东莞市": 27224, + "▁founding": 27225, + "▁deadline": 27226, + "的各种": 27227, + "▁backed": 27228, + "▁stimulated": 27229, + "Setting": 27230, + "hp": 27231, + "调料": 27232, + "bums": 27233, + "裁定书送达之日起十日内": 27234, + "▁hormones": 27235, + "▁sustainability": 27236, + "userId": 27237, + "extr": 27238, + "▁Thompson": 27239, + "帮你": 27240, + "apon": 27241, + "▁reservoir": 27242, + "resolved": 27243, + "▁holder": 27244, + "▁Colon": 27245, + "dumps": 27246, + "很重要": 27247, + "这道题": 27248, + "lett": 27249, + "▁Decor": 27250, + "一身": 27251, + "▁▁▁▁▁▁▁▁▁▁▁▁▁": 27252, + "诱导": 27253, + "▁nov": 27254, + "▁Perfect": 27255, + "iah": 27256, + "ISH": 27257, + "特殊的": 27258, + "▁twelve": 27259, + "㈰㈰": 27260, + "果然": 27261, + "amping": 27262, + "resses": 27263, + "▁purchases": 27264, + "mma": 27265, + "给定的": 27266, + "拯救": 27267, + "nWho": 27268, + "族自治县": 27269, + "correct": 27270, + "Bind": 27271, + "organization": 27272, + "CSS": 27273, + "nAuthor": 27274, + "号的": 27275, + "▁schizophren": 27276, + "演绎": 27277, + "▁confusing": 27278, + "locks": 27279, + "▁Friends": 27280, + "▁stochastic": 27281, + "起码": 27282, + "osomes": 27283, + "}&": 27284, + "commerce": 27285, + ":“": 27286, + "支队": 27287, + "nReturn": 27288, + "▁nutritional": 27289, + "春秋": 27290, + "▁Bug": 27291, + "携带宠物": 27292, + "手中": 27293, + "▁opts": 27294, + "hattan": 27295, + "器件": 27296, + "OW": 27297, + "orp": 27298, + "▁paired": 27299, + "站点": 27300, + "被执行人李": 27301, + "kers": 27302, + "ewise": 27303, + "▁Published": 27304, + "▁anticipated": 27305, + "客车": 27306, + "主持人": 27307, + "blocks": 27308, + "▁recruited": 27309, + "▁Ubuntu": 27310, + "website": 27311, + "sectional": 27312, + "intestinal": 27313, + "▁breathing": 27314, + "▁infil": 27315, + "▁investing": 27316, + "▁GPS": 27317, + "▁Assessment": 27318, + "▁unfortunately": 27319, + "都需要": 27320, + "阻止": 27321, + "|||": 27322, + "ucer": 27323, + "即可求出": 27324, + "▁rhythm": 27325, + "准则": 27326, + "示例": 27327, + "向人民法院": 27328, + "hibition": 27329, + "▁preserved": 27330, + "且有": 27331, + "恒成立": 27332, + "▁Creative": 27333, + "▁rotate": 27334, + "无穷": 27335, + "▁scholarship": 27336, + "身体健康": 27337, + "▁rendered": 27338, + "▁Feel": 27339, + "ashi": 27340, + "matic": 27341, + "▁versatile": 27342, + "证件": 27343, + "▁fundra": 27344, + "▁paradigm": 27345, + "▁Electron": 27346, + "▁Jess": 27347, + "REFIX": 27348, + "▁contractors": 27349, + "ocent": 27350, + "▁Screen": 27351, + "还得": 27352, + "谷歌": 27353, + "selection": 27354, + "▁Arc": 27355, + "markdown": 27356, + "可以选择": 27357, + "▁Bachelor": 27358, + "Rot": 27359, + "▁GM": 27360, + "olished": 27361, + "幽默": 27362, + "uitive": 27363, + "医学院": 27364, + "▁vendors": 27365, + "进行的": 27366, + "utors": 27367, + "研究的": 27368, + "▁ERR": 27369, + "▁AIDS": 27370, + "RET": 27371, + "beans": 27372, + "▁Installation": 27373, + "▁conversations": 27374, + "肯定是": 27375, + "ristian": 27376, + "▁Unlike": 27377, + "▁homework": 27378, + "tile": 27379, + "▁metastasis": 27380, + "nLife": 27381, + "Boot": 27382, + "▁phosphat": 27383, + "▁fur": 27384, + "▁descending": 27385, + "\"$": 27386, + "的存款": 27387, + "▁flooring": 27388, + "▁biomarkers": 27389, + "▁主演": 27390, + "的人物": 27391, + "用法": 27392, + "▁au": 27393, + "▁Hawaii": 27394, + "单身": 27395, + "王国": 27396, + "拆迁": 27397, + "▁dors": 27398, + "都说": 27399, + "崛起": 27400, + "▁crimes": 27401, + "▁gland": 27402, + "取代": 27403, + "▁audit": 27404, + "▁shelter": 27405, + "合约": 27406, + "▁tender": 27407, + "▁Liverpool": 27408, + "dings": 27409, + "数位": 27410, + "月经": 27411, + "浴室": 27412, + "免费的": 27413, + "一个个": 27414, + "cond": 27415, + "亲戚": 27416, + "的同学": 27417, + "▁zinc": 27418, + "当选": 27419, + "smart": 27420, + "肚子": 27421, + "不允许": 27422, + "器官": 27423, + "▁MY": 27424, + "▁phenomena": 27425, + "▁Expression": 27426, + "▁interpreted": 27427, + "立案执行": 27428, + "▁dialogue": 27429, + "▁ts": 27430, + "的重要性": 27431, + "FileName": 27432, + "世间": 27433, + "童话": 27434, + "续航": 27435, + "才知道": 27436, + "ntemplate": 27437, + "CUR": 27438, + "olesale": 27439, + "▁pg": 27440, + "转载": 27441, + "被执行人张": 27442, + "Shared": 27443, + "乘客": 27444, + "▁Falls": 27445, + "▁perspectives": 27446, + "▁Elementary": 27447, + "Abs": 27448, + "Stats": 27449, + "▁Ward": 27450, + "▁automation": 27451, + "数十": 27452, + "秉承": 27453, + "花了": 27454, + "赛车": 27455, + "▁excellence": 27456, + "orneys": 27457, + "▁Cass": 27458, + "上门": 27459, + "kill": 27460, + "ophage": 27461, + "高清": 27462, + "▁chapters": 27463, + "芜湖": 27464, + "一笑": 27465, + "immer": 27466, + "iemann": 27467, + "▁mad": 27468, + "所以我": 27469, + "protein": 27470, + "大家的": 27471, + "▁visualization": 27472, + "▁mp": 27473, + "▁MPs": 27474, + "usive": 27475, + "▁Monitor": 27476, + "▁Lem": 27477, + "▁attenu": 27478, + "nprivate": 27479, + "▁respondents": 27480, + "central": 27481, + "▁Glas": 27482, + "ecycle": 27483, + "▁Peters": 27484, + "ERY": 27485, + "zens": 27486, + "David": 27487, + "▁Cemetery": 27488, + "图文": 27489, + "▁IBM": 27490, + "▁draws": 27491, + "对中国": 27492, + "▁outline": 27493, + "Pres": 27494, + "▁PET": 27495, + "▁sorts": 27496, + "nPerson": 27497, + "主观": 27498, + "PB": 27499, + "abolic": 27500, + "羁押一日折抵刑期一日": 27501, + "为主要": 27502, + "rost": 27503, + "vic": 27504, + "▁exceptions": 27505, + ">_": 27506, + "▁airway": 27507, + "election": 27508, + "▁tends": 27509, + "▁TeX": 27510, + "修订": 27511, + "▁renown": 27512, + "目的探讨": 27513, + "zeros": 27514, + "▁Mode": 27515, + "▁Father": 27516, + "defaults": 27517, + "过后": 27518, + "▁detecting": 27519, + "inian": 27520, + "agrams": 27521, + "▁Croat": 27522, + "少了": 27523, + "ICS": 27524, + "▁amateur": 27525, + "区委": 27526, + "▁abandoned": 27527, + "星星": 27528, + "naments": 27529, + "年中国": 27530, + "umbai": 27531, + "▁neph": 27532, + "urally": 27533, + "▁剧": 27534, + "水库": 27535, + "ocese": 27536, + "▁作品目录": 27537, + "▁conflicts": 27538, + "预警": 27539, + "itects": 27540, + "Scroll": 27541, + "▁strat": 27542, + "▁colored": 27543, + "▁logarith": 27544, + "ococcus": 27545, + "权利人": 27546, + "▁网络小说": 27547, + "▁helic": 27548, + "Present": 27549, + "та": 27550, + "果实": 27551, + "淋巴": 27552, + "让孩子": 27553, + "▁tremend": 27554, + "率先": 27555, + "▁welfare": 27556, + "keley": 27557, + "Mobile": 27558, + "▁inspire": 27559, + "▁attracted": 27560, + "avan": 27561, + "ongue": 27562, + "▁Gram": 27563, + "道士": 27564, + "Selection": 27565, + "乌克兰": 27566, + "▁accidents": 27567, + "▁fleet": 27568, + "▁Ot": 27569, + "IFA": 27570, + "▁Kap": 27571, + "sto": 27572, + "hedules": 27573, + "▁kinetics": 27574, + "高新区": 27575, + "▁plots": 27576, + "时机": 27577, + "▁Repair": 27578, + "间隔": 27579, + "▁md": 27580, + "▁das": 27581, + "▁Tob": 27582, + "代价": 27583, + "▁inserted": 27584, + "素材": 27585, + "般的": 27586, + "▁Juan": 27587, + "nSongs": 27588, + "sizeof": 27589, + "▁vendor": 27590, + "华人": 27591, + "▁Abb": 27592, + "新开": 27593, + "▁Birth": 27594, + "▁grants": 27595, + "畜牧": 27596, + "▁imported": 27597, + "▁expecting": 27598, + "▁onClick": 27599, + "电子产品": 27600, + "varepsilon": 27601, + "原文": 27602, + "▁jewelry": 27603, + "▁soup": 27604, + "anners": 27605, + "▁manipulation": 27606, + "奥运会": 27607, + "的地": 27608, + "unittest": 27609, + "合肥市": 27610, + "atsby": 27611, + "▁Medit": 27612, + "zing": 27613, + "shore": 27614, + "综合运用": 27615, + "▁Better": 27616, + "▁Freder": 27617, + "点点": 27618, + "▁footage": 27619, + "grades": 27620, + "▁dfs": 27621, + "▁seventh": 27622, + "▁encryption": 27623, + "MAGES": 27624, + "qquad": 27625, + "nare": 27626, + "月的": 27627, + "等着": 27628, + "▁Sum": 27629, + "▁transitions": 27630, + "异性": 27631, + "ennial": 27632, + "▁Ry": 27633, + "应当在": 27634, + "ninclude": 27635, + "天涯": 27636, + "▁Dir": 27637, + "ablab": 27638, + "nMoths": 27639, + "客运": 27640, + "▁tick": 27641, + "本院不予支持": 27642, + "held": 27643, + "▁ruled": 27644, + "但他": 27645, + "▁lawsuit": 27646, + "▁antibiotic": 27647, + "毫升": 27648, + "▁barrel": 27649, + "Endpoint": 27650, + "副教授": 27651, + "案发": 27652, + "▁Prim": 27653, + "何时": 27654, + "严肃": 27655, + "的女人": 27656, + "▁Bloom": 27657, + "▁metastatic": 27658, + "但是在": 27659, + "▁Tower": 27660, + "涉及到": 27661, + "▁overnight": 27662, + "nHon": 27663, + "温州": 27664, + "援助": 27665, + "▁Cash": 27666, + "倡导": 27667, + "对他": 27668, + "酒吧": 27669, + "osal": 27670, + "▁Adams": 27671, + "oons": 27672, + "*,": 27673, + "大佬": 27674, + "我没": 27675, + "boards": 27676, + "▁comprom": 27677, + "▁demographic": 27678, + "被告的": 27679, + "While": 27680, + "()));\\": 27681, + "执行期间": 27682, + "▁Ay": 27683, + "▁spectacular": 27684, + "▁Abd": 27685, + "tel": 27686, + "▁Pool": 27687, + "▁Close": 27688, + "▁internationally": 27689, + "▁Metal": 27690, + "比赛中": 27691, + "▁considerably": 27692, + "今天的": 27693, + "▁excluded": 27694, + "妹子": 27695, + "Scanner": 27696, + "Animation": 27697, + "三人": 27698, + "暖气": 27699, + "▁lys": 27700, + "▁labour": 27701, + "关怀": 27702, + "主导": 27703, + "曾在": 27704, + "玩的": 27705, + "▁iteration": 27706, + "atable": 27707, + "怀特": 27708, + "▁shear": 27709, + "workflow": 27710, + "▁Shel": 27711, + "有害": 27712, + "IEW": 27713, + "为中国": 27714, + "体现了": 27715, + "▁Lot": 27716, + "▁repeatedly": 27717, + "肇事": 27718, + "▁KEY": 27719, + "▁fingers": 27720, + "大使": 27721, + "▁Nelson": 27722, + "的文化": 27723, + "mathfrak": 27724, + "▁bilateral": 27725, + "▁incidents": 27726, + "见证": 27727, + "▁sketch": 27728, + "承载": 27729, + "广阔": 27730, + "下落不明": 27731, + "▁introduces": 27732, + "nginx": 27733, + "足球运动员": 27734, + "▁seal": 27735, + "▁promises": 27736, + "▁vine": 27737, + "imension": 27738, + "▁sportspeople": 27739, + "▁devast": 27740, + "锅炉": 27741, + "▁Faculty": 27742, + "趣味": 27743, + "▁prevented": 27744, + "▁HEALTH": 27745, + "您的选择": 27746, + "▁Constitution": 27747, + "▁myth": 27748, + "▁cargo": 27749, + "ABA": 27750, + "党组书记": 27751, + "备注": 27752, + "brief": 27753, + "nexcept": 27754, + "typename": 27755, + "值的": 27756, + "判断对错": 27757, + "▁rival": 27758, + "▁brow": 27759, + "反思": 27760, + "layers": 27761, + "▁intens": 27762, + "▁ber": 27763, + "真实的": 27764, + "riteria": 27765, + "动员": 27766, + "▁References": 27767, + "▁veteran": 27768, + "▁pets": 27769, + "大奖": 27770, + "nDid": 27771, + "▁Denver": 27772, + "umbing": 27773, + "制作的": 27774, + "▁Furn": 27775, + "Region": 27776, + "anghai": 27777, + "▁handy": 27778, + "▁extraordinary": 27779, + "▁”": 27780, + "▁nationwide": 27781, + "▁TB": 27782, + "/:": 27783, + "轨迹": 27784, + "小红": 27785, + "轮胎": 27786, + "▁criter": 27787, + "▁HA": 27788, + "ancers": 27789, + "▁transgenic": 27790, + "▁browse": 27791, + "杨某": 27792, + "▁melt": 27793, + "enberg": 27794, + "mesh": 27795, + "identity": 27796, + "表现为": 27797, + "▁acres": 27798, + "▁Douglas": 27799, + "收缩": 27800, + "ULE": 27801, + "Shop": 27802, + "▁Boys": 27803, + "乌鲁": 27804, + "合适的答案": 27805, + "阅读选项": 27806, + "queous": 27807, + "▁iconic": 27808, + "▁reasoning": 27809, + "▁commissioned": 27810, + "噪音": 27811, + "该案": 27812, + "▁deserve": 27813, + "WH": 27814, + "军人": 27815, + "在中": 27816, + "many": 27817, + "科长": 27818, + "这里的": 27819, + "▁MAT": 27820, + "热的": 27821, + "年至": 27822, + "lora": 27823, + "▁Welcome": 27824, + "▁propagation": 27825, + "pril": 27826, + "rients": 27827, + "▁authorized": 27828, + "伊朗": 27829, + "发展和": 27830, + "▁epic": 27831, + "▁tune": 27832, + "最高的": 27833, + "shields": 27834, + "▁singers": 27835, + "无聊": 27836, + "战术": 27837, + "超出": 27838, + "北路": 27839, + "ncan": 27840, + "集团公司": 27841, + "▁Scientific": 27842, + "ablabla": 27843, + "▁prayer": 27844, + "▁mystery": 27845, + "▁Andy": 27846, + "cookie": 27847, + "▁collapse": 27848, + "iOS": 27849, + "▁differentiate": 27850, + "Cert": 27851, + "pytest": 27852, + "导入": 27853, + "▁horror": 27854, + "hum": 27855, + "的一次": 27856, + ">/": 27857, + "Development": 27858, + "jen": 27859, + "nPlot": 27860, + "▁Dig": 27861, + "Colum": 27862, + "▁slides": 27863, + "要求的": 27864, + "▁torque": 27865, + "nMan": 27866, + "SERVER": 27867, + "jamin": 27868, + "姿态": 27869, + "▁allegedly": 27870, + "大楼": 27871, + "irates": 27872, + "orectal": 27873, + "▁murine": 27874, + "▁limb": 27875, + "本息": 27876, + "聚会": 27877, + "天赋": 27878, + "非常的": 27879, + "▁ischemia": 27880, + "丽的": 27881, + "CLA": 27882, + "排查": 27883, + "Sigma": 27884, + "全是": 27885, + "▁Heat": 27886, + "uisine": 27887, + "常识": 27888, + "▁IM": 27889, + "▁RSS": 27890, + "▁css": 27891, + "▁Higher": 27892, + "Demo": 27893, + "emor": 27894, + "▁yeah": 27895, + "口头": 27896, + "面部": 27897, + "▁encode": 27898, + "的核心": 27899, + "▁NBA": 27900, + "▁Marie": 27901, + "▁sits": 27902, + "▁Cleveland": 27903, + "一辈子": 27904, + "undry": 27905, + "流传": 27906, + "▁aria": 27907, + "▁Fer": 27908, + "得分": 27909, + "言论": 27910, + "▁anybody": 27911, + "▁secured": 27912, + "otimes": 27913, + "osome": 27914, + "其在": 27915, + "偶然": 27916, + "▁企业": 27917, + "强势": 27918, + "▁vinyl": 27919, + "未发现": 27920, + "degree": 27921, + "▁Montreal": 27922, + "螺旋": 27923, + "Mill": 27924, + "ivan": 27925, + "▁Sure": 27926, + "日立案受理后": 27927, + "▁toilet": 27928, + "▁ray": 27929, + "奖项": 27930, + "Series": 27931, + "▁Tamil": 27932, + "受法律保护": 27933, + "▁Commonwealth": 27934, + "▁Hat": 27935, + "[]\\": 27936, + "▁Graham": 27937, + "▁Nevada": 27938, + "▁checkout": 27939, + "▁运动项目": 27940, + "日记": 27941, + "燃料": 27942, + "表面积": 27943, + "即可得到": 27944, + "▁Pref": 27945, + "▁uploaded": 27946, + "婚生": 27947, + "观赏": 27948, + "eva": 27949, + "▁happiness": 27950, + "偶数": 27951, + "用电": 27952, + "▁perpendicular": 27953, + "▁Christopher": 27954, + "RP": 27955, + "▁地区": 27956, + "读音": 27957, + "mentation": 27958, + "▁Lar": 27959, + "占比": 27960, + "▁calculus": 27961, + "柔软": 27962, + "阴阳": 27963, + "人才培养": 27964, + "▁Census": 27965, + "▁Factory": 27966, + "▁simplified": 27967, + "LOCK": 27968, + "手里": 27969, + "马来": 27970, + "他们在": 27971, + "Super": 27972, + "不满": 27973, + "都不是": 27974, + "▁patio": 27975, + "报错": 27976, + "▁Manual": 27977, + "人民代表大会": 27978, + "▁cryptoc": 27979, + "▁inflation": 27980, + "无敌": 27981, + "此后": 27982, + "hist": 27983, + "▁buck": 27984, + "currency": 27985, + "▁sleeping": 27986, + "uations": 27987, + "之为": 27988, + "是我国": 27989, + "nBibliography": 27990, + "▁aggregation": 27991, + "中最": 27992, + "annes": 27993, + "oauth": 27994, + "ATIONS": 27995, + "空白": 27996, + "诉请": 27997, + "chlor": 27998, + "▁Equations": 27999, + "relim": 28000, + "locfile": 28001, + "▁{'": 28002, + "▁contamin": 28003, + "▁Period": 28004, + "▁attendance": 28005, + "▁distinctive": 28006, + "好吃": 28007, + "▁maker": 28008, + "validator": 28009, + "▁comparisons": 28010, + "伟大的": 28011, + "昨日": 28012, + "委员会委员": 28013, + "▁valley": 28014, + "▁alike": 28015, + "完成后": 28016, + "reply": 28017, + "▁torn": 28018, + "▁Looking": 28019, + "越多": 28020, + "本院予以准许": 28021, + "柠檬": 28022, + "ahl": 28023, + "史上": 28024, + "Binary": 28025, + "▁shade": 28026, + "▁Experimental": 28027, + "▁上映时间": 28028, + "羡慕": 28029, + "坐标为": 28030, + "大致": 28031, + "tility": 28032, + "▁submitting": 28033, + "poral": 28034, + "▁relay": 28035, + "▁wishes": 28036, + "▁earthqu": 28037, + "就是要": 28038, + "▁incomplete": 28039, + "▁develops": 28040, + "▁Calc": 28041, + "打了": 28042, + "▁fiscal": 28043, + "sources": 28044, + "▁Hydro": 28045, + "外汇": 28046, + "▁sinus": 28047, + "运气": 28048, + "▁LP": 28049, + "搭载": 28050, + "ylon": 28051, + "surface": 28052, + "疗法": 28053, + "fonts": 28054, + "的思想": 28055, + "▁Universal": 28056, + "▁否": 28057, + "▁indent": 28058, + "也被": 28059, + "thlete": 28060, + "▁sne": 28061, + "年以来": 28062, + "notify": 28063, + "▁participant": 28064, + "▁Wang": 28065, + "▁Materials": 28066, + "▁reven": 28067, + "前端": 28068, + "宁县": 28069, + "其实是": 28070, + "的价值": 28071, + "▁dans": 28072, + "▁Internal": 28073, + "tSystem": 28074, + "直观": 28075, + "一波": 28076, + "▁Wright": 28077, + "首届": 28078, + "为客户": 28079, + "▁upstream": 28080, + "▁VAL": 28081, + "▁Bund": 28082, + "'])\\": 28083, + "Zone": 28084, + "▁blockchain": 28085, + "有线": 28086, + "梳理": 28087, + "▁prognostic": 28088, + "奇数": 28089, + "▁MAX": 28090, + "▁\");\\": 28091, + "qs": 28092, + "传达": 28093, + "MET": 28094, + "▁overseas": 28095, + "之间的关系": 28096, + "燃气": 28097, + "[{": 28098, + "Hg": 28099, + "}\")\\": 28100, + "NUMBER": 28101, + "追究": 28102, + "\\\\|": 28103, + "还是很": 28104, + "да": 28105, + "▁Russell": 28106, + "的理由": 28107, + "风光": 28108, + "initions": 28109, + "TW": 28110, + "▁criticism": 28111, + "▁\\'#": 28112, + "▁Baltimore": 28113, + "Ali": 28114, + "的优势": 28115, + "▁经营范围": 28116, + "星座": 28117, + "sterdam": 28118, + "usp": 28119, + "▁thirty": 28120, + "compiler": 28121, + "尔多": 28122, + "纠结": 28123, + "的空间": 28124, + "rosine": 28125, + "▁Walter": 28126, + "literals": 28127, + "缓存": 28128, + "ichi": 28129, + "frames": 28130, + "▁interf": 28131, + "▁distinguished": 28132, + "nStr": 28133, + "不详": 28134, + "ahn": 28135, + "受欢迎": 28136, + "Volume": 28137, + "警告": 28138, + "ffff": 28139, + "camera": 28140, + "justify": 28141, + "散文": 28142, + "▁armed": 28143, + "uba": 28144, + "\\'];\\": 28145, + "Hy": 28146, + "xl": 28147, + "▁wis": 28148, + "numpy": 28149, + "▁CNN": 28150, + "▁microwave": 28151, + "UDE": 28152, + "hea": 28153, + "人介绍": 28154, + "来自于": 28155, + "▁damages": 28156, + "▁''": 28157, + "stick": 28158, + "▁breat": 28159, + "structions": 28160, + "nGu": 28161, + "chair": 28162, + "制成": 28163, + "分会": 28164, + "([]": 28165, + "开业": 28166, + "不愿意": 28167, + "▁Eight": 28168, + "▁英": 28169, + "▁releasing": 28170, + "▁Hallow": 28171, + "爱上": 28172, + "国王": 28173, + "acted": 28174, + "▁predicting": 28175, + "▁biomedical": 28176, + "semantic": 28177, + "写了": 28178, + "software": 28179, + "▁Rate": 28180, + "▁NH": 28181, + "▁pending": 28182, + "港口": 28183, + "cester": 28184, + "农药": 28185, + "▁pandas": 28186, + "▁Steven": 28187, + ">(": 28188, + "▁pent": 28189, + "nDavid": 28190, + "抓好": 28191, + "▁encompass": 28192, + "▁mandatory": 28193, + "门市": 28194, + "nThree": 28195, + "▁newsletter": 28196, + "▁predominantly": 28197, + "▁\\',": 28198, + "▁listener": 28199, + "▁retained": 28200, + "乳腺": 28201, + "实业": 28202, + "嫌疑人": 28203, + "nVol": 28204, + "Other": 28205, + "▁converter": 28206, + "Dependencies": 28207, + "▁Catal": 28208, + "rod": 28209, + "十四章": 28210, + "permission": 28211, + "以内": 28212, + "▁Kon": 28213, + "希望能": 28214, + "▁impressed": 28215, + "做过": 28216, + "Points": 28217, + "▁PROVID": 28218, + "▁portray": 28219, + "Board": 28220, + "另行": 28221, + "核算": 28222, + "谢邀": 28223, + "个单位": 28224, + "Expand": 28225, + "▁Floor": 28226, + "nwhat": 28227, + "都是一": 28228, + "LEVANCE": 28229, + "▁Branch": 28230, + "的双": 28231, + "▁{(": 28232, + "不等式的": 28233, + "rv": 28234, + "其他人": 28235, + "neys": 28236, + "terns": 28237, + "nPat": 28238, + "▁π": 28239, + "▁pneumonia": 28240, + "刘某某": 28241, + "wash": 28242, + "Track": 28243, + "▁amid": 28244, + "简洁": 28245, + "▁PH": 28246, + "▁Loc": 28247, + "▁Ti": 28248, + "▁cannab": 28249, + "▁cab": 28250, + "Mer": 28251, + "▁routing": 28252, + "Air": 28253, + "dbc": 28254, + "sig": 28255, + "▁rgba": 28256, + "▁vaccines": 28257, + "▁machinery": 28258, + "小伙伴": 28259, + "学习和": 28260, + "▁}}\"": 28261, + "月在": 28262, + "秋季": 28263, + "▁Alberta": 28264, + "spath": 28265, + "▁Pictures": 28266, + "▁ll": 28267, + "搞笑": 28268, + "▁ranks": 28269, + "否定": 28270, + "谈话": 28271, + "方程组": 28272, + "听力": 28273, + "证据确实": 28274, + "Println": 28275, + "的车": 28276, + "破产": 28277, + "▁oils": 28278, + "讲究": 28279, + "▁valued": 28280, + "▁basement": 28281, + "▁amenities": 28282, + "经销商": 28283, + "▁borders": 28284, + "不像": 28285, + "▁endif": 28286, + "门槛": 28287, + "▁filtering": 28288, + "原告诉称": 28289, + "atinum": 28290, + "▁estrogen": 28291, + "智力": 28292, + "▁coating": 28293, + "▁standardized": 28294, + "▁demonstrating": 28295, + "有问题": 28296, + "搜索引擎": 28297, + "作曲": 28298, + "的说": 28299, + "asse": 28300, + "球迷": 28301, + "Dig": 28302, + "scode": 28303, + "▁wiring": 28304, + "ngo": 28305, + "doctor": 28306, + "▁Costa": 28307, + "▁searches": 28308, + "hostname": 28309, + "FB": 28310, + "nWhether": 28311, + "nonatomic": 28312, + "人格": 28313, + "爸妈": 28314, + "合同履行": 28315, + "untary": 28316, + "▁foster": 28317, + "▁morphological": 28318, + "厂房": 28319, + "木齐": 28320, + "▁latex": 28321, + "生平": 28322, + "中部": 28323, + "▁overhead": 28324, + "▁divorce": 28325, + "este": 28326, + "▁Intelligence": 28327, + "complex": 28328, + "的临床": 28329, + "年起": 28330, + "nLooking": 28331, + "nThus": 28332, + "探测": 28333, + "▁游戏类型": 28334, + "自带": 28335, + "▁diamond": 28336, + "的海": 28337, + "/\"\\": 28338, + "icrobial": 28339, + "▁distress": 28340, + "中西": 28341, + "\"},": 28342, + "▁AV": 28343, + "Standard": 28344, + "▁Comb": 28345, + "containing": 28346, + "圣诞": 28347, + "Mouse": 28348, + "▁RAM": 28349, + "▁stones": 28350, + "进制": 28351, + "碰到": 28352, + "▁Hend": 28353, + "对着": 28354, + "大批": 28355, + "▁UP": 28356, + "机动车交通事故责任": 28357, + "与服务": 28358, + "Leg": 28359, + "▁Kenya": 28360, + "第十五": 28361, + "six": 28362, + "政府的": 28363, + "▁Bright": 28364, + "fac": 28365, + "nVis": 28366, + "▁韩": 28367, + "generic": 28368, + "意识到": 28369, + "足球俱乐部": 28370, + "▁Century": 28371, + "▁keen": 28372, + "${\\\\": 28373, + "usions": 28374, + "异的": 28375, + "▁Deputy": 28376, + "▁shallow": 28377, + "司马": 28378, + "▁cytos": 28379, + "▁organize": 28380, + "Ctrl": 28381, + "花开": 28382, + "fname": 28383, + "套房": 28384, + "▁Lanka": 28385, + "nMod": 28386, + "▁lag": 28387, + "▁Anti": 28388, + "月任": 28389, + "schedule": 28390, + "************": 28391, + "why": 28392, + "▁Syn": 28393, + "▁fascinating": 28394, + "\\\\)\\\\(": 28395, + "跟你": 28396, + "nar": 28397, + "}}{{": 28398, + "▁unem": 28399, + "乌鲁木齐": 28400, + "));": 28401, + "▁Similarly": 28402, + "欧阳": 28403, + "▁本": 28404, + "社会科学": 28405, + "道歉": 28406, + "\"${": 28407, + "一根": 28408, + "xxxx": 28409, + "▁Communication": 28410, + "离心": 28411, + "SSL": 28412, + "▁Operations": 28413, + "▁Ja": 28414, + "▁USD": 28415, + "扶持": 28416, + "致使": 28417, + "TPS": 28418, + "screens": 28419, + "▁deletion": 28420, + "礼仪": 28421, + ":\",": 28422, + "isec": 28423, + "网络安全": 28424, + "即为": 28425, + "只有一个": 28426, + "generation": 28427, + "▁Chi": 28428, + "shal": 28429, + "▁Chemistry": 28430, + "yntax": 28431, + "Camera": 28432, + "▁lease": 28433, + "基金会": 28434, + "▁sperm": 28435, + "经营者": 28436, + "KB": 28437, + "脱离": 28438, + "hydroxy": 28439, + "▁switched": 28440, + "▁Appe": 28441, + "▁Tags": 28442, + "(/": 28443, + "▁subscribe": 28444, + "信贷": 28445, + "ienna": 28446, + "▁Porn": 28447, + "这个人": 28448, + "执行案件": 28449, + "opa": 28450, + "等工作": 28451, + "nFormer": 28452, + "▁Orleans": 28453, + ">()": 28454, + "▁repro": 28455, + "segment": 28456, + "nea": 28457, + "▁fate": 28458, + "species": 28459, + "不忘": 28460, + "brain": 28461, + "▁dancing": 28462, + "▁discipline": 28463, + "`)\\": 28464, + "▁workforce": 28465, + "选定": 28466, + "不好的": 28467, + "更容易": 28468, + "▁Menu": 28469, + "▁ho": 28470, + "▁Say": 28471, + "Foundation": 28472, + "▁Mediterranean": 28473, + "▁安": 28474, + "▁对": 28475, + "管理和": 28476, + "可以看到": 28477, + "▁chick": 28478, + "▁underground": 28479, + "癌症": 28480, + "三位": 28481, + "消灭": 28482, + "兰州": 28483, + "seg": 28484, + "▁optimum": 28485, + "▁locality": 28486, + "▁Soft": 28487, + "activate": 28488, + "nconsole": 28489, + "▁subunit": 28490, + "▁Gray": 28491, + "Errorf": 28492, + "▁Barcelona": 28493, + "特色的": 28494, + "channels": 28495, + "nblablabla": 28496, + "▁CN": 28497, + "▁Joy": 28498, + "▁wallet": 28499, + "izar": 28500, + "无比": 28501, + "更高的": 28502, + "isol": 28503, + "重阳": 28504, + "恶性": 28505, + "▁quasi": 28506, + "▁congen": 28507, + "▁monoclonal": 28508, + "胡椒": 28509, + "▁RELEVANCE": 28510, + "▁descriptions": 28511, + "抗日": 28512, + "电阻": 28513, + "纯粹": 28514, + "放下": 28515, + "torch": 28516, + "▁infarction": 28517, + "乐园": 28518, + "aja": 28519, + "马克思主义": 28520, + "▁Rank": 28521, + "喝酒": 28522, + "Shape": 28523, + "公司在": 28524, + "▁om": 28525, + "那时": 28526, + "▁defin": 28527, + "出租车": 28528, + "UUID": 28529, + "修理": 28530, + "▁disabilities": 28531, + "▁beet": 28532, + "ograms": 28533, + "▁IDE": 28534, + "党委副书记": 28535, + "follow": 28536, + "▁redis": 28537, + "isEmpty": 28538, + "xc": 28539, + "aku": 28540, + "▁主要食材": 28541, + "Iss": 28542, + "尔斯": 28543, + "nMean": 28544, + "▁apolog": 28545, + "BUILD": 28546, + "权证": 28547, + "得更": 28548, + "扩散": 28549, + "应用程序": 28550, + "▁fractures": 28551, + "Tech": 28552, + "▁Phoenix": 28553, + "迎接": 28554, + "▁transmitted": 28555, + "cou": 28556, + "人生的": 28557, + "▁Hyp": 28558, + "相等的": 28559, + "▁IFN": 28560, + "▁strengths": 28561, + "ки": 28562, + "▁followers": 28563, + "县长": 28564, + "管理系统": 28565, + "钻石": 28566, + "等相关": 28567, + "▁transit": 28568, + "风扇": 28569, + "nSta": 28570, + "▁smell": 28571, + "ibe": 28572, + "raf": 28573, + "▁Convention": 28574, + "tbreak": 28575, + "久的": 28576, + "▁steep": 28577, + "Plus": 28578, + "第四百八": 28579, + "报纸": 28580, + "红外": 28581, + "▁Venezuel": 28582, + "▁caring": 28583, + "▁troubles": 28584, + "bai": 28585, + "▁MM": 28586, + "Split": 28587, + "传统文化": 28588, + "▁antim": 28589, + "woman": 28590, + "▁Spot": 28591, + "之家": 28592, + "sat": 28593, + "DOM": 28594, + "▁matt": 28595, + "展会": 28596, + "▁threatened": 28597, + "IFI": 28598, + "设备有限公司": 28599, + "▁Copy": 28600, + "▁renowned": 28601, + "typescript": 28602, + "▁appliances": 28603, + "▁determines": 28604, + "▁Pittsburgh": 28605, + "呵呵": 28606, + "▁Seven": 28607, + "恶意": 28608, + "failed": 28609, + "不确定": 28610, + "Browser": 28611, + "和大": 28612, + "KT": 28613, + "归纳": 28614, + "为目的": 28615, + "向申请执行人": 28616, + "这个世界": 28617, + "mouse": 28618, + "RD": 28619, + "▁Netflix": 28620, + "▁profits": 28621, + "▁Basketball": 28622, + "Put": 28623, + "▁Compared": 28624, + "村庄": 28625, + "克力": 28626, + "▁Niger": 28627, + "definition": 28628, + "▁translational": 28629, + "之内": 28630, + "讲师": 28631, + "▁ischemic": 28632, + "情景": 28633, + "技术和": 28634, + "▁Stewart": 28635, + "Solve": 28636, + "▁所属地区": 28637, + "Summary": 28638, + "wb": 28639, + "相加": 28640, + "用到": 28641, + "Cur": 28642, + "外语": 28643, + "天堂": 28644, + "专属": 28645, + "MED": 28646, + "的治疗": 28647, + "立方米": 28648, + "言情小说": 28649, + "▁南": 28650, + "}},": 28651, + "遭到": 28652, + "拉克": 28653, + "▁Poss": 28654, + "ooting": 28655, + "Force": 28656, + "▁Simply": 28657, + "基础题": 28658, + "▁neonatal": 28659, + "edges": 28660, + "认真遵守法律法规及监规": 28661, + "ogue": 28662, + "▁Meg": 28663, + "▁phy": 28664, + "nHey": 28665, + "年利率": 28666, + "▁游戏目标": 28667, + "▁survivors": 28668, + "巅峰": 28669, + "可以直接": 28670, + "▁fluorescent": 28671, + "防守": 28672, + "腹部": 28673, + "assertThat": 28674, + "▁contractor": 28675, + "终点": 28676, + "▁'#": 28677, + "▁Hunter": 28678, + ":**\\": 28679, + "▁consultant": 28680, + "▁invariant": 28681, + "签证": 28682, + "boss": 28683, + "困扰": 28684, + "增多": 28685, + "▁wheat": 28686, + "Diff": 28687, + "rating": 28688, + "▁motif": 28689, + "前来": 28690, + "▁disadvant": 28691, + "再来": 28692, + "指针": 28693, + "已经是": 28694, + "anic": 28695, + "▁clustering": 28696, + "▁accordingly": 28697, + "rocytes": 28698, + "出身": 28699, + "▁relies": 28700, + "▁Ruby": 28701, + "▁implicated": 28702, + "真实意思表示": 28703, + "▁stimulate": 28704, + "▁filing": 28705, + "▁Bear": 28706, + "▁spherical": 28707, + "微波": 28708, + "bia": 28709, + "▁Individual": 28710, + "简体中文": 28711, + "流浪": 28712, + "▁Birmingham": 28713, + "▁metabolites": 28714, + "▁nude": 28715, + "▁soluble": 28716, + "▁品牌": 28717, + "的建议": 28718, + "▁regeneration": 28719, + "说明书": 28720, + "iply": 28721, + "产能": 28722, + "治安": 28723, + "▁人物履历": 28724, + "▁viewers": 28725, + "又能": 28726, + "▁breakdown": 28727, + "名下的": 28728, + "▁juris": 28729, + "▁Legal": 28730, + "▁lying": 28731, + "asted": 28732, + "套路": 28733, + "▁Impact": 28734, + "uter": 28735, + "▁pathogen": 28736, + "带头": 28737, + "▁Fame": 28738, + "nlocal": 28739, + "会对": 28740, + "感激": 28741, + "他就": 28742, + "▁spokesman": 28743, + "Plan": 28744, + "▁Pel": 28745, + "every": 28746, + "▁cubic": 28747, + "clip": 28748, + "▁cad": 28749, + "arious": 28750, + "宝石": 28751, + "previous": 28752, + "posable": 28753, + "北区": 28754, + "河流": 28755, + "▁LIABILITY": 28756, + "向下": 28757, + "▁Sequ": 28758, + "▁poison": 28759, + "▁lever": 28760, + "耳朵": 28761, + "Which": 28762, + "White": 28763, + "月参加工作": 28764, + "忍不住": 28765, + "▁Shah": 28766, + "LT": 28767, + "Visible": 28768, + "表格": 28769, + "▁Models": 28770, + "毫不": 28771, + "▁Ground": 28772, + "othy": 28773, + "▁Hud": 28774, + "▁Afghanistan": 28775, + "犹豫": 28776, + "UES": 28777, + "▁mainstream": 28778, + "▁Want": 28779, + "金山": 28780, + "▁careg": 28781, + "▁PV": 28782, + "holm": 28783, + "▁violent": 28784, + "▁compress": 28785, + "lip": 28786, + "ichard": 28787, + "CRIPTION": 28788, + "ITS": 28789, + "hend": 28790, + "wheel": 28791, + "▁pathogens": 28792, + "▁remodeling": 28793, + "▁peers": 28794, + "encephal": 28795, + "pH": 28796, + "nsudo": 28797, + "syn": 28798, + "▁Ze": 28799, + "▁modelling": 28800, + "oct": 28801, + "idea": 28802, + "▁Wol": 28803, + "▁greet": 28804, + "nMus": 28805, + "checked": 28806, + "▁eliminated": 28807, + "获悉": 28808, + "▁transmit": 28809, + "了好": 28810, + "Tex": 28811, + "▁}\\\\": 28812, + "哈哈哈哈": 28813, + "▁hemor": 28814, + "生死": 28815, + "▁indication": 28816, + "▁conferences": 28817, + "Native": 28818, + "itance": 28819, + "▁retailers": 28820, + "isy": 28821, + "全局": 28822, + "ehicle": 28823, + "▁Easter": 28824, + "▁oriented": 28825, + "binom": 28826, + "▁washing": 28827, + "导体": 28828, + "一九": 28829, + "但不": 28830, + "oric": 28831, + "▁favorable": 28832, + "▁cytokine": 28833, + "nPosted": 28834, + "ulia": 28835, + "个小": 28836, + "alym": 28837, + "▁economics": 28838, + "Docker": 28839, + "▁exped": 28840, + "\\\\\":": 28841, + "▁Maur": 28842, + "▁distinction": 28843, + "▁Hey": 28844, + "进化": 28845, + "▁Vert": 28846, + "▁Peace": 28847, + "▁Rugby": 28848, + "发现被执行人有可供执行的财产": 28849, + "▁communic": 28850, + "▁Invalid": 28851, + "外界": 28852, + "失业": 28853, + "▁Guy": 28854, + "nsure": 28855, + "appings": 28856, + "▁Susan": 28857, + "▁earliest": 28858, + "matches": 28859, + "▁Tig": 28860, + "队列": 28861, + "adjust": 28862, + "▁Ki": 28863, + "慈善": 28864, + "阿姨": 28865, + "aths": 28866, + "instein": 28867, + "环境下": 28868, + "理事长": 28869, + "建华": 28870, + "▁lecture": 28871, + "这个数": 28872, + "存放": 28873, + "▁commented": 28874, + "▁discounts": 28875, + "住福建省": 28876, + "DIS": 28877, + "▁enormous": 28878, + "▁dominated": 28879, + "你觉得": 28880, + "▁NMR": 28881, + "农场": 28882, + "抽取": 28883, + "nthen": 28884, + "模仿": 28885, + "▁exports": 28886, + "以前先行羁押的": 28887, + "Oh": 28888, + "ucker": 28889, + "▁visibility": 28890, + "▁`/": 28891, + "▁bra": 28892, + "ugust": 28893, + "ustain": 28894, + "▁buyer": 28895, + "多彩": 28896, + "▁VR": 28897, + "一万": 28898, + "fre": 28899, + "执行情况": 28900, + "▁Bour": 28901, + "▁Halloween": 28902, + "▁negatively": 28903, + "防疫": 28904, + "food": 28905, + "▁stays": 28906, + "常态": 28907, + "保安": 28908, + "hemy": 28909, + "少量": 28910, + "故原告": 28911, + "Remote": 28912, + "物联网": 28913, + "▁trait": 28914, + "cutaneous": 28915, + "多项式": 28916, + "▁cocaine": 28917, + "合作伙伴": 28918, + "▁Upon": 28919, + "▁Combin": 28920, + "▁criterion": 28921, + "▁Kan": 28922, + "Decimal": 28923, + "▁profil": 28924, + "▁counties": 28925, + "通则": 28926, + "▁easiest": 28927, + "某一": 28928, + "汉字": 28929, + "TAG": 28930, + "并与": 28931, + "Bay": 28932, + "ushes": 28933, + "马拉": 28934, + "▁purple": 28935, + "odeship": 28936, + "querySelector": 28937, + "有用": 28938, + "▁数据": 28939, + "背包": 28940, + "了自己的": 28941, + "大事": 28942, + "MQ": 28943, + "▁primes": 28944, + "▁ligands": 28945, + "我喜欢": 28946, + "##\\": 28947, + "observ": 28948, + "nullable": 28949, + "▁Herm": 28950, + "何况": 28951, + "▁rally": 28952, + "度和": 28953, + "是他": 28954, + "▁Friend": 28955, + "先把": 28956, + "的国家": 28957, + "▁Along": 28958, + "▁dozen": 28959, + "straints": 28960, + "▁CLI": 28961, + "听取": 28962, + "外包": 28963, + "存在着": 28964, + "etween": 28965, + "跟随": 28966, + "Mesh": 28967, + "改编": 28968, + "拖欠": 28969, + "▁~/": 28970, + "▁reversed": 28971, + "烈士": 28972, + "▁crypto": 28973, + "难点": 28974, + "的答案": 28975, + "▁exert": 28976, + "pod": 28977, + "oval": 28978, + "上帝": 28979, + "▁fought": 28980, + "征收社会抚养费": 28981, + "▁terrible": 28982, + "游戏的": 28983, + "▁fabulous": 28984, + "Vertex": 28985, + "▁Prix": 28986, + "▁Soccer": 28987, + "转发": 28988, + "Vec": 28989, + "第一百四十五条": 28990, + "婴儿床": 28991, + "▁buf": 28992, + "nFootball": 28993, + "▁multivariate": 28994, + "▁ly": 28995, + "就知道": 28996, + "珠宝": 28997, + "nHence": 28998, + "▁Container": 28999, + "智能化": 29000, + "没啥": 29001, + "▁blot": 29002, + "nWill": 29003, + "等多": 29004, + "▁Race": 29005, + "▁archae": 29006, + "▁puzzle": 29007, + "\"%": 29008, + "日向被执行人": 29009, + "▁enrich": 29010, + "▁harmful": 29011, + "ATOR": 29012, + "▁glasses": 29013, + "刑期从判决执行之日起计算": 29014, + "▁airline": 29015, + "Complete": 29016, + "▁bronch": 29017, + "朋友们": 29018, + ")>": 29019, + "泡沫": 29020, + "(**": 29021, + "▁slower": 29022, + "▁Alice": 29023, + "▁Features": 29024, + "▁donated": 29025, + "蜂蜜": 29026, + "rowsers": 29027, + "▁withdrawal": 29028, + "▁Voiv": 29029, + "▁spare": 29030, + "▁STR": 29031, + "传奇私服": 29032, + "▁Commercial": 29033, + ",&": 29034, + "不准": 29035, + "anç": 29036, + "▁defence": 29037, + "中小学": 29038, + "▁distal": 29039, + "ARGET": 29040, + "▁README": 29041, + "etitive": 29042, + "Delegate": 29043, + "▁cannabis": 29044, + "当事人的": 29045, + "▁剧名": 29046, + "羽毛": 29047, + "还有一个": 29048, + "▁deputy": 29049, + "▁bust": 29050, + "经济技术开发区": 29051, + "ioned": 29052, + "老的": 29053, + "Sharp": 29054, + "▁Nad": 29055, + "ygon": 29056, + "▁Operation": 29057, + "麻醉": 29058, + "azed": 29059, + "开发的": 29060, + "教育局": 29061, + "olytic": 29062, + "▁aligned": 29063, + "女神": 29064, + "影响到": 29065, + "▁cattle": 29066, + "▁Architecture": 29067, + "mr": 29068, + "思想政治": 29069, + "▁sends": 29070, + "▁月": 29071, + "Ste": 29072, + "中美": 29073, + "不一样的": 29074, + "▁radar": 29075, + "oria": 29076, + "眼泪": 29077, + "▁GC": 29078, + "insula": 29079, + "唱歌": 29080, + "▁Tar": 29081, + "▁guns": 29082, + "reduce": 29083, + "▁escort": 29084, + "▁Ric": 29085, + "▁cis": 29086, + "carbon": 29087, + "▁DIS": 29088, + "投放": 29089, + "pract": 29090, + "战场": 29091, + "和分析思路": 29092, + "invasive": 29093, + "自杀": 29094, + "Life": 29095, + "▁polymerase": 29096, + "找个": 29097, + "▁Rat": 29098, + "▁lazy": 29099, + "Redirect": 29100, + "塞尔": 29101, + "有关规定": 29102, + "理论与": 29103, + "一般来说": 29104, + "▁YOUR": 29105, + "跨越": 29106, + "personal": 29107, + "Asp": 29108, + "的风险": 29109, + "pective": 29110, + "▁daughters": 29111, + "不堪": 29112, + "减半收取计": 29113, + "▁Alpha": 29114, + "▁affiliate": 29115, + "aligned": 29116, + "澳洲": 29117, + "▁Ghana": 29118, + "我真的": 29119, + "年毕业于": 29120, + "瑞士": 29121, + "让学生": 29122, + "如图": 29123, + "▁cous": 29124, + "▁bless": 29125, + "arded": 29126, + "ictional": 29127, + "钥匙": 29128, + "udes": 29129, + "▁&&\\": 29130, + "比如说": 29131, + "rition": 29132, + "▁Jonathan": 29133, + "▁Stars": 29134, + "管制": 29135, + "仅供参考": 29136, + "▁castle": 29137, + "分裂": 29138, + "atomy": 29139, + "▁Statement": 29140, + "▁pine": 29141, + "Perm": 29142, + "acting": 29143, + "起步": 29144, + "]))": 29145, + "shine": 29146, + "▁harmonic": 29147, + "中外": 29148, + "紧紧": 29149, + "fed": 29150, + "tot": 29151, + "出生于": 29152, + "深深": 29153, + "技术人员": 29154, + "▁hemorrh": 29155, + "▁deficits": 29156, + "▁commune": 29157, + "的原": 29158, + "▁prescribed": 29159, + "浸泡": 29160, + "▁sized": 29161, + "▁joints": 29162, + "江山": 29163, + "luence": 29164, + "知识和": 29165, + "vision": 29166, + "较强的": 29167, + "▁$\\\\{": 29168, + "▁Icon": 29169, + "▁intrac": 29170, + "心动": 29171, + "▁({\\": 29172, + "twhile": 29173, + "炎症": 29174, + "jun": 29175, + "▁costly": 29176, + "they": 29177, + "这道选择题": 29178, + "PEG": 29179, + "permalink": 29180, + "OTE": 29181, + "laration": 29182, + "adapter": 29183, + "nItalian": 29184, + "endant": 29185, + "▁adherence": 29186, + "▁dend": 29187, + "ICATION": 29188, + "▁Tan": 29189, + "▁Warren": 29190, + "▁ambit": 29191, + "不受申请执行": 29192, + "feedback": 29193, + "independent": 29194, + "准予原告": 29195, + "▁Problems": 29196, + "度过": 29197, + "▁progen": 29198, + "▁permits": 29199, + "▁uter": 29200, + "due": 29201, + "nMaybe": 29202, + "▁milit": 29203, + "leaf": 29204, + "▁TGF": 29205, + "Share": 29206, + "▁Palace": 29207, + "亏损": 29208, + "▁注音": 29209, + "▁Fried": 29210, + "有益": 29211, + "LEASE": 29212, + "okers": 29213, + "▁assured": 29214, + "制片": 29215, + "灰色": 29216, + "对自己的": 29217, + "▁Improve": 29218, + "adays": 29219, + "▁homeost": 29220, + "▁Sent": 29221, + "Dynamic": 29222, + "▁spectrometry": 29223, + "▁relaxing": 29224, + "仔细阅读": 29225, + "▁Kle": 29226, + "▁Portuguese": 29227, + "/\\'": 29228, + "hooks": 29229, + "着的": 29230, + "▁irrit": 29231, + "若是": 29232, + "▁dopamine": 29233, + "nax": 29234, + "▁Campbell": 29235, + "flush": 29236, + "▁penet": 29237, + "nJan": 29238, + "▁LC": 29239, + "▁nested": 29240, + "Expected": 29241, + "Management": 29242, + "▁ventilation": 29243, + "▁ug": 29244, + "▁bout": 29245, + "supported": 29246, + "▁energies": 29247, + "建军": 29248, + "▁aqueous": 29249, + "亲子": 29250, + "越高": 29251, + "ORE": 29252, + "postgres": 29253, + "MY": 29254, + "核实": 29255, + "失去了": 29256, + "▁naked": 29257, + "]['": 29258, + "行包含": 29259, + "haviour": 29260, + "▁Ce": 29261, + "的交": 29262, + "arct": 29263, + "matched": 29264, + "▁crystals": 29265, + "}}(": 29266, + "unknown": 29267, + "▁Weight": 29268, + "这对": 29269, + "Warning": 29270, + "▁rejection": 29271, + "createElement": 29272, + "▁resil": 29273, + "▁blogs": 29274, + "▁shelf": 29275, + "nST": 29276, + "缓慢": 29277, + "ximity": 29278, + "▁ranged": 29279, + "佩戴": 29280, + "opol": 29281, + "enes": 29282, + "▁gaining": 29283, + "▁pics": 29284, + "▁predictors": 29285, + "uropean": 29286, + "滨海": 29287, + "银川": 29288, + "独自": 29289, + "▁Ku": 29290, + "▁ou": 29291, + "▁STE": 29292, + "▁Salt": 29293, + "arians": 29294, + "Cluster": 29295, + "assy": 29296, + "摆脱": 29297, + "rain": 29298, + "▁shipped": 29299, + "总量": 29300, + "mall": 29301, + "▁imports": 29302, + "▁anchor": 29303, + "▁Homework": 29304, + "opedia": 29305, + "▁homogeneous": 29306, + "走的": 29307, + "yler": 29308, + "achers": 29309, + "花的": 29310, + "clipse": 29311, + "▁Domain": 29312, + "JP": 29313, + "本裁定书送达后立即生效": 29314, + "▁accompanying": 29315, + "die": 29316, + "判决执行以前先行羁押的": 29317, + "负面": 29318, + "▁Fal": 29319, + "▁Entry": 29320, + "▁freely": 29321, + "∈[": 29322, + "递减": 29323, + "Arrays": 29324, + "imgur": 29325, + "前锋": 29326, + "▁expend": 29327, + "推行": 29328, + "Exists": 29329, + "改造积极分子": 29330, + "的销售": 29331, + "分母": 29332, + "若干问题的意见": 29333, + "▁expectation": 29334, + "▁existed": 29335, + "▁scientist": 29336, + "▁Documentation": 29337, + "延迟": 29338, + "中秋": 29339, + "▁keywords": 29340, + "nSer": 29341, + "智商": 29342, + "▁satisfies": 29343, + "reliminary": 29344, + "▁silicon": 29345, + "战胜": 29346, + "amate": 29347, + "authent": 29348, + "▁cooked": 29349, + "typed": 29350, + "▁Carbon": 29351, + "▁Voivodeship": 29352, + "她在": 29353, + "▁SEC": 29354, + "▁Fant": 29355, + "▁isolate": 29356, + "各有": 29357, + "艺人": 29358, + "企业家": 29359, + "▁Rud": 29360, + "缓刑考验": 29361, + "wire": 29362, + "fen": 29363, + "电站": 29364, + "▁connects": 29365, + "▁%(": 29366, + "的一项": 29367, + "▁Dav": 29368, + "▁Ts": 29369, + "功能的": 29370, + "▁Squ": 29371, + "attach": 29372, + "▁tuberculosis": 29373, + "蝴蝶": 29374, + "TextField": 29375, + "▁intersect": 29376, + "进行了审查": 29377, + "借款合同纠纷一案中": 29378, + "avitational": 29379, + "得多": 29380, + "Authorization": 29381, + "刊物": 29382, + "所作": 29383, + "iffs": 29384, + "奖惩": 29385, + "专注于": 29386, + "▁symptom": 29387, + "radio": 29388, + "肠道": 29389, + "备考": 29390, + "tat": 29391, + "sever": 29392, + "罪犯评审鉴定表": 29393, + "▁heterogeneous": 29394, + "▁disrupt": 29395, + "DH": 29396, + "cells": 29397, + "▁Dynamic": 29398, + "▁vibrant": 29399, + "Errors": 29400, + ">#": 29401, + "沉默": 29402, + "▁shore": 29403, + "astics": 29404, + "ENS": 29405, + "bay": 29406, + "drive": 29407, + "▁Woman": 29408, + "▁Commons": 29409, + "是为": 29410, + "▁Ster": 29411, + "ICK": 29412, + "MAC": 29413, + "▁possession": 29414, + "优于": 29415, + "不可以": 29416, + "▁nons": 29417, + "▁ubiquit": 29418, + "中级": 29419, + "\"},\\": 29420, + "andidate": 29421, + "omo": 29422, + "ourt": 29423, + "otomy": 29424, + "▁promised": 29425, + "omers": 29426, + "▁desper": 29427, + "▁IgG": 29428, + "境界": 29429, + "ratio": 29430, + "▁wallpaper": 29431, + "不合": 29432, + "▁INCLUDING": 29433, + "▁affairs": 29434, + "▁rectangular": 29435, + "混乱": 29436, + "看作": 29437, + "▁comprises": 29438, + "▁dess": 29439, + "▁antioxidant": 29440, + "▁Ukrainian": 29441, + "受到了": 29442, + "▁slots": 29443, + "周岁": 29444, + "pit": 29445, + "▁pressures": 29446, + "▁chop": 29447, + "▁researcher": 29448, + "nRed": 29449, + "genase": 29450, + "▁residue": 29451, + "▁操作指南": 29452, + "▁dirty": 29453, + "∞)": 29454, + "侵害": 29455, + "love": 29456, + "▁probes": 29457, + "YO": 29458, + "刷新": 29459, + "▁Sets": 29460, + "▁endemic": 29461, + "▁Fel": 29462, + "平县": 29463, + "济南市": 29464, + "一阵": 29465, + "标本": 29466, + "▁cs": 29467, + "cuts": 29468, + "▁Athletics": 29469, + "暑假": 29470, + "▁NASA": 29471, + "▁LE": 29472, + "▁dashboard": 29473, + "支援": 29474, + "alph": 29475, + "abulary": 29476, + "全面的": 29477, + "▁receipt": 29478, + "▁Transfer": 29479, + "▁elimination": 29480, + "jl": 29481, + "aptist": 29482, + "fm": 29483, + "口语": 29484, + "和高": 29485, + "▁beautifully": 29486, + "UX": 29487, + "icensing": 29488, + "▁logistic": 29489, + "计生": 29490, + "各部门": 29491, + "我不知道": 29492, + "▁ram": 29493, + "CAS": 29494, + "EMENT": 29495, + "木材": 29496, + "▁清": 29497, + "▁unve": 29498, + "▁whit": 29499, + "白菜": 29500, + "mong": 29501, + "▁trucks": 29502, + "第一百三十三条": 29503, + "所长": 29504, + "辨认": 29505, + "▁{},\\": 29506, + "▁loops": 29507, + "Primary": 29508, + "在意": 29509, + "REQUEST": 29510, + "▁relaxed": 29511, + "▁inclusive": 29512, + "纳入失信被执行人名单": 29513, + "赌博": 29514, + "▁demanding": 29515, + "到期后": 29516, + "▁Gene": 29517, + "▁spacious": 29518, + "等的": 29519, + "▁Ele": 29520, + "可爱的": 29521, + "Pointer": 29522, + "线程": 29523, + "▁ore": 29524, + "你还": 29525, + "婆婆": 29526, + "PRE": 29527, + "如实供述自己的": 29528, + "的方程": 29529, + "支付原告": 29530, + "castle": 29531, + "门店": 29532, + "一点点": 29533, + "▁界": 29534, + "黑白": 29535, + "▁${{": 29536, + "▁MAP": 29537, + "长沙市": 29538, + "Ignore": 29539, + "▁irradiation": 29540, + "uclide": 29541, + "cook": 29542, + "▁bankrupt": 29543, + "unge": 29544, + "开学": 29545, + "POS": 29546, + "hips": 29547, + "▁priz": 29548, + "seen": 29549, + "▁blo": 29550, + "咨询服务": 29551, + "heap": 29552, + "▁governance": 29553, + "华夏": 29554, + "formatics": 29555, + "▁Thai": 29556, + "assembly": 29557, + "▁样例": 29558, + "章节": 29559, + "uron": 29560, + "▁Cox": 29561, + "hero": 29562, + "▁WordPress": 29563, + "弥补": 29564, + "▁accred": 29565, + "▁implants": 29566, + "每一位": 29567, + "▁delays": 29568, + "nName": 29569, + "▁determinants": 29570, + "▁announc": 29571, + "inda": 29572, + "倒是": 29573, + "▁needle": 29574, + "▁throwing": 29575, + "iq": 29576, + "发光": 29577, + "的时代": 29578, + "▁neat": 29579, + "otid": 29580, + "▁coupon": 29581, + "rpc": 29582, + "▁分类": 29583, + "过程中的": 29584, + "suite": 29585, + "Loop": 29586, + "投资有限公司": 29587, + ")[": 29588, + "resize": 29589, + "▁Everyone": 29590, + "alib": 29591, + "东区": 29592, + "AML": 29593, + "的水景": 29594, + "ivic": 29595, + "▁Hit": 29596, + "导致的": 29597, + "▁Ald": 29598, + "scss": 29599, + "▁seller": 29600, + "▁Ferr": 29601, + "▁Below": 29602, + "information": 29603, + ")_": 29604, + "▁Cooper": 29605, + "均可": 29606, + "▁bones": 29607, + "▁Je": 29608, + "市级": 29609, + "▁Publishing": 29610, + "\\\\%": 29611, + "货车": 29612, + "nBACKGROUND": 29613, + "した": 29614, + "突发": 29615, + "提交的": 29616, + "观光": 29617, + "eneath": 29618, + "▁rearr": 29619, + "nStaff": 29620, + "HH": 29621, + "一杯": 29622, + "既有": 29623, + "▁phosphate": 29624, + "ounters": 29625, + "IK": 29626, + "有人说": 29627, + "▁Carlo": 29628, + "numbers": 29629, + "▁deterior": 29630, + "关村": 29631, + "小学生": 29632, + "▁olive": 29633, + "▁regulates": 29634, + "SHA": 29635, + "▁Liberal": 29636, + "▁overwhelming": 29637, + "▁precious": 29638, + "▁vaccination": 29639, + "安慰": 29640, + "水质": 29641, + "▁painful": 29642, + "就行了": 29643, + "不应": 29644, + "扮演角色": 29645, + "▁rand": 29646, + "之道": 29647, + "auer": 29648, + "▁\"\\'": 29649, + "▁departure": 29650, + "▁earning": 29651, + "▁insertion": 29652, + "▁affiliated": 29653, + "▁ist": 29654, + "subseteq": 29655, + "ISING": 29656, + "nGroup": 29657, + "或其他": 29658, + "Bi": 29659, + "sudo": 29660, + "缺席判决": 29661, + "illes": 29662, + "最近的": 29663, + "▁inhabitants": 29664, + "党组织": 29665, + "ampa": 29666, + "▁opera": 29667, + "Nullable": 29668, + "▁Counter": 29669, + "▁Minor": 29670, + "▁Knowledge": 29671, + "▁converges": 29672, + "一个数": 29673, + "奇迹": 29674, + "有球队": 29675, + "▁showcase": 29676, + "urred": 29677, + "initialize": 29678, + "▁BA": 29679, + "urrencies": 29680, + "icul": 29681, + "attery": 29682, + "Operator": 29683, + "▁Secondary": 29684, + "食品安全": 29685, + "葡萄酒": 29686, + "与此同时": 29687, + "iasis": 29688, + "▁Tam": 29689, + "▁Firefox": 29690, + "▁Participants": 29691, + "▁Suite": 29692, + "▁Municipality": 29693, + "环境的": 29694, + "ctrine": 29695, + "▁circulating": 29696, + "alis": 29697, + "▁manifold": 29698, + "▁bridges": 29699, + "▁preparations": 29700, + "初始化": 29701, + "▁通": 29702, + "▁qualifying": 29703, + "▁Robinson": 29704, + "好事": 29705, + "▁Jews": 29706, + "▁pale": 29707, + "▁Constant": 29708, + "COUNT": 29709, + "▁critics": 29710, + "——\\": 29711, + "信誉": 29712, + "▁nobody": 29713, + "▁职务": 29714, + "▁bump": 29715, + "▁HOLD": 29716, + "NB": 29717, + "减小": 29718, + "过去的": 29719, + "▁Alt": 29720, + "▁abundant": 29721, + "看好": 29722, + "Enable": 29723, + "你的遭遇": 29724, + "▁INTO": 29725, + "nlog": 29726, + "有过": 29727, + "Azure": 29728, + "▁weld": 29729, + "▁Score": 29730, + "uent": 29731, + "县级": 29732, + "阳区": 29733, + "判决确定": 29734, + "的值为": 29735, + "▁Circuit": 29736, + "饱和": 29737, + "vertical": 29738, + "排行": 29739, + "▁hun": 29740, + "另一种": 29741, + "Intent": 29742, + "▁Writing": 29743, + "RENT": 29744, + "分式": 29745, + "▁Attribute": 29746, + "▁soap": 29747, + "▁ESP": 29748, + "▁theta": 29749, + "▁tt": 29750, + "▁AUTH": 29751, + "▁Feed": 29752, + "▁vig": 29753, + "▁zoom": 29754, + "▁minds": 29755, + "▁Hell": 29756, + "▁Wayne": 29757, + "▁cDNA": 29758, + "Sheet": 29759, + "▁desert": 29760, + "Online": 29761, + "▁catalytic": 29762, + "▁potentials": 29763, + "··": 29764, + "START": 29765, + "▁disciplines": 29766, + "spaces": 29767, + "喜剧": 29768, + "▁梁": 29769, + "etric": 29770, + "▁exponent": 29771, + "老百姓": 29772, + "▁venous": 29773, + "Future": 29774, + "▁Meanwhile": 29775, + "赤峰": 29776, + "braska": 29777, + "小区的水景": 29778, + "届全国": 29779, + "Like": 29780, + "多少小区的水景": 29781, + "酒后": 29782, + "是如何": 29783, + "▁mL": 29784, + "一个人的": 29785, + "不违反法律规定": 29786, + "▁atheros": 29787, + "▁Ec": 29788, + "▁orthogonal": 29789, + "Ev": 29790, + "WISE": 29791, + "▁reviewing": 29792, + "▁specially": 29793, + "▁Knight": 29794, + "播出": 29795, + "▁PROVIDED": 29796, + "lb": 29797, + "年内": 29798, + "战役": 29799, + "速率": 29800, + "我已经": 29801, + "数据显示": 29802, + "▁ger": 29803, + "▁apartments": 29804, + "与发展": 29805, + "nFinal": 29806, + "太多了": 29807, + "▁lob": 29808, + "额定": 29809, + "animation": 29810, + "学费": 29811, + "uptools": 29812, + "Ah": 29813, + "知识点": 29814, + "▁spreading": 29815, + "▁Strateg": 29816, + "▁Zero": 29817, + "去找": 29818, + "葫芦": 29819, + "因其": 29820, + "苏州市": 29821, + "▁disruption": 29822, + "一篇": 29823, + "\"/>": 29824, + "▁''\\": 29825, + "navigation": 29826, + "ncon": 29827, + "ributor": 29828, + "▁disappear": 29829, + "▁ende": 29830, + "allowed": 29831, + "真题": 29832, + "▁radial": 29833, + "▁lamp": 29834, + "▁incons": 29835, + "constant": 29836, + "▁Password": 29837, + "tikz": 29838, + "副院长": 29839, + "履行完毕": 29840, + "▁Evaluation": 29841, + "▁#\\": 29842, + "▁beaches": 29843, + "单调性": 29844, + "第五百一十九条的规定": 29845, + "▁Morris": 29846, + "▁denote": 29847, + "小数点": 29848, + "离不开": 29849, + "▁Pull": 29850, + "▁specialty": 29851, + "水晶": 29852, + "▁microbi": 29853, + "annah": 29854, + "▁prevalent": 29855, + "▁mathematic": 29856, + "▁dub": 29857, + "▁Nevertheless": 29858, + "婚前": 29859, + "尔夫": 29860, + "▁Draft": 29861, + "的食物": 29862, + "joys": 29863, + "curl": 29864, + "经纪人": 29865, + "自定义": 29866, + "汉语词语": 29867, + "之日": 29868, + "较小": 29869, + "贩卖毒品罪": 29870, + "终止": 29871, + "xyz": 29872, + "appropriate": 29873, + "侧面": 29874, + "建模": 29875, + "▁mapped": 29876, + "▁Lanc": 29877, + "idy": 29878, + "▁synth": 29879, + "放射": 29880, + "线条": 29881, + "nWould": 29882, + "harm": 29883, + "ulsion": 29884, + "SUCCESS": 29885, + "杆菌": 29886, + "MN": 29887, + "士兵": 29888, + "esium": 29889, + "机身": 29890, + "不爱": 29891, + "或打车": 29892, + "我没有": 29893, + "玩法": 29894, + "Photo": 29895, + "Mut": 29896, + "▁扮演角色": 29897, + "▁cruise": 29898, + "必需": 29899, + "无所": 29900, + "长为": 29901, + "期满": 29902, + "甲醛": 29903, + "菜品": 29904, + "▁Surface": 29905, + "classmethod": 29906, + "tset": 29907, + "港市": 29908, + "▁lemon": 29909, + "▁melanoma": 29910, + "十章": 29911, + "▁ech": 29912, + "Machine": 29913, + "Today": 29914, + "▁dirt": 29915, + "下滑": 29916, + "priority": 29917, + "absolute": 29918, + "年被": 29919, + "底部": 29920, + "路段": 29921, + "▁pussy": 29922, + "opus": 29923, + "▁当": 29924, + "bage": 29925, + "Since": 29926, + "▁Synt": 29927, + "▁Distribution": 29928, + "显示屏": 29929, + "achi": 29930, + "▁nicely": 29931, + "▁你": 29932, + "十万": 29933, + "▁psychology": 29934, + "▁instability": 29935, + "bread": 29936, + "资源的": 29937, + "▁formally": 29938, + "▁instrumental": 29939, + "mailto": 29940, + "犯故意伤害罪": 29941, + "正弦": 29942, + "▁outs": 29943, + "▁transformations": 29944, + "▁ash": 29945, + "▁trails": 29946, + "▁tuned": 29947, + "▁comed": 29948, + "▁pleasant": 29949, + "授课": 29950, + "漏洞": 29951, + "这块": 29952, + "途中": 29953, + "inet": 29954, + "忽然": 29955, + "密集": 29956, + "umi": 29957, + "没错": 29958, + "退房": 29959, + "▁dtype": 29960, + "繁华": 29961, + "';": 29962, + "▁'<": 29963, + "▁contacted": 29964, + "temperature": 29965, + "nTime": 29966, + "▁sparse": 29967, + "▁discre": 29968, + "门窗": 29969, + ")\",": 29970, + "tC": 29971, + "经贸": 29972, + "的表达": 29973, + "revision": 29974, + "Lambda": 29975, + "▁Charlotte": 29976, + "不让": 29977, + "活泼": 29978, + "▁intend": 29979, + "tstd": 29980, + "arness": 29981, + "▁modest": 29982, + "大火": 29983, + "▁Nurs": 29984, + "▁gi": 29985, + "Publish": 29986, + "▁settle": 29987, + "agar": 29988, + "脑子": 29989, + "▁Pic": 29990, + "▁Letter": 29991, + "标注": 29992, + "nFree": 29993, + "心肌": 29994, + "义乌": 29995, + "▁Sweet": 29996, + "▁runners": 29997, + "太空": 29998, + "ograft": 29999, + "▁Setup": 30000, + "他还": 30001, + "虚假": 30002, + "总面积": 30003, + "▁toss": 30004, + "在上": 30005, + "nnot": 30006, + "▁首发": 30007, + "▁Television": 30008, + "没了": 30009, + "▁tat": 30010, + "▁painters": 30011, + "inces": 30012, + "amilies": 30013, + "谁能": 30014, + "程度的": 30015, + "RNAs": 30016, + "ounded": 30017, + "被动": 30018, + "除此之外": 30019, + "▁sequel": 30020, + "中华人民共和国民法": 30021, + "nEducation": 30022, + "tesy": 30023, + "▁audiences": 30024, + "NAL": 30025, + "▁Lisa": 30026, + "▁籍贯": 30027, + "ETHER": 30028, + "▁susceptible": 30029, + "开工": 30030, + "▁homeless": 30031, + "peror": 30032, + "average": 30033, + "五条": 30034, + "抽象": 30035, + "本案中": 30036, + "理工大学": 30037, + "▁reopen": 30038, + "▁warned": 30039, + "关爱": 30040, + "Tom": 30041, + "perial": 30042, + "think": 30043, + "▁原": 30044, + "着重": 30045, + "▁intravenous": 30046, + "▁Therapy": 30047, + "网红": 30048, + "▁lingu": 30049, + "▁maintains": 30050, + "mother": 30051, + "▁leverage": 30052, + "万物": 30053, + "时期的": 30054, + "三等奖": 30055, + "女的": 30056, + "nget": 30057, + "央视": 30058, + "▁sentences": 30059, + "贝壳": 30060, + "▁eager": 30061, + "fact": 30062, + "Organ": 30063, + "套装": 30064, + "▁uma": 30065, + "不利": 30066, + "▁Evans": 30067, + "▁Samuel": 30068, + "▁Sad": 30069, + "Plot": 30070, + "▁Fresh": 30071, + "▁boats": 30072, + "▁curvature": 30073, + "背景下": 30074, + "▁EXPRESS": 30075, + "习题": 30076, + "▁Agent": 30077, + "开水": 30078, + "STRING": 30079, + "在我国": 30080, + "越好": 30081, + "atoes": 30082, + "▁Enum": 30083, + "▁launching": 30084, + "开机": 30085, + "lando": 30086, + "▁fancy": 30087, + "nhow": 30088, + "etter": 30089, + "nMusic": 30090, + "▁contexts": 30091, + "▁refriger": 30092, + "机床": 30093, + "uart": 30094, + "自助": 30095, + "▁unt": 30096, + "obi": 30097, + "▁offline": 30098, + "▁punct": 30099, + "authors": 30100, + "Executor": 30101, + "▁corners": 30102, + "介入": 30103, + "▁hardly": 30104, + "咳嗽": 30105, + "YW": 30106, + "{'": 30107, + "沉淀": 30108, + "[];\\": 30109, + "nsup": 30110, + "一直是": 30111, + "raul": 30112, + "▁Tes": 30113, + "▁supportive": 30114, + "邻居": 30115, + "Worker": 30116, + "pipeline": 30117, + "FROM": 30118, + "▁inev": 30119, + "右边": 30120, + "▁Lex": 30121, + "基部": 30122, + "▁neutroph": 30123, + "Using": 30124, + "▁handed": 30125, + "Axis": 30126, + "enic": 30127, + "crypto": 30128, + "▁б": 30129, + "全区": 30130, + "▁uk": 30131, + "▁sealed": 30132, + ">{\\": 30133, + "Place": 30134, + "▁psy": 30135, + "▁Grey": 30136, + "depends": 30137, + "▁catheter": 30138, + "▁sequential": 30139, + "得好": 30140, + "secondary": 30141, + "进取": 30142, + "女孩子": 30143, + "Month": 30144, + "integration": 30145, + "我们会": 30146, + "▁Generated": 30147, + "▁immunos": 30148, + "▁unittest": 30149, + "见的": 30150, + "kubernetes": 30151, + "▁zu": 30152, + "bag": 30153, + "▁EM": 30154, + "Nodes": 30155, + "elian": 30156, + "▁vulnerability": 30157, + "▁),": 30158, + "kdir": 30159, + "ín": 30160, + "指向": 30161, + "▁安装": 30162, + "在该": 30163, + "最有": 30164, + "▁单": 30165, + "▁Joint": 30166, + "码头": 30167, + "fare": 30168, + "▁Bond": 30169, + "Push": 30170, + "arus": 30171, + "仲裁委员会": 30172, + "插槽": 30173, + "球场": 30174, + "▁Om": 30175, + "▁notify": 30176, + "Intel": 30177, + "ophageal": 30178, + "刚才": 30179, + "干嘛": 30180, + "Len": 30181, + "iline": 30182, + "论述": 30183, + "buy": 30184, + "现羁押": 30185, + "巴巴": 30186, + "ributors": 30187, + "Adv": 30188, + "▁newspapers": 30189, + "▁entertaining": 30190, + "vid": 30191, + "坚守": 30192, + "▁Dragon": 30193, + "成型": 30194, + "▁Scholar": 30195, + "生肖": 30196, + "▁Programming": 30197, + "▁horn": 30198, + "▁stationary": 30199, + "}_{\\\\": 30200, + "▁obs": 30201, + "▁pulling": 30202, + "号民事判决书的本次执行程序": 30203, + "▁projected": 30204, + "丧失": 30205, + "与被告离婚": 30206, + "▁Murray": 30207, + "的无": 30208, + "不属于": 30209, + "adequ": 30210, + "小镇": 30211, + "▁twist": 30212, + "▁trunc": 30213, + "▁Amsterdam": 30214, + "▁Door": 30215, + "技术服务": 30216, + "▁proximal": 30217, + "▁许": 30218, + "▁sensit": 30219, + "▁foam": 30220, + "mbed": 30221, + "preter": 30222, + "▁responding": 30223, + "定量": 30224, + "▁conclusions": 30225, + ")}\\\\": 30226, + "▁Brew": 30227, + "▁cylind": 30228, + "loyd": 30229, + "▁inherited": 30230, + "行政处罚决定": 30231, + "servlet": 30232, + "▁谢": 30233, + "▁killer": 30234, + "次韵": 30235, + "足够的": 30236, + "中的应用": 30237, + "▁Lith": 30238, + "responsive": 30239, + "▁relatives": 30240, + "资深": 30241, + "▁NR": 30242, + "▁deposits": 30243, + "▁Mumbai": 30244, + "▁Commerce": 30245, + "▁serialize": 30246, + "▁Hem": 30247, + "emies": 30248, + "步伐": 30249, + "todo": 30250, + "leuk": 30251, + "▁locus": 30252, + "天才": 30253, + "▁Orche": 30254, + "Execution": 30255, + "西兰": 30256, + "▁Glasgow": 30257, + "借款合同": 30258, + "管理部门": 30259, + "你也": 30260, + "Cost": 30261, + "▁cave": 30262, + "▁qui": 30263, + "又名": 30264, + "年经": 30265, + "Insert": 30266, + "▁icons": 30267, + "▁heated": 30268, + "Lo": 30269, + "▁picks": 30270, + "nSpe": 30271, + "▁follic": 30272, + "ographer": 30273, + "而出": 30274, + "▁Diff": 30275, + "▁literacy": 30276, + "▁\"_": 30277, + "▁raises": 30278, + "anium": 30279, + "▁Armen": 30280, + "▁infrared": 30281, + "ELL": 30282, + "▁DAMAGES": 30283, + "交给": 30284, + "Setup": 30285, + "ede": 30286, + "heses": 30287, + "Ns": 30288, + "争吵": 30289, + "▁Ment": 30290, + "▁Gay": 30291, + "余额": 30292, + "Buff": 30293, + "▁↑": 30294, + "][]": 30295, + "chen": 30296, + "行为的": 30297, + "科技创新": 30298, + "狮子": 30299, + "▁centr": 30300, + "▁sums": 30301, + "bm": 30302, + "nold": 30303, + "▁garlic": 30304, + "▁overlap": 30305, + "▁duo": 30306, + "▁doubles": 30307, + "▁unchanged": 30308, + "▁poem": 30309, + "▁regulator": 30310, + "儿的": 30311, + "▁Validation": 30312, + "行政诉讼": 30313, + "▁sufficiently": 30314, + "▁fence": 30315, + "锅中": 30316, + "司法鉴定": 30317, + "▁arising": 30318, + "▁peaks": 30319, + "为核心": 30320, + "等方面的": 30321, + "支付宝": 30322, + "▁Nova": 30323, + "越来越多的": 30324, + "卡片": 30325, + "间接": 30326, + "▁simulate": 30327, + "nContact": 30328, + "spy": 30329, + "▁lymphoma": 30330, + "SED": 30331, + "blasts": 30332, + "▁Directory": 30333, + "行星": 30334, + "的城市": 30335, + "▁envelope": 30336, + "外卖": 30337, + "▁于": 30338, + "多吃": 30339, + "▁crate": 30340, + "▁Geometry": 30341, + "rez": 30342, + "alchemy": 30343, + "▁hydrox": 30344, + "▁bottles": 30345, + "我来": 30346, + "▁breeding": 30347, + "▁executives": 30348, + "▁Understanding": 30349, + "用手": 30350, + "是其": 30351, + "enue": 30352, + "ampton": 30353, + "▁hesitate": 30354, + "Forms": 30355, + "直属": 30356, + ")}$": 30357, + "icion": 30358, + "▁Economics": 30359, + "▁NEW": 30360, + "期限届满": 30361, + "光滑": 30362, + "ATAB": 30363, + "prints": 30364, + "lm": 30365, + "▁Rand": 30366, + "▁outlined": 30367, + "▁companion": 30368, + "紫外": 30369, + "▁nail": 30370, + "▁avoiding": 30371, + "开门": 30372, + "▁Krist": 30373, + "▁Concept": 30374, + "▁Lif": 30375, + "▁Diamond": 30376, + "Express": 30377, + "▁Ug": 30378, + "北大": 30379, + "Accept": 30380, + "向本院申请强制执行": 30381, + "▁genetics": 30382, + "▁pytest": 30383, + "▁imply": 30384, + "interfaces": 30385, + "人民的": 30386, + "▁Nat": 30387, + "alter": 30388, + "pathetic": 30389, + "Methods": 30390, + "遭受": 30391, + "nMen": 30392, + "▁Alp": 30393, + "statement": 30394, + "▁knife": 30395, + "考古": 30396, + "Exit": 30397, + "▁CAN": 30398, + "证监会": 30399, + "sson": 30400, + "▁Blues": 30401, + "nEd": 30402, + "来进行": 30403, + "▁Wa": 30404, + "某某的": 30405, + "itic": 30406, + "个别": 30407, + "底层": 30408, + "spark": 30409, + "专栏": 30410, + "▁mb": 30411, + "不断地": 30412, + "▁Ted": 30413, + "▁congress": 30414, + "吾尔": 30415, + "在我们": 30416, + "▁consumed": 30417, + "首先要": 30418, + "Payment": 30419, + "品的": 30420, + "推出的": 30421, + "eyer": 30422, + "▁Mak": 30423, + "▁immunohist": 30424, + "替换": 30425, + "▁wisdom": 30426, + "土木": 30427, + "过去了": 30428, + "▁Nice": 30429, + "▁determinant": 30430, + "▁reminder": 30431, + "oser": 30432, + "illus": 30433, + "▁enjoys": 30434, + "▁autoimmune": 30435, + "▁PP": 30436, + "jp": 30437, + "Execute": 30438, + "绝望": 30439, + "感觉到": 30440, + "益智": 30441, + "▁Chrom": 30442, + "▁actin": 30443, + "仓储": 30444, + "▁pathophys": 30445, + "▁Tu": 30446, + "了起来": 30447, + "的分析": 30448, + "周知": 30449, + "▁IE": 30450, + "▁nest": 30451, + "▁Manhattan": 30452, + "fu": 30453, + "▁como": 30454, + "Micro": 30455, + "回国": 30456, + "▁JO": 30457, + "▁converting": 30458, + "上方": 30459, + "感应": 30460, + "nOutput": 30461, + "每小时": 30462, + "▁canal": 30463, + "▁Making": 30464, + "我就是": 30465, + "Will": 30466, + "please": 30467, + "Namespace": 30468, + "▁sanction": 30469, + "皇家": 30470, + "Chain": 30471, + "▁creator": 30472, + "热量": 30473, + "Pages": 30474, + "▁colony": 30475, + "cas": 30476, + "▁种": 30477, + "▁sans": 30478, + "▁PG": 30479, + "我又": 30480, + "tcp": 30481, + "oples": 30482, + "▁numerator": 30483, + "▁Morning": 30484, + "▁Brig": 30485, + "网游": 30486, + "有机会": 30487, + "极大的": 30488, + "given": 30489, + "▁Yellow": 30490, + "▁defaults": 30491, + "▁patches": 30492, + "▁Coach": 30493, + "▁POST": 30494, + "▁correlate": 30495, + ">\",": 30496, + "▁Yan": 30497, + "▁Bookmark": 30498, + "▁polarization": 30499, + "第一百四十五条第一款规定": 30500, + "ncd": 30501, + "ishops": 30502, + "为企业": 30503, + "▁benign": 30504, + "剧院": 30505, + "issance": 30506, + "公证": 30507, + ":]\\": 30508, + "不仅是": 30509, + "rocery": 30510, + "并给出你的": 30511, + "的长度": 30512, + "▁notifications": 30513, + "itual": 30514, + "▁Honor": 30515, + "▁Lesser": 30516, + "▁Getting": 30517, + "保定": 30518, + "的人员": 30519, + "▁Yang": 30520, + "▁CONTRACT": 30521, + "▁Charlie": 30522, + "▁veterans": 30523, + "▁complication": 30524, + "人不": 30525, + "Music": 30526, + "▁Opera": 30527, + "▁assists": 30528, + "▁tendency": 30529, + "平静": 30530, + "itime": 30531, + "▁liberal": 30532, + "恶魔": 30533, + "density": 30534, + "Zero": 30535, + "死刑": 30536, + "降价": 30537, + "HashMap": 30538, + "▁workout": 30539, + "isch": 30540, + "▁FDA": 30541, + "号民事判决书已经发生法律效力": 30542, + "里有": 30543, + "uitar": 30544, + "噪声": 30545, + "方可": 30546, + "TOP": 30547, + "借据": 30548, + "笑容": 30549, + "wy": 30550, + "控制器": 30551, + "加入中国共产党": 30552, + "DIRECT": 30553, + "交易所": 30554, + "▁automotive": 30555, + "▁calibration": 30556, + "eway": 30557, + "恶劣": 30558, + "nUs": 30559, + "汉典": 30560, + "注定": 30561, + "组织部": 30562, + "的对": 30563, + "维吾尔": 30564, + "安心": 30565, + "nCurrently": 30566, + "tdata": 30567, + "催告": 30568, + "angan": 30569, + "并通过": 30570, + "▁experimentally": 30571, + "EQ": 30572, + "qt": 30573, + "Fs": 30574, + "usa": 30575, + "岁以下的": 30576, + "nEdit": 30577, + "申请执行人于": 30578, + "PHP": 30579, + "mina": 30580, + "困境": 30581, + "▁SHALL": 30582, + "▁Masters": 30583, + "▁premature": 30584, + "浩特": 30585, + "rawl": 30586, + "▁nuclei": 30587, + "▁redund": 30588, + "▁afterwards": 30589, + "▁Cold": 30590, + "▁succ": 30591, + "之时": 30592, + "▁Brow": 30593, + "▁editors": 30594, + "ля": 30595, + "▁Baker": 30596, + "▁Bass": 30597, + "reason": 30598, + "Timestamp": 30599, + "玩笑": 30600, + "▁wise": 30601, + "业的": 30602, + "售后服务": 30603, + "▁notably": 30604, + "▁Kil": 30605, + "▁pharmacological": 30606, + "和国家": 30607, + "PLAY": 30608, + "▁nicot": 30609, + "Distance": 30610, + "检索": 30611, + "destination": 30612, + "nDep": 30613, + "之后的": 30614, + "▁instructor": 30615, + "有无": 30616, + "▁generous": 30617, + "▁diox": 30618, + "月初": 30619, + "▁renewable": 30620, + "▁trap": 30621, + "▁rewards": 30622, + "调度": 30623, + "prim": 30624, + "▁soy": 30625, + "PREFIX": 30626, + "Dictionary": 30627, + "etta": 30628, + "莫名": 30629, + "othe": 30630, + "▁Train": 30631, + "▁til": 30632, + "affold": 30633, + "主板": 30634, + "Wi": 30635, + "盛世": 30636, + "的方向": 30637, + "▁Molecular": 30638, + "▁Und": 30639, + "商贸有限公司": 30640, + "indexOf": 30641, + "▁Driver": 30642, + "▁violation": 30643, + "温和": 30644, + "产后": 30645, + "永恒": 30646, + "▁subproject": 30647, + "raits": 30648, + "nTH": 30649, + "Office": 30650, + "更快": 30651, + "▁perox": 30652, + "▁quoted": 30653, + "随之": 30654, + "内科": 30655, + "zyme": 30656, + "▁Projects": 30657, + "恐怕": 30658, + "负债": 30659, + "奶茶": 30660, + "十六章": 30661, + "▁Panel": 30662, + "给出的选项中": 30663, + "▁strive": 30664, + "法律文书确定的义务": 30665, + "坚信": 30666, + "ATABASE": 30667, + "::\\": 30668, + "化成": 30669, + "▁rigid": 30670, + "也很好": 30671, + "▁Carter": 30672, + "最少": 30673, + "ifdef": 30674, + "rab": 30675, + "ountain": 30676, + "的人才": 30677, + "▁inspiring": 30678, + "▁formatting": 30679, + "▁destinations": 30680, + "热血": 30681, + "走在": 30682, + "enario": 30683, + "nNorth": 30684, + "东海": 30685, + "weather": 30686, + "大胆": 30687, + "▁argv": 30688, + "▁Brain": 30689, + "▁neglig": 30690, + "脚步": 30691, + "▁screened": 30692, + "简约": 30693, + "做出了": 30694, + "eler": 30695, + "▁jer": 30696, + "▁owns": 30697, + "纪检": 30698, + "案外人": 30699, + "Repo": 30700, + "感知": 30701, + "Batch": 30702, + "不容": 30703, + "▁COMP": 30704, + "asting": 30705, + "▁Statistical": 30706, + "▁carbohyd": 30707, + "▁fi": 30708, + "ewater": 30709, + "represent": 30710, + "▁Marshall": 30711, + "实物": 30712, + "停车场": 30713, + "第一百零二条": 30714, + "rong": 30715, + "狗狗": 30716, + "▁potassium": 30717, + "/@": 30718, + "场比赛": 30719, + "asma": 30720, + "nMedalists": 30721, + "▁PER": 30722, + "▁hunt": 30723, + "▁Choice": 30724, + "▁anthrop": 30725, + "▁attacked": 30726, + "可在裁定书送达之日起十日内": 30727, + "力求": 30728, + "难得": 30729, + "nNor": 30730, + "银行卡": 30731, + "▁Historical": 30732, + "▁dealer": 30733, + "意义的": 30734, + "▁Raw": 30735, + "▁challenged": 30736, + "▁interacting": 30737, + "XP": 30738, + "九年": 30739, + "缴费": 30740, + "互为": 30741, + "我会给你": 30742, + "▁wherever": 30743, + "wen": 30744, + "▁Iranian": 30745, + "hours": 30746, + "▁sorting": 30747, + "▁severely": 30748, + "鼻子": 30749, + "▁primitive": 30750, + "因为他": 30751, + "▁uid": 30752, + "也都": 30753, + "只能说": 30754, + "tstatic": 30755, + "遇到了": 30756, + "▁herb": 30757, + "▁clinicians": 30758, + "rise": 30759, + "rah": 30760, + "▁Arabia": 30761, + "missing": 30762, + "中考": 30763, + "所致": 30764, + "asonic": 30765, + "修建": 30766, + "filepath": 30767, + "培训班": 30768, + "Alert": 30769, + "打包": 30770, + "▁Barbara": 30771, + "轴对称": 30772, + "▁enhances": 30773, + "历任": 30774, + "包裹": 30775, + "环球": 30776, + "income": 30777, + "皇后": 30778, + "erset": 30779, + "二〇一三年": 30780, + "▁inspect": 30781, + "很多的": 30782, + "achy": 30783, + "买卖合同纠纷一案中": 30784, + "▁Interesting": 30785, + "日生育": 30786, + "lua": 30787, + "贵族": 30788, + "处分自己的": 30789, + "转为": 30790, + "▁necrosis": 30791, + "要用": 30792, + ":$": 30793, + "抱怨": 30794, + "sten": 30795, + "▁robots": 30796, + "rivers": 30797, + "▁Iter": 30798, + "真人": 30799, + "▁VE": 30800, + "交纳办法": 30801, + "quo": 30802, + "科院": 30803, + "alled": 30804, + "ifice": 30805, + "▁condens": 30806, + "▁employing": 30807, + "▁decorated": 30808, + "最小的": 30809, + "▁Fat": 30810, + "ipes": 30811, + "ftime": 30812, + "▁Magn": 30813, + "▁OH": 30814, + "及以上": 30815, + "的事实清楚": 30816, + "▁Leban": 30817, + "▁travels": 30818, + "sche": 30819, + "Li": 30820, + "ICES": 30821, + "▁togg": 30822, + "▁definite": 30823, + "热闹": 30824, + "邯郸": 30825, + "Fetch": 30826, + "认定事实": 30827, + "▁Forces": 30828, + "莲花": 30829, + "饲养": 30830, + "学金": 30831, + "实事": 30832, + "这几": 30833, + "mbox": 30834, + "领导干部": 30835, + "exclude": 30836, + "芙蓉": 30837, + "ões": 30838, + "▁accepting": 30839, + "你认为正确的答案": 30840, + "▁Ple": 30841, + "开发者": 30842, + "division": 30843, + "▁Chemical": 30844, + "▁Tak": 30845, + "celand": 30846, + "▁tourists": 30847, + "idade": 30848, + "西瓜": 30849, + "usters": 30850, + "▁UnityEngine": 30851, + "传动": 30852, + "movie": 30853, + "▁quantify": 30854, + "同类项": 30855, + "SOURCE": 30856, + "park": 30857, + "▁Romania": 30858, + "▁Argument": 30859, + "▁FBI": 30860, + "货运": 30861, + "geo": 30862, + "进行审理": 30863, + "▁urgent": 30864, + "▁graduates": 30865, + "红军": 30866, + "▁Jazz": 30867, + "▁HS": 30868, + "开创": 30869, + "显示器": 30870, + "▁pressing": 30871, + "▁qualities": 30872, + "接下来的": 30873, + "合同履行地": 30874, + "▁outlet": 30875, + "▁Progress": 30876, + "pts": 30877, + "osition": 30878, + "▁UC": 30879, + "▁|||": 30880, + "一千": 30881, + "proved": 30882, + "powered": 30883, + "evens": 30884, + "dao": 30885, + "Bro": 30886, + "▁应用": 30887, + "loquent": 30888, + "▁priorit": 30889, + "▁rigorous": 30890, + "▁lobby": 30891, + "▁Present": 30892, + "▁microbial": 30893, + "分区": 30894, + "▁pools": 30895, + "▁Interior": 30896, + "长方形": 30897, + "出处": 30898, + "受损": 30899, + "整形": 30900, + "经济开发区": 30901, + "▁Justin": 30902, + "▁unlimited": 30903, + "addEventListener": 30904, + "ully": 30905, + "uria": 30906, + "▁gli": 30907, + "大哥": 30908, + "省市": 30909, + "rac": 30910, + "nPrevious": 30911, + "▁É": 30912, + "FOR": 30913, + "最小值": 30914, + "kel": 30915, + "▁evolutionary": 30916, + "bye": 30917, + "▁Leader": 30918, + "▁distant": 30919, + "▁manufacture": 30920, + "主播": 30921, + "gluc": 30922, + "offer": 30923, + "县农村信用合作联社": 30924, + "▁reporters": 30925, + "▁irregular": 30926, + "bu": 30927, + "的结构": 30928, + "▁considerations": 30929, + "▁electromagnetic": 30930, + "庆市": 30931, + "Green": 30932, + "▁hood": 30933, + "▁straw": 30934, + "奶粉": 30935, + "dst": 30936, + "阅读网": 30937, + "Room": 30938, + "▁问题": 30939, + "第一项": 30940, + "itoneal": 30941, + "His": 30942, + "可持续发展": 30943, + "▁房型": 30944, + "▁Carr": 30945, + "THE": 30946, + "▁RV": 30947, + "▁photon": 30948, + "electron": 30949, + "▁og": 30950, + "tsuper": 30951, + "DVD": 30952, + "▁Yeah": 30953, + "体裁": 30954, + "angi": 30955, + "▁crossed": 30956, + "▁invested": 30957, + "▁ambient": 30958, + "Js": 30959, + "三百": 30960, + "▁Generation": 30961, + "▁NK": 30962, + "ptember": 30963, + "摄入": 30964, + "djang": 30965, + "▁Territ": 30966, + "ANK": 30967, + "君子": 30968, + "▁voices": 30969, + "▁Extension": 30970, + "▁autonomous": 30971, + "是的": 30972, + "credentials": 30973, + "静态": 30974, + "▁Yorkshire": 30975, + "Tile": 30976, + "positions": 30977, + "姿势": 30978, + "threshold": 30979, + "nOBJECTIVE": 30980, + "staticmethod": 30981, + "Packet": 30982, + "NECTION": 30983, + "▁dock": 30984, + "倾斜": 30985, + "普通话": 30986, + "abspath": 30987, + "▁reserves": 30988, + "▁DS": 30989, + "公子": 30990, + "▁Kate": 30991, + "▁Salv": 30992, + "金刚": 30993, + "umper": 30994, + "▁pray": 30995, + "但也": 30996, + "ovirus": 30997, + "),(": 30998, + "▁citizen": 30999, + "▁chloride": 31000, + "该怎么": 31001, + "▁shield": 31002, + "水市": 31003, + "equalities": 31004, + "▁Riemann": 31005, + "添香": 31006, + "MAIN": 31007, + "▁Reviews": 31008, + "▁nucleotide": 31009, + "lookup": 31010, + "其间": 31011, + "▁alias": 31012, + "gene": 31013, + "▁Ton": 31014, + "按时": 31015, + "▁足球": 31016, + "开的": 31017, + "▁rif": 31018, + "People": 31019, + "神仙": 31020, + "街道办事处": 31021, + "日照": 31022, + "Tok": 31023, + "▁Begin": 31024, + "▁Position": 31025, + "▁turnover": 31026, + "▁Structure": 31027, + "concurrent": 31028, + "▁seemingly": 31029, + "王朝": 31030, + "adows": 31031, + "techn": 31032, + "coding": 31033, + "▁cancelled": 31034, + "nCreate": 31035, + "▁nutrients": 31036, + "华东": 31037, + "保全措施": 31038, + "数控": 31039, + "千万不要": 31040, + "▁SY": 31041, + "▁lenses": 31042, + "出道": 31043, + "否认": 31044, + "estrian": 31045, + "▁eslint": 31046, + "童年": 31047, + "▁Jimmy": 31048, + "dto": 31049, + "了不少": 31050, + "nWrit": 31051, + "▁ont": 31052, + "▁CK": 31053, + "journal": 31054, + "fake": 31055, + "finals": 31056, + "差不": 31057, + "▁banned": 31058, + "对不起": 31059, + "相对于": 31060, + "erialize": 31061, + "▁ba": 31062, + "垄断": 31063, + "公交车": 31064, + "▁ought": 31065, + "Encoder": 31066, + "民终": 31067, + "▁Roger": 31068, + "nPres": 31069, + "▁rotating": 31070, + "▁pronounced": 31071, + "▁genetically": 31072, + "不着": 31073, + "那边": 31074, + "Sem": 31075, + "▁若": 31076, + "hit": 31077, + "你们的": 31078, + "发布会": 31079, + "▁WHETHER": 31080, + "Condition": 31081, + "样式": 31082, + "▁Always": 31083, + "▁barely": 31084, + "▁sporting": 31085, + "▁stub": 31086, + "▁beans": 31087, + "▁dairy": 31088, + "▁Define": 31089, + "▁cooper": 31090, + "uta": 31091, + "▁pants": 31092, + "▁divisions": 31093, + "▁enjoyable": 31094, + "QUI": 31095, + "counts": 31096, + "▁incorporating": 31097, + "遵守监规": 31098, + "▁Oracle": 31099, + "是否准许": 31100, + "compatible": 31101, + "logout": 31102, + "transl": 31103, + "并承担": 31104, + "▁Ru": 31105, + "未果": 31106, + "▁Champion": 31107, + "经本院传票传唤": 31108, + "▁mt": 31109, + "▁harmon": 31110, + "▁Billboard": 31111, + "nSte": 31112, + "湖区": 31113, + "ospel": 31114, + "viewer": 31115, + "▁ensemble": 31116, + "范畴": 31117, + "lest": 31118, + "普通程序": 31119, + "▁priced": 31120, + "忠诚": 31121, + "▁jaw": 31122, + "ricane": 31123, + "将自己": 31124, + "club": 31125, + "▁atmospheric": 31126, + "ostat": 31127, + "grams": 31128, + "started": 31129, + "▁都市": 31130, + "▁stolen": 31131, + "绝缘": 31132, + "也比较": 31133, + "▁Face": 31134, + "▁Wheel": 31135, + "▁suits": 31136, + "nClass": 31137, + "preced": 31138, + "珍珠": 31139, + "▁opioid": 31140, + "柴油": 31141, + "▁schizophrenia": 31142, + "▁TS": 31143, + "底面": 31144, + "nIS": 31145, + "riched": 31146, + "pow": 31147, + "Could": 31148, + "Study": 31149, + "\"},\"": 31150, + "Cancel": 31151, + "修炼": 31152, + "生命的": 31153, + "▁Clar": 31154, + "FW": 31155, + "给付原告": 31156, + "推出了": 31157, + "anine": 31158, + "▁Console": 31159, + "iciencies": 31160, + "的情形": 31161, + "▁rack": 31162, + "[],": 31163, + "所以说": 31164, + "控制系统": 31165, + "Bottom": 31166, + "纳金": 31167, + "租房": 31168, + "讲述了": 31169, + "odic": 31170, + "经济效益": 31171, + "▁anytime": 31172, + "÷(": 31173, + "头上": 31174, + "▁seating": 31175, + "sz": 31176, + "入侵": 31177, + "▁mud": 31178, + "▁sediment": 31179, + "▁deficit": 31180, + "汇率": 31181, + "披露": 31182, + "时间和": 31183, + "measure": 31184, + "▁desirable": 31185, + "优美": 31186, + "提供证据": 31187, + "▁additionally": 31188, + "▁ears": 31189, + "lead": 31190, + "birth": 31191, + "年年": 31192, + "nIts": 31193, + "几百": 31194, + "dal": 31195, + "▁Coffee": 31196, + "▁genotype": 31197, + "ahan": 31198, + "▁Kennedy": 31199, + "girl": 31200, + "▁Rico": 31201, + "EB": 31202, + "原点": 31203, + "平台的": 31204, + "Reset": 31205, + "眼光": 31206, + "月亮": 31207, + "发布了": 31208, + "egu": 31209, + "表现出": 31210, + "保险公司": 31211, + "的那种": 31212, + "认为是": 31213, + "的名字": 31214, + "▁Ian": 31215, + "▁Nepal": 31216, + "comed": 31217, + "▁besides": 31218, + "▁priorities": 31219, + "pn": 31220, + "实在是": 31221, + "ocused": 31222, + "Ni": 31223, + "化和": 31224, + "▁五": 31225, + "光电": 31226, + "▁sul": 31227, + "出具借条": 31228, + "▁memorial": 31229, + "Sam": 31230, + "钓鱼": 31231, + "▁Mg": 31232, + "Tunes": 31233, + "▁Craft": 31234, + "看上去": 31235, + "▁Own": 31236, + "▁Doll": 31237, + "▁spacing": 31238, + "▁trajectory": 31239, + "进率": 31240, + "▁planes": 31241, + "▁continuity": 31242, + "▁yarn": 31243, + "▁Carlos": 31244, + "求职": 31245, + "评定": 31246, + "第一百六": 31247, + "▁Calculus": 31248, + "fw": 31249, + "\\'^": 31250, + "正整数": 31251, + "▁ecological": 31252, + "▁technicians": 31253, + "歧视": 31254, + "▁Background": 31255, + "gas": 31256, + "▁Pok": 31257, + "▁dated": 31258, + "▁adapter": 31259, + "丢失": 31260, + "左侧": 31261, + "各方": 31262, + "\":[{\"": 31263, + "答应": 31264, + "Hot": 31265, + "psych": 31266, + "▁Algorithm": 31267, + "poll": 31268, + "▁reflex": 31269, + "日向本院申请强制执行": 31270, + "比起": 31271, + "iae": 31272, + "legend": 31273, + "冷冻": 31274, + "行李": 31275, + "适当的": 31276, + "orch": 31277, + "现羁押于": 31278, + "▁\";\\": 31279, + "▁fallen": 31280, + "选拔": 31281, + "难受": 31282, + "\":\"<": 31283, + "▁Chand": 31284, + "一面": 31285, + "脱贫攻坚": 31286, + "setminus": 31287, + "次的": 31288, + "amd": 31289, + "▁Sha": 31290, + "codec": 31291, + "强行": 31292, + "▁Patri": 31293, + "中华人民共和国民法通则": 31294, + "料酒": 31295, + "▁auf": 31296, + "▁LIABLE": 31297, + "permissions": 31298, + "Ds": 31299, + "▁NHL": 31300, + "▁corrected": 31301, + "▁Cruz": 31302, + "▁tongue": 31303, + "自收到": 31304, + "制约": 31305, + "▁origins": 31306, + "日向": 31307, + "该公司经理": 31308, + "平原": 31309, + "▁GH": 31310, + "▁Protocol": 31311, + "汇总": 31312, + "illin": 31313, + "\"(": 31314, + "二维码": 31315, + "不断提高": 31316, + "Alter": 31317, + "▁preservation": 31318, + "▁Brothers": 31319, + "大理": 31320, + "glut": 31321, + "▁水": 31322, + "▁regret": 31323, + "▁bubble": 31324, + "MESS": 31325, + "▁Treat": 31326, + "▁Vision": 31327, + "▁customize": 31328, + "reflect": 31329, + "▁congenital": 31330, + "▁asp": 31331, + "esters": 31332, + "documentation": 31333, + "odont": 31334, + "▁Hungary": 31335, + "空格": 31336, + "▁precursor": 31337, + "hew": 31338, + "九龙": 31339, + "为自己": 31340, + "▁Senator": 31341, + "▁jack": 31342, + "成一个": 31343, + "▁clever": 31344, + "▁cinema": 31345, + "甲状": 31346, + "▁prospects": 31347, + "▁TM": 31348, + "哈尔滨市": 31349, + "又要": 31350, + "▁INTER": 31351, + "▁Proof": 31352, + "其他可供执行的财产": 31353, + "▁fu": 31354, + "WORK": 31355, + "▁incon": 31356, + "核桃": 31357, + "DEX": 31358, + "▁trainees": 31359, + "▁Instit": 31360, + "一夜": 31361, + "▁Carm": 31362, + "工序": 31363, + "逾期不": 31364, + "▁reproduction": 31365, + "应承担": 31366, + "目前的": 31367, + "STATUS": 31368, + "▁outdoors": 31369, + "管理体系": 31370, + "灌溉": 31371, + "风味": 31372, + "他也": 31373, + "▁pseudo": 31374, + "imo": 31375, + "在网上": 31376, + "▁Victorian": 31377, + "swap": 31378, + "▁dispers": 31379, + "▁cumulative": 31380, + "来临": 31381, + "jab": 31382, + "宁夏回": 31383, + "Implemented": 31384, + "娃娃": 31385, + "蒸汽": 31386, + "机理": 31387, + "眼中": 31388, + "▁wiki": 31389, + "▁athlete": 31390, + "tin": 31391, + "再度": 31392, + "▁copied": 31393, + "▁Camera": 31394, + "科技进步": 31395, + "扬州": 31396, + "票据": 31397, + "ousel": 31398, + "▁Beta": 31399, + "▁parsed": 31400, + "ем": 31401, + "Fact": 31402, + "▁Mathematic": 31403, + "NBA": 31404, + "▁Ridge": 31405, + "▁comply": 31406, + "手表": 31407, + "SDK": 31408, + "原审法院": 31409, + "▁riders": 31410, + "等式": 31411, + "▁cups": 31412, + "agination": 31413, + "umble": 31414, + "猫咪": 31415, + "▁expects": 31416, + "弟子": 31417, + "Export": 31418, + "▁intimate": 31419, + "▁electrode": 31420, + "兼职": 31421, + "seek": 31422, + "▁brew": 31423, + "▁Ve": 31424, + "可以从": 31425, + "nac": 31426, + "▁Coal": 31427, + "辞职": 31428, + "ntime": 31429, + "thy": 31430, + "nett": 31431, + "▁resign": 31432, + "renderer": 31433, + "isb": 31434, + "▁offerings": 31435, + "前款": 31436, + "Business": 31437, + "充满了": 31438, + "Commun": 31439, + "phil": 31440, + "inja": 31441, + "▁educators": 31442, + "▁逝世": 31443, + "可靠性": 31444, + "nOnly": 31445, + "▁toll": 31446, + "▁Diagn": 31447, + "rgb": 31448, + "Clear": 31449, + "ensin": 31450, + "共识": 31451, + "太极": 31452, + "▁TORT": 31453, + "▁门": 31454, + "eling": 31455, + "▁breed": 31456, + "deb": 31457, + "backup": 31458, + "事儿": 31459, + "ELD": 31460, + "项公式": 31461, + "▁Tol": 31462, + "南市": 31463, + "比特": 31464, + "\":[\"": 31465, + "邮政储蓄": 31466, + "▁proving": 31467, + "▁Freedom": 31468, + "▁uniformly": 31469, + "nScott": 31470, + "▁fixing": 31471, + "Bank": 31472, + "▁Sof": 31473, + "顺便": 31474, + "ril": 31475, + "olysis": 31476, + "▁dozens": 31477, + "▁markedly": 31478, + "DN": 31479, + "▁Medicare": 31480, + "opacity": 31481, + "ERN": 31482, + "▁rolled": 31483, + "会让": 31484, + "党史": 31485, + "▁alphabet": 31486, + "▁transparency": 31487, + "简便": 31488, + "▁occupational": 31489, + "▁\"*": 31490, + "▁printf": 31491, + "签订的": 31492, + "elo": 31493, + "obar": 31494, + "shirt": 31495, + "勇士": 31496, + "口号": 31497, + "▁ARISING": 31498, + "妙的": 31499, + "▁tran": 31500, + "▁uuid": 31501, + "▁entrepreneurs": 31502, + "连云": 31503, + "nnpm": 31504, + "▁surgeon": 31505, + "▁notebook": 31506, + "died": 31507, + "▁dying": 31508, + "▁advocate": 31509, + "关税": 31510, + "风情": 31511, + "▁GPU": 31512, + "宁夏回族自治区": 31513, + "workspace": 31514, + "▁invitation": 31515, + "▁龙": 31516, + "之人": 31517, + "▁IGF": 31518, + "▁tremendous": 31519, + "Scan": 31520, + "iplinary": 31521, + "众人": 31522, + "▁SPE": 31523, + "骄傲": 31524, + "▁CLA": 31525, + "▁Fig": 31526, + "curr": 31527, + "▁其四": 31528, + "日受理后": 31529, + "Owner": 31530, + "▁tablets": 31531, + "▁elliptic": 31532, + "▁endorse": 31533, + "看书": 31534, + "lst": 31535, + "伤心": 31536, + "袖添香": 31537, + "middle": 31538, + "增速": 31539, + "ativ": 31540, + "ulators": 31541, + "▁memorable": 31542, + "烹饪": 31543, + "有多种": 31544, + "▁inert": 31545, + "ocs": 31546, + "▁材料": 31547, + "latex": 31548, + "实训": 31549, + "quisite": 31550, + "▁tumour": 31551, + "本届": 31552, + "翻炒": 31553, + "nCould": 31554, + "腐败": 31555, + "具体情况": 31556, + "光伏": 31557, + "媳妇": 31558, + "manifest": 31559, + "院士": 31560, + "Children": 31561, + "etheless": 31562, + "▁forwards": 31563, + "▁cleaned": 31564, + "▁stupid": 31565, + "▁activists": 31566, + "▁concentrated": 31567, + "国民党": 31568, + "演奏": 31569, + "oping": 31570, + "airo": 31571, + "▁nomine": 31572, + "银河": 31573, + "controllers": 31574, + "▁counseling": 31575, + "三千": 31576, + "syntax": 31577, + "Student": 31578, + "中关村": 31579, + "的取值范围是": 31580, + "▁endless": 31581, + "款式": 31582, + "logen": 31583, + "CU": 31584, + "kb": 31585, + "▁retreat": 31586, + "坚强": 31587, + "德市": 31588, + "辅料": 31589, + "前沿": 31590, + "▁Horn": 31591, + "ceedings": 31592, + "▁attorneys": 31593, + "我能": 31594, + "下属": 31595, + "廉政": 31596, + "对称轴": 31597, + "查明被执行人": 31598, + "▁grammar": 31599, + "Effects": 31600, + "nparser": 31601, + "▁celebrating": 31602, + "科大学": 31603, + "fh": 31604, + "百家": 31605, + "▁cu": 31606, + "▁Collins": 31607, + "▁allegations": 31608, + "Monitor": 31609, + "nResearch": 31610, + "五大": 31611, + "沿海": 31612, + "法和": 31613, + "▁Applied": 31614, + "▁portrait": 31615, + "▁allocated": 31616, + "各方面": 31617, + "▁farming": 31618, + "太子": 31619, + "把你": 31620, + "Bool": 31621, + "nYeah": 31622, + "▁IEEE": 31623, + "当作": 31624, + "花卉": 31625, + "▁Vermont": 31626, + "采信": 31627, + "ensitive": 31628, + "illation": 31629, + "▁VI": 31630, + "▁Header": 31631, + "联动": 31632, + "▁petition": 31633, + "的成绩": 31634, + "香蕉": 31635, + "'];\\": 31636, + "pyplot": 31637, + "▁Cricket": 31638, + "▁excitement": 31639, + "吸烟": 31640, + "通话": 31641, + "▁Griff": 31642, + "▁incoming": 31643, + "nEm": 31644, + "▁organised": 31645, + "夕阳": 31646, + "的话题": 31647, + "▁compromise": 31648, + "衡量": 31649, + "aptive": 31650, + "把他": 31651, + "通过了": 31652, + "▁orbital": 31653, + "奇幻": 31654, + "绘制": 31655, + "▁gig": 31656, + "▁Earl": 31657, + "▁getattr": 31658, + "▁delighted": 31659, + "pert": 31660, + "或者其他": 31661, + "▁utilities": 31662, + "自有": 31663, + "两个月": 31664, + "▁tex": 31665, + "nq": 31666, + "▁microm": 31667, + "▁pigs": 31668, + "▁ot": 31669, + "ingo": 31670, + "▁blame": 31671, + "▁artifacts": 31672, + "▁opponent": 31673, + "▁stdout": 31674, + "▁bom": 31675, + "通俗": 31676, + "▁Fan": 31677, + "awesome": 31678, + "庭审中": 31679, + "specially": 31680, + "▁highlighting": 31681, + "▁impress": 31682, + "▁renewal": 31683, + "头脑": 31684, + "▁Types": 31685, + "orious": 31686, + "▁achievements": 31687, + "▁Cultural": 31688, + "周转": 31689, + "出一个": 31690, + "artifact": 31691, + "▁arteries": 31692, + "▁plaque": 31693, + "▁mysql": 31694, + "▁Vi": 31695, + "LINK": 31696, + "reas": 31697, + "isors": 31698, + "▁Voice": 31699, + "nAnt": 31700, + "nTry": 31701, + "▁Schema": 31702, + "▁festivals": 31703, + "▁创作": 31704, + "▁zeros": 31705, + "▁resc": 31706, + "▁MySQL": 31707, + "▁Certificate": 31708, + "▁ascending": 31709, + "投稿": 31710, + "▁tv": 31711, + "▁dough": 31712, + "▁endomet": 31713, + "▁全": 31714, + "巧克力": 31715, + "研究会": 31716, + "Under": 31717, + "nWelcome": 31718, + "▁packing": 31719, + "▁Integration": 31720, + "inology": 31721, + "▁currents": 31722, + "urpose": 31723, + "▁Rou": 31724, + "必要条件": 31725, + "▁setUp": 31726, + "子公司": 31727, + "滞纳金": 31728, + "▁repos": 31729, + "回首": 31730, + "通行": 31731, + "▁\\\\\\\\\\": 31732, + "san": 31733, + "工地": 31734, + "▁Dubai": 31735, + "是一位": 31736, + "▁Craig": 31737, + "▁subjective": 31738, + "▁informative": 31739, + "非常好": 31740, + "▁jacket": 31741, + "obil": 31742, + "变的": 31743, + "右侧": 31744, + "▁sig": 31745, + "fulness": 31746, + "▁hydroly": 31747, + "▁bite": 31748, + "▁parsing": 31749, + "▁solvent": 31750, + "向往": 31751, + "当时的": 31752, + "钢筋": 31753, + "▁descriptive": 31754, + "urtle": 31755, + "不幸": 31756, + "▁ln": 31757, + "ENER": 31758, + "诉讼费用交纳办法": 31759, + "nTelevision": 31760, + "▁probabilities": 31761, + "书院": 31762, + "机型": 31763, + "▁scanner": 31764, + "伤口": 31765, + "候选": 31766, + "ozyg": 31767, + "县政府": 31768, + "等方式": 31769, + "县人民政府": 31770, + "基督": 31771, + "本品": 31772, + "CHECK": 31773, + "▁missions": 31774, + "Testing": 31775, + "常数": 31776, + "钱的": 31777, + "▁approached": 31778, + "语句": 31779, + "▁saves": 31780, + "是通过": 31781, + "的大型": 31782, + "山路": 31783, + "}\",": 31784, + "arten": 31785, + "founder": 31786, + "▁Gard": 31787, + "▁Stanley": 31788, + "Ig": 31789, + "▁LGBT": 31790, + "最优": 31791, + "退役": 31792, + "十七章": 31793, + "▁lid": 31794, + "stackoverflow": 31795, + "ivalent": 31796, + "▁legislative": 31797, + "一期": 31798, + "打扮": 31799, + "▁KB": 31800, + "▁Sr": 31801, + "sear": 31802, + "▁needing": 31803, + "fy": 31804, + "▁uri": 31805, + "▁charter": 31806, + "或者说": 31807, + "▁colorectal": 31808, + "ogo": 31809, + "原被告": 31810, + "▁Crow": 31811, + "春季": 31812, + "USA": 31813, + "▁backgrounds": 31814, + "rases": 31815, + "▁Nebraska": 31816, + "帮扶": 31817, + "二百": 31818, + "Studio": 31819, + "ibular": 31820, + "是比较": 31821, + "▁Colombia": 31822, + "末尾": 31823, + "嵌入": 31824, + "▁ii": 31825, + "▁scans": 31826, + "___": 31827, + "nMc": 31828, + "▁Princess": 31829, + "▁semantic": 31830, + "问卷": 31831, + "AAA": 31832, + "▁COMM": 31833, + "记功": 31834, + "这件": 31835, + "CLUDE": 31836, + "就需要": 31837, + "▁Ko": 31838, + "异界": 31839, + "▁Adult": 31840, + "在哪": 31841, + "▁bell": 31842, + "imiter": 31843, + "▁immigrants": 31844, + "uka": 31845, + "rically": 31846, + "nCPU": 31847, + "扣除": 31848, + "特效": 31849, + "请求法院": 31850, + "anship": 31851, + "詹姆斯": 31852, + "▁释义": 31853, + "▁Remote": 31854, + "▁equivalence": 31855, + "▁у": 31856, + "▁investor": 31857, + "▁Simulation": 31858, + "原因是": 31859, + "▁spam": 31860, + "▁Milan": 31861, + "▁Approach": 31862, + "▁Transportation": 31863, + "抢救": 31864, + "▁speaks": 31865, + "对角": 31866, + "意愿": 31867, + "alar": 31868, + "arta": 31869, + "早在": 31870, + "愤怒": 31871, + "自然人": 31872, + "▁constitute": 31873, + "伦理": 31874, + "二次根": 31875, + "Extract": 31876, + "▁marketplace": 31877, + "otics": 31878, + "Consumer": 31879, + "小学文化": 31880, + "outputs": 31881, + "▁从": 31882, + "乐队": 31883, + "▁simplest": 31884, + "▁assembled": 31885, + "耐磨": 31886, + "道具": 31887, + "nHaving": 31888, + "▁叶": 31889, + "衍生": 31890, + "▁Emergency": 31891, + "▁逝世日期": 31892, + "▁Wonder": 31893, + "▁magical": 31894, + "▁regulators": 31895, + "适配": 31896, + "农田": 31897, + "chol": 31898, + "感和": 31899, + "▁Associate": 31900, + "▁provincial": 31901, + "rov": 31902, + "nhave": 31903, + "确立": 31904, + "▁项目": 31905, + "▁}}\"\\": 31906, + "▁Strong": 31907, + "▁influential": 31908, + "saved": 31909, + "▁meg": 31910, + "元件": 31911, + "ovine": 31912, + "▁Euler": 31913, + "ximately": 31914, + "igraph": 31915, + "oplastic": 31916, + "▁clinics": 31917, + "特別": 31918, + "fiction": 31919, + "▁Beyond": 31920, + "▁locals": 31921, + "深处": 31922, + "CEO": 31923, + "的患者": 31924, + "Sep": 31925, + "代书记员": 31926, + "▁Pope": 31927, + "nSorry": 31928, + "第一百五十四条第一款": 31929, + "关键是": 31930, + "地名": 31931, + "oplast": 31932, + "setState": 31933, + "reational": 31934, + "场上位置": 31935, + "▁Amy": 31936, + "▁drew": 31937, + "▁crops": 31938, + "▁Running": 31939, + "与中国": 31940, + "德里": 31941, + "没法": 31942, + "莆田": 31943, + "nJames": 31944, + "冶金": 31945, + "人类的": 31946, + "uclid": 31947, + "▁Welsh": 31948, + "SES": 31949, + "odi": 31950, + "LF": 31951, + "pointer": 31952, + "▁uniquely": 31953, + "▁Montana": 31954, + "},\"": 31955, + "指的是": 31956, + "同居": 31957, + "零部件": 31958, + "Factor": 31959, + "▁canonical": 31960, + "立马": 31961, + "▁adm": 31962, + "▁ethn": 31963, + "▁mism": 31964, + "新颖": 31965, + "▁hello": 31966, + "主要的": 31967, + "anonymous": 31968, + "方法的": 31969, + "onClick": 31970, + "▁drainage": 31971, + "Attr": 31972, + "基本的": 31973, + "Filename": 31974, + "▁traveled": 31975, + "打的": 31976, + "好吧": 31977, + "Corp": 31978, + "实践中": 31979, + "▁beneath": 31980, + "在不": 31981, + "consumer": 31982, + "▁aesthetic": 31983, + "诠释": 31984, + "pel": 31985, + "▁tire": 31986, + "chanical": 31987, + "武术": 31988, + "已经被": 31989, + "▁furnished": 31990, + "ASK": 31991, + "▁Biology": 31992, + "▁positioning": 31993, + "▁Eye": 31994, + "乙烯": 31995, + "\\\\:": 31996, + "境外": 31997, + "异地": 31998, + "转账": 31999, + "首批": 32000, + "综合征": 32001, + "looking": 32002, + "▁generators": 32003, + "▁recycling": 32004, + "plasia": 32005, + "ieu": 32006, + "主管部门": 32007, + "▁identifies": 32008, + "并已": 32009, + "tabs": 32010, + "▁TRUE": 32011, + "本着": 32012, + "CAP": 32013, + "major": 32014, + "▁Perm": 32015, + "▁Chem": 32016, + "中期": 32017, + "袭击": 32018, + "党委委员": 32019, + "▁transfers": 32020, + "▁attraction": 32021, + "相亲": 32022, + "下班": 32023, + "▁attain": 32024, + "▁属": 32025, + "▁pac": 32026, + "▁clay": 32027, + "化解": 32028, + "有望": 32029, + "▁OFF": 32030, + "▁applicants": 32031, + "determ": 32032, + "vae": 32033, + "archar": 32034, + "包容": 32035, + "心疼": 32036, + "模特": 32037, + "▁Poll": 32038, + "▁OTHERWISE": 32039, + "味精": 32040, + "劳动者": 32041, + "▁signatures": 32042, + "▁traditionally": 32043, + "愉快": 32044, + "▁permalink": 32045, + "Desc": 32046, + "远的": 32047, + "orr": 32048, + "nData": 32049, + "▁comprising": 32050, + "阀门": 32051, + "生物学": 32052, + "▁Resort": 32053, + "▁subgroups": 32054, + "cot": 32055, + "大门": 32056, + "▁latency": 32057, + "inist": 32058, + "▁Arena": 32059, + "胶囊": 32060, + "dar": 32061, + "本案诉讼费": 32062, + "▁conce": 32063, + "transport": 32064, + "可视": 32065, + "awk": 32066, + "▁身高": 32067, + "不适合": 32068, + "oshi": 32069, + "weights": 32070, + "▁perceptions": 32071, + "我可以": 32072, + "ovich": 32073, + "andbox": 32074, + "choices": 32075, + "▁NJ": 32076, + "▁exams": 32077, + "Ep": 32078, + "故乡": 32079, + "▁influenza": 32080, + "▁LV": 32081, + "▁AMP": 32082, + "▁flaw": 32083, + "配音": 32084, + "▁Finnish": 32085, + "lette": 32086, + "▁elite": 32087, + "无业": 32088, + "Simplify": 32089, + "{:": 32090, + "▁hass": 32091, + "▁wage": 32092, + "三包": 32093, + "低的": 32094, + "▁dermat": 32095, + "路程": 32096, + "tables": 32097, + "opathic": 32098, + "▁proximity": 32099, + "ва": 32100, + "第八章": 32101, + "▁toString": 32102, + "serif": 32103, + "▁intuitive": 32104, + "adas": 32105, + "角落": 32106, + "▁Growth": 32107, + "▁museums": 32108, + "长达": 32109, + "▁Effects": 32110, + "相思": 32111, + "▁Liga": 32112, + "ocytic": 32113, + "▁Allow": 32114, + "Three": 32115, + "三点": 32116, + "教学中": 32117, + "imag": 32118, + "▁diesel": 32119, + "云中": 32120, + "odox": 32121, + "▁sliding": 32122, + "并以": 32123, + "态势": 32124, + "如下图": 32125, + "阿拉伯": 32126, + "▁Parse": 32127, + "才发现": 32128, + "▁observer": 32129, + "众所": 32130, + "住河南省": 32131, + "aten": 32132, + "nout": 32133, + "大神": 32134, + "▁hereby": 32135, + "▁Bristol": 32136, + "抵达": 32137, + "▁COL": 32138, + "▁pays": 32139, + "往来": 32140, + "▁anger": 32141, + "▁Peru": 32142, + "Promise": 32143, + "▁Var": 32144, + "▁sweep": 32145, + "杀手": 32146, + "frontend": 32147, + "▁tier": 32148, + "第一百五十四条": 32149, + "六个": 32150, + "旋律": 32151, + "雷达": 32152, + "▁Mitchell": 32153, + "RM": 32154, + "可选": 32155, + "▁assignments": 32156, + "头痛": 32157, + "满了": 32158, + "保守": 32159, + "amos": 32160, + "▁refin": 32161, + "▁pupils": 32162, + "▁inhibits": 32163, + "个性化": 32164, + "称之为": 32165, + "chapter": 32166, + "napi": 32167, + "▁recognised": 32168, + "的责任": 32169, + "的建设": 32170, + "吵架": 32171, + "▁Too": 32172, + "▁Permission": 32173, + "写字": 32174, + "的书": 32175, + "向本院提出撤诉申请": 32176, + "▁Something": 32177, + "▁ips": 32178, + "了自己": 32179, + "sites": 32180, + "ocarcin": 32181, + "部落": 32182, + "IMP": 32183, + "不出来": 32184, + "行人": 32185, + "▁Cob": 32186, + "iblings": 32187, + "GN": 32188, + "齿轮": 32189, + "▁conjecture": 32190, + "hind": 32191, + "▁obese": 32192, + "Throw": 32193, + "▁HAVE": 32194, + "▁deformation": 32195, + "▁Ave": 32196, + "▁Pent": 32197, + "▁ethics": 32198, + "如下所示": 32199, + "▁basics": 32200, + "▁opponents": 32201, + "abol": 32202, + "ilia": 32203, + "巡视": 32204, + "担任职务": 32205, + "诉求": 32206, + "坐落于": 32207, + "温州市": 32208, + "岁以下的儿童": 32209, + "和对": 32210, + "▁Crown": 32211, + "偷偷": 32212, + "▁treats": 32213, + "▁Patient": 32214, + "▁activist": 32215, + "降低了": 32216, + "▁Half": 32217, + "▁fonts": 32218, + "生产线": 32219, + "Expl": 32220, + "座位": 32221, + "新冠肺炎": 32222, + "中年": 32223, + "ighbor": 32224, + "BACK": 32225, + "明亮": 32226, + "夜晚": 32227, + "▁\")\\": 32228, + "▁upgraded": 32229, + "▁sigma": 32230, + "无财产可供执行": 32231, + "▁Vienna": 32232, + "失踪": 32233, + "▁Steps": 32234, + "上诉案件受理费": 32235, + "主治": 32236, + "会展": 32237, + "▁Upload": 32238, + "的申请符合法律规定": 32239, + "无正当理由拒不到庭参加诉讼": 32240, + "▁knowledgeable": 32241, + "地狱": 32242, + "▁vic": 32243, + "▁abortion": 32244, + "inent": 32245, + "▁enterprises": 32246, + "总的": 32247, + "▁quotient": 32248, + "▁Interface": 32249, + "刻苦": 32250, + "Groups": 32251, + "悲剧": 32252, + "▁Flore": 32253, + "月中": 32254, + "▁electoral": 32255, + "试卷": 32256, + "内有": 32257, + "educ": 32258, + "▁Wedding": 32259, + "▁antagonist": 32260, + "能让": 32261, + "buff": 32262, + "▁Esp": 32263, + "StackTrace": 32264, + "期间的限制": 32265, + "Virtual": 32266, + "CIAL": 32267, + "ZX": 32268, + "▁曹": 32269, + "DEF": 32270, + "tees": 32271, + "▁doi": 32272, + "▁lesser": 32273, + "▁discharg": 32274, + "做个": 32275, + "明朝": 32276, + "▁teens": 32277, + "casting": 32278, + "▁Innovation": 32279, + "unny": 32280, + "事实和理由": 32281, + "实务": 32282, + "▁`<": 32283, + "还不错": 32284, + "最短": 32285, + "▁embryonic": 32286, + "VALID": 32287, + "mkdir": 32288, + "折扣": 32289, + "▁Len": 32290, + "checkbox": 32291, + "▁Metropolitan": 32292, + "林地": 32293, + "大厅": 32294, + "生活在": 32295, + "体力": 32296, + "饮用": 32297, + "urst": 32298, + "yzer": 32299, + "然后根据": 32300, + "▁acetyl": 32301, + "functional": 32302, + "批判": 32303, + "亲切": 32304, + "▁Pure": 32305, + "震撼": 32306, + "sqlite": 32307, + "过年": 32308, + "Eloquent": 32309, + "nDec": 32310, + "nPort": 32311, + "avorite": 32312, + "Rs": 32313, + "▁fasc": 32314, + "▁Touch": 32315, + "四周": 32316, + "▁triangles": 32317, + "▁pkg": 32318, + "ynasty": 32319, + "lod": 32320, + "出资": 32321, + "抽样": 32322, + "imir": 32323, + "nJoin": 32324, + "▁Racing": 32325, + "▁CNS": 32326, + "▁boots": 32327, + "▁consume": 32328, + "hey": 32329, + "了中国": 32330, + "在一定": 32331, + "▁Xbox": 32332, + "▁人": 32333, + "▁ui": 32334, + "▁Appl": 32335, + "vt": 32336, + "nInput": 32337, + "▁laboratories": 32338, + "▁Rever": 32339, + "brane": 32340, + "▁Strategy": 32341, + "▁disappointed": 32342, + "Well": 32343, + ",(": 32344, + "业界": 32345, + "促使": 32346, + "STM": 32347, + "八个月": 32348, + "▁aired": 32349, + "sections": 32350, + "▁RC": 32351, + "▁chef": 32352, + "同人": 32353, + "arel": 32354, + "arl": 32355, + "spacing": 32356, + "reck": 32357, + "可分为": 32358, + "▁Tell": 32359, + "娱乐圈": 32360, + "宽带": 32361, + "nArch": 32362, + "压器": 32363, + "Most": 32364, + "温馨提示": 32365, + "人对": 32366, + "写成": 32367, + "▁hadn": 32368, + "▁tyrosine": 32369, + "▁Sean": 32370, + "▁squared": 32371, + "▁nationally": 32372, + "科学的": 32373, + "▁shit": 32374, + "▁uncon": 32375, + "刑期至": 32376, + "atomical": 32377, + "nThrough": 32378, + "\\')[": 32379, + "▁maturation": 32380, + "urated": 32381, + "▁municipalities": 32382, + "Phi": 32383, + "ints": 32384, + "uniform": 32385, + "荧光": 32386, + "探究": 32387, + "▁Palm": 32388, + "▁Wiley": 32389, + "美洲": 32390, + "金牌": 32391, + "eves": 32392, + "增产": 32393, + "widgets": 32394, + "由中国": 32395, + "GDP": 32396, + "▁Stri": 32397, + "科学记数法": 32398, + "ndf": 32399, + "▁Beck": 32400, + "▁Wave": 32401, + "▁illum": 32402, + "▁shifted": 32403, + "▁Asp": 32404, + "()),\\": 32405, + "▁Hist": 32406, + "流失": 32407, + "作为一名": 32408, + "Thank": 32409, + "▁steroid": 32410, + "▁国家": 32411, + "▁sisters": 32412, + "▁请": 32413, + "海鲜": 32414, + "▁farms": 32415, + "▁Richmond": 32416, + "zb": 32417, + "▁Crim": 32418, + "itution": 32419, + "IntegerField": 32420, + "小平": 32421, + "▁mant": 32422, + "双向": 32423, + "RU": 32424, + "bris": 32425, + "原判决": 32426, + "Cent": 32427, + "将被执行人": 32428, + "▁Router": 32429, + "Navigation": 32430, + "差异有": 32431, + "▁Sleep": 32432, + "▁superb": 32433, + "淡淡": 32434, + "既是": 32435, + "▁supervision": 32436, + "cols": 32437, + "▁Belgian": 32438, + "rones": 32439, + "nMeanwhile": 32440, + "历史的": 32441, + "Bs": 32442, + "令牌": 32443, + "描写": 32444, + "▁Yam": 32445, + "常年": 32446, + "ammed": 32447, + "和社会保障": 32448, + "▁summit": 32449, + "▁nullptr": 32450, + "rish": 32451, + "商业银行": 32452, + "CY": 32453, + "__,": 32454, + "万美元": 32455, + "执行标的": 32456, + "索尼": 32457, + "NK": 32458, + "▁displaying": 32459, + "副部长": 32460, + "jpeg": 32461, + "看不到": 32462, + "泽东": 32463, + "管控": 32464, + "^{(": 32465, + "\\'][": 32466, + "ocha": 32467, + "▁relates": 32468, + "青睐": 32469, + "原有": 32470, + "proj": 32471, + "运营商": 32472, + "现已审查": 32473, + "▁ACTION": 32474, + "lazy": 32475, + "quest": 32476, + "玩意": 32477, + "▁Layout": 32478, + "oproject": 32479, + "▁Mann": 32480, + "▁inadequ": 32481, + "▁forcing": 32482, + "▁corruption": 32483, + "增添": 32484, + "向本院提交": 32485, + "▁safer": 32486, + "irlines": 32487, + "Contents": 32488, + "▁perfusion": 32489, + "出入": 32490, + "▁ol": 32491, + "▁firing": 32492, + "▁beating": 32493, + "▁stating": 32494, + "宣判前": 32495, + "ortex": 32496, + "▁Fashion": 32497, + "Old": 32498, + "getInstance": 32499, + "本案案件受理费": 32500, + "▁Curt": 32501, + "uo": 32502, + "▁Sit": 32503, + "catalog": 32504, + "▁handful": 32505, + "高档": 32506, + "▁Gem": 32507, + "noise": 32508, + "▁humor": 32509, + "Annotation": 32510, + "▁lakes": 32511, + "▁wines": 32512, + "▁Kid": 32513, + "长方形的": 32514, + "▁prestigious": 32515, + "▁Electronic": 32516, + "▁CBS": 32517, + "▁shoe": 32518, + "▁inherent": 32519, + "ATP": 32520, + "▁amy": 32521, + "▁Shanghai": 32522, + "欺负": 32523, + "▁pt": 32524, + "▁Sanders": 32525, + "开源": 32526, + "旅馆": 32527, + "▁traditions": 32528, + "▁partnerships": 32529, + "旅行社": 32530, + "买卖合同": 32531, + "▁Movement": 32532, + "▁Orchestra": 32533, + "▁深圳市": 32534, + "日常生活": 32535, + "▁textbook": 32536, + "子和": 32537, + "Seed": 32538, + "inced": 32539, + "pf": 32540, + "▁rs": 32541, + "edly": 32542, + "一枚": 32543, + "排队": 32544, + "消费者的": 32545, + "Apple": 32546, + "▁roster": 32547, + "▁diffraction": 32548, + "亮相": 32549, + "▁normalized": 32550, + "▁PAR": 32551, + "▁homeostasis": 32552, + "Who": 32553, + "▁ns": 32554, + "choose": 32555, + "▁Classification": 32556, + "完善的": 32557, + "▁eighth": 32558, + "香菇": 32559, + "面积为": 32560, + "▁Mes": 32561, + "▁Drag": 32562, + "▁Plugin": 32563, + "rea": 32564, + "不具备": 32565, + "▁este": 32566, + "trm": 32567, + "▁Clay": 32568, + "▁cancellation": 32569, + "\\';": 32570, + "未在": 32571, + "nWilliam": 32572, + "不小心": 32573, + "storm": 32574, + "▁cleared": 32575, + "REMO": 32576, + "▁dried": 32577, + "▁Gov": 32578, + "ploys": 32579, + "有关的": 32580, + "▁cref": 32581, + "南区": 32582, + "▁auditory": 32583, + "一中": 32584, + "乘积": 32585, + "的真": 32586, + "▁起点网": 32587, + "hemas": 32588, + "sorted": 32589, + "uitary": 32590, + "▁myster": 32591, + "vascular": 32592, + "▁drum": 32593, + "▁twitter": 32594, + "Trigger": 32595, + "之心": 32596, + "official": 32597, + "▁多": 32598, + "誉为": 32599, + "首页": 32600, + "▁perpet": 32601, + "剪辑": 32602, + "职业教育": 32603, + "▁fixture": 32604, + "nmain": 32605, + "▁Athletic": 32606, + "▁permeability": 32607, + "嘉兴": 32608, + "市中心": 32609, + "针对性": 32610, + "Mart": 32611, + "▁Jama": 32612, + "▁endblock": 32613, + "▁Kel": 32614, + "zerbai": 32615, + "两地": 32616, + "驾驶员": 32617, + "专业知识": 32618, + "走过": 32619, + "rates": 32620, + "▁eigenvalues": 32621, + "岩石": 32622, + "教训": 32623, + "yman": 32624, + "imming": 32625, + "▁climbing": 32626, + "ло": 32627, + "阴谋": 32628, + "▁contraction": 32629, + "Img": 32630, + "▁altitude": 32631, + "做题": 32632, + "ntags": 32633, + "zm": 32634, + "▁commod": 32635, + "▁additive": 32636, + ">'": 32637, + "新车": 32638, + "▁Plate": 32639, + "Ui": 32640, + "的人们": 32641, + "评论区": 32642, + "▁gambling": 32643, + "▁ко": 32644, + "talk": 32645, + "▁forgotten": 32646, + "排出": 32647, + "Try": 32648, + "为主的": 32649, + "▁Prof": 32650, + "gradle": 32651, + ");//": 32652, + "tutorial": 32653, + "runs": 32654, + "但这": 32655, + "惩罚": 32656, + "CONT": 32657, + "mapper": 32658, + "▁winds": 32659, + "▁folding": 32660, + "高位": 32661, + "▁charm": 32662, + "收拾": 32663, + "▁ceramic": 32664, + "载明": 32665, + "侦查": 32666, + "▁heterogeneity": 32667, + "▁Wor": 32668, + "▁Flex": 32669, + "▁geomet": 32670, + "parseInt": 32671, + "▁女": 32672, + "在案": 32673, + "怎么说": 32674, + "▁simplicity": 32675, + "▁intercept": 32676, + "甲状腺": 32677, + "▁Parish": 32678, + "▁lex": 32679, + "自在": 32680, + "算式": 32681, + "▁Pand": 32682, + "▁shar": 32683, + "▁flavors": 32684, + "弯曲": 32685, + "▁ya": 32686, + "▁organism": 32687, + "CAR": 32688, + "系统中": 32689, + "ilage": 32690, + "决定的": 32691, + "可以让": 32692, + "unda": 32693, + "nVideo": 32694, + "▁implementations": 32695, + "港澳": 32696, + "零食": 32697, + "老家": 32698, + "NonNull": 32699, + "架空": 32700, + "▁Theme": 32701, + "▁segmentation": 32702, + "▁volcan": 32703, + "企业在": 32704, + "内容的": 32705, + "价钱": 32706, + "执恢": 32707, + "崩溃": 32708, + "bey": 32709, + "▁legendary": 32710, + "相差": 32711, + "结尾": 32712, + "tS": 32713, + "▁jury": 32714, + "我相信": 32715, + "▁Margaret": 32716, + "高原": 32717, + "不做": 32718, + "推送": 32719, + "要求被执行人": 32720, + "▁Toyota": 32721, + "▁resting": 32722, + "Bbb": 32723, + "了多少": 32724, + "某某与被告": 32725, + "▁分布": 32726, + "半导体": 32727, + "▁lawn": 32728, + "唿吸": 32729, + "肝脏": 32730, + "▁nd": 32731, + "▁exploit": 32732, + "▁schedules": 32733, + "外贸": 32734, + "高度重视": 32735, + "anas": 32736, + "mini": 32737, + "▁Δ": 32738, + "Done": 32739, + "钢管": 32740, + "▁salad": 32741, + "不安": 32742, + "几个月": 32743, + "same": 32744, + "▁Lip": 32745, + "QR": 32746, + "▁accelerate": 32747, + "养护": 32748, + "▁axes": 32749, + "reject": 32750, + "定点": 32751, + "醒来": 32752, + "today": 32753, + "ctrl": 32754, + "▁tale": 32755, + "▁Storm": 32756, + "小小": 32757, + "ffic": 32758, + "仲裁裁决": 32759, + "isset": 32760, + "一堆": 32761, + "University": 32762, + "Std": 32763, + "▁NBC": 32764, + "年限": 32765, + "▁ambig": 32766, + "悲伤": 32767, + "证据充分": 32768, + "▁colorful": 32769, + "有一次": 32770, + "incipal": 32771, + "jud": 32772, + "我一直": 32773, + "▁交通": 32774, + "▁spa": 32775, + "ensen": 32776, + "oslav": 32777, + "▁finishes": 32778, + "带上": 32779, + "生产任务": 32780, + "TX": 32781, + "译者": 32782, + "北京大学": 32783, + "过得": 32784, + "▁Anc": 32785, + "棉花": 32786, + "sep": 32787, + "▁Parker": 32788, + "▁graduating": 32789, + "▁cuisine": 32790, + "沉积": 32791, + "▁Camb": 32792, + "你去": 32793, + "▁\\'\\": 32794, + "riors": 32795, + "揭示": 32796, + "maven": 32797, + "执照": 32798, + "ylase": 32799, + "▁cleaner": 32800, + "▁Processing": 32801, + "kk": 32802, + "美学": 32803, + "定时": 32804, + "STEM": 32805, + "还是有": 32806, + "▁editorial": 32807, + "▁FE": 32808, + "amas": 32809, + "hyde": 32810, + "网民": 32811, + "▁Stanford": 32812, + "十八章": 32813, + "▁kits": 32814, + "keyword": 32815, + "expensive": 32816, + "电台": 32817, + "VIP": 32818, + "业务的": 32819, + "选项中挑": 32820, + "▁naming": 32821, + "agne": 32822, + "户籍证明": 32823, + "洗澡": 32824, + "gain": 32825, + "司令": 32826, + "▁harsh": 32827, + "nRelated": 32828, + "▁antimicrobial": 32829, + "保卫": 32830, + "▁Swift": 32831, + "一番": 32832, + "▁SB": 32833, + "Blog": 32834, + "Arguments": 32835, + "人身": 32836, + "lli": 32837, + "ursion": 32838, + "▁adolescent": 32839, + "而非": 32840, + "▁sudo": 32841, + "露出": 32842, + "nShow": 32843, + "setText": 32844, + "keleton": 32845, + "各样的": 32846, + "土耳": 32847, + "▁wx": 32848, + "▁Foot": 32849, + "Encoding": 32850, + "室外": 32851, + "rosso": 32852, + "peer": 32853, + "repr": 32854, + "化市": 32855, + "起的": 32856, + "奶牛": 32857, + "nBr": 32858, + "高品质": 32859, + "▁switches": 32860, + "▁administrator": 32861, + "▁Barry": 32862, + "▁betting": 32863, + "前者": 32864, + "太太": 32865, + "ashing": 32866, + "▁Madison": 32867, + "▁Commissioner": 32868, + "▁dispute": 32869, + "TG": 32870, + "uchy": 32871, + "▁Southeast": 32872, + "▁所": 32873, + "▁prol": 32874, + "片的": 32875, + "istani": 32876, + "ます": 32877, + "amins": 32878, + "▁Crypt": 32879, + "▁Jerry": 32880, + "古城": 32881, + "氨酸": 32882, + "直流": 32883, + "▁Squad": 32884, + "▁linux": 32885, + "肥胖": 32886, + "在上海": 32887, + "▁judgment": 32888, + "▁Equipment": 32889, + "▁endpoints": 32890, + "▁aneur": 32891, + "▁DNS": 32892, + "▁Eston": 32893, + "▁finals": 32894, + "tun": 32895, + "quire": 32896, + "workers": 32897, + "▁compassion": 32898, + "▁compelling": 32899, + "cke": 32900, + "高科技": 32901, + "ustralia": 32902, + "picker": 32903, + "结束了": 32904, + "acies": 32905, + "styled": 32906, + "▁Larry": 32907, + "乡村振兴": 32908, + "▁Artist": 32909, + "▁graduation": 32910, + "试用": 32911, + "▁reactivity": 32912, + "最长": 32913, + "结石": 32914, + "aky": 32915, + "▁}}::": 33159, + "土耳其": 33160, + "▁offense": 33161, + "▁atrial": 33162, + "整齐": 33163, + "emb": 33164, + "idation": 33165, + "沙漠": 33166, + "▁peri": 33167, + "▁vibration": 33168, + "分布于": 33169, + "nNotable": 33170, + "▁promotional": 33171, + "djangoproject": 33172, + "webs": 33173, + "▁inquiry": 33174, + "代表团": 33175, + "sembles": 33176, + "脉冲": 33177, + "酸盐": 33178, + "▁Suz": 33179, + "富含": 33180, + "say": 33181, + "最后一个": 33182, + "Classes": 33183, + "复发": 33184, + "底线": 33185, + "捐赠": 33186, + "istoric": 33187, + "▁Motion": 33188, + "相继": 33189, + "▁Kur": 33190, + "非要": 33191, + "cx": 33192, + "▁deemed": 33193, + "nPersonnel": 33194, + "的任务": 33195, + "lv": 33196, + "据此解答": 33197, + "▁Pri": 33198, + "▁benz": 33199, + "ortium": 33200, + "▁Batt": 33201, + "下车": 33202, + "只好": 33203, + "▁harass": 33204, + "tie": 33205, + "发扬": 33206, + "在对": 33207, + "大同": 33208, + "难免": 33209, + "▁retin": 33210, + "meth": 33211, + "ophila": 33212, + "▁lighter": 33213, + "黄瓜": 33214, + "监督管理": 33215, + "▁decode": 33216, + "形式的": 33217, + "nPublished": 33218, + "从严": 33219, + "信息系统": 33220, + "▁WA": 33221, + "Backend": 33222, + "他对": 33223, + "的后": 33224, + "nsh": 33225, + "tid": 33226, + "undo": 33227, + "大酒店": 33228, + "▁lately": 33229, + "隶属于": 33230, + "▁miR": 33231, + "少数民族": 33232, + "starter": 33233, + "车身": 33234, + "较少": 33235, + "▁provisions": 33236, + "面膜": 33237, + "Images": 33238, + "一事": 33239, + "Ann": 33240, + "▁protects": 33241, + "保管": 33242, + "ounge": 33243, + "ти": 33244, + "原油": 33245, + "acin": 33246, + "mented": 33247, + "Reducer": 33248, + "▁approaching": 33249, + "ollo": 33250, + "▁banner": 33251, + "▁strand": 33252, + "兑换": 33253, + "Ray": 33254, + "DELETE": 33255, + "磨损": 33256, + "▁reign": 33257, + "▁labeling": 33258, + "rys": 33259, + "▁Hun": 33260, + "irements": 33261, + "一首": 33262, + "机械设备": 33263, + "▁hoped": 33264, + "”[": 33265, + "病因": 33266, + "VT": 33267, + "冷水": 33268, + "衔接": 33269, + "关注的": 33270, + "教育教学": 33271, + "年获": 33272, + "▁concentrate": 33273, + "▁acted": 33274, + "判决确定之日起计算": 33275, + "MAN": 33276, + "sidebar": 33277, + "造价": 33278, + "▁Maj": 33279, + "第一步": 33280, + "dan": 33281, + "Radius": 33282, + "artist": 33283, + "doctoral": 33284, + "▁systematically": 33285, + "▁phon": 33286, + "分级": 33287, + "吉祥": 33288, + "四个月": 33289, + "代数式": 33290, + "的倍数": 33291, + "▁diets": 33292, + "▁leisure": 33293, + "▁Furniture": 33294, + "双眼": 33295, + "无期徒刑": 33296, + "▁Apply": 33297, + "▁controversy": 33298, + "无意": 33299, + "填充": 33300, + "等你": 33301, + "▁diagrams": 33302, + "可以去": 33303, + "▁organizing": 33304, + "incinnati": 33305, + "风流": 33306, + "▁,\\": 33307, + "nTransport": 33308, + "blind": 33309, + "▁Robin": 33310, + "Temp": 33311, + "jackson": 33312, + "▁avoided": 33313, + "▁viability": 33314, + "▁transforming": 33315, + "▁Comments": 33316, + "履行生效法律文书确定的义务": 33317, + "住在": 33318, + "部分的": 33319, + "▁mM": 33320, + "▁Luke": 33321, + "▁Homes": 33322, + "DataSource": 33323, + "剖析": 33324, + "gom": 33325, + "▁Rust": 33326, + "▁sponsor": 33327, + "原件": 33328, + "▁pall": 33329, + "患儿": 33330, + "秋天": 33331, + "tname": 33332, + "▁defending": 33333, + "NAB": 33334, + "phant": 33335, + "###\\": 33336, + "EGIN": 33337, + "在法定期限内": 33338, + "▁predictor": 33339, + "▁Christians": 33340, + "▁Investment": 33341, + "不尽": 33342, + "cms": 33343, + "没必要": 33344, + "给孩子": 33345, + "我不是": 33346, + "isciplinary": 33347, + "浓郁": 33348, + "▁所以": 33349, + "▁engr": 33350, + "▁funeral": 33351, + "▁Jour": 33352, + "▁cows": 33353, + "reading": 33354, + "▁Michelle": 33355, + "▁geographic": 33356, + "leukin": 33357, + "企业和": 33358, + "▁Berkeley": 33359, + "▁\\'{": 33360, + "鲜花": 33361, + "的味道": 33362, + "信访": 33363, + "▁hints": 33364, + "tnew": 33365, + "▁nutrient": 33366, + "读取": 33367, + "▁Meet": 33368, + "▁denotes": 33369, + "年华": 33370, + "▁设施": 33371, + "▁parental": 33372, + "(<": 33373, + "大方": 33374, + "发表于起点网": 33375, + "▁incorporation": 33376, + "应诉": 33377, + "薪资": 33378, + "▁cob": 33379, + "▁arena": 33380, + "车牌": 33381, + "辞典": 33382, + "的支持": 33383, + "sock": 33384, + "stri": 33385, + "▁judg": 33386, + "商会": 33387, + "strategy": 33388, + "uu": 33389, + "产值": 33390, + "支架": 33391, + "nThose": 33392, + "▁dressing": 33393, + "召唤": 33394, + "bid": 33395, + "cmp": 33396, + "分析过程": 33397, + "▁unity": 33398, + "▁remed": 33399, + "▁Nur": 33400, + "▁Recomm": 33401, + "▁brace": 33402, + "vit": 33403, + "ivia": 33404, + "▁visa": 33405, + "yang": 33406, + "就去": 33407, + "践行": 33408, + "建设和": 33409, + "▁imposed": 33410, + "▁occupation": 33411, + "▁exclude": 33412, + "亲属": 33413, + "心中的": 33414, + "arette": 33415, + "▁angry": 33416, + "▁intrig": 33417, + "▁Bengal": 33418, + "▁明": 33419, + "纠正": 33420, + "▁consuming": 33421, + "rochemical": 33422, + "性与": 33423, + "持久": 33424, + "$(\\'#": 33425, + "加减": 33426, + "▁laundry": 33427, + ":]": 33428, + "RG": 33429, + "但由于": 33430, + "must": 33431, + "fileName": 33432, + "▁Computing": 33433, + "的品牌": 33434, + "注明": 33435, + "▁bowel": 33436, + "▁Length": 33437, + "▁Exercise": 33438, + "信赖": 33439, + "techo": 33440, + "ophosph": 33441, + "tick": 33442, + "就说": 33443, + "Constraint": 33444, + "▁trafficking": 33445, + "落在": 33446, + "posium": 33447, + "▁girlfriend": 33448, + "这套": 33449, + "AIN": 33450, + "▁\"{": 33451, + "▁Explorer": 33452, + "金融借款合同纠纷一案": 33453, + "▁physiology": 33454, + "▁priest": 33455, + "COLOR": 33456, + "▁cortic": 33457, + "UTO": 33458, + "▁awk": 33459, + "▁granul": 33460, + "Cat": 33461, + "本案的": 33462, + "▁FIFA": 33463, + "▁Luis": 33464, + "iliates": 33465, + "Period": 33466, + "ndecl": 33467, + "NaN": 33468, + "▁accepts": 33469, + "领导小组": 33470, + "在这种": 33471, + "字体": 33472, + "当我": 33473, + "▁coordinated": 33474, + "▁ga": 33475, + "大概率": 33476, + "nfi": 33477, + "ebra": 33478, + "▁neighbourhood": 33479, + "($_": 33480, + "does": 33481, + "有利": 33482, + "饮水": 33483, + "▁Cad": 33484, + "▁Helper": 33485, + "恰好": 33486, + "高三": 33487, + "▁lumin": 33488, + "石化": 33489, + "制药": 33490, + "树的": 33491, + "诉前": 33492, + "▁argues": 33493, + "做得": 33494, + "冲洗": 33495, + "行使": 33496, + "dehyde": 33497, + "▁refined": 33498, + "▁nomination": 33499, + "履行债务": 33500, + "acious": 33501, + "▁niche": 33502, + "▁tubes": 33503, + "对的": 33504, + "入住时间": 33505, + "▁mell": 33506, + "当成": 33507, + "{{{": 33508, + "▁ONE": 33509, + "▁aeros": 33510, + "uclidean": 33511, + "▁democracy": 33512, + "▁TIME": 33513, + "▁accessibility": 33514, + "书的": 33515, + "古人": 33516, + "向右": 33517, + "离职": 33518, + "eni": 33519, + "在前": 33520, + "原材料": 33521, + "▁Fri": 33522, + "▁NON": 33523, + "▁tears": 33524, + "山的": 33525, + "菩萨": 33526, + "新生儿": 33527, + "indices": 33528, + "▁warming": 33529, + "UPDATE": 33530, + "▁за": 33531, + "▁commut": 33532, + "nExplanation": 33533, + "很小": 33534, + "雕塑": 33535, + "民俗": 33536, + "点到": 33537, + "▁surre": 33538, + "▁Accept": 33539, + "悠悠": 33540, + "答题": 33541, + "elong": 33542, + "▁Clinic": 33543, + "农历": 33544, + "ojo": 33545, + "一下子": 33546, + "的认识": 33547, + "自家": 33548, + "可以从轻处罚": 33549, + "宣传部": 33550, + "防晒": 33551, + "▁];": 33552, + "▁Ign": 33553, + "dotnet": 33554, + "gue": 33555, + "nChe": 33556, + "▁作品名称": 33557, + "▁northeast": 33558, + "门票": 33559, + "申请撤回起诉": 33560, + "信托": 33561, + "▁人物经历": 33562, + "▁balloon": 33563, + "solution": 33564, + "东南亚": 33565, + "neath": 33566, + "▁physic": 33567, + "特尔": 33568, + "▁Billy": 33569, + "Ti": 33570, + "▁ja": 33571, + "meter": 33572, + "毛病": 33573, + "慰问": 33574, + "▁Bin": 33575, + "wright": 33576, + "▁相关条款": 33577, + "manual": 33578, + "检公诉": 33579, + "SEO": 33580, + "我国的": 33581, + "观察组": 33582, + "经济增长": 33583, + "▁premises": 33584, + "aac": 33585, + "▁sofa": 33586, + "▁accent": 33587, + "扣划": 33588, + "▁cocon": 33589, + "清华大学": 33590, + "onChange": 33591, + "▁traded": 33592, + "合一": 33593, + "▁gloss": 33594, + "records": 33595, + "▁东": 33596, + "其中有": 33597, + "▁mush": 33598, + "▁snapshot": 33599, + "▁compositions": 33600, + "Seq": 33601, + "nState": 33602, + "▁tricks": 33603, + "▁semester": 33604, + "当局": 33605, + "▁Evidence": 33606, + "▁kilometers": 33607, + "第五十二条": 33608, + "国际化": 33609, + "▁beloved": 33610, + "STATE": 33611, + "▁RS": 33612, + "举行的": 33613, + "▁convicted": 33614, + "▁integrals": 33615, + "分组": 33616, + "▁Watson": 33617, + "瑞典": 33618, + "ighting": 33619, + "▁lectures": 33620, + "▁四": 33621, + "▁vapor": 33622, + "qi": 33623, + "昆虫": 33624, + "媒介": 33625, + "Once": 33626, + "了解一下": 33627, + "▁allergic": 33628, + "▁outlets": 33629, + "走访": 33630, + "topics": 33631, + "▁waist": 33632, + "夫妇": 33633, + "就连": 33634, + "nOrgan": 33635, + "开花": 33636, + "LAY": 33637, + "Transfer": 33638, + "Inc": 33639, + "▁maj": 33640, + "▁prizes": 33641, + "是被": 33642, + "▁filmm": 33643, + "友情": 33644, + "我们需要": 33645, + ";(": 33646, + "决定了": 33647, + "他们还": 33648, + "探讨了": 33649, + "lict": 33650, + "日登记结婚": 33651, + "仍有": 33652, + "向东": 33653, + "▁Lions": 33654, + "命中": 33655, + "▁controllers": 33656, + "面料": 33657, + "宪法": 33658, + "▁Julia": 33659, + "▁ti": 33660, + "▁favorites": 33661, + "太过": 33662, + "拒不": 33663, + "本周": 33664, + "▁hed": 33665, + "大全": 33666, + "\\\\\",": 33667, + "oglob": 33668, + "▁algebras": 33669, + "痕迹": 33670, + "羊肉": 33671, + "也可能": 33672, + "▁motorcycle": 33673, + "▁interviewed": 33674, + "走路": 33675, + "nSign": 33676, + "▁Chron": 33677, + "▁essays": 33678, + "▁ramp": 33679, + "ocytosis": 33680, + "共建": 33681, + "近几年": 33682, + "itatively": 33683, + "ermark": 33684, + "▁positioned": 33685, + "绝大多数": 33686, + "▁timed": 33687, + "feld": 33688, + "raham": 33689, + "每一次": 33690, + "dv": 33691, + "洗衣机": 33692, + "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁": 33693, + "▁cele": 33694, + "众所周知": 33695, + "listener": 33696, + "▁WHO": 33697, + "▁appreciation": 33698, + "▁GHz": 33699, + "▁transduction": 33700, + "充分利用": 33701, + "将成为": 33702, + "▁Roberts": 33703, + "▁Emeritus": 33704, + "▁gravitational": 33705, + "很喜欢": 33706, + "▁Enh": 33707, + "▁Rather": 33708, + "▁purely": 33709, + "▁mailing": 33710, + "开封": 33711, + "必定": 33712, + "▁Chain": 33713, + "成立了": 33714, + "强烈的": 33715, + "秋风": 33716, + "▁obstacles": 33717, + "yc": 33718, + "奥斯": 33719, + "▁appet": 33720, + "▁%>": 33721, + "engu": 33722, + "马来西亚": 33723, + "▁Tigers": 33724, + "大海": 33725, + "清代": 33726, + "arently": 33727, + "digital": 33728, + "▁Luck": 33729, + "opoietic": 33730, + "▁dressed": 33731, + "老大": 33732, + "打卡": 33733, + "空军": 33734, + "老鼠": 33735, + "itary": 33736, + "▁honour": 33737, + "acterial": 33738, + "Typ": 33739, + "总书记": 33740, + "对该犯": 33741, + "▁practicing": 33742, + "far": 33743, + "ocular": 33744, + "▁Rivers": 33745, + "男的": 33746, + "writers": 33747, + "manage": 33748, + "▁bean": 33749, + "fixture": 33750, + "▁Kirk": 33751, + "▁supplements": 33752, + "nPS": 33753, + "elles": 33754, + "pressed": 33755, + "年第": 33756, + "▁accessing": 33757, + "街头": 33758, + "了被执行人": 33759, + "▁PB": 33760, + "▁Democrat": 33761, + "<\\": 33762, + "卖出": 33763, + "Commands": 33764, + "nVery": 33765, + "▁flowing": 33766, + "▁friendship": 33767, + "IPS": 33768, + "}}^{": 33769, + "▁rgb": 33770, + "▁Buddh": 33771, + "研究生院": 33772, + "touch": 33773, + "▁Extract": 33774, + "▁Iceland": 33775, + "时长": 33776, + "论证": 33777, + "CLASS": 33778, + "▁initiate": 33779, + "tub": 33780, + "▁cooperative": 33781, + "FilePath": 33782, + "老虎": 33783, + "给出了": 33784, + "▁Chelsea": 33785, + "▁HOLDERS": 33786, + "▁fundament": 33787, + "市中": 33788, + "监理": 33789, + "Sound": 33790, + "本院依法适用简易程序": 33791, + "ecom": 33792, + "▁throughput": 33793, + "emade": 33794, + "gateway": 33795, + "瓷砖": 33796, + "faster": 33797, + "▁honored": 33798, + "▁Expected": 33799, + "▁):\\": 33800, + "硕士学位": 33801, + "▁拉丁": 33802, + "azole": 33803, + "eclipse": 33804, + "科室": 33805, + "一律": 33806, + "想说": 33807, + "AVA": 33808, + "医科大学": 33809, + "可以根据": 33810, + "乘以": 33811, + "igating": 33812, + "erget": 33813, + "差点": 33814, + "贯穿": 33815, + "KO": 33816, + "▁spat": 33817, + "看你": 33818, + "的比例": 33819, + "cedure": 33820, + "▁Fisher": 33821, + "▁whites": 33822, + "中途": 33823, + "我也是": 33824, + "▁Notice": 33825, + "怪物": 33826, + "▁Stay": 33827, + "coverage": 33828, + "South": 33829, + "▁absorb": 33830, + "games": 33831, + "Low": 33832, + "洋葱": 33833, + "▁Until": 33834, + "▁Bernard": 33835, + "▁adventures": 33836, + "叔叔": 33837, + "报表": 33838, + "essa": 33839, + "农村经济": 33840, + "Desktop": 33841, + "大米": 33842, + "duino": 33843, + "区人民检察院以": 33844, + "▁Various": 33845, + "▁appropriately": 33846, + "生殖": 33847, + "想的": 33848, + "imm": 33849, + "refs": 33850, + "▁REST": 33851, + "wi": 33852, + "▁Prep": 33853, + "▁Github": 33854, + "▁Picture": 33855, + "DateTimeField": 33856, + "nPaul": 33857, + "不来": 33858, + "人为本": 33859, + "▁Ran": 33860, + "▁athletic": 33861, + "价款": 33862, + "已经在": 33863, + "phantom": 33864, + "▁Baptist": 33865, + "▁ids": 33866, + "handlers": 33867, + "▁Regular": 33868, + "▁Extra": 33869, + "Ma": 33870, + "天上": 33871, + "▁Equation": 33872, + "退货": 33873, + "NUM": 33874, + "▁caf": 33875, + "管理员": 33876, + "quantity": 33877, + "已经有": 33878, + "的实现": 33879, + "▁Austrian": 33880, + "哪种": 33881, + "所求": 33882, + "用到的": 33883, + "viewport": 33884, + "▁hypoxia": 33885, + "▁guarantees": 33886, + "eward": 33887, + "signature": 33888, + "▁Pil": 33889, + "还是比较": 33890, + "icked": 33891, + "WP": 33892, + "▁冯": 33893, + "Lines": 33894, + "▁Agriculture": 33895, + "我最": 33896, + "缺失": 33897, + "以色列": 33898, + "xit": 33899, + "结晶": 33900, + "副总经理": 33901, + "▁storing": 33902, + "▁NM": 33903, + "Running": 33904, + "▁tx": 33905, + "▁\\\\(\\\\": 33906, + "海岸": 33907, + "▁trainer": 33908, + "渲染": 33909, + "文案": 33910, + "这些都是": 33911, + "ussels": 33912, + "他用": 33913, + "robe": 33914, + "cad": 33915, + "再见": 33916, + "▁burg": 33917, + "▁Differential": 33918, + "▁surprisingly": 33919, + "▁unprecedented": 33920, + "Small": 33921, + "外资": 33922, + "方法和": 33923, + "▁Harm": 33924, + "▁evolving": 33925, + "usted": 33926, + "▁Points": 33927, + "Sil": 33928, + "▁qualification": 33929, + "外地": 33930, + "失眠": 33931, + "▁Updated": 33932, + "上映": 33933, + "NODE": 33934, + "▁Nar": 33935, + "accounts": 33936, + "▁drawings": 33937, + "]>": 33938, + "CONF": 33939, + "的艺术": 33940, + "执行条件": 33941, + "%~": 33942, + "%%%%": 33943, + "Then": 33944, + "staff": 33945, + "轮回": 33946, + "uvant": 33947, + "▁Plot": 33948, + "ци": 33949, + "nJapanese": 33950, + "二个月": 33951, + "▁pressed": 33952, + "号案": 33953, + "venile": 33954, + "督导": 33955, + "注意力": 33956, + "▁Political": 33957, + "▁specimen": 33958, + "亚马": 33959, + "的一般": 33960, + "表示为": 33961, + "iji": 33962, + "Fast": 33963, + "▁buses": 33964, + "▁alloy": 33965, + "▁examinations": 33966, + "▁referral": 33967, + "▁Handle": 33968, + "诊疗": 33969, + "儿女": 33970, + "▁Consumer": 33971, + "▁excitation": 33972, + "不愿": 33973, + "SUV": 33974, + "termin": 33975, + "ISS": 33976, + "arrass": 33977, + "▁Surgery": 33978, + "零点": 33979, + "▁medals": 33980, + "▁protests": 33981, + "脑袋": 33982, + "elp": 33983, + "选项错误": 33984, + "本院于同": 33985, + "▁fibroblasts": 33986, + "▁Holiday": 33987, + "▁coil": 33988, + "▁lungs": 33989, + "autiful": 33990, + "科员": 33991, + "ramid": 33992, + "▁Schedule": 33993, + "的意见": 33994, + "▁temporarily": 33995, + "nWatch": 33996, + "积极性": 33997, + "等因素": 33998, + "onucle": 33999, + "▁Observable": 34000, + "nAv": 34001, + "▁dots": 34002, + "条第一款之规定": 34003, + "visor": 34004, + "ulmonary": 34005, + "▁proceeds": 34006, + "▁annotation": 34007, + "七八": 34008, + "▁Gate": 34009, + "▁notified": 34010, + "▁Competition": 34011, + "离家": 34012, + "办公厅": 34013, + "▁theft": 34014, + "yu": 34015, + "事先": 34016, + "简化": 34017, + "▁perc": 34018, + "定向": 34019, + "▁aberr": 34020, + "▁cores": 34021, + "▁TA": 34022, + "▁synerg": 34023, + "篇小说": 34024, + "▁obsc": 34025, + "establish": 34026, + "verts": 34027, + "nSchool": 34028, + "▁soundtrack": 34029, + "的体积": 34030, + "的理论": 34031, + "研究方向": 34032, + "艰苦": 34033, + "▁√": 34034, + "idding": 34035, + "和一个": 34036, + "▁Orlando": 34037, + "长久": 34038, + "▁Solid": 34039, + "整天": 34040, + "十九章": 34041, + "下游": 34042, + "味的": 34043, + "将继续": 34044, + "posure": 34045, + "▁candy": 34046, + "Describe": 34047, + "freq": 34048, + "▁spotted": 34049, + "orum": 34050, + "▁Haz": 34051, + "desktop": 34052, + "信用卡中心": 34053, + "prising": 34054, + "▁hierarchy": 34055, + "射线": 34056, + "hall": 34057, + "共同生活": 34058, + "ievable": 34059, + "分明": 34060, + "▁directories": 34061, + "使用了": 34062, + "nMichael": 34063, + "▁overflow": 34064, + "▁clouds": 34065, + "▁worlds": 34066, + "▁Turner": 34067, + "▁Generate": 34068, + "bib": 34069, + "很高的": 34070, + "的用户": 34071, + "Country": 34072, + "rieved": 34073, + "买到": 34074, + "enton": 34075, + "itten": 34076, + "SULT": 34077, + "▁punch": 34078, + "▁enlarg": 34079, + "▁Academic": 34080, + "Mg": 34081, + "▁Steam": 34082, + "高低": 34083, + "处在": 34084, + "getValue": 34085, + "可以将": 34086, + "▁Certified": 34087, + "所得税": 34088, + "▁xen": 34089, + "报告财产": 34090, + "重要参数": 34091, + "▁reflecting": 34092, + "埃及": 34093, + "OFF": 34094, + "检公诉刑诉": 34095, + "imi": 34096, + "▁barg": 34097, + "▁Hack": 34098, + "▁corporations": 34099, + "okia": 34100, + "}}\\\\)": 34101, + "UTE": 34102, + "的可能性": 34103, + "icketer": 34104, + "▁Collabor": 34105, + "辩护人": 34106, + "Updated": 34107, + "▁rm": 34108, + "▁minerals": 34109, + "为本": 34110, + "测评": 34111, + "筹码": 34112, + "cedes": 34113, + "▁sweat": 34114, + "尔德": 34115, + "徐州": 34116, + "▁energet": 34117, + "溶解": 34118, + "行走": 34119, + "这座": 34120, + "mine": 34121, + "▁Hab": 34122, + "正方形的": 34123, + "lishes": 34124, + "▁informal": 34125, + "夸张": 34126, + "LAN": 34127, + "▁Adobe": 34128, + "iton": 34129, + "▁Eagles": 34130, + "之类": 34131, + "白糖": 34132, + "▁Shar": 34133, + "organic": 34134, + "彰显": 34135, + "▁fires": 34136, + "涨幅": 34137, + "风暴": 34138, + "不吃": 34139, + "tB": 34140, + "不良反应": 34141, + "佛山": 34142, + "▁Jav": 34143, + "▁Johnny": 34144, + "sharp": 34145, + "▁grocery": 34146, + "了的": 34147, + "也不要": 34148, + "nRound": 34149, + "ENTS": 34150, + "▁resigned": 34151, + "不该": 34152, + "ardless": 34153, + "交通安全": 34154, + "▁terrain": 34155, + "悄悄": 34156, + "anco": 34157, + "▁Viol": 34158, + "▁Advisory": 34159, + "▁Broadway": 34160, + "InstanceState": 34161, + "历经": 34162, + "▁retrieval": 34163, + "▁precipitation": 34164, + "▁Vue": 34165, + "nUnit": 34166, + "▁Redist": 34167, + "Snapshot": 34168, + "▁essence": 34169, + "▁contamination": 34170, + "layouts": 34171, + "ymal": 34172, + "▁luxurious": 34173, + "中共中央": 34174, + "\\']:\\": 34175, + "▁applicant": 34176, + "▁declaration": 34177, + "▁APIs": 34178, + "侵略": 34179, + "原唱": 34180, + "▁HLA": 34181, + "▁Setting": 34182, + "▁methylation": 34183, + "的操作": 34184, + "aconda": 34185, + "eri": 34186, + "Grad": 34187, + "thand": 34188, + "▁Looks": 34189, + "预报": 34190, + "▁stressed": 34191, + "▁MAC": 34192, + "科幻": 34193, + "nLeg": 34194, + "服务业": 34195, + "的前提下": 34196, + "ADDRESS": 34197, + "Mc": 34198, + "([\"": 34199, + "▁Err": 34200, + "失效": 34201, + "▁Sz": 34202, + "▁ib": 34203, + "分之一": 34204, + "▁Speaker": 34205, + "▁prompted": 34206, + "▁referenced": 34207, + "pyp": 34208, + "▁Kos": 34209, + "▁evaluations": 34210, + "ottage": 34211, + "▁ni": 34212, + "inkle": 34213, + "veolar": 34214, + "Research": 34215, + "owns": 34216, + "归案后": 34217, + "brev": 34218, + "getId": 34219, + "wig": 34220, + "了一次": 34221, + "因与被上诉人": 34222, + "Pin": 34223, + "district": 34224, + "▁unfold": 34225, + "▁Companies": 34226, + "PAGE": 34227, + "▁analyse": 34228, + "▁jumping": 34229, + "灵敏": 34230, + "为进一步": 34231, + "一脸": 34232, + "菊花": 34233, + "幂的": 34234, + "演艺": 34235, + "▁Vec": 34236, + "▁proves": 34237, + "文化和": 34238, + "微微": 34239, + "▁Karl": 34240, + "点的距离": 34241, + "appers": 34242, + "Michael": 34243, + "nFour": 34244, + "未作": 34245, + "聚合": 34246, + "多功能": 34247, + "快速发展": 34248, + "Stage": 34249, + "creator": 34250, + "▁removes": 34251, + "exam": 34252, + "▁licensing": 34253, + "清醒": 34254, + "▁ministers": 34255, + "hline": 34256, + "▁STAT": 34257, + "▁formulated": 34258, + "DG": 34259, + "▁nuts": 34260, + "先天": 34261, + "南山": 34262, + "Lat": 34263, + "主要包括": 34264, + "▁Dental": 34265, + "▁fossil": 34266, + "ém": 34267, + "ginx": 34268, + "预付": 34269, + "beit": 34270, + "▁Associated": 34271, + "备受": 34272, + "Final": 34273, + "▁modeled": 34274, + "阻碍": 34275, + "第一百四十五条之规定": 34276, + "▁compartment": 34277, + "片段": 34278, + "nrouter": 34279, + "▁Maz": 34280, + "制造有限公司": 34281, + "出手": 34282, + "的撤诉申请": 34283, + "▁enemies": 34284, + "▁石": 34285, + "面积是": 34286, + "▁Moroc": 34287, + "uckland": 34288, + "istle": 34289, + "认真遵守监规": 34290, + "书店": 34291, + "▁pest": 34292, + "▁reductions": 34293, + "互联": 34294, + "](#": 34295, + "很多时候": 34296, + "boxes": 34297, + "▁artic": 34298, + "床铺": 34299, + "▁Cha": 34300, + "Writ": 34301, + "conda": 34302, + "ei": 34303, + "▁Barr": 34304, + "每个月": 34305, + "▁conductivity": 34306, + "月起": 34307, + "Delay": 34308, + "▁blade": 34309, + "▁Syrian": 34310, + "▁fucking": 34311, + "▁epidemic": 34312, + "光泽": 34313, + "▁Lion": 34314, + "全文": 34315, + "导数": 34316, + "调理": 34317, + "钢材": 34318, + "著作权": 34319, + "经原告多次": 34320, + "▁vegetable": 34321, + "▁知": 34322, + "packet": 34323, + "▁chromatin": 34324, + "学报": 34325, + "滴滴": 34326, + "nTaxa": 34327, + "市人民政府": 34328, + "▁Resume": 34329, + "Facebook": 34330, + "Generated": 34331, + "▁Beth": 34332, + "▁Summit": 34333, + "另查明": 34334, + "若干规定": 34335, + "▁Browser": 34336, + "医保": 34337, + "是真": 34338, + "落叶": 34339, + "OPY": 34340, + "ainted": 34341, + "料理": 34342, + "实用的": 34343, + "▁queen": 34344, + "▁Murphy": 34345, + "质数": 34346, + "▁pec": 34347, + "结婚登记": 34348, + "otrans": 34349, + "▁dresses": 34350, + "▁(),": 34351, + "basename": 34352, + "}>": 34353, + "nCall": 34354, + "}}\"": 34355, + "很强的": 34356, + "▁embrace": 34357, + "却又": 34358, + "▁Universe": 34359, + "nSummary": 34360, + "来到了": 34361, + "Paul": 34362, + "唤醒": 34363, + "ematic": 34364, + "▁Hispanic": 34365, + "瑜伽": 34366, + "博士学位": 34367, + "acre": 34368, + "暗示": 34369, + "vim": 34370, + "信用社": 34371, + "下列情形": 34372, + "respond": 34373, + "▁tribute": 34374, + "工程建设": 34375, + "▁glomer": 34376, + "▁Paralym": 34377, + "▁regimen": 34378, + "余数": 34379, + "发货": 34380, + "代言": 34381, + "大一": 34382, + "▁semin": 34383, + "斯基": 34384, + "▁Sci": 34385, + "Fixed": 34386, + "减速": 34387, + "仍未": 34388, + "假的": 34389, + "是非": 34390, + "efan": 34391, + "\\']);\\": 34392, + "▁badge": 34393, + "▁encrypted": 34394, + "Times": 34395, + "一体的": 34396, + "▁Crime": 34397, + "氨基酸": 34398, + "along": 34399, + "ATER": 34400, + "▁fertil": 34401, + "举办的": 34402, + "▁addict": 34403, + "技术开发": 34404, + "星级酒店": 34405, + "brit": 34406, + "▁revealing": 34407, + "▁cheer": 34408, + "▁Yahoo": 34409, + "tically": 34410, + "播种": 34411, + "nthere": 34412, + "▁Principal": 34413, + "▁Issues": 34414, + "▁innate": 34415, + "的出现": 34416, + "名家": 34417, + "Mask": 34418, + "▁Rules": 34419, + "▁explor": 34420, + "▁fluids": 34421, + "▁dividing": 34422, + "不仅仅是": 34423, + "▁hypothesized": 34424, + "▁Vik": 34425, + "▁ammon": 34426, + "▁antit": 34427, + "▁joins": 34428, + "农作物": 34429, + "的经营": 34430, + "▁crust": 34431, + "ynchronous": 34432, + "造成了": 34433, + "ITLE": 34434, + "nFollow": 34435, + "▁Signal": 34436, + "美股": 34437, + "民事权利": 34438, + "nUnfortunately": 34439, + "VIEW": 34440, + "等领域": 34441, + "sided": 34442, + "▁Parks": 34443, + "edar": 34444, + "▁differs": 34445, + "▁insects": 34446, + "川区": 34447, + "▁Keith": 34448, + "▁calories": 34449, + "转速": 34450, + "劳动合同": 34451, + "▁fixtures": 34452, + "tos": 34453, + "▁annoying": 34454, + "小龙": 34455, + "▁Guinea": 34456, + "余篇": 34457, + "ndeclare": 34458, + "nCO": 34459, + "▁Kl": 34460, + "▁iv": 34461, + "与原告": 34462, + "科学发展": 34463, + "饱满": 34464, + "Redis": 34465, + "▁Marvel": 34466, + "▁Hungarian": 34467, + "yx": 34468, + "实数根": 34469, + "▁regex": 34470, + "摆放": 34471, + "▁dorsal": 34472, + "好吗": 34473, + "ambers": 34474, + "▁metallic": 34475, + "一丝": 34476, + "中档": 34477, + "]),\\": 34478, + "▁Prevention": 34479, + "答主": 34480, + "谈恋爱": 34481, + "▁Tow": 34482, + "▁Serv": 34483, + "各式": 34484, + "keeping": 34485, + "法定代表人王": 34486, + "iculous": 34487, + "ednesday": 34488, + "三十日内": 34489, + "▁规格": 34490, + "局副局长": 34491, + "▁grams": 34492, + "海南省": 34493, + "urom": 34494, + "▁ali": 34495, + "▁Spark": 34496, + "▁美国": 34497, + "▁hills": 34498, + "itives": 34499, + "Company": 34500, + "/](": 34501, + "区长": 34502, + "质感": 34503, + "RGB": 34504, + "▁LG": 34505, + "Mr": 34506, + "溪县": 34507, + "cellular": 34508, + "后勤": 34509, + "自己在": 34510, + "好人": 34511, + "新年": 34512, + "izen": 34513, + "种族": 34514, + "})\\\\": 34515, + "▁hover": 34516, + "▁idi": 34517, + "▁Numbers": 34518, + "这些人": 34519, + "stad": 34520, + "意图": 34521, + "集群": 34522, + "▁seq": 34523, + "▁ulcer": 34524, + "▁Egyptian": 34525, + "业余": 34526, + "▁Yu": 34527, + "▁multif": 34528, + "名校": 34529, + "短短": 34530, + "nCal": 34531, + "odynamics": 34532, + "极致": 34533, + "nAthlet": 34534, + "晶体": 34535, + "申请执行人可": 34536, + "最强": 34537, + "的根": 34538, + "ende": 34539, + "做人": 34540, + "▁Mol": 34541, + "▁numbered": 34542, + "降雨": 34543, + "▁Dry": 34544, + "Failure": 34545, + "为了让": 34546, + "ANGU": 34547, + "▁Oblast": 34548, + "phan": 34549, + "finished": 34550, + "国企": 34551, + "的综合": 34552, + "指引": 34553, + "时光网": 34554, + "▁Northwest": 34555, + "牌子": 34556, + "这不": 34557, + "判断出": 34558, + "zoom": 34559, + "▁unsuccess": 34560, + "ACHE": 34561, + "gatsby": 34562, + "berries": 34563, + "▁bonding": 34564, + "▁dispersion": 34565, + "▁mentor": 34566, + "pw": 34567, + ";\">": 34568, + "dos": 34569, + "等情况": 34570, + "水准": 34571, + "红的": 34572, + "起源": 34573, + "▁medieval": 34574, + "别说": 34575, + "Locale": 34576, + "▁pursuing": 34577, + "自己是": 34578, + "工商银行": 34579, + "\\':\\'": 34580, + "自律": 34581, + "Front": 34582, + "▁Shell": 34583, + "▁Rice": 34584, + "▁Conservation": 34585, + "SESS": 34586, + "▁midfielder": 34587, + "'/": 34588, + "进入了": 34589, + "平方厘米": 34590, + "reactive": 34591, + "ococ": 34592, + "▁expose": 34593, + "跟他": 34594, + "▁hr": 34595, + "总收入的": 34596, + "SECRE": 34597, + "▁cloned": 34598, + "hin": 34599, + "撰写": 34600, + "vote": 34601, + "▁MOD": 34602, + "iliation": 34603, + "▁总": 34604, + "残留": 34605, + "▁selectively": 34606, + "市中级人民法院于": 34607, + "▁fabricated": 34608, + "变速": 34609, + "笔试": 34610, + "文化遗产": 34611, + "▁Mining": 34612, + "processors": 34613, + "▁neoplas": 34614, + "珠海": 34615, + "甚至是": 34616, + "▁tert": 34617, + "dropdown": 34618, + "▁Analytics": 34619, + "的最新": 34620, + "▁Safe": 34621, + "ivated": 34622, + "▁estimating": 34623, + "长约": 34624, + "▁jar": 34625, + "icol": 34626, + "亮度": 34627, + "原价": 34628, + "▁Nu": 34629, + "▁GUI": 34630, + "所提供的": 34631, + "入了": 34632, + "半小时": 34633, + "▁Either": 34634, + "也为": 34635, + "含量为": 34636, + "固定的": 34637, + "helm": 34638, + "▁Dop": 34639, + "▁Mack": 34640, + "▁Vlad": 34641, + "人口和计划生育局": 34642, + "轻微": 34643, + "小额贷款": 34644, + "熟练掌握": 34645, + "▁Workshop": 34646, + "号召": 34647, + "河区": 34648, + "▁Bathroom": 34649, + "slf": 34650, + "顶尖": 34651, + "▁fears": 34652, + "▁Alfred": 34653, + "▁文": 34654, + "的经验": 34655, + "nFlora": 34656, + "MON": 34657, + "▁Perry": 34658, + "▁pharmacokin": 34659, + "graphql": 34660, + "参阅": 34661, + "Bel": 34662, + "上述事实有": 34663, + "▁Consequently": 34664, + "▁Luther": 34665, + "gie": 34666, + "所在的": 34667, + ")\",\\": 34668, + "比分": 34669, + "▁freeze": 34670, + "四种": 34671, + "强迫": 34672, + "checks": 34673, + "▁Starting": 34674, + "晋升": 34675, + "牛逼": 34676, + "脚本": 34677, + "承担连带": 34678, + "essel": 34679, + "▁starter": 34680, + "rage": 34681, + "▁Graduate": 34682, + "第一百七十": 34683, + "nLove": 34684, + "▁modal": 34685, + "▁Construct": 34686, + "二氧化": 34687, + "机械有限公司": 34688, + "▁Loading": 34689, + "studio": 34690, + "▁Sid": 34691, + "▁erg": 34692, + "otyping": 34693, + "和好": 34694, + "坏了": 34695, + "▁antiv": 34696, + "▁locale": 34697, + "▁Variable": 34698, + "小火": 34699, + "布鲁": 34700, + "多学科": 34701, + "▁recursive": 34702, + "▁TW": 34703, + "留学生": 34704, + "▁revis": 34705, + "的你": 34706, + "tfloat": 34707, + "申请强制执行": 34708, + "cid": 34709, + "▁emigr": 34710, + "▁grace": 34711, + "▁appealing": 34712, + "]][": 34713, + "▁cyto": 34714, + "nLearn": 34715, + "▁embryos": 34716, + "▁anesthesia": 34717, + "出色": 34718, + "vor": 34719, + "会影响": 34720, + "nDownload": 34721, + "▁cabinets": 34722, + "▁commander": 34723, + "但却": 34724, + "再去": 34725, + "十三章": 34726, + "odal": 34727, + "予以确认": 34728, + "nFile": 34729, + "}$$,": 34730, + "▁stamp": 34731, + "宜昌": 34732, + "▁reasonably": 34733, + "形态特征": 34734, + "▁newborn": 34735, + "心思": 34736, + "▁escal": 34737, + "▁Glo": 34738, + "▁Calendar": 34739, + "▁Relations": 34740, + "易于": 34741, + "lare": 34742, + "▁sells": 34743, + "失误": 34744, + "▁epilepsy": 34745, + "兔子": 34746, + "沿着": 34747, + "▁Crystal": 34748, + "底数": 34749, + "{{$": 34750, + "上一个": 34751, + "教会": 34752, + "neal": 34753, + "▁Render": 34754, + "▁点击": 34755, + "▁Mono": 34756, + "rien": 34757, + "▁Arabic": 34758, + "▁browsing": 34759, + "拿下": 34760, + "letters": 34761, + "▁tuning": 34762, + "▁trademark": 34763, + "dns": 34764, + "累积": 34765, + "的真实": 34766, + "gone": 34767, + "Rules": 34768, + "▁Sloven": 34769, + "书城": 34770, + "着我": 34771, + "mot": 34772, + "zel": 34773, + "的区别": 34774, + "老实": 34775, + "▁staging": 34776, + "▁teaches": 34777, + "▁Preliminary": 34778, + "的很": 34779, + "抄袭": 34780, + "跨境": 34781, + "低碳": 34782, + "墨西": 34783, + "够了": 34784, + "带给": 34785, + "早晨": 34786, + "▁Rodr": 34787, + "▁shame": 34788, + "参展": 34789, + "▁allele": 34790, + "▁日": 34791, + "兵团": 34792, + "了许多": 34793, + "▁march": 34794, + "▁VP": 34795, + "天马": 34796, + "此刻": 34797, + "▁CRE": 34798, + "▁dive": 34799, + "结核": 34800, + "bidden": 34801, + "Americ": 34802, + "▁Leadership": 34803, + "橄榄": 34804, + "▁Bir": 34805, + "Shader": 34806, + "▁Bayesian": 34807, + "▁Jerusalem": 34808, + "requirements": 34809, + "判决发生法律效力后交付执行": 34810, + "罪犯减刑": 34811, + "▁Legend": 34812, + "牢记": 34813, + "greater": 34814, + "封建": 34815, + "的需要": 34816, + "之子": 34817, + "▁merchand": 34818, + "▁elaborate": 34819, + "TODO": 34820, + "inging": 34821, + "▁Adding": 34822, + "▁browsers": 34823, + "▁姜": 34824, + "模样": 34825, + "为一体的": 34826, + "▁Villa": 34827, + "县人民法院于": 34828, + "▁basket": 34829, + "笑话": 34830, + "▁bankruptcy": 34831, + "Touch": 34832, + "▁Parkinson": 34833, + "不觉": 34834, + "小吃": 34835, + "袖添香网": 34836, + "▁Border": 34837, + "▁earthquake": 34838, + "illery": 34839, + "日提出减刑建议书": 34840, + "的一天": 34841, + "▁HCV": 34842, + "的计算": 34843, + "结婚证": 34844, + "▁Eld": 34845, + "adoop": 34846, + "Week": 34847, + "rosion": 34848, + "▁sklearn": 34849, + "obuf": 34850, + "▁Todd": 34851, + "全国各地": 34852, + "cherichia": 34853, + "央行": 34854, + "不应该": 34855, + "被迫": 34856, + "refer": 34857, + "▁appointments": 34858, + "▁ionic": 34859, + "的女孩": 34860, + "opal": 34861, + "▁recreational": 34862, + "▁coconut": 34863, + "▁southwest": 34864, + "▁cloth": 34865, + "swagger": 34866, + "ertation": 34867, + "▁differentiated": 34868, + "IOS": 34869, + "▁Soul": 34870, + "ClassName": 34871, + "依职权": 34872, + "▁shades": 34873, + "▁Imperial": 34874, + "物价": 34875, + "IPE": 34876, + "▁wax": 34877, + "▁northwest": 34878, + "▁WW": 34879, + "autom": 34880, + "光驱": 34881, + "cro": 34882, + "escape": 34883, + "▁advisor": 34884, + "viral": 34885, + "ès": 34886, + "在学校": 34887, + "使用寿命": 34888, + "▁Partial": 34889, + "滑动": 34890, + "首选": 34891, + "钢板": 34892, + "用人单位": 34893, + "Origin": 34894, + "▁durability": 34895, + "▁Sierra": 34896, + "nSen": 34897, + "光谱": 34898, + "▁Kumar": 34899, + "▁FR": 34900, + "我们都": 34901, + "▁poems": 34902, + "▁casting": 34903, + "▁courage": 34904, + "tres": 34905, + "▁cran": 34906, + "▁legally": 34907, + "斜率": 34908, + "致富": 34909, + "▁volleyball": 34910, + "克拉": 34911, + "Imp": 34912, + "违法行为": 34913, + "oside": 34914, + "▁Garc": 34915, + "▁heaven": 34916, + "▁analyst": 34917, + "雕刻": 34918, + "改变了": 34919, + "Graphics": 34920, + "额度": 34921, + "▁warehouse": 34922, + "tbackground": 34923, + "ipper": 34924, + "▁Trinity": 34925, + "▁strongest": 34926, + "半岛": 34927, + "报刊": 34928, + "▁Diet": 34929, + "▁custody": 34930, + "枸杞": 34931, + "Diagn": 34932, + "UTC": 34933, + "运动会": 34934, + "平市": 34935, + "ondo": 34936, + "▁Oliver": 34937, + "}]\\": 34938, + "ographs": 34939, + "▁Penn": 34940, + "▁Soph": 34941, + "mil": 34942, + "INIT": 34943, + "▁Eli": 34944, + "Tensor": 34945, + "▁semicon": 34946, + "▁Wine": 34947, + "五百": 34948, + "排骨": 34949, + "▁dealt": 34950, + "nAlumni": 34951, + "Ip": 34952, + "odef": 34953, + "铸造": 34954, + "军区": 34955, + "▁Fu": 34956, + "aukee": 34957, + "endsection": 34958, + "nReception": 34959, + "上次": 34960, + "管理人员": 34961, + "▁delicate": 34962, + "维度": 34963, + "的爱情": 34964, + "的小伙伴": 34965, + "ployees": 34966, + "▁margins": 34967, + "任命": 34968, + "多万": 34969, + "▁explanations": 34970, + "国家队": 34971, + "▁gad": 34972, + "structured": 34973, + "全家": 34974, + "Smart": 34975, + "oracic": 34976, + "rais": 34977, + "▁lane": 34978, + "▁dedication": 34979, + "iotensin": 34980, + "▁contrary": 34981, + "的电影": 34982, + "自然村": 34983, + "变卖": 34984, + "oresis": 34985, + "▁Builder": 34986, + "eo": 34987, + "不信": 34988, + "开头": 34989, + "▁toggle": 34990, + "▁etiology": 34991, + "与人": 34992, + "同上": 34993, + "oko": 34994, + "folk": 34995, + "薄膜": 34996, + "福州市": 34997, + "民办": 34998, + "akt": 34999, + "▁Expert": 35000, + "中新": 35001, + "这是一道": 35002, + "▁vest": 35003, + "▁wires": 35004, + "▁hypers": 35005, + "诸葛": 35006, + "▁Aaron": 35007, + "nSimilar": 35008, + "Il": 35009, + "▁pc": 35010, + "成立的": 35011, + "nCOPY": 35012, + "▁Trip": 35013, + "高新技术产业": 35014, + "▁Surv": 35015, + "▁premiere": 35016, + "听了": 35017, + "▁Gol": 35018, + "交通肇事": 35019, + "kotlin": 35020, + "工业园区": 35021, + "▁IA": 35022, + "已于": 35023, + "**:\\": 35024, + "▁squee": 35025, + "▁boring": 35026, + "▁mysterious": 35027, + "更能": 35028, + "▁gently": 35029, + "▁wellness": 35030, + "▁trash": 35031, + "的政策": 35032, + "▁touchdown": 35033, + "其前": 35034, + "atz": 35035, + "▁analysts": 35036, + "南瓜": 35037, + "富贵": 35038, + "抛弃": 35039, + "机组": 35040, + "牢固": 35041, + "近视": 35042, + "geom": 35043, + "▁Grove": 35044, + "▁colonial": 35045, + "台阶": 35046, + "▁oak": 35047, + "lycer": 35048, + "▁Hair": 35049, + "▁absorbed": 35050, + "▁adjustable": 35051, + "▁projections": 35052, + "▁gates": 35053, + "啊啊": 35054, + "水县": 35055, + "环境中": 35056, + "屏幕尺寸": 35057, + "▁Maps": 35058, + "▁Treas": 35059, + "▁Affero": 35060, + "宝马": 35061, + "▁joke": 35062, + "▁reversible": 35063, + "tfont": 35064, + "▁Average": 35065, + "wof": 35066, + "破解": 35067, + "化学品": 35068, + "加强对": 35069, + "▁resin": 35070, + "Ben": 35071, + "bys": 35072, + "婚纱": 35073, + "水流": 35074, + "▁Pav": 35075, + "▁CAD": 35076, + "amente": 35077, + "▁aster": 35078, + "▁Cathedral": 35079, + "共赢": 35080, + "ALLY": 35081, + "▁youngest": 35082, + "合资": 35083, + "惊艳": 35084, + "予以支持": 35085, + "▁DATA": 35086, + "ustration": 35087, + "明珠": 35088, + "运费": 35089, + "▁{:": 35090, + "▁disclosure": 35091, + "场面": 35092, + "被子": 35093, + "▁sax": 35094, + "养老保险": 35095, + "▁Delaware": 35096, + "网格": 35097, + "▁fare": 35098, + "▁steering": 35099, + "aments": 35100, + "▁cartilage": 35101, + "再利用": 35102, + "inters": 35103, + "指导下": 35104, + "▁persistence": 35105, + "领导人": 35106, + "▁Simplify": 35107, + "▁tops": 35108, + "▁ankle": 35109, + "水面": 35110, + "脆弱": 35111, + "音响": 35112, + "▁Keywords": 35113, + "▁hiking": 35114, + "▁remembered": 35115, + "▁Worth": 35116, + "迁移": 35117, + "▁carp": 35118, + "▁(#": 35119, + "有两": 35120, + "也需要": 35121, + "Allow": 35122, + "▁obstruction": 35123, + "列式": 35124, + "的全部": 35125, + "Transport": 35126, + "概括": 35127, + "ipart": 35128, + "▁基本参数": 35129, + "▁viewer": 35130, + "▁Venezuela": 35131, + "▁clones": 35132, + "▁APP": 35133, + "uristic": 35134, + "parallel": 35135, + ">[": 35136, + "eve": 35137, + "多元化": 35138, + "总公司": 35139, + "▁grep": 35140, + "▁microscopic": 35141, + "▁inequalities": 35142, + "合同约定": 35143, + "量子": 35144, + "不清楚": 35145, + "公布的": 35146, + "Family": 35147, + "熬夜": 35148, + "着手": 35149, + "霉素": 35150, + "▁preoperative": 35151, + "Addr": 35152, + "inth": 35153, + "▁Mouse": 35154, + "整除": 35155, + "香气": 35156, + "▁Pierre": 35157, + "askat": 35158, + "elem": 35159, + "新媒体": 35160, + "yzed": 35161, + "nsc": 35162, + "▁Peak": 35163, + "▁attendees": 35164, + "\\\\(\\\\{": 35165, + "▁Idaho": 35166, + "▁pipes": 35167, + "ANN": 35168, + "{},": 35169, + "墨西哥": 35170, + "启发": 35171, + "户籍地": 35172, + "各项工作": 35173, + "▁phospholip": 35174, + "nCr": 35175, + "▁chrome": 35176, + "▁Campaign": 35177, + "Mi": 35178, + "独家": 35179, + "had": 35180, + "▁\\'\"": 35181, + "上限": 35182, + "描绘": 35183, + "▁filtered": 35184, + "▁embr": 35185, + "tilde": 35186, + "双人": 35187, + "做成": 35188, + "▁Terry": 35189, + "▁professionally": 35190, + "似的": 35191, + "便秘": 35192, + "acci": 35193, + "▁CMS": 35194, + "▁não": 35195, + "之战": 35196, + "米饭": 35197, + "配料": 35198, + "▁Limit": 35199, + "▁occasional": 35200, + "陪同": 35201, + "Suite": 35202, + "▁constructs": 35203, + "nome": 35204, + "nBar": 35205, + "▁appar": 35206, + "▁knockout": 35207, + "▁modulate": 35208, + "DX": 35209, + "接入": 35210, + "税务局": 35211, + "nPhil": 35212, + "▁upset": 35213, + "事后": 35214, + "转动": 35215, + "brook": 35216, + "▁pond": 35217, + "▁Mongo": 35218, + "hb": 35219, + "那你": 35220, + "tro": 35221, + "yme": 35222, + "卖家": 35223, + "▁Lik": 35224, + "大纲": 35225, + "要比": 35226, + "机体": 35227, + "树木": 35228, + "cmake": 35229, + "▁Stra": 35230, + "查处": 35231, + "▁loci": 35232, + "▁rides": 35233, + "已知函数": 35234, + "▁Loss": 35235, + "caster": 35236, + "▁logistics": 35237, + "但其": 35238, + "我们是": 35239, + "voc": 35240, + "重要作用": 35241, + "Contin": 35242, + "outline": 35243, + "▁sexually": 35244, + "▁coated": 35245, + "▁correspondence": 35246, + "变频": 35247, + "网点": 35248, + "ETA": 35249, + "▁Dol": 35250, + "▁noting": 35251, + "Tx": 35252, + "要去": 35253, + "▁经营": 35254, + "第五节": 35255, + "osion": 35256, + "/<": 35257, + "stere": 35258, + "agrant": 35259, + "nChapter": 35260, + "keletal": 35261, + "▁continually": 35262, + "将是": 35263, + "street": 35264, + "▁pathogenic": 35265, + "▁Vas": 35266, + "化疗": 35267, + "Hook": 35268, + "▁strips": 35269, + "左右的": 35270, + "▁learners": 35271, + "▁Au": 35272, + "▁linkage": 35273, + "雅思": 35274, + "▁MORE": 35275, + "getString": 35276, + "背后的": 35277, + "党政": 35278, + "前行": 35279, + "拥抱": 35280, + "polit": 35281, + "sound": 35282, + "▁analges": 35283, + "六十": 35284, + "arnings": 35285, + "eye": 35286, + "▁NYC": 35287, + "海淀": 35288, + "座椅": 35289, + "蚂蚁": 35290, + "▁FT": 35291, + "党员干部": 35292, + "nMajor": 35293, + "直角坐标": 35294, + "iron": 35295, + "解决方法": 35296, + "BG": 35297, + "ле": 35298, + "的健康": 35299, + "▁Mans": 35300, + "▁syst": 35301, + "▁surroundings": 35302, + "Large": 35303, + "▁创作年代": 35304, + "OutputStream": 35305, + "击败": 35306, + "映射": 35307, + "▁Restaurant": 35308, + "▁salv": 35309, + "CREATE": 35310, + "decoration": 35311, + "发掘": 35312, + "迷茫": 35313, + "灾难": 35314, + "回来了": 35315, + "heduled": 35316, + "电视机": 35317, + "计分": 35318, + "March": 35319, + "Available": 35320, + "往事": 35321, + "切线": 35322, + "nForm": 35323, + "▁degeneration": 35324, + "班的": 35325, + "▁Hunt": 35326, + "ributing": 35327, + "宋代": 35328, + "山镇": 35329, + "gap": 35330, + "tmargin": 35331, + "十九大": 35332, + "▁Reform": 35333, + "▁sake": 35334, + "▁defender": 35335, + "拼搏": 35336, + "Den": 35337, + "SECRET": 35338, + "▁夏": 35339, + "容留": 35340, + "▁任": 35341, + "草莓": 35342, + "hetics": 35343, + "▁Finding": 35344, + "▁shaft": 35345, + "再到": 35346, + "回族": 35347, + "vertex": 35348, + "gradient": 35349, + "▁stepped": 35350, + "制造商": 35351, + "▁shifting": 35352, + "庄村": 35353, + "RUN": 35354, + "▁bail": 35355, + "banner": 35356, + "Serializable": 35357, + "eca": 35358, + "感悟": 35359, + "▁tabs": 35360, + "formula": 35361, + "mercially": 35362, + "▁NAT": 35363, + "nGeneral": 35364, + "被执行人刘": 35365, + "与之": 35366, + "▁\\\\:": 35367, + "▁metaph": 35368, + "不顾": 35369, + "▁Skin": 35370, + "▁Teen": 35371, + "▁trunk": 35372, + "▁transverse": 35373, + "因本案": 35374, + "检出": 35375, + "▁WAS": 35376, + "地带": 35377, + "▁alg": 35378, + "▁cush": 35379, + "ть": 35380, + "▁Casino": 35381, + "▁Conservative": 35382, + "助手": 35383, + "TreeNode": 35384, + "大国": 35385, + "▁Reyn": 35386, + "▁Buffalo": 35387, + "▁汉": 35388, + "图标": 35389, + "希望大家": 35390, + "uctive": 35391, + "▁preventive": 35392, + "猜测": 35393, + "无锡市": 35394, + "pixel": 35395, + "tresult": 35396, + "nthey": 35397, + "▁沈": 35398, + "▁tricky": 35399, + "年份": 35400, + "TARGET": 35401, + "▁lookup": 35402, + "lox": 35403, + "办公室主任": 35404, + "gc": 35405, + "处长": 35406, + "的家": 35407, + "AWS": 35408, + "认识到": 35409, + "▁prone": 35410, + "笑着": 35411, + "▁Holland": 35412, + "▁ingredient": 35413, + "音像": 35414, + "▁verb": 35415, + "alleng": 35416, + "遵义": 35417, + "\\\\,\\\\": 35418, + "▁conductor": 35419, + "几率": 35420, + "的消息": 35421, + "▁mono": 35422, + "▁panic": 35423, + "▁monument": 35424, + "举例": 35425, + "年出生": 35426, + "chip": 35427, + "▁Indians": 35428, + "的歌": 35429, + "以人为本": 35430, + "ilo": 35431, + "latitude": 35432, + "▁voluntary": 35433, + "apeutics": 35434, + "▁bitcoin": 35435, + "Gal": 35436, + "洗涤": 35437, + "腹泻": 35438, + "▁Das": 35439, + "还有很多": 35440, + "▁dummy": 35441, + "▁Gardens": 35442, + "如果您": 35443, + "▁他": 35444, + "四首": 35445, + "固醇": 35446, + "terms": 35447, + "▁José": 35448, + "▁tires": 35449, + "出土": 35450, + "▁på": 35451, + "▁landed": 35452, + "▁historian": 35453, + "乾坤": 35454, + "运算法": 35455, + "Links": 35456, + "▁neutron": 35457, + "▁Terms": 35458, + "我爱": 35459, + "Cookie": 35460, + "▁commits": 35461, + "atisf": 35462, + "▁rabbits": 35463, + "▁businessman": 35464, + "折叠": 35465, + "合法的": 35466, + "zhou": 35467, + "Assembly": 35468, + "▁taxi": 35469, + "jug": 35470, + "▁AK": 35471, + "▁Really": 35472, + "的概率": 35473, + "rylic": 35474, + "escope": 35475, + "subprocess": 35476, + "机动": 35477, + "▁Gift": 35478, + "平行四边形": 35479, + "▁grinding": 35480, + "▁closet": 35481, + "在乎": 35482, + "iston": 35483, + "▁Logic": 35484, + "还款义务": 35485, + "个位": 35486, + "个百分": 35487, + "Serialize": 35488, + "▁countless": 35489, + "▁Gonz": 35490, + "▁technically": 35491, + "nRobert": 35492, + "日月": 35493, + "nCount": 35494, + "月加入中国共产党": 35495, + "avo": 35496, + "oron": 35497, + "▁disposal": 35498, + "评议": 35499, + "山中": 35500, + "性好": 35501, + "者和": 35502, + "的做法": 35503, + "▁decides": 35504, + "▁merchant": 35505, + "在那": 35506, + "胎儿": 35507, + "▁CAS": 35508, + "假释案件": 35509, + "广播电视": 35510, + "与管理": 35511, + "yellow": 35512, + "deletion": 35513, + "性分析": 35514, + "减为": 35515, + "POINT": 35516, + "providers": 35517, + "▁Tat": 35518, + "literal": 35519, + "▁roller": 35520, + "是连载于起点中文网": 35521, + "赵某": 35522, + "满意度": 35523, + "nPolice": 35524, + "▁polymorphism": 35525, + "Append": 35526, + "演练": 35527, + "gary": 35528, + "electric": 35529, + "要知道": 35530, + ")}{\\\\": 35531, + "calendar": 35532, + "上周": 35533, + "矩形": 35534, + "▁Literature": 35535, + ")){\\": 35536, + "again": 35537, + "三首": 35538, + "生病": 35539, + "TRIBUTING": 35540, + "▁southeast": 35541, + "▁permanently": 35542, + "▁bovine": 35543, + "▁relapse": 35544, + "▁glycos": 35545, + "tvirtual": 35546, + "▁Rect": 35547, + "▁Mason": 35548, + "Love": 35549, + "低调": 35550, + "Clean": 35551, + "▁microscope": 35552, + "逍遥": 35553, + "可根据": 35554, + "老子": 35555, + "affe": 35556, + "▁Housing": 35557, + "ADE": 35558, + "zeta": 35559, + "▁Hep": 35560, + "一号": 35561, + "▁Symbol": 35562, + "▁anime": 35563, + "▁Alexand": 35564, + "走上": 35565, + "供水": 35566, + "亚马逊": 35567, + "▁emerge": 35568, + "负载": 35569, + "tal": 35570, + "▁Tit": 35571, + "▁splitting": 35572, + "会计师": 35573, + "▁Aims": 35574, + "彩虹": 35575, + "也非常": 35576, + "▁delegate": 35577, + "haus": 35578, + "auc": 35579, + "灵感": 35580, + "nLocation": 35581, + "每位": 35582, + "老化": 35583, + "迷你": 35584, + "制度的": 35585, + "▁histological": 35586, + "▁tu": 35587, + "前面的": 35588, + "ophyll": 35589, + "百合": 35590, + "(){": 35591, + "抢劫罪": 35592, + "▁metastases": 35593, + "ан": 35594, + "应付": 35595, + "▁Queue": 35596, + "端的": 35597, + "▁stiffness": 35598, + "备份": 35599, + "▁iTunes": 35600, + "▁Wes": 35601, + "▁coalition": 35602, + "村镇": 35603, + "ako": 35604, + "课堂教学": 35605, + "一股": 35606, + "▁visually": 35607, + "’\\": 35608, + "心病": 35609, + "Incre": 35610, + "Extra": 35611, + "设计和": 35612, + "▁terrorist": 35613, + "ascii": 35614, + "phthal": 35615, + "长寿": 35616, + "如何在": 35617, + "▁malaria": 35618, + "应由": 35619, + "做饭": 35620, + "组织实施": 35621, + "▁***": 35622, + "istries": 35623, + "▁fluctuations": 35624, + "五一": 35625, + "注释": 35626, + "SPACE": 35627, + "▁sprint": 35628, + "▁transforms": 35629, + "该行": 35630, + "身后": 35631, + "▁fel": 35632, + "动机": 35633, + "湿地": 35634, + "▁Snap": 35635, + "▁pian": 35636, + "nReview": 35637, + "▁sulfate": 35638, + "续行": 35639, + "imony": 35640, + "cstdio": 35641, + "suffix": 35642, + "▁cardinal": 35643, + "NetCore": 35644, + "External": 35645, + "isen": 35646, + "▁linearly": 35647, + "///\\": 35648, + "在法律规定": 35649, + "仅有": 35650, + "农机": 35651, + "▁TF": 35652, + "perform": 35653, + "▁bishop": 35654, + "▁larvae": 35655, + "中专": 35656, + "anto": 35657, + "▁Kash": 35658, + "▁Thor": 35659, + "▁Taking": 35660, + "▁causal": 35661, + "▁Warner": 35662, + "▁Corporate": 35663, + "加法": 35664, + "actional": 35665, + "▁numeric": 35666, + "帽子": 35667, + "▁BMI": 35668, + "主要用于": 35669, + "▁exchanges": 35670, + "犯贩卖毒品罪": 35671, + "hyp": 35672, + "▁axi": 35673, + "ndocker": 35674, + "一经": 35675, + "enti": 35676, + "▁lover": 35677, + "▁triggers": 35678, + "xf": 35679, + "▁innovations": 35680, + "这段话": 35681, + "prepare": 35682, + "ALS": 35683, + "中山市": 35684, + "▁intermed": 35685, + "во": 35686, + "▁freel": 35687, + "▁motors": 35688, + "▁composers": 35689, + "的视频": 35690, + "批量": 35691, + "青海省": 35692, + "布拉": 35693, + "手游": 35694, + "spin": 35695, + "油脂": 35696, + "熊猫": 35697, + "我感觉": 35698, + "为什么会": 35699, + "nGold": 35700, + "▁Borough": 35701, + "率高": 35702, + "ulos": 35703, + "智能手机": 35704, + "▁accounted": 35705, + "▁homeowners": 35706, + "DATE": 35707, + "Need": 35708, + "▁Lost": 35709, + "人了": 35710, + "football": 35711, + "▁encourages": 35712, + "Alpha": 35713, + "▁Lakes": 35714, + "▁vegetation": 35715, + "▁implantation": 35716, + "啥的": 35717, + "▁ré": 35718, + "Special": 35719, + "▁pension": 35720, + "▁impedance": 35721, + "▁bracket": 35722, + "▁necessity": 35723, + "本市": 35724, + "▁Flight": 35725, + "退回": 35726, + "textarea": 35727, + "▁indigenous": 35728, + "▁Contemporary": 35729, + "Paths": 35730, + "政策的": 35731, + "▁compressed": 35732, + "▁constructing": 35733, + "神的": 35734, + "▁)": 35735, + "而后": 35736, + "Authent": 35737, + "▁nitric": 35738, + "过大": 35739, + "▁yielded": 35740, + "authentication": 35741, + "▁đ": 35742, + "니다": 35743, + "▁basin": 35744, + "▁dehydro": 35745, + "]<": 35746, + "亲密": 35747, + "执政": 35748, + "演示": 35749, + "▁bub": 35750, + "▁shine": 35751, + "种植业": 35752, + "▁haem": 35753, + "▁todo": 35754, + "▁potatoes": 35755, + "INS": 35756, + "agle": 35757, + "agulation": 35758, + "▁screenshot": 35759, + "▁unemployment": 35760, + "韭菜": 35761, + "Signal": 35762, + "▁pursuit": 35763, + "委屈": 35764, + "}}$$": 35765, + "在此基础上": 35766, + "Vs": 35767, + "诱惑": 35768, + "▁Privacy": 35769, + "▁Trading": 35770, + "▁Identity": 35771, + "containers": 35772, + "送给": 35773, + "nTotal": 35774, + "▁asymptotic": 35775, + "研究和": 35776, + "▁VIP": 35777, + "▁withd": 35778, + "nProv": 35779, + "inh": 35780, + "平方根": 35781, + "study": 35782, + "Xiv": 35783, + "prehens": 35784, + "▁humidity": 35785, + "▁costume": 35786, + "▁Regiment": 35787, + "ptive": 35788, + "AQ": 35789, + "硬度": 35790, + "▁injections": 35791, + "有余": 35792, + "着急": 35793, + "cgi": 35794, + "los": 35795, + "andem": 35796, + "争夺": 35797, + "▁boyfriend": 35798, + "鲜明": 35799, + "研讨会": 35800, + "peak": 35801, + "Logging": 35802, + "▁Comparison": 35803, + "清明": 35804, + "lime": 35805, + "▁END": 35806, + "的处理": 35807, + "nNon": 35808, + "▁installations": 35809, + "askell": 35810, + "▁enters": 35811, + "乐器": 35812, + "▁imagery": 35813, + "▁courtesy": 35814, + "室友": 35815, + "隆重": 35816, + "▁nano": 35817, + "和方法": 35818, + "▁Springer": 35819, + "Mount": 35820, + "一处": 35821, + "nai": 35822, + "▁Nashville": 35823, + "Credentials": 35824, + "欧元": 35825, + "nCommunes": 35826, + "emph": 35827, + "mess": 35828, + "▁financ": 35829, + "ovan": 35830, + "只是一个": 35831, + "acerb": 35832, + "Unique": 35833, + "十三条之规定": 35834, + "▁Saints": 35835, + "▁mere": 35836, + "横向": 35837, + "▁DIY": 35838, + "华南": 35839, + "▁tournaments": 35840, + "了对": 35841, + "尤为": 35842, + "可以看出": 35843, + "nchar": 35844, + "Round": 35845, + "erala": 35846, + "parents": 35847, + "实际应用": 35848, + "substr": 35849, + "模式的": 35850, + "▁Aber": 35851, + "▁saturation": 35852, + "FUN": 35853, + "fas": 35854, + "我非常": 35855, + "nimage": 35856, + "▁Vincent": 35857, + "▁Float": 35858, + "leted": 35859, + "▁Carn": 35860, + "▁granite": 35861, + "早日": 35862, + "过高": 35863, + "▁Symfony": 35864, + "▁吕": 35865, + "psis": 35866, + "▁neighboring": 35867, + "▁(>": 35868, + "▁Kol": 35869, + "规范化": 35870, + "▁emp": 35871, + "▁Planet": 35872, + "▁FP": 35873, + "omed": 35874, + "档次": 35875, + "盲目": 35876, + "▁Mend": 35877, + "▁traumatic": 35878, + "icin": 35879, + "▁lineup": 35880, + "shots": 35881, + "▁arriving": 35882, + "▁embedding": 35883, + "▁田": 35884, + "我省": 35885, + "震荡": 35886, + "心血管": 35887, + "Alex": 35888, + "boro": 35889, + "▁IoT": 35890, + "另有": 35891, + "规章": 35892, + "innerHTML": 35893, + "arial": 35894, + "特斯拉": 35895, + "Commit": 35896, + "终极": 35897, + "ependence": 35898, + "▁Archives": 35899, + "antics": 35900, + "▁celebrity": 35901, + "▁波": 35902, + "鞋子": 35903, + "▁Parad": 35904, + "中场": 35905, + "锁定": 35906, + "拉开": 35907, + "随机分为": 35908, + "estine": 35909, + "▁messaging": 35910, + "断裂": 35911, + "的反": 35912, + "chedule": 35913, + "▁unwanted": 35914, + "▁nonprofit": 35915, + "▁frameworks": 35916, + "▁horizon": 35917, + "▁neuron": 35918, + "柏林": 35919, + "▁remarks": 35920, + "将以": 35921, + "▁Mul": 35922, + "cached": 35923, + "enames": 35924, + "中国人民银行同期": 35925, + "▁rolls": 35926, + "Initialize": 35927, + "公关": 35928, + "体外": 35929, + "GPS": 35930, + "类似于": 35931, + "▁URI": 35932, + "Inline": 35933, + "Controls": 35934, + "▁Sheriff": 35935, + "沃尔": 35936, + "directed": 35937, + "▁$(\\\\": 35938, + "驾驶证": 35939, + "iseconds": 35940, + "改良": 35941, + "道路交通事故": 35942, + "战斗力": 35943, + "▁简体中文": 35944, + "▁Tas": 35945, + "▁populated": 35946, + "(%": 35947, + "boys": 35948, + "▁NHS": 35949, + "▁agonist": 35950, + "ussia": 35951, + "moment": 35952, + "不被": 35953, + "肠胃": 35954, + "装配": 35955, + "hack": 35956, + "▁Functional": 35957, + "▁comics": 35958, + "▁averaged": 35959, + "奶油": 35960, + "紫色": 35961, + "冷藏": 35962, + "(\"[": 35963, + "直角三角形": 35964, + "普查": 35965, + "▁floral": 35966, + "regation": 35967, + "parsed": 35968, + "▁Premium": 35969, + "第五百一十九条规定": 35970, + "agh": 35971, + "总价": 35972, + "VIDEO": 35973, + "raform": 35974, + "▁untreated": 35975, + "▁setuptools": 35976, + "多为": 35977, + "RAY": 35978, + "内心的": 35979, + "▁fabrication": 35980, + "盒子": 35981, + "经鉴定": 35982, + "lington": 35983, + "Answer": 35984, + "薪酬": 35985, + "有意思": 35986, + "▁pile": 35987, + "utdown": 35988, + "▁Trophy": 35989, + "apses": 35990, + "waukee": 35991, + "团委": 35992, + "程序员": 35993, + "▁SMS": 35994, + "▁plumbing": 35995, + "▁Wu": 35996, + "orig": 35997, + "案件适用法律": 35998, + "quiries": 35999, + "▁Beauty": 36000, + "▁SHO": 36001, + "▁decorative": 36002, + "第九章": 36003, + "▁rip": 36004, + "▁Naval": 36005, + "一提": 36006, + "考证": 36007, + "Calendar": 36008, + "医疗器械": 36009, + "▁Celebr": 36010, + "▁legitimate": 36011, + "东营": 36012, + "第五百一十九条之规定": 36013, + "▁problematic": 36014, + "之二": 36015, + "万一": 36016, + "Hor": 36017, + "authorized": 36018, + "挂牌": 36019, + "AMS": 36020, + "San": 36021, + "▁monol": 36022, + "▁accumulated": 36023, + "▁eliminating": 36024, + "▁Lud": 36025, + "Embed": 36026, + "grunt": 36027, + "世的": 36028, + "Exist": 36029, + "nSpan": 36030, + "手上": 36031, + "CADE": 36032, + "∈(": 36033, + "▁UTC": 36034, + "所能": 36035, + "并不能": 36036, + "acao": 36037, + "serializer": 36038, + "设计与": 36039, + "马尔": 36040, + "都不能": 36041, + "竣工": 36042, + "衰老": 36043, + "言语": 36044, + "gro": 36045, + "组数据": 36046, + "▁concerts": 36047, + "▁HF": 36048, + "新疆维吾尔": 36049, + "▁respected": 36050, + "光荣": 36051, + "▁Rogers": 36052, + "▁Azerbai": 36053, + "大豆": 36054, + "obl": 36055, + "isse": 36056, + "CSF": 36057, + "nwill": 36058, + "unday": 36059, + "▁Hg": 36060, + "申请恢复执行": 36061, + "Po": 36062, + "▁Maple": 36063, + "▁underneath": 36064, + "jest": 36065, + "Rank": 36066, + "▁satisfactory": 36067, + "原审被告人": 36068, + "未必": 36069, + "▁Divis": 36070, + "trained": 36071, + "▁similarities": 36072, + "腹腔": 36073, + "被执行人陈": 36074, + "▁adjusting": 36075, + "GPIO": 36076, + "}}$$\\": 36077, + "和她": 36078, + "关注我": 36079, + "▁Schw": 36080, + "slot": 36081, + "▁Mario": 36082, + "minimum": 36083, + "▁bears": 36084, + "coordinates": 36085, + "▁mul": 36086, + "▁Sequence": 36087, + "nHar": 36088, + "▁Fle": 36089, + "这篇文章": 36090, + "▁bile": 36091, + "▁kiss": 36092, + "卫生和计划生育局": 36093, + "上演": 36094, + "zhong": 36095, + "▁rays": 36096, + "▁arises": 36097, + "▁Fifth": 36098, + "▁symbolic": 36099, + "特定的": 36100, + "▁downloading": 36101, + "的歌曲": 36102, + "采取保全措施": 36103, + "mf": 36104, + "Observer": 36105, + "契机": 36106, + "自然资源": 36107, + "▁palm": 36108, + "▁Valentine": 36109, + "是无": 36110, + "推荐了": 36111, + "▁Benef": 36112, + "bic": 36113, + "▁scipy": 36114, + "▁silly": 36115, + "▁dissolved": 36116, + "让大家": 36117, + "tap": 36118, + "的平均": 36119, + "aggreg": 36120, + "伊斯": 36121, + "▁cleanup": 36122, + "criptions": 36123, + "成像": 36124, + "▁debris": 36125, + "喜好": 36126, + "纯收入": 36127, + "▁Payment": 36128, + "Ul": 36129, + "新一代": 36130, + "▁elong": 36131, + "▁fireplace": 36132, + "ificent": 36133, + "日后": 36134, + "的事件": 36135, + "▁fool": 36136, + "▁pockets": 36137, + "Syntax": 36138, + "▁Abu": 36139, + "工作经验": 36140, + "▁incorporates": 36141, + "▁indexes": 36142, + "不会有": 36143, + "osit": 36144, + "worthy": 36145, + "康熙": 36146, + "▁enrollment": 36147, + "汽油": 36148, + "▁lac": 36149, + "可以帮助": 36150, + "▁Expand": 36151, + "▁江": 36152, + "Canvas": 36153, + "playing": 36154, + "nRemember": 36155, + "启用": 36156, + "的四": 36157, + "的照片": 36158, + "▁Actually": 36159, + "若有": 36160, + "▁已完结": 36161, + "▁crafted": 36162, + "▁Discovery": 36163, + "共青": 36164, + "exist": 36165, + "▁Oscar": 36166, + "南宁": 36167, + "▁honestly": 36168, + "再把": 36169, + "特此": 36170, + "保证金": 36171, + "与被申请人": 36172, + "money": 36173, + "▁Prove": 36174, + "固定资产": 36175, + "工作会议": 36176, + "oproteins": 36177, + "▁inferior": 36178, + "勇于": 36179, + "<\\\\": 36180, + "▁penetration": 36181, + "▁supern": 36182, + "nwhen": 36183, + "▁chore": 36184, + "▁threw": 36185, + "▁Others": 36186, + "患有": 36187, + "▁hiding": 36188, + "▁Mari": 36189, + "▁Karen": 36190, + "在地": 36191, + "难过": 36192, + "▁Answers": 36193, + "疑惑": 36194, + "nRussian": 36195, + "的人群": 36196, + "复仇": 36197, + "Bound": 36198, + "▁diffuse": 36199, + "▁Population": 36200, + "锂电池": 36201, + "当事人有权": 36202, + "▁electroly": 36203, + "Elect": 36204, + "▁Sah": 36205, + "▁conjugate": 36206, + "奖励审批表": 36207, + "▁Ker": 36208, + "反映了": 36209, + "北海": 36210, + "▁Escherichia": 36211, + "▁lined": 36212, + "▁decoration": 36213, + "蜘蛛": 36214, + "fers": 36215, + "▁可": 36216, + "确已破裂": 36217, + "▁humanity": 36218, + "▁imaginary": 36219, + "ijk": 36220, + "iosity": 36221, + "ranial": 36222, + "Requests": 36223, + "快来": 36224, + "▁ubuntu": 36225, + "▁internally": 36226, + "也无法": 36227, + "创造了": 36228, + "nRivers": 36229, + "▁cytotoxic": 36230, + "▁termination": 36231, + "创建了": 36232, + "▁disappeared": 36233, + "▁Pra": 36234, + "▁sampled": 36235, + "微量": 36236, + "起床": 36237, + "adj": 36238, + "的依据": 36239, + "▁educate": 36240, + "▁methodologies": 36241, + "戏曲": 36242, + "▁背景": 36243, + "Mal": 36244, + "所说的": 36245, + "完成生产任务": 36246, + "流域": 36247, + "isle": 36248, + "▁HashMap": 36249, + "▁dentist": 36250, + "武侠": 36251, + "门的": 36252, + "▁defer": 36253, + "atan": 36254, + "onian": 36255, + "▁caus": 36256, + "Signature": 36257, + "pics": 36258, + "▁Tensor": 36259, + "震惊": 36260, + "矿山": 36261, + "▁wrist": 36262, + "的理念": 36263, + "Linked": 36264, + "▁binds": 36265, + "▁utter": 36266, + "麦克风": 36267, + "外表": 36268, + "Exchange": 36269, + "って": 36270, + "急救": 36271, + "门前": 36272, + "\\'>": 36273, + "方言": 36274, + "▁Delivery": 36275, + "有意": 36276, + "已在": 36277, + "衣柜": 36278, + "OST": 36279, + "▁Mob": 36280, + "▁prohibited": 36281, + "▁Citation": 36282, + "▁creatures": 36283, + "▁ROS": 36284, + "amino": 36285, + "▁Dynamics": 36286, + "googleapis": 36287, + "至此": 36288, + "paste": 36289, + "▁exotic": 36290, + "▁Thunder": 36291, + "“\\": 36292, + "▁GE": 36293, + "▁AMD": 36294, + "▁Vista": 36295, + "▁commentary": 36296, + "▁micros": 36297, + "jupiter": 36298, + "▁certificates": 36299, + "半天": 36300, + "▁persu": 36301, + "▁目": 36302, + "有一点": 36303, + "闺蜜": 36304, + "▁Neil": 36305, + "ncol": 36306, + "▁Por": 36307, + "▁folders": 36308, + "过分": 36309, + "enos": 36310, + "▁traces": 36311, + "是目前": 36312, + "演唱会": 36313, + "xe": 36314, + "烧烤": 36315, + "▁antis": 36316, + "Hex": 36317, + "▁ci": 36318, + "▁Medium": 36319, + "▁Slovak": 36320, + "stackexchange": 36321, + "勉强": 36322, + "占领": 36323, + "效力的": 36324, + "▁norms": 36325, + "locations": 36326, + "▁与": 36327, + "叶子": 36328, + "▁siblings": 36329, + "▁cb": 36330, + "sery": 36331, + "senal": 36332, + "▁Horse": 36333, + "affected": 36334, + "▁Synd": 36335, + "▁alien": 36336, + "▁nerves": 36337, + "▁Required": 36338, + "▁fertility": 36339, + "▁INT": 36340, + "▁Registration": 36341, + "▁NotImplemented": 36342, + "只为": 36343, + "笑了": 36344, + "invoke": 36345, + "本裁定书送达后即发生法律效力": 36346, + "▁METHODS": 36347, + "日本的": 36348, + "▁{}\"": 36349, + "▁forg": 36350, + "nShould": 36351, + "▁suffix": 36352, + "▁epigen": 36353, + "之作": 36354, + "呈现出": 36355, + "行审": 36356, + "静电": 36357, + "▁Norman": 36358, + "转身": 36359, + "▁Lan": 36360, + "ylene": 36361, + "不负": 36362, + "每个人的": 36363, + "▁Cuba": 36364, + "第二届": 36365, + "nAng": 36366, + "▁ASC": 36367, + "▁Ras": 36368, + "也是一个": 36369, + "乾隆": 36370, + "根廷": 36371, + "nasync": 36372, + "▁galaxy": 36373, + "▁putative": 36374, + "头市": 36375, + "▁Sax": 36376, + "河市": 36377, + "”——": 36378, + "▁Tib": 36379, + "threads": 36380, + "▁推荐": 36381, + "▁uncommon": 36382, + "权重": 36383, + "梦幻": 36384, + "▁Done": 36385, + "▁dynamically": 36386, + "公约": 36387, + "干什么": 36388, + "axies": 36389, + "ARI": 36390, + "treatment": 36391, + "▁impacted": 36392, + "阻力": 36393, + "nmodel": 36394, + "向法院": 36395, + "▁HPV": 36396, + "registration": 36397, + "半夜": 36398, + "aternity": 36399, + "wg": 36400, + "jing": 36401, + "recipe": 36402, + "▁mucosal": 36403, + "▁weekends": 36404, + "']);\\": 36405, + "显微": 36406, + "黄某": 36407, + "家里的": 36408, + "▁Standards": 36409, + "吉林市": 36410, + "宜宾": 36411, + "牛仔": 36412, + "CLIENT": 36413, + "▁codec": 36414, + "即是": 36415, + "nShare": 36416, + "▁Elastic": 36417, + "▁holders": 36418, + "窗户": 36419, + "九个月": 36420, + "aspx": 36421, + "▁Exam": 36422, + "nAlbums": 36423, + "能认罪服法": 36424, + "▁Raman": 36425, + "▁assembl": 36426, + "▁Especially": 36427, + "▁Male": 36428, + "bullet": 36429, + "▁mutagen": 36430, + "▁traders": 36431, + "▁proceedings": 36432, + "Entities": 36433, + "台州市": 36434, + "菲律": 36435, + "▁Engineer": 36436, + "▁exposures": 36437, + "▁曾": 36438, + "▁lounge": 36439, + "▁Frame": 36440, + "Screens": 36441, + "▁Scanner": 36442, + "SERT": 36443, + "comit": 36444, + "一心": 36445, + "总数的": 36446, + "▁uro": 36447, + "晚会": 36448, + "法兰": 36449, + "▁charming": 36450, + "Jack": 36451, + "基础知识": 36452, + "actin": 36453, + "heets": 36454, + "▁####": 36455, + "时常": 36456, + "吹风机": 36457, + "\\'(": 36458, + "继续执行": 36459, + "中心支公司": 36460, + "▁aiming": 36461, + "[@": 36462, + "之美": 36463, + "抗体": 36464, + "elaide": 36465, + "▁adjustments": 36466, + "质的": 36467, + "开发有限公司": 36468, + "上游": 36469, + "合法有效": 36470, + "tget": 36471, + "▁meantime": 36472, + "ру": 36473, + "时报": 36474, + "portal": 36475, + "▁Discover": 36476, + "▁converge": 36477, + "新疆维吾尔自治区": 36478, + "终究": 36479, + "USD": 36480, + "digest": 36481, + "nMilitary": 36482, + "担忧": 36483, + "▁Degree": 36484, + "]],": 36485, + "请您务必": 36486, + "▁Cabinet": 36487, + "警惕": 36488, + "一带一路": 36489, + "▁Airlines": 36490, + "▁debugging": 36491, + "Guard": 36492, + "▁Fitz": 36493, + "▁inexpensive": 36494, + "典礼": 36495, + "流行的": 36496, + "检修": 36497, + "动力学": 36498, + "orie": 36499, + "▁smoothly": 36500, + "台上": 36501, + "▁ect": 36502, + "mathop": 36503, + "并告诉我": 36504, + "不准许": 36505, + "在道路上": 36506, + "IMAGE": 36507, + "省份": 36508, + "▁TN": 36509, + "▁arrives": 36510, + "相逢": 36511, + "ratulations": 36512, + "▁Ivan": 36513, + "▁卡": 36514, + "npython": 36515, + "nSan": 36516, + "▁歌曲原唱": 36517, + "nWorks": 36518, + "imeters": 36519, + "checkout": 36520, + "éd": 36521, + "ubes": 36522, + "▁Players": 36523, + "▁mechanistic": 36524, + "菲律宾": 36525, + "营业时间": 36526, + "选定正确答案": 36527, + "ONT": 36528, + "osex": 36529, + "ATT": 36530, + "▁\\'_": 36531, + "▁Muslims": 36532, + "▁escorts": 36533, + "cite": 36534, + "▁Hilbert": 36535, + "▁Prest": 36536, + "▁Ethiop": 36537, + "ArgumentParser": 36538, + "分化": 36539, + "ALT": 36540, + "SPE": 36541, + "Rows": 36542, + "影子": 36543, + "清热": 36544, + "都非常": 36545, + "▁Hamm": 36546, + "路的": 36547, + "ViewController": 36548, + "▁丁": 36549, + "僵尸": 36550, + "选择题时": 36551, + "▁Climate": 36552, + "Pe": 36553, + "头像": 36554, + "▁Crusher": 36555, + "▁persist": 36556, + "▁爱": 36557, + "nyour": 36558, + "Sys": 36559, + "五入": 36560, + "净水": 36561, + "用以": 36562, + "▁puzz": 36563, + "$(\\'": 36564, + "computer": 36565, + "▁cleavage": 36566, + "▁radiotherapy": 36567, + "▁lips": 36568, + "占总收入的": 36569, + "▁Album": 36570, + "▁gases": 36571, + "▁cope": 36572, + "ophone": 36573, + "无非": 36574, + "▁Bak": 36575, + "▁Ord": 36576, + "▁timeline": 36577, + "Wal": 36578, + "▁mitochondria": 36579, + "票房": 36580, + "andro": 36581, + "发音": 36582, + "副校长": 36583, + "展示了": 36584, + "▁tweets": 36585, + "▁smartphones": 36586, + "▁depriv": 36587, + "▁obstruct": 36588, + "nPolitical": 36589, + "xiv": 36590, + "▁cel": 36591, + "bourg": 36592, + "▁NAME": 36593, + "substring": 36594, + "nnew": 36595, + "▁NOW": 36596, + "million": 36597, + "▁lifting": 36598, + "忙碌": 36599, + "nTIME": 36600, + "并做出": 36601, + "▁Shaw": 36602, + "出版社出版": 36603, + "▁opener": 36604, + "something": 36605, + "踏实": 36606, + "培训机构": 36607, + "▁ч": 36608, + "常州": 36609, + "nRoman": 36610, + "▁advisory": 36611, + "均价": 36612, + "▁caution": 36613, + "严峻": 36614, + "▁FAQ": 36615, + "unwrap": 36616, + "现为": 36617, + "csrf": 36618, + "劳动报酬": 36619, + "居家": 36620, + "信息公开": 36621, + "contr": 36622, + "务实": 36623, + "对方的": 36624, + "为期": 36625, + "率和": 36626, + "▁strikes": 36627, + "accharide": 36628, + "保密": 36629, + "thumbnail": 36630, + "newcommand": 36631, + "nversion": 36632, + "本院在执行过程中": 36633, + "▁merging": 36634, + "▁Focus": 36635, + "▁时间复杂度": 36636, + "▁embarrass": 36637, + "▁convolution": 36638, + "品味": 36639, + "感慨": 36640, + "面团": 36641, + "担保人": 36642, + "威尔": 36643, + "落的": 36644, + "▁Bluetooth": 36645, + "▁Pep": 36646, + "▁tenant": 36647, + "urement": 36648, + "unar": 36649, + "▁Lapl": 36650, + "圈子": 36651, + "以下备选答案": 36652, + "artered": 36653, + "▁acknowledged": 36654, + "▁ds": 36655, + "网络营销": 36656, + "▁eleven": 36657, + "▁saline": 36658, + "不通": 36659, + "想知道": 36660, + "arynge": 36661, + "之力": 36662, + "selling": 36663, + "▁Directors": 36664, + "nBelow": 36665, + "委托代理人王": 36666, + "▁honors": 36667, + "distributed": 36668, + "楼主": 36669, + "FET": 36670, + "执行通知": 36671, + "代理书记员": 36672, + "▁welcoming": 36673, + "与会": 36674, + "cit": 36675, + "我当时": 36676, + "粗糙": 36677, + "美军": 36678, + "鉴别": 36679, + "▁och": 36680, + "▁Cache": 36681, + "磨练": 36682, + "▁catalyst": 36683, + "精美": 36684, + "颁奖": 36685, + "▁Mathematica": 36686, + "▁reservation": 36687, + "▁LD": 36688, + "诈骗罪": 36689, + "▁reass": 36690, + "画的": 36691, + "作出了": 36692, + "cuador": 36693, + "▁Nuclear": 36694, + "▁biosynthesis": 36695, + "怎么做": 36696, + "▁corporation": 36697, + "▁MN": 36698, + "▁Ottawa": 36699, + "▁Uganda": 36700, + "▁mellitus": 36701, + "▁Sor": 36702, + "▁sung": 36703, + "操控": 36704, + "十个月": 36705, + "▁CSV": 36706, + "Generate": 36707, + "▁dielectric": 36708, + "文件的": 36709, + "▁fixation": 36710, + "▁surviving": 36711, + "中法": 36712, + "cuda": 36713, + "However": 36714, + "▁investigates": 36715, + "一直以来": 36716, + "口袋": 36717, + "▁\\\\*": 36718, + "isbane": 36719, + "jk": 36720, + "用力": 36721, + "nQuote": 36722, + "▁chess": 36723, + "▁mammals": 36724, + "▁Provider": 36725, + "▁subsidiary": 36726, + "KC": 36727, + "▁Deal": 36728, + "nError": 36729, + "▁NAD": 36730, + "▁Electrical": 36731, + "▁Poisson": 36732, + "才可以": 36733, + "▁rewrite": 36734, + "▁村": 36735, + "使用权": 36736, + "罪犯李": 36737, + "REEN": 36738, + "先进单位": 36739, + "撤回上诉处理": 36740, + "▁Hudson": 36741, + "▁answering": 36742, + "还未": 36743, + "看一下": 36744, + "市场经济": 36745, + "nTom": 36746, + "这一次": 36747, + "神器": 36748, + "mund": 36749, + "nmake": 36750, + "▁facebook": 36751, + "▁filtration": 36752, + "▁litigation": 36753, + ":{": 36754, + "IRST": 36755, + "bill": 36756, + "▁chap": 36757, + "designed": 36758, + "hospital": 36759, + "会使": 36760, + "BSD": 36761, + "▁rupt": 36762, + "质地": 36763, + "日被逮捕": 36764, + "nHome": 36765, + "的重": 36766, + ";\">\\": 36767, + "rice": 36768, + "车上": 36769, + "▁Gy": 36770, + "▁correlates": 36771, + "]],\\": 36772, + "amonds": 36773, + "▁booked": 36774, + "▁heap": 36775, + "▁vanilla": 36776, + "▁utilizes": 36777, + "创伤": 36778, + "回答以下问题": 36779, + "▁marble": 36780, + "▁Wireless": 36781, + "晚期": 36782, + "服务平台": 36783, + "naires": 36784, + "distribution": 36785, + "列为": 36786, + "Flash": 36787, + "stairs": 36788, + "的正": 36789, + "粉碎": 36790, + "olt": 36791, + "Creator": 36792, + "挺好的": 36793, + "▁ghost": 36794, + "▁Generator": 36795, + "中学生": 36796, + "Upper": 36797, + "▁collector": 36798, + "▁cryptocurrency": 36799, + "鲁迅": 36800, + "Structure": 36801, + "▁Rah": 36802, + "系其": 36803, + "▁timber": 36804, + "controls": 36805, + "参演电影": 36806, + "▁expans": 36807, + "Actor": 36808, + "▁не": 36809, + "erek": 36810, + "文化艺术": 36811, + "pires": 36812, + "▁migrate": 36813, + "▁Institution": 36814, + "临沂市": 36815, + "减少了": 36816, + "知名度": 36817, + "▁Near": 36818, + "▁yaml": 36819, + "▁proto": 36820, + "为之": 36821, + "▁Ahmed": 36822, + "▁commercially": 36823, + "见了": 36824, + "有许多": 36825, + "▁CAR": 36826, + "uppet": 36827, + "▁Munich": 36828, + "其中一个": 36829, + "▁subunits": 36830, + "Ter": 36831, + "最重要": 36832, + "▁addr": 36833, + "idency": 36834, + "prevent": 36835, + "Agg": 36836, + "▁dosage": 36837, + "出演": 36838, + "nRad": 36839, + "▁nep": 36840, + "就来": 36841, + "林木": 36842, + "▁blues": 36843, + "▁exacerb": 36844, + "▁spite": 36845, + "▁refreshing": 36846, + "▁Eve": 36847, + "PTION": 36848, + "一元二次方程": 36849, + "▁Ori": 36850, + "▁tin": 36851, + "▁advers": 36852, + "互助": 36853, + "火爆": 36854, + "▁SPD": 36855, + "nProblem": 36856, + "▁Cameron": 36857, + "心得": 36858, + "内存容量": 36859, + "▁Jar": 36860, + "荣誉称号": 36861, + "tbool": 36862, + "量化": 36863, + "▁Scre": 36864, + "umbent": 36865, + "Projects": 36866, + "显着性": 36867, + "具体应用": 36868, + "▁sept": 36869, + "compar": 36870, + "两名": 36871, + "▁vim": 36872, + "▁shutdown": 36873, + "ña": 36874, + "endent": 36875, + "Os": 36876, + "的说法": 36877, + "▁Jak": 36878, + "▁trades": 36879, + "nAmong": 36880, + "德育": 36881, + "火焰": 36882, + "▁autism": 36883, + "和新": 36884, + "虚拟机": 36885, + "▁Interest": 36886, + "ILE": 36887, + "ся": 36888, + "▁Campus": 36889, + "{#": 36890, + "楼梯": 36891, + "▁vaccin": 36892, + "的一生": 36893, + "inas": 36894, + "执行董事": 36895, + "▁backwards": 36896, + "`:": 36897, + "anyon": 36898, + "鸡肉": 36899, + "igi": 36900, + "我也不": 36901, + "▁violations": 36902, + "区政府": 36903, + "iker": 36904, + "▁worthy": 36905, + "stub": 36906, + "小康": 36907, + "unn": 36908, + "ischer": 36909, + "▁soils": 36910, + "osocial": 36911, + "阴道": 36912, + "▁sometime": 36913, + "▁Cincinnati": 36914, + "体温": 36915, + "不同于": 36916, + "▁cents": 36917, + "Observ": 36918, + "仍在": 36919, + "▁measurable": 36920, + "大夫": 36921, + "▁xs": 36922, + "▁latent": 36923, + "因为在": 36924, + "微信公众号": 36925, + "犯罪嫌疑人": 36926, + "▁defenders": 36927, + "得起": 36928, + "▁MIN": 36929, + "Ro": 36930, + "和中": 36931, + "▁Demo": 36932, + "installed": 36933, + "半个": 36934, + "Hey": 36935, + "{()": 36936, + "aryngeal": 36937, + "周某": 36938, + "农民工": 36939, + "▁SSL": 36940, + "就不能": 36941, + "市场营销": 36942, + "▁Null": 36943, + "的家庭": 36944, + "明代": 36945, + "▁Detection": 36946, + "▁Optimization": 36947, + "筹备": 36948, + "好不好": 36949, + "自来水": 36950, + "China": 36951, + "inel": 36952, + "改革的": 36953, + "本科生": 36954, + "ardi": 36955, + "▁Terr": 36956, + "但被告": 36957, + "▁tanks": 36958, + "▁Repository": 36959, + "从不": 36960, + "唐代": 36961, + "近平": 36962, + "拥有一": 36963, + "▁wounds": 36964, + "zu": 36965, + "ische": 36966, + "十五章": 36967, + "▁Honda": 36968, + "协议书": 36969, + "所需的": 36970, + "bars": 36971, + "加盖": 36972, + "委托代理人张": 36973, + "mul": 36974, + "▁skew": 36975, + "portion": 36976, + "屁股": 36977, + "▁diarr": 36978, + "Metrics": 36979, + "emption": 36980, + "failure": 36981, + "商用": 36982, + "apa": 36983, + "管理办法": 36984, + "因为你": 36985, + "paid": 36986, + "对被申请人": 36987, + "现有的床铺": 36988, + "▁intim": 36989, + "小鼠": 36990, + "强劲": 36991, + "云计算": 36992, + "FORMAT": 36993, + "highlight": 36994, + "mentioned": 36995, + "▁bachelor": 36996, + "接地": 36997, + "Radio": 36998, + "▁fifty": 36999, + "回合": 37000, + "ité": 37001, + "~~\\": 37002, + "上科大": 37003, + "主义的": 37004, + "▁drift": 37005, + "九条": 37006, + "可能的": 37007, + "了一场": 37008, + "▁BMW": 37009, + "Toggle": 37010, + "商铺": 37011, + "为维护": 37012, + "▁Ultra": 37013, + "粒子": 37014, + "nSpanish": 37015, + "▁Cohen": 37016, + "四舍": 37017, + "发展战略": 37018, + "▁burned": 37019, + "遥控": 37020, + "dtype": 37021, + "▁unions": 37022, + "his": 37023, + "铝合金": 37024, + "▁Vic": 37025, + "onaut": 37026, + "}));\\": 37027, + "Fixture": 37028, + "限度": 37029, + "明白了": 37030, + "▁inspir": 37031, + "▁amplification": 37032, + "▁人口": 37033, + "nsys": 37034, + "▁Push": 37035, + "▁poets": 37036, + "nThough": 37037, + "▁Neither": 37038, + "ictory": 37039, + "▁touches": 37040, + "printStackTrace": 37041, + "欺骗": 37042, + "fat": 37043, + "申请执行人王": 37044, + "vh": 37045, + "项规定": 37046, + "退房时间": 37047, + "▁badly": 37048, + "起诉人": 37049, + "壮大": 37050, + "|}\\": 37051, + "▁multiplied": 37052, + "包装清单": 37053, + "scores": 37054, + "▁monetary": 37055, + "diagn": 37056, + "multiple": 37057, + "▁cosmetic": 37058, + "支球队": 37059, + "▁sculpture": 37060, + "多余": 37061, + "是小": 37062, + "被除数": 37063, + "▁Travis": 37064, + "▁silence": 37065, + "举行了": 37066, + "到最后": 37067, + "▁Columbus": 37068, + "还是在": 37069, + "CHAR": 37070, + "▁brut": 37071, + "世人": 37072, + "▁snippet": 37073, + "如果在": 37074, + "ipro": 37075, + "▁preserving": 37076, + "平生": 37077, + "▁ss": 37078, + "systems": 37079, + "▁workspace": 37080, + "ereum": 37081, + "▁downloads": 37082, + "national": 37083, + "▁continuation": 37084, + "就这么": 37085, + "▁nos": 37086, + "▁startups": 37087, + "教导": 37088, + "▁获奖": 37089, + "Focus": 37090, + "眼的": 37091, + "年生": 37092, + "▁Supply": 37093, + "▁Probability": 37094, + "cats": 37095, + "▁devastating": 37096, + "相反数": 37097, + "▁doub": 37098, + "本身的": 37099, + "说起": 37100, + "▁anis": 37101, + "下单": 37102, + "ighb": 37103, + "▁Pattern": 37104, + "▁proprietary": 37105, + "绑定": 37106, + "▁divisible": 37107, + "▁poker": 37108, + "▁cartoon": 37109, + "▁spelling": 37110, + "原谅": 37111, + "VELO": 37112, + "▁Commander": 37113, + "检刑诉": 37114, + "▁Edwards": 37115, + "很不": 37116, + "得上": 37117, + "新品": 37118, + "ycler": 37119, + "cosity": 37120, + "INF": 37121, + "博览会": 37122, + "slide": 37123, + "▁employs": 37124, + "日制": 37125, + "▁Nancy": 37126, + "▁binomial": 37127, + "▁toxin": 37128, + "thood": 37129, + "清风": 37130, + "商品的": 37131, + "赢得了": 37132, + "该怎么办": 37133, + "▁ugly": 37134, + "就想": 37135, + "icus": 37136, + "其中包括": 37137, + "▁mall": 37138, + "吃完": 37139, + "奈何": 37140, + "进修": 37141, + "median": 37142, + "换算": 37143, + "生化": 37144, + "需求的": 37145, + "阳县人民法院": 37146, + "和浩特": 37147, + "影响了": 37148, + "▁geographical": 37149, + "▁inadequate": 37150, + "规矩": 37151, + "除尘": 37152, + "宫颈": 37153, + "ersed": 37154, + "▁dear": 37155, + "▁thumb": 37156, + "博主": 37157, + "就诊": 37158, + "nable": 37159, + "▁Mills": 37160, + "▁Representative": 37161, + "告别": 37162, + "▁Brid": 37163, + "▁Harrison": 37164, + "提名": 37165, + "灿烂": 37166, + "马斯": 37167, + "▁Tang": 37168, + "▁seroton": 37169, + "▁Trial": 37170, + "星球": 37171, + "不影响": 37172, + "ishi": 37173, + "getMessage": 37174, + "海报": 37175, + "polar": 37176, + "omology": 37177, + "家常": 37178, + "wik": 37179, + "▁cousin": 37180, + "▁neurodeg": 37181, + "帐号": 37182, + "▁curved": 37183, + "矿业": 37184, + "orean": 37185, + "Take": 37186, + "bund": 37187, + "▁foundations": 37188, + "▁brass": 37189, + "▁potato": 37190, + "太高": 37191, + "nDirect": 37192, + "肖战": 37193, + "▁neighborhoods": 37194, + "外壳": 37195, + "▁Hob": 37196, + "党中央": 37197, + "▁heal": 37198, + "mathit": 37199, + "▁replies": 37200, + "▁tam": 37201, + "第一百条": 37202, + "clients": 37203, + "八十": 37204, + "rides": 37205, + "▁influencing": 37206, + "把这个": 37207, + "▁Generic": 37208, + "▁Singles": 37209, + "boat": 37210, + "奔驰": 37211, + "North": 37212, + "▁wool": 37213, + "▁camping": 37214, + "句子": 37215, + "▁evac": 37216, + "颁发": 37217, + "保鲜": 37218, + "量为": 37219, + "一顿": 37220, + "提倡": 37221, + "crypt": 37222, + "ibles": 37223, + "iropr": 37224, + "▁Wildlife": 37225, + "abwe": 37226, + "▁drought": 37227, + "最快": 37228, + "这样做": 37229, + "航班": 37230, + "Tip": 37231, + "ungen": 37232, + "numeric": 37233, + "石材": 37234, + "▁HER": 37235, + "nWrite": 37236, + "▁broadly": 37237, + "▁Operating": 37238, + "图的": 37239, + "富裕": 37240, + "注意到": 37241, + "▁ket": 37242, + "▁Clare": 37243, + "冻结被申请人": 37244, + "▁scattered": 37245, + "计算出": 37246, + "吴某": 37247, + "术前": 37248, + "HIV": 37249, + "oplus": 37250, + "▁tomato": 37251, + "deployment": 37252, + "地块": 37253, + "onc": 37254, + "ausal": 37255, + "▁societies": 37256, + "申请的": 37257, + "▁dan": 37258, + "▁statistic": 37259, + "方法对": 37260, + "▁Auckland": 37261, + "▁RES": 37262, + "eme": 37263, + "装箱": 37264, + "针灸": 37265, + "jin": 37266, + "▁Burg": 37267, + "今晚": 37268, + "你对": 37269, + "实录": 37270, + "烤箱": 37271, + "提供被执行人其他": 37272, + "▁beams": 37273, + "▁trapped": 37274, + "▁INC": 37275, + "firebase": 37276, + "决议": 37277, + "▁Bac": 37278, + "▁Serbia": 37279, + "▁prophyl": 37280, + "人际": 37281, + "女王": 37282, + "板的": 37283, + "xpath": 37284, + "▁topped": 37285, + "▁submissions": 37286, + "和生活": 37287, + "▁attrs": 37288, + "蘑菇": 37289, + "onn": 37290, + "▁Stevens": 37291, + "都将": 37292, + "归还借款": 37293, + "Geometry": 37294, + "枢纽": 37295, + "下列范围": 37296, + "工程施工": 37297, + "▁Zhang": 37298, + "的都是": 37299, + "中医药学": 37300, + "▁releg": 37301, + "nKeywords": 37302, + "启示": 37303, + "▁coupons": 37304, + "▁upgrades": 37305, + "▁Frederick": 37306, + "从判决确定之日起计算": 37307, + "长相": 37308, + "▁语种": 37309, + "▁tut": 37310, + "swift": 37311, + "▁shortest": 37312, + "olerance": 37313, + "▁stresses": 37314, + "▁mx": 37315, + "HY": 37316, + "▁Safari": 37317, + "想不到": 37318, + "主营": 37319, + "utral": 37320, + "时要": 37321, + "▁counterparts": 37322, + "HPP": 37323, + "bio": 37324, + "▁Flag": 37325, + "禁忌": 37326, + "例患者": 37327, + "Tele": 37328, + "April": 37329, + "双重": 37330, + "▁Protein": 37331, + "TCP": 37332, + "意见书": 37333, + "▁clue": 37334, + "▁Built": 37335, + "杰出": 37336, + "与中国科学院": 37337, + "能够在": 37338, + "▁gateway": 37339, + "右键": 37340, + "Sym": 37341, + "nWant": 37342, + "▁soldier": 37343, + "▁refugees": 37344, + "ない": 37345, + "bons": 37346, + "▁gard": 37347, + "硕士研究生": 37348, + "▁talents": 37349, + "Course": 37350, + "operatively": 37351, + "olicies": 37352, + "▁LCD": 37353, + "从来没有": 37354, + "▁Sever": 37355, + "不已": 37356, + "Gold": 37357, + "▁evolve": 37358, + "一无": 37359, + "升降": 37360, + "变迁": 37361, + "着你": 37362, + "▁rheumat": 37363, + "ovy": 37364, + "▁Va": 37365, + "等部门": 37366, + "研究成果": 37367, + "NSString": 37368, + "中断": 37369, + "iator": 37370, + "plots": 37371, + "Es": 37372, + "不难": 37373, + "jb": 37374, + "ROP": 37375, + "Safe": 37376, + "▁consciousness": 37377, + "▁manifestations": 37378, + "比利": 37379, + "▁Gill": 37380, + "▁Centers": 37381, + "堵塞": 37382, + "▁蔡": 37383, + "珍贵": 37384, + "▁boasts": 37385, + "银行股份有限公司信用卡中心": 37386, + "▁championships": 37387, + "卸载": 37388, + "▁Thanksgiving": 37389, + "吸引了": 37390, + "广泛的": 37391, + "辅导员": 37392, + "内容包括": 37393, + "发改": 37394, + "nDue": 37395, + "Facades": 37396, + "paragraph": 37397, + "marine": 37398, + "▁sympathetic": 37399, + "▁transported": 37400, + "一键": 37401, + "▁Implementation": 37402, + "无情": 37403, + "行车": 37404, + "WER": 37405, + "▁FF": 37406, + "▁Ultr": 37407, + "oshop": 37408, + "tol": 37409, + "辨认笔录": 37410, + "高等学校": 37411, + "luent": 37412, + "until": 37413, + "MATH": 37414, + "▁Conserv": 37415, + "▁bathrooms": 37416, + "▁DDR": 37417, + "呕吐": 37418, + "开始游戏": 37419, + "▁incentives": 37420, + "▁subscribers": 37421, + "录像": 37422, + "预售": 37423, + "的理解": 37424, + "▁credited": 37425, + "篇文章": 37426, + "声器": 37427, + "▁typed": 37428, + "▁praise": 37429, + "吉他": 37430, + "城堡": 37431, + "Unity": 37432, + "不过是": 37433, + "nSeveral": 37434, + "▁Registry": 37435, + "平分": 37436, + "encv": 37437, + "不准许撤诉": 37438, + "itated": 37439, + "▁reduct": 37440, + "▁homology": 37441, + "实惠": 37442, + "▁TC": 37443, + "texture": 37444, + "买家": 37445, + "prison": 37446, + "Fn": 37447, + "EES": 37448, + "心理健康": 37449, + "assisted": 37450, + "▁µ": 37451, + "二审案件受理费": 37452, + "花椒": 37453, + "intercept": 37454, + "▁dyst": 37455, + "▁Muh": 37456, + "▁counted": 37457, + "▁Tea": 37458, + "▁Usually": 37459, + "▁monkeys": 37460, + "得不到": 37461, + "淄博市": 37462, + "▁Brisbane": 37463, + "我了": 37464, + "顶端": 37465, + "领导班子": 37466, + "▁Woods": 37467, + "ivative": 37468, + "市面上": 37469, + "misc": 37470, + "CONTRIBUTING": 37471, + "解方程": 37472, + "▁Eug": 37473, + "维权": 37474, + "scient": 37475, + "▁predec": 37476, + "台风": 37477, + "▁amp": 37478, + "merged": 37479, + "MX": 37480, + "公社": 37481, + "口的": 37482, + "▁spiral": 37483, + "▁inappropriate": 37484, + "▁Tot": 37485, + "readme": 37486, + "▁stair": 37487, + "▁Associates": 37488, + "iasm": 37489, + "成为一个": 37490, + "▁Maximum": 37491, + "▁amyloid": 37492, + "▁BS": 37493, + "angelog": 37494, + "▁Frances": 37495, + "▁unified": 37496, + "▁Veterans": 37497, + "▁晋江文学网": 37498, + "图中": 37499, + "处理的": 37500, + "▁{},": 37501, + "骨头": 37502, + "特色服务": 37503, + "▁ImportError": 37504, + "敬业": 37505, + "▁Direction": 37506, + "▁specializes": 37507, + "thumb": 37508, + "▁volt": 37509, + "法定代表人张": 37510, + "切片": 37511, + "逃离": 37512, + "▁\"(": 37513, + "▁pestic": 37514, + "字数": 37515, + "前三": 37516, + "▁styling": 37517, + "▁Healthcare": 37518, + "bis": 37519, + "stdin": 37520, + "主场": 37521, + "▁cues": 37522, + "Cursor": 37523, + "▁backyard": 37524, + "▁Parameters": 37525, + "utm": 37526, + "horizontal": 37527, + "书证": 37528, + "nEX": 37529, + "▁Guild": 37530, + "formatter": 37531, + "▁'__": 37532, + "paces": 37533, + "▁deserves": 37534, + "▁disturbance": 37535, + "剧中": 37536, + "))*": 37537, + "有两种": 37538, + "日经": 37539, + "▁CBD": 37540, + "这些问题": 37541, + "▁assure": 37542, + "▁Midd": 37543, + "▁outpatient": 37544, + "就看": 37545, + "指纹": 37546, + "anya": 37547, + "ré": 37548, + "▁sug": 37549, + "▁mate": 37550, + "▁Saskat": 37551, + "MMMMMMMM": 37552, + "要做": 37553, + "nse": 37554, + "按月利率": 37555, + "acional": 37556, + "▁acknowledge": 37557, + "▁practically": 37558, + "畅销": 37559, + "Src": 37560, + "说着": 37561, + "jsx": 37562, + "INCLUDE": 37563, + "执着": 37564, + "排行榜": 37565, + "cool": 37566, + "izens": 37567, + "▁adul": 37568, + "▁galleries": 37569, + "▁hammer": 37570, + "▁defective": 37571, + "rp": 37572, + "火山": 37573, + "baz": 37574, + "亲爱的": 37575, + "▁pear": 37576, + "▁bundles": 37577, + "▁seminar": 37578, + "marker": 37579, + "▁rankings": 37580, + "Guid": 37581, + "价值的财产": 37582, + "是将": 37583, + "些什么": 37584, + "'$": 37585, + "诊治": 37586, + "nCustom": 37587, + "▁formatted": 37588, + "对上述": 37589, + "atics": 37590, + "理想的": 37591, + "毁灭": 37592, + "Care": 37593, + "FFFF": 37594, + "vectors": 37595, + "▁Workers": 37596, + "倒数": 37597, + "agi": 37598, + "找房": 37599, + "会议室": 37600, + "网站的": 37601, + "奖惩审批表": 37602, + "在审理过程中": 37603, + "网络科技有限公司": 37604, + "现将": 37605, + "理智": 37606, + "手术治疗": 37607, + "年平均": 37608, + "easy": 37609, + "▁Vac": 37610, + "ippets": 37611, + "于本判决生效之日起十日内": 37612, + "▁潘": 37613, + "所选": 37614, + "二期": 37615, + "新产品": 37616, + ";&#": 37617, + "▁Launch": 37618, + "不胜": 37619, + "总线": 37620, + "增值税": 37621, + "▁Teacher": 37622, + "保湿": 37623, + "June": 37624, + "▁strom": 37625, + "astically": 37626, + "南宁市": 37627, + "日常生活中": 37628, + "▁remot": 37629, + "硫酸": 37630, + "第一条": 37631, + "▁Aur": 37632, + "应有": 37633, + "oux": 37634, + "国科大": 37635, + "扬子": 37636, + "nod": 37637, + "cale": 37638, + "▁flies": 37639, + "这三个": 37640, + "▁caregivers": 37641, + "与社会": 37642, + "▁inoc": 37643, + "nRight": 37644, + "roduce": 37645, + "▁additions": 37646, + "▁coherent": 37647, + "一来": 37648, + "故人": 37649, + "▁Imaging": 37650, + "发表于晋江文学网": 37651, + "奢侈": 37652, + "生导师": 37653, + "知道了": 37654, + "下标": 37655, + "lord": 37656, + "nWin": 37657, + "▁wanna": 37658, + "▁Anyone": 37659, + "聚餐": 37660, + "▁sine": 37661, + "执导": 37662, + "膳食": 37663, + "▁autumn": 37664, + "▁polymorphisms": 37665, + "匆匆": 37666, + "我爸": 37667, + "jdk": 37668, + "Seconds": 37669, + "▁Peninsula": 37670, + "滋味": 37671, + "▁重要参数": 37672, + "▁immunosup": 37673, + "志强": 37674, + "axes": 37675, + "ANGUAGE": 37676, + "▁Adelaide": 37677, + "vb": 37678, + "邮寄": 37679, + "玩游戏": 37680, + "opor": 37681, + "▁drill": 37682, + "Confirm": 37683, + "▁bicycle": 37684, + "▁Recovery": 37685, + "复旦": 37686, + "CLO": 37687, + "中档题": 37688, + "Modules": 37689, + "iversal": 37690, + "溶剂": 37691, + "▁fist": 37692, + "houses": 37693, + "无人机": 37694, + "igon": 37695, + "Begin": 37696, + "万事": 37697, + "财产调查": 37698, + "getClass": 37699, + "惊讶": 37700, + "▁wore": 37701, + "▁Actor": 37702, + "▁backward": 37703, + "▁aure": 37704, + "▁stems": 37705, + "▁spanning": 37706, + "发型": 37707, + "▁Newcastle": 37708, + "方差": 37709, + "明细": 37710, + "Missing": 37711, + "极具": 37712, + "海峡": 37713, + "▁CYP": 37714, + "effects": 37715, + "▁albumin": 37716, + "endum": 37717, + "▁behave": 37718, + "▁dw": 37719, + "▁bootstrap": 37720, + "▁competence": 37721, + "URN": 37722, + "降温": 37723, + "先进个人": 37724, + "▁quart": 37725, + "变异": 37726, + "FAIL": 37727, + "▁illustrations": 37728, + "nCong": 37729, + "▁farmer": 37730, + "▁recruiting": 37731, + "时针": 37732, + "至关": 37733, + "conditions": 37734, + "溪市": 37735, + "▁drying": 37736, + "▁魏": 37737, + "躺在": 37738, + "▁theat": 37739, + "nDesign": 37740, + "▁twisted": 37741, + "区内": 37742, + "很强": 37743, + "▁Jobs": 37744, + "▁酒店地址": 37745, + "▁verbal": 37746, + "▁depressed": 37747, + "力争": 37748, + "能力强": 37749, + "Drive": 37750, + "名师": 37751, + "them": 37752, + "▁Lloyd": 37753, + "▁deadly": 37754, + "▁patience": 37755, + "eterm": 37756, + "开辟": 37757, + "先用": 37758, + "天猫": 37759, + "ocarcinoma": 37760, + "tcolor": 37761, + "从前": 37762, + "此事": 37763, + "首个": 37764, + "现场勘": 37765, + "个百分点": 37766, + "▁WILL": 37767, + "buttons": 37768, + "▁meditation": 37769, + "colon": 37770, + "ogical": 37771, + "▁Split": 37772, + "Refresh": 37773, + "▁condem": 37774, + "▁Heights": 37775, + "出厂": 37776, + "演变": 37777, + "也不用": 37778, + "ustion": 37779, + "▁Illegal": 37780, + "aram": 37781, + "酒店提供": 37782, + "Getter": 37783, + "▁Perth": 37784, + "ahu": 37785, + "变压器": 37786, + "所有权": 37787, + "第一百一十八条": 37788, + "▁phylogen": 37789, + "常州市": 37790, + "二次函数": 37791, + "▁Dennis": 37792, + "公立": 37793, + "▁advocacy": 37794, + "▁occlusion": 37795, + "▁tutorials": 37796, + "Sun": 37797, + "kon": 37798, + "实现的": 37799, + "▁ritual": 37800, + "imbabwe": 37801, + "▁Export": 37802, + "▁Linda": 37803, + "▁predecess": 37804, + "罪犯王": 37805, + "▁snack": 37806, + "山村": 37807, + "合法性": 37808, + "aris": 37809, + "▁前": 37810, + "校友": 37811, + "fon": 37812, + "\\'}\\": 37813, + "▁lev": 37814, + "中国特色": 37815, + "▁Experiment": 37816, + "hw": 37817, + "▁plasticity": 37818, + "▁fundraising": 37819, + "bugs": 37820, + "nimpl": 37821, + "▁pork": 37822, + "▁insulation": 37823, + "edo": 37824, + "nok": 37825, + "必须在": 37826, + "▁rhyth": 37827, + "式子": 37828, + "guid": 37829, + "Preview": 37830, + "号民事判决书已发生法律效力": 37831, + "(\"<": 37832, + "▁PF": 37833, + "nWest": 37834, + "ullivan": 37835, + "教科": 37836, + "Land": 37837, + "门外": 37838, + "Cross": 37839, + "▁Nintendo": 37840, + "did": 37841, + "enery": 37842, + "▁smokers": 37843, + "▁tasty": 37844, + "帖子": 37845, + "Docs": 37846, + "umen": 37847, + "可以缺席判决": 37848, + "这几个": 37849, + "SESSION": 37850, + "到你": 37851, + "一般情况下": 37852, + "})(": 37853, + "uded": 37854, + "astruct": 37855, + "凸显": 37856, + "录制": 37857, + "▁Nigerian": 37858, + "▁prolifer": 37859, + "不给": 37860, + "团购": 37861, + "▁anx": 37862, + "细胞的": 37863, + "▁编剧": 37864, + "▁planted": 37865, + "▁Election": 37866, + "▁古": 37867, + "ARM": 37868, + "ixon": 37869, + "oseph": 37870, + "▁Heavy": 37871, + "▁salmon": 37872, + "▁Duration": 37873, + "isRequired": 37874, + "残酷": 37875, + "Expr": 37876, + "jective": 37877, + "妇科": 37878, + "▁testosterone": 37879, + "对被告人": 37880, + "oices": 37881, + "▁beats": 37882, + "例外": 37883, + "▁onion": 37884, + "号刑事判决书": 37885, + "falls": 37886, + "▁Coin": 37887, + "▁aviation": 37888, + "音箱": 37889, + "省政府": 37890, + "▁TCP": 37891, + "Documents": 37892, + "以前的": 37893, + "然后在": 37894, + "然后用": 37895, + "等内容": 37896, + "充实": 37897, + "国籍": 37898, + "Ready": 37899, + "recogn": 37900, + "习近平": 37901, + "儿童和": 37902, + "一年的": 37903, + "▁NOTE": 37904, + "西区": 37905, + "Numer": 37906, + "▁'',\\": 37907, + "海底": 37908, + "客场": 37909, + "nHom": 37910, + "▁marking": 37911, + "Bul": 37912, + "要不要": 37913, + "▁volatility": 37914, + "veh": 37915, + "MySQL": 37916, + "▁Liberty": 37917, + "tis": 37918, + "▁Naz": 37919, + "人民日报": 37920, + "▁encaps": 37921, + "修养": 37922, + "▁feeds": 37923, + "Helpers": 37924, + "寒冷": 37925, + "值班": 37926, + "颁布": 37927, + "\"][\"": 37928, + "idyl": 37929, + "▁餐馆名称": 37930, + "学业": 37931, + "的吗": 37932, + "xsl": 37933, + "▁planar": 37934, + "DESCRIPTION": 37935, + "增进": 37936, + "只要你": 37937, + "▁creep": 37938, + "压迫": 37939, + "重型": 37940, + "中方": 37941, + "是一本": 37942, + "ENGTH": 37943, + "乒乓球": 37944, + "▁presumably": 37945, + "\\'<": 37946, + "这两种": 37947, + "▁Hus": 37948, + "nio": 37949, + "新闻网": 37950, + "最多容纳": 37951, + "▁Eagle": 37952, + "▁executing": 37953, + "▁LPS": 37954, + "高质量发展": 37955, + "▁pumps": 37956, + "PET": 37957, + "干事": 37958, + "▁selector": 37959, + "思念": 37960, + "Social": 37961, + "▁iterations": 37962, + "opard": 37963, + "especially": 37964, + "MK": 37965, + "还不如": 37966, + "deps": 37967, + "如果不是": 37968, + "▁simulator": 37969, + "坚实": 37970, + "契约": 37971, + "longitude": 37972, + "月下": 37973, + "说他": 37974, + "▁植物": 37975, + "毫克": 37976, + "难忘": 37977, + "现已审查终结": 37978, + "▁xrange": 37979, + "▁cascade": 37980, + "▁stimulating": 37981, + "}⋅": 37982, + "朝阳区": 37983, + "▁Soon": 37984, + "▁Links": 37985, + "不予受理": 37986, + "油田": 37987, + "▁主要成就": 37988, + "最重要的是": 37989, + "▁carotid": 37990, + "二元": 37991, + "▁contour": 37992, + "▁underway": 37993, + "选中": 37994, + "中型": 37995, + "当做": 37996, + "海水": 37997, + "可行性": 37998, + "独资": 37999, + "纪录片": 38000, + "▁Reports": 38001, + "▁prosper": 38002, + "▁tensorflow": 38003, + "废物": 38004, + "▁healthier": 38005, + "▁伟": 38006, + "▁cp": 38007, + "▁sqlalchemy": 38008, + "HK": 38009, + "不懈": 38010, + "Hom": 38011, + "▁cherry": 38012, + "▁profitable": 38013, + "习俗": 38014, + "▁适宜": 38015, + "▁grave": 38016, + "▁nicotine": 38017, + "▁程": 38018, + "财政部": 38019, + "身上的": 38020, + "▁Ana": 38021, + "▁Lok": 38022, + "▁BT": 38023, + "Books": 38024, + "▁unsure": 38025, + "▁compares": 38026, + "▁Jefferson": 38027, + "受众": 38028, + "▁Laser": 38029, + "▁executable": 38030, + "▁Born": 38031, + "vr": 38032, + "在全球": 38033, + "urbs": 38034, + "Called": 38035, + "机箱": 38036, + "过往": 38037, + "gomery": 38038, + "隔壁": 38039, + "▁normalize": 38040, + "nLook": 38041, + "▁orchestr": 38042, + "同意终结本次执行程序": 38043, + "得解": 38044, + "▁anatomy": 38045, + "成熟的": 38046, + "icky": 38047, + "▁spouse": 38048, + "▁Shipping": 38049, + "▁volatile": 38050, + "▁Birthday": 38051, + "周一": 38052, + "才华": 38053, + "水位": 38054, + "PCI": 38055, + "▁房间": 38056, + "▁depletion": 38057, + "ouis": 38058, + "ellows": 38059, + "▁touched": 38060, + "收款": 38061, + "教职工": 38062, + "bies": 38063, + "credit": 38064, + "又会": 38065, + "挣扎": 38066, + "敢于": 38067, + "Gs": 38068, + "cord": 38069, + "ettes": 38070, + "uator": 38071, + "平民": 38072, + "▁Sustain": 38073, + "▁biomass": 38074, + "取名": 38075, + "可以是": 38076, + "▁sentenced": 38077, + "的法律": 38078, + "raper": 38079, + "阴影": 38080, + "第七十八": 38081, + "Dataset": 38082, + "比为": 38083, + "\\\\*": 38084, + "日被刑事拘留": 38085, + "technology": 38086, + "我所": 38087, + "可用于": 38088, + "是国内": 38089, + "▁railroad": 38090, + "▁GOP": 38091, + "EXPECT": 38092, + "UserId": 38093, + "▁densities": 38094, + "格尔": 38095, + "natural": 38096, + "Constant": 38097, + "▁threading": 38098, + "彩礼": 38099, + "▁TEST": 38100, + "跳舞": 38101, + "tpl": 38102, + "中国经济": 38103, + "▁alloc": 38104, + "▁Salmon": 38105, + "流感": 38106, + "rossover": 38107, + "▁cfg": 38108, + "▁cation": 38109, + "ViewById": 38110, + "ди": 38111, + "fasterxml": 38112, + "▁Nas": 38113, + "的白": 38114, + "奖学金": 38115, + "管理中心": 38116, + "▁commemor": 38117, + "nUnincorporated": 38118, + "▁Guardian": 38119, + "▁userId": 38120, + "殖民": 38121, + "▁CAP": 38122, + "▁Reader": 38123, + "▁reactor": 38124, + "自古": 38125, + "▁Career": 38126, + "▁anatomical": 38127, + "国道": 38128, + "而且还": 38129, + "公诉机关指控的": 38130, + "dirs": 38131, + "二代": 38132, + "▁stap": 38133, + "▁Athens": 38134, + "comfortable": 38135, + "nOct": 38136, + "verb": 38137, + "抗菌": 38138, + "aspberry": 38139, + "清朝": 38140, + "nTest": 38141, + "▁harness": 38142, + "偏差": 38143, + "印发": 38144, + "并为": 38145, + "▁founders": 38146, + "▁understands": 38147, + "▁deline": 38148, + "government": 38149, + "▁Ny": 38150, + "▁generalization": 38151, + "海域": 38152, + "IGH": 38153, + "▁Cluster": 38154, + "▁Hour": 38155, + "第一百零三": 38156, + "▁resear": 38157, + "Multiple": 38158, + "两家": 38159, + "▁Gam": 38160, + "mania": 38161, + "准予强制执行": 38162, + "采样": 38163, + "sessions": 38164, + "▁Nursing": 38165, + "nid": 38166, + "oya": 38167, + "▁mas": 38168, + "的了": 38169, + "逃避": 38170, + "的主题": 38171, + "的症状": 38172, + "nSur": 38173, + "▁Often": 38174, + "▁drunk": 38175, + "▁explosion": 38176, + "光线": 38177, + "threat": 38178, + "▁seizures": 38179, + "▁deprecated": 38180, + "▁rebuild": 38181, + "一副": 38182, + "限期": 38183, + "▁bos": 38184, + "cerpt": 38185, + "▁Defence": 38186, + "二〇一五年十二月": 38187, + "胆固醇": 38188, + "erie": 38189, + "'''": 38190, + "nBen": 38191, + "▁Paulo": 38192, + "和工作": 38193, + "▁collaborate": 38194, + "人之": 38195, + "要使": 38196, + "npro": 38197, + "暴雨": 38198, + "▁rope": 38199, + "离婚纠纷一案中": 38200, + "Solution": 38201, + "代书": 38202, + "蒸发": 38203, + "▁Lis": 38204, + "户籍所在地": 38205, + "ctuary": 38206, + "▁Brother": 38207, + "Her": 38208, + "gang": 38209, + "iphone": 38210, + "rogate": 38211, + "▁fibrin": 38212, + "世界各地": 38213, + "不同类型的": 38214, + "不和": 38215, + "估算": 38216, + "时时彩": 38217, + "▁Byte": 38218, + "▁unused": 38219, + ":<": 38220, + "冠状": 38221, + "联系方式": 38222, + "▁Hillary": 38223, + "可以把": 38224, + "影响的": 38225, + "▁capturing": 38226, + "▁dismissed": 38227, + "这事": 38228, + "限定": 38229, + "iggs": 38230, + "▁pituitary": 38231, + "下辖": 38232, + "生产经营": 38233, + "▁pharmacy": 38234, + "▁successive": 38235, + "抱歉": 38236, + "电线": 38237, + "麒麟": 38238, + "批准后": 38239, + "Deep": 38240, + "▁Lac": 38241, + "▁extern": 38242, + "▁modifying": 38243, + "ın": 38244, + "尺度": 38245, + "督查": 38246, + "自愿认罪": 38247, + "捐款": 38248, + "合唱": 38249, + "▁型号": 38250, + "体现在": 38251, + "ursors": 38252, + "被盗": 38253, + "日依法": 38254, + "▁Cru": 38255, + "一点的": 38256, + "fram": 38257, + "oxic": 38258, + "中国科学院大学": 38259, + "analytics": 38260, + "▁Developer": 38261, + "▁HV": 38262, + "▁Tesla": 38263, + "曲线的": 38264, + "▁monster": 38265, + "菏泽": 38266, + "▁affiliates": 38267, + "华盛": 38268, + "任何人": 38269, + "特别的": 38270, + "▁innings": 38271, + "故宫": 38272, + "▁ssh": 38273, + "roleum": 38274, + "万的": 38275, + "获利": 38276, + "衰竭": 38277, + "LET": 38278, + "▁Sak": 38279, + "partner": 38280, + "nDefunct": 38281, + "就得": 38282, + "华北": 38283, + "▁Static": 38284, + "idas": 38285, + "▁inaugural": 38286, + "市新": 38287, + "犹如": 38288, + "▁spy": 38289, + "▁seniors": 38290, + "派遣": 38291, + "MODEL": 38292, + "▁wast": 38293, + "▁Neural": 38294, + "学子": 38295, + "都会有": 38296, + "经人介绍": 38297, + "▁青": 38298, + "该项目": 38299, + "macro": 38300, + "产的": 38301, + "nId": 38302, + "amboo": 38303, + "handed": 38304, + "▁rises": 38305, + "▁sepsis": 38306, + "▁realm": 38307, + "▁lipids": 38308, + "粉末": 38309, + "▁DOI": 38310, + "brities": 38311, + "▁spokesperson": 38312, + "村里": 38313, + "lesh": 38314, + "▁mounting": 38315, + "面子": 38316, + "npmjs": 38317, + "smith": 38318, + "率的": 38319, + "理论和": 38320, + "中和": 38321, + "就医": 38322, + "▁Municipal": 38323, + "高新": 38324, + "▁Fit": 38325, + "fabric": 38326, + "▁Asset": 38327, + "博弈": 38328, + "▁modulus": 38329, + "很可能": 38330, + "的职业": 38331, + "钢结构": 38332, + "nDiv": 38333, + "▁perimeter": 38334, + "开采": 38335, + "▁sper": 38336, + "堪称": 38337, + "yze": 38338, + "与你": 38339, + "前途": 38340, + "数目": 38341, + "角是": 38342, + "itas": 38343, + "▁flush": 38344, + "应为": 38345, + "行政执法": 38346, + "▁chaos": 38347, + "▁Programs": 38348, + "前列腺": 38349, + "支付令": 38350, + "otides": 38351, + "ccc": 38352, + "inj": 38353, + "nLocal": 38354, + "▁Pseud": 38355, + "▁recombination": 38356, + "▁Mong": 38357, + "eredReader": 38358, + "特意": 38359, + "太多的": 38360, + "▁headache": 38361, + "诉至本院": 38362, + "食品有限公司": 38363, + "▁merger": 38364, + "出品": 38365, + "应聘": 38366, + "时有": 38367, + "▁Videos": 38368, + "▁approve": 38369, + "▁starred": 38370, + "名额": 38371, + "如实供述自己的罪行": 38372, + "底下": 38373, + "▁flap": 38374, + "▁晋江文学城": 38375, + "植株": 38376, + "osphere": 38377, + "velocity": 38378, + "的神": 38379, + "él": 38380, + "觉醒": 38381, + "▁Debug": 38382, + "ān": 38383, + "交通肇事罪": 38384, + "▁alerts": 38385, + "▁pygame": 38386, + "nDemographics": 38387, + "产业化": 38388, + "ulsive": 38389, + "法定代表人李": 38390, + "徐州市": 38391, + "的对象": 38392, + "azor": 38393, + "▁vet": 38394, + "Human": 38395, + "ensure": 38396, + "\\\\\\\\\\": 38397, + "▁snake": 38398, + "▁Motors": 38399, + "▁congreg": 38400, + "▁已知": 38401, + "heads": 38402, + "磷酸": 38403, + "▁rainfall": 38404, + "的自": 38405, + "ées": 38406, + "的文章": 38407, + "▁lept": 38408, + "▁loader": 38409, + "▁atherosclerosis": 38410, + "整洁": 38411, + "ilio": 38412, + "▁boil": 38413, + "▁Latino": 38414, + "ushi": 38415, + "inski": 38416, + "和水": 38417, + "杀死": 38418, + "▁Outdoor": 38419, + "真理": 38420, + "色素": 38421, + "停车位": 38422, + "▁enforce": 38423, + "NL": 38424, + "asta": 38425, + "nell": 38426, + "datas": 38427, + "交点": 38428, + "BIT": 38429, + "▁WiFi": 38430, + "▁fabrics": 38431, + "▁Phillips": 38432, + "哪儿": 38433, + "驳回起诉": 38434, + "▁carbox": 38435, + "▁blessed": 38436, + "▁filmed": 38437, + "好用": 38438, + "就是这样": 38439, + "▁Colors": 38440, + "ndefined": 38441, + "iba": 38442, + "▁pins": 38443, + "▁renewed": 38444, + "月光": 38445, + "你需要": 38446, + "马路": 38447, + "他人的": 38448, + "共青团": 38449, + "的角色": 38450, + "共同举办": 38451, + "▁Parameter": 38452, + "▁Fro": 38453, + "reload": 38454, + "一审被告": 38455, + "裁定适用于": 38456, + "labeled": 38457, + "sel": 38458, + "年月": 38459, + "起义": 38460, + "modern": 38461, + "的个数": 38462, + "▁scala": 38463, + "的重要组成部分": 38464, + "Products": 38465, + "anni": 38466, + "happy": 38467, + "▁lasted": 38468, + "▁indications": 38469, + "▁accessory": 38470, + "▁debuted": 38471, + "▁observational": 38472, + ":'": 38473, + "议员": 38474, + "▁Mik": 38475, + "在向": 38476, + "的内": 38477, + "▁Butter": 38478, + "会儿": 38479, + "ictions": 38480, + "House": 38481, + "在水": 38482, + "性疾病": 38483, + "LowerCase": 38484, + "近年": 38485, + "▁crashes": 38486, + "▁apparatus": 38487, + "但如果": 38488, + "官方网站": 38489, + "狭窄": 38490, + "的成功": 38491, + "ação": 38492, + "GU": 38493, + "Same": 38494, + "简要": 38495, + "bee": 38496, + "的语言": 38497, + "igrate": 38498, + "▁彭": 38499, + "有力的": 38500, + "的一首": 38501, + "Validate": 38502, + "▁hemoglobin": 38503, + "IFF": 38504, + "DJ": 38505, + "河县": 38506, + "Mvc": 38507, + "rosophila": 38508, + "ocortic": 38509, + "▁Weekly": 38510, + "▁lymphocyte": 38511, + "utt": 38512, + "acier": 38513, + "流转": 38514, + "龙岩": 38515, + "任何一个": 38516, + "▁pasta": 38517, + "▁comorb": 38518, + "▁jumped": 38519, + "任教": 38520, + "行政机关": 38521, + "▁pound": 38522, + "会产生": 38523, + "新中国的": 38524, + "terone": 38525, + "▁Cyber": 38526, + "未作答辩": 38527, + "collapse": 38528, + "的限制": 38529, + "leigh": 38530, + "▁administrators": 38531, + "oubt": 38532, + "nHead": 38533, + "▁constrained": 38534, + "kafka": 38535, + "finish": 38536, + "ERC": 38537, + "gev": 38538, + "销售额": 38539, + "stown": 38540, + "缓刑考验期限": 38541, + "ametric": 38542, + "▁medial": 38543, + "冲动": 38544, + "孵化": 38545, + "杀菌": 38546, + "roe": 38547, + "高尔夫": 38548, + "其实就是": 38549, + "▁Latest": 38550, + "▁institute": 38551, + "▁董": 38552, + "\"];\\": 38553, + "▁halt": 38554, + "▁形态特征": 38555, + "▁antip": 38556, + "▁antagonists": 38557, + "erness": 38558, + "▁cytoplasmic": 38559, + "mov": 38560, + "起伏": 38561, + "▁Raf": 38562, + "cores": 38563, + ")%": 38564, + "▁disclaimer": 38565, + "CAL": 38566, + "▁sclerosis": 38567, + "reb": 38568, + "eight": 38569, + "mongodb": 38570, + "亲人": 38571, + "▁fridge": 38572, + "▁crushing": 38573, + "科学与": 38574, + "▁urged": 38575, + "▁Philosoph": 38576, + "▁anticipate": 38577, + "nIns": 38578, + "▁jest": 38579, + "ductory": 38580, + "裁定适用于下列范围": 38581, + "▁glutamate": 38582, + "第三次": 38583, + "Printf": 38584, + "▁poses": 38585, + "▁permutation": 38586, + "gm": 38587, + "华侨": 38588, + "▁diving": 38589, + "封面": 38590, + "的想法": 38591, + "▁broadband": 38592, + "▁内": 38593, + "others": 38594, + "▁sentiment": 38595, + "▁&\\\\": 38596, + "请仔细阅读": 38597, + "▁masks": 38598, + "发行的": 38599, + "papers": 38600, + "▁dialysis": 38601, + "▁exceeded": 38602, + "▁Formation": 38603, + "迎来了": 38604, + "▁Sara": 38605, + "algebra": 38606, + "▁neurotrans": 38607, + "centered": 38608, + "▁hierarchical": 38609, + "建有": 38610, + "泉州": 38611, + "Fill": 38612, + "▁mattress": 38613, + "▁outreach": 38614, + "女性的": 38615, + "不好意思": 38616, + "▁fibre": 38617, + "TextView": 38618, + "▁deposited": 38619, + "Camp": 38620, + "▁transcripts": 38621, + "光辉": 38622, + "ointers": 38623, + "rotation": 38624, + "Align": 38625, + "网路": 38626, + "一共有": 38627, + "deleted": 38628, + "▁cleans": 38629, + "▁originated": 38630, + "▁zh": 38631, + "PHONE": 38632, + "oden": 38633, + "的一年": 38634, + "▁hungry": 38635, + "etti": 38636, + "▁SAP": 38637, + "技术创新": 38638, + "Columns": 38639, + "盯着": 38640, + "辩解": 38641, + "ylan": 38642, + "▁Depending": 38643, + "AZ": 38644, + "Cover": 38645, + "▁struggled": 38646, + "丰田": 38647, + "可乐": 38648, + "的处分": 38649, + "▁fade": 38650, + "▁triangular": 38651, + "\"\"\\": 38652, + "▁topical": 38653, + "▁Buch": 38654, + "arctic": 38655, + "本案诉讼费用": 38656, + "▁enclosed": 38657, + "▁profiling": 38658, + "▁Sans": 38659, + "▁listeners": 38660, + "▁symptomatic": 38661, + "Der": 38662, + "▁Rd": 38663, + "目的地": 38664, + "▁Than": 38665, + ">•": 38666, + "名牌": 38667, + "塑胶": 38668, + "为我们": 38669, + "▁AZ": 38670, + "大概是": 38671, + "▁architects": 38672, + "白了": 38673, + "的实际": 38674, + "▁Novel": 38675, + "although": 38676, + "▁sailing": 38677, + "▁nominations": 38678, + "▁oz": 38679, + "同理": 38680, + "报导": 38681, + "集中在": 38682, + "共同财产": 38683, + "社会保险": 38684, + "nDraw": 38685, + "具有良好的": 38686, + "▁interleukin": 38687, + "营业执照": 38688, + "▁adop": 38689, + "Matcher": 38690, + "▁privilege": 38691, + "nBlack": 38692, + "imports": 38693, + "▁reminded": 38694, + "油画": 38695, + "第一天": 38696, + "▁paralle": 38697, + "扣留": 38698, + "▁lol": 38699, + "▁Giants": 38700, + "▁cardiomy": 38701, + "▁inactive": 38702, + "▁CONNECTION": 38703, + "jwt": 38704, + "▁性质": 38705, + "▁Serge": 38706, + "tW": 38707, + "狐狸": 38708, + "薄弱": 38709, + "▁历史": 38710, + "收回": 38711, + "时节": 38712, + "▁Wells": 38713, + "层层": 38714, + "确实是": 38715, + "Cast": 38716, + "▁Nine": 38717, + "▁doubled": 38718, + "工程学院": 38719, + "▁tastes": 38720, + "ltimate": 38721, + "▁pulses": 38722, + "的黑": 38723, + "GIS": 38724, + "Notes": 38725, + "ugoslav": 38726, + "▁multiplying": 38727, + "观音": 38728, + "Angle": 38729, + "phosphate": 38730, + "刷卡": 38731, + "/~": 38732, + "工伤": 38733, + "在国际": 38734, + "▁shrub": 38735, + "feeding": 38736, + "▁م": 38737, + "相乘": 38738, + "odos": 38739, + "▁eco": 38740, + "hagen": 38741, + "▁mongoose": 38742, + "▁guitarist": 38743, + "▁incubation": 38744, + "经历过": 38745, + "还请": 38746, + "unders": 38747, + "▁Angular": 38748, + "体系的": 38749, + "▁solver": 38750, + "Pb": 38751, + "Sensor": 38752, + "▁cables": 38753, + "▁tribut": 38754, + "马鞍": 38755, + "Ops": 38756, + "▁tenure": 38757, + "历代": 38758, + "▁体重": 38759, + "ipation": 38760, + "▁swelling": 38761, + "]`": 38762, + "问问": 38763, + "住所地安徽省": 38764, + "的红": 38765, + "▁loyalty": 38766, + "▁我们": 38767, + "▁LOG": 38768, + "reeze": 38769, + "▁Songs": 38770, + "acl": 38771, + "▁glue": 38772, + "Members": 38773, + "并经": 38774, + "要说": 38775, + "reddit": 38776, + "▁balcon": 38777, + "Comments": 38778, + "Sent": 38779, + "Strings": 38780, + "Pipeline": 38781, + "胰岛": 38782, + "▁SHA": 38783, + "结果显示": 38784, + "只想": 38785, + "nup": 38786, + "年全国": 38787, + "判断即可": 38788, + "我将": 38789, + "NOS": 38790, + "▁revenues": 38791, + "地形": 38792, + "作为一种": 38793, + "的那个": 38794, + "人均纯收入": 38795, + "MPLATE": 38796, + "堆积": 38797, + "▁branding": 38798, + "▁interpolation": 38799, + "stem": 38800, + "▁а": 38801, + "查控": 38802, + "▁ACC": 38803, + "有所不同": 38804, + "投案": 38805, + "内容为": 38806, + "女方": 38807, + "先求出": 38808, + "当然是": 38809, + "朋友的": 38810, + "CMAKE": 38811, + "brains": 38812, + "刻意": 38813, + "又在": 38814, + "孔子": 38815, + "尸体": 38816, + "明日": 38817, + "irteen": 38818, + "EAR": 38819, + "dro": 38820, + "随访": 38821, + "▁silk": 38822, + "治疗后": 38823, + "有大": 38824, + "zt": 38825, + "▁σ": 38826, + "▁Stephan": 38827, + "nExpand": 38828, + "Movie": 38829, + "Stock": 38830, + "符合减刑条件": 38831, + "▁definitive": 38832, + "田园": 38833, + "nany": 38834, + "▁enriched": 38835, + "▁manga": 38836, + "▁黑": 38837, + "Aud": 38838, + "▁Photos": 38839, + "废水": 38840, + "▁ocular": 38841, + "的事项": 38842, + "arlier": 38843, + "rotate": 38844, + "▁Brexit": 38845, + "▁Throw": 38846, + "▁connector": 38847, + "chor": 38848, + "onna": 38849, + "Shift": 38850, + "nHope": 38851, + "▁webpack": 38852, + "▁historically": 38853, + "游戏大小": 38854, + "保罗": 38855, + "市的": 38856, + "本期": 38857, + "气味": 38858, + "slider": 38859, + "▁camps": 38860, + "minutes": 38861, + "▁supplementation": 38862, + "入职": 38863, + "}}\\": 39151, + "▁rape": 39152, + "▁Butler": 39153, + "光源": 39154, + "克尔": 39155, + "▁QU": 39156, + "amba": 39157, + "osaic": 39158, + "▁vars": 39159, + "Sprintf": 39160, + "的范围内处分自己的": 39161, + "nCollect": 39162, + "单位和": 39163, + "唯有": 39164, + "$/": 39165, + "还挺": 39166, + "Wrap": 39167, + "▁dece": 39168, + "▁fifteen": 39169, + "▁footprint": 39170, + "无声": 39171, + "uncture": 39172, + "▁slopes": 39173, + "icates": 39174, + "▁catching": 39175, + "KG": 39176, + "rystall": 39177, + "MESSAGE": 39178, + "▁Respon": 39179, + "▁fictional": 39180, + "追逐": 39181, + "风格的": 39182, + "ospor": 39183, + "nExper": 39184, + "至上": 39185, + "fan": 39186, + "grav": 39187, + "请你根据": 39188, + "mile": 39189, + "刑事责任": 39190, + "余弦": 39191, + "▁peaked": 39192, + "reported": 39193, + "在自己": 39194, + "▁Cord": 39195, + "▁buzz": 39196, + "▁Catalog": 39197, + "oelectric": 39198, + "▁slave": 39199, + "▁statue": 39200, + "▁palette": 39201, + "▁markdown": 39202, + "▁manipulate": 39203, + "hspace": 39204, + "▁reminds": 39205, + "叙述": 39206, + "always": 39207, + "scribed": 39208, + "▁dissemination": 39209, + "到一个": 39210, + "metal": 39211, + "vscode": 39212, + "discord": 39213, + "▁이": 39214, + "Dot": 39215, + "的生命": 39216, + "oflu": 39217, + "▁drone": 39218, + "第十六": 39219, + "▁classifier": 39220, + "▁Experiments": 39221, + "碎片": 39222, + "AH": 39223, + "▁sunny": 39224, + "▁invert": 39225, + "勤奋": 39226, + "水费": 39227, + "▁excretion": 39228, + "▁processors": 39229, + "nad": 39230, + "支气管": 39231, + "▁hike": 39232, + "热搜": 39233, + "▁successor": 39234, + "什么都": 39235, + "bler": 39236, + "▁performers": 39237, + "strand": 39238, + "▁molar": 39239, + "strftime": 39240, + "抬头": 39241, + "警示": 39242, + "▁Lucas": 39243, + "▁mentoring": 39244, + "LB": 39245, + "常住": 39246, + "▁Kill": 39247, + "在刑罚": 39248, + "的心情": 39249, + "▁antic": 39250, + "dg": 39251, + "▁shake": 39252, + "ilingual": 39253, + "▁hospitality": 39254, + "▁肖": 39255, + "国人": 39256, + "主人公": 39257, + "都配有": 39258, + "正式批准": 39259, + "Registration": 39260, + "以太": 39261, + "有好": 39262, + "锦标": 39263, + "胜利的": 39264, + "∞)": 39265, + "清算": 39266, + "nTour": 39267, + "▁Nicholas": 39268, + "▁constitutional": 39269, + "军的": 39270, + "TRA": 39271, + "监视": 39272, + "选择一个": 39273, + "▁feat": 39274, + "中心的": 39275, + "ufeffnamespace": 39276, + "oeing": 39277, + "▁packs": 39278, + "interpret": 39279, + "使人": 39280, + "贴近": 39281, + "犯罪的": 39282, + "▁DEAL": 39283, + "scatter": 39284, + "▁surgeons": 39285, + "▁augmented": 39286, + "专业化": 39287, + "▁Rachel": 39288, + "▁Roof": 39289, + "いる": 39290, + "▁capillary": 39291, + "副市长": 39292, + "▁Lub": 39293, + "Calcul": 39294, + "履行生效法律文书": 39295, + "▁Resolution": 39296, + "▁parliamentary": 39297, + "何必": 39298, + "比较大": 39299, + "▁Hopkins": 39300, + "无正当理由拒不到庭的": 39301, + "vere": 39302, + "▁Contest": 39303, + "▁grouped": 39304, + "▁Initiative": 39305, + "入户": 39306, + "木质": 39307, + "风采": 39308, + "第二条": 39309, + "技术有限公司": 39310, + "▁Provide": 39311, + "求解即可": 39312, + "▁retina": 39313, + "▁wholesale": 39314, + "Enumerable": 39315, + "▁vm": 39316, + "去医院": 39317, + "附近的": 39318, + "itely": 39319, + "nsetup": 39320, + "▁PATH": 39321, + "▁scary": 39322, + "还有就是": 39323, + "▁Fill": 39324, + "tdefer": 39325, + "▁grandfather": 39326, + "抑郁症": 39327, + "▁forty": 39328, + "之日起五日内": 39329, + "NER": 39330, + "nOb": 39331, + "▁modalities": 39332, + "色谱": 39333, + "管的": 39334, + "重症": 39335, + "icers": 39336, + "汇聚": 39337, + "(\\'%": 39338, + "▁confined": 39339, + "▁contested": 39340, + "▁estimator": 39341, + "但被执行人至今未履行": 39342, + "不相": 39343, + "疑似": 39344, + "wallet": 39345, + "abilistic": 39346, + "▁readings": 39347, + "▁enzymatic": 39348, + "▁visualize": 39349, + "ICA": 39350, + "▁Timer": 39351, + "▁hassle": 39352, + "nShort": 39353, + "transferase": 39354, + "还算": 39355, + "▁deficient": 39356, + "白银": 39357, + "银行账户": 39358, + "▁Distance": 39359, + "chet": 39360, + "ticket": 39361, + "▁Railroad": 39362, + "悠久": 39363, + "月息": 39364, + "自然数": 39365, + "▁Plain": 39366, + "▁Kerala": 39367, + "wordpress": 39368, + "▁facilitates": 39369, + "Pen": 39370, + "物业公司": 39371, + "icaid": 39372, + "った": 39373, + "换成": 39374, + "▁Flask": 39375, + "▁discrep": 39376, + "▁nowhere": 39377, + "▁thrilled": 39378, + "翡翠": 39379, + "静静": 39380, + "一个整数": 39381, + "▁Danny": 39382, + "的本": 39383, + "衣物": 39384, + "打印机": 39385, + "▁iod": 39386, + "传送": 39387, + "贝壳找房": 39388, + "▁NOTICE": 39389, + "ät": 39390, + "sted": 39391, + "▁英文": 39392, + "▁captures": 39393, + "关于多学科": 39394, + "idelity": 39395, + "关于多学科知识的选择题": 39396, + "伯特": 39397, + "▁taxp": 39398, + "outheastern": 39399, + "lify": 39400, + "▁Parts": 39401, + "流体": 39402, + "您需要": 39403, + "等特点": 39404, + "▁jam": 39405, + "▁battles": 39406, + "广电": 39407, + "不合格": 39408, + "学生在": 39409, + "ablo": 39410, + "nAlex": 39411, + "▁Harvey": 39412, + "Modified": 39413, + "▁vaginal": 39414, + "判处有期徒刑一年": 39415, + "最高人民法院关于执行": 39416, + "感叹": 39417, + "行驶至": 39418, + "▁dispens": 39419, + "▁quarterback": 39420, + "人们对": 39421, + "▁Mental": 39422, + "当我们": 39423, + "▁bats": 39424, + "▁Stories": 39425, + "▁Shot": 39426, + "██": 39427, + "cine": 39428, + "▁餐馆简介": 39429, + "▁Transaction": 39430, + "▁illustrates": 39431, + "Footer": 39432, + "nHonours": 39433, + "会是": 39434, + "▁Dot": 39435, + "▁Sed": 39436, + "▁Spa": 39437, + "▁GABA": 39438, + "▁卢": 39439, + "nAir": 39440, + "akespe": 39441, + "▁再": 39442, + "古今": 39443, + "折磨": 39444, + "exus": 39445, + "否决": 39446, + "deal": 39447, + "nMal": 39448, + "解决问题的": 39449, + "穿过": 39450, + "关系式": 39451, + "可作为": 39452, + "▁Arctic": 39453, + "和的": 39454, + "编著": 39455, + "延期": 39456, + "▁dire": 39457, + "▁histopath": 39458, + "ethylene": 39459, + "▁Developers": 39460, + "{$": 39461, + "nSem": 39462, + "▁hay": 39463, + "npy": 39464, + "▁Led": 39465, + "以下这道": 39466, + "▁prisoners": 39467, + "下面这道选择题": 39468, + "▁或": 39469, + "belongs": 39470, + "▁Describe": 39471, + "预告": 39472, + "部部长": 39473, + "健康发展": 39474, + "由上海市": 39475, + "▁秦": 39476, + "保暖": 39477, + "战国": 39478, + "Energy": 39479, + "aaS": 39480, + "devices": 39481, + "▁corpus": 39482, + "▁ablation": 39483, + "▁stressful": 39484, + "▁renovation": 39485, + "\\\\_{": 39486, + "▁herbs": 39487, + "▁meteor": 39488, + "▁Calgary": 39489, + "滚动": 39490, + "Destroy": 39491, + "俗称": 39492, + "三十一日": 39493, + "▁Desktop": 39494, + "▁corneal": 39495, + "案件的": 39496, + "▁disturbances": 39497, + "▁è": 39498, + "Pac": 39499, + "ungle": 39500, + "▁eval": 39501, + "▁Canyon": 39502, + "▁clicked": 39503, + "eon": 39504, + "▁lint": 39505, + "▁neglect": 39506, + "村民小组": 39507, + "▁coordinator": 39508, + "▁Rangers": 39509, + "▁Dad": 39510, + "▁kingdom": 39511, + "丙烯": 39512, + "选题": 39513, + "mology": 39514, + "沥青": 39515, + "肾脏": 39516, + "outed": 39517, + "路由器": 39518, + "▁Interestingly": 39519, + "综合运用多": 39520, + "Surface": 39521, + "的公": 39522, + "并从给出的选项中": 39523, + "▁Programme": 39524, + "下半": 39525, + "年参加": 39526, + "▁pier": 39527, + "▁premiered": 39528, + "}`);\\": 39529, + "▁网络": 39530, + "共同建设": 39531, + "ctype": 39532, + "被执行人有": 39533, + "管委会": 39534, + "renew": 39535, + "▁fond": 39536, + "AspNetCore": 39537, + "yro": 39538, + "(`${": 39539, + "▁wounded": 39540, + "单个": 39541, + "duplicate": 39542, + "清爽": 39543, + "▁一个": 39544, + "earth": 39545, + "aurus": 39546, + "熟悉的": 39547, + "▁landscapes": 39548, + "nurl": 39549, + "附带民事": 39550, + "angered": 39551, + "VIS": 39552, + "是需要": 39553, + "NOW": 39554, + "请你仔细": 39555, + "gesterone": 39556, + "ocene": 39557, + "tthrow": 39558, + "National": 39559, + "良心": 39560, + "自动撤回上诉处理": 39561, + "专著": 39562, + "olis": 39563, + "****\\": 39564, + "▁内容介绍": 39565, + "低价": 39566, + "毒素": 39567, + "▁URLs": 39568, + "▁sera": 39569, + "▁housed": 39570, + "▁lining": 39571, + "北美": 39572, + "行政复议": 39573, + "▁Alger": 39574, + "Percent": 39575, + "产妇": 39576, + "nISBN": 39577, + "用科学记数法": 39578, + "thro": 39579, + "▁Popular": 39580, + "传真": 39581, + "▁memo": 39582, + "▁Plans": 39583, + "酒店的房型": 39584, + "manuel": 39585, + "ophysical": 39586, + "陈某某": 39587, + "了就": 39588, + "将近": 39589, + "▁表示": 39590, + "为一体": 39591, + "为您提供": 39592, + "变化的": 39593, + "征集": 39594, + "▁Banks": 39595, + "樱花": 39596, + "▁Bog": 39597, + "差异有统计学意义": 39598, + "▁responsiveness": 39599, + "lich": 39600, + "▁TypeError": 39601, + "不禁": 39602, + "oucher": 39603, + "▁GD": 39604, + "▁wages": 39605, + "多位": 39606, + "完全平方": 39607, + "▁paral": 39608, + "制品有限公司": 39609, + "▁Doppler": 39610, + "▁'\\\\": 39611, + "▁cass": 39612, + "▁touring": 39613, + "▁wrestling": 39614, + "▁Hamiltonian": 39615, + "新中国": 39616, + "获得的": 39617, + "▁curr": 39618, + "▁Croatia": 39619, + "▁threatening": 39620, + "nStill": 39621, + "▁sacrific": 39622, + "Wall": 39623, + "▁Nit": 39624, + "多大": 39625, + "LCJ": 39626, + "ylum": 39627, + "文化传播": 39628, + "▁Karn": 39629, + "▁barn": 39630, + "nHouses": 39631, + "木耳": 39632, + "▁axial": 39633, + "原名": 39634, + "CLC": 39635, + "elia": 39636, + "▁Volunte": 39637, + "千金": 39638, + "敏捷": 39639, + "订阅": 39640, + "aru": 39641, + "今后的": 39642, + "终结本案": 39643, + "bishop": 39644, + "▁steal": 39645, + "颈椎": 39646, + "Include": 39647, + "没钱": 39648, + "▁fost": 39649, + "▁axios": 39650, + "借口": 39651, + "umab": 39652, + "杀了": 39653, + "▁Kas": 39654, + "逾期利息": 39655, + "几个选项": 39656, + "▁aerial": 39657, + "▁pickle": 39658, + "Men": 39659, + "phinx": 39660, + "▁metro": 39661, + "▁superf": 39662, + "{→": 39663, + "по": 39664, + "应按": 39665, + ">)\\": 39666, + "SIG": 39667, + "县支行": 39668, + "因式分解": 39669, + "▁Cells": 39670, + "▁hasattr": 39671, + "▁GDP": 39672, + "▁abort": 39673, + "波兰": 39674, + "ungal": 39675, + "▁Emily": 39676, + "镜子": 39677, + "的传统": 39678, + "的心态": 39679, + "jiang": 39680, + "▁epoch": 39681, + "▁tactics": 39682, + "nme": 39683, + "找工作": 39684, + "Tra": 39685, + "nBase": 39686, + "把手": 39687, + "▁Dialog": 39688, + "▁beings": 39689, + "签下": 39690, + "色泽": 39691, + "▁REF": 39692, + "建设项目": 39693, + "登记信息": 39694, + "erton": 39695, + "年经教育部": 39696, + "▁phrases": 39697, + "▁depressive": 39698, + "泉水": 39699, + "离开了": 39700, + "bred": 39701, + "▁Moz": 39702, + "▁subspace": 39703, + "communications": 39704, + "▁authorization": 39705, + "分钟后": 39706, + "IDTH": 39707, + "▁cn": 39708, + "第十一": 39709, + "▁Sugar": 39710, + "▁witnessed": 39711, + "FRING": 39712, + "snapshot": 39713, + "车道": 39714, + "othic": 39715, + "额外的": 39716, + "Internet": 39717, + "iman": 39718, + "roadcast": 39719, + "右手": 39720, + "▁coping": 39721, + "▁Educational": 39722, + "同心": 39723, + "Slot": 39724, + "REMOVED": 39725, + "▁Partner": 39726, + "材料有限公司": 39727, + "▁praised": 39728, + "因被告": 39729, + "▁hug": 39730, + "醉酒驾驶机动车": 39731, + "置业": 39732, + "nergic": 39733, + "▁translations": 39734, + "届中国": 39735, + "nStand": 39736, + "▁rewarding": 39737, + "▁retrospect": 39738, + "蓬勃": 39739, + "新农村": 39740, + "VIDIA": 39741, + "cube": 39742, + "▁sacrifice": 39743, + "ernate": 39744, + "中奖": 39745, + "电竞": 39746, + "PACK": 39747, + "端正": 39748, + "的商品": 39749, + "▁kicked": 39750, + "中市": 39751, + "串行": 39752, + "azer": 39753, + "▁excel": 39754, + "elasticsearch": 39755, + "了点": 39756, + "不建议": 39757, + "Develop": 39758, + "茅台": 39759, + "]);": 39760, + "Named": 39761, + "▁crafts": 39762, + "反之": 39763, + "precision": 39764, + "▁workaround": 39765, + "▁productions": 39766, + "前辈": 39767, + "Face": 39768, + "Phil": 39769, + "▁homemade": 39770, + "▁medicines": 39771, + "Pane": 39772, + "uras": 39773, + "可通过": 39774, + "群岛": 39775, + "▁Sold": 39776, + "博会": 39777, + "▁consultants": 39778, + "南昌市": 39779, + "这个城市": 39780, + "血脂": 39781, + "▁vault": 39782, + "系的": 39783, + "Metric": 39784, + "湾区": 39785, + "timezone": 39786, + "在使用现有的床铺": 39787, + "无语": 39788, + "此处": 39789, + "IDs": 39790, + "▁房间数量": 39791, + "▁Suit": 39792, + "nobject": 39793, + "Mass": 39794, + "Phot": 39795, + "calcul": 39796, + "flower": 39797, + "▁alliance": 39798, + "中国大陆": 39799, + "matter": 39800, + "Features": 39801, + "▁asymmetric": 39802, + "字段": 39803, + "employee": 39804, + "▁tertiary": 39805, + "agem": 39806, + "▁雷": 39807, + "给您": 39808, + "▁convince": 39809, + "TRUE": 39810, + "▁Hindu": 39811, + "▁mucosa": 39812, + "蚌埠": 39813, + "▁第四十": 39814, + "▁Stein": 39815, + "ño": 39816, + "▁超": 39817, + "▁ls": 39818, + "uang": 39819, + "managed": 39820, + "▁Arnold": 39821, + "能被": 39822, + "该院": 39823, + "▁elic": 39824, + "▁vegan": 39825, + "▁intermitt": 39826, + "otechnology": 39827, + "DAO": 39828, + "dead": 39829, + "rophys": 39830, + "▁gp": 39831, + "有帮助": 39832, + "alla": 39833, + "ipur": 39834, + "寻常": 39835, + "就此": 39836, + "愉悦": 39837, + "icester": 39838, + "▁Episode": 39839, + "DataFrame": 39840, + "对角线": 39841, + "给他们": 39842, + "▁dice": 39843, + "antine": 39844, + "phrine": 39845, + "▁Winds": 39846, + "friends": 39847, + "▁usefulness": 39848, + "糯米": 39849, + "间隙": 39850, + "~\\\\": 39851, + "申请执行人张": 39852, + "▁τ": 39853, + "▁创建": 39854, + "▁spo": 39855, + "▁QtGui": 39856, + "卵巢": 39857, + "重重": 39858, + "▁Dy": 39859, + "双方的": 39860, + "▁Shore": 39861, + "第十章": 39862, + "▁scream": 39863, + "发回": 39864, + "情况的": 39865, + "程序合法": 39866, + "▁Pars": 39867, + "▁brains": 39868, + "▁Hopefully": 39869, + "rer": 39870, + "▁junk": 39871, + "▁Matter": 39872, + "▁whereby": 39873, + "到底是": 39874, + "查询被执行人": 39875, + "nPerhaps": 39876, + "习性": 39877, + "渔业": 39878, + "▁sep": 39879, + "▁assisting": 39880, + "剧场": 39881, + "wid": 39882, + "▁FALSE": 39883, + "ensitivity": 39884, + "({\\'": 39885, + "▁Biden": 39886, + "FRINGEMENT": 39887, + "War": 39888, + "并支付": 39889, + "utton": 39890, + "类网络小说": 39891, + "▁pelvic": 39892, + "▁Catherine": 39893, + "政权": 39894, + "▁文件": 39895, + "ASSERT": 39896, + "nComput": 39897, + "深刻的": 39898, + "的平台": 39899, + "pain": 39900, + "▁replicate": 39901, + "从选项中选出你认为正确的答案": 39902, + "▁vom": 39903, + "不同意离婚": 39904, + "合理的解释": 39905, + "照射": 39906, + "Also": 39907, + "故本": 39908, + "ttes": 39909, + "▁mint": 39910, + "▁journalism": 39911, + "修行": 39912, + "千古": 39913, + "需要对": 39914, + "assay": 39915, + "▁couch": 39916, + "CORE": 39917, + "▁Initialize": 39918, + "宁静": 39919, + "工业园": 39920, + "质量的": 39921, + "▁lowering": 39922, + "板材": 39923, + "病症": 39924, + "贵阳": 39925, + "▁groom": 39926, + "▁Chapel": 39927, + "execution": 39928, + "明了": 39929, + "财务管理": 39930, + "▁Congo": 39931, + "deficient": 39932, + "▁Gym": 39933, + "现行": 39934, + "▁noble": 39935, + "▁licence": 39936, + "▁emphasize": 39937, + "万年": 39938, + "▁Dual": 39939, + "opausal": 39940, + "▁exhibitions": 39941, + "总共": 39942, + "回答是": 39943, + "▁touching": 39944, + "▁袁": 39945, + "twidth": 39946, + "ashington": 39947, + "该方法": 39948, + "▁AUTHORS": 39949, + "功耗": 39950, + "烟草": 39951, + "gpu": 39952, + "五个月": 39953, + "邮政储蓄银行股份有限公司": 39954, + "加固": 39955, + "▁Female": 39956, + "stereotype": 39957, + "▁energetic": 39958, + "换个": 39959, + "有效率": 39960, + "这才是": 39961, + "ussions": 39962, + "liga": 39963, + "▁abelian": 39964, + "endregion": 39965, + "第一名": 39966, + "级别的": 39967, + "runch": 39968, + "州市人民法院": 39969, + "物业服务合同纠纷一案": 39970, + "二战": 39971, + "却不": 39972, + "被誉为": 39973, + "Walk": 39974, + "nwas": 39975, + "▁Mold": 39976, + "▁disparities": 39977, + "夏日": 39978, + "扫码": 39979, + "▁Mercedes": 39980, + "也算": 39981, + "福田": 39982, + "unted": 39983, + "▁tomatoes": 39984, + "▁fame": 39985, + "在做": 39986, + "▁Ranch": 39987, + "喜悦": 39988, + "▁下列": 39989, + "发现自己": 39990, + "hift": 39991, + "▁ups": 39992, + "第一百零七条": 39993, + "▁Ecuador": 39994, + "EU": 39995, + "nte": 39996, + "咨询有限公司": 39997, + "准备好": 39998, + "全场": 39999, + "nda": 40000, + "并进行": 40001, + "nopen": 40002, + "DOWN": 40003, + "weets": 40004, + "MODULE": 40005, + "oides": 40006, + "▁suburb": 40007, + "▁accidentally": 40008, + "icio": 40009, + "LG": 40010, + "发表论文": 40011, + "梦中": 40012, + "alore": 40013, + "芒果": 40014, + "legiate": 40015, + "▁Drosophila": 40016, + "▁detectable": 40017, + "▁selections": 40018, + "居住地": 40019, + "nChrist": 40020, + "城的": 40021, + "米兰": 40022, + "▁pag": 40023, + "ttext": 40024, + "我一": 40025, + "nNumber": 40026, + "▁theorems": 40027, + "renergic": 40028, + "_%": 40029, + "mph": 40030, + "▁xmlns": 40031, + "在内": 40032, + "在区间": 40033, + "扬声器": 40034, + "▁yearly": 40035, + "▁crosses": 40036, + "株洲": 40037, + "深夜": 40038, + "▁reuse": 40039, + "▁mentions": 40040, + "忍受": 40041, + "电影作品": 40042, + "▁tightly": 40043, + "▁tracked": 40044, + "跨国": 40045, + "结构住房": 40046, + "▁Rhode": 40047, + "有多种选择": 40048, + "glass": 40049, + "▁butt": 40050, + "nMount": 40051, + "▁settlements": 40052, + "draft": 40053, + "ukary": 40054, + "DAY": 40055, + "▁ic": 40056, + "anton": 40057, + "olv": 40058, + "的重点": 40059, + "处方": 40060, + "长途": 40061, + "nNeed": 40062, + "▁Reynolds": 40063, + "▁Chef": 40064, + "万千": 40065, + "uno": 40066, + "August": 40067, + "▁’": 40068, + "▁useless": 40069, + "徘徊": 40070, + "的颜色": 40071, + "Unless": 40072, + "七十": 40073, + "▁apples": 40074, + "第一百四十四条": 40075, + "▁homepage": 40076, + "能为": 40077, + "nsic": 40078, + "▁Filip": 40079, + "▁aureus": 40080, + "▁purification": 40081, + "▁circumference": 40082, + "具有一定的": 40083, + "▁Mig": 40084, + "▁memor": 40085, + "▁Throughout": 40086, + "缺血": 40087, + "▁diagnose": 40088, + "▁passwords": 40089, + "▁consequently": 40090, + "▁clearing": 40091, + "工作效率": 40092, + "▁Include": 40093, + "▁cricketer": 40094, + "化肥": 40095, + "许多人": 40096, + "July": 40097, + "population": 40098, + "莫名其": 40099, + "▁transc": 40100, + "万余": 40101, + "就是个": 40102, + "法执字第": 40103, + "▁beetle": 40104, + "▁specifying": 40105, + "▁Thom": 40106, + "Listen": 40107, + "hong": 40108, + "▁Shared": 40109, + "Dashboard": 40110, + "▁shoulders": 40111, + "▁Industries": 40112, + "结点": 40113, + "和解题": 40114, + "医护": 40115, + "opsies": 40116, + "nProfessional": 40117, + "之星": 40118, + "店的": 40119, + "推荐过": 40120, + "labs": 40121, + "nfile": 40122, + "Segment": 40123, + "还有一些": 40124, + "Reply": 40125, + "跑了": 40126, + "轴上": 40127, + "服务于": 40128, + "▁hygiene": 40129, + "总投资": 40130, + "犯抢劫罪": 40131, + "▁sidew": 40132, + "omonas": 40133, + "▁Coron": 40134, + "bearing": 40135, + "时段": 40136, + "省内": 40137, + "▁glory": 40138, + "▁Compare": 40139, + "巨头": 40140, + "换了": 40141, + "zeg": 40142, + "关于适用": 40143, + "▁kinda": 40144, + "▁Palestinian": 40145, + "陆军": 40146, + "▁middleware": 40147, + "留意": 40148, + "▁travelers": 40149, + "ZW": 40150, + "cemia": 40151, + "▁electrophoresis": 40152, + "\"`": 40153, + "▁Awesome": 40154, + "▁peoples": 40155, + "▁Separ": 40156, + "长远": 40157, + "在不同": 40158, + "的一半": 40159, + "▁Sabha": 40160, + "世上": 40161, + "▁定义": 40162, + "医生的": 40163, + "▁termed": 40164, + "▁expired": 40165, + "望着": 40166, + "本法": 40167, + "nDistribution": 40168, + "随即": 40169, + "▁polls": 40170, + "▁rotational": 40171, + "AU": 40172, + "掌控": 40173, + "维持原判": 40174, + "ket": 40175, + "grand": 40176, + "而成的": 40177, + "▁recreation": 40178, + "▁Ghost": 40179, + "Preferences": 40180, + "七个月": 40181, + "催化剂": 40182, + "acked": 40183, + "ffield": 40184, + "HV": 40185, + "itat": 40186, + "poke": 40187, + "ATURE": 40188, + "良性": 40189, + "重心": 40190, + "▁Films": 40191, + "错的": 40192, + "▁flooding": 40193, + "▁resilience": 40194, + "▁Tennis": 40195, + "▁symmet": 40196, + "▁automobile": 40197, + "歌舞": 40198, + "Circle": 40199, + "▁remotely": 40200, + "▁distortion": 40201, + "刹车": 40202, + "火的": 40203, + "▁het": 40204, + "romes": 40205, + "背面": 40206, + "产业的": 40207, + "财政局": 40208, + "esta": 40209, + "ograp": 40210, + "营运": 40211, + "要不": 40212, + "▁Turb": 40213, + "▁Covid": 40214, + "GPT": 40215, + "uran": 40216, + "阿里巴巴": 40217, + "daily": 40218, + "tD": 40219, + "顿时": 40220, + "提升了": 40221, + "顶部": 40222, + "alent": 40223, + "号民事裁定": 40224, + "细分": 40225, + "Water": 40226, + "的通项公式": 40227, + "onacci": 40228, + "▁posed": 40229, + "▁trigon": 40230, + "ttar": 40231, + "focused": 40232, + "akespeare": 40233, + "▁Bulgaria": 40234, + "awi": 40235, + "nmore": 40236, + "仍是": 40237, + "指责": 40238, + "以来的": 40239, + "▁cocktail": 40240, + "nombre": 40241, + "匿名": 40242, + "全日制": 40243, + "下水": 40244, + "▁Sudan": 40245, + "▁luc": 40246, + "pending": 40247, + "ArgsConstructor": 40248, + "下图": 40249, + "upgrade": 40250, + "川县": 40251, + "frican": 40252, + "▁hyperbolic": 40253, + "唐山市": 40254, + "iane": 40255, + "▁Helen": 40256, + "▁Creates": 40257, + "nDocument": 40258, + "▁出场": 40259, + "borg": 40260, + "▁aus": 40261, + "▁Grande": 40262, + "▁bother": 40263, + "▁capacitor": 40264, + "Aw": 40265, + "xls": 40266, + "我们也": 40267, + "▁Chang": 40268, + "▁brake": 40269, + "ellation": 40270, + "▁Alternatively": 40271, + "来回": 40272, + "dry": 40273, + "▁Thr": 40274, + "lasses": 40275, + "▁lesbian": 40276, + "▁surprises": 40277, + "全校": 40278, + "对她": 40279, + "him": 40280, + "▁throat": 40281, + "▁travelled": 40282, + "weak": 40283, + "Border": 40284, + "▁dynamical": 40285, + "伴有": 40286, + "名誉": 40287, + "等多个": 40288, + "▁effector": 40289, + "推销": 40290, + "wang": 40291, + "▁蒋": 40292, + "活的": 40293, + "xref": 40294, + "▁stellar": 40295, + "我这": 40296, + "肯定会": 40297, + "▁Rosen": 40298, + "nabout": 40299, + "▁McDonald": 40300, + "tP": 40301, + "▁„": 40302, + "▁Gir": 40303, + "▁obligations": 40304, + "明智": 40305, + "aaaa": 40306, + "▁Deb": 40307, + "暂无财产可供执行": 40308, + "投保": 40309, + "追加": 40310, + "记者从": 40311, + "ocomplete": 40312, + "农家": 40313, + "出示": 40314, + "知的": 40315, + "保证了": 40316, + "没有了": 40317, + "▁Bash": 40318, + "▁ping": 40319, + "Er": 40320, + "楼层": 40321, + "风湿": 40322, + "没问题": 40323, + "酒店的房型有多种选择": 40324, + "仙人": 40325, + "光纤": 40326, + "▁flame": 40327, + "▁infinitely": 40328, + "▁tweeted": 40329, + "卡尔": 40330, + "摄影师": 40331, + "▁Saw": 40332, + "▁spor": 40333, + "技艺": 40334, + "计时": 40335, + "时间长": 40336, + "的数字": 40337, + "▁Bench": 40338, + "他和": 40339, + "我心": 40340, + "茫茫": 40341, + "▁政治": 40342, + "Replace": 40343, + "▁outlook": 40344, + "INFRINGEMENT": 40345, + "亚太": 40346, + "礼貌": 40347, + "▁Lak": 40348, + "▁citing": 40349, + "▁broadcasting": 40350, + "大声": 40351, + "角为": 40352, + "iches": 40353, + "高频": 40354, + "安全隐患": 40355, + "rawler": 40356, + "▁Values": 40357, + "▁misunder": 40358, + "tL": 40359, + "干的": 40360, + "nInstead": 40361, + "加剧": 40362, + "▁打开": 40363, + "事迹": 40364, + "建平": 40365, + "tconsole": 40366, + "拼命": 40367, + "aidu": 40368, + "▁Trend": 40369, + "▁embryo": 40370, + "独具": 40371, + "随身": 40372, + "▁PCI": 40373, + "▁Html": 40374, + "仙侠": 40375, + "▁galaxies": 40376, + "▁hydraulic": 40377, + "以非法": 40378, + "▁breach": 40379, + "aluable": 40380, + "▁Moving": 40381, + "▁Myst": 40382, + "▁midfielders": 40383, + "▁woods": 40384, + "therefore": 40385, + "土家族": 40386, + "▁reforms": 40387, + "▁Employee": 40388, + "hc": 40389, + "无缝": 40390, + "游览": 40391, + "盐水": 40392, + "moz": 40393, + "的决定": 40394, + "'^": 40395, + "引起了": 40396, + "▁Excellence": 40397, + "subscription": 40398, + "搬家": 40399, + "nElect": 40400, + "大盘": 40401, + "放弃了": 40402, + "▁hazards": 40403, + "mare": 40404, + "▁GMAT": 40405, + "▁mirrors": 40406, + "▁freezing": 40407, + "::{": 40408, + "▁discourse": 40409, + "addon": 40410, + "▁sellers": 40411, + "▁graphene": 40412, + "▁enthusiasm": 40413, + "ис": 40414, + "关卡": 40415, + "是国家": 40416, + "为什么不": 40417, + "▁sunlight": 40418, + "奥林": 40419, + "还真": 40420, + "Idx": 40421, + "▁ka": 40422, + "的心理": 40423, + "▁reconc": 40424, + "fav": 40425, + "的音乐": 40426, + "▁Wing": 40427, + "sta": 40428, + "Given": 40429, + "第二百五十七": 40430, + "▁routinely": 40431, + "Chrome": 40432, + "问道": 40433, + "Aim": 40434, + "•\\": 40435, + "较长": 40436, + "▁skiing": 40437, + "生活方式": 40438, + "nEval": 40439, + "endants": 40440, + "先将": 40441, + "aders": 40442, + "▁aper": 40443, + "有色": 40444, + "▁haul": 40445, + "▁achieves": 40446, + "怀念": 40447, + "阿根廷": 40448, + "▁advocates": 40449, + "▁mediating": 40450, + "▁mixtures": 40451, + "一站": 40452, + "\\'%": 40453, + "为目标": 40454, + "洛阳市": 40455, + "▁Vehicle": 40456, + "取得的": 40457, + "的网络": 40458, + "电子邮件": 40459, + "▁[^": 40460, + "说的是": 40461, + "growth": 40462, + "compress": 40463, + "▁Guidelines": 40464, + "弹簧": 40465, + "题型": 40466, + "▁macrophage": 40467, + "Eq": 40468, + "企业文化": 40469, + "TEGER": 40470, + "▁Leave": 40471, + "人情": 40472, + "你做出": 40473, + "oretical": 40474, + "▁mitigate": 40475, + "▁启动": 40476, + "relationship": 40477, + "▁Oakland": 40478, + "▁publishers": 40479, + "并购": 40480, + "uffy": 40481, + "▁Therm": 40482, + "▁refuse": 40483, + "programming": 40484, + "▁hematopoietic": 40485, + "见解": 40486, + "车位": 40487, + "ICT": 40488, + "▁nost": 40489, + "▁Charg": 40490, + "前方": 40491, + "▁capsule": 40492, + "▁cytochrome": 40493, + "特有的": 40494, + "运动的": 40495, + "▁protease": 40496, + "▁克": 40497, + "Choice": 40498, + "urry": 40499, + "▁Buffer": 40500, + "axios": 40501, + "配资": 40502, + "nSort": 40503, + "▁landmark": 40504, + "▁seminars": 40505, + "▁derivation": 40506, + "oter": 40507, + "予以准许": 40508, + "Suppress": 40509, + "火星": 40510, + "出具了": 40511, + "添加剂": 40512, + "的一条": 40513, + "Jo": 40514, + "情境": 40515, + ")//": 40516, + "Ts": 40517, + "的一家": 40518, + "Logic": 40519, + "▁sanctions": 40520, + "▁vocabulary": 40521, + "作词": 40522, + "螺丝": 40523, + "陷阱": 40524, + "▁Unique": 40525, + "ROS": 40526, + "nDi": 40527, + "▁Cred": 40528, + "▁Hook": 40529, + "午餐": 40530, + "如上": 40531, + "愈合": 40532, + "▁maturity": 40533, + "nWow": 40534, + "▁skull": 40535, + "▁supermark": 40536, + "三观": 40537, + "请从": 40538, + "有兴趣": 40539, + "胡椒粉": 40540, + "Words": 40541, + "pwd": 40542, + "▁mph": 40543, + "总支": 40544, + "▁tau": 40545, + "▁clicks": 40546, + "manif": 40547, + "versation": 40548, + "涂抹": 40549, + "邢台": 40550, + "▁Kick": 40551, + "▁crush": 40552, + "▁guessing": 40553, + "▁SUB": 40554, + "▁Syl": 40555, + "符合法定": 40556, + "nSection": 40557, + "▁flavour": 40558, + "▁breakthrough": 40559, + "▁cigarette": 40560, + "宣讲": 40561, + "▁Nak": 40562, + "edish": 40563, + "umann": 40564, + "亲情": 40565, + "唱片": 40566, + "▁Apart": 40567, + "▁affair": 40568, + "却依然": 40569, + "ptides": 40570, + "▁lethal": 40571, + "▁Continue": 40572, + "花序": 40573, + "即使是": 40574, + "kv": 40575, + "就不是": 40576, + "阶段的": 40577, + "▁bod": 40578, + "EventArgs": 40579, + "▁Argentine": 40580, + "高山": 40581, + "▁shrink": 40582, + "昆明市": 40583, + "nMain": 40584, + "▁Tampa": 40585, + "▁parasite": 40586, + "Buy": 40587, + "DEP": 40588, + "ipients": 40589, + "▁hottest": 40590, + "▁studios": 40591, + "JavaScript": 40592, + "有趣的": 40593, + "ibus": 40594, + "▁classify": 40595, + "swick": 40596, + "▁bif": 40597, + "▁Punjab": 40598, + "▁thrombosis": 40599, + "反击": 40600, + "有何": 40601, + "发言人": 40602, + "拿起": 40603, + "htra": 40604, + "▁assurance": 40605, + "{→}{": 40606, + "富士": 40607, + "紧凑": 40608, + "TNF": 40609, + "一道题": 40610, + "的解集": 40611, + "▁altogether": 40612, + "散发": 40613, + "无忧": 40614, + "▁ample": 40615, + "可使": 40616, + "行政行为": 40617, + "maximum": 40618, + "牵引": 40619, + "atti": 40620, + "分许": 40621, + "Psi": 40622, + "▁LH": 40623, + "nDel": 40624, + "出具欠条": 40625, + "▁fled": 40626, + "▁Objective": 40627, + "得的": 40628, + "不舒服": 40629, + "▁Koh": 40630, + "▁grains": 40631, + "▁converts": 40632, + "▁snacks": 40633, + "▁Milwaukee": 40634, + "[/": 40635, + "口气": 40636, + "▁compose": 40637, + "▁muscular": 40638, + "跑到": 40639, + "luc": 40640, + "全集": 40641, + "名片": 40642, + "有必要": 40643, + "duplex": 40644, + "nowled": 40645, + "Gateway": 40646, + "中国人民财产保险股份有限公司": 40647, + "好转": 40648, + "*}\\": 40649, + "公告费": 40650, + "njust": 40651, + "边境": 40652, + "equation": 40653, + "%\\\\": 40654, + "para": 40655, + "人大代表": 40656, + "经营管理": 40657, + "notice": 40658, + "▁cooler": 40659, + "山药": 40660, + "手续费": 40661, + "▁competent": 40662, + "され": 40663, + "隶属": 40664, + "签订了": 40665, + "otopy": 40666, + "▁princip": 40667, + "▁multimedia": 40668, + "INA": 40669, + "才能够": 40670, + "▁wors": 40671, + "players": 40672, + "▁Photography": 40673, + "▁发展": 40674, + "▁||\\": 40675, + "FILES": 40676, + "▁Leeds": 40677, + "▁}_{": 40678, + "因为他们": 40679, + "npart": 40680, + "叙事": 40681, + "nEp": 40682, + "▁Zn": 40683, + "又一次": 40684, + "nGoogle": 40685, + "▁Uber": 40686, + "▁promo": 40687, + "▁overlapping": 40688, + "▁军": 40689, + "商丘": 40690, + "▁记员": 40691, + "Tw": 40692, + "尊敬": 40693, + "就是为了": 40694, + "United": 40695, + "▁hydroph": 40696, + "的男人": 40697, + "▁Geo": 40698, + "▁pause": 40699, + "▁physi": 40700, + "tingham": 40701, + "▁Jeremy": 40702, + "畸形": 40703, + "锦标赛": 40704, + "▁CU": 40705, + "通知后": 40706, + "▁airports": 40707, + "▁conting": 40708, + "完后": 40709, + "强制法": 40710, + "ivate": 40711, + "▁Lodge": 40712, + "ifferences": 40713, + "▁副": 40714, + "反抗": 40715, + "二十四": 40716, + "▁Quarter": 40717, + "情商": 40718, + "GUI": 40719, + "▁proportions": 40720, + "∞,": 40721, + "urling": 40722, + "pressure": 40723, + "▁parametric": 40724, + "战队": 40725, + "缓缓": 40726, + "▁amph": 40727, + "intellij": 40728, + "到时候": 40729, + "▁environmentally": 40730, + "整机": 40731, + "梦见": 40732, + "▁){\\": 40733, + "▁appliance": 40734, + "却在": 40735, + "用作": 40736, + "Har": 40737, + "nText": 40738, + "Labels": 40739, + "▁airlines": 40740, + "osi": 40741, + "pent": 40742, + "▁Liu": 40743, + "earrange": 40744, + "▁analogue": 40745, + "西门": 40746, + "▁sor": 40747, + "那个时候": 40748, + "一头": 40749, + "oug": 40750, + "choline": 40751, + "有种": 40752, + "▁xy": 40753, + "▁Tyler": 40754, + "▁electrophys": 40755, + "▁电": 40756, + "表达式": 40757, + "都已经": 40758, + "▁Pont": 40759, + "▁dign": 40760, + "CASCADE": 40761, + "▁Against": 40762, + "债权人": 40763, + "Spe": 40764, + "orte": 40765, + "icone": 40766, + "pars": 40767, + "源头": 40768, + "▁accredited": 40769, + "征服": 40770, + "抗生素": 40771, + "▁Emma": 40772, + "捕捉": 40773, + "致命": 40774, + "'\\\\": 40775, + "商学院": 40776, + "净利润": 40777, + "到手": 40778, + "与应用": 40779, + "▁Bever": 40780, + "抛物线的": 40781, + "dating": 40782, + "▁echocard": 40783, + "灭火": 40784, + "▁promptly": 40785, + "Evaluation": 40786, + "aci": 40787, + "▁concludes": 40788, + "Ij": 40789, + "兴业": 40790, + "▁LDL": 40791, + "▁porch": 40792, + "▁glycol": 40793, + "挣钱": 40794, + "▁pean": 40795, + "▁slug": 40796, + "miral": 40797, + "闪光": 40798, + "▁HC": 40799, + "▁tracker": 40800, + "▁Lines": 40801, + "▁interferon": 40802, + "想要的": 40803, + "▁INF": 40804, + "▁tib": 40805, + "出院": 40806, + "▁lineage": 40807, + "nInf": 40808, + "▁deer": 40809, + "入驻": 40810, + "▁Cream": 40811, + "ographies": 40812, + "Translation": 40813, + "迄今": 40814, + "umed": 40815, + "))/((": 40816, + "笔画": 40817, + "▁Spl": 40818, + "▁Closing": 40819, + "▁seamless": 40820, + "▁Mn": 40821, + "其前身为": 40822, + "▁Redis": 40823, + "▁advancing": 40824, + "▁Relationship": 40825, + "无名": 40826, + "opia": 40827, + "文的": 40828, + "▁Proc": 40829, + "▁offshore": 40830, + "左手": 40831, + "纸张": 40832, + "私信": 40833, + "违背": 40834, + "versal": 40835, + "下雨": 40836, + "▁Whatever": 40837, + "诱发": 40838, + "增函数": 40839, + "乡市": 40840, + "打架": 40841, + "的系统": 40842, + "考上": 40843, + "屏蔽": 40844, + "期权": 40845, + "并按照": 40846, + "二〇一七年十二月": 40847, + "icals": 40848, + "伴侣": 40849, + "列举": 40850, + "育人": 40851, + "辩论": 40852, + "新中国的诞生": 40853, + "filling": 40854, + "▁uncomfortable": 40855, + "三峡": 40856, + "跳跃": 40857, + "▁IB": 40858, + "lasting": 40859, + "▁Jessica": 40860, + "▁desires": 40861, + "nSchedule": 40862, + "▁Cd": 40863, + "幸运的是": 40864, + "stanbul": 40865, + "▁predicts": 40866, + "▁compromised": 40867, + "一间": 40868, + "geon": 40869, + "insky": 40870, + "▁进球": 40871, + "ulose": 40872, + "好看的": 40873, + "▁PDE": 40874, + "maybe": 40875, + "▁balancing": 40876, + "并向": 40877, + "SEC": 40878, + "服务等": 40879, + "minster": 40880, + "万亩": 40881, + "路边": 40882, + "Pixel": 40883, + "正确答案和": 40884, + "交通大学": 40885, + "▁chim": 40886, + "Launch": 40887, + "invest": 40888, + "▁specs": 40889, + "▁traged": 40890, + "操纵": 40891, + "来做": 40892, + "Assets": 40893, + "Loaded": 40894, + "▁corrosion": 40895, + "城乡建设": 40896, + "执行长": 40897, + "即可求解": 40898, + "nthanks": 40899, + "▁clause": 40900, + "▁shortage": 40901, + "▁MW": 40902, + "住浙江省": 40903, + "▁unveiled": 40904, + "lift": 40905, + "ocyst": 40906, + "critical": 40907, + "▁vesicles": 40908, + "叠加": 40909, + "复苏": 40910, + "准确的": 40911, + "投资人": 40912, + "金牛": 40913, + "AAC": 40914, + "先生的": 40915, + "集装箱": 40916, + "midt": 40917, + "Sprite": 40918, + "▁Emperor": 40919, + "▁hemorrhage": 40920, + "zig": 40921, + "慢慢的": 40922, + "▁FILE": 40923, + "铁道": 40924, + "应予支持": 40925, + "chin": 40926, + "积极参与": 40927, + "工业出版社": 40928, + "▁attenuated": 40929, + "nFilmography": 40930, + "新能源汽车": 40931, + "rocket": 40932, + "▁strengthening": 40933, + "▁Terminal": 40934, + "恰当": 40935, + "选育": 40936, + "bery": 40937, + "guided": 40938, + "缓冲": 40939, + "一双": 40940, + "egg": 40941, + "nPhys": 40942, + "coords": 40943, + "▁Chester": 40944, + "亮的": 40945, + "们在": 40946, + "第三项": 40947, + "合作关系": 40948, + "▁Audience": 40949, + "骨骼": 40950, + "▁\")": 40951, + "▁planets": 40952, + "Fit": 40953, + "完全可以": 40954, + "iframe": 40955, + "制订": 40956, + "糟糕": 40957, + "斯的": 40958, + "樱桃": 40959, + "▁convergent": 40960, + "分层": 40961, + "余年": 40962, + "▁Kre": 40963, + "arius": 40964, + "altern": 40965, + "投注": 40966, + "音效": 40967, + "▁Mt": 40968, + "卫生院": 40969, + "toLowerCase": 40970, + "食欲": 40971, + "▁Almost": 40972, + "sass": 40973, + "▁IRS": 40974, + "▁Bound": 40975, + "processed": 40976, + "DNS": 40977, + "Hard": 40978, + "rocal": 40979, + "起重": 40980, + "chewan": 40981, + "LaTeX": 40982, + "Optim": 40983, + "▁ital": 40984, + "▁revel": 40985, + "athione": 40986, + "不便": 40987, + "也让": 40988, + "ekyll": 40989, + "capacity": 40990, + "▁Engineers": 40991, + "bond": 40992, + "▁Reed": 40993, + "ViewHolder": 40994, + "和解题的思路": 40995, + "spiracy": 40996, + "▁cerebell": 40997, + "印章": 40998, + "发电机": 40999, + "我只是": 41000, + "}\\\\,": 41001, + "琐事发生": 41002, + "重要的作用": 41003, + "你了": 41004, + "打出": 41005, + "经验的": 41006, + "维亚": 41007, + "tron": 41008, + "▁dar": 41009, + "▁fut": 41010, + "水肿": 41011, + "Sci": 41012, + "Less": 41013, + "intro": 41014, + "第一百零八条": 41015, + "较强": 41016, + "幸福的": 41017, + "▁percept": 41018, + "Vue": 41019, + "Fatal": 41020, + "最爱": 41021, + "积极的": 41022, + "titles": 41023, + "女人的": 41024, + "▁EEG": 41025, + "告知申请执行人": 41026, + "全天": 41027, + "▁covariance": 41028, + "困惑": 41029, + "aji": 41030, + "身份号码": 41031, + "actly": 41032, + "де": 41033, + "权纠纷一案": 41034, + "本次执行程序终结": 41035, + "伴随着新中国的诞生": 41036, + "▁Gaz": 41037, + "请给出你的": 41038, + "▁veloc": 41039, + "必不可": 41040, + "更名为": 41041, + "ByName": 41042, + "golang": 41043, + "▁magnesium": 41044, + "▁jurisdiction": 41045, + "检察机关": 41046, + "▁inhibiting": 41047, + "▁Pinterest": 41048, + "▁contacting": 41049, + "KL": 41050, + "jj": 41051, + "flight": 41052, + "▁photographers": 41053, + "导致了": 41054, + "aceous": 41055, + "第一百五十四条第一款第十一": 41056, + "化县": 41057, + "搬运": 41058, + "美术馆": 41059, + "某与被告": 41060, + "▁Letters": 41061, + "▁magnificent": 41062, + "充值": 41063, + "奇函数": 41064, + "▁Hughes": 41065, + "▁Brussels": 41066, + "该款": 41067, + "avin": 41068, + "▁uncle": 41069, + "nAL": 41070, + "不充分": 41071, + ">\",\"": 41072, + "▁lacks": 41073, + "定律": 41074, + "格外": 41075, + "的费用": 41076, + "呼和浩特": 41077, + "▁Yale": 41078, + "步入": 41079, + "信息查询": 41080, + "teenth": 41081, + "▁Notable": 41082, + "▁inability": 41083, + "再次提出": 41084, + "▁requesting": 41085, + "▁moll": 41086, + "耐用": 41087, + "▁jeans": 41088, + "反驳": 41089, + "IFT": 41090, + "idem": 41091, + "联保": 41092, + "▁Compute": 41093, + "▁静": 41094, + "▁mum": 41095, + "▁服务": 41096, + "▁Pete": 41097, + "▁metropolitan": 41098, + "ITION": 41099, + "▁Tiger": 41100, + "targets": 41101, + "▁Sevent": 41102, + "主打": 41103, + "BIN": 41104, + "▁functionally": 41105, + "fra": 41106, + "获荣誉": 41107, + "▁Dict": 41108, + "▁Sacr": 41109, + "▁Soci": 41110, + "▁Positive": 41111, + "工贸": 41112, + "▁],": 41113, + "完成的": 41114, + "和使用": 41115, + "oche": 41116, + "▁cAMP": 41117, + "十二条之规定": 41118, + "▁Prec": 41119, + "▁penalties": 41120, + "经营活动": 41121, + "▁tenth": 41122, + "▁fungal": 41123, + "▁undergone": 41124, + "Mag": 41125, + "▁获取": 41126, + "奠定了": 41127, + "▁hepar": 41128, + "肝炎": 41129, + "zhi": 41130, + "▁acidic": 41131, + "iliar": 41132, + "Comparison": 41133, + "inheritdoc": 41134, + "交际": 41135, + "▁isomorphism": 41136, + "▁Kom": 41137, + "▁Sebast": 41138, + "来电": 41139, + "▁Shir": 41140, + "▁microM": 41141, + "于本判决生效后十日内": 41142, + "vn": 41143, + "万达": 41144, + "胸部": 41145, + "publisher": 41146, + "']['": 41147, + "▁tilt": 41148, + "Views": 41149, + "▁Pine": 41150, + "tenant": 41151, + "▁Bring": 41152, + "▁solic": 41153, + "▁Fourth": 41154, + "▁Publications": 41155, + "▁Gand": 41156, + "▁recycled": 41157, + "上天": 41158, + "美白": 41159, + "▁设施与服务": 41160, + "开本": 41161, + "▁hil": 41162, + "▁femoral": 41163, + "多层": 41164, + "不明确": 41165, + "▁excuse": 41166, + "composer": 41167, + "Functions": 41168, + "▁polygon": 41169, + "▁Azerbaijan": 41170, + "平台上": 41171, + "二〇一六年十一月": 41172, + "和解题过程": 41173, + "原数": 41174, + "实证": 41175, + "boarding": 41176, + "主要从事": 41177, + "compact": 41178, + "▁Ing": 41179, + "▁São": 41180, + "▁disestablished": 41181, + "自卑": 41182, + "让您": 41183, + "不死": 41184, + "::$": 41185, + "教育厅": 41186, + "▁Tap": 41187, + "▁Faith": 41188, + "担保有限公司": 41189, + "▁lawmakers": 41190, + "买个": 41191, + "以至于": 41192, + "Mbps": 41193, + "岁时": 41194, + "燃油": 41195, + "pie": 41196, + "▁Mull": 41197, + "▁noon": 41198, + "▁stabilization": 41199, + "▁Lamb": 41200, + "美联": 41201, + "nsp": 41202, + "ABCD": 41203, + "▁decorating": 41204, + "nAsk": 41205, + "verting": 41206, + "▁Princeton": 41207, + "▁Palmer": 41208, + "你做出选择的依据": 41209, + "▁Markdown": 41210, + "▁Stockholm": 41211, + "你做出选择的依据和分析": 41212, + "稳步": 41213, + "两被告": 41214, + "Visitor": 41215, + "Categories": 41216, + "NM": 41217, + "严禁": 41218, + "gcd": 41219, + "LENGTH": 41220, + "无尽": 41221, + "▁CX": 41222, + "此外请给出": 41223, + "▁nicht": 41224, + "▁Stuart": 41225, + "▁surveyed": 41226, + "很长": 41227, + "肺癌": 41228, + "详见": 41229, + "一对一": 41230, + "▁iterative": 41231, + "▁neutr": 41232, + "风的": 41233, + "▁\":": 41234, + "▁spike": 41235, + "▁solub": 41236, + "广东省广州市": 41237, + "第一百一十九条": 41238, + "nDiscography": 41239, + "帐户": 41240, + "天文": 41241, + "Poly": 41242, + "每个客房": 41243, + "▁ERROR": 41244, + "▁Govern": 41245, + "宏伟": 41246, + "▁diminished": 41247, + "QA": 41248, + "单车": 41249, + "AIDS": 41250, + "pered": 41251, + "尔多斯": 41252, + "tracks": 41253, + "貌似": 41254, + "anchor": 41255, + "(\",": 41256, + "就不要": 41257, + "nop": 41258, + "ibling": 41259, + "▁inducing": 41260, + "加州": 41261, + "农民收入": 41262, + "forest": 41263, + "ylabel": 41264, + "▁VALUES": 41265, + "%\"": 41266, + "▁武": 41267, + "('#": 41268, + "grpc": 41269, + "过程的": 41270, + "申请再审": 41271, + "中国科学院成立": 41272, + "fordshire": 41273, + "availability": 41274, + "▁CSF": 41275, + "并给出相应的": 41276, + "封装": 41277, + "我从": 41278, + "顺德": 41279, + "▁ballot": 41280, + "▁Eg": 41281, + "etheus": 41282, + "▁damaging": 41283, + "▁quarters": 41284, + "浴缸": 41285, + "陈列": 41286, + "ACS": 41287, + "超过了": 41288, + "▁drafted": 41289, + "▁printable": 41290, + "优异": 41291, + "转会": 41292, + "▁facilitating": 41293, + "毒性": 41294, + "说不定": 41295, + "▁stent": 41296, + "前两": 41297, + "四级": 41298, + "nmod": 41299, + "四方": 41300, + "沉浸": 41301, + "nSE": 41302, + "漂亮的": 41303, + "▁nephro": 41304, + "组装": 41305, + "▁playoffs": 41306, + "NV": 41307, + "便携": 41308, + "滑雪": 41309, + "给的": 41310, + "tec": 41311, + "▁Traditional": 41312, + "locked": 41313, + "我希望": 41314, + "身边的": 41315, + "WB": 41316, + "发现的": 41317, + "每个客房都配有": 41318, + "completed": 41319, + "astery": 41320, + "▁graphical": 41321, + "瀑布": 41322, + "是自己": 41323, + "▁conduction": 41324, + "锐角": 41325, + "openhagen": 41326, + "▁Administrative": 41327, + "并用": 41328, + "▁va": 41329, + "ndis": 41330, + "其他可供执行财产": 41331, + "违纪": 41332, + "hao": 41333, + "Dark": 41334, + "资本主义": 41335, + "vac": 41336, + "rives": 41337, + "色调": 41338, + "▁evenly": 41339, + "这篇日志": 41340, + "{`": 41341, + "海尔": 41342, + "高雄": 41343, + "长方体": 41344, + "长方体的": 41345, + "Colors": 41346, + "▁greenhouse": 41347, + "ARC": 41348, + "▁systolic": 41349, + "冷漠": 41350, + "数的和": 41351, + "▁Evolution": 41352, + "▁privately": 41353, + "▁questionnaires": 41354, + "清晨": 41355, + "在日本": 41356, + "件的": 41357, + "由来": 41358, + "Issue": 41359, + "▁(/": 41360, + "可以向本院申请复议一次": 41361, + "▁territories": 41362, + "AMD": 41363, + "华中": 41364, + "算了": 41365, + "鱼类": 41366, + "▁Doug": 41367, + "患病": 41368, + "\"],\"": 41369, + "Behavior": 41370, + "交汇": 41371, + "只见": 41372, + "▁Sang": 41373, + "▁juvenile": 41374, + "全自动": 41375, + "主要作品": 41376, + "▁benefici": 41377, + "THON": 41378, + "▁Yoga": 41379, + "Schedule": 41380, + "▁Amazing": 41381, + "水上": 41382, + "▁Wag": 41383, + "▁thereafter": 41384, + "▁shaping": 41385, + "oglobulin": 41386, + "放假": 41387, + "现货": 41388, + "畅通": 41389, + "比喻": 41390, + "相传": 41391, + "()))": 41392, + "▁remission": 41393, + "面临的": 41394, + "pson": 41395, + "供热": 41396, + "制裁": 41397, + "Previous": 41398, + "versible": 41399, + "手感": 41400, + "▁stro": 41401, + "▁Bundle": 41402, + "▁Possible": 41403, + "我公司": 41404, + "oplasm": 41405, + "▁Hindi": 41406, + "社会保障": 41407, + "人民出版社": 41408, + "▁leagues": 41409, + "upus": 41410, + "经济社会发展": 41411, + "▁Insert": 41412, + "万元的": 41413, + "econ": 41414, + "lite": 41415, + "▁beads": 41416, + "▁botan": 41417, + "▁mines": 41418, + "gallery": 41419, + "▁decorations": 41420, + "|$": 41421, + "国立": 41422, + "美景": 41423, + "营收": 41424, + "吸引力": 41425, + "ismiss": 41426, + "▁Reuters": 41427, + "Hol": 41428, + "[])": 41429, + "timately": 41430, + "▁collaborations": 41431, + "由上海市人民政府": 41432, + "ancellor": 41433, + "西游": 41434, + "他们还推荐了": 41435, + "这篇日志的人": 41436, + "推荐过这篇日志的人": 41437, + "宿迁": 41438, + "▁VPN": 41439, + "素质教育": 41440, + "arming": 41441, + "▁confirms": 41442, + "鄂尔多斯": 41443, + "▁polyp": 41444, + "▁Proceedings": 41445, + "▁sandwich": 41446, + "原生": 41447, + "气势": 41448, + "高消费": 41449, + "▁Titan": 41450, + "▁Lebanon": 41451, + "岁以下的儿童在使用现有的床铺": 41452, + "▁있": 41453, + "教你": 41454, + "比值": 41455, + "▁expenditure": 41456, + "格林": 41457, + "生姜": 41458, + "▁输入样例": 41459, + "如意": 41460, + "atta": 41461, + "LEVEL": 41462, + "ophilic": 41463, + "▁Foster": 41464, + "Employee": 41465, + "脖子": 41466, + "追索": 41467, + "▁nond": 41468, + "attachment": 41469, + "第二百六十二条第二款之规定": 41470, + "自豪": 41471, + "nTheir": 41472, + "▁CLAIM": 41473, + "▁Dynam": 41474, + "▁refrigerator": 41475, + "家伙": 41476, + "▁glu": 41477, + "▁Communist": 41478, + "话语": 41479, + "监狱提出": 41480, + "sales": 41481, + "依法向被执行人": 41482, + "gd": 41483, + "×\\": 41484, + "寓意": 41485, + "▁gymn": 41486, + "湘潭": 41487, + "guy": 41488, + "第六十四": 41489, + "模型的": 41490, + "stre": 41491, + "▁Advert": 41492, + "▁Montgomery": 41493, + "▁Tanz": 41494, + "▁denoted": 41495, + "gra": 41496, + "acry": 41497, + "ochrom": 41498, + "是根据": 41499, + "}}}{": 41500, + "▁Mead": 41501, + "umbled": 41502, + "第一位": 41503, + "ducers": 41504, + "年经教育部正式批准": 41505, + "您好": 41506, + "村的": 41507, + "申诉": 41508, + "▁todd": 41509, + "▁拉丁学名": 41510, + "一般在": 41511, + "▁discomfort": 41512, + "粘贴": 41513, + "chars": 41514, + "▁editions": 41515, + "名学生": 41516, + "▁cheapest": 41517, + "华丽": 41518, + "喝水": 41519, + "认定的": 41520, + "nJul": 41521, + "▁textures": 41522, + "▁dendritic": 41523, + "合作的": 41524, + "adal": 41525, + "METHO": 41526, + "▁uterine": 41527, + "▁endoscopic": 41528, + "▁inactivation": 41529, + "对立": 41530, + "▁WS": 41531, + "recv": 41532, + "▁sang": 41533, + "ocratic": 41534, + "AutoField": 41535, + "祝贺": 41536, + "疗程": 41537, + "odia": 41538, + "▁Daw": 41539, + "Require": 41540, + "angement": 41541, + "############": 41542, + "剧烈": 41543, + "分布式": 41544, + "▁XXX": 41545, + "▁gluten": 41546, + "▁differentiable": 41547, + "周五": 41548, + "日凌晨": 41549, + "})\\\\)": 41550, + "主办的": 41551, + "▁Respons": 41552, + "▁hormonal": 41553, + "▁keyboards": 41554, + "完工": 41555, + "组和": 41556, + "uncan": 41557, + "▁Numerical": 41558, + "▁cutaneous": 41559, + "因为它": 41560, + "▁wealthy": 41561, + "awks": 41562, + "antes": 41563, + "▁输出样例": 41564, + "weighted": 41565, + "▁midnight": 41566, + "▁等": 41567, + "第十二": 41568, + "Depth": 41569, + "▁unincorporated": 41570, + "▁terrorism": 41571, + "oS": 41572, + "金沙": 41573, + "dip": 41574, + "国内的": 41575, + "▁背景设定": 41576, + "radiol": 41577, + "▁counterpart": 41578, + "▁psychosocial": 41579, + "加入了": 41580, + "▁Gor": 41581, + "瓶颈": 41582, + "贵阳市": 41583, + "aley": 41584, + "▁Bras": 41585, + "▁heroes": 41586, + "▁constitutes": 41587, + "BOOL": 41588, + "Liter": 41589, + "▁quantification": 41590, + "合力": 41591, + "更强": 41592, + "正版": 41593, + "AGES": 41594, + "义务教育": 41595, + "▁scaled": 41596, + "▁wondered": 41597, + "▁cytotoxicity": 41598, + "年任": 41599, + "居委会": 41600, + "▁Medicaid": 41601, + "改成": 41602, + "^^^^": 41603, + "被执行人未按": 41604, + "为他": 41605, + "entric": 41606, + "▁Acid": 41607, + "▁ester": 41608, + "▁mimic": 41609, + "prus": 41610, + "▁democratic": 41611, + "的一致": 41612, + "kok": 41613, + "▁ate": 41614, + "给出解题": 41615, + "ridges": 41616, + "▁Scotia": 41617, + "▁Navigation": 41618, + "意向": 41619, + "一般都是": 41620, + "pressive": 41621, + "人力资源和社会保障": 41622, + "▁conve": 41623, + "▁Tourism": 41624, + "RequestMapping": 41625, + "▁planting": 41626, + "的因素": 41627, + "湖北省武汉市": 41628, + "▁scandal": 41629, + "潮湿": 41630, + "meg": 41631, + "曹操": 41632, + "Works": 41633, + "об": 41634, + "▁della": 41635, + "sale": 41636, + "五星": 41637, + "avar": 41638, + "归还原告": 41639, + "▁\"\")\\": 41640, + "油漆": 41641, + "医务": 41642, + "搜集": 41643, + "时装": 41644, + "nExamples": 41645, + "洗手": 41646, + ">:\\\\(": 41647, + "affeine": 41648, + "与中国科学院共同举办": 41649, + "落户": 41650, + "做不到": 41651, + "demand": 41652, + "nstart": 41653, + "桂花": 41654, + "Kernel": 41655, + "甲方": 41656, + "▁Pb": 41657, + "员工的": 41658, + "]):\\": 41659, + "这样才能": 41660, + "scheduler": 41661, + "小子": 41662, + "自制": 41663, + "nLog": 41664, + "云中书城": 41665, + "AlterField": 41666, + "几位": 41667, + "电厂": 41668, + "一起去": 41669, + "Keep": 41670, + "▁exogenous": 41671, + "数据分析": 41672, + "▁cough": 41673, + "uscular": 41674, + "▁minimizing": 41675, + "▁Independence": 41676, + "estock": 41677, + "▁whisk": 41678, + "backends": 41679, + "来得": 41680, + "Claim": 41681, + "rings": 41682, + "▁Gent": 41683, + "▁Swan": 41684, + "▁Ready": 41685, + "▁improper": 41686, + "▁selenium": 41687, + "第二百三": 41688, + "nings": 41689, + "轻伤": 41690, + "Tor": 41691, + "iPad": 41692, + "forget": 41693, + "▁ladder": 41694, + "▁sticks": 41695, + "十位": 41696, + "迭代": 41697, + "▁tones": 41698, + "▁blogging": 41699, + "四舍五入": 41700, + "化石": 41701, + "泰山": 41702, + "质量和": 41703, + "Must": 41704, + "stitial": 41705, + "均未": 41706, + "Rub": 41707, + "比特币": 41708, + "▁Dow": 41709, + "passed": 41710, + "▁Budget": 41711, + "▁concomit": 41712, + "esse": 41713, + "▁trump": 41714, + "社会责任": 41715, + "先算": 41716, + "递归": 41717, + "中含有": 41718, + "中兴": 41719, + "▁Dress": 41720, + "▁mediators": 41721, + "在她": 41722, + "众生": 41723, + "cyte": 41724, + "进行了调查": 41725, + "▁innocent": 41726, + "制动": 41727, + "旅程": 41728, + "Flex": 41729, + "occup": 41730, + "nSeason": 41731, + "▁embark": 41732, + "▁adhesive": 41733, + "▁supplying": 41734, + "眼球": 41735, + "安全感": 41736, + "▁complain": 41737, + "以期": 41738, + "每个人都": 41739, + "男方": 41740, + "污水处理": 41741, + "要求离婚": 41742, + "看不": 41743, + "现在是": 41744, + "预订取消": 41745, + "▁overexpression": 41746, + "▁hobby": 41747, + "▁swift": 41748, + "▁Instant": 41749, + "预付政策": 41750, + ":\\\\\\\\": 41751, + "nImage": 41752, + "▁moles": 41753, + "的可": 41754, + "acey": 41755, + "▁к": 41756, + "▁refere": 41757, + "▁Magnetic": 41758, + "届时": 41759, + "ODY": 41760, + "grass": 41761, + "indust": 41762, + "implicit": 41763, + "▁specifies": 41764, + "▁γ": 41765, + "开朗": 41766, + "这是我": 41767, + "Assertions": 41768, + "西洋": 41769, + "Integration": 41770, + "▁adequately": 41771, + "个大": 41772, + "税率": 41773, + "inston": 41774, + "▁interfere": 41775, + "▁下载": 41776, + "lodash": 41777, + "另外一个": 41778, + "易懂": 41779, + "▁Evaluate": 41780, + "▁dehydrogenase": 41781, + "开盘": 41782, + "请参阅": 41783, + "alia": 41784, + "▁Inventory": 41785, + "▁dissertation": 41786, + "三门": 41787, + "两面": 41788, + "严厉": 41789, + "全球化": 41790, + "▁Bach": 41791, + "ycin": 41792, + "Quick": 41793, + "笔记本电脑": 41794, + "Expect": 41795, + "▁Haven": 41796, + "▁illnesses": 41797, + "▁asymptomatic": 41798, + "头条": 41799, + "看成": 41800, + "orde": 41801, + "东县": 41802, + "▁ideally": 41803, + "他不": 41804, + "▁exceeds": 41805, + "延安": 41806, + "Inner": 41807, + "reports": 41808, + "项目建设": 41809, + "▁Units": 41810, + "readline": 41811, + "▁promotions": 41812, + "以后的": 41813, + "nRet": 41814, + "石家庄市": 41815, + "▁showc": 41816, + "▁polymers": 41817, + "听过": 41818, + "▁ie": 41819, + "▁mammary": 41820, + "zd": 41821, + "室的": 41822, + "捞出": 41823, + "▁revolutionary": 41824, + "各种各样的": 41825, + "ARG": 41826, + "\\'},\\": 41827, + "photos": 41828, + "LIBR": 41829, + "ombie": 41830, + "Tracker": 41831, + "Dispatcher": 41832, + "})": 41833, + ";": 41894, + "ecal": 41895, + "gf": 41896, + "山河": 41897, + "电解": 41898, + "▁Ye": 41899, + "的安装": 41900, + "类似的": 41901, + "Lang": 41902, + "VELOPM": 41903, + "▁phenotypic": 41904, + "管教": 41905, + "▁sie": 41906, + "▁范": 41907, + "▁lav": 41908, + "▁Bears": 41909, + "提起行政诉讼": 41910, + "October": 41911, + "▁px": 41912, + "污染物": 41913, + "▁slim": 41914, + "▁historians": 41915, + "小事": 41916, + "rug": 41917, + "▁TD": 41918, + "elin": 41919, + "▁Pir": 41920, + "▁Hein": 41921, + "比较高": 41922, + "端点": 41923, + "正方体": 41924, + "被申请执行人": 41925, + "求值": 41926, + "阶层": 41927, + "iente": 41928, + "onne": 41929, + "变态": 41930, + "帝王": 41931, + "真菌": 41932, + "ftp": 41933, + "nstd": 41934, + "▁Firm": 41935, + "OUTPUT": 41936, + "▁litter": 41937, + "▁passport": 41938, + "北京时间": 41939, + "finally": 41940, + "水产": 41941, + "原裁定": 41942, + "icidal": 41943, + "▁guards": 41944, + "loo": 41945, + "inventory": 41946, + "▁Monitoring": 41947, + "预备": 41948, + "▁Rams": 41949, + "以下有期徒刑": 41950, + "▁Territory": 41951, + "年了": 41952, + "aques": 41953, + "条形": 41954, + "为广大": 41955, + "表面的": 41956, + "造就": 41957, + "▁erupt": 41958, + "无处": 41959, + "洁净": 41960, + "tet": 41961, + "▁beside": 41962, + "▁Approved": 41963, + "RB": 41964, + "告知书": 41965, + "▁Wyoming": 41966, + "straction": 41967, + "地利": 41968, + "证号": 41969, + "mapsto": 41970, + "randint": 41971, + "头疼": 41972, + "CTV": 41973, + "InstanceOf": 41974, + "守法": 41975, + "寄生": 41976, + "nMet": 41977, + "计分考核": 41978, + "▁pickup": 41979, + "不一": 41980, + "出轨": 41981, + "▁invoice": 41982, + "nBur": 41983, + "▁prere": 41984, + "ancellation": 41985, + "上手": 41986, + "▁Cand": 41987, + "▁copying": 41988, + "▁Aviation": 41989, + "▁Pressure": 41990, + "▁cher": 41991, + "为民": 41992, + "pac": 41993, + "▁eu": 41994, + "开始执行": 41995, + "▁Cork": 41996, + "tracker": 41997, + "▁irreducible": 41998, + "效力于": 41999, + "▁Rib": 42000, + "valueOf": 42001, + "datasets": 42002, + "▁irrigation": 42003, + "背叛": 42004, + "das": 42005, + "▁EB": 42006, + "旗下的": 42007, + "降临": 42008, + "该公司员工": 42009, + "上半": 42010, + "的女儿": 42011, + "好玩": 42012, + "退款": 42013, + "泉州市": 42014, + "进入到": 42015, + "布尔": 42016, + "▁Pul": 42017, + "▁Bryan": 42018, + "ortheastern": 42019, + "hev": 42020, + "他们是": 42021, + "▁功能": 42022, + "单调递减": 42023, + "▁Shen": 42024, + "更重要的是": 42025, + "▁Located": 42026, + "▁imprison": 42027, + "万家": 42028, + "▁strap": 42029, + "又一": 42030, + "发烧": 42031, + "然后把": 42032, + "专业技术": 42033, + "景色": 42034, + "课时": 42035, + "▁contrace": 42036, + "▁abolished": 42037, + "三项": 42038, + "丰收": 42039, + "富汗": 42040, + "iably": 42041, + "ARCHAR": 42042, + "\"[": 42043, + "翅膀": 42044, + "pkgs": 42045, + "中华人民共和国行政强制法": 42046, + "背光": 42047, + "上海科技大学": 42048, + "▁Adventure": 42049, + "共鸣": 42050, + "▁Plaza": 42051, + "▁Amateur": 42052, + "▁probable": 42053, + "严格的": 42054, + "lion": 42055, + "▁Orthodox": 42056, + "▁Measurement": 42057, + "▁celebrities": 42058, + "▁Assume": 42059, + "▁stretching": 42060, + "▁packets": 42061, + "Bin": 42062, + "▁Attempt": 42063, + "▁Notification": 42064, + "尽力": 42065, + "着他": 42066, + "▁Loop": 42067, + "▁Overview": 42068, + "▁communicating": 42069, + "▁Cav": 42070, + "▁polype": 42071, + "oso": 42072, + "新西兰": 42073, + "recomm": 42074, + "Balance": 42075, + "▁以": 42076, + "彼得": 42077, + "大多数人": 42078, + "▁Critical": 42079, + "复古": 42080, + "征求": 42081, + "了下来": 42082, + "需要在": 42083, + "▁Hod": 42084, + "▁concise": 42085, + "等财产": 42086, + "▁tray": 42087, + "Without": 42088, + "superv": 42089, + "▁culmin": 42090, + "から": 42091, + "统计局": 42092, + "anca": 42093, + "美术学院": 42094, + "▁invoke": 42095, + "▁drilling": 42096, + "就算是": 42097, + "PART": 42098, + "副秘书长": 42099, + "装有": 42100, + "▁baked": 42101, + "▁laying": 42102, + "▁terrace": 42103, + "▁recommends": 42104, + "ansible": 42105, + "▁roofing": 42106, + "也曾": 42107, + "恒大": 42108, + "这首歌": 42109, + "▁Sox": 42110, + "phrase": 42111, + "▁arthro": 42112, + "▁spleen": 42113, + "▁acetate": 42114, + "▁advancement": 42115, + "Learning": 42116, + "▁vitamins": 42117, + "▁therapist": 42118, + "哪家": 42119, + "商量": 42120, + "arettes": 42121, + "ceptors": 42122, + "Ha": 42123, + "红枣": 42124, + "authorization": 42125, + "▁POS": 42126, + "▁neckl": 42127, + "▁eigenvalue": 42128, + "南开": 42129, + "出色的": 42130, + "▁indef": 42131, + "则有": 42132, + "nAD": 42133, + "▁misc": 42134, + "▁Zimbabwe": 42135, + "▁blockade": 42136, + "励志": 42137, + "核准": 42138, + "invoice": 42139, + "▁platelets": 42140, + "杨某某": 42141, + "ancement": 42142, + "▁陆": 42143, + "导出": 42144, + "饰品": 42145, + "▁Prague": 42146, + "▁immunodef": 42147, + "▁divergence": 42148, + "ør": 42149, + "车子": 42150, + "ROW": 42151, + "▁VC": 42152, + "一次方程": 42153, + "三角函数": 42154, + "▁Missing": 42155, + "▁epidemiology": 42156, + "毛巾": 42157, + "▁lipoprotein": 42158, + "▁Designs": 42159, + "▁Operator": 42160, + "▁treasure": 42161, + "ographically": 42162, + "编曲": 42163, + "MES": 42164, + "兼任": 42165, + "awt": 42166, + "申请书": 42167, + "进行比较": 42168, + "▁Amer": 42169, + "并不会": 42170, + "▁Bomb": 42171, + "▁crisp": 42172, + "阳市中级人民法院": 42173, + "早点": 42174, + "\"}}": 42175, + "▁annot": 42176, + "▁closes": 42177, + "fax": 42178, + "▁inconsistent": 42179, + "履行能力": 42180, + "第五十三条": 42181, + "astolic": 42182, + "能耗": 42183, + "年龄的": 42184, + "了呢": 42185, + "宽松": 42186, + "dic": 42187, + "solve": 42188, + "▁discovering": 42189, + "山上": 42190, + "鼓楼": 42191, + "detect": 42192, + "二〇一六年十二月": 42193, + "在那里": 42194, + "Ship": 42195, + "telif": 42196, + "运会": 42197, + "nee": 42198, + "▁GPL": 42199, + "Twitter": 42200, + "EW": 42201, + "首位": 42202, + "基本信息": 42203, + "Foo": 42204, + "▁nurt": 42205, + "▁urge": 42206, + "▁worries": 42207, + "快餐": 42208, + "谈到": 42209, + "Logo": 42210, + "issan": 42211, + "▁robustness": 42212, + "imus": 42213, + "▁tribe": 42214, + "▁nominee": 42215, + "属于自己的": 42216, + "▁lending": 42217, + "nOper": 42218, + "符合法律规定的": 42219, + "▁ListNode": 42220, + "转入": 42221, + "udi": 42222, + "INPUT": 42223, + "▁Ruth": 42224, + "海滩": 42225, + "pmod": 42226, + "把自己的": 42227, + "中东": 42228, + "PLICATION": 42229, + "必将": 42230, + "站的": 42231, + "illar": 42232, + "▁Graphics": 42233, + "置于": 42234, + "议会": 42235, + "▁Jenkins": 42236, + "plicative": 42237, + "▁steroids": 42238, + "TOR": 42239, + "jay": 42240, + "绝句": 42241, + "中国科学院研究生院": 42242, + "环比": 42243, + "▁Julie": 42244, + "▁chord": 42245, + "▁phosphatase": 42246, + "▁Gmina": 42247, + "Forward": 42248, + "凭什么": 42249, + "ENTER": 42250, + "tfunction": 42251, + "REAM": 42252, + "alion": 42253, + "otent": 42254, + "他自己": 42255, + "oxin": 42256, + "▁raid": 42257, + "归属": 42258, + "钱包": 42259, + "assis": 42260, + "表白": 42261, + "代表作": 42262, + "omycin": 42263, + "dictionary": 42264, + "本题的关键": 42265, + "▁bride": 42266, + "▁glands": 42267, + "最高人民法院关于审理": 42268, + "我发现": 42269, + "▁Productions": 42270, + "xz": 42271, + "▁OnInit": 42272, + "▁resolutions": 42273, + "再现": 42274, + "▁你的": 42275, + "▁veins": 42276, + "▁kinases": 42277, + "▁hooks": 42278, + "▁allies": 42279, + "金银": 42280, + "生产力": 42281, + "▁rug": 42282, + "恰恰": 42283, + "有能力": 42284, + "▁Winn": 42285, + "▁Gly": 42286, + "seeing": 42287, + ")_{": 42288, + "shi": 42289, + "idin": 42290, + "▁bending": 42291, + "▁alveolar": 42292, + "进士": 42293, + "})^": 42294, + "enry": 42295, + "▁Adjust": 42296, + "jour": 42297, + "▁brightness": 42298, + "▁questioned": 42299, + "|>": 42300, + "标志着": 42301, + "\":\"\",\"": 42302, + "▁retire": 42303, + "显现": 42304, + "sembling": 42305, + "▁_\\": 42306, + "使之": 42307, + "烟花": 42308, + "了一份": 42309, + "胰岛素": 42310, + "▁Jeffrey": 42311, + "▁isomorphic": 42312, + "▁七": 42313, + "徐某": 42314, + "红尘": 42315, + "绽放": 42316, + "▁pant": 42317, + "▁radicals": 42318, + "▁Southwest": 42319, + "Serialization": 42320, + "这本": 42321, + "Vel": 42322, + "▁calibr": 42323, + "problems": 42324, + "第三个": 42325, + "▁Leo": 42326, + "精通": 42327, + "ovic": 42328, + "▁Dipl": 42329, + "ACCESS": 42330, + "▁dealers": 42331, + "哺乳": 42332, + "阿富汗": 42333, + "minor": 42334, + "▁intestine": 42335, + "▁formations": 42336, + "技法": 42337, + "白发": 42338, + "是怎样的": 42339, + "Apply": 42340, + "usable": 42341, + "学长": 42342, + "—\\": 42343, + "红柿": 42344, + "的可能": 42345, + "运动队": 42346, + "tout": 42347, + "▁Twin": 42348, + "▁Certain": 42349, + "MIC": 42350, + "Bill": 42351, + "▁nap": 42352, + "▁lasts": 42353, + "▁webpage": 42354, + "▁partnered": 42355, + "克隆": 42356, + "拌匀": 42357, + "油腻": 42358, + "GPU": 42359, + "nlogger": 42360, + "创新创业": 42361, + "ighthouse": 42362, + "哭了": 42363, + "▁lub": 42364, + "▁yii": 42365, + "抓获经过": 42366, + "cause": 42367, + "▁lightly": 42368, + "仅为": 42369, + "▁perfor": 42370, + "▁cess": 42371, + "▁Canon": 42372, + "▁endors": 42373, + "▁Investig": 42374, + "管理者": 42375, + "经营的": 42376, + "两份": 42377, + "父母的": 42378, + "▁endocrine": 42379, + "年夜": 42380, + "搬迁": 42381, + "Fun": 42382, + "▁Contr": 42383, + "国学": 42384, + "▁nails": 42385, + "▁initialization": 42386, + "$:": 42387, + "GNU": 42388, + "nProperty": 42389, + "▁DEALINGS": 42390, + "尾巴": 42391, + "宣告缓刑": 42392, + "▁horiz": 42393, + "问答": 42394, + "School": 42395, + "Singleton": 42396, + "不佳": 42397, + "壁纸": 42398, + "外来": 42399, + "acetyl": 42400, + "Currency": 42401, + "及照片": 42402, + "▁wit": 42403, + "opensource": 42404, + "应注意": 42405, + "Alias": 42406, + "▁但是": 42407, + "▁Manit": 42408, + "▁thrive": 42409, + "▁pathophysiology": 42410, + "星辰": 42411, + "触犯": 42412, + "华盛顿": 42413, + "VELOPMENT": 42414, + "合并同类项": 42415, + "ninput": 42416, + "油烟": 42417, + "不限": 42418, + "微型": 42419, + "量大": 42420, + "在面对": 42421, + "▁推荐菜": 42422, + "wat": 42423, + "短视频": 42424, + "董事会": 42425, + "Hyper": 42426, + "并提出": 42427, + "avia": 42428, + "▁oun": 42429, + "▁eukary": 42430, + "▁agonists": 42431, + "▁standings": 42432, + "殴打": 42433, + "流动性": 42434, + "民事权利和": 42435, + "▁Compl": 42436, + "焦作": 42437, + "老师们": 42438, + "射手": 42439, + "即可解答": 42440, + "班长": 42441, + "科教": 42442, + "酸奶": 42443, + "▁melting": 42444, + "▁Romanian": 42445, + "ellites": 42446, + "▁guiding": 42447, + "维尔": 42448, + "悬挂": 42449, + "similar": 42450, + "▁trajectories": 42451, + "▁unsuccessful": 42452, + "桌子": 42453, + "访谈": 42454, + "因原告": 42455, + "开始的": 42456, + "身份信息": 42457, + "▁stairs": 42458, + "在这一": 42459, + "Repos": 42460, + "▁compliant": 42461, + "▁imperative": 42462, + "INSERT": 42463, + "位移": 42464, + "嘴巴": 42465, + "于此": 42466, + "矿物": 42467, + "太原市": 42468, + "无视": 42469, + "男人的": 42470, + "▁nat": 42471, + "技术咨询": 42472, + "四海": 42473, + "家务": 42474, + "报销": 42475, + "▁Wide": 42476, + "▁Shopping": 42477, + ")])\\": 42478, + "arashtra": 42479, + "nSO": 42480, + "干涉": 42481, + "▁scrut": 42482, + "可以考虑": 42483, + "后记": 42484, + "魔术": 42485, + "avian": 42486, + "中海": 42487, + "黄昏": 42488, + "如果想": 42489, + "▁酒店星级": 42490, + "▁amend": 42491, + "ListItem": 42492, + "做到了": 42493, + "的好处": 42494, + "erent": 42495, + "tR": 42496, + "用车": 42497, + "refn": 42498, + "运算法则": 42499, + "During": 42500, + "ottle": 42501, + "颠覆": 42502, + "charts": 42503, + "▁Concert": 42504, + "编织": 42505, + "数量的": 42506, + "ToProps": 42507, + "机能": 42508, + "这么说": 42509, + "等一系列": 42510, + "动能": 42511, + "责令其": 42512, + "不得超过": 42513, + "▁Bundes": 42514, + "jac": 42515, + "kub": 42516, + "此题主要": 42517, + "▁serotonin": 42518, + "▁про": 42519, + "▁trio": 42520, + "▁Petersburg": 42521, + "的程度": 42522, + "▁Fem": 42523, + "▁nickel": 42524, + "approved": 42525, + "中南": 42526, + "▁Rails": 42527, + "remarks": 42528, + "▁stderr": 42529, + "游玩": 42530, + "overview": 42531, + "nhe": 42532, + "▁shorts": 42533, + "产出": 42534, + "afa": 42535, + "nlike": 42536, + "▁hurd": 42537, + "▁丹": 42538, + "擅自": 42539, + "▁bipolar": 42540, + "回落": 42541, + "报复": 42542, + "(\\'<": 42543, + "常务委员会": 42544, + "▁observing": 42545, + "▁Distributed": 42546, + "rw": 42547, + "▁属性": 42548, + "的一本": 42549, + "▁Mechanical": 42550, + "iento": 42551, + "Archive": 42552, + "▁somatic": 42553, + "ublicense": 42554, + "▁conformation": 42555, + "▁崔": 42556, + "ropic": 42557, + "additional": 42558, + "ORDER": 42559, + "▁predis": 42560, + "支配": 42561, + "FIELD": 42562, + "▁mais": 42563, + "▁neurom": 42564, + "▁Potential": 42565, + "▁porous": 42566, + "气血": 42567, + "fee": 42568, + "/\\'\\": 42569, + "▁Canal": 42570, + "nCompet": 42571, + "▁upward": 42572, + "▁Brunswick": 42573, + "机动车交通事故责任纠纷一案": 42574, + "普陀": 42575, + "▁shirts": 42576, + "反转": 42577, + "省钱": 42578, + "}}_{": 42579, + "威海": 42580, + "▁flee": 42581, + "▁lifted": 42582, + "▁lowered": 42583, + "partition": 42584, + "萎缩": 42585, + "要多": 42586, + "托管": 42587, + "pypi": 42588, + "告诉记者": 42589, + "其前身为中国科学院研究生院": 42590, + "毛重": 42591, + "Even": 42592, + "书面申请": 42593, + "▁ventric": 42594, + "▁suspicious": 42595, + "Sy": 42596, + "的请求": 42597, + "▁scaffold": 42598, + "King": 42599, + "MenuItem": 42600, + "▁División": 42601, + "▁securities": 42602, + "▁cylindrical": 42603, + "];//": 42604, + "▁Items": 42605, + "该书": 42606, + "SCs": 42607, + "▁een": 42608, + "饮酒": 42609, + "▁quantified": 42610, + "▁Interactive": 42611, + "从头": 42612, + "团长": 42613, + "ulae": 42614, + "▁bee": 42615, + "Ing": 42616, + "▁MED": 42617, + "▁bored": 42618, + "十二条第一款": 42619, + "▁billing": 42620, + "▁UT": 42621, + "不足以": 42622, + "seven": 42623, + "▁Stir": 42624, + "seo": 42625, + "▁prayers": 42626, + "数百": 42627, + "owl": 42628, + "astore": 42629, + "洪水": 42630, + "百花": 42631, + "▁robotic": 42632, + "YI": 42633, + "侦探": 42634, + "▁blah": 42635, + "▁literal": 42636, + "两只": 42637, + "▁Db": 42638, + "phis": 42639, + "aines": 42640, + "三亚": 42641, + "▁`\\": 42642, + "▁chromosomes": 42643, + "人次": 42644, + "助攻": 42645, + "▁Pom": 42646, + "游击": 42647, + "▁projective": 42648, + "▁Topics": 42649, + "住所地上海市": 42650, + "从容": 42651, + "odor": 42652, + "▁posters": 42653, + "))$": 42654, + "Four": 42655, + "十堰": 42656, + "生抽": 42657, + "在家里": 42658, + "afood": 42659, + "▁tits": 42660, + "▁Tickets": 42661, + "▁OA": 42662, + "nSch": 42663, + "▁indexed": 42664, + "既往": 42665, + "流入": 42666, + "学生会": 42667, + "▁anomalies": 42668, + "▁interim": 42669, + "面临着": 42670, + "▁Coloring": 42671, + "▁weaken": 42672, + "受人": 42673, + "最喜欢": 42674, + "▁flowering": 42675, + "▁constituencies": 42676, + "stimulated": 42677, + "haul": 42678, + "以非法占有": 42679, + "▁Pakistani": 42680, + "▁Temperature": 42681, + "▁facilitated": 42682, + "▁Euclidean": 42683, + "帮我做": 42684, + "▁Sul": 42685, + "▁poles": 42686, + "▁patron": 42687, + "第二百四十四条": 42688, + "▁RGB": 42689, + "▁habitats": 42690, + "无烟": 42691, + "cob": 42692, + "学到": 42693, + "▁中文学名": 42694, + "▁Plasma": 42695, + "制剂": 42696, + "日本人": 42697, + "istro": 42698, + "ierarchy": 42699, + "常熟": 42700, + "多样性": 42701, + "adin": 42702, + "▁Sensor": 42703, + "▁micrograms": 42704, + "拉伸": 42705, + "灰尘": 42706, + "实用性": 42707, + "相互作用": 42708, + "▁sublicense": 42709, + "是把": 42710, + "▁Venice": 42711, + "▁Interview": 42712, + "sof": 42713, + "高性能": 42714, + "nbody": 42715, + "▁goodness": 42716, + "医院的": 42717, + "VERY": 42718, + "▁sponsorship": 42719, + "▁Oz": 42720, + "ercises": 42721, + "▁NONINFRINGEMENT": 42722, + "▁Lynn": 42723, + "▁Articles": 42724, + "▁encounters": 42725, + "急诊": 42726, + "鸿蒙": 42727, + "uga": 42728, + "▁Crew": 42729, + "Observable": 42730, + "河道": 42731, + "代表的": 42732, + "virus": 42733, + "▁Assert": 42734, + "吃到": 42735, + "ydia": 42736, + "TITLE": 42737, + "▁attachments": 42738, + "修饰": 42739, + "抗战": 42740, + "kat": 42741, + "athi": 42742, + "蔓延": 42743, + "黎明": 42744, + "Chunk": 42745, + "▁GOOD": 42746, + "冻结被执行人": 42747, + "▁kotlin": 42748, + "进的": 42749, + "▁Authentication": 42750, + "▁花": 42751, + "▁Aid": 42752, + "杂质": 42753, + "在本案": 42754, + "▁apprent": 42755, + "检疫": 42756, + "非常高兴": 42757, + "):\\\\(": 42758, + "▁affine": 42759, + "nRichard": 42760, + "重审": 42761, + "]:\\\\(": 42762, + "nvector": 42763, + "▁Integrated": 42764, + "▁scared": 42765, + "▁invented": 42766, + "▁transmitter": 42767, + "▁CG": 42768, + "solid": 42769, + "可以自收到": 42770, + "报告财产令": 42771, + "或有": 42772, + "管家": 42773, + "nPrior": 42774, + "▁Muhammad": 42775, + "▁fileName": 42776, + "finder": 42777, + "说服": 42778, + "▁ONLY": 42779, + "▁javascript": 42780, + "▁carbohydrate": 42781, + "宝鸡": 42782, + "条约": 42783, + "▁regimens": 42784, + "▁beverage": 42785, + "▁香": 42786, + "▁chond": 42787, + "tooltip": 42788, + "▁Lieutenant": 42789, + "丝绸": 42790, + "主干": 42791, + "会所": 42792, + "其所": 42793, + "提供在线": 42794, + "nSpeaking": 42795, + "▁uncertainties": 42796, + "决字": 42797, + "影院": 42798, + "umbs": 42799, + "Storm": 42800, + "▁Chev": 42801, + "定义域": 42802, + "由题意得": 42803, + "OnClick": 42804, + "▁ideals": 42805, + "▁quicker": 42806, + "ERO": 42807, + "控制的": 42808, + "chard": 42809, + "ersen": 42810, + "mongo": 42811, + "▁rationale": 42812, + "后又": 42813, + "PES": 42814, + "Emitter": 42815, + "▁生长": 42816, + "]](/": 42817, + "ento": 42818, + "weed": 42819, + "名叫": 42820, + "奥迪": 42821, + "昌县": 42822, + "内角和": 42823, + "▁angiogenesis": 42824, + "二分": 42825, + "sheets": 42826, + "▁interven": 42827, + "levard": 42828, + "了你": 42829, + "nRef": 42830, + "▁Bert": 42831, + "▁crowds": 42832, + "领导下": 42833, + "▁anaest": 42834, + "▁ventil": 42835, + "做为": 42836, + "以非法占有为目的": 42837, + "nCompanies": 42838, + "▁姚": 42839, + "裤子": 42840, + "nMass": 42841, + "nsome": 42842, + "▁splic": 42843, + "こと": 42844, + "说一下": 42845, + "平方差": 42846, + "等功能": 42847, + "代理检察员": 42848, + "▁bou": 42849, + "行业协会": 42850, + "phalt": 42851, + "▁Ralph": 42852, + "collections": 42853, + "系统和": 42854, + "多方": 42855, + "弱势": 42856, + "▁这个": 42857, + "▁Asc": 42858, + "EVENT": 42859, + "▁incentive": 42860, + "▁inversion": 42861, + "日因": 42862, + "魔龙": 42863, + "bw": 42864, + "课外": 42865, + "yna": 42866, + "▁[^](/": 42867, + "nThomas": 42868, + "REC": 42869, + "bright": 42870, + "▁disagree": 42871, + ">﹣": 42872, + "▁现在": 42873, + "促进了": 42874, + "面积公式": 42875, + "never": 42876, + "▁genotypes": 42877, + "参谋": 42878, + "头皮": 42879, + "$(\"": 42880, + "ographed": 42881, + "▁overweight": 42882, + "Bitmap": 42883, + "▁alleles": 42884, + "分解因式": 42885, + "▁Electronics": 42886, + "▁dps": 42887, + "民营企业": 42888, + "nPlay": 42889, + "▁Wiki": 42890, + "▁Cards": 42891, + "▁overlay": 42892, + "▁activating": 42893, + "▁admissions": 42894, + "十个": 42895, + "页数": 42896, + "▁fax": 42897, + "在刑罚执行期间": 42898, + "相声": 42899, + "nDO": 42900, + "婴幼儿": 42901, + "icia": 42902, + "agland": 42903, + "▁timezone": 42904, + "▁Retro": 42905, + "绑架": 42906, + "和企业": 42907, + "是美国": 42908, + "ENCES": 42909, + "▁Subjects": 42910, + "|^": 42911, + "临近": 42912, + "癫痫病": 42913, + "antib": 42914, + "文体": 42915, + "▁rider": 42916, + "很明显": 42917, + "nters": 42918, + "▁Suff": 42919, + "▁outlines": 42920, + "实效": 42921, + "auf": 42922, + "▁Brent": 42923, + "强力": 42924, + "邪恶": 42925, + "▁yr": 42926, + "▁dst": 42927, + "Tuple": 42928, + "ustin": 42929, + "▁scalable": 42930, + "▁PlayStation": 42931, + "▁mins": 42932, + "解题的关键": 42933, + "复试": 42934, + "就可": 42935, + "赤峰市": 42936, + "孙子": 42937, + "ija": 42938, + "▁Organic": 42939, + "▁methodological": 42940, + "nbecause": 42941, + "nSelected": 42942, + "▁outdated": 42943, + "adb": 42944, + "急需": 42945, + "▁grill": 42946, + "酌情从轻处罚": 42947, + "▁anonym": 42948, + "迷失": 42949, + "nJun": 42950, + "未成年人": 42951, + "偏偏": 42952, + "的非": 42953, + "总结了": 42954, + ")": 43305, + "seys": 43306, + "发力": 43307, + "volumes": 43308, + "▁Shadow": 43309, + "cott": 43310, + "orphism": 43311, + "▁testimony": 43312, + "固化": 43313, + "▁Clo": 43314, + "本院经审理": 43315, + "▁Chase": 43316, + "AddField": 43317, + "民用": 43318, + "Arc": 43319, + "itos": 43320, + "VB": 43321, + "膜炎": 43322, + "的国际": 43323, + "▁ribbon": 43324, + "filtered": 43325, + "▁Automatic": 43326, + "▁valuation": 43327, + "新一轮": 43328, + "注册资本": 43329, + "▁rapper": 43330, + "▁biography": 43331, + "一贯": 43332, + "同情": 43333, + "评委": 43334, + "过关": 43335, + "创业者": 43336, + "并结合": 43337, + "有意义": 43338, + "▁jumps": 43339, + "在法律规定的范围内处分自己的": 43340, + "▁Jake": 43341, + "▁handlers": 43342, + "仙女": 43343, + "各省": 43344, + "救灾": 43345, + "本事": 43346, + "▁routines": 43347, + "脑海": 43348, + "现阶段": 43349, + "Clip": 43350, + "▁Legisl": 43351, + "二楼": 43352, + "iculty": 43353, + "▁Durham": 43354, + "环绕": 43355, + "ovsk": 43356, + "myanswer": 43357, + "达成和解协议": 43358, + "▁Preview": 43359, + "▁Saskatchewan": 43360, + "等各种": 43361, + "重庆市渝": 43362, + "受案": 43363, + "而我": 43364, + "草案": 43365, + "▁DP": 43366, + "/\",\\": 43367, + "asured": 43368, + "▁Conduct": 43369, + "▁nowadays": 43370, + "backgroundColor": 43371, + "内衣": 43372, + "uxe": 43373, + "银川市": 43374, + "upal": 43375, + "▁Ari": 43376, + "▁Estab": 43377, + "credited": 43378, + "复活": 43379, + "slash": 43380, + "▁Superv": 43381, + "▁helicopter": 43382, + "ICO": 43383, + "nPass": 43384, + "第三十二条": 43385, + "▁sb": 43386, + "什么样": 43387, + "▁Empty": 43388, + "▁ü": 43389, + "景象": 43390, + "水和": 43391, + "装扮": 43392, + "解锁": 43393, + "▁TT": 43394, + "▁quer": 43395, + "上诉于浙江省": 43396, + "低头": 43397, + "的面": 43398, + "畜牧业": 43399, + "▁Lil": 43400, + "▁pore": 43401, + "browse": 43402, + "blankInput": 43403, + "人说": 43404, + "解压": 43405, + "nob": 43406, + "第一百九": 43407, + "▁administer": 43408, + "驾车": 43409, + "结构和": 43410, + "▁darkness": 43411, + "arker": 43412, + "▁场上位置": 43413, + "ENTIAL": 43414, + "▁mening": 43415, + "informatics": 43416, + "templateUrl": 43417, + "▁ACE": 43418, + "▁Wer": 43419, + "VICES": 43420, + "\\\\}\\\\)": 43421, + "optera": 43422, + "▁Marcus": 43423, + "举个": 43424, + "贫血": 43425, + "▁',": 43426, + "会自动": 43427, + "工作和": 43428, + "并提供": 43429, + "发声": 43430, + "▁Opportun": 43431, + "\"|": 43432, + "LU": 43433, + "发还": 43434, + "sinx": 43435, + "系列产品": 43436, + "▁mmol": 43437, + "nAnyone": 43438, + "▁î": 43439, + "罚字": 43440, + "葡萄糖": 43441, + "▁Tip": 43442, + "downloads": 43443, + "▁Designer": 43444, + "CHO": 43445, + "LAS": 43446, + "adjusted": 43447, + "天线": 43448, + "的投资": 43449, + "Pick": 43450, + "▁Wrest": 43451, + "▁DIRECT": 43452, + "▁playoff": 43453, + "处处长": 43454, + "tpadding": 43455, + "本刊": 43456, + "鸡汤": 43457, + "nCc": 43458, + "INCLUDING": 43459, + "源码": 43460, + "目前在": 43461, + "verte": 43462, + "cation": 43463, + "▁patrol": 43464, + "片区": 43465, + "人民网": 43466, + "完全平方公式": 43467, + "▁Heaven": 43468, + "▁epidemiological": 43469, + "▁divides": 43470, + "▁harassment": 43471, + "▁realization": 43472, + "▁sag": 43473, + "▁Revival": 43474, + "十里": 43475, + "查阅": 43476, + "本科学": 43477, + "Clock": 43478, + "▁Contents": 43479, + "▁traction": 43480, + "公摊": 43481, + "卡拉": 43482, + "着眼": 43483, + "tweet": 43484, + "mbalib": 43485, + "▁Checklist": 43486, + "油气": 43487, + "命名为": 43488, + "吸血": 43489, + "视线": 43490, + "▁&#": 43491, + "▁tuition": 43492, + "\\'}": 43493, + "nSpecies": 43494, + "巧妙": 43495, + "租车": 43496, + "Btn": 43497, + "▁MG": 43498, + "那样的": 43499, + "wild": 43500, + "producer": 43501, + "解剖": 43502, + "那年": 43503, + "jon": 43504, + "月中旬": 43505, + "▁合作人物": 43506, + "稳健": 43507, + "atem": 43508, + "Decoder": 43509, + "urnames": 43510, + "▁Blake": 43511, + "第一中级人民法院": 43512, + "带的": 43513, + "tls": 43514, + "更多的是": 43515, + "▁cite": 43516, + "nAthletes": 43517, + "▁Significant": 43518, + "▁chic": 43519, + "▁reluct": 43520, + "财保": 43521, + "总决赛": 43522, + "拿出来": 43523, + "教师的": 43524, + "就是因为": 43525, + "▁Bedroom": 43526, + "▁inevitable": 43527, + "▁reinforcement": 43528, + "后在": 43529, + "满族": 43530, + "享有的": 43531, + "▁Hass": 43532, + "进行了分析": 43533, + "▁Ether": 43534, + "▁Rapid": 43535, + "▁safegu": 43536, + "国资": 43537, + "▁HM": 43538, + "中西医": 43539, + "蒙古族": 43540, + "▁booth": 43541, + "馆藏": 43542, + "血液中": 43543, + "nSpecial": 43544, + "▁dessert": 43545, + "nRecently": 43546, + "可口": 43547, + "著有": 43548, + "▁zb": 43549, + "AW": 43550, + "nMale": 43551, + "▁grasp": 43552, + "不支持": 43553, + "__':\\": 43554, + "▁tandem": 43555, + "▁conformational": 43556, + "估值": 43557, + "挤压": 43558, + "流的": 43559, + "以为是": 43560, + "Added": 43561, + "▁upgrading": 43562, + "妥善": 43563, + "REST": 43564, + "toolbar": 43565, + "天花": 43566, + "自称": 43567, + "——“": 43568, + "Anim": 43569, + "Interfaces": 43570, + "品类": 43571, + "首先是": 43572, + "▁Parser": 43573, + "▁herein": 43574, + "房源": 43575, + "BER": 43576, + "▁violin": 43577, + "▁academy": 43578, + "填词": 43579, + "麻辣": 43580, + "推荐的": 43581, + "同时也是": 43582, + "▁cerebro": 43583, + "getItem": 43584, + "department": 43585, + "▁defeating": 43586, + "滤波": 43587, + "龙泉": 43588, + "了这个": 43589, + "Todo": 43590, + "▁transformer": 43591, + "重合": 43592, + "antiago": 43593, + "▁packaged": 43594, + "ISC": 43595, + "▁设置": 43596, + "nEntering": 43597, + "▁fp": 43598, + "'):\\": 43599, + "Phase": 43600, + "品尝": 43601, + "承接": 43602, + "emo": 43603, + "▁creature": 43604, + "将对": 43605, + "开阔": 43606, + "orf": 43607, + "ать": 43608, + "▁Spin": 43609, + "▁owing": 43610, + "▁tenants": 43611, + "▁eligibility": 43612, + "bigg": 43613, + "}\\\\}\\\\)": 43614, + "▁civilian": 43615, + "▁Copenhagen": 43616, + "▁frustrating": 43617, + "嘴里": 43618, + "脾胃": 43619, + "结合起来": 43620, + "▁ruby": 43621, + "Market": 43622, + "domains": 43623, + "membrane": 43624, + "▁Implement": 43625, + "物管": 43626, + "//#": 43627, + "rtype": 43628, + "▁Teachers": 43629, + "▁vertically": 43630, + "逐年": 43631, + "链表": 43632, + "ndouble": 43633, + "▁diagnoses": 43634, + "又不是": 43635, + "agra": 43636, + "▁Fol": 43637, + "anmar": 43638, + "▁boiler": 43639, + "assistant": 43640, + "isis": 43641, + "▁curt": 43642, + "enerated": 43643, + "牛皮": 43644, + "小姐姐": 43645, + "银行的": 43646, + "▁lbs": 43647, + "制作人": 43648, + "DUCT": 43649, + "▁pads": 43650, + "▁ranch": 43651, + "▁inaccur": 43652, + "会造成": 43653, + "healthy": 43654, + "了她": 43655, + "涨价": 43656, + "不代表": 43657, + "▁dorm": 43658, + "▁stitch": 43659, + "眼科": 43660, + "满意的": 43661, + "()]\\": 43662, + "▁sab": 43663, + "绝大部分": 43664, + "会更": 43665, + "的特征": 43666, + "))**": 43667, + "▁\\'$": 43668, + "▁Rent": 43669, + "▁redox": 43670, + "Scripts": 43671, + "▁encrypt": 43672, + "短板": 43673, + "afety": 43674, + "Bounds": 43675, + "▁belonged": 43676, + "每件": 43677, + "▁RI": 43678, + "提起的": 43679, + "的一大": 43680, + "▁McL": 43681, + "有下列情形": 43682, + "▁readable": 43683, + "极度": 43684, + "lies": 43685, + "总部位于": 43686, + "▁hull": 43687, + "▁Warriors": 43688, + "▁Ultimate": 43689, + "速度快": 43690, + "berger": 43691, + "▁Spencer": 43692, + "▁punishment": 43693, + "地方政府": 43694, + "SG": 43695, + "志刚": 43696, + "梦里": 43697, + "当年的": 43698, + "▁Failed": 43699, + "▁cyclists": 43700, + "Ba": 43701, + "申请费": 43702, + "TAIN": 43703, + "igion": 43704, + "retch": 43705, + "XL": 43706, + "**,": 43707, + "提出异议": 43708, + "pagination": 43709, + "&\\\\": 43710, + "养老金": 43711, + "▁Comics": 43712, + "白色的": 43713, + "inin": 43714, + "视图": 43715, + "首要": 43716, + "nRob": 43717, + "arange": 43718, + "▁beaten": 43719, + "▁economical": 43720, + "▁designation": 43721, + "改装": 43722, + "无毛": 43723, + "楼下": 43724, + "绿地": 43725, + "SEM": 43726, + "的办法": 43727, + "▁Facility": 43728, + "▁Going": 43729, + "▁Jamaica": 43730, + "产于": 43731, + "黄花": 43732, + "Mad": 43733, + "rina": 43734, + "▁parenting": 43735, + "并能": 43736, + "法官助理": 43737, + "特别是在": 43738, + "illon": 43739, + "▁suppressor": 43740, + "在小": 43741, + "河口": 43742, + "Pars": 43743, + "▁relying": 43744, + "误区": 43745, + "Bre": 43746, + "损耗": 43747, + "课后": 43748, + "吸入": 43749, + "规避": 43750, + "Apache": 43751, + "商的": 43752, + "很低": 43753, + "电极": 43754, + "APH": 43755, + "所以我们": 43756, + "▁EF": 43757, + "产业园": 43758, + "curve": 43759, + "请仔细研究": 43760, + "▁corrections": 43761, + "▁constituents": 43762, + "这只": 43763, + "▁tended": 43764, + "楼上": 43765, + "'])": 43766, + "启蒙": 43767, + "收据": 43768, + "uates": 43769, + "▁Hybrid": 43770, + "国民经济": 43771, + "▁Corner": 43772, + "▁Mirror": 43773, + "▁refine": 43774, + "物业费": 43775, + "昨晚": 43776, + "magic": 43777, + "▁onions": 43778, + "嫌弃": 43779, + "▁nn": 43780, + "本文从": 43781, + "今年以来": 43782, + "▁Thought": 43783, + "elsen": 43784, + "volution": 43785, + "stant": 43786, + "▁criticized": 43787, + "国旗": 43788, + "▁Triple": 43789, + "未发现被执行人": 43790, + "▁unfair": 43791, + "夺冠": 43792, + "认真的": 43793, + "TU": 43794, + "和不": 43795, + "榜样": 43796, + "agul": 43797, + "重要意义": 43798, + "hydrox": 43799, + "▁hometown": 43800, + "经典的": 43801, + "巡逻": 43802, + "朝着": 43803, + "▁socially": 43804, + "▁saturated": 43805, + "次会议": 43806, + "▁Skills": 43807, + "执行案件立案": 43808, + "▁Cannot": 43809, + "▁vertebr": 43810, + ")\\\\;": 43811, + "▁Nokia": 43812, + "▁Shakespeare": 43813, + "专卖": 43814, + "八卦": 43815, + "OPEN": 43816, + "Additional": 43817, + "▁hippocampal": 43818, + "▁Pretty": 43819, + "第二中级人民法院": 43820, + "▁repaired": 43821, + "▁malignancy": 43822, + "变了": 43823, + "死后": 43824, + ")}$\\": 43825, + "拒不履行": 43826, + "▁GPIO": 43827, + "▁Artists": 43828, + "▁holistic": 43829, + "▁Din": 43830, + "▁NSString": 43831, + "▁architectures": 43832, + "也挺": 43833, + "应变": 43834, + "黏膜": 43835, + "ryl": 43836, + "压制": 43837, + "大面积": 43838, + "脑血管": 43839, + "Used": 43840, + "burse": 43841, + "▁graded": 43842, + "▁Psychology": 43843, + "拓宽": 43844, + "itr": 43845, + "yon": 43846, + "▁Fork": 43847, + "▁thankful": 43848, + "偏向": 43849, + "rals": 43850, + "▁Bros": 43851, + "▁Norfolk": 43852, + "▁infiltr": 43853, + "▁headlines": 43854, + "▁学校": 43855, + "ellery": 43856, + "nAnyway": 43857, + "▁Paralympics": 43858, + "高分": 43859, + "jsp": 43860, + "SERVICE": 43861, + "▁Potter": 43862, + "生机": 43863, + "▁详细": 43864, + "▁voy": 43865, + "▁rook": 43866, + "▁reinforced": 43867, + "相见": 43868, + "划算": 43869, + "火花": 43870, + "绍兴市": 43871, + "omeric": 43872, + "▁skeleton": 43873, + "赞同": 43874, + "Stub": 43875, + "benz": 43876, + "▁guit": 43877, + "▁Surre": 43878, + "▁reciprocal": 43879, + "▁gh": 43880, + "nbuild": 43881, + "observer": 43882, + "ifty": 43883, + "unused": 43884, + "▁underwater": 43885, + "无职业": 43886, + "fair": 43887, + "严格按照": 43888, + "▁adulthood": 43889, + ",’": 43890, + "回了": 43891, + "轮廓": 43892, + "WiFi": 43893, + "lived": 43894, + "videos": 43895, + "▁pursued": 43896, + "▁alkaline": 43897, + "▁conveniently": 43898, + "▁contradiction": 43899, + "不由": 43900, + "施肥": 43901, + "吃过": 43902, + "氯化": 43903, + "anie": 43904, + "▁Brandon": 43905, + "有很大的": 43906, + "▁acquiring": 43907, + "北市": 43908, + "迫切": 43909, + "▁edu": 43910, + "▁Teams": 43911, + "▁embol": 43912, + "▁Origin": 43913, + "淋漓": 43914, + "如果我们": 43915, + "minded": 43916, + "可以使": 43917, + "适配器": 43918, + "▁gameplay": 43919, + "▁extinction": 43920, + "国会": 43921, + "▁ADD": 43922, + "▁heater": 43923, + "enia": 43924, + "iblical": 43925, + "▁modulo": 43926, + "▁impulse": 43927, + "nfe": 43928, + "工程的": 43929, + "▁Discord": 43930, + "传染病": 43931, + "内分泌": 43932, + "广泛应用于": 43933, + "▁Topic": 43934, + "分娩": 43935, + "ncl": 43936, + "nCRE": 43937, + "▁marry": 43938, + "openapi": 43939, + "neapolis": 43940, + "funded": 43941, + "gitcommit": 43942, + "▁ра": 43943, + "▁adjuvant": 43944, + "▁translocation": 43945, + "Friday": 43946, + "▁cakes": 43947, + "▁helm": 43948, + "▁sqlite": 43949, + "▁squamous": 43950, + "angled": 43951, + "▁Vladimir": 43952, + "▁qualifications": 43953, + "量和": 43954, + "olan": 43955, + "▁Apps": 43956, + "南非": 43957, + "▁浙江": 43958, + "入党": 43959, + "听见": 43960, + "等信息": 43961, + "羽毛球": 43962, + "warf": 43963, + "Processing": 43964, + "台词": 43965, + "不低于": 43966, + "对我们": 43967, + "▁Dent": 43968, + "Filters": 43969, + "监区": 43970, + "土地承包": 43971, + "城县人民法院": 43972, + "######\\": 43973, + "▁Traffic": 43974, + "▁chromosomal": 43975, + "▁Rush": 43976, + "▁Million": 43977, + "▁prenatal": 43978, + "杨柳": 43979, + "▁acclaimed": 43980, + "高一": 43981, + "从一个": 43982, + "理论上": 43983, + "的水平": 43984, + "uning": 43985, + "▁preclinical": 43986, + "▁rentals": 43987, + "▁teenager": 43988, + "translationtype": 43989, + "隐形": 43990, + "▁}}/": 43991, + "▁Rica": 43992, + "篇章": 43993, + "除去": 43994, + "▁玄幻": 43995, + "zhen": 43996, + "▁kom": 43997, + "yclic": 43998, + "▁flank": 43999, + "({\"": 44000, + "没关系": 44001, + "dash": 44002, + "▁Aub": 44003, + "▁Manufacturing": 44004, + "参会": 44005, + "nAND": 44006, + "optimal": 44007, + "▁freight": 44008, + "▁optimizing": 44009, + "nTim": 44010, + "locfilehash": 44011, + "openlocfilehash": 44012, + "sourcegitcommit": 44013, + "▁Tunis": 44014, + "▁Gabriel": 44015, + "▁Desert": 44016, + "▁Maintenance": 44017, + "出差": 44018, + "有不少": 44019, + "▁dilig": 44020, + "▁Browse": 44021, + "▁immunore": 44022, + "Dam": 44023, + "lickr": 44024, + "▁Bailey": 44025, + "展出": 44026, + "buk": 44027, + "▁Pump": 44028, + "▁bang": 44029, + "▁backpack": 44030, + "光的": 44031, + "Hit": 44032, + "双曲线": 44033, + "日报道": 44034, + "本公司": 44035, + "▁chor": 44036, + "pretty": 44037, + "▁knees": 44038, + "▁versa": 44039, + "nEarlier": 44040, + "TRIBUTORS": 44041, + "nWeek": 44042, + "▁angiography": 44043, + "▁\">": 44044, + "有自己的": 44045, + "法律依据": 44046, + "资格考试": 44047, + "软件开发": 44048, + "▁Sheet": 44049, + "▁fungi": 44050, + "verages": 44051, + "▁detectors": 44052, + "欢喜": 44053, + "潇湘": 44054, + "hee": 44055, + "驾驶的": 44056, + "自然科学基金": 44057, + "谈谈": 44058, + "非凡": 44059, + "▁TLR": 44060, + "▁Kiss": 44061, + "▁Pearl": 44062, + "nstring": 44063, + "▁unsafe": 44064, + "cobacter": 44065, + "▁Philippine": 44066, + "▁grandmother": 44067, + "疲惫": 44068, + "这里是": 44069, + "igroup": 44070, + "施行": 44071, + "越是": 44072, + "不断提升": 44073, + "▁ceil": 44074, + "otives": 44075, + "pq": 44076, + "引人": 44077, + "STER": 44078, + "tails": 44079, + "uliar": 44080, + "▁bitter": 44081, + "▁Syndrome": 44082, + "统战": 44083, + "▁SUV": 44084, + "ntrans": 44085, + "▁Tommy": 44086, + "onuclear": 44087, + "下行": 44088, + "多月": 44089, + "收纳": 44090, + "木兰": 44091, + "]}\\": 44092, + "▁HREF": 44093, + "Looking": 44094, + "▁likewise": 44095, + "▁米": 44096, + "口径": 44097, + "接头": 44098, + "zed": 44099, + "更何况": 44100, + "▁Exc": 44101, + "icorn": 44102, + "▁Avoid": 44103, + "▁Devon": 44104, + "▁migrants": 44105, + "Department": 44106, + "之日起五日内向本院申请复议一次": 44107, + "听着": 44108, + "奔跑": 44109, + "崇拜": 44110, + "RPC": 44111, + "▁MV": 44112, + "allenges": 44113, + "▁WARNING": 44114, + "水源": 44115, + "透气": 44116, + "▁Pam": 44117, + "idos": 44118, + "▁heels": 44119, + "▁plasmid": 44120, + "different": 44121, + "综述": 44122, + "形式为": 44123, + "▁identifiers": 44124, + "动了": 44125, + "油的": 44126, + "spr": 44127, + "cass": 44128, + "namon": 44129, + "aucoma": 44130, + "WARNING": 44131, + "evaluate": 44132, + "ieg": 44133, + "▁Voc": 44134, + "ippers": 44135, + "恐龙": 44136, + "▁seizure": 44137, + "▁butterfly": 44138, + "▁continent": 44139, + "Certificate": 44140, + "上报": 44141, + "机车": 44142, + "就觉得": 44143, + "nels": 44144, + "▁Submit": 44145, + "▁diagnostics": 44146, + "▁贾": 44147, + "克的": 44148, + "秦皇": 44149, + "▁LT": 44150, + "生产和": 44151, + "国际贸易": 44152, + "你这": 44153, + "/((": 44154, + "留下了": 44155, + "市场需求": 44156, + "groupId": 44157, + "平淡": 44158, + "uples": 44159, + "▁bins": 44160, + "▁cath": 44161, + "▁scrub": 44162, + "单纯的": 44163, + "bands": 44164, + "▁Maced": 44165, + "改正": 44166, + "植入": 44167, + "▁demanded": 44168, + "▁Wend": 44169, + "Utility": 44170, + "▁interchange": 44171, + "Comb": 44172, + "ONLINE": 44173, + "alamic": 44174, + "selenium": 44175, + "▁horrible": 44176, + "好听": 44177, + "经纬": 44178, + "冲刺": 44179, + "发达国家": 44180, + "▁chunks": 44181, + "restrial": 44182, + "▁escaped": 44183, + "Talk": 44184, + "ptime": 44185, + "nWater": 44186, + "▁Ticket": 44187, + "▁DOM": 44188, + "说自己": 44189, + "nOkay": 44190, + "台式": 44191, + "建构": 44192, + "▁内容": 44193, + "▁Cars": 44194, + "▁Manuel": 44195, + "▁Previously": 44196, + "尿酸": 44197, + "LIN": 44198, + "▁cli": 44199, + "▁angiotensin": 44200, + "血样": 44201, + "atos": 44202, + "▁Serbian": 44203, + "航母": 44204, + "pem": 44205, + "确定了": 44206, + "▁Nazi": 44207, + "ergarten": 44208, + "▁transporter": 44209, + "细心": 44210, + "Received": 44211, + "▁presently": 44212, + "▁ambassador": 44213, + "再加": 44214, + "▁macOS": 44215, + "▁fasting": 44216, + "协定": 44217, + "嵌入式": 44218, + "▁aboard": 44219, + "CreateModel": 44220, + "▁德": 44221, + "斯塔": 44222, + "突出的": 44223, + "Cannot": 44224, + "▁abbrev": 44225, + "released": 44226, + "▁Correct": 44227, + "▁Failure": 44228, + "▁carcinomas": 44229, + "▁wt": 44230, + "imits": 44231, + "指甲": 44232, + "MSG": 44233, + "快速的": 44234, + "外出务工": 44235, + "▁varchar": 44236, + "函数的单调性": 44237, + "▁Decision": 44238, + "▁citizenship": 44239, + "IFY": 44240, + "pix": 44241, + "▁DD": 44242, + "整体的": 44243, + "要从": 44244, + "nEND": 44245, + "plastic": 44246, + "▁wardrobe": 44247, + "过来的": 44248, + "shall": 44249, + "colour": 44250, + "申请执行人可以": 44251, + "instances": 44252, + "QS": 44253, + "之情": 44254, + "商是": 44255, + "将被": 44256, + "▁Cod": 44257, + "管理制度": 44258, + "▁congrat": 44259, + "▁preschool": 44260, + "grey": 44261, + "▁Retail": 44262, + "达人": 44263, + "监委": 44264, + "▁lb": 44265, + "enna": 44266, + "▁flagship": 44267, + "▁categorized": 44268, + "公认": 44269, + "▁fingerprint": 44270, + "二的": 44271, + "馒头": 44272, + "orange": 44273, + "不等式组": 44274, + "▁Cort": 44275, + "▁wand": 44276, + "formerly": 44277, + "stricted": 44278, + "nScottish": 44279, + "))]\\": 44280, + "▁Zoo": 44281, + "▁Reid": 44282, + "抓紧": 44283, + "sugg": 44284, + "▁Capitol": 44285, + "尊严": 44286, + "滋润": 44287, + "mis": 44288, + "之以": 44289, + "反比例": 44290, + "不断发展": 44291, + "\\'$": 44292, + "▁committees": 44293, + "无正当理由未到庭参加诉讼": 44294, + "▁perturbation": 44295, + "往前": 44296, + "▁我的": 44297, + "创新的": 44298, + "lifting": 44299, + "AO": 44300, + "倡议": 44301, + "avir": 44302, + "▁tailor": 44303, + "particip": 44304, + "▁milestone": 44305, + "术中": 44306, + "▁duck": 44307, + "paration": 44308, + "▁hippocampus": 44309, + "▁practitioner": 44310, + "idia": 44311, + "▁FUN": 44312, + "inspired": 44313, + "thandoff": 44314, + "深情": 44315, + "特质": 44316, + "路与": 44317, + "▁sleeve": 44318, + "集的": 44319, + "}%\\": 44320, + "idian": 44321, + "▁finances": 44322, + "▁frustrated": 44323, + "风貌": 44324, + "▁confirming": 44325, + "包围": 44326, + "建筑材料": 44327, + "rocyte": 44328, + "▁Objects": 44329, + "是企业": 44330, + "apur": 44331, + "▁aluminium": 44332, + "▁retaining": 44333, + "▁北": 44334, + "▁OC": 44335, + "是不会": 44336, + "Bridge": 44337, + "▁downt": 44338, + "▁suspects": 44339, + "▁infiltration": 44340, + "▁@@": 44341, + "lasthandoff": 44342, + "能使": 44343, + "采访时": 44344, + "建筑工程有限公司": 44345, + "与否": 44346, + "右脚": 44347, + "英文名": 44348, + "TRAN": 44349, + "toire": 44350, + "urate": 44351, + "ecting": 44352, + "nUpdate": 44353, + "nProduct": 44354, + "赡养": 44355, + "▁whis": 44356, + "可能有": 44357, + "balanced": 44358, + "▁residing": 44359, + "第二百六十四条": 44360, + "▁preterm": 44361, + "浓缩": 44362, + "国际机场": 44363, + "gevity": 44364, + "sharing": 44365, + "▁indirectly": 44366, + "世家": 44367, + "红色的": 44368, + "Branch": 44369, + "▁Bil": 44370, + "▁Eddie": 44371, + "▁spirits": 44372, + "▁judicial": 44373, + "有线电视": 44374, + "isers": 44375, + "contentlocale": 44376, + "拍的": 44377, + "above": 44378, + "中性": 44379, + "kal": 44380, + "Lookup": 44381, + "▁thats": 44382, + "▁rename": 44383, + "▁sticky": 44384, + "ectl": 44385, + "▁Guitar": 44386, + "▁Downtown": 44387, + "疑难": 44388, + "省略": 44389, + "▁differed": 44390, + "▁EPA": 44391, + "的最小值": 44392, + "被执行人的": 44393, + "rename": 44394, + "▁metre": 44395, + "▁Socket": 44396, + "▁warmth": 44397, + "December": 44398, + "课本": 44399, + "PVC": 44400, + "美国人": 44401, + "horn": 44402, + "从小到大": 44403, + "ataka": 44404, + "▁Considering": 44405, + "穿上": 44406, + "自己去": 44407, + "余名": 44408, + "大局": 44409, + "capture": 44410, + "Commerce": 44411, + "增生": 44412, + "▁政治面貌": 44413, + "RESULT": 44414, + "导游": 44415, + "CLE": 44416, + "▁wars": 44417, + "▁Leicester": 44418, + "爱人": 44419, + "oretic": 44420, + "▁Brooks": 44421, + "▁genres": 44422, + "▁Silicon": 44423, + "Tax": 44424, + "交通警察": 44425, + "▁quiz": 44426, + "交纳诉讼费用": 44427, + "telling": 44428, + "▁Julian": 44429, + "▁sulfur": 44430, + "案件受理费减半收取": 44431, + "诸如": 44432, + "生产企业": 44433, + "爱尔": 44434, + "珊瑚": 44435, + "urdy": 44436, + "ichel": 44437, + "▁个人简介": 44438, + "▁semiconductor": 44439, + "ylated": 44440, + "▁malware": 44441, + "▁integrates": 44442, + "won": 44443, + "▁hey": 44444, + "▁backs": 44445, + "▁gradients": 44446, + "得名": 44447, + "▁Alert": 44448, + "▁tornado": 44449, + "▁latitude": 44450, + "大臣": 44451, + "就用": 44452, + "秋冬": 44453, + "frared": 44454, + "ncategories": 44455, + "jer": 44456, + "▁Okay": 44457, + "nLater": 44458, + "▁colleague": 44459, + "茄子": 44460, + "追偿": 44461, + "期间内": 44462, + "forcing": 44463, + "▁dealership": 44464, + "张力": 44465, + "二〇一七年八月": 44466, + "▁subtype": 44467, + "停留": 44468, + "▁Ya": 44469, + "esar": 44470, + "住房公积金": 44471, + "Finder": 44472, + "从重": 44473, + "切口": 44474, + "突变": 44475, + "solete": 44476, + "jetbrains": 44477, + "▁eventual": 44478, + "闻名": 44479, + "开玩笑": 44480, + "ović": 44481, + "adors": 44482, + "▁Hood": 44483, + "▁bloom": 44484, + "▁spinning": 44485, + "enaissance": 44486, + "▁Conditions": 44487, + "PID": 44488, + "▁springs": 44489, + "职业技术学院": 44490, + "patients": 44491, + "migration": 44492, + "峰会": 44493, + "bil": 44494, + "节假日": 44495, + "▁cemetery": 44496, + "和尚": 44497, + "heit": 44498, + "从业人员": 44499, + "nCreated": 44500, + "▁hydrolysis": 44501, + "无理": 44502, + "PII": 44503, + "游泳池": 44504, + "▁Bib": 44505, + "▁Lay": 44506, + "▁ale": 44507, + "Invoke": 44508, + "getAll": 44509, + "▁Lesson": 44510, + "为真": 44511, + "▁Heath": 44512, + "preventDefault": 44513, + "▁sz": 44514, + "队伍建设": 44515, + "▁Truth": 44516, + "▁nickname": 44517, + "▁contextual": 44518, + "ви": 44519, + "民航": 44520, + "远方": 44521, + "精神的": 44522, + "▁pertaining": 44523, + "ller": 44524, + "Regular": 44525, + "pure": 44526, + "工程项目": 44527, + "▁angel": 44528, + "▁Integral": 44529, + "债务人": 44530, + "以下内容": 44531, + "第一百零一条": 44532, + "▁LinkedIn": 44533, + "全长": 44534, + "▁brom": 44535, + "▁Anyway": 44536, + "▁biopsies": 44537, + "营养价值": 44538, + "isodes": 44539, + "▁specialize": 44540, + "ifa": 44541, + "Brand": 44542, + "履行法律文书确定的义务": 44543, + "要求其": 44544, + "namese": 44545, + "Journal": 44546, + "getUser": 44547, + "▁Managing": 44548, + "loe": 44549, + "用户提供": 44550, + "sprite": 44551, + "两项": 44552, + "猴子": 44553, + "ulla": 44554, + "▁prey": 44555, + "▁overlooked": 44556, + "▁repetitive": 44557, + "▁completeness": 44558, + "WW": 44559, + "日讯": 44560, + "用餐": 44561, + ")`\\": 44562, + "▁shy": 44563, + "▁guitars": 44564, + "IBLE": 44565, + "就必须": 44566, + "Regex": 44567, + "▁discour": 44568, + "落下": 44569, + "在我的": 44570, + "科技成果": 44571, + "参考书": 44572, + "▁Rip": 44573, + "美化": 44574, + "seat": 44575, + "▁CRC": 44576, + "▁Rut": 44577, + "悔罪表现": 44578, + "imeric": 44579, + "nestjs": 44580, + "ertools": 44581, + "▁Hav": 44582, + "League": 44583, + "▁Pearson": 44584, + "▁Encyclopedia": 44585, + "越野": 44586, + "外交部": 44587, + "产品类型": 44588, + "检验报告": 44589, + "▁Garage": 44590, + "▁registr": 44591, + "▁retrospectively": 44592, + "减刑一年": 44593, + "overlay": 44594, + "textrm": 44595, + "▁shocked": 44596, + "都比": 44597, + "ioni": 44598, + "的评价": 44599, + "▁Anth": 44600, + "立即开始执行": 44601, + "▁stance": 44602, + "▁washed": 44603, + "▁Pere": 44604, + "(\\',": 44605, + "非常重要": 44606, + "▁antique": 44607, + "inescence": 44608, + "▁practiced": 44609, + "eryl": 44610, + "Alignment": 44611, + "▁residency": 44612, + "ENAB": 44613, + "ivier": 44614, + "▁Banach": 44615, + "▁streak": 44616, + "▁Sheffield": 44617, + "带走": 44618, + "电工": 44619, + "由被告负担": 44620, + "Transition": 44621, + "法的意义": 44622, + "letes": 44623, + "▁Wake": 44624, + "▁personalities": 44625, + "正方体的": 44626, + "▁reim": 44627, + "束缚": 44628, + "fork": 44629, + "rance": 44630, + "▁cozy": 44631, + "Licensed": 44632, + "nGallery": 44633, + "未婚": 44634, + "nbr": 44635, + "人死亡": 44636, + "保护区": 44637, + "ergus": 44638, + "means": 44639, + "▁weddings": 44640, + "▁Á": 44641, + "▁适用": 44642, + "ninline": 44643, + "▁directing": 44644, + "和大家": 44645, + "帅哥": 44646, + "前几天": 44647, + "▁yog": 44648, + "swing": 44649, + "▁typo": 44650, + "价值人民币": 44651, + "资产管理": 44652, + "▁Rein": 44653, + "▁entre": 44654, + "arag": 44655, + "monton": 44656, + "▁osteopor": 44657, + "{[": 44658, + "因果": 44659, + "▁hospitalized": 44660, + "整个人": 44661, + "asan": 44662, + "▁hollow": 44663, + "工程款": 44664, + "人均价格": 44665, + "▁pave": 44666, + "▁Mentor": 44667, + "▁CONT": 44668, + "▁Serum": 44669, + "▁Andrea": 44670, + "争论": 44671, + "庞大的": 44672, + "▁preceded": 44673, + "▁vicinity": 44674, + "▁SEM": 44675, + "▁punk": 44676, + "emaker": 44677, + "▁Gilbert": 44678, + "德华": 44679, + "的开发": 44680, + "[][]": 44681, + "Toast": 44682, + "▁cate": 44683, + "otoxin": 44684, + "▁annotations": 44685, + "YL": 44686, + "▁spider": 44687, + "一幅": 44688, + "悬浮": 44689, + "千万别": 44690, + "媒体报道": 44691, + "▁launches": 44692, + "▁formulations": 44693, + "杠杆": 44694, + "纺织品": 44695, + "nGame": 44696, + "▁Baronet": 44697, + "▁行政区": 44698, + "nTaxonomy": 44699, + "International": 44700, + "▁WI": 44701, + "avier": 44702, + "初次": 44703, + "酵母": 44704, + "都不知道": 44705, + "▁adap": 44706, + "▁reboot": 44707, + "电容": 44708, + "载荷": 44709, + "▁Gregory": 44710, + "谋划": 44711, + "和国际": 44712, + "Slice": 44713, + "▁analogous": 44714, + "▁contaminated": 44715, + "均在": 44716, + "▁handmade": 44717, + "天真": 44718, + "▁bore": 44719, + "olutely": 44720, + "▁Keyboard": 44721, + "树林": 44722, + "▁pilots": 44723, + "第一百三十三条之一第一款": 44724, + "Imm": 44725, + "▁allergy": 44726, + "▁colonies": 44727, + "实名": 44728, + "农业大学": 44729, + "药物治疗": 44730, + "ucing": 44731, + "Follow": 44732, + "折腾": 44733, + "Nil": 44734, + "▁kay": 44735, + "nhelp": 44736, + "SDL": 44737, + "▁SPDX": 44738, + "▁Honey": 44739, + "▁Fantasy": 44740, + "工商银行股份有限公司": 44741, + "representation": 44742, + "andel": 44743, + "▁rivals": 44744, + "商人": 44745, + "就跟": 44746, + "▁答案": 44747, + "▁Pedro": 44748, + "▁malicious": 44749, + "▁adopting": 44750, + "vl": 44751, + "而生": 44752, + "▁cessation": 44753, + "三轮": 44754, + "主页": 44755, + "第二百二十": 44756, + "▁edema": 44757, + "▁SIM": 44758, + "▁Chan": 44759, + "biased": 44760, + "nReturns": 44761, + "ASF": 44762, + "James": 44763, + "▁competitor": 44764, + "▁discoveries": 44765, + "▁植物界": 44766, + "needed": 44767, + "▁Clone": 44768, + "同日": 44769, + "某某于": 44770, + "Priority": 44771, + "性感": 44772, + "人体的": 44773, + "成长的": 44774, + "▁Blo": 44775, + "Entries": 44776, + "ogenetic": 44777, + "尘埃": 44778, + "▁Inj": 44779, + "▁yang": 44780, + "omyces": 44781, + "listing": 44782, + "OU": 44783, + "举动": 44784, + "cong": 44785, + "▁Inner": 44786, + "▁Scene": 44787, + "motor": 44788, + "purpose": 44789, + "大肠": 44790, + "的分": 44791, + "spons": 44792, + "▁learnt": 44793, + "▁erosion": 44794, + "▁Harper": 44795, + "▁enthusiasts": 44796, + "一楼": 44797, + "总有": 44798, + "ров": 44799, + "在进行": 44800, + "irie": 44801, + "▁cirrh": 44802, + "▁obstacle": 44803, + "▁auxiliary": 44804, + "▁Alternative": 44805, + "膀胱": 44806, + "路过": 44807, + "办理减刑": 44808, + "▁modulated": 44809, + "泄露": 44810, + "▁atten": 44811, + "答复": 44812, + "▁TeV": 44813, + "科学发展观": 44814, + "▁averaging": 44815, + ")$$,": 44816, + "▁sci": 44817, + "nEDIT": 44818, + "▁sacred": 44819, + "race": 44820, + "▁Hyd": 44821, + "▁sensible": 44822, + "oelect": 44823, + "▁VEGF": 44824, + "▁chees": 44825, + "▁Jump": 44826, + "移动互联网": 44827, + "▁Words": 44828, + "▁coded": 44829, + "▁themed": 44830, + "▁weakly": 44831, + "▁tracing": 44832, + "drug": 44833, + "▁Bend": 44834, + "Numbers": 44835, + "▁quarterly": 44836, + "▁precursors": 44837, + "再看": 44838, + "我为": 44839, + "▁Bald": 44840, + "signed": 44841, + "▁Includes": 44842, + "footballer": 44843, + "外套": 44844, + "度数": 44845, + "廉洁": 44846, + "boxed": 44847, + "asmine": 44848, + "nBeing": 44849, + "▁shells": 44850, + "classifiers": 44851, + "▁cot": 44852, + "▁digestion": 44853, + "▁rheumatoid": 44854, + "utz": 44855, + "slack": 44856, + "▁Amendment": 44857, + "▁kilometres": 44858, + "▁mentally": 44859, + "▁standalone": 44860, + "价为": 44861, + "贴吧": 44862, + "逆转": 44863, + "▁Chip": 44864, + "▁damn": 44865, + "Compare": 44866, + "干货": 44867, + "的值是": 44868, + "Patch": 44869, + "▁amel": 44870, + "▁Truck": 44871, + "他又": 44872, + "针对性的": 44873, + "▁customs": 44874, + "▁Kor": 44875, + "▁leaks": 44876, + "提供在线菜单": 44877, + "▁杰": 44878, + "还不是": 44879, + "师范学院": 44880, + "▁costumes": 44881, + "地段": 44882, + "适合自己的": 44883, + "▁Retrieved": 44884, + "▁gestation": 44885, + "满分": 44886, + "▁Indonesian": 44887, + "涂层": 44888, + "aside": 44889, + "▁penetr": 44890, + "▁hardwood": 44891, + "干脆": 44892, + "中国建设": 44893, + "▁stepping": 44894, + "▁immunological": 44895, + "也得": 44896, + "发展趋势": 44897, + "尚有": 44898, + "榜单": 44899, + "怎么看": 44900, + "HttpClient": 44901, + "大蒜": 44902, + "视听": 44903, + "▁穿越": 44904, + "ListNode": 44905, + "▁inception": 44906, + "▁梅": 44907, + "长度为": 44908, + "▁Fleet": 44909, + "▁eaten": 44910, + "双床": 44911, + "▁Triangle": 44912, + "▁therapeutics": 44913, + "是基于": 44914, + "▁Jur": 44915, + "▁Bullet": 44916, + "我才": 44917, + "▁RR": 44918, + "▁dynasty": 44919, + "▁Findings": 44920, + "▁Modeling": 44921, + "▁Panama": 44922, + "星空": 44923, + "要以": 44924, + "拥有的": 44925, + "阴性": 44926, + "▁solves": 44927, + "卵形": 44928, + "冠心病": 44929, + "armac": 44930, + "村村民委员会": 44931, + "▁cyan": 44932, + "▁enrichment": 44933, + "山大": 44934, + "胶原": 44935, + "▁特点": 44936, + "arxiv": 44937, + "Building": 44938, + "非常有": 44939, + "是这样的": 44940, + "进行调查": 44941, + "▁tetra": 44942, + "平整": 44943, + "▁内置": 44944, + "屋顶": 44945, + "nres": 44946, + "▁Hip": 44947, + "一审法院": 44948, + "owing": 44949, + "▁spans": 44950, + "displayName": 44951, + "和信息化": 44952, + "▁第一": 44953, + "哪一个": 44954, + "▁teenage": 44955, + "Variables": 44956, + "▁Antarctic": 44957, + "▁ted": 44958, + "本案按撤诉处理": 44959, + "▁spermat": 44960, + "出货": 44961, + "明清": 44962, + "以外的": 44963, + "▁rim": 44964, + "铜陵": 44965, + "ellen": 44966, + "▁swimmers": 44967, + "▁飞": 44968, + "在与": 44969, + "▁网站": 44970, + "新材料": 44971, + "▁tors": 44972, + "CHANGE": 44973, + "▁darker": 44974, + "nGovernment": 44975, + "▁Continuous": 44976, + "累了": 44977, + "umption": 44978, + "压抑": 44979, + "尚书": 44980, + "新世纪": 44981, + "umph": 44982, + "▁onCreate": 44983, + "雨水": 44984, + "▁Combined": 44985, + "一并": 44986, + "的运动": 44987, + "▁bend": 44988, + "▁intuition": 44989, + "去皮": 44990, + "原告要求被告": 44991, + "assetid": 44992, + "▁labelled": 44993, + "再一次": 44994, + "▁Grass": 44995, + "逐一": 44996, + "的形成": 44997, + "olecules": 44998, + "再次提出执行申请": 44999, + "ivot": 45000, + "▁Sue": 45001, + "ochem": 45002, + "KK": 45003, + "刘海": 45004, + "会很": 45005, + "一个大": 45006, + "还记得": 45007, + "▁Ore": 45008, + "ultan": 45009, + "优惠券": 45010, + "nTEST": 45011, + "▁fauna": 45012, + "restart": 45013, + "Interceptor": 45014, + "一所": 45015, + "吃苦": 45016, + "呵护": 45017, + "起始": 45018, + "rimp": 45019, + "nEnjoy": 45020, + "▁Barack": 45021, + "▁所属运动队": 45022, + "Permissions": 45023, + "▁ridiculous": 45024, + "亚军": 45025, + "▁umbre": 45026, + "报请": 45027, + "▁MBA": 45028, + "▁\\\\|": 45029, + "你会发现": 45030, + "放进": 45031, + "');": 45032, + "▁Bennett": 45033, + "诉前财产保全": 45034, + "▁oxidase": 45035, + "▁Translation": 45036, + "小孩子": 45037, + "的思考": 45038, + "▁Taken": 45039, + "nbefore": 45040, + ":\\',": 45041, + "REQUI": 45042, + "▁Diabetes": 45043, + "安康": 45044, + "▁);": 45045, + "到这里": 45046, + "azar": 45047, + "▁tamb": 45048, + "▁Essex": 45049, + "城中": 45050, + "处女": 45051, + "chnical": 45052, + "coholic": 45053, + "放过": 45054, + "▁harmony": 45055, + "▁kan": 45056, + "▁Creating": 45057, + "▁emphasized": 45058, + "▁毛": 45059, + "tops": 45060, + "▁\"\"\"": 45061, + "小型轿车": 45062, + "▁combo": 45063, + "歌声": 45064, + "的手机": 45065, + "omore": 45066, + "进一步加强": 45067, + "identified": 45068, + "▁HCC": 45069, + "▁WAY": 45070, + "▁disclosed": 45071, + "一刻": 45072, + "稀释": 45073, + "好朋友": 45074, + "nton": 45075, + "▁cuff": 45076, + "▁virulence": 45077, + "的第": 45078, + "酸性": 45079, + "aje": 45080, + "只剩下": 45081, + "相关性": 45082, + "泄漏": 45083, + "IVES": 45084, + "缅甸": 45085, + "dap": 45086, + "▁这": 45087, + "▁deduct": 45088, + "▁folded": 45089, + "导读": 45090, + "汽车销售": 45091, + "▁glam": 45092, + "olition": 45093, + "▁Confed": 45094, + "Related": 45095, + "也只是": 45096, + "apest": 45097, + "▁Dame": 45098, + "的办学": 45099, + "西红柿": 45100, + "rape": 45101, + "体制改革": 45102, + ")\\\\\\\\": 45103, + "一如": 45104, + "▁RN": 45105, + "梗死": 45106, + "没能": 45107, + "nAltern": 45108, + "nSingles": 45109, + "会给": 45110, + "▁Š": 45111, + "手持": 45112, + "▁Ri": 45113, + "一步步": 45114, + "▁holy": 45115, + "zk": 45116, + "就更": 45117, + "减刑后": 45118, + "应有的": 45119, + "Manag": 45120, + "unordered": 45121, + "appendChild": 45122, + "发生变化": 45123, + "▁thresholds": 45124, + "说你": 45125, + "▁Sussex": 45126, + "印尼": 45127, + "矿产": 45128, + "▁firef": 45129, + "validators": 45130, + "▁Gates": 45131, + "▁Ensure": 45132, + "老爷": 45133, + "展现了": 45134, + "平方差公式": 45135, + "▁teenagers": 45136, + "涌现": 45137, + "Mir": 45138, + "plants": 45139, + "jenkins": 45140, + "▁Reason": 45141, + "▁Unknown": 45142, + "▁checklist": 45143, + "可以看": 45144, + "▁GRE": 45145, + "▁mistaken": 45146, + "▁curiosity": 45147, + "alex": 45148, + "教学质量": 45149, + "▁thoracic": 45150, + "饼干": 45151, + "▁discord": 45152, + "带宽": 45153, + "摇滚": 45154, + "花期": 45155, + "配偶": 45156, + "可以的": 45157, + "▁cohomology": 45158, + "endswith": 45159, + "Way": 45160, + "ozygous": 45161, + "Urls": 45162, + "▁fres": 45163, + "▁Clarke": 45164, + "▁Criminal": 45165, + "三日内": 45166, + "ovol": 45167, + "号行政处罚决定": 45168, + "▁Gust": 45169, + "▁histone": 45170, + "classList": 45171, + "▁countable": 45172, + "▁capacities": 45173, + "经验和": 45174, + "证明了": 45175, + "▁ARM": 45176, + "▁misleading": 45177, + "九州": 45178, + "元二次方程": 45179, + "▁Guang": 45180, + "做完": 45181, + "爆料": 45182, + "bear": 45183, + "pause": 45184, + "▁webin": 45185, + "▁Libraries": 45186, + "▁ecc": 45187, + "最喜欢的": 45188, + "oubtedly": 45189, + "二〇一七年十一月": 45190, + "名录": 45191, + "▁Knights": 45192, + "▁perfection": 45193, + "散步": 45194, + "举办了": 45195, + "代理权限": 45196, + "▁Ashley": 45197, + "▁getName": 45198, + "▁trailing": 45199, + "外伤": 45200, + "eco": 45201, + "▁Kend": 45202, + "▁Chuck": 45203, + "▁fuels": 45204, + "▁eBay": 45205, + "▁supervisor": 45206, + "nBas": 45207, + "▁eine": 45208, + "给我的": 45209, + "▁ELISA": 45210, + "ymmetric": 45211, + "自私": 45212, + "紫外线": 45213, + "▁Tips": 45214, + "武昌": 45215, + "▁案": 45216, + "容积率": 45217, + "icides": 45218, + "之称": 45219, + "▁bs": 45220, + "▁bark": 45221, + "▁crashed": 45222, + "普洱": 45223, + "药材": 45224, + "淮安市": 45225, + "Days": 45226, + "▁antiviral": 45227, + "▁Cyprus": 45228, + "▁fighters": 45229, + "▁isoforms": 45230, + "Story": 45231, + "愿景": 45232, + "月饼": 45233, + "▁ao": 45234, + "已缴纳": 45235, + "▁neo": 45236, + "Lists": 45237, + "ewidth": 45238, + "皮革": 45239, + "oner": 45240, + "nSuper": 45241, + "▁Cauchy": 45242, + "▁glance": 45243, + "▁deviations": 45244, + "▁ND": 45245, + "oderm": 45246, + "▁Kashmir": 45247, + "▁securing": 45248, + "▁inheritance": 45249, + "绝对是": 45250, + "公诉机关指控被告人": 45251, + "▁Movies": 45252, + "低压": 45253, + "near": 45254, + "依法适用": 45255, + "▁adipose": 45256, + "预定": 45257, + "▁Politics": 45258, + "nOverall": 45259, + "▁Instance": 45260, + "▁Probably": 45261, + "▁directive": 45262, + "我之前": 45263, + "isma": 45264, + "▁combustion": 45265, + "判别": 45266, + "增殖": 45267, + "Maybe": 45268, + "▁Reddit": 45269, + "▁evoked": 45270, + "▁crossover": 45271, + "每组": 45272, + "沙滩": 45273, + "nMax": 45274, + "nMel": 45275, + "他认为": 45276, + "▁foil": 45277, + "▁prod": 45278, + "▁esophageal": 45279, + "黄油": 45280, + "我记得": 45281, + "▁译者": 45282, + "▁Requirements": 45283, + "山林": 45284, + "镇江": 45285, + "aires": 45286, + "巨人": 45287, + "而定": 45288, + "▁bp": 45289, + "我坚信": 45290, + "▁Uttar": 45291, + "传导": 45292, + "原著": 45293, + "直线与": 45294, + "▁TEXT": 45295, + "▁Replace": 45296, + "▁invites": 45297, + "企图": 45298, + "只在": 45299, + "▁Hours": 45300, + "上海浦东发展": 45301, + "▁Nottingham": 45302, + "直达": 45303, + "乳腺癌": 45304, + "也是一种": 45305, + "病原": 45306, + "▁knot": 45307, + "▁checkpoint": 45308, + "龙门": 45309, + "▁REG": 45310, + "完全没有": 45311, + "▁amendment": 45312, + "▁cong": 45313, + "▁loses": 45314, + "原神": 45315, + "OTA": 45316, + "▁RB": 45317, + "ifinals": 45318, + "▁Animation": 45319, + "×(": 45320, + "前缀": 45321, + "▁PROC": 45322, + "▁VO": 45323, + "▁Sac": 45324, + "Unable": 45325, + "smooth": 45326, + "源市": 45327, + "窃取": 45328, + "车祸": 45329, + "ICU": 45330, + "▁attenuation": 45331, + "oos": 45332, + "▁Hb": 45333, + "每年的": 45334, + "环境变量": 45335, + "irectional": 45336, + "▁discretion": 45337, + "▁С": 45338, + "安德": 45339, + "dater": 45340, + ";<": 45341, + "▁사": 45342, + "光芒": 45343, + "▁verse": 45344, + "▁Infantry": 45345, + "▁Variables": 45346, + "手套": 45347, + "挫折": 45348, + "通电": 45349, + "God": 45350, + "▁Og": 45351, + "▁Kra": 45352, + "oscope": 45353, + "催讨": 45354, + "转型升级": 45355, + "▁opposing": 45356, + "HM": 45357, + "▁depths": 45358, + "Joh": 45359, + "tsx": 45360, + "▁twins": 45361, + "▁firmware": 45362, + "阻塞": 45363, + "不予执行": 45364, + "▁intram": 45365, + "▁rou": 45366, + "▁Wool": 45367, + "Rock": 45368, + "值得一提": 45369, + "▁instructors": 45370, + "王爷": 45371, + "nFl": 45372, + "▁lemma": 45373, + "分校": 45374, + "开办": 45375, + "测绘": 45376, + "的单": 45377, + "helf": 45378, + "Paper": 45379, + "▁Chad": 45380, + "▁Nest": 45381, + "nAnn": 45382, + "Ubuntu": 45383, + "promise": 45384, + "kom": 45385, + "alan": 45386, + "icularly": 45387, + "▁deaf": 45388, + "▁glutathione": 45389, + "开出": 45390, + "▁Cay": 45391, + "▁Johannes": 45392, + "金融借款合同纠纷一案中": 45393, + "▁amin": 45394, + "▁Hardy": 45395, + "▁clues": 45396, + "▁sculptures": 45397, + "积的": 45398, + "是这样": 45399, + "ylinder": 45400, + "▁filming": 45401, + "▁Fabric": 45402, + "▁Secure": 45403, + "户数": 45404, + "萨克": 45405, + "fts": 45406, + "printed": 45407, + "终结本次执行程序后": 45408, + "▁continuum": 45409, + "遇到的": 45410, + "陌生人": 45411, + "▁}$\\": 45412, + "▁jQuery": 45413, + "▁lumbar": 45414, + "ecc": 45415, + "calls": 45416, + "外国人": 45417, + "▁Ble": 45418, + "爸爸妈妈": 45419, + "▁她": 45420, + "追溯": 45421, + "大力发展": 45422, + "xlabel": 45423, + "November": 45424, + "))**(": 45425, + "▁'';\\": 45426, + "▁assass": 45427, + "▁Gateway": 45428, + "▁技术": 45429, + "▁monot": 45430, + "▁Started": 45431, + "▁creators": 45432, + "▁commutative": 45433, + "孙某": 45434, + "无形": 45435, + "开启了": 45436, + "crop": 45437, + "不仅可以": 45438, + "基准利率": 45439, + "guild": 45440, + "比重": 45441, + "CURRENT": 45442, + "bounded": 45443, + "▁Generally": 45444, + "▁deliber": 45445, + "▁incumbent": 45446, + "天内": 45447, + "([[": 45448, + "和文化": 45449, + "请求依法": 45450, + "agged": 45451, + "的抗": 45452, + "不合理": 45453, + "▁ART": 45454, + "▁frustration": 45455, + "▁sheer": 45456, + "▁functor": 45457, + "试着": 45458, + "▁olf": 45459, + "奥林匹": 45460, + "的事业": 45461, + "移动电话": 45462, + "▁Maxwell": 45463, + "iones": 45464, + "▁Sage": 45465, + "atis": 45466, + "nInstall": 45467, + "管辖权的": 45468, + "▁wraps": 45469, + "▁secreted": 45470, + "▁fellowship": 45471, + "▁奥": 45472, + "弹出": 45473, + "开幕式": 45474, + "是一项": 45475, + "declar": 45476, + "▁indie": 45477, + "▁�": 45478, + "规程": 45479, + "▁cohes": 45480, + "▁performer": 45481, + "走廊": 45482, + "▁pigment": 45483, + "ttype": 45484, + "▁apologize": 45485, + "津贴": 45486, + "代表着": 45487, + "etype": 45488, + "假释案件具体应用法律": 45489, + "assertFalse": 45490, + "~~~~~~~~~~~~~~~~": 45491, + "一书": 45492, + "都比较": 45493, + "ceil": 45494, + "eted": 45495, + "thed": 45496, + "▁Pilot": 45497, + "▁Enable": 45498, + "事了": 45499, + "aviolet": 45500, + "▁Cinema": 45501, + "成份": 45502, + "▁RD": 45503, + "prec": 45504, + "▁happily": 45505, + "▁lenders": 45506, + "平安银行股份有限公司": 45507, + "晓东": 45508, + "路灯": 45509, + "购买的": 45510, + "nCor": 45511, + "Tables": 45512, + "ographers": 45513, + "▁cortisol": 45514, + "工业区": 45515, + "▁Sounds": 45516, + "▁usable": 45517, + "收益率": 45518, + "现实中": 45519, + "▁conventions": 45520, + "guest": 45521, + "▁Leonard": 45522, + "详解": 45523, + "▁surfact": 45524, + "rile": 45525, + "nCome": 45526, + "五花": 45527, + "MBA": 45528, + "保全费": 45529, + "兰州市": 45530, + "请登录": 45531, + "▁\\'\\',": 45532, + "▁adher": 45533, + "国家标准": 45534, + "哮喘": 45535, + "CNN": 45536, + "▁剧情": 45537, + "▁indul": 45538, + "closing": 45539, + "eleration": 45540, + "陵区": 45541, + "然后就": 45542, + "认定事实清楚": 45543, + "▁assemble": 45544, + "▁desperate": 45545, + "▁grandchildren": 45546, + "地毯": 45547, + "▁SIG": 45548, + "▁cav": 45549, + "founded": 45550, + "FU": 45551, + "hz": 45552, + "Pipe": 45553, + "ambia": 45554, + "▁platinum": 45555, + "人设": 45556, + "prem": 45557, + "▁Hir": 45558, + "变种": 45559, + "换货": 45560, + "Food": 45561, + "skin": 45562, + "▁aka": 45563, + "住广东省": 45564, + "ocyan": 45565, + "一二": 45566, + "致敬": 45567, + "▁建筑": 45568, + "和支持": 45569, + "IMARY": 45570, + "能有": 45571, + "gcc": 45572, + "总工会": 45573, + "▁Nike": 45574, + "▁Mixed": 45575, + "▁Identification": 45576, + "nContin": 45577, + "connections": 45578, + "源自": 45579, + "upe": 45580, + "了解了": 45581, + "received": 45582, + "Supported": 45583, + "▁iterator": 45584, + "Jun": 45585, + "两位数": 45586, + "▁redd": 45587, + "practice": 45588, + "能把": 45589, + "ISTS": 45590, + "▁cens": 45591, + "mozilla": 45592, + "想做": 45593, + "铺设": 45594, + "间距": 45595, + "Dan": 45596, + "只有在": 45597, + "▁言情小说": 45598, + "条第一款的规定": 45599, + "▁reviewer": 45600, + "不看": 45601, + "▁Dart": 45602, + "▁tasting": 45603, + "arum": 45604, + "主任医师": 45605, + "▁biod": 45606, + "▁pylint": 45607, + "▁accountability": 45608, + "澎湃": 45609, + "钢丝": 45610, + "▁casp": 45611, + "并按对方当事人的人数": 45612, + "孢子": 45613, + "局的": 45614, + "本判决生效后": 45615, + "火腿": 45616, + "见识": 45617, + "▁TP": 45618, + "▁stab": 45619, + "属于基础题": 45620, + "charset": 45621, + "长征": 45622, + "▁NU": 45623, + "hart": 45624, + "▁Biom": 45625, + "ademic": 45626, + "▁Hamburg": 45627, + "▁artifact": 45628, + "▁hardcore": 45629, + "官兵": 45630, + "戒指": 45631, + "以及对": 45632, + "nConn": 45633, + "▁naive": 45634, + "并无不当": 45635, + "retry": 45636, + "背部": 45637, + "交通便利": 45638, + "借款期限": 45639, + "容留他人": 45640, + "▁recurring": 45641, + "精湛": 45642, + "维奇": 45643, + "▁mont": 45644, + "▁钟": 45645, + "抵制": 45646, + "zzle": 45647, + "▁Detailed": 45648, + "深厚": 45649, + "▁ADHD": 45650, + "▁Pair": 45651, + "olecule": 45652, + "▁exempt": 45653, + "砂糖": 45654, + "没那么": 45655, + "tfrac": 45656, + "▁overlooking": 45657, + "万像素": 45658, + "excel": 45659, + "aterials": 45660, + "▁SSH": 45661, + "()){\\": 45662, + "▁expr": 45663, + "▁Strip": 45664, + "Digital": 45665, + "▁countryside": 45666, + "NONE": 45667, + "▁Whats": 45668, + "LDL": 45669, + "精彩的": 45670, + "行政村": 45671, + "中日": 45672, + "cia": 45673, + "▁Liv": 45674, + "▁shooter": 45675, + "▁interrupt": 45676, + "右下": 45677, + "AME": 45678, + "看不见": 45679, + "yers": 45680, + "▁Robot": 45681, + "▁recovering": 45682, + "▁把": 45683, + "你是否": 45684, + "tti": 45685, + "nCharles": 45686, + "▁convinc": 45687, + "nObjective": 45688, + "▁关于": 45689, + "不成立": 45690, + "的网络小说": 45691, + "noutput": 45692, + "▁trache": 45693, + "成正": 45694, + "▁Fest": 45695, + "Checked": 45696, + "▁arrhythm": 45697, + "将该": 45698, + "▁Foo": 45699, + "ughty": 45700, + "本院依职权": 45701, + "amming": 45702, + "金龙": 45703, + "集聚": 45704, + "wyn": 45705, + "▁}}\">\\": 45706, + "utility": 45707, + "▁cytometry": 45708, + "蛋黄": 45709, + "最好是": 45710, + "来实现": 45711, + "▁lime": 45712, + "ernels": 45713, + "openia": 45714, + "▁incremental": 45715, + "ön": 45716, + "爱我": 45717, + "▁Lemma": 45718, + "▁toxins": 45719, + "办案": 45720, + "jdbc": 45721, + "ermany": 45722, + "▁localhost": 45723, + "外星": 45724, + "nHot": 45725, + "▁dissociation": 45726, + "HOT": 45727, + "▁inconven": 45728, + "{{'": 45729, + "寝室": 45730, + "收敛": 45731, + "艺术的": 45732, + "beforeEach": 45733, + "▁Henderson": 45734, + "▁shareholders": 45735, + "▁socioeconomic": 45736, + "▁electrochemical": 45737, + "用自己的": 45738, + "重度": 45739, + "▁电源": 45740, + "▁merit": 45741, + "kB": 45742, + "反诉": 45743, + "节的": 45744, + "香油": 45745, + "Tour": 45746, + "所以我很": 45747, + "▁reconstructed": 45748, + "香水": 45749, + "方法是": 45750, + "UIKit": 45751, + "▁CMOS": 45752, + "elected": 45753, + "▁δ": 45754, + "对象的": 45755, + "▁lent": 45756, + "▁moderately": 45757, + "三层": 45758, + "腰椎": 45759, + "▁GS": 45760, + "医疗保险": 45761, + "研究表明": 45762, + "▁neglected": 45763, + "革新": 45764, + "中国特色社会主义": 45765, + "并且在": 45766, + "Completed": 45767, + "▁Depression": 45768, + "知晓": 45769, + "外国语": 45770, + "tion": 45771, + "ysql": 45772, + "证据证明": 45773, + "▁nevertheless": 45774, + "urnal": 45775, + "▁Henri": 45776, + "汇集": 45777, + "苏宁": 45778, + "麻将": 45779, + "/**/*": 45780, + "nrun": 45781, + "研究人员": 45782, + "▁bookmark": 45783, + "▁initialized": 45784, + "GY": 45785, + "LEFT": 45786, + "▁diplomatic": 45787, + "干了": 45788, + "潜水": 45789, + "lis": 45790, + "trade": 45791, + "▁caut": 45792, + "nodejs": 45793, + "▁refurb": 45794, + "的压力": 45795, + "Ratio": 45796, + "flare": 45797, + "工程技术": 45798, + "职业技能": 45799, + "▁小说进度": 45800, + "▁adhere": 45801, + "▁Herbert": 45802, + "vw": 45803, + "晚报": 45804, + "{})": 45805, + "ubation": 45806, + "第二百四十三条": 45807, + "▁malignancies": 45808, + "手臂": 45809, + "\"])": 45810, + "▁liner": 45811, + "OPTIONS": 45812, + "矿物质": 45813, + "用脚": 45814, + "(\"{": 45815, + "sgi": 45816, + "nevery": 45817, + "▁towers": 45818, + "Inventory": 45819, + "耽误": 45820, + "快乐的": 45821, + "▁Tum": 45822, + "▁WR": 45823, + "市场监管": 45824, + "nChris": 45825, + "▁Basically": 45826, + "强奸": 45827, + "抽烟": 45828, + "山县人民法院": 45829, + "▁zbMATH": 45830, + "uca": 45831, + "▁其五": 45832, + "ertz": 45833, + "▁Morocco": 45834, + "PPT": 45835, + "届人民代表大会": 45836, + "硅胶": 45837, + "▁面积": 45838, + "▁citation": 45839, + "ITHOUT": 45840, + "▁differing": 45841, + "ahr": 45842, + "▁MHC": 45843, + "▁Cable": 45844, + "▁Wallace": 45845, + "▁clearer": 45846, + "▁progesterone": 45847, + "职员表": 45848, + "▁Jin": 45849, + "ensit": 45850, + "为证": 45851, + "格里": 45852, + "▁cage": 45853, + "locfileid": 45854, + "▁Regarding": 45855, + "一举": 45856, + ")}}": 45857, + "gran": 45858, + "镇人民政府": 45859, + "▁Areas": 45860, + "群里": 45861, + "肩膀": 45862, + "申请执行人亦": 45863, + "好在": 45864, + "配电": 45865, + "∴\\\\": 45866, + "▁UUID": 45867, + "▁boxing": 45868, + "全员": 45869, + "问他": 45870, + "FIL": 45871, + "▁eosin": 45872, + "▁pivotal": 45873, + "▁Concrete": 45874, + "作案": 45875, + "▁weed": 45876, + "县人民检察院以": 45877, + "attering": 45878, + "结案若干问题的意见": 45879, + "XC": 45880, + "▁histories": 45881, + "上世纪": 45882, + "当地的": 45883, + "曾经的": 45884, + "▁Dell": 45885, + "schemas": 45886, + "清凉": 45887, + "金水": 45888, + "台区": 45889, + "▁flew": 45890, + "▁ny": 45891, + "等症状": 45892, + "讨论了": 45893, + "tswitch": 45894, + "▁Chicken": 45895, + "▁Hait": 45896, + "▁Genetic": 45897, + "▁orchestra": 45898, + "IDD": 45899, + "说明了": 45900, + "▁Nutrition": 45901, + "更新的": 45902, + "▁主要作品": 45903, + "nassert": 45904, + "设想": 45905, + "aea": 45906, + "iya": 45907, + "分析师": 45908, + "全国联保": 45909, + "现在已经": 45910, + "▁餐馆类型": 45911, + "▁faults": 45912, + "}<": 45913, + "带你": 45914, + "胃肠": 45915, + "农民人均纯收入": 45916, + "▁Agricultural": 45917, + "矿石": 45918, + "不正确": 45919, + "水平和": 45920, + "yses": 45921, + "▁Nathan": 45922, + "▁hazardous": 45923, + "回执": 45924, + "有小": 45925, + "首饰": 45926, + "预交上诉案件受理费": 45927, + "▁ст": 45928, + "Tick": 45929, + "nENV": 45930, + "nNever": 45931, + "restore": 45932, + "▁Louise": 45933, + "▁pollut": 45934, + "ievement": 45935, + "活血": 45936, + "起着": 45937, + "esch": 45938, + "nplot": 45939, + "▁illeg": 45940, + "地在": 45941, + "发展规划": 45942, + "atype": 45943, + "▁grafts": 45944, + "Typed": 45945, + "▁Urugu": 45946, + "▁euros": 45947, + "▁Factors": 45948, + "共同努力": 45949, + "rians": 45950, + "ylate": 45951, + "▁Krish": 45952, + "▁composites": 45953, + "与我": 45954, + "增强了": 45955, + "无机": 45956, + "致辞": 45957, + "ASP": 45958, + "二进制": 45959, + "/\\',": 45960, + "丰富多彩": 45961, + "▁cohorts": 45962, + "documents": 45963, + "▁celebrations": 45964, + "▁reagents": 45965, + "恶化": 45966, + "还行": 45967, + "aaa": 45968, + "增长率": 45969, + "fest": 45970, + "ridor": 45971, + "▁blonde": 45972, + "社科": 45973, + "留下的": 45974, + "▁Outlook": 45975, + "巴士": 45976, + "教育和": 45977, + "Viewer": 45978, + "nRecent": 45979, + "▁faithful": 45980, + "▁summarize": 45981, + "Vo": 45982, + "▁수": 45983, + "不完": 45984, + "勾选": 45985, + "▁人均价格": 45986, + "nChinese": 45987, + "帷幕": 45988, + "nMart": 45989, + "roots": 45990, + "organisms": 45991, + "伪造": 45992, + "向阳": 45993, + "eeper": 45994, + "▁Yugoslav": 45995, + "▁headline": 45996, + "妇联": 45997, + "Roles": 45998, + "nNice": 45999, + "attack": 46000, + "filePath": 46001, + "▁Treasury": 46002, + "▁realised": 46003, + "▁Rochester": 46004, + "▁detailing": 46005, + "▁老": 46006, + "又被": 46007, + "字的": 46008, + "自考": 46009, + "▁multiplex": 46010, + "▁汪": 46011, + "一说": 46012, + "议题": 46013, + "青云": 46014, + "Bob": 46015, + "GMP": 46016, + "法定代表人刘": 46017, + "▁canine": 46018, + "▁implanted": 46019, + "leston": 46020, + "新娘": 46021, + "▁§": 46022, + "半径为": 46023, + "建立起": 46024, + "▁polish": 46025, + "Connected": 46026, + "党风": 46027, + "反向": 46028, + "okemon": 46029, + "▁Geneva": 46030, + "▁recalled": 46031, + "少年儿童": 46032, + "▁Rating": 46033, + "冰糖": 46034, + "/__": 46035, + "Bag": 46036, + "审定委员会": 46037, + "▁tragedy": 46038, + "]$$": 46039, + "但是他": 46040, + ")],": 46041, + "▁Atlas": 46042, + "▁Tibet": 46043, + "落到": 46044, + "雇佣": 46045, + "▁NV": 46046, + "▁bees": 46047, + "专业委员会": 46048, + "amiliar": 46049, + "永不": 46050, + "▁Warsaw": 46051, + "nmetadata": 46052, + "▁reliably": 46053, + "▁WHAT": 46054, + "patterns": 46055, + "位是": 46056, + "式中": 46057, + "立即发生法律效力": 46058, + "languages": 46059, + "Transformer": 46060, + "▁[#": 46061, + "▁analyzes": 46062, + "▁mismatch": 46063, + "▁Shape": 46064, + "▁spacecraft": 46065, + "英格兰": 46066, + "原告主张": 46067, + "▁jets": 46068, + "▁Plastic": 46069, + "▁pancreas": 46070, + "乔治": 46071, + "峡谷": 46072, + "纸质": 46073, + "▁awful": 46074, + "交代": 46075, + "……”": 46076, + "▁楼盘": 46077, + "thag": 46078, + "bolds": 46079, + "nLooks": 46080, + "▁encephal": 46081, + "为首": 46082, + "乐团": 46083, + "遇上": 46084, + "不能成立": 46085, + "orman": 46086, + "nEvaluate": 46087, + "黄山": 46088, + "是一样的": 46089, + "nIntroduction": 46090, + "▁pare": 46091, + "混沌": 46092, + "lican": 46093, + "Wallet": 46094, + "▁\\'\\',\\": 46095, + "aternion": 46096, + "▁CONTRIBUTORS": 46097, + "Codes": 46098, + "▁Andrews": 46099, + "▁Bradley": 46100, + "▁repeating": 46101, + "三明": 46102, + "nTur": 46103, + "ynec": 46104, + "▁uniqueness": 46105, + "劳动关系": 46106, + "交纳案件受理费": 46107, + "▁Execute": 46108, + "▁renovated": 46109, + "光照": 46110, + "购置": 46111, + "nPrim": 46112, + "▁Hide": 46113, + "▁specializing": 46114, + "▁adenocarcinoma": 46115, + "imento": 46116, + "对付": 46117, + "洛克": 46118, + "▁史": 46119, + "互通": 46120, + "探险": 46121, + "比利时": 46122, + "tour": 46123, + "▁kills": 46124, + "reviewed": 46125, + "学姐": 46126, + "▁Beer": 46127, + "珠海市": 46128, + "▁Cho": 46129, + "▁Bone": 46130, + "cribing": 46131, + "▁Marathon": 46132, + "旺盛": 46133, + "讽刺": 46134, + "Invest": 46135, + "▁Indoor": 46136, + "▁П": 46137, + "潇洒": 46138, + "▁[…": 46139, + "▁Cum": 46140, + "anson": 46141, + "▁cloning": 46142, + "▁motions": 46143, + "▁presenter": 46144, + "▁Partnership": 46145, + "▁Indianapolis": 46146, + "是一些": 46147, + "nCam": 46148, + "▁parab": 46149, + "Checker": 46150, + "不肯": 46151, + "其后": 46152, + "微量元素": 46153, + "▁lobe": 46154, + "▁maths": 46155, + "构筑": 46156, + "▁candle": 46157, + "▁可以": 46158, + "nsupported": 46159, + "点是": 46160, + "还想": 46161, + "▁chol": 46162, + "▁remarkably": 46163, + "目前已": 46164, + "虽然是": 46165, + "▁[])\\": 46166, + "▁odor": 46167, + ",$$": 46168, + "Ber": 46169, + "▁exponents": 46170, + "手机的": 46171, + "▁UFC": 46172, + "▁boom": 46173, + "endforeach": 46174, + "不全": 46175, + "▁freestyle": 46176, + "大发": 46177, + "桥区": 46178, + "发生后": 46179, + "▁TRA": 46180, + "▁Gross": 46181, + "▁elast": 46182, + "一门": 46183, + "大叔": 46184, + "环境和": 46185, + "介绍一下": 46186, + "对其进行": 46187, + "charAt": 46188, + "打游戏": 46189, + "房屋租赁": 46190, + "搜狐": 46191, + "的证言": 46192, + "Keyboard": 46193, + "减排": 46194, + "较差": 46195, + "每天都": 46196, + "oris": 46197, + "计算能力": 46198, + "msgs": 46199, + "▁Cock": 46200, + "不等式的解": 46201, + "▁sourced": 46202, + "而去": 46203, + "命题的": 46204, + "学会了": 46205, + "▁reef": 46206, + "xff": 46207, + "▁tumours": 46208, + "mbH": 46209, + "tek": 46210, + "图形的": 46211, + "▁coloured": 46212, + "好几": 46213, + "是一所": 46214, + "▁acrylic": 46215, + "物业服务合同纠纷一案中": 46216, + "重力": 46217, + "Peter": 46218, + "▁towel": 46219, + "▁martial": 46220, + "将为": 46221, + "oyl": 46222, + "等离子": 46223, + "▁Sett": 46224, + "▁Sandy": 46225, + "强国": 46226, + "海燕": 46227, + "颈部": 46228, + ")\\'": 46229, + "acqu": 46230, + "din": 46231, + "nPurpose": 46232, + "▁Parallel": 46233, + "共用": 46234, + "一种是": 46235, + "不用担心": 46236, + "▁cares": 46237, + "▁Belt": 46238, + "▁oversight": 46239, + "头晕": 46240, + "清香": 46241, + "纵坐标": 46242, + "风景区": 46243, + "nStat": 46244, + "cultural": 46245, + "派的": 46246, + "ninter": 46247, + "▁photons": 46248, + "工商行政管理局登记成立": 46249, + "Tokens": 46250, + "Performance": 46251, + "以致": 46252, + "必须是": 46253, + "imedia": 46254, + "▁hatch": 46255, + "▁Stress": 46256, + "丝毫": 46257, + "两张": 46258, + "▁Porter": 46259, + "师大": 46260, + "cible": 46261, + "▁menus": 46262, + "▁differentially": 46263, + "提及": 46264, + "▁成语": 46265, + "线城市": 46266, + "▁Joel": 46267, + "▁IEnumerable": 46268, + "devDependencies": 46269, + "入境": 46270, + "山庄": 46271, + "▁Marco": 46272, + "othermal": 46273, + "号执行": 46274, + "▁HEAD": 46275, + "Daniel": 46276, + "▁Manitoba": 46277, + "▁Sullivan": 46278, + "会把": 46279, + "理科": 46280, + "心理咨询": 46281, + "法定代表人陈": 46282, + "▁successes": 46283, + "▁登场": 46284, + "项目中": 46285, + "ullah": 46286, + "房贷": 46287, + "虽说": 46288, + "会觉得": 46289, + "▁youtube": 46290, + "NON": 46291, + "▁Simpson": 46292, + "▁normalization": 46293, + "加分": 46294, + "因家庭": 46295, + "方式的": 46296, + "antha": 46297, + "nReal": 46298, + "▁Hoff": 46299, + "▁Abbey": 46300, + "▁dolor": 46301, + "▁hedge": 46302, + "Contracts": 46303, + "ocellular": 46304, + "▁councill": 46305, + "nSir": 46306, + "▁CAT": 46307, + "▁familial": 46308, + "boldsymbol": 46309, + "它可以": 46310, + "▁北京市": 46311, + "而来的": 46312, + "constraints": 46313, + "▁Fellowship": 46314, + "技术与": 46315, + "炸弹": 46316, + "不得不说": 46317, + "中国银行": 46318, + "commercial": 46319, + "▁interacts": 46320, + "一到": 46321, + "马云": 46322, + "acid": 46323, + "晋级": 46324, + "▁lifelong": 46325, + "▁beverages": 46326, + "安装的": 46327, + "amines": 46328, + "▁judged": 46329, + "中了": 46330, + "▁Whole": 46331, + "▁velocities": 46332, + "BooleanField": 46333, + "吸食": 46334, + "多重": 46335, + "靠着": 46336, + "这几年": 46337, + "▁Natal": 46338, + "▁Mé": 46339, + "elize": 46340, + "总建筑面积": 46341, + "nMethod": 46342, + "▁altering": 46343, + "▁unavailable": 46344, + "甜甜": 46345, + "▁syll": 46346, + "党支部书记": 46347, + "ophagy": 46348, + "▁Warning": 46349, + "▁spreadsheet": 46350, + "▁collectively": 46351, + "mw": 46352, + "很是": 46353, + "nPan": 46354, + "▁Mang": 46355, + "specified": 46356, + "nag": 46357, + "▁Might": 46358, + "▁∼": 46359, + "尔特": 46360, + "更具": 46361, + "Figure": 46362, + "晚餐": 46363, + "骗子": 46364, + "中国古代": 46365, + "affle": 46366, + "stuff": 46367, + "▁balcony": 46368, + "标配": 46369, + "▁免费": 46370, + "泡泡": 46371, + "看他": 46372, + "中关村在线": 46373, + "Scheme": 46374, + "妥协": 46375, + "转到": 46376, + "未约定": 46377, + "▁Superior": 46378, + "▁Redistributions": 46379, + "加水": 46380, + "懒得": 46381, + "比你": 46382, + "chef": 46383, + "▁spaw": 46384, + "幼稚": 46385, + "Sets": 46386, + "▁scent": 46387, + "▁insured": 46388, + "海绵": 46389, + "hra": 46390, + "旗人民法院": 46391, + "▁sovere": 46392, + "Ta": 46393, + "人有": 46394, + "贴心": 46395, + "履行了": 46396, + "不是一个": 46397, + "得益": 46398, + "自媒体": 46399, + "usan": 46400, + "nMath": 46401, + "▁Battery": 46402, + "Fat": 46403, + "▁Paint": 46404, + "▁nginx": 46405, + "▁breathe": 46406, + "鱼的": 46407, + "oak": 46408, + "来到了一": 46409, + "以上事实有": 46410, + "ienced": 46411, + "logged": 46412, + "安防": 46413, + "提案": 46414, + "充分的": 46415, + "wings": 46416, + "ampagne": 46417, + "tdefault": 46418, + "registered": 46419, + "存活": 46420, + "艾滋": 46421, + "万元及利息": 46422, + "▁Actual": 46423, + "▁casinos": 46424, + "可以自收到裁定书": 46425, + "▁witnesses": 46426, + "栖息": 46427, + "former": 46428, + "Creation": 46429, + "▁exposing": 46430, + "▁Bulgarian": 46431, + "病虫": 46432, + "ucumber": 46433, + "▁Expect": 46434, + "zA": 46435, + "Separ": 46436, + "rg": 46437, + "再遭": 46438, + "梯形": 46439, + "长辈": 46440, + "▁sich": 46441, + "▁sulph": 46442, + "劳动人事": 46443, + "浦东新区": 46444, + "▁dancers": 46445, + "▁wrapping": 46446, + "▁dissection": 46447, + "世代": 46448, + "增收": 46449, + "红利": 46450, + "Smith": 46451, + "刑满": 46452, + "▁sore": 46453, + "yk": 46454, + "统一的": 46455, + "▁silica": 46456, + "▁EE": 46457, + "四条的规定": 46458, + "onomical": 46459, + "▁Frequency": 46460, + "视网": 46461, + "male": 46462, + "轨道交通": 46463, + "▁catalogue": 46464, + "汇款": 46465, + "▁MLS": 46466, + "Chapter": 46467, + "▁Einstein": 46468, + "{|": 46469, + "写法": 46470, + "困难的": 46471, + "▁premise": 46472, + "▁Istanbul": 46473, + "▁immunization": 46474, + "出炉": 46475, + "每当": 46476, + "这个是": 46477, + "▁Kazakh": 46478, + "▁thrust": 46479, + "灯具": 46480, + "加之": 46481, + "平滑": 46482, + "血浆": 46483, + "▁crore": 46484, + "魔兽": 46485, + "工作日": 46486, + "ovsky": 46487, + "适时": 46488, + "Quality": 46489, + "▁Bootstrap": 46490, + "Org": 46491, + "有多大": 46492, + "▁leap": 46493, + "qp": 46494, + "几年来": 46495, + "▁\\'*": 46496, + "▁masters": 46497, + "▁logarithm": 46498, + "开支": 46499, + "▁Craw": 46500, + "idepress": 46501, + "↓↓": 46502, + "▁Cherry": 46503, + "如果要": 46504, + "护肤品": 46505, + "管理法": 46506, + "▁locking": 46507, + "掀起": 46508, + "IEEE": 46509, + "▁cystic": 46510, + "应准予": 46511, + "▁caller": 46512, + "电量": 46513, + "▁ginger": 46514, + "▁ceremon": 46515, + "▁negotiate": 46516, + "▁programmed": 46517, + "源县": 46518, + "准备工作": 46519, + "尤其是在": 46520, + "saving": 46521, + "▁Stats": 46522, + "▁superficial": 46523, + "不利于": 46524, + "▁microg": 46525, + "所用": 46526, + "▁phi": 46527, + "▁Walt": 46528, + "们都": 46529, + "大爷": 46530, + "犹太": 46531, + "cycles": 46532, + "rientation": 46533, + "▁classrooms": 46534, + "▁dwell": 46535, + "Far": 46536, + "对这个": 46537, + "redients": 46538, + "▁cognition": 46539, + "的身份": 46540, + "amen": 46541, + "主教": 46542, + "之余": 46543, + "总的来说": 46544, + "经济管理": 46545, + "\\\\{\\\\": 46546, + "ayette": 46547, + "fixtures": 46548, + "atha": 46549, + "uw": 46550, + "]$\\": 46551, + "nsim": 46552, + "▁lute": 46553, + "▁portraits": 46554, + "communication": 46555, + ",\\\\,": 46556, + "nlong": 46557, + "油菜": 46558, + "aude": 46559, + "yahoo": 46560, + "二〇一七年九月": 46561, + "▁Edmonton": 46562, + "▁Arguments": 46563, + "不绝": 46564, + "SRC": 46565, + "国家和地区": 46566, + "ressing": 46567, + "▁rebuilt": 46568, + "▁finitely": 46569, + "▁locomotives": 46570, + "切入": 46571, + "那位": 46572, + "▁DL": 46573, + "▁角色": 46574, + "是否存在": 46575, + "ttest": 46576, + "leader": 46577, + "increment": 46578, + "▁disclose": 46579, + "哥伦": 46580, + "秒钟": 46581, + "微商": 46582, + "打着": 46583, + "snap": 46584, + "▁Hugh": 46585, + "▁musc": 46586, + "▁shiny": 46587, + "▁Waters": 46588, + "threatening": 46589, + "▁willingness": 46590, + "furt": 46591, + "Mongo": 46592, + "quito": 46593, + "▁Constructor": 46594, + "▁characterizing": 46595, + "uche": 46596, + "婚姻关系": 46597, + "▁homologous": 46598, + "草地": 46599, + "对企业": 46600, + "横坐标": 46601, + "▁potency": 46602, + "▁decentral": 46603, + "▁researching": 46604, + "▁Abr": 46605, + "▁UTF": 46606, + "▁UEFA": 46607, + "▁Atomic": 46608, + "▁reside": 46609, + "▁backdrop": 46610, + "▁云": 46611, + "▁reun": 46612, + "▁accus": 46613, + "▁inbox": 46614, + "▁concomitant": 46615, + "▁intermittent": 46616, + "▁iff": 46617, + "raises": 46618, + "▁EA": 46619, + "enchymal": 46620, + "▁Alcohol": 46621, + "~~": 46622, + "叙利亚": 46623, + "▁compiling": 46624, + "往后": 46625, + "ricia": 46626, + "不受申请执行时效": 46627, + "nAdditional": 46628, + "localStorage": 46629, + "遗忘": 46630, + "etz": 46631, + "▁山东": 46632, + "▁MATLAB": 46633, + "▁laparoscopic": 46634, + "审慎": 46635, + "uthors": 46636, + "texcept": 46637, + "▁attent": 46638, + "下达": 46639, + "四处": 46640, + "opp": 46641, + "受不了": 46642, + "Frank": 46643, + "▁Tube": 46644, + "ynaptic": 46645, + "▁Powell": 46646, + "fontSize": 46647, + "▁applicability": 46648, + "Au": 46649, + "盘中": 46650, + "结实": 46651, + "▁ABO": 46652, + "▁Junction": 46653, + "人社": 46654, + "催收": 46655, + "隐瞒": 46656, + "直升": 46657, + "▁fried": 46658, + "是想": 46659, + "齐齐": 46660, + "UNK": 46661, + "olation": 46662, + "▁Artificial": 46663, + "▁Specialist": 46664, + "▁disputes": 46665, + "按中国人民银行同期": 46666, + "口水": 46667, + "打个": 46668, + "大幅度": 46669, + "▁mmHg": 46670, + "▁bulbs": 46671, + "upytext": 46672, + "图纸": 46673, + "大自然": 46674, + "未答辩": 46675, + "▁valor": 46676, + "面条": 46677, + "hua": 46678, + "市场监督管理局登记成立": 46679, + "▁cracks": 46680, + "回购": 46681, + "城南": 46682, + "Cos": 46683, + "▁fortunate": 46684, + "干活": 46685, + "flo": 46686, + "的个人": 46687, + "intendent": 46688, + "可为": 46689, + "比上": 46690, + "▁restoring": 46691, + "拇指": 46692, + "东亚": 46693, + "梅西": 46694, + "窗帘": 46695, + "DDR": 46696, + "▁选择": 46697, + "马拉松": 46698, + "▁lender": 46699, + "▁exploited": 46700, + "▁Abraham": 46701, + "师父": 46702, + "日军": 46703, + "▁»\\": 46704, + "事实与": 46705, + "降水量": 46706, + "▁Lum": 46707, + "amycin": 46708, + "▁Names": 46709, + "Statistics": 46710, + "▁installer": 46711, + "▁э": 46712, + "强者": 46713, + "▁ze": 46714, + "音乐学院": 46715, + "yards": 46716, + "▁Somerset": 46717, + "亦有": 46718, + "依法予以": 46719, + "▁apoptotic": 46720, + "▁discharged": 46721, + "▁ب": 46722, + "知道的": 46723, + "atsu": 46724, + "常住人口": 46725, + "▁agrees": 46726, + "▁MX": 46727, + "几十年": 46728, + "ickness": 46729, + "发文": 46730, + "奇的": 46731, + "蓬莱": 46732, + "下一代": 46733, + "作他用": 46734, + "所说": 46735, + "百度地图": 46736, + "这意味着": 46737, + "atterns": 46738, + "附相关法律条文": 46739, + "▁epsilon": 46740, + "▁Classical": 46741, + "再将": 46742, + "和应用": 46743, + "已全部": 46744, + "计划的": 46745, + "跟我说": 46746, + "本院立案": 46747, + "▁\\'\\';\\": 46748, + "▁freshly": 46749, + "之意": 46750, + "安定": 46751, + "谁知": 46752, + "▁pillow": 46753, + "kW": 46754, + "бо": 46755, + "igated": 46756, + "▁mobil": 46757, + "▁Methodist": 46758, + "JD": 46759, + "人选": 46760, + "眼部": 46761, + "雄厚": 46762, + "leys": 46763, + "▁Rus": 46764, + "存在于": 46765, + "正能量": 46766, + "ariat": 46767, + "建设集团有限公司": 46768, + "▁emigrants": 46769, + "nHint": 46770, + "成一": 46771, + "襄阳": 46772, + "▁hyster": 46773, + "▁spheres": 46774, + "amazonaws": 46775, + "等量": 46776, + "领土": 46777, + "做生意": 46778, + "历史文化": 46779, + "endering": 46780, + "▁Species": 46781, + "QC": 46782, + "伊斯兰": 46783, + "▁Obs": 46784, + "Complex": 46785, + "▁united": 46786, + "▁grounded": 46787, + "小说阅读网": 46788, + "▁pitcher": 46789, + "▁progenitor": 46790, + "▁rifle": 46791, + "▁helpers": 46792, + "▁wellbeing": 46793, + "奥会": 46794, + "DEL": 46795, + "nNA": 46796, + "▁Belarus": 46797, + "bh": 46798, + "▁LIKE": 46799, + "▁Mate": 46800, + "▁recognise": 46801, + "四肢": 46802, + "湿润": 46803, + "▁MET": 46804, + "▁Tub": 46805, + "▁budgets": 46806, + "▁Boulevard": 46807, + "▁勇": 46808, + "viol": 46809, + "枪支": 46810, + "注意我": 46811, + "函数的性质": 46812, + "hooting": 46813, + "▁philanth": 46814, + "供销": 46815, + "身的": 46816, + "yse": 46817, + "纳税人": 46818, + "芯片组": 46819, + "▁dile": 46820, + "▁reload": 46821, + "▁possesses": 46822, + "▁transfusion": 46823, + "金币": 46824, + "第一部": 46825, + "instrument": 46826, + "骨髓": 46827, + "回到了": 46828, + "▁Cotton": 46829, + "▁Fitness": 46830, + "▁substituted": 46831, + "降解": 46832, + "Sen": 46833, + "▁Imagine": 46834, + "▁descriptor": 46835, + "固然": 46836, + "▁系统": 46837, + "生成的": 46838, + "▁Difference": 46839, + "正经": 46840, + "▁Teh": 46841, + "Marker": 46842, + "professional": 46843, + "食谱": 46844, + "农业生产": 46845, + "挽回": 46846, + "▁Ellis": 46847, + "▁noisy": 46848, + "终结本次执行": 46849, + "前置": 46850, + "受体": 46851, + "玉林": 46852, + "排版": 46853, + "热力": 46854, + "续行查封": 46855, + "不错的选择": 46856, + "xp": 46857, + "分之": 46858, + "后代": 46859, + "航空公司": 46860, + "瞄准": 46861, + "选择上述": 46862, + "党工委": 46863, + "的一个重要": 46864, + "▁maneu": 46865, + "SSH": 46866, + "也表示": 46867, + "会发生": 46868, + "nBig": 46869, + "itian": 46870, + "▁Shift": 46871, + "▁Investigation": 46872, + "▁ile": 46873, + "证明被告": 46874, + "Reason": 46875, + "nRecord": 46876, + "刘备": 46877, + "代表性": 46878, + "▁circadian": 46879, + "▁Modified": 46880, + "▁risky": 46881, + "▁vascul": 46882, + "▁forecasts": 46883, + "学前": 46884, + "订购": 46885, + "不要太": 46886, + "什么呢": 46887, + "hmad": 46888, + "isto": 46889, + "nother": 46890, + "▁Parents": 46891, + "▁oscillations": 46892, + "坐堂": 46893, + "武林": 46894, + "户居住": 46895, + "找一个": 46896, + "▁blanket": 46897, + "▁conditioned": 46898, + "商圈": 46899, + "驾驶人": 46900, + "▁BIG": 46901, + "最大限度": 46902, + "packed": 46903, + "绿茶": 46904, + "▁FB": 46905, + "PIPE": 46906, + "arat": 46907, + "answers": 46908, + "▁uncovered": 46909, + "出走": 46910, + "▁Tank": 46911, + "tikzpicture": 46912, + "▁recognizing": 46913, + "他人财物": 46914, + "▁Architect": 46915, + "私吞": 46916, + "etles": 46917, + "Quantity": 46918, + "▁Salvador": 46919, + "▁activator": 46920, + "▁Polar": 46921, + "▁Props": 46922, + "perfect": 46923, + "▁分": 46924, + "国库": 46925, + "画画": 46926, + "过点": 46927, + "特点是": 46928, + "我们应该": 46929, + "bounds": 46930, + "contacts": 46931, + "▁Examination": 46932, + "江阴": 46933, + "apid": 46934, + "购物中心": 46935, + "▁predecessor": 46936, + "红豆": 46937, + "YES": 46938, + "置换": 46939, + "\">[": 46940, + "thouse": 46941, + "▁zoo": 46942, + "nyear": 46943, + "OBJECT": 46944, + "▁amplifier": 46945, + "▁protesters": 46946, + "公布了": 46947, + "▁Angels": 46948, + "▁dragon": 46949, + "治疗效果": 46950, + "▁discounted": 46951, + "FG": 46952, + "海口": 46953, + "▁sham": 46954, + "借款到期后": 46955, + "connector": 46956, + "救治": 46957, + "作用的": 46958, + "▁ACL": 46959, + "▁resultant": 46960, + ">()\\": 46961, + "一个不断": 46962, + "delivery": 46963, + "▁branching": 46964, + "ivel": 46965, + "▁Seoul": 46966, + "udos": 46967, + "gitlab": 46968, + "quarter": 46969, + "这种方法": 46970, + "▁Hebrew": 46971, + "温水": 46972, + "版次": 46973, + "豆浆": 46974, + "论述了": 46975, + "nGreen": 46976, + "▁Arsenal": 46977, + "▁Unicode": 46978, + "▁myeloid": 46979, + "ál": 46980, + "但其实": 46981, + "▁pedag": 46982, + "▁framed": 46983, + "CAM": 46984, + "第十一章": 46985, + "▁Loan": 46986, + "真爱": 46987, + "opoly": 46988, + "争执": 46989, + "掉的": 46990, + "玩家们": 46991, + "▁Cafe": 46992, + "▁Intent": 46993, + "Reflection": 46994, + "qrt": 46995, + "着一个": 46996, + "▁Ware": 46997, + "▁spice": 46998, + "铃声": 46999, + "leave": 47000, + "不计": 47001, + "}})": 47002, + "imetry": 47003, + "不远": 47004, + "群众的": 47005, + "个人觉得": 47006, + "▁pivot": 47007, + "▁abnorm": 47008, + "纪念馆": 47009, + "里面有": 47010, + "nOption": 47011, + "▁Composite": 47012, + "ajo": 47013, + "组织和": 47014, + "Bear": 47015, + "▁Glad": 47016, + "resolver": 47017, + "fruit": 47018, + "▁jupytext": 47019, + "▁discontinued": 47020, + "▁periodically": 47021, + "控制在": 47022, + "已经开始": 47023, + "xb": 47024, + "自贡": 47025, + "误会": 47026, + "god": 47027, + "Pull": 47028, + "rone": 47029, + "▁Aires": 47030, + "▁minimally": 47031, + "▁tolerated": 47032, + "你可能": 47033, + "同时还": 47034, + "▁Forty": 47035, + "▁SLE": 47036, + "▁solv": 47037, + "粉尘": 47038, + "▁pts": 47039, + "Dim": 47040, + "废弃了": 47041, + "acycl": 47042, + "▁mandate": 47043, + "科尔": 47044, + "▁Philosophy": 47045, + "五千": 47046, + "出水": 47047, + "nAh": 47048, + "Soup": 47049, + "archives": 47050, + "进食": 47051, + "适量的": 47052, + "abic": 47053, + "imaging": 47054, + "gia": 47055, + "nIT": 47056, + "welcome": 47057, + "▁turkey": 47058, + "▁conspiracy": 47059, + "▁repertoire": 47060, + "▁quantitatively": 47061, + "点和": 47062, + "viv": 47063, + "Although": 47064, + "天子": 47065, + "培养学生": 47066, + "▁nominal": 47067, + "求助": 47068, + "▁$\\": 47069, + "▁)\\": 47070, + "nfun": 47071, + "一审判决": 47072, + "▁dipole": 47073, + "者在": 47074, + "▁Ded": 47075, + "▁sock": 47076, + "▁Embed": 47077, + "▁trillion": 47078, + "镇政府": 47079, + "▁Minneapolis": 47080, + "学问": 47081, + "伊拉克": 47082, + "反映给": 47083, + "和质量": 47084, + "这样的人": 47085, + "▁Audi": 47086, + "▁Bent": 47087, + "弱的": 47088, + "至尊": 47089, + "▁guinea": 47090, + "▁BBQ": 47091, + "第二百零七条": 47092, + "▁Height": 47093, + "HEADER": 47094, + "挪作他用": 47095, + "▁factories": 47096, + "▁Recognition": 47097, + "咽喉": 47098, + "肥料": 47099, + "去括号": 47100, + "非线性": 47101, + "imize": 47102, + "ischen": 47103, + "叫我": 47104, + "棱长": 47105, + "我们对": 47106, + "Hint": 47107, + "一审原告": 47108, + "decorators": 47109, + "▁其它": 47110, + "tright": 47111, + "▁senses": 47112, + "coordinate": 47113, + "▁epidermal": 47114, + "问候": 47115, + "▁KO": 47116, + "utta": 47117, + "▁appetite": 47118, + "▁fulfilled": 47119, + "回避": 47120, + "到案后": 47121, + "▁布": 47122, + "分歧": 47123, + "火力": 47124, + "点燃": 47125, + "风口": 47126, + "▁waterproof": 47127, + "▁proposition": 47128, + "UCT": 47129, + "的最大值": 47130, + "nDear": 47131, + "▁androgen": 47132, + "notifications": 47133, + "下调": 47134, + "不经": 47135, + "定为": 47136, + "crum": 47137, + "Posts": 47138, + "}),": 47139, + "oyle": 47140, + "▁WOR": 47141, + "与众": 47142, + "机票": 47143, + "考场": 47144, + "热水器": 47145, + "目标是": 47146, + "asar": 47147, + "ToMany": 47148, + "entieth": 47149, + "▁cipher": 47150, + "▁footer": 47151, + "▁periodontal": 47152, + "QP": 47153, + "九章": 47154, + "睡着": 47155, + "CMD": 47156, + "贸市场": 47157, + "calculate": 47158, + "针织": 47159, + "ympt": 47160, + "从重处罚": 47161, + "leetcode": 47162, + "四面": 47163, + "大片": 47164, + "起草": 47165, + "怎么会": 47166, + "▁retry": 47167, + "▁tread": 47168, + "▁freshman": 47169, + "▁Obviously": 47170, + "▁unilateral": 47171, + "WL": 47172, + "低下": 47173, + "的要": 47174, + "延长赛": 47175, + "误解": 47176, + "agrang": 47177, + "▁evaluates": 47178, + "▁disestablish": 47179, + "新高": 47180, + "sev": 47181, + "▁Hang": 47182, + "▁suites": 47183, + "政协委员": 47184, + "本院受理": 47185, + "▁bishops": 47186, + "▁digestive": 47187, + "苗族": 47188, + "Prim": 47189, + "coal": 47190, + "icos": 47191, + "libraries": 47192, + "奥特": 47193, + "akk": 47194, + "于一体的": 47195, + "以及其他": 47196, + "▁lupus": 47197, + "▁parade": 47198, + "该卡": 47199, + "GEN": 47200, + "住址同上": 47201, + "GROUP": 47202, + "isive": 47203, + "▁Worcester": 47204, + "读物": 47205, + "▁Isle": 47206, + "庭院": 47207, + "neur": 47208, + "追踪报道": 47209, + "▁Gear": 47210, + "德尔": 47211, + "田间": 47212, + "网吧": 47213, + "Kel": 47214, + "很不错": 47215, + "artan": 47216, + "ighbors": 47217, + "nCREATE": 47218, + "▁WIN": 47219, + "Central": 47220, + "▁Christianity": 47221, + "搞定": 47222, + "在他的": 47223, + "CKET": 47224, + "esses": 47225, + "二〇一六年三月": 47226, + "海区": 47227, + "▁ridge": 47228, + "experiment": 47229, + "nUS": 47230, + "▁FS": 47231, + "▁xi": 47232, + "▁Income": 47233, + "▁Regulation": 47234, + "▁humanitarian": 47235, + "筷子": 47236, + "认定为": 47237, + "anck": 47238, + "比较方便": 47239, + "国强": 47240, + "星光": 47241, + "极坐标": 47242, + "▁Offer": 47243, + "认定事实如下": 47244, + "讨论版": 47245, + "visited": 47246, + "▁Broadcasting": 47247, + "测验": 47248, + "驻马": 47249, + "ienne": 47250, + "▁ipsum": 47251, + "▁privileged": 47252, + "▁enthusiastic": 47253, + "▁reservations": 47254, + "thel": 47255, + "有限公司负担": 47256, + "Screenshot": 47257, + "核对": 47258, + "请勿": 47259, + "以下是": 47260, + "莆田市": 47261, + "这方面": 47262, + "nUSE": 47263, + "nval": 47264, + "marshal": 47265, + "一两": 47266, + "▁Forms": 47267, + "▁homotopy": 47268, + "代表人的人数提出副本": 47269, + "yun": 47270, + "安阳市": 47271, + "tera": 47272, + "▁branded": 47273, + "President": 47274, + "廊坊": 47275, + "▁kDa": 47276, + "▁tee": 47277, + "在高": 47278, + "ennium": 47279, + "▁elder": 47280, + "Serialized": 47281, + "之初": 47282, + "号征收社会抚养费": 47283, + "▁educator": 47284, + "伤亡": 47285, + "支柱": 47286, + "estones": 47287, + "▁undertaking": 47288, + "▁pretreatment": 47289, + "野外": 47290, + "ISP": 47291, + "nMac": 47292, + "▁aquatic": 47293, + "邮票": 47294, + "全网": 47295, + "历年": 47296, + "战的": 47297, + "烘干": 47298, + "医学会": 47299, + "受害者": 47300, + "▁营业时间": 47301, + "扭曲": 47302, + "找回": 47303, + "潜能": 47304, + "▁lace": 47305, + "▁人口数量": 47306, + "▁mentors": 47307, + "▁Tanzania": 47308, + "▁mutually": 47309, + "多样化": 47310, + "voice": 47311, + "▁Clif": 47312, + "▁brave": 47313, + "偿还借款本金": 47314, + "▁biased": 47315, + "▁paradox": 47316, + "Implementation": 47317, + "▁mercury": 47318, + "ighborhood": 47319, + "▁Computational": 47320, + "吃吃": 47321, + "炒作": 47322, + "西侧": 47323, + "▁bent": 47324, + "▁oval": 47325, + "店里": 47326, + "绿豆": 47327, + "ICH": 47328, + "也开始": 47329, + "作品的": 47330, + "popup": 47331, + "▁Fact": 47332, + "▁Holmes": 47333, + "▁Drawing": 47334, + "▁TestCase": 47335, + "▁immigrant": 47336, + "变价": 47337, + "▁[<": 47338, + "着名的": 47339, + "lng": 47340, + "工商户": 47341, + "世界上最": 47342, + "申请仲裁": 47343, + "experimental": 47344, + "themes": 47345, + "chief": 47346, + "courses": 47347, + "▁deterioration": 47348, + "学生们": 47349, + "cock": 47350, + "nProof": 47351, + "▁Eclipse": 47352, + "plantation": 47353, + "▁Infrastructure": 47354, + "卡车": 47355, + "向南": 47356, + "tbl": 47357, + "下面是": 47358, + "▁Trek": 47359, + "▁sword": 47360, + "▁retard": 47361, + "▁stereo": 47362, + "▁resignation": 47363, + "其一": 47364, + "有不": 47365, + "/\">": 47366, + "方程的解": 47367, + "getting": 47368, + "精益": 47369, + "▁Ci": 47370, + "▁MK": 47371, + "▁`@": 47372, + "履行上述": 47373, + "▁cada": 47374, + "Warnings": 47375, + "包子": 47376, + "小伙": 47377, + "▁\"\")": 47378, + "科学出版社": 47379, + "▁牛": 47380, + "这片": 47381, + "▁fights": 47382, + "▁peculiar": 47383, + "▁underest": 47384, + "放电": 47385, + "anj": 47386, + "入围": 47387, + "放开": 47388, + "万人次": 47389, + "▁syndromes": 47390, + "饮品": 47391, + "▁HDL": 47392, + "▁computations": 47393, + "秦皇岛": 47394, + "而且在": 47395, + "EDIT": 47396, + "]){\\": 47397, + "adia": 47398, + "避开": 47399, + "的成本": 47400, + "还是挺": 47401, + "erville": 47402, + "▁proudly": 47403, + "▁Provincial": 47404, + "替补": 47405, + "▁最后": 47406, + "副县长": 47407, + "▁Boss": 47408, + "▁神": 47409, + "▁nonzero": 47410, + "和计划生育委员会": 47411, + "upuncture": 47412, + "▁incorrectly": 47413, + "辆车": 47414, + "因为是": 47415, + "▁GmbH": 47416, + "nEuropean": 47417, + "▁ignoring": 47418, + "下手": 47419, + "ucked": 47420, + "USERNAME": 47421, + "ес": 47422, + "tada": 47423, + "tiny": 47424, + "▁Nom": 47425, + "还有什么": 47426, + "ometers": 47427, + "元为": 47428, + "西祠": 47429, + "角膜": 47430, + "hon": 47431, + "emory": 47432, + "二〇一七年五月": 47433, + "年会": 47434, + "纠缠": 47435, + "呼吸道": 47436, + "Money": 47437, + "▁tubular": 47438, + "▁coherence": 47439, + "的政治": 47440, + "▁Maths": 47441, + "▁Dining": 47442, + "\\\\\\\\\\\\\\\\": 47443, + "▁nursery": 47444, + "▁alleviate": 47445, + "一女": 47446, + "ORG": 47447, + "gson": 47448, + "情况进行": 47449, + "▁spill": 47450, + "▁programmer": 47451, + "————————————————": 47452, + "中之": 47453, + "抗议": 47454, + "andi": 47455, + "campaign": 47456, + "lj": 47457, + "磁盘": 47458, + "▁inhal": 47459, + "▁heparin": 47460, + "后人": 47461, + "巴拉": 47462, + "帮助下": 47463, + "Avatar": 47464, + "▁herpes": 47465, + "▁SAT": 47466, + "短时间内": 47467, + "脚下": 47468, + "Occ": 47469, + "双方在": 47470, + "业主收取": 47471, + "▁liable": 47472, + "▁expedition": 47473, + "侮辱": 47474, + "MAIL": 47475, + "▁cpu": 47476, + "▁lou": 47477, + "非常高兴能": 47478, + "▁Syntax": 47479, + "▁longevity": 47480, + "▁Ö": 47481, + "事的": 47482, + "和人": 47483, + "盐城市": 47484, + "nhas": 47485, + "nPower": 47486, + "▁Qatar": 47487, + "▁lightning": 47488, + "Aff": 47489, + "▁Ancient": 47490, + "▁Chennai": 47491, + "▁Vitamin": 47492, + "▁workload": 47493, + "FFER": 47494, + "号案件的执行": 47495, + "updates": 47496, + "▁Healthy": 47497, + "ERENCES": 47498, + "▁procurement": 47499, + "但你": 47500, + "鉴赏": 47501, + "两部分": 47502, + "▁numerically": 47503, + "▁speculation": 47504, + "刻画": 47505, + "陆游": 47506, + "仅仅是": 47507, + "opencv": 47508, + "▁Former": 47509, + "▁Minimum": 47510, + "▁postgres": 47511, + "向被执行人发出执行通知书": 47512, + "实木": 47513, + "食管": 47514, + "▁sunset": 47515, + "▁文学": 47516, + "有时间": 47517, + "▁Bav": 47518, + "enburg": 47519, + "▁Patch": 47520, + "decimal": 47521, + "patibility": 47522, + "耐药": 47523, + "DisplayName": 47524, + "Cy": 47525, + "各主要": 47526, + "ifug": 47527, + "nkind": 47528, + "▁Prote": 47529, + "represented": 47530, + "黑的": 47531, + "门户网站": 47532, + "▁naval": 47533, + "第十三条第二款": 47534, + "不断累": 47535, + "▁Apollo": 47536, + "▁ASF": 47537, + "▁turbine": 47538, + "▁technician": 47539, + "住建": 47540, + "招待": 47541, + "退赔": 47542, + "stones": 47543, + "▁Crist": 47544, + "▁Kubernetes": 47545, + "olith": 47546, + "unts": 47547, + "ighed": 47548, + "aciones": 47549, + "▁exceeding": 47550, + "上车": 47551, + "我的经纪人": 47552, + "nTrump": 47553, + "▁Miles": 47554, + "configs": 47555, + "▁linguistic": 47556, + "USED": 47557, + "▁herbal": 47558, + "▁Ottoman": 47559, + "producing": 47560, + "隔音": 47561, + "IMO": 47562, + "日美股": 47563, + "pairs": 47564, + "▁Raid": 47565, + "我非常感激": 47566, + "▁ferry": 47567, + "▁rupture": 47568, + "工业化": 47569, + "应用的": 47570, + "chemical": 47571, + "棵树": 47572, + "而上": 47573, + "lld": 47574, + "与本案": 47575, + "adren": 47576, + "▁Perc": 47577, + "▁impose": 47578, + "defineProperty": 47579, + "对我国": 47580, + "mant": 47581, + "这么多年": 47582, + "asper": 47583, + "▁Belf": 47584, + "itchens": 47585, + "▁Moment": 47586, + "▁Crit": 47587, + "▁Sites": 47588, + "▁frank": 47589, + "和知识": 47590, + "状态下": 47591, + "心底": 47592, + "▁AE": 47593, + "违反了": 47594, + "我们将予以": 47595, + "▁Lynch": 47596, + "TN": 47597, + "▁Joan": 47598, + "▁avail": 47599, + "▁Initially": 47600, + "hint": 47601, + "你家": 47602, + "更要": 47603, + "的犯罪": 47604, + "Prep": 47605, + "▁PTSD": 47606, + "二〇一七年三月": 47607, + "nFootballers": 47608, + "一向": 47609, + "妨碍": 47610, + "Calc": 47611, + "▁cruel": 47612, + "止痛": 47613, + "的案件": 47614, + "quez": 47615, + "listdir": 47616, + "dimension": 47617, + "调制": 47618, + "iguez": 47619, + "nRelease": 47620, + "引发的": 47621, + "赢得胜利的": 47622, + "▁Economy": 47623, + "威力": 47624, + "枝花": 47625, + "是由于": 47626, + "的控制": 47627, + "多边形的": 47628, + "▁localities": 47629, + "▁neuropsych": 47630, + "浓厚": 47631, + "读了": 47632, + "研究室": 47633, + "这部分": 47634, + "motion": 47635, + "▁Myanmar": 47636, + "▁responds": 47637, + "POR": 47638, + "防火墙": 47639, + "Inflater": 47640, + "▁广州": 47641, + "得更全面": 47642, + "Blueprint": 47643, + "Operations": 47644, + "酰胺": 47645, + "Band": 47646, + "人民调解协议": 47647, + "▁Coalition": 47648, + "▁wastewater": 47649, + "责任心": 47650, + "重组案": 47651, + "Theta": 47652, + "▁Stefan": 47653, + "▁influx": 47654, + "▁retiring": 47655, + "▁Strategic": 47656, + "产科": 47657, + "偶函数": 47658, + "就直接": 47659, + "缺席审理": 47660, + "演唱的歌曲": 47661, + "信道": 47662, + "向西": 47663, + "▁Few": 47664, + "明确的被告": 47665, + "London": 47666, + "全都": 47667, + "锅里": 47668, + "专家坐堂": 47669, + "南京还有": 47670, + "antage": 47671, + "▁compensate": 47672, + "▁PU": 47673, + "nBuy": 47674, + "▁Labs": 47675, + "所有的位于": 47676, + "▁cubes": 47677, + "广东省深圳市": 47678, + "provided": 47679, + "}'": 47680, + "先说": 47681, + "吻合": 47682, + "怀特说": 47683, + "ipeg": 47684, + "支出色的": 47685, + "▁Sharp": 47686, + "nImport": 47687, + "会签下": 47688, + "nnow": 47689, + "▁Brief": 47690, + "▁Hurricane": 47691, + "五行": 47692, + "嘲讽": 47693, + "农业农村": 47694, + "▁congressional": 47695, + "图表": 47696, + "巴基": 47697, + "生产劳动": 47698, + "十三条规定": 47699, + "▁midst": 47700, + "[#": 47701, + "进军": 47702, + "了一批": 47703, + "你以为": 47704, + "Spot": 47705, + "ypress": 47706, + "号行政": 47707, + "公摊水费": 47708, + "延长赛落败": 47709, + "证监会否决": 47710, + "反映给相关部门": 47711, + "把她": 47712, + "白玉": 47713, + "加深天马": 47714, + "融券筹码": 47715, + "实录加西亚": 47716, + "重组案再遭": 47717, + "▁Ratio": 47718, + "不断累加深天马": 47719, + "日美股专家坐堂": 47720, + "实录加西亚延长赛落败": 47721, + "融券筹码不断累加深天马": 47722, + "融券筹码不断累加深天马重组案再遭": 47723, + "羊毛": 47724, + "学术论文": 47725, + "求和": 47726, + "lnx": 47727, + "▁英语": 47728, + "indy": 47729, + "与被告王": 47730, + "platin": 47731, + "rss": 47732, + "▁NZ": 47733, + "不了解": 47734, + "▁Dod": 47735, + "▁Clin": 47736, + "▁Dale": 47737, + "西祠讨论版": 47738, + "支出色的球队": 47739, + "▁Breast": 47740, + "我的经纪人告诉我": 47741, + "万能": 47742, + "推介": 47743, + "特此通知": 47744, + "签约火箭": 47745, + "▁fier": 47746, + "将自己磨练": 47747, + "有几支球队": 47748, + "benchmark": 47749, + "▁Correction": 47750, + "第一百五十四条裁定适用于下列范围": 47751, + "ilk": 47752, + "晚饭团": 47753, + "月获得": 47754, + "会签下我": 47755, + "却被物管": 47756, + "请求判令": 47757, + "你的遭遇吧": 47758, + "却依然在向": 47759, + "扬子晚饭团": 47760, + "明明废弃了": 47761, + "一直在关注我": 47762, + "却被物管私吞": 47763, + "并将你的遭遇": 47764, + "我坚信有球队": 47765, + "我知道有球队": 47766, + "所以我很刻苦": 47767, + "而且这个城市": 47768, + "怀特非常高兴能": 47769, + "我现在来到了一": 47770, + "说出你的遭遇吧": 47771, + "赢得胜利的球队": 47772, + "业主收取公摊水费": 47773, + "我非常感激这一切": 47774, + "租金却被物管私吞": 47775, + "请登录西祠讨论版": 47776, + "又有多少小区的水景": 47777, + "将自己磨练得更全面": 47778, + "我们将予以追踪报道": 47779, + "我知道有球队注意我": 47780, + "而且这个城市也很好": 47781, + "我坚信有球队会签下我": 47782, + "一个不断赢得胜利的球队": 47783, + "南京还有多少小区的水景": 47784, + "怀特非常高兴能签约火箭": 47785, + "有几支球队一直在关注我": 47786, + "却依然在向业主收取公摊水费": 47787, + "又有多少小区的水景挪作他用": 47788, + "并将你的遭遇反映给相关部门": 47789, + "我现在来到了一支出色的球队": 47790, + "南京还有多少小区的水景明明废弃了": 47791, + "tG": 47792, + "会谈": 47793, + "血流": 47794, + "▁最大": 47795, + "▁Thing": 47796, + "▁macros": 47797, + "▁cottage": 47798, + "▁Buddhist": 47799, + "▁Chocolate": 47800, + "bz": 47801, + "九十": 47802, + "的粉丝": 47803, + "nEqu": 47804, + "▁belly": 47805, + "慎重": 47806, + "氧气": 47807, + "而过": 47808, + "▁Fra": 47809, + "essive": 47810, + "▁Rocky": 47811, + "centric": 47812, + "穿刺": 47813, + "Lif": 47814, + "sentence": 47815, + "房的": 47816, + "ermine": 47817, + "nRugby": 47818, + "▁Someone": 47819, + "▁hydrophobic": 47820, + "收割": 47821, + "艰辛": 47822, + "nJim": 47823, + "▁登场作品": 47824, + "▁screws": 47825, + "关节炎": 47826, + "▁resistor": 47827, + "Sa": 47828, + "收盘": 47829, + "做出的": 47830, + "pieces": 47831, + "▁Rescue": 47832, + "▁sel": 47833, + "▁Pag": 47834, + "Catalog": 47835, + "▁analogs": 47836, + "是人": 47837, + "不明白": 47838, + "也是很": 47839, + "激烈的": 47840, + "搅拌均匀": 47841, + "▁toolbar": 47842, + "▁Maharashtra": 47843, + "Nor": 47844, + "irical": 47845, + "implementation": 47846, + "即可求得": 47847, + "▁Sync": 47848, + "向我": 47849, + "年少": 47850, + "雪花": 47851, + "ceipt": 47852, + "ку": 47853, + "▁Echo": 47854, + "▁TYPE": 47855, + "▁soda": 47856, + "▁advertisement": 47857, + "plural": 47858, + "▁reviewers": 47859, + "马某": 47860, + "eres": 47861, + "▁Roh": 47862, + "▁peel": 47863, + "▁invaluable": 47864, + "▁pregnancies": 47865, + "▁Cities": 47866, + "共振": 47867, + "芜湖市": 47868, + "设计了": 47869, + "住山东省": 47870, + "balls": 47871, + "nBook": 47872, + "lantic": 47873, + "▁validator": 47874, + "▁conviction": 47875, + "TK": 47876, + "断了": 47877, + "济宁": 47878, + "联手": 47879, + "请用": 47880, + "INESS": 47881, + "nHomework": 47882, + "▁deleting": 47883, + "分布在": 47884, + "Specific": 47885, + "▁Symposium": 47886, + "ifax": 47887, + "individual": 47888, + "▁goalkeeper": 47889, + "▁Legislature": 47890, + "整顿": 47891, + "各自的": 47892, + "ivary": 47893, + "derive": 47894, + "▁Abdul": 47895, + "夫妻感情破裂": 47896, + "原型": 47897, + "CMS": 47898, + "▁Shin": 47899, + "▁kindly": 47900, + "▁ionization": 47901, + "该局": 47902, + "▁drummer": 47903, + "运势": 47904, + "各单位": 47905, + "▁lanes": 47906, + "搞好": 47907, + "构件": 47908, + "reviews": 47909, + "▁Prepare": 47910, + "▁pedestrian": 47911, + "祝愿": 47912, + "过期": 47913, + "chai": 47914, + "stry": 47915, + "▁sights": 47916, + "▁separating": 47917, + "率达": 47918, + "父亲的": 47919, + "市值": 47920, + "更适合": 47921, + "电动机": 47922, + "神秘的": 47923, + "\\\\;\\\\": 47924, + "/'": 47925, + "明知": 47926, + "意识形态": 47927, + "科技股份有限公司": 47928, + "VGA": 47929, + "责任的": 47930, + ">(\\": 47931, + "专业课": 47932, + "Accessor": 47933, + "血症": 47934, + "iec": 47935, + "~~~": 47936, + "脂肪酸": 47937, + "▁Nadu": 47938, + "ichlet": 47939, + "▁deterministic": 47940, + "ANY": 47941, + "ulance": 47942, + "▁Chess": 47943, + "▁admits": 47944, + "▁racism": 47945, + "等证据予以证实": 47946, + "子孙": 47947, + "▁fd": 47948, + "生前为": 47949, + "▁rebounds": 47950, + "▁postnatal": 47951, + "▁Pt": 47952, + "心脏病": 47953, + "tName": 47954, + "▁peek": 47955, + "nAdditionally": 47956, + "执行至": 47957, + "trad": 47958, + "一个新的": 47959, + "学习教育": 47960, + "▁showers": 47961, + "limitations": 47962, + "深远": 47963, + "▁——": 47964, + "▁nont": 47965, + "▁PayPal": 47966, + "▁pumping": 47967, + "▁commodity": 47968, + "▁repositories": 47969, + "▁transferring": 47970, + "INDEX": 47971, + "nSystem": 47972, + "▁Northeast": 47973, + "略有": 47974, + "创造性": 47975, + "半个月": 47976, + "▁Herr": 47977, + "▁diarrhea": 47978, + "和他的": 47979, + "▁rehe": 47980, + "DATABASE": 47981, + "聘请": 47982, + "Jen": 47983, + "不知不觉": 47984, + "▁frog": 47985, + "▁中共党员": 47986, + "▁limbs": 47987, + "主线": 47988, + "nKnow": 47989, + "制成的": 47990, + "Verify": 47991, + "raisal": 47992, + "日开始": 47993, + "营养成分": 47994, + "/,": 47995, + "今生": 47996, + "是怎样": 47997, + "▁Franç": 47998, + "▁weaknesses": 47999, + "关系到": 48000, + "nsage": 48001, + "▁builders": 48002, + "减弱": 48003, + "Vers": 48004, + "cone": 48005, + "euclid": 48006, + "nSocial": 48007, + "nParameters": 48008, + "场馆": 48009, + "Thursday": 48010, + "Jul": 48011, + "人意": 48012, + "设在": 48013, + "beck": 48014, + "多点": 48015, + "nFin": 48016, + "▁Oral": 48017, + "▁Listen": 48018, + "对被执行人的财产": 48019, + "▁metabolite": 48020, + "少于": 48021, + "提到的": 48022, + "符合下列": 48023, + "▁warmer": 48024, + "▁combinatorial": 48025, + "合影": 48026, + "中止或者": 48027, + "▁elem": 48028, + "▁consolidation": 48029, + "▁Cec": 48030, + "▁VII": 48031, + "erobic": 48032, + "▁excluding": 48033, + "乘车": 48034, + "这三": 48035, + "▁abd": 48036, + "什么东西": 48037, + "networks": 48038, + "▁inclined": 48039, + "▁collapsed": 48040, + "physics": 48041, + "▁尺寸": 48042, + "astype": 48043, + "receive": 48044, + "▁beginner": 48045, + "维持原裁定": 48046, + "ttle": 48047, + "ynth": 48048, + "▁Async": 48049, + "directories": 48050, + "不符": 48051, + "宽容": 48052, + "arah": 48053, + "unity": 48054, + "anions": 48055, + "敬老": 48056, + "压缩机": 48057, + "ncheck": 48058, + "▁行政区类别": 48059, + "osexual": 48060, + "students": 48061, + "▁arguing": 48062, + "建的": 48063, + "akan": 48064, + "▁modality": 48065, + "▁charitable": 48066, + "纵向": 48067, + "整数的": 48068, + "治疗的": 48069, + "brown": 48070, + "▁couns": 48071, + "▁probabilistic": 48072, + "就越": 48073, + "▁MU": 48074, + "因为我们": 48075, + "▁Trace": 48076, + "▁sleek": 48077, + "▁carved": 48078, + "▁referendum": 48079, + "应以": 48080, + "网球": 48081, + "道教": 48082, + "骚扰": 48083, + "MER": 48084, + "nDeath": 48085, + "illiams": 48086, + "nol": 48087, + "▁RED": 48088, + "▁geo": 48089, + "▁aggregates": 48090, + "峰值": 48091, + "▁Viv": 48092, + "▁helmet": 48093, + "▁resides": 48094, + "四边形的": 48095, + "▁bake": 48096, + "▁gestational": 48097, + "花瓣": 48098, + "评级": 48099, + "SCI": 48100, + "▁GI": 48101, + "本质上": 48102, + "罪犯刘": 48103, + "States": 48104, + "OX": 48105, + "▁noticeable": 48106, + "关键字": 48107, + "otti": 48108, + "▁scenery": 48109, + "converter": 48110, + "▁separator": 48111, + "山下": 48112, + "占用的": 48113, + "▁Sql": 48114, + "二〇一七年六月": 48115, + "▁Reverse": 48116, + "▁translates": 48117, + "赞助": 48118, + "系数的": 48119, + "▁está": 48120, + "提交的证据": 48121, + "Capture": 48122, + "古老的": 48123, + "很好地": 48124, + "aney": 48125, + "statistics": 48126, + "▁Bod": 48127, + "不只是": 48128, + "HN": 48129, + "growing": 48130, + "▁murdered": 48131, + "▁Louisville": 48132, + "▁afore": 48133, + "osus": 48134, + "▁Vern": 48135, + "▁游戏介绍": 48136, + "Decode": 48137, + "▁comma": 48138, + "▁LS": 48139, + "▁Ful": 48140, + "云龙": 48141, + "风波": 48142, + "教学的": 48143, + "但是如果": 48144, + "▁avoidance": 48145, + "▁松": 48146, + "沿革": 48147, + "perf": 48148, + "▁overt": 48149, + "▁valves": 48150, + "mongoose": 48151, + "ynthetic": 48152, + "▁Squadron": 48153, + "statusCode": 48154, + "做工": 48155, + "招牌": 48156, + "▁Duncan": 48157, + "ermanent": 48158, + "相近": 48159, + "▁HL": 48160, + "obia": 48161, + "▁photoc": 48162, + "曲折": 48163, + "电能": 48164, + "进出": 48165, + "\"<<": 48166, + "▁[{": 48167, + "mente": 48168, + "是什么意思": 48169, + "▁refractory": 48170, + "写着": 48171, + "模拟器": 48172, + "shirts": 48173, + "回车": 48174, + "民宿": 48175, + "elic": 48176, + "▁bibli": 48177, + "▁Ladies": 48178, + "▁Purchase": 48179, + "▁collateral": 48180, + "oucester": 48181, + "icultural": 48182, + "iJ": 48183, + "出路": 48184, + "▁feminine": 48185, + "▁Consulting": 48186, + "琉璃": 48187, + "▁Klein": 48188, + "unctional": 48189, + "自强": 48190, + "芹菜": 48191, + "Prob": 48192, + "▁als": 48193, + "nProt": 48194, + "German": 48195, + "▁Components": 48196, + "中式": 48197, + "喷雾": 48198, + "黄石": 48199, + "apo": 48200, + "的问题和": 48201, + "could": 48202, + "ovina": 48203, + "玩耍": 48204, + "▁pb": 48205, + "unal": 48206, + "▁Garcia": 48207, + "▁Leather": 48208, + "▁reversal": 48209, + "▁exploratory": 48210, + "▁Ober": 48211, + "元整": 48212, + "去过": 48213, + "月上": 48214, + "▁inherit": 48215, + "争霸": 48216, + "olla": 48217, + "▁Rew": 48218, + "▁Ethiopia": 48219, + "评测": 48220, + "大学学历": 48221, + "数额较大": 48222, + "▁stove": 48223, + "athyroid": 48224, + "▁renderer": 48225, + "▁(“": 48226, + "不论是": 48227, + "▁bacon": 48228, + "公因式": 48229, + "FileSync": 48230, + "▁aerobic": 48231, + "▁kidneys": 48232, + "离散": 48233, + "▁RUN": 48234, + "MEM": 48235, + "▁cf": 48236, + "文化传媒": 48237, + "nFrank": 48238, + "▁Revenue": 48239, + "▁deceased": 48240, + "tRE": 48241, + "▁broch": 48242, + "▁navbar": 48243, + "▁Oslo": 48244, + "▁commitments": 48245, + "淡水": 48246, + "工作时间": 48247, + "▁HVAC": 48248, + "▁Romanized": 48249, + "▁synchronization": 48250, + "相较": 48251, + "categor": 48252, + "▁picnic": 48253, + "executor": 48254, + "nDefinition": 48255, + "▁deliveries": 48256, + "一子": 48257, + "第二款": 48258, + "企事业单位": 48259, + "建设有限公司": 48260, + "▁Dashboard": 48261, + "▁exceptionally": 48262, + "$$(": 48263, + "otta": 48264, + "▁endorsed": 48265, + "男士": 48266, + "送货": 48267, + "对人体": 48268, + "美联储": 48269, + "▁boiling": 48270, + "wm": 48271, + "可将": 48272, + "uku": 48273, + "▁arrows": 48274, + "▁weighing": 48275, + "▁Resistance": 48276, + "食盐": 48277, + "接受了": 48278, + "imited": 48279, + "▁Forex": 48280, + "Another": 48281, + "▁pylori": 48282, + "▁hostname": 48283, + "东山": 48284, + "发售": 48285, + "魔鬼": 48286, + "▁BM": 48287, + "arte": 48288, + "带入": 48289, + "VK": 48290, + "特产": 48291, + "用在": 48292, + "然后将": 48293, + "alli": 48294, + "称赞": 48295, + "▁Pray": 48296, + "▁Thu": 48297, + "教育培训": 48298, + "▁dissect": 48299, + "员的": 48300, + "鲜艳": 48301, + "那个人": 48302, + "公用": 48303, + "lfloor": 48304, + "tclass": 48305, + "Records": 48306, + "▁upside": 48307, + "▁english": 48308, + "亩产": 48309, + "nice": 48310, + "xd": 48311, + "谁的": 48312, + "发展到": 48313, + "发病率": 48314, + "可行的": 48315, + "武功": 48316, + "ninstall": 48317, + "余款": 48318, + "都想": 48319, + "keepers": 48320, + "▁Miguel": 48321, + "法定代理人": 48322, + "▁quilt": 48323, + "}\",\\": 48324, + "成立以来": 48325, + "LOCAL": 48326, + "▁Isaac": 48327, + "▁pulls": 48328, + "▁justified": 48329, + "DEVELOPMENT": 48330, + "sett": 48331, + "nus": 48332, + "itee": 48333, + "▁Fas": 48334, + "Party": 48335, + "▁lamps": 48336, + "▁Hotels": 48337, + "八章": 48338, + "私立": 48339, + "cosx": 48340, + "nameof": 48341, + "▁extinct": 48342, + ">)<": 48343, + "厘米的": 48344, + "有限的": 48345, + "▁Mood": 48346, + "▁wells": 48347, + "assadors": 48348, + "istorical": 48349, + "裙子": 48350, + "▁QR": 48351, + "▁bounce": 48352, + "▁irrelevant": 48353, + "▁(~": 48354, + "Bench": 48355, + "▁Prices": 48356, + "▁Improvement": 48357, + "首家": 48358, + "我爱你": 48359, + "▁omitted": 48360, + "▁Seed": 48361, + "西山": 48362, + ">\\'\\": 48363, + "────": 48364, + "申请复议": 48365, + "这是一种": 48366, + "proving": 48367, + "▁Administrator": 48368, + "供货": 48369, + "闵行": 48370, + "毛主席": 48371, + "的坐标": 48372, + "▁输出格式": 48373, + "三条之规定": 48374, + "foreign": 48375, + "▁Fiction": 48376, + "执勤": 48377, + "洽谈": 48378, + "鸡精": 48379, + "dong": 48380, + "实践活动": 48381, + "▁erad": 48382, + "powers": 48383, + "terror": 48384, + "starting": 48385, + "▁shuttle": 48386, + "Something": 48387, + "▁downward": 48388, + "▁negligible": 48389, + "▁permutations": 48390, + "惩处": 48391, + "}$)": 48392, + "▁pens": 48393, + "物流有限公司": 48394, + "▁Laplace": 48395, + "▁Dimension": 48396, + "▁unfortunate": 48397, + "干旱": 48398, + "protobuf": 48399, + "WIDTH": 48400, + "nCommon": 48401, + "▁Batman": 48402, + "▁brokers": 48403, + "征字": 48404, + "\\\\\\'": 48405, + "▁delegates": 48406, + "▁revisions": 48407, + "传授": 48408, + "坦白": 48409, + "egan": 48410, + "Steps": 48411, + "▁发行日期": 48412, + "▁glucocortic": 48413, + "以防": 48414, + "Fre": 48415, + "▁Dob": 48416, + "▁PRE": 48417, + "▁Proxy": 48418, + "▁lubric": 48419, + "右上": 48420, + "穿搭": 48421, + "本案移送": 48422, + "▁输入格式": 48423, + "▁debuts": 48424, + "▁Carroll": 48425, + "▁Purpose": 48426, + "▁activates": 48427, + "▁semantics": 48428, + "nTw": 48429, + "如果一个": 48430, + "成为中国": 48431, + "▁theor": 48432, + "品位": 48433, + "存续": 48434, + "柔毛": 48435, + "肉质": 48436, + "这部剧": 48437, + "▁Wear": 48438, + "▁pastor": 48439, + "▁Balance": 48440, + "▁exhibiting": 48441, + "alsy": 48442, + "▁crowded": 48443, + "▁morphine": 48444, + "▁medicinal": 48445, + "忽悠": 48446, + "消极": 48447, + "高大": 48448, + "人才的": 48449, + "▁Accounting": 48450, + "核查": 48451, + "点半": 48452, + "民事执行中": 48453, + "nFigure": 48454, + "▁grouping": 48455, + "▁congestion": 48456, + "▁动物": 48457, + "ocin": 48458, + "▁Renaissance": 48459, + "Pan": 48460, + "文明的": 48461, + "nMiss": 48462, + "▁retic": 48463, + "encrypt": 48464, + "▁deprec": 48465, + "城关": 48466, + "blade": 48467, + "党和": 48468, + "二氧化碳": 48469, + "大学英语": 48470, + "资本市场": 48471, + "Polygon": 48472, + "eteenth": 48473, + "日向本院提出申请": 48474, + "赶到": 48475, + "节点的": 48476, + "▁UAE": 48477, + "▁messy": 48478, + "厨师": 48479, + "同仁": 48480, + "学院的": 48481, + "工商局": 48482, + "软硬件": 48483, + "安全管理": 48484, + "▁immunoglobulin": 48485, + "单品": 48486, + "arde": 48487, + "▁heel": 48488, + "nAsian": 48489, + "▁tributary": 48490, + "▁BUS": 48491, + "nTags": 48492, + "▁dumb": 48493, + "自诉": 48494, + "精神和": 48495, + "个体工商户": 48496, + "▁hourly": 48497, + "Utilities": 48498, + "看我": 48499, + "Cop": 48500, + "就算了": 48501, + "金华市": 48502, + "skill": 48503, + "Pressed": 48504, + "▁layered": 48505, + "▁accumulate": 48506, + "的超": 48507, + "纠错": 48508, + "nAnal": 48509, + "▁flesh": 48510, + "▁Speech": 48511, + "主料": 48512, + "efe": 48513, + "hg": 48514, + "民字第": 48515, + "▁debates": 48516, + "▁Inspector": 48517, + "打磨": 48518, + "元减半收取": 48519, + "▁Monster": 48520, + "四人": 48521, + "闹钟": 48522, + "过滤器": 48523, + "写在": 48524, + "所有人都": 48525, + "ITHUB": 48526, + "▁dick": 48527, + "February": 48528, + "▁enjoyment": 48529, + "▁explosive": 48530, + "碱性": 48531, + "▁Liquid": 48532, + "▁enamel": 48533, + "▁Elements": 48534, + "编排": 48535, + "ERSION": 48536, + "▁Lecture": 48537, + "临界": 48538, + "流氓": 48539, + "可视化": 48540, + "的感情": 48541, + "▁Copper": 48542, + "精装": 48543, + "lys": 48544, + "}/{": 48545, + "Hour": 48546, + "核酸检测": 48547, + "▁Drew": 48548, + "nVisit": 48549, + "值得一提的是": 48550, + "后被": 48551, + "日趋": 48552, + "▁tendon": 48553, + "Presenter": 48554, + "Annotations": 48555, + "大腿": 48556, + "荔枝": 48557, + "土地上": 48558, + "的习惯": 48559, + "▁depicted": 48560, + "▁livestock": 48561, + "▁Sacramento": 48562, + "★★": 48563, + "平均数": 48564, + "▁Bulld": 48565, + "▁Gujar": 48566, + "infection": 48567, + "合伙人": 48568, + "▁microtub": 48569, + "气球": 48570, + "缓期": 48571, + "▁Xen": 48572, + "Distribution": 48573, + "义词": 48574, + "字号": 48575, + "拿了": 48576, + "一切都": 48577, + "大家好": 48578, + "住湖南省": 48579, + "▁EDIT": 48580, + "Nothing": 48581, + "端午": 48582, + "ILS": 48583, + "inho": 48584, + "blogs": 48585, + "ycles": 48586, + "Ox": 48587, + "赶快": 48588, + "文明建设": 48589, + "itches": 48590, + "levels": 48591, + "imetric": 48592, + "典雅": 48593, + "采取了": 48594, + "episode": 48595, + "▁protagon": 48596, + "古老": 48597, + "石墨": 48598, + "使用者": 48599, + "▁apo": 48600, + "▁Berry": 48601, + "flatten": 48602, + "▁listened": 48603, + "▁securely": 48604, + "理学": 48605, + "离合": 48606, + "紊乱": 48607, + "顺应": 48608, + "他表示": 48609, + "可以做": 48610, + "可直接": 48611, + ")\")\\": 48612, + "edic": 48613, + "▁MON": 48614, + "▁voter": 48615, + "▁Important": 48616, + "▁resolving": 48617, + "兴隆": 48618, + "Mean": 48619, + "▁AST": 48620, + "FALSE": 48621, + "布斯": 48622, + "膝盖": 48623, + "自营": 48624, + "▁Pizza": 48625, + "▁synchronized": 48626, + "▁法": 48627, + "接纳": 48628, + "▁};": 48629, + "Been": 48630, + "▁rhs": 48631, + "共产党员": 48632, + "developers": 48633, + "石灰": 48634, + "以上就是": 48635, + "步步": 48636, + "这才": 48637, + "tfinal": 48638, + "第一百五十四条第一款第十一项": 48639, + "底蕴": 48640, + "林果": 48641, + "▁Westminster": 48642, + "埔寨": 48643, + "nPhot": 48644, + "▁Mesh": 48645, + "▁Reset": 48646, + "▁Indigenous": 48647, + "江北": 48648, + "知名的": 48649, + "▁SSD": 48650, + "cleaned": 48651, + "字节": 48652, + "美德": 48653, + "Wave": 48654, + "subsection": 48655, + "一言": 48656, + "敬请": 48657, + "扣押其": 48658, + "Hide": 48659, + "ilog": 48660, + "LEMENT": 48661, + "idable": 48662, + "▁civic": 48663, + "ococcal": 48664, + "制定了": 48665, + "短期内": 48666, + "▁Mueller": 48667, + "楼市": 48668, + "被骗": 48669, + "ono": 48670, + "lact": 48671, + "▁Yemen": 48672, + "段的": 48673, + "viz": 48674, + "bola": 48675, + "▁replaces": 48676, + "Robert": 48677, + "▁Quest": 48678, + "▁Caucas": 48679, + "Starting": 48680, + "▁endurance": 48681, + "海事": 48682, + "modify": 48683, + "▁sewing": 48684, + "мо": 48685, + "突击": 48686, + "罕见": 48687, + "宝宝的": 48688, + "本院依照": 48689, + "硬盘容量": 48690, + "▁Guarant": 48691, + "▁billions": 48692, + "洗浴": 48693, + "疏松": 48694, + "政策和": 48695, + "如果你是": 48696, + "强制措施": 48697, + "本月": 48698, + "花样": 48699, + "公元前": 48700, + "nEst": 48701, + "坐着": 48702, + "这个词": 48703, + "▁连载网站": 48704, + "▁Claire": 48705, + "▁remedy": 48706, + "▁Kenneth": 48707, + "▁plotting": 48708, + "▁reproduced": 48709, + "解说": 48710, + "▁();\\": 48711, + "歷史": 48712, + "白头": 48713, + "防汛": 48714, + "的人来说": 48715, + "直辖": 48716, + "▁Modi": 48717, + "Computer": 48718, + "▁terminus": 48719, + "▁Configure": 48720, + "▁根据": 48721, + "nPRO": 48722, + "formats": 48723, + "Rh": 48724, + "的供述": 48725, + "▁advertisements": 48726, + "▁mr": 48727, + "及应用": 48728, + "nQue": 48729, + "startup": 48730, + "PNG": 48731, + "dpi": 48732, + "nLand": 48733, + "▁Peer": 48734, + "setTimeout": 48735, + "王的": 48736, + "▁ppm": 48737, + "Operating": 48738, + "药用": 48739, + "在未来": 48740, + "▁fragile": 48741, + "区人民政府": 48742, + "ortical": 48743, + "ég": 48744, + "思想的": 48745, + "▁disjoint": 48746, + "两端": 48747, + "▁ICT": 48748, + "纪检监察": 48749, + "▁emitted": 48750, + "umberland": 48751, + "影响力的": 48752, + "nDutch": 48753, + "▁vanity": 48754, + "▁backbone": 48755, + "▁Typically": 48756, + "▁summation": 48757, + "能看到": 48758, + "▁mappings": 48759, + "▁reflective": 48760, + "▁到": 48761, + "财产刑": 48762, + "▁Dani": 48763, + "▁coch": 48764, + "合击": 48765, + "cpy": 48766, + "第二种": 48767, + "▁hats": 48768, + "probably": 48769, + "碳酸": 48770, + "保修卡": 48771, + "ewish": 48772, + "▁songwriter": 48773, + "邂逅": 48774, + "身份证号": 48775, + "askets": 48776, + "teacher": 48777, + "▁memoir": 48778, + "▁writings": 48779, + "▁CHAR": 48780, + "closures": 48781, + "KM": 48782, + "▁Arr": 48783, + "▁rhet": 48784, + "▁艾": 48785, + "体型": 48786, + "萃取": 48787, + "骨质": 48788, + "▁Drama": 48789, + "▁panor": 48790, + "▁repeats": 48791, + "▁secretory": 48792, + "▁antidepress": 48793, + "细化": 48794, + "追缴": 48795, + "▁NW": 48796, + "▁地点": 48797, + "partum": 48798, + "▁Meyer": 48799, + "但对": 48800, + "收支": 48801, + "ntz": 48802, + "解题思路": 48803, + "想必": 48804, + "BOT": 48805, + "}))\\": 48806, + "cis": 48807, + "Gate": 48808, + "ophen": 48809, + "▁Hern": 48810, + "▁Owner": 48811, + "▁alcoholic": 48812, + "▁olfactory": 48813, + "▁originating": 48814, + "*{": 48815, + "参数的": 48816, + "输入法": 48817, + "ayed": 48818, + "▁Phen": 48819, + "父子": 48820, + "Fund": 48821, + "信息咨询": 48822, + "或直接向": 48823, + "Indicator": 48824, + "▁defended": 48825, + "▁eliminates": 48826, + "indle": 48827, + "teams": 48828, + "ainless": 48829, + "▁imagined": 48830, + "▁playlist": 48831, + "▁charities": 48832, + "▁clarification": 48833, + "的房屋": 48834, + "▁Coc": 48835, + "▁loos": 48836, + "minton": 48837, + "▁glaucoma": 48838, + "保洁": 48839, + "allic": 48840, + "▁Richardson": 48841, + "嫉妒": 48842, + "前所未": 48843, + "收到了": 48844, + "日因涉嫌": 48845, + "▁chase": 48846, + "Through": 48847, + "▁creamy": 48848, + "气流": 48849, + "▁Iraqi": 48850, + "▁villa": 48851, + "利害": 48852, + "▁glimp": 48853, + "劳人": 48854, + "和县": 48855, + "意义上": 48856, + "新民": 48857, + "难的": 48858, + "stmt": 48859, + "倾听": 48860, + "家装": 48861, + "撞击": 48862, + "重叠": 48863, + "顺畅": 48864, + "iffe": 48865, + "Slider": 48866, + "▁coached": 48867, + "杀害": 48868, + "▁analogues": 48869, + "亲身": 48870, + "随手": 48871, + "本次活动": 48872, + "pliers": 48873, + "▁lively": 48874, + "▁knocked": 48875, + "▁diamonds": 48876, + "奴隶": 48877, + "▁Kaw": 48878, + "▁Fergus": 48879, + "▁Chronic": 48880, + "$$)": 48881, + "▁/\\": 48882, + "为导向": 48883, + "▁Tong": 48884, + "nJournal": 48885, + "screenshot": 48886, + "▁neutrophils": 48887, + "少先": 48888, + "而有": 48889, + "的新型": 48890, + "红楼梦": 48891, + "舒适的": 48892, + "enzie": 48893, + "▁Actions": 48894, + "▁ASP": 48895, + "咨询医生": 48896, + "合同的": 48897, + "柬埔寨": 48898, + "▁borough": 48899, + "看看吧": 48900, + "nspec": 48901, + "低级": 48902, + "米尔": 48903, + "京剧": 48904, + "护栏": 48905, + "ATIVE": 48906, + "andez": 48907, + "▁cafe": 48908, + "▁Amanda": 48909, + "▁glimpse": 48910, + "向其": 48911, + "故依照": 48912, + "▁Odd": 48913, + "▁[{\\": 48914, + "不予支持": 48915, + "blood": 48916, + "▁choir": 48917, + "▁Buenos": 48918, + "▁dancer": 48919, + "掌声": 48920, + "概论": 48921, + "防盗": 48922, + "在没有": 48923, + "}/${": 48924, + "二次根式": 48925, + "Rotation": 48926, + "▁messenger": 48927, + "iste": 48928, + "▁spoon": 48929, + "▁wreck": 48930, + "▁appeals": 48931, + "▁beginners": 48932, + "的努力": 48933, + "Skip": 48934, + "申请执行人刘": 48935, + "▁immuno": 48936, + "▁caffeine": 48937, + "▁chickens": 48938, + "▁stimulates": 48939, + "溶性": 48940, + "▁wip": 48941, + "Friend": 48942, + "▁depot": 48943, + "▁drawer": 48944, + "According": 48945, + "界限": 48946, + "nOK": 48947, + "Square": 48948, + "enhanced": 48949, + "意为": 48950, + "预热": 48951, + "带领下": 48952, + "日期间": 48953, + "rounded": 48954, + "readlines": 48955, + "山顶": 48956, + "Tur": 48957, + "▁音乐": 48958, + "每一天": 48959, + "▁Estonia": 48960, + "力气": 48961, + "不具有": 48962, + "Blob": 48963, + "▁mould": 48964, + "南充": 48965, + "坚果": 48966, + "▁Ek": 48967, + "多少人": 48968, + "颁发的": 48969, + "remember": 48970, + "▁predictable": 48971, + "火热": 48972, + "的工资": 48973, + "▁mascul": 48974, + "firstName": 48975, + "在我看来": 48976, + "opent": 48977, + "coffee": 48978, + "▁citations": 48979, + "北极": 48980, + "洛杉": 48981, + "都得": 48982, + "▁dd": 48983, + "但还是": 48984, + "告诉我们": 48985, + "▁textile": 48986, + "岛屿": 48987, + "痘痘": 48988, + "▁Lav": 48989, + "▁Sig": 48990, + "▁zebra": 48991, + "▁Hospit": 48992, + "▁spices": 48993, + "▁obstructive": 48994, + "不受申请执行时效期间的限制": 48995, + "得太": 48996, + "高管": 48997, + "▁frost": 48998, + "▁Fortunately": 48999, + "状元": 49000, + "不平衡": 49001, + "绿化率": 49002, + "▁Pharmac": 49003, + "ributable": 49004, + "红花": 49005, + "oren": 49006, + "▁insult": 49007, + "▁partitions": 49008, + "itzer": 49009, + "▁WORK": 49010, + "uti": 49011, + "▁Occup": 49012, + "covered": 49013, + "尼克": 49014, + "山脉": 49015, + "应是": 49016, + "清淡": 49017, + "▁NET": 49018, + "nLine": 49019, + "▁hasht": 49020, + "designated": 49021, + "▁disasters": 49022, + "了我的": 49023, + "▁genital": 49024, + "▁BJP": 49025, + "▁Vil": 49026, + "Assign": 49027, + "iry": 49028, + "停留在": 49029, + "('\\\\": 49030, + "▁optimistic": 49031, + "我不想": 49032, + "flip": 49033, + "▁Morr": 49034, + "▁pend": 49035, + "nadmin": 49036, + "▁Utility": 49037, + "声誉": 49038, + "车内": 49039, + "▁存储": 49040, + "▁dull": 49041, + "▁fing": 49042, + "_)": 49043, + "屏障": 49044, + "往上": 49045, + "高产": 49046, + "二〇一六年八月": 49047, + "私营": 49048, + "INAL": 49049, + "▁Ski": 49050, + "▁Classes": 49051, + "▁polling": 49052, + "▁Discrete": 49053, + "▁canceled": 49054, + "▁neutrophil": 49055, + "#:": 49056, + "JR": 49057, + "▁圣": 49058, + "出版时间": 49059, + "▁polo": 49060, + "中国人民解放军": 49061, + "国有企业": 49062, + "▁Persian": 49063, + "▁welding": 49064, + "谁是": 49065, + "▁*,": 49066, + "中的一": 49067, + "▁eyel": 49068, + "oultry": 49069, + "▁Barnes": 49070, + "▁blended": 49071, + "orientation": 49072, + "调剂": 49073, + "鼓舞": 49074, + "精确到": 49075, + "▁Americas": 49076, + "▁aperture": 49077, + "▁ε": 49078, + "房东": 49079, + "让它": 49080, + "信息服务": 49081, + "▁ubiquitous": 49082, + "和建议": 49083, + "故本案": 49084, + "高效的": 49085, + "意义上的": 49086, + "成形": 49087, + "PAT": 49088, + "因此在": 49089, + "daemon": 49090, + "战绩": 49091, + "▁Gender": 49092, + "▁Slovenia": 49093, + "原地": 49094, + "创新型": 49095, + "由已知": 49096, + "hbar": 49097, + "rfloor": 49098, + "▁Memphis": 49099, + "▁attained": 49100, + "微波炉": 49101, + ">',\\": 49102, + "esty": 49103, + "▁Rhe": 49104, + "▁Away": 49105, + "节课": 49106, + "马里": 49107, + "和完善": 49108, + "nParticip": 49109, + "▁observers": 49110, + "arb": 49111, + "你现在": 49112, + "注射液": 49113, + "▁Neo": 49114, + "cleanup": 49115, + "▁Canvas": 49116, + "▁Exhibition": 49117, + "▁hypertrophy": 49118, + "求法": 49119, + "▁Cycle": 49120, + "▁opted": 49121, + "属于中档题": 49122, + "▁marsh": 49123, + "▁forecasting": 49124, + "主义者": 49125, + "的整体": 49126, + "nMary": 49127, + "▁hardest": 49128, + "▁ecosystems": 49129, + "年终": 49130, + "rax": 49131, + "命令行": 49132, + "▁Dawn": 49133, + "\":[],\"": 49134, + "▁Routes": 49135, + "浑身": 49136, + "▁Sau": 49137, + "▁Swe": 49138, + "野生动物": 49139, + "ceans": 49140, + "ensed": 49141, + "划拨被执行人": 49142, + "▁commence": 49143, + "差分": 49144, + "▁об": 49145, + "不忘初心": 49146, + "Manifest": 49147, + "棕色": 49148, + "双人间": 49149, + "CASE": 49150, + "▁Cul": 49151, + "▁vow": 49152, + "▁catar": 49153, + "strained": 49154, + "repreneur": 49155, + "▁typename": 49156, + "▁displaced": 49157, + "agrangian": 49158, + "nOriginal": 49159, + "金的": 49160, + "元素的": 49161, + "公安部": 49162, + "包含一个": 49163, + "▁Ellen": 49164, + "▁garner": 49165, + "有效期": 49166, + "▁carn": 49167, + "▁autoc": 49168, + "▁primer": 49169, + "Kg": 49170, + "几句": 49171, + "▁KeyError": 49172, + "变现": 49173, + "庞大": 49174, + "给被告": 49175, + "▁beers": 49176, + "▁detox": 49177, + "▁StringBuilder": 49178, + "▁NSA": 49179, + "Motor": 49180, + "embedded": 49181, + "proportion": 49182, + "间断": 49183, + "作出裁定": 49184, + "本身就是": 49185, + "血液循环": 49186, + "executable": 49187, + "领先的": 49188, + "apro": 49189, + "Magic": 49190, + "▁scanf": 49191, + "▁locksmith": 49192, + "▁registering": 49193, + "jd": 49194, + "上部": 49195, + "真情": 49196, + "Sleep": 49197, + "▁multis": 49198, + "▁chopped": 49199, + "号称": 49200, + "ilis": 49201, + "明显高于": 49202, + "Literal": 49203, + "architecture": 49204, + "▁下": 49205, + "不一致": 49206, + "vens": 49207, + "北斗": 49208, + "婷婷": 49209, + "conc": 49210, + "axial": 49211, + "exter": 49212, + "▁audi": 49213, + "▁Shield": 49214, + "用书": 49215, + "geries": 49216, + "▁Highland": 49217, + "▁В": 49218, + "交集": 49219, + "Fig": 49220, + "tur": 49221, + "rosse": 49222, + "▁Pixel": 49223, + "iropractic": 49224, + "▁reproducible": 49225, + "年末": 49226, + "提要": 49227, + "都是有": 49228, + "进一步提高": 49229, + "▁longtime": 49230, + "嘲笑": 49231, + "纸上": 49232, + "椭圆的": 49233, + "等行业": 49234, + "Shadow": 49235, + "▁collaborated": 49236, + "lane": 49237, + "olone": 49238, + "riages": 49239, + "▁blogger": 49240, + "ufficiency": 49241, + "或缺": 49242, + "沿线": 49243, + "需在": 49244, + "PIN": 49245, + "▁Cs": 49246, + "流产": 49247, + "一些人": 49248, + "倾城": 49249, + "▁Onc": 49250, + "停车服务": 49251, + "nArgent": 49252, + "▁Markets": 49253, + "rav": 49254, + "抗氧化": 49255, + "(\"\");\\": 49256, + "▁hunger": 49257, + "▁posture": 49258, + "▁Pipeline": 49259, + "出锅": 49260, + "友人": 49261, + "▁Santiago": 49262, + "▁wheelchair": 49263, + "oye": 49264, + "上发表": 49265, + "不是说": 49266, + "须经": 49267, + "ystone": 49268, + "▁comfortably": 49269, + "典范": 49270, + "晓明": 49271, + "渊博": 49272, + "Wire": 49273, + "nTeam": 49274, + "▁ignor": 49275, + "Positive": 49276, + "▁terminate": 49277, + "vels": 49278, + "比较好的": 49279, + "中西医结合": 49280, + "▁Claim": 49281, + "▁legislature": 49282, + "修补": 49283, + "须知": 49284, + "▁Boat": 49285, + "▁Glenn": 49286, + "▁grief": 49287, + "▁Instrument": 49288, + "]^": 49289, + "磁场": 49290, + "结果是": 49291, + "ctomy": 49292, + "▁nause": 49293, + "▁surrender": 49294, + "▁delightful": 49295, + "狠狠": 49296, + "讲的": 49297, + "▁Seq": 49298, + "nDeaths": 49299, + "▁Cornwall": 49300, + "▁blown": 49301, + "constraint": 49302, + "上个": 49303, + "天数": 49304, + "率领": 49305, + "▁declining": 49306, + "ISBN": 49307, + "nStarting": 49308, + "等价": 49309, + "▁tutor": 49310, + "▁ligament": 49311, + "也无": 49312, + "fluor": 49313, + "▁Structural": 49314, + "现实的": 49315, + "▁经营状态": 49316, + "profiles": 49317, + "东侧": 49318, + "帅气": 49319, + "想起来": 49320, + "▁CUR": 49321, + "京都": 49322, + "mmm": 49323, + "抗击": 49324, + "▁fucked": 49325, + "nBeetles": 49326, + "符合法定减刑条件": 49327, + "宽敞": 49328, + "perl": 49329, + "horse": 49330, + "DataType": 49331, + "▁戴": 49332, + "来访": 49333, + "等候": 49334, + "铅笔": 49335, + "我以为": 49336, + "▁Joshua": 49337, + "▁Mapping": 49338, + "交友": 49339, + "▁四川": 49340, + "▁PKC": 49341, + "▁Cisco": 49342, + "/`": 49343, + "开局": 49344, + "血栓": 49345, + "biz": 49346, + "中的一个": 49347, + "▁spends": 49348, + "postgresql": 49349, + "凡是": 49350, + "tum": 49351, + "▁RP": 49352, + "reed": 49353, + "▁Leslie": 49354, + "▁waited": 49355, + "▁Editorial": 49356, + "温室": 49357, + "了一点": 49358, + "科科长": 49359, + "墙壁": 49360, + "时应": 49361, + "就在于": 49362, + "nLive": 49363, + "▁Desk": 49364, + "better": 49365, + "▁Fusion": 49366, + "上人": 49367, + "▁rc": 49368, + "▁Boost": 49369, + "gettext": 49370, + "▁princess": 49371, + "▁斯": 49372, + "卫东": 49373, + "的她": 49374, + "▁Fake": 49375, + "▁Emirates": 49376, + "的车辆": 49377, + "建筑设计": 49378, + "nQual": 49379, + "填报": 49380, + "尚可": 49381, + "度高": 49382, + "日被告": 49383, + "本裁定书送达后立即执行": 49384, + "▁comprehension": 49385, + "北上": 49386, + "的重量": 49387, + "转换为": 49388, + "工程设计": 49389, + "▁Shower": 49390, + "▁Hardware": 49391, + "▁titanium": 49392, + "än": 49393, + "▁\"#{": 49394, + "不能提供": 49395, + "▁Para": 49396, + "Configure": 49397, + "▁attracting": 49398, + "▁peritoneal": 49399, + "围棋": 49400, + "推测": 49401, + "▁Ey": 49402, + "colored": 49403, + "molecular": 49404, + "为国家": 49405, + "ceral": 49406, + "▁argu": 49407, + "相关法律规定": 49408, + "▁rooted": 49409, + "高水平": 49410, + "▁Seminar": 49411, + "▁coatings": 49412, + "快要": 49413, + "杰克": 49414, + "金奖": 49415, + "ijn": 49416, + "计算方法": 49417, + "izarre": 49418, + "红酒": 49419, + "霸王": 49420, + "quisites": 49421, + "位居": 49422, + "lez": 49423, + "iani": 49424, + "▁COPD": 49425, + "LOGGER": 49426, + "Destination": 49427, + "▁announcing": 49428, + "▁异": 49429, + "披针": 49430, + "ikk": 49431, + "}`\\": 49432, + "▁[:": 49433, + "anan": 49434, + "▁repay": 49435, + "▁tensions": 49436, + "擦拭": 49437, + "antis": 49438, + "nfind": 49439, + "山人": 49440, + "巴克": 49441, + "项的": 49442, + "Union": 49443, + "▁kicks": 49444, + "时会": 49445, + "根源": 49446, + "生生": 49447, + "advert": 49448, + "linking": 49449, + "▁relieve": 49450, + "▁recession": 49451, + "MH": 49452, + "末端": 49453, + "必要性": 49454, + "第一种": 49455, + "inki": 49456, + "▁homolog": 49457, + "存的": 49458, + "etches": 49459, + "findOne": 49460, + "nChoose": 49461, + "▁dialect": 49462, + "▁ophthal": 49463, + "▁Bangalore": 49464, + "格拉": 49465, + "男孩子": 49466, + "iris": 49467, + "▁Foods": 49468, + "评判": 49469, + "Trip": 49470, + "▁Cake": 49471, + "▁Gerald": 49472, + "lpatterns": 49473, + "▁overload": 49474, + "螺纹": 49475, + "科研成果": 49476, + "nRecipients": 49477, + "得意": 49478, + "村内": 49479, + "特区": 49480, + "成功率": 49481, + "▁pulp": 49482, + "Receiver": 49483, + "▁pointers": 49484, + "往返": 49485, + "网盘": 49486, + "iesel": 49487, + "kinson": 49488, + "▁Cuban": 49489, + "号刑事附带民事": 49490, + "▁monocytes": 49491, + "按下": 49492, + "ahi": 49493, + "oors": 49494, + "食品药品": 49495, + "▁ging": 49496, + "voltage": 49497, + "台中": 49498, + "了一套": 49499, + "umbia": 49500, + "生了": 49501, + "▁Gren": 49502, + "▁数据范围": 49503, + "▁pitched": 49504, + "▁thoughtful": 49505, + "主频": 49506, + "朝廷": 49507, + "▁Mist": 49508, + "Clause": 49509, + "局域": 49510, + "Know": 49511, + "和我们": 49512, + "可以申请": 49513, + "qualified": 49514, + "就是你": 49515, + "ierre": 49516, + "海棠": 49517, + "菠萝": 49518, + "研究对象": 49519, + "church": 49520, + "▁colspan": 49521, + "▁Karnataka": 49522, + "[_": 49523, + "Easy": 49524, + "astom": 49525, + "pletely": 49526, + "prisingly": 49527, + "画质": 49528, + "软骨": 49529, + "我一个": 49530, + "▁Flying": 49531, + "▁commerce": 49532, + "有感": 49533, + "沙拉": 49534, + "几分钟": 49535, + "▁Nissan": 49536, + "▁interstitial": 49537, + "▁nanot": 49538, + "▁undoubtedly": 49539, + "上千": 49540, + "偿付": 49541, + "四是": 49542, + "回升": 49543, + "通关": 49544, + "无明显": 49545, + "▁handic": 49546, + "KY": 49547, + "trait": 49548, + "propTypes": 49549, + "interactive": 49550, + "▁disappointing": 49551, + "的性能": 49552, + "▁splash": 49553, + "▁comorbid": 49554, + "▁spotlight": 49555, + "tList": 49556, + "中国邮政储蓄银行股份有限公司": 49557, + "店面": 49558, + "曾用": 49559, + "rats": 49560, + "总和": 49561, + "过硬": 49562, + "(((": 49563, + "mAh": 49564, + "▁Xia": 49565, + "▁Dong": 49566, + "财产的规定": 49567, + "▁Writer": 49568, + "heduling": 49569, + "▁Bloomberg": 49570, + "扩建": 49571, + "西县": 49572, + "同底数": 49573, + "▁Luxem": 49574, + "nMusical": 49575, + "wc": 49576, + "风俗": 49577, + "怎么能": 49578, + "tcontinue": 49579, + "写入": 49580, + "数千": 49581, + "闪烁": 49582, + "时间是": 49583, + "洛杉矶": 49584, + "ereg": 49585, + "colum": 49586, + "cephal": 49587, + "全能": 49588, + "旗帜": 49589, + "<>(": 49590, + "在同一": 49591, + "▁aforementioned": 49592, + "喇叭": 49593, + "录用": 49594, + "惊人": 49595, + "鉴定意见": 49596, + "▁parentheses": 49597, + "王世": 49598, + "支付货款": 49599, + "nDay": 49600, + "上诉人的": 49601, + "住所地北京市": 49602, + "▁endfor": 49603, + "internet": 49604, + "排气": 49605, + "毛孔": 49606, + "▁nb": 49607, + "▁со": 49608, + "▁flick": 49609, + "初恋": 49610, + "王者荣耀": 49611, + "orate": 49612, + "ourmet": 49613, + "势头": 49614, + "cellent": 49615, + "强制性": 49616, + "▁IDs": 49617, + "▁outper": 49618, + "Introduction": 49619, + "▁bb": 49620, + "在里面": 49621, + "我不会": 49622, + "旅游业": 49623, + "toxic": 49624, + "▁corticoster": 49625, + "交替": 49626, + "南阳": 49627, + "点缀": 49628, + "opo": 49629, + "slow": 49630, + "▁Muk": 49631, + "Robot": 49632, + "ramer": 49633, + "Millis": 49634, + "蕴含": 49635, + "大家都知道": 49636, + "▁capita": 49637, + "石膏": 49638, + "nJeff": 49639, + "▁Kurt": 49640, + "平装": 49641, + "田径": 49642, + "喜欢你": 49643, + "▁suspicion": 49644, + "JA": 49645, + "不再是": 49646, + "oload": 49647, + "▁Clock": 49648, + "▁undes": 49649, + "▁brakes": 49650, + "排在": 49651, + "降水": 49652, + "▁fox": 49653, + "万个": 49654, + "物证": 49655, + "▁Lauren": 49656, + "▁Mechanics": 49657, + "Ng": 49658, + "文集": 49659, + "Ball": 49660, + "认真学习": 49661, + "bestos": 49662, + "▁Dating": 49663, + "arthritis": 49664, + "脸色": 49665, + "ndefine": 49666, + "本草": 49667, + "hui": 49668, + "▁已注销": 49669, + "ADMIN": 49670, + "▁Poetry": 49671, + "LCD": 49672, + "OVA": 49673, + "充电器": 49674, + "▁lottery": 49675, + "丹麦": 49676, + "五官": 49677, + "利用率": 49678, + "业内人士": 49679, + "▁Putin": 49680, + "▁Armstrong": 49681, + "宝藏": 49682, + "意识的": 49683, + "Templates": 49684, + "▁veterinary": 49685, + "▁Observatory": 49686, + "▁PY": 49687, + "掌握了": 49688, + "▁**[": 49689, + "产业结构": 49690, + "▁amazed": 49691, + "▁sticking": 49692, + "difference": 49693, + "·\\": 49694, + "为己": 49695, + "医用": 49696, + "yson": 49697, + "列出方程": 49698, + "okine": 49699, + "化管理": 49700, + "▁chalk": 49701, + "▁encodes": 49702, + "▁unpredict": 49703, + "STA": 49704, + "最适合": 49705, + "itals": 49706, + "cookies": 49707, + "文具": 49708, + "执民字第": 49709, + "exact": 49710, + "oracle": 49711, + "货架": 49712, + "▁apical": 49713, + "▁relocated": 49714, + "ABS": 49715, + "罪犯改造": 49716, + "nucle": 49717, + "hadoop": 49718, + "理论的": 49719, + "enne": 49720, + "这部电影": 49721, + "nAccess": 49722, + "▁unaffected": 49723, + "单片": 49724, + "但是你": 49725, + "▁Tet": 49726, + "个人信息": 49727, + "▁staged": 49728, + "▁radioactive": 49729, + "缘分": 49730, + "nLaw": 49731, + "市场竞争": 49732, + "▁registers": 49733, + "▁satellites": 49734, + "ís": 49735, + "wav": 49736, + "sects": 49737, + "EXPORT": 49738, + "▁onclick": 49739, + "外婆": 49740, + "和自己": 49741, + "▁Idea": 49742, + "igmoid": 49743, + "▁dialing": 49744, + "▁emotionally": 49745, + "▁spontaneously": 49746, + "采摘": 49747, + "进行判断": 49748, + "▁公司简介": 49749, + "▁triglycer": 49750, + "▁Profession": 49751, + "但她": 49752, + "光大": 49753, + "厂的": 49754, + "fessor": 49755, + "otions": 49756, + "▁attacker": 49757, + "Raises": 49758, + "challenge": 49759, + "拨打": 49760, + "输了": 49761, + "这首": 49762, + "想办法": 49763, + "▁labs": 49764, + "aptops": 49765, + "inside": 49766, + "▁chill": 49767, + "REN": 49768, + "年以上": 49769, + "INSTALL": 49770, + "outines": 49771, + "第七十二条第一款": 49772, + "第一百四十五条宣判前": 49773, + "▁后": 49774, + "esp": 49775, + "▁Ferm": 49776, + "动词": 49777, + "新款": 49778, + "月球": 49779, + "chaft": 49780, + "▁Surrey": 49781, + "▁Advisor": 49782, + "▁Regression": 49783, + "▁signalling": 49784, + "刊登": 49785, + "哔哩": 49786, + "▁LHC": 49787, + "取消预订": 49788, + "sandbox": 49789, + "保姆": 49790, + "拼接": 49791, + "玩了": 49792, + "聆听": 49793, + "▁dryer": 49794, + "想像": 49795, + "ogon": 49796, + "▁readme": 49797, + "▁洪": 49798, + "全额": 49799, + "写字楼": 49800, + "▁{})": 49801, + "项目管理": 49802, + "▁freed": 49803, + "▁Ethics": 49804, + "太湖": 49805, + "有据": 49806, + "可以参考": 49807, + "becca": 49808, + "▁Employment": 49809, + "▁Silva": 49810, + "Drawing": 49811, + "▁asleep": 49812, + "▁Flowers": 49813, + "▁abandon": 49814, + "▁hilarious": 49815, + "FK": 49816, + "广义": 49817, + "的的": 49818, + "要加强": 49819, + "配置文件": 49820, + "▁daytime": 49821, + "▁Activities": 49822, + "游乐": 49823, + "▁Extended": 49824, + "nPublications": 49825, + "宜兴": 49826, + "登山": 49827, + "粤语": 49828, + "haz": 49829, + "Hidden": 49830, + "▁parity": 49831, + "▁proactive": 49832, + "nUK": 49833, + "和研究": 49834, + "▁Legacy": 49835, + "Scheduler": 49836, + "喂养": 49837, + "护照": 49838, + "邮电": 49839, + "基本都是": 49840, + "▁excision": 49841, + "▁Gö": 49842, + "acos": 49843, + "上诉理由": 49844, + "撤诉条件": 49845, + "▁acne": 49846, + "Examples": 49847, + "春晚": 49848, + "予以查封": 49849, + "SciNet": 49850, + "早年": 49851, + "设备和": 49852, + "▁PRs": 49853, + "ffffff": 49854, + "▁tales": 49855, + "抉择": 49856, + "招募": 49857, + "肉类": 49858, + "▁Ronald": 49859, + "▁scholarships": 49860, + "MLE": 49861, + "本院将依法": 49862, + "判处有期徒刑三年": 49863, + "不惜": 49864, + "开后": 49865, + "▁Rid": 49866, + "用户体验": 49867, + "▁burns": 49868, + "▁diode": 49869, + "Workflow": 49870, + "throughput": 49871, + "并由": 49872, + "房租": 49873, + "螃蟹": 49874, + "({\\\\": 49875, + "deck": 49876, + "▁gri": 49877, + "pherd": 49878, + "▁Geoff": 49879, + "▁surnames": 49880, + "▁Outstanding": 49881, + "▁biologically": 49882, + "皮质": 49883, + "预后": 49884, + "城市建设": 49885, + "金融服务": 49886, + "▁rede": 49887, + "ACTION": 49888, + "▁Flower": 49889, + "▁swallow": 49890, + "▁Armed": 49891, + "▁Handler": 49892, + "▁expands": 49893, + "▁dominance": 49894, + "mA": 49895, + "一瓶": 49896, + "还剩": 49897, + "▁HH": 49898, + "▁lamb": 49899, + "▁relied": 49900, + "▁盐": 49901, + "或多": 49902, + "盛宴": 49903, + "和预先": 49904, + "▁vivid": 49905, + "▁Eventually": 49906, + "苯丙": 49907, + "istar": 49908, + "的名": 49909, + "▁inh": 49910, + "▁Owen": 49911, + "▁\\'\\')\\": 49912, + "迹象": 49913, + "TING": 49914, + "▁prospectively": 49915, + "四次": 49916, + "Jet": 49917, + "下来了": 49918, + "arance": 49919, + "cash": 49920, + "客户提供": 49921, + "范围内的": 49922, + "routing": 49923, + "▁tumorigen": 49924, + "球菌": 49925, + "mak": 49926, + "知道自己": 49927, + "组织开展": 49928, + "▁stromal": 49929, + "刀具": 49930, + "▁适宜环境": 49931, + "一圈": 49932, + "▁/\\\\": 49933, + "▁anomaly": 49934, + "▁microphone": 49935, + "▁cultivation": 49936, + "买车": 49937, + "▁Lots": 49938, + "graphs": 49939, + "▁immense": 49940, + "▁nx": 49941, + "adoc": 49942, + "arctica": 49943, + "conscious": 49944, + "gis": 49945, + "andin": 49946, + "▁THEY": 49947, + "金黄": 49948, + "IPO": 49949, + "Jax": 49950, + "实际行动": 49951, + "联系电话": 49952, + "▁seized": 49953, + "▁playwright": 49954, + "HOW": 49955, + "如果能": 49956, + "明确了": 49957, + "的时候就": 49958, + "nCase": 49959, + "toHave": 49960, + "▁Bened": 49961, + "▁omega": 49962, + "▁endothelium": 49963, + "▁Subscription": 49964, + "印花": 49965, + "▁Peg": 49966, + "▁strept": 49967, + "▁wishing": 49968, + "不打": 49969, + "本科学历": 49970, + "trust": 49971, + "cessing": 49972, + "不同类型的客房": 49973, + "▁atypical": 49974, + "▁longitude": 49975, + "▁pathologic": 49976, + "nmsg": 49977, + "umped": 49978, + "reating": 49979, + "nSwedish": 49980, + "▁Cardinals": 49981, + "但又": 49982, + "向来": 49983, + "刑事案件": 49984, + "Chris": 49985, + "▁replica": 49986, + "显微镜": 49987, + "巴基斯坦": 49988, + "songwriter": 49989, + "机和": 49990, + "nTO": 49991, + "医疗费": 49992, + "▁卫生间": 49993, + "▁Brigade": 49994, + "Az": 49995, + "巡查": 49996, + "definitions": 49997, + "亲近": 49998, + "非物质": 49999, + "历时": 50000, + "限量": 50001, + "Mix": 50002, + "Qual": 50003, + "的一系列": 50004, + "▁puzzles": 50005, + "▁Lighting": 50006, + "omorphisms": 50007, + "EMP": 50008, + "当事人陈述": 50009, + "SEARCH": 50010, + "▁thigh": 50011, + "余姚": 50012, + "遗迹": 50013, + "其主要": 50014, + "▁OEM": 50015, + "animate": 50016, + "capital": 50017, + "▁culinary": 50018, + "▁predicate": 50019, + "可信": 50020, + "IVATE": 50021, + "ovanni": 50022, + "到我": 50023, + "直肠": 50024, + "是不能": 50025, + "▁ABS": 50026, + "▁relational": 50027, + "将有": 50028, + "细则": 50029, + "长生": 50030, + "▁peg": 50031, + "rites": 50032, + "▁Arduino": 50033, + "▁curated": 50034, + "▁gesture": 50035, + "mbic": 50036, + "▁\"/\"": 50037, + "▁Tir": 50038, + "▁Illustr": 50039, + "forgettable": 50040, + "图画": 50041, + "Nov": 50042, + "在工作": 50043, + "Advanced": 50044, + "otoxicity": 50045, + "▁Customers": 50046, + "▁山": 50047, + "向上的": 50048, + "▁Quadr": 50049, + "▁anxious": 50050, + "李白": 50051, + "为一个": 50052, + "▁aws": 50053, + "uggage": 50054, + "内饰": 50055, + "无私": 50056, + "确切": 50057, + "nhere": 50058, + "ucceed": 50059, + "▁patents": 50060, + "▁resembles": 50061, + "周长是": 50062, + "nMike": 50063, + "▁Ernest": 50064, + "▁Spotify": 50065, + "▁lecturer": 50066, + "IQ": 50067, + "中队": 50068, + "双语": 50069, + "有你": 50070, + "▁Ace": 50071, + "当地时间": 50072, + "▁gratitude": 50073, + "植树": 50074, + "Mah": 50075, + "riad": 50076, + "付费政策": 50077, + "▁antico": 50078, + "addClass": 50079, + "▁aneurysm": 50080, + "▁交通信息": 50081, + "劳动人事争议": 50082, + "▁osteoporosis": 50083, + "失调": 50084, + "随地": 50085, + "aning": 50086, + "▁Newport": 50087, + "▁prostagland": 50088, + "七个": 50089, + "同样是": 50090, + "Song": 50091, + "刑一": 50092, + "穴位": 50093, + "形势下": 50094, + "附带不同的": 50095, + "▁Designed": 50096, + "附带不同的取消预订": 50097, + "不同类型的客房附带不同的取消预订": 50098, + "假命题": 50099, + "的不是": 50100, + "劣势": 50101, + "悬疑": 50102, + "桥镇": 50103, + "▁dehyd": 50104, + "▁multin": 50105, + "和预先付费政策": 50106, + "便可": 50107, + "农牧": 50108, + "对任意": 50109, + "▁blades": 50110, + "▁decorate": 50111, + "口岸": 50112, + "yrus": 50113, + "止血": 50114, + "福特": 50115, + "shan": 50116, + "iku": 50117, + "力资源": 50118, + "ortal": 50119, + "▁所获荣誉": 50120, + "nBrazilian": 50121, + "三代": 50122, + "睡前": 50123, + "AMI": 50124, + "`:\\": 50125, + "视为放弃": 50126, + "▁racist": 50127, + "▁adviser": 50128, + "nArticles": 50129, + "为宜": 50130, + "平平": 50131, + "此文": 50132, + "▁XI": 50133, + "nJoh": 50134, + "death": 50135, + "信用卡纠纷一案": 50136, + "造纸": 50137, + "▁Hels": 50138, + "within": 50139, + "可求": 50140, + "过错": 50141, + "▁COR": 50142, + "▁continental": 50143, + "岁了": 50144, + "等职": 50145, + "▁AU": 50146, + "▁江苏": 50147, + "公共服务": 50148, + "nGive": 50149, + "NullOr": 50150, + "相伴": 50151, + "TERN": 50152, + "以上资料": 50153, + "▁menstr": 50154, + "jc": 50155, + "iele": 50156, + "▁striker": 50157, + "▁eccentric": 50158, + "打好": 50159, + "众多的": 50160, + "有所帮助": 50161, + "▁mkdir": 50162, + "jm": 50163, + "军团": 50164, + "▁dol": 50165, + "建筑装饰": 50166, + "olvers": 50167, + "ytical": 50168, + "▁Comedy": 50169, + "▁BI": 50170, + "▁dic": 50171, + "损害赔偿": 50172, + "款人民币": 50173, + "▁bonuses": 50174, + "▁assertion": 50175, + "轻度": 50176, + "辩证": 50177, + "▁IQ": 50178, + "▁accountable": 50179, + "prox": 50180, + "国度": 50181, + "▁方法": 50182, + "的保护": 50183, + "周围景观": 50184, + "▁amet": 50185, + "Manage": 50186, + "▁clamp": 50187, + "▁Tutorial": 50188, + "setAttribute": 50189, + "而行": 50190, + "赢了": 50191, + "罪犯陈": 50192, + "▁ECG": 50193, + "深层": 50194, + "清市": 50195, + "演化": 50196, + "BOX": 50197, + "陌生的": 50198, + "农业人口": 50199, + "regions": 50200, + "脱水": 50201, + "腌制": 50202, + "nBooks": 50203, + "▁moistur": 50204, + "办公楼": 50205, + "ndev": 50206, + "peated": 50207, + "成功了": 50208, + "▁ole": 50209, + "▁spp": 50210, + "▁phyt": 50211, + "▁allograft": 50212, + ">*": 50213, + "日夜": 50214, + "获胜": 50215, + "ravel": 50216, + "▁\\')\\": 50217, + "▁crap": 50218, + "二〇一六年五月": 50219, + "庄园": 50220, + "暧昧": 50221, + "amon": 50222, + "enin": 50223, + "ário": 50224, + "▁dislike": 50225, + "▁competit": 50226, + "上岸": 50227, + "formatted": 50228, + "**": 50229, + "一站式": 50230, + "基督教": 50231, + "扬州市": 50232, + "quarters": 50233, + "▁parasites": 50234, + "▁强": 50235, + "配上": 50236, + "的战略": 50237, + "osyl": 50238, + "tdouble": 50239, + "▁clutter": 50240, + "下巴": 50241, + "儒家": 50242, + "抗辩": 50243, + "方块": 50244, + "临床上": 50245, + "ATES": 50246, + "mathsf": 50247, + "receiver": 50248, + "▁synchronous": 50249, + "▁esp": 50250, + "游戏加载": 50251, + "paced": 50252, + "▁stamps": 50253, + "▁observable": 50254, + "听听": 50255, + "纵横中文网": 50256, + "metics": 50257, + "▁Jesse": 50258, + "▁Logan": 50259, + "▁steadily": 50260, + "各组": 50261, + "几个人": 50262, + "▁Into": 50263, + "iscopal": 50264, + "▁subclass": 50265, + "▁phosphorus": 50266, + "果汁": 50267, + "枣庄": 50268, + "限额": 50269, + "马桶": 50270, + "此题考查了": 50271, + "delegate": 50272, + "▁sleeves": 50273, + "加了": 50274, + "的动作": 50275, + "nVer": 50276, + "改造期间": 50277, + "wares": 50278, + "▁trainers": 50279, + "▁hepatocytes": 50280, + "草坪": 50281, + "compet": 50282, + "▁Gibson": 50283, + "是单": 50284, + "极值": 50285, + "在今年": 50286, + "▁Sob": 50287, + "brush": 50288, + "alignment": 50289, + "▁Armenian": 50290, + "送达之日起发生法律效力": 50291, + "供暖": 50292, + "变色": 50293, + "古镇": 50294, + "yyyy": 50295, + "▁endings": 50296, + "▁laughing": 50297, + "觉得很": 50298, + "▁realizing": 50299, + "▁privileges": 50300, + "▁拉": 50301, + "住房和": 50302, + "Hero": 50303, + "alamus": 50304, + "▁heavier": 50305, + "nActually": 50306, + "特大": 50307, + "queries": 50308, + "▁bubbles": 50309, + "responses": 50310, + "▁Dominican": 50311, + "phen": 50312, + "耕地面积": 50313, + "nuser": 50314, + "washer": 50315, + "▁Harold": 50316, + "图为": 50317, + "得住": 50318, + "蔷薇": 50319, + "}},\\": 50320, + "但它": 50321, + "什么叫": 50322, + "接受的": 50323, + "▁COM": 50324, + "▁Sib": 50325, + "▁Zip": 50326, + "返还借款": 50327, + "▁Strat": 50328, + "▁spins": 50329, + "ouncing": 50330, + "▁tragic": 50331, + "▁illumination": 50332, + "读卡": 50333, + "vtk": 50334, + "聚合物": 50335, + "Blocks": 50336, + "▁rails": 50337, + "珠江": 50338, + "▁ye": 50339, + "▁cirrhosis": 50340, + "友们": 50341, + "有以下": 50342, + "arrays": 50343, + "取向": 50344, + "流星": 50345, + "ndb": 50346, + "▁overly": 50347, + "textless": 50348, + "▁supporter": 50349, + "NOTE": 50350, + "按年利率": 50351, + "India": 50352, + "▁Ideal": 50353, + "▁filament": 50354, + "▁diastolic": 50355, + "倾向于": 50356, + "分数线": 50357, + "nWeb": 50358, + "期盼": 50359, + "母婴": 50360, + "自习": 50361, + "角和": 50362, + "▁chapel": 50363, + "▁truncated": 50364, + "}%": 50365, + "htaking": 50366, + "二〇一五年六月": 50367, + "▁Citizens": 50368, + "år": 50369, + "元钱": 50370, + "投身": 50371, + "起飞": 50372, + "打造的": 50373, + "十一个月": 50374, + "▁nasty": 50375, + "recipes": 50376, + "▁pyramid": 50377, + "agin": 50378, + "orel": 50379, + "乌鲁木齐市": 50380, + "▁Intermediate": 50381, + "四位": 50382, + "批次": 50383, + "证据材料": 50384, + "分析法": 50385, + "圆柱的": 50386, + "idis": 50387, + "共和": 50388, + "IEnum": 50389, + "textgreater": 50390, + "JC": 50391, + "路易": 50392, + "Nom": 50393, + "▁Hex": 50394, + "Weather": 50395, + "▁quartz": 50396, + "▁frontend": 50397, + "▁senators": 50398, + "缺口": 50399, + "列方程": 50400, + "是一场": 50401, + "chester": 50402, + "▁keratin": 50403, + "coins": 50404, + "hurst": 50405, + "的最佳选择": 50406, + "考量": 50407, + "酒后驾驶": 50408, + "▁Mint": 50409, + "前任": 50410, + "综合素质": 50411, + "BEGIN": 50412, + "Aggreg": 50413, + "▁scenic": 50414, + "▁craftsm": 50415, + "真假": 50416, + "的一位": 50417, + "奥林匹克": 50418, + "▁puls": 50419, + "arying": 50420, + "▁furnish": 50421, + "▁deprivation": 50422, + "售出": 50423, + "hedron": 50424, + "龙岗": 50425, + "免费的停车服务": 50426, + "acceptable": 50427, + "▁inpatient": 50428, + "回路": 50429, + "ONY": 50430, + "Wil": 50431, + "Insp": 50432, + "artifactId": 50433, + "▁therapists": 50434, + "▁intracranial": 50435, + "▁CDC": 50436, + "▁OSI": 50437, + "执行和解协议": 50438, + "▁tackles": 50439, + "▁comedian": 50440, + "▁dropdown": 50441, + "▁freelance": 50442, + "▁Algorithms": 50443, + "▁dissolution": 50444, + "▁drastically": 50445, + "▁CW": 50446, + "▁flor": 50447, + "委员会主任": 50448, + "celain": 50449, + "▁孟": 50450, + "征信": 50451, + "就能够": 50452, + "Bits": 50453, + "▁Bangkok": 50454, + "Detection": 50455, + "▁…\\": 50456, + "▁第五十": 50457, + "▁PyQt": 50458, + "▁blob": 50459, + "▁jersey": 50460, + "▁atrophy": 50461, + "Australia": 50462, + "▁endangered": 50463, + "定额": 50464, + "内部的": 50465, + "▁sanit": 50466, + "America": 50467, + "nUnless": 50468, + "▁Legion": 50469, + "▁inertia": 50470, + "▁invention": 50471, + "tpar": 50472, + "▁txt": 50473, + "▁amelior": 50474, + "àn": 50475, + "电影节": 50476, + "澄清": 50477, + "萨尔": 50478, + "独一无": 50479, + "keyboard": 50480, + "▁parseInt": 50481, + "不息": 50482, + "菱形": 50483, + "▁通过": 50484, + "▁RSA": 50485, + "▁Malta": 50486, + "▁Scroll": 50487, + "Typography": 50488, + "hematically": 50489, + "的去": 50490, + "高出": 50491, + "▁ric": 50492, + "▁archaeological": 50493, + "收治": 50494, + "而对于": 50495, + "ATIC": 50496, + "ilinear": 50497, + "▁Electro": 50498, + "ativistic": 50499, + "不平": 50500, + "ungs": 50501, + "▁Exit": 50502, + "▁withstand": 50503, + "ít": 50504, + "石榴": 50505, + "▁coral": 50506, + "▁jokes": 50507, + "灌注": 50508, + "osta": 50509, + "相关负责人": 50510, + "▁fines": 50511, + "身份证复印件": 50512, + "▁Binding": 50513, + "好好的": 50514, + "▁timeless": 50515, + "▁criminals": 50516, + "上层": 50517, + "变质": 50518, + "▁浴室": 50519, + "按规定": 50520, + "Coin": 50521, + "\\')}}": 50522, + "tensorflow": 50523, + "前台": 50524, + "金额为": 50525, + "opez": 50526, + "nCollege": 50527, + "同济": 50528, + "沙特": 50529, + "▁Ji": 50530, + "wife": 50531, + "▁Koch": 50532, + "▁encompasses": 50533, + "惠民": 50534, + "黑人": 50535, + "obo": 50536, + "同时在": 50537, + "是否能": 50538, + "▁Dogs": 50539, + "嘿嘿": 50540, + "意识和": 50541, + "issu": 50542, + "▁Closed": 50543, + "了一句": 50544, + "调研员": 50545, + "摇头": 50546, + "oki": 50547, + "▁thi": 50548, + "anian": 50549, + "▁Atom": 50550, + "tenham": 50551, + "matplotlib": 50552, + "上百": 50553, + "唐朝": 50554, + "社会学": 50555, + "alin": 50556, + "长期以来": 50557, + "Arrow": 50558, + "有管辖权的": 50559, + "descriptor": 50560, + "思议": 50561, + "的模式": 50562, + "Logs": 50563, + "ByteArray": 50564, + "少爷": 50565, + "真的太": 50566, + "这种人": 50567, + "驻马店": 50568, + "▁septic": 50569, + "震动": 50570, + "首相": 50571, + "即便是": 50572, + "▁Troy": 50573, + "Producer": 50574, + "▁stretched": 50575, + "▁Apparently": 50576, + "▁aggression": 50577, + "插座": 50578, + "沸腾": 50579, + "装潢": 50580, + "但我们": 50581, + "▁Excellent": 50582, + "有三": 50583, + "穷尽": 50584, + "opping": 50585, + "大成": 50586, + "委书记": 50587, + "vertices": 50588, + "像我": 50589, + "海涛": 50590, + "utilities": 50591, + "为正": 50592, + "卫浴": 50593, + "的再审申请": 50594, + "derabad": 50595, + "bbox": 50596, + "odon": 50597, + "Receive": 50598, + "合规": 50599, + "optic": 50600, + "▁boarding": 50601, + "于法": 50602, + "好久": 50603, + "ест": 50604, + "▁Lap": 50605, + "▁reductase": 50606, + "nPoliticians": 50607, + "天鹅": 50608, + "斯顿": 50609, + "超声波": 50610, + "▁Mile": 50611, + "athlon": 50612, + "▁Sector": 50613, + "Disabled": 50614, + "▁elicited": 50615, + "aphylococcus": 50616, + "与时": 50617, + "沐浴": 50618, + "▁refinement": 50619, + "▁nonetheless": 50620, + "六大": 50621, + "指点": 50622, + "carousel": 50623, + "借钱": 50624, + "截面": 50625, + "尚欠原告": 50626, + "▁EGFR": 50627, + "olding": 50628, + "▁regimes": 50629, + "▁usability": 50630, + "真的有": 50631, + "▁novo": 50632, + "▁motifs": 50633, + "▁Musical": 50634, + "不改": 50635, + "恋人": 50636, + "oulder": 50637, + "▁economically": 50638, + "脸部": 50639, + "的趋势": 50640, + "▁Crypto": 50641, + "沧海": 50642, + "白雪": 50643, + "制定的": 50644, + "▁Chin": 50645, + "ListView": 50646, + "physical": 50647, + "再算": 50648, + "异味": 50649, + "水性": 50650, + "Sat": 50651, + "▁Trou": 50652, + "▁aggress": 50653, + "▁inverted": 50654, + "佩服": 50655, + "而知": 50656, + "指挥部": 50657, + "▁Rig": 50658, + "直接利用": 50659, + "nAvailable": 50660, + "精髓": 50661, + "草木": 50662, + "三位数": 50663, + "紧接着": 50664, + "▁liquids": 50665, + "Specification": 50666, + "想了": 50667, + "请注意": 50668, + "达不到": 50669, + "Fall": 50670, + "Plugins": 50671, + "有异议": 50672, + "比亚迪": 50673, + "▁HEL": 50674, + "Relative": 50675, + "esModule": 50676, + "produced": 50677, + "主要由": 50678, + "arga": 50679, + "<>\\": 50680, + "aways": 50681, + "nPrint": 50682, + "……………………": 50683, + "但从": 50684, + "tgl": 50685, + "filer": 50686, + "oprop": 50687, + "▁phylogenetic": 50688, + "理化": 50689, + "▁Recruit": 50690, + "老头": 50691, + "脱颖": 50692, + "CPP": 50693, + "cake": 50694, + "的方程为": 50695, + "cemic": 50696, + "▁getId": 50697, + "Blank": 50698, + "▁sher": 50699, + "another": 50700, + "▁mindset": 50701, + "pv": 50702, + "VersionUID": 50703, + "▁polarized": 50704, + "华山": 50705, + "坚固": 50706, + "多篇": 50707, + "富豪": 50708, + "花香": 50709, + "▁rodent": 50710, + "▁trigonometric": 50711, + "PQ": 50712, + "wu": 50713, + "си": 50714, + "fade": 50715, + "二〇一七年七月": 50716, + "当他": 50717, + "折射": 50718, + "vern": 50719, + "所需要的": 50720, + "mirror": 50721, + "plicate": 50722, + "▁Mercury": 50723, + "▁transgender": 50724, + "八大": 50725, + "时而": 50726, + "manship": 50727, + "▁Monica": 50728, + "▁invoked": 50729, + "冷的": 50730, + "昆山": 50731, + "REM": 50732, + "▁Gel": 50733, + "Because": 50734, + "Routing": 50735, + "oplasty": 50736, + "▁Transit": 50737, + "[^": 50738, + "写明": 50739, + "双方约定": 50740, + "▁Cult": 50741, + "▁urls": 50742, + "relations": 50743, + "▁shoppers": 50744, + "▁submarine": 50745, + "做一些": 50746, + "▁Bes": 50747, + "▁multitude": 50748, + "原先": 50749, + "器和": 50750, + "张国": 50751, + "曙光": 50752, + "ecd": 50753, + "ения": 50754, + "▁Bean": 50755, + "▁Animals": 50756, + "等腰三角形": 50757, + "▁shortcut": 50758, + "▁Regardless": 50759, + "药剂": 50760, + "▁Dj": 50761, + "▁Sessions": 50762, + "▁morphism": 50763, + "▁章": 50764, + "声称": 50765, + "逃脱": 50766, + "ticks": 50767, + "▁salon": 50768, + "▁alpine": 50769, + "▁Robertson": 50770, + "ollar": 50771, + "腹痛": 50772, + "飞速": 50773, + "ADA": 50774, + "ensors": 50775, + "▁renders": 50776, + "▁announcements": 50777, + "Ren": 50778, + "事件的": 50779, + ")**(": 50780, + "书面答辩": 50781, + "▁plaus": 50782, + "speaking": 50783, + "定居": 50784, + "开着": 50785, + "杰伦": 50786, + "必要时": 50787, + "signup": 50788, + "▁affirm": 50789, + "▁Cognitive": 50790, + "▁forthcoming": 50791, + "▁physiologic": 50792, + "Ans": 50793, + "也会有": 50794, + "新华网": 50795, + "▁ATM": 50796, + "没有约定": 50797, + "▁hect": 50798, + "▁doctoral": 50799, + "▁demolished": 50800, + "不离": 50801, + "直立": 50802, + "名词审定委员会": 50803, + "记作": 50804, + "党总支": 50805, + "让更多": 50806, + "nInvest": 50807, + "mV": 50808, + "埃尔": 50809, + "}\\\\)(": 50810, + "同伴": 50811, + "露天": 50812, + "多少个": 50813, + "▁sturdy": 50814, + "什么事": 50815, + "的工具": 50816, + "▁Lon": 50817, + "生活质量": 50818, + "▁plag": 50819, + "peptide": 50820, + "accuracy": 50821, + "禁用": 50822, + "\"})\\": 50823, + "▁jewellery": 50824, + "▁neuropath": 50825, + "审阅": 50826, + "甲乙": 50827, + "羽绒": 50828, + "▁DT": 50829, + "nHappy": 50830, + "▁Marin": 50831, + "萨斯": 50832, + "pgf": 50833, + "glyph": 50834, + "▁humble": 50835, + "Declaration": 50836, + "}`;\\": 50837, + "▁dividend": 50838, + "人造": 50839, + "巧合": 50840, + "]));\\": 50841, + "▁Pret": 50842, + "▁职业生涯": 50843, + "ogenes": 50844, + "advanced": 50845, + "▁internship": 50846, + "▁introductory": 50847, + "▁Stephanie": 50848, + "▁gardening": 50849, + "开店": 50850, + "isValid": 50851, + "▁geography": 50852, + "▁reinforce": 50853, + "星际": 50854, + "见于": 50855, + "系列的": 50856, + "▁fulfilling": 50857, + "qr": 50858, + "城管": 50859, + "▁mixer": 50860, + "▁curtain": 50861, + "▁opacity": 50862, + "jee": 50863, + "▁Cry": 50864, + "直接影响": 50865, + "▁spectroscopic": 50866, + "龙的": 50867, + "Advisor": 50868, + "▁bespoke": 50869, + "▁gradual": 50870, + "回调": 50871, + "大三": 50872, + "春日": 50873, + "nMag": 50874, + "变得更加": 50875, + "encers": 50876, + "党内": 50877, + "达尔": 50878, + "你喜欢": 50879, + "▁Greens": 50880, + "▁hackers": 50881, + "▁Accordingly": 50882, + "张艺": 50883, + "historic": 50884, + "▁ventral": 50885, + "凋亡": 50886, + "\"][": 50887, + "也都是": 50888, + "艺术品": 50889, + "▁McD": 50890, + "可以随时": 50891, + "rolet": 50892, + "Publisher": 50893, + "上台": 50894, + "思明": 50895, + "▁GU": 50896, + "laus": 50897, + "▁MUST": 50898, + "限制高消费": 50899, + "▁Angela": 50900, + "天台": 50901, + "干警": 50902, + "朱某": 50903, + "泌尿": 50904, + "闪电": 50905, + "▁Slack": 50906, + "▁pumpkin": 50907, + "nDistrict": 50908, + "打扫": 50909, + "浦区": 50910, + "Bug": 50911, + "nps": 50912, + "▁td": 50913, + "})$$": 50914, + "Average": 50915, + "▁coarse": 50916, + "nAgain": 50917, + "▁Walmart": 50918, + "勘探": 50919, + "环氧": 50920, + "的吧": 50921, + ">\";\\": 50922, + "▁syrup": 50923, + "夫妻感情确已破裂": 50924, + "▁meanings": 50925, + "▁philosophical": 50926, + "永康": 50927, + "gio": 50928, + "说白了": 50929, + "devel": 50930, + "社会抚养费征收": 50931, + "就是把": 50932, + "的法定": 50933, + "tiff": 50934, + "▁currencies": 50935, + "老了": 50936, + "谱曲": 50937, + "sap": 50938, + "农业部": 50939, + "电影院": 50940, + "等材料": 50941, + "▁gait": 50942, + "▁Breakfast": 50943, + "▁landscaping": 50944, + "交所": 50945, + "看重": 50946, + "拖拉机": 50947, + "柳州市": 50948, + "▁Journey": 50949, + "▁interpreter": 50950, + "量身": 50951, + "▁注意": 50952, + "▁Ply": 50953, + "目前为止": 50954, + "▁acre": 50955, + "▁参考资料": 50956, + "▁quark": 50957, + "▁happier": 50958, + "救护": 50959, + "习惯了": 50960, + "nDen": 50961, + "▁Progressive": 50962, + "给付义务": 50963, + "▁Lect": 50964, + "▁optics": 50965, + "▁festive": 50966, + "▁autonomy": 50967, + "▁foremost": 50968, + "▁Gospel": 50969, + "▁trophy": 50970, + "▁harvested": 50971, + "▁美": 50972, + "与他": 50973, + "已达": 50974, + "ahren": 50975, + "▁breadth": 50976, + "OV": 50977, + "Mus": 50978, + "保持着": 50979, + "epid": 50980, + "▁chemically": 50981, + "头顶": 50982, + "快三": 50983, + "县国土资源局": 50984, + "▁Modules": 50985, + "可以为": 50986, + "▁crews": 50987, + "奇特": 50988, + "请选择": 50989, + "Drag": 50990, + "uces": 50991, + "nowledg": 50992, + "theight": 50993, + "▁curtains": 50994, + "工件": 50995, + "Bed": 50996, + "▁bc": 50997, + "统计图": 50998, + "nLin": 50999, + "▁dangers": 51000, + "湖人": 51001, + "在学习": 51002, + "▁sandw": 51003, + "助推": 51004, + "苗木": 51005, + "以提高": 51006, + "满足了": 51007, + "Little": 51008, + "▁temples": 51009, + "后会": 51010, + "▁Eco": 51011, + "__))\\": 51012, + "METHOD": 51013, + "CCC": 51014, + "从而使": 51015, + "现代化的": 51016, + "▁Whereas": 51017, + "飞船": 51018, + "▁Elli": 51019, + "▁Walking": 51020, + "十几年": 51021, + "女主角": 51022, + "meal": 51023, + "文物保护": 51024, + "▁demonstrations": 51025, + "▁ф": 51026, + "契合": 51027, + "▁POL": 51028, + "▁歌曲语言": 51029, + "▁Coming": 51030, + "▁Davies": 51031, + "▁forensic": 51032, + "现今": 51033, + "脚踏": 51034, + "与方法": 51035, + "无统计学意义": 51036, + "▁Spider": 51037, + "hetamine": 51038, + "▁Reality": 51039, + "▁isotope": 51040, + "罚金限": 51041, + "Fake": 51042, + "▁libr": 51043, + "SPI": 51044, + "分子量": 51045, + "nEndemic": 51046, + "▁poisoning": 51047, + "▁organizers": 51048, + "主的": 51049, + "地为": 51050, + "极高": 51051, + "▁banana": 51052, + "不复": 51053, + "纳斯": 51054, + "▁palace": 51055, + "▁seafood": 51056, + "纹理": 51057, + "并同意": 51058, + "我看到": 51059, + "▁ICU": 51060, + "etting": 51061, + "▁Signature": 51062, + "祖先": 51063, + "钢笔": 51064, + "Merge": 51065, + "▁wasted": 51066, + "▁decoding": 51067, + "三边": 51068, + "宫廷": 51069, + "况且": 51070, + "▁普通": 51071, + "积累了": 51072, + "extern": 51073, + "nInteresting": 51074, + "的呢": 51075, + "▁AW": 51076, + "▁Ack": 51077, + "▁Fuel": 51078, + "▁vegg": 51079, + "vehicle": 51080, + "▁skating": 51081, + "▁mutagenesis": 51082, + "再次申请": 51083, + "▁datas": 51084, + "installer": 51085, + "上路": 51086, + "league": 51087, + "▁lactate": 51088, + "▁percentages": 51089, + "适用的": 51090, + "团员": 51091, + "既能": 51092, + "全村有": 51093, + "▁necklace": 51094, + "▁splicing": 51095, + "下面就": 51096, + "大有": 51097, + "一生的": 51098, + "nSport": 51099, + "nafter": 51100, + "▁Herald": 51101, + "です": 51102, + "eti": 51103, + "vee": 51104, + "券商": 51105, + "的量": 51106, + "香菜": 51107, + "Recipe": 51108, + "▁Vince": 51109, + "民进": 51110, + "STE": 51111, + "ntext": 51112, + "▁Deck": 51113, + "Maker": 51114, + "▁wasting": 51115, + "交谈": 51116, + "家家": 51117, + "用的是": 51118, + "ogenicity": 51119, + "响起": 51120, + "textit": 51121, + "被执行人应当": 51122, + "▁senator": 51123, + "▁imbalance": 51124, + "vv": 51125, + "会议上": 51126, + "诸葛亮": 51127, + "nSal": 51128, + "实施方案": 51129, + "Rating": 51130, + "harmonic": 51131, + "▁modulating": 51132, + "分院": 51133, + "(\":": 51134, + "容留他人吸毒": 51135, + "Intended": 51136, + "▁freshwater": 51137, + "▁正": 51138, + "打通": 51139, + "诊所": 51140, + "更喜欢": 51141, + "▁contracted": 51142, + "死者": 51143, + "犯非法": 51144, + "▁seismic": 51145, + "▁Photoshop": 51146, + "▁Fc": 51147, + "在整个": 51148, + "uracy": 51149, + "专业合作社": 51150, + "▁Brighton": 51151, + "周刊": 51152, + "序号": 51153, + "这种方式": 51154, + "▁Zoom": 51155, + "▁postal": 51156, + "▁雪": 51157, + "不完全": 51158, + "他们会": 51159, + "▁REL": 51160, + "▁Tah": 51161, + "第七十九": 51162, + "vergence": 51163, + "俊杰": 51164, + "我跟": 51165, + "种的": 51166, + "纯净": 51167, + "降至": 51168, + "colspan": 51169, + "▁genomes": 51170, + "▁counters": 51171, + "轰炸": 51172, + "aye": 51173, + "Disk": 51174, + "headed": 51175, + "EqualTo": 51176, + "nBetween": 51177, + "shutdown": 51178, + "白日": 51179, + "也是非常": 51180, + "高等院校": 51181, + "▁thru": 51182, + "适度": 51183, + "GRAM": 51184, + "▁portrayed": 51185, + "书名": 51186, + "排斥": 51187, + "相距": 51188, + "神州": 51189, + "▁XL": 51190, + "第三届": 51191, + "▁Quote": 51192, + "▁worrying": 51193, + "献血": 51194, + "下部": 51195, + "庭的": 51196, + "贫穷": 51197, + "esi": 51198, + "▁RFC": 51199, + "illet": 51200, + "和非": 51201, + "),": 51202, + "不就是": 51203, + "据介绍": 51204, + "Latest": 51205, + "enguin": 51206, + "▁ether": 51207, + "▁oscillator": 51208, + "CX": 51209, + "上饶": 51210, + "许昌": 51211, + "ampire": 51212, + "委托代理人刘": 51213, + "▁Revision": 51214, + "时被": 51215, + "ifs": 51216, + "▁MIC": 51217, + "orthy": 51218, + "▁Rebecca": 51219, + "▁behaviours": 51220, + "方向的": 51221, + "好不容易": 51222, + "Happy": 51223, + "nEcon": 51224, + "▁Effective": 51225, + "▁synthesize": 51226, + "舍不得": 51227, + "▁Batch": 51228, + "getTime": 51229, + "respect": 51230, + "位上的": 51231, + "}{{{": 51232, + "▁discs": 51233, + "▁supplemented": 51234, + "的组织": 51235, + "▁avec": 51236, + "▁Assuming": 51237, + "热心": 51238, + "通路": 51239, + "物理学": 51240, + "DIRS": 51241, + "Defined": 51242, + "▁neighbouring": 51243, + "▁冰": 51244, + "比是": 51245, + "有理数的": 51246, + "▁Pros": 51247, + "▁mediator": 51248, + "▁Wrestling": 51249, + "▁reflections": 51250, + "打野": 51251, + "火影": 51252, + "主要为": 51253, + "在回答": 51254, + "我的心": 51255, + "nNone": 51256, + "▁glycoprotein": 51257, + "十五年": 51258, + "回馈": 51259, + "手中的": 51260, + "的制作": 51261, + "Mont": 51262, + "▁Feder": 51263, + "▁learns": 51264, + "▁cigarettes": 51265, + "心力": 51266, + "rack": 51267, + "rens": 51268, + "▁有限公司": 51269, + "Respon": 51270, + "▁printers": 51271, + "▁professors": 51272, + "哈佛": 51273, + "指望": 51274, + "Collector": 51275, + "rika": 51276, + "terbury": 51277, + "平顶": 51278, + "得不": 51279, + "PEC": 51280, + "Than": 51281, + "ucking": 51282, + "▁rescued": 51283, + "切断": 51284, + "▁abc": 51285, + "enues": 51286, + "▁Ride": 51287, + "▁Attack": 51288, + "波特": 51289, + "▁för": 51290, + "coded": 51291, + "▁Lucy": 51292, + "或财产线索": 51293, + "orphic": 51294, + "▁Marina": 51295, + "▁chooses": 51296, + "▁inquiries": 51297, + "房权证": 51298, + "贫困户": 51299, + "nSil": 51300, + "征程": 51301, + "技术在": 51302, + "crow": 51303, + "fordable": 51304, + "▁terrific": 51305, + "桃园": 51306, + "▁exon": 51307, + "▁skate": 51308, + "nOnline": 51309, + "zegovina": 51310, + "▁payroll": 51311, + "▁animations": 51312, + "年到": 51313, + "▁($\\\\": 51314, + "French": 51315, + "CSV": 51316, + "SEQU": 51317, + "▁mediates": 51318, + "追寻": 51319, + "nWE": 51320, + "▁Eyes": 51321, + "日被取保候审": 51322, + "english": 51323, + "穿梭": 51324, + "OPLE": 51325, + "nDaniel": 51326, + "▁shoots": 51327, + "▁Fernando": 51328, + "ма": 51329, + "军训": 51330, + "ijay": 51331, + "slides": 51332, + "CAA": 51333, + "▁SAR": 51334, + "科研项目": 51335, + "▁scam": 51336, + "nRoyal": 51337, + "▁reconst": 51338, + "▁resemble": 51339, + "▁ascertain": 51340, + "▁crystalline": 51341, + "▁subcutaneous": 51342, + "文人": 51343, + "aryng": 51344, + "是一次": 51345, + "nant": 51346, + "文化建设": 51347, + "nFore": 51348, + "▁Trin": 51349, + "▁exploitation": 51350, + "吸取": 51351, + "Bud": 51352, + "天文学": 51353, + "暴力枚举": 51354, + "mable": 51355, + "另案": 51356, + "部级": 51357, + "全面发展": 51358, + "▁Harbour": 51359, + "▁vulnerabilities": 51360, + "完备": 51361, + "回来的": 51362, + "真实性": 51363, + "▁iPod": 51364, + "▁rotor": 51365, + "▁ticks": 51366, + "犯交通肇事罪": 51367, + "▁ecology": 51368, + "百里": 51369, + "而这": 51370, + "ATS": 51371, + "关于人民法院": 51372, + "▁envision": 51373, + "朴素": 51374, + "ande": 51375, + "▁Liz": 51376, + "outhern": 51377, + "Mor": 51378, + "展览会": 51379, + "长期的": 51380, + "Pacific": 51381, + "▁condom": 51382, + "▁intends": 51383, + "名列": 51384, + "vivo": 51385, + "▁umbrella": 51386, + "尽早": 51387, + "期满后": 51388, + "解除保全": 51389, + "']]],\\": 51390, + "做大": 51391, + "批复": 51392, + "算术": 51393, + "▁YES": 51394, + "▁Moss": 51395, + "桌上": 51396, + "开心的": 51397, + "集团的": 51398, + "刑满释放": 51399, + "投资基金": 51400, + "生产基地": 51401, + "Heart": 51402, + "mixed": 51403, + "▁Fraser": 51404, + "▁centralized": 51405, + "OnClickListener": 51406, + "费的": 51407, + "ozo": 51408, + "▁masc": 51409, + "nTable": 51410, + "▁braces": 51411, + "汇编": 51412, + "readLine": 51413, + "▁elegance": 51414, + "搜寻": 51415, + "生孩子": 51416, + "中对": 51417, + "尽情": 51418, + "nInc": 51419, + "▁dubbed": 51420, + "▁mathematician": 51421, + "结构性": 51422, + "drag": 51423, + "▁sunshine": 51424, + "口区": 51425, + "草药": 51426, + "enary": 51427, + "▁rustic": 51428, + "Creating": 51429, + "▁Windsor": 51430, + "bk": 51431, + "志明": 51432, + "秉持": 51433, + "教育工作": 51434, + "ediatric": 51435, + "中使用": 51436, + "机构和": 51437, + "athy": 51438, + "maint": 51439, + "▁canopy": 51440, + "▁oncology": 51441, + "松弛": 51442, + "淮南": 51443, + "Its": 51444, + "精神病": 51445, + "▁制作人": 51446, + "Buttons": 51447, + "好后": 51448, + "新春": 51449, + "Sol": 51450, + "投资的": 51451, + "▁ISSN": 51452, + "第一行包含": 51453, + "roducing": 51454, + "外围": 51455, + "抽奖": 51456, + "ruce": 51457, + "▁Lic": 51458, + "▁cosm": 51459, + "▁Makes": 51460, + "Working": 51461, + "▁genius": 51462, + "▁rainbow": 51463, + "花朵": 51464, + "▁Arrow": 51465, + "反应的": 51466, + "果园": 51467, + "中新网": 51468, + "社会各界": 51469, + "▁stains": 51470, + "heels": 51471, + "idual": 51472, + "▁cols": 51473, + "▁Adults": 51474, + "▁crying": 51475, + "▁Successful": 51476, + "柔性": 51477, + "毗邻": 51478, + "最大化": 51479, + "AAAAAAAA": 51480, + "▁exquisite": 51481, + "伸缩": 51482, + "迟迟": 51483, + "郊区": 51484, + "aiden": 51485, + "▁Mell": 51486, + "▁shadows": 51487, + "厂长": 51488, + "阻挡": 51489, + "▁rushed": 51490, + "▁worthwhile": 51491, + "的材料": 51492, + "\\\\({{": 51493, + "archy": 51494, + "▁Expo": 51495, + "▁caspase": 51496, + "QT": 51497, + "…(": 51498, + "投产": 51499, + "落日": 51500, + "DEV": 51501, + "中出现": 51502, + "并取得": 51503, + "esare": 51504, + "▁Cheap": 51505, + "▁divine": 51506, + "▁convincing": 51507, + "彝族": 51508, + "水土": 51509, + "领军": 51510, + "▁Kab": 51511, + "信息进行": 51512, + "认真分析": 51513, + "▁Reserv": 51514, + "▁Gur": 51515, + "▁Cornell": 51516, + "ение": 51517, + "由申请人": 51518, + "▁chiral": 51519, + "▁forefront": 51520, + "▁summarized": 51521, + "▁涛": 51522, + "哥们": 51523, + "Mel": 51524, + "ilda": 51525, + "▁Carp": 51526, + "▁yielding": 51527, + "▁Securities": 51528, + "rn": 51529, + "年薪": 51530, + "领导者": 51531, + "xing": 51532, + "▁Sterling": 51533, + "sx": 51534, + "极品": 51535, + "▁PID": 51536, + "atars": 51537, + "Notify": 51538, + "sizing": 51539, + "findAll": 51540, + "useEffect": 51541, + "盆地": 51542, + "mad": 51543, + "▁接口": 51544, + "▁unanim": 51545, + "▁nitrate": 51546, + "▁stacked": 51547, + "▁scholarly": 51548, + "▁Submission": 51549, + "▁interrupted": 51550, + "始于": 51551, + "影响因素": 51552, + "princ": 51553, + "▁USER": 51554, + "Amazon": 51555, + "▁notch": 51556, + "科学记数法的": 51557, + "▁Optical": 51558, + "▁boutique": 51559, + "店内": 51560, + "集资": 51561, + "ensation": 51562, + "nEducational": 51563, + "两类": 51564, + "被查封": 51565, + "nTurn": 51566, + "omnia": 51567, + "▁Pride": 51568, + "▁Protest": 51569, + "印证": 51570, + "了出来": 51571, + "安县人民法院": 51572, + "▁stranger": 51573, + "趋于": 51574, + "区域内": 51575, + "润滑油": 51576, + "unix": 51577, + "来往": 51578, + "挑战性的": 51579, + "提供一个": 51580, + "orers": 51581, + "NotExist": 51582, + "区人民检察院指控": 51583, + "▁questioning": 51584, + "奢华": 51585, + "小板": 51586, + "西医": 51587, + "instead": 51588, + "▁indexing": 51589, + "▁加": 51590, + "万辆": 51591, + "InM": 51592, + "neo": 51593, + "Chinese": 51594, + "valence": 51595, + "formations": 51596, + "▁triggering": 51597, + "__)": 51598, + "apk": 51599, + "egal": 51600, + "TYPES": 51601, + "▁Malay": 51602, + "▁gotta": 51603, + "运输有限公司": 51604, + "▁Finite": 51605, + "Finished": 51606, + "▁importing": 51607, + "▁abstraction": 51608, + "应试": 51609, + "的山": 51610, + "博士后": 51611, + "就会有": 51612, + "的事物": 51613, + "▁Globe": 51614, + "▁SELECT": 51615, + "业态": 51616, + "为整数": 51617, + "市场化": 51618, + "能有效": 51619, + "就是这个": 51620, + "▁dominate": 51621, + "▁Testament": 51622, + "▁Certification": 51623, + "商机": 51624, + "工信": 51625, + "▁belie": 51626, + "整车": 51627, + "晚年": 51628, + "道中": 51629, + "日正式": 51630, + "与被告张": 51631, + "政府采购": 51632, + "酒店提供免费": 51633, + "batis": 51634, + "separator": 51635, + "classification": 51636, + "人参": 51637, + "迪士": 51638, + "只能是": 51639, + "nour": 51640, + "▁blends": 51641, + "确认人民调解协议": 51642, + "oL": 51643, + "保修政策": 51644, + "▁slider": 51645, + "▁Updates": 51646, + "apat": 51647, + "出席会议": 51648, + "指派代理检察员": 51649, + "按自动撤回上诉处理": 51650, + "鸳鸯": 51651, + "SNA": 51652, + "▁Wr": 51653, + "▁BASE": 51654, + "▁Poor": 51655, + "▁Recon": 51656, + "▁Publication": 51657, + "▁hone": 51658, + "▁digging": 51659, + "▁伊": 51660, + "挂在": 51661, + "▁Url": 51662, + "▁wonders": 51663, + "壮族": 51664, + "大庆": 51665, + "的学校": 51666, + "▁Hull": 51667, + "Principal": 51668, + "▁Vietnamese": 51669, + "希尔": 51670, + "▁VIII": 51671, + "航线": 51672, + "证明材料": 51673, + "inker": 51674, + "根据题意得": 51675, + "nChildren": 51676, + "▁junctions": 51677, + "▁Salmonella": 51678, + "浓浓": 51679, + "高尚": 51680, + "▁Pig": 51681, + "weekly": 51682, + "每分钟": 51683, + "运行的": 51684, + "▁fauc": 51685, + "▁Gloucester": 51686, + "▁Subsequently": 51687, + "立功": 51688, + "怎么了": 51689, + "▁stip": 51690, + "丢了": 51691, + "分量": 51692, + "古籍": 51693, + "换届": 51694, + "的回答": 51695, + "组委会": 51696, + "PROC": 51697, + "nOverview": 51698, + "_\"": 51699, + "qli": 51700, + "你应该": 51701, + "创建于": 51702, + "tlocal": 51703, + "▁amput": 51704, + "otherapeutic": 51705, + "字幕": 51706, + "篮板": 51707, + "holst": 51708, + "假装": 51709, + "开除": 51710, + "掩盖": 51711, + "FRA": 51712, + "世界大战": 51713, + "coated": 51714, + "theory": 51715, + "Horizontal": 51716, + "▁textbooks": 51717, + "二十一": 51718, + "acha": 51719, + "菠菜": 51720, + "说要": 51721, + "小时的": 51722, + "women": 51723, + "▁toast": 51724, + "全景": 51725, + "地基": 51726, + "的老师": 51727, + "iban": 51728, + "▁MPI": 51729, + "▁antitumor": 51730, + "▁guideline": 51731, + "▁coagulation": 51732, + ",[": 51733, + "KF": 51734, + "一直到": 51735, + "▁complained": 51736, + "中标": 51737, + "增大而": 51738, + "总觉得": 51739, + "淡淡的": 51740, + "真的好": 51741, + "二审上诉人": 51742, + "▁assort": 51743, + "烦躁": 51744, + "Proc": 51745, + "平方千米": 51746, + "frontal": 51747, + "公有": 51748, + "细细": 51749, + "莱坞": 51750, + "正弦定理": 51751, + "认罪态度": 51752, + "graphic": 51753, + "▁peanut": 51754, + "▁credibility": 51755, + "预言": 51756, + "▁SG": 51757, + "发挥了": 51758, + "▁pes": 51759, + "usuario": 51760, + "二〇一六年十一": 51761, + "nmanager": 51762, + "▁Spectrum": 51763, + "吃什么": 51764, + "烟台市": 51765, + "▁Dil": 51766, + "▁Heather": 51767, + "填补": 51768, + "kick": 51769, + "▁Coordinator": 51770, + "夺得": 51771, + "德镇": 51772, + "永安": 51773, + "sus": 51774, + "干细胞": 51775, + "管理与": 51776, + "▁{})\\": 51777, + "ashire": 51778, + "alsa": 51779, + "rxjs": 51780, + "mur": 51781, + "▁DEL": 51782, + "▁Roth": 51783, + "▁silicone": 51784, + "▁minorities": 51785, + "一般为": 51786, + "▁albeit": 51787, + "Extractor": 51788, + "冰冰": 51789, + "港区": 51790, + "基础的": 51791, + "卫生健康": 51792, + "ascar": 51793, + "▁Grab": 51794, + "▁concaten": 51795, + "▁elevator": 51796, + "▁noexcept": 51797, + "枯燥": 51798, + "rael": 51799, + "几乎没有": 51800, + "注销信息": 51801, + "齐齐哈尔": 51802, + "▁Transl": 51803, + "▁ineffective": 51804, + "上调": 51805, + "不可或缺": 51806, + "()):\\": 51807, + "▁clan": 51808, + "::~": 51809, + "人均耕地": 51810, + "▁Authent": 51811, + "Threshold": 51812, + "▁affection": 51813, + "念头": 51814, + "瘦肉": 51815, + "bab": 51816, + "wagen": 51817, + "▁Rolling": 51818, + "安利": 51819, + "抗拒": 51820, + "Jim": 51821, + "有理数": 51822, + "克里": 51823, + "页无": 51824, + "在一次": 51825, + "Clone": 51826, + "▁fills": 51827, + "西装": 51828, + "TEM": 51829, + "将面临": 51830, + "nWORK": 51831, + "▁anne": 51832, + "▁arXiv": 51833, + "▁openly": 51834, + "▁squash": 51835, + "第五百一十九条": 51836, + "RX": 51837, + "tF": 51838, + "带到": 51839, + "渐进": 51840, + "空的": 51841, + "第七十三": 51842, + "▁gonad": 51843, + "checker": 51844, + "▁reminis": 51845, + "煤气": 51846, + "实力的": 51847, + "▁pam": 51848, + "▁SPECIAL": 51849, + "▁Selected": 51850, + "最高人民法院关于办理减刑": 51851, + "▁Sev": 51852, + "nThink": 51853, + "词条注销信息": 51854, + "utation": 51855, + "Mn": 51856, + "都觉得": 51857, + "工程专业": 51858, + "elsius": 51859, + "tH": 51860, + "▁首": 51861, + "双击": 51862, + "▁AES": 51863, + "▁CAL": 51864, + "▁Laur": 51865, + "▁nour": 51866, + "travel": 51867, + "教务": 51868, + "也没什么": 51869, + "▁leuc": 51870, + "应及时": 51871, + "的房子": 51872, + "▁absc": 51873, + "▁blessing": 51874, + "▁lifespan": 51875, + "xm": 51876, + "SDN": 51877, + "邯郸市": 51878, + "▁HAS": 51879, + "考前": 51880, + "▁DAY": 51881, + "这件事情": 51882, + "OAuth": 51883, + "▁arsen": 51884, + "crafted": 51885, + "▁programmers": 51886, + "每种": 51887, + "管理学": 51888, + "不可避免": 51889, + "▁rumors": 51890, + "凝胶": 51891, + "arna": 51892, + "被执行人名下": 51893, + "▁Gaming": 51894, + "▁vinegar": 51895, + "nPresident": 51896, + "▁histogram": 51897, + "两个数": 51898, + "你就是": 51899, + "刑期执行至": 51900, + "▁expire": 51901, + "▁Charter": 51902, + "▁hopeful": 51903, + "八个": 51904, + "的合理": 51905, + "的形象": 51906, + "▁IgE": 51907, + "narray": 51908, + "▁Verify": 51909, + "▁alters": 51910, + "方正": 51911, + "点为": 51912, + "PCA": 51913, + "应该如何": 51914, + "▁promoters": 51915, + "看了一": 51916, + "▁Belle": 51917, + "▁postpon": 51918, + "▁evidenced": 51919, + "vu": 51920, + "arton": 51921, + "▁Manila": 51922, + "▁creatinine": 51923, + "就拿": 51924, + "在世界": 51925, + "▁obscure": 51926, + "DV": 51927, + "一曲": 51928, + "且不": 51929, + "▁RNAs": 51930, + "marked": 51931, + "进货": 51932, + "的未来": 51933, + "数据中心": 51934, + "病房": 51935, + "轻薄": 51936, + "IDI": 51937, + "Such": 51938, + "nlibrary": 51939, + "▁tetr": 51940, + "▁Nicole": 51941, + "▁notions": 51942, + "一朝": 51943, + "基建": 51944, + "好感": 51945, + "玩家的": 51946, + "grown": 51947, + "▁emphasizes": 51948, + "大体": 51949, + "\"/\"": 51950, + "/\",": 51951, + "▁feminist": 51952, + "▁Cyt": 51953, + "公共交通": 51954, + "France": 51955, + "▁Croatian": 51956, + "▁encouragement": 51957, + "展厅": 51958, + "装机": 51959, + "林业局": 51960, + "());": 51961, + "党建工作": 51962, + "持股": 51963, + "提炼": 51964, + "是世界": 51965, + "大部分人": 51966, + "Guide": 51967, + "▁OAuth": 51968, + "▁Solomon": 51969, + "▁encoder": 51970, + "乖乖": 51971, + "标杆": 51972, + "留守": 51973, + "预案": 51974, + "tadd": 51975, + "Trait": 51976, + "▁Unix": 51977, + "▁Hidden": 51978, + "▁Slovakia": 51979, + "自适应": 51980, + "将自己的": 51981, + "▁产品类型": 51982, + "▁Surve": 51983, + "▁Tables": 51984, + "▁genuinely": 51985, + "▁superconduct": 51986, + "一见": 51987, + "圣母": 51988, + "不少人": 51989, + "如今的": 51990, + "▁\",\"": 51991, + "trivial": 51992, + "▁meanwhile": 51993, + "二手车": 51994, + "Iiw": 51995, + "▁\",\\": 51996, + "党风廉政": 51997, + "▁Kingston": 51998, + "▁seamlessly": 51999, + "用工": 52000, + "迪士尼": 52001, + "▁shred": 52002, + "linkedin": 52003, + "以上资料仅供参考": 52004, + "申请人于": 52005, + "百度小说": 52006, + "▁公司性质": 52007, + "▁snail": 52008, + "▁percutaneous": 52009, + "光绪": 52010, + "能用": 52011, + "那一刻": 52012, + "▁lasers": 52013, + "金陵": 52014, + "tone": 52015, + "具体情况还请": 52016, + "▁directional": 52017, + "化了": 52018, + "复旦大学": 52019, + "WINDO": 52020, + "Started": 52021, + "儿科": 52022, + "班车": 52023, + "rar": 52024, + "元左右": 52025, + "▁NATO": 52026, + "ún": 52027, + "没用": 52028, + "中国国际": 52029, + "Games": 52030, + "Picture": 52031, + "nProject": 52032, + "具体情况还请咨询医生": 52033, + "▁薛": 52034, + "反感": 52035, + "向北": 52036, + "catal": 52037, + "exican": 52038, + "▁Marks": 52039, + "▁Vintage": 52040, + "▁amplified": 52041, + "▁paperwork": 52042, + "第十二章": 52043, + "▁orch": 52044, + "nEmail": 52045, + "▁elbow": 52046, + "贷款基准利率": 52047, + "爆破": 52048, + "红薯": 52049, + "dow": 52050, + "变速箱": 52051, + "timed": 52052, + "▁Rosa": 52053, + "confidence": 52054, + "汉堡": 52055, + "oho": 52056, + "也是有": 52057, + "▁erect": 52058, + "Sources": 52059, + "▁Widget": 52060, + "▁refractive": 52061, + "台州": 52062, + "回味": 52063, + "▁Pipe": 52064, + "▁fellows": 52065, + "Organization": 52066, + "▁Um": 52067, + "▁imperfect": 52068, + "▁succession": 52069, + "▁Fo": 52070, + "南通市": 52071, + "▁Seems": 52072, + "▁disks": 52073, + "culture": 52074, + "▁glomerular": 52075, + "RJ": 52076, + "讲授": 52077, + "经常会": 52078, + "inkles": 52079, + "筛查": 52080, + "谈论": 52081, + "▁más": 52082, + "▁Kang": 52083, + "▁nore": 52084, + "Overlay": 52085, + "▁allocate": 52086, + "accessible": 52087, + "Zn": 52088, + "票价": 52089, + "ugh": 52090, + "Proto": 52091, + "▁汤": 52092, + "不光": 52093, + "▁tram": 52094, + "frag": 52095, + "▁Polynomial": 52096, + "▁pesticides": 52097, + "的风格": 52098, + "▁IPv": 52099, + "▁Laws": 52100, + "▁libert": 52101, + "▁creations": 52102, + "参与者": 52103, + "对学生": 52104, + "▁Bike": 52105, + "▁Sally": 52106, + "▁Darwin": 52107, + "▁RBI": 52108, + "ostruct": 52109, + "▁Anglican": 52110, + "文库": 52111, + "离去": 52112, + "的良好": 52113, + "在自己的": 52114, + "每一个人": 52115, + "almost": 52116, + "▁Acute": 52117, + "▁Perform": 52118, + "滋事": 52119, + "etur": 52120, + "▁AAA": 52121, + "景点的距离": 52122, + "▁mainland": 52123, + "三家": 52124, + "新房": 52125, + "离谱": 52126, + "较轻": 52127, + "对我来说": 52128, + "builds": 52129, + "▁Merit": 52130, + "circuit": 52131, + "tlogger": 52132, + "vetica": 52133, + "号行政处罚决定书": 52134, + "就别": 52135, + "本赛季": 52136, + "赵某某": 52137, + "veal": 52138, + "asone": 52139, + "▁Monthly": 52140, + "▁Paradise": 52141, + "▁affective": 52142, + "Rx": 52143, + "复读": 52144, + "评比": 52145, + "▁Zag": 52146, + "ilogy": 52147, + "景点的距离如下": 52148, + "安宁": 52149, + "datab": 52150, + "▁DEBUG": 52151, + "拥有移动电话": 52152, + "▁Albany": 52153, + "▁Solving": 52154, + "▁averages": 52155, + "▁国际": 52156, + "多样的": 52157, + "▁Worker": 52158, + "▁professionalism": 52159, + "KV": 52160, + "opies": 52161, + "othesis": 52162, + "▁stickers": 52163, + "草本": 52164, + "链条": 52165, + "Styled": 52166, + "▁sandy": 52167, + "▁spicy": 52168, + "▁psycho": 52169, + "presentation": 52170, + "之谜": 52171, + "▁GW": 52172, + "中央电视台": 52173, + "▁Fifty": 52174, + "撤回起诉处理": 52175, + "▁Bosnia": 52176, + "warnings": 52177, + "▁lymphoid": 52178, + "▁Anniversary": 52179, + "▁intersections": 52180, + "等设施": 52181, + "商业模式": 52182, + "▁distributor": 52183, + "Park": 52184, + "▁Nacional": 52185, + "故本院": 52186, + "的比较": 52187, + "▁Dum": 52188, + "▁washer": 52189, + "▁chaotic": 52190, + "▁notices": 52191, + "红星": 52192, + "个数是": 52193, + "▁Haus": 52194, + "▁Arrays": 52195, + "匈牙": 52196, + "示范区": 52197, + "▁Cedar": 52198, + "onge": 52199, + "▁iterate": 52200, + "▁fragmentation": 52201, + "办的": 52202, + "大棚": 52203, + "看病": 52204, + "byter": 52205, + "▁Diss": 52206, + "▁aorta": 52207, + "▁Shannon": 52208, + "▁upwards": 52209, + "▁付": 52210, + "知己": 52211, + "evo": 52212, + "akov": 52213, + "LIBRARY": 52214, + "▁Providence": 52215, + "升本": 52216, + "块的": 52217, + "扭转": 52218, + "爱情的": 52219, + "nTown": 52220, + "▁Hugo": 52221, + "▁erected": 52222, + "▁theaters": 52223, + "转折": 52224, + "和经济": 52225, + "LAST": 52226, + "icans": 52227, + "imshow": 52228, + "isfile": 52229, + "▁Anything": 52230, + "不放": 52231, + "树叶": 52232, + "浪潮": 52233, + "配色": 52234, + "的免费": 52235, + "这是个": 52236, + "exual": 52237, + "▁Pf": 52238, + "▁Sic": 52239, + "这是什么": 52240, + "▁UCLA": 52241, + "dismiss": 52242, + "▁pianist": 52243, + "▁translator": 52244, + "EI": 52245, + "▁SAS": 52246, + "和谐社会": 52247, + "号民事裁定书": 52248, + "▁crunch": 52249, + "▁destructive": 52250, + "分段": 52251, + "来袭": 52252, + "燕子": 52253, + "qing": 52254, + "Diagnostics": 52255, + "分销": 52256, + "正常使用": 52257, + "Credit": 52258, + "finger": 52259, + "▁progressively": 52260, + "是她": 52261, + "车管": 52262, + "防爆": 52263, + "()}": 52264, + "的版本": 52265, + "IFIC": 52266, + "mgmt": 52267, + "▁wherein": 52268, + "declarations": 52269, + "Brien": 52270, + "▁expiration": 52271, + "严密": 52272, + "各行": 52273, + "蜜蜂": 52274, + "oby": 52275, + "▁用料": 52276, + "▁GRO": 52277, + "专业领域": 52278, + "▁Bhar": 52279, + "你所": 52280, + "后发现": 52281, + "▁Dim": 52282, + "▁Wish": 52283, + "▁subs": 52284, + "iforms": 52285, + "▁insisted": 52286, + "▁cytoplasm": 52287, + "▁defendant": 52288, + "桃源": 52289, + "欠据": 52290, + "COD": 52291, + "另一半": 52292, + "cerol": 52293, + "▁Jacques": 52294, + "▁stripped": 52295, + "适用缓刑": 52296, + "genre": 52297, + "▁Pare": 52298, + "▁corrupt": 52299, + "▁fibrillation": 52300, + "nUl": 52301, + "申请执行人陈": 52302, + "▁formulate": 52303, + "▁headaches": 52304, + "▁%\\": 52305, + "▁Won": 52306, + "vault": 52307, + "▁cutoff": 52308, + "商务部": 52309, + "nExt": 52310, + "▁Gan": 52311, + "odied": 52312, + "▁Identifier": 52313, + "▁carcinogenesis": 52314, + "▁Nordic": 52315, + "Evaluate": 52316, + "▁overtime": 52317, + "accharides": 52318, + "全社会": 52319, + "rots": 52320, + "的是什么": 52321, + "由被执行人": 52322, + "▁subdiv": 52323, + "下设": 52324, + "海滨": 52325, + "▁Chern": 52326, + "nAfrican": 52327, + "族自治县人民法院": 52328, + "一定能": 52329, + "双十一": 52330, + "的调查": 52331, + "bang": 52332, + "▁Ish": 52333, + "▁Dayton": 52334, + "▁Morrison": 52335, + "位列": 52336, + "厅长": 52337, + "打得": 52338, + "sport": 52339, + "▁Buzz": 52340, + "▁Milk": 52341, + "分枝": 52342, + "恋情": 52343, + "整整": 52344, + "▁制片": 52345, + "国土资": 52346, + "tight": 52347, + "▁Neck": 52348, + "微信小程序": 52349, + "表的": 52350, + "在这些": 52351, + "▁AMS": 52352, + "ncategory": 52353, + "▁preserves": 52354, + "污泥": 52355, + "减函数": 52356, + "披针形": 52357, + "▁EPS": 52358, + "receptor": 52359, + "▁photore": 52360, + "▁Caroline": 52361, + "硫化": 52362, + "eden": 52363, + "个人认为": 52364, + "inatal": 52365, + "▁pedest": 52366, + "温岭": 52367, + "环路": 52368, + "votes": 52369, + "▁slowing": 52370, + "傍晚": 52371, + "大风": 52372, + "常务理事": 52373, + "▁refugee": 52374, + "移项": 52375, + "▁BG": 52376, + "黑色的": 52377, + "flux": 52378, + "▁repetition": 52379, + "十首": 52380, + "总计": 52381, + "▁HSV": 52382, + "navigate": 52383, + "▁cushion": 52384, + "预处理": 52385, + ">\\',": 52386, + "ouns": 52387, + "▁Rabbit": 52388, + "Modifier": 52389, + "▁crushed": 52390, + "维斯": 52391, + "而且是": 52392, + "Mess": 52393, + "▁anion": 52394, + "报到": 52395, + "colm": 52396, + "edes": 52397, + "ikan": 52398, + "提出了一种": 52399, + "itably": 52400, + "orbent": 52401, + "▁Allan": 52402, + "▁impart": 52403, + "▁grabbed": 52404, + "▁fermentation": 52405, + "提琴": 52406, + "雷锋": 52407, + "COR": 52408, + "▁fright": 52409, + "挺好": 52410, + "农户数": 52411, + "▁SVG": 52412, + "crumbs": 52413, + "▁salaries": 52414, + "▁deduction": 52415, + "▁constructive": 52416, + "Cd": 52417, + "时分": 52418, + "hoot": 52419, + "ialis": 52420, + "▁urea": 52421, + "写下": 52422, + "读作": 52423, + "转运": 52424, + "民主党": 52425, + "NOWN": 52426, + "oque": 52427, + "arnish": 52428, + "积极参加政治": 52429, + "▁Visa": 52430, + "nRegular": 52431, + "不带": 52432, + "潜艇": 52433, + "将上述": 52434, + "道路为": 52435, + "nVir": 52436, + "▁Jets": 52437, + "▁Elliott": 52438, + "▁Transmission": 52439, + "乔木": 52440, + "现身": 52441, + "侵犯了": 52442, + "hetical": 52443, + "▁asphalt": 52444, + "甘草": 52445, + "▁ws": 52446, + "的大力": 52447, + "nmax": 52448, + "被害人的": 52449, + "nExpl": 52450, + "QtCore": 52451, + "▁tunes": 52452, + "▁Explore": 52453, + "▁authenticated": 52454, + "UMN": 52455, + "dou": 52456, + "克里斯": 52457, + "旗舰店": 52458, + "liness": 52459, + "▁puppy": 52460, + "QUAL": 52461, + "▁Buc": 52462, + "cancer": 52463, + "Defaults": 52464, + "mutation": 52465, + "留给": 52466, + "诺贝尔": 52467, + "inqu": 52468, + "umbers": 52469, + "▁Luxury": 52470, + "二〇一七年十月": 52471, + "▁Cardiff": 52472, + "▁Recreation": 52473, + "▁Fi": 52474, + "则实数": 52475, + "▁hairst": 52476, + "▁relegated": 52477, + "在实际": 52478, + "bags": 52479, + "ovel": 52480, + "产品重量": 52481, + "▁surgeries": 52482, + "ек": 52483, + "不忍": 52484, + "幕后": 52485, + "打下": 52486, + "▁lend": 52487, + "▁Codes": 52488, + "Relation": 52489, + "踏上": 52490, + "不要再": 52491, + "较多的": 52492, + "ndel": 52493, + "▁Bradford": 52494, + "▁shortened": 52495, + "根本没有": 52496, + "美国总统": 52497, + "行政拘留": 52498, + "▁impairments": 52499, + "Girl": 52500, + "▁Trav": 52501, + "▁wont": 52502, + "管理委员会": 52503, + "太小": 52504, + "约有": 52505, + "不少于": 52506, + "就成了": 52507, + "这几天": 52508, + "越来越大": 52509, + "品德": 52510, + "拦截": 52511, + "的经历": 52512, + "STOR": 52513, + "Heading": 52514, + "陈代谢": 52515, + "Prime": 52516, + "nshow": 52517, + "家协会会员": 52518, + "乙方": 52519, + "挪威": 52520, + "香的": 52521, + "我这个": 52522, + "效果好": 52523, + "特异性": 52524, + "看电影": 52525, + "▁taxa": 52526, + "▁Categories": 52527, + "IBM": 52528, + "USH": 52529, + "wrong": 52530, + "▁macrom": 52531, + "残忍": 52532, + "英烈": 52533, + "Miss": 52534, + "▁|\\\\": 52535, + "▁orbits": 52536, + "▁Nicolas": 52537, + "▁asymmetry": 52538, + "▁proposing": 52539, + "dL": 52540, + "世俗": 52541, + "侧重": 52542, + "认识的": 52543, + "ryan": 52544, + "所选定的": 52545, + "你我": 52546, + "计画": 52547, + "▁от": 52548, + "▁Gauss": 52549, + "Minimum": 52550, + "▁rookie": 52551, + "▁Whenever": 52552, + "wl": 52553, + "胚胎": 52554, + "kie": 52555, + "nur": 52556, + "腹腔镜": 52557, + "▁hrs": 52558, + "前段时间": 52559, + "武侯": 52560, + "nSl": 52561, + "先根据": 52562, + "Apps": 52563, + "▁cep": 52564, + "guides": 52565, + "▁ceilings": 52566, + "▁evenings": 52567, + "wY": 52568, + "南宋": 52569, + "神圣": 52570, + "跌幅": 52571, + "躲避": 52572, + "该村到": 52573, + "页无正文": 52574, + "nHand": 52575, + "AreEqual": 52576, + "▁radians": 52577, + "foundation": 52578, + "责任感": 52579, + "朋友聚餐": 52580, + "成名": 52581, + "老爸": 52582, + "事业的": 52583, + "iade": 52584, + "ificance": 52585, + "▁spatially": 52586, + "厌恶": 52587, + "cyst": 52588, + "eches": 52589, + "都有自己的": 52590, + "延吉": 52591, + "鼠标点击": 52592, + "▁deng": 52593, + "nAlong": 52594, + "surname": 52595, + "▁Sprint": 52596, + "▁gastrop": 52597, + "▁被": 52598, + "私有": 52599, + "阳市人民法院": 52600, + "▁acquis": 52601, + "Frequency": 52602, + "送上": 52603, + "最后一次": 52604, + "金融危机": 52605, + "ornings": 52606, + "▁Martha": 52607, + "▁solids": 52608, + "水管": 52609, + "沧桑": 52610, + "装卸": 52611, + "辨别": 52612, + "abh": 52613, + "分割线": 52614, + "iona": 52615, + "▁Ole": 52616, + "▁repr": 52617, + "▁vague": 52618, + "▁ansible": 52619, + "发芽": 52620, + "地层": 52621, + "比的": 52622, + "otoxic": 52623, + "ourced": 52624, + "乌拉": 52625, + "机油": 52626, + "ncia": 52627, + "▁GTP": 52628, + "tfile": 52629, + "▁Youtube": 52630, + "心目": 52631, + "▁工作分工": 52632, + "pheres": 52633, + "▁deter": 52634, + "nsystem": 52635, + "万亿": 52636, + "参与了": 52637, + "洗干净": 52638, + "▁Aus": 52639, + "tcout": 52640, + "▁Validate": 52641, + "城里": 52642, + "verters": 52643, + "▁Outcomes": 52644, + "个赞": 52645, + "教养": 52646, + "tret": 52647, + "getData": 52648, + "安娜": 52649, + "法语": 52650, + "研究与": 52651, + "鲜明的": 52652, + "与被告李": 52653, + "▁rods": 52654, + "ealous": 52655, + "▁Reproduce": 52656, + "▁sf": 52657, + "oley": 52658, + "无烟客房": 52659, + "spread": 52660, + "▁Olive": 52661, + "nVolume": 52662, + "▁suburban": 52663, + "▁reputable": 52664, + "▁Pant": 52665, + "inative": 52666, + "▁查看": 52667, + "不相同": 52668, + "▁ODE": 52669, + "如果你的": 52670, + "plica": 52671, + "survey": 52672, + "▁sexuality": 52673, + "▁unforgettable": 52674, + "部份": 52675, + "▁aa": 52676, + "▁kh": 52677, + "ermo": 52678, + "▁Spaces": 52679, + "▁toured": 52680, + "bj": 52681, + "(\\\\)": 52682, + "▁),\\": 52683, + "创建一个": 52684, + "Sorry": 52685, + "▁Angle": 52686, + "摸索": 52687, + "▁ruler": 52688, + "不允许携带宠物": 52689, + "出错": 52690, + "最简": 52691, + "芬兰": 52692, + "rizz": 52693, + "彻底破裂": 52694, + "▁敏": 52695, + "切尔": 52696, + "同盟": 52697, + "thr": 52698, + "▁ét": 52699, + "读卡器": 52700, + "▁mens": 52701, + "rabbit": 52702, + "兴建": 52703, + "周六": 52704, + "anus": 52705, + "▁biome": 52706, + "通往": 52707, + "卫生部": 52708, + "▁Prison": 52709, + "往年": 52710, + "了一张": 52711, + "创新能力": 52712, + "▁Fragment": 52713, + "▁enlarged": 52714, + "nInformation": 52715, + "▁Continental": 52716, + "▁conflicting": 52717, + "双曲线的": 52718, + "年的时间": 52719, + "Units": 52720, + "能够认罪悔罪": 52721, + "石英": 52722, + "▁MVP": 52723, + "元或查封": 52724, + "▁Cann": 52725, + "Construct": 52726, + "Repositories": 52727, + "个个": 52728, + "植被": 52729, + "Cut": 52730, + "Popup": 52731, + "edged": 52732, + "上诉于山东省": 52733, + "建设工程施工": 52734, + "▁outfits": 52735, + "MSC": 52736, + "分析与": 52737, + "已完成": 52738, + "nEvents": 52739, + "ontally": 52740, + "▁palate": 52741, + "▁tensile": 52742, + "engineering": 52743, + "nPopulation": 52744, + "在下": 52745, + "水域": 52746, + "海量": 52747, + "锦绣": 52748, + "价格的": 52749, + "高度的": 52750, + "ière": 52751, + "▁JOIN": 52752, + "互为相反数": 52753, + "outfile": 52754, + "▁christ": 52755, + "晶晶": 52756, + "▁其六": 52757, + "后来的": 52758, + "▁Bottom": 52759, + "▁Santos": 52760, + "个子": 52761, + "nHealth": 52762, + "▁extracting": 52763, + "果树": 52764, + "构成的": 52765, + "▁Pie": 52766, + "idium": 52767, + "▁Stick": 52768, + "▁ruins": 52769, + "▁Strept": 52770, + "内膜": 52771, + "本章": 52772, + "▁`$": 52773, + "ynes": 52774, + "▁lan": 52775, + "▁astro": 52776, + "张文": 52777, + "\">{": 52778, + "isher": 52779, + "▁Notre": 52780, + ">{{": 52781, + "▁tm": 52782, + "妈妈的": 52783, + "nLess": 52784, + "▁fluoride": 52785, + "▁conceived": 52786, + "▁Replacement": 52787, + "庆典": 52788, + "开荒": 52789, + "▁tk": 52790, + "▁Coul": 52791, + "administration": 52792, + ")∵": 52793, + "学了": 52794, + "风电": 52795, + "▁upright": 52796, + "本裁定送达后立即执行": 52797, + "女装": 52798, + "师兄": 52799, + "猎人": 52800, + "lake": 52801, + "▁Jal": 52802, + "琢磨": 52803, + "表皮": 52804, + "身处": 52805, + "型企业": 52806, + "带头人": 52807, + "参加会议": 52808, + "是什么样的": 52809, + "nWindows": 52810, + "developed": 52811, + "▁endometrial": 52812, + "▁钱": 52813, + "大王": 52814, + "heroku": 52815, + "▁红袖添香网": 52816, + "Resolved": 52817, + "▁Colonel": 52818, + "▁Ultimately": 52819, + "主讲": 52820, + "年由": 52821, + "Zoom": 52822, + "want": 52823, + "▁Ads": 52824, + "很大程度上": 52825, + "Connell": 52826, + "nNorwegian": 52827, + "_]": 52828, + "不留": 52829, + "马达": 52830, + "nNO": 52831, + "但对于": 52832, + "feat": 52833, + "▁Burns": 52834, + "▁Herzegovina": 52835, + "uen": 52836, + "▁Xi": 52837, + "和学习": 52838, + "或者代表人的人数提出副本": 52839, + "常态化": 52840, + "采用的": 52841, + "▁Zach": 52842, + "▁receivers": 52843, + "▁莫": 52844, + "出不": 52845, + "山川": 52846, + "称呼": 52847, + "证人证言": 52848, + "▁rectal": 52849, + "▁adjunct": 52850, + "五首": 52851, + "贯通": 52852, + "报道称": 52853, + "ODAY": 52854, + "▁PAC": 52855, + "odegrad": 52856, + "▁Writers": 52857, + "▁exponentially": 52858, + "▁immunotherapy": 52859, + "宴会": 52860, + "oise": 52861, + "可以作为": 52862, + "▁avatar": 52863, + "▁harvesting": 52864, + "网贷": 52865, + "jit": 52866, + "电子书": 52867, + "▁pom": 52868, + "家教": 52869, + "搞得": 52870, + "爱护": 52871, + "虐待": 52872, + "▁NB": 52873, + "▁salts": 52874, + "▁stirring": 52875, + "▁compartments": 52876, + "太难": 52877, + "长治": 52878, + "akis": 52879, + "▁TCR": 52880, + "avors": 52881, + "仍不": 52882, + "油耗": 52883, + "重阳节": 52884, + "懂的": 52885, + "片子": 52886, + "督察": 52887, + "收费是": 52888, + "政府部门": 52889, + "Reuters": 52890, + "findall": 52891, + "集团股份有限公司": 52892, + "▁inorganic": 52893, + "▁structurally": 52894, + "番禺": 52895, + "大家一起": 52896, + "电动汽车": 52897, + "onset": 52898, + "▁Transition": 52899, + "东盟": 52900, + "PCs": 52901, + "关系是": 52902, + "理性的": 52903, + "▁slog": 52904, + "LON": 52905, + "aty": 52906, + "爱尔兰": 52907, + "▁编辑推荐": 52908, + "德州": 52909, + "又一个": 52910, + "证据的": 52911, + "▁ASD": 52912, + "synthes": 52913, + "▁virtue": 52914, + "▁antibacterial": 52915, + "nDES": 52916, + "▁Append": 52917, + "▁RESULTS": 52918, + "▁Secondly": 52919, + ",%": 52920, + "二项": 52921, + "日出": 52922, + "牵头": 52923, + "blo": 52924, + "产品在": 52925, + "体内的": 52926, + "可靠的": 52927, + "))))\\": 52928, + "▁restor": 52929, + "▁breathtaking": 52930, + "两句": 52931, + "之事": 52932, + "他能": 52933, + "秸秆": 52934, + "▁ald": 52935, + "在卷佐证": 52936, + "▁Mayo": 52937, + "▁ammonia": 52938, + "assignment": 52939, + "▁elasticity": 52940, + "EventHandler": 52941, + "名胜": 52942, + "▁purity": 52943, + "▁resize": 52944, + "nContent": 52945, + "inguished": 52946, + "传闻": 52947, + "reon": 52948, + "ronym": 52949, + "nested": 52950, + "▁Dollar": 52951, + "▁丽": 52952, + "切开": 52953, + "拖延": 52954, + "多少元": 52955, + "防腐剂": 52956, + "▁vibe": 52957, + "nSteve": 52958, + "也对": 52959, + "至少有": 52960, + "认定书": 52961, + "utory": 52962, + "nSix": 52963, + "nfloat": 52964, + "▁Monroe": 52965, + "▁Sharma": 52966, + "▁Javascript": 52967, + "球形": 52968, + "直角坐标系": 52969, + "broken": 52970, + "versed": 52971, + "▁storms": 52972, + "▁seasoned": 52973, + "夜里": 52974, + "马力": 52975, + "oza": 52976, + "yum": 52977, + "一下吧": 52978, + "▁bure": 52979, + "Compile": 52980, + "▁telescope": 52981, + "冬瓜": 52982, + "我再": 52983, + "大学毕业": 52984, + "▁Randy": 52985, + "河镇": 52986, + "然的": 52987, + "▁microarray": 52988, + "托福": 52989, + "nCH": 52990, + "▁填词": 52991, + "ecko": 52992, + "extended": 52993, + "▁Outside": 52994, + "▁accomplishments": 52995, + "tuint": 52996, + "▁idiopathic": 52997, + "长效": 52998, + "▁tonnes": 52999, + "二〇一六年九月": 53000, + "昌平": 53001, + "有啥": 53002, + "落花": 53003, + "▁orally": 53004, + "本裁定立即执行": 53005, + "▁constructions": 53006, + "qc": 53007, + "心事": 53008, + "然后从": 53009, + "▁hav": 53010, + "输出格式": 53011, + "▁\\'\\')": 53012, + "教学模式": 53013, + "▁Particle": 53014, + "皱纹": 53015, + "upo": 53016, + "爱国主义": 53017, + "或不": 53018, + "▁runway": 53019, + "Clinical": 53020, + "ServiceProvider": 53021, + "errno": 53022, + "actice": 53023, + "▁Depot": 53024, + "▁wavelengths": 53025, + "▁interpretations": 53026, + "便民": 53027, + "奇妙": 53028, + "改制": 53029, + "患者在": 53030, + "▁leaked": 53031, + "▁ancestors": 53032, + "▁Serializable": 53033, + "deen": 53034, + "▁Ordered": 53035, + "RN": 53036, + "兵器": 53037, + "ego": 53038, + "Icons": 53039, + "eenth": 53040, + "trunc": 53041, + "certificate": 53042, + "▁coordinating": 53043, + "胆囊": 53044, + "可以先": 53045, + "的业务": 53046, + "计算公式": 53047, + "▁nome": 53048, + "county": 53049, + "▁Screens": 53050, + "渤海": 53051, + "结肠": 53052, + "对你的": 53053, + "海淀区": 53054, + "▁brutal": 53055, + "▁Topology": 53056, + "气泡": 53057, + "知情": 53058, + "借款人民币": 53059, + "太好": 53060, + "自负": 53061, + "表现的": 53062, + "体系建设": 53063, + "RH": 53064, + "ulk": 53065, + "nChina": 53066, + "nWorking": 53067, + "▁enlight": 53068, + "史料": 53069, + "抗诉": 53070, + "画风": 53071, + "其次是": 53072, + "rogens": 53073, + "Pending": 53074, + "▁hydroxy": 53075, + "所给": 53076, + "新月": 53077, + "缤纷": 53078, + "黑客": 53079, + "第二步": 53080, + "noop": 53081, + "▁multil": 53082, + "▁limestone": 53083, + "▁collectors": 53084, + "▁hemodynamic": 53085, + "▁谭": 53086, + "开会": 53087, + ">(\"": 53088, + "▁mc": 53089, + "大辞典": 53090, + "essing": 53091, + "所选定的客房": 53092, + "holding": 53093, + "iatrics": 53094, + "DY": 53095, + "不可思议": 53096, + "中国社会": 53097, + "▁doubts": 53098, + "购车": 53099, + "博士生导师": 53100, + "nRadio": 53101, + "ntable": 53102, + "▁unexpl": 53103, + "rimental": 53104, + "▁sidebar": 53105, + "portfolio": 53106, + "▁Malaysian": 53107, + "耦合": 53108, + "还说": 53109, + "法律允许": 53110, + "▁stall": 53111, + "nNatural": 53112, + "▁expires": 53113, + "jam": 53114, + "地进行": 53115, + "教研室": 53116, + "危害程度": 53117, + "▁Budd": 53118, + "▁remix": 53119, + "单击": 53120, + "第六节": 53121, + "网站上": 53122, + "▁Aer": 53123, + "▁violated": 53124, + "浮云": 53125, + "▁Fischer": 53126, + "随笔": 53127, + "▁Cir": 53128, + "新闻出版": 53129, + "adapt": 53130, + "▁Slow": 53131, + "▁abused": 53132, + "房管": 53133, + "糊涂": 53134, + "原审判决": 53135, + "▁Charleston": 53136, + "▁fundamentally": 53137, + "平日": 53138, + "霸道": 53139, + "有其他": 53140, + "shaw": 53141, + "▁Sebastian": 53142, + "▁overwhelmed": 53143, + "▁politically": 53144, + "曾因": 53145, + "淇淋": 53146, + "较快": 53147, + "auses": 53148, + "pickle": 53149, + "▁gospel": 53150, + "▁Midwest": 53151, + "文笔": 53152, + "odil": 53153, + "▁Bea": 53154, + "▁Devices": 53155, + "在社会": 53156, + "▁Syr": 53157, + "▁bib": 53158, + "二审被上诉人": 53159, + "化工有限公司": 53160, + "▁Samples": 53161, + "▁supposedly": 53162, + "▁و": 53163, + "▁👍": 53164, + "了啊": 53165, + "孕育": 53166, + "那段": 53167, + "▁WP": 53168, + "都无法": 53169, + "_[": 53170, + "惠州": 53171, + "▁Sap": 53172, + "▁Devil": 53173, + "COMMAND": 53174, + "二〇一六年十二": 53175, + "Mid": 53176, + "好像是": 53177, + "服务员": 53178, + "urai": 53179, + "农村合作": 53180, + "shield": 53181, + "▁greens": 53182, + "招收": 53183, + "▁IX": 53184, + "数据范围": 53185, + "▁jupyter": 53186, + "▁superoxide": 53187, + "ück": 53188, + "▁文章": 53189, + "▁Frankfurt": 53190, + "虚构": 53191, + "▁人物生平": 53192, + "▁Serie": 53193, + "▁Confirm": 53194, + "▁intricate": 53195, + "▁microorganisms": 53196, + "健脾": 53197, + "惠普": 53198, + "麻痹": 53199, + "病人的": 53200, + "nSET": 53201, + "▁ROM": 53202, + "BLOCK": 53203, + "▁furnace": 53204, + "operators": 53205, + "▁Recommend": 53206, + "▁HU": 53207, + "注意的是": 53208, + "表现在": 53209, + "▁hij": 53210, + "ndarray": 53211, + "二〇一六年六月": 53212, + "nComplete": 53213, + "▁Cardinal": 53214, + "▁settling": 53215, + "▁ah": 53216, + "世纪的": 53217, + "功能性": 53218, + "utsche": 53219, + "stackrel": 53220, + "▁halfway": 53221, + "西斯": 53222, + "▁Intr": 53223, + "由于被执行人": 53224, + "请求判令被告": 53225, + "hardware": 53226, + "▁caching": 53227, + "审视": 53228, + "火烧": 53229, + "}{|": 53230, + "科学记数法的表示": 53231, + "第一百七十条第一款第": 53232, + "℃\\": 53233, + "元未": 53234, + "谁知道": 53235, + "spectrum": 53236, + "▁compost": 53237, + "▁celebrates": 53238, + "▁lieutenant": 53239, + "nWH": 53240, + "▁barr": 53241, + "法律的规定": 53242, + "expanded": 53243, + "一碗": 53244, + "效能": 53245, + "jah": 53246, + "对他们": 53247, + "截至目前": 53248, + "▁Goals": 53249, + "▁miniature": 53250, + "增幅": 53251, + "族的": 53252, + "皮带": 53253, + "内容和": 53254, + "攀枝花": 53255, + "orget": 53256, + "▁Piano": 53257, + "▁orphan": 53258, + "▁vacant": 53259, + "▁moderator": 53260, + "出任": 53261, + "投递": 53262, + "胃癌": 53263, + "重伤": 53264, + "\"\">\\": 53265, + "为空": 53266, + "与他人": 53267, + "理解的": 53268, + "assa": 53269, + "卫星频道": 53270, + "文化交流": 53271, + "pless": 53272, + "▁Lyon": 53273, + "JK": 53274, + "听课": 53275, + "▁现代": 53276, + "余弦定理": 53277, + "抗日战争": 53278, + "▁pills": 53279, + "日公开开庭审理了本案": 53280, + "三份": 53281, + "目录下": 53282, + "送达地址": 53283, + "WRITE": 53284, + "nDigital": 53285, + "▁commute": 53286, + "上图": 53287, + "之大": 53288, + "总队": 53289, + "ritz": 53290, + "▁Vine": 53291, + "▁Doors": 53292, + "上列": 53293, + "▁IU": 53294, + "stitu": 53295, + "建材有限公司": 53296, + "istency": 53297, + "▁尹": 53298, + "学好": 53299, + "重来": 53300, + "Bur": 53301, + "xFF": 53302, + "和朋友": 53303, + "▁Meth": 53304, + "editary": 53305, + "▁fibres": 53306, + "Tc": 53307, + "京津": 53308, + "累累": 53309, + "▁Env": 53310, + "三个方面": 53311, + "▁Goal": 53312, + "ertext": 53313, + "▁fused": 53314, + "recognized": 53315, + "前世": 53316, + "高素质": 53317, + "tpass": 53318, + "▁outrage": 53319, + "▁Producer": 53320, + "制止": 53321, + "高通": 53322, + "而言之": 53323, + "npermalink": 53324, + "不作": 53325, + "居室": 53326, + "汉服": 53327, + "▁Mats": 53328, + "▁Explain": 53329, + "▁Predict": 53330, + "nabstract": 53331, + "连环": 53332, + "医护人员": 53333, + "▁Dana": 53334, + "Encode": 53335, + "Published": 53336, + "▁thermodynamic": 53337, + "▁Å": 53338, + "摧毁": 53339, + "收音": 53340, + "盖上": 53341, + "adores": 53342, + "第二百四十二": 53343, + "▁filepath": 53344, + "▁immature": 53345, + "侵蚀": 53346, + "专业人士": 53347, + "▁werden": 53348, + "shake": 53349, + "▁Gamma": 53350, + "▁forex": 53351, + "▁decays": 53352, + "▁refres": 53353, + "▁Winnipeg": 53354, + "立志": 53355, + "宝贵的": 53356, + "由上诉人": 53357, + "的主要原因": 53358, + "▁conda": 53359, + "▁tribal": 53360, + "小巧": 53361, + "收视": 53362, + "高楼": 53363, + "▁tribes": 53364, + "▁arguably": 53365, + "Sdk": 53366, + "cyt": 53367, + "orno": 53368, + "▁Dro": 53369, + "Codec": 53370, + "二〇一七年十一": 53371, + "▁Feedback": 53372, + ">]": 53373, + "东坡": 53374, + "向社会": 53375, + "nnum": 53376, + "▁antif": 53377, + "▁cyclo": 53378, + "在服刑期间的": 53379, + "nSample": 53380, + "▁prosecutors": 53381, + "一辈": 53382, + "打折": 53383, + "颜色的": 53384, + "liquid": 53385, + "您所选定的客房": 53386, + "▁salivary": 53387, + "区和": 53388, + "赛道": 53389, + "mgr": 53390, + "▁HBO": 53391, + "▁intentionally": 53392, + "▁解": 53393, + "行列": 53394, + "{{\\": 53395, + "▁skiers": 53396, + "双层": 53397, + "对各": 53398, + "沉迷": 53399, + "车厢": 53400, + "国庆节": 53401, + "教学方法": 53402, + "▁Barb": 53403, + "##############\\": 53404, + "specs": 53405, + "▁progressed": 53406, + "也叫": 53407, + "何以": 53408, + "护航": 53409, + "立项": 53410, + "▁kon": 53411, + "▁就": 53412, + "孤单": 53413, + "CAN": 53414, + "也有很多": 53415, + "Allowed": 53416, + "▁anastom": 53417, + "复查": 53418, + "小人": 53419, + "报案": 53420, + "▁ko": 53421, + "inis": 53422, + "nHas": 53423, + "nNov": 53424, + "之所": 53425, + "唿吁": 53426, + "赞美": 53427, + "个体户": 53428, + "érie": 53429, + "中心主任": 53430, + "▁Rates": 53431, + "▁Sustainable": 53432, + "得利": 53433, + "对管辖权": 53434, + "nfield": 53435, + "生子": 53436, + "建筑安装": 53437, + "▁dosing": 53438, + "▁Comprehensive": 53439, + "▁electrostatic": 53440, + "坏死": 53441, + "buck": 53442, + "amics": 53443, + "▁underlie": 53444, + "▁首先": 53445, + "参考答案": 53446, + "crest": 53447, + "▁STEM": 53448, + "▁openings": 53449, + "nTransportation": 53450, + "定性": 53451, + "为实现": 53452, + "inez": 53453, + "▁taper": 53454, + "号民事判决书的执行": 53455, + "摄像机": 53456, + "▁scanned": 53457, + "▁civilians": 53458, + "敦煌": 53459, + "Gly": 53460, + "ndi": 53461, + "国家重点": 53462, + "享受三包服务": 53463, + "罪犯奖惩审批表": 53464, + "▁suburbs": 53465, + "centration": 53466, + "▁interplay": 53467, + "向外": 53468, + "安居": 53469, + "底盘": 53470, + "极了": 53471, + "是完全": 53472, + "grep": 53473, + "symbols": 53474, + "建设工程有限公司": 53475, + "▁TL": 53476, + "审理中": 53477, + "月下旬": 53478, + "购买了": 53479, + "nKe": 53480, + "于一体": 53481, + "产品和": 53482, + "的了解": 53483, + "past": 53484, + "▁GST": 53485, + "国家安全": 53486, + "amarin": 53487, + "▁recurs": 53488, + "▁delegation": 53489, + "款的": 53490, + "families": 53491, + "三课": 53492, + "外墙": 53493, + "正值": 53494, + "章程": 53495, + "BUT": 53496, + "▁nig": 53497, + "ilers": 53498, + "paren": 53499, + "preset": 53500, + "据此解答即可": 53501, + "▁ceased": 53502, + "▁culturally": 53503, + "数和": 53504, + "会将": 53505, + "点多": 53506, + "▁适量": 53507, + "▁Kot": 53508, + "几个方面": 53509, + "▁gulp": 53510, + "▁squeeze": 53511, + "▁unaware": 53512, + "ár": 53513, + "nConvert": 53514, + "▁fathers": 53515, + "▁oscillation": 53516, + "亦可": 53517, + "池塘": 53518, + "CLI": 53519, + "▁authenticate": 53520, + "六合": 53521, + "称作": 53522, + "▁命令": 53523, + "▁unpack": 53524, + "进阶": 53525, + "这对于": 53526, + "tips": 53527, + "▁{$": 53528, + "▁Pall": 53529, + "▁Maker": 53530, + "减为有期徒刑": 53531, + "非物质文化遗产": 53532, + "▁ellipse": 53533, + "CALL": 53534, + "▁发行时间": 53535, + "▁freezer": 53536, + "▁侯": 53537, + "祖国的": 53538, + "/{{": 53539, + "icl": 53540, + ",“": 53541, + "构思": 53542, + "禁毒": 53543, + "GPL": 53544, + "神奇的": 53545, + "规模的": 53546, + "nPolish": 53547, + "addresses": 53548, + "嘻嘻": 53549, + "安装在": 53550, + "▁clash": 53551, + "▁Forbes": 53552, + "▁Holdings": 53553, + "fk": 53554, + "▁带": 53555, + "布朗": 53556, + "故此": 53557, + "身世": 53558, + "降噪": 53559, + "也算是": 53560, + "区域的": 53561, + "往往是": 53562, + "的一份": 53563, + "__),": 53564, + "tstruct": 53565, + "▁mosaic": 53566, + "▁Fortune": 53567, + "好运": 53568, + "RAM": 53569, + "▁Brom": 53570, + "皇宫": 53571, + "▁worm": 53572, + "▁Doing": 53573, + "▁motivate": 53574, + "tdb": 53575, + "anza": 53576, + "nBill": 53577, + "subtitle": 53578, + "▁ultrasonic": 53579, + "死去": 53580, + "证明其": 53581, + "▁Apost": 53582, + "favicon": 53583, + "跟进": 53584, + "召开了": 53585, + "▁condo": 53586, + "Community": 53587, + "▁withdrawn": 53588, + "▁disadvantages": 53589, + "学霸": 53590, + "推迟": 53591, + "FTER": 53592, + "工艺美术": 53593, + "▁breeze": 53594, + "▁Satellite": 53595, + "高分子": 53596, + "tall": 53597, + "生命周期": 53598, + "资金周转": 53599, + "Street": 53600, + "▁Strategies": 53601, + "▁Kad": 53602, + "ovolta": 53603, + "▁Scala": 53604, + "▁mushrooms": 53605, + "国安": 53606, + "距离最近的": 53607, + "文化传播有限公司": 53608, + "稀土": 53609, + "不能再": 53610, + "▁ling": 53611, + "Partial": 53612, + "▁Budapest": 53613, + "积水": 53614, + "等优点": 53615, + "nSep": 53616, + "▁cogn": 53617, + "olphins": 53618, + "不解": 53619, + "稳固": 53620, + "还被": 53621, + "会比较": 53622, + "作用下": 53623, + "群体的": 53624, + "▁Tyr": 53625, + "▁kar": 53626, + "▁ethnicity": 53627, + "antlr": 53628, + "▁teammates": 53629, + "中区": 53630, + "日元": 53631, + "运送": 53632, + "tras": 53633, + "éric": 53634, + "▁Shim": 53635, + "Correct": 53636, + "▁Identify": 53637, + "公差": 53638, + "寻衅": 53639, + "为原告": 53640, + "编号为": 53641, + "pulse": 53642, + "▁plural": 53643, + "▁Christine": 53644, + "二手房": 53645, + "优缺点": 53646, + "依然是": 53647, + "fuel": 53648, + "▁bik": 53649, + "▁Above": 53650, + "▁Katie": 53651, + "▁logos": 53652, + "▁intermediates": 53653, + "Sales": 53654, + "▁Diana": 53655, + "本裁定立即开始执行": 53656, + "未见": 53657, + "查到": 53658, + "胰腺": 53659, + "用一个": 53660, + "▁autologous": 53661, + "▁KS": 53662, + "体育馆": 53663, + "hler": 53664, + "▁diary": 53665, + "ittings": 53666, + "ordinate": 53667, + "题文": 53668, + "ław": 53669, + "Mini": 53670, + "▁Mask": 53671, + "▁启动方式": 53672, + "快点": 53673, + "车载": 53674, + "酷睿": 53675, + "IFE": 53676, + "生活费": 53677, + "**/\\": 53678, + "occer": 53679, + "nfinal": 53680, + "▁Derek": 53681, + "扭矩": 53682, + "行业中": 53683, + "mach": 53684, + "nfig": 53685, + "你是不是": 53686, + "这批": 53687, + "▁ik": 53688, + "月开始": 53689, + "▁proliferative": 53690, + "胡同": 53691, + "(${": 53692, + "这些东西": 53693, + "之日起十五日内": 53694, + "▁catches": 53695, + "wk": 53696, + "她就": 53697, + "价格为": 53698, + "abus": 53699, + "nserver": 53700, + "ntarget": 53701, + "HttpRequest": 53702, + "最美的": 53703, + "一直没有": 53704, + "Parts": 53705, + "之年": 53706, + "ánd": 53707, + "rano": 53708, + "第六十条": 53709, + "meaning": 53710, + "凝固": 53711, + "建新": 53712, + "江汉": 53713, + "尼西亚": 53714, + "的产生": 53715, + "重金属": 53716, + "acuse": 53717, + "应准予离婚": 53718, + "olinergic": 53719, + "洗碗": 53720, + "产品有": 53721, + "日消息": 53722, + "::__": 53723, + "哥伦比亚": 53724, + "清偿责任": 53725, + "athing": 53726, + "▁Drake": 53727, + "mounted": 53728, + "▁postdoctoral": 53729, + "亲手": 53730, + "无双": 53731, + "birds": 53732, + "nHelp": 53733, + "二〇一七年九": 53734, + "Ws": 53735, + "考入": 53736, + "建议你": 53737, + "Roll": 53738, + "▁fname": 53739, + "▁breeds": 53740, + "氧化物": 53741, + "nGen": 53742, + "消防安全": 53743, + "▁tempfile": 53744, + "短缺": 53745, + "スト": 53746, + "等我": 53747, + "香烟": 53748, + "▁CVD": 53749, + "▁erotic": 53750, + "nBesides": 53751, + "▁Belfast": 53752, + "▁planner": 53753, + "▁benchmarks": 53754, + "▁凯": 53755, + "弥漫": 53756, + "情愿": 53757, + "拓扑": 53758, + "纲要": 53759, + "损害国家": 53760, + "▁accommodations": 53761, + "破损": 53762, + "镀锌": 53763, + "nNOTE": 53764, + "▁Musk": 53765, + "有什么区别": 53766, + "▁parcel": 53767, + "recipitation": 53768, + "椅子": 53769, + "段子": 53770, + "中文版": 53771, + "只是在": 53772, + "setter": 53773, + "nMunicip": 53774, + "身子": 53775, + "如实供述自己": 53776, + "nComment": 53777, + "短线": 53778, + "▁Ib": 53779, + "aminergic": 53780, + "▁perceive": 53781, + "▁implication": 53782, + "▁demographics": 53783, + "清真": 53784, + "芳草": 53785, + "pas": 53786, + "Flat": 53787, + "▁sir": 53788, + "▁shrimp": 53789, + "区人民检察院指派检察员": 53790, + "tN": 53791, + "治病": 53792, + "Pot": 53793, + "全过程": 53794, + "避免了": 53795, + "▁jur": 53796, + "ENTRY": 53797, + "▁Mant": 53798, + "Letter": 53799, + "▁RIGHT": 53800, + "ropolis": 53801, + "▁cinnamon": 53802, + "▁Pediatric": 53803, + "黄豆": 53804, + "cum": 53805, + "宣判后": 53806, + "输出样例": 53807, + "▁Lank": 53808, + "olkata": 53809, + "soever": 53810, + "nLocated": 53811, + "redient": 53812, + "expressing": 53813, + "半月": 53814, + "的本质": 53815, + "bull": 53816, + "▁republic": 53817, + "▁Bool": 53818, + "▁Lives": 53819, + "二〇一四年十二月": 53820, + "会见": 53821, + "▁abst": 53822, + "▁staple": 53823, + "ReadOnly": 53824, + "奔腾": 53825, + "清澈": 53826, + "音质": 53827, + "IVER": 53828, + "inen": 53829, + "▁ENV": 53830, + "consuming": 53831, + "▁fragrance": 53832, + "了下": 53833, + "BODY": 53834, + "▁guild": 53835, + "杭州市中级人民法院": 53836, + "社群": 53837, + "淮南市": 53838, + "▁Vid": 53839, + "▁finale": 53840, + "▁decorator": 53841, + "▁capacitance": 53842, + "▁synergistic": 53843, + "汤匙": 53844, + "胡某": 53845, + "▁专业": 53846, + "mocha": 53847, + "objective": 53848, + "▁factorial": 53849, + "▁headquartered": 53850, + "一件事": 53851, + "舞台上": 53852, + "▁Tik": 53853, + "nPage": 53854, + "nApple": 53855, + "▁squir": 53856, + "▁onwards": 53857, + "▁delimiter": 53858, + "▁Importantly": 53859, + "YX": 53860, + "人品": 53861, + "德拉": 53862, + "总值": 53863, + "格子": 53864, + "鸡腿": 53865, + "으로": 53866, + "发展中": 53867, + "court": 53868, + "▁Were": 53869, + "▁lush": 53870, + "Scalar": 53871, + "▁catechol": 53872, + "▁conception": 53873, + "十佳": 53874, + "忍者": 53875, + "监局": 53876, + "防空": 53877, + "▁DN": 53878, + "rotic": 53879, + "DOMAIN": 53880, + "可控": 53881, + "faker": 53882, + "trail": 53883, + "Setter": 53884, + "▁START": 53885, + "▁candles": 53886, + "▁aspiration": 53887, + "▁WT": 53888, + "完全是": 53889, + "thirds": 53890, + "authenticated": 53891, + "▁非": 53892, + "格斗": 53893, + "▁Dear": 53894, + "Closed": 53895, + "igraphy": 53896, + "北侧": 53897, + "▁ji": 53898, + "hton": 53899, + "▁virgin": 53900, + "下厨房": 53901, + "▁occupy": 53902, + "巴尔": 53903, + "合格的": 53904, + "严重影响": 53905, + "▁traps": 53906, + "▁grading": 53907, + "▁enhancements": 53908, + "新版": 53909, + "昆仑": 53910, + "健身房": 53911, + "lastName": 53912, + "▁ultraviolet": 53913, + "▁康": 53914, + "他家": 53915, + "에서": 53916, + "▁湖南": 53917, + "也应该": 53918, + "nExpress": 53919, + "各主要景点的距离如下": 53920, + "先端": 53921, + "喷涂": 53922, + "平和": 53923, + "日渐": 53924, + "院内": 53925, + "Handlers": 53926, + "explicit": 53927, + "我有一": 53928, + "▁RSV": 53929, + "可以减刑": 53930, + "开端": 53931, + "便宜的": 53932, + "Learn": 53933, + "接连": 53934, + "曼联": 53935, + "猜想": 53936, + "▁mk": 53937, + "▁(((": 53938, + "▁上海市": 53939, + "▁Cave": 53940, + "▁Named": 53941, + "住所地重庆市": 53942, + "director": 53943, + "▁Antarctica": 53944, + "频频": 53945, + "CXX": 53946, + "▁Dw": 53947, + "第二季": 53948, + "不同的是": 53949, + "levation": 53950, + "▁约": 53951, + "吃饱": 53952, + "大笑": 53953, + "kees": 53954, + "▁Duty": 53955, + "inement": 53956, + "APPLICATION": 53957, + "|:": 53958, + "▁вы": 53959, + "▁HBV": 53960, + "▁osteo": 53961, + "▁penis": 53962, + "Tooltip": 53963, + "▁abrupt": 53964, + "Vertical": 53965, + "▁congregation": 53966, + "并被": 53967, + "匈牙利": 53968, + "英特尔": 53969, + "}\\',": 53970, + "▁TLS": 53971, + "▁ain": 53972, + "工程机械": 53973, + "容留他人吸毒罪": 53974, + "▁nucleic": 53975, + "▁Patriots": 53976, + "repositories": 53977, + "苏轼": 53978, + "rox": 53979, + "不怎么": 53980, + "没有异议": 53981, + "输入样例": 53982, + "被执行人的财产": 53983, + "nUnivers": 53984, + "▁rotated": 53985, + "organized": 53986, + "亚科": 53987, + "引资": 53988, + "星的": 53989, + "谎言": 53990, + "并根据": 53991, + "显卡芯片": 53992, + "这段时间": 53993, + "▁tide": 53994, + "▁polyg": 53995, + "ABSTRACT": 53996, + "▁顾": 53997, + "也比": 53998, + "底座": 53999, + "还需": 54000, + "rsa": 54001, + "HTTPS": 54002, + "▁Sexy": 54003, + "nfirst": 54004, + "▁saxophone": 54005, + "▁calculates": 54006, + "npip": 54007, + "▁Melissa": 54008, + ":])\\": 54009, + "ambo": 54010, + "zier": 54011, + "第六十七": 54012, + "▁fuse": 54013, + "thedocs": 54014, + "二〇一五年七月": 54015, + "▁figuring": 54016, + "之城": 54017, + "书桌": 54018, + "大到": 54019, + "署名": 54020, + "进行治疗": 54021, + "▁Wong": 54022, + "texpect": 54023, + "▁envelop": 54024, + "▁upholst": 54025, + "▁Socialist": 54026, + "▁photographic": 54027, + "位上": 54028, + "墙体": 54029, + "红梅": 54030, + "▁FK": 54031, + "mins": 54032, + "outil": 54033, + "nUnlike": 54034, + "▁Marion": 54035, + ";;\\": 54036, + "Jobs": 54037, + "▁Via": 54038, + "优秀教师": 54039, + "▁unbiased": 54040, + "素描": 54041, + "遵纪": 54042, + "elm": 54043, + "可能在": 54044, + "马某某": 54045, + "裁判文书": 54046, + "pitch": 54047, + "▁hose": 54048, + "overed": 54049, + "▁shark": 54050, + "▁javafx": 54051, + "▁Evening": 54052, + "▁ambiguous": 54053, + "德斯": 54054, + "CRP": 54055, + "▁的值": 54056, + "还存在": 54057, + "始终坚持": 54058, + "enums": 54059, + "▁Railways": 54060, + "▁Luxembourg": 54061, + "花花": 54062, + "监督检查": 54063, + "不知道怎么": 54064, + "female": 54065, + "ptiles": 54066, + "actoring": 54067, + "▁但": 54068, + "少吃": 54069, + "王小": 54070, + "的在": 54071, + "容易被": 54072, + "▁bak": 54073, + "▁disrupted": 54074, + "呼吁": 54075, + "通辽": 54076, + "青蛙": 54077, + "大理石": 54078, + "据统计": 54079, + "▁GeV": 54080, + "▁Pon": 54081, + "▁ally": 54082, + "▁sophomore": 54083, + "喜欢吃": 54084, + "epit": 54085, + "rique": 54086, + "▁Mond": 54087, + "nModel": 54088, + "íc": 54089, + "TRY": 54090, + "▁联赛": 54091, + "在本院": 54092, + "配套设施": 54093, + "了大": 54094, + "人来": 54095, + "的金": 54096, + "SIM": 54097, + "中国家": 54098, + "Law": 54099, + "加油站": 54100, + "jump": 54101, + "globals": 54102, + "拼音是": 54103, + "标的为": 54104, + "still": 54105, + "▁Alumin": 54106, + "▁Bru": 54107, + "nmessage": 54108, + "符合法律规定的撤诉条件": 54109, + "steam": 54110, + "增减": 54111, + "结节": 54112, + "风力": 54113, + "vez": 54114, + "liner": 54115, + "▁suffers": 54116, + "有可供执行的财产": 54117, + "Mu": 54118, + "无辜": 54119, + "爱豆": 54120, + "▁Canad": 54121, + "▁vigil": 54122, + "▁diplom": 54123, + "▁detrimental": 54124, + "豪门": 54125, + "本人的": 54126, + "▁Shi": 54127, + "attempt": 54128, + "投机": 54129, + "雷斯": 54130, + "的观点": 54131, + "▁wow": 54132, + "顺着": 54133, + "fft": 54134, + "▁运行": 54135, + "潍坊市": 54136, + "帝国主义": 54137, + "▁Skip": 54138, + "▁abdomen": 54139, + "水池": 54140, + "流出": 54141, + "▁INFO": 54142, + "planes": 54143, + "ricing": 54144, + "osopher": 54145, + "▁bipart": 54146, + "填空": 54147, + "近来": 54148, + "decl": 54149, + "dens": 54150, + "▁\"<<": 54151, + "▁Ort": 54152, + "▁intox": 54153, + "▁Rhodes": 54154, + "▁resorts": 54155, + "▁migrated": 54156, + "遏制": 54157, + "▁Epic": 54158, + "▁ruin": 54159, + "▁pupil": 54160, + "▁retains": 54161, + "▁Differences": 54162, + "奇艺": 54163, + "荷花": 54164, + "ibi": 54165, + "Heap": 54166, + "▁unm": 54167, + "开展经营活动": 54168, + "普京": 54169, + "深渊": 54170, + "自理": 54171, + "]},": 54172, + "两人的": 54173, + "Peer": 54174, + "▁resonant": 54175, + ")&": 54176, + "绝不": 54177, + "谣言": 54178, + "($\"": 54179, + "▁常": 54180, + "▁sv": 54181, + "({},": 54182, + "jian": 54183, + "ToOne": 54184, + "▁Celtic": 54185, + "相应价值的财产": 54186, + "▁modifier": 54187, + "▁辅料": 54188, + "养殖业": 54189, + "egro": 54190, + "nFre": 54191, + "▁CIA": 54192, + "▁debit": 54193, + "reporter": 54194, + "▁gasoline": 54195, + "sci": 54196, + "ska": 54197, + "▁GF": 54198, + "▁牺牲": 54199, + "幸福感": 54200, + "教学楼": 54201, + "看出来": 54202, + "国债": 54203, + "的头": 54204, + "管理处": 54205, + "▁Ion": 54206, + "▁Hannah": 54207, + "Visibility": 54208, + "rz": 54209, + "▁nM": 54210, + "向量的": 54211, + "▁SOL": 54212, + "▁turbulent": 54213, + "图解": 54214, + "重要性": 54215, + "大家可以": 54216, + "▁crest": 54217, + "▁Boeing": 54218, + "▁aggrav": 54219, + "▁paddle": 54220, + "▁VARCHAR": 54221, + "▁computes": 54222, + "▁neighbours": 54223, + "单曲": 54224, + "Jeff": 54225, + "overn": 54226, + "志愿服务队": 54227, + "▁nausea": 54228, + "风气": 54229, + "subplot": 54230, + "▁Battalion": 54231, + "inp": 54232, + "▁sph": 54233, + "Quote": 54234, + "▁nood": 54235, + "▁assim": 54236, + "▁dimer": 54237, + "▁Thermal": 54238, + "SOL": 54239, + "graf": 54240, + "国华": 54241, + "抗震": 54242, + "自己也": 54243, + "Checks": 54244, + "▁strokes": 54245, + "的刑罚": 54246, + "都不敢": 54247, + "META": 54248, + "▁BAL": 54249, + "▁Pione": 54250, + "▁troph": 54251, + "mockito": 54252, + "▁getAll": 54253, + "微创": 54254, + "无为": 54255, + "情况说明": 54256, + "ndone": 54257, + "owitz": 54258, + "▁Firstly": 54259, + "海波": 54260, + "ubin": 54261, + "▁osm": 54262, + "▁blowing": 54263, + "▁Rational": 54264, + "▁grandson": 54265, + "▁hardness": 54266, + "conditional": 54267, + "▁hemisphere": 54268, + "途经": 54269, + "▁NN": 54270, + "▁tomb": 54271, + "党的十九大": 54272, + "执行机关提供的": 54273, + "是人类": 54274, + "办公室副主任": 54275, + "▁manifestation": 54276, + "无心": 54277, + "▁tb": 54278, + "nlist": 54279, + "▁Lamp": 54280, + "▁narc": 54281, + "Hs": 54282, + "因为这个": 54283, + "▁Staf": 54284, + "Decorator": 54285, + "▁Kazakhstan": 54286, + "查证": 54287, + "▁hob": 54288, + "PERTY": 54289, + "▁Logo": 54290, + "itures": 54291, + "▁mRNAs": 54292, + "照样": 54293, + "私募": 54294, + "产阶级": 54295, + "这一天": 54296, + "专业学习": 54297, + "完成任务": 54298, + "Western": 54299, + "drivers": 54300, + "▁antire": 54301, + "▁SUMMARY": 54302, + "第一百四十五条的规定": 54303, + "▁perturbations": 54304, + "▁Written": 54305, + "Come": 54306, + "两个整数": 54307, + "▁Exped": 54308, + "joining": 54309, + "经庭审": 54310, + "▁consortium": 54311, + "▁Scholarship": 54312, + "▁Staphylococcus": 54313, + "墙上": 54314, + "▁版本": 54315, + "▁Percent": 54316, + "▁servicing": 54317, + "▁neuroscience": 54318, + "河西": 54319, + "社长": 54320, + "▁HI": 54321, + "选择出": 54322, + "asaki": 54323, + "▁antennas": 54324, + "JB": 54325, + "奠定": 54326, + "打动": 54327, + "法医": 54328, + "thought": 54329, + "▁eldest": 54330, + "高级人民法院于": 54331, + "名气": 54332, + "英镑": 54333, + "▁PSA": 54334, + "▁bamboo": 54335, + "nUpdated": 54336, + "人称": 54337, + "水泵": 54338, + "alks": 54339, + "taking": 54340, + "▁Dodge": 54341, + "▁Refer": 54342, + "新冠肺炎疫情": 54343, + "▁Surgical": 54344, + "▁disturbing": 54345, + "之夜": 54346, + "老龄": 54347, + "淋巴结": 54348, + "awan": 54349, + "▁Bom": 54350, + "▁Hammer": 54351, + "▁Palestine": 54352, + "物权": 54353, + "设置了": 54354, + "\"#\">": 54355, + "]{\\\\": 54356, + "▁gamers": 54357, + "▁segregation": 54358, + "独有的": 54359, + "的资金": 54360, + "重大的": 54361, + "国家图书馆": 54362, + "gather": 54363, + "有下列情形之一的": 54364, + "▁automate": 54365, + "nIndividual": 54366, + "无缘": 54367, + "Luc": 54368, + "学习了": 54369, + "Altern": 54370, + "▁Presidential": 54371, + "▁MonoBehaviour": 54372, + "才行": 54373, + "nJo": 54374, + "满满的": 54375, + "的性格": 54376, + "▁文学体裁": 54377, + "essential": 54378, + "专心": 54379, + "▁casc": 54380, + "Ticket": 54381, + "▁Sultan": 54382, + "vx": 54383, + "两周": 54384, + "改性": 54385, + "▁周围景观": 54386, + "nSELECT": 54387, + "打字": 54388, + "鱼肉": 54389, + "的身体": 54390, + "可以得到": 54391, + "▁Clara": 54392, + "ategorized": 54393, + "宜春": 54394, + "淮安": 54395, + "依法可": 54396, + "故本选项错误": 54397, + "▁terrorists": 54398, + "▁biodiversity": 54399, + "超高": 54400, + "首付": 54401, + "膝关节": 54402, + "mRNA": 54403, + "grant": 54404, + "▁navy": 54405, + "UTION": 54406, + "▁Heroes": 54407, + "▁conversions": 54408, + "玲珑": 54409, + "最主要": 54410, + "▁Orders": 54411, + "▁bedding": 54412, + "调和": 54413, + "baum": 54414, + "▁Powers": 54415, + "双色": 54416, + "不仅能": 54417, + "Nick": 54418, + "农业银行": 54419, + "assic": 54420, + "▁Catch": 54421, + "本院予以采纳": 54422, + "Toolbar": 54423, + "公开发": 54424, + "卖的": 54425, + "固态": 54426, + "▁没有": 54427, + "第一届": 54428, + "nWar": 54429, + "▁trab": 54430, + "arcoma": 54431, + "Enh": 54432, + "最开始": 54433, + "▁Holly": 54434, + "akedirs": 54435, + "会同": 54436, + "地主": 54437, + "大便": 54438, + "恩施": 54439, + "车展": 54440, + "国资委": 54441, + "ARGS": 54442, + "▁awake": 54443, + "blogspot": 54444, + "江上": 54445, + "特约": 54446, + "鲜美": 54447, + "因为她": 54448, + "$;": 54449, + "月薪": 54450, + "Too": 54451, + "本来就是": 54452, + "ComponentModel": 54453, + "莫名其妙": 54454, + "least": 54455, + "是怎么回事": 54456, + "▁Highly": 54457, + "▁skipped": 54458, + "▁Membership": 54459, + "体能": 54460, + "题解": 54461, + "所以要": 54462, + "selective": 54463, + "▁thirteen": 54464, + "イン": 54465, + "招呼": 54466, + "eln": 54467, + "子序列": 54468, + "中的作用": 54469, + "生长发育": 54470, + "thttp": 54471, + "nNotice": 54472, + "▁profitability": 54473, + "先是": 54474, + "基亚": 54475, + "总分": 54476, + "浮动": 54477, + "爵士": 54478, + "▁Fuj": 54479, + "▁OVER": 54480, + "向本院申请再审": 54481, + "持卡": 54482, + "科级": 54483, + "但没有": 54484, + "orously": 54485, + "分隔": 54486, + "去买": 54487, + "片刻": 54488, + "家企业": 54489, + "的参数": 54490, + "rant": 54491, + "公告送达": 54492, + "▁indoors": 54493, + "Spl": 54494, + "你就会": 54495, + "健康成长": 54496, + "的工作人员": 54497, + "pectral": 54498, + "▁bloggers": 54499, + "▁behavioural": 54500, + "▁Measurements": 54501, + "说得": 54502, + "量表": 54503, + "▁'%": 54504, + "的自然": 54505, + "还是一": 54506, + "▁trek": 54507, + "▁分布范围": 54508, + "回顾性分析": 54509, + "初衷": 54510, + "孤儿": 54511, + "葱花": 54512, + "▁Intro": 54513, + "▁chars": 54514, + "IBILITY": 54515, + "二中": 54516, + "透视": 54517, + "▁FD": 54518, + "忘记了": 54519, + "▁ICC": 54520, + "二〇一五年八月": 54521, + "则为": 54522, + "▁法国": 54523, + "▁Lenn": 54524, + "nWithout": 54525, + "▁winding": 54526, + "▁companions": 54527, + "▁Presentation": 54528, + "域为": 54529, + "领悟": 54530, + "Cases": 54531, + "scalar": 54532, + "▁gifted": 54533, + "▁assemblies": 54534, + "hk": 54535, + "到家": 54536, + "北宋": 54537, + "▁hp": 54538, + "▁sobre": 54539, + "▁Reduction": 54540, + "火了": 54541, + "寻衅滋事": 54542, + "▁fairy": 54543, + "ishable": 54544, + "▁starch": 54545, + "▁utmost": 54546, + "▁vocalist": 54547, + "天长": 54548, + "是老": 54549, + "ugo": 54550, + "▁ptr": 54551, + "▁spreads": 54552, + "▁southeastern": 54553, + "专人": 54554, + "药师": 54555, + "青青": 54556, + "yet": 54557, + "aday": 54558, + "▁Skype": 54559, + "取决于被执行人": 54560, + "国家自然科学基金": 54561, + "▁Lithuania": 54562, + "温暖的": 54563, + "方面的知识": 54564, + "Martin": 54565, + "▁acquisitions": 54566, + "чи": 54567, + "并行": 54568, + "煮熟": 54569, + "▁Kw": 54570, + "只能在": 54571, + "xhtml": 54572, + "orsche": 54573, + "▁kicking": 54574, + "▁Ferguson": 54575, + "▁researched": 54576, + "▁mathematicians": 54577, + "抛光": 54578, + "▁Uri": 54579, + "竞争力的": 54580, + "▁Charge": 54581, + "▁Purple": 54582, + "▁augmentation": 54583, + "苯丙胺": 54584, + "▁Wet": 54585, + "RV": 54586, + "五四": 54587, + "着自己": 54588, + "CKER": 54589, + "▁Semi": 54590, + "▁toes": 54591, + "aliases": 54592, + "▁synonym": 54593, + "乱世": 54594, + "RAW": 54595, + "▁CRM": 54596, + "▁subfamily": 54597, + "▁Jacksonville": 54598, + "三元": 54599, + "承揽": 54600, + "还包括": 54601, + "Mike": 54602, + "违约责任": 54603, + "tuser": 54604, + "Unicode": 54605, + "Overflow": 54606, + "丰满": 54607, + "在第": 54608, + "▁rode": 54609, + "legacy": 54610, + "▁gravel": 54611, + "Packages": 54612, + "年中": 54613, + "窗外": 54614, + "到案经过": 54615, + "▁Curtis": 54616, + "▁Panthers": 54617, + "▁Constants": 54618, + "▁alternatively": 54619, + "扫地": 54620, + "准确性": 54621, + "▁cosmic": 54622, + "▁fading": 54623, + "tdisplay": 54624, + "▁esophag": 54625, + "▁layouts": 54626, + "▁collects": 54627, + "不掉": 54628, + "科的": 54629, + "Sin": 54630, + "fif": 54631, + "债权债务": 54632, + "▁PROF": 54633, + "▁Funeral": 54634, + "▁vomiting": 54635, + "外在": 54636, + "nOld": 54637, + "npost": 54638, + "enzyme": 54639, + "▁owning": 54640, + "主权": 54641, + "传入": 54642, + "轻重": 54643, + "▁规格参数": 54644, + "candidate": 54645, + "▁advisors": 54646, + "狂欢": 54647, + "edd": 54648, + "▁slack": 54649, + "会说": 54650, + "供需": 54651, + "吉尔": 54652, + "期为": 54653, + "构成了": 54654, + "magn": 54655, + "ometh": 54656, + "▁Blair": 54657, + "Subscriber": 54658, + "▁ω": 54659, + "国外的": 54660, + "flake": 54661, + "serializers": 54662, + "哈利": 54663, + "白马": 54664, + "}))": 54665, + "▁配置": 54666, + "专科学": 54667, + "类游戏": 54668, + "通过网络": 54669, + "不听": 54670, + "水文": 54671, + "副处长": 54672, + "网站建设": 54673, + "▁Tail": 54674, + "被执行人杨": 54675, + "nEvent": 54676, + "变身": 54677, + "高空": 54678, + "仔细地": 54679, + "告诉他": 54680, + "概率为": 54681, + "爱的人": 54682, + "由原告承担": 54683, + "▁Casey": 54684, + "二〇一七年四月": 54685, + "心跳": 54686, + "这名": 54687, + "TLS": 54688, + "insk": 54689, + "▁daemon": 54690, + "服务商": 54691, + "▁Dew": 54692, + "其行为已构成危险驾驶罪": 54693, + "Norm": 54694, + "▁*)\\": 54695, + "baidu": 54696, + "▁enumer": 54697, + "expressed": 54698, + "primes": 54699, + "proper": 54700, + "▁homomorphism": 54701, + "街上": 54702, + "在外面": 54703, + "▁PCA": 54704, + "plets": 54705, + "sizes": 54706, + "▁Runner": 54707, + "▁Tehran": 54708, + "angements": 54709, + "entricular": 54710, + "私下": 54711, + "▁HPLC": 54712, + "▁indicative": 54713, + "收录于": 54714, + "考试的": 54715, + "asin": 54716, + "因本案于": 54717, + "复合材料": 54718, + "▁leptin": 54719, + "▁Hyderabad": 54720, + "名著": 54721, + "辛勤": 54722, + "ovi": 54723, + "▁NGO": 54724, + "修真": 54725, + "Stamp": 54726, + "laravel": 54727, + "▁methane": 54728, + "nWhite": 54729, + "▁Sigma": 54730, + "▁Increased": 54731, + "▁Approximately": 54732, + "@\\": 54733, + "气压": 54734, + "藏在": 54735, + "专门的": 54736, + "▁SEE": 54737, + "经济林果": 54738, + "上前": 54739, + "升温": 54740, + "变焦": 54741, + "均已": 54742, + "umming": 54743, + "▁fetus": 54744, + "▁humid": 54745, + "▁lockdown": 54746, + "▁Biological": 54747, + "▁groundwater": 54748, + "▁intentional": 54749, + "元和": 54750, + "对人": 54751, + "课文": 54752, + "Fly": 54753, + "romb": 54754, + "感受到了": 54755, + "▁incubated": 54756, + "加点": 54757, + "\"}]": 54758, + "▁eV": 54759, + "这么大": 54760, + "▁Renew": 54761, + "acement": 54762, + "biology": 54763, + "▁bibliography": 54764, + "▁filmmaker": 54765, + "莱斯": 54766, + "司法局": 54767, + "一个数的": 54768, + "北京赛车": 54769, + "质量管理": 54770, + "副主任医师": 54771, + "▁halls": 54772, + "Compute": 54773, + "rescent": 54774, + "FileSystem": 54775, + "▁allergies": 54776, + "▁Increasing": 54777, + "下肢": 54778, + "但凡": 54779, + "后将": 54780, + "烘焙": 54781, + "Sugg": 54782, + "年上半年": 54783, + "sequences": 54784, + "过头": 54785, + "bias": 54786, + "在案佐证": 54787, + "法律援助": 54788, + "▁Duck": 54789, + "aclass": 54790, + "▁Kenny": 54791, + "项链": 54792, + "▁{}\\'": 54793, + "债权的实现": 54794, + "\\')),\\": 54795, + "养猪": 54796, + "嘉定": 54797, + "欧冠": 54798, + "fro": 54799, + "▁ка": 54800, + "compressed": 54801, + "▁号": 54802, + "他妈": 54803, + "器具": 54804, + "▁OD": 54805, + "动不动": 54806, + "海内外": 54807, + "第十三条": 54808, + "BUFFER": 54809, + "▁Adrian": 54810, + "▁storytelling": 54811, + "▁instructional": 54812, + "偏好": 54813, + "波澜": 54814, + "炒股": 54815, + ")}{(": 54816, + "Else": 54817, + "▁widgets": 54818, + "▁mythology": 54819, + "意境": 54820, + "noh": 54821, + "needs": 54822, + "▁Diseases": 54823, + "▁Rodriguez": 54824, + "▁transmembrane": 54825, + "▁г": 54826, + "———": 54827, + "一个问题": 54828, + "▁hooked": 54829, + "▁Podcast": 54830, + "▁manuscripts": 54831, + "十余": 54832, + "她也": 54833, + "阶梯": 54834, + "/\\\\/": 54835, + "▁DON": 54836, + "▁Marx": 54837, + "▁immers": 54838, + "▁reproduc": 54839, + "▁Raspberry": 54840, + "表态": 54841, + "可不是": 54842, + "\\'\"\\": 54843, + "htub": 54844, + "defer": 54845, + "▁Noise": 54846, + "WV": 54847, + "盘点": 54848, + "]\",": 54849, + "zon": 54850, + "还不够": 54851, + "nRest": 54852, + "▁EVEN": 54853, + "▁dignity": 54854, + "▁Likewise": 54855, + "▁highways": 54856, + "当晚": 54857, + "这话": 54858, + "间盘": 54859, + "apper": 54860, + "▁Brady": 54861, + "所欠": 54862, + "ROL": 54863, + "中国农业银行": 54864, + "▁markup": 54865, + "Exceptions": 54866, + "苦难": 54867, + "wald": 54868, + "estim": 54869, + "加拉": 54870, + "后就": 54871, + "辨识": 54872, + "遥远": 54873, + "第九十七条": 54874, + "exposed": 54875, + "paralle": 54876, + "prettier": 54877, + "▁ö": 54878, + "元旦": 54879, + "较短": 54880, + "CRC": 54881, + "rdf": 54882, + "normalized": 54883, + "Ka": 54884, + "异能": 54885, + "面具": 54886, + "的元素": 54887, + "艺术学院": 54888, + "USTOM": 54889, + "migrate": 54890, + "▁uninstall": 54891, + "▁Archbishop": 54892, + "▁Springfield": 54893, + "赞赏": 54894, + "异议人": 54895, + "的广告": 54896, + "▁ballet": 54897, + "▁Ethereum": 54898, + "filesystem": 54899, + "▁negotiation": 54900, + "spi": 54901, + "高中生": 54902, + "▁metam": 54903, + "▁GraphQL": 54904, + "▁milliseconds": 54905, + "Css": 54906, + "脱颖而出": 54907, + "avings": 54908, + "Between": 54909, + "死于": 54910, + "脱发": 54911, + "在接受": 54912, + "在银行": 54913, + "▁apex": 54914, + "FN": 54915, + "您选择": 54916, + "▁###\\": 54917, + "asthan": 54918, + "▁bloss": 54919, + "▁patri": 54920, + "▁rodents": 54921, + "生猪": 54922, + "▁VAT": 54923, + "juven": 54924, + "▁Fight": 54925, + "▁irreversible": 54926, + "▁za": 54927, + "动物门": 54928, + "nLead": 54929, + "▁autophagy": 54930, + "七星": 54931, + "体会到": 54932, + "▁elit": 54933, + "会比": 54934, + "溶于": 54935, + "不了的": 54936, + "mime": 54937, + "nSyn": 54938, + "做的事情": 54939, + "patched": 54940, + "▁EXISTS": 54941, + "▁cultivated": 54942, + "牢牢": 54943, + "种质": 54944, + "Ctx": 54945, + "无线电": 54946, + "艾滋病": 54947, + "adam": 54948, + "eeds": 54949, + "▁thy": 54950, + "▁rocky": 54951, + "▁victories": 54952, + "巴斯": 54953, + "油价": 54954, + "nip": 54955, + "求实数": 54956, + "纤维素": 54957, + "自动驾驶": 54958, + "diffusion": 54959, + "像个": 54960, + "INC": 54961, + "``\\": 54962, + "▁WC": 54963, + "营业部": 54964, + "inky": 54965, + "质量问题": 54966, + "monitoring": 54967, + "nDifferent": 54968, + "▁reperfusion": 54969, + "▁特": 54970, + "不仅要": 54971, + "的函数": 54972, + "的道路": 54973, + "▁burial": 54974, + "打死": 54975, + "漫长": 54976, + "▁WWE": 54977, + "详细介绍": 54978, + "▁Scout": 54979, + "▁sixteen": 54980, + "大厂": 54981, + "拉着": 54982, + "立新": 54983, + "老是": 54984, + "我们一起": 54985, + "提出减刑建议书": 54986, + "setValue": 54987, + "点数": 54988, + "谴责": 54989, + "韧性": 54990, + "家长们": 54991, + "▁Fear": 54992, + "Finish": 54993, + "movies": 54994, + "▁autor": 54995, + "transparent": 54996, + "一字": 54997, + "nUser": 54998, + "ycling": 54999, + "可笑": 55000, + "调侃": 55001, + "万元整": 55002, + "亚热带": 55003, + "二次根式的": 55004, + "iciary": 55005, + "▁itertools": 55006, + "州的": 55007, + "湖泊": 55008, + "▁Eq": 55009, + "元器件": 55010, + "▁Males": 55011, + "宁愿": 55012, + "读题": 55013, + "▁iz": 55014, + "一般人": 55015, + "洗衣间": 55016, + "esso": 55017, + "mpeg": 55018, + "▁suprem": 55019, + ")'": 55020, + "购进": 55021, + "企业发展": 55022, + "查控系统": 55023, + "getText": 55024, + "▁adduct": 55025, + "连连": 55026, + "都为": 55027, + "nBi": 55028, + "三十年": 55029, + ")\\\\,": 55030, + "▁Schmidt": 55031, + "illas": 55032, + "▁Comic": 55033, + "Generation": 55034, + "▁colonization": 55035, + "入场": 55036, + "向法庭": 55037, + "nEff": 55038, + "纪委书记": 55039, + "ressor": 55040, + "JM": 55041, + "andr": 55042, + "▁Gos": 55043, + "▁Gut": 55044, + "政府信息公开": 55045, + "Instant": 55046, + "▁Lancaster": 55047, + "卡的": 55048, + "开户行": 55049, + "结果的": 55050, + "igible": 55051, + "▁FIRST": 55052, + "▁Volks": 55053, + "uitable": 55054, + "地将": 55055, + "灾区": 55056, + "▁注解": 55057, + "nJon": 55058, + "神经网络": 55059, + "provide": 55060, + "▁reflux": 55061, + "中枢": 55062, + "保险箱": 55063, + "几年的": 55064, + "▁Grammy": 55065, + "▁interpersonal": 55066, + "无事": 55067, + "▁Lastly": 55068, + "▁bizarre": 55069, + "▁Discount": 55070, + "▁asteroid": 55071, + "塑性": 55072, + "▁Solo": 55073, + "indsay": 55074, + "oslovak": 55075, + "mediately": 55076, + "▁merchants": 55077, + "getAttribute": 55078, + "孕期": 55079, + "钻研": 55080, + "劳人仲": 55081, + "daughter": 55082, + "▁dentistry": 55083, + "Dead": 55084, + "▁Yii": 55085, + "▁asylum": 55086, + "▁rugged": 55087, + "nBaseball": 55088, + "▁prophylaxis": 55089, + "▁antioxidants": 55090, + "摄氏": 55091, + "srv": 55092, + "usb": 55093, + "nPal": 55094, + "▁Gul": 55095, + "分析方法": 55096, + "如何选择": 55097, + "eware": 55098, + "▁Pale": 55099, + "▁grac": 55100, + "▁infused": 55101, + "地表": 55102, + "先后在": 55103, + "和美国": 55104, + "▁rer": 55105, + "因与被申请人": 55106, + "▁awaiting": 55107, + "▁subtraction": 55108, + "在地上": 55109, + "语言的": 55110, + "▁Filipino": 55111, + "▁detached": 55112, + "▁advertised": 55113, + ",…": 55114, + "其对": 55115, + "给别人": 55116, + "inia": 55117, + "▁Brick": 55118, + "aurants": 55119, + "交叉口": 55120, + "nMarch": 55121, + "▁Removal": 55122, + "他要": 55123, + "环卫": 55124, + "采暖": 55125, + "FLAG": 55126, + "duty": 55127, + "▁$$|": 55128, + "据新华社": 55129, + "chemy": 55130, + "tvalue": 55131, + "branches": 55132, + "▁laptops": 55133, + ")”": 55134, + "以罪犯": 55135, + "相对来说": 55136, + "structures": 55137, + "每隔": 55138, + "穿的": 55139, + "▁kb": 55140, + "内存类型": 55141, + "土地管理法": 55142, + "▁Hands": 55143, + "▁scint": 55144, + "▁unitary": 55145, + "discovery": 55146, + "农林": 55147, + "宣言": 55148, + "人民卫生": 55149, + "▁protons": 55150, + "▁handball": 55151, + "▁patented": 55152, + "▁Lancashire": 55153, + "庄镇": 55154, + "行了": 55155, + "turl": 55156, + "罪犯奖励审批表": 55157, + "▁reimburse": 55158, + "根的": 55159, + "ekt": 55160, + "▁OT": 55161, + "选择性": 55162, + "研究发现": 55163, + "▁Rocket": 55164, + "坐落在": 55165, + "这次的": 55166, + "arine": 55167, + "游戏大小为": 55168, + "▁outgoing": 55169, + "武帝": 55170, + "cox": 55171, + "▁Warm": 55172, + "▁Higgs": 55173, + "▁Kerry": 55174, + "不值得": 55175, + "周围的": 55176, + "▁Laf": 55177, + "ivatives": 55178, + "▁Changing": 55179, + "广泛应用": 55180, + "olics": 55181, + "连载的小说": 55182, + "▁Charl": 55183, + "roduced": 55184, + "intensity": 55185, + "软件的": 55186, + "▁Morph": 55187, + "▁Wow": 55188, + "▁ISIS": 55189, + "▁instinct": 55190, + "▁assortment": 55191, + "ofluorescence": 55192, + "写真": 55193, + "nSmall": 55194, + "▁Fixes": 55195, + "onCreate": 55196, + "奋进": 55197, + "巴萨": 55198, + "bnb": 55199, + "▁bob": 55200, + "Et": 55201, + "受贿": 55202, + "和睦": 55203, + "肺部": 55204, + "▁Dock": 55205, + "▁weighs": 55206, + "nFunction": 55207, + "无知": 55208, + "▁ay": 55209, + "broker": 55210, + "ospice": 55211, + "▁rhythms": 55212, + "▁Organisation": 55213, + "▁Wnt": 55214, + "▁ace": 55215, + "▁Knox": 55216, + "▁bullying": 55217, + "transactions": 55218, + "Cou": 55219, + "nWithin": 55220, + "playlist": 55221, + "▁cyclist": 55222, + "▁trademarks": 55223, + "开来": 55224, + "▁wavelet": 55225, + "хо": 55226, + "洋洋": 55227, + "Flu": 55228, + "生效的": 55229, + "还提供": 55230, + "▁赛季": 55231, + "比赛的": 55232, + "可以分为": 55233, + "混合运算": 55234, + "▁divergent": 55235, + "归去": 55236, + "日光": 55237, + "▁口味": 55238, + "▁电话": 55239, + "inse": 55240, + "环境污染": 55241, + "至关重要": 55242, + "▁Gandhi": 55243, + "▁Ethernet": 55244, + "{<": 55245, + "再多": 55246, + "MMP": 55247, + "教育学院": 55248, + "▁myosin": 55249, + "▁stretches": 55250, + "天道": 55251, + "夯实": 55252, + "次日": 55253, + "画像": 55254, + "▁Zur": 55255, + "为主题的": 55256, + "clair": 55257, + "委员会副主任": 55258, + "中国工商银行股份有限公司": 55259, + "在某": 55260, + "用具": 55261, + "只要是": 55262, + "视网膜": 55263, + "actually": 55264, + "▁Redirect": 55265, + "子树": 55266, + "学说": 55267, + "菜肴": 55268, + "观的": 55269, + "这群": 55270, + "毕竟是": 55271, + "hardt": 55272, + "istem": 55273, + "由被告住所地": 55274, + "Gi": 55275, + "余杭": 55276, + "ARE": 55277, + "▁Yun": 55278, + "外观设计": 55279, + "生活习惯": 55280, + "明智的选择": 55281, + "甲基苯丙胺": 55282, + "▁thunder": 55283, + "▁Essential": 55284, + "▁completes": 55285, + "适中": 55286, + "一千元": 55287, + "rupting": 55288, + "研发的": 55289, + "要及时": 55290, + "其他需要": 55291, + "▁revert": 55292, + "Detector": 55293, + "▁priests": 55294, + "活塞": 55295, + "ajs": 55296, + "▁IG": 55297, + "▁德国": 55298, + "▁reck": 55299, + "REGIST": 55300, + "▁Consortium": 55301, + "▁approximations": 55302, + "▁名": 55303, + "成因": 55304, + "▁HK": 55305, + "立方分米": 55306, + "ilian": 55307, + "tiles": 55308, + "▁fungus": 55309, + "▁multiples": 55310, + "村落": 55311, + "▁anticancer": 55312, + "倒霉": 55313, + "看清": 55314, + "陵县": 55315, + "▁bog": 55316, + "CACHE": 55317, + "tchar": 55318, + "▁imperial": 55319, + "都可": 55320, + "ADC": 55321, + "同学的": 55322, + "CEPT": 55323, + "▁SPI": 55324, + "tested": 55325, + "▁Bonus": 55326, + "omerase": 55327, + "劳动人事争议仲裁委员会": 55328, + "Authenticated": 55329, + "募集": 55330, + "大军": 55331, + "ylp": 55332, + "予以采纳": 55333, + "▁penn": 55334, + "▁bombs": 55335, + "missible": 55336, + "界定": 55337, + "BMI": 55338, + "切换到": 55339, + "方程的": 55340, + "简直是": 55341, + "▁Bryant": 55342, + "ImageView": 55343, + "▁supermarket": 55344, + "年和": 55345, + "高地": 55346, + "这样可以": 55347, + "酒店交通": 55348, + "▁Spar": 55349, + "▁Monten": 55350, + "▁那": 55351, + "学分": 55352, + "构图": 55353, + "祭祀": 55354, + "是全国": 55355, + "十三条的规定": 55356, + "▁hereditary": 55357, + "以各主要景点的距离如下": 55358, + "踊跃": 55359, + "▁动物界": 55360, + "▁Cruise": 55361, + "▁complaining": 55362, + "楼房": 55363, + "上大学": 55364, + "景德镇": 55365, + "更重要": 55366, + "▁bonded": 55367, + "▁landmarks": 55368, + "▁arbitrarily": 55369, + "▁breastfeeding": 55370, + "能效": 55371, + "elog": 55372, + "▁Clearly": 55373, + "▁Lagrangian": 55374, + "应邀": 55375, + "新鲜的": 55376, + "问题进行分析": 55377, + "readable": 55378, + "▁Armenia": 55379, + "▁Converter": 55380, + "Pt": 55381, + "魔王": 55382, + "▁Sofia": 55383, + "▁apparel": 55384, + "玉环": 55385, + "理赔": 55386, + "芝士": 55387, + "血小板": 55388, + "▁Giant": 55389, + "▁itiner": 55390, + "Partition": 55391, + "碳水": 55392, + "首尔": 55393, + "Vars": 55394, + "asser": 55395, + "▁Sche": 55396, + "▁Tier": 55397, + "▁Rally": 55398, + "笼罩": 55399, + "车库": 55400, + "高级工程师": 55401, + "搭档": 55402, + "少年的": 55403, + "lash": 55404, + "▁GIS": 55405, + "系统地": 55406, + "▁Burton": 55407, + "南侧": 55408, + "操作的": 55409, + "应予终结": 55410, + "nHuman": 55411, + "uginosa": 55412, + "▁balances": 55413, + "▁palliative": 55414, + "sms": 55415, + "▁Bj": 55416, + "▁位置": 55417, + "情况和": 55418, + "根本上": 55419, + "ENGINE": 55420, + "▁Eugene": 55421, + "研磨": 55422, + "▁丛书": 55423, + "类专业": 55424, + "inverse": 55425, + "▁responders": 55426, + "出游": 55427, + "海边": 55428, + "酿酒": 55429, + "里克": 55430, + "▁WO": 55431, + "比较有": 55432, + "的疗效": 55433, + "otherm": 55434, + "▁insign": 55435, + "人也": 55436, + "便会": 55437, + "每行": 55438, + "诸暨": 55439, + "小店": 55440, + "依法应予准许": 55441, + "▁cardio": 55442, + "▁quietly": 55443, + "▁eukaryotic": 55444, + "▁mentioning": 55445, + "路店": 55446, + "等方法": 55447, + "esque": 55448, + "▁weighed": 55449, + "▁mitigation": 55450, + "▁collaborating": 55451, + "中铁": 55452, + "足迹": 55453, + "▁hu": 55454, + "▁до": 55455, + "为学生": 55456, + "南北朝": 55457, + "▁Spy": 55458, + "▁umb": 55459, + "都有一个": 55460, + "backed": 55461, + "▁Kindle": 55462, + "水深": 55463, + "个月的": 55464, + "给予了": 55465, + "详细信息": 55466, + "▁Schwar": 55467, + "▁luggage": 55468, + "Dimension": 55469, + "▁asynchronous": 55470, + "几家": 55471, + "联谊": 55472, + "韶关": 55473, + "实际的": 55474, + "触摸屏": 55475, + "提供参考": 55476, + "▁Lund": 55477, + "律诗": 55478, + "目标的": 55479, + "}^{{": 55480, + "▁Scan": 55481, + "纷纷表示": 55482, + "thanks": 55483, + "▁Aurora": 55484, + "conference": 55485, + "▁inspirational": 55486, + "入院": 55487, + "▁CAM": 55488, + "nUsage": 55489, + "Whether": 55490, + "▁Repeat": 55491, + "▁redesign": 55492, + "▁Quantitative": 55493, + "多半": 55494, + "quil": 55495, + "reli": 55496, + "一个月内": 55497, + "家用电器": 55498, + "▁servant": 55499, + "ContentType": 55500, + "出卖": 55501, + "孤立": 55502, + "education": 55503, + "两会": 55504, + "灌木": 55505, + "▁Pour": 55506, + "▁decoder": 55507, + "▁exagger": 55508, + "▁multiplier": 55509, + "代号": 55510, + "铃薯": 55511, + "办主任": 55512, + "直播间": 55513, + "▁при": 55514, + "Science": 55515, + "▁Milton": 55516, + "▁Peterson": 55517, + "▁subscriber": 55518, + "守门": 55519, + "柔和": 55520, + "补水": 55521, + "超大": 55522, + "阐释": 55523, + "有很大": 55524, + "caps": 55525, + "alking": 55526, + "cerely": 55527, + "仇恨": 55528, + "复位": 55529, + "fps": 55530, + "减轻处罚": 55531, + "below": 55532, + "GITHUB": 55533, + "投资管理有限公司": 55534, + "就不用": 55535, + "▁ERA": 55536, + "Fa": 55537, + "岭南": 55538, + "排球": 55539, + "放学": 55540, + "▁Glob": 55541, + "▁Annie": 55542, + "▁mills": 55543, + "icillin": 55544, + "▁Divide": 55545, + "▁chambers": 55546, + "罚息": 55547, + "▁VT": 55548, + "和治疗": 55549, + "▁wished": 55550, + "encrypted": 55551, + "▁Infinity": 55552, + "云端": 55553, + "它能": 55554, + "nez": 55555, + "消化道": 55556, + "tang": 55557, + "exico": 55558, + "▁Called": 55559, + "二〇一八年五月": 55560, + "▁Dirichlet": 55561, + "姓氏": 55562, + "皮的": 55563, + "园林绿化": 55564, + "inges": 55565, + "▁playback": 55566, + "▁Interaction": 55567, + "\\\\'": 55568, + "▁%%": 55569, + "机械化": 55570, + "解决的": 55571, + "取暖": 55572, + "后备": 55573, + "本体": 55574, + "局域网": 55575, + "ebug": 55576, + "▁Wrong": 55577, + "▁Breaking": 55578, + "▁presidency": 55579, + "YA": 55580, + "怀抱": 55581, + "本能": 55582, + "当然了": 55583, + "的人类": 55584, + "▁secular": 55585, + "▁terrestrial": 55586, + "▁interpreting": 55587, + "佣金": 55588, + "佳人": 55589, + "法案": 55590, + "立方厘米": 55591, + "▁turbulence": 55592, + "交界": 55593, + "资金的": 55594, + "▁HAL": 55595, + "▁Bing": 55596, + "▁spokeswoman": 55597, + "巴马": 55598, + "市东": 55599, + "anyl": 55600, + "ovir": 55601, + "文化产业": 55602, + "▁Janet": 55603, + "▁Banking": 55604, + "Predicate": 55605, + "不需": 55606, + "出借": 55607, + "后端": 55608, + "知乎上": 55609, + "dial": 55610, + "根据自己的": 55611, + "unsafe": 55612, + "▁Nobel": 55613, + "▁telev": 55614, + "nutrition": 55615, + "大唐": 55616, + "▁pores": 55617, + "在服刑改造期间": 55618, + "▁histologic": 55619, + "▁Theoretical": 55620, + "后方": 55621, + "情趣": 55622, + "血的": 55623, + "讯息": 55624, + "▁cared": 55625, + "▁UL": 55626, + "过多的": 55627, + "TINGS": 55628, + "INVALID": 55629, + "▁Comfort": 55630, + "▁Conversely": 55631, + "▁unpredictable": 55632, + "皇上": 55633, + "OTS": 55634, + "▁第六": 55635, + "信息安全": 55636, + "▁bolt": 55637, + "▁graz": 55638, + "▁Older": 55639, + "上缴": 55640, + "如其": 55641, + "支持下": 55642, + "▁trop": 55643, + "itsu": 55644, + "▁Rag": 55645, + "▁subscriptions": 55646, + "某某诉被告": 55647, + "nHy": 55648, + "nnode": 55649, + "▁clinician": 55650, + "▁scrolling": 55651, + "▁deficiencies": 55652, + "固件": 55653, + "eka": 55654, + "在过去": 55655, + "问题了": 55656, + "STIT": 55657, + "olum": 55658, + "npeople": 55659, + "▁Wagner": 55660, + "▁french": 55661, + "piration": 55662, + "▁Friedrich": 55663, + "▁commenced": 55664, + "远县": 55665, + "阵营": 55666, + "TEX": 55667, + "领导和": 55668, + "▁jwt": 55669, + "刑终字第": 55670, + "司法解释": 55671, + "▁northeastern": 55672, + "江东": 55673, + "而易": 55674, + "银杏": 55675, + "▁Evan": 55676, + "▁Romney": 55677, + "▁Families": 55678, + "气动": 55679, + "飞的": 55680, + "▁pued": 55681, + "▁archived": 55682, + "单人": 55683, + "空心": 55684, + "nrm": 55685, + "发表了": 55686, + "▁Lah": 55687, + "Russian": 55688, + "TEMPLATE": 55689, + "▁thriving": 55690, + "兑现": 55691, + "废话": 55692, + "网易云": 55693, + "envs": 55694, + "formal": 55695, + "neutral": 55696, + "▁chassis": 55697, + "就大": 55698, + "垃圾分类": 55699, + "urses": 55700, + "greSQL": 55701, + "▁theatrical": 55702, + "改动": 55703, + "花落": 55704, + "oqu": 55705, + "▁CDP": 55706, + "avery": 55707, + "▁eryt": 55708, + "▁extras": 55709, + "▁pendant": 55710, + "▁parabola": 55711, + "▁neuropathy": 55712, + "与研究": 55713, + "emos": 55714, + "本案申请执行人": 55715, + "跑道": 55716, + "FOUND": 55717, + "▁knit": 55718, + "▁Aware": 55719, + "将从": 55720, + "推向": 55721, + "省长": 55722, + "自如": 55723, + "\\',$": 55724, + "upta": 55725, + "burst": 55726, + "▁Lambda": 55727, + "今朝": 55728, + "ECD": 55729, + "惯用脚": 55730, + "\\": 55731, + "高职院校": 55732, + "Recent": 55733, + "▁Blind": 55734, + "短路": 55735, + "'>\\": 55736, + "[]>": 55737, + "管理协会": 55738, + "▁horr": 55739, + "▁colitis": 55740, + "享受到": 55741, + "总人口": 55742, + "法律责任": 55743, + "Death": 55744, + "estly": 55745, + "二〇一五年九月": 55746, + "▁inversely": 55747, + "地亚": 55748, + "外接": 55749, + "安装包": 55750, + "有的是": 55751, + "JAVA": 55752, + "nyes": 55753, + "rgba": 55754, + "eters": 55755, + "▁Ping": 55756, + "nThird": 55757, + "ncreate": 55758, + "otherap": 55759, + "功课": 55760, + "岁以上": 55761, + "来不及": 55762, + "interop": 55763, + "▁solubility": 55764, + "部和": 55765, + "ESCO": 55766, + "所提出的": 55767, + "的时间内": 55768, + "▁traced": 55769, + "▁procedural": 55770, + "红灯": 55771, + "本报讯": 55772, + "输入格式": 55773, + "事实与理由": 55774, + "危险化学品": 55775, + "Cook": 55776, + "比率": 55777, + "APS": 55778, + "二千元": 55779, + "▁PLC": 55780, + "▁SDL": 55781, + "unpack": 55782, + "▁pollen": 55783, + "▁pollutants": 55784, + "Trim": 55785, + "dinger": 55786, + "▁categorical": 55787, + "nCross": 55788, + "▁Dylan": 55789, + "▁breasts": 55790, + "▁scheduler": 55791, + "乏力": 55792, + "密钥": 55793, + "还有人": 55794, + "hashCode": 55795, + "▁irrespective": 55796, + "军官": 55797, + "专业从事": 55798, + "erground": 55799, + "▁elephant": 55800, + "responding": 55801, + "applications": 55802, + "监听": 55803, + "▁广西": 55804, + "▁MTV": 55805, + "一点都不": 55806, + "行业发展": 55807, + "▁Camero": 55808, + "的人口": 55809, + "▁ENG": 55810, + "▁Jaw": 55811, + "这个东西": 55812, + "源性": 55813, + "预览": 55814, + "Ast": 55815, + "文史": 55816, + "往期": 55817, + "我已": 55818, + "Emp": 55819, + "死亡率": 55820, + "的动力": 55821, + "john": 55822, + "▁Ink": 55823, + "▁Mega": 55824, + "iaries": 55825, + "▁elicit": 55826, + "▁authored": 55827, + "▁monuments": 55828, + "▁Aboriginal": 55829, + "诚意": 55830, + "▁ros": 55831, + "怎么可能": 55832, + "神经系统": 55833, + "▁goat": 55834, + "umbnails": 55835, + "▁barrels": 55836, + "迷宫": 55837, + "dag": 55838, + "水处理": 55839, + "▁installment": 55840, + "ryn": 55841, + "▁Sach": 55842, + "补正": 55843, + "▁LM": 55844, + "一小时": 55845, + "在他们": 55846, + "▁****": 55847, + "▁pharmacokinetic": 55848, + "也称": 55849, + "子叶": 55850, + "iad": 55851, + "▁lign": 55852, + "province": 55853, + "▁biliary": 55854, + "修仙": 55855, + "四百": 55856, + "定于": 55857, + "徒弟": 55858, + "Mate": 55859, + "合同签订": 55860, + "科学技术出版社": 55861, + "优美的": 55862, + "机器翻译": 55863, + "oprot": 55864, + "▁rushing": 55865, + "▁removable": 55866, + "▁prosecution": 55867, + "中被": 55868, + "李文": 55869, + "盛大": 55870, + "▁意大利": 55871, + "故诉至法院": 55872, + "▁Vander": 55873, + "European": 55874, + "▁ultrason": 55875, + "伸出": 55876, + "年是": 55877, + "这天": 55878, + "▁pk": 55879, + "最合适的": 55880, + "但未": 55881, + "声道": 55882, + "并获得": 55883, + "的儿子": 55884, + "Cong": 55885, + "保修信息": 55886, + "▁classics": 55887, + "取决于被执行人是否有": 55888, + "▁confronted": 55889, + "春光": 55890, + "\\\\(|": 55891, + "▁NaCl": 55892, + "▁neoplastic": 55893, + "大妈": 55894, + "母乳": 55895, + "肾功能": 55896, + "▁whatsoever": 55897, + "单机": 55898, + "{}\"": 55899, + "思想和": 55900, + "nCzech": 55901, + "▁Allah": 55902, + "世事": 55903, + "的最后": 55904, + "之名": 55905, + "电图": 55906, + "经由": 55907, + "冰淇淋": 55908, + "辖区内": 55909, + "Uint": 55910, + "ndan": 55911, + "ounty": 55912, + "INGTON": 55913, + "辛辣": 55914, + "高了": 55915, + "▁谱曲": 55916, + "阿里云": 55917, + "ITEM": 55918, + "就会出现": 55919, + "▁Reporting": 55920, + "自尊": 55921, + "▁Lov": 55922, + "依据问题": 55923, + "▁Sources": 55924, + "▁detention": 55925, + "IU": 55926, + "洋溢": 55927, + "爱吃": 55928, + "驱逐": 55929, + "公司和": 55930, + "品牌策划": 55931, + "申请行政复议": 55932, + "▁micron": 55933, + "▁shader": 55934, + "郭某": 55935, + "Bon": 55936, + "Ivy": 55937, + "gam": 55938, + "▁OUR": 55939, + "不会出现": 55940, + "遵纪守法": 55941, + "nEnron": 55942, + "▁Antib": 55943, + "streams": 55944, + ")×": 55945, + "挂钩": 55946, + "此案": 55947, + "要将": 55948, + "有这么": 55949, + "干部职工": 55950, + "▁Cove": 55951, + "oxygen": 55952, + "clicked": 55953, + "opening": 55954, + "▁Janeiro": 55955, + "病菌": 55956, + "不在乎": 55957, + "为原料": 55958, + "Sequ": 55959, + "▁IND": 55960, + "▁referrals": 55961, + "一词": 55962, + "螺栓": 55963, + "就像是": 55964, + "▁Laz": 55965, + "rador": 55966, + "}\");\\": 55967, + "▁CERN": 55968, + "▁Pill": 55969, + "▁bearings": 55970, + "课件": 55971, + "▁Fres": 55972, + "▁Reply": 55973, + "▁Bronze": 55974, + "拆卸": 55975, + "未央": 55976, + "运维": 55977, + "VAR": 55978, + "部主任": 55979, + "gist": 55980, + "nsize": 55981, + "Providers": 55982, + "陪你": 55983, + "体现出": 55984, + "plen": 55985, + "▁`\\\\": 55986, + "非常重要的": 55987, + "日提出减刑建议": 55988, + "answered": 55989, + "函授": 55990, + "囊肿": 55991, + "导管": 55992, + "巡察": 55993, + "火炬": 55994, + "Bio": 55995, + "的合作": 55996, + "▁PAT": 55997, + "血量": 55998, + "在香港": 55999, + "nDevelop": 56000, + "▁Cowboys": 56001, + "▁Timothy": 56002, + "▁airplane": 56003, + "▁Questionnaire": 56004, + "不理": 56005, + "何人": 56006, + "家村": 56007, + "球衣": 56008, + "奥地利": 56009, + "oriasis": 56010, + "▁Sharon": 56011, + "▁Griffin": 56012, + "汗水": 56013, + "骁龙": 56014, + "▁cue": 56015, + "Deg": 56016, + "gust": 56017, + "▁slash": 56018, + "▁Bulldogs": 56019, + "adrenergic": 56020, + "会场": 56021, + "很棒": 56022, + "IFN": 56023, + "安庆市": 56024, + "Mime": 56025, + "Pods": 56026, + "代表性的": 56027, + "nSure": 56028, + "▁Adventures": 56029, + "Ho": 56030, + "上衣": 56031, + "口红": 56032, + "线和": 56033, + "支持和": 56034, + "而这些": 56035, + "agascar": 56036, + "▁Perl": 56037, + "▁disproportion": 56038, + "烟火": 56039, + "Jac": 56040, + "共同体": 56041, + "▁pots": 56042, + "公诉机关指控的罪名成立": 56043, + "建立在": 56044, + "联系人": 56045, + "riven": 56046, + "HZ": 56047, + "ettle": 56048, + "伪装": 56049, + "肝癌": 56050, + "重点是": 56051, + "akin": 56052, + "原审裁定": 56053, + "▁Bren": 56054, + "▁spawn": 56055, + "▁sparked": 56056, + "▁kindness": 56057, + "一想": 56058, + "舍得": 56059, + "邻近": 56060, + "给你们": 56061, + "▁Isn": 56062, + "▁Relative": 56063, + "长假": 56064, + "▁DU": 56065, + "的高级": 56066, + "蚌埠市": 56067, + "anon": 56068, + "▁gra": 56069, + "占了": 56070, + "可比": 56071, + "逛街": 56072, + "高贵": 56073, + "nRO": 56074, + "动物园": 56075, + "当选为": 56076, + "试题分析": 56077, + "越来越好": 56078, + "▁Bruno": 56079, + "▁mapper": 56080, + "▁rotations": 56081, + "六级": 56082, + "高点": 56083, + "▁clerk": 56084, + "市人民法院于": 56085, + "▁spells": 56086, + "bitration": 56087, + "群的": 56088, + "预示": 56089, + "太极拳": 56090, + "HDMI": 56091, + "罪犯考核": 56092, + "▁Hilton": 56093, + "▁accelerating": 56094, + "WO": 56095, + "做梦": 56096, + "很正常": 56097, + "arty": 56098, + "nLib": 56099, + "▁sadly": 56100, + "▁contempl": 56101, + "▁Chevrolet": 56102, + "轴的": 56103, + "分别于": 56104, + "设置为": 56105, + "TOOL": 56106, + "▁Jiang": 56107, + "▁dread": 56108, + "创业板": 56109, + "▁tempo": 56110, + "就该": 56111, + "这笔": 56112, + "bard": 56113, + "onate": 56114, + "neider": 56115, + "Numeric": 56116, + "仍旧": 56117, + "在场": 56118, + "▁sd": 56119, + "举个例子": 56120, + "住江苏省": 56121, + "Rever": 56122, + "▁Dataset": 56123, + "lifecycle": 56124, + "▁shocking": 56125, + "▁believing": 56126, + "校正": 56127, + "箱子": 56128, + "通透": 56129, + "Django": 56130, + "either": 56131, + "ان": 56132, + "眼界": 56133, + "碾压": 56134, + "把一个": 56135, + "▁femin": 56136, + "▁groove": 56137, + "matching": 56138, + "clamation": 56139, + "Compatible": 56140, + "何种": 56141, + "提议": 56142, + "\\'_": 56143, + "()}\\": 56144, + "ndiv": 56145, + "Ce": 56146, + "不会再": 56147, + "会引起": 56148, + "▁Gaza": 56149, + "对申请执行人": 56150, + "育儿": 56151, + "健康教育": 56152, + "在天": 56153, + "驻地": 56154, + "高某": 56155, + "zan": 56156, + "因为有": 56157, + "nAdv": 56158, + "▁melted": 56159, + "曾获": 56160, + "abo": 56161, + "▁Edu": 56162, + "中央空调": 56163, + "▁Till": 56164, + "okines": 56165, + "▁axons": 56166, + "fitting": 56167, + "▁Handbook": 56168, + "▁disconnect": 56169, + "Documentation": 56170, + "上为": 56171, + "包包": 56172, + "无不": 56173, + "竞选": 56174, + "▁&\\": 56175, + "与企业": 56176, + "ikit": 56177, + "reward": 56178, + "▁buddy": 56179, + "▁maple": 56180, + "转弯": 56181, + "直升机": 56182, + "政协副主席": 56183, + "ordion": 56184, + "Temperature": 56185, + "Io": 56186, + "北约": 56187, + "杀伤": 56188, + "正宗": 56189, + "nJud": 56190, + "Roman": 56191, + "undai": 56192, + "▁lion": 56193, + "▁Manor": 56194, + "▁traceback": 56195, + "▁hyperplasia": 56196, + "▁Implications": 56197, + "要对": 56198, + "钝角": 56199, + "第六十四条": 56200, + "SYSTEM": 56201, + "existent": 56202, + "Association": 56203, + "▁BeautifulSoup": 56204, + "我问": 56205, + "曲目": 56206, + "织物": 56207, + "▁Boh": 56208, + ">\\',\\": 56209, + "▁scalp": 56210, + "声乐": 56211, + "绳子": 56212, + "曾用名": 56213, + "thews": 56214, + "uloskeletal": 56215, + "耶稣": 56216, + "不会被": 56217, + "执行异议": 56218, + "rstrip": 56219, + "▁Caval": 56220, + "▁armor": 56221, + "▁knots": 56222, + "▁stuffed": 56223, + "出境": 56224, + "asn": 56225, + "Wiki": 56226, + "▁diaph": 56227, + "▁elective": 56228, + "▁shipment": 56229, + "ValueError": 56230, + "▁collaborators": 56231, + "免交": 56232, + "圈的": 56233, + "▁Egg": 56234, + "ribly": 56235, + "准许上诉人": 56236, + "byterian": 56237, + "他们对": 56238, + "边长为": 56239, + "uten": 56240, + "▁wag": 56241, + "第七十九条和": 56242, + "houette": 56243, + "▁Smooth": 56244, + "▁trader": 56245, + "▁statewide": 56246, + "中段": 56247, + "打到": 56248, + "财经大学": 56249, + "ighbour": 56250, + "thermal": 56251, + "nRegards": 56252, + "▁Gujarat": 56253, + "odds": 56254, + "▁roses": 56255, + "▁respects": 56256, + "TiO": 56257, + "▁Beg": 56258, + "CMake": 56259, + "ossible": 56260, + "recursive": 56261, + "医治": 56262, + "触及": 56263, + "thor": 56264, + "SECON": 56265, + "▁pleas": 56266, + "▁bowling": 56267, + "▁cocktails": 56268, + "▁Achievement": 56269, + "▁commissioner": 56270, + "发现被执行人有财产可供执行": 56271, + "Die": 56272, + "等活动": 56273, + "中国企业": 56274, + "税务总局": 56275, + "▁scav": 56276, + "▁Ahmad": 56277, + "▁fibroblast": 56278, + "世界里": 56279, + "utan": 56280, + "▁Modal": 56281, + "二〇一六年十月": 56282, + "findViewById": 56283, + "不自": 56284, + "在被": 56285, + "红十字": 56286, + "atham": 56287, + "iazep": 56288, + "▁lone": 56289, + "Resolve": 56290, + "▁Phillip": 56291, + "▁hacking": 56292, + "▁electrolyte": 56293, + "ancellationToken": 56294, + "一扫": 56295, + "纯属": 56296, + "negie": 56297, + "▁Nonlinear": 56298, + "▁smo": 56299, + "rawling": 56300, + "included": 56301, + "▁entrepreneurial": 56302, + "大都": 56303, + "越小": 56304, + "atonin": 56305, + "istine": 56306, + "习近平总书记": 56307, + "Getting": 56308, + "éc": 56309, + "ód": 56310, + "EOF": 56311, + "Lex": 56312, + "Cube": 56313, + "wsgi": 56314, + "▁Rup": 56315, + "向本院提供被执行人": 56316, + "▁Techniques": 56317, + "梦境": 56318, + "考评": 56319, + "牛仔裤": 56320, + "▁Rough": 56321, + "▁surfing": 56322, + "▁twentieth": 56323, + "同名": 56324, + "▁MF": 56325, + "▁scrutiny": 56326, + "乌兰": 56327, + "人多": 56328, + "宾客": 56329, + "弊端": 56330, + "usty": 56331, + "第一部分": 56332, + "nMountains": 56333, + "▁viewpoint": 56334, + "李小": 56335, + "皇马": 56336, + "当前的": 56337, + "nPay": 56338, + "Cycle": 56339, + "▁hairy": 56340, + "oblasts": 56341, + "▁harbor": 56342, + "ej": 56343, + "嘉奖": 56344, + "如期": 56345, + "蝙蝠": 56346, + "▁俱乐部": 56347, + "所产生的": 56348, + "dagger": 56349, + "▁Canterbury": 56350, + "_*": 56351, + "过量": 56352, + "▁slate": 56353, + "二〇一七年六": 56354, + "本领": 56355, + "ipv": 56356, + "条件和": 56357, + "所带来的": 56358, + "▁peric": 56359, + "▁Median": 56360, + "Importer": 56361, + "ndefault": 56362, + "menopausal": 56363, + "偏见": 56364, + "赋值": 56365, + "nGl": 56366, + "审核表": 56367, + "▁PST": 56368, + "知识渊博": 56369, + "▁Eigen": 56370, + "TIMEOUT": 56371, + "▁pulsed": 56372, + "nBasketball": 56373, + "▁accidental": 56374, + "▁differentiating": 56375, + "DUCTION": 56376, + "经原告多次催要": 56377, + "HU": 56378, + "乙肝": 56379, + "分别在": 56380, + "▁awa": 56381, + "Think": 56382, + "Until": 56383, + "nItem": 56384, + "而有所不同": 56385, + "附带民事诉讼": 56386, + "temporal": 56387, + "Interaction": 56388, + "▁风": 56389, + "车轮": 56390, + "▁都市言情": 56391, + "presso": 56392, + "判决生效后十日内": 56393, + "介意": 56394, + "提供的证据": 56395, + "第一百四十四条的规定": 56396, + "▁Contributors": 56397, + "一枝": 56398, + "较小的": 56399, + "oppy": 56400, + "▁Gian": 56401, + "▁teamed": 56402, + "▁fourteen": 56403, + "与国际": 56404, + "\":[\\": 56405, + "债权依法": 56406, + "在人民法院": 56407, + "批准的项目": 56408, + "具有挑战性的": 56409, + "该犯在服刑期间": 56410, + "readthedocs": 56411, + "副总": 56412, + "lisher": 56413, + "▁Wings": 56414, + "▁wears": 56415, + "eliness": 56416, + "▁torrent": 56417, + "压根": 56418, + "床房": 56419, + "的技能": 56420, + "英雄联盟": 56421, + "▁peroxide": 56422, + "▁蓝": 56423, + "花纹": 56424, + "$),": 56425, + "原来是": 56426, + "很快就": 56427, + "▁SCI": 56428, + "arger": 56429, + "nHeat": 56430, + "符合下列条件": 56431, + "matcher": 56432, + "▁Finals": 56433, + "▁Lutheran": 56434, + "getProperty": 56435, + "下场": 56436, + "宁区": 56437, + "Cas": 56438, + "也许是": 56439, + "的种类": 56440, + "nYet": 56441, + "liche": 56442, + "▁malt": 56443, + "具备执行条件": 56444, + "makedirs": 56445, + "▁Preston": 56446, + "▁Swimming": 56447, + "▁Utilities": 56448, + "▁ActiveRecord": 56449, + "▁hepatocellular": 56450, + "军民": 56451, + "押金": 56452, + "creative": 56453, + "▁Rainbow": 56454, + "tgz": 56455, + "惠州市": 56456, + "iola": 56457, + "请告诉我": 56458, + "骑行": 56459, + "aes": 56460, + "也希望": 56461, + "非常适合": 56462, + "但债权的实现": 56463, + "minimal": 56464, + "▁Execution": 56465, + "▁aeruginosa": 56466, + "周日": 56467, + "投降": 56468, + "盐酸": 56469, + "支行的": 56470, + "的一句话": 56471, + "abbit": 56472, + "理论与实践": 56473, + "确定的内容": 56474, + "▁Fetch": 56475, + "▁microgl": 56476, + "▁testimon": 56477, + "穿透": 56478, + "▁TG": 56479, + "nBro": 56480, + "Spark": 56481, + "Thomas": 56482, + "▁Tasmania": 56483, + "▁aberrant": 56484, + "Pic": 56485, + "▁化学": 56486, + "规章制度": 56487, + "recent": 56488, + "▁attracts": 56489, + "▁multiplicative": 56490, + "勘察": 56491, + "FAI": 56492, + "三年级": 56493, + "借款利息": 56494, + "▁myriad": 56495, + "clerotic": 56496, + "KI": 56497, + "played": 56498, + "平行四边形的": 56499, + "ousands": 56500, + "▁Sister": 56501, + "▁empire": 56502, + "▁towels": 56503, + "APE": 56504, + "yel": 56505, + "连云港": 56506, + "▁curb": 56507, + ",\\\\,\\\\": 56508, + "ntheir": 56509, + "▁prism": 56510, + "anganese": 56511, + "▁aerosol": 56512, + "▁Plymouth": 56513, + "▁Investigator": 56514, + "的理想": 56515, + "▁tant": 56516, + "▁Grammar": 56517, + "▁adolescence": 56518, + "只剩": 56519, + "望远": 56520, + "波罗": 56521, + "对身体": 56522, + "▁tachy": 56523, + "▁neonates": 56524, + "▁surfactant": 56525, + "每晚": 56526, + "inz": 56527, + "▁có": 56528, + "▁SME": 56529, + "㈰㈰㈰㈰": 56530, + "怎么回事": 56531, + "▁Amber": 56532, + "▁algae": 56533, + "▁verdict": 56534, + "内侧": 56535, + "奇偶": 56536, + "收条": 56537, + "灯泡": 56538, + "ERA": 56539, + "局限性": 56540, + "男主角": 56541, + "错过了": 56542, + "UEST": 56543, + "ieri": 56544, + "Motion": 56545, + "▁infertility": 56546, + "KW": 56547, + "npl": 56548, + "也只有": 56549, + "南极": 56550, + "颇有": 56551, + "太大的": 56552, + "ichever": 56553, + "requent": 56554, + "▁leukocyte": 56555, + "的女性": 56556, + "这样的话": 56557, + "oulli": 56558, + "金石": 56559, + "Rich": 56560, + "▁PCB": 56561, + "▁图书信息": 56562, + "ocaust": 56563, + "▁pertinent": 56564, + "万户": 56565, + "暑期": 56566, + "nMor": 56567, + "brids": 56568, + "▁scrat": 56569, + "nConcept": 56570, + "人行": 56571, + "从我": 56572, + "大雨": 56573, + "▁BMP": 56574, + "▁Anglo": 56575, + "mutable": 56576, + "▁judgments": 56577, + "丛林": 56578, + "瑕疵": 56579, + "襄阳市": 56580, + "soup": 56581, + "▁Poker": 56582, + "有明确的被告": 56583, + "▁fencing": 56584, + "▁initiating": 56585, + "▁Instruction": 56586, + "上行": 56587, + "有其": 56588, + "▁bt": 56589, + "cant": 56590, + "住江西省": 56591, + "▁Boris": 56592, + "commits": 56593, + "▁stripes": 56594, + "子弟": 56595, + "揭露": 56596, + "珍贵的": 56597, + "▁Known": 56598, + "percentage": 56599, + "rk": 56600, + "代会": 56601, + "\"#\"": 56602, + "能力与": 56603, + "WHERE": 56604, + "▁Piece": 56605, + "▁Weekend": 56606, + "messaging": 56607, + "platforms": 56608, + "▁mediation": 56609, + "反派": 56610, + "ecomment": 56611, + "▁autonomic": 56612, + "▁heuristic": 56613, + "▁得": 56614, + "之乡": 56615, + "奉贤": 56616, + "振华": 56617, + "提现": 56618, + "橱柜": 56619, + "▁Franz": 56620, + "▁Suffolk": 56621, + "▁synapses": 56622, + "乐于": 56623, + "公分": 56624, + "含量的": 56625, + "完毕后": 56626, + "旅游局": 56627, + "病虫害": 56628, + "speech": 56629, + "延缓": 56630, + "货源": 56631, + "▁OB": 56632, + "个国家": 56633, + "特别授权代理": 56634, + "nArgentine": 56635, + "▁manipulated": 56636, + "拉萨": 56637, + "的正确": 56638, + "▁Fruit": 56639, + "bellion": 56640, + "▁Tracking": 56641, + "▁Cartesian": 56642, + "兽医": 56643, + "飞翔": 56644, + ")”": 56645, + "准备了": 56646, + "就比较": 56647, + "方向键": 56648, + "▁agar": 56649, + "▁tryp": 56650, + "▁grind": 56651, + "两千": 56652, + "无故": 56653, + "作家协会": 56654, + "民事行为": 56655, + "连云港市": 56656, + "▁persisted": 56657, + "天王": 56658, + "转眼": 56659, + "▁*_": 56660, + "nSave": 56661, + "▁Mohammed": 56662, + "Completion": 56663, + "PSC": 56664, + "wart": 56665, + "▁seated": 56666, + "linspace": 56667, + "▁LANGUAGE": 56668, + "体操": 56669, + "在读": 56670, + "待机": 56671, + "攻关": 56672, + "样板": 56673, + "一流的": 56674, + "就会被": 56675, + "饮用水": 56676, + "▁coff": 56677, + "具有重要的": 56678, + "技术转让": 56679, + "▁Burke": 56680, + "▁Marcel": 56681, + "对所": 56682, + "掩饰": 56683, + "缺损": 56684, + "hdl": 56685, + "放射性": 56686, + "有任何": 56687, + "Atom": 56688, + "行政法规": 56689, + "▁Brett": 56690, + "▁stacks": 56691, + "▁amended": 56692, + "无疑是": 56693, + "长大了": 56694, + "ATEG": 56695, + "rels": 56696, + "▁ADC": 56697, + "的绝对值": 56698, + "▁debts": 56699, + "使者": 56700, + "年产": 56701, + "ussed": 56702, + "▁vous": 56703, + "ematics": 56704, + "共创": 56705, + "河东": 56706, + "ани": 56707, + "▁marketed": 56708, + "王一": 56709, + "精盐": 56710, + "紧迫": 56711, + "是一条": 56712, + "▁mitral": 56713, + ";/": 56714, + "抗原": 56715, + "逃跑": 56716, + "和相关": 56717, + "客房时": 56718, + "清晰的": 56719, + "个村民小组": 56720, + "小数点移动": 56721, + "▁cliff": 56722, + "网课": 56723, + "▁原创": 56724, + "不明显": 56725, + "该问题": 56726, + "销售的": 56727, + "▁Nurse": 56728, + "nIntegr": 56729, + "tstring": 56730, + "师的": 56731, + "▁Bast": 56732, + "izards": 56733, + "▁scoop": 56734, + "▁avoids": 56735, + "Classifier": 56736, + "升学": 56737, + "noc": 56738, + "▁TOP": 56739, + "非法占用的": 56740, + "electro": 56741, + "同性": 56742, + "萧萧": 56743, + "角相等": 56744, + "ATING": 56745, + "哭泣": 56746, + "对症": 56747, + "霸气": 56748, + "自由的": 56749, + "nMont": 56750, + "endars": 56751, + "▁Assistance": 56752, + "牛排": 56753, + "▁AJ": 56754, + "万亿元": 56755, + "容易出现": 56756, + "tyard": 56757, + "▁SOME": 56758, + "▁Dinner": 56759, + "▁populate": 56760, + "▁deploying": 56761, + "▁К": 56762, + "马丁": 56763, + "就好像": 56764, + "深厚的": 56765, + "▁pou": 56766, + "▁Jewel": 56767, + "▁splits": 56768, + "也想": 56769, + "装甲": 56770, + "IRA": 56771, + "今天是": 56772, + "wana": 56773, + "▁Nil": 56774, + "tumor": 56775, + "utsch": 56776, + "▁Bless": 56777, + "▁Spons": 56778, + "▁invertible": 56779, + "SuppressWarnings": 56780, + "保健品": 56781, + "▁triv": 56782, + "▁colum": 56783, + "▁Kimber": 56784, + "全称": 56785, + "分针": 56786, + "胳膊": 56787, + "自驾": 56788, + "透析": 56789, + "ADDR": 56790, + "交通管理": 56791, + "开奖结果": 56792, + "nSuch": 56793, + "roads": 56794, + "酒店交通比较方便": 56795, + "Resolution": 56796, + "ETS": 56797, + "▁DF": 56798, + "保定市": 56799, + "▁GCC": 56800, + "学生学习": 56801, + "abort": 56802, + "ornado": 56803, + "升华": 56804, + "Glu": 56805, + "同时向": 56806, + "Hist": 56807, + "±\\": 56808, + "坎坷": 56809, + "车队": 56810, + "BRE": 56811, + "投资或": 56812, + "▁gems": 56813, + "酒店为您提供": 56814, + "uggling": 56815, + "协助执行通知书": 56816, + "整式": 56817, + "客房条款": 56818, + "前所未有的": 56819, + "Transl": 56820, + "选择上述客房时": 56821, + "▁sweeping": 56822, + "Particip": 56823, + "傻子": 56824, + "hay": 56825, + "pdb": 56826, + "的陈述": 56827, + "pins": 56828, + "iggins": 56829, + "setattr": 56830, + "削弱": 56831, + "川普": 56832, + "DIY": 56833, + "的温度": 56834, + "▁Opening": 56835, + "▁rehears": 56836, + "hya": 56837, + "准许或者": 56838, + "▁Quinn": 56839, + "▁nephew": 56840, + "▁catalysts": 56841, + "▁cooperate": 56842, + "▁logarithmic": 56843, + "的条件下": 56844, + "▁\\'/\\'": 56845, + "▁webinar": 56846, + "阅览": 56847, + "▁guilt": 56848, + "请参阅客房条款": 56849, + "nChristian": 56850, + "▁publicity": 56851, + "找了": 56852, + "滥用": 56853, + "我也不知道": 56854, + "提起的诉讼": 56855, + "你来": 56856, + "佳节": 56857, + "灯火": 56858, + "老妈": 56859, + "的特殊": 56860, + "这么做": 56861, + "马铃薯": 56862, + "▁Php": 56863, + "两种情况": 56864, + "质保时间": 56865, + "anking": 56866, + "arctan": 56867, + "上诉于河南省": 56868, + "元宵": 56869, + "唐诗": 56870, + "尽头": 56871, + "承德": 56872, + "▁rt": 56873, + "好用的": 56874, + "Fort": 56875, + "保证责任": 56876, + "着自己的": 56877, + "stash": 56878, + "▁Horizon": 56879, + "作息": 56880, + "过剩": 56881, + "omew": 56882, + "▁risen": 56883, + "参保": 56884, + "奶酪": 56885, + "cession": 56886, + "Markdown": 56887, + "▁HB": 56888, + "为我国": 56889, + "的实力": 56890, + "设备及": 56891, + "BOSS": 56892, + "土地使用权": 56893, + "Inputs": 56894, + "Logged": 56895, + "▁Griffith": 56896, + "附有": 56897, + "旁边的": 56898, + "节目的": 56899, + "毫无疑问": 56900, + "货币政策": 56901, + "ncase": 56902, + "▁Spread": 56903, + "水箱": 56904, + "eas": 56905, + "▁FCC": 56906, + "查询回执": 56907, + "▁Lucky": 56908, + "▁unbel": 56909, + "▁phantom": 56910, + "▁earrings": 56911, + "免去": 56912, + "广元": 56913, + "水温": 56914, + "珍藏": 56915, + "战略合作": 56916, + "无论如何": 56917, + "表扬奖励": 56918, + "avoid": 56919, + "▁lonely": 56920, + "▁Texture": 56921, + "有管辖权的人民法院": 56922, + "生态系统": 56923, + "▁inspections": 56924, + "qua": 56925, + "aber": 56926, + "Quest": 56927, + "▁facets": 56928, + "Revision": 56929, + "▁elucidated": 56930, + "酒店为您提供免费的停车服务": 56931, + "虚弱": 56932, + "非负": 56933, + "仍然是": 56934, + "市场中": 56935, + "Curve": 56936, + "alive": 56937, + "▁小说阅读网": 56938, + "的逆": 56939, + "象棋": 56940, + "趁着": 56941, + "▁Luckily": 56942, + "▁detective": 56943, + "♀♀": 56944, + "万名": 56945, + "既要": 56946, + "分析这些": 56947, + "▁Lips": 56948, + "Seeder": 56949, + "oscale": 56950, + "nCritical": 56951, + "无果": 56952, + "让你的": 56953, + "▁Scr": 56954, + "▁Lists": 56955, + "nscript": 56956, + "▁chorus": 56957, + "citation": 56958, + "ndocument": 56959, + "唯独": 56960, + "小三": 56961, + "WAY": 56962, + "firm": 56963, + "▁polarity": 56964, + "▁attributable": 56965, + "三部": 56966, + "农行": 56967, + "中科院": 56968, + "有人在": 56969, + "CDMA": 56970, + "▁LEG": 56971, + "▁grit": 56972, + "▁Uruguay": 56973, + "▁pictured": 56974, + "蒙特": 56975, + "▁Crawford": 56976, + "▁versatility": 56977, + "换热": 56978, + "璀璨": 56979, + "融化": 56980, + "较量": 56981, + "附着": 56982, + "bukkit": 56983, + "ncolor": 56984, + "factors": 56985, + "开场": 56986, + "航运": 56987, + "nuid": 56988, + "就是这么": 56989, + "▁woven": 56990, + "▁Georgian": 56991, + "充要": 56992, + "抽屉": 56993, + "▁lg": 56994, + "听说过": 56995, + "hana": 56996, + "onyms": 56997, + "▁Merr": 56998, + "TZ": 56999, + "走来": 57000, + "CHE": 57001, + "这种事情": 57002, + "iphertext": 57003, + "企查": 57004, + "超标": 57005, + "查笔录": 57006, + "当庭陈述": 57007, + "▁Kann": 57008, + "ustering": 57009, + "▁favored": 57010, + "▁aftermath": 57011, + "肿胀": 57012, + "追随": 57013, + "镇痛": 57014, + "时之前": 57015, + "生产建设": 57016, + "科技公司": 57017, + "▁Experts": 57018, + "▁honorary": 57019, + "麻木": 57020, + "极高的": 57021, + "电子有限公司": 57022, + "琵琶": 57023, + "青龙": 57024, + "发出的": 57025, + "ismo": 57026, + "▁Sew": 57027, + "▁gods": 57028, + "如下图所示": 57029, + "▁rever": 57030, + "inosaur": 57031, + "Rectangle": 57032, + "MU": 57033, + "tA": 57034, + "лу": 57035, + "美团": 57036, + "SAT": 57037, + "理解为": 57038, + "▁Winner": 57039, + "▁Contains": 57040, + "ttf": 57041, + "ysc": 57042, + "▁广东": 57043, + "服务和": 57044, + "ousand": 57045, + "▁stool": 57046, + "erebral": 57047, + "UserName": 57048, + "▁oligonucle": 57049, + "上也": 57050, + "滤镜": 57051, + "▁bowls": 57052, + "venture": 57053, + "小块": 57054, + "昼夜": 57055, + "并将其": 57056, + "的顺序": 57057, + "▁CBC": 57058, + "▁Tuc": 57059, + "规划设计": 57060, + "▁Hann": 57061, + "Orders": 57062, + "nCities": 57063, + "▁Except": 57064, + "▁mutated": 57065, + "▁BUSINESS": 57066, + "▁monsters": 57067, + "▁conductance": 57068, + "▁southwestern": 57069, + "云霄": 57070, + "▁rugs": 57071, + "palette": 57072, + "▁plateau": 57073, + "▁Negative": 57074, + "确认人民调解协议效力的": 57075, + "▁κ": 57076, + "涨停": 57077, + "协助执行": 57078, + "并提出了": 57079, + "nAugust": 57080, + "一朵": 57081, + "点了": 57082, + "poons": 57083, + "ün": 57084, + "天河": 57085, + "本国": 57086, + "▁Cher": 57087, + "Actual": 57088, + "▁binaries": 57089, + "一年级": 57090, + "方位的": 57091, + "第四届": 57092, + "工作报告": 57093, + "▁Birds": 57094, + "Natural": 57095, + "/[": 57096, + "时髦": 57097, + "真伪": 57098, + "STREAM": 57099, + "▁codecs": 57100, + "▁deterg": 57101, + "小花": 57102, + "民事判决书": 57103, + "▁pretend": 57104, + "oblastoma": 57105, + "▁nineteenth": 57106, + "住的": 57107, + "awai": 57108, + "▁Matlab": 57109, + "▁transfected": 57110, + "tq": 57111, + "少林": 57112, + "烧热": 57113, + "支持的": 57114, + "去年同期": 57115, + "getElements": 57116, + "是与": 57117, + "该项": 57118, + "支付了": 57119, + "政府和": 57120, + "组组长": 57121, + "绵阳市": 57122, + "odule": 57123, + "oodle": 57124, + "▁Lung": 57125, + "Immutable": 57126, + "breadcrumb": 57127, + "缝隙": 57128, + "中国传统": 57129, + "▁glitter": 57130, + "大明": 57131, + "ogh": 57132, + "进行计算": 57133, + "所欲": 57134, + "处三年": 57135, + "▁wipe": 57136, + "▁exploiting": 57137, + "▁instructed": 57138, + "以南": 57139, + "作弊": 57140, + "司职": 57141, + "角逐": 57142, + "人性化": 57143, + "▁MLB": 57144, + ";\\\\;\\\\": 57145, + "Maximum": 57146, + "requently": 57147, + "就和": 57148, + "点在": 57149, + "nCentral": 57150, + "▁Cambodia": 57151, + "▁SERVICES": 57152, + "▁societal": 57153, + "扁平": 57154, + "有事": 57155, + "观影": 57156, + "在一些": 57157, + "csdn": 57158, + "nINS": 57159, + "▁ERP": 57160, + "应当承担": 57161, + "一定要注意": 57162, + "▁Remodel": 57163, + "不值": 57164, + "之分": 57165, + "听证": 57166, + "辜负": 57167, + "Jon": 57168, + "是属于": 57169, + "此次活动": 57170, + "olate": 57171, + "▁Waste": 57172, + "▁hemod": 57173, + "nChange": 57174, + "不起来": 57175, + "▁RET": 57176, + "招商引资": 57177, + "istors": 57178, + "▁emergencies": 57179, + "抽查": 57180, + "没有一个": 57181, + "▁Schr": 57182, + "▁Rovers": 57183, + "亲友": 57184, + "保利": 57185, + "联立": 57186, + "nose": 57187, + "▁IgA": 57188, + "市场份额": 57189, + "raeli": 57190, + "其他需要裁定": 57191, + "▁Hawaiian": 57192, + "emm": 57193, + "撤回执行申请": 57194, + "系该": 57195, + "^{*": 57196, + "新时期": 57197, + "Berry": 57198, + "▁quint": 57199, + "nTaking": 57200, + "▁establishes": 57201, + "includegraphics": 57202, + "防线": 57203, + "成功后": 57204, + "有那么": 57205, + "nProb": 57206, + "等腰三角形的": 57207, + "Criteria": 57208, + "▁Actress": 57209, + "▁solitary": 57210, + "中也": 57211, + "松原": 57212, + "nMs": 57213, + "igar": 57214, + "除以进率": 57215, + "▁Estim": 57216, + "▁tails": 57217, + "▁uploading": 57218, + "乡县": 57219, + "几张": 57220, + "推崇": 57221, + "油炸": 57222, + "Tap": 57223, + "▁Hib": 57224, + "▁PVC": 57225, + "▁han": 57226, + "▁Hiro": 57227, + "之间的距离": 57228, + "▁Rapids": 57229, + "住房和城乡建设": 57230, + "nArticle": 57231, + "Bootstrap": 57232, + "publication": 57233, + "封锁": 57234, + "比对照": 57235, + "nDan": 57236, + "恶性肿瘤": 57237, + "borns": 57238, + "▁noqa": 57239, + "wrapped": 57240, + "▁customization": 57241, + "杏仁": 57242, + "nSong": 57243, + "▁Tracy": 57244, + "▁serine": 57245, + "▁Freeman": 57246, + "traumatic": 57247, + "determined": 57248, + "▁placental": 57249, + "泪水": 57250, + "▁FIX": 57251, + "▁Uns": 57252, + "▁ich": 57253, + "▁Lomb": 57254, + "nselect": 57255, + "▁Compact": 57256, + "▁endeavor": 57257, + "▁Throwable": 57258, + "暂行": 57259, + "眼看": 57260, + "骨科": 57261, + "rng": 57262, + "买受人": 57263, + "化学物质": 57264, + "fault": 57265, + "▁Chrys": 57266, + "entropy": 57267, + "金秋": 57268, + "上一层": 57269, + "nJoe": 57270, + "默契": 57271, + "家庭成员": 57272, + "piratory": 57273, + "▁revenge": 57274, + "▁ventricle": 57275, + "好坏": 57276, + "梧桐": 57277, + "uds": 57278, + "▁Wo": 57279, + "弹幕": 57280, + "nets": 57281, + "管理模式": 57282, + "▁Cases": 57283, + "axel": 57284, + "▁harb": 57285, + "getenv": 57286, + "▁coats": 57287, + "▁flaws": 57288, + "▁divorced": 57289, + "中位数": 57290, + "中发现": 57291, + "websocket": 57292, + "▁driveway": 57293, + "▁timedelta": 57294, + "vk": 57295, + "继而": 57296, + "▁Iz": 57297, + "女生的": 57298, + "▁Needs": 57299, + "orporate": 57300, + "▁detained": 57301, + "虾仁": 57302, + "faq": 57303, + "▁Fen": 57304, + "且在": 57305, + "治国": 57306, + "薄荷": 57307, + "cron": 57308, + "▁[{\"": 57309, + "▁pym": 57310, + "arris": 57311, + "▁Carson": 57312, + "▁perceptual": 57313, + "▁hapl": 57314, + "▁vegetarian": 57315, + "一轮": 57316, + "要好": 57317, + "inde": 57318, + "▁Lagos": 57319, + "▁phenyl": 57320, + "MERCHANTABILITY": 57321, + "▁yo": 57322, + "等进行": 57323, + "ndec": 57324, + "tape": 57325, + "▁subdivision": 57326, + "串联": 57327, + "崇尚": 57328, + "观摩": 57329, + "的情绪": 57330, + "nRoad": 57331, + "anched": 57332, + "▁degraded": 57333, + "▁serializers": 57334, + "校验": 57335, + "累犯": 57336, + "教育出版社": 57337, + "Carthy": 57338, + "ToList": 57339, + "▁Epidem": 57340, + "▁Lightning": 57341, + "滋养": 57342, + "镶嵌": 57343, + "Mil": 57344, + "低成本": 57345, + "要坚持": 57346, + "▁社会": 57347, + "力量的": 57348, + "公共卫生": 57349, + "govuk": 57350, + "▁Midlands": 57351, + "▁deliberately": 57352, + "脊柱": 57353, + "首创": 57354, + "该系统": 57355, + "▁Fans": 57356, + "低保": 57357, + "先予": 57358, + "▁ig": 57359, + "到直线": 57360, + "直辖市": 57361, + "nTer": 57362, + "bucks": 57363, + "chdir": 57364, + "▁Folk": 57365, + "▁idle": 57366, + "▁linen": 57367, + "▁Bernie": 57368, + "▁Mozilla": 57369, + "▁devised": 57370, + "▁recharge": 57371, + "卖了": 57372, + "拉动": 57373, + "接线": 57374, + "效率高": 57375, + "Trump": 57376, + "▁kidn": 57377, + "nPhoto": 57378, + "▁todos": 57379, + "光华": 57380, + "陆地": 57381, + "bac": 57382, + "▁Evil": 57383, + "ры": 57384, + "道路交通安全": 57385, + "▁boosting": 57386, + "▁fallback": 57387, + "▁IllegalArgument": 57388, + "伸手": 57389, + "初学者": 57390, + "▁Injury": 57391, + ">@": 57392, + "屠杀": 57393, + "流泪": 57394, + "划分为": 57395, + "可随时": 57396, + "的科学": 57397, + "nKim": 57398, + "不必要的": 57399, + "对外开放": 57400, + "Padding": 57401, + "▁Priority": 57402, + "Credential": 57403, + "利好": 57404, + "后天": 57405, + "了他的": 57406, + "rios": 57407, + "▁Caf": 57408, + "affin": 57409, + "ogeneic": 57410, + "本次执行程序中": 57411, + "▁intraoperative": 57412, + "\"^": 57413, + "光彩": 57414, + "安东": 57415, + "漫步": 57416, + "dims": 57417, + "▁pinch": 57418, + "arrison": 57419, + "▁autore": 57420, + "▁Verizon": 57421, + "一刀": 57422, + "与王": 57423, + "史诗": 57424, + "使用时": 57425, + "多年前": 57426, + "prof": 57427, + "但是对于": 57428, + "▁Employ": 57429, + "▁alloys": 57430, + "▁GameObject": 57431, + "挥发": 57432, + "舍友": 57433, + "起身": 57434, + "学研究": 57435, + "▁Madd": 57436, + "things": 57437, + "▁sanctuary": 57438, + "村人": 57439, + "lio": 57440, + "▁Pole": 57441, + "SError": 57442, + "中天": 57443, + "不太好": 57444, + "请不要": 57445, + "▁Luk": 57446, + "pytorch": 57447, + "▁Patricia": 57448, + "德的": 57449, + "甘油": 57450, + "bly": 57451, + "据报道": 57452, + "issuecomment": 57453, + "侵入": 57454, + "地里": 57455, + "▁UR": 57456, + "▁这里": 57457, + "Lead": 57458, + "▁山东省": 57459, + "计数单位": 57460, + "ır": 57461, + "加持": 57462, + "店家": 57463, + "茂名": 57464, + "▁nip": 57465, + "trend": 57466, + "▁包装清单": 57467, + "委托代理人陈": 57468, + "▁ingestion": 57469, + "高高": 57470, + "STD": 57471, + "经营项目": 57472, + "ampoo": 57473, + "ophilia": 57474, + "▁Laurent": 57475, + "▁Survival": 57476, + "▁biologic": 57477, + "社员": 57478, + "召开的": 57479, + "▁ferr": 57480, + "▁funct": 57481, + "atemala": 57482, + "Workspace": 57483, + "SerializedName": 57484, + "绘图": 57485, + "充足的": 57486, + "各行各": 57487, + "效果图": 57488, + "thus": 57489, + "uren": 57490, + "▁luminosity": 57491, + "花鸟": 57492, + "衰退": 57493, + "学专业": 57494, + "urus": 57495, + "▁Chest": 57496, + "▁nostalg": 57497, + "unciation": 57498, + "Relationship": 57499, + "单单": 57500, + "复工": 57501, + "结果为": 57502, + "▁Walsh": 57503, + "▁Massage": 57504, + "▁welcomes": 57505, + "▁请你": 57506, + "等原因": 57507, + "转移到": 57508, + "Train": 57509, + "inalg": 57510, + "解决的事项": 57511, + "atured": 57512, + "▁delib": 57513, + "▁bacterium": 57514, + "▁Southampton": 57515, + "代的": 57516, + "剑桥": 57517, + "大二": 57518, + "▁nh": 57519, + "adir": 57520, + "aspect": 57521, + "ionine": 57522, + "▁organizer": 57523, + "克制": 57524, + "无证": 57525, + "胖子": 57526, + "集结": 57527, + "一家人": 57528, + "都应该": 57529, + "年被评为": 57530, + "▁Chop": 57531, + "odontic": 57532, + "▁negotiating": 57533, + "ADS": 57534, + "但他们": 57535, + "struments": 57536, + "▁点": 57537, + "也别": 57538, + "战线": 57539, + "李明": 57540, + "肛门": 57541, + "鹦鹉": 57542, + "▁(:": 57543, + "solver": 57544, + "'}": 57545, + "▁重": 57546, + "Ring": 57547, + "▁pipelines": 57548, + "暗恋": 57549, + "accum": 57550, + "▁stabilized": 57551, + "跟她": 57552, + "▁Eb": 57553, + "但现在": 57554, + "证件号码": 57555, + "罚金人民币": 57556, + "▁Libert": 57557, + "▁pledge": 57558, + "getCurrent": 57559, + "切削": 57560, + "吃喝": 57561, + "眼底": 57562, + "你这个": 57563, + "oten": 57564, + "▁nach": 57565, + "▁aston": 57566, + "▁swept": 57567, + "▁poultry": 57568, + "▁Officers": 57569, + "病害": 57570, + "cir": 57571, + "pole": 57572, + "▁taxpayers": 57573, + "不曾": 57574, + "睫毛": 57575, + "语义": 57576, + "nRH": 57577, + "慢慢地": 57578, + "爱奇艺": 57579, + "中国平安": 57580, + "ernal": 57581, + "actical": 57582, + "ου": 57583, + "用什么": 57584, + "nSun": 57585, + "etable": 57586, + "▁inning": 57587, + "▁puppet": 57588, + "▁depicts": 57589, + "*>": 57590, + "▁Zh": 57591, + "看了看": 57592, + "起诉的": 57593, + "sulf": 57594, + "▁novelists": 57595, + "UU": 57596, + "民三": 57597, + "粉色": 57598, + "PUBLIC": 57599, + "▁efficiencies": 57600, + "娘家": 57601, + "科协": 57602, + "})}{": 57603, + "▁Admiral": 57604, + "▁Raiders": 57605, + "\"*": 57606, + "早早": 57607, + "死神": 57608, + "句话说": 57609, + "打开了": 57610, + "▁Jupiter": 57611, + "Attachment": 57612, + "▁stratified": 57613, + "中立": 57614, + "省会": 57615, + "矢量": 57616, + "├──": 57617, + "▁排名": 57618, + "只要有": 57619, + "ricks": 57620, + "▁Cron": 57621, + "▁dude": 57622, + "▁Hayes": 57623, + "popular": 57624, + "▁obsolete": 57625, + "一味": 57626, + "八角": 57627, + "二〇一五年十月": 57628, + "平安银行股份有限公司上海": 57629, + "的时刻": 57630, + "▁ZIP": 57631, + "违法犯罪": 57632, + "nover": 57633, + "ollen": 57634, + "▁Jung": 57635, + "nshould": 57636, + "▁insane": 57637, + "▁discret": 57638, + "予以减刑": 57639, + "keras": 57640, + "▁STUD": 57641, + "▁sixty": 57642, + "▁glorious": 57643, + "themed": 57644, + "▁Frost": 57645, + "nFactor": 57646, + "▁partnering": 57647, + "长是": 57648, + "pez": 57649, + "▁Rw": 57650, + "▁职称": 57651, + "Physics": 57652, + "▁monastery": 57653, + "繁琐": 57654, + "执行措施": 57655, + "金属材料": 57656, + "orbit": 57657, + "▁Sisters": 57658, + "代为": 57659, + "向后": 57660, + "尼奥": 57661, + "想看": 57662, + "▁resh": 57663, + "ivating": 57664, + "▁Patrol": 57665, + "▁issuing": 57666, + "前科": 57667, + "PRS": 57668, + "▁Rif": 57669, + "▁Riv": 57670, + "▁mug": 57671, + "函数的图象": 57672, + "存入": 57673, + "请假": 57674, + "雨中": 57675, + "范围的": 57676, + "▁exh": 57677, + "nUpon": 57678, + "遵守监规纪律": 57679, + "Kn": 57680, + "继承人": 57681, + "▁cathe": 57682, + "nSupport": 57683, + "indicator": 57684, + "揭开": 57685, + "贵人": 57686, + "cts": 57687, + "arya": 57688, + "▁Dund": 57689, + "▁batches": 57690, + "▁outflow": 57691, + "▁mosquito": 57692, + "▁cisplatin": 57693, + "万象": 57694, + "重工": 57695, + "义乌市": 57696, + "的秘密": 57697, + "▁grape": 57698, + "nLeague": 57699, + "Velocity": 57700, + "nWORKDIR": 57701, + "▁campuses": 57702, + "IEnumerable": 57703, + "和他们": 57704, + "的父亲": 57705, + "皮肤病": 57706, + "资源和": 57707, + "邓小平": 57708, + "▁DEF": 57709, + "lective": 57710, + "▁宁": 57711, + "▁hh": 57712, + "极大地": 57713, + "pora": 57714, + "▁Mud": 57715, + "Leave": 57716, + "▁aesthetics": 57717, + "▁endorsement": 57718, + "米粉": 57719, + "创新性": 57720, + "须经批准的项目": 57721, + "安保": 57722, + "ELS": 57723, + "bam": 57724, + "你没有": 57725, + "遇到过": 57726, + "osest": 57727, + "▁heme": 57728, + "▁muff": 57729, + "sector": 57730, + "Locator": 57731, + "▁acuity": 57732, + "▁bounding": 57733, + "contributors": 57734, + "监狱认为": 57735, + "nApril": 57736, + "▁costing": 57737, + "该车": 57738, + "vik": 57739, + "对社会": 57740, + "科研工作": 57741, + "trial": 57742, + "nColor": 57743, + "located": 57744, + "▁turtle": 57745, + "▁bindings": 57746, + "conversion": 57747, + "▁exchanged": 57748, + "橘子": 57749, + "lol": 57750, + "日受理": 57751, + "▁_(\"": 57752, + "▁Guatemala": 57753, + "之光": 57754, + "atoms": 57755, + "同底数幂的": 57756, + "▁CHECK": 57757, + "▁Quart": 57758, + "▁Earlier": 57759, + "▁elapsed": 57760, + "打赢": 57761, + "骨架": 57762, + "打破了": 57763, + "Cards": 57764, + "千瓦": 57765, + "药店": 57766, + "阳春": 57767, + "\\'{": 57768, + "Both": 57769, + "▁Rao": 57770, + "▁SARS": 57771, + "▁asbestos": 57772, + "微信号": 57773, + "此题考查": 57774, + "▁Hond": 57775, + "▁mesenchymal": 57776, + "技术推广": 57777, + "cet": 57778, + "把这些": 57779, + "根据不同": 57780, + "eastern": 57781, + "▁liking": 57782, + "nWriters": 57783, + "iteritems": 57784, + "▁maritime": 57785, + "completion": 57786, + "▁characterised": 57787, + "在国家": 57788, + "émon": 57789, + "我们必须": 57790, + "probe": 57791, + "▁Meteor": 57792, + "到场": 57793, + "藏书": 57794, + "也只能": 57795, + "blic": 57796, + "▁JUST": 57797, + "▁baths": 57798, + "polymer": 57799, + "▁stealing": 57800, + "bos": 57801, + "不满意": 57802, + "eous": 57803, + "rink": 57804, + "▁McN": 57805, + "▁gcd": 57806, + "负责同志": 57807, + "ocado": 57808, + "二〇一七年十二": 57809, + "▁sharply": 57810, + "敏锐": 57811, + "▁\"$(": 57812, + "明确表示": 57813, + "是一家集": 57814, + "OLDER": 57815, + "ATFORM": 57816, + "eprint": 57817, + "toArray": 57818, + "▁contracting": 57819, + "龙华": 57820, + "]\"\\": 57821, + "▁bac": 57822, + "nPlaying": 57823, + "▁Winners": 57824, + "▁polypeptide": 57825, + "indi": 57826, + "onance": 57827, + "Feedback": 57828, + "▁oocytes": 57829, + "▁estradiol": 57830, + "经商": 57831, + "Lite": 57832, + "UInt": 57833, + "▁HOME": 57834, + "工匠": 57835, + "从这个": 57836, + "周杰伦": 57837, + "oxel": 57838, + "▁herm": 57839, + "HW": 57840, + "kbd": 57841, + "▁Wid": 57842, + "不同程度的": 57843, + "▁Algebraic": 57844, + "将要": 57845, + "直销": 57846, + "▁perm": 57847, + "▁Cheng": 57848, + "▁effic": 57849, + "▁Vertical": 57850, + "想念": 57851, + "kid": 57852, + "百分比": 57853, + "▁cmp": 57854, + "感觉自己": 57855, + "folios": 57856, + "杜鹃": 57857, + "meet": 57858, + "▁Emmy": 57859, + "▁Serve": 57860, + "Keyword": 57861, + "▁ulcers": 57862, + "▁Maurice": 57863, + "▁connective": 57864, + "最初的": 57865, + "还会有": 57866, + "emis": 57867, + "确诊病例": 57868, + "nDetails": 57869, + "▁disconnected": 57870, + "专为": 57871, + "冷暖": 57872, + "地去": 57873, + "通讯员": 57874, + "}}}}": 57875, + "GRAPH": 57876, + "enden": 57877, + "▁Haskell": 57878, + "át": 57879, + "▁Ages": 57880, + "ncount": 57881, + "▁Carpet": 57882, + "▁firewall": 57883, + "continuous": 57884, + "百强": 57885, + "翻身": 57886, + "喜欢的人": 57887, + "▁Huff": 57888, + "▁生长环境": 57889, + "▁sequenced": 57890, + "EXP": 57891, + "第一家": 57892, + "▁Styl": 57893, + "edited": 57894, + "▁injective": 57895, + "▁概述": 57896, + "小女孩": 57897, + "自我的": 57898, + "EMPL": 57899, + "▁zur": 57900, + "AMPLE": 57901, + "plicant": 57902, + "▁Measures": 57903, + "▁Alexandria": 57904, + "▁Ł": 57905, + "他就是": 57906, + "上诉请求": 57907, + "▁contests": 57908, + "整套": 57909, + "velt": 57910, + "九江": 57911, + "我好": 57912, + "经络": 57913, + "与时俱": 57914, + "营业额": 57915, + "透明的": 57916, + "unov": 57917, + "▁[…]\\": 57918, + "stress": 57919, + "▁learner": 57920, + "▁adapting": 57921, + "▁dwelling": 57922, + "▁liquidity": 57923, + "▁reminiscent": 57924, + "罗拉": 57925, + "酸钠": 57926, + "可谓是": 57927, + "together": 57928, + "▁biochemistry": 57929, + "多糖": 57930, + "Truth": 57931, + "▁Dial": 57932, + "npr": 57933, + "的品质": 57934, + "ribe": 57935, + "RELEASE": 57936, + "preferred": 57937, + "^\\": 57938, + "yii": 57939, + "有三个": 57940, + "的含义": 57941, + "▁}$$": 57942, + "Visit": 57943, + "▁Otto": 57944, + "▁committing": 57945, + "对数": 57946, + "秘诀": 57947, + "移除": 57948, + "随心": 57949, + "变量的": 57950, + "▁Pip": 57951, + "▁Cham": 57952, + "opened": 57953, + "▁steak": 57954, + "▁tracer": 57955, + "atization": 57956, + "▁Mortgage": 57957, + "指数幂": 57958, + "这些年": 57959, + "值得关注": 57960, + "▁damping": 57961, + "▁Subscribe": 57962, + "▁∈": 57963, + "平行的": 57964, + "▁doesnt": 57965, + "准许或者不准许撤诉": 57966, + "通货": 57967, + "audit": 57968, + "ermis": 57969, + "quiet": 57970, + "本田": 57971, + "Sex": 57972, + "音乐会": 57973, + "问题如下": 57974, + "acute": 57975, + "▁chefs": 57976, + "▁grapes": 57977, + "optimizer": 57978, + "▁cryptography": 57979, + "▁informational": 57980, + "不孕": 57981, + "处级": 57982, + "富强": 57983, + "抵御": 57984, + "第二百零五条": 57985, + "▁Stainless": 57986, + "银耳": 57987, + "CRM": 57988, + "不规则": 57989, + "染色体": 57990, + "等服务": 57991, + "第二部分": 57992, + "▁leng": 57993, + "▁über": 57994, + "▁poorer": 57995, + "Personal": 57996, + "▁inducted": 57997, + "打扰": 57998, + "SOD": 57999, + "icher": 58000, + "▁feather": 58001, + "▁roasted": 58002, + "外加": 58003, + "Euro": 58004, + "squared": 58005, + "▁Archae": 58006, + "▁torsion": 58007, + "IRS": 58008, + "▁мо": 58009, + "clusters": 58010, + "▁marketers": 58011, + "自拍": 58012, + "正常人": 58013, + "理解和": 58014, + "相比较": 58015, + "▁Func": 58016, + "▁fundamentals": 58017, + "缓交": 58018, + "Svg": 58019, + "第十八": 58020, + "课程的": 58021, + "ansen": 58022, + "ttime": 58023, + "encycl": 58024, + "iguous": 58025, + "▁Raven": 58026, + "▁citrus": 58027, + "呜呜": 58028, + "lew": 58029, + "事物的": 58030, + "好吃的": 58031, + "百分百": 58032, + "这辈子": 58033, + "▁Bis": 58034, + "对该领域的": 58035, + "▁Pirates": 58036, + "▁prepares": 58037, + "▁petroleum": 58038, + "国情": 58039, + "彼岸": 58040, + "我真": 58041, + "esteem": 58042, + "十二五": 58043, + "▁doubling": 58044, + "均需": 58045, + "关联性": 58046, + "志愿军": 58047, + "执行款": 58048, + "面上的": 58049, + "▁Jill": 58050, + "末日": 58051, + "十二年": 58052, + "snow": 58053, + "▁vor": 58054, + "Absolute": 58055, + "orgetown": 58056, + "▁Helsinki": 58057, + "▁Automation": 58058, + "机房": 58059, + "▁chin": 58060, + "locals": 58061, + "▁widow": 58062, + "▁medall": 58063, + "trequire": 58064, + "▁kitchens": 58065, + "从左": 58066, + "也一样": 58067, + "涵盖了": 58068, + "通过分析": 58069, + "Album": 58070, + "fullName": 58071, + "▁Benefits": 58072, + "trightarrow": 58073, + "RW": 58074, + "缘故": 58075, + "离家出走": 58076, + "Instruction": 58077, + "分流": 58078, + "迷惑": 58079, + "不至于": 58080, + "出了一": 58081, + "拿到了": 58082, + "),\\\\": 58083, + "▁coup": 58084, + "▁Aggreg": 58085, + "▁hashlib": 58086, + "▁explorer": 58087, + "▁Individuals": 58088, + "千载": 58089, + "汇票": 58090, + "desk": 58091, + "管理学院": 58092, + "▁infl": 58093, + "▁slab": 58094, + "legant": 58095, + "spinal": 58096, + "▁Miche": 58097, + "▁scarce": 58098, + "▁trendy": 58099, + "我县": 58100, + "CRR": 58101, + "活性炭": 58102, + "的根本": 58103, + "不断完善": 58104, + "Trade": 58105, + "▁Cube": 58106, + "▁Joined": 58107, + "冻结财产的规定": 58108, + "▁analogy": 58109, + "detection": 58110, + "▁offenders": 58111, + "ну": 58112, + "降到": 58113, + "也未能": 58114, + "月份的": 58115, + "▁whistle": 58116, + "▁histology": 58117, + "▁resilient": 58118, + "▁irradiated": 58119, + "也太": 58120, + "ilight": 58121, + "尖锐": 58122, + "抗疫": 58123, + "在上诉": 58124, + "精美的": 58125, + "▁SNP": 58126, + "▁SUP": 58127, + "▁owe": 58128, + "相关规定": 58129, + "▁Paso": 58130, + "▁Rising": 58131, + "依法由代理审判员": 58132, + "▁destroying": 58133, + "XA": 58134, + "万科": 58135, + "公司与": 58136, + "聊城市": 58137, + "▁cleft": 58138, + "injection": 58139, + "iographic": 58140, + "▁exhausted": 58141, + "其他需要裁定解决的事项": 58142, + "案件适用法律若干问题的规定": 58143, + "悬崖": 58144, + "自己喜欢的": 58145, + "▁Plants": 58146, + "▁ageing": 58147, + "▁papill": 58148, + "nservices": 58149, + "剂的": 58150, + "重磅": 58151, + "老师和": 58152, + "▁ALS": 58153, + "▁sto": 58154, + "▁svg": 58155, + "一条直线": 58156, + "可以实现": 58157, + "▁brig": 58158, + "▁kerat": 58159, + "事发": 58160, + "年均": 58161, + "点上": 58162, + "电影的": 58163, + "uder": 58164, + "Oracle": 58165, + "nGrand": 58166, + "选择正确答案": 58167, + "▁expresses": 58168, + "▁commenting": 58169, + "▁constituent": 58170, + "翻转": 58171, + "▁南京": 58172, + "请大家": 58173, + "这都是": 58174, + "AccessToken": 58175, + "nWashington": 58176, + "▁discriminate": 58177, + "®,": 58178, + "▁Acqu": 58179, + "▁Adds": 58180, + "▁derives": 58181, + "introduction": 58182, + "RequestHandler": 58183, + "JJ": 58184, + "借用": 58185, + "势必": 58186, + "umbo": 58187, + "是最好的": 58188, + "Deleted": 58189, + "timestamps": 58190, + "为她": 58191, + "住户": 58192, + "尿道": 58193, + "摩尔": 58194, + "第三条": 58195, + "罪行的": 58196, + "签字确认": 58197, + "nLoad": 58198, + "▁根据您的": 58199, + "▁horizontally": 58200, + "VL": 58201, + "且仅": 58202, + "REL": 58203, + "所依据": 58204, + "▁Fur": 58205, + "▁Tiny": 58206, + "pherical": 58207, + "▁Uniform": 58208, + "▁computerized": 58209, + "怀着": 58210, + "教科书": 58211, + "▁Gothic": 58212, + "▁plausible": 58213, + "大树": 58214, + "在收到": 58215, + "▁Chiefs": 58216, + "▁Monter": 58217, + "▁Leaders": 58218, + "▁strangers": 58219, + "适用简易程序公开开庭进行了审理": 58220, + "春雨": 58221, + "成本低": 58222, + "某的证言": 58223, + "▁Vale": 58224, + "▁barbec": 58225, + "在道路上醉酒驾驶机动车": 58226, + "▁discrepancy": 58227, + "传销": 58228, + "翩翩": 58229, + "聘用": 58230, + "通常是": 58231, + "traff": 58232, + "▁Erik": 58233, + "▁bets": 58234, + "单体": 58235, + "esk": 58236, + "▁重庆": 58237, + "长三角": 58238, + "▁AFC": 58239, + "▁Pert": 58240, + "▁Myers": 58241, + "▁Kuwait": 58242, + "▁Embassy": 58243, + "新旧": 58244, + "触控": 58245, + "▁KY": 58246, + "Greg": 58247, + "amoto": 58248, + "向本院提供": 58249, + "▁consect": 58250, + "▁Diagnostic": 58251, + "▁unfamiliar": 58252, + "gtk": 58253, + "Mutable": 58254, + "▁Candid": 58255, + "▁marital": 58256, + "▁reacted": 58257, + "Kab": 58258, + "ansk": 58259, + "moving": 58260, + "王晓": 58261, + "母亲的": 58262, + "表达了": 58263, + "MARK": 58264, + "被他": 58265, + "\"{%": 58266, + "与直线": 58267, + "itin": 58268, + "▁maneuver": 58269, + "▁â": 58270, + "校内": 58271, + "芳香": 58272, + "故事的": 58273, + "istas": 58274, + "rival": 58275, + "uguese": 58276, + "▁postpartum": 58277, + "外侧": 58278, + "理所": 58279, + "cxx": 58280, + "漫长的": 58281, + "ansom": 58282, + "▁Agents": 58283, + "▁cracking": 58284, + "▁metaphor": 58285, + "浙江大学": 58286, + "otropy": 58287, + "可可": 58288, + "岳阳": 58289, + "益气": 58290, + "媒体的": 58291, + "farm": 58292, + "▁Agn": 58293, + "▁Lily": 58294, + "parsers": 58295, + "河水": 58296, + "▁Dee": 58297, + "▁Webb": 58298, + "nSaint": 58299, + "nUntil": 58300, + "▁giveaway": 58301, + "再也不": 58302, + "STAMP": 58303, + "▁Greene": 58304, + "勋章": 58305, + "代表了": 58306, + "iked": 58307, + "▁sinc": 58308, + "Mockito": 58309, + "riterion": 58310, + "▁flavours": 58311, + "分红": 58312, + "长了": 58313, + "隔热": 58314, + "opolys": 58315, + "▁Virus": 58316, + "blocking": 58317, + "由题意可得": 58318, + "▁JD": 58319, + "ATIONAL": 58320, + "▁Galois": 58321, + "▁Diagram": 58322, + "一出": 58323, + "上古": 58324, + "上都": 58325, + "之妻": 58326, + "农商": 58327, + "▁Suk": 58328, + "▁Omega": 58329, + "▁gallon": 58330, + "对该领域的了解": 58331, + "随风": 58332, + "齐鲁": 58333, + "有限元": 58334, + "八条之规定": 58335, + "请仔细阅读选项": 58336, + "scenario": 58337, + "您对该领域的了解": 58338, + "▁declines": 58339, + "这是一道关于多学科知识的选择题": 58340, + "中去": 58341, + "居多": 58342, + "牌照": 58343, + "xor": 58344, + "Crypt": 58345, + "Browse": 58346, + "▁Norton": 58347, + "传出": 58348, + "依题意": 58349, + "oyer": 58350, + "vine": 58351, + "▁AFP": 58352, + "一如既往": 58353, + "审慎考虑": 58354, + "▁Cairo": 58355, + "▁Civic": 58356, + "Injection": 58357, + "停在": 58358, + "现存": 58359, + "▁用法": 58360, + "因生活": 58361, + "nLes": 58362, + "poon": 58363, + "▁Bax": 58364, + "uttle": 58365, + "证据确实充分": 58366, + "▁overwrite": 58367, + "Applications": 58368, + "▁hypothalamic": 58369, + "失常": 58370, + "美方": 58371, + "致的": 58372, + "Aug": 58373, + "▁//\\": 58374, + "nModern": 58375, + "▁Forums": 58376, + "二〇一八年八月": 58377, + "boundary": 58378, + "purchase": 58379, + "自贸": 58380, + "lea": 58381, + "为宗旨": 58382, + "▁calf": 58383, + "▁Richards": 58384, + "/…": 58385, + "Spy": 58386, + "uled": 58387, + "都有哪些": 58388, + "是一道选择题": 58389, + "▁analyzer": 58390, + "▁proceeded": 58391, + "▁duplication": 58392, + "名声": 58393, + "咫尺": 58394, + "霹雳": 58395, + "ALK": 58396, + "ITA": 58397, + "▁Brock": 58398, + "SpringBoot": 58399, + "月明": 58400, + "交汇处": 58401, + "出席了": 58402, + "▁ebook": 58403, + "▁selects": 58404, + "白石": 58405, + "▁keras": 58406, + "办理结婚登记": 58407, + "activities": 58408, + "▁燕": 58409, + "向着": 58410, + "秀丽": 58411, + "质检": 58412, + "实实在": 58413, + "geons": 58414, + "▁pedal": 58415, + "createdAt": 58416, + "▁Featuring": 58417, + "责编": 58418, + "高二": 58419, + "hog": 58420, + "微博上": 58421, + "nresult": 58422, + "▁Bolivia": 58423, + "▁Volunteer": 58424, + "▁subscribed": 58425, + "|<": 58426, + "▁🙂": 58427, + "服药": 58428, + "ibm": 58429, + "мен": 58430, + "听起来": 58431, + "规划和": 58432, + "▁CHO": 58433, + "▁\\')": 58434, + "issued": 58435, + "isement": 58436, + "▁Hansen": 58437, + "▁patrons": 58438, + "王文": 58439, + "肤色": 58440, + "驾驭": 58441, + "$^{": 58442, + "买了一": 58443, + "二十五": 58444, + "会发现": 58445, + "orbed": 58446, + "▁wird": 58447, + "▁peppers": 58448, + "▁numbering": 58449, + "你得": 58450, + "进驻": 58451, + "ESP": 58452, + "nEast": 58453, + "hosted": 58454, + "proton": 58455, + "▁Sympt": 58456, + "▁Supplement": 58457, + "察觉": 58458, + "接力": 58459, + "日均": 58460, + "▁APC": 58461, + "▁DSL": 58462, + "大学生的": 58463, + "请你仔细读题": 58464, + "从选项中选择出": 58465, + "▁sailors": 58466, + "如上是一道选择题": 58467, + "ivariable": 58468, + "lef": 58469, + "▁`[": 58470, + "并确定": 58471, + "的路程": 58472, + "可以达到": 58473, + "判处有期徒刑六个月": 58474, + "MPI": 58475, + "由本院": 58476, + "SIGN": 58477, + "贯彻执行": 58478, + "▁Platinum": 58479, + "▁dispersed": 58480, + "▁inspector": 58481, + "▁transplanted": 58482, + "通告": 58483, + "BAR": 58484, + "读者的": 58485, + "atore": 58486, + "▁Latex": 58487, + "▁glial": 58488, + "▁mongo": 58489, + "具有重要意义": 58490, + "为社会": 58491, + "是指在": 58492, + "▁Ost": 58493, + "▁Tue": 58494, + "▁Marl": 58495, + "isArray": 58496, + "uclease": 58497, + "▁Huawei": 58498, + "▁nightmare": 58499, + "壁画": 58500, + "桃李": 58501, + "航海": 58502, + "和孩子": 58503, + "中心小学": 58504, + "tlist": 58505, + "▁THEN": 58506, + "▁popup": 58507, + "▁torture": 58508, + "particles": 58509, + "▁filenames": 58510, + "▁watershed": 58511, + "BW": 58512, + "免除": 58513, + "嫁给": 58514, + "窒息": 58515, + "血脉": 58516, + "relu": 58517, + "▁Todo": 58518, + "▁wedge": 58519, + "内容如下所示": 58520, + "民事执行中查封": 58521, + "ReadLine": 58522, + "▁bracelet": 58523, + "kea": 58524, + "▁Hew": 58525, + "nwork": 58526, + "▁cones": 58527, + "▁stagger": 58528, + "▁Northwestern": 58529, + "他有": 58530, + "日到": 58531, + "▁Gig": 58532, + "▁Eden": 58533, + "IsNullOr": 58534, + "Particle": 58535, + "Hb": 58536, + "庄严": 58537, + "政党": 58538, + "青梅": 58539, + "EUR": 58540, + "外面的": 58541, + "▁lifts": 58542, + "▁anaerobic": 58543, + "Lazy": 58544, + "▁для": 58545, + "▁dwarf": 58546, + "letcher": 58547, + "exercise": 58548, + "▁comeback": 58549, + "必有": 58550, + "等同": 58551, + "醒了": 58552, + "中途退": 58553, + "的女子": 58554, + "▁Equity": 58555, + "ressions": 58556, + "▁Improved": 58557, + "▁visceral": 58558, + "一连": 58559, + "免税": 58560, + "冲锋": 58561, + "妨害": 58562, + "涡轮": 58563, + "DAT": 58564, + "^*$": 58565, + "想象力": 58566, + "acian": 58567, + "▁Adaptive": 58568, + "▁Painting": 58569, + "▁Pharmaceutical": 58570, + "永生": 58571, + "二次元": 58572, + "带孩子": 58573, + "plug": 58574, + "▁Nin": 58575, + "truth": 58576, + "▁kernels": 58577, + "heon": 58578, + "ensory": 58579, + "▁Riley": 58580, + "▁drones": 58581, + "本次执行程序应予终结": 58582, + "▁pancreatitis": 58583, + "eba": 58584, + "ynch": 58585, + "进行研究": 58586, + "▁witch": 58587, + "Players": 58588, + "badges": 58589, + "▁Calif": 58590, + "▁conditioner": 58591, + "就让": 58592, + "身旁": 58593, + "MCs": 58594, + "俗话说": 58595, + "memo": 58596, + "nProm": 58597, + "经济发展的": 58598, + "▁clutch": 58599, + "▁onboard": 58600, + "或在": 58601, + "看向": 58602, + "raj": 58603, + "好莱坞": 58604, + "▁PII": 58605, + "nwell": 58606, + "troviral": 58607, + "▁Hampton": 58608, + "▁specials": 58609, + "圣经": 58610, + "太后": 58611, + "幼虫": 58612, + "数据线": 58613, + "显示出": 58614, + "\\\\}$$": 58615, + "freeze": 58616, + "▁oxidized": 58617, + "瘙痒": 58618, + "追回": 58619, + "飞行员": 58620, + "▁}}{": 58621, + "由审判员": 58622, + "liers": 58623, + "族自治州中级人民法院": 58624, + "哈萨克": 58625, + "空气中": 58626, + "▁webcam": 58627, + "▁diploma": 58628, + "▁试": 58629, + "俄国": 58630, + "的组合": 58631, + "主要内容": 58632, + "问卷调查": 58633, + "plasty": 58634, + "▁Merge": 58635, + "ennials": 58636, + "▁detects": 58637, + "劳务合同纠纷一案": 58638, + "人脸": 58639, + "soon": 58640, + "itating": 58641, + "礼拜": 58642, + "Mur": 58643, + "就够了": 58644, + "▁prince": 58645, + "▁critique": 58646, + "监制": 58647, + "做好了": 58648, + "▁extrav": 58649, + "▁Reporter": 58650, + "▁contractile": 58651, + "▁unexpectedly": 58652, + "鼻炎": 58653, + "我们有": 58654, + "▁dei": 58655, + "scanner": 58656, + "▁absurd": 58657, + "▁inserts": 58658, + "鸟类": 58659, + "bulk": 58660, + "▁Slot": 58661, + "▁heur": 58662, + "可供您选择": 58663, + "ouched": 58664, + "secrets": 58665, + "Preference": 58666, + "CompatActivity": 58667, + "红茶": 58668, + "青椒": 58669, + "▁{%": 58670, + "中国画": 58671, + "是这个": 58672, + "的优点": 58673, + "stay": 58674, + "荆州": 58675, + "nUN": 58676, + "桂林市": 58677, + "▁Cly": 58678, + "▁Funk": 58679, + "▁radios": 58680, + "▁tractor": 58681, + "startsWith": 58682, + "▁forbidden": 58683, + "香料": 58684, + "医疗卫生": 58685, + "然后告诉我": 58686, + "请告诉我您的选择": 58687, + "confirmed": 58688, + "日向本院提出财产保全": 58689, + "▁narratives": 58690, + "请仔细阅读下面这道选择题": 58691, + "文旅": 58692, + "中全会": 58693, + "的课程": 58694, + "某某负担": 58695, + "▁Salem": 58696, + "▁stigma": 58697, + "▁phosphorylated": 58698, + "瓷器": 58699, + "长子": 58700, + "Sky": 58701, + "高精度": 58702, + "▁aur": 58703, + "▁lord": 58704, + "Deploy": 58705, + "cardia": 58706, + "古装": 58707, + "备战": 58708, + "武警": 58709, + "金字": 58710, + "▁号码": 58711, + "去年的": 58712, + "▁Twelve": 58713, + "▁sprite": 58714, + "中华人民共和国土地管理法": 58715, + "追捧": 58716, + "速度和": 58717, + "▁Jag": 58718, + "Backup": 58719, + "▁Betty": 58720, + "知识渊博的人": 58721, + "▁Ballet": 58722, + "等诸多": 58723, + "组织中": 58724, + "ilin": 58725, + "更多信息": 58726, + "注册资金": 58727, + "▁heir": 58728, + "▁perv": 58729, + "▁payday": 58730, + "园艺": 58731, + "izi": 58732, + "多万元": 58733, + "添加了": 58734, + "您认为的": 58735, + "▁占地面积": 58736, + "人民卫生出版社": 58737, + "▁anticipation": 58738, + "NX": 58739, + "读写": 58740, + "EPS": 58741, + "应依法": 58742, + "Loss": 58743, + "继续进行": 58744, + "ACTER": 58745, + "▁plur": 58746, + "▁Lopez": 58747, + "relevant": 58748, + "▁honesty": 58749, + "▁individualized": 58750, + "白领": 58751, + "nKen": 58752, + "请用您的": 58753, + "arbox": 58754, + "▁Mens": 58755, + "▁Equal": 58756, + "▁维": 58757, + "Never": 58758, + "请您务必注意": 58759, + "在回答以下这道": 58760, + "问题和选项的内容": 58761, + "▁worksheet": 58762, + "从选项中选定正确答案": 58763, + "具有挑战性的选择题时": 58764, + "▁astrocytes": 58765, + "请您务必注意问题和选项的内容": 58766, + "COPY": 58767, + "ponge": 58768, + "Secure": 58769, + "▁ozone": 58770, + "▁Lounge": 58771, + "%%%%%%%%": 58772, + "▁Davidson": 58773, + "▁inefficient": 58774, + "交织": 58775, + "相比于": 58776, + "醉酒后": 58777, + "▁Bali": 58778, + "brahim": 58779, + "工贸有限公司": 58780, + "▁Debian": 58781, + "▁batting": 58782, + "审慎考虑您的选择": 58783, + "并告诉我您认为的": 58784, + "请用您的专业知识": 58785, + "nEveryone": 58786, + "▁workouts": 58787, + "▁summarizes": 58788, + "以下备选答案可供您选择": 58789, + "请用您的专业知识回答以下问题": 58790, + "南阳市": 58791, + "以下命令": 58792, + "▁laughter": 58793, + "▁impressions": 58794, + "约占": 58795, + "理由正当": 58796, + "dorff": 58797, + "guess": 58798, + "▁avid": 58799, + "▁Wesley": 58800, + "currentTime": 58801, + "混淆": 58802, + "迷人": 58803, + "▁XY": 58804, + "开放式": 58805, + "指出了": 58806, + "oxid": 58807, + "likes": 58808, + "▁Chal": 58809, + "▁VERY": 58810, + "▁ferm": 58811, + "nAdmin": 58812, + "▁sarcoma": 58813, + "▁advertise": 58814, + "长短": 58815, + "领略": 58816, + "灵敏度": 58817, + "▁Seth": 58818, + "openssl": 58819, + "XXXXXXXX": 58820, + "ellaneous": 58821, + "季后": 58822, + "解散": 58823, + "▁Lt": 58824, + "的一段": 58825, + "起诉必须": 58826, + "请选择你认为": 58827, + "foundland": 58828, + "ду": 58829, + "不归": 58830, + "此地": 58831, + "专升本": 58832, + "如果你想": 58833, + "请选择你认为合适的答案": 58834, + "人权": 58835, + "丫头": 58836, + "丽莎": 58837, + "营利": 58838, + "转子": 58839, + "都喜欢": 58840, + "森林公园": 58841, + "▁Jagu": 58842, + "puppet": 58843, + "|[": 58844, + "LEN": 58845, + "fluent": 58846, + "▁pioneering": 58847, + "心率": 58848, + "OTH": 58849, + "▁{/": 58850, + "吸血鬼": 58851, + "请审查": 58852, + "近距离": 58853, + "严格执行": 58854, + "▁Thomson": 58855, + "astructural": 58856, + "▁filesystem": 58857, + "▁centimeters": 58858, + "准时": 58859, + "坏人": 58860, + "移交": 58861, + "……[": 58862, + "fine": 58863, + "▁hoc": 58864, + "nenum": 58865, + "urtles": 58866, + "实际应用领域": 58867, + "▁rented": 58868, + "他俩": 58869, + "录入": 58870, + "面目": 58871, + "cors": 58872, + "▁Byz": 58873, + "▁blu": 58874, + "发展方向": 58875, + "人民检察院以": 58876, + "▁doping": 58877, + "▁petrol": 58878, + "最高人民法院关于执行案件立案": 58879, + "发给": 58880, + "失控": 58881, + "次于": 58882, + "起初": 58883, + "▁开发商": 58884, + "第十三章": 58885, + "选择是什么": 58886, + "▁Floyd": 58887, + "getType": 58888, + "▁cracked": 58889, + "▁contrasting": 58890, + "参见": 58891, + "博物院": 58892, + "在生活中": 58893, + "▁Joyce": 58894, + "▁straps": 58895, + "▁disadvantage": 58896, + "刷牙": 58897, + "在同": 58898, + "提取物": 58899, + "nIce": 58900, + "随着我国": 58901, + "▁tidal": 58902, + "Dropdown": 58903, + "Extended": 58904, + "▁obsessed": 58905, + "▁AttributeError": 58906, + "随处": 58907, + "非常好的": 58908, + "▁stabilize": 58909, + "凌云": 58910, + "环形": 58911, + "竹林": 58912, + "乐意": 58913, + "Own": 58914, + "Drawer": 58915, + "stance": 58916, + "{{'}}(": 58917, + "▁cheek": 58918, + "contained": 58919, + "▁sandwiches": 58920, + "他将": 58921, + "口中": 58922, + "引言": 58923, + "水务": 58924, + "MPa": 58925, + "乘进率": 58926, + "▁Rise": 58927, + "itorium": 58928, + "请审查以下问题": 58929, + "▁elusive": 58930, + "▁ensured": 58931, + "▁Stability": 58932, + "作为一名知识渊博的人": 58933, + "OwnProperty": 58934, + "南岸": 58935, + "垫付": 58936, + "烟雾": 58937, + "智能家居": 58938, + "andan": 58939, + "effer": 58940, + "▁hips": 58941, + "OnInit": 58942, + "工业和信息化": 58943, + "▁amazon": 58944, + "人流": 58945, + "ebo": 58946, + "▁Ada": 58947, + "▁Sham": 58948, + "Parallel": 58949, + "▁mornings": 58950, + "恐慌": 58951, + "nAg": 58952, + "▁ct": 58953, + "有一条": 58954, + "cels": 58955, + "只是为了": 58956, + "▁Alleg": 58957, + "▁Scandin": 58958, + "前瞻": 58959, + "房地": 58960, + "雨后": 58961, + "tto": 58962, + "nHol": 58963, + "得到结果": 58964, + "选项涉及到": 58965, + "▁radiographic": 58966, + "推翻": 58967, + "人口与": 58968, + "和个人": 58969, + "eppe": 58970, + "与对照组": 58971, + "▁readiness": 58972, + "延边": 58973, + "疤痕": 58974, + "以下的问题和": 58975, + "审阅这道选择题": 58976, + "terraform": 58977, + "以下的问题和选项涉及到": 58978, + "并从给出的选项中选定正确答案": 58979, + "交响": 58980, + "▁pu": 58981, + "的最高": 58982, + "rollup": 58983, + "▁Fluid": 58984, + "mathscr": 58985, + "▁Singer": 58986, + "'_": 58987, + "▁廖": 58988, + "日为": 58989, + "瓦斯": 58990, + "跑去": 58991, + "迷信": 58992, + "特别好": 58993, + "▁accents": 58994, + "▁intimid": 58995, + "共分": 58996, + "有空": 58997, + "诅咒": 58998, + "你不能": 58999, + "不良影响": 59000, + "Strict": 59001, + "▁centrifug": 59002, + "▁digitally": 59003, + "征地": 59004, + "飞扬": 59005, + "在有限": 59006, + "▁Gap": 59007, + "希望通过": 59008, + "▁nombre": 59009, + "▁coincide": 59010, + "塔尔": 59011, + "事业发展": 59012, + "krainian": 59013, + "▁noninvasive": 59014, + "切的": 59015, + "dream": 59016, + "▁headphones": 59017, + "▁renin": 59018, + "GameObject": 59019, + "▁advertisers": 59020, + "国有资产": 59021, + "▁evangel": 59022, + "▁Madagascar": 59023, + "▁authenticity": 59024, + "库里": 59025, + "角质": 59026, + "饭后": 59027, + "atu": 59028, + "这玩意": 59029, + "▁Arms": 59030, + "▁Shan": 59031, + "▁neurologic": 59032, + "ErrorMessage": 59033, + "Son": 59034, + "吃起来": 59035, + "植物门": 59036, + "的现状": 59037, + "smtp": 59038, + "积极开展": 59039, + "associ": 59040, + "mental": 59041, + "▁alkyl": 59042, + "▁brides": 59043, + "▁surplus": 59044, + "排污": 59045, + "松下": 59046, + "隐蔽": 59047, + "lips": 59048, + "▁justification": 59049, + "出众": 59050, + "液化": 59051, + "nGO": 59052, + "圆的半径": 59053, + "学生的学习": 59054, + "▁annex": 59055, + "▁geared": 59056, + "zs": 59057, + "▁邹": 59058, + "几分": 59059, + "鸡翅": 59060, + "CIS": 59061, + "Uns": 59062, + "tgo": 59063, + "问题上": 59064, + "▁Mys": 59065, + "推广应用": 59066, + "ossip": 59067, + "▁Educ": 59068, + "▁Johann": 59069, + "iteration": 59070, + "wf": 59071, + "中层": 59072, + "打压": 59073, + "大大的": 59074, + "enko": 59075, + "asInstanceOf": 59076, + "▁∠": 59077, + "tmax": 59078, + "▁Mam": 59079, + "▁CODE": 59080, + "▁tweak": 59081, + "Samples": 59082, + "inspect": 59083, + "▁Browns": 59084, + "▁facade": 59085, + "▁perennial": 59086, + "▁unconscious": 59087, + "张伟": 59088, + "民意": 59089, + "它本身": 59090, + "{}\\'": 59091, + "▁第一章": 59092, + ")^{\\\\": 59093, + "stadt": 59094, + "▁Recommended": 59095, + "履职": 59096, + "拓片": 59097, + "活在": 59098, + "Squ": 59099, + "Prod": 59100, + "▁Aval": 59101, + "你都": 59102, + "BLE": 59103, + "等式的": 59104, + "angs": 59105, + "enet": 59106, + "▁avg": 59107, + "印度尼西亚": 59108, + "▁simplex": 59109, + "调配": 59110, + "最好不要": 59111, + "▁Metric": 59112, + "▁Naples": 59113, + "▁disturbed": 59114, + "▁touchdowns": 59115, + "远处": 59116, + "雨花": 59117, + "HDL": 59118, + "Kin": 59119, + "平均每天": 59120, + "builtin": 59121, + "▁rewarded": 59122, + "$:\\": 59123, + "的记忆": 59124, + "的诊断": 59125, + "▁Ley": 59126, + "▁Jenny": 59127, + "其中农业人口": 59128, + "▁uneven": 59129, + "▁Prevent": 59130, + "▁nonsense": 59131, + "▁partitioning": 59132, + "▁Transformation": 59133, + "不买": 59134, + "留住": 59135, + "▁CONF": 59136, + "▁esta": 59137, + "▁mods": 59138, + "▁Cardi": 59139, + "▁proceeding": 59140, + "▁disappearance": 59141, + "嘴角": 59142, + "王建": 59143, + "迎合": 59144, + "sov": 59145, + "可以进行": 59146, + "▁lista": 59147, + "海贼": 59148, + "lbl": 59149, + "▁Ard": 59150, + "城市管理": 59151, + "是错误的": 59152, + "越来越高": 59153, + "且申请执行人": 59154, + "▁oracle": 59155, + "▁Activation": 59156, + "下山": 59157, + "人居": 59158, + "穷人": 59159, + "George": 59160, + "▁Noble": 59161, + "▁Hollow": 59162, + "▁reticulum": 59163, + "白斑": 59164, + "▁Sag": 59165, + "他把": 59166, + "啦啦": 59167, + "木马": 59168, + "案款": 59169, + "试管": 59170, + "驾照": 59171, + "转换成": 59172, + "esus": 59173, + "structuring": 59174, + "入坑": 59175, + "演义": 59176, + "的类型": 59177, + "根据原告": 59178, + "研究报告": 59179, + "asuring": 59180, + "NotEmpty": 59181, + "▁migraine": 59182, + "依法须经批准的项目": 59183, + "|}": 59184, + "创造出": 59185, + "病患者": 59186, + "nche": 59187, + "▁ECM": 59188, + "urous": 59189, + "nunder": 59190, + "计算器": 59191, + "中国文化": 59192, + "通知如下": 59193, + "fiber": 59194, + "在本次执行程序中": 59195, + "▁Accounts": 59196, + "▁ganglion": 59197, + "▁Interstate": 59198, + "两款": 59199, + "这组": 59200, + "▁代表": 59201, + "依赖于": 59202, + "▁Colour": 59203, + "▁Startup": 59204, + "生效之日起十日内": 59205, + "▁Chromium": 59206, + "interaction": 59207, + "围观": 59208, + "得罪": 59209, + "omod": 59210, + "▁Hers": 59211, + "ifolia": 59212, + "dimensions": 59213, + "spawn": 59214, + "不甘": 59215, + "汉书": 59216, + "语境": 59217, + "InB": 59218, + "了一年": 59219, + "小数的": 59220, + "▁iris": 59221, + "▁游戏平台": 59222, + "司法鉴定中心": 59223, + "uncredited": 59224, + "东湖": 59225, + "玄武": 59226, + "这一步": 59227, + "投资或控股": 59228, + "申请执行的": 59229, + "nconfig": 59230, + "▁borrowed": 59231, + "▁trustworthy": 59232, + "精油": 59233, + "▁Glacier": 59234, + "▁firstly": 59235, + "回转": 59236, + "稿件": 59237, + "切除术": 59238, + "aryl": 59239, + "▁buds": 59240, + "您的最佳选择": 59241, + "送达了执行通知书": 59242, + "▁interiors": 59243, + "他没有": 59244, + "又包含了": 59245, + "nalso": 59246, + "▁sucks": 59247, + "自然人投资或控股": 59248, + "工况": 59249, + "nLow": 59250, + "clang": 59251, + "▁pops": 59252, + "▁bricks": 59253, + "▁dilution": 59254, + "Vi": 59255, + "сь": 59256, + "一章": 59257, + "粮油": 59258, + "限时": 59259, + "全明星": 59260, + "成功地": 59261, + "社会组织": 59262, + "Skill": 59263, + "loxacin": 59264, + "▁inevitably": 59265, + "▁serialized": 59266, + "小微": 59267, + "水电站": 59268, + "之间存在": 59269, + "▁Lands": 59270, + "▁Rooms": 59271, + "▁Tuple": 59272, + "▁Jacobs": 59273, + "▁gallons": 59274, + "▁warranted": 59275, + "话剧": 59276, + "看不懂": 59277, + "nCity": 59278, + "科学研究院": 59279, + "▁Gibbs": 59280, + "knowledge": 59281, + "低端": 59282, + "▁LR": 59283, + "江门市": 59284, + "一次函数": 59285, + "▁Roma": 59286, + "▁quir": 59287, + "▁liquor": 59288, + "ethasone": 59289, + "verified": 59290, + "▁gadgets": 59291, + "▁translating": 59292, + "戴着": 59293, + "细微": 59294, + "noid": 59295, + "▁COX": 59296, + "既包含了": 59297, + "▁Ling": 59298, + "▁edits": 59299, + "parametric": 59300, + "失落": 59301, + "点头": 59302, + "准确地": 59303, + "要根据": 59304, + "发布会上": 59305, + "anchez": 59306, + "▁Pythag": 59307, + "▁evapor": 59308, + "▁Coleman": 59309, + "▁positivity": 59310, + "隐隐": 59311, + "再进行": 59312, + "政策根据": 59313, + "extras": 59314, + "▁replicated": 59315, + "不还": 59316, + "保质": 59317, + "辨证": 59318, + "▁调料": 59319, + "iast": 59320, + "▁Lua": 59321, + "行政管理": 59322, + "请仔细浏览": 59323, + "并给出正确答案": 59324, + "古巴": 59325, + "缠绕": 59326, + "位数是": 59327, + "县委常委": 59328, + "在面对以下": 59329, + "请您认真分析": 59330, + "▁Decimal": 59331, + "并告诉我您的选择": 59332, + "在面对以下选择题时": 59333, + "▁economist": 59334, + "请仔细浏览以下备选答案": 59335, + "请您认真分析并给出正确答案": 59336, + "假冒": 59337, + "全班": 59338, + "来院": 59339, + "金黄色": 59340, + "主要种植": 59341, + "住上海市": 59342, + "flask": 59343, + "Richard": 59344, + "▁Beverly": 59345, + "installation": 59346, + "Notifications": 59347, + "此生": 59348, + "翼翼": 59349, + "CoV": 59350, + "成交量": 59351, + "▁Sta": 59352, + "如何使用": 59353, + "▁DOWN": 59354, + "▁Tested": 59355, + "Drawable": 59356, + "ovoltaic": 59357, + "渣男": 59358, + "英勇": 59359, + "物质的": 59360, + "Aware": 59361, + "▁duplex": 59362, + "▁firearms": 59363, + "▁Landscape": 59364, + "▁disappointment": 59365, + "他却": 59366, + "汲取": 59367, + "bob": 59368, + "▁Nec": 59369, + "后可": 59370, + "奢侈品": 59371, + "▁eps": 59372, + "不断创新": 59373, + "▁Blank": 59374, + "▁smarter": 59375, + "劳务费": 59376, + "▁Borg": 59377, + "▁Univ": 59378, + "pering": 59379, + "①②": 59380, + "区位": 59381, + "纯洁": 59382, + "诗集": 59383, + "ACA": 59384, + "worm": 59385, + "▁PCs": 59386, + "可以裁定": 59387, + "▁cysts": 59388, + "▁spoil": 59389, + "点亮": 59390, + "保持了": 59391, + "Ijoi": 59392, + "adan": 59393, + "urger": 59394, + "▁Mare": 59395, + "法民初字第": 59396, + "currently": 59397, + "▁customizable": 59398, + "▁AUTO": 59399, + "▁plat": 59400, + "▁EVERY": 59401, + "房地产开发有限责任公司": 59402, + "但债权的实现取决于被执行人是否有": 59403, + "▁'_": 59404, + "就是我": 59405, + "并表示": 59406, + "在校学生": 59407, + "otron": 59408, + "aleigh": 59409, + "▁conserve": 59410, + "▁overhaul": 59411, + "paralleled": 59412, + "最先": 59413, + "%);": 59414, + "nFeb": 59415, + "使用的是": 59416, + "▁mega": 59417, + "nAndrew": 59418, + "▁Dreams": 59419, + "ある": 59420, + "盛会": 59421, + "nKn": 59422, + "不方便": 59423, + "obox": 59424, + "▁playful": 59425, + "prediction": 59426, + "▁duplicates": 59427, + "之声": 59428, + "京城": 59429, + "插图": 59430, + "Ack": 59431, + "眼中的": 59432, + "nAust": 59433, + "nCamp": 59434, + "Stable": 59435, + "propag": 59436, + "▁shuffle": 59437, + "▁smiling": 59438, + "▁respiration": 59439, + "▁unsubscribe": 59440, + "上进": 59441, + "很有可能": 59442, + "我是一个": 59443, + "ispens": 59444, + "▁fulfil": 59445, + "号牌": 59446, + "诗文": 59447, + "_{(": 59448, + "▁Lig": 59449, + "企业形象": 59450, + "执行程序": 59451, + "▁sued": 59452, + "生产建设兵团": 59453, + "nGetting": 59454, + "▁Halifax": 59455, + "中进行": 59456, + "民事责任": 59457, + "▁auch": 59458, + "▁Demand": 59459, + "▁HashSet": 59460, + "包厢": 59461, + "方式和": 59462, + "看不起": 59463, + "▁Neut": 59464, + "▁blur": 59465, + "▁Kernel": 59466, + "▁要": 59467, + "手足": 59468, + "跳过": 59469, + "进场": 59470, + "whit": 59471, + "intel": 59472, + "著作权集体": 59473, + "▁Ferrari": 59474, + "▁thereof": 59475, + "▁perinatal": 59476, + "五六": 59477, + "大象": 59478, + "选址": 59479, + "▁ops": 59480, + "nSimple": 59481, + "▁Minecraft": 59482, + "<>": 59483, + "族群": 59484, + "ymn": 59485, + "为重点": 59486, + "动画片": 59487, + "安装了": 59488, + "现代农业": 59489, + "▁Pitch": 59490, + "▁pilgr": 59491, + "▁Edmund": 59492, + "▁comprehend": 59493, + "可由": 59494, + "小哥": 59495, + "废气": 59496, + "想吃": 59497, + "扶养": 59498, + "▁Kum": 59499, + "drawable": 59500, + "canonical": 59501, + "▁incision": 59502, + "科学记数法的表示形式为": 59503, + "与李": 59504, + "在各": 59505, + "担负": 59506, + "为主料的": 59507, + "上面这个问题": 59508, + "财运": 59509, + "Joe": 59510, + "gkin": 59511, + "若干选项": 59512, + "主要负责人": 59513, + "的其他财产": 59514, + "▁polymerization": 59515, + "宋朝": 59516, + "巡回": 59517, + "捆绑": 59518, + "邮局": 59519, + "osm": 59520, + "坚定的": 59521, + "▁LAN": 59522, + "开户银行": 59523, + "职业道德": 59524, + "hesus": 59525, + "ptical": 59526, + "shader": 59527, + "terase": 59528, + "▁Aeros": 59529, + "attices": 59530, + "kip": 59531, + "一直都是": 59532, + "然后点击": 59533, + "计算机网络": 59534, + "这是一道需": 59535, + "分析这些选项": 59536, + "综合运用多方面": 59537, + "▁Parking": 59538, + "▁plotted": 59539, + "▁brighter": 59540, + "▁diplomat": 59541, + "请仔细分析这些选项": 59542, + "然后告诉我您的最佳选择": 59543, + "这是一道需综合运用多方面": 59544, + "thi": 59545, + "保持在": 59546, + "SATA": 59547, + "Daily": 59548, + "内容判断出": 59549, + "包含一个问题和": 59550, + "内容判断出您认为": 59551, + "以下内容包含一个问题和": 59552, + "▁Pseudomonas": 59553, + "依据问题内容判断出您认为": 59554, + "以下内容包含一个问题和若干选项": 59555, + "前夕": 59556, + "感性": 59557, + "这儿": 59558, + "Ell": 59559, + "法律的": 59560, + "魔法师": 59561, + "orax": 59562, + "▁AFL": 59563, + "▁Agu": 59564, + "▁Voy": 59565, + "fills": 59566, + "▁Maint": 59567, + "shortcuts": 59568, + "▁Wik": 59569, + "UMENT": 59570, + "initis": 59571, + "lectic": 59572, + "▁Alexa": 59573, + "▁empathy": 59574, + "▁Estonian": 59575, + ",{": 59576, + "▁AML": 59577, + "周边配套": 59578, + "▁Dash": 59579, + "turned": 59580, + "▁fb": 59581, + "erializer": 59582, + "▁recreate": 59583, + "毛细": 59584, + "短片": 59585, + "csc": 59586, + "▁Hutch": 59587, + "▁Chapman": 59588, + "▁Nonetheless": 59589, + "县的": 59590, + "拳头": 59591, + "JDK": 59592, + "交流与": 59593, + "这个地图": 59594, + "▁Helm": 59595, + "sphere": 59596, + "▁presumed": 59597, + "依依": 59598, + "沙龙": 59599, + "营商": 59600, + "仍不能": 59601, + "所用的": 59602, + "TEMP": 59603, + "▁ABOUT": 59604, + "utively": 59605, + "▁Bollywood": 59606, + "▁Settlement": 59607, + "▁documenting": 59608, + "▁fashionable": 59609, + "二层": 59610, + "疏散": 59611, + "的还是": 59612, + "nAmb": 59613, + "oblastic": 59614, + "▁vaccinated": 59615, + "烤肉": 59616, + "热衷": 59617, + "为他们": 59618, + "审判庭": 59619, + "与被上诉人": 59620, + "accessor": 59621, + "▁Standing": 59622, + "▁compassionate": 59623, + "机动车交通事故责任纠纷一案中": 59624, + "无言": 59625, + "猕猴": 59626, + "着作": 59627, + "得出答案": 59628, + "龙头企业": 59629, + "isdir": 59630, + "onium": 59631, + "给定的问题": 59632, + "▁superc": 59633, + "▁nonatomic": 59634, + "毛衣": 59635, + "的快": 59636, + "皮下": 59637, + "ILY": 59638, + "▁Quad": 59639, + "▁Cookie": 59640, + "▁climbed": 59641, + "领会": 59642, + "tctx": 59643, + "njobs": 59644, + "ehicles": 59645, + "largest": 59646, + "▁paints": 59647, + "|_": 59648, + "超额": 59649, + "在国外": 59650, + "给定问题": 59651, + "▁Hundred": 59652, + "▁jsonify": 59653, + "▁Apartment": 59654, + "Dy": 59655, + "东市": 59656, + "孔雀": 59657, + "无毒": 59658, + "Pag": 59659, + "otto": 59660, + "这个行业": 59661, + "sequent": 59662, + "Ly": 59663, + "嘴唇": 59664, + "GRE": 59665, + "付出的": 59666, + "▁Plat": 59667, + "现在我会给你": 59668, + "依据给定的问题": 59669, + "ApiModel": 59670, + "仔细阅读上面这个问题": 59671, + "现在我会给你几个选项": 59672, + "请你根据问题进行分析": 59673, + "从选项中选出合适的答案": 59674, + "揭晓": 59675, + "新书": 59676, + "比方": 59677, + "▁Comm": 59678, + "上面这段话": 59679, + "▁theology": 59680, + "Collectors": 59681, + "nSimilarly": 59682, + "attachments": 59683, + "▁credential": 59684, + "▁φ": 59685, + "双面": 59686, + "eus": 59687, + "assuming": 59688, + "atterson": 59689, + "'}\\": 59690, + "emap": 59691, + "monds": 59692, + "▁obey": 59693, + "DEVICE": 59694, + "Ireland": 59695, + "▁Finish": 59696, + "▁PEOPLE": 59697, + "▁saliva": 59698, + "▁Dragons": 59699, + "已发生法律效力的": 59700, + "▁insufficiency": 59701, + "与传统": 59702, + "▁cataract": 59703, + "▁Distinguished": 59704, + "Nb": 59705, + "▁星": 59706, + "深海": 59707, + "使用方法": 59708, + "Versions": 59709, + "▁immobil": 59710, + "依法适用普通程序": 59711, + "操场": 59712, + "有声": 59713, + "一分钟": 59714, + "至少要": 59715, + "是否可以": 59716, + "inium": 59717, + "▁pleasing": 59718, + "▁assistants": 59719, + "二三": 59720, + "奋力": 59721, + "jQuery": 59722, + "▁pests": 59723, + "\\\\\":\\\\\"": 59724, + "▁depicting": 59725, + "▁来": 59726, + "近些": 59727, + "逃生": 59728, + "feng": 59729, + "▁caud": 59730, + "opathology": 59731, + "▁Recording": 59732, + "▁Geographic": 59733, + "▁interfering": 59734, + "刻录": 59735, + "kas": 59736, + "nApr": 59737, + "▁Disk": 59738, + "icators": 59739, + "supervised": 59740, + "▁Riverside": 59741, + "建工": 59742, + "显存容量": 59743, + "removed": 59744, + "▁Efficient": 59745, + "波长": 59746, + "科创": 59747, + "红颜": 59748, + "贮藏": 59749, + "Major": 59750, + "▁maze": 59751, + "▁prosecutor": 59752, + "[]{": 59753, + "▁moi": 59754, + "期限届满前": 59755, + "nViews": 59756, + "esarean": 59757, + "▁Deploy": 59758, + "possibly": 59759, + "亦是": 59760, + "低迷": 59761, + "写道": 59762, + "加尔": 59763, + "筹划": 59764, + "▁创办": 59765, + "alist": 59766, + "▁Donna": 59767, + "handled": 59768, + "▁smoked": 59769, + "▁granules": 59770, + "▁integrin": 59771, + "oooo": 59772, + "Retry": 59773, + "▁Nath": 59774, + "申请执行费": 59775, + "出具借条一份": 59776, + "▁revival": 59777, + "▁tc": 59778, + "ngoing": 59779, + "▁Residential": 59780, + "小憩": 59781, + "都用": 59782, + "第一季": 59783, + "ixir": 59784, + "Scott": 59785, + "▁transitional": 59786, + "九天": 59787, + "欺诈": 59788, + "账单": 59789, + "这样就": 59790, + "roat": 59791, + "olphin": 59792, + "webapp": 59793, + "▁Complexity": 59794, + "▁inherently": 59795, + "▁carbohydrates": 59796, + "kV": 59797, + "校外": 59798, + "牙膏": 59799, + "配角": 59800, + "决策和": 59801, + "cars": 59802, + "从而达到": 59803, + "▁newcom": 59804, + "▁generalize": 59805, + "二胎": 59806, + "对战": 59807, + "数的定义": 59808, + "社区矫正": 59809, + "*\\\\*\\\\": 59810, + "resume": 59811, + "shutil": 59812, + "▁HTTPS": 59813, + "▁blending": 59814, + "wed": 59815, + "以达到": 59816, + "Slug": 59817, + "▁acupuncture": 59818, + "生产能力": 59819, + "▁Vall": 59820, + "▁Calvin": 59821, + "▁honours": 59822, + "▁referee": 59823, + "▁tactical": 59824, + "丽江": 59825, + "变得更": 59826, + "在现场": 59827, + "老干部": 59828, + "Ruby": 59829, + "新冠病毒": 59830, + "cargo": 59831, + "▁Giovanni": 59832, + "▁incompatible": 59833, + "upp": 59834, + "加起来": 59835, + "时间段": 59836, + "高级的": 59837, + "ucci": 59838, + "▁Rex": 59839, + "▁Yuk": 59840, + "执行到位": 59841, + "▁quas": 59842, + "\\']))\\": 59843, + "▁extrapol": 59844, + "evaluation": 59845, + "太守": 59846, + "慷慨": 59847, + "▁Reb": 59848, + "orset": 59849, + "▁Pond": 59850, + "▁Treaty": 59851, + "▁pushes": 59852, + "munition": 59853, + "▁Fibonacci": 59854, + "新风": 59855, + "航空航天": 59856, + "▁plex": 59857, + "吃得": 59858, + "成套": 59859, + "泥土": 59860, + "号房屋": 59861, + "anno": 59862, + "imab": 59863, + "有的时候": 59864, + "正是因为": 59865, + "nVari": 59866, + "▁Ming": 59867, + "orphous": 59868, + "oxygenase": 59869, + "▁solvents": 59870, + "▁Automotive": 59871, + "总能": 59872, + "cus": 59873, + "Leaf": 59874, + "▁EGF": 59875, + "▁Ctrl": 59876, + "▁Franco": 59877, + "Physical": 59878, + "▁sickness": 59879, + "▁volcanic": 59880, + "▁hydration": 59881, + "▁zebrafish": 59882, + "减压": 59883, + "橡皮": 59884, + "认清": 59885, + "贴合": 59886, + "uxt": 59887, + "但是这": 59888, + "▁]];": 59889, + "什么都不": 59890, + "民终字第": 59891, + "刑二": 59892, + "售卖": 59893, + "洗脑": 59894, + "问了": 59895, + "tty": 59896, + "有效性": 59897, + "▁EUR": 59898, + "▁Density": 59899, + "▁aspirin": 59900, + "斑点": 59901, + "也能够": 59902, + "奥斯卡": 59903, + "▁babe": 59904, + "Impact": 59905, + "blockquote": 59906, + "(\"@": 59907, + "zoo": 59908, + "观众的": 59909, + "▁职务任免": 59910, + "受案登记表": 59911, + "在一定程度上": 59912, + "▁Barrett": 59913, + "▁porcine": 59914, + "▁clarified": 59915, + "洞察": 59916, + "肉眼": 59917, + "闭幕": 59918, + "哪怕是": 59919, + "▁synov": 59920, + "请你根据题意": 59921, + "stories": 59922, + "▁giants": 59923, + "▁Extreme": 59924, + "▁immersion": 59925, + "皆是": 59926, + "▁Tin": 59927, + "▁blamed": 59928, + "▁Creation": 59929, + "▁inferred": 59930, + "nPublication": 59931, + "层面的": 59932, + "gens": 59933, + "分类讨论": 59934, + "ndoes": 59935, + "tAssert": 59936, + "▁Kolkata": 59937, + "nFacebook": 59938, + "周三": 59939, + "贪污": 59940, + "▁TI": 59941, + "bike": 59942, + "▁warfare": 59943, + "不休": 59944, + "为大": 59945, + "奖章": 59946, + "小球": 59947, + "frm": 59948, + "层次的": 59949, + "消失了": 59950, + "设置的": 59951, + "▁foi": 59952, + "▁Tours": 59953, + "又包含了选项": 59954, + "既包含了问题": 59955, + "Usuario": 59956, + "上面这段话既包含了问题": 59957, + "请你根据题意选出正确的答案": 59958, + "书本": 59959, + "喝茶": 59960, + "患上": 59961, + "枕头": 59962, + "IZE": 59963, + "的危险": 59964, + "▁\\'[": 59965, + "nthet": 59966, + "▁Trials": 59967, + "▁bureauc": 59968, + "▁InputStream": 59969, + "▁photographed": 59970, + "ей": 59971, + "▁紫": 59972, + "西市": 59973, + "贯注": 59974, + "▁AH": 59975, + "中文名": 59976, + "▁Erd": 59977, + "glucose": 59978, + "此题主要考查了": 59979, + "▁handsome": 59980, + "▁consultations": 59981, + "▁instantaneous": 59982, + "倍数的": 59983, + "临床资料": 59984, + "职业学院": 59985, + "aille": 59986, + "▁Pitt": 59987, + "▁slavery": 59988, + "李世": 59989, + "漫漫": 59990, + "eyond": 59991, + "▁chel": 59992, + "格斯": 59993, + "分子的": 59994, + "zbek": 59995, + "Directive": 59996, + "▁grandparents": 59997, + "nFire": 59998, + "Choose": 59999, + "hammer": 60000, + "▁eclipse": 60001, + "sometimes": 60002, + "未发现可供执行的财产": 60003, + "▁Universities": 60004, + "不长": 60005, + "你说的": 60006, + "办理了": 60007, + "在各种": 60008, + "没见过": 60009, + "统计分析": 60010, + "Appro": 60011, + "odend": 60012, + "红袖添香网": 60013, + "▁doctorate": 60014, + "▁amplitudes": 60015, + "上司": 60016, + "的差": 60017, + "表征": 60018, + "CMV": 60019, + "功能和": 60020, + "ncom": 60021, + "▁Sys": 60022, + "▁apk": 60023, + "▁Hess": 60024, + "limate": 60025, + "闪耀": 60026, + "urf": 60027, + "一口气": 60028, + "行业内": 60029, + "thin": 60030, + "▁Tul": 60031, + "全方位的": 60032, + "▁slaves": 60033, + "▁pleaded": 60034, + "▁cheating": 60035, + "Assignment": 60036, + "重返": 60037, + "▁中国大陆": 60038, + "▁embassy": 60039, + "▁uppercase": 60040, + "之父": 60041, + "倒闭": 60042, + "寺庙": 60043, + "放的": 60044, + "手机上": 60045, + "▁/>×": 60917, + "王府": 60918, + "双床间": 60919, + "来解决": 60920, + "要做好": 60921, + "nFac": 60922, + "▁PTH": 60923, + "▁spaced": 60924, + "▁throne": 60925, + "▁Johnston": 60926, + "▁FOX": 60927, + "没有那么": 60928, + "研究领域": 60929, + "▁tipo": 60930, + "italic": 60931, + "expires": 60932, + "▁yogurt": 60933, + "Subscribe": 60934, + "▁doctrine": 60935, + "▁М": 60936, + "为先": 60937, + "地把": 60938, + "MIS": 60939, + "服务质量": 60940, + "综合考虑": 60941, + "prior": 60942, + "▁Moses": 60943, + "▁clocks": 60944, + "▁slated": 60945, + "Primitive": 60946, + "▁footwear": 60947, + "▁multipro": 60948, + "▁masculine": 60949, + "布莱": 60950, + "闲置": 60951, + "消费品": 60952, + "等形式": 60953, + "azol": 60954, + "▁PNG": 60955, + "▁Bread": 60956, + "经人介绍相识": 60957, + "违章": 60958, + "逆天": 60959, + "▁教师": 60960, + "对这些": 60961, + "汕头市": 60962, + "ankton": 60963, + "▁shutil": 60964, + "▁discern": 60965, + "▁Concepts": 60966, + "利斯": 60967, + "即成": 60968, + "奇异": 60969, + "所见": 60970, + "置身": 60971, + "▁moms": 60972, + "nIrish": 60973, + "omized": 60974, + "▁charger": 60975, + "probability": 60976, + "▁distinguishing": 60977, + "有待": 60978, + "jie": 60979, + "参观了": 60980, + "情人节": 60981, + "▁GSM": 60982, + "▁Newman": 60983, + "▁Appeals": 60984, + "某某到庭参加诉讼": 60985, + "▁ordained": 60986, + "▁Architects": 60987, + "▁Structures": 60988, + "UGH": 60989, + "Opacity": 60990, + "▁Sophie": 60991, + "▁parked": 60992, + "▁Upgrade": 60993, + "▁Portfolio": 60994, + "▁inserting": 60995, + "攀升": 60996, + "iOiJ": 60997, + "疫情防控工作": 60998, + "Clicked": 60999, + "本判决为终审判决": 61000, + "Deployment": 61001, + "内向": 61002, + "进门": 61003, + "GAN": 61004, + "Php": 61005, + "传说中的": 61006, + "▁wifi": 61007, + "inarily": 61008, + "▁Escort": 61009, + "▁Christie": 61010, + "_)\\": 61011, + "能达到": 61012, + "▁Dup": 61013, + "asome": 61014, + "▁burger": 61015, + "INSTANCE": 61016, + "厉害的": 61017, + "nWood": 61018, + "▁Crazy": 61019, + "▁Commod": 61020, + "committee": 61021, + "▁Conversion": 61022, + "ча": 61023, + "华尔": 61024, + "真好": 61025, + "饥饿": 61026, + "VEGF": 61027, + "ibia": 61028, + "▁corridor": 61029, + "Injectable": 61030, + "▁unparalleled": 61031, + "中卫": 61032, + "譬如": 61033, + "目的观察": 61034, + "▁Kerr": 61035, + "▁Phosph": 61036, + "▁expectancy": 61037, + "对焦": 61038, + "有各": 61039, + "甘蔗": 61040, + "从来不": 61041, + "自己做": 61042, + "nKing": 61043, + "pound": 61044, + "riding": 61045, + "▁explode": 61046, + "UF": 61047, + "凝结": 61048, + "力强": 61049, + "KTV": 61050, + "想象的": 61051, + "没有再": 61052, + "alez": 61053, + "Young": 61054, + "做题的思路": 61055, + "▁Arlington": 61056, + "吸尘": 61057, + "ngr": 61058, + "反过来": 61059, + "感觉很": 61060, + "ères": 61061, + "▁decks": 61062, + "▁devote": 61063, + "▁Customs": 61064, + "沙坪": 61065, + "mixin": 61066, + "▁woke": 61067, + "分析和依据": 61068, + "▁Haiti": 61069, + "通气": 61070, + "ENU": 61071, + "▁hd": 61072, + "主干道": 61073, + "他们都": 61074, + "关心的": 61075, + "创作者": 61076, + "nDer": 61077, + "质量控制": 61078, + "lover": 61079, + "▁resusc": 61080, + "并给出你的解题": 61081, + "anaconda": 61082, + "▁Landing": 61083, + "从选项中选择出合适的答案": 61084, + "并给出你的解题分析和依据": 61085, + "拖鞋": 61086, + "超人": 61087, + ",,,": 61088, + "stor": 61089, + "到底是什么": 61090, + "▁naughty": 61091, + "红球": 61092, + "街区": 61093, + "hoe": 61094, + "sty": 61095, + "优异的": 61096, + "宅基地": 61097, + "▁flown": 61098, + "▁treas": 61099, + "surgical": 61100, + "帮他": 61101, + "战机": 61102, + "无偿": 61103, + "求精": 61104, + "着她": 61105, + "▁Concer": 61106, + "▁Falcon": 61107, + "▁showcases": 61108, + "以赴": 61109, + "Mind": 61110, + "Built": 61111, + "并做出解释": 61112, + "▁sneak": 61113, + "极少": 61114, + "LPL": 61115, + "性能和": 61116, + "nDou": 61117, + "缓刑一年": 61118, + "▁Fors": 61119, + "▁rehab": 61120, + "booking": 61121, + "选出正确的答案并做出解释": 61122, + "告白": 61123, + "重构": 61124, + "IDA": 61125, + "会选择": 61126, + "的直线": 61127, + "▁USS": 61128, + "数的绝对值": 61129, + "ATPase": 61130, + "上诉于江苏省": 61131, + "▁credible": 61132, + "华语": 61133, + "沉重": 61134, + "chy": 61135, + "马鞍山市": 61136, + "plings": 61137, + "Tracking": 61138, + "▁Practices": 61139, + "pyl": 61140, + "ofib": 61141, + "Travel": 61142, + "▁Behind": 61143, + "位和": 61144, + "议论": 61145, + "onet": 61146, + "nFish": 61147, + "申请执行人亦未": 61148, + "GetMapping": 61149, + "hq": 61150, + "▁韦": 61151, + "久久": 61152, + "你和": 61153, + "全等": 61154, + "勤劳": 61155, + "怪的": 61156, + "点心": 61157, + "才开始": 61158, + "现场照片": 61159, + "▁Dirac": 61160, + "▁babel": 61161, + "▁Wizard": 61162, + "kube": 61163, + "▁MOS": 61164, + "融资租赁": 61165, + "通俗易懂": 61166, + "aught": 61167, + "OrDefault": 61168, + "▁Rajasthan": 61169, + "▁propaganda": 61170, + "万字": 61171, + "普惠": 61172, + "这在": 61173, + "自诉人": 61174, + "▁pleth": 61175, + "坚硬": 61176, + "家政": 61177, + "缺氧": 61178, + "先天性": 61179, + "否命题": 61180, + "Formula": 61181, + "▁recursion": 61182, + "▁territorial": 61183, + "▁Revolutionary": 61184, + "动人": 61185, + "悲哀": 61186, + "武士": 61187, + "状的": 61188, + "要先": 61189, + "为己任": 61190, + "有网友": 61191, + "CLAS": 61192, + "phony": 61193, + "▁Alps": 61194, + "Marshal": 61195, + "▁Lankan": 61196, + "ungarian": 61197, + "正确答案和做题的思路": 61198, + "不加": 61199, + "寄托": 61200, + "▁武汉": 61201, + "理论研究": 61202, + "graded": 61203, + "▁Worldwide": 61204, + "年获得": 61205, + "▁hap": 61206, + "coeff": 61207, + "LOAT": 61208, + "也有一些": 61209, + "▁Cran": 61210, + "▁REAL": 61211, + "间谍": 61212, + "▁'',": 61213, + "▁maize": 61214, + "申请撤回上诉": 61215, + "fashion": 61216, + "recipient": 61217, + "▁abnormality": 61218, + "Wr": 61219, + "ZA": 61220, + "大会上": 61221, + "面对面": 61222, + "▁SKF": 61223, + "berra": 61224, + "ermen": 61225, + "二〇一五年三月": 61226, + "▁singleton": 61227, + "▁shortening": 61228, + "何事": 61229, + "听众": 61230, + "建明": 61231, + "倍数是": 61232, + "性问题": 61233, + "此时的": 61234, + "ucus": 61235, + "也请给出你的": 61236, + "▁chasing": 61237, + "解题过程和分析思路": 61238, + "也请给出你的解题过程和分析思路": 61239, + "finance": 61240, + "nLittle": 61241, + "▁Principles": 61242, + "▁contradict": 61243, + "▁即": 61244, + "个好": 61245, + "病学": 61246, + "为契机": 61247, + "为了避免": 61248, + "▁Rare": 61249, + "▁saddle": 61250, + "▁berries": 61251, + "▁emailed": 61252, + "LoggerFactory": 61253, + "本是": 61254, + "建立的": 61255, + "Opts": 61256, + "▁YAML": 61257, + "LH": 61258, + "动静": 61259, + "学生对": 61260, + "的地位": 61261, + "▁Tac": 61262, + "decoder": 61263, + "▁MongoDB": 61264, + "MLElement": 61265, + "getElementsBy": 61266, + "忙着": 61267, + "自此": 61268, + "▁ORDER": 61269, + "条第一款规定": 61270, + "未经法庭许可中途退": 61271, + "▁polyester": 61272, + "一侧": 61273, + "建房": 61274, + "浓度为": 61275, + "▁Coh": 61276, + "lymph": 61277, + "HEIGHT": 61278, + "▁dissip": 61279, + "serialization": 61280, + "泰安": 61281, + "实验组": 61282, + "你也可以": 61283, + "getContext": 61284, + "▁Employees": 61285, + "捷克": 61286, + "▁外观": 61287, + "收到的": 61288, + "第四款": 61289, + "中国当代": 61290, + "数据传输": 61291, + "▁Quint": 61292, + "▁spindle": 61293, + "▁Oncology": 61294, + "▁daunting": 61295, + "请告诉我您的选择和解题的思路": 61296, + "文华": 61297, + "更深": 61298, + "友好的": 61299, + ":\\\\/\\\\/": 61300, + "▁fierce": 61301, + "endocrine": 61302, + "▁WhatsApp": 61303, + "▁温": 61304, + "他与": 61305, + "/',": 61306, + "SVG": 61307, + "详情请": 61308, + "atro": 61309, + "仪器仪表": 61310, + "▁turf": 61311, + "▁folds": 61312, + "▁faulty": 61313, + "▁needles": 61314, + "▁specialised": 61315, + "丽丽": 61316, + "斜阳": 61317, + "昏迷": 61318, + "了一段": 61319, + "永远是": 61320, + "▁Bun": 61321, + "▁Wins": 61322, + "attrib": 61323, + "roidery": 61324, + "▁斌": 61325, + "一等": 61326, + "中国市场": 61327, + "▁Burk": 61328, + "▁Tort": 61329, + "必不可少的": 61330, + "tclient": 61331, + "佛罗": 61332, + "心想": 61333, + "感官": 61334, + "甜美": 61335, + "鄙视": 61336, + "하는": 61337, + "nwho": 61338, + "Disable": 61339, + "▁Prediction": 61340, + "UNC": 61341, + "gae": 61342, + "▁Rings": 61343, + "▁Aberdeen": 61344, + "上皮": 61345, + "关门": 61346, + "签收": 61347, + "需要进行": 61348, + "▁LIVE": 61349, + "astrophic": 61350, + "opulmonary": 61351, + "玉兰": 61352, + "石子": 61353, + "算出": 61354, + "原则上": 61355, + "▁marvel": 61356, + "▁Lambert": 61357, + "▁renting": 61358, + "▁sounded": 61359, + "▁quadrant": 61360, + "▁fertilizer": 61361, + "城建": 61362, + "很差": 61363, + "科夫": 61364, + "孙悟空": 61365, + "▁Rum": 61366, + "主要作品有": 61367, + "▁exits": 61368, + "stations": 61369, + "▁paragraphs": 61370, + "▁unacceptable": 61371, + "并做出分析": 61372, + "rectomy": 61373, + "▁Sketch": 61374, + "▁ambition": 61375, + "▁acetylcholine": 61376, + "初三": 61377, + "快手": 61378, + "mium": 61379, + "具有较强的": 61380, + "▁Packers": 61381, + "▁lifecycle": 61382, + "选择正确答案并做出分析": 61383, + "enol": 61384, + "身边的人": 61385, + "▁mour": 61386, + "▁Plains": 61387, + "▁hostile": 61388, + "▁cleaners": 61389, + "二甲": 61390, + "工农": 61391, + "握手": 61392, + "特邀": 61393, + "nits": 61394, + "▁Glor": 61395, + "tpanic": 61396, + "▁behaves": 61397, + "▁ambulatory": 61398, + "第二百六十二条第二款和": 61399, + "水下": 61400, + ":${": 61401, + "Fox": 61402, + "zie": 61403, + "迈克尔": 61404, + "▁osteoc": 61405, + "▁restrictive": 61406, + "▁Transactions": 61407, + "他被": 61408, + "并给出依据": 61409, + "▁consp": 61410, + "月子": 61411, + "ynb": 61412, + "服务费": 61413, + "服刑期间": 61414, + "emerg": 61415, + "nwindow": 61416, + "▁remedies": 61417, + "▁discovers": 61418, + "并给出依据和解题过程": 61419, + "军工": 61420, + "慕容": 61421, + "格雷": 61422, + "优化的": 61423, + "$\\',": 61424, + "▁Eat": 61425, + "atched": 61426, + "▁bombing": 61427, + "▁strengthened": 61428, + "▁UX": 61429, + "▁hairs": 61430, + "▁regularity": 61431, + "hY": 61432, + "登高": 61433, + "站着": 61434, + "说出来": 61435, + "builders": 61436, + "▁menstrual": 61437, + "▁disposable": 61438, + "高龄": 61439, + "加工厂": 61440, + "hass": 61441, + "hews": 61442, + "给人一种": 61443, + "▁Marqu": 61444, + "▁Inverse": 61445, + "▁제": 61446, + "不移": 61447, + "昔日": 61448, + "赃物": 61449, + "我们家": 61450, + "的水果": 61451, + "全神贯注": 61452, + "技术研究": 61453, + "haven": 61454, + "▁Piet": 61455, + "▁Talent": 61456, + "▁Monument": 61457, + "▁fidelity": 61458, + "▁fireworks": 61459, + "晓得": 61460, + "表示出": 61461, + "▁Isabel": 61462, + "▁Vertex": 61463, + "nAuthors": 61464, + "▁prosperity": 61465, + "▁reproducibility": 61466, + "史记": 61467, + "ARP": 61468, + "▁RL": 61469, + "时不时": 61470, + "Wild": 61471, + "▁Pastor": 61472, + "▁Valencia": 61473, + "后世": 61474, + "管理层": 61475, + "▁ICE": 61476, + "alese": 61477, + "▁Berks": 61478, + "▁Papua": 61479, + "nSingle": 61480, + "▁isoform": 61481, + "此外请给出你做出选择的依据和分析": 61482, + "一堂": 61483, + "为零": 61484, + "受力": 61485, + "手脚": 61486, + "地下水": 61487, + "▁Ade": 61488, + "▁LTE": 61489, + "chang": 61490, + "itemap": 61491, + "单位出具的财产": 61492, + "武夷": 61493, + "素有": 61494, + "听取了": 61495, + "ureth": 61496, + "▁Sail": 61497, + "▁paren": 61498, + "synthesize": 61499, + "▁Registered": 61500, + "▁distributing": 61501, + "よう": 61502, + "瘦身": 61503, + "经开": 61504, + "budget": 61505, + "csharp": 61506, + "ocative": 61507, + "生物科技有限公司": 61508, + "▁amendments": 61509, + "▁hypothetical": 61510, + "相望": 61511, + "pig": 61512, + "提供商": 61513, + "ymes": 61514, + "▁联赛等级": 61515, + "▁sheriff": 61516, + "prometheus": 61517, + "▁consultancy": 61518, + "不强": 61519, + "加成": 61520, + "okk": 61521, + "上诉称": 61522, + "惊人的": 61523, + "batim": 61524, + "eworthy": 61525, + "▁toddler": 61526, + "耗费": 61527, + "自知": 61528, + "十一条的规定": 61529, + "▁shocks": 61530, + "▁exerted": 61531, + "▁dishwasher": 61532, + "死人": 61533, + "高价": 61534, + "▁wk": 61535, + "nMer": 61536, + "▁ENA": 61537, + "nDepend": 61538, + "otically": 61539, + "对孩子": 61540, + "然后我": 61541, + "▁wre": 61542, + "▁Compet": 61543, + "▁Yankees": 61544, + "▁Restrict": 61545, + "▁editable": 61546, + "熟知": 61547, + "瓶子": 61548, + "动物的": 61549, + "的人工": 61550, + "社会化": 61551, + "grow": 61552, + "▁Lal": 61553, + "小伙伴们": 61554, + "▁Maya": 61555, + "nPlaces": 61556, + "▁mansion": 61557, + "拜访": 61558, + "▁nylon": 61559, + "▁Establish": 61560, + "全心": 61561, + "资本家": 61562, + "▁gastropod": 61563, + "▁institutes": 61564, + "▁manipulating": 61565, + "倒了": 61566, + "急剧": 61567, + "无脑": 61568, + "里亚": 61569, + "浓厚的": 61570, + "nMusicians": 61571, + "草堂": 61572, + "nPen": 61573, + "▁fals": 61574, + "代表作品有": 61575, + "▁Roberto": 61576, + "▁newborns": 61577, + "▁onChange": 61578, + "跳出": 61579, + "ctime": 61580, + "▁Cats": 61581, + "cognitive": 61582, + "▁pendulum": 61583, + "▁occupancy": 61584, + "上架": 61585, + "买单": 61586, + "svn": 61587, + "但不能": 61588, + "季后赛": 61589, + "无法送达": 61590, + "▁Edgar": 61591, + "▁wired": 61592, + "▁retract": 61593, + "▁ideology": 61594, + "▁eigenvectors": 61595, + "胶带": 61596, + "解密": 61597, + "项为": 61598, + "▁球队": 61599, + "无任何": 61600, + "聪明的": 61601, + "▁ovary": 61602, + "▁Fighting": 61603, + "修剪": 61604, + "小鱼": 61605, + "尾部": 61606, + "撒上": 61607, + "渐近": 61608, + "阻燃": 61609, + "建设中": 61610, + "管理所": 61611, + "acio": 61612, + "ServiceImpl": 61613, + "▁REFERENCES": 61614, + "吊顶": 61615, + "CAC": 61616, + "▁teas": 61617, + "▁apnea": 61618, + "▁merits": 61619, + "Analyzer": 61620, + "▁Capacity": 61621, + "▁Macedonia": 61622, + "石门": 61623, + "▁更新": 61624, + "单片机": 61625, + "▁grav": 61626, + "▁Evangel": 61627, + "万古": 61628, + "外商": 61629, + "早起": 61630, + "ONS": 61631, + "的人文": 61632, + "电池类型": 61633, + "cmath": 61634, + "▁Observer": 61635, + "▁hurricane": 61636, + "▁integrable": 61637, + "▁multiplayer": 61638, + "nLo": 61639, + "▁青春": 61640, + "▁Across": 61641, + "▁Autumn": 61642, + "GetValue": 61643, + "▁specifics": 61644, + "林区": 61645, + "stm": 61646, + "本研究": 61647, + "表面上": 61648, + "也可能是": 61649, + "▁KNOW": 61650, + "▁Crisis": 61651, + "▁stakes": 61652, + "增量": 61653, + "工期": 61654, + "nty": 61655, + "}>{": 61656, + "圣诞节": 61657, + "的特色": 61658, + "▁Wade": 61659, + "解题过程中的": 61660, + "▁follicular": 61661, + "台县": 61662, + "复方": 61663, + "异物": 61664, + "避孕": 61665, + "人可以": 61666, + "泰州市": 61667, + "▁ROI": 61668, + "▁Rho": 61669, + "京东图书": 61670, + "▁incurred": 61671, + "循序": 61672, + "收货": 61673, + "笑脸": 61674, + "申请撤回": 61675, + "inence": 61676, + "▁concurrently": 61677, + "无愧": 61678, + "脊椎": 61679, + "跳转": 61680, + "▁Yuan": 61681, + "RestController": 61682, + "NZ": 61683, + "▁ре": 61684, + "恢复正常": 61685, + "日向原告": 61686, + "nINSERT": 61687, + "▁Herman": 61688, + "Accounts": 61689, + "▁Broncos": 61690, + "▁Portable": 61691, + "五代": 61692, + "是没": 61693, + "点火": 61694, + "鱿鱼": 61695, + "ngx": 61696, + "bases": 61697, + "nLight": 61698, + "▁arcade": 61699, + "▁outbreaks": 61700, + "大使馆": 61701, + "FONT": 61702, + "▁Mitt": 61703, + "Banner": 61704, + "布袋": 61705, + "发展成为": 61706, + "▁Winston": 61707, + "▁Chancellor": 61708, + "▁geological": 61709, + "▁subcellular": 61710, + "议院": 61711, + "▁RH": 61712, + "的各项": 61713, + "APPS": 61714, + "Conv": 61715, + "▁Copa": 61716, + "▁enchant": 61717, + "▁salvage": 61718, + "▁Newfoundland": 61719, + "偏离": 61720, + "树枝": 61721, + "Elem": 61722, + "mens": 61723, + "▁PGE": 61724, + "电子信息": 61725, + "▁Wife": 61726, + "catenin": 61727, + "▁illusion": 61728, + "月第": 61729, + "美金": 61730, + "赃款": 61731, + ">](": 61732, + "▁Treg": 61733, + "pleasant": 61734, + "▁podcasts": 61735, + "解题过程中的依据是什么": 61736, + "▁descendants": 61737, + "性及": 61738, + "特地": 61739, + "UPS": 61740, + "是否会": 61741, + "osse": 61742, + "otopic": 61743, + "▁Himal": 61744, + "▁Apartments": 61745, + "ffi": 61746, + "ogi": 61747, + "可获得": 61748, + "的最好": 61749, + "了解更多": 61750, + "Ability": 61751, + "▁Farmer": 61752, + "▁Gardner": 61753, + "德惠": 61754, + "▁系列": 61755, + "十一五": 61756, + "和生产": 61757, + "罪犯杨": 61758, + "▁Grow": 61759, + "▁$${\\\\": 61760, + "stituted": 61761, + "separated": 61762, + "跟上": 61763, + "骗取": 61764, + "▁其七": 61765, + "事业部": 61766, + "winner": 61767, + "▁Performing": 61768, + "Plane": 61769, + "▁Nano": 61770, + "和分析的过程": 61771, + "chromium": 61772, + "▁Tribune": 61773, + "▁permitting": 61774, + "特许": 61775, + "讲课": 61776, + "▁Tian": 61777, + "▁Diane": 61778, + "▁Relay": 61779, + "nJoseph": 61780, + "不耐": 61781, + "尿素": 61782, + "为单位": 61783, + "表情包": 61784, + "abis": 61785, + "▁Guests": 61786, + "▁triumph": 61787, + "▁熊": 61788, + "女排": 61789, + "龙潭": 61790, + "住天津市": 61791, + "▁Fully": 61792, + "Awesome": 61793, + "▁Addition": 61794, + "奖品": 61795, + "Utf": 61796, + "的知识和": 61797, + "部副部长": 61798, + "▁Kard": 61799, + "Attach": 61800, + "▁Legends": 61801, + "▁tangible": 61802, + "▁computationally": 61803, + "书包": 61804, + "芝加": 61805, + "团队的": 61806, + "展现出": 61807, + "dock": 61808, + "▁homogen": 61809, + "互利": 61810, + "床垫": 61811, + "更低": 61812, + "砂浆": 61813, + "考的": 61814, + "舰队": 61815, + "不是我": 61816, + "深深的": 61817, + "heus": 61818, + "sell": 61819, + "spatial": 61820, + "▁cooled": 61821, + "▁rejuven": 61822, + "▁serializer": 61823, + "ック": 61824, + "插画": 61825, + "江水": 61826, + "nFive": 61827, + "▁ASCII": 61828, + "Elastic": 61829, + "nVersion": 61830, + "不育": 61831, + "病程": 61832, + "研究生学历": 61833, + "protective": 61834, + "▁proficiency": 61835, + "▁가": 61836, + "年头": 61837, + "是新": 61838, + "波浪": 61839, + "rak": 61840, + "是两个": 61841, + "行政区域": 61842, + "aspoon": 61843, + "▁Fiber": 61844, + "enstein": 61845, + "▁Detail": 61846, + "▁economists": 61847, + "▁antiretroviral": 61848, + "已成": 61849, + "闭合": 61850, + "▁Vote": 61851, + "▁usize": 61852, + "▁troubled": 61853, + "改判": 61854, + "春色": 61855, + "智库": 61856, + "歉意": 61857, + "保字第": 61858, + "▁buys": 61859, + "Ord": 61860, + "开庭传票": 61861, + "aiser": 61862, + "▁Trigger": 61863, + "▁decrypt": 61864, + "▁wilderness": 61865, + "KR": 61866, + "▁Р": 61867, + "全线": 61868, + "已然": 61869, + "月被": 61870, + "清远": 61871, + "▁paved": 61872, + "otrophic": 61873, + "▁getUser": 61874, + "▁Counties": 61875, + "▁smoothing": 61876, + "并告诉我您的选择和分析的过程": 61877, + "纽带": 61878, + "Arm": 61879, + "中医院": 61880, + "MPLE": 61881, + "全力以赴": 61882, + "牢记使命": 61883, + "wizard": 61884, + "▁Concord": 61885, + "▁Meaning": 61886, + "▁airflow": 61887, + "▁craving": 61888, + "▁flooded": 61889, + "▁bookings": 61890, + "▁caregiver": 61891, + "光度": 61892, + "染料": 61893, + "树上": 61894, + "ASA": 61895, + "tas": 61896, + "和解为由": 61897, + "otech": 61898, + "▁china": 61899, + "affinity": 61900, + "▁ceremonies": 61901, + "▁左": 61902, + "眉毛": 61903, + "北京的": 61904, + "就有了": 61905, + "最快的": 61906, + "要怎么": 61907, + "被执行人黄": 61908, + "▁Basil": 61909, + "▁Porsche": 61910, + "▁Exercises": 61911, + "▁travellers": 61912, + "其为": 61913, + "▁开始": 61914, + "的看法": 61915, + "并给出合理的解释": 61916, + "▁stringent": 61917, + "▁motivational": 61918, + "▁邱": 61919, + "▁Eh": 61920, + "▁主体": 61921, + "这里有": 61922, + "赔偿被害人": 61923, + "genesis": 61924, + "▁Tropical": 61925, + "业者": 61926, + "对前款": 61927, + "得益于": 61928, + "看电视": 61929, + "emma": 61930, + "nonce": 61931, + "▁Booth": 61932, + "▁Malcolm": 61933, + "并给出你的解题过程": 61934, + "▁coincidence": 61935, + "秋日": 61936, + "were": 61937, + "▁jelly": 61938, + "▁UPDATE": 61939, + "Capacity": 61940, + "Retention": 61941, + "▁landlord": 61942, + "Instrument": 61943, + "WG": 61944, + "节水": 61945, + "已交纳": 61946, + "谅解书": 61947, + "EXEC": 61948, + "vester": 61949, + "▁Herein": 61950, + "▁sporadic": 61951, + "惯性": 61952, + "打入": 61953, + "信息网": 61954, + "▁Communities": 61955, + "Pref": 61956, + "可以提高": 61957, + "▁oppose": 61958, + "▁sediments": 61959, + "刺客": 61960, + "沉降": 61961, + "▁综合": 61962, + "一季度": 61963, + "▁vib": 61964, + "中国政府": 61965, + "但是我们": 61966, + "nHouse": 61967, + "▁Driving": 61968, + "▁chlorine": 61969, + "▁inducible": 61970, + "▁Entrepreneur": 61971, + "型和": 61972, + "总站": 61973, + "洞庭": 61974, + "矿区": 61975, + "造林": 61976, + "ivered": 61977, + "▁Aging": 61978, + "imester": 61979, + "次要": 61980, + "茶匙": 61981, + "另一方": 61982, + "投入到": 61983, + "持卡人": 61984, + "芝加哥": 61985, + "]\\\\)": 61986, + "Undefined": 61987, + "▁silencing": 61988, + "独有": 61989, + "处理好": 61990, + "老人的": 61991, + "▁arrests": 61992, + "▁bronchial": 61993, + "▁preferably": 61994, + "然后告诉我您的最佳选择和分析思路": 61995, + "ldap": 61996, + "▁rall": 61997, + "emptyset": 61998, + "PrimaryKey": 61999, + "▁Wholesale": 62000, + "▁scalability": 62001, + "▁包": 62002, + "赛区": 62003, + "冻结的": 62004, + "irds": 62005, + "▁iodine": 62006, + "亿万": 62007, + "成败": 62008, + "*((": 62009, + "▁广州市": 62010, + "endra": 62011, + "▁Boyd": 62012, + "▁Escape": 62013, + "▁edible": 62014, + "▁cytosolic": 62015, + "白血": 62016, + "都属于": 62017, + "lista": 62018, + "phenyl": 62019, + "▁granular": 62020, + "签到": 62021, + "脱硫": 62022, + "问责": 62023, + "优良的": 62024, + "对他的": 62025, + "intern": 62026, + "purple": 62027, + "▁Nexus": 62028, + "▁Castro": 62029, + "▁Nearly": 62030, + "▁Welfare": 62031, + "nBasically": 62032, + "▁impacting": 62033, + "▁nc": 62034, + "十分钟": 62035, + "有需要": 62036, + "▁intrav": 62037, + "诉刑诉": 62038, + "二〇一七年三": 62039, + "escence": 62040, + "▁Screening": 62041, + "林场": 62042, + "比拟": 62043, + "航行": 62044, + "路桥": 62045, + "AES": 62046, + "努力的": 62047, + "这种事": 62048, + "目前正在": 62049, + "▁Huang": 62050, + "nString": 62051, + "mz": 62052, + "大卫": 62053, + "忠实": 62054, + "颜料": 62055, + "▁CMV": 62056, + "▁Extr": 62057, + "▁Qing": 62058, + "translated": 62059, + "GetComponent": 62060, + "元气": 62061, + "荷载": 62062, + "▁Fiji": 62063, + "▁Weak": 62064, + "abella": 62065, + "ilical": 62066, + "▁Released": 62067, + "effectiveness": 62068, + "▁transporters": 62069, + "kd": 62070, + "▁则": 62071, + "▼\\": 62072, + "双核": 62073, + "山坡": 62074, + "洗脸": 62075, + "读懂": 62076, + "增长的": 62077, + "建筑师": 62078, + "Plain": 62079, + "▁Indies": 62080, + "▁Vernon": 62081, + "未经法庭许可中途退庭的": 62082, + "转变为": 62083, + "▁Akt": 62084, + "▁主要参数": 62085, + "existence": 62086, + "president": 62087, + "SEQUENTIAL": 62088, + "▁Episcopal": 62089, + "冷酷": 62090, + "华润": 62091, + "hhh": 62092, + "以确保": 62093, + "和安全": 62094, + "更方便": 62095, + "的主人": 62096, + "▁sewer": 62097, + "▁Abbott": 62098, + "▁Packet": 62099, + "▁blender": 62100, + "本案在审理过程中": 62101, + "曾被": 62102, + "]<<": 62103, + "}`)\\": 62104, + "中国移动": 62105, + "但是现在": 62106, + "ivable": 62107, + "▁Saturn": 62108, + "regnancy": 62109, + "remaining": 62110, + "▁formulae": 62111, + "为凭": 62112, + "拷贝": 62113, + "甚么": 62114, + "Gas": 62115, + "时免费": 62116, + "imeo": 62117, + "undy": 62118, + "▁seper": 62119, + "差异无统计学意义": 62120, + "▁Tomorrow": 62121, + "亲朋": 62122, + "到此": 62123, + "定金": 62124, + "不等于": 62125, + "睡不着": 62126, + "密切相关": 62127, + "estry": 62128, + "▁Mast": 62129, + "▁Britt": 62130, + "▁steer": 62131, + "▁philosopher": 62132, + "@{": 62133, + "凹陷": 62134, + "▁Been": 62135, + "▁TODAY": 62136, + "▁keynote": 62137, + "▁valence": 62138, + "在西": 62139, + "鹏飞": 62140, + "▁HTC": 62141, + "制度改革": 62142, + "▁ribs": 62143, + "pecific": 62144, + "toutput": 62145, + "▁Wallet": 62146, + "nWinners": 62147, + "iculously": 62148, + "起诉必须符合下列条件": 62149, + "▁substitutions": 62150, + "Ty": 62151, + "并茂": 62152, + "解码": 62153, + "ctr": 62154, + "的这个": 62155, + "maxn": 62156, + "▁FSH": 62157, + "▁副标题": 62158, + "可能导致": 62159, + "核心价值观": 62160, + "▁Lessons": 62161, + "▁unhappy": 62162, + "following": 62163, + "其行为已构成盗窃罪": 62164, + "▁statutory": 62165, + "凄凉": 62166, + "方形": 62167, + "权属": 62168, + "离别": 62169, + "EEK": 62170, + "▁杭州": 62171, + "▁比赛": 62172, + "综合治理": 62173, + "设计方案": 62174, + "ORMAL": 62175, + "Parcel": 62176, + "▁holog": 62177, + "▁antigenic": 62178, + "花草": 62179, + "还很": 62180, + "cep": 62181, + "▁}:": 62182, + "gems": 62183, + "一点也不": 62184, + "分别求出": 62185, + "你选择的依据": 62186, + "affolds": 62187, + "▁Presbyterian": 62188, + "对口": 62189, + "山楂": 62190, + "饭菜": 62191, + "nMa": 62192, + "▁rv": 62193, + "▁Mey": 62194, + "儿童文学": 62195, + "共产主义": 62196, + "第二十五": 62197, + "交通警察大队": 62198, + "仔细地阅读选项": 62199, + "▁Strength": 62200, + "并给出你选择的依据": 62201, + "▁indispens": 62202, + "请您务必仔细地阅读选项": 62203, + "并给出你选择的依据和分析思路": 62204, + "命的": 62205, + "肯定的": 62206, + "节目中": 62207, + "要不然": 62208, + "▁pon": 62209, + "Gradient": 62210, + "八字": 62211, + "小幅": 62212, + "neck": 62213, + "rupts": 62214, + "▁stdin": 62215, + "▁tasked": 62216, + "scribers": 62217, + "▁Spatial": 62218, + "▁propensity": 62219, + "▁apprentices": 62220, + "作法": 62221, + "(\"_": 62222, + "充要条件": 62223, + "冠军联赛": 62224, + "stamp": 62225, + "▁distributors": 62226, + "▁血": 62227, + "alm": 62228, + "▁异界": 62229, + "没有被": 62230, + "NNNN": 62231, + "▁sparkling": 62232, + "师德": 62233, + "湖州": 62234, + "自动履行": 62235, + "▁broth": 62236, + "▁spelled": 62237, + "内径": 62238, + "和李": 62239, + "宇航": 62240, + "сти": 62241, + "经济学家": 62242, + "hybrid": 62243, + "nerror": 62244, + "▁bites": 62245, + "signals": 62246, + "一听": 62247, + "抗美": 62248, + "推拿": 62249, + "抵抗力": 62250, + "▁MAG": 62251, + "公司员工": 62252, + "uvian": 62253, + "▁Included": 62254, + "▁businesspeople": 62255, + "一角": 62256, + "封印": 62257, + "osx": 62258, + "人们在": 62259, + "科技的": 62260, + "等人的": 62261, + "故对原告": 62262, + "▁Wrap": 62263, + "进一步提升": 62264, + "之风": 62265, + "终生": 62266, + "者为": 62267, + "背影": 62268, + "ANA": 62269, + "Crypto": 62270, + "▁reluctant": 62271, + "ITT": 62272, + "glm": 62273, + "预交的": 62274, + "Void": 62275, + "placements": 62276, + "任性": 62277, + "台的": 62278, + "职能部门": 62279, + "▁gaze": 62280, + "解决的问题": 62281, + "Determ": 62282, + "lorida": 62283, + "▁lacked": 62284, + "▁sculptor": 62285, + "▁furnishings": 62286, + "kil": 62287, + "▁yy": 62288, + "在什么": 62289, + "能量的": 62290, + "镇江市": 62291, + "abit": 62292, + "▁WHEN": 62293, + "▁paradise": 62294, + "▁transistor": 62295, + "▁whitespace": 62296, + "海参": 62297, + "着实": 62298, + "额为": 62299, + "高明": 62300, + "▁Chow": 62301, + "▁Keeping": 62302, + "地貌": 62303, + "巨星": 62304, + "雄性": 62305, + "▁状态": 62306, + "出发点": 62307, + "线上的": 62308, + "▁$${": 62309, + "诗词正文": 62310, + "▁BACK": 62311, + "▁Straight": 62312, + "pinephrine": 62313, + "▁Practical": 62314, + "longrightarrow": 62315, + "AJ": 62316, + "亚纲": 62317, + "小品": 62318, + "曲面": 62319, + "贵宾": 62320, + "蓄电池": 62321, + "SCHE": 62322, + "TERS": 62323, + "otropin": 62324, + "▁dentists": 62325, + "▁neoplasms": 62326, + "七夕": 62327, + "使我": 62328, + "重现": 62329, + "arf": 62330, + "玩手机": 62331, + "非常大": 62332, + "nwin": 62333, + "▁Fry": 62334, + "Damage": 62335, + "userName": 62336, + "▁biofilm": 62337, + "俱全": 62338, + "则会": 62339, + "温差": 62340, + "耗材": 62341, + "身穿": 62342, + "阶段性": 62343, + "▁Sind": 62344, + "环境保护局": 62345, + "▁Cooperative": 62346, + "上岗": 62347, + "友善": 62348, + "▁Stern": 62349, + "▁mosque": 62350, + "▁sampler": 62351, + "authorize": 62352, + "setContent": 62353, + "▁lowercase": 62354, + "▁beforehand": 62355, + "getter": 62356, + "nSound": 62357, + "浙江省杭州市": 62358, + "UpperCase": 62359, + "▁pneumoniae": 62360, + "▁picturesque": 62361, + "Reb": 62362, + "可实现": 62363, + "文件中": 62364, + "quark": 62365, + "invariant": 62366, + "▁Awareness": 62367, + "▁protagonist": 62368, + "平面内": 62369, + "▁pys": 62370, + "由原告抚养": 62371, + "需要注意的是": 62372, + "▁confocal": 62373, + "▁passages": 62374, + "专员": 62375, + "也成为": 62376, + "言律诗": 62377, + "或者未经法庭许可中途退庭的": 62378, + "出栏": 62379, + "礼包": 62380, + "位置的": 62381, + "Fold": 62382, + "▁Strange": 62383, + "▁Deployment": 62384, + "▁governmental": 62385, + "可予": 62386, + "已将": 62387, + "老区": 62388, + "被我": 62389, + "Jav": 62390, + "▁Kö": 62391, + ">\\';\\": 62392, + "第七十二条": 62393, + "越来越多的人": 62394, + "Patient": 62395, + "▁Magnet": 62396, + "▁trailers": 62397, + "▁exhaustive": 62398, + "余家": 62399, + "双赢": 62400, + "太仓": 62401, + "补肾": 62402, + "过着": 62403, + "ingen": 62404, + "reements": 62405, + "想来": 62406, + "huang": 62407, + "▁Earn": 62408, + "arching": 62409, + "▁Terror": 62410, + "bindings": 62411, + "▁Objectives": 62412, + "想买": 62413, + "方法将": 62414, + "中小学生": 62415, + "Alloc": 62416, + "agnet": 62417, + "iffany": 62418, + "▁Pablo": 62419, + "新疆生产建设兵团": 62420, + "blueprint": 62421, + "▁Anonymous": 62422, + "▁unhealthy": 62423, + "功名": 62424, + "勾股": 62425, + "的发": 62426, + "是日本": 62427, + "比较适合": 62428, + "▁ureth": 62429, + "▁brewery": 62430, + "安检": 62431, + "肩负": 62432, + "轻型": 62433, + "截止到": 62434, + "Into": 62435, + "▁hemodialysis": 62436, + "用料": 62437, + "组分": 62438, + "家人的": 62439, + "让别人": 62440, + "▁Sard": 62441, + "履行债务的能力": 62442, + "▁Bedford": 62443, + "▁colonic": 62444, + "▁reliance": 62445, + "Functional": 62446, + "NullException": 62447, + "esm": 62448, + "iage": 62449, + "▁Kub": 62450, + "▁RBC": 62451, + "青年教师": 62452, + "lename": 62453, + "▁Osaka": 62454, + "▁educating": 62455, + "▁乌": 62456, + "在建": 62457, + "心头": 62458, + "ITER": 62459, + "▁sunk": 62460, + "▁Jorge": 62461, + "▁stride": 62462, + "忧伤": 62463, + "提拔": 62464, + "▁ff": 62465, + "垃圾桶": 62466, + "不等式的解集": 62467, + "▁crater": 62468, + "▁Interpret": 62469, + "接送": 62470, + "的情": 62471, + "中央党校": 62472, + "但实际上": 62473, + "▁Veget": 62474, + ",)": 62475, + "地道": 62476, + "影音": 62477, + "▁Ens": 62478, + "URCES": 62479, + "cobra": 62480, + "ieder": 62481, + "▁tidy": 62482, + "alculus": 62483, + "▁undergoes": 62484, + "滞后": 62485, + "▁本名": 62486, + "VENT": 62487, + "hits": 62488, + "▁LOT": 62489, + "▁Deer": 62490, + "的免费政策": 62491, + "lamide": 62492, + "追索劳动报酬": 62493, + "▁Andhra": 62494, + "▁cardiomyopathy": 62495, + "痉挛": 62496, + "ouve": 62497, + "一项住宿": 62498, + "▁Ways": 62499, + "forces": 62500, + "quotes": 62501, + "▁Pomer": 62502, + "▁Recipe": 62503, + "你最": 62504, + "品格": 62505, + "对新": 62506, + "世界观": 62507, + "的医疗": 62508, + "的成长": 62509, + "的高速": 62510, + "▁Forever": 62511, + "▁primate": 62512, + "▁Chambers": 62513, + "▁regiment": 62514, + "简明": 62515, + "远了": 62516, + "LOY": 62517, + "▁SAY": 62518, + "重点项目": 62519, + "▁Pierce": 62520, + "interpol": 62521, + "▁fountain": 62522, + "▁expatriates": 62523, + "书房": 62524, + "卖给": 62525, + "吃亏": 62526, + "无解": 62527, + "Cov": 62528, + "yam": 62529, + "木地板": 62530, + "本案系": 62531, + "正文语种": 62532, + "▁bifur": 62533, + "▁shining": 62534, + "▁fairness": 62535, + "一项住宿的免费政策": 62536, + "▁sectional": 62537, + "享有的债权依法受法律保护": 62538, + "三类": 62539, + "二字": 62540, + "工科": 62541, + "牙刷": 62542, + "]$,": 62543, + "▁ERK": 62544, + "▁jug": 62545, + "▁omn": 62546, + "提供被告": 62547, + "终结执行后": 62548, + "insulin": 62549, + "featured": 62550, + "卧龙": 62551, + "双边": 62552, + "菌株": 62553, + "飞跃": 62554, + "的文字": 62555, + "sink": 62556, + "empor": 62557, + "▁Beau": 62558, + "▁Stim": 62559, + "shapes": 62560, + "▁hurdles": 62561, + "▁Supporting": 62562, + "▁cartridges": 62563, + "单位出具的财产查询回执": 62564, + "拟合": 62565, + "Van": 62566, + "不停地": 62567, + "都能够": 62568, + "\":\"/": 62569, + "▁第二章": 62570, + "提请减刑": 62571, + "▁Trap": 62572, + "uretic": 62573, + "autical": 62574, + "▁inmates": 62575, + "▁jurisdict": 62576, + "并给出相应的解题过程": 62577, + "▁cardinality": 62578, + "▁commercials": 62579, + "咖喱": 62580, + "日日": 62581, + "赵丽": 62582, + "igu": 62583, + "五千元": 62584, + "知名品牌": 62585, + "chnic": 62586, + "nHenry": 62587, + "▁questionable": 62588, + "侦察": 62589, + "▁FTP": 62590, + "▁pyt": 62591, + "▁LOSS": 62592, + "sphinx": 62593, + "▁purse": 62594, + "artifacts": 62595, + "▁expansive": 62596, + "Nu": 62597, + "RAN": 62598, + "▁sugars": 62599, + "▁Advance": 62600, + "▁Matthews": 62601, + "▁empowerment": 62602, + ">`\\": 62603, + "结果单": 62604, + "请求撤销": 62605, + "▁SUCH": 62606, + "▁Demonstr": 62607, + "▁reusable": 62608, + "▁simplifies": 62609, + "恒星": 62610, + "Gene": 62611, + "baby": 62612, + "▁Ank": 62613, + "▁IgM": 62614, + "▁BEST": 62615, + "FAILURE": 62616, + "被执行人应当履行义务": 62617, + "▁Estimation": 62618, + "第二百五十七条第一款第": 62619, + "后因": 62620, + "志勇": 62621, + "或将": 62622, + "未曾": 62623, + "进村": 62624, + "造假": 62625, + "▁Amp": 62626, + "▁neurot": 62627, + "▁urging": 62628, + "computed": 62629, + "▁enduring": 62630, + "▁entirety": 62631, + "▁Geometric": 62632, + "atie": 62633, + "▁SHE": 62634, + "一线城市": 62635, + "▁Axis": 62636, + "▁Tumor": 62637, + "nclient": 62638, + "▁Manage": 62639, + "▁extremity": 62640, + "▁associative": 62641, + "▁好": 62642, + "上加": 62643, + "在后": 62644, + "▁GIF": 62645, + "管理体制": 62646, + "这个数是": 62647, + "nIndex": 62648, + "▁Middles": 62649, + "▁separates": 62650, + "▁施": 62651, + "演习": 62652, + "青菜": 62653, + "nll": 62654, + "▁Serg": 62655, + "▁牺牲情况": 62656, + "▁psoriasis": 62657, + "StringBuilder": 62658, + "填上": 62659, + "准备的": 62660, + "爱上了": 62661, + "Steve": 62662, + "omegal": 62663, + "▁hypoxic": 62664, + "▁Professionals": 62665, + "朦胧": 62666, + "画出": 62667, + "订立": 62668, + "早期的": 62669, + "▁Infl": 62670, + "▁rRNA": 62671, + "▁boson": 62672, + "本院依法受理": 62673, + "XM": 62674, + "fq": 62675, + "いた": 62676, + "飘飘": 62677, + "儿子的": 62678, + "▁UDP": 62679, + "市场上的": 62680, + "Trust": 62681, + "▁Andr": 62682, + "▁occupies": 62683, + "nFurthermore": 62684, + "▁confidentiality": 62685, + "国军": 62686, + "在手": 62687, + "篇幅": 62688, + "苦恼": 62689, + "▁`\"": 62690, + "imple": 62691, + "▁HDMI": 62692, + "先进工作者": 62693, + "▁Grill": 62694, + "▁agile": 62695, + "服饰有限公司": 62696, + "▁NASCAR": 62697, + "▁Sundays": 62698, + "又叫": 62699, + "平湖": 62700, + "有道": 62701, + "计算的": 62702, + "大大提高": 62703, + "VERTI": 62704, + "▁oder": 62705, + "smouth": 62706, + "▁Errors": 62707, + "▁asyncio": 62708, + "下发": 62709, + "乳胶": 62710, + "可调": 62711, + "放映": 62712, + "立式": 62713, + "的房产": 62714, + "的看着": 62715, + "Harm": 62716, + "▁Lad": 62717, + "▁Chance": 62718, + "▁contral": 62719, + "▁Martinez": 62720, + "Ale": 62721, + "分式的": 62722, + "建设银行": 62723, + "紧紧围绕": 62724, + "PROTO": 62725, + "▁Kafka": 62726, + "▁geometrical": 62727, + "ши": 62728, + "由其": 62729, + "▁spikes": 62730, + "月山": 62731, + "秒杀": 62732, + "tte": 62733, + "完之后": 62734, + "eren": 62735, + "▁Buk": 62736, + "经营理念": 62737, + "▁Mohammad": 62738, + "▁elongation": 62739, + "不入": 62740, + "谁说": 62741, + "已经很": 62742, + "OLED": 62743, + "ictionaries": 62744, + "华硕": 62745, + "矿井": 62746, + "网店": 62747, + "鲤鱼": 62748, + "▁mv": 62749, + "corp": 62750, + "故意杀人": 62751, + "程序设计": 62752, + "自我介绍": 62753, + "▁floats": 62754, + "▁unauthorized": 62755, + "八百": 62756, + "张玉": 62757, + "意料": 62758, + "nDev": 62759, + "virt": 62760, + "相关信息": 62761, + "▁lawsuits": 62762, + "▁博": 62763, + "容忍": 62764, + "就将": 62765, + "满天": 62766, + "该剧": 62767, + "黑夜": 62768, + "SUS": 62769, + "nfl": 62770, + "▁то": 62771, + "可能需要": 62772, + "家庭聚会": 62773, + "\\\\_\\\\_": 62774, + "▁popped": 62775, + "nPrimary": 62776, + "▁graphql": 62777, + "▁violate": 62778, + "▁servants": 62779, + "▁Democracy": 62780, + "▁disabling": 62781, + "▁vertebrate": 62782, + "▁accreditation": 62783, + "▁艳": 62784, + "你把": 62785, + "实景": 62786, + "]])": 62787, + "▁平面": 62788, + "Shot": 62789, + "oble": 62790, + "atase": 62791, + "manufact": 62792, + "▁Underground": 62793, + "裂片": 62794, + "Tabs": 62795, + "idades": 62796, + "缩写": 62797, + "▁PBS": 62798, + "集成电路": 62799, + "IGENCE": 62800, + "▁jealous": 62801, + "▁McCarthy": 62802, + "kj": 62803, + "▁ssl": 62804, + "uggle": 62805, + "▁Yard": 62806, + "床头": 62807, + "晚了": 62808, + "某人": 62809, + "选秀": 62810, + "城市化": 62811, + "守门员": 62812, + "过渡期": 62813, + "goods": 62814, + "▁NEED": 62815, + "Developer": 62816, + "志军": 62817, + "Feb": 62818, + "描述和": 62819, + "最佳的": 62820, + "▁Wen": 62821, + "fasta": 62822, + "▁pooled": 62823, + "thinking": 62824, + "▁hybrids": 62825, + "团伙": 62826, + "手下": 62827, + "杂物": 62828, + "爱与": 62829, + "无限的": 62830, + "是利用": 62831, + "分享一下": 62832, + "ologne": 62833, + "▁stole": 62834, + "orderBy": 62835, + "▁shaded": 62836, + "▁slowed": 62837, + "▁ambulance": 62838, + "他从": 62839, + "实施的": 62840, + "已超过": 62841, + "所学校": 62842, + "竞争优势": 62843, + "stripe": 62844, + "▁Shows": 62845, + "▁poured": 62846, + "▁Prairie": 62847, + "▁goats": 62848, + "▁novelty": 62849, + "▁spectrometer": 62850, + "▁ا": 62851, + "日式": 62852, + "甲级": 62853, + "阿克": 62854, + "的大量": 62855, + "chunks": 62856, + "nOrder": 62857, + "给出解题步骤": 62858, + "压实": 62859, + "年鉴": 62860, + "你要是": 62861, + "地面积": 62862, + ";;;;": 62863, + "▁Kane": 62864, + "ledger": 62865, + "▁liberty": 62866, + "▁Yugoslavia": 62867, + "未发现被执行人有可供执行的财产": 62868, + "↓\\": 62869, + "▁陶": 62870, + "节气": 62871, + "质押": 62872, + "仅次于": 62873, + "Bearer": 62874, + "▁九": 62875, + "勃勃": 62876, + "开裂": 62877, + "交换机": 62878, + "▁ASS": 62879, + "▁Rack": 62880, + "▁peroxidase": 62881, + "效果的": 62882, + "abine": 62883, + "nbegin": 62884, + "nFellows": 62885, + "▁legends": 62886, + "合数": 62887, + "村位于": 62888, + "重要讲话": 62889, + "Devices": 62890, + "▁deferred": 62891, + "▁withdrew": 62892, + "适应性": 62893, + ":\")\\": 62894, + "nTeams": 62895, + "▁Beast": 62896, + "olerant": 62897, + "plified": 62898, + "剪刀": 62899, + "寿司": 62900, + "且原告": 62901, + "也因此": 62902, + "分别占": 62903, + "Sink": 62904, + "eced": 62905, + "▁CDs": 62906, + "怎么说呢": 62907, + "ARRAY": 62908, + "david": 62909, + "jected": 62910, + "getattr": 62911, + "▁swimmer": 62912, + "Unix": 62913, + "Website": 62914, + "▁ration": 62915, + "preserve": 62916, + "▁homeowner": 62917, + "是出于": 62918, + "▁吹风机": 62919, + "▁Doesn": 62920, + "DataSet": 62921, + "usement": 62922, + "交于": 62923, + "茉莉": 62924, + "nStatus": 62925, + "▁premiums": 62926, + "政委": 62927, + "比对": 62928, + "hir": 62929, + "▁世界": 62930, + "离婚后": 62931, + "jord": 62932, + "NAMESPACE": 62933, + "▁Disorder": 62934, + "▁illegally": 62935, + "YC": 62936, + "风尘": 62937, + "SURE": 62938, + "etus": 62939, + "严重后果": 62940, + "stalk": 62941, + "young": 62942, + "▁Felix": 62943, + "▁downside": 62944, + "▁grafting": 62945, + "▁violating": 62946, + "没过": 62947, + "▁VL": 62948, + "中输入": 62949, + "就是说": 62950, + "是一座": 62951, + "能做到": 62952, + "黑色素": 62953, + "▁jog": 62954, + "投资管理": 62955, + "▁harbour": 62956, + "▁prolific": 62957, + "保税": 62958, + "支付的": 62959, + "Made": 62960, + "nroot": 62961, + "vocab": 62962, + "▁柳": 62963, + "受过": 62964, + "小腿": 62965, + "成才": 62966, + "手写": 62967, + "攻读": 62968, + "野蛮": 62969, + "是全球": 62970, + "第五届": 62971, + "▁PIL": 62972, + "优惠政策": 62973, + "调解无效": 62974, + "▁Pune": 62975, + "▁tart": 62976, + "nnumber": 62977, + "▁Baltic": 62978, + "一模": 62979, + "只用": 62980, + "战神": 62981, + "马蹄": 62982, + "的话语": 62983, + "cult": 62984, + "dorf": 62985, + "ncomp": 62986, + "▁axon": 62987, + "▁}}>\\": 62988, + "二〇一八年四月": 62989, + "▁quarant": 62990, + "▁Carnegie": 62991, + "产区": 62992, + "山谷": 62993, + "只知道": 62994, + "nWas": 62995, + "▁pari": 62996, + "▁tally": 62997, + "▁uterus": 62998, + "discount": 62999, + "solutions": 63000, + "▁carriage": 63001, + "▁commanded": 63002, + "▁testicular": 63003, + "做强": 63004, + "出新": 63005, + "同桌": 63006, + "张小": 63007, + "▁标准": 63008, + "如果我": 63009, + "蓝色的": 63010, + "得出结论": 63011, + "nFriday": 63012, + "yb": 63013, + "协力": 63014, + "叛逆": 63015, + "把控": 63016, + "贮存": 63017, + "马的": 63018, + "驾校": 63019, + "垂直于": 63020, + "Want": 63021, + "▁bead": 63022, + "▁Tissue": 63023, + "有限责任公司于": 63024, + "▁missiles": 63025, + "大白": 63026, + "捍卫": 63027, + "教育学": 63028, + "亿元人民币": 63029, + "局党组成员": 63030, + "facial": 63031, + "▁antiqu": 63032, + ">;": 63033, + "低音": 63034, + "求证": 63035, + "rito": 63036, + "缓期二年": 63037, + "nRural": 63038, + "▁embro": 63039, + "▁Offset": 63040, + "▁Cameroon": 63041, + "中度": 63042, + "或少": 63043, + "考了": 63044, + "()]": 63045, + "ratic": 63046, + "▁Sharing": 63047, + "▁PowerShell": 63048, + "▁정": 63049, + "多年生": 63050, + "nfil": 63051, + "附属医院": 63052, + "▁dams": 63053, + "atosis": 63054, + "▁Basel": 63055, + "▁axonal": 63056, + "▁hypogly": 63057, + "▁inductive": 63058, + "▁xenograft": 63059, + "▁restructuring": 63060, + "事事": 63061, + "兰特": 63062, + "脉络": 63063, + "rek": 63064, + "为保证": 63065, + "泸州市": 63066, + "这四个": 63067, + "rein": 63068, + "内容丰富": 63069, + "法刑初字第": 63070, + "▁denial": 63071, + "▁suitability": 63072, + "上班族": 63073, + "张家界": 63074, + "拥有了": 63075, + "rello": 63076, + "▁LEDs": 63077, + "[<": 63078, + "分配律": 63079, + "生产工艺": 63080, + "▁Bark": 63081, + "时间复杂度": 63082, + "▁Doctrine": 63083, + "▁Sunshine": 63084, + "▁Restoration": 63085, + "▁Instructions": 63086, + "归于": 63087, + "毛发": 63088, + "WHO": 63089, + "的季节": 63090, + "请写出": 63091, + "人际关系": 63092, + "▁Audit": 63093, + "▁grids": 63094, + "▁shout": 63095, + "▁Neumann": 63096, + "itutional": 63097, + "▁assigning": 63098, + "cobacterium": 63099, + "倘若": 63100, + "天门": 63101, + "太少": 63102, + "悄然": 63103, + "海峰": 63104, + "ncp": 63105, + "uant": 63106, + "ylic": 63107, + "orgia": 63108, + "Vehicle": 63109, + "iership": 63110, + "▁checkbox": 63111, + "▁sketches": 63112, + "▁schooling": 63113, + "测算": 63114, + "相册": 63115, + "记为": 63116, + "\"\">": 63117, + "▁如何": 63118, + "在台湾": 63119, + "iera": 63120, + "两边同时": 63121, + "本院审查": 63122, + "debian": 63123, + "owards": 63124, + "农村经济总收入": 63125, + "decorator": 63126, + "▁Synthesis": 63127, + "▁exercising": 63128, + "▁cx": 63129, + "展开了": 63130, + "(\\'_": 63131, + "提供不出": 63132, + "英语学习": 63133, + "▁cellar": 63134, + "了么": 63135, + "性质的": 63136, + "▁Wan": 63137, + "▁ants": 63138, + "经常居住地": 63139, + "上万": 63140, + "年期": 63141, + "每条": 63142, + "▁Yo": 63143, + "ecker": 63144, + "userData": 63145, + "实测": 63146, + "译文": 63147, + ")\\',": 63148, + "▁[\\\\": 63149, + "▁rpm": 63150, + "planet": 63151, + "toList": 63152, + "endance": 63153, + "二〇一八年三月": 63154, + "▁Č": 63155, + "元宝": 63156, + "婚生子": 63157, + "眼前的": 63158, + "▁CCR": 63159, + "▁Autonomous": 63160, + "▁worksheets": 63161, + "英超": 63162, + "主办方": 63163, + "give": 63164, + "▁cured": 63165, + "夫妻共同财产": 63166, + "nNothing": 63167, + "▁HttpClient": 63168, + "ocompatibility": 63169, + "NW": 63170, + "▁初": 63171, + "边际": 63172, + "橄榄油": 63173, + "▁Berm": 63174, + "linalg": 63175, + "▁flats": 63176, + "▁myeloma": 63177, + "▁cholinergic": 63178, + "停电": 63179, + "纯正": 63180, + "针刺": 63181, + "▁Param": 63182, + "▁Pascal": 63183, + "▁invariants": 63184, + "理发": 63185, + "腹黑": 63186, + "颇为": 63187, + "任务的": 63188, + "▁Hyundai": 63189, + "tassertEquals": 63190, + "反响": 63191, + "扇形": 63192, + "汽车的": 63193, + "Invoice": 63194, + "debugger": 63195, + "可选择": 63196, + "Road": 63197, + "我们知道": 63198, + "执行法院": 63199, + "lords": 63200, + "培养学生的": 63201, + "指定期限内": 63202, + "▁rhetoric": 63203, + "引力": 63204, + "白金": 63205, + "黄冈": 63206, + "ithe": 63207, + "与时俱进": 63208, + "▁sticker": 63209, + "}÷": 63210, + "出头": 63211, + "苦瓜": 63212, + "边上": 63213, + "年代初": 63214, + "采用的是": 63215, + "▁quin": 63216, + "▁hugely": 63217, + "滋补": 63218, + "相撞": 63219, + "NLP": 63220, + "▁空调": 63221, + "发出了": 63222, + "我怎么": 63223, + "nAug": 63224, + "▁TiO": 63225, + "专家学者": 63226, + "emorrh": 63227, + "osaurs": 63228, + "▁useEffect": 63229, + "想在": 63230, + "▁gy": 63231, + "最容易": 63232, + "货物运输": 63233, + "相等的实数根": 63234, + "▁Pepper": 63235, + "▁thicker": 63236, + "provision": 63237, + "▁Beginning": 63238, + "申请执行人向本院申请执行": 63239, + "不小": 63240, + "视察": 63241, + "第三百零": 63242, + "▁Judy": 63243, + "▁melody": 63244, + "immers": 63245, + "▁Publishers": 63246, + "拳击": 63247, + "管线": 63248, + "赞誉": 63249, + "▁城市": 63250, + "便利店": 63251, + "▁possessed": 63252, + "和无": 63253, + "密的": 63254, + "ecan": 63255, + "▁undo": 63256, + "▁VERSION": 63257, + "▁goodbye": 63258, + "援朝": 63259, + "送去": 63260, + "为提高": 63261, + "▁Tou": 63262, + "利害关系": 63263, + "总有效率": 63264, + "iscus": 63265, + "▁Mystery": 63266, + "教委": 63267, + "衣橱": 63268, + "赞扬": 63269, + "Combo": 63270, + "▁Omaha": 63271, + "multipart": 63272, + "供求": 63273, + "前身": 63274, + "均无": 63275, + "有明显": 63276, + "比较少": 63277, + "验证码": 63278, + "nuts": 63279, + "tuce": 63280, + "▁dug": 63281, + "▁CHANGE": 63282, + "▁awaken": 63283, + "▁siding": 63284, + "urrection": 63285, + "▁subspecies": 63286, + "吃药": 63287, + "征税": 63288, + "最受": 63289, + "▁Adapt": 63290, + "民事行为能力": 63291, + "▁Alembic": 63292, + "▁INDIRECT": 63293, + "同时对": 63294, + "但是由于": 63295, + "nIdent": 63296, + "▁kings": 63297, + "▁inverter": 63298, + "▁Huntington": 63299, + "*\"": 63300, + "岁以下": 63301, + "试验区": 63302, + "▁RPG": 63303, + "nService": 63304, + "Definitions": 63305, + "她会": 63306, + "流速": 63307, + "Tel": 63308, + "oran": 63309, + "hemer": 63310, + "人口与计划生育": 63311, + "▁mosquit": 63312, + "$\"": 63313, + "之歌": 63314, + "写得": 63315, + "此举": 63316, + "衡水": 63317, + "进水": 63318, + "全覆盖": 63319, + "而导致": 63320, + "umers": 63321, + "南县人民法院": 63322, + "rystals": 63323, + "人头": 63324, + "旧的": 63325, + "破了": 63326, + "中国国家": 63327, + "为自己的": 63328, + "Pager": 63329, + "erdin": 63330, + "privacy": 63331, + "▁simplifying": 63332, + "景气": 63333, + "甲醇": 63334, + "EEP": 63335, + "湖州市": 63336, + "生产厂家": 63337, + "dragon": 63338, + "▁mater": 63339, + "▁wholes": 63340, + "%^": 63341, + "预估": 63342, + "是否是": 63343, + "wolf": 63344, + "高级教师": 63345, + "▁nanoc": 63346, + "▁oversee": 63347, + "大展": 63348, + "ankar": 63349, + "regexp": 63350, + "▁ATLAS": 63351, + "nQuestions": 63352, + "▁appraisal": 63353, + "▁kindergarten": 63354, + "探寻": 63355, + "极易": 63356, + "格栅": 63357, + "特么": 63358, + "诗句": 63359, + "BOOK": 63360, + "▁boxer": 63361, + "nRemove": 63362, + "▁bundled": 63363, + "滚滚": 63364, + "趋向": 63365, + "MCA": 63366, + "vian": 63367, + "▁Lima": 63368, + "▁contestants": 63369, + "卫计": 63370, + "台南": 63371, + "就从": 63372, + "浸润": 63373, + "腿部": 63374, + "的母亲": 63375, + "▁что": 63376, + "即可开始游戏": 63377, + "▁blinds": 63378, + "云山": 63379, + "协和": 63380, + "的圆": 63381, + "von": 63382, + "的商业": 63383, + "车服务": 63384, + "非常高": 63385, + "▁RPM": 63386, + "▁bids": 63387, + "iliate": 63388, + "▁beast": 63389, + "ximation": 63390, + "nHistoric": 63391, + "BufferedReader": 63392, + "之久": 63393, + "一次次": 63394, + "却发现": 63395, + "商丘市": 63396, + "▁Hed": 63397, + "犯诈骗罪": 63398, + "Earth": 63399, + "toast": 63400, + "uding": 63401, + "Discovery": 63402, + "▁annealing": 63403, + "何某": 63404, + "先前": 63405, + "▁<>": 63406, + "nGod": 63407, + "sand": 63408, + "tpath": 63409, + "▁evap": 63410, + "Anchor": 63411, + "就餐": 63412, + "雷霆": 63413, + "*)\\": 63414, + "oti": 63415, + "为指导": 63416, + "在企业": 63417, + "证明原": 63418, + "slots": 63419, + "nPrivate": 63420, + "第七十八条之规定": 63421, + "▁Provides": 63422, + "▁Blockchain": 63423, + "▁percentile": 63424, + "和为": 63425, + "灵芝": 63426, + "魅族": 63427, + "也有人": 63428, + "转化成": 63429, + "nDetermine": 63430, + "vf": 63431, + "春华": 63432, + "罐头": 63433, + "在现代": 63434, + "▁sdk": 63435, + "▁vid": 63436, + "▁biking": 63437, + "等号": 63438, + "闪闪": 63439, + "SPA": 63440, + "的原理": 63441, + "过一个": 63442, + "教学改革": 63443, + "dison": 63444, + "▁Mits": 63445, + "▁actu": 63446, + "并支付利息": 63447, + "轴对称图形": 63448, + "corpus": 63449, + "▁hydrochlor": 63450, + "重温": 63451, + "本文以": 63452, + "不同程度": 63453, + "imuth": 63454, + "▁Rafael": 63455, + "▁Heating": 63456, + "▁orbitals": 63457, + "standalone": 63458, + "▁intensities": 63459, + "育种": 63460, + "该产品": 63461, + "那么大": 63462, + "INET": 63463, + "psin": 63464, + "Paint": 63465, + "▁Tweet": 63466, + "▁voucher": 63467, + "YLE": 63468, + "exas": 63469, + "实实在在": 63470, + "▁Stuff": 63471, + "nIndeed": 63472, + "▁Timber": 63473, + "▁onsite": 63474, + "▁Printing": 63475, + "主意": 63476, + "你别": 63477, + "▁需要": 63478, + "工作量": 63479, + "Club": 63480, + "上述证据": 63481, + "▁Hawks": 63482, + "▁Macro": 63483, + "▁Graphic": 63484, + "▁eighteen": 63485, + "申请执行人可向本院申请恢复执行": 63486, + "当了": 63487, + "不重要": 63488, + "推动了": 63489, + "的情感": 63490, + "达成的": 63491, + "aban": 63492, + "URITY": 63493, + "▁Loans": 63494, + "gravity": 63495, + "▁imprint": 63496, + "▁Precision": 63497, + "▁biodegrad": 63498, + "▁Dependency": 63499, + "天安": 63500, + "应收": 63501, + "Ten": 63502, + "经原告": 63503, + "iren": 63504, + "临床表现": 63505, + "Popen": 63506, + "nPain": 63507, + "▁cheat": 63508, + "autions": 63509, + "▁sludge": 63510, + "▁mustard": 63511, + "▁Oriental": 63512, + "▁electrom": 63513, + "IPP": 63514, + "新陈代谢": 63515, + "方法采用": 63516, + "weeks": 63517, + "▁Oman": 63518, + "▁drains": 63519, + "projection": 63520, + "一旁": 63521, + "所含": 63522, + "生源": 63523, + "退化": 63524, + "不接受": 63525, + "手机号": 63526, + "的可以": 63527, + "hoff": 63528, + "▁cease": 63529, + "▁boxers": 63530, + "▁bidding": 63531, + "potential": 63532, + "减退": 63533, + "靠自己": 63534, + "Wind": 63535, + "alus": 63536, + "▁演员表": 63537, + "THING": 63538, + "ético": 63539, + "▁Rear": 63540, + "▁dirname": 63541, + "Analytics": 63542, + "▁broadcaster": 63543, + "灭亡": 63544, + "让其": 63545, + "yla": 63546, + "还有个": 63547, + "perg": 63548, + "▁Alf": 63549, + "itespace": 63550, + "二〇一四年十一月": 63551, + "yma": 63552, + "▁bisc": 63553, + "▁tint": 63554, + "▁Sexual": 63555, + "ivy": 63556, + "多领域": 63557, + "▁Dip": 63558, + "orian": 63559, + "▁Balk": 63560, + "▁sind": 63561, + "Combin": 63562, + "STATIC": 63563, + "▁Playing": 63564, + "▁Marriage": 63565, + "▁implying": 63566, + "▁screaming": 63567, + "Persistence": 63568, + "保费": 63569, + "升值": 63570, + "晴天": 63571, + "集镇": 63572, + "与环境": 63573, + "发明专利": 63574, + "年轻人的": 63575, + "oulos": 63576, + "▁reps": 63577, + "xin": 63578, + "不考虑": 63579, + "并处没收": 63580, + "技术研发": 63581, + "短篇小说": 63582, + "Posted": 63583, + "estation": 63584, + "▁plastics": 63585, + "▁filaments": 63586, + "▁postponed": 63587, + "▁sunglasses": 63588, + "学堂": 63589, + "emu": 63590, + "的画面": 63591, + "▁dit": 63592, + "▁wolf": 63593, + "▁Vijay": 63594, + "江河": 63595, + "虚无": 63596, + "▁Rey": 63597, + "小心翼翼": 63598, + "有停车位": 63599, + "basis": 63600, + "Medium": 63601, + "PACKAGE": 63602, + "增效": 63603, + "魔幻": 63604, + "使学生": 63605, + "akar": 63606, + "nExec": 63607, + "shuffle": 63608, + "▁linger": 63609, + "案件受理费人民币": 63610, + "DIRECTORY": 63611, + "▁anatomic": 63612, + "在京": 63613, + "该笔": 63614, + "▁\"&": 63615, + "ANTS": 63616, + "▁fry": 63617, + "集体经济": 63618, + "alpine": 63619, + "nHouston": 63620, + "▁farther": 63621, + "▁prioritize": 63622, + "▁repression": 63623, + "▁vibrational": 63624, + "▁erythrocytes": 63625, + "致癌": 63626, + "行之": 63627, + "出不穷": 63628, + "更加的": 63629, + "死亡的": 63630, + "oreal": 63631, + "依法可以从轻处罚": 63632, + "▁autoantib": 63633, + "红线": 63634, + "jpa": 63635, + "diss": 63636, + "uric": 63637, + "▁hue": 63638, + "将本案移送": 63639, + "databases": 63640, + "▁Lebanese": 63641, + "▁vacancies": 63642, + "中国队": 63643, + "新型的": 63644, + "yrin": 63645, + "基础教育": 63646, + "▁mileage": 63647, + "▁StringIO": 63648, + "Identification": 63649, + "发觉": 63650, + "客栈": 63651, + "票务": 63652, + "▁Gle": 63653, + "▁Ler": 63654, + "中国电信": 63655, + "差不多的": 63656, + "换句话说": 63657, + "▁heck": 63658, + "STRUCT": 63659, + "Production": 63660, + "外径": 63661, + "DFS": 63662, + "制造的": 63663, + "))))": 63664, + "▁Victory": 63665, + "HG": 63666, + "偏低": 63667, + "扩充": 63668, + "派对": 63669, + "gos": 63670, + "▁NI": 63671, + "法律顾问": 63672, + "随便吃吃": 63673, + "二〇一六年九": 63674, + "纪念碑": 63675, + "ifen": 63676, + "欢迎大家": 63677, + "atorics": 63678, + "▁bargain": 63679, + "▁macular": 63680, + "correlation": 63681, + "▁overcoming": 63682, + "examethasone": 63683, + "大山": 63684, + "组团": 63685, + "和专业": 63686, + "年北京": 63687, + "Very": 63688, + "▁MMA": 63689, + "Partai": 63690, + "Interop": 63691, + "▁Proper": 63692, + "▁Knowing": 63693, + "凡事": 63694, + "并可": 63695, + "身亡": 63696, + "cci": 63697, + "会让你": 63698, + "项目部": 63699, + "Boost": 63700, + "EFORE": 63701, + "▁Hank": 63702, + "中选择一个": 63703, + "unding": 63704, + "opically": 63705, + "而异": 63706, + "钻井": 63707, + "你已经": 63708, + "添加到": 63709, + "▁alot": 63710, + "▁prejud": 63711, + "istrative": 63712, + "则该": 63713, + "胜任": 63714, + "永远不会": 63715, + "▁foci": 63716, + "▁云中书城": 63717, + "▁人物简介": 63718, + "▁Leone": 63719, + "中国人民大学": 63720, + "editable": 63721, + "▁Optimal": 63722, + "▁dilemma": 63723, + "电子科技有限公司": 63724, + "contracts": 63725, + "▁Radiation": 63726, + "执行情况告知申请执行人": 63727, + "Su": 63728, + "姜片": 63729, + "雷电": 63730, + "\"\",": 63731, + "▁修改": 63732, + "Slide": 63733, + "ircon": 63734, + "sparse": 63735, + "▁felony": 63736, + "盗版": 63737, + "到哪里": 63738, + "我曾经": 63739, + "农村居民": 63740, + "ipzig": 63741, + "▁Loren": 63742, + "▁Genesis": 63743, + "▁Assignment": 63744, + "三期": 63745, + "代办": 63746, + "新乡": 63747, + "江津": 63748, + "除湿": 63749, + "和创新": 63750, + "新建的": 63751, + "的好坏": 63752, + "Dear": 63753, + "▁HMS": 63754, + "▁TAG": 63755, + "▁处理器": 63756, + "ulfide": 63757, + "▁Chronicle": 63758, + "保值": 63759, + "得过": 63760, + "误导": 63761, + "née": 63762, + "预期的": 63763, + "经济贸易": 63764, + "omies": 63765, + "▁Alto": 63766, + "▁Plas": 63767, + "Checkbox": 63768, + "▁checker": 63769, + "▁soybean": 63770, + "▁autosomal": 63771, + "伺服": 63772, + "你没": 63773, + "服役": 63774, + "lost": 63775, + "不确定性": 63776, + "检诉刑诉": 63777, + "身心健康": 63778, + "▁Curve": 63779, + "▁Devils": 63780, + "二〇一六年七月": 63781, + "JSONObject": 63782, + "▁mathematically": 63783, + "后半": 63784, + "年版": 63785, + "toml": 63786, + "▁Kod": 63787, + "▁Von": 63788, + "采取保全措施后": 63789, + "▁cylinders": 63790, + "▁thumbnail": 63791, + "▁experimenting": 63792, + "烟雨": 63793, + "粉的": 63794, + "镜片": 63795, + "回家的": 63796, + "▁Mai": 63797, + "▁scare": 63798, + "fillable": 63799, + "▁academia": 63800, + "本校": 63801, + "))}\\": 63802, + "bath": 63803, + "▁MSN": 63804, + "▁SDS": 63805, + "nFood": 63806, + "ophan": 63807, + "▁Thin": 63808, + "▁Wick": 63809, + "住所地福建省": 63810, + "▁cyclase": 63811, + "制服": 63812, + "是原": 63813, + "汉化": 63814, + "精子": 63815, + "▁大小": 63816, + "npre": 63817, + "▁PORT": 63818, + "人去": 63819, + "但因": 63820, + "号之二": 63821, + "我来说": 63822, + "unner": 63823, + "▁Parade": 63824, + "▁Wallpaper": 63825, + "▁contaminants": 63826, + "乳酸": 63827, + "王俊": 63828, + "ddd": 63829, + "▁%)": 63830, + "到医院": 63831, + "▁Eva": 63832, + "下列说法": 63833, + "年降水量": 63834, + "codep": 63835, + "ipynb": 63836, + "▁expenditures": 63837, + "▁沙": 63838, + "对阵": 63839, + "汤汁": 63840, + "upa": 63841, + "ATTR": 63842, + "分式方程": 63843, + "▁peac": 63844, + "▁商品毛重": 63845, + "进行了深入": 63846, + "Following": 63847, + "▁次": 63848, + "交办": 63849, + "Cho": 63850, + "SAR": 63851, + "iesis": 63852, + "▁surpass": 63853, + "中线": 63854, + "先看": 63855, + "和弦": 63856, + "而无": 63857, + "公司于": 63858, + "esto": 63859, + "Margin": 63860, + "patches": 63861, + "spinner": 63862, + "▁fal": 63863, + "▁Clip": 63864, + "▁emerges": 63865, + "点儿": 63866, + "▁对于": 63867, + "省部级": 63868, + "nPak": 63869, + "这个游戏": 63870, + "coupled": 63871, + "▁tariffs": 63872, + "disconnect": 63873, + "▁Disorders": 63874, + "▁protections": 63875, + "他了": 63876, + "日落": 63877, + "活化": 63878, + "保险人": 63879, + "公里处": 63880, + "各领域": 63881, + "位置关系": 63882, + "和相应的": 63883, + "neuro": 63884, + "▁NVIDIA": 63885, + "▁fistula": 63886, + "▁declaring": 63887, + "分別": 63888, + "获得者": 63889, + "有效数字": 63890, + "自己喜欢": 63891, + "FOLDER": 63892, + "Gallery": 63893, + "Reading": 63894, + "▁Sandra": 63895, + ">|": 63896, + "休假": 63897, + "文昌": 63898, + "波斯": 63899, + "▁LU": 63900, + "周某某": 63901, + "在生产": 63902, + "方向盘": 63903, + "}\\\\;": 63904, + "产品设计": 63905, + "寻衅滋事罪": 63906, + "efficacy": 63907, + "改建": 63908, + "渊源": 63909, + "▁Languages": 63910, + "当归": 63911, + "放宽": 63912, + "溪镇": 63913, + ":',": 63914, + "创造力": 63915, + "达成了": 63916, + "destruct": 63917, + "▁cellulose": 63918, + "approximately": 63919, + "是集": 63920, + "焦作市": 63921, + "予以证明": 63922, + "公报": 63923, + "升起": 63924, + "几乎是": 63925, + "cous": 63926, + "waiting": 63927, + "▁quarry": 63928, + "shipping": 63929, + "▁Lindsay": 63930, + "▁annotated": 63931, + "加息": 63932, + "宣扬": 63933, + "语的": 63934, + "浓度的": 63935, + ")(\\\\": 63936, + "embr": 63937, + "summ": 63938, + "getKey": 63939, + "▁THREE": 63940, + "安得": 63941, + "haw": 63942, + "物业类别": 63943, + "▁herd": 63944, + "Separator": 63945, + "nElections": 63946, + "▁inhalation": 63947, + "二轮": 63948, + "寒假": 63949, + "打法": 63950, + "断面": 63951, + "▁FW": 63952, + "isin": 63953, + "nMuch": 63954, + "▁Uncle": 63955, + "▁pairwise": 63956, + "▁Dimensions": 63957, + "▁correctness": 63958, + "方舟": 63959, + "来个": 63960, + "jvm": 63961, + "从严治": 63962, + "▁Xml": 63963, + "自由贸易": 63964, + "nPrem": 63965, + "▁dome": 63966, + "▁bucks": 63967, + "▁ejection": 63968, + "▁prescriptions": 63969, + "▁夜": 63970, + "充斥": 63971, + "同位": 63972, + "巴彦": 63973, + "幸好": 63974, + "我与": 63975, + "胞胎": 63976, + "也已经": 63977, + "▁cocoa": 63978, + "第二百四十条": 63979, + "INTEGER": 63980, + "Christian": 63981, + "▁gatherings": 63982, + "▁configurable": 63983, + "体贴": 63984, + "吞噬": 63985, + "意外的": 63986, + "▁CKD": 63987, + "inform": 63988, + "▁ordinal": 63989, + "入睡": 63990, + "中国人的": 63991, + "可能会有": 63992, + "▁disreg": 63993, + "▁favourites": 63994, + "推断": 63995, + "秋水": 63996, + "aan": 63997, + "这只是": 63998, + "▁Increase": 63999, + "发生法律效力之日起": 64000, + "▁discriminant": 64001, + "一式": 64002, + "和多": 64003, + "教育活动": 64004, + "被告辩称": 64005, + "达成协议": 64006, + "netty": 64007, + "▁商品产地": 64008, + "曾是": 64009, + "黄土": 64010, + "ста": 64011, + "▁WB": 64012, + "又因为": 64013, + "家常菜": 64014, + "IALS": 64015, + "产品尺寸": 64016, + "zilla": 64017, + "kinase": 64018, + "▁seals": 64019, + "▁refusing": 64020, + "太白": 64021, + "很像": 64022, + "COME": 64023, + "{})\\": 64024, + "▁contractions": 64025, + "▁osteoarthritis": 64026, + "别克": 64027, + "战友": 64028, + "抚顺": 64029, + "背诵": 64030, + "在经济": 64031, + "obac": 64032, + "oders": 64033, + "Vision": 64034, + "buster": 64035, + "▁bloody": 64036, + "▁payable": 64037, + "▁holomorphic": 64038, + "很想": 64039, + "言行": 64040, + "nHop": 64041, + "▁Bic": 64042, + "数据进行": 64043, + "之神": 64044, + "公会": 64045, + "利物": 64046, + "危险的": 64047, + "Would": 64048, + "nLink": 64049, + "▁roast": 64050, + "rectangle": 64051, + "▁tackling": 64052, + "马尾": 64053, + "的研发": 64054, + "nMap": 64055, + "oger": 64056, + "征求意见": 64057, + "ETHOD": 64058, + "efile": 64059, + "▁sinks": 64060, + "▁betray": 64061, + "reporting": 64062, + "▁regenerative": 64063, + "架空历史": 64064, + "▁loft": 64065, + "查封被申请人": 64066, + "folders": 64067, + "▁charcoal": 64068, + "▁primates": 64069, + "▁delineate": 64070, + "丞相": 64071, + "五种": 64072, + "开销": 64073, + "杂志社": 64074, + "矿泉水": 64075, + "▁conced": 64076, + "endpoints": 64077, + "▁Disability": 64078, + "▁northwestern": 64079, + "传记": 64080, + "DIV": 64081, + "inster": 64082, + "joined": 64083, + "leting": 64084, + "▁seminal": 64085, + "nNovember": 64086, + "IAN": 64087, + "▁Bcl": 64088, + "二审法院": 64089, + "社交媒体": 64090, + "Portal": 64091, + "ridden": 64092, + "▁postoperatively": 64093, + "一发": 64094, + "入库": 64095, + "家有": 64096, + "你必须": 64097, + "教学班": 64098, + "forth": 64099, + "▁Rover": 64100, + "▁canon": 64101, + "▁autopsy": 64102, + "功底": 64103, + "歌剧": 64104, + "就一直": 64105, + "newline": 64106, + "▁Strike": 64107, + "▁formatter": 64108, + "▁implicitly": 64109, + "▁Researchers": 64110, + "══": 64111, + "热议": 64112, + "不到位": 64113, + "▁gaz": 64114, + "项目经理": 64115, + "nJuly": 64116, + "XB": 64117, + "决战": 64118, + "扁舟": 64119, + "Ham": 64120, + "Pur": 64121, + "▁DEC": 64122, + "此页无正文": 64123, + "土木结构住房": 64124, + "▁Uncategorized": 64125, + "取胜": 64126, + "阻抗": 64127, + "高专": 64128, + "ivi": 64129, + "征决字": 64130, + "起源于": 64131, + "WEVER": 64132, + "RunWith": 64133, + "▁whoever": 64134, + "有为": 64135, + "罪恶": 64136, + "耐火": 64137, + "的约定": 64138, + "劳务派遣": 64139, + "nHard": 64140, + "▁wards": 64141, + "▁Bolton": 64142, + "不许": 64143, + "过长": 64144, + ")},": 64145, + "▁Rican": 64146, + "▁axiom": 64147, + "▁Bulletin": 64148, + "▁airborne": 64149, + "感人": 64150, + "我叫": 64151, + "设法": 64152, + "麦当": 64153, + "vip": 64154, + "▁ki": 64155, + "建筑的": 64156, + "▁rud": 64157, + "mtime": 64158, + "▁Moor": 64159, + "▁quil": 64160, + "urator": 64161, + "▁yummy": 64162, + "nprintf": 64163, + "▁cautious": 64164, + "乳房": 64165, + "劳工": 64166, + "率是": 64167, + "orh": 64168, + "▁та": 64169, + "了一大": 64170, + "人与人": 64171, + "验证了": 64172, + "建设工作": 64173, + "userid": 64174, + "▁belts": 64175, + "判处无期徒刑": 64176, + "▁Detective": 64177, + "绿灯": 64178, + "itu": 64179, + "▁sr": 64180, + "▁Til": 64181, + "Jones": 64182, + "photon": 64183, + "charged": 64184, + "▁Alumni": 64185, + "▁Literary": 64186, + "▁Holocaust": 64187, + "第二百五十三条的规定": 64188, + "曾于": 64189, + "难怪": 64190, + "我们来": 64191, + "营业收入": 64192, + "营销策划": 64193, + "dense": 64194, + "these": 64195, + "▁dawn": 64196, + "犯盗窃罪被": 64197, + "▁比": 64198, + "推导": 64199, + "atura": 64200, + "▁Stores": 64201, + "▁firearm": 64202, + "▁Elasticsearch": 64203, + "三楼": 64204, + "内阁": 64205, + "aol": 64206, + "冷空气": 64207, + "nmin": 64208, + "好自己的": 64209, + "▁litre": 64210, + "▁midpoint": 64211, + "克罗": 64212, + "官僚": 64213, + "了大量": 64214, + "}}{{\\\\": 64215, + "Conversion": 64216, + "▁neuromuscular": 64217, + "▁成": 64218, + "口镇": 64219, + "]):": 64220, + "十三年": 64221, + "投入使用": 64222, + "▁Hits": 64223, + "▁podium": 64224, + "▁tumorigenesis": 64225, + "三者": 64226, + "临汾": 64227, + "墓志": 64228, + "洗发": 64229, + "爱民": 64230, + "脊髓": 64231, + "▁jungle": 64232, + "▁Vikings": 64233, + "subscriptions": 64234, + "ня": 64235, + "他为": 64236, + "甜品": 64237, + "空气质量": 64238, + "vidia": 64239, + "▁faux": 64240, + "▁paradigms": 64241, + "该犯在服刑期间确有悔改表现": 64242, + "妖怪": 64243, + "绵阳": 64244, + "正规的": 64245, + "DESC": 64246, + "水利水电": 64247, + "研究机构": 64248, + "部分地区": 64249, + "▁assayed": 64250, + "▁qualifier": 64251, + "中说": 64252, + "流向": 64253, + "祖宗": 64254, + "通的": 64255, + "和一些": 64256, + "LOWED": 64257, + "SEMENT": 64258, + "infile": 64259, + "▁buffet": 64260, + "▁geodes": 64261, + "▁vortex": 64262, + "▁unusually": 64263, + "利民": 64264, + "念念": 64265, + "美感": 64266, + "前缀和": 64267, + "iken": 64268, + "▁Bergen": 64269, + "▁refuses": 64270, + "▁callable": 64271, + "▁diameters": 64272, + "例行": 64273, + "含金": 64274, + "应激": 64275, + "粪便": 64276, + "静止": 64277, + "层出不穷": 64278, + "铁路运输": 64279, + "LIMIT": 64280, + "sofIvy": 64281, + "▁Charity": 64282, + "▁Supported": 64283, + "▁paramount": 64284, + "赣州市": 64285, + "imid": 64286, + "pray": 64287, + "▁Era": 64288, + "▁padd": 64289, + "▁主要原料": 64290, + "▁Suzuki": 64291, + "▁humour": 64292, + "DbContext": 64293, + "▁lineback": 64294, + "▁stumbled": 64295, + "▁ambiguity": 64296, + "▁Volkswagen": 64297, + "Fx": 64298, + "将与": 64299, + "qty": 64300, + "在其中": 64301, + "某负担": 64302, + "的营养": 64303, + "这两年": 64304, + "erta": 64305, + "Grade": 64306, + "nTHIS": 64307, + "ypass": 64308, + "▁glioma": 64309, + "▁hunter": 64310, + "酿造": 64311, + "阳明": 64312, + "▁CTL": 64313, + "整个过程": 64314, + "不准许撤诉的": 64315, + "nheader": 64316, + "▁Euclid": 64317, + "▁droplets": 64318, + "憧憬": 64319, + "演的": 64320, + "工作了": 64321, + "方方面": 64322, + "次日起": 64323, + "全面提升": 64324, + "▁制片地区": 64325, + "getcwd": 64326, + "如果把": 64327, + "想到的": 64328, + "手术后": 64329, + "半个小时": 64330, + "odenal": 64331, + "▁ganglia": 64332, + "▁condemned": 64333, + "▁externally": 64334, + "灭绝": 64335, + "铁丝": 64336, + "专卖店": 64337, + "代理商": 64338, + "的中心": 64339, + "语言学": 64340, + "Benz": 64341, + "解析式为": 64342, + "nMATER": 64343, + "▁richness": 64344, + "▁validators": 64345, + "一览": 64346, + "bbc": 64347, + "jia": 64348, + "我就不": 64349, + "来表示": 64350, + "第二审": 64351, + "alon": 64352, + "培训学校": 64353, + "▁griev": 64354, + "nSenior": 64355, + "▁Lisbon": 64356, + "▁floods": 64357, + "▁mA": 64358, + "是什么呢": 64359, + "被认为是": 64360, + "ELISA": 64361, + "frica": 64362, + "changer": 64363, + "▁Farmers": 64364, + "就读于": 64365, + "▁FIN": 64366, + "▁sont": 64367, + "urlopen": 64368, + "▁toolkit": 64369, + "technical": 64370, + "oC": 64371, + "伙同": 64372, + "王玉": 64373, + "PRI": 64374, + "ème": 64375, + "▁HQ": 64376, + "▁Witch": 64377, + "▁Albums": 64378, + "▁retardation": 64379, + "御史": 64380, + "热潮": 64381, + "时需要": 64382, + "Ware": 64383, + "acyl": 64384, + "etin": 64385, + "值得注意的是": 64386, + "广东省佛山市": 64387, + "乘除": 64388, + "余个": 64389, + "分包": 64390, + "就职": 64391, + ":\"\\": 64392, + "世界各国": 64393, + "公司总经理": 64394, + "已减半收取": 64395, + "▁Controls": 64396, + "▁prisoner": 64397, + "▁constitutive": 64398, + "nCongratulations": 64399, + "▁贺": 64400, + "佳作": 64401, + "TIM": 64402, + "▁RAF": 64403, + "▁vue": 64404, + "尤为重要": 64405, + "fried": 64406, + "nDivide": 64407, + "▁Inform": 64408, + "▁reagent": 64409, + "切记": 64410, + "轻盈": 64411, + "法测定": 64412, + "pard": 64413, + "魔龙令牌": 64414, + "▁Blow": 64415, + "▁mixes": 64416, + "▁runoff": 64417, + "▁strives": 64418, + "▁modulates": 64419, + "▁radiological": 64420, + "极管": 64421, + "相符": 64422, + "UCN": 64423, + "的有关": 64424, + "nSoviet": 64425, + "▁Trevor": 64426, + "▁Ministers": 64427, + "▁aggregated": 64428, + "▁negotiated": 64429, + "多情": 64430, + "而今": 64431, + "表决": 64432, + "DTD": 64433, + "HAN": 64434, + "一本书": 64435, + "在诉讼": 64436, + "专科学校": 64437, + "是一名演员": 64438, + "ulsory": 64439, + "▁Alpine": 64440, + "▁Webster": 64441, + "▁vacancy": 64442, + "IPv": 64443, + "很适合": 64444, + "冠状动脉": 64445, + "acons": 64446, + "▁Omar": 64447, + "\\\\\\\\\\\\": 64448, + "▁sponge": 64449, + "▁Syracuse": 64450, + "坏事": 64451, + "杏花": 64452, + "村干部": 64453, + "第三边": 64454, + "▁chr": 64455, + "爷爷奶奶": 64456, + "相关证据": 64457, + "▁mong": 64458, + "公办": 64459, + "切勿": 64460, + "Got": 64461, + "ibu": 64462, + "▁KC": 64463, + "▁eh": 64464, + "工商联": 64465, + "由此可见": 64466, + "inged": 64467, + "stret": 64468, + "糖尿病患者": 64469, + "nprocess": 64470, + "▁substituting": 64471, + "漂流": 64472, + "argc": 64473, + "nova": 64474, + "ombo": 64475, + "▁Roland": 64476, + "▁advising": 64477, + "中国银行股份有限公司": 64478, + "双双": 64479, + "小猫": 64480, + "拉黑": 64481, + "福德": 64482, + "挖掘机": 64483, + "非常多": 64484, + "araj": 64485, + "{\\\\\"": 64486, + "▁kub": 64487, + "▁Shane": 64488, + "小林": 64489, + "我以前": 64490, + "apsing": 64491, + "retrieve": 64492, + "▁shaking": 64493, + "▁thrombin": 64494, + "▁Comparative": 64495, + "Ki": 64496, + "也行": 64497, + "青天": 64498, + "TES": 64499, + "可以有": 64500, + "持有的": 64501, + "nRen": 64502, + "Navigator": 64503, + "▁pitching": 64504, + "▁analgesia": 64505, + "抢购": 64506, + "而下": 64507, + "本项目": 64508, + "系列活动": 64509, + "Voice": 64510, + "▁Claus": 64511, + "二〇一六年十": 64512, + "icating": 64513, + "▁arranging": 64514, + "SZ": 64515, + "状态的": 64516, + "Mary": 64517, + "icki": 64518, + "第十四章": 64519, + "mortem": 64520, + "▁horny": 64521, + "▁diaphrag": 64522, + "▁distraction": 64523, + "州市中级人民法院提出上诉": 64524, + "焚烧": 64525, + "▁Ves": 64526, + "下面是一个": 64527, + "indexes": 64528, + "Instances": 64529, + "▁Interval": 64530, + "▁microbiota": 64531, + "azo": 64532, + "销售等": 64533, + "▁Roots": 64534, + "▁amalg": 64535, + "▁arche": 64536, + "▁wives": 64537, + "ный": 64538, + "结果与": 64539, + "裁决书": 64540, + "fatal": 64541, + "▁sealing": 64542, + "described": 64543, + "▁embraced": 64544, + "▁circuitry": 64545, + "▁panoramic": 64546, + "▁Engagement": 64547, + "两三": 64548, + "你不是": 64549, + "▁MAR": 64550, + "vdots": 64551, + "▁drawers": 64552, + "▁toilets": 64553, + "二号": 64554, + "对决": 64555, + "铸铁": 64556, + "][:": 64557, + "svc": 64558, + "区间为": 64559, + "的一样": 64560, + "的数是": 64561, + "污染防治": 64562, + "简直就是": 64563, + "doing": 64564, + "▁hype": 64565, + "▁congru": 64566, + "▁trapez": 64567, + "prepared": 64568, + "本案诉讼费由被告承担": 64569, + "中风": 64570, + "拟定": 64571, + "捕获": 64572, + "是会": 64573, + "皮书": 64574, + "福音": 64575, + "荣华": 64576, + "EAA": 64577, + "UNG": 64578, + "▁dm": 64579, + "加大对": 64580, + "▁Dul": 64581, + "PARAM": 64582, + "▁functools": 64583, + "拟任": 64584, + "是种": 64585, + "gren": 64586, + "▁AIM": 64587, + "mless": 64588, + "住所地江苏省": 64589, + "▁hacker": 64590, + "Overview": 64591, + "▁forgive": 64592, + "▁veterin": 64593, + "▁reservoirs": 64594, + "▁civilization": 64595, + "专访": 64596, + "养的": 64597, + "泊尔": 64598, + "圆柱形": 64599, + "随时随地": 64600, + "厦门市思明": 64601, + "nIncre": 64602, + "上诉于上海市": 64603, + "▁briefing": 64604, + "▁divisors": 64605, + "▁disposition": 64606, + "とい": 64607, + "创设": 64608, + "特拉": 64609, + "泰安市": 64610, + "▁Vaugh": 64611, + "▁threaten": 64612, + "▁simulating": 64613, + "一汽": 64614, + "基石": 64615, + "大牌": 64616, + "食疗": 64617, + "ousse": 64618, + "▁mans": 64619, + "etched": 64620, + "▁原料": 64621, + "皮肤的": 64622, + "▁ego": 64623, + "行政审批": 64624, + "▁Gain": 64625, + "izumab": 64626, + "▁pyram": 64627, + "sampling": 64628, + "▁snippets": 64629, + "homogeneous": 64630, + "乳化": 64631, + "保研": 64632, + "减灾": 64633, + "执教": 64634, + "站位": 64635, + "这支": 64636, + "NAS": 64637, + "▁STAR": 64638, + "▁Kathy": 64639, + "二〇一四年九月": 64640, + "▁Krishna": 64641, + "▁musculoskeletal": 64642, + "抽出": 64643, + "时可": 64644, + "和时间": 64645, + "nasium": 64646, + "geometric": 64647, + "并入": 64648, + "永嘉": 64649, + "会议由": 64650, + "长大的": 64651, + "▁Bri": 64652, + "市场价格": 64653, + "▁Mineral": 64654, + "▁prompts": 64655, + "▁trapping": 64656, + "∈(": 64657, + "十堰市": 64658, + "红细胞": 64659, + "bish": 64660, + "placing": 64661, + "GLIGENCE": 64662, + "▁Pokémon": 64663, + "▁placenta": 64664, + "上火": 64665, + "超强": 64666, + "blatt": 64667, + "grave": 64668, + "npass": 64669, + "▁Bind": 64670, + "劳动争议纠纷一案": 64671, + "▁daylight": 64672, + "▁announces": 64673, + "▁waveguide": 64674, + "▁ş": 64675, + "cdf": 64676, + "▁NL": 64677, + "别忘了": 64678, + "这个小": 64679, + "▁Comes": 64680, + "▁Banner": 64681, + "▁CONSEQUENTIAL": 64682, + "öm": 64683, + "欧式": 64684, + "▁QA": 64685, + "工资款": 64686, + "需付费": 64687, + "nWil": 64688, + "▁Satisf": 64689, + "▁outright": 64690, + "この": 64691, + "不正": 64692, + "克林": 64693, + "老天": 64694, + "输液": 64695, + "CoA": 64696, + "占有率": 64697, + "第一行": 64698, + "nVue": 64699, + "apopt": 64700, + "怎样的体验": 64701, + "管辖权异议": 64702, + "opters": 64703, + "explorer": 64704, + "RequestBody": 64705, + "排泄": 64706, + "机上": 64707, + "极小": 64708, + "软体": 64709, + "包括了": 64710, + "等产品": 64711, + "与被害人": 64712, + "感情基础": 64713, + "▁swagger": 64714, + "▁executor": 64715, + "千人": 64716, + "换乘": 64717, + "\"//": 64718, + "下辖村": 64719, + "是用来": 64720, + "Marc": 64721, + "orce": 64722, + "形成一个": 64723, + "Logout": 64724, + "河南省郑州市": 64725, + "▁chemot": 64726, + "rollable": 64727, + "openstack": 64728, + "▁parasitic": 64729, + "张晓": 64730, + "杜甫": 64731, + "在选择": 64732, + "ubicin": 64733, + "▁Remix": 64734, + "▁corps": 64735, + "ensible": 64736, + "traffic": 64737, + "▁Clement": 64738, + "▁hectares": 64739, + "ード": 64740, + "东汉": 64741, + "坚韧": 64742, + "第一项至": 64743, + "morph": 64744, + "omotor": 64745, + "▁Roose": 64746, + "tutorials": 64747, + "California": 64748, + "祖父": 64749, + "誓言": 64750, + "风筝": 64751, + "️\\": 64752, + "ipei": 64753, + "苏州市吴": 64754, + "would": 64755, + "被执行人吴": 64756, + "little": 64757, + "pygame": 64758, + "▁prosthesis": 64759, + "▁investigative": 64760, + "三章": 64761, + "龙山": 64762, + "可以对": 64763, + "计算在": 64764, + "▁gol": 64765, + "jq": 64766, + "▁段": 64767, + "影人": 64768, + "tsc": 64769, + "也存在": 64770, + "但不是": 64771, + "▁Kai": 64772, + "怎样才能": 64773, + "英语教学": 64774, + "执行机关认为": 64775, + "被执行人暂无": 64776, + "plitude": 64777, + "experience": 64778, + "各样": 64779, + "思索": 64780, + "icum": 64781, + "broadcast": 64782, + "▁persists": 64783, + "▁ambitions": 64784, + "平坦": 64785, + "来宾": 64786, + "▁gui": 64787, + "好好学习": 64788, + "tagged": 64789, + "▁Wendy": 64790, + "Nonnull": 64791, + "STITUTE": 64792, + "▁verses": 64793, + "▁singularity": 64794, + "lw": 64795, + "与原": 64796, + "处境": 64797, + "▁är": 64798, + "敏感性": 64799, + "完全破裂": 64800, + "▁Oste": 64801, + "▁regain": 64802, + "▁ubiquitin": 64803, + "正月": 64804, + "▁wp": 64805, + "▁Pix": 64806, + "▁psi": 64807, + "县委书记": 64808, + "▁Sixty": 64809, + "▁Tucker": 64810, + "zf": 64811, + "▁建": 64812, + "▁闫": 64813, + "田县": 64814, + "花岗": 64815, + "装入": 64816, + "对本院": 64817, + "的小孩": 64818, + "Night": 64819, + "▁camel": 64820, + "ranging": 64821, + "▁crashing": 64822, + "▁deserved": 64823, + "▁Inspection": 64824, + "一滴": 64825, + "六年级": 64826, + "mans": 64827, + "▁Gad": 64828, + "气候变化": 64829, + "▁Candy": 64830, + "▁SPECT": 64831, + "creating": 64832, + "▁buffers": 64833, + "游行": 64834, + "Ele": 64835, + "好消息": 64836, + "汽车站": 64837, + "▁Helic": 64838, + "▁Lawyers": 64839, + "FORMATION": 64840, + "arra": 64841, + "tapp": 64842, + "▁PPAR": 64843, + "▁blunt": 64844, + "▁burnt": 64845, + "uttering": 64846, + "宴请": 64847, + "sbt": 64848, + "十一年": 64849, + "和要求": 64850, + "适合于": 64851, + "都具有": 64852, + "ZONE": 64853, + "ohan": 64854, + "▁phage": 64855, + "▁Willie": 64856, + "▁enanti": 64857, + "initialized": 64858, + "前卫": 64859, + "无色": 64860, + "Ban": 64861, + "崭新的": 64862, + "胶原蛋白": 64863, + "▁rage": 64864, + "▁innoc": 64865, + "LOCATION": 64866, + "▁Patterns": 64867, + "▁craftsmanship": 64868, + "异步": 64869, + "我是个": 64870, + "是关于": 64871, + "进程中": 64872, + "ONLY": 64873, + "Risk": 64874, + "fang": 64875, + "doped": 64876, + "ubert": 64877, + "hetized": 64878, + "nMartin": 64879, + "瓦尔": 64880, + "福彩": 64881, + "PCB": 64882, + "也是在": 64883, + "右下角": 64884, + "这一年": 64885, + "ogel": 64886, + "TAINER": 64887, + "letion": 64888, + "▁Bulls": 64889, + "~(": 64890, + "田野": 64891, + "程式": 64892, + "自然而": 64893, + "纪委监委": 64894, + "paired": 64895, + "▁ethyl": 64896, + "▁excitatory": 64897, + "赏析": 64898, + "奥特曼": 64899, + "__(*": 64900, + "▁OWN": 64901, + "理论知识": 64902, + "aunch": 64903, + "ieren": 64904, + "▁Reds": 64905, + "▁posing": 64906, + "之于": 64907, + "抚育": 64908, + "有关系": 64909, + "让自己的": 64910, + "▁Narr": 64911, + "▁quota": 64912, + "FUNCTION": 64913, + "▁Reaction": 64914, + "▁multicenter": 64915, + "唯物": 64916, + "村级": 64917, + "▁函数": 64918, + "物体的": 64919, + "呼和浩特市": 64920, + "indrome": 64921, + "removeClass": 64922, + "创刊": 64923, + "差价": 64924, + "手绘": 64925, + "nHE": 64926, + "owo": 64927, + "之后再": 64928, + "eldom": 64929, + "▁amyg": 64930, + "visiae": 64931, + "▁shunt": 64932, + "依法提起诉讼": 64933, + "nVictor": 64934, + "▁veggies": 64935, + "文化传媒有限公司": 64936, + "出名": 64937, + "处以": 64938, + "家住": 64939, + "异侠": 64940, + "▁Elm": 64941, + "cakes": 64942, + "setItem": 64943, + "▁sucrose": 64944, + "▁favourable": 64945, + "克莱": 64946, + "挂靠": 64947, + "可以被": 64948, + "西游记": 64949, + "▁Nem": 64950, + "损伤程度": 64951, + "▁Beam": 64952, + "▁Cater": 64953, + "▁Expedition": 64954, + "▁expansions": 64955, + "▁吉": 64956, + "按期": 64957, + "自救": 64958, + "dup": 64959, + "都一样": 64960, + "▁UPS": 64961, + "▁gir": 64962, + "三大阶段": 64963, + "第三项裁定": 64964, + "▁Torres": 64965, + "uitively": 64966, + "▁kotlinx": 64967, + "marketing": 64968, + "▁teammate": 64969, + "traditional": 64970, + "永定": 64971, + "盗走": 64972, + "赋能": 64973, + "dea": 64974, + "▁天津": 64975, + "海口市": 64976, + "nVan": 64977, + "nstr": 64978, + "该局局长": 64979, + "▁gels": 64980, + "paring": 64981, + "▁docking": 64982, + "Infrastructure": 64983, + "▁Parliamentary": 64984, + "忧郁": 64985, + "肾病": 64986, + "这将": 64987, + "连结": 64988, + "▁显示": 64989, + "绿色的": 64990, + "▁Zurich": 64991, + "▁filler": 64992, + "▁prevailing": 64993, + "▁兰": 64994, + "幕墙": 64995, + "老挝": 64996, + "平板电脑": 64997, + "▁Width": 64998, + "▁Belgrade": 64999, + "▁melatonin": 65000, + "aui": 65001, + "不公平": 65002, + "人员在": 65003, + "卫生所": 65004, + "ivos": 65005, + "urin": 65006, + "Xgate": 65007, + "ipient": 65008, + "▁Dixon": 65009, + "▁stint": 65010, + "▁Whilst": 65011, + "segments": 65012, + "▁battling": 65013, + "▁anesthetic": 65014, + "ço": 65015, + "▁光": 65016, + "到头": 65017, + "太行": 65018, + "相切": 65019, + "nAS": 65020, + "veyor": 65021, + "民间借贷纠纷": 65022, + "Managed": 65023, + "▁Czechoslovak": 65024, + "财税": 65025, + "长发": 65026, + "▁faint": 65027, + "▁答": 65028, + "ット": 65029, + "丽娜": 65030, + "名城": 65031, + "换装": 65032, + "最值": 65033, + "烈的": 65034, + "等为": 65035, + "足额": 65036, + "ATM": 65037, + "atas": 65038, + "tipo": 65039, + "▁Arbor": 65040, + "IZATION": 65041, + "casters": 65042, + "▁caramel": 65043, + "Experimental": 65044, + "蓝光": 65045, + "入住时": 65046, + "有用的": 65047, + "因为没有": 65048, + "差不多了": 65049, + "decre": 65050, + "howto": 65051, + "▁Sell": 65052, + "osecond": 65053, + "▁locker": 65054, + "科技发展有限公司": 65055, + "玉石": 65056, + "▁深圳": 65057, + "去看看": 65058, + "网友们": 65059, + "骨干教师": 65060, + "▁Fold": 65061, + "▁seas": 65062, + "▁Flood": 65063, + "▁flames": 65064, + "XD": 65065, + "▁磊": 65066, + "因病": 65067, + "艳丽": 65068, + "nak": 65069, + "中没有": 65070, + "引发了": 65071, + "滁州市": 65072, + "Decl": 65073, + "imap": 65074, + "astatin": 65075, + "▁Fighter": 65076, + "Five": 65077, + "▁jan": 65078, + "icola": 65079, + "▁Whitney": 65080, + "准入": 65081, + "贬值": 65082, + "的客户": 65083, + "enas": 65084, + "wort": 65085, + "各个方面": 65086, + "▁Stroke": 65087, + "nAlternatively": 65088, + "查验": 65089, + "每秒": 65090, + "气场": 65091, + "疏通": 65092, + "秋色": 65093, + "失败的": 65094, + "ROLL": 65095, + "eday": 65096, + "还会提供": 65097, + "▁Chak": 65098, + "▁lumen": 65099, + "instant": 65100, + "analyzer": 65101, + "baseline": 65102, + "structural": 65103, + "等单位": 65104, + "▁Dys": 65105, + "公交线路": 65106, + "限制消费": 65107, + "Estim": 65108, + "▁Jeep": 65109, + "ellate": 65110, + "▁radii": 65111, + "▁Newark": 65112, + "▁incontinence": 65113, + "▁İ": 65114, + "心意": 65115, + "手艺": 65116, + "Ken": 65117, + "就只能": 65118, + "toos": 65119, + "▁Raz": 65120, + "正确判断": 65121, + "法律后果": 65122, + "autoload": 65123, + "combined": 65124, + "▁donating": 65125, + "ModelAdmin": 65126, + "▁geometries": 65127, + "▁degenerative": 65128, + "农夫": 65129, + "博彩": 65130, + "故居": 65131, + "本的": 65132, + "alom": 65133, + "varn": 65134, + "▁bfs": 65135, + "henko": 65136, + "atcher": 65137, + "▁Combat": 65138, + "▁voyage": 65139, + "亚历": 65140, + "动感": 65141, + "北欧": 65142, + "销售量": 65143, + "Bold": 65144, + "pink": 65145, + "▁ACM": 65146, + "▁cochlear": 65147, + "nBeautiful": 65148, + "▁Religious": 65149, + "户名": 65150, + "祝你": 65151, + "idf": 65152, + "的魅力": 65153, + "▁AMA": 65154, + "认定被告人": 65155, + "TagName": 65156, + "▁Refuge": 65157, + "▁Diffusion": 65158, + "▁enthusiast": 65159, + "性命": 65160, + "希望你": 65161, + "都必须": 65162, + "子叶植物": 65163, + "▁Lens": 65164, + "权纠纷一案中": 65165, + "▁Emmanuel": 65166, + "▁councils": 65167, + "▁Benchmark": 65168, + "▁empowering": 65169, + "司长": 65170, + "选修": 65171, + "bilt": 65172, + "▁ini": 65173, + "▁rash": 65174, + "▁Thames": 65175, + "PublicKey": 65176, + "▁compensated": 65177, + "▁indispensable": 65178, + "各县": 65179, + "补办": 65180, + "反映出": 65181, + "▁Barton": 65182, + "▁Damage": 65183, + "▁brochure": 65184, + "▁半": 65185, + "与张": 65186, + "人寿": 65187, + "本组": 65188, + "相色谱": 65189, + "allo": 65190, + "nFoot": 65191, + "▁Lazy": 65192, + "omatous": 65193, + "▁strands": 65194, + "▁Aircraft": 65195, + "Orientation": 65196, + "▁electronically": 65197, + "我做": 65198, + "Mas": 65199, + "▁房价": 65200, + "uala": 65201, + "Suffix": 65202, + "nright": 65203, + "▁Claud": 65204, + "第一项至第三项裁定": 65205, + "▁千": 65206, + "小鸟": 65207, + "铁矿": 65208, + "在任何": 65209, + "▁Cot": 65210, + "▁Eas": 65211, + "emporal": 65212, + "▁complemented": 65213, + "了然": 65214, + "发泄": 65215, + "物件": 65216, + "bfs": 65217, + "stk": 65218, + "vill": 65219, + "▁Uni": 65220, + "也是如此": 65221, + "▁unto": 65222, + "▁palsy": 65223, + "▁tallest": 65224, + "▁Religion": 65225, + "感触": 65226, + "采光": 65227, + "黄芪": 65228, + "未知数": 65229, + "求函数": 65230, + "▁hurry": 65231, + "▁tunnels": 65232, + "丽萍": 65233, + "的设备": 65234, + "ginia": 65235, + "▁baskets": 65236, + "▁mastering": 65237, + "▁navigating": 65238, + "自幼": 65239, + "宿迁市": 65240, + ")}$$": 65241, + "重点工作": 65242, + "erring": 65243, + "estring": 65244, + "▁insist": 65245, + "▁Unified": 65246, + "▁Enforcement": 65247, + "▁complexities": 65248, + "安吉": 65249, + "找准": 65250, + "前公示": 65251, + "实在太": 65252, + "第一百二十": 65253, + "▁enthal": 65254, + "nPURPOSE": 65255, + "▁Compiler": 65256, + "▁discarded": 65257, + "▁anisotropy": 65258, + "可疑": 65259, + "的优秀": 65260, + "heid": 65261, + "LOBAL": 65262, + "▁Lemon": 65263, + "Similar": 65264, + "synchron": 65265, + "▁cranial": 65266, + "▁depolar": 65267, + "▁loosely": 65268, + "▁biblical": 65269, + "▁minimized": 65270, + "▁symmetrical": 65271, + "Swift": 65272, + "▁aunt": 65273, + "Middle": 65274, + "▁Shock": 65275, + "二〇一四年七月": 65276, + "▁Regulatory": 65277, + "粘膜": 65278, + "跨度": 65279, + "principal": 65280, + "一文": 65281, + "pto": 65282, + "encils": 65283, + "ilevel": 65284, + "conditioning": 65285, + "Rew": 65286, + "最强的": 65287, + "遥控器": 65288, + "iten": 65289, + "任免信息": 65290, + "urface": 65291, + "▁Toast": 65292, + "步兵": 65293, + "等值": 65294, + "这让": 65295, + "▁Dud": 65296, + "▁SCC": 65297, + "住吉林省": 65298, + "nEasy": 65299, + "向本院起诉": 65300, + "▁downs": 65301, + "▁kappa": 65302, + "▁Polbot": 65303, + "▁wording": 65304, + "▁Christina": 65305, + "▁Scientist": 65306, + "▁Affordable": 65307, + "▁accusations": 65308, + "▁personalised": 65309, + "坏的": 65310, + "Say": 65311, + "所以他": 65312, + "请分析": 65313, + "ansi": 65314, + "市委书记": 65315, + "zhihu": 65316, + "▁vene": 65317, + "consult": 65318, + "SETTINGS": 65319, + "optimize": 65320, + "▁trumpet": 65321, + "▁speeches": 65322, + "SerializeField": 65323, + "▁preferentially": 65324, + "独生": 65325, + "在其他": 65326, + "athe": 65327, + "经相关部门": 65328, + "nPlants": 65329, + "▁Paragu": 65330, + "▁Trends": 65331, + "▁Messenger": 65332, + "▁sensitization": 65333, + "榆树": 65334, + "追星": 65335, + "将持续": 65336, + "试用期": 65337, + "配备了": 65338, + "▁CLE": 65339, + "comings": 65340, + "▁robbery": 65341, + "▁incarcer": 65342, + "nSomething": 65343, + "VERTISEMENT": 65344, + "喷射": 65345, + "山羊": 65346, + "BRO": 65347, + "Eth": 65348, + "XYZ": 65349, + "dad": 65350, + "无数的": 65351, + "▁myc": 65352, + "我们已经": 65353, + "▁soak": 65354, + "▁Vinyl": 65355, + "▁Firebase": 65356, + "▁Colombian": 65357, + "▁anomalous": 65358, + "声卡": 65359, + "正直": 65360, + "了一起": 65361, + "▁Aleks": 65362, + "▁PROFITS": 65363, + "▁grilled": 65364, + "印记": 65365, + "夫子": 65366, + "沥干": 65367, + "莱芜": 65368, + "▁GV": 65369, + "atican": 65370, + "Uniform": 65371, + "gameObject": 65372, + "▁predefined": 65373, + "夺取": 65374, + "小众": 65375, + "果蔬": 65376, + "▁用量": 65377, + "▁TWO": 65378, + "你知道吗": 65379, + "animal": 65380, + "文物保护单位": 65381, + "▁cowork": 65382, + "▁Pleasant": 65383, + "▁foreground": 65384, + "▁bioinformatics": 65385, + "滨江": 65386, + "能手": 65387, + "idl": 65388, + "和精神": 65389, + "的措施": 65390, + "Adam": 65391, + "Give": 65392, + "▁ANA": 65393, + "基本情况": 65394, + "apiro": 65395, + "€™": 65396, + "三五": 65397, + "中超": 65398, + "别离": 65399, + "核定": 65400, + "孙某某": 65401, + "工作站": 65402, + "的资源": 65403, + "▁Dag": 65404, + "本科毕业": 65405, + "▁thrill": 65406, + "积极参加生产劳动": 65407, + "Composite": 65408, + "上新": 65409, + "杨幂": 65410, + "流派": 65411, + "突起": 65412, + "nAw": 65413, + "▁Pup": 65414, + "节能减排": 65415, + "enronXgate": 65416, + "▁bioavailability": 65417, + "穿戴": 65418, + "这道题目": 65419, + "▁sweater": 65420, + "▁Speedway": 65421, + "▁journeys": 65422, + "MappingURL": 65423, + "▁transfection": 65424, + "nBer": 65425, + "▁Temp": 65426, + "emails": 65427, + "webhook": 65428, + "▁urlparse": 65429, + "▁addictive": 65430, + "和外": 65431, + "WNr": 65432, + "与美国": 65433, + "罗马尼亚": 65434, + "▁Lite": 65435, + "nCommand": 65436, + "ometrics": 65437, + "nMultiply": 65438, + "▁pharmacologic": 65439, + "而未": 65440, + "莲子": 65441, + "从来没": 65442, + "利物浦": 65443, + "nStay": 65444, + "▁_(\\'": 65445, + "▁Jakarta": 65446, + "conditioned": 65447, + "▁essentials": 65448, + "再者": 65449, + "托盘": 65450, + "民进党": 65451, + "opress": 65452, + "\"__": 65453, + "直接把": 65454, + "创新发展": 65455, + "进行审查": 65456, + "▁Infect": 65457, + "nickname": 65458, + "▁irritation": 65459, + "▁prescribing": 65460, + "对前款第一项至第三项裁定": 65461, + "▁firefighters": 65462, + "后宫": 65463, + "谁来": 65464, + "发生过": 65465, + "是基础题": 65466, + "▁deriving": 65467, + "▁Volleyball": 65468, + "▁Congressional": 65469, + "周二": 65470, + "芬芳": 65471, + "长兴": 65472, + "风向": 65473, + "SYS": 65474, + "可以不": 65475, + "的建筑": 65476, + "lein": 65477, + "协商解决": 65478, + "解不等式": 65479, + "国家税务总局": 65480, + "▁miners": 65481, + "▁Albania": 65482, + "▁interconnected": 65483, + "ай": 65484, + "息息": 65485, + "挤出": 65486, + "仙侠异侠": 65487, + "▁Ensemble": 65488, + "受偿": 65489, + "▁во": 65490, + "▁发布": 65491, + "和各种": 65492, + "的氛围": 65493, + "社会发展": 65494, + "Attempt": 65495, + "criteria": 65496, + "▁enclosure": 65497, + "此种": 65498, + "的年龄": 65499, + "nQuick": 65500, + "▁THEORY": 65501, + "▁UNESCO": 65502, + "characters": 65503, + "▁deletions": 65504, + "sourceforge": 65505, + "▁advantageous": 65506, + "无忌": 65507, + "oha": 65508, + "嘉兴市": 65509, + "依法应予": 65510, + "nMicro": 65511, + "申请执行人申请": 65512, + "▁aneurysms": 65513, + "▁vertebral": 65514, + "减免": 65515, + "左上": 65516, + "烟气": 65517, + "rfc": 65518, + "的日常": 65519, + "USIC": 65520, + "alty": 65521, + "决定如下": 65522, + "nthan": 65523, + "▁Kaplan": 65524, + "▁parench": 65525, + "▁teaspoon": 65526, + "▁mentorship": 65527, + "ZY": 65528, + "你又": 65529, + "削减": 65530, + "奋战": 65531, + "每亩": 65532, + "理会": 65533, + "wap": 65534, + "他已经": 65535, + "Chip": 65536, + "空气净化": 65537, + "\\\\}\\\\": 65538, + "现实生活中": 65539, + "nYoung": 65540, + "▁Stable": 65541, + "▁chicks": 65542, + "系其真实意思表示": 65543, + "nRepublic": 65544, + "▁skipping": 65545, + "▁courtyard": 65546, + "▁supplementary": 65547, + "内含": 65548, + ",)\\": 65549, + "▁{|": 65550, + "cele": 65551, + "可以获得": 65552, + "外形尺寸": 65553, + "kp": 65554, + "多地": 65555, + "手腕": 65556, + "报废": 65557, + "张艺兴": 65558, + "这一个": 65559, + "食用油": 65560, + "交易中心": 65561, + "unset": 65562, + "▁玄幻小说": 65563, + "信息技术有限公司": 65564, + "singleton": 65565, + "▁Existing": 65566, + "▁analgesic": 65567, + "▁辉": 65568, + "叶柄": 65569, + "源泉": 65570, + "整数部分": 65571, + "▁creek": 65572, + "▁deduce": 65573, + "▁miracle": 65574, + "▁smoother": 65575, + "薄的": 65576, + "与现代": 65577, + "▁Valle": 65578, + "▁axioms": 65579, + "▁majors": 65580, + "MetaData": 65581, + "tposition": 65582, + "▁competencies": 65583, + "是经": 65584, + "笑声": 65585, + "红了": 65586, + "Wood": 65587, + "adeon": 65588, + "driving": 65589, + "▁enforced": 65590, + "▁fundraiser": 65591, + "松动": 65592, + "病灶": 65593, + "元人民币": 65594, + "减刑幅度": 65595, + "教育资源": 65596, + "scrap": 65597, + "▁helix": 65598, + "▁Gather": 65599, + "Craft": 65600, + "▁SNPs": 65601, + "Resize": 65602, + "▁devil": 65603, + "▁Senators": 65604, + "%(": 65605, + "示威": 65606, + "▁经济": 65607, + "机场等": 65608, + "rove": 65609, + "出租车约": 65610, + "是不可能": 65611, + "▁corro": 65612, + "并按照对方当事人": 65613, + "Highlight": 65614, + "▁Northampton": 65615, + "▁beneficiaries": 65616, + "滚筒": 65617, + "慈溪市": 65618, + "▁Rental": 65619, + "二〇一八年一月": 65620, + "东升": 65621, + "eee": 65622, + "▁用途": 65623, + "本来就": 65624, + "woff": 65625, + "▁NMDA": 65626, + "vation": 65627, + "▁Rectangle": 65628, + "▁allowance": 65629, + "上场": 65630, + "厚重": 65631, + "的美国": 65632, + "Baby": 65633, + "nIss": 65634, + "inhib": 65635, + "▁tense": 65636, + "▁结": 65637, + "这台": 65638, + "不合适": 65639, + "买东西": 65640, + "出现过": 65641, + "和别人": 65642, + "的反应": 65643, + "重新启动": 65644, + "▁Rouge": 65645, + "ancelled": 65646, + "▁Institutes": 65647, + "好歹": 65648, + "增加到": 65649, + "战斗机": 65650, + "情侣约会": 65651, + "▁Lovely": 65652, + "nproject": 65653, + "▁Katherine": 65654, + "臭氧": 65655, + "的分类": 65656, + "▁miRNA": 65657, + "▁spars": 65658, + "▁Footer": 65659, + "▁randomised": 65660, + "堡垒": 65661, + "无常": 65662, + "是天": 65663, + "短篇": 65664, + "阳泉": 65665, + "探测器": 65666, + "深度学习": 65667, + "▁Tate": 65668, + "BUTTON": 65669, + "Throws": 65670, + "▁stroll": 65671, + "动荡": 65672, + "宁海": 65673, + "无害": 65674, + "imar": 65675, + "nenv": 65676, + "▁Fuk": 65677, + "与被告刘": 65678, + "varez": 65679, + "olymer": 65680, + "ouncill": 65681, + "不求": 65682, + "后排": 65683, + "MOS": 65684, + "▁Isa": 65685, + "phire": 65686, + "可能是因为": 65687, + "therapy": 65688, + "▁migrant": 65689, + "▁progresses": 65690, + "杨紫": 65691, + "病历": 65692, + "落幕": 65693, + "你真的": 65694, + "催告书": 65695, + "新品种": 65696, + "▁Trinidad": 65697, + "datasource": 65698, + "▁contralateral": 65699, + "▁₹": 65700, + "两层": 65701, + "卖场": 65702, + "▁SNA": 65703, + "gloss": 65704, + "▁zeta": 65705, + "号执行案件": 65706, + "▁pprint": 65707, + "▁DISCLAI": 65708, + "CW": 65709, + "借此": 65710, + "成活": 65711, + "hare": 65712, + ")\\')\\": 65713, + "bower": 65714, + "umina": 65715, + "显着性差异": 65716, + "给付之日止": 65717, + "▁PROJECT": 65718, + "▁minimization": 65719, + "不须": 65720, + "居士": 65721, + "浇水": 65722, + "音色": 65723, + "GIT": 65724, + "和维护": 65725, + "▁tcp": 65726, + "实践经验": 65727, + "▁Casa": 65728, + "▁小说类型": 65729, + "▁upregulation": 65730, + "下沉": 65731, + "烧伤": 65732, + "▁fir": 65733, + "从根本上": 65734, + "toolkit": 65735, + "▁traverse": 65736, + "▁½": 65737, + "urdish": 65738, + "▁Nicol": 65739, + "▁aided": 65740, + "▁comfy": 65741, + "▁snails": 65742, + "▁distracted": 65743, + "编委": 65744, + "SMS": 65745, + "可以向": 65746, + "编辑部": 65747, + "sbin": 65748, + "xlsx": 65749, + "▁Correlation": 65750, + "但有": 65751, + "末世": 65752, + "汕头": 65753, + "磁性": 65754, + "袜子": 65755, + "nLOG": 65756, + "cedures": 65757, + "▁efflux": 65758, + "▁sounding": 65759, + "▁accelerator": 65760, + "▁microvascular": 65761, + "的眼睛": 65762, + "大学教授": 65763, + "▁telecom": 65764, + "▁aspirations": 65765, + "▁乐": 65766, + "附上": 65767, + "停下来": 65768, + "▁soo": 65769, + "抗美援朝": 65770, + "▁adorn": 65771, + "nAssume": 65772, + "第六十七条第一款": 65773, + "▁Inspired": 65774, + "▁vibrations": 65775, + "受邀": 65776, + "多变": 65777, + "逆袭": 65778, + "好几个": 65779, + "skins": 65780, + "▁Auburn": 65781, + "滤芯": 65782, + "研修": 65783, + "雇主": 65784, + "cea": 65785, + "双方已": 65786, + "予以冻结": 65787, + "然后利用": 65788, + "ahead": 65789, + "nelif": 65790, + "二〇一五年四月": 65791, + "▁Minutes": 65792, + "最高人民法院关于审理民间借贷": 65793, + "ор": 65794, + "一试": 65795, + "燕窝": 65796, + "跳槽": 65797, + "Lar": 65798, + "jas": 65799, + "立足于": 65800, + "YWdl": 65801, + "▁foul": 65802, + "nApply": 65803, + "在这种情况下": 65804, + "▁hamlet": 65805, + "▁notorious": 65806, + "体征": 65807, + "的女孩子": 65808, + "uities": 65809, + "▁nitro": 65810, + "▁mechanic": 65811, + "基质": 65812, + "领事": 65813, + "寄生虫": 65814, + "培训中心": 65815, + "工作原理": 65816, + "承担责任": 65817, + "▁godd": 65818, + "▁infancy": 65819, + "ASHINGTON": 65820, + "▁Electoral": 65821, + "卫国": 65822, + "在南": 65823, + "并把": 65824, + "相约": 65825, + "ICC": 65826, + "不停的": 65827, + "二年级": 65828, + "uchs": 65829, + "债权文书": 65830, + "学术交流": 65831, + "Dummy": 65832, + "Early": 65833, + "上单调递增": 65834, + "▁prose": 65835, + "nCategory": 65836, + "esophageal": 65837, + "两级": 65838, + "最难": 65839, + "副产品": 65840, + "的那些": 65841, + ")×(": 65842, + "▁Seat": 65843, + "▁whale": 65844, + "利浦": 65845, + "weep": 65846, + "reaction": 65847, + "▁inspected": 65848, + "▁ammunition": 65849, + "安抚": 65850, + "惬意": 65851, + "cub": 65852, + "▁BF": 65853, + "灵活性": 65854, + "duit": 65855, + "实验小学": 65856, + "虽然没有": 65857, + "LOGIN": 65858, + "▁Soil": 65859, + "▁lakh": 65860, + "licted": 65861, + "▁gmail": 65862, + "nNovels": 65863, + "Simulation": 65864, + "\")(": 65865, + "是关键": 65866, + "presence": 65867, + "ág": 65868, + "永乐": 65869, + "给它": 65870, + "辱骂": 65871, + "沙坪坝": 65872, + "▁Obt": 65873, + "▁Claude": 65874, + "▁gourmet": 65875, + "▁reunion": 65876, + "▁strategically": 65877, + "七八糟": 65878, + "十三五": 65879, + "在路上": 65880, + "▁bei": 65881, + "跨境电商": 65882, + "Neill": 65883, + "▁mang": 65884, + "▁motto": 65885, + "▁inconvenience": 65886, + "不言": 65887, + "不走": 65888, + "吓得": 65889, + "非遗": 65890, + "qtt": 65891, + "ipay": 65892, + "▁presidents": 65893, + "封信": 65894, + "江岸": 65895, + "降落": 65896, + "百科全书": 65897, + "nDiff": 65898, + "剧组": 65899, + "战后": 65900, + "送往": 65901, + "问世": 65902, + "鲜血": 65903, + "因此而": 65904, + "责任制": 65905, + "ández": 65906, + "criptive": 65907, + "▁Diploma": 65908, + "愚蠢": 65909, + "滋生": 65910, + "找到一个": 65911, + "VISED": 65912, + "wives": 65913, + "▁Caps": 65914, + "nChart": 65915, + "二〇一七年一月": 65916, + "家境": 65917, + "降压": 65918, + "做单位": 65919, + "▁Skill": 65920, + "▁Amount": 65921, + "▁probation": 65922, + "▁topography": 65923, + "烧开": 65924, + "超时": 65925, + "威海市": 65926, + "úmer": 65927, + "家庭暴力": 65928, + "▁Veterinary": 65929, + "▁而": 65930, + "你可": 65931, + "牙龈": 65932, + "笑笑": 65933, + "都好": 65934, + "在规定": 65935, + "方便的": 65936, + "▁Ris": 65937, + "▁McKin": 65938, + "▁highs": 65939, + "Culture": 65940, + "▁covalent": 65941, + "邑县": 65942, + "顺风": 65943, + "Pix": 65944, + "是你的": 65945, + "▁Lob": 65946, + "tline": 65947, + "▁OPEN": 65948, + "nFiles": 65949, + "savefig": 65950, + "▁MathJax": 65951, + "▁ammonium": 65952, + "▁portfolios": 65953, + "下垂": 65954, + "地方的": 65955, + "奇怪的": 65956, + "dies": 65957, + "▁Ivy": 65958, + "▁Yak": 65959, + "▁lia": 65960, + "存储容量": 65961, + "▁pane": 65962, + "▁Assign": 65963, + "▁cerevisiae": 65964, + "线圈": 65965, + "'][": 65966, + "▁Tay": 65967, + "具有一定": 65968, + "分支机构": 65969, + "本文主要": 65970, + "datat": 65971, + "entin": 65972, + "▁predators": 65973, + "▁prostaglandin": 65974, + "现代人": 65975, + "▁PEG": 65976, + "molecule": 65977, + "▁plaster": 65978, + "▁soothing": 65979, + "▁connectors": 65980, + "不受申请执行期间的限制": 65981, + "设立了": 65982, + "bolt": 65983, + "▁glm": 65984, + "▁fMRI": 65985, + "▁disgu": 65986, + "nPython": 65987, + "▁remake": 65988, + "痴呆": 65989, + "骗局": 65990, + "所以就": 65991, + "我们现在": 65992, + "▁剧情简介": 65993, + "▁misuse": 65994, + "▁constituted": 65995, + "向你": 65996, + "旺季": 65997, + "对我的": 65998, + "精致的": 65999, + "▁EBV": 66000, + "销售收入": 66001, + "ALLED": 66002, + "ophon": 66003, + "chanics": 66004, + "Continue": 66005, + "▁centrally": 66006, + "StringUtils": 66007, + "在全": 66008, + "她还": 66009, + "远东": 66010, + "下午茶": 66011, + "两个方面": 66012, + "Notice": 66013, + "traits": 66014, + "▁rooft": 66015, + "▁shelters": 66016, + "▁consolidated": 66017, + "XS": 66018, + "耳边": 66019, + "该片": 66020, + "sess": 66021, + "▁Marshal": 66022, + "▁cations": 66023, + "▁signage": 66024, + "长老": 66025, + "收音机": 66026, + "甚至连": 66027, + "▁CSR": 66028, + "▁Ips": 66029, + "ombies": 66030, + "▁Elder": 66031, + "efficiency": 66032, + "挑衅": 66033, + "牵手": 66034, + "nEr": 66035, + "在执行": 66036, + "直接在": 66037, + "ricanes": 66038, + "买来": 66039, + "改名": 66040, + "薪水": 66041, + "CPA": 66042, + "OND": 66043, + "也是个": 66044, + "帮助你": 66045, + "近几年来": 66046, + "▁Bhat": 66047, + "▁Godd": 66048, + "▁Sacred": 66049, + "家和": 66050, + "▁kr": 66051, + "你想要": 66052, + "nVal": 66053, + "▁第三章": 66054, + "教学内容": 66055, + "ignon": 66056, + "被子植物门": 66057, + "▁Salon": 66058, + "References": 66059, + "东南部": 66060, + "巡视员": 66061, + "很好看": 66062, + "goog": 66063, + "正常运行": 66064, + "▁Canberra": 66065, + "▁retrofit": 66066, + "▁upstairs": 66067, + "▁Montenegro": 66068, + "gid": 66069, + "结果和": 66070, + "▁创办时间": 66071, + "phants": 66072, + "▁voltages": 66073, + "▁Consultant": 66074, + "存货": 66075, + "心仪": 66076, + "消肿": 66077, + "▁FY": 66078, + "下一次": 66079, + "\"\")\\": 66080, + "rews": 66081, + "行业标准": 66082, + "nGreek": 66083, + "▁Fuzzy": 66084, + "本院依法送达": 66085, + "湖南省长沙市": 66086, + "▁nominees": 66087, + "▁physicist": 66088, + "▁mobilization": 66089, + "姨妈": 66090, + "女演员": 66091, + "不会自动": 66092, + "系统集成": 66093, + "买卖合同纠纷": 66094, + "privile": 66095, + "▁Conway": 66096, + "▁mighty": 66097, + "nFebruary": 66098, + "交错": 66099, + "壁垒": 66100, + "既不": 66101, + "端子": 66102, + "活下去": 66103, + "是我们的": 66104, + "党史学习教育": 66105, + "▁Recruitment": 66106, + "▁BufferedReader": 66107, + "丽华": 66108, + "凯旋": 66109, + "绿水": 66110, + "▁sliced": 66111, + "第一百一十九条第": 66112, + "▁ventures": 66113, + "hf": 66114, + "召集": 66115, + "推移": 66116, + "校企": 66117, + "甄嬛": 66118, + "轮椅": 66119, + "工信部": 66120, + "的状况": 66121, + "mlin": 66122, + "lipsum": 66123, + "nullptr": 66124, + "▁DAMAGE": 66125, + "▁indist": 66126, + "菩提": 66127, + "zew": 66128, + "▁Kem": 66129, + ")}$$\\": 66130, + "moves": 66131, + "kappaB": 66132, + "CONNECT": 66133, + "aggregate": 66134, + "▁householder": 66135, + "▁nud": 66136, + "xmlns": 66137, + "仲裁裁决书": 66138, + "nOctober": 66139, + "▁capsules": 66140, + "nprotected": 66141, + "抓手": 66142, + "王永": 66143, + "缝合": 66144, + "题为": 66145, + "oxia": 66146, + "▁Muse": 66147, + "▁Crack": 66148, + "▁masterpiece": 66149, + "如梦": 66150, + "还应": 66151, + "ibal": 66152, + "公共安全": 66153, + "PLACE": 66154, + "actus": 66155, + "periodic": 66156, + "nStandard": 66157, + "▁Infinite": 66158, + "enterprise": 66159, + "▁Protestant": 66160, + "小雨": 66161, + "工夫": 66162, + "燕麦": 66163, + "绒毛": 66164, + "saf": 66165, + "价值和": 66166, + "转基因": 66167, + "spam": 66168, + "▁decon": 66169, + "▁Minimal": 66170, + "▁EventArgs": 66171, + "▁expressive": 66172, + "▁postmenopausal": 66173, + "带了": 66174, + "演戏": 66175, + "Sale": 66176, + "▁Planck": 66177, + "Japanese": 66178, + "▁disband": 66179, + "▁woodland": 66180, + "compliance": 66181, + "▁Reservoir": 66182, + "洗礼": 66183, + "EOS": 66184, + "中文系": 66185, + "规模化": 66186, + "ninto": 66187, + "▁freq": 66188, + "▁Verde": 66189, + "▁Hitler": 66190, + "▁Streets": 66191, + "▁visuals": 66192, + "populations": 66193, + "defaultValue": 66194, + "中国建设银行股份有限公司": 66195, + "会用": 66196, + "未还": 66197, + "问你": 66198, + "eele": 66199, + "gear": 66200, + "▁Miy": 66201, + "aceted": 66202, + "olateral": 66203, + "▁Dynasty": 66204, + "Throwable": 66205, + "放了": 66206, + "更需要": 66207, + "ndra": 66208, + "trig": 66209, + "都是一个": 66210, + "Kafka": 66211, + "▁counselling": 66212, + "伟业": 66213, + "居易": 66214, + "chel": 66215, + "证据不足": 66216, + "nAdvert": 66217, + "▁Jensen": 66218, + "▁calibrated": 66219, + "曲靖": 66220, + "近乎": 66221, + "▁enlisted": 66222, + "▁NEGLIGENCE": 66223, + "小刚": 66224, + "小号": 66225, + "满脸": 66226, + "自立": 66227, + "职业学校": 66228, + "银行贷款": 66229, + "▁Burl": 66230, + "sexual": 66231, + "▁Activ": 66232, + "二〇一四年六月": 66233, + "compiled": 66234, + "▁opioids": 66235, + "▁Documents": 66236, + "白细胞": 66237, + "负事故": 66238, + "过了一": 66239, + "▁Telugu": 66240, + "▁fluent": 66241, + "▁mushroom": 66242, + "▁pristine": 66243, + "▁Diagnosis": 66244, + "POP": 66245, + "以及在": 66246, + "diag": 66247, + "疫情期间": 66248, + "ccoli": 66249, + "▁Appeal": 66250, + "Pagination": 66251, + "还会提供一项住宿的免费政策": 66252, + "▁Rehabilitation": 66253, + "执保": 66254, + "母校": 66255, + "TGF": 66256, + "uml": 66257, + "充分不": 66258, + "现如今": 66259, + "的事儿": 66260, + "peon": 66261, + "prit": 66262, + "undef": 66263, + "▁Reduce": 66264, + "▁Manning": 66265, + "nMunicipalities": 66266, + "中大": 66267, + "畜禽": 66268, + "蜗牛": 66269, + "题干": 66270, + "发现问题": 66271, + "▁Shoes": 66272, + "▁Coverage": 66273, + "Kh": 66274, + "专场": 66275, + "徒步": 66276, + "我先": 66277, + "cyclic": 66278, + "nSimply": 66279, + "▁contours": 66280, + "Bt": 66281, + "仓位": 66282, + "超长": 66283, + "作者的": 66284, + "几年前": 66285, + "因数是": 66286, + "等主编": 66287, + "顺利的": 66288, + "▁Tox": 66289, + "功德": 66290, + "增设": 66291, + "头盔": 66292, + "地球上": 66293, + "地铁站": 66294, + "▁Psy": 66295, + "严格落实": 66296, + "存续期间": 66297, + "金融市场": 66298, + "▁Trying": 66299, + "抛开": 66300, + "VOL": 66301, + "信息和": 66302, + "凝聚力": 66303, + "pont": 66304, + "洗浴用品": 66305, + "▁Porto": 66306, + "▁lyric": 66307, + "▁scaffolds": 66308, + "县人民检察院指派检察员": 66309, + "(#": 66310, + "微风": 66311, + "这下": 66312, + "建筑业": 66313, + "要不是": 66314, + "▁ITS": 66315, + "司法救助": 66316, + "更多的人": 66317, + "▁文章目录": 66318, + "▁cyclin": 66319, + "▁borrowing": 66320, + "Ir": 66321, + "双子": 66322, + "一大堆": 66323, + "妇产科": 66324, + "玻璃钢": 66325, + "ENSION": 66326, + "Unlock": 66327, + "▁demos": 66328, + "期限不得超过": 66329, + "pressor": 66330, + "道上": 66331, + "пис": 66332, + "Goal": 66333, + "Poll": 66334, + "undi": 66335, + "并提供了": 66336, + "▁Colony": 66337, + "虽有": 66338, + "▁nr": 66339, + "付出了": 66340, + "disp": 66341, + "solo": 66342, + "ionate": 66343, + "iterate": 66344, + "serving": 66345, + "▁Cheese": 66346, + "▁ounces": 66347, + "▁dissipation": 66348, + "拥堵": 66349, + "成本的": 66350, + "时间里": 66351, + "}/>\\": 66352, + "特别喜欢": 66353, + "ocracy": 66354, + "▁Weiss": 66355, + "Explorer": 66356, + "几度": 66357, + "重置": 66358, + "ová": 66359, + "uzi": 66360, + "vil": 66361, + "▁BTC": 66362, + "▁gynec": 66363, + "▁Laravel": 66364, + "▁chronically": 66365, + "无损": 66366, + "沼气": 66367, + "调入": 66368, + "__,\\": 66369, + "个人感觉": 66370, + "agging": 66371, + "ystick": 66372, + "rophysics": 66373, + "▁Efficiency": 66374, + "及其它": 66375, + "才会有": 66376, + "来说是": 66377, + "第二批": 66378, + "nHel": 66379, + "▁Irr": 66380, + "▁Falk": 66381, + "ecolor": 66382, + "seller": 66383, + "▁Nielsen": 66384, + "▁distort": 66385, + "▁dopaminergic": 66386, + "成大": 66387, + "水壶": 66388, + "干净的": 66389, + "风险的": 66390, + "的是一个": 66391, + "MENTS": 66392, + "nendif": 66393, + "欧洲冠军联赛": 66394, + "Upgrade": 66395, + "▁persec": 66396, + "▁compromising": 66397, + "BH": 66398, + "反面": 66399, + "正向": 66400, + "缩减": 66401, + "▁dz": 66402, + "意想不到": 66403, + "alach": 66404, + "▁Bare": 66405, + "▁sexes": 66406, + "▁Relief": 66407, + "▁turbines": 66408, + "较好地": 66409, + "broad": 66410, + "Define": 66411, + "▁communal": 66412, + "▁advancements": 66413, + "出一": 66414, + "庄子": 66415, + "新安": 66416, + "脱口": 66417, + "乡政府": 66418, + "idle": 66419, + "nmap": 66420, + "知识分子": 66421, + "饮食习惯": 66422, + "▁Seal": 66423, + "nAward": 66424, + "▁finely": 66425, + "▁ontology": 66426, + "▁dermatitis": 66427, + "FH": 66428, + "ää": 66429, + "德语": 66430, + "üss": 66431, + "能满足": 66432, + "可能就是": 66433, + "dynam": 66434, + "▁Danger": 66435, + "▁Headers": 66436, + "▁Shepherd": 66437, + "▁ceramics": 66438, + "▁misconduct": 66439, + "之门": 66440, + "估价": 66441, + "所占": 66442, + "深造": 66443, + "稀缺": 66444, + "购销": 66445, + "辗转": 66446, + "OME": 66447, + "nRock": 66448, + "Attack": 66449, + "nResult": 66450, + "▁sausage": 66451, + "满怀": 66452, + "quiz": 66453, + "▁EMP": 66454, + "Compact": 66455, + "存量": 66456, + "鲜肉": 66457, + "▁mV": 66458, + "▁IBD": 66459, + "▁Kras": 66460, + "▁Trim": 66461, + "▁cephal": 66462, + "▁Already": 66463, + "▁Cheshire": 66464, + "▁Lifetime": 66465, + "宜居": 66466, + "那份": 66467, + "最准确": 66468, + "追究其": 66469, + "····": 66470, + "elier": 66471, + "passwd": 66472, + "并列": 66473, + "是该": 66474, + "锦赛": 66475, + "在设计": 66476, + "emas": 66477, + "迅速发展": 66478, + "▁Said": 66479, + "▁Allied": 66480, + "▁Wolver": 66481, + "▁shortcuts": 66482, + "▁Confederate": 66483, + "字样": 66484, + "民辖": 66485, + "给力": 66486, + "阴凉": 66487, + "本文对": 66488, + "▁'@/": 66489, + "_____": 66490, + "▁Gmail": 66491, + "▁amphib": 66492, + "今夜": 66493, + "鲜活": 66494, + "▁Feld": 66495, + "▁frontier": 66496, + "▁advisable": 66497, + "东昌": 66498, + "停产": 66499, + "红米": 66500, + "造谣": 66501, + ");": 66502, + "体系和": 66503, + "最关键": 66504, + "tbody": 66505, + "提供了一个": 66506, + "具备执行条件时": 66507, + "▁decoded": 66508, + "内障": 66509, + "峨眉": 66510, + "shu": 66511, + ")**\\": 66512, + "nEver": 66513, + "ncould": 66514, + "tensive": 66515, + "▁preferable": 66516, + "侵袭": 66517, + "图上": 66518, + "型材": 66519, + "大头": 66520, + "形体": 66521, + "葱姜": 66522, + "血腥": 66523, + "UAL": 66524, + "▁HOW": 66525, + "QUERY": 66526, + "▁spear": 66527, + "styleUrls": 66528, + "号刑事附带民事判决": 66529, + "▁diagnosing": 66530, + "大招": 66531, + "小黑": 66532, + "摄取": 66533, + "纸箱": 66534, + "非得": 66535, + "$,\\": 66536, + "▁POP": 66537, + "▁STD": 66538, + "▁Clients": 66539, + "▁slipped": 66540, + "▁elevations": 66541, + "监事": 66542, + "酸甜": 66543, + "支持其": 66544, + "})$\\": 66545, + "自首情节": 66546, + "cosmos": 66547, + "▁pouch": 66548, + "▁Reagan": 66549, + "▁hypergly": 66550, + "▁sourcing": 66551, + "伯格": 66552, + "侵占": 66553, + "根治": 66554, + "遗弃": 66555, + "▁PN": 66556, + "pron": 66557, + "infer": 66558, + "年龄较大的": 66559, + "日刑满释放": 66560, + "▁heightened": 66561, + "▁residences": 66562, + "反省": 66563, + "液的": 66564, + "物语": 66565, + "',$": 66566, + "▁办学": 66567, + "▁距离": 66568, + "审理期间": 66569, + "积极探索": 66570, + "▁Shak": 66571, + "▁Vinc": 66572, + "的法定条件": 66573, + "osystem": 66574, + "findById": 66575, + "▁Enhanced": 66576, + "协助执行单位出具的财产查询回执": 66577, + "变大": 66578, + "多一点": 66579, + "▁Lys": 66580, + "▁HIGH": 66581, + "▁aval": 66582, + "时不需付费": 66583, + "pixels": 66584, + "▁Denis": 66585, + "城市人民法院": 66586, + "strength": 66587, + "▁concave": 66588, + "▁unpleasant": 66589, + "▁supplemental": 66590, + "姥姥": 66591, + "苍穹": 66592, + "创业的": 66593, + "开封市": 66594, + "点个赞": 66595, + "狐月山": 66596, + "nargs": 66597, + "Monday": 66598, + "nGraph": 66599, + "约是": 66600, + "罗汉": 66601, + "而至": 66602, + "订货": 66603, + "nBox": 66604, + "witz": 66605, + "或者约定": 66606, + "ovable": 66607, + "▁mercy": 66608, + "▁mantle": 66609, + "▁textured": 66610, + "几人": 66611, + "地势": 66612, + "智利": 66613, + "穿衣": 66614, + "愉快的": 66615, + "的表情": 66616, + "eeze": 66617, + "makeat": 66618, + "idental": 66619, + "▁Coupon": 66620, + "▁arsenic": 66621, + "▁Criteria": 66622, + "▁intraper": 66623, + "该文": 66624, + "▁颜色": 66625, + "heed": 66626, + "ooke": 66627, + "家庭教育": 66628, + "▁Levi": 66629, + "▁Kyoto": 66630, + "▁Stokes": 66631, + "作为被执行人的": 66632, + "▁desserts": 66633, + "▁renovations": 66634, + "大意": 66635, + "昆山市": 66636, + "骨质疏松": 66637, + "ocice": 66638, + "▁quench": 66639, + "▁composing": 66640, + "五次": 66641, + "音量": 66642, + "也不想": 66643, + "auff": 66644, + "fresh": 66645, + "▁MAPK": 66646, + "▁cereal": 66647, + "掉落": 66648, + "深入浅": 66649, + "受欢迎的": 66650, + "othelial": 66651, + "▁perioperative": 66652, + "Gy": 66653, + "不只": 66654, + "回想": 66655, + "的联系": 66656, + "一段文字": 66657, + "总体规划": 66658, + "▁Lact": 66659, + "▁Scientists": 66660, + "预装": 66661, + "最小公": 66662, + "的关注": 66663, + "问一下": 66664, + "mqtt": 66665, + "▁gust": 66666, + "住黑龙江省": 66667, + "▁Monkey": 66668, + "▁Zambia": 66669, + "▁praying": 66670, + "nChurches": 66671, + "▁Promotion": 66672, + "一再": 66673, + "学区": 66674, + "的商": 66675, + "▁CPR": 66676, + "▁Auction": 66677, + "▁Wilhelm": 66678, + "▁dilation": 66679, + "是连载于晋江文学城": 66680, + "▁conjugated": 66681, + "▁manifested": 66682, + "▁interviewing": 66683, + "剥削": 66684, + "县域": 66685, + "见习": 66686, + "▁EG": 66687, + "原发性": 66688, + "▁admir": 66689, + "blastoma": 66690, + "▁Harvest": 66691, + "▁conducts": 66692, + "时隔": 66693, + "Kar": 66694, + "生动的": 66695, + "的危害": 66696, + "的大部分": 66697, + "▁Roosevelt": 66698, + "光环": 66699, + "多岁": 66700, + "特工": 66701, + "Kim": 66702, + "作品集": 66703, + "▁HIS": 66704, + "满足条件": 66705, + "nLists": 66706, + "medicine": 66707, + "▁Tracker": 66708, + "▁magnets": 66709, + "▁additives": 66710, + "▁Generalized": 66711, + "▁А": 66712, + "可与": 66713, + "解脱": 66714, + "瑞安市": 66715, + "英烈网": 66716, + "▁ADP": 66717, + "chrane": 66718, + "▁Aston": 66719, + "▁Mitch": 66720, + "▁Stark": 66721, + "经过财产调查": 66722, + "estimate": 66723, + "▁discard": 66724, + "Xi": 66725, + "功用": 66726, + "圣人": 66727, + "FDA": 66728, + "和学生": 66729, + "ecca": 66730, + "给定一个": 66731, + "▁bait": 66732, + "房地产市场": 66733, + "really": 66734, + "ndepend": 66735, + "▁Limits": 66736, + "▁brilli": 66737, + "▁Arabian": 66738, + "▁filePath": 66739, + "zx": 66740, + "▁MH": 66741, + "▁来源": 66742, + ">\">\\": 66743, + "olev": 66744, + "peek": 66745, + "▁sop": 66746, + "▁Candida": 66747, + "▁Procedure": 66748, + "▁Georgetown": 66749, + "▁redundancy": 66750, + "地坪": 66751, + "外貌": 66752, + "和提高": 66753, + "这个名字": 66754, + "国家统计局": 66755, + "ermann": 66756, + "▁brewing": 66757, + "nBuilding": 66758, + "▁Normally": 66759, + "催款": 66760, + "绝佳": 66761, + "采收": 66762, + "很开心": 66763, + "eston": 66764, + "▁Lunch": 66765, + "assigned": 66766, + "Coordinate": 66767, + "所学": 66768, + "更像": 66769, + "碳水化合物": 66770, + "WITHOUT": 66771, + "▁Nobody": 66772, + "▁asymmet": 66773, + "でき": 66774, + "守望": 66775, + "就近": 66776, + "GTM": 66777, + "等多项": 66778, + "公司拥有": 66779, + "可能出现": 66780, + "▁closures": 66781, + "台币": 66782, + "大涨": 66783, + "年金": 66784, + "戒毒": 66785, + "是一门": 66786, + "第一期": 66787, + "chalk": 66788, + "nfull": 66789, + "severity": 66790, + "▁Tunisia": 66791, + "`<": 66792, + "▁词": 66793, + "害羞": 66794, + "院的": 66795, + "лов": 66796, + "uddle": 66797, + "▁Elim": 66798, + "▁scler": 66799, + "Coverage": 66800, + "▁jackets": 66801, + "▁Managers": 66802, + "撤离": 66803, + "杂草": 66804, + "也不敢": 66805, + "营商环境": 66806, + "their": 66807, + "▁vacu": 66808, + "采取保全措施后三十日内": 66809, + "▁particulate": 66810, + "标价": 66811, + "范例": 66812, + "霉菌": 66813, + "▁Pé": 66814, + "优秀奖": 66815, + "要考虑": 66816, + "nSay": 66817, + "国土面积": 66818, + "▁Penny": 66819, + "romycin": 66820, + "▁pacing": 66821, + "▁wikipedia": 66822, + "天成": 66823, + "纷争": 66824, + "_);\\": 66825, + "劳动模范": 66826, + "圆的周长": 66827, + "十分重要的": 66828, + "dollar": 66829, + "▁Bella": 66830, + "elapsed": 66831, + "▁superhero": 66832, + "救命": 66833, + "无须": 66834, + "荷叶": 66835, + "天花板": 66836, + "▁revisit": 66837, + "▁upregulated": 66838, + "扎根": 66839, + "能做": 66840, + "beg": 66841, + "为确保": 66842, + "的生长": 66843, + "开发利用": 66844, + "nCheers": 66845, + "plectic": 66846, + "▁notebooks": 66847, + "刚性": 66848, + "▁重量": 66849, + "Ping": 66850, + "师资力量": 66851, + "▁nicer": 66852, + "▁Boulder": 66853, + "▁monarch": 66854, + "transpose": 66855, + "聚氨": 66856, + "的少年": 66857, + "eson": 66858, + "▁UCI": 66859, + "企业提供": 66860, + "各行各业": 66861, + "▁worms": 66862, + "▁Airways": 66863, + "lı": 66864, + "干啥": 66865, + "orio": 66866, + "nWeekly": 66867, + "▁\\'\\'\\'\\": 66868, + "▁textual": 66869, + "▁follicles": 66870, + "▁prerequisite": 66871, + "交货": 66872, + "木头": 66873, + "祈祷": 66874, + "请看": 66875, + "酱香": 66876, + "▁Ré": 66877, + "不那么": 66878, + "出去玩": 66879, + "刺激性": 66880, + "当一个": 66881, + "▁Ath": 66882, + "▁HIF": 66883, + "侵权行为": 66884, + "▁Responses": 66885, + "▁⟨": 66886, + "药学": 66887, + "grab": 66888, + "临床症状": 66889, + "浪费时间": 66890, + "精益求精": 66891, + "▁circa": 66892, + "▁HOWEVER": 66893, + "scheduled": 66894, + "▁Fletcher": 66895, + "▁民": 66896, + "八一": 66897, + "虹桥": 66898, + "遵义市": 66899, + "新开传奇": 66900, + "▁roofs": 66901, + "▁condensation": 66902, + "dala": 66903, + "的人力资源": 66904, + "▁Megan": 66905, + "小猪": 66906, + "毕节": 66907, + "的实施": 66908, + "▁Hou": 66909, + "cipher": 66910, + "offline": 66911, + "不问": 66912, + "射频": 66913, + "打球": 66914, + "跟鞋": 66915, + "CDC": 66916, + "rets": 66917, + "umpy": 66918, + "决定执行": 66919, + "第二十九": 66920, + "nBlue": 66921, + "Algebra": 66922, + "▁helium": 66923, + "▁carrots": 66924, + "▁Enterprises": 66925, + "▁variational": 66926, + "▁成都": 66927, + "会因为": 66928, + "在本次": 66929, + "▁BRCA": 66930, + "tforeach": 66931, + "callbacks": 66932, + "▁amorphous": 66933, + "是在法律允许的范围内": 66934, + "中是": 66935, + "地审查": 66936, + "日用品": 66937, + "课堂上": 66938, + "ogeny": 66939, + "▁deps": 66940, + "▁François": 66941, + "▁reopened": 66942, + "对边": 66943, + "新星": 66944, + "求生": 66945, + "额头": 66946, + "家公司": 66947, + "欧洲三大": 66948, + "年参演电影": 66949, + "\\\\\",\\\\\"": 66950, + "▁bullets": 66951, + "听得": 66952, + "颠倒": 66953, + "Ped": 66954, + "与实践": 66955, + "则需要": 66956, + "心灵的": 66957, + "Being": 66958, + "▁tenor": 66959, + "nRunning": 66960, + "▁manuals": 66961, + "PropTypes": 66962, + "▁vocational": 66963, + "一族": 66964, + "企鹅": 66965, + "资源共享": 66966, + "▁penny": 66967, + "▁Telegraph": 66968, + "▁allogeneic": 66969, + "▁prosthetic": 66970, + "▁Opportunity": 66971, + "一般都": 66972, + "交警大队": 66973, + "▁QtCore": 66974, + "▁Titans": 66975, + "sendMessage": 66976, + "▁commodities": 66977, + "充沛": 66978, + "丝绸之路": 66979, + "二〇一七年八": 66980, + "终结本案的本次执行程序": 66981, + "▁catastrophic": 66982, + "▁atherosclerotic": 66983, + "沿途": 66984, + "版纸": 66985, + "电费": 66986, + "他指出": 66987, + "Eric": 66988, + "▁ACS": 66989, + "▁OCT": 66990, + "适用范围": 66991, + "ocode": 66992, + "ynthia": 66993, + "▁Murder": 66994, + "▁immunologic": 66995, + "▁Conditioning": 66996, + "桂园": 66997, + "盐城": 66998, + "简算": 66999, + "▁Lé": 67000, + "hetti": 67001, + "enches": 67002, + "▁Ferry": 67003, + "开个": 67004, + "结识": 67005, + "绞痛": 67006, + "nya": 67007, + "▁BK": 67008, + "都有着": 67009, + "habi": 67010, + "还款期限": 67011, + "Artist": 67012, + "▁miRNAs": 67013, + "variants": 67014, + "律师事务所实习律师": 67015, + "▁Unlimited": 67016, + "确有悔改表现的事实清楚": 67017, + "能给": 67018, + "要让": 67019, + "▁DSM": 67020, + "在一起的": 67021, + "▁软件名称": 67022, + "▁pitches": 67023, + "▁immersive": 67024, + "ruptedException": 67025, + "云飞": 67026, + "大宗": 67027, + "太差": 67028, + "狠抓": 67029, + "鸽子": 67030, + "cab": 67031, + "引导学生": 67032, + "忘记密码": 67033, + "▁gown": 67034, + "mington": 67035, + "▁pantry": 67036, + "承担连带清偿责任": 67037, + "▁reciproc": 67038, + "cloudflare": 67039, + "宝典": 67040, + "[])\\": 67041, + "nNews": 67042, + "▁McCl": 67043, + "对该犯减刑": 67044, + "的经营理念": 67045, + "▁ureter": 67046, + "nProgram": 67047, + "▁revital": 67048, + "MDA": 67049, + "casts": 67050, + "Europe": 67051, + "▁homic": 67052, + "analytic": 67053, + "▁Sherman": 67054, + "▁popping": 67055, + "▁Philippe": 67056, + "同月": 67057, + "石狮": 67058, + "防卫": 67059, + "的宗旨": 67060, + "▁cops": 67061, + "▁gzip": 67062, + "estead": 67063, + "▁Wander": 67064, + "▁Domestic": 67065, + "出动": 67066, + "呼气": 67067, + "巴勒": 67068, + "幽灵": 67069, + "思义": 67070, + "钱了": 67071, + "moon": 67072, + "enity": 67073, + "ipine": 67074, + "▁Yaml": 67075, + "ート": 67076, + "导热": 67077, + "昨夜": 67078, + "是中": 67079, + "了一位": 67080, + "武汉大学": 67081, + "omencl": 67082, + "iferous": 67083, + "▁badges": 67084, + "▁pleural": 67085, + "▁semigroup": 67086, + "与前": 67087, + "修身": 67088, + "都快": 67089, + "门面": 67090, + "opre": 67091, + "odore": 67092, + "waves": 67093, + "▁Mickey": 67094, + "▁troubleshooting": 67095, + "一趟": 67096, + "连续的": 67097, + "▁Recogn": 67098, + "▁Taliban": 67099, + "长和": 67100, + ")∵": 67101, + "▁wo": 67102, + "记忆力": 67103, + "IFIED": 67104, + "agara": 67105, + "ghost": 67106, + "texit": 67107, + "▁Quantity": 67108, + "下限": 67109, + "黄岛": 67110, + "ере": 67111, + "▁爱情": 67112, + "绝对的": 67113, + "突出贡献": 67114, + "▁alph": 67115, + "▁Chlor": 67116, + "{,": 67117, + "了其": 67118, + "%)\\": 67119, + "联系的": 67120, + "iran": 67121, + "可以做到": 67122, + "ograf": 67123, + "▁mason": 67124, + "Ci": 67125, + "三江": 67126, + "常温": 67127, + "弱点": 67128, + "水墨": 67129, + "而为": 67130, + "与被告陈": 67131, + "▁dass": 67132, + "▁dumps": 67133, + "credible": 67134, + "▁seekers": 67135, + "▁Processes": 67136, + "放缓": 67137, + "LABEL": 67138, + "ricula": 67139, + "▁fluxes": 67140, + ":*": 67141, + "介于": 67142, + "每到": 67143, + "表层": 67144, + "▁第七": 67145, + "不仅有": 67146, + "不好看": 67147, + "双方均": 67148, + "正式版": 67149, + "belt": 67150, + "▁laps": 67151, + "ungeon": 67152, + "(\\'/\\',": 67153, + "Matches": 67154, + "Startup": 67155, + "▁Dorothy": 67156, + "▁ignition": 67157, + "лю": 67158, + "未有": 67159, + "顽强": 67160, + "odus": 67161, + "▁MESS": 67162, + "▁Takes": 67163, + "申请撤回对被告": 67164, + "令我": 67165, + "省心": 67166, + "▁OPT": 67167, + "在执行中": 67168, + "长期从事": 67169, + "▁nmol": 67170, + "▁sess": 67171, + "▁arach": 67172, + "▁whats": 67173, + "arrants": 67174, + "▁Attention": 67175, + "[,": 67176, + "ADO": 67177, + "模式下": 67178, + "cccc": 67179, + "可以有效": 67180, + "经相关部门批准后": 67181, + "下乡": 67182, + "佳能": 67183, + "loy": 67184, + "分子式": 67185, + "台湾的": 67186, + "对于一个": 67187, + "nFeel": 67188, + "issors": 67189, + "▁Graves": 67190, + "▁Stakes": 67191, + "▁litres": 67192, + "▁contingent": 67193, + "▁microstructure": 67194, + "堕落": 67195, + "▁湖北": 67196, + "开发了": 67197, + "日期为": 67198, + "▁Fee": 67199, + "乱七八糟": 67200, + "有异议的": 67201, + "▁INST": 67202, + "▁plasm": 67203, + "▁originate": 67204, + "▁disseminated": 67205, + "丁香": 67206, + "之争": 67207, + "▁ost": 67208, + "以上学历": 67209, + "文明单位": 67210, + "patrick": 67211, + "▁Bavaria": 67212, + "▁Cochrane": 67213, + "▁Operators": 67214, + "▁Collaborative": 67215, + "我司": 67216, + "真挚": 67217, + "mnt": 67218, + "即可得解": 67219, + "环境影响": 67220, + "Dream": 67221, + "▁英文参考": 67222, + "▁prefrontal": 67223, + "一新": 67224, + "谁家": 67225, + "收费标准": 67226, + "Connor": 67227, + "▁Assets": 67228, + "▁STRICT": 67229, + "nScience": 67230, + "▁wrinkles": 67231, + "▁易": 67232, + "入味": 67233, + "后有": 67234, + "试探": 67235, + "赢家": 67236, + "那么的": 67237, + "深入了解": 67238, + "网络游戏": 67239, + "该行行长": 67240, + "Reverse": 67241, + "▁prefers": 67242, + "▁sterile": 67243, + "▁villain": 67244, + "▁benefited": 67245, + "▁forwarded": 67246, + "列宁": 67247, + "纬度": 67248, + "希望对": 67249, + "时间短": 67250, + "Matt": 67251, + "cole": 67252, + "▁Hipp": 67253, + "安市人民法院": 67254, + "itively": 67255, + "▁Giving": 67256, + "nDiscover": 67257, + "napiVersion": 67258, + "▁illustrator": 67259, + "xn": 67260, + "南湖": 67261, + "▁用户": 67262, + "情况及": 67263, + "ateurs": 67264, + "▁cmake": 67265, + "atholic": 67266, + "▁Napole": 67267, + "▁Unable": 67268, + "▁PRIMARY": 67269, + "translational": 67270, + "个点": 67271, + "优酷": 67272, + "则可": 67273, + "拼图": 67274, + "玩过": 67275, + "白沙": 67276, + "ppt": 67277, + "去哪里": 67278, + "法学院": 67279, + "经过点": 67280, + "(/\\\\": 67281, + "Vault": 67282, + "Summer": 67283, + "speaker": 67284, + "在服刑期间的表现": 67285, + "侍郎": 67286, + "每股": 67287, + "走私": 67288, + "}`,": 67289, + "是正确的": 67290, + "▁você": 67291, + "linger": 67292, + "nDecember": 67293, + "▁compressor": 67294, + "до": 67295, + "▁字": 67296, + "即事": 67297, + "受限": 67298, + "巨额": 67299, + "得失": 67300, + "蚊子": 67301, + "bsd": 67302, + "ocide": 67303, + "▁Elev": 67304, + "▁Bihar": 67305, + "▁emoji": 67306, + "compatibility": 67307, + "观望": 67308, + "punk": 67309, + "有一部分": 67310, + "▁Yacht": 67311, + "ceiving": 67312, + "▁Mohamed": 67313, + "▁suggestive": 67314, + "供给侧": 67315, + "受害人": 67316, + "bart": 67317, + "styl": 67318, + "不是什么": 67319, + "paginate": 67320, + "▁audition": 67321, + "▁prolactin": 67322, + "▁葛": 67323, + "去何": 67324, + "用语": 67325, + "来得及": 67326, + "的衣服": 67327, + "pond": 67328, + "目前已经": 67329, + "▁Greatest": 67330, + "▁medically": 67331, + "变性": 67332, + "无能": 67333, + "笔误": 67334, + "党组副书记": 67335, + "▁Spectro": 67336, + "▁planners": 67337, + "▁tolerant": 67338, + "不败": 67339, + "多用": 67340, + "有情": 67341, + "要走": 67342, + "▁wi": 67343, + "大多数的": 67344, + "成为一名": 67345, + "▁PLAY": 67346, + "▁Wellness": 67347, + "▁Newtonsoft": 67348, + "▁会": 67349, + "地对": 67350, + "说的话": 67351, + "IDEO": 67352, + "都是为了": 67353, + "▁Locks": 67354, + "PROCESS": 67355, + "enumerate": 67356, + "Invocation": 67357, + "ве": 67358, + "开播": 67359, + "认购": 67360, + "的不断": 67361, + "被授予": 67362, + "combe": 67363, + "nthem": 67364, + "▁Polyte": 67365, + "▁widths": 67366, + "▁garment": 67367, + "▁jurisdictions": 67368, + "卡牌": 67369, + "东营市": 67370, + "▁gtk": 67371, + "儿童或者": 67372, + "▁sailed": 67373, + "▁Bacillus": 67374, + "▁surgically": 67375, + "酒店还会提供一项住宿的免费政策": 67376, + "人脉": 67377, + "无用": 67378, + "玩乐": 67379, + "重回": 67380, + "▁|>": 67381, + "bots": 67382, + "libc": 67383, + "▁Aster": 67384, + "▁telesc": 67385, + "▁Circular": 67386, + "▁settlers": 67387, + "Jean": 67388, + "▁UAV": 67389, + "尽量不要": 67390, + "ughed": 67391, + "评审委员会": 67392, + "FFFFFF": 67393, + "inians": 67394, + "▁Rocks": 67395, + "或者申请仲裁": 67396, + "Printer": 67397, + "ranking": 67398, + "▁Declaration": 67399, + "哎呀": 67400, + "售楼": 67401, + "案情": 67402, + "步枪": 67403, + "阳镇": 67404, + "的场景": 67405, + "genes": 67406, + "might": 67407, + "进一步完善": 67408, + "ostomy": 67409, + "▁rounding": 67410, + "nCitations": 67411, + "Constraints": 67412, + "学风": 67413, + "树下": 67414, + "ppm": 67415, + "发挥着": 67416, + "系统性": 67417, + "每平方米": 67418, + "病毒感染": 67419, + "nhtml": 67420, + "spots": 67421, + "▁Blvd": 67422, + "▁dispose": 67423, + "directive": 67424, + "▁Workflow": 67425, + "▁rectangles": 67426, + "边框": 67427, + "连线": 67428, + "长篇": 67429, + "摄氏度": 67430, + "的次数": 67431, + "“\\\\(": 67432, + "率分别为": 67433, + "含有丰富的": 67434, + "nApart": 67435, + "▁CLASS": 67436, + "▁staircase": 67437, + "では": 67438, + "一动": 67439, + "开方": 67440, + "银色": 67441, + "而是在": 67442, + "hive": 67443, + "宣传活动": 67444, + "工商管理": 67445, + "裁定驳回": 67446, + "Techn": 67447, + "▁LGBTQ": 67448, + "▁caves": 67449, + "▁IOError": 67450, + "▁Waterloo": 67451, + "Ru": 67452, + "不愧": 67453, + "卒中": 67454, + "增压": 67455, + "菜鸟": 67456, + "Dar": 67457, + "义务的": 67458, + "esser": 67459, + "urved": 67460, + "▁guessed": 67461, + "▁简": 67462, + "之恋": 67463, + "瘫痪": 67464, + "Eye": 67465, + "与客户": 67466, + "我开始": 67467, + "▁/><": 67468, + "facts": 67469, + "▁calor": 67470, + "Germany": 67471, + "▁estimators": 67472, + "万方": 67473, + "SCA": 67474, + "监护人": 67475, + "Cash": 67476, + "OVER": 67477, + "▁英格兰": 67478, + "areth": 67479, + "▁improv": 67480, + "▁finalists": 67481, + "▁upholstery": 67482, + "刘邦": 67483, + "nSU": 67484, + "▁或者": 67485, + "率达到": 67486, + "nADD": 67487, + "▁plasmin": 67488, + "▁probing": 67489, + "▁SECURITY": 67490, + "▁fittings": 67491, + "▁peninsula": 67492, + "Af": 67493, + "不就": 67494, + "诡异": 67495, + "高中文化": 67496, + "clave": 67497, + "ngroup": 67498, + "▁rebel": 67499, + "▁pathologies": 67500, + "对被执行人的财产进行了调查": 67501, + "密闭": 67502, + "敬畏": 67503, + "红糖": 67504, + "成立后": 67505, + "本决定": 67506, + "Birth": 67507, + "tconfig": 67508, + "adaptive": 67509, + "▁duplicated": 67510, + "▁烤": 67511, + "山海": 67512, + "王志": 67513, + "造船": 67514, + "ных": 67515, + "上进行": 67516, + "venth": 67517, + "电源适配器": 67518, + "ernary": 67519, + "▁Schwartz": 67520, + "▁immersed": 67521, + "▁organise": 67522, + "第二百五十七条第六": 67523, + "亚种": 67524, + "过节": 67525, + "阻滞": 67526, + "开展的": 67527, + ")\\'\\": 67528, + "▁];\\": 67529, + "nSide": 67530, + "▁Panc": 67531, + "▁slick": 67532, + "ronectin": 67533, + "▁Starbucks": 67534, + "▁℃": 67535, + "SiO": 67536, + "izh": 67537, + "丰富了": 67538, + "出版物": 67539, + "ovis": 67540, + "▁LTD": 67541, + "情况属实": 67542, + "执行一案": 67543, + "中医药大学": 67544, + "乙醇含量为": 67545, + "▁leasing": 67546, + "气和": 67547, + "黄埔": 67548, + "牛皮癣": 67549, + "urllib": 67550, + "whatwg": 67551, + "▁einer": 67552, + "小说网的一部": 67553, + "▁rebels": 67554, + "Listeners": 67555, + "号之": 67556, + "âte": 67557, + "▁返回": 67558, + "认识了": 67559, + "nLee": 67560, + "▁RMS": 67561, + "有不同的": 67562, + "nJean": 67563, + "webui": 67564, + "让我们一起": 67565, + "ocusing": 67566, + "paramet": 67567, + "nPolitics": 67568, + "▁Collective": 67569, + "▁wonderfully": 67570, + "▁向": 67571, + "君主": 67572, + "如水": 67573, + "▁暖气": 67574, + "指导和": 67575, + "▁sue": 67576, + "infect": 67577, + "▁Turbo": 67578, + "Translate": 67579, + "▁Callback": 67580, + "▁Frontier": 67581, + "▁archival": 67582, + "&:": 67583, + "电镀": 67584, + "\">&": 67585, + "签署了": 67586, + "rums": 67587, + "美国政府": 67588, + "eming": 67589, + "iphery": 67590, + "▁GENER": 67591, + "▁opaque": 67592, + "▁Ideally": 67593, + "▁softball": 67594, + "gw": 67595, + "想把": 67596, + "胜地": 67597, + "在你的": 67598, + "宜宾市": 67599, + "▁THERE": 67600, + "第一百零三条": 67601, + "bitcoin": 67602, + "▁Folder": 67603, + "▁hashCode": 67604, + "但仍": 67605, + "刘晓": 67606, + "大洋": 67607, + "大类": 67608, + "水浒": 67609, + "点滴": 67610, + "idor": 67611, + "▁spur": 67612, + "年出版的图书": 67613, + "可以在判决书送达之日起十五日内": 67614, + "owe": 67615, + "收录了": 67616, + "的焦点": 67617, + "HPLC": 67618, + "历史悠久": 67619, + "学习能力": 67620, + "现在很多": 67621, + "camel": 67622, + "▁PASS": 67623, + "Animal": 67624, + "如未按本判决": 67625, + "▁barbecue": 67626, + "▁convection": 67627, + "按月": 67628, + "游人": 67629, + "跳绳": 67630, + "gic": 67631, + "rei": 67632, + "要求和": 67633, + "▁Leh": 67634, + "▁Meh": 67635, + "nComb": 67636, + "▁Gone": 67637, + "▁scorer": 67638, + "nInsects": 67639, + "▁pledged": 67640, + "▁Including": 67641, + "小波": 67642, + "层级": 67643, + "抢夺": 67644, + "漳州": 67645, + "在当地": 67646, + "说到底": 67647, + "主体责任": 67648, + "深入研究": 67649, + "思想政治教育": 67650, + "▁urgency": 67651, + "县人民检察院指控": 67652, + "年龄较大的儿童或者": 67653, + "▁abstracts": 67654, + "fem": 67655, + "双眼皮": 67656, + "Spin": 67657, + "▁ESR": 67658, + "IONAL": 67659, + "▁clog": 67660, + "ickers": 67661, + "nation": 67662, + "▁wickets": 67663, + "▁Williamson": 67664, + "流年": 67665, + "陪我": 67666, + "魔力": 67667, + "inders": 67668, + "latable": 67669, + "nThroughout": 67670, + "报仇": 67671, + "ynn": 67672, + "不能说": 67673, + "其实我": 67674, + "担保法": 67675, + "istema": 67676, + "widehat": 67677, + "▁Pavilion": 67678, + "▁Multivariate": 67679, + "无异": 67680, + "注塑": 67681, + "背负": 67682, + "нов": 67683, + "副区长": 67684, + "▁HELP": 67685, + "nCorrect": 67686, + "直觉": 67687, + "稀有": 67688, + "解开": 67689, + "asu": 67690, + "shit": 67691, + "▁Goa": 67692, + "▁dal": 67693, + "小朋友们": 67694, + "我们的生活": 67695, + "▁Shirley": 67696, + "countries": 67697, + "▁aspiring": 67698, + "▁기": 67699, + "按揭": 67700, + "骆驼": 67701, + "十八大": 67702, + "的唯一": 67703, + "离退休": 67704, + "能求出": 67705, + "tcmd": 67706, + "▁Teresa": 67707, + "▁divert": 67708, + "▁wander": 67709, + "recorded": 67710, + "▁utterly": 67711, + "▁possessing": 67712, + "施加": 67713, + "篆刻": 67714, + "解法": 67715, + "分数的": 67716, + "MANA": 67717, + "lé": 67718, + "土豪": 67719, + "看点": 67720, + "都对": 67721, + "魏晋": 67722, + "Apr": 67723, + "▁特性": 67724, + "nsee": 67725, + "Fatalf": 67726, + "planned": 67727, + "yroidism": 67728, + "nConstruction": 67729, + "▁relativistic": 67730, + "前十": 67731, + "求婚": 67732, + "深耕": 67733, + "crt": 67734, + "来找出": 67735, + "的网站": 67736, + "igor": 67737, + "细致分析": 67738, + "sponsored": 67739, + "▁decisive": 67740, + "▁prostatic": 67741, + "{/": 67742, + "天际": 67743, + "就当": 67744, + "片长": 67745, + "完全不": 67746, + "主要还是": 67747, + "bedroom": 67748, + "▁estates": 67749, + "▁markings": 67750, + "▁converters": 67751, + "nDevelopment": 67752, + "▁shareholder": 67753, + "MMMMMMMMMMMMMMMM": 67754, + "се": 67755, + "山寨": 67756, + "狙击": 67757, + "解出": 67758, + "赛后": 67759, + "ONSE": 67760, + "▁Tus": 67761, + "▁出版日期": 67762, + "illian": 67763, + "nAlways": 67764, + "▁Tunnel": 67765, + "▁diagon": 67766, + "▁phospholipid": 67767, + "一的": 67768, + "北仑": 67769, + "柯南": 67770, + "第三步": 67771, + "车辆的": 67772, + "另行支付": 67773, + "潇湘书院": 67774, + "▁Gore": 67775, + "tailed": 67776, + "▁semic": 67777, + "用房": 67778, + "开放的": 67779, + "Bern": 67780, + "FACT": 67781, + "两个人的": 67782, + "mails": 67783, + "nArea": 67784, + "▁distorted": 67785, + "天山": 67786, + "漫游": 67787, + "牧场": 67788, + "\\\\@": 67789, + "这里面": 67790, + "不仅如此": 67791, + "赔偿责任": 67792, + "▁Bret": 67793, + "欧洲三大杯": 67794, + "▁Ludwig": 67795, + "▁Mobility": 67796, + "选项中挑选出正确答案": 67797, + "confirmation": 67798, + "生效法律文书所确定的义务": 67799, + "ValidationError": 67800, + "盛开": 67801, + "zap": 67802, + "英文名称": 67803, + "▁Bard": 67804, + "▁jars": 67805, + "ichigan": 67806, + "▁electr": 67807, + "归根": 67808, + "育苗": 67809, + "▁NOR": 67810, + "回答一个": 67811, + "▁trypt": 67812, + "HashSet": 67813, + "ên": 67814, + "乱的": 67815, + "作答": 67816, + "城墙": 67817, + "藏品": 67818, + "Lean": 67819, + "▁NGC": 67820, + "Solid": 67821, + "alarm": 67822, + "profits": 67823, + "visitor": 67824, + "▁oceans": 67825, + "variance": 67826, + "Different": 67827, + "▁imposing": 67828, + "xr": 67829, + "一战": 67830, + "大跌": 67831, + "abr": 67832, + "工作岗位": 67833, + "比较容易": 67834, + "customers": 67835, + "一目": 67836, + "变小": 67837, + "撕裂": 67838, + "淡化": 67839, + "粘度": 67840, + "用手机": 67841, + "MEDIA": 67842, + "nField": 67843, + "▁cloudy": 67844, + "satellite": 67845, + "▁NSObject": 67846, + "▁Regulations": 67847, + "▁earthquakes": 67848, + "内裤": 67849, + "大衣": 67850, + "实习生": 67851, + "▁Org": 67852, + "▁quo": 67853, + "第六十四条之规定": 67854, + "▁Portsmouth": 67855, + "▁negligence": 67856, + "兴旺": 67857, + "静音": 67858, + "都不一样": 67859, + "STAND": 67860, + "▁typh": 67861, + "William": 67862, + "▁policym": 67863, + "▁outperforms": 67864, + "▁referencing": 67865, + "中将": 67866, + "nPo": 67867, + "我只能": 67868, + "清楚了": 67869, + "▁Machinery": 67870, + "▁forwarding": 67871, + "▁Plane": 67872, + "▁waking": 67873, + "最高人民检察院": 67874, + "如皋": 67875, + "宣传片": 67876, + "要求您": 67877, + "宏观经济": 67878, + "▁Winc": 67879, + "alanine": 67880, + "interopRequire": 67881, + "普法": 67882, + "眩晕": 67883, + "成员国": 67884, + "Prem": 67885, + "WARD": 67886, + "nyder": 67887, + "▁Oaks": 67888, + "合法的借贷关系": 67889, + "▁Received": 67890, + "▁别": 67891, + "▁Moto": 67892, + "▁ellipt": 67893, + "▁Goldman": 67894, + "▁Riemannian": 67895, + "Bu": 67896, + "不舍": 67897, + "系原告": 67898, + "▁JEE": 67899, + "可以看看": 67900, + "lasty": 67901, + "▁anthem": 67902, + "ilitating": 67903, + "▁Byzantine": 67904, + "▁thrilling": 67905, + "▁fulfillment": 67906, + "学府": 67907, + "理应": 67908, + "翻新": 67909, + "Ess": 67910, + "`${": 67911, + "▁bru": 67912, + "▁gin": 67913, + "shock": 67914, + "assertIs": 67915, + "▁Germans": 67916, + "▁ancestor": 67917, + "▁oversized": 67918, + "▁Liberation": 67919, + "Sport": 67920, + "idered": 67921, + "▁Hartford": 67922, + "▁deliberate": 67923, + "▁retinopathy": 67924, + "▁pharmacology": 67925, + "IDDLE": 67926, + "atches": 67927, + "Reporter": 67928, + "▁grazing": 67929, + "▁cavities": 67930, + "▁bilingual": 67931, + "塞罗": 67932, + "极佳": 67933, + "屏幕比例": 67934, + "Queen": 67935, + "▁fringe": 67936, + "Articles": 67937, + "▁Celsius": 67938, + "可有": 67939, + "城北": 67940, + "的现实": 67941, + "ITCH": 67942, + "ixOS": 67943, + "avorites": 67944, + "▁carpets": 67945, + "nAssuming": 67946, + "外媒": 67947, + "林某": 67948, + "饭圈": 67949, + ")÷(": 67950, + "总体来说": 67951, + "umbling": 67952, + "▁relativity": 67953, + "中药材": 67954, + "底面积": 67955, + "判处死刑": 67956, + "poster": 67957, + "▁hurts": 67958, + "▁deepest": 67959, + "作为被执行人的公民": 67960, + "士顿": 67961, + "走去": 67962, + "AAF": 67963, + "Jar": 67964, + "goto": 67965, + "▁Zion": 67966, + "▁petals": 67967, + "交房": 67968, + "动摇": 67969, + "同为": 67970, + "造福": 67971, + "pom": 67972, + "uso": 67973, + "相较于": 67974, + "部位的": 67975, + "nTri": 67976, + "▁PDT": 67977, + "服务机构": 67978, + "tauto": 67979, + "▁ctrl": 67980, + "▁sincere": 67981, + "changelog": 67982, + "nCalifornia": 67983, + "▁PowerPoint": 67984, + "▁evacuation": 67985, + "instructions": 67986, + "伤残": 67987, + "蟑螂": 67988, + "Les": 67989, + "▁OM": 67990, + "的增大而": 67991, + "▁peas": 67992, + "nReally": 67993, + "nDefault": 67994, + "QM": 67995, + "帐篷": 67996, + "西汉": 67997, + "scm": 67998, + "了我们": 67999, + "儿童的": 68000, + "多边形": 68001, + "宿州市": 68002, + "思考题": 68003, + "iesta": 68004, + "▁Cone": 68005, + "▁furthermore": 68006, + "▁unidentified": 68007, + "异世": 68008, + "弗兰": 68009, + "袋子": 68010, + "躺着": 68011, + "afi": 68012, + "且仅当": 68013, + "某一个": 68014, + "的普通": 68015, + "▁bridal": 68016, + "▁contrasts": 68017, + "▁玉": 68018, + "一班": 68019, + "发帖": 68020, + "湿热": 68021, + "Zbl": 68022, + "sav": 68023, + "▁Spart": 68024, + "▁tester": 68025, + "Mutation": 68026, + "▁Carlisle": 68027, + "▁serviced": 68028, + "▁survivor": 68029, + "▁coastline": 68030, + "▁Physicians": 68031, + "▁ResponseEntity": 68032, + "JU": 68033, + "他所": 68034, + "白衣": 68035, + "nMil": 68036, + "ulsa": 68037, + "▁Conv": 68038, + "▁MATH": 68039, + "Updates": 68040, + "▁pumped": 68041, + "▁seldom": 68042, + "▁Colleges": 68043, + "▁aerospace": 68044, + "▁Authorization": 68045, + "中国平安财产保险股份有限公司": 68046, + "▁生": 68047, + "舌头": 68048, + "hoc": 68049, + "▁LB": 68050, + "▁查询": 68051, + "ogie": 68052, + "▁Siem": 68053, + "numberOf": 68054, + "nsomething": 68055, + "omposition": 68056, + "nADVERTISEMENT": 68057, + "自由基": 68058, + "那么就": 68059, + "damage": 68060, + "▁Curry": 68061, + "nSpring": 68062, + "▁Dynamo": 68063, + "关羽": 68064, + "启迪": 68065, + "李玉": 68066, + "还给": 68067, + "三门峡": 68068, + "应该在": 68069, + "淮北市": 68070, + "::::": 68071, + "prote": 68072, + "tsize": 68073, + "CLUDED": 68074, + "▁Trent": 68075, + "▁scarc": 68076, + "▁enacted": 68077, + "ochemically": 68078, + "▁complements": 68079, + "讨好": 68080, + "参加过": 68081, + "开发和": 68082, + "Piece": 68083, + "Frames": 68084, + "解本题的关键": 68085, + "actively": 68086, + "reetings": 68087, + "▁causative": 68088, + "▁unofficial": 68089, + "几款": 68090, + "远近": 68091, + "▁Xu": 68092, + "发展与": 68093, + "可有效": 68094, + "正因为": 68095, + "聚乙烯": 68096, + "里程碑": 68097, + "需要您": 68098, + "▁wie": 68099, + "还有一种": 68100, + "▁noun": 68101, + "中华英烈网": 68102, + "cannot": 68103, + "▁blink": 68104, + "classic": 68105, + "solving": 68106, + "▁streamline": 68107, + "▁rearrangement": 68108, + "受访": 68109, + "挽救": 68110, + "被困": 68111, + "送的": 68112, + "▁dl": 68113, + "五花肉": 68114, + "房产证": 68115, + "▁FFT": 68116, + "服务体系": 68117, + "nIran": 68118, + "▁Leading": 68119, + "▁missionary": 68120, + "▁峰": 68121, + "▁龚": 68122, + "安庆": 68123, + "那只": 68124, + "主演的": 68125, + "以满足": 68126, + "附加费用": 68127, + "andex": 68128, + "▁INCIDENT": 68129, + "▁teachings": 68130, + "多说": 68131, + "酸碱": 68132, + ":&#": 68133, + "▁Bayes": 68134, + "▁Pulse": 68135, + "二〇一六年一": 68136, + "▁Ability": 68137, + "▁comparatively": 68138, + "本裁定送达后立即发生法律效力": 68139, + "中获得": 68140, + "冬奥会": 68141, + "▁bor": 68142, + "很重要的": 68143, + "▁triang": 68144, + "▁Logistic": 68145, + "凭着": 68146, + "献给": 68147, + "盖章": 68148, + "aned": 68149, + "▁NPC": 68150, + "突发事件": 68151, + "finding": 68152, + "Handling": 68153, + "▁Brownian": 68154, + "专区": 68155, + "换取": 68156, + "格调": 68157, + "讲堂": 68158, + "会成为": 68159, + "银行业": 68160, + "hark": 68161, + "jeto": 68162, + "nPet": 68163, + "mostly": 68164, + "▁symposium": 68165, + "召回": 68166, + "学和": 68167, + "ETF": 68168, + "nHa": 68169, + "也不好": 68170, + "执行官": 68171, + "民族的": 68172, + "estag": 68173, + "▁deduced": 68174, + "▁uniforms": 68175, + "▁inhabited": 68176, + "▁migrating": 68177, + "提早": 68178, + "ARA": 68179, + "NPs": 68180, + "▁HW": 68181, + "▁教育": 68182, + "小姑娘": 68183, + "的心灵": 68184, + "nRay": 68185, + "▁QCD": 68186, + "四边形是": 68187, + "期限为一年": 68188, + "Sports": 68189, + "scenes": 68190, + "▁Capture": 68191, + "▁sterling": 68192, + "▁Alexandra": 68193, + "▁lymphatic": 68194, + "活得": 68195, + "▁uv": 68196, + "多么的": 68197, + "nreg": 68198, + "▁rests": 68199, + "▁Zimmer": 68200, + "根基": 68201, + "波形": 68202, + "IGF": 68203, + "▁kJ": 68204, + "自己对": 68205, + "varying": 68206, + "▁livelihood": 68207, + "▁arrhythmias": 68208, + "▁transcribed": 68209, + "▁LoggerFactory": 68210, + "指着": 68211, + "相减": 68212, + "迟到": 68213, + "{%\\": 68214, + "ência": 68215, + "▁brun": 68216, + "的一元二次方程": 68217, + "Patterns": 68218, + "▁Bundesliga": 68219, + "▁respectful": 68220, + "▁surjective": 68221, + "▁anisotropic": 68222, + "也应": 68223, + "盛行": 68224, + "功能障碍": 68225, + "▁Mesa": 68226, + "两江": 68227, + "打过": 68228, + "时速": 68229, + "聊城": 68230, + "读研": 68231, + "的斜率": 68232, + "Whit": 68233, + "▁relieved": 68234, + "▁nl": 68235, + "天左右": 68236, + "大概就是": 68237, + "▁Mice": 68238, + "基层党组织": 68239, + "▁monos": 68240, + "avorable": 68241, + "大巴": 68242, + "拜登": 68243, + "新课": 68244, + "自已": 68245, + "连忙": 68246, + "金凤": 68247, + "又开始": 68248, + "履行的": 68249, + "猕猴桃": 68250, + "为了提高": 68251, + "ircle": 68252, + "▁房价信息": 68253, + "二〇一七年十": 68254, + "untarily": 68255, + "▁duality": 68256, + "▁murders": 68257, + "▁Emerging": 68258, + "▁polymorphic": 68259, + "因地": 68260, + "多做": 68261, + "nah": 68262, + "自然是": 68263, + "起诉状": 68264, + "(\\'[": 68265, + "▁ecl": 68266, + "栽培技术": 68267, + "▁puff": 68268, + "本院已依法": 68269, + "▁mural": 68270, + "▁novice": 68271, + "IFICATION": 68272, + "▁condensed": 68273, + "相依": 68274, + "这门": 68275, + "公司以": 68276, + "麦当劳": 68277, + "▁Kob": 68278, + "文化程度": 68279, + "ampsia": 68280, + "▁心": 68281, + "午后": 68282, + "迈进": 68283, + "auk": 68284, + "cdc": 68285, + "战争的": 68286, + "▁Deals": 68287, + "▁Essay": 68288, + "的委托代理人": 68289, + "▁McCain": 68290, + "▁Xavier": 68291, + "▁grease": 68292, + "tresponse": 68293, + "▁efficacious": 68294, + "▁Dependencies": 68295, + "特级": 68296, + "遍及": 68297, + "kHz": 68298, + "上来说": 68299, + "提供给": 68300, + "esan": 68301, + "先予执行": 68302, + "apons": 68303, + "nTell": 68304, + "▁Joey": 68305, + "toxicity": 68306, + "▁Clayton": 68307, + "▁enquiry": 68308, + "诉讼费由被告承担": 68309, + "▁optimism": 68310, + "checkpoint": 68311, + "▁waterfall": 68312, + "把关": 68313, + "adc": 68314, + "▁\\\\&": 68315, + "学习成绩": 68316, + "▁Broker": 68317, + "▁piston": 68318, + "▁stamped": 68319, + "▁ligation": 68320, + "▁Challenges": 68321, + "▁insightful": 68322, + "痛点": 68323, + "控制和": 68324, + "植物油": 68325, + "klass": 68326, + "ngOnInit": 68327, + "▁Theresa": 68328, + "▁crowned": 68329, + "▁foliage": 68330, + "▁trending": 68331, + "▁clustered": 68332, + "▁maternity": 68333, + "▁normative": 68334, + "▁summaries": 68335, + "▁Developing": 68336, + "团圆": 68337, + "均以": 68338, + "法令": 68339, + "交易的": 68340, + "大约是": 68341, + "uttg": 68342, + "pable": 68343, + "▁Goods": 68344, + "认罪态度较好": 68345, + "jectory": 68346, + "▁Anders": 68347, + "抢险": 68348, + "觉得他": 68349, + "▁DLL": 68350, + "监控系统": 68351, + "发展和改革": 68352, + "Broker": 68353, + "▁keeper": 68354, + "高新技术产业开发区": 68355, + "▁anthology": 68356, + "▁conformal": 68357, + "▁thrombocyt": 68358, + "小车": 68359, + "海湾": 68360, + "鳞片": 68361, + "▁XV": 68362, + "世纪初": 68363, + "培养基": 68364, + "宝鸡市": 68365, + "耐高温": 68366, + "\\'];": 68367, + "jira": 68368, + "▁awe": 68369, + "nCapt": 68370, + "plist": 68371, + "▁Drum": 68372, + "CREMENT": 68373, + "▁Canton": 68374, + "▁lumber": 68375, + "astropods": 68376, + "▁disparity": 68377, + "jw": 68378, + "但要": 68379, + "更长": 68380, + "SUM": 68381, + "coc": 68382, + "做出最佳": 68383, + "服从管教": 68384, + "remely": 68385, + "▁OpenGL": 68386, + "▁pistol": 68387, + "operated": 68388, + "▁INTEGER": 68389, + "▁eclectic": 68390, + "▁shortcomings": 68391, + "多发": 68392, + "Comm": 68393, + "odian": 68394, + "mapped": 68395, + "approval": 68396, + "erdinand": 68397, + "ント": 68398, + "可以买": 68399, + "注册表": 68400, + "COVID": 68401, + "webdriver": 68402, + "▁solidarity": 68403, + "いて": 68404, + "发财": 68405, + "报关": 68406, + "星系": 68407, + "的区域": 68408, + "医务人员": 68409, + "滨海新区": 68410, + "▁reacts": 68411, + "▁shores": 68412, + "▁Replies": 68413, + "▁showroom": 68414, + "▁thematic": 68415, + "▁Patterson": 68416, + "也纳": 68417, + "抗压": 68418, + "红木": 68419, + "dub": 68420, + "▁]',": 69324, + "nnp": 69325, + "(\\':": 69326, + "▁Mae": 69327, + "元为基数": 69328, + "▁Café": 69329, + "对应的选项": 69330, + "▁milling": 69331, + "▁universally": 69332, + "▁neutralizing": 69333, + "兴国": 69334, + "再有": 69335, + "定罪": 69336, + "nEv": 69337, + "第八条": 69338, + "▁CCD": 69339, + "claims": 69340, + "▁grating": 69341, + "▁synapse": 69342, + "▁handheld": 69343, + "▁polyethylene": 69344, + "偏高": 69345, + "转行": 69346, + "PHA": 69347, + "OTAL": 69348, + "▁Dept": 69349, + "自然保护区": 69350, + "重庆时时彩": 69351, + "▁chords": 69352, + "▁Catholics": 69353, + "之手": 69354, + "美式": 69355, + "▁CY": 69356, + "六安市": 69357, + "方式是": 69358, + "羽绒服": 69359, + "▁Lean": 69360, + "可以向人民法院": 69361, + "▁semifinals": 69362, + "▁certifications": 69363, + "二个": 69364, + "MOVE": 69365, + "印象深刻": 69366, + "▁conqu": 69367, + "▁supreme": 69368, + "▁blindness": 69369, + "之首": 69370, + "正气": 69371, + "迪亚": 69372, + "kot": 69373, + "判别式": 69374, + "大小的": 69375, + "Season": 69376, + "▁Beaver": 69377, + "▁feared": 69378, + "片中": 69379, + "觉悟": 69380, + "顺手": 69381, + "))^": 69382, + "▁[%": 69383, + "一起吃": 69384, + "当天的": 69385, + "▁STO": 69386, + "ichen": 69387, + "▁scars": 69388, + "combine": 69389, + "▁Assess": 69390, + "▁Quotes": 69391, + "▁lineages": 69392, + "▁dataframe": 69393, + "▁ribosomal": 69394, + "上过": 69395, + "嘉善": 69396, + "暴躁": 69397, + "警报": 69398, + "的天空": 69399, + "的路上": 69400, + "▁dow": 69401, + "暂不具备": 69402, + "nAction": 69403, + "▁motives": 69404, + "▁newline": 69405, + "▁stranded": 69406, + "▁modifiers": 69407, + "Deserialize": 69408, + "▁prominence": 69409, + "▁confinement": 69410, + "三世": 69411, + "下周": 69412, + "害虫": 69413, + "建民": 69414, + "放着": 69415, + "很高兴": 69416, + "金字塔": 69417, + "Known": 69418, + "▁Toll": 69419, + "Victor": 69420, + "作出正确判断": 69421, + "▁shooters": 69422, + "▁Principle": 69423, + "▁Extensions": 69424, + "洛夫": 69425, + "与文化": 69426, + "总价中": 69427, + "paul": 69428, + "中心对称": 69429, + "负面影响": 69430, + "刑罚执行机关": 69431, + "▁snakes": 69432, + "TypeName": 69433, + "没有约定或者约定": 69434, + "▁Genetics": 69435, + "▁Greenland": 69436, + "▁Networking": 69437, + "▁uncontrolled": 69438, + "张志": 69439, + "雾霾": 69440, + "第六届": 69441, + "HOLD": 69442, + "▁FGF": 69443, + "所确定的": 69444, + "▁buoy": 69445, + "▁juicy": 69446, + "▁manufactures": 69447, + "HJ": 69448, + "▁利": 69449, + "玩转": 69450, + "轮候": 69451, + "顶着": 69452, + "FTP": 69453, + "▁Mp": 69454, + "在网络": 69455, + "望远镜": 69456, + "不是因为": 69457, + "▁Founded": 69458, + "▁Technique": 69459, + "东城": 69460, + "充当": 69461, + "带回": 69462, + "德基": 69463, + "捷径": 69464, + "省的": 69465, + "的身影": 69466, + "聚氨酯": 69467, + "让用户": 69468, + "yout": 69469, + "▁DFT": 69470, + "您将面临": 69471, + "文学作品": 69472, + "检验检疫": 69473, + "淋浴设施": 69474, + "ensing": 69475, + "BK": 69476, + "三生": 69477, + "不乏": 69478, + "尽责": 69479, + "大多是": 69480, + "anye": 69481, + "nBre": 69482, + "▁IOS": 69483, + "详细评估": 69484, + "两次以上的": 69485, + "escent": 69486, + "incare": 69487, + "nSeeds": 69488, + "▁unbeat": 69489, + "▁arginine": 69490, + "沦为": 69491, + "骑兵": 69492, + "在英国": 69493, + "葫芦岛": 69494, + "amus": 69495, + "▁Zar": 69496, + "▁nth": 69497, + "ignty": 69498, + "▁合作关系": 69499, + "▁mailbox": 69500, + "▁Supplier": 69501, + "epithelial": 69502, + "哈密": 69503, + "憔悴": 69504, + "熟的": 69505, + "而他": 69506, + "到自己": 69507, + "未提出": 69508, + "▁Cra": 69509, + "不断扩大": 69510, + "给你一段": 69511, + "最佳的答案": 69512, + "▁sucking": 69513, + "typeparam": 69514, + "▁stressors": 69515, + "直接用": 69516, + "bron": 69517, + "回答一道": 69518, + "大家都是": 69519, + "这个事情": 69520, + "这方面的": 69521, + "Japan": 69522, + "Terms": 69523, + "▁bred": 69524, + "▁Cancel": 69525, + "平面直角坐标系": 69526, + "机场等接车服务": 69527, + "▁Daniels": 69528, + "cplusplus": 69529, + "▁departed": 69530, + "写过": 69531, + "西欧": 69532, + "尽全力": 69533, + "▁Sey": 69534, + "这个过程": 69535, + "Brown": 69536, + "ncall": 69537, + "▁mage": 69538, + "电动自行车": 69539, + "▁exposes": 69540, + "▁Requests": 69541, + "▁Telegram": 69542, + "将它": 69543, + "数中": 69544, + "海带": 69545, + "羟基": 69546, + "陵园": 69547, + "evil": 69548, + "▁DUI": 69549, + "元的事实": 69550, + "▁geom": 69551, + "▁proj": 69552, + "需在入住时": 69553, + "计算在总价中": 69554, + "AppData": 69555, + "▁faucet": 69556, + "附加费用不会自动": 69557, + "需在入住时另行支付": 69558, + "setObjectName": 69559, + "附加费用不会自动计算在总价中": 69560, + "▁郝": 69561, + "不识": 69562, + "张开": 69563, + "五年级": 69564, + "Half": 69565, + "▁cra": 69566, + "▁Reich": 69567, + "▁tiger": 69568, + "scalajs": 69569, + "▁skillet": 69570, + "▁Highlands": 69571, + "RecyclerView": 69572, + "物业管理有限公司撤回起诉": 69573, + "班组": 69574, + "▁eb": 69575, + "三千元": 69576, + "这条路": 69577, + "直线距离": 69578, + "▁CUDA": 69579, + "RETURN": 69580, + "regnant": 69581, + "▁geneal": 69582, + "▁masturb": 69583, + "nSaturday": 69584, + "reduction": 69585, + "▁阳": 69586, + "内镜": 69587, + "断电": 69588, + "而你": 69589, + "肉牛": 69590, + "风月": 69591, + "华尔街": 69592, + "▁MPa": 69593, + "如果真的": 69594, + "主要是因为": 69595, + "然后从提供的": 69596, + "请您细致分析": 69597, + "ointment": 69598, + "▁ADVISED": 69599, + "您将面临一个挑战": 69600, + "回答一道复杂选择题": 69601, + "▁photovoltaic": 69602, + "在有限时间内回答一道复杂选择题": 69603, + "人会": 69604, + "夜深": 69605, + "张大": 69606, + "某某在": 69607, + "aure": 69608, + "acteria": 69609, + "该国": 69610, + "赛中": 69611, + "敌人的": 69612, + "发展前景": 69613, + "歌曲歌词": 69614, + "找出您认为": 69615, + "请您全神贯注": 69616, + "地审查以下这道": 69617, + "Students": 69618, + "▁blocker": 69619, + "找出您认为最佳的答案": 69620, + "涉及广泛知识的选择题": 69621, + "▁correcting": 69622, + "▁redirected": 69623, + "请您全神贯注地审查以下这道": 69624, + "▁微": 69625, + "宝塔": 69626, + "▁;)": 69627, + "专门为": 69628, + "在深圳": 69629, + "必须有": 69630, + "是现代": 69631, + "crate": 69632, + "nSend": 69633, + "▁Flint": 69634, + "▁StObject": 69635, + "公尺": 69636, + "废旧": 69637, + "活了": 69638, + "%}\\": 69639, + "eat": 69640, + "上升到": 69641, + "立方根": 69642, + "请思考": 69643, + "▁Gat": 69644, + "anford": 69645, + "uously": 69646, + "▁nemat": 69647, + "atation": 69648, + "童装": 69649, + "面面": 69650, + "▁BW": 69651, + "▁Fault": 69652, + "▁bells": 69653, + "▁shampoo": 69654, + "▁inventor": 69655, + "▁exporting": 69656, + "CCA": 69657, + "GFP": 69658, + "▁DX": 69659, + "可能与": 69660, + "eles": 69661, + "hbox": 69662, + "▁Kah": 69663, + "▁GnRH": 69664, + "不动产登记": 69665, + "公司董事长": 69666, + "证券交易所": 69667, + "gerald": 69668, + "▁configs": 69669, + "人大常委会副主任": 69670, + "巴掌": 69671, + "货品": 69672, + "也并不": 69673, + "恨不得": 69674, + "所以你": 69675, + "▁IMO": 69676, + "以下有关": 69677, + "数学模型": 69678, + "ecode": 69679, + "▁Hyde": 69680, + "▁Tale": 69681, + "▁domest": 69682, + "amentals": 69683, + "▁Intelligent": 69684, + "▁screenwriter": 69685, + "之差": 69686, + "照亮": 69687, + "迫使": 69688, + "bmp": 69689, + "上诉费": 69690, + "流量的": 69691, + "\\\\)”": 69692, + "igne": 69693, + "不可替代": 69694, + "年下半年": 69695, + "批发市场": 69696, + "▁Ajax": 69697, + "▁Silk": 69698, + "▁miscon": 69699, + "powershell": 69700, + "LESS": 69701, + "neut": 69702, + "▁Exhib": 69703, + "▁unemployed": 69704, + "储能": 69705, + "铭记": 69706, + "快捷键": 69707, + "简单来说": 69708, + "这个角色": 69709, + "▁Getty": 69710, + "▁heats": 69711, + "Canadian": 69712, + "▁Sanchez": 69713, + "帮我做一道选择题": 69714, + "nMoreover": 69715, + "▁attaching": 69716, + "一回": 69717, + "按压": 69718, + "接管": 69719, + "整容": 69720, + "筹资": 69721, + "白内障": 69722, + "hara": 69723, + "nEnt": 69724, + "▁Mour": 69725, + "▁Yosh": 69726, + "▁regularization": 69727, + "▁Yi": 69728, + "权利的": 69729, + "twig": 69730, + "▁suture": 69731, + "信息的若干规定": 69732, + "给出正确的选项": 69733, + "Gaussian": 69734, + "aturdays": 69735, + "▁fossils": 69736, + "▁spinach": 69737, + "▁filmmakers": 69738, + "仔细阅读下面这道选择题": 69739, + "▁Accessories": 69740, + "振荡": 69741, + "▁dns": 69742, + "进行了研究": 69743, + "ichlor": 69744, + "racial": 69745, + "是一部连载于": 69746, + "identally": 69747, + "▁electroc": 69748, + "▁sociology": 69749, + "▁abbreviated": 69750, + "照相": 69751, + "了解的": 69752, + "▁Duc": 69753, + "不当得利": 69754, + "aston": 69755, + "▁bots": 69756, + "▁pyro": 69757, + "▁inlet": 69758, + "▁undet": 69759, + "请您仔细阅读": 69760, + "▁celery": 69761, + "占总": 69762, + "记事": 69763, + "wor": 69764, + "呈批表": 69765, + "YYYY": 69766, + "▁人物名称": 69767, + "agency": 69768, + "▁MacOS": 69769, + "第一百四十三条": 69770, + "▁roadmap": 69771, + "▁entrants": 69772, + "您需在入住时另行支付": 69773, + "▁degenerate": 69774, + "▁resembling": 69775, + "天一": 69776, + "托运": 69777, + "登临": 69778, + "红叶": 69779, + "谁会": 69780, + "vre": 69781, + "分享了": 69782, + "nMad": 69783, + "到了一个": 69784, + "我有一道题": 69785, + "▁inland": 69786, + "▁Schneider": 69787, + "两委": 69788, + "侥幸": 69789, + "想你": 69790, + "旭东": 69791, + "热电": 69792, + "闭环": 69793, + "顾虑": 69794, + "SAP": 69795, + "虽然在": 69796, + "面积约": 69797, + "受到影响": 69798, + "▁Bates": 69799, + "十一条之规定": 69800, + "▁Hacker": 69801, + "▁CONCLUS": 69802, + "▁rhythmic": 69803, + "▁Connected": 69804, + "最深": 69805, + "洞口": 69806, + "粗暴": 69807, + "衣裙": 69808, + "十八年": 69809, + "我老公": 69810, + "Sever": 69811, + "isans": 69812, + "▁Else": 69813, + "▁Erin": 69814, + "cliffe": 69815, + "intosh": 69816, + "▁nutrit": 69817, + "ncontent": 69818, + "▁resolver": 69819, + "相位": 69820, + "石桥": 69821, + "▁书评": 69822, + "尤其在": 69823, + "月上旬": 69824, + "Spider": 69825, + "rative": 69826, + "及早": 69827, + "各异": 69828, + "晶莹": 69829, + "退伍": 69830, + "EFF": 69831, + "发现有": 69832, + "详细介绍了": 69833, + "nSteps": 69834, + "▁Heter": 69835, + "▁Nucle": 69836, + "▁Wolfram": 69837, + "▁competency": 69838, + "▁Fundamental": 69839, + "扑克": 69840, + "ammu": 69841, + "结构设计": 69842, + "nline": 69843, + "▁Crus": 69844, + "二〇一七年七": 69845, + "各种信息进行": 69846, + "REQUIRE": 69847, + "Remember": 69848, + "▁statues": 69849, + "三联": 69850, + "大庆市": 69851, + "检察官": 69852, + "的感受": 69853, + "OPER": 69854, + "▁Ist": 69855, + "相关专业": 69856, + "多领域知识": 69857, + "▁Buddy": 69858, + "▁Holder": 69859, + "infinity": 69860, + "▁Brewing": 69861, + "anu": 69862, + "的软件": 69863, + "Wing": 69864, + "▁vtk": 69865, + "强有力的": 69866, + "最常见的": 69867, + "Women": 69868, + "▁商品编号": 69869, + "并在选项中": 69870, + "进行解答即可": 69871, + "exporter": 69872, + "▁Refresh": 69873, + "Percentage": 69874, + "报记者": 69875, + "unde": 69876, + "▁Aux": 69877, + "▁pitchers": 69878, + "▁elemental": 69879, + "▁manganese": 69880, + "▁Compliance": 69881, + "请你帮我选出正确的选项": 69882, + "renewcommand": 69883, + "去哪": 69884, + "泛滥": 69885, + "(\"\"": 69886, + "JWT": 69887, + "但随着": 69888, + "这种东西": 69889, + "ngood": 69890, + "综合运用各种": 69891, + "LayoutInflater": 69892, + "不失": 69893, + "入伍": 69894, + "户通": 69895, + "源源": 69896, + "补习": 69897, + "))(": 69898, + "可怕的": 69899, + "hair": 69900, + "lsen": 69901, + "Louis": 69902, + "Torch": 69903, + "dotenv": 69904, + "markup": 69905, + "最准确的答案": 69906, + "▁sitcom": 69907, + "二〇一五年二月": 69908, + "▁Metrics": 69909, + "perfusion": 69910, + "一米": 69911, + "兰花": 69912, + "新诗": 69913, + "普拉": 69914, + "溯源": 69915, + "虚伪": 69916, + "▁`_": 69917, + "天然的": 69918, + "数据和": 69919, + "子宫内膜": 69920, + "Traits": 69921, + "▁Mature": 69922, + "▁dermal": 69923, + "▁Hausdorff": 69924, + "▁callbacks": 69925, + "剥离": 69926, + "君王": 69927, + "土路": 69928, + "排毒": 69929, + "复制到": 69930, + "ANCH": 69931, + "FPGA": 69932, + "下面是一道": 69933, + "nAdded": 69934, + "▁curry": 69935, + "hearted": 69936, + "ostatic": 69937, + "reeting": 69938, + "并在选项中确定": 69939, + "涉及多领域知识": 69940, + "Beautiful": 69941, + "▁plethora": 69942, + "▁stacking": 69943, + "▁Permanent": 69944, + "▁attackers": 69945, + "▁nanotubes": 69946, + "下面是一道复杂选择题": 69947, + "请仔细阅读问题和选项": 69948, + "translations": 69949, + "▁Organizations": 69950, + "Lu": 69951, + "水印": 69952, + "法宝": 69953, + "独创": 69954, + "otr": 69955, + "体育运动": 69956, + "nlast": 69957, + "美术出版社": 69958, + "apollo": 69959, + "贷款利率计算": 69960, + "▁submerged": 69961, + "▁Buckingham": 69962, + "劳累": 69963, + "善意": 69964, + "实处": 69965, + "时下": 69966, + "▁添加": 69967, + "lide": 69968, + "▁RFID": 69969, + "whatever": 69970, + "nLicensed": 69971, + "▁plantation": 69972, + "▁Australians": 69973, + "▁齐": 69974, + "南沙": 69975, + "多于": 69976, + "纹身": 69977, + "gil": 69978, + "出入境": 69979, + "▁Gin": 69980, + "OTHER": 69981, + "▁serm": 69982, + "提出撤诉申请": 69983, + "最合适的选项": 69984, + "▁myelin": 69985, + "这道题目是一道": 69986, + "信息科技有限公司": 69987, + "Collision": 69988, + "▁Applying": 69989, + "▁unbounded": 69990, + "▁neuroimaging": 69991, + "VPN": 69992, + "在广州": 69993, + "▁Rats": 69994, + "▁funnel": 69995, + "▁noises": 69996, + "algebras": 69997, + "▁militants": 69998, + "第六十七条第三款之规定": 69999, + "▁explanatory": 70000, + "主食": 70001, + "滚子": 70002, + "箭头": 70003, + "逼近": 70004, + "INO": 70005, + "▁SOD": 70006, + "广播电台": 70007, + "首先根据": 70008, + "▁funk": 70009, + "然后会提供": 70010, + "▁saint": 70011, + "并确定您认为": 70012, + "接下来这道题目是一道": 70013, + "▁Hypothesis": 70014, + "请您仔细阅读问题和选项": 70015, + "▁Perspective": 70016, + "并确定您认为最准确的答案": 70017, + "买方": 70018, + "棒的": 70019, + "每夜": 70020, + "肯干": 70021, + "nCD": 70022, + "▁oss": 70023, + "建立健全": 70024, + "液晶电视": 70025, + "膳食纤维": 70026, + "日交付执行": 70027, + "▁María": 70028, + "第二百零八条": 70029, + "给你一段描述": 70030, + "请你根据这段话": 70031, + "▁flipped": 70032, + "然后会提供几个选项": 70033, + "▁Logistics": 70034, + "从选项中选出最合适的选项": 70035, + "执行通知履行法律文书确定的义务": 70036, + "ác": 70037, + "三相": 70038, + "国营": 70039, + "烧结": 70040, + "腾飞": 70041, + "国家对": 70042, + "特性的": 70043, + "JPEG": 70044, + "▁tad": 70045, + "Serve": 70046, + "▁uninter": 70047, + "▁Friendly": 70048, + "▁Countries": 70049, + "迅猛": 70050, + "▁删除": 70051, + "项和为": 70052, + "日起至实际": 70053, + "▁garments": 70054, + "▁Candidates": 70055, + "和王": 70056, + "安阳": 70057, + "药理": 70058, + "Amb": 70059, + "了一家": 70060, + "eeks": 70061, + "的朋友们": 70062, + "仔细的思考": 70063, + "二〇一五年五月": 70064, + "tK": 70065, + "题库": 70066, + "的新闻": 70067, + "],[\"": 70068, + "▁Paw": 70069, + "相比之下": 70070, + "▁nanow": 70071, + "▁insider": 70072, + "ahrenheit": 70073, + "nThursday": 70074, + "Everything": 70075, + "参与到": 70076, + "Dial": 70077, + "▁ETH": 70078, + "nbase": 70079, + "请在给定的": 70080, + "接下来您需要": 70081, + "该问题需要对": 70082, + "回答一个选择题": 70083, + "继续执行的条件": 70084, + "各种信息进行详细评估": 70085, + "▁streamlined": 70086, + "接下来您需要回答一个选择题": 70087, + "请在给定的选项中挑选出正确答案": 70088, + "该问题需要对各种信息进行详细评估": 70089, + "改版": 70090, + "硕果": 70091, + "体育局": 70092, + "有原告": 70093, + "步行街": 70094, + "视为其": 70095, + "大户": 70096, + "的规律": 70097, + "▁liters": 70098, + "▁undergrad": 70099, + "transformer": 70100, + "▁friendships": 70101, + "恩怨": 70102, + "常见病": 70103, + "ndat": 70104, + "▁Dish": 70105, + "▁Favorite": 70106, + "▁cerebrospinal": 70107, + "平价": 70108, + "犯了": 70109, + "笑语": 70110, + "萧条": 70111, + "重塑": 70112, + "的高端": 70113, + "▁sua": 70114, + "}}}\\\\": 70115, + "▁avian": 70116, + "▁esters": 70117, + "▁INCIDENTAL": 70118, + "房内": 70119, + "汉代": 70120, + "▁ios": 70121, + "在线汉语": 70122, + "ograd": 70123, + "ipotent": 70124, + "▁sewage": 70125, + "▁Cycling": 70126, + "Americans": 70127, + "▁knockdown": 70128, + "皇子": 70129, + "阴暗": 70130, + "雅典": 70131, + "{}/": 70132, + "Mutex": 70133, + "▁Mali": 70134, + "▁Thur": 70135, + "▁Cause": 70136, + "▁paran": 70137, + "两次以上的影人": 70138, + "预测问题的答案": 70139, + "Restrict": 70140, + "resistance": 70141, + "ostructures": 70142, + "▁imprisoned": 70143, + "▁图": 70144, + "展区": 70145, + "越发": 70146, + "经营部": 70147, + "平方米的": 70148, + "资产阶级": 70149, + "▁Rash": 70150, + "并从提供的": 70151, + "▁Saxony": 70152, + "一段文字描述和": 70153, + "请思考以下有关": 70154, + "▁apology": 70155, + "下面是一个选择题": 70156, + "▁underpin": 70157, + "仔细预测问题的答案": 70158, + "备选答案中选择一个": 70159, + "专业领域知识的选择题": 70160, + "▁univariate": 70161, + "我会给你一段文字描述和": 70162, + "▁mindfulness": 70163, + "备选答案中选择一个正确的选项": 70164, + "我会给你一段文字描述和对应的选项": 70165, + "请你从选项中选出你认为正确的答案": 70166, + "万分": 70167, + "乔丹": 70168, + "住所地在": 70169, + "额外的床": 70170, + "麻烦帮我做": 70171, + "convex": 70172, + "▁twists": 70173, + "麻烦帮我做一道题": 70174, + "ninstance": 70175, + "▁wingspan": 70176, + "setdefault": 70177, + "从选项中选出正确的选项": 70178, + "▁imprisonment": 70179, + "储藏": 70180, + "卑微": 70181, + "护卫": 70182, + "ABB": 70183, + "LTE": 70184, + "我不能": 70185, + "设立的": 70186, + "mani": 70187, + "工作温度": 70188, + "▁Kell": 70189, + "nSeptember": 70190, + "会社": 70191, + "分发": 70192, + "前线": 70193, + "包的": 70194, + "即在": 70195, + "打仗": 70196, + "▁gt": 70197, + "的解集为": 70198, + "这个地方": 70199, + "ickson": 70200, + "labelled": 70201, + "ги": 70202, + "▁Ç": 70203, + "宽的": 70204, + "手柄": 70205, + "难民": 70206, + "年代的": 70207, + "▁个整数": 70208, + "张额外的床": 70209, + "▁swarm": 70210, + "委托代理人杨": 70211, + "▁resect": 70212, + "launcher": 70213, + "▁strawberry": 70214, + "也从": 70215, + "产学": 70216, + "我却": 70217, + "玉龙": 70218, + "ños": 70219, + "otus": 70220, + "一个好的": 70221, + "英雄合击": 70222, + "▁goog": 70223, + "▁}),\\": 70224, + "申请再审称": 70225, + "▁moreover": 70226, + "说来": 70227, + "izu": 70228, + "joh": 70229, + "承德市": 70230, + "onga": 70231, + "▁[])": 70232, + "返还原告": 70233, + "顾名思义": 70234, + "▁Kris": 70235, + "▁Crohn": 70236, + "▁Graphs": 70237, + "▁priori": 70238, + "▁Modular": 70239, + "▁unlocked": 70240, + "▁合作两次以上的影人": 70241, + "▁Characteristics": 70242, + "▁하": 70243, + "也知道": 70244, + "有效果": 70245, + "网游之": 70246, + "▁mars": 70247, + "ikhail": 70248, + "stellar": 70249, + "▁Sunset": 70250, + "▁fetuses": 70251, + "▁locomotive": 70252, + "▁volumetric": 70253, + "▁erythrocyte": 70254, + "▁Manufacturers": 70255, + "nPy": 70256, + "输卵管": 70257, + "charm": 70258, + "eners": 70259, + "▁juices": 70260, + "▁solute": 70261, + "MediaType": 70262, + "七日内预交案件受理费": 70263, + "备忘": 70264, + "多米": 70265, + "科比": 70266, + "([^": 70267, + "三轮车": 70268, + "依次为": 70269, + "加床或": 70270, + "系数为": 70271, + "▁NCI": 70272, + "正在进行": 70273, + "第十五章": 70274, + "\\')]\\": 70275, + "relude": 70276, + "▁Starter": 70277, + "▁\\\\\\\\\\\\\\\\": 70278, + "▁antidepressant": 70279, + "上官": 70280, + "人道": 70281, + "特权": 70282, + "玉树": 70283, + "网讯": 70284, + "赤壁": 70285, + "Due": 70286, + "多余的": 70287, + "青春期": 70288, + "IOUS": 70289, + "一定程度": 70290, + "新农村建设": 70291, + "▁Maven": 70292, + "申请执行人同意": 70293, + "▁blotting": 70294, + "iterations": 70295, + "HttpResponse": 70296, + "▁transporting": 70297, + "▁魔": 70298, + "与被": 70299, + "冲压": 70300, + "国标": 70301, + "技师": 70302, + "村村": 70303, + "颇具": 70304, + "Slf": 70305, + "以及几个": 70306, + "机械工业": 70307, + "运用扎实": 70308, + "▁Holt": 70309, + "Arthur": 70310, + "▁cutter": 70311, + "▁whichever": 70312, + "延时": 70313, + "男篮": 70314, + "缓和": 70315, + "azzo": 70316, + "当且仅当": 70317, + "igins": 70318, + "▁Corb": 70319, + "履行生效法律文书所确定的义务": 70320, + "宛如": 70321, + "月末": 70322, + "背着": 70323, + "DLL": 70324, + "人心的": 70325, + "人性的": 70326, + "▁Naked": 70327, + "▁testis": 70328, + "▁Gazette": 70329, + "▁modelled": 70330, + "全军": 70331, + "动向": 70332, + "改写成": 70333, + "程序的": 70334, + "RESP": 70335, + "▁fen": 70336, + "全体员工": 70337, + "至少需要": 70338, + "genome": 70339, + "▁offence": 70340, + "Lj": 70341, + "庆区": 70342, + "温带": 70343, + "睡了": 70344, + "铁岭": 70345, + "根据其": 70346, + "鉴定书": 70347, + "▁Koz": 70348, + "的真实性": 70349, + "PSHOT": 70350, + "uiser": 70351, + "▁Tina": 70352, + "▁seab": 70353, + "DOCKER": 70354, + "▁Lever": 70355, + "所提出的任何": 70356, + "AsString": 70357, + "symmetric": 70358, + "nMur": 70359, + "上诉案件": 70360, + "均需获得": 70361, + "并从所给": 70362, + "▁Wheat": 70363, + "这道题需要您": 70364, + "icially": 70365, + "接下来的选择题": 70366, + "FILENAME": 70367, + "nDisplay": 70368, + "以便作出正确判断": 70369, + "并从所给选项中挑": 70370, + "运用扎实的知识和": 70371, + "▁Packages": 70372, + "Projection": 70373, + "请仔细研究接下来的选择题": 70374, + "运用扎实的知识和仔细的思考": 70375, + "并从所给选项中挑选出正确的答案": 70376, + "久之": 70377, + "容貌": 70378, + "nLos": 70379, + "▁Eis": 70380, + "tMonday": 70381, + "▁glycoproteins": 70382, + "报社": 70383, + "禁烟": 70384, + "电脑上": 70385, + "政法大学": 70386, + "最简单的": 70387, + "Joint": 70388, + "乘法分配律": 70389, + "书香": 70390, + "冬梅": 70391, + "锯齿": 70392, + "fur": 70393, + "▁$<": 70394, + "我想说": 70395, + "起重机": 70396, + "nica": 70397, + "▁Pras": 70398, + "酒店的确认": 70399, + "apunov": 70400, + "macros": 70401, + "加床或婴儿床": 70402, + "的要求均需获得": 70403, + "▁Basement": 70404, + "▁bothered": 70405, + "▁machining": 70406, + "\\\\)\\\\({\\\\,\\\\": 70407, + "所提出的任何加床或婴儿床": 70408, + "丽娟": 70409, + "使君": 70410, + "朝天": 70411, + "cow": 70412, + "vie": 70413, + "做的事": 70414, + "如下文": 70415, + ")**": 70416, + "Snap": 70417, + "这种问题": 70418, + "具有较高的": 70419, + "splice": 70420, + "▁Divine": 70421, + "▁crises": 70422, + "人中": 70423, + "<%@": 70424, + "Rabbit": 70425, + "▁favors": 70426, + "▁strang": 70427, + "programs": 70428, + "▁GeForce": 70429, + "▁Phantom": 70430, + "otransfer": 70431, + "▁intraocular": 70432, + "不爽": 70433, + "两部": 70434, + "屋子": 70435, + "绪论": 70436, + "遍地": 70437, + "西城区": 70438, + "可以用来": 70439, + "是世界上": 70440, + "▁USDA": 70441, + "月获得表扬": 70442, + "galact": 70443, + "的要求均需获得酒店的确认": 70444, + "欣慰": 70445, + "辛亥": 70446, + "可以多": 70447, + "而努力": 70448, + "Vote": 70449, + "物品清单": 70450, + "系统工程": 70451, + "▁salads": 70452, + "集团有限责任公司": 70453, + "ViewGroup": 70454, + "EntityFramework": 70455, + "内皮": 70456, + "牛津": 70457, + "遮挡": 70458, + "mpi": 70459, + "在很多": 70460, + "我们去": 70461, + "活力的": 70462, + "科尔沁": 70463, + "\\\\([": 70464, + "slope": 70465, + "▁allied": 70466, + "▁Pioneer": 70467, + "▁recalls": 70468, + "eterminate": 70469, + "圣地": 70470, + "巢湖": 70471, + "慈溪": 70472, + "细雨": 70473, + "迈向": 70474, + "齐聚": 70475, + "▁Haj": 70476, + "互联网金融": 70477, + "▁Relax": 70478, + "▁Believe": 70479, + "▁agreeing": 70480, + "美满": 70481, + "赣州": 70482, + "走着": 70483, + "▁Vacc": 70484, + "▁Julius": 70485, + "▁Growing": 70486, + "▁Ibrahim": 70487, + "▁clauses": 70488, + "▁Facilities": 70489, + "宽广": 70490, + "odr": 70491, + "▁Kul": 70492, + "nread": 70493, + "▁软件大小": 70494, + "Mirror": 70495, + "▁mates": 70496, + "▁ctypes": 70497, + "博大": 70498, + "开挖": 70499, + "ARN": 70500, + "ías": 70501, + "▁kl": 70502, + "▁사용": 70503, + "年前的": 70504, + "连载的一部": 70505, + "Prompt": 70506, + "ologie": 70507, + "▁scram": 70508, + "Scenario": 70509, + "▁entails": 70510, + "▁prophylactic": 70511, + "敲门": 70512, + "正交": 70513, + "药水": 70514, + "集训": 70515, + "但因为": 70516, + "房屋的": 70517, + "▁MeV": 70518, + "PATCH": 70519, + "films": 70520, + "鄂尔多斯市": 70521, + "Illegal": 70522, + "PROPERTY": 70523, + "stranded": 70524, + "ievements": 70525, + "serialized": 70526, + "PMI": 70527, + "拒绝了": 70528, + "脑子里": 70529, + "LOGO": 70530, + "▁hors": 70531, + "▁erythemat": 70532, + "▁planetary": 70533, + "会话": 70534, + "寿光": 70535, + "知网": 70536, + "不开心": 70537, + "战略性": 70538, + "▁[**": 70539, + "认为自己": 70540, + "▁JPEG": 70541, + "▁appre": 70542, + "▁demon": 70543, + "▁tuples": 70544, + "▁conductors": 70545, + "无端": 70546, + "欣喜": 70547, + "的美好": 70548, + "连载的": 70549, + "▁Warrior": 70550, + "▁distutils": 70551, + "▁malformations": 70552, + "奠基": 70553, + "蠕动": 70554, + "光驱类型": 70555, + "Brain": 70556, + "ranked": 70557, + "olecyst": 70558, + "▁mortar": 70559, + "▁Futures": 70560, + "▁overarching": 70561, + "喜庆": 70562, + "Cli": 70563, + "今天就": 70564, + "anos": 70565, + "tsys": 70566, + "迄今为止": 70567, + "退役军人": 70568, + "▁Vand": 70569, + "meeting": 70570, + "▁ruined": 70571, + "▁defenses": 70572, + "▁transcend": 70573, + "instruction": 70574, + "两头": 70575, + "几倍": 70576, + "勒索": 70577, + "秦淮": 70578, + "表单": 70579, + "します": 70580, + "▁tul": 70581, + "Rendering": 70582, + "房屋买卖合同纠纷一案": 70583, + "身在": 70584, + "人家的": 70585, + "▁png": 70586, + "dirty": 70587, + "代理权限为": 70588, + "Wizard": 70589, + "enteric": 70590, + "▁Morton": 70591, + "三连": 70592, + "推特": 70593, + "研判": 70594, + "站台": 70595, + "蚝油": 70596, + "Cod": 70597, + "FIX": 70598, + "dsl": 70599, + "▁电子": 70600, + "长时间的": 70601, + "▁Vera": 70602, + "发展中国家": 70603, + "▁oauth": 70604, + "▁Stones": 70605, + "Channels": 70606, + "▁emperor": 70607, + "乳头": 70608, + "之后就": 70609, + "我心里": 70610, + "DEST": 70611, + "Mono": 70612, + "▁([]": 70613, + "▁rav": 70614, + "将进一步": 70615, + "▁datos": 70616, + "▁pouring": 70617, + "amphetamine": 70618, + "]**": 70619, + "▁Acad": 70620, + "▁blew": 70621, + "对其从轻处罚": 70622, + "missive": 70623, + "▁Backup": 70624, + "▁nesting": 70625, + "嗓子": 70626, + "某于": 70627, + "SCR": 70628, + "▁lp": 70629, + "她们的": 70630, + "软组织": 70631, + "LONG": 70632, + "理论基础": 70633, + "Spanish": 70634, + "restaurant": 70635, + "▁treasures": 70636, + "▁mosquitoes": 70637, + "▁noteworthy": 70638, + "▁严": 70639, + "八九": 70640, + "毅然": 70641, + "钟情": 70642, + "':'": 70643, + "也很难": 70644, + "爱企查": 70645, + "Asia": 70646, + "▁ACh": 70647, + "▁Nina": 70648, + "▁owed": 70649, + "Gender": 70650, + "Nested": 70651, + "nLouis": 70652, + "▁Botan": 70653, + "▁Reach": 70654, + "▁Leipzig": 70655, + "▁Velocity": 70656, + "▁②": 70657, + "方剂": 70658, + "不相信": 70659, + "商业街": 70660, + "地下室": 70661, + "资料来源": 70662, + "▁Weld": 70663, + "由题意可知": 70664, + "UREMENT": 70665, + "quantum": 70666, + "infrared": 70667, + "短发": 70668, + "耐热": 70669, + "bir": 70670, + "▁Mö": 70671, + "▁试读": 70672, + "的单位": 70673, + "休闲小憩": 70674, + "▁Meat": 70675, + "中刑执字第": 70676, + "▁Ninja": 70677, + "notebook": 70678, + "▁prompting": 70679, + "▁insensitive": 70680, + "从上": 70681, + "法检测": 70682, + "特点和": 70683, + "的人是": 70684, + "看到这个": 70685, + "这种情况下": 70686, + "▁Violence": 70687, + "▁taxation": 70688, + "南宫": 70689, + "娄底": 70690, + "比尔": 70691, + "灵异": 70692, + "里奥": 70693, + "执行逮捕": 70694, + "essie": 70695, + "occupied": 70696, + "▁NotFound": 70697, + "▁Numerous": 70698, + "▁groundbreaking": 70699, + "平庸": 70700, + "林的": 70701, + "江海": 70702, + "点开": 70703, + "球星": 70704, + "RIC": 70705, + "beh": 70706, + "▁Vie": 70707, + "行政部门": 70708, + "▁Malt": 70709, + "nAsked": 70710, + "nDepartment": 70711, + "▁proteolytic": 70712, + "▁approximated": 70713, + "更佳": 70714, + "西宁": 70715, + "aqu": 70716, + "▁Cz": 70717, + "外星人": 70718, + "工作组": 70719, + "时间去": 70720, + "但是没有": 70721, + "在不同的": 70722, + "显着高于": 70723, + "服务器的": 70724, + "这组数据": 70725, + "tunsigned": 70726, + "▁interoper": 70727, + "tE": 70728, + "中生": 70729, + "我更": 70730, + "普罗": 70731, + "涂装": 70732, + "喜欢上": 70733, + "auty": 70734, + "mere": 70735, + "nDave": 70736, + "nEric": 70737, + "▁thirst": 70738, + "dimethyl": 70739, + "又好": 70740, + "吃掉": 70741, + "过失": 70742, + "▁Cp": 70743, + "Bron": 70744, + "▁Xin": 70745, + "▁Kant": 70746, + "如下文所示": 70747, + "▁Anthrop": 70748, + "▁spectators": 70749, + "乡长": 70750, + "滑坡": 70751, + "苍茫": 70752, + "▁iç": 70753, + "塑料袋": 70754, + "定义在": 70755, + "管理等": 70756, + "nNet": 70757, + "trees": 70758, + "▁café": 70759, + "▁Vault": 70760, + "▁rains": 70761, + "▁oblique": 70762, + "▁HttpServlet": 70763, + "不以": 70764, + "之都": 70765, + "当下的": 70766, + "新模式": 70767, + "循序渐进": 70768, + "nemail": 70769, + "Makefile": 70770, + "checksum": 70771, + "erequisites": 70772, + "▁健": 70773, + "下颌": 70774, + "书生": 70775, + "分析仪": 70776, + "在欧洲": 70777, + "委党校": 70778, + "LICK": 70779, + "▁IPO": 70780, + "▁Zam": 70781, + "冻结被告": 70782, + "积极作用": 70783, + "nBrian": 70784, + "▁Choir": 70785, + "▁sided": 70786, + "ObjectId": 70787, + "Tokenizer": 70788, + "左键": 70789, + "贪婪": 70790, + "逆向": 70791, + "▁医院": 70792, + "不住了": 70793, + "乐山市": 70794, + "打不过": 70795, + "▁Vod": 70796, + "▁pav": 70797, + "以为自己": 70798, + "分析步骤": 70799, + "等农作物": 70800, + "▁slit": 70801, + "做一个选择题": 70802, + "printer": 70803, + "▁剑": 70804, + "上当": 70805, + "伴奏": 70806, + "抓取": 70807, + "十九年": 70808, + "byshev": 70809, + "ingles": 70810, + "▁graphite": 70811, + "▁clipboard": 70812, + "▁emphasizing": 70813, + "≤\\": 70814, + "岳麓": 70815, + "木工": 70816, + "CBA": 70817, + "收入的": 70818, + "邢台市": 70819, + "▁Lor": 70820, + "是单选题": 70821, + "▁Dust": 70822, + "EMPLARY": 70823, + "▁feathers": 70824, + "ào": 70825, + "寄存": 70826, + "布料": 70827, + "悠然": 70828, + "我行": 70829, + "河边": 70830, + "达拉": 70831, + "不对称": 70832, + "体积是": 70833, + "▁agr": 70834, + "▁IDEA": 70835, + "nLiter": 70836, + "▁gears": 70837, + "▁Houses": 70838, + "▁trimmed": 70839, + "▁standpoint": 70840, + "揭牌": 70841, + "felt": 70842, + "身体素质": 70843, + "▁whip": 70844, + "verses": 70845, + "▁shutter": 70846, + "intensive": 70847, + "validated": 70848, + "▁warrants": 70849, + "▁defendants": 70850, + "为谁": 70851, + "划线": 70852, + "妈咪": 70853, + "足协": 70854, + "题名": 70855, + "lei": 70856, + "sinA": 70857, + "▁${{\\\\": 70858, + "悔改表现突出": 70859, + "patible": 70860, + "▁bassist": 70861, + "▁å": 70862, + "网易云音乐": 70863, + "▁Volvo": 70864, + "nMobile": 70865, + "▁免费洗浴用品": 70866, + "elligence": 70867, + "何在": 70868, + "毅力": 70869, + "畏惧": 70870, + "总承包": 70871, + "用除法": 70872, + "的局面": 70873, + "defs": 70874, + "icom": 70875, + "nOUT": 70876, + "nost": 70877, + "nthese": 70878, + "rights": 70879, + "▁Clerk": 70880, + "nExercise": 70881, + "nSynopsis": 70882, + "▁optionally": 70883, + "▁silhouette": 70884, + "▁recommending": 70885, + "不回": 70886, + "心血": 70887, + "所著": 70888, + "是哪": 70889, + "神经元": 70890, + "Chief": 70891, + "centos": 70892, + "这道题是单选题": 70893, + "请你做一个选择题": 70894, + "请你选出正确的选项": 70895, + "▁shipments": 70896, + "问题和选项如下文所示": 70897, + "▁Arithmetic": 70898, + "悲惨": 70899, + "找寻": 70900, + "素的": 70901, + "虚空": 70902, + "pep": 70903, + "tand": 70904, + "uckle": 70905, + "Despite": 70906, + "allocate": 70907, + "▁optimally": 70908, + "▁verifying": 70909, + "史学": 70910, + "竹马": 70911, + "件事情": 70912, + "的热爱": 70913, + "\\'\",": 70914, + "orna": 70915, + "全面推进": 70916, + "nWait": 70917, + "imilar": 70918, + "nMuseum": 70919, + "▁disciples": 70920, + "▁demolition": 70921, + "江门": 70922, + "调速": 70923, + "▁pits": 70924, + "exposure": 70925, + "▁reimbursement": 70926, + "天蝎": 70927, + "扫黑": 70928, + "遴选": 70929, + "▁rut": 70930, + "nsign": 70931, + "这是一个涉及": 70932, + "▁cassette": 70933, + "了很久": 70934, + "将达到": 70935, + "STAR": 70936, + "acom": 70937, + "建立一个": 70938, + "艺术设计": 70939, + "▁vesicle": 70940, + "▁POSSIBILITY": 70941, + "川市": 70942, + "nAbs": 70943, + "就是我们": 70944, + "▁calendars": 70945, + "▁butterflies": 70946, + "伤寒": 70947, + "特价": 70948, + "眉头": 70949, + "骑车": 70950, + "Esc": 70951, + "我都会": 70952, + "lain": 70953, + "分析并从": 70954, + "yzing": 70955, + "▁Laud": 70956, + "▁fantas": 70957, + "userInfo": 70958, + "▁locating": 70959, + "▁descriptors": 70960, + "▁progenitors": 70961, + "▁RX": 70962, + "赡养费": 70963, + "Sense": 70964, + "故意杀人罪": 70965, + "▁knives": 70966, + "biological": 70967, + "▁Berkshire": 70968, + "▁conjugates": 70969, + "▁inclination": 70970, + "▁subprojects": 70971, + "▁春": 70972, + "扰乱": 70973, + "睁开": 70974, + "虫子": 70975, + "BMP": 70976, + "MAR": 70977, + "人员和": 70978, + "文学奖": 70979, + "管理水平": 70980, + "asers": 70981, + "ronics": 70982, + "▁CMake": 70983, + "▁stark": 70984, + "▁Corpus": 70985, + "▁Sodium": 70986, + "四章": 70987, + "泰兴": 70988, + "纤细": 70989, + ":],": 70990, + "年上海": 70991, + "示意图": 70992, + "等其他": 70993, + "结构与": 70994, + "信息的选择题": 70995, + "给定的选项中": 70996, + "▁Tucson": 70997, + "您需要分析并从": 70998, + "▁QString": 70999, + "请仔细研究以下问题": 71000, + "综合运用各种信息的选择题": 71001, + "您需要分析并从给定的选项中": 71002, + "▁'$": 71003, + "与我们": 71004, + "UBLE": 71005, + "▁bye": 71006, + "候选答案": 71007, + "基本参数": 71008, + "说法错误": 71009, + "进一步的": 71010, + "▁Khal": 71011, + "▁Gabri": 71012, + "▁tossed": 71013, + "▁congest": 71014, + "preferences": 71015, + "▁cybersecurity": 71016, + "鸭子": 71017, + "▁[/": 71018, + "Proof": 71019, + "nMaking": 71020, + "setData": 71021, + "▁generosity": 71022, + "▁integrative": 71023, + "▁HY": 71024, + "压力大": 71025, + "▁Bam": 71026, + "伟大复兴": 71027, + "感兴趣的": 71028, + "抽样调查": 71029, + "▁bakery": 71030, + "nAlgebra": 71031, + "TypeError": 71032, + "▁WebSocket": 71033, + "▁embracing": 71034, + "物业管理有限责任公司": 71035, + "▁counterexample": 71036, + "苏丹": 71037, + "Sig": 71038, + "[{\"": 71039, + "▁名称": 71040, + "▁EMS": 71041, + "交通工具": 71042, + "目前没有": 71043, + "ifera": 71044, + "often": 71045, + "下面我会给你": 71046, + "的撤诉申请符合法律规定": 71047, + "▁peroxidation": 71048, + "匠心": 71049, + "防潮": 71050, + "GSM": 71051, + "只是个": 71052, + "的方案": 71053, + "urse": 71054, + "中山大学": 71055, + "whole": 71056, + "请你仔细分析": 71057, + "irected": 71058, + "▁Icelandic": 71059, + "微小": 71060, + "筹集": 71061, + "▁最新": 71062, + "如果想要": 71063, + "▁golfers": 71064, + "以及几个候选答案": 71065, + "▁overdose": 71066, + "下面我会给你一道题": 71067, + "然后选出正确的选项": 71068, + "▁counselor": 71069, + "▁marriages": 71070, + "打发": 71071, + "贪心": 71072, + "输血": 71073, + "黑板": 71074, + "Hyp": 71075, + "bla": 71076, + "rne": 71077, + "可以给": 71078, + "衢州市": 71079, + "过来了": 71080, + "重生之": 71081, + "Strip": 71082, + "ulton": 71083, + "yssey": 71084, + "▁Mons": 71085, + "▁manic": 71086, + "uttgart": 71087, + "▁comorbidities": 71088, + "jr": 71089, + "农资": 71090, + "断层": 71091, + "▁UM": 71092, + "到什么": 71093, + "目标和": 71094, + "▁SUR": 71095, + "城市规划": 71096, + "nMade": 71097, + "▁Ramsey": 71098, + "▁youths": 71099, + "▁validating": 71100, + "对本": 71101, + "放出": 71102, + "缔造": 71103, + "mvc": 71104, + "的地步": 71105, + "行为规范": 71106, + "银行同期": 71107, + "▁dean": 71108, + "▁pedig": 71109, + "▁aliens": 71110, + "▁dances": 71111, + "信息查询结果单": 71112, + "Negative": 71113, + "nuniform": 71114, + "unningham": 71115, + "▁Warehouse": 71116, + "▁periodont": 71117, + "▁ultrasonography": 71118, + "又说": 71119, + "▁gib": 71120, + "ubern": 71121, + "▁cler": 71122, + "#,": 71123, + "七天": 71124, + "声中": 71125, + "大名": 71126, + "悲观": 71127, + "与世界": 71128, + "准考证": 71129, + "gpio": 71130, + "▁Wit": 71131, + "thick": 71132, + "申请执行人杨": 71133, + "违反法律规定": 71134, + "realpath": 71135, + "▁royalty": 71136, + "▁kinematic": 71137, + "栖霞": 71138, + "疏导": 71139, + "▁cz": 71140, + "基本功": 71141, + "(\"{}": 71142, + "▁Luna": 71143, + "▁thrombo": 71144, + "textwidth": 71145, + "▁disciplinary": 71146, + "仙子": 71147, + "舅舅": 71148, + "颤抖": 71149, + "ICP": 71150, + "两方面": 71151, + "还能够": 71152, + "▁wget": 71153, + "▁chili": 71154, + "oplasma": 71155, + "▁Segment": 71156, + "▁finalist": 71157, + "九九": 71158, + "固有": 71159, + "李子": 71160, + "症的": 71161, + "变更为": 71162, + "赔偿金": 71163, + "Econ": 71164, + "▁LOL": 71165, + "▁USC": 71166, + "高职高专": 71167, + "▁Slide": 71168, + "▁torus": 71169, + "▁Harley": 71170, + "▁Willis": 71171, + "acoustic": 71172, + "▁embroidery": 71173, + "北辰": 71174, + "各区": 71175, + "妆容": 71176, + "截然": 71177, + "$_{": 71178, + "委常委": 71179, + "审查核实": 71180, + "▁Cliff": 71181, + "扣划被执行人": 71182, + "▁Buddha": 71183, + "▁islets": 71184, + "Enumerator": 71185, + "▁Recordings": 71186, + "墓地": 71187, + "官司": 71188, + "霍尔": 71189, + "▁Ez": 71190, + "这两天": 71191, + "muted": 71192, + "endale": 71193, + "▁Realty": 71194, + "▁Listing": 71195, + "▁Managed": 71196, + "不讲": 71197, + "光亮": 71198, + "大观": 71199, + "日产": 71200, + "杀虫": 71201, + "Cre": 71202, + "eque": 71203, + "umba": 71204, + "▁uni": 71205, + "一定要有": 71206, + "自由恋爱": 71207, + "▁trilogy": 71208, + "即得": 71209, + "可观": 71210, + "大黄": 71211, + "轻便": 71212, + "迎春": 71213, + "udp": 71214, + "▁第五章": 71215, + "从而导致": 71216, + "▁stalk": 71217, + "ncurrent": 71218, + "▁Allison": 71219, + "▁depended": 71220, + "▁catalysis": 71221, + "▁underline": 71222, + "伊始": 71223, + "和张": 71224, + "白白": 71225, + "CSI": 71226, + "HAL": 71227, + "也同样": 71228, + "▁PUT": 71229, + "▁dia": 71230, + "nKevin": 71231, + "▁Nickel": 71232, + "Dockerfile": 71233, + "▁visualized": 71234, + "lx": 71235, + "刀片": 71236, + "青花": 71237, + "调味料": 71238, + "mods": 71239, + "为真命题": 71240, + "质量监督": 71241, + "▁siRNA": 71242, + "法定代表人杨": 71243, + "▁warrior": 71244, + "水区": 71245, + "肉体": 71246, + "了不起": 71247, + "永远的": 71248, + "Chan": 71249, + "nIll": 71250, + "优质服务": 71251, + "▁Wistar": 71252, + "▁invoices": 71253, + "▁interruption": 71254, + "略微": 71255, + "租用": 71256, + "änd": 71257, + "▁BN": 71258, + "intl": 71259, + "▁PAN": 71260, + "两组患者": 71261, + "工业企业": 71262, + "最大限度地": 71263, + "Clients": 71264, + "▁summers": 71265, + "▁american": 71266, + "▁fostering": 71267, + "nGastropods": 71268, + "▁councillors": 71269, + "养育": 71270, + "差额": 71271, + "心痛": 71272, + "的热点": 71273, + "临床应用": 71274, + "比较简单": 71275, + "规划教材": 71276, + "Saved": 71277, + "wired": 71278, + "▁Crash": 71279, + "ennifer": 71280, + "▁minors": 71281, + "▁pillars": 71282, + "▁Childhood": 71283, + "一架": 71284, + "加斯": 71285, + "待定": 71286, + "意气": 71287, + "中国梦": 71288, + "热烈的": 71289, + "▁chan": 71290, + "udding": 71291, + "▁Coral": 71292, + "branded": 71293, + "vmatrix": 71294, + "▁taxonomy": 71295, + "Measurement": 71296, + "▁transplants": 71297, + "小便": 71298, + "不过在": 71299, + "为人民": 71300, + "▁Frem": 71301, + "esture": 71302, + "▁ischa": 71303, + "Minutes": 71304, + "otherwise": 71305, + "▁Lebesgue": 71306, + "Australian": 71307, + "opharyngeal": 71308, + "transformed": 71309, + "▁商": 71310, + "制宜": 71311, + "备课": 71312, + "nMi": 71313, + "教学法": 71314, + "涉及的": 71315, + "arie": 71316, + "水平的提高": 71317, + "符合条件的": 71318, + "▁cobalt": 71319, + "▁Hammond": 71320, + "▁Powered": 71321, + "▁lettuce": 71322, + "▁plasmon": 71323, + "▁safeguard": 71324, + "ík": 71325, + "八首": 71326, + "axon": 71327, + "hael": 71328, + "\"]);\\": 71329, + "▁gast": 71330, + "ologna": 71331, + "▁Dancing": 71332, + "▁topping": 71333, + "astructures": 71334, + "亚目": 71335, + "会和": 71336, + "抗病": 71337, + "缅怀": 71338, + "英才": 71339, + ">}\\": 71340, + "单职业": 71341, + "喜欢看": 71342, + "数字是": 71343, + "▁Neb": 71344, + "Spect": 71345, + "ursed": 71346, + "BINARY": 71347, + "centering": 71348, + "LinkedList": 71349, + "墨水": 71350, + "抒情": 71351, + "省道": 71352, + "股指": 71353, + "Sah": 71354, + "太大了": 71355, + "可以利用": 71356, + "法律关系": 71357, + "▁denim": 71358, + "▁ounce": 71359, + "▁Visitors": 71360, + "▁inoculated": 71361, + "▁macroscopic": 71362, + "吃不": 71363, + "昂贵": 71364, + "蒸馏": 71365, + "NTs": 71366, + "收入来源": 71367, + "▁Kens": 71368, + "作品展": 71369, + "▁parathyroid": 71370, + "壮观": 71371, + "散户": 71372, + "沧州": 71373, + "痛风": 71374, + "书法家": 71375, + "剩余的": 71376, + "文化教育": 71377, + "strain": 71378, + "ENABLED": 71379, + "nTurkish": 71380, + "▁balloons": 71381, + "▁taxpayer": 71382, + "遵守法律法规及监规": 71383, + "▁diligence": 71384, + "归案": 71385, + "朝代": 71386, + "赫尔": 71387, + "韵味": 71388, + "竞争中": 71389, + "▁Eur": 71390, + "Tester": 71391, + "nPress": 71392, + "▁skaters": 71393, + "▁Commands": 71394, + "▁proficient": 71395, + "文革": 71396, + "耐久": 71397, + "耗时": 71398, + "阻断": 71399, + "雄蕊": 71400, + "碧桂园": 71401, + ">\")\\": 71402, + "▁LIN": 71403, + "住湖北省": 71404, + "看到一个": 71405, + "▁Nass": 71406, + "annual": 71407, + "工作领导小组": 71408, + "ilibili": 71409, + "▁getaway": 71410, + "▁electrocard": 71411, + "警官": 71412, + "可以和": 71413, + "lighter": 71414, + "▁Boxing": 71415, + "▁rhesus": 71416, + "▁Logging": 71417, + "声声": 71418, + "STS": 71419, + "原标题": 71420, + "应支付": 71421, + "▁Hak": 71422, + "slave": 71423, + "共计人民币": 71424, + "是不一样的": 71425, + "▁Cardiac": 71426, + "▁checksum": 71427, + "▁chromium": 71428, + "经相关部门批准后方可开展经营活动": 71429, + "中点": 71430, + "乙酸": 71431, + "台账": 71432, + "在有": 71433, + "bst": 71434, + "▁те": 71435, + "Nome": 71436, + "▁ETF": 71437, + "欢迎所有": 71438, + "环境优美": 71439, + "稳产农田": 71440, + "并给出解析": 71441, + "▁Toolkit": 71442, + "▁Superman": 71443, + "▁oncogenic": 71444, + "▁rewritten": 71445, + "▁transistors": 71446, + "*$": 71447, + "Mb": 71448, + "▁车": 71449, + "上榜": 71450, + "武陵": 71451, + "连城": 71452, + "arynx": 71453, + "▁Fuck": 71454, + "▁Pied": 71455, + "▁BUILD": 71456, + "setName": 71457, + "▁dumped": 71458, + "▁glowing": 71459, + "▁humoral": 71460, + "toHaveBeen": 71461, + "▁compressive": 71462, + "äl": 71463, + "下有": 71464, + "切碎": 71465, + "钱财": 71466, + "雪梅": 71467, + "风起": 71468, + "生活和": 71469, + "_(\\'": 71470, + "▁MVC": 71471, + "Marie": 71472, + "ERENCE": 71473, + "▁Bohem": 71474, + "▁CAUSED": 71475, + "▁epitope": 71476, + "▁goodies": 71477, + "▁follicle": 71478, + "equivalent": 71479, + "▁Composition": 71480, + "选出你认为正确的答案并给出解析": 71481, + "SX": 71482, + "乐曲": 71483, + "Fee": 71484, + "是负数": 71485, + "顺德区": 71486, + "ivar": 71487, + "其他国家": 71488, + "ereal": 71489, + "enguins": 71490, + "raising": 71491, + "▁coursework": 71492, + "宝妈": 71493, + "应从": 71494, + "时限": 71495, + "统统": 71496, + "黄酮": 71497, + "西北部": 71498, + "bmod": 71499, + "nBal": 71500, + "▁Agr": 71501, + "Macro": 71502, + "agher": 71503, + "有限公司与被告": 71504, + "▁specialties": 71505, + "又无": 71506, + "朱元": 71507, + "能与": 71508, + "锦江": 71509, + "的计划": 71510, + "个人观点": 71511, + "文明城市": 71512, + "Ordered": 71513, + "▁Alberto": 71514, + "▁Defaults": 71515, + "▁piecewise": 71516, + "拨款": 71517, + "版块": 71518, + "只是想": 71519, + "pinion": 71520, + "▁halves": 71521, + "犯容留他人吸毒罪": 71522, + "▁biophysical": 71523, + "后才": 71524, + "国泰": 71525, + "则这个": 71526, + "OPPO": 71527, + "▁sut": 71528, + "谈话笔录": 71529, + "▁raster": 71530, + "▁Gravity": 71531, + "▁exiting": 71532, + "县市": 71533, + "可想": 71534, + "日将": 71535, + "某在": 71536, + "肥皂": 71537, + "蜂窝": 71538, + ")}(": 71539, + "社会上": 71540, + "财产的": 71541, + "estr": 71542, + "▁EPs": 71543, + "写出你的": 71544, + "▁注意事项": 71545, + "Rotate": 71546, + "opaedic": 71547, + "▁changelog": 71548, + "▁positional": 71549, + "▁initialState": 71550, + "拖动": 71551, + "hun": 71552, + "▁Sv": 71553, + "}\";\\": 71554, + "应该怎么": 71555, + "nSTATIC": 71556, + "cw": 71557, + "某天": 71558, + "及时的": 71559, + "都十分": 71560, + "▁gan": 71561, + "二〇一六年四": 71562, + "imiento": 71563, + "▁rotary": 71564, + "Saturday": 71565, + "automatic": 71566, + "挂着": 71567, + "耕耘": 71568, + "锻造": 71569, + "ubi": 71570, + "зов": 71571, + "▁纠错": 71572, + "的培养": 71573, + "ROLE": 71574, + "▁PLEASE": 71575, + "充分不必要条件": 71576, + "▁Injection": 71577, + "自闭": 71578, + "诗意": 71579, + "差异化": 71580, + "系主任": 71581, + "图文并茂": 71582, + "▁Rubber": 71583, + "▁Michele": 71584, + "▁denying": 71585, + "naissance": 71586, + "号征收社会抚养费决定书": 71587, + "▁multinational": 71588, + "▁functionalities": 71589, + "痛经": 71590, + "ych": 71591, + "自贡市": 71592, + "▁rho": 71593, + "novel": 71594, + "Making": 71595, + "liable": 71596, + "▁inhaled": 71597, + "neighbors": 71598, + "▁Wilderness": 71599, + "▁suppresses": 71600, + "▁同": 71601, + "剖宫": 71602, + "为公司": 71603, + "待今后": 71604, + "第四次": 71605, + "leon": 71606, + "▁CNC": 71607, + "blers": 71608, + "▁haha": 71609, + "▁作品原文": 71610, + "▁polyt": 71611, + "安徽省合肥市": 71612, + "▁booster": 71613, + "▁fascinated": 71614, + "▁Ω": 71615, + "思绪": 71616, + "桥头": 71617, + "芭蕾": 71618, + "三个人": 71619, + "被发现": 71620, + "▁Pes": 71621, + "▁saga": 71622, + "orylation": 71623, + "▁allergen": 71624, + "▁redistribution": 71625, + "湛江": 71626, + "补给": 71627, + "▁rag": 71628, + "langs": 71629, + "Andrew": 71630, + "▁Clair": 71631, + "▁ignores": 71632, + "▁refactor": 71633, + "▁adversely": 71634, + "▁endoscopy": 71635, + "▁集": 71636, + "跳动": 71637, + "鹤壁": 71638, + "你分析": 71639, + "▁orientations": 71640, + "▁quantization": 71641, + "有点像": 71642, + "贵金属": 71643, + "습니다": 71644, + "▁CRP": 71645, + "▁Jah": 71646, + "▁Amin": 71647, + "主张的事实": 71648, + "ouchers": 71649, + "▁Harmony": 71650, + "▁speeding": 71651, + "▁afterward": 71652, + "卫生和计划生育委员会": 71653, + "是连载于起点中文网的一部": 71654, + "第一百五十四条第一款第五": 71655, + "前几": 71656, + "生怕": 71657, + "都与": 71658, + "休闲娱乐": 71659, + "Hydro": 71660, + "Wrong": 71661, + "第八十四条": 71662, + "▁popul": 71663, + "▁Vehicles": 71664, + "▁О": 71665, + "吞吐": 71666, + "在点": 71667, + "▁": 71668, + "e": 71669, + "n": 71670, + "t": 71671, + "a": 71672, + "i": 71673, + "o": 71674, + "r": 71675, + "s": 71676, + "l": 71677, + "\\": 71678, + "h": 71679, + "d": 71680, + "c": 71681, + "u": 71682, + "m": 71683, + "p": 71684, + "f": 71685, + "g": 71686, + "y": 71687, + "b": 71688, + "w": 71689, + ",": 71690, + "v": 71691, + "0": 71692, + "1": 71693, + "k": 71694, + ")": 71695, + "(": 71696, + "2": 71697, + "的": 71698, + "T": 71699, + "S": 71700, + "A": 71701, + "\"": 71702, + "I": 71703, + "x": 71704, + "C": 71705, + ":": 71706, + "/": 71707, + "_": 71708, + "'": 71709, + "3": 71710, + "P": 71711, + "E": 71712, + "M": 71713, + "R": 71714, + "5": 71715, + "{": 71716, + "}": 71717, + "4": 71718, + "D": 71719, + "|": 71720, + "9": 71721, + "N": 71722, + ";": 71723, + "L": 71724, + "#": 71725, + "B": 71726, + "*": 71727, + "F": 71728, + "6": 71729, + "一": 71730, + "O": 71731, + "8": 71732, + "人": 71733, + "$": 71734, + "7": 71735, + ">": 71736, + "H": 71737, + "是": 71738, + "W": 71739, + "j": 71740, + "q": 71741, + "G": 71742, + "有": 71743, + "<": 71744, + "不": 71745, + "z": 71746, + "[": 71747, + "]": 71748, + "U": 71749, + "中": 71750, + "在": 71751, + "了": 71752, + "行": 71753, + "年": 71754, + "为": 71755, + "V": 71756, + "和": 71757, + "法": 71758, + "个": 71759, + "大": 71760, + "生": 71761, + "以": 71762, + "用": 71763, + "本": 71764, + "国": 71765, + "出": 71766, + "上": 71767, + "日": 71768, + "定": 71769, + "我": 71770, + "民": 71771, + "学": 71772, + "K": 71773, + "J": 71774, + "时": 71775, + "理": 71776, + "可": 71777, + "要": 71778, + "这": 71779, + "作": 71780, + "于": 71781, + "会": 71782, + "公": 71783, + "月": 71784, + "被": 71785, + "第": 71786, + "发": 71787, + "能": 71788, + "告": 71789, + "院": 71790, + "对": 71791, + ")": 71792, + "“": 71793, + "(": 71794, + "Y": 71795, + "到": 71796, + "”": 71797, + "业": 71798, + "分": 71799, + "成": 71800, + "后": 71801, + "下": 71802, + "来": 71803, + "方": 71804, + "市": 71805, + "%": 71806, + "事": 71807, + "就": 71808, + "地": 71809, + "自": 71810, + "执": 71811, + "多": 71812, + "工": 71813, + "数": 71814, + "家": 71815, + "文": 71816, + "@": 71817, + "现": 71818, + "经": 71819, + "小": 71820, + "原": 71821, + "合": 71822, + "二": 71823, + "过": 71824, + "高": 71825, + "书": 71826, + "如": 71827, + "实": 71828, + "也": 71829, + "十": 71830, + "动": 71831, + "开": 71832, + "之": 71833, + "面": 71834, + "与": 71835, + "员": 71836, + "所": 71837, + "同": 71838, + "他": 71839, + "子": 71840, + "产": 71841, + "进": 71842, + "好": 71843, + "你": 71844, + "期": 71845, + "等": 71846, + "得": 71847, + "^": 71848, + "其": 71849, + "诉": 71850, + "长": 71851, + "新": 71852, + "关": 71853, + "机": 71854, + "区": 71855, + "间": 71856, + "们": 71857, + "都": 71858, + "力": 71859, + "主": 71860, + "司": 71861, + "三": 71862, + "点": 71863, + "`": 71864, + "体": 71865, + "请": 71866, + "全": 71867, + "内": 71868, + "性": 71869, + "说": 71870, + "提": 71871, + "最": 71872, + "题": 71873, + "还": 71874, + "品": 71875, + "名": 71876, + "化": 71877, + "&": 71878, + "解": 71879, + "者": 71880, + "案": 71881, + "天": 71882, + "X": 71883, + "心": 71884, + "程": 71885, + "审": 71886, + "务": 71887, + "代": 71888, + "部": 71889, + "元": 71890, + "加": 71891, + "Q": 71892, + "前": 71893, + "起": 71894, + "通": 71895, + "条": 71896, + "明": 71897, + "’": 71898, + "么": 71899, + "应": 71900, + "表": 71901, + "判": 71902, + "当": 71903, + "结": 71904, + "度": 71905, + "建": 71906, + "重": 71907, + "及": 71908, + "电": 71909, + "而": 71910, + "平": 71911, + "情": 71912, + "资": 71913, + "种": 71914, + "看": 71915, + "物": 71916, + "无": 71917, + "水": 71918, + "号": 71919, + "据": 71920, + "因": 71921, + "系": 71922, + "道": 71923, + "设": 71924, + "果": 71925, + "安": 71926, + "量": 71927, + "位": 71928, + "相": 71929, + "次": 71930, + "入": 71931, + "并": 71932, + "式": 71933, + "–": 71934, + "制": 71935, + "金": 71936, + "意": 71937, + "没": 71938, + "很": 71939, + "计": 71940, + "里": 71941, + "规": 71942, + "保": 71943, + "然": 71944, + "向": 71945, + "信": 71946, + "省": 71947, + "件": 71948, + "利": 71949, + "网": 71950, + "问": 71951, + "限": 71952, + "正": 71953, + "选": 71954, + "目": 71955, + "教": 71956, + "外": 71957, + "申": 71958, + "科": 71959, + "管": 71960, + "比": 71961, + "四": 71962, + "华": 71963, + "共": 71964, + "由": 71965, + "知": 71966, + "从": 71967, + "着": 71968, + "考": 71969, + "款": 71970, + "场": 71971, + "已": 71972, + "项": 71973, + "决": 71974, + "展": 71975, + "将": 71976, + "某": 71977, + "去": 71978, + "服": 71979, + "但": 71980, + "车": 71981, + "求": 71982, + "百": 71983, + "记": 71984, + "五": 71985, + "认": 71986, + "美": 71987, + "手": 71988, + "参": 71989, + "那": 71990, + "特": 71991, + "路": 71992, + "东": 71993, + "处": 71994, + "交": 71995, + "效": 71996, + "组": 71997, + "更": 71998, + "—": 71999, + "证": 72000, + "常": 72001, + "或": 72002, + "术": 72003, + "任": 72004, + "想": 72005, + "回": 72006, + "裁": 72007, + "山": 72008, + "两": 72009, + "依": 72010, + "南": 72011, + "政": 72012, + "西": 72013, + "立": 72014, + "海": 72015, + "技": 72016, + "基": 72017, + "接": 72018, + "样": 72019, + "单": 72020, + "活": 72021, + "此": 72022, + "料": 72023, + "己": 72024, + "律": 72025, + "受": 72026, + "师": 72027, + "Z": 72028, + "社": 72029, + "些": 72030, + "型": 72031, + "费": 72032, + "查": 72033, + "质": 72034, + "给": 72035, + "使": 72036, + "线": 72037, + "类": 72038, + "感": 72039, + "只": 72040, + "商": 72041, + "女": 72042, + "做": 72043, + "别": 72044, + "级": 72045, + "县": 72046, + "确": 72047, + "身": 72048, + "住": 72049, + "形": 72050, + "收": 72051, + "真": 72052, + "直": 72053, + "价": 72054, + "北": 72055, + "统": 72056, + "该": 72057, + "强": 72058, + "达": 72059, + "字": 72060, + "息": 72061, + "至": 72062, + "张": 72063, + "标": 72064, + "色": 72065, + "口": 72066, + "江": 72067, + "~": 72068, + "少": 72069, + "风": 72070, + "刑": 72071, + "支": 72072, + "运": 72073, + "清": 72074, + "供": 72075, + "各": 72076, + "照": 72077, + "即": 72078, + "传": 72079, + "总": 72080, + "变": 72081, + "需": 72082, + "调": 72083, + "容": 72084, + "老": 72085, + "万": 72086, + "王": 72087, + "专": 72088, + "讼": 72089, + "引": 72090, + "具": 72091, + "未": 72092, + "持": 72093, + "研": 72094, + "什": 72095, + "台": 72096, + "流": 72097, + "委": 72098, + "城": 72099, + "门": 72100, + "取": 72101, + "气": 72102, + "指": 72103, + "格": 72104, + "广": 72105, + "装": 72106, + "打": 72107, + "根": 72108, + "再": 72109, + "每": 72110, + "先": 72111, + "导": 72112, + "准": 72113, + "议": 72114, + "算": 72115, + "房": 72116, + "图": 72117, + "男": 72118, + "州": 72119, + "示": 72120, + "节": 72121, + "答": 72122, + "让": 72123, + "治": 72124, + "完": 72125, + "义": 72126, + "影": 72127, + "育": 72128, + "创": 72129, + "×": 72130, + "医": 72131, + "论": 72132, + "报": 72133, + "何": 72134, + "值": 72135, + "族": 72136, + "花": 72137, + "游": 72138, + "放": 72139, + "世": 72140, + "集": 72141, + "改": 72142, + "头": 72143, + "版": 72144, + "爱": 72145, + "光": 72146, + "…": 72147, + "局": 72148, + "企": 72149, + "校": 72150, + "权": 72151, + "造": 72152, + "初": 72153, + "白": 72154, + "汉": 72155, + "户": 72156, + "把": 72157, + "简": 72158, + "包": 72159, + "村": 72160, + "较": 72161, + "联": 72162, + "连": 72163, + "器": 72164, + "六": 72165, + "复": 72166, + "米": 72167, + "存": 72168, + "她": 72169, + "带": 72170, + "适": 72171, + "备": 72172, + "源": 72173, + "注": 72174, + "话": 72175, + "章": 72176, + "率": 72177, + "营": 72178, + "视": 72179, + "整": 72180, + "非": 72181, + "积": 72182, + "办": 72183, + "语": 72184, + "则": 72185, + "七": 72186, + "究": 72187, + "农": 72188, + "思": 72189, + "称": 72190, + "见": 72191, + "终": 72192, + "故": 72193, + "功": 72194, + "又": 72195, + "林": 72196, + "罪": 72197, + "精": 72198, + "几": 72199, + "空": 72200, + "且": 72201, + "财": 72202, + "才": 72203, + "今": 72204, + "环": 72205, + "李": 72206, + "病": 72207, + "周": 72208, + "推": 72209, + "球": 72210, + "职": 72211, + "战": 72212, + "试": 72213, + "•": 72214, + "优": 72215, + "界": 72216, + "习": 72217, + "深": 72218, + "构": 72219, + "离": 72220, + "乐": 72221, + "阳": 72222, + "神": 72223, + "觉": 72224, + "反": 72225, + "庭": 72226, + "验": 72227, + "观": 72228, + "易": 72229, + "队": 72230, + "转": 72231, + "步": 72232, + "送": 72233, + "近": 72234, + "儿": 72235, + "角": 72236, + "候": 72237, + "许": 72238, + "置": 72239, + "客": 72240, + "片": 72241, + "减": 72242, + "约": 72243, + "增": 72244, + "太": 72245, + "状": 72246, + "份": 72247, + "模": 72248, + "干": 72249, + "检": 72250, + "介": 72251, + "识": 72252, + "配": 72253, + "边": 72254, + "况": 72255, + "马": 72256, + "团": 72257, + "红": 72258, + "按": 72259, + "友": 72260, + "列": 72261, + "除": 72262, + "布": 72263, + "它": 72264, + "首": 72265, + "责": 72266, + "始": 72267, + "态": 72268, + "热": 72269, + "付": 72270, + "快": 72271, + "养": 72272, + "军": 72273, + "京": 72274, + "属": 72275, + "领": 72276, + "双": 72277, + "克": 72278, + "例": 72279, + "消": 72280, + "斯": 72281, + "济": 72282, + "越": 72283, + "·": 72284, + "护": 72285, + "控": 72286, + "德": 72287, + "犯": 72288, + "音": 72289, + "河": 72290, + "英": 72291, + "食": 72292, + "施": 72293, + "际": 72294, + "八": 72295, + "显": 72296, + "载": 72297, + "借": 72298, + "范": 72299, + "投": 72300, + "黄": 72301, + "速": 72302, + "极": 72303, + "素": 72304, + "难": 72305, + "历": 72306, + "获": 72307, + "负": 72308, + "析": 72309, + "择": 72310, + "低": 72311, + "评": 72312, + "站": 72313, + "断": 72314, + "银": 72315, + "云": 72316, + "防": 72317, + "青": 72318, + "言": 72319, + "测": 72320, + "材": 72321, + "细": 72322, + "序": 72323, + "尔": 72324, + "维": 72325, + "满": 72326, + "续": 72327, + "担": 72328, + "演": 72329, + "酒": 72330, + "采": 72331, + "超": 72332, + "监": 72333, + "龙": 72334, + "足": 72335, + "述": 72336, + "买": 72337, + "命": 72338, + "读": 72339, + "均": 72340, + "店": 72341, + "销": 72342, + "像": 72343, + "党": 72344, + "录": 72345, + "境": 72346, + "九": 72347, + "段": 72348, + "随": 72349, + "必": 72350, + "走": 72351, + "喜": 72352, + "士": 72353, + "股": 72354, + "陈": 72355, + "石": 72356, + "助": 72357, + "修": 72358, + "承": 72359, + "予": 72360, + "便": 72361, + "象": 72362, + "星": 72363, + "围": 72364, + "划": 72365, + "赛": 72366, + "戏": 72367, + "温": 72368, + "园": 72369, + "预": 72370, + "血": 72371, + "刘": 72372, + "é": 72373, + "协": 72374, + "写": 72375, + "微": 72376, + "排": 72377, + "油": 72378, + "响": 72379, + "景": 72380, + "拉": 72381, + "怎": 72382, + "致": 72383, + "欢": 72384, + "半": 72385, + "疗": 72386, + "春": 72387, + "吃": 72388, + "钱": 72389, + "药": 72390, + "宝": 72391, + "副": 72392, + "升": 72393, + "压": 72394, + "孩": 72395, + "望": 72396, + "土": 72397, + "卡": 72398, + "层": 72399, + "婚": 72400, + "失": 72401, + "牌": 72402, + "室": 72403, + "福": 72404, + "千": 72405, + "编": 72406, + "艺": 72407, + "险": 72408, + "切": 72409, + "湖": 72410, + "众": 72411, + "吧": 72412, + "眼": 72413, + "找": 72414, + "火": 72415, + "声": 72416, + "古": 72417, + "志": 72418, + "纷": 72419, + "香": 72420, + "输": 72421, + "差": 72422, + "落": 72423, + "托": 72424, + "课": 72425, + "画": 72426, + "兴": 72427, + "远": 72428, + "〇": 72429, + "苏": 72430, + "轻": 72431, + "底": 72432, + "亚": 72433, + "异": 72434, + "府": 72435, + "吗": 72436, + "镇": 72437, + "撤": 72438, + "织": 72439, + "止": 72440, + "域": 72441, + "居": 72442, + "黑": 72443, + "码": 72444, + "错": 72445, + "史": 72446, + "察": 72447, + "群": 72448, + "普": 72449, + "核": 72450, + "博": 72451, + "害": 72452, + "板": 72453, + "健": 72454, + "纠": 72455, + "络": 72456, + "够": 72457, + "履": 72458, + "击": 72459, + "势": 72460, + "康": 72461, + "留": 72462, + "策": 72463, + "往": 72464, + "死": 72465, + "充": 72466, + "武": 72467, + "益": 72468, + "宁": 72469, + "争": 72470, + "含": 72471, + "独": 72472, + "词": 72473, + "奖": 72474, + "令": 72475, + "若": 72476, + "哪": 72477, + "售": 72478, + "免": 72479, + "互": 72480, + "纳": 72481, + "举": 72482, + "购": 72483, + "培": 72484, + "波": 72485, + "换": 72486, + "符": 72487, + "听": 72488, + "富": 72489, + "班": 72490, + "罗": 72491, + "余": 72492, + "却": 72493, + "临": 72494, + "亲": 72495, + "念": 72496, + "否": 72497, + "早": 72498, + "货": 72499, + "歌": 72500, + "伤": 72501, + "仅": 72502, + "飞": 72503, + "登": 72504, + "剧": 72505, + "庆": 72506, + "频": 72507, + "智": 72508, + "释": 72509, + "奇": 72510, + "楼": 72511, + "良": 72512, + "密": 72513, + "味": 72514, + "劳": 72515, + "卫": 72516, + "般": 72517, + "皮": 72518, + "降": 72519, + "玩": 72520, + "跟": 72521, + "严": 72522, + "杨": 72523, + "待": 72524, + "曲": 72525, + "融": 72526, + "朋": 72527, + "钟": 72528, + "川": 72529, + "粉": 72530, + "讲": 72531, + "呢": 72532, + "纪": 72533, + "官": 72534, + "毕": 72535, + "移": 72536, + "索": 72537, + "木": 72538, + "曾": 72539, + "兰": 72540, + "岁": 72541, + "软": 72542, + "破": 72543, + "绍": 72544, + "端": 72545, + "о": 72546, + "盘": 72547, + "母": 72548, + "印": 72549, + "玉": 72550, + "批": 72551, + "乡": 72552, + "绝": 72553, + "永": 72554, + "础": 72555, + "补": 72556, + "操": 72557, + "患": 72558, + "罚": 72559, + "帮": 72560, + "善": 72561, + "甲": 72562, + "您": 72563, + "夫": 72564, + "训": 72565, + "享": 72566, + "括": 72567, + "菜": 72568, + "树": 72569, + "另": 72570, + "愿": 72571, + "零": 72572, + "铁": 72573, + "叶": 72574, + "归": 72575, + "旅": 72576, + "卖": 72577, + "彩": 72578, + "希": 72579, + "额": 72580, + "征": 72581, + "尽": 72582, + "继": 72583, + "哈": 72584, + "票": 72585, + "床": 72586, + "综": 72587, + "啊": 72588, + "假": 72589, + "松": 72590, + "巴": 72591, + "左": 72592, + "封": 72593, + "圆": 72594, + "套": 72595, + "吸": 72596, + "刚": 72597, + "坚": 72598, + "须": 72599, + "笔": 72600, + "秀": 72601, + "肉": 72602, + "函": 72603, + "脑": 72604, + "馆": 72605, + "突": 72606, + "阿": 72607, + "贵": 72608, + "а": 72609, + "币": 72610, + "宣": 72611, + "右": 72612, + "块": 72613, + "练": 72614, + "晚": 72615, + "短": 72616, + "筑": 72617, + "厂": 72618, + "略": 72619, + "占": 72620, + "毒": 72621, + "宋": 72622, + "夜": 72623, + "播": 72624, + "坐": 72625, + "附": 72626, + "丽": 72627, + "背": 72628, + "妈": 72629, + "键": 72630, + "丰": 72631, + "遇": 72632, + "草": 72633, + "雨": 72634, + "虽": 72635, + "е": 72636, + "顺": 72637, + "谢": 72638, + "诗": 72639, + "激": 72640, + "季": 72641, + "概": 72642, + "朝": 72643, + "灵": 72644, + "警": 72645, + "典": 72646, + "询": 72647, + "贷": 72648, + "拿": 72649, + "针": 72650, + "�": 72651, + "梦": 72652, + "损": 72653, + "谁": 72654, + "洗": 72655, + "页": 72656, + "牛": 72657, + "似": 72658, + "荣": 72659, + "鱼": 72660, + "偿": 72661, + "退": 72662, + "田": 72663, + "停": 72664, + "冷": 72665, + "沙": 72666, + "丝": 72667, + "衣": 72668, + "笑": 72669, + "抗": 72670, + "吉": 72671, + "街": 72672, + "革": 72673, + "守": 72674, + "餐": 72675, + "库": 72676, + "追": 72677, + "毛": 72678, + "绿": 72679, + "缺": 72680, + "汽": 72681, + "稳": 72682, + "久": 72683, + "距": 72684, + "秋": 72685, + "吴": 72686, + "植": 72687, + "港": 72688, + "讨": 72689, + "刻": 72690, + "探": 72691, + "静": 72692, + "杂": 72693, + "и": 72694, + "延": 72695, + "座": 72696, + "亿": 72697, + "浙": 72698, + "液": 72699, + "酸": 72700, + "紧": 72701, + "宜": 72702, + "启": 72703, + "夏": 72704, + "亮": 72705, + "峰": 72706, + "穿": 72707, + "父": 72708, + "招": 72709, + "射": 72710, + "签": 72711, + "胜": 72712, + "童": 72713, + "拍": 72714, + "‐": 72715, + "顾": 72716, + "闻": 72717, + "藏": 72718, + "怀": 72719, + "佳": 72720, + "尚": 72721, + "á": 72722, + "固": 72723, + "堂": 72724, + "税": 72725, + "赵": 72726, + "钢": 72727, + "染": 72728, + "句": 72729, + "债": 72730, + "蛋": 72731, + "豆": 72732, + "障": 72733, + "雪": 72734, + "误": 72735, + "倍": 72736, + "症": 72737, + "授": 72738, + "危": 72739, + "径": 72740, + "骨": 72741, + "慢": 72742, + "‘": 72743, + "靠": 72744, + "航": 72745, + "斗": 72746, + "谈": 72747, + "址": 72748, + "欧": 72749, + "唐": 72750, + "冲": 72751, + "轮": 72752, + "届": 72753, + "陆": 72754, + "杀": 72755, + "熟": 72756, + "胡": 72757, + "烟": 72758, + "篇": 72759, + "拥": 72760, + "н": 72761, + "т": 72762, + "∴": 72763, + "尼": 72764, + "乎": 72765, + "孙": 72766, + "聚": 72767, + "散": 72768, + "徐": 72769, + "叫": 72770, + "礼": 72771, + "伟": 72772, + "鸡": 72773, + "架": 72774, + "苦": 72775, + "痛": 72776, + "」": 72777, + "卷": 72778, + "威": 72779, + "甚": 72780, + "「": 72781, + "茶": 72782, + "违": 72783, + "阅": 72784, + "乘": 72785, + "阶": 72786, + "岛": 72787, + "涉": 72788, + "顶": 72789, + "桥": 72790, + "硬": 72791, + "竞": 72792, + "°": 72793, + "洲": 72794, + "圈": 72795, + "鲜": 72796, + "籍": 72797, + "递": 72798, + "透": 72799, + "急": 72800, + "剂": 72801, + "驾": 72802, + "促": 72803, + "君": 72804, + "著": 72805, + "徒": 72806, + "派": 72807, + "兵": 72808, + "倒": 72809, + "屋": 72810, + "疫": 72811, + "献": 72812, + "梅": 72813, + "媒": 72814, + "雷": 72815, + "糖": 72816, + "饮": 72817, + "哥": 72818, + "辆": 72819, + "绩": 72820, + "饭": 72821, + "津": 72822, + "驶": 72823, + "汇": 72824, + "鉴": 72825, + "辑": 72826, + "席": 72827, + "努": 72828, + "宽": 72829, + "盖": 72830, + "ó": 72831, + "亦": 72832, + "韩": 72833, + "休": 72834, + "净": 72835, + "竟": 72836, + "订": 72837, + "午": 72838, + "册": 72839, + "攻": 72840, + "仍": 72841, + "晓": 72842, + "混": 72843, + "奥": 72844, + "折": 72845, + "冰": 72846, + "摄": 72847, + "野": 72848, + "颜": 72849, + "箱": 72850, + "舞": 72851, + "访": 72852, + "迎": 72853, + "饰": 72854, + "厅": 72855, + "虑": 72856, + "仪": 72857, + "救": 72858, + "详": 72859, + "缓": 72860, + "奶": 72861, + "翻": 72862, + "脱": 72863, + "荐": 72864, + "镜": 72865, + "露": 72866, + "纸": 72867, + "р": 72868, + "郑": 72869, + "雄": 72870, + "贸": 72871, + "扬": 72872, + "疑": 72873, + "朱": 72874, + "租": 72875, + "宫": 72876, + "盛": 72877, + "幸": 72878, + "冠": 72879, + "徽": 72880, + "怕": 72881, + "屏": 72882, + "牙": 72883, + "掉": 72884, + "督": 72885, + "灯": 72886, + "趣": 72887, + "池": 72888, + "侧": 72889, + "困": 72890, + "惠": 72891, + "乙": 72892, + "逐": 72893, + "储": 72894, + "拟": 72895, + "脸": 72896, + "鲁": 72897, + "跑": 72898, + "齐": 72899, + "轴": 72900, + "私": 72901, + "楚": 72902, + "虚": 72903, + "避": 72904, + "阴": 72905, + "措": 72906, + "旧": 72907, + "弹": 72908, + "纯": 72909, + "с": 72910, + "既": 72911, + "央": 72912, + "湾": 72913, + "脚": 72914, + "庄": 72915, + "陪": 72916, + "润": 72917, + "董": 72918, + "蒙": 72919, + "洋": 72920, + "肥": 72921, + "讯": 72922, + "宗": 72923, + "累": 72924, + "í": 72925, + "伴": 72926, + "泰": 72927, + "唱": 72928, + "触": 72929, + "蓝": 72930, + "佛": 72931, + "描": 72932, + "魔": 72933, + "幕": 72934, + "炎": 72935, + "扣": 72936, + "昌": 72937, + "欠": 72938, + "妻": 72939, + "恶": 72940, + "链": 72941, + "掌": 72942, + "遗": 72943, + "疾": 72944, + "姐": 72945, + "挥": 72946, + "仙": 72947, + "丁": 72948, + "麻": 72949, + "÷": 72950, + "贴": 72951, + "扩": 72952, + "肤": 72953, + "途": 72954, + "寻": 72955, + "寒": 72956, + "握": 72957, + "诊": 72958, + "狱": 72959, + "α": 72960, + "敏": 72961, + "π": 72962, + "械": 72963, + "雅": 72964, + "梁": 72965, + "押": 72966, + "浪": 72967, + "漫": 72968, + "勇": 72969, + "渐": 72970, + "盐": 72971, + "瑞": 72972, + "秘": 72973, + "末": 72974, + "皇": 72975, + "估": 72976, + "耳": 72977, + "肯": 72978, + "菌": 72979, + "束": 72980, + "抓": 72981, + "隐": 72982, + "帝": 72983, + "爆": 72984, + "厚": 72985, + "悔": 72986, + "坏": 72987, + "圣": 72988, + "胞": 72989, + "挑": 72990, + "泉": 72991, + "冻": 72992, + "胶": 72993, + "惊": 72994, + "矿": 72995, + "档": 72996, + "冬": 72997, + "偏": 72998, + "巨": 72999, + "旗": 73000, + "杰": 73001, + "烈": 73002, + "迷": 73003, + "塔": 73004, + "刷": 73005, + "弟": 73006, + "幼": 73007, + "乱": 73008, + "账": 73009, + "丹": 73010, + "莫": 73011, + "隔": 73012, + "锅": 73013, + "洁": 73014, + "洪": 73015, + "膜": 73016, + "睡": 73017, + "烧": 73018, + "映": 73019, + "缘": 73020, + "в": 73021, + "甘": 73022, + "缩": 73023, + "励": 73024, + "暖": 73025, + "弃": 73026, + "遍": 73027, + "诚": 73028, + "搭": 73029, + "汤": 73030, + "宇": 73031, + "暴": 73032, + "尤": 73033, + "ü": 73034, + "振": 73035, + "刺": 73036, + "滑": 73037, + "寸": 73038, + "ä": 73039, + "恢": 73040, + "搜": 73041, + "巧": 73042, + "沉": 73043, + "±": 73044, + "抽": 73045, + "盟": 73046, + "凤": 73047, + "爸": 73048, + "览": 73049, + "嘉": 73050, + "郭": 73051, + "尺": 73052, + "龄": 73053, + "~": 73054, + "耐": 73055, + "珠": 73056, + "沈": 73057, + "践": 73058, + "恩": 73059, + "窗": 73060, + "辉": 73061, + "л": 73062, + "尾": 73063, + "咨": 73064, + "败": 73065, + "船": 73066, + "裂": 73067, + "脉": 73068, + "舒": 73069, + "森": 73070, + "晋": 73071, + "谷": 73072, + "恋": 73073, + "禁": 73074, + "添": 73075, + "偶": 73076, + "贝": 73077, + "圳": 73078, + "乌": 73079, + "邮": 73080, + "洛": 73081, + "亡": 73082, + "湿": 73083, + "污": 73084, + "伊": 73085, + "毫": 73086, + "幅": 73087, + "衡": 73088, + "暂": 73089, + "醒": 73090, + "残": 73091, + "懂": 73092, + "忘": 73093, + "跳": 73094, + "诺": 73095, + "ö": 73096, + "返": 73097, + "孔": 73098, + "焦": 73099, + "沟": 73100, + "默": 73101, + "辩": 73102, + "妇": 73103, + "杯": 73104, + "插": 73105, + "宿": 73106, + "横": 73107, + "弱": 73108, + "狗": 73109, + "溪": 73110, + "泽": 73111, + "辅": 73112, + "怪": 73113, + "岩": 73114, + "刀": 73115, + "缴": 73116, + "译": 73117, + "拼": 73118, + "忆": 73119, + "欲": 73120, + "辖": 73121, + "呈": 73122, + "岗": 73123, + "妹": 73124, + "暗": 73125, + "摩": 73126, + "塞": 73127, + "截": 73128, + "敢": 73129, + "喝": 73130, + "阵": 73131, + "挂": 73132, + "祖": 73133, + "仔": 73134, + "к": 73135, + "忠": 73136, + "紫": 73137, + "唯": 73138, + "剑": 73139, + "塑": 73140, + "伦": 73141, + "贫": 73142, + "猫": 73143, + "泛": 73144, + "肌": 73145, + "闭": 73146, + "呼": 73147, + "脂": 73148, + "淡": 73149, + "潮": 73150, + "繁": 73151, + "磨": 73152, + "恒": 73153, + "泡": 73154, + "迟": 73155, + "浓": 73156, + "舍": 73157, + "仁": 73158, + "猪": 73159, + "拒": 73160, + "震": 73161, + "芳": 73162, + "尘": 73163, + "氧": 73164, + "厘": 73165, + "闲": 73166, + "麦": 73167, + "谓": 73168, + "尊": 73169, + "抚": 73170, + "墙": 73171, + "殊": 73172, + "盗": 73173, + "伙": 73174, + "鼓": 73175, + "寿": 73176, + "兼": 73177, + "阻": 73178, + "涨": 73179, + "竹": 73180, + "亩": 73181, + "珍": 73182, + "杭": 73183, + "宏": 73184, + "虫": 73185, + "幻": 73186, + "挺": 73187, + "桃": 73188, + "搞": 73189, + "填": 73190, + "桂": 73191, + "遵": 73192, + "凭": 73193, + "赞": 73194, + "慧": 73195, + "赔": 73196, + "凝": 73197, + "惯": 73198, + "券": 73199, + "誉": 73200, + "苗": 73201, + "迪": 73202, + "聊": 73203, + "凡": 73204, + "辽": 73205, + "锁": 73206, + "侵": 73207, + "抵": 73208, + "隆": 73209, + "燕": 73210, + "陕": 73211, + "虎": 73212, + "啥": 73213, + "凉": 73214, + "肠": 73215, + "晶": 73216, + "刊": 73217, + "粒": 73218, + "杜": 73219, + "贯": 73220, + "迹": 73221, + "宾": 73222, + "秦": 73223, + "豪": 73224, + "乳": 73225, + "循": 73226, + "废": 73227, + "洞": 73228, + "柱": 73229, + "诸": 73230, + "祥": 73231, + "锦": 73232, + "羊": 73233, + "彻": 73234, + "鼠": 73235, + "召": 73236, + "≤": 73237, + "抱": 73238, + "薄": 73239, + "壁": 73240, + "顿": 73241, + "戴": 73242, + "腾": 73243, + "岸": 73244, + "泥": 73245, + "甜": 73246, + "浮": 73247, + "腹": 73248, + "铺": 73249, + "谱": 73250, + "仓": 73251, + "仲": 73252, + "剩": 73253, + "潜": 73254, + "抢": 73255, + "艳": 73256, + "锋": 73257, + "趋": 73258, + "莱": 73259, + "尿": 73260, + "瓜": 73261, + "涂": 73262, + "д": 73263, + "勤": 73264, + "柔": 73265, + "绕": 73266, + "沿": 73267, + "伯": 73268, + "腐": 73269, + "催": 73270, + "炒": 73271, + "ç": 73272, + "柳": 73273, + "啦": 73274, + "墨": 73275, + "唤": 73276, + "煤": 73277, + "赢": 73278, + "の": 73279, + "琴": 73280, + "俄": 73281, + "扫": 73282, + "吹": 73283, + "耗": 73284, + "替": 73285, + "姜": 73286, + "枝": 73287, + "赏": 73288, + "朗": 73289, + "燃": 73290, + "娱": 73291, + "井": 73292, + "伍": 73293, + "夺": 73294, + "灰": 73295, + "俗": 73296, + "旋": 73297, + "萨": 73298, + "遭": 73299, + "扶": 73300, + "鸟": 73301, + "寄": 73302, + "肝": 73303, + "滨": 73304, + "纹": 73305, + "壮": 73306, + "氏": 73307, + "−": 73308, + "爷": 73309, + "祝": 73310, + "м": 73311, + "∵": 73312, + "姓": 73313, + "灾": 73314, + "肿": 73315, + "辛": 73316, + "灭": 73317, + "瓦": 73318, + "驱": 73319, + "醉": 73320, + "敬": 73321, + "俊": 73322, + "凯": 73323, + "瓣": 73324, + "恐": 73325, + "悉": 73326, + "曹": 73327, + "孤": 73328, + "п": 73329, + "陵": 73330, + "署": 73331, + "碎": 73332, + "癌": 73333, + "炼": 73334, + "捷": 73335, + "秒": 73336, + "β": 73337, + "荷": 73338, + "敌": 73339, + "跨": 73340, + "烦": 73341, + "喷": 73342, + "胃": 73343, + "狂": 73344, + "迁": 73345, + "腰": 73346, + "倾": 73347, + "绪": 73348, + "贡": 73349, + "陶": 73350, + "奋": 73351, + "驳": 73352, + "绘": 73353, + "澳": 73354, + "魂": 73355, + "忙": 73356, + "坛": 73357, + "迅": 73358, + "邀": 73359, + "覆": 73360, + "厦": 73361, + "孕": 73362, + "忽": 73363, + "瓶": 73364, + "浦": 73365, + "拓": 73366, + "骗": 73367, + "嫌": 73368, + "硕": 73369, + "晨": 73370, + "肺": 73371, + "袋": 73372, + "颗": 73373, + "殖": 73374, + "垂": 73375, + "腿": 73376, + "莲": 73377, + "赖": 73378, + "芯": 73379, + "鬼": 73380, + "纵": 73381, + "赋": 73382, + "铜": 73383, + "携": 73384, + "窃": 73385, + "у": 73386, + "桌": 73387, + "扎": 73388, + "娘": 73389, + "ã": 73390, + "鞋": 73391, + "赶": 73392, + "霞": 73393, + "嘴": 73394, + "韵": 73395, + "吨": 73396, + "婆": 73397, + "拔": 73398, + "坡": 73399, + "欣": 73400, + "勒": 73401, + "仿": 73402, + "摆": 73403, + "肖": 73404, + "邻": 73405, + "涛": 73406, + "辞": 73407, + "忍": 73408, + "纤": 73409, + "脏": 73410, + "串": 73411, + "粮": 73412, + "坦": 73413, + "驻": 73414, + "逃": 73415, + "尖": 73416, + "宅": 73417, + "胸": 73418, + "炸": 73419, + "堆": 73420, + "旁": 73421, + "逆": 73422, + "哦": 73423, + "胎": 73424, + "曼": 73425, + "悲": 73426, + "凌": 73427, + "è": 73428, + "赚": 73429, + "跌": 73430, + "姆": 73431, + "栏": 73432, + "→": 73433, + "艾": 73434, + "犹": 73435, + "疼": 73436, + "尝": 73437, + "枪": 73438, + "苹": 73439, + "貌": 73440, + "陷": 73441, + "盾": 73442, + "à": 73443, + "寺": 73444, + "辨": 73445, + "浩": 73446, + "拖": 73447, + "妙": 73448, + "魏": 73449, + "泪": 73450, + "旦": 73451, + "姻": 73452, + "炉": 73453, + "湘": 73454, + "斜": 73455, + "鼻": 73456, + "穷": 73457, + "肃": 73458, + "拘": 73459, + "漏": 73460, + "夹": 73461, + "滴": 73462, + "筹": 73463, + "宠": 73464, + "浴": 73465, + "磁": 73466, + "妆": 73467, + "援": 73468, + "£": 73469, + "∈": 73470, + "胆": 73471, + "昆": 73472, + "抑": 73473, + "拆": 73474, + "椒": 73475, + "岭": 73476, + "辈": 73477, + "跃": 73478, + "璃": 73479, + "ı": 73480, + "拜": 73481, + "辣": 73482, + "腔": 73483, + "轨": 73484, + "惜": 73485, + "俱": 73486, + "兄": 73487, + "溶": 73488, + "浅": 73489, + "玻": 73490, + "割": 73491, + "齿": 73492, + "骑": 73493, + "卢": 73494, + "役": 73495, + "哲": 73496, + "畅": 73497, + "羽": 73498, + "蔡": 73499, + "框": 73500, + "幽": 73501, + "谋": 73502, + "奉": 73503, + "黎": 73504, + "耀": 73505, + "奏": 73506, + "玲": 73507, + "稿": 73508, + "聘": 73509, + "疏": 73510, + "冒": 73511, + "疆": 73512, + "抛": 73513, + "摸": 73514, + "瘤": 73515, + "梯": 73516, + "闪": 73517, + "迫": 73518, + "渠": 73519, + "逼": 73520, + "贤": 73521, + "菲": 73522, + "剪": 73523, + "杆": 73524, + "鹏": 73525, + "鸣": 73526, + "壳": 73527, + "伸": 73528, + "滤": 73529, + "涵": 73530, + "允": 73531, + "①": 73532, + "蒸": 73533, + "乏": 73534, + "逾": 73535, + "纲": 73536, + "卓": 73537, + "睛": 73538, + "玄": 73539, + "邦": 73540, + "吐": 73541, + "骤": 73542, + "粗": 73543, + "熊": 73544, + "亭": 73545, + "匀": 73546, + "删": 73547, + "煮": 73548, + "鸿": 73549, + "碳": 73550, + "彭": 73551, + "哭": 73552, + "昨": 73553, + "烤": 73554, + "兽": 73555, + "μ": 73556, + "摇": 73557, + "偷": 73558, + "蜜": 73559, + "斤": 73560, + "郁": 73561, + "盈": 73562, + "番": 73563, + "岳": 73564, + "赠": 73565, + "ا": 73566, + "я": 73567, + "②": 73568, + "愈": 73569, + "捕": 73570, + "舟": 73571, + "翠": 73572, + "赤": 73573, + "肾": 73574, + "谐": 73575, + "稍": 73576, + "孟": 73577, + "碰": 73578, + "弄": 73579, + "乔": 73580, + "娜": 73581, + "盒": 73582, + "锡": 73583, + "呀": 73584, + "碧": 73585, + "佩": 73586, + "邓": 73587, + "淮": 73588, + "吕": 73589, + "扰": 73590, + "遥": 73591, + "滚": 73592, + "斑": 73593, + "郎": 73594, + "伏": 73595, + "冯": 73596, + "侯": 73597, + "荒": 73598, + "漂": 73599, + "耕": 73600, + "帅": 73601, + "槽": 73602, + "厨": 73603, + "丛": 73604, + "′": 73605, + "粘": 73606, + "旨": 73607, + "®": 73608, + "皆": 73609, + "螺": 73610, + "篮": 73611, + "薪": 73612, + "柜": 73613, + "碍": 73614, + "爽": 73615, + "酱": 73616, + "苍": 73617, + "撑": 73618, + "霸": 73619, + "囊": 73620, + "腺": 73621, + "眠": 73622, + "株": 73623, + "御": 73624, + "崇": 73625, + "灌": 73626, + "豫": 73627, + "踪": 73628, + "矛": 73629, + "巡": 73630, + "彼": 73631, + "乃": 73632, + "忧": 73633, + "斌": 73634, + "潘": 73635, + "弦": 73636, + "芝": 73637, + "卧": 73638, + "闹": 73639, + "牧": 73640, + "℃": 73641, + "袁": 73642, + "瓷": 73643, + "劲": 73644, + "奔": 73645, + "ー": 73646, + "渡": 73647, + "霜": 73648, + "氛": 73649, + "榜": 73650, + "寓": 73651, + "臣": 73652, + "衰": 73653, + "逻": 73654, + "淋": 73655, + "撞": 73656, + "з": 73657, + "桑": 73658, + "埃": 73659, + "鑫": 73660, + "醇": 73661, + "稀": 73662, + "砂": 73663, + "咖": 73664, + "恨": 73665, + "萧": 73666, + "沒": 73667, + "汁": 73668, + "烂": 73669, + "浏": 73670, + "雕": 73671, + "擦": 73672, + "挖": 73673, + "棒": 73674, + "骂": 73675, + "婴": 73676, + "贺": 73677, + "剥": 73678, + "砖": 73679, + "踏": 73680, + "矩": 73681, + "姑": 73682, + "坑": 73683, + "玛": 73684, + "滋": 73685, + "酷": 73686, + "吾": 73687, + "い": 73688, + "姚": 73689, + "悬": 73690, + "垃": 73691, + "雾": 73692, + "丙": 73693, + "圾": 73694, + "葡": 73695, + "钻": 73696, + "悠": 73697, + "侠": 73698, + "奈": 73699, + "廉": 73700, + "愁": 73701, + "─": 73702, + "羁": 73703, + "袭": 73704, + "ы": 73705, + "贾": 73706, + "莉": 73707, + "淘": 73708, + "嘛": 73709, + "堡": 73710, + "扮": 73711, + "葱": 73712, + "枚": 73713, + "摘": 73714, + "拨": 73715, + "匹": 73716, + "ь": 73717, + "缝": 73718, + "碑": 73719, + "蒋": 73720, + "ā": 73721, + "恰": 73722, + "眉": 73723, + "涯": 73724, + "に": 73725, + "≥": 73726, + "颈": 73727, + "拌": 73728, + "〉": 73729, + "塘": 73730, + "å": 73731, + "叔": 73732, + "毁": 73733, + "坊": 73734, + "夕": 73735, + "旺": 73736, + "飘": 73737, + "饱": 73738, + "芬": 73739, + "赁": 73740, + "诞": 73741, + "〈": 73742, + "萍": 73743, + "柏": 73744, + "饼": 73745, + "荡": 73746, + "汗": 73747, + "瘦": 73748, + "汪": 73749, + "栋": 73750, + "萝": 73751, + "る": 73752, + "蔬": 73753, + "б": 73754, + "棋": 73755, + "棉": 73756, + "悦": 73757, + "姿": 73758, + "浆": 73759, + "揭": 73760, + "朵": 73761, + "牵": 73762, + "丘": 73763, + "牢": 73764, + "を": 73765, + "厉": 73766, + "孝": 73767, + "卜": 73768, + "肩": 73769, + "丢": 73770, + "逢": 73771, + "锐": 73772, + "阁": 73773, + "鄂": 73774, + "萄": 73775, + "翼": 73776, + "诱": 73777, + "鹤": 73778, + "弯": 73779, + "し": 73780, + "堪": 73781, + "慎": 73782, + "∞": 73783, + "厌": 73784, + "搬": 73785, + "»": 73786, + "翔": 73787, + "θ": 73788, + "卵": 73789, + "盆": 73790, + "虾": 73791, + "颖": 73792, + "帧": 73793, + "阔": 73794, + "菊": 73795, + "悟": 73796, + "舰": 73797, + "傅": 73798, + "霍": 73799, + "慈": 73800, + "戒": 73801, + "拳": 73802, + "叠": 73803, + "茂": 73804, + "仰": 73805, + "糊": 73806, + "辰": 73807, + "怒": 73808, + "娃": 73809, + "淀": 73810, + "蒂": 73811, + "阀": 73812, + "啡": 73813, + "炮": 73814, + "殿": 73815, + "箭": 73816, + "鹿": 73817, + "稻": 73818, + "沃": 73819, + "虹": 73820, + "叉": 73821, + "兔": 73822, + "瞬": 73823, + "狼": 73824, + "扇": 73825, + "聪": 73826, + "た": 73827, + "晴": 73828, + "浸": 73829, + "鼎": 73830, + "壤": 73831, + "赫": 73832, + "廷": 73833, + "X": 73834, + "ú": 73835, + "妖": 73836, + "佐": 73837, + "绵": 73838, + "屈": 73839, + "糕": 73840, + "蓄": 73841, + "碗": 73842, + "崔": 73843, + "铝": 73844, + "亏": 73845, + "迈": 73846, + "庙": 73847, + "乾": 73848, + "墓": 73849, + "纽": 73850, + "韦": 73851, + "魅": 73852, + "吊": 73853, + "燥": 73854, + "泵": 73855, + "蜂": 73856, + "疯": 73857, + "渔": 73858, + "慕": 73859, + "葛": 73860, + "萌": 73861, + "﹣": 73862, + "柴": 73863, + "伪": 73864, + "赴": 73865, + "胖": 73866, + "猜": 73867, + "丈": 73868, + "酬": 73869, + "遂": 73870, + "怨": 73871, + "粤": 73872, + "袖": 73873, + "г": 73874, + "娟": 73875, + "坤": 73876, + "弘": 73877, + "と": 73878, + "痕": 73879, + "锻": 73880, + "晰": 73881, + "鸭": 73882, + "漆": 73883, + "晒": 73884, + "筋": 73885, + "纺": 73886, + "て": 73887, + "焊": 73888, + "挡": 73889, + "轩": 73890, + "й": 73891, + "栽": 73892, + "阐": 73893, + "で": 73894, + "帐": 73895, + "氨": 73896, + "馨": 73897, + "掘": 73898, + "垫": 73899, + "酶": 73900, + "ł": 73901, + "弗": 73902, + "咸": 73903, + "怜": 73904, + "叹": 73905, + "脾": 73906, + "③": 73907, + "逝": 73908, + "勾": 73909, + "裤": 73910, + "惑": 73911, + "柯": 73912, + "披": 73913, + "旭": 73914, + "©": 73915, + "呵": 73916, + "ل": 73917, + "â": 73918, + "谨": 73919, + "捐": 73920, + "泳": 73921, + "契": 73922, + "邪": 73923, + "俩": 73924, + "艰": 73925, + "翁": 73926, + "は": 73927, + "诈": 73928, + "罢": 73929, + "慰": 73930, + "撒": 73931, + "仇": 73932, + "ч": 73933, + "赌": 73934, + "惩": 73935, + "ン": 73936, + "滞": 73937, + "锈": 73938, + "宴": 73939, + "傻": 73940, + "筛": 73941, + "炭": 73942, + "劫": 73943, + "蛇": 73944, + "峡": 73945, + "な": 73946, + "ñ": 73947, + "琳": 73948, + "肪": 73949, + "吵": 73950, + "苑": 73951, + "桶": 73952, + "馈": 73953, + "兹": 73954, + "傲": 73955, + "彦": 73956, + "渗": 73957, + "薛": 73958, + "颁": 73959, + "谅": 73960, + "铭": 73961, + "渝": 73962, + "寂": 73963, + "抹": 73964, + "腻": 73965, + "琼": 73966, + "㈰": 73967, + "蚀": 73968, + "噪": 73969, + "胀": 73970, + "脆": 73971, + "饲": 73972, + "敦": 73973, + "吟": 73974, + "欺": 73975, + "挤": 73976, + "ø": 73977, + "磊": 73978, + "す": 73979, + "毅": 73980, + "逸": 73981, + "兆": 73982, + "帕": 73983, + "牲": 73984, + "咱": 73985, + "雁": 73986, + "爬": 73987, + "滩": 73988, + "∠": 73989, + "罩": 73990, + "―": 73991, + "尸": 73992, + "ć": 73993, + "š": 73994, + "懒": 73995, + "猎": 73996, + "卸": 73997, + "嫩": 73998, + "弥": 73999, + "●": 74000, + "陌": 74001, + "唿": 74002, + "穴": 74003, + "♪": 74004, + "が": 74005, + "丧": 74006, + "嫁": 74007, + "彰": 74008, + "铸": 74009, + "朴": 74010, + "惨": 74011, + "蝶": 74012, + "狐": 74013, + "忌": 74014, + "劣": 74015, + "擅": 74016, + "帽": 74017, + "搅": 74018, + "蓬": 74019, + "菇": 74020, + "丑": 74021, + "闽": 74022, + "丸": 74023, + "茫": 74024, + "娇": 74025, + "暑": 74026, + "冀": 74027, + "喊": 74028, + "椅": 74029, + "泄": 74030, + "潭": 74031, + "梨": 74032, + "埋": 74033, + "硅": 74034, + "邵": 74035, + "沧": 74036, + "蹈": 74037, + "伐": 74038, + "ă": 74039, + "寨": 74040, + "別": 74041, + "劝": 74042, + "이": 74043, + "耶": 74044, + "裕": 74045, + "渣": 74046, + "ê": 74047, + "谭": 74048, + "叙": 74049, + "宙": 74050, + "昂": 74051, + "靖": 74052, + "蒜": 74053, + "膏": 74054, + "疲": 74055, + "巾": 74056, + "婷": 74057, + "驰": 74058, + "坪": 74059, + "泌": 74060, + "芦": 74061, + "λ": 74062, + "纱": 74063, + "芽": 74064, + "彬": 74065, + "漠": 74066, + "扑": 74067, + "梗": 74068, + "翅": 74069, + "茅": 74070, + "瑶": 74071, + "庞": 74072, + "宪": 74073, + "暮": 74074, + "碱": 74075, + "岂": 74076, + "洒": 74077, + "贩": 74078, + "盲": 74079, + "淑": 74080, + "枣": 74081, + "筒": 74082, + "夸": 74083, + "扭": 74084, + "堵": 74085, + "抖": 74086, + "攀": 74087, + "坝": 74088, + "牺": 74089, + "桐": 74090, + "妥": 74091, + "倡": 74092, + "颇": 74093, + "硫": 74094, + "蛮": 74095, + "胁": 74096, + "摊": 74097, + "畜": 74098, + "铃": 74099, + "猛": 74100, + "臭": 74101, + "窝": 74102, + "馀": 74103, + "臂": 74104, + "č": 74105, + "帆": 74106, + "腊": 74107, + "渊": 74108, + "吞": 74109, + "熙": 74110, + "涌": 74111, + "卿": 74112, + "舌": 74113, + "穆": 74114, + "霉": 74115, + "肚": 74116, + "荆": 74117, + "莎": 74118, + "★": 74119, + "妨": 74120, + "钙": 74121, + "削": 74122, + "磷": 74123, + "贪": 74124, + "戈": 74125, + "擎": 74126, + "肢": 74127, + "帖": 74128, + "昏": 74129, + "狮": 74130, + "煎": 74131, + "侦": 74132, + "翰": 74133, + "崩": 74134, + "尹": 74135, + "掩": 74136, + "钓": 74137, + "蓉": 74138, + "橡": 74139, + "拾": 74140, + "椭": 74141, + "藤": 74142, + "ş": 74143, + "僧": 74144, + "巢": 74145, + "€": 74146, + "邹": 74147, + "枯": 74148, + "苯": 74149, + "沪": 74150, + "犬": 74151, + "昭": 74152, + "谊": 74153, + "泊": 74154, + "罐": 74155, + "郊": 74156, + "笼": 74157, + "琐": 74158, + "裙": 74159, + "儒": 74160, + "绑": 74161, + "呆": 74162, + "剖": 74163, + "绳": 74164, + "莞": 74165, + "椎": 74166, + "匙": 74167, + "廊": 74168, + "昔": 74169, + "辐": 74170, + "○": 74171, + "壶": 74172, + "衍": 74173, + "・": 74174, + "禅": 74175, + "抄": 74176, + "咬": 74177, + "巷": 74178, + "胺": 74179, + "兑": 74180, + "狠": 74181, + "™": 74182, + "芒": 74183, + "侣": 74184, + "唇": 74185, + "隶": 74186, + "赣": 74187, + "缐": 74188, + "栖": 74189, + "沂": 74190, + "ō": 74191, + "勘": 74192, + "咏": 74193, + "帘": 74194, + "妃": 74195, + "曝": 74196, + "△": 74197, + "挽": 74198, + "煌": 74199, + "邱": 74200, + "逊": 74201, + "哀": 74202, + "轿": 74203, + "抬": 74204, + "鹅": 74205, + "喂": 74206, + "皖": 74207, + "杏": 74208, + "歉": 74209, + "溢": 74210, + "樱": 74211, + "挣": 74212, + "秉": 74213, + "蟹": 74214, + "兮": 74215, + "敲": 74216, + "墅": 74217, + "喻": 74218, + "烯": 74219, + "曰": 74220, + "癫": 74221, + "鹰": 74222, + "遮": 74223, + "凶": 74224, + "다": 74225, + "暨": 74226, + "茄": 74227, + "秩": 74228, + "棵": 74229, + "恼": 74230, + "酵": 74231, + "幂": 74232, + "勿": 74233, + "缸": 74234, + "浑": 74235, + "榆": 74236, + "熬": 74237, + "薇": 74238, + "م": 74239, + "悄": 74240, + "旬": 74241, + "凰": 74242, + "舆": 74243, + "褐": 74244, + "冶": 74245, + "穗": 74246, + "④": 74247, + "勃": 74248, + "ま": 74249, + "撰": 74250, + "ω": 74251, + "缆": 74252, + "渴": 74253, + "ρ": 74254, + "ス": 74255, + "脊": 74256, + "猴": 74257, + "肇": 74258, + "惟": 74259, + "咳": 74260, + "祭": 74261, + "惧": 74262, + "溃": 74263, + "氯": 74264, + "绣": 74265, + "酌": 74266, + "氢": 74267, + "怡": 74268, + "锥": 74269, + "咽": 74270, + "汝": 74271, + "衔": 74272, + "郡": 74273, + "枕": 74274, + "痫": 74275, + "棱": 74276, + "巩": 74277, + "矫": 74278, + "醋": 74279, + "ト": 74280, + "廖": 74281, + "钮": 74282, + "祸": 74283, + "逮": 74284, + "吓": 74285, + "缠": 74286, + "贞": 74287, + "饶": 74288, + "隙": 74289, + "γ": 74290, + "枫": 74291, + "晕": 74292, + "妮": 74293, + "扁": 74294, + "冈": 74295, + "奴": 74296, + "か": 74297, + "ж": 74298, + "襄": 74299, + "²": 74300, + "趁": 74301, + "⋅": 74302, + "怖": 74303, + "撕": 74304, + "殷": 74305, + "戚": 74306, + "葬": 74307, + "贼": 74308, + "酯": 74309, + "ε": 74310, + "ر": 74311, + "ن": 74312, + "幢": 74313, + "绒": 74314, + "凑": 74315, + "踩": 74316, + "薯": 74317, + "吻": 74318, + "愉": 74319, + "瑜": 74320, + "棚": 74321, + "阜": 74322, + "歧": 74323, + "芜": 74324, + "凸": 74325, + "詹": 74326, + "羡": 74327, + "斋": 74328, + "痴": 74329, + "雀": 74330, + "沫": 74331, + "粥": 74332, + "躺": 74333, + "麟": 74334, + "瑟": 74335, + "辱": 74336, + "衬": 74337, + "捞": 74338, + "れ": 74339, + "淄": 74340, + "姨": 74341, + "茎": 74342, + "闷": 74343, + "ي": 74344, + "黏": 74345, + "柄": 74346, + "遣": 74347, + "«": 74348, + "↓": 74349, + "️": 74350, + "躲": 74351, + "搏": 74352, + "髓": 74353, + "夷": 74354, + "捧": 74355, + "庐": 74356, + "蕾": 74357, + "泻": 74358, + "扯": 74359, + "钩": 74360, + "钥": 74361, + "钦": 74362, + "蒲": 74363, + "缀": 74364, + "窄": 74365, + "х": 74366, + "嵌": 74367, + "τ": 74368, + "і": 74369, + "仕": 74370, + "莹": 74371, + "冥": 74372, + "澄": 74373, + "钉": 74374, + "尬": 74375, + "イ": 74376, + "珊": 74377, + "倚": 74378, + "刮": 74379, + "氮": 74380, + "愤": 74381, + "畏": 74382, + "侨": 74383, + "□": 74384, + "瑰": 74385, + "咪": 74386, + "و": 74387, + "屁": 74388, + "闯": 74389, + "奎": 74390, + "酿": 74391, + "龟": 74392, + "蕴": 74393, + "沸": 74394, + "琪": 74395, + "蜀": 74396, + "募": 74397, + "潇": 74398, + "睿": 74399, + "勋": 74400, + "膝": 74401, + "颠": 74402, + "ô": 74403, + "禽": 74404, + "ц": 74405, + "轰": 74406, + "狭": 74407, + "沾": 74408, + "σ": 74409, + "屯": 74410, + "甸": 74411, + "愧": 74412, + "敷": 74413, + "梳": 74414, + "厕": 74415, + "痘": 74416, + "喉": 74417, + "辟": 74418, + "ο": 74419, + "谦": 74420, + "锤": 74421, + "ī": 74422, + "烫": 74423, + "膀": 74424, + "玫": 74425, + "盼": 74426, + "湛": 74427, + "恭": 74428, + "羞": 74429, + "旱": 74430, + "竭": 74431, + "灿": 74432, + "庸": 74433, + "纬": 74434, + "菱": 74435, + "É": 74436, + "鲍": 74437, + "邢": 74438, + "侍": 74439, + "衷": 74440, + "卑": 74441, + "浇": 74442, + "颂": 74443, + "顷": 74444, + "宵": 74445, + "芹": 74446, + "茨": 74447, + "√": 74448, + "ž": 74449, + "는": 74450, + "虞": 74451, + "艇": 74452, + "烹": 74453, + "奢": 74454, + "粹": 74455, + "骚": 74456, + "糟": 74457, + "逛": 74458, + "ル": 74459, + "衫": 74460, + "泼": 74461, + "弧": 74462, + "崖": 74463, + "鳞": 74464, + "叛": 74465, + "铅": 74466, + "歇": 74467, + "¶": 74468, + "谣": 74469, + "邑": 74470, + "憾": 74471, + "杠": 74472, + "↑": 74473, + "烘": 74474, + "栓": 74475, + "勉": 74476, + "膨": 74477, + "裹": 74478, + "骄": 74479, + "屠": 74480, + "龚": 74481, + "栈": 74482, + "嗯": 74483, + "饿": 74484, + "斥": 74485, + "伞": 74486, + "爵": 74487, + "っ": 74488, + "芙": 74489, + "斩": 74490, + "杉": 74491, + "惹": 74492, + "俞": 74493, + "挪": 74494, + "虐": 74495, + "陀": 74496, + "祠": 74497, + "捉": 74498, + "姬": 74499, + "闫": 74500, + "하": 74501, + "佬": 74502, + "≠": 74503, + "枢": 74504, + "Δ": 74505, + "う": 74506, + "甫": 74507, + "乖": 74508, + "屡": 74509, + "ら": 74510, + "熔": 74511, + "弓": 74512, + "踢": 74513, + "誓": 74514, + "尴": 74515, + "ت": 74516, + "镀": 74517, + "匠": 74518, + "樊": 74519, + "楠": 74520, + "橙": 74521, + "鞍": 74522, + "躁": 74523, + "坠": 74524, + "扔": 74525, + "ν": 74526, + "藻": 74527, + "奠": 74528, + "黔": 74529, + "雇": 74530, + "笋": 74531, + "钠": 74532, + "皱": 74533, + "慌": 74534, + "郝": 74535, + "酮": 74536, + "匆": 74537, + "こ": 74538, + "牡": 74539, + "耿": 74540, + "摔": 74541, + "⊥": 74542, + "巫": 74543, + "裸": 74544, + "弊": 74545, + "苔": 74546, + "坎": 74547, + "灶": 74548, + "禹": 74549, + "咋": 74550, + "僵": 74551, + "诵": 74552, + "隧": 74553, + "에": 74554, + "桩": 74555, + "厢": 74556, + "谜": 74557, + "锌": 74558, + "爹": 74559, + "宰": 74560, + "砍": 74561, + "ę": 74562, + "勺": 74563, + "赐": 74564, + "汰": 74565, + "ğ": 74566, + "嘲": 74567, + "蔽": 74568, + "晖": 74569, + "蕉": 74570, + "砸": 74571, + "癜": 74572, + "韧": 74573, + "蚁": 74574, + "闸": 74575, + "澜": 74576, + "焕": 74577, + "沥": 74578, + "醛": 74579, + "의": 74580, + "沐": 74581, + "█": 74582, + "も": 74583, + "罕": 74584, + "栗": 74585, + "炫": 74586, + "ì": 74587, + "峻": 74588, + "壹": 74589, + "り": 74590, + "倪": 74591, + "奸": 74592, + "橘": 74593, + "炖": 74594, + "堤": 74595, + "锂": 74596, + "喘": 74597, + "卒": 74598, + "ю": 74599, + "寞": 74600, + "倩": 74601, + "蜡": 74602, + "禄": 74603, + "潍": 74604, + "祁": 74605, + "ū": 74606, + "匿": 74607, + "尧": 74608, + "刹": 74609, + "仗": 74610, + "闺": 74611, + "κ": 74612, + "ク": 74613, + "屑": 74614, + "로": 74615, + "雌": 74616, + "棕": 74617, + "φ": 74618, + "æ": 74619, + "巅": 74620, + "禾": 74621, + "을": 74622, + "槛": 74623, + "さ": 74624, + "肆": 74625, + "傍": 74626, + "د": 74627, + "ι": 74628, + "´": 74629, + "焰": 74630, + "ш": 74631, + "窑": 74632, + "啤": 74633, + "凹": 74634, + "莓": 74635, + "媚": 74636, + "≈": 74637, + "婉": 74638, + "霄": 74639, + "伽": 74640, + "昊": 74641, + "痒": 74642, + "沁": 74643, + "琦": 74644, + "氟": 74645, + "塌": 74646, + "舶": 74647, + "慨": 74648, + "绎": 74649, + "仑": 74650, + "溯": 74651, + "ب": 74652, + "盯": 74653, + "韶": 74654, + "荔": 74655, + "澡": 74656, + "拦": 74657, + "畔": 74658, + "愚": 74659, + "疹": 74660, + "亨": 74661, + "媛": 74662, + "倦": 74663, + "ß": 74664, + "胰": 74665, + "矣": 74666, + "涩": 74667, + "硝": 74668, + "リ": 74669, + "揽": 74670, + "讽": 74671, + "疮": 74672, + "ラ": 74673, + "堰": 74674, + "〔": 74675, + "ッ": 74676, + "佣": 74677, + "渭": 74678, + "〕": 74679, + "∩": 74680, + "ą": 74681, + "가": 74682, + "痰": 74683, + "垒": 74684, + "鞭": 74685, + "娥": 74686, + "媳": 74687, + "涡": 74688, + "匪": 74689, + "閒": 74690, + "嘿": 74691, + "″": 74692, + "挫": 74693, + "竖": 74694, + "贮": 74695, + "淳": 74696, + "漳": 74697, + "阮": 74698, + "顽": 74699, + "酥": 74700, + "畴": 74701, + "腕": 74702, + "岚": 74703, + "钝": 74704, + "烛": 74705, + "\": 74706, + "拱": 74707, + "С": 74708, + "爪": 74709, + "õ": 74710, + "耍": 74711, + "呜": 74712, + "凄": 74713, + "舱": 74714, + "揉": 74715, + "矮": 74716, + "柠": 74717, + "Ⅱ": 74718, + "*": 74719, + "炳": 74720, + "啼": 74721, + "荧": 74722, + "蛛": 74723, + "魄": 74724, + "蚕": 74725, + "骏": 74726, + "诀": 74727, + "笛": 74728, + "卉": 74729, + "晃": 74730, + "汀": 74731, + "勐": 74732, + "한": 74733, + "捡": 74734, + "捏": 74735, + "豹": 74736, + "灸": 74737, + "刃": 74738, + "饥": 74739, + "く": 74740, + "耻": 74741, + "逗": 74742, + "蔓": 74743, + "鸦": 74744, + "汕": 74745, + "驿": 74746, + "祛": 74747, + "拯": 74748, + "冉": 74749, + "俯": 74750, + "δ": 74751, + "孢": 74752, + "懈": 74753, + "梧": 74754, + "籽": 74755, + "き": 74756, + "妊": 74757, + "宛": 74758, + "崛": 74759, + "杖": 74760, + "滥": 74761, + "П": 74762, + "雯": 74763, + "ë": 74764, + "蕊": 74765, + "咒": 74766, + "畸": 74767, + "棘": 74768, + "昼": 74769, + "窦": 74770, + "洽": 74771, + "庵": 74772, + "垄": 74773, + "迭": 74774, + "棠": 74775, + "霖": 74776, + "吁": 74777, + "溜": 74778, + "菩": 74779, + "哎": 74780, + "埔": 74781, + "涤": 74782, + "敞": 74783, + "瞎": 74784, + "瞻": 74785, + "钾": 74786, + "ù": 74787, + "기": 74788, + "敛": 74789, + "寝": 74790, + "馅": 74791, + "埠": 74792, + "甩": 74793, + "ア": 74794, + "지": 74795, + "柿": 74796, + "袍": 74797, + "撼": 74798, + "ś": 74799, + "µ": 74800, + "梭": 74801, + "蹄": 74802, + "娠": 74803, + "缅": 74804, + "歪": 74805, + "寡": 74806, + "乒": 74807, + "妄": 74808, + "沛": 74809, + "蛙": 74810, + "檬": 74811, + "를": 74812, + "娶": 74813, + "泣": 74814, + "葵": 74815, + "歷": 74816, + "啸": 74817, + "邯": 74818, + "鸽": 74819, + "糯": 74820, + "拂": 74821, + "棍": 74822, + "妍": 74823, + "矢": 74824, + "呗": 74825, + "復": 74826, + "膳": 74827, + "腌": 74828, + "∥": 74829, + "嘻": 74830, + "碌": 74831, + "Ⅰ": 74832, + "觅": 74833, + "吏": 74834, + "挨": 74835, + "稚": 74836, + "巍": 74837, + "萃": 74838, + "﹥": 74839, + "杞": 74840, + "ě": 74841, + "﹤": 74842, + "▲": 74843, + "絮": 74844, + "蔚": 74845, + "牟": 74846, + "酰": 74847, + "ż": 74848, + "㎡": 74849, + "芭": 74850, + "丫": 74851, + "祈": 74852, + "ه": 74853, + "莺": 74854, + "锯": 74855, + "熏": 74856, + "서": 74857, + "哉": 74858, + "◆": 74859, + "掀": 74860, + "聂": 74861, + "赃": 74862, + "ș": 74863, + "ф": 74864, + "萎": 74865, + "喀": 74866, + "î": 74867, + "甄": 74868, + "滕": 74869, + "哇": 74870, + "タ": 74871, + "ん": 74872, + "朔": 74873, + "谎": 74874, + "饺": 74875, + "榴": 74876, + "沦": 74877, + "蠢": 74878, + "艘": 74879, + "ń": 74880, + "郸": 74881, + "彝": 74882, + "蝉": 74883, + "奕": 74884, + "拐": 74885, + "渺": 74886, + "裴": 74887, + "嘱": 74888, + "煲": 74889, + "梓": 74890, + "堕": 74891, + "제": 74892, + "颅": 74893, + "だ": 74894, + "贱": 74895, + "⇒": 74896, + "あ": 74897, + "黛": 74898, + "粪": 74899, + "屿": 74900, + "ř": 74901, + "檐": 74902, + "於": 74903, + "裔": 74904, + "蹲": 74905, + "§": 74906, + "阑": 74907, + "В": 74908, + "泸": 74909, + "闵": 74910, + "鬓": 74911, + "蚊": 74912, + "葫": 74913, + "贬": 74914, + "毯": 74915, + "η": 74916, + "수": 74917, + "雍": 74918, + "س": 74919, + "涧": 74920, + "糙": 74921, + "耽": 74922, + "呕": 74923, + "颤": 74924, + "腥": 74925, + "烷": 74926, + "隋": 74927, + "靶": 74928, + "嗽": 74929, + "翟": 74930, + "蝴": 74931, + "衢": 74932, + "睁": 74933, + "稽": 74934, + "垦": 74935, + "佑": 74936, + "藉": 74937, + "ド": 74938, + "窥": 74939, + "ی": 74940, + "脖": 74941, + "彤": 74942, + "đ": 74943, + "浊": 74944, + "∪": 74945, + "跪": 74946, + "陇": 74947, + "喔": 74948, + "莆": 74949, + "辜": 74950, + "戳": 74951, + "冤": 74952, + "卦": 74953, + "昧": 74954, + "茜": 74955, + "胚": 74956, + "焚": 74957, + "眸": 74958, + "ý": 74959, + "정": 74960, + "皂": 74961, + "舅": 74962, + "彪": 74963, + "翩": 74964, + "摧": 74965, + "磅": 74966, + "骆": 74967, + "缕": 74968, + "诠": 74969, + "仆": 74970, + "芸": 74971, + "凋": 74972, + "♀": 74973, + "고": 74974, + "轧": 74975, + "丞": 74976, + "乞": 74977, + "砌": 74978, + "瘾": 74979, + "绥": 74980, + "栅": 74981, + "寥": 74982, + "蚌": 74983, + "喧": 74984, + "琅": 74985, + "肛": 74986, + "ع": 74987, + "淹": 74988, + "酚": 74989, + "魁": 74990, + "笨": 74991, + "疡": 74992, + "镁": 74993, + "稠": 74994, + "掏": 74995, + "溉": 74996, + "荫": 74997, + "榨": 74998, + "曦": 74999, + "碟": 75000, + "丨": 75001, + "殴": 75002, + "阙": 75003, + "钧": 75004, + "榄": 75005, + "щ": 75006, + "娄": 75007, + "旷": 75008, + "瀑": 75009, + "卤": 75010, + "曙": 75011, + "ㄧ": 75012, + "翘": 75013, + "淫": 75014, + "狸": 75015, + "니": 75016, + "睹": 75017, + "菠": 75018, + "廓": 75019, + "袜": 75020, + "橱": 75021, + "挚": 75022, + "兜": 75023, + "肋": 75024, + "绞": 75025, + "よ": 75026, + "圭": 75027, + "椰": 75028, + "プ": 75029, + "皓": 75030, + "璐": 75031, + "诡": 75032, + "饪": 75033, + "扒": 75034, + "屎": 75035, + "泗": 75036, + "庚": 75037, + "蛾": 75038, + "리": 75039, + "鲤": 75040, + "睐": 75041, + "璧": 75042, + "ò": 75043, + "猿": 75044, + "瞧": 75045, + "槐": 75046, + "淇": 75047, + "姥": 75048, + "☆": 75049, + "ा": 75050, + "躯": 75051, + "←": 75052, + "苟": 75053, + "沼": 75054, + "焉": 75055, + "鸥": 75056, + "사": 75057, + "绮": 75058, + "韭": 75059, + "鳍": 75060, + "缔": 75061, + "咯": 75062, + "垢": 75063, + "弈": 75064, + "拭": 75065, + "簧": 75066, + "徵": 75067, + "讶": 75068, + "绽": 75069, + "皋": 75070, + "崎": 75071, + "孵": 75072, + "孜": 75073, + "哺": 75074, + "麒": 75075, + "苷": 75076, + "フ": 75077, + "芋": 75078, + "嗟": 75079, + "乓": 75080, + "绸": 75081, + "灼": 75082, + "Р": 75083, + "■": 75084, + "瞒": 75085, + "∼": 75086, + "犀": 75087, + "俭": 75088, + "驴": 75089, + "靓": 75090, + "尉": 75091, + "哑": 75092, + "攒": 75093, + "竣": 75094, + "趟": 75095, + "峨": 75096, + "渲": 75097, + "ロ": 75098, + "晏": 75099, + "瞳": 75100, + "贿": 75101, + "渍": 75102, + "吼": 75103, + "逍": 75104, + "蚂": 75105, + "哮": 75106, + "▼": 75107, + "Á": 75108, + "蘑": 75109, + "枸": 75110, + "剔": 75111, + "Д": 75112, + "‰": 75113, + "簿": 75114, + "铲": 75115, + "镶": 75116, + "搓": 75117, + "梵": 75118, + "스": 75119, + "ˋ": 75120, + "坞": 75121, + "嵩": 75122, + "哄": 75123, + "乍": 75124, + "茹": 75125, + "惕": 75126, + "叮": 75127, + "鲸": 75128, + "ς": 75129, + "汾": 75130, + "凿": 75131, + "娅": 75132, + "飙": 75133, + "盏": 75134, + "竿": 75135, + "嗜": 75136, + "К": 75137, + "麓": 75138, + "帷": 75139, + "け": 75140, + "어": 75141, + "喇": 75142, + "汛": 75143, + "诏": 75144, + "鄙": 75145, + "坟": 75146, + "│": 75147, + "⩽": 75148, + "瘫": 75149, + "楷": 75150, + "岐": 75151, + "Ω": 75152, + "暇": 75153, + "襟": 75154, + "蹭": 75155, + "煳": 75156, + "篱": 75157, + "О": 75158, + "Ö": 75159, + "驼": 75160, + "窟": 75161, + "자": 75162, + "═": 75163, + "捣": 75164, + "磕": 75165, + "岑": 75166, + "缪": 75167, + "桦": 75168, + "脓": 75169, + "嚼": 75170, + "掷": 75171, + "Н": 75172, + "祀": 75173, + "ف": 75174, + "钛": 75175, + "„": 75176, + "昕": 75177, + "哟": 75178, + "橄": 75179, + "缚": 75180, + "霆": 75181, + "寇": 75182, + "琢": 75183, + "シ": 75184, + "澎": 75185, + "匈": 75186, + "ة": 75187, + "涅": 75188, + "藕": 75189, + "臀": 75190, + "嫂": 75191, + "釉": 75192, + "颌": 75193, + "笙": 75194, + "妒": 75195, + "懵": 75196, + "厄": 75197, + "甬": 75198, + "墩": 75199, + "哩": 75200, + "扛": 75201, + "篆": 75202, + "菏": 75203, + "侈": 75204, + "怅": 75205, + "酪": 75206, + "侃": 75207, + "後": 75208, + "寅": 75209, + "葩": 75210, + "覃": 75211, + "晾": 75212, + "阎": 75213, + "桔": 75214, + "眷": 75215, + "嚣": 75216, + "裳": 75217, + "舜": 75218, + "噬": 75219, + "採": 75220, + "시": 75221, + "衅": 75222, + "해": 75223, + "斐": 75224, + "靡": 75225, + "鸾": 75226, + "呐": 75227, + "抒": 75228, + "粟": 75229, + "つ": 75230, + "纶": 75231, + "瑕": 75232, + "翡": 75233, + "ジ": 75234, + "ț": 75235, + "瘀": 75236, + "筝": 75237, + "狄": 75238, + "漓": 75239, + "戎": 75240, + "壑": 75241, + "蜘": 75242, + "喵": 75243, + "哨": 75244, + "コ": 75245, + "ǎ": 75246, + "唉": 75247, + "钰": 75248, + "斧": 75249, + "雏": 75250, + "睦": 75251, + "垣": 75252, + "י": 75253, + "佰": 75254, + "瀚": 75255, + "А": 75256, + "盡": 75257, + "汶": 75258, + "琉": 75259, + "矶": 75260, + "レ": 75261, + "叭": 75262, + "掺": 75263, + "钞": 75264, + "碾": 75265, + "ē": 75266, + "肽": 75267, + "颐": 75268, + "柬": 75269, + "茵": 75270, + "υ": 75271, + "篷": 75272, + "桓": 75273, + "⊙": 75274, + "½": 75275, + "薰": 75276, + "胱": 75277, + "挠": 75278, + "伺": 75279, + "蹦": 75280, + "窍": 75281, + "哼": 75282, + "掠": 75283, + "玺": 75284, + "梢": 75285, + "炜": 75286, + "澈": 75287, + "玮": 75288, + "Š": 75289, + "撩": 75290, + "蝇": 75291, + "唑": 75292, + "捆": 75293, + "인": 75294, + "ㄨ": 75295, + "赎": 75296, + "ï": 75297, + "苞": 75298, + "陋": 75299, + "嘎": 75300, + "濮": 75301, + "拙": 75302, + "榕": 75303, + "э": 75304, + "⑤": 75305, + "Â": 75306, + "蛟": 75307, + "簇": 75308, + "्": 75309, + "憩": 75310, + "χ": 75311, + "朽": 75312, + "惭": 75313, + "嗓": 75314, + "坯": 75315, + "疤": 75316, + "俏": 75317, + "藩": 75318, + "筷": 75319, + "秤": 75320, + "은": 75321, + "瑾": 75322, + "徊": 75323, + "恳": 75324, + "恍": 75325, + "毗": 75326, + "瞄": 75327, + "帜": 75328, + "蝎": 75329, + "洱": 75330, + "め": 75331, + "悍": 75332, + "樟": 75333, + "ˊ": 75334, + "迄": 75335, + "∀": 75336, + "旌": 75337, + "र": 75338, + "テ": 75339, + "萤": 75340, + "阱": 75341, + "溺": 75342, + "萼": 75343, + "そ": 75344, + "晟": 75345, + "穹": 75346, + "颍": 75347, + "恤": 75348, + "嗨": 75349, + "柚": 75350, + "檀": 75351, + "※": 75352, + "있": 75353, + "愣": 75354, + "鹭": 75355, + "蜗": 75356, + "蔗": 75357, + "趴": 75358, + "榻": 75359, + "肴": 75360, + "锚": 75361, + "怼": 75362, + "秆": 75363, + "泾": 75364, + "枉": 75365, + "莽": 75366, + "汲": 75367, + "痹": 75368, + "烁": 75369, + "洼": 75370, + "哒": 75371, + "窜": 75372, + "舔": 75373, + "弛": 75374, + "ق": 75375, + "ו": 75376, + "嗣": 75377, + "え": 75378, + "涕": 75379, + "碘": 75380, + "敖": 75381, + "용": 75382, + "紊": 75383, + "豁": 75384, + "徘": 75385, + "涟": 75386, + "亥": 75387, + "圃": 75388, + "炬": 75389, + "デ": 75390, + "瞩": 75391, + "肘": 75392, + "煞": 75393, + "М": 75394, + "聆": 75395, + "荟": 75396, + "焙": 75397, + "º": 75398, + "裘": 75399, + "メ": 75400, + "渤": 75401, + "脐": 75402, + "焖": 75403, + "厥": 75404, + "珀": 75405, + "宸": 75406, + "骼": 75407, + "绚": 75408, + "ð": 75409, + "靳": 75410, + "砚": 75411, + "夯": 75412, + "迦": 75413, + "妾": 75414, + "町": 75415, + "週": 75416, + "坂": 75417, + "า": 75418, + "啪": 75419, + "İ": 75420, + "贰": 75421, + "睫": 75422, + "茸": 75423, + "み": 75424, + "일": 75425, + "哔": 75426, + "庶": 75427, + "眩": 75428, + "鞘": 75429, + "亢": 75430, + "羹": 75431, + "ك": 75432, + "拢": 75433, + "芥": 75434, + "驭": 75435, + "骁": 75436, + "Т": 75437, + "娩": 75438, + "殇": 75439, + "도": 75440, + "箫": 75441, + "熨": 75442, + "谍": 75443, + "Å": 75444, + "叨": 75445, + "ど": 75446, + "戊": 75447, + "耦": 75448, + "跋": 75449, + "マ": 75450, + "搁": 75451, + "沭": 75452, + "樵": 75453, + "臻": 75454, + "瓯": 75455, + "赡": 75456, + "崭": 75457, + "淤": 75458, + "苛": 75459, + "◎": 75460, + "噩": 75461, + "お": 75462, + "潢": 75463, + "滁": 75464, + "萱": 75465, + "拽": 75466, + "보": 75467, + "滔": 75468, + "瘟": 75469, + "鲨": 75470, + "ح": 75471, + "咕": 75472, + "霾": 75473, + "И": 75474, + "匡": 75475, + "囚": 75476, + "铬": 75477, + "馒": 75478, + "秃": 75479, + "鹊": 75480, + "瑚": 75481, + "饵": 75482, + "惫": 75483, + "歹": 75484, + "盔": 75485, + "豚": 75486, + "グ": 75487, + "嫉": 75488, + "鸳": 75489, + "孰": 75490, + "韬": 75491, + "颊": 75492, + "菁": 75493, + "鞠": 75494, + "辊": 75495, + "아": 75496, + "侮": 75497, + "憋": 75498, + "拇": 75499, + "僚": 75500, + "沽": 75501, + "沌": 75502, + "扉": 75503, + "禧": 75504, + "क": 75505, + "ư": 75506, + "孽": 75507, + "僻": 75508, + "樽": 75509, + "烽": 75510, + "柑": 75511, + "祺": 75512, + "犁": 75513, + "冕": 75514, + "茗": 75515, + "カ": 75516, + "绅": 75517, + "髮": 75518, + "绛": 75519, + "湃": 75520, + "그": 75521, + "蒿": 75522, + "绊": 75523, + "炙": 75524, + "濒": 75525, + "트": 75526, + "遏": 75527, + "⭐": 75528, + "漱": 75529, + "❤": 75530, + "熄": 75531, + "時": 75532, + "蛤": 75533, + "鹃": 75534, + "墟": 75535, + "毋": 75536, + "茧": 75537, + "玖": 75538, + "觞": 75539, + "倘": 75540, + "👍": 75541, + "氓": 75542, + "秧": 75543, + "や": 75544, + "歼": 75545, + "문": 75546, + "渚": 75547, + "怯": 75548, + "珑": 75549, + "砺": 75550, + "诛": 75551, + "峪": 75552, + "น": 75553, + "祷": 75554, + "褪": 75555, + "颓": 75556, + "耸": 75557, + "¥": 75558, + "懿": 75559, + "浣": 75560, + "대": 75561, + "刁": 75562, + "靴": 75563, + "나": 75564, + "Ü": 75565, + "啰": 75566, + "磺": 75567, + "辙": 75568, + "瞭": 75569, + "晦": 75570, + "腋": 75571, + "揣": 75572, + "宦": 75573, + "晗": 75574, + "莘": 75575, + "钳": 75576, + "煜": 75577, + "贻": 75578, + "溅": 75579, + "ő": 75580, + "讳": 75581, + "烨": 75582, + "嘟": 75583, + "凳": 75584, + "¿": 75585, + "睢": 75586, + "滇": 75587, + "黯": 75588, + "羟": 75589, + "镍": 75590, + "苓": 75591, + "聋": 75592, + "郴": 75593, + "撇": 75594, + "趾": 75595, + "岱": 75596, + "ə": 75597, + "サ": 75598, + "ち": 75599, + "으": 75600, + "蕃": 75601, + "拧": 75602, + "闰": 75603, + "邂": 75604, + "陂": 75605, + "窖": 75606, + "褚": 75607, + "暧": 75608, + "ィ": 75609, + "潼": 75610, + "铂": 75611, + "赘": 75612, + "迢": 75613, + "バ": 75614, + "仟": 75615, + "蔷": 75616, + "婧": 75617, + "珂": 75618, + "眺": 75619, + "哗": 75620, + "癣": 75621, + "璋": 75622, + "筐": 75623, + "焯": 75624, + "奚": 75625, + "漾": 75626, + "鄞": 75627, + "怠": 75628, + "礁": 75629, + "요": 75630, + "兀": 75631, + "捂": 75632, + "恕": 75633, + "ج": 75634, + "侄": 75635, + "躬": 75636, + "ش": 75637, + "‑": 75638, + "凛": 75639, + "ה": 75640, + "抉": 75641, + "垮": 75642, + "袅": 75643, + "蠕": 75644, + "ί": 75645, + "陨": 75646, + "†": 75647, + "羲": 75648, + "筱": 75649, + "⩾": 75650, + "俘": 75651, + "绰": 75652, + "迥": 75653, + "盎": 75654, + "酣": 75655, + "扳": 75656, + "挟": 75657, + "棺": 75658, + "蕨": 75659, + "禺": 75660, + "绷": 75661, + "涪": 75662, + "Ã": 75663, + "拷": 75664, + "蓟": 75665, + "咀": 75666, + "├": 75667, + "蜕": 75668, + "驯": 75669, + " ̄": 75670, + "Ç": 75671, + "과": 75672, + "锰": 75673, + "剁": 75674, + "陡": 75675, + "纂": 75676, + "わ": 75677, + "缤": 75678, + "寐": 75679, + "姊": 75680, + "›": 75681, + "蚝": 75682, + "憨": 75683, + "秸": 75684, + "姗": 75685, + "े": 75686, + "蝠": 75687, + "悼": 75688, + "嗅": 75689, + "ξ": 75690, + "兢": 75691, + "轼": 75692, + "ム": 75693, + "磐": 75694, + "嘘": 75695, + "粽": 75696, + "キ": 75697, + "栾": 75698, + "璇": 75699, + "昱": 75700, + "逅": 75701, + "ร": 75702, + "fi": 75703, + "劈": 75704, + "胥": 75705, + "嬉": 75706, + "드": 75707, + "嫣": 75708, + "镑": 75709, + "簪": 75710, + "惬": 75711, + "ţ": 75712, + "岔": 75713, + "藓": 75714, + "ˇ": 75715, + "琛": 75716, + "亳": 75717, + "孚": 75718, + "俺": 75719, + "霓": 75720, + "寰": 75721, + "遐": 75722, + "飒": 75723, + "冢": 75724, + "芷": 75725, + "疵": 75726, + "螃": 75727, + "ブ": 75728, + "면": 75729, + "霏": 75730, + "鳄": 75731, + "琶": 75732, + "棹": 75733, + "猩": 75734, + "淼": 75735, + "烙": 75736, + "▽": 75737, + "唾": 75738, + "筠": 75739, + "钗": 75740, + "霁": 75741, + "泓": 75742, + "羌": 75743, + "せ": 75744, + "瀛": 75745, + "라": 75746, + "镖": 75747, + "⊂": 75748, + "萦": 75749, + "氪": 75750, + "笃": 75751, + "妞": 75752, + "笺": 75753, + "恺": 75754, + "唔": 75755, + "瞪": 75756, + "성": 75757, + "鸯": 75758, + "隅": 75759, + "筵": 75760, + "峥": 75761, + "谴": 75762, + "[": 75763, + "₹": 75764, + "忻": 75765, + "痔": 75766, + "釜": 75767, + "佼": 75768, + "栩": 75769, + "입": 75770, + "∫": 75771, + "伶": 75772, + "辄": 75773, + "瑛": 75774, + "汐": 75775, + "]": 75776, + "挛": 75777, + "祯": 75778, + "杳": 75779, + "أ": 75780, + "螨": 75781, + "ǐ": 75782, + "惰": 75783, + "璨": 75784, + "蟾": 75785, + "鹦": 75786, + "褶": 75787, + "ạ": 75788, + "戟": 75789, + "婺": 75790, + "¬": 75791, + "佟": 75792, + "啃": 75793, + "Č": 75794, + "狙": 75795, + "屉": 75796, + "苇": 75797, + "◇": 75798, + "槟": 75799, + "拣": 75800, + "踊": 75801, + "炊": 75802, + "晤": 75803, + "徙": 75804, + "螂": 75805, + "庇": 75806, + "锣": 75807, + "糜": 75808, + "Ł": 75809, + "咧": 75810, + "粱": 75811, + "硒": 75812, + "鳌": 75813, + "貂": 75814, + "曳": 75815, + "疱": 75816, + "绯": 75817, + "溧": 75818, + "缉": 75819, + "醚": 75820, + "髦": 75821, + "력": 75822, + "茬": 75823, + "剃": 75824, + "峭": 75825, + "札": 75826, + "眶": 75827, + "譬": 75828, + "睑": 75829, + "谏": 75830, + "悖": 75831, + "遁": 75832, + "瞿": 75833, + "チ": 75834, + "娴": 75835, + "만": 75836, + "浒": 75837, + "게": 75838, + "峙": 75839, + "慷": 75840, + "叁": 75841, + "滦": 75842, + "皎": 75843, + "亟": 75844, + "อ": 75845, + "膊": 75846, + "ウ": 75847, + "佈": 75848, + "辕": 75849, + "茉": 75850, + "न": 75851, + "∁": 75852, + "泠": 75853, + "馏": 75854, + "澹": 75855, + "주": 75856, + "楔": 75857, + "莒": 75858, + "铣": 75859, + "動": 75860, + "∃": 75861, + "鸠": 75862, + "蘸": 75863, + "桨": 75864, + "屹": 75865, + "驹": 75866, + "眯": 75867, + "喃": 75868, + "⊆": 75869, + "钵": 75870, + "腑": 75871, + "個": 75872, + "坷": 75873, + "烃": 75874, + "钊": 75875, + "赊": 75876, + "夭": 75877, + "ל": 75878, + "상": 75879, + "掰": 75880, + "회": 75881, + "オ": 75882, + "掖": 75883, + "摹": 75884, + "耘": 75885, + "浚": 75886, + "沅": 75887, + "柒": 75888, + "婿": 75889, + "ि": 75890, + "谒": 75891, + "剿": 75892, + "撸": 75893, + "恬": 75894, + "酋": 75895, + "パ": 75896, + "ά": 75897, + "炽": 75898, + "璀": 75899, + "Ø": 75900, + "胧": 75901, + "掐": 75902, + "侬": 75903, + "嵴": 75904, + "胳": 75905, + "汹": 75906, + "虏": 75907, + "眨": 75908, + "痉": 75909, + "琵": 75910, + "瓢": 75911, + "朦": 75912, + "स": 75913, + "龈": 75914, + "刨": 75915, + "冗": 75916, + "浔": 75917, + "巳": 75918, + "่": 75919, + "소": 75920, + "偈": 75921, + "⟩": 75922, + "嫖": 75923, + "嘶": 75924, + "Ó": 75925, + "毙": 75926, + "전": 75927, + "涝": 75928, + "诫": 75929, + "ό": 75930, + "ュ": 75931, + "窒": 75932, + "구": 75933, + "稣": 75934, + "抠": 75935, + "侗": 75936, + "들": 75937, + "戮": 75938, + "瓮": 75939, + "峦": 75940, + "Б": 75941, + "怂": 75942, + "藜": 75943, + "위": 75944, + "蝙": 75945, + "妳": 75946, + "ง": 75947, + "厮": 75948, + "芪": 75949, + "谬": 75950, + "砥": 75951, + "부": 75952, + "開": 75953, + "叟": 75954, + "咫": 75955, + "慑": 75956, + "毓": 75957, + "У": 75958, + "楞": 75959, + "熠": 75960, + "噢": 75961, + "腮": 75962, + "ả": 75963, + "エ": 75964, + "偃": 75965, + "谩": 75966, + "稼": 75967, + "🙂": 75968, + "氰": 75969, + "म": 75970, + "Đ": 75971, + "匮": 75972, + "捍": 75973, + "踝": 75974, + "癖": 75975, + "睾": 75976, + "褒": 75977, + "터": 75978, + "臧": 75979, + "楂": 75980, + "Σ": 75981, + "邸": 75982, + "诅": 75983, + "芍": 75984, + "酉": 75985, + "玥": 75986, + "霹": 75987, + "骇": 75988, + "仄": 75989, + "笠": 75990, + "雳": 75991, + "彷": 75992, + "ก": 75993, + "痊": 75994, + "ר": 75995, + "蟠": 75996, + "鹉": 75997, + "磋": 75998, + "锄": 75999, + "廿": 76000, + "淆": 76001, + "卯": 76002, + "鱿": 76003, + "³": 76004, + "할": 76005, + "挝": 76006, + "铵": 76007, + "⟨": 76008, + "椿": 76009, + "¡": 76010, + "喱": 76011, + "煸": 76012, + "咚": 76013, + "祇": 76014, + "吡": 76015, + "狩": 76016, + "त": 76017, + "洮": 76018, + "阈": 76019, + "א": 76020, + "斛": 76021, + "缨": 76022, + "Ž": 76023, + "瘙": 76024, + "辗": 76025, + "원": 76026, + "Г": 76027, + "خ": 76028, + "扼": 76029, + "棣": 76030, + "腱": 76031, + "淌": 76032, + "ी": 76033, + "圩": 76034, + "啧": 76035, + "籁": 76036, + "ǔ": 76037, + "屌": 76038, + "袂": 76039, + "谯": 76040, + "偕": 76041, + "ї": 76042, + "崽": 76043, + "轶": 76044, + "여": 76045, + "猕": 76046, + "诶": 76047, + "呦": 76048, + "場": 76049, + "炯": 76050, + "髋": 76051, + "間": 76052, + "เ": 76053, + "註": 76054, + "芮": 76055, + "豌": 76056, + "芡": 76057, + "谛": 76058, + "娣": 76059, + "惆": 76060, + "拎": 76061, + "俨": 76062, + "卞": 76063, + "ョ": 76064, + "恪": 76065, + "昵": 76066, + "출": 76067, + "漯": 76068, + "慵": 76069, + "潺": 76070, + "叩": 76071, + "セ": 76072, + "囤": 76073, + "溴": 76074, + "裏": 76075, + "丐": 76076, + "猥": 76077, + "憧": 76078, + "啶": 76079, + "疚": 76080, + "箔": 76081, + "懦": 76082, + "宕": 76083, + "匯": 76084, + "唧": 76085, + "噜": 76086, + "憬": 76087, + "毡": 76088, + "硼": 76089, + "铎": 76090, + "ѕ": 76091, + "έ": 76092, + "漪": 76093, + "痣": 76094, + "跻": 76095, + "じ": 76096, + "羯": 76097, + "안": 76098, + "Φ": 76099, + "嬛": 76100, + "狡": 76101, + "荚": 76102, + "้": 76103, + "悚": 76104, + "煽": 76105, + "ナ": 76106, + "淬": 76107, + "斟": 76108, + "唠": 76109, + "湄": 76110, + "秽": 76111, + "璞": 76112, + "鲈": 76113, + "ת": 76114, + "姣": 76115, + "诣": 76116, + "猝": 76117, + "発": 76118, + "虔": 76119, + "匣": 76120, + "З": 76121, + "鲫": 76122, + "汞": 76123, + "荼": 76124, + "篡": 76125, + "ャ": 76126, + "缭": 76127, + "揪": 76128, + "우": 76129, + "擒": 76130, + "ニ": 76131, + "铠": 76132, + "邳": 76133, + "Е": 76134, + "경": 76135, + "忱": 76136, + "悸": 76137, + "铮": 76138, + "悴": 76139, + "霭": 76140, + "骸": 76141, + "攸": 76142, + "弼": 76143, + "沖": 76144, + "모": 76145, + "啄": 76146, + "丶": 76147, + "∧": 76148, + "遴": 76149, + "ㄢ": 76150, + "∆": 76151, + "麽": 76152, + "습": 76153, + "荀": 76154, + "惶": 76155, + "ั": 76156, + "衙": 76157, + "장": 76158, + "Ⅲ": 76159, + "ز": 76160, + "━": 76161, + "́": 76162, + "蓓": 76163, + "稷": 76164, + "擀": 76165, + "胫": 76166, + "揍": 76167, + "夙": 76168, + "燮": 76169, + "曜": 76170, + "嗷": 76171, + "骥": 76172, + "濛": 76173, + "ė": 76174, + "濯": 76175, + "鬟": 76176, + "榛": 76177, + "∂": 76178, + "ह": 76179, + "柘": 76180, + "오": 76181, + "窘": 76182, + "ź": 76183, + "ص": 76184, + "阪": 76185, + "ъ": 76186, + "琥": 76187, + "黍": 76188, + "捅": 76189, + "ダ": 76190, + "ế": 76191, + "拈": 76192, + "ビ": 76193, + "俐": 76194, + "妓": 76195, + "枭": 76196, + "捲": 76197, + "ک": 76198, + "ば": 76199, + "瞰": 76200, + "내": 76201, + "辍": 76202, + "幹": 76203, + "莅": 76204, + "憎": 76205, + "ệ": 76206, + "壬": 76207, + "⚠": 76208, + "斓": 76209, + "嫦": 76210, + "岫": 76211, + "ม": 76212, + "嵘": 76213, + "蔑": 76214, + "陛": 76215, + "⁄": 76216, + "학": 76217, + "ェ": 76218, + "蕙": 76219, + "戍": 76220, + "熹": 76221, + "薏": 76222, + "茯": 76223, + "적": 76224, + "♦": 76225, + "¯": 76226, + "蟑": 76227, + "ב": 76228, + "ψ": 76229, + "缥": 76230, + "ط": 76231, + "喽": 76232, + "∶": 76233, + "這": 76234, + "朕": 76235, + "郯": 76236, + "馋": 76237, + "熘": 76238, + "嘅": 76239, + "讷": 76240, + "嚷": 76241, + "榭": 76242, + "מ": 76243, + "侥": 76244, + "비": 76245, + "隘": 76246, + "ミ": 76247, + "ů": 76248, + "設": 76249, + "되": 76250, + "공": 76251, + "隽": 76252, + "Ä": 76253, + "▄": 76254, + "脯": 76255, + "疣": 76256, + "弋": 76257, + "溟": 76258, + "﹐": 76259, + "邃": 76260, + "晁": 76261, + "婪": 76262, + "婵": 76263, + "痪": 76264, + "殡": 76265, + "夔": 76266, + "昙": 76267, + "粳": 76268, + "嫡": 76269, + "禀": 76270, + "矜": 76271, + "祐": 76272, + "沮": 76273, + "実": 76274, + "綦": 76275, + "會": 76276, + "翌": 76277, + "悯": 76278, + "膛": 76279, + "砾": 76280, + "咐": 76281, + "業": 76282, + "₂": 76283, + "瘘": 76284, + "嵊": 76285, + "竺": 76286, + "槎": 76287, + "疙": 76288, + "撬": 76289, + "瘩": 76290, + "Î": 76291, + "闾": 76292, + "崧": 76293, + "淅": 76294, + "豉": 76295, + "痞": 76296, + "痢": 76297, + "骅": 76298, + "惮": 76299, + "蔺": 76300, + "骋": 76301, + "⑥": 76302, + "婕": 76303, + "疝": 76304, + "見": 76305, + "娓": 76306, + "데": 76307, + "傣": 76308, + "毂": 76309, + "‚": 76310, + "동": 76311, + "憔": 76312, + "प": 76313, + "합": 76314, + "荞": 76315, + "葆": 76316, + "ש": 76317, + "프": 76318, + "개": 76319, + "犊": 76320, + "颚": 76321, + "생": 76322, + "ल": 76323, + "涿": 76324, + "楹": 76325, + "ं": 76326, + "缈": 76327, + "湍": 76328, + "恣": 76329, + "寮": 76330, + "粑": 76331, + "镰": 76332, + "嘤": 76333, + "濑": 76334, + "榔": 76335, + "咔": 76336, + "酝": 76337, + "伫": 76338, + "戌": 76339, + "モ": 76340, + "記": 76341, + "镯": 76342, + "Ś": 76343, + "撮": 76344, + "ァ": 76345, + "👇": 76346, + "蛊": 76347, + "🎦": 76348, + "珡": 76349, + "👳‍♀️": 76350, + "掲": 76351, + "綰": 76352, + "礭": 76353, + "愓": 76354, + "掅": 76355, + "炟": 76356, + "毆": 76357, + "肸": 76358, + "蚎": 76359, + "霣": 76360, + "豤": 76361, + "👨‍⚖️": 76362, + "睺": 76363, + "窷": 76364, + "嫮": 76365, + "萕": 76366, + "嶛": 76367, + "ˉ": 76368, + "鲷": 76369, + "渫": 76370, + "😑": 76371, + "΢": 76372, + "鈰": 76373, + "腉": 76374, + "👩🏼‍❤️‍👩🏾": 76375, + "⋪": 76376, + "悽": 76377, + "Ƚ": 76378, + "脴": 76379, + "韼": 76380, + "薻": 76381, + "訮": 76382, + "毊": 76383, + "笥": 76384, + "🫅🏾": 76385, + "蜵": 76386, + "枆": 76387, + "珴": 76388, + "肮": 76389, + "騜": 76390, + "狖": 76391, + "碽": 76392, + "璂": 76393, + "襁": 76394, + "⇞": 76395, + "🧜🏽‍♂️": 76396, + "俼": 76397, + "絇": 76398, + "輖": 76399, + "⛗": 76400, + "碠": 76401, + "⍻": 76402, + "翄": 76403, + "牉": 76404, + "🚵🏻": 76405, + "塎": 76406, + "狃": 76407, + "栺": 76408, + "剡": 76409, + "叵": 76410, + "💢": 76411, + "槴": 76412, + "劮": 76413, + "珦": 76414, + "⓶": 76415, + "🫲": 76416, + "乴": 76417, + "戯": 76418, + "ϟ": 76419, + "瀩": 76420, + "❄️": 76421, + "⋐": 76422, + "廈": 76423, + "哬": 76424, + "Ϯ": 76425, + "啯": 76426, + "👂🏽": 76427, + "頝": 76428, + "磴": 76429, + "貗": 76430, + "橨": 76431, + "罓": 76432, + "🇰🇳": 76433, + "ₐ": 76434, + "廧": 76435, + "龑": 76436, + "Ⓐ": 76437, + "鴂": 76438, + "軾": 76439, + "嫠": 76440, + "潃": 76441, + "礏": 76442, + "崕": 76443, + "菺": 76444, + "🙌🏼": 76445, + "虊": 76446, + "👨🏾‍❤️‍👨🏽": 76447, + "騕": 76448, + "縭": 76449, + "弅": 76450, + "犔": 76451, + "鼣": 76452, + "鋨": 76453, + "🥝": 76454, + "腸": 76455, + "穞": 76456, + "ΐ": 76457, + "怄": 76458, + "虨": 76459, + "铼": 76460, + "呷": 76461, + "撙": 76462, + "羅": 76463, + "嵹": 76464, + "篝": 76465, + "蹓": 76466, + "🇧🇹": 76467, + "寴": 76468, + "谕": 76469, + "摭": 76470, + "酂": 76471, + "芞": 76472, + "兾": 76473, + "陬": 76474, + "硻": 76475, + "遶": 76476, + "烆": 76477, + "褛": 76478, + "嶖": 76479, + "拞": 76480, + "🚱": 76481, + "🦯": 76482, + "🤘🏾": 76483, + "👩🏾‍🦰": 76484, + "韡": 76485, + "読": 76486, + "偗": 76487, + "⓼": 76488, + "耟": 76489, + "☩": 76490, + "遖": 76491, + "寜": 76492, + "婤": 76493, + "搤": 76494, + "鼫": 76495, + "礛": 76496, + "苊": 76497, + "旓": 76498, + "橏": 76499, + "薡": 76500, + "灛": 76501, + "圗": 76502, + "揗": 76503, + "翐": 76504, + "郅": 76505, + "🇧🇭": 76506, + "␑": 76507, + "氕": 76508, + "␼": 76509, + "ŋ": 76510, + "啩": 76511, + "玬": 76512, + "瓓": 76513, + "苜": 76514, + "魭": 76515, + "頶": 76516, + "鐱": 76517, + "嘙": 76518, + "餀": 76519, + "🦶🏿": 76520, + "耚": 76521, + "驀": 76522, + "凅": 76523, + "郒": 76524, + "🇸🇱": 76525, + "埵": 76526, + "阨": 76527, + "樾": 76528, + "芤": 76529, + "💮": 76530, + "竲": 76531, + "淙": 76532, + "🫅🏿": 76533, + "虜": 76534, + "蝣": 76535, + "👨🏼‍✈️": 76536, + "訃": 76537, + "霕": 76538, + "啎": 76539, + "絓": 76540, + "🍊": 76541, + "掫": 76542, + "鱾": 76543, + "寙": 76544, + "簎": 76545, + "⁾": 76546, + "麵": 76547, + "⋤": 76548, + "襡": 76549, + "🦶🏽": 76550, + "剏": 76551, + "芾": 76552, + "🤌🏻": 76553, + "梎": 76554, + "毞": 76555, + "ͬ": 76556, + "筊": 76557, + "猆": 76558, + "💭": 76559, + "镒": 76560, + "菧": 76561, + "岢": 76562, + "獗": 76563, + "橁": 76564, + "乻": 76565, + "寁": 76566, + "刕": 76567, + "🦹🏾": 76568, + "鸷": 76569, + "媅": 76570, + "蒦": 76571, + "斷": 76572, + "⋳": 76573, + "榼": 76574, + "偢": 76575, + "☺": 76576, + "😒": 76577, + "🧚🏽‍♂️": 76578, + "螠": 76579, + "蹣": 76580, + "⃷": 76581, + "⛻": 76582, + "┕": 76583, + "Ɔ": 76584, + "齖": 76585, + "👩‍💼": 76586, + "🩹": 76587, + "≖": 76588, + "鼴": 76589, + "隈": 76590, + "🧟": 76591, + "≝": 76592, + "寕": 76593, + "鑝": 76594, + "棥": 76595, + "掇": 76596, + "❗️": 76597, + "☙": 76598, + "柲": 76599, + "鉭": 76600, + "蛔": 76601, + "膷": 76602, + "🇻🇦": 76603, + "ʕ": 76604, + "翀": 76605, + "胝": 76606, + "👶🏼": 76607, + "罅": 76608, + "跛": 76609, + "⁂": 76610, + "勮": 76611, + "錃": 76612, + "厠": 76613, + "嵑": 76614, + "👨🏼‍🔬": 76615, + "鷉": 76616, + "顗": 76617, + "塗": 76618, + "郔": 76619, + "敩": 76620, + "⌶": 76621, + "颋": 76622, + "鍫": 76623, + "蒗": 76624, + "👩🏼‍🦽": 76625, + "踂": 76626, + "蜹": 76627, + "鏉": 76628, + "嫄": 76629, + "踖": 76630, + "堢": 76631, + "镌": 76632, + "庘": 76633, + "⁗": 76634, + "⑼": 76635, + "搻": 76636, + "🐞": 76637, + "樃": 76638, + "簗": 76639, + "庌": 76640, + "睳": 76641, + "噡": 76642, + "🇰🇷": 76643, + "駴": 76644, + "⌐": 76645, + "▣": 76646, + "煁": 76647, + "Ŵ": 76648, + "苴": 76649, + "閱": 76650, + "仱": 76651, + "🛑": 76652, + "殶": 76653, + "⌦": 76654, + "硐": 76655, + "鯯": 76656, + "🇮🇱": 76657, + "鷗": 76658, + "噮": 76659, + "峁": 76660, + "缾": 76661, + "🪞": 76662, + "⍪": 76663, + "Ɩ": 76664, + "◍": 76665, + "🤸‍♀️": 76666, + "荁": 76667, + "籴": 76668, + "誊": 76669, + "巖": 76670, + "镚": 76671, + "艛": 76672, + "帩": 76673, + "弞": 76674, + "嘥": 76675, + "📬": 76676, + "馍": 76677, + "媱": 76678, + "🧳": 76679, + "羴": 76680, + "8️⃣": 76681, + "鄡": 76682, + "👩🏼‍🎤": 76683, + "蝅": 76684, + "狣": 76685, + "鄃": 76686, + "晙": 76687, + "欹": 76688, + "飡": 76689, + "乕": 76690, + "🏥": 76691, + "靹": 76692, + "氭": 76693, + "鳾": 76694, + "虝": 76695, + "諆": 76696, + "軮": 76697, + "孮": 76698, + "薸": 76699, + "🦹🏻": 76700, + "瀆": 76701, + "鴎": 76702, + "訝": 76703, + "鎿": 76704, + "窚": 76705, + "舡": 76706, + "禣": 76707, + "瞃": 76708, + "噈": 76709, + "蜱": 76710, + "娲": 76711, + "毠": 76712, + "浽": 76713, + "顴": 76714, + "欰": 76715, + "呲": 76716, + "涮": 76717, + "ʸ": 76718, + "繇": 76719, + "褻": 76720, + "⁣": 76721, + "訜": 76722, + "汒": 76723, + "🫚": 76724, + "硹": 76725, + "壻": 76726, + "莕": 76727, + "殢": 76728, + "👩🏾‍⚕️": 76729, + "👥": 76730, + "🇬🇱": 76731, + "⁌": 76732, + "雗": 76733, + "狞": 76734, + "冎": 76735, + "欥": 76736, + "溄": 76737, + "譌": 76738, + "伉": 76739, + "烀": 76740, + "媿": 76741, + "佝": 76742, + "🧀": 76743, + "嶉": 76744, + "瓄": 76745, + "镩": 76746, + "⃇": 76747, + "攁": 76748, + "笰": 76749, + "🇱🇮": 76750, + "豸": 76751, + "駿": 76752, + "頩": 76753, + "🍲": 76754, + "璩": 76755, + "👩🏿‍❤️‍👩🏾": 76756, + "👩🏼‍❤️‍👨🏿": 76757, + "牳": 76758, + "颏": 76759, + "婗": 76760, + "噧": 76761, + "迺": 76762, + "嶾": 76763, + "🎠": 76764, + "轊": 76765, + "☱": 76766, + "婹": 76767, + "韪": 76768, + "埧": 76769, + "榙": 76770, + "襯": 76771, + "筶": 76772, + "爧": 76773, + "畨": 76774, + "稝": 76775, + "ⓝ": 76776, + "淭": 76777, + "Η": 76778, + "🐔": 76779, + "褌": 76780, + "蕆": 76781, + "鋦": 76782, + "ⅈ": 76783, + "🔊": 76784, + "┲": 76785, + "▜": 76786, + "羜": 76787, + "🇦🇪": 76788, + "℺": 76789, + "唒": 76790, + "勔": 76791, + "飜": 76792, + "焅": 76793, + "軎": 76794, + "⁴": 76795, + "謸": 76796, + "憸": 76797, + "🧑‍🍳": 76798, + "姏": 76799, + "🫴🏿": 76800, + "👳🏽": 76801, + "鋴": 76802, + "償": 76803, + "⅐": 76804, + "猟": 76805, + "韖": 76806, + "筢": 76807, + "🤙🏼": 76808, + "儊": 76809, + "🧗🏽‍♂️": 76810, + "驽": 76811, + "␷": 76812, + "痀": 76813, + "犮": 76814, + "芵": 76815, + "襨": 76816, + "嘠": 76817, + "婎": 76818, + "聟": 76819, + "睻": 76820, + "呌": 76821, + "嬿": 76822, + "昁": 76823, + "骬": 76824, + "廁": 76825, + "骩": 76826, + "": 76827, + "凪": 76828, + "杸": 76829, + "奅": 76830, + "嚉": 76831, + "荩": 76832, + "鄿": 76833, + "̋": 76834, + "妧": 76835, + "檺": 76836, + "瀙": 76837, + "⋣": 76838, + "∻": 76839, + "▙": 76840, + "Ŭ": 76841, + "┪": 76842, + "🫡": 76843, + "輎": 76844, + "潯": 76845, + "枷": 76846, + "🇺🇳": 76847, + "澞": 76848, + "👩🏼‍🦼": 76849, + "黻": 76850, + "懢": 76851, + "鄀": 76852, + "崯": 76853, + "彿": 76854, + "📝": 76855, + "ℜ": 76856, + "鷋": 76857, + "踅": 76858, + "摣": 76859, + "菽": 76860, + "鄅": 76861, + "🧃": 76862, + "🧨": 76863, + "闚": 76864, + "绨": 76865, + "荋": 76866, + "逶": 76867, + "顸": 76868, + "Ϡ": 76869, + "钭": 76870, + "譫": 76871, + "拵": 76872, + "眃": 76873, + "臉": 76874, + "蹘": 76875, + "贗": 76876, + "椫": 76877, + "拗": 76878, + "👩🏿‍🎨": 76879, + "筬": 76880, + "Ɉ": 76881, + "嗙": 76882, + "┑": 76883, + "峕": 76884, + "廟": 76885, + "箁": 76886, + "熒": 76887, + "弬": 76888, + "陘": 76889, + "飲": 76890, + "潅": 76891, + "襺": 76892, + "塂": 76893, + "齦": 76894, + "唃": 76895, + "Ϣ": 76896, + "煘": 76897, + "┐": 76898, + "騊": 76899, + "鷟": 76900, + "瘻": 76901, + "儍": 76902, + "🇲🇩": 76903, + "窋": 76904, + "嵕": 76905, + "鹝": 76906, + "潣": 76907, + "鲦": 76908, + "⇚": 76909, + "巁": 76910, + "悡": 76911, + "劻": 76912, + "🙎‍♂️": 76913, + "肔": 76914, + "侚": 76915, + "綏": 76916, + "眢": 76917, + "🫴🏾": 76918, + "龣": 76919, + "謚": 76920, + "₮": 76921, + "🚨": 76922, + "贜": 76923, + "瘑": 76924, + "鱋": 76925, + "鰬": 76926, + "謅": 76927, + "🤌": 76928, + "馩": 76929, + "騄": 76930, + "🤦🏾‍♀️": 76931, + "┨": 76932, + "従": 76933, + "🪭": 76934, + "琩": 76935, + "羰": 76936, + "翮": 76937, + "鶐": 76938, + "瓱": 76939, + "肷": 76940, + "🦮": 76941, + "滓": 76942, + "👨🏾‍⚕️": 76943, + "暿": 76944, + "鱹": 76945, + "蛑": 76946, + "戬": 76947, + "撔": 76948, + "簸": 76949, + "栛": 76950, + "聎": 76951, + "愃": 76952, + "豳": 76953, + "菞": 76954, + "脝": 76955, + "嗐": 76956, + "ɺ": 76957, + "覶": 76958, + "岎": 76959, + "緓": 76960, + "😸": 76961, + "💇": 76962, + "楅": 76963, + "鹘": 76964, + "箧": 76965, + "閝": 76966, + "憏": 76967, + "↋": 76968, + "寶": 76969, + "🏊🏾‍♂️": 76970, + "撣": 76971, + "伷": 76972, + "蚆": 76973, + "🤴🏿": 76974, + "磝": 76975, + "酾": 76976, + "≄": 76977, + "擿": 76978, + "鮗": 76979, + "踷": 76980, + "℄": 76981, + "˧": 76982, + "👨🏻‍❤️‍👨🏾": 76983, + "俑": 76984, + "紃": 76985, + "鋸": 76986, + "蔱": 76987, + "⏾": 76988, + "🎨": 76989, + "覉": 76990, + "禰": 76991, + "麉": 76992, + "⃖": 76993, + "歅": 76994, + "亀": 76995, + "讵": 76996, + "椂": 76997, + "钌": 76998, + "濃": 76999, + "彚": 77000, + "鵸": 77001, + "吺": 77002, + "⅂": 77003, + "🌴": 77004, + "倝": 77005, + "鳠": 77006, + "颔": 77007, + "簃": 77008, + "慄": 77009, + "萋": 77010, + "焇": 77011, + "觝": 77012, + "啾": 77013, + "👨🏻‍🏫": 77014, + "鳵": 77015, + "怛": 77016, + "軅": 77017, + "🧘🏼‍♀️": 77018, + "Ǻ": 77019, + "Ǽ": 77020, + "缲": 77021, + "蔥": 77022, + "衠": 77023, + "氣": 77024, + "躞": 77025, + "蛕": 77026, + "煕": 77027, + "袃": 77028, + "驂": 77029, + "黨": 77030, + "裱": 77031, + "⎲": 77032, + "抙": 77033, + "厈": 77034, + "烏": 77035, + "鮪": 77036, + "黳": 77037, + "黉": 77038, + "鑀": 77039, + "賽": 77040, + "懍": 77041, + "📶": 77042, + "🇷🇺": 77043, + "垘": 77044, + "揤": 77045, + "璆": 77046, + "👩🏾‍❤️‍👨🏻": 77047, + "趚": 77048, + "ⓩ": 77049, + "褈": 77050, + "嶤": 77051, + "蛄": 77052, + "膎": 77053, + "姡": 77054, + "ͅ": 77055, + "Ȼ": 77056, + "隖": 77057, + "稙": 77058, + "歄": 77059, + "鍐": 77060, + "璫": 77061, + "➕": 77062, + "👩🏻‍💼": 77063, + "芅": 77064, + "爎": 77065, + "膪": 77066, + "銊": 77067, + "萯": 77068, + "恧": 77069, + "Ì": 77070, + "顼": 77071, + "熝": 77072, + "弽": 77073, + "釟": 77074, + "餋": 77075, + "藙": 77076, + "👩🏻‍❤️‍👩🏿": 77077, + "蕭": 77078, + "蝦": 77079, + "🇦🇶": 77080, + "譆": 77081, + "🚶🏿‍♂️": 77082, + "搧": 77083, + "氷": 77084, + "隄": 77085, + "鎪": 77086, + "🥃": 77087, + "耥": 77088, + "綋": 77089, + "矲": 77090, + "鸜": 77091, + "👨‍👦": 77092, + "溁": 77093, + "雠": 77094, + "剓": 77095, + "裲": 77096, + "橢": 77097, + "鰩": 77098, + "覑": 77099, + "蔖": 77100, + "僛": 77101, + "蝧": 77102, + "窐": 77103, + "ƥ": 77104, + "⑲": 77105, + "咎": 77106, + "⛃": 77107, + "褦": 77108, + "閪": 77109, + "隦": 77110, + "⑔": 77111, + "釬": 77112, + "⒚": 77113, + "骵": 77114, + "🤴🏼": 77115, + "♋": 77116, + "貼": 77117, + "👨": 77118, + "偾": 77119, + "驋": 77120, + "騫": 77121, + "熇": 77122, + "煂": 77123, + "釅": 77124, + "邍": 77125, + "⛲": 77126, + "Ϥ": 77127, + "贶": 77128, + "楆": 77129, + "⌖": 77130, + "甊": 77131, + "鹥": 77132, + "敘": 77133, + "🚬": 77134, + "皅": 77135, + "赺": 77136, + "駧": 77137, + "珚": 77138, + "獪": 77139, + "箊": 77140, + "鎞": 77141, + "Ϗ": 77142, + "薉": 77143, + "🙋🏼‍♀️": 77144, + "唢": 77145, + "⊐": 77146, + "绹": 77147, + "璦": 77148, + "翲": 77149, + "ℌ": 77150, + "唽": 77151, + "僶": 77152, + "稞": 77153, + "⛂": 77154, + "槌": 77155, + "梏": 77156, + "挸": 77157, + "攥": 77158, + "🌃": 77159, + "鬹": 77160, + "🇬🇭": 77161, + "葎": 77162, + "瓻": 77163, + "蟒": 77164, + "灂": 77165, + "緥": 77166, + "🦹🏽‍♂️": 77167, + "雱": 77168, + "眖": 77169, + "湺": 77170, + "🦹🏾‍♂️": 77171, + "僾": 77172, + "趱": 77173, + "摲": 77174, + "鏱": 77175, + "牭": 77176, + "🥷🏻": 77177, + "獔": 77178, + "眴": 77179, + "獹": 77180, + "鵛": 77181, + "⓹": 77182, + "R": 77183, + "嬝": 77184, + "⋢": 77185, + "茽": 77186, + "⛸": 77187, + "氝": 77188, + "姍": 77189, + "犵": 77190, + "勊": 77191, + "🕵🏿‍♂️": 77192, + "🇸🇮": 77193, + "騶": 77194, + "纊": 77195, + "溰": 77196, + "蓀": 77197, + "🛌🏾": 77198, + "帇": 77199, + "讒": 77200, + "⒋": 77201, + "惻": 77202, + "礊": 77203, + "揟": 77204, + "🔤": 77205, + "惈": 77206, + "🙎🏾": 77207, + "⎤": 77208, + "🧚🏿‍♂️": 77209, + "👄": 77210, + "剼": 77211, + "邩": 77212, + "ƭ": 77213, + "瓅": 77214, + "鲮": 77215, + "塃": 77216, + "甽": 77217, + "🙇🏾‍♀️": 77218, + "梔": 77219, + "囫": 77220, + "髌": 77221, + "伿": 77222, + "硔": 77223, + "⒢": 77224, + "ⅆ": 77225, + "👩🏻‍🏭": 77226, + "聐": 77227, + "跖": 77228, + "扟": 77229, + "僭": 77230, + "噵": 77231, + "鵠": 77232, + "倧": 77233, + "鋰": 77234, + "⎦": 77235, + "呁": 77236, + "▂": 77237, + "⋡": 77238, + "芊": 77239, + "礗": 77240, + "≎": 77241, + "╯": 77242, + "✥": 77243, + "隨": 77244, + "慞": 77245, + "昘": 77246, + "蘛": 77247, + "◤": 77248, + "徆": 77249, + "⛒": 77250, + "溂": 77251, + "裈": 77252, + "洐": 77253, + "琀": 77254, + "贁": 77255, + "朒": 77256, + "懭": 77257, + "浜": 77258, + "亘": 77259, + "虣": 77260, + "鋺": 77261, + "譍": 77262, + "繕": 77263, + "渾": 77264, + "聒": 77265, + "⋦": 77266, + "🤚🏿": 77267, + "豶": 77268, + "踮": 77269, + "漗": 77270, + "遄": 77271, + "苬": 77272, + "靚": 77273, + "鈈": 77274, + "📲": 77275, + "癟": 77276, + "⏿": 77277, + "🤝🏻": 77278, + "鲊": 77279, + "氐": 77280, + "棔": 77281, + "🏋🏾‍♀️": 77282, + "犇": 77283, + "👨🏼‍🏭": 77284, + "哘": 77285, + "酫": 77286, + "稔": 77287, + "鹂": 77288, + "✯": 77289, + "塪": 77290, + "☥": 77291, + "🚷": 77292, + "钐": 77293, + "🚖": 77294, + "嬁": 77295, + "🌈": 77296, + "洤": 77297, + "Ő": 77298, + "♥︎": 77299, + "⚬": 77300, + "鶸": 77301, + "⎴": 77302, + "茕": 77303, + "拪": 77304, + "␧": 77305, + "莂": 77306, + "峂": 77307, + "謰": 77308, + "锇": 77309, + "鵨": 77310, + "暛": 77311, + "湜": 77312, + "👭🏿": 77313, + "斉": 77314, + "熆": 77315, + "秳": 77316, + "竇": 77317, + "鏬": 77318, + "姌": 77319, + "仭": 77320, + "鑓": 77321, + "⍢": 77322, + "莄": 77323, + "蝈": 77324, + "亸": 77325, + "宥": 77326, + "👋🏼": 77327, + "👩‍👩‍👧‍👦": 77328, + "梮": 77329, + "碂": 77330, + "疭": 77331, + "⑄": 77332, + "禬": 77333, + "⒅": 77334, + "阬": 77335, + "侏": 77336, + "牐": 77337, + "碊": 77338, + "鞌": 77339, + "癦": 77340, + "疰": 77341, + "獰": 77342, + "侼": 77343, + "👨🏽‍💻": 77344, + "🌛": 77345, + "飸": 77346, + "渀": 77347, + "鹀": 77348, + "閷": 77349, + "檊": 77350, + "馎": 77351, + "ⓘ": 77352, + "闡": 77353, + "扌": 77354, + "蒑": 77355, + "🧔🏻‍♂️": 77356, + "脃": 77357, + "ϧ": 77358, + "⑎": 77359, + "毥": 77360, + "鞃": 77361, + "粏": 77362, + "͕": 77363, + "钏": 77364, + "拻": 77365, + "😫": 77366, + "吲": 77367, + "茁": 77368, + "🇹🇴": 77369, + "⏌": 77370, + "犈": 77371, + "鹜": 77372, + "💁": 77373, + "謈": 77374, + "栂": 77375, + "碻": 77376, + "鞝": 77377, + "嵞": 77378, + "廮": 77379, + "苁": 77380, + "韒": 77381, + "屼": 77382, + "蛅": 77383, + "虓": 77384, + "綅": 77385, + " ": 77386, + "👨🏿‍⚕️": 77387, + "阄": 77388, + "🧏‍♀️": 77389, + "苽": 77390, + "蔩": 77391, + "摰": 77392, + "螜": 77393, + "髈": 77394, + "👧🏽": 77395, + "呸": 77396, + "蚖": 77397, + "🖖": 77398, + "牚": 77399, + "驓": 77400, + "脁": 77401, + "絡": 77402, + "詶": 77403, + "恘": 77404, + "颃": 77405, + "🤝🏿": 77406, + "苿": 77407, + "姫": 77408, + "髂": 77409, + "ⓨ": 77410, + "🤷🏾": 77411, + "榟": 77412, + "砗": 77413, + "鬯": 77414, + "墮": 77415, + "磳": 77416, + "💳": 77417, + "闉": 77418, + "😡": 77419, + "🤴🏾": 77420, + "帬": 77421, + "薲": 77422, + "🆓": 77423, + "髭": 77424, + "👩🏼‍⚕️": 77425, + "🧑‍⚕️": 77426, + "👱🏾": 77427, + "畍": 77428, + "瞯": 77429, + "葠": 77430, + "🥑": 77431, + "縊": 77432, + "颙": 77433, + "點": 77434, + "🧑🏿‍❤️‍💋‍🧑🏻": 77435, + "ϩ": 77436, + "茇": 77437, + "涍": 77438, + "洷": 77439, + "獯": 77440, + "🎻": 77441, + "麑": 77442, + "蚫": 77443, + "嗴": 77444, + "Ń": 77445, + "骰": 77446, + "🧑🏼‍✈️": 77447, + "倅": 77448, + "贌": 77449, + "痂": 77450, + "⒞": 77451, + "♩": 77452, + "泝": 77453, + "莭": 77454, + "氂": 77455, + "🧙🏼‍♂️": 77456, + "齰": 77457, + "儱": 77458, + "鎉": 77459, + "鳹": 77460, + "蓱": 77461, + "盃": 77462, + "蟩": 77463, + "铧": 77464, + "炞": 77465, + "墢": 77466, + "🧑🏻‍🏭": 77467, + "🧅": 77468, + "🇧🇯": 77469, + "仢": 77470, + "🫵🏻": 77471, + "荓": 77472, + "̤": 77473, + "殅": 77474, + "鮨": 77475, + "驑": 77476, + "翋": 77477, + "⚓": 77478, + "辭": 77479, + "馚": 77480, + "茱": 77481, + "硳": 77482, + "📖": 77483, + "戢": 77484, + "漄": 77485, + "⊾": 77486, + "褜": 77487, + "🐋": 77488, + "👨🏻‍🚀": 77489, + "爢": 77490, + "Ⓥ": 77491, + "墔": 77492, + "dz": 77493, + "緜": 77494, + "嚫": 77495, + "🦹🏾‍♀️": 77496, + "鏈": 77497, + "ɦ": 77498, + "¤": 77499, + "龌": 77500, + "匝": 77501, + "˙": 77502, + "涷": 77503, + "攏": 77504, + "縑": 77505, + "🙇🏼‍♂️": 77506, + "籕": 77507, + "粺": 77508, + "⓿": 77509, + "鐋": 77510, + "親": 77511, + "溸": 77512, + "媁": 77513, + "嚜": 77514, + "┒": 77515, + "撂": 77516, + "鐏": 77517, + "讅": 77518, + "🩰": 77519, + "椛": 77520, + "👹": 77521, + "蠔": 77522, + "⇌": 77523, + "澌": 77524, + "藵": 77525, + "👈🏿": 77526, + "麩": 77527, + "勲": 77528, + "囿": 77529, + "俜": 77530, + "╻": 77531, + "鮐": 77532, + "淜": 77533, + "⇯": 77534, + "ₖ": 77535, + "鱕": 77536, + "蟡": 77537, + "₡": 77538, + "👩🏿‍🦽": 77539, + "🛝": 77540, + "🧑🏼‍❤️‍💋‍🧑🏽": 77541, + "🏬": 77542, + "拃": 77543, + "釶": 77544, + "抡": 77545, + "靂": 77546, + "趽": 77547, + "欵": 77548, + "堗": 77549, + "紷": 77550, + "槠": 77551, + "巓": 77552, + "硉": 77553, + "螹": 77554, + "̊": 77555, + "笈": 77556, + "🥭": 77557, + "龊": 77558, + "頵": 77559, + "坜": 77560, + "薑": 77561, + "裣": 77562, + "刏": 77563, + "梣": 77564, + "謲": 77565, + "幓": 77566, + "筸": 77567, + "┧": 77568, + "谀": 77569, + "覮": 77570, + "觍": 77571, + "璗": 77572, + "桎": 77573, + "墾": 77574, + "鯼": 77575, + "À": 77576, + "冸": 77577, + "嶐": 77578, + "逑": 77579, + "👧🏾": 77580, + "✨": 77581, + "🌊": 77582, + "乷": 77583, + "孛": 77584, + "劯": 77585, + "涻": 77586, + "鋂": 77587, + "鍘": 77588, + "璝": 77589, + "⇵": 77590, + "瓆": 77591, + "鲝": 77592, + "墘": 77593, + "哝": 77594, + "兘": 77595, + "煥": 77596, + "👨🏽‍❤️‍👨🏾": 77597, + "傤": 77598, + "捃": 77599, + "條": 77600, + "梼": 77601, + "忔": 77602, + "缶": 77603, + "偖": 77604, + "稃": 77605, + "皘": 77606, + "辦": 77607, + "溞": 77608, + "苳": 77609, + "胴": 77610, + "孂": 77611, + "鉚": 77612, + "暁": 77613, + "餴": 77614, + "⚄": 77615, + "磂": 77616, + "縜": 77617, + "Ȧ": 77618, + "弡": 77619, + "淽": 77620, + "賎": 77621, + "嬢": 77622, + "餲": 77623, + "🙆🏼‍♀️": 77624, + "🤝🏽": 77625, + "翥": 77626, + "箘": 77627, + "鰠": 77628, + "鷻": 77629, + "躆": 77630, + "篘": 77631, + "頗": 77632, + "輿": 77633, + "🤝🏾": 77634, + "摐": 77635, + "🧮": 77636, + "👩🏿‍❤️‍💋‍👨🏿": 77637, + "🧚🏾": 77638, + "遝": 77639, + "嘵": 77640, + "Ÿ": 77641, + "濾": 77642, + "輘": 77643, + "虆": 77644, + "噱": 77645, + "劖": 77646, + "籤": 77647, + "🐘": 77648, + "籏": 77649, + "棩": 77650, + "嚪": 77651, + "鴙": 77652, + "🧖🏽‍♂️": 77653, + "筎": 77654, + "餬": 77655, + "Ϳ": 77656, + "蚬": 77657, + "鈚": 77658, + "鏃": 77659, + "髖": 77660, + "蜙": 77661, + "騾": 77662, + "揬": 77663, + "韱": 77664, + "憥": 77665, + "殰": 77666, + "瀫": 77667, + "婄": 77668, + "̼": 77669, + "👩🏿‍❤️‍👩🏻": 77670, + "⅃": 77671, + "鐸": 77672, + "◨": 77673, + "併": 77674, + "珕": 77675, + "🙇🏾": 77676, + "繦": 77677, + "🇻🇨": 77678, + "🚃": 77679, + "俿": 77680, + "氳": 77681, + "郗": 77682, + "呹": 77683, + "籭": 77684, + "🤽🏼‍♂️": 77685, + "鸌": 77686, + "崆": 77687, + "弐": 77688, + "縟": 77689, + "徯": 77690, + "豲": 77691, + "糁": 77692, + "🚵🏾‍♂️": 77693, + "🌎": 77694, + "👊🏽": 77695, + "🧔🏿‍♂️": 77696, + "褺": 77697, + "👩🏽‍❤️‍💋‍👩🏿": 77698, + "欀": 77699, + "🐊": 77700, + "貢": 77701, + "妗": 77702, + "瘣": 77703, + "俫": 77704, + "鸆": 77705, + "飑": 77706, + "倶": 77707, + "瀦": 77708, + "⚱": 77709, + "樋": 77710, + "葦": 77711, + "羕": 77712, + "懙": 77713, + "抪": 77714, + "倸": 77715, + "∍": 77716, + "鵖": 77717, + "疿": 77718, + "梛": 77719, + "祙": 77720, + "氹": 77721, + "◷": 77722, + "湝": 77723, + "渢": 77724, + "栐": 77725, + "≚": 77726, + "祱": 77727, + "🙇🏽": 77728, + "倂": 77729, + "馉": 77730, + "🧖🏾": 77731, + "箦": 77732, + "蹳": 77733, + "飈": 77734, + "蒨": 77735, + "杈": 77736, + "柪": 77737, + "🫛": 77738, + "贓": 77739, + "帀": 77740, + "粍": 77741, + "譝": 77742, + "篦": 77743, + "旯": 77744, + "🤹🏿‍♀️": 77745, + "頽": 77746, + "褓": 77747, + "轑": 77748, + "🕙": 77749, + "玆": 77750, + "頏": 77751, + "蚺": 77752, + "⛨": 77753, + "˵": 77754, + "👩🏻‍🍼": 77755, + "宬": 77756, + "🪈": 77757, + "∤": 77758, + "∌": 77759, + "檄": 77760, + "欌": 77761, + "桷": 77762, + "鏵": 77763, + "锲": 77764, + "Æ": 77765, + "経": 77766, + "诇": 77767, + "咝": 77768, + "鯟": 77769, + "遧": 77770, + "崲": 77771, + "⃟": 77772, + "╍": 77773, + "懮": 77774, + "嘚": 77775, + "彄": 77776, + "🧇": 77777, + "賅": 77778, + "沢": 77779, + "哱": 77780, + "糧": 77781, + "凔": 77782, + "膚": 77783, + "🟫": 77784, + "👵🏼": 77785, + "猒": 77786, + "弣": 77787, + "🇧🇷": 77788, + "毼": 77789, + "鵔": 77790, + "ʉ": 77791, + "垔": 77792, + "Ƃ": 77793, + "硲": 77794, + "🥎": 77795, + "幠": 77796, + "𓀝": 77797, + "洯": 77798, + "顠": 77799, + "磸": 77800, + "窹": 77801, + "🧑🏿": 77802, + "嚽": 77803, + "攐": 77804, + "轘": 77805, + "Ħ": 77806, + "璪": 77807, + "齋": 77808, + "茙": 77809, + "侊": 77810, + "🇲🇭": 77811, + "肊": 77812, + "黌": 77813, + "☽": 77814, + "瑺": 77815, + "滂": 77816, + "尜": 77817, + "硜": 77818, + "瞟": 77819, + "🧑🏼‍💻": 77820, + "⏼": 77821, + "Ȃ": 77822, + "蟵": 77823, + "℟": 77824, + "釹": 77825, + "ⅷ": 77826, + "ⓥ": 77827, + "蒪": 77828, + "檎": 77829, + "莯": 77830, + "湕": 77831, + "閽": 77832, + "珱": 77833, + "🧘🏼": 77834, + "渥": 77835, + "塀": 77836, + "斅": 77837, + "艥": 77838, + "⏦": 77839, + "澝": 77840, + "嫚": 77841, + "忉": 77842, + "閭": 77843, + "鲏": 77844, + "Ʉ": 77845, + "徇": 77846, + "⎰": 77847, + "🙆🏼": 77848, + "鳀": 77849, + "苘": 77850, + "羬": 77851, + "醥": 77852, + "匓": 77853, + "蚮": 77854, + "🏴‍☠️": 77855, + "岪": 77856, + "箒": 77857, + "谞": 77858, + "們": 77859, + "渞": 77860, + "裇": 77861, + "敀": 77862, + "蔳": 77863, + "櫛": 77864, + "綗": 77865, + "秹": 77866, + "溤": 77867, + "乜": 77868, + "瓛": 77869, + "儮": 77870, + "⏪": 77871, + "哴": 77872, + "⃉": 77873, + "Λ": 77874, + "烴": 77875, + "嬓": 77876, + "銩": 77877, + "烕": 77878, + "🩷": 77879, + "隡": 77880, + "鐼": 77881, + "🔨": 77882, + "逯": 77883, + "屶": 77884, + "洦": 77885, + "莾": 77886, + "👏🏻": 77887, + "茡": 77888, + "嵧": 77889, + "膰": 77890, + "🇧🇳": 77891, + "塴": 77892, + "弜": 77893, + "磉": 77894, + "轵": 77895, + "桮": 77896, + "鯴": 77897, + "🧎🏼": 77898, + "媀": 77899, + "屵": 77900, + "👩🏼‍❤️‍💋‍👩🏿": 77901, + "伡": 77902, + "🪰": 77903, + "秪": 77904, + "鰲": 77905, + "瞖": 77906, + "🌹": 77907, + "椱": 77908, + "裃": 77909, + "氲": 77910, + "∊": 77911, + "📜": 77912, + "說": 77913, + "嬩": 77914, + "濵": 77915, + "⍋": 77916, + "矋": 77917, + "杺": 77918, + "𓀌": 77919, + "堭": 77920, + "縮": 77921, + "慫": 77922, + "⌊": 77923, + "嫷": 77924, + "哌": 77925, + "ɶ": 77926, + "🤸🏾": 77927, + "跇": 77928, + "竔": 77929, + "΀": 77930, + "訨": 77931, + "🎑": 77932, + "鷩": 77933, + "‷": 77934, + "咓": 77935, + "荾": 77936, + "釡": 77937, + "馐": 77938, + "蹱": 77939, + "珘": 77940, + "洶": 77941, + "輦": 77942, + "疕": 77943, + "叚": 77944, + "吤": 77945, + "龝": 77946, + "抂": 77947, + "萡": 77948, + "梲": 77949, + "轂": 77950, + "倲": 77951, + "搂": 77952, + "兖": 77953, + "🕚": 77954, + "⛤": 77955, + "牯": 77956, + "凙": 77957, + "鉃": 77958, + "🦾": 77959, + "吥": 77960, + "鈼": 77961, + "💑🏽": 77962, + "潩": 77963, + "鼀": 77964, + "楳": 77965, + "塨": 77966, + "谶": 77967, + "帛": 77968, + "錌": 77969, + "Ŗ": 77970, + "爣": 77971, + "趂": 77972, + "狢": 77973, + "悱": 77974, + "欙": 77975, + "笐": 77976, + "鹧": 77977, + "忾": 77978, + "晻": 77979, + "譠": 77980, + "〰️": 77981, + "渖": 77982, + "嘖": 77983, + "咭": 77984, + "丄": 77985, + "觡": 77986, + "罼": 77987, + "繚": 77988, + "荗": 77989, + "搆": 77990, + "詫": 77991, + "栍": 77992, + "頨": 77993, + "邥": 77994, + "🩲": 77995, + "🧑‍🚒": 77996, + "缫": 77997, + "绁": 77998, + "晩": 77999, + "眒": 78000, + "≨": 78001, + "堒": 78002, + "垜": 78003, + "戫": 78004, + "艆": 78005, + "遲": 78006, + "窂": 78007, + "貆": 78008, + "覢": 78009, + "喌": 78010, + "抰": 78011, + "龁": 78012, + "櫷": 78013, + "箥": 78014, + "籎": 78015, + "琟": 78016, + "肰": 78017, + "˰": 78018, + "笮": 78019, + "簊": 78020, + "Ⓟ": 78021, + "揲": 78022, + "🍄": 78023, + "Ǐ": 78024, + "🈺": 78025, + "譃": 78026, + "鬽": 78027, + "趄": 78028, + "♢": 78029, + "巋": 78030, + "⒳": 78031, + "醞": 78032, + "雡": 78033, + "Ǵ": 78034, + "涎": 78035, + "溚": 78036, + "肎": 78037, + "👳🏾": 78038, + "🎆": 78039, + "昦": 78040, + "🧜🏾‍♂️": 78041, + "暠": 78042, + "魚": 78043, + "⋭": 78044, + "癱": 78045, + "ʂ": 78046, + "趀": 78047, + "歘": 78048, + "糀": 78049, + "麛": 78050, + "鸚": 78051, + "掆": 78052, + "醴": 78053, + "夘": 78054, + "鑾": 78055, + "夂": 78056, + "蟃": 78057, + "👰‍♂️": 78058, + "葓": 78059, + "懖": 78060, + "鳐": 78061, + "欁": 78062, + "👨🏿‍🚀": 78063, + "來": 78064, + "⁋": 78065, + "犖": 78066, + "嗫": 78067, + "祘": 78068, + "簷": 78069, + "飯": 78070, + "⎀": 78071, + "躶": 78072, + "尒": 78073, + "⌭": 78074, + "΂": 78075, + "萙": 78076, + "閾": 78077, + "瞅": 78078, + "睪": 78079, + "🧑‍🦱": 78080, + "嗕": 78081, + "咙": 78082, + "扥": 78083, + "👴🏻": 78084, + "🤾🏽": 78085, + "輠": 78086, + "ℇ": 78087, + "🥥": 78088, + "扦": 78089, + "📰": 78090, + "🫴": 78091, + "妪": 78092, + "👩🏼‍✈️": 78093, + "☾": 78094, + "惍": 78095, + "👱🏻‍♂️": 78096, + "濦": 78097, + "騡": 78098, + "鴝": 78099, + "紐": 78100, + "儷": 78101, + "👨🏿‍🦲": 78102, + "♔": 78103, + "梐": 78104, + "⋺": 78105, + "柕": 78106, + "馤": 78107, + "孊": 78108, + "瑪": 78109, + "┽": 78110, + "墡": 78111, + "貰": 78112, + "鈽": 78113, + "襗": 78114, + "秷": 78115, + "👨🏿‍🦳": 78116, + "塕": 78117, + "👉🏿": 78118, + "禜": 78119, + "襳": 78120, + "🌖": 78121, + "╊": 78122, + "鬎": 78123, + "硁": 78124, + "羉": 78125, + "俉": 78126, + "撳": 78127, + "歫": 78128, + "轍": 78129, + "牴": 78130, + "讀": 78131, + "胣": 78132, + "璈": 78133, + "₝": 78134, + "妎": 78135, + "洳": 78136, + "👨‍🦼": 78137, + "谰": 78138, + "錤": 78139, + "蠒": 78140, + "👵🏿": 78141, + "缢": 78142, + "坮": 78143, + "諾": 78144, + "骊": 78145, + "燾": 78146, + "墝": 78147, + "崿": 78148, + "縹": 78149, + "🆕": 78150, + "␨": 78151, + "鲐": 78152, + "蒰": 78153, + "纍": 78154, + "唫": 78155, + "萜": 78156, + "婡": 78157, + "̟": 78158, + "繱": 78159, + "葚": 78160, + "缽": 78161, + "👨‍🦱": 78162, + "璘": 78163, + "悊": 78164, + "懸": 78165, + "屽": 78166, + "厰": 78167, + "浬": 78168, + "ℝ": 78169, + "桼": 78170, + "禱": 78171, + "駥": 78172, + "ƽ": 78173, + "ċ": 78174, + "⍘": 78175, + "🏋🏽‍♂️": 78176, + "縞": 78177, + "仒": 78178, + "寲": 78179, + "🤹🏿‍♂️": 78180, + "嗳": 78181, + "禿": 78182, + "齷": 78183, + "訧": 78184, + "◉": 78185, + "騴": 78186, + "🪶": 78187, + "蓙": 78188, + "扲": 78189, + "綜": 78190, + "Ί": 78191, + "阽": 78192, + "😉": 78193, + "靻": 78194, + "斞": 78195, + "⓯": 78196, + "釫": 78197, + "鱢": 78198, + "晣": 78199, + "酡": 78200, + "俽": 78201, + "🧚🏿‍♀️": 78202, + "脋": 78203, + "♃": 78204, + "👨🏽‍🎨": 78205, + "擟": 78206, + "Ă": 78207, + "徑": 78208, + "鷢": 78209, + "鋁": 78210, + "👻": 78211, + "廾": 78212, + "孈": 78213, + "笣": 78214, + "叽": 78215, + "👨‍👩‍👦‍👦": 78216, + "衼": 78217, + "媥": 78218, + "菐": 78219, + "杮": 78220, + "郍": 78221, + "🪲": 78222, + "竼": 78223, + "觌": 78224, + "翜": 78225, + "鵼": 78226, + "蕄": 78227, + "稴": 78228, + "💁🏽": 78229, + "✩": 78230, + "鱦": 78231, + "覿": 78232, + "綒": 78233, + "怴": 78234, + "晄": 78235, + "幚": 78236, + "⛹🏾‍♀️": 78237, + "椻": 78238, + "杲": 78239, + "栲": 78240, + "👩🏿‍⚖️": 78241, + "倯": 78242, + "墚": 78243, + "罦": 78244, + "💁🏾": 78245, + "趘": 78246, + "蹕": 78247, + "蝖": 78248, + "紻": 78249, + "銕": 78250, + "訵": 78251, + "鱻": 78252, + "懟": 78253, + "榩": 78254, + "轗": 78255, + "🎇": 78256, + "Ú": 78257, + "噖": 78258, + "熉": 78259, + "懷": 78260, + "💏🏻": 78261, + "暀": 78262, + "噙": 78263, + "膦": 78264, + "僿": 78265, + "搀": 78266, + "莃": 78267, + "釳": 78268, + "礌": 78269, + "煟": 78270, + "劦": 78271, + "磮": 78272, + "刔": 78273, + "⊲": 78274, + "婜": 78275, + "ʭ": 78276, + "ʙ": 78277, + "皢": 78278, + "颕": 78279, + "娡": 78280, + "鉒": 78281, + "潵": 78282, + "ℓ": 78283, + "捵": 78284, + "懣": 78285, + "🤾🏾": 78286, + "琬": 78287, + "💂🏿": 78288, + "暣": 78289, + "🐸": 78290, + "␟": 78291, + "赬": 78292, + "蜆": 78293, + "╠": 78294, + "徴": 78295, + "膄": 78296, + "💙": 78297, + "鞾": 78298, + "內": 78299, + "昶": 78300, + "爞": 78301, + "敵": 78302, + "↺": 78303, + "纫": 78304, + "湤": 78305, + "🫷": 78306, + "瑱": 78307, + "堉": 78308, + "🧜‍♀️": 78309, + "🧑🏾‍❤️‍💋‍🧑🏻": 78310, + "瓞": 78311, + "隤": 78312, + "穙": 78313, + "💄": 78314, + "繘": 78315, + "揨": 78316, + "櫲": 78317, + "覧": 78318, + "鎫": 78319, + "谑": 78320, + "脅": 78321, + "冓": 78322, + "̉": 78323, + "蟦": 78324, + "滣": 78325, + "鞪": 78326, + "🚢": 78327, + "濣": 78328, + "傛": 78329, + "衮": 78330, + "譺": 78331, + "攦": 78332, + "厖": 78333, + "髀": 78334, + "縯": 78335, + "茦": 78336, + "🦸🏽‍♂️": 78337, + "怓": 78338, + "🤷🏻‍♀️": 78339, + "奀": 78340, + "坶": 78341, + "窀": 78342, + "陳": 78343, + "屫": 78344, + "🥀": 78345, + "🤵🏿‍♂️": 78346, + "禯": 78347, + "詮": 78348, + "楴": 78349, + "ʆ": 78350, + "鞎": 78351, + "夌": 78352, + "駮": 78353, + "荑": 78354, + "肑": 78355, + "夐": 78356, + "剹": 78357, + "紱": 78358, + "攛": 78359, + "忓": 78360, + "蘘": 78361, + "囡": 78362, + "铀": 78363, + "阫": 78364, + "🇬🇶": 78365, + "⒔": 78366, + "箍": 78367, + "尐": 78368, + "醼": 78369, + "禲": 78370, + "🙇‍♀️": 78371, + "溣": 78372, + "鲄": 78373, + "磩": 78374, + "殏": 78375, + "╙": 78376, + "鰑": 78377, + "薴": 78378, + "飻": 78379, + "🏊‍♂️": 78380, + "Ɍ": 78381, + "♘": 78382, + "昈": 78383, + "🧑🏻‍🌾": 78384, + "橵": 78385, + "睃": 78386, + "˃": 78387, + "堲": 78388, + "乵": 78389, + "據": 78390, + "🚵🏻‍♀️": 78391, + "Ǘ": 78392, + "槲": 78393, + "鮞": 78394, + "鈗": 78395, + "姺": 78396, + "煐": 78397, + "栰": 78398, + "糫": 78399, + "垍": 78400, + "聹": 78401, + "岟": 78402, + "☟": 78403, + "叼": 78404, + "瞙": 78405, + "玵": 78406, + "啕": 78407, + "樥": 78408, + "俒": 78409, + "躢": 78410, + "礷": 78411, + "睚": 78412, + "銽": 78413, + "柷": 78414, + "櫀": 78415, + "篰": 78416, + "籣": 78417, + "爋": 78418, + "霎": 78419, + "耮": 78420, + "諝": 78421, + "💤": 78422, + "蝀": 78423, + "氆": 78424, + "阝": 78425, + "衻": 78426, + "觑": 78427, + "👨‍👩‍👧‍👦": 78428, + "🚴🏻": 78429, + "裚": 78430, + "傈": 78431, + "粖": 78432, + "蚲": 78433, + "🧐": 78434, + "獌": 78435, + "瘥": 78436, + "瓠": 78437, + "ˏ": 78438, + "ɍ": 78439, + "⊌": 78440, + "🎵": 78441, + "髊": 78442, + "畩": 78443, + "趝": 78444, + "噍": 78445, + "藛": 78446, + "獼": 78447, + "轓": 78448, + "⑀": 78449, + "軋": 78450, + "唣": 78451, + "⏃": 78452, + "孌": 78453, + "硚": 78454, + "胉": 78455, + "袕": 78456, + "˪": 78457, + "銐": 78458, + "👊": 78459, + "嚍": 78460, + "🦸🏼": 78461, + "ɯ": 78462, + "棐": 78463, + "榑": 78464, + "犜": 78465, + "偍": 78466, + "蠓": 78467, + "乁": 78468, + "皹": 78469, + "🏌🏻": 78470, + "∦": 78471, + "捳": 78472, + "騳": 78473, + "號": 78474, + "耑": 78475, + "窓": 78476, + "呻": 78477, + "諰": 78478, + "🤣": 78479, + "🎅🏽": 78480, + "鰳": 78481, + "硗": 78482, + "🫶🏽": 78483, + "搼": 78484, + "覀": 78485, + "☿": 78486, + "孿": 78487, + "沋": 78488, + "🚣🏼‍♂️": 78489, + "蝛": 78490, + "軓": 78491, + "勗": 78492, + "遅": 78493, + "🧝🏼‍♀️": 78494, + "猖": 78495, + "珙": 78496, + "饉": 78497, + "瀝": 78498, + "僎": 78499, + "髃": 78500, + "⒟": 78501, + "烗": 78502, + "枳": 78503, + "🤹🏻‍♀️": 78504, + "┝": 78505, + "愶": 78506, + "👩🏼‍❤️‍👩🏻": 78507, + "偯": 78508, + "脢": 78509, + "竌": 78510, + "藭": 78511, + "蜬": 78512, + "樮": 78513, + "贛": 78514, + "竒": 78515, + "嬘": 78516, + "繹": 78517, + "鈐": 78518, + "伋": 78519, + "岶": 78520, + "剙": 78521, + "⍭": 78522, + "兝": 78523, + "邷": 78524, + "≜": 78525, + "鼆": 78526, + "壧": 78527, + "🤥": 78528, + "镤": 78529, + "褕": 78530, + "😔": 78531, + "責": 78532, + "篎": 78533, + "蛩": 78534, + "丬": 78535, + "🧿": 78536, + "棻": 78537, + "湳": 78538, + "焌": 78539, + "唓": 78540, + "曶": 78541, + "🇸🇽": 78542, + "衿": 78543, + "顜": 78544, + "國": 78545, + "陉": 78546, + "袘": 78547, + "佋": 78548, + "欍": 78549, + "珲": 78550, + "👩🏽‍🔧": 78551, + "輸": 78552, + "┴": 78553, + "🚣🏾": 78554, + "顝": 78555, + "≮": 78556, + "🖖🏼": 78557, + "鼌": 78558, + "蚭": 78559, + "Ↄ": 78560, + "辤": 78561, + "峽": 78562, + "僦": 78563, + "╽": 78564, + "🌑": 78565, + "鉰": 78566, + "₩": 78567, + "蚗": 78568, + "锓": 78569, + "謙": 78570, + "銰": 78571, + "👋🏻": 78572, + "垝": 78573, + "灇": 78574, + "🏄🏼‍♀️": 78575, + "嫟": 78576, + "壿": 78577, + "摡": 78578, + "遚": 78579, + "⒕": 78580, + "輜": 78581, + "橧": 78582, + "猺": 78583, + "婬": 78584, + "⌢": 78585, + "忯": 78586, + "寢": 78587, + "柟": 78588, + "驸": 78589, + "💑": 78590, + "涗": 78591, + "⊤": 78592, + "啲": 78593, + "🇵🇳": 78594, + "🕎": 78595, + "錨": 78596, + "祦": 78597, + "蘤": 78598, + "冿": 78599, + "≷": 78600, + "鉏": 78601, + "紭": 78602, + "讉": 78603, + "睠": 78604, + "媝": 78605, + "ʯ": 78606, + "狎": 78607, + "嬥": 78608, + "🧖🏿‍♂️": 78609, + "跺": 78610, + "🧑🏾‍🔬": 78611, + "枦": 78612, + "灟": 78613, + "鈳": 78614, + "┟": 78615, + "熵": 78616, + "覅": 78617, + "汄": 78618, + "嬮": 78619, + "悝": 78620, + "腪": 78621, + "屦": 78622, + "姟": 78623, + "🤤": 78624, + "袠": 78625, + "鸲": 78626, + "熶": 78627, + "韝": 78628, + "🕢": 78629, + "◌": 78630, + "🧚": 78631, + "玂": 78632, + "👧🏼": 78633, + "顩": 78634, + "餚": 78635, + "謆": 78636, + "趲": 78637, + "驵": 78638, + "怣": 78639, + "囸": 78640, + "暄": 78641, + "梕": 78642, + "羥": 78643, + "🤟": 78644, + "賊": 78645, + "🚮": 78646, + "萩": 78647, + "Μ": 78648, + "澘": 78649, + "👨🏾‍⚖️": 78650, + "訯": 78651, + "檟": 78652, + "峴": 78653, + "榒": 78654, + "鷪": 78655, + "🤛🏼": 78656, + "蟇": 78657, + "瑥": 78658, + "📇": 78659, + "弒": 78660, + "紟": 78661, + "鍞": 78662, + "诒": 78663, + "朚": 78664, + "🖐🏿": 78665, + "⃀": 78666, + "🥮": 78667, + "⎆": 78668, + "孨": 78669, + "漀": 78670, + "淺": 78671, + "🚊": 78672, + "櫯": 78673, + "夤": 78674, + "垸": 78675, + "鳶": 78676, + "鈫": 78677, + "鹚": 78678, + "訟": 78679, + "嚅": 78680, + "謼": 78681, + "疻": 78682, + "麾": 78683, + "殭": 78684, + "刬": 78685, + "啐": 78686, + "昪": 78687, + "稈": 78688, + "🏔": 78689, + "🤹🏻": 78690, + "膺": 78691, + "🛳": 78692, + "噏": 78693, + "妸": 78694, + "🐥": 78695, + "🫱🏻‍🫲🏾": 78696, + "飤": 78697, + "🧝🏽‍♂️": 78698, + "餃": 78699, + "歒": 78700, + "螷": 78701, + "蜌": 78702, + "⇻": 78703, + "轔": 78704, + "鷦": 78705, + "踒": 78706, + "袌": 78707, + "🫨": 78708, + "硰": 78709, + "锷": 78710, + "蚜": 78711, + "磡": 78712, + "県": 78713, + "嬐": 78714, + "錓": 78715, + "娔": 78716, + "↱": 78717, + "儌": 78718, + "嗑": 78719, + "戄": 78720, + "絖": 78721, + "ⅉ": 78722, + "岃": 78723, + "澔": 78724, + "⇨": 78725, + "鏢": 78726, + "穇": 78727, + "⁘": 78728, + "櫉": 78729, + "Ý": 78730, + "洓": 78731, + "徂": 78732, + "榱": 78733, + "鼧": 78734, + "卅": 78735, + "␙": 78736, + "僝": 78737, + "膫": 78738, + "🧍": 78739, + "👩‍🎤": 78740, + "🫠": 78741, + "📩": 78742, + "鎙": 78743, + "徕": 78744, + "亵": 78745, + "鶮": 78746, + "騿": 78747, + "獠": 78748, + "鯌": 78749, + "咄": 78750, + "遫": 78751, + "🔜": 78752, + "⛐": 78753, + "綈": 78754, + "徶": 78755, + "📃": 78756, + "濆": 78757, + "蹪": 78758, + "瑂": 78759, + "緉": 78760, + "噚": 78761, + "鐤": 78762, + "🧚‍♂️": 78763, + "呙": 78764, + "斮": 78765, + "🧋": 78766, + "ώ": 78767, + "⇇": 78768, + "懥": 78769, + "錝": 78770, + "琔": 78771, + "耓": 78772, + "👩🏽‍❤️‍👩🏿": 78773, + "瓡": 78774, + "貪": 78775, + "僢": 78776, + "汊": 78777, + "憿": 78778, + "揧": 78779, + "梆": 78780, + "⛘": 78781, + "虥": 78782, + "繜": 78783, + "麁": 78784, + "磛": 78785, + "罁": 78786, + "廛": 78787, + "燲": 78788, + "崗": 78789, + "擁": 78790, + "獀": 78791, + "伌": 78792, + "睔": 78793, + "練": 78794, + "穱": 78795, + "⌷": 78796, + "🛀🏽": 78797, + "唹": 78798, + "棷": 78799, + "瑒": 78800, + "僗": 78801, + "鋱": 78802, + "鼥": 78803, + "奁": 78804, + "獿": 78805, + "◒": 78806, + "鱟": 78807, + "胦": 78808, + "🇨🇰": 78809, + "Ċ": 78810, + "🚤": 78811, + "碲": 78812, + "濧": 78813, + "酓": 78814, + "💆🏿": 78815, + "稭": 78816, + "詆": 78817, + "塲": 78818, + "羖": 78819, + "畓": 78820, + "妿": 78821, + "僴": 78822, + "巜": 78823, + "湽": 78824, + "幈": 78825, + "◱": 78826, + "🕘": 78827, + "袏": 78828, + "嗤": 78829, + "🤴": 78830, + "‎": 78831, + "頣": 78832, + "鑟": 78833, + "毃": 78834, + "瞼": 78835, + "黂": 78836, + "盝": 78837, + "🧸": 78838, + "窫": 78839, + "璶": 78840, + "稓": 78841, + "糱": 78842, + "絚": 78843, + "淦": 78844, + "綠": 78845, + "⍬": 78846, + "蔮": 78847, + "🍇": 78848, + "衾": 78849, + "毐": 78850, + "閧": 78851, + "環": 78852, + "⇐": 78853, + "盥": 78854, + "🪳": 78855, + "奂": 78856, + "姖": 78857, + "眞": 78858, + "鏅": 78859, + "飳": 78860, + "秬": 78861, + "涘": 78862, + "沣": 78863, + "輡": 78864, + "眪": 78865, + "🈯️": 78866, + "璙": 78867, + "溘": 78868, + "厃": 78869, + "悹": 78870, + "👱🏾‍♂️": 78871, + "Y": 78872, + "樯": 78873, + "🍿": 78874, + "癔": 78875, + "跴": 78876, + "🕵🏽‍♀️": 78877, + "袙": 78878, + "葍": 78879, + "鍌": 78880, + "鐢": 78881, + "洸": 78882, + "⏰": 78883, + "餼": 78884, + "碛": 78885, + "𓀘": 78886, + "🇲🇨": 78887, + "⋝": 78888, + "覫": 78889, + "狾": 78890, + "蜑": 78891, + "麸": 78892, + "Ν": 78893, + "颷": 78894, + "璏": 78895, + "鞵": 78896, + "貺": 78897, + "郀": 78898, + "硄": 78899, + "囀": 78900, + "峖": 78901, + "儜": 78902, + "璽": 78903, + "籔": 78904, + "焩": 78905, + "∭": 78906, + "囗": 78907, + "嘪": 78908, + "獅": 78909, + "捼": 78910, + "☘": 78911, + "瘎": 78912, + "🧑‍🦲": 78913, + "宮": 78914, + "荖": 78915, + "堠": 78916, + "💂🏾‍♂️": 78917, + "鯅": 78918, + "覨": 78919, + "豾": 78920, + "覘": 78921, + "囙": 78922, + "♧": 78923, + "蒫": 78924, + "浟": 78925, + "盁": 78926, + "疃": 78927, + "炨": 78928, + "嫫": 78929, + "匫": 78930, + "蔍": 78931, + "杇": 78932, + "霛": 78933, + "滎": 78934, + "稦": 78935, + "赝": 78936, + "譤": 78937, + "🤽🏾": 78938, + "🍁": 78939, + "🖕🏿": 78940, + "汿": 78941, + "臢": 78942, + "堝": 78943, + "縉": 78944, + "͝": 78945, + "🥴": 78946, + "鵂": 78947, + "🚵🏽‍♂️": 78948, + "剢": 78949, + "媌": 78950, + "籮": 78951, + "錎": 78952, + "汻": 78953, + "筞": 78954, + "咲": 78955, + "🏃🏼‍♂️": 78956, + "焪": 78957, + "✤": 78958, + "衟": 78959, + "躥": 78960, + "螑": 78961, + "⅊": 78962, + "摨": 78963, + "鏣": 78964, + "璿": 78965, + "佥": 78966, + "魕": 78967, + "篁": 78968, + "撟": 78969, + "⌯": 78970, + "塓": 78971, + "侜": 78972, + "爒": 78973, + "榵": 78974, + "鼞": 78975, + "浯": 78976, + "紣": 78977, + "痖": 78978, + "姶": 78979, + "枿": 78980, + "溡": 78981, + "豟": 78982, + "🧔🏾": 78983, + "⇛": 78984, + "狍": 78985, + "〈": 78986, + "椸": 78987, + "椠": 78988, + "煵": 78989, + "蓘": 78990, + "🤛🏾": 78991, + "鱮": 78992, + "唞": 78993, + "臚": 78994, + "␖": 78995, + "🔛": 78996, + "餡": 78997, + "Ƥ": 78998, + "⛕": 78999, + "ʩ": 79000, + "鶦": 79001, + "👮🏾‍♂️": 79002, + "焟": 79003, + "約": 79004, + "曠": 79005, + "锭": 79006, + "羪": 79007, + "▵": 79008, + "硑": 79009, + "🐴": 79010, + "∮": 79011, + "藫": 79012, + "輟": 79013, + "叢": 79014, + "涺": 79015, + "鹛": 79016, + "摳": 79017, + "澅": 79018, + "🏃🏽‍♂️": 79019, + "滱": 79020, + "₟": 79021, + "髍": 79022, + "殆": 79023, + "欨": 79024, + "炵": 79025, + "舗": 79026, + "👩🏽‍🚒": 79027, + "鳡": 79028, + "矺": 79029, + "鞨": 79030, + "粀": 79031, + "晠": 79032, + "舷": 79033, + "⛫": 79034, + "滺": 79035, + "灻": 79036, + "灱": 79037, + "銒": 79038, + "試": 79039, + "鲺": 79040, + "ȫ": 79041, + "鸧": 79042, + "🏊🏼‍♀️": 79043, + "剨": 79044, + "狷": 79045, + "柝": 79046, + "藣": 79047, + "彛": 79048, + "飺": 79049, + "礑": 79050, + "蓑": 79051, + "缷": 79052, + "⎒": 79053, + "皪": 79054, + "┳": 79055, + "耤": 79056, + "悐": 79057, + "旿": 79058, + "綝": 79059, + "潴": 79060, + "弑": 79061, + "毉": 79062, + "🏃🏽": 79063, + "斿": 79064, + "˅": 79065, + "╒": 79066, + "搯": 79067, + "茰": 79068, + "猧": 79069, + "愠": 79070, + "倗": 79071, + "頁": 79072, + "👨🏽‍🏭": 79073, + "躵": 79074, + "⎩": 79075, + "🌙": 79076, + "鲠": 79077, + "鮼": 79078, + "藧": 79079, + "軚": 79080, + "櫁": 79081, + "梽": 79082, + "旤": 79083, + "⌌": 79084, + "餈": 79085, + "胹": 79086, + "⍍": 79087, + "鱝": 79088, + "🏃🏻": 79089, + "讻": 79090, + "🧑🏾‍❤️‍🧑🏻": 79091, + "🧓🏿": 79092, + "鯜": 79093, + "旜": 79094, + "盳": 79095, + "🛷": 79096, + "袟": 79097, + "楙": 79098, + "狕": 79099, + "蜉": 79100, + "幌": 79101, + "瓙": 79102, + "巗": 79103, + "📓": 79104, + "緒": 79105, + "閮": 79106, + "⑝": 79107, + "慊": 79108, + "⋂": 79109, + "營": 79110, + "⅑": 79111, + "锢": 79112, + "🫃🏾": 79113, + "聭": 79114, + "踲": 79115, + "丅": 79116, + "嫰": 79117, + "揿": 79118, + "騃": 79119, + "⚡": 79120, + "纈": 79121, + "鈍": 79122, + "浖": 79123, + "┷": 79124, + "孞": 79125, + "嵙": 79126, + "灁": 79127, + "矆": 79128, + "藠": 79129, + "椥": 79130, + "觕": 79131, + "ⅿ": 79132, + "🧫": 79133, + "亐": 79134, + "縛": 79135, + "炠": 79136, + "烰": 79137, + "宊": 79138, + "⇉": 79139, + "曷": 79140, + "⑟": 79141, + "鯩": 79142, + "嬦": 79143, + "篖": 79144, + "🧑🏼‍🔬": 79145, + "閵": 79146, + "👐": 79147, + "菸": 79148, + "錭": 79149, + "嵤": 79150, + "囒": 79151, + "賘": 79152, + "猙": 79153, + "LJ": 79154, + "褞": 79155, + "臩": 79156, + "鐔": 79157, + "蹴": 79158, + "塋": 79159, + "脹": 79160, + "犣": 79161, + "給": 79162, + "🫷🏻": 79163, + "👾": 79164, + "窌": 79165, + "嚺": 79166, + "舻": 79167, + "鐀": 79168, + "嫻": 79169, + "紞": 79170, + "倥": 79171, + "🧆": 79172, + "ͨ": 79173, + "厺": 79174, + "🤵🏽‍♂️": 79175, + "衚": 79176, + "奓": 79177, + "鴃": 79178, + "⚌": 79179, + "👨🏼‍🍼": 79180, + "趮": 79181, + "碝": 79182, + "筀": 79183, + "詝": 79184, + "郮": 79185, + "虤": 79186, + "🙆🏽‍♂️": 79187, + "👩‍🦽": 79188, + "餷": 79189, + "掣": 79190, + "癛": 79191, + "ŵ": 79192, + "啬": 79193, + "縆": 79194, + "贕": 79195, + "罆": 79196, + "⊷": 79197, + "樺": 79198, + "嗹": 79199, + "挆": 79200, + "鑨": 79201, + "釿": 79202, + "🇪🇨": 79203, + "👨🏽‍❤️‍👨🏼": 79204, + "鎳": 79205, + "蜟": 79206, + "鴮": 79207, + "鲡": 79208, + "屇": 79209, + "壝": 79210, + "铯": 79211, + "嵜": 79212, + "蹩": 79213, + "🧑🏿‍🎤": 79214, + "岒": 79215, + "🎖": 79216, + "玊": 79217, + "轜": 79218, + "偄": 79219, + "🩵": 79220, + "矅": 79221, + "沵": 79222, + "侩": 79223, + "窙": 79224, + "鋒": 79225, + "👰🏿‍♂️": 79226, + "麣": 79227, + "匸": 79228, + "傘": 79229, + "烄": 79230, + "砒": 79231, + "籸": 79232, + "儡": 79233, + "涓": 79234, + "⁵": 79235, + "藒": 79236, + "兦": 79237, + "誾": 79238, + "⏇": 79239, + "🦪": 79240, + "坈": 79241, + "庁": 79242, + "儎": 79243, + "錱": 79244, + "鐭": 79245, + "Z": 79246, + "鵳": 79247, + "₾": 79248, + "寛": 79249, + "庎": 79250, + "蓳": 79251, + "糦": 79252, + "愯": 79253, + "🧔🏿‍♀️": 79254, + "ⅼ": 79255, + "舄": 79256, + "👌🏻": 79257, + "🤸🏼": 79258, + "汭": 79259, + "▒": 79260, + "皉": 79261, + "峠": 79262, + "踜": 79263, + "🧩": 79264, + "磎": 79265, + "劸": 79266, + "麮": 79267, + "腡": 79268, + "儢": 79269, + "裨": 79270, + "🫱🏾‍🫲🏽": 79271, + "̢": 79272, + "🥇": 79273, + "盨": 79274, + "┱": 79275, + "翿": 79276, + "😃": 79277, + "👩🏾‍❤️‍👨🏼": 79278, + "臋": 79279, + "薥": 79280, + "ǟ": 79281, + "咂": 79282, + "嶹": 79283, + "鴅": 79284, + "柽": 79285, + "釖": 79286, + "挞": 79287, + "嚋": 79288, + "🏂🏽": 79289, + "💲": 79290, + "┛": 79291, + "蘡": 79292, + "腬": 79293, + "👷🏽‍♀️": 79294, + "🧑🏻‍🎄": 79295, + "抟": 79296, + "諩": 79297, + "搪": 79298, + "瘽": 79299, + "玶": 79300, + "🧑🏿‍🦳": 79301, + "矡": 79302, + "👮🏿‍♂️": 79303, + "蟕": 79304, + "塉": 79305, + "💂🏻": 79306, + "爖": 79307, + "碶": 79308, + "噯": 79309, + "芧": 79310, + "🥠": 79311, + "犭": 79312, + "誒": 79313, + "嵋": 79314, + "憄": 79315, + "🇦🇺": 79316, + "☭": 79317, + "嗂": 79318, + "壢": 79319, + "薾": 79320, + "🌨": 79321, + "蝌": 79322, + "苅": 79323, + "玚": 79324, + "逕": 79325, + "伳": 79326, + "羷": 79327, + "酀": 79328, + "晆": 79329, + "🚴‍♀️": 79330, + "唆": 79331, + "謖": 79332, + "酢": 79333, + "⁡": 79334, + "宲": 79335, + "窊": 79336, + "🧑🏽‍🍳": 79337, + "👨🏿‍🔬": 79338, + "齌": 79339, + "鎇": 79340, + "迓": 79341, + "👍🏽": 79342, + "͏": 79343, + "疊": 79344, + "鯬": 79345, + "労": 79346, + "梄": 79347, + "鍸": 79348, + "搣": 79349, + "晑": 79350, + "頭": 79351, + "挹": 79352, + "⍥": 79353, + "嬭": 79354, + "擵": 79355, + "糚": 79356, + "铑": 79357, + "🇧🇲": 79358, + "🧑🏾‍💼": 79359, + "躽": 79360, + "Ñ": 79361, + "╮": 79362, + "塍": 79363, + "羙": 79364, + "铍": 79365, + "₳": 79366, + "锆": 79367, + "塁": 79368, + "愹": 79369, + "⛹🏼": 79370, + "儖": 79371, + "🦴": 79372, + "ℊ": 79373, + "👨‍❤️‍💋‍👨": 79374, + "髷": 79375, + "🫴🏼": 79376, + "🎧": 79377, + "≗": 79378, + "劾": 79379, + "薂": 79380, + "Ơ": 79381, + "睕": 79382, + "🙍‍♀️": 79383, + "趰": 79384, + "螎": 79385, + "絨": 79386, + "靔": 79387, + "猗": 79388, + "屜": 79389, + "觷": 79390, + "ʟ": 79391, + "摈": 79392, + "攟": 79393, + "␛": 79394, + "闧": 79395, + "貨": 79396, + "🤽": 79397, + "🔑": 79398, + "協": 79399, + "伥": 79400, + "壋": 79401, + "蠶": 79402, + "螦": 79403, + "诂": 79404, + "楖": 79405, + "逷": 79406, + "🔢": 79407, + "Ƈ": 79408, + "禤": 79409, + "屰": 79410, + "吝": 79411, + "菥": 79412, + "捬": 79413, + "朏": 79414, + "诪": 79415, + "嶙": 79416, + "👮🏼‍♂️": 79417, + "陻": 79418, + "澢": 79419, + "儽": 79420, + "🏫": 79421, + "笇": 79422, + "💂🏽": 79423, + "桗": 79424, + "☇": 79425, + "瘄": 79426, + "摌": 79427, + "攜": 79428, + "💁🏻‍♂️": 79429, + "牀": 79430, + "嫢": 79431, + "⁹": 79432, + "♾": 79433, + "👨‍💼": 79434, + "Ȁ": 79435, + "銿": 79436, + "剤": 79437, + "⅗": 79438, + "鯔": 79439, + "鍓": 79440, + "寀": 79441, + "汌": 79442, + "脿": 79443, + "釩": 79444, + "愵": 79445, + "靸": 79446, + "誏": 79447, + "蜊": 79448, + "粈": 79449, + "鯶": 79450, + "͉": 79451, + "梇": 79452, + "钼": 79453, + "Ɵ": 79454, + "挎": 79455, + "⑛": 79456, + "🫸🏽": 79457, + "髨": 79458, + "藢": 79459, + "稛": 79460, + "燳": 79461, + "潲": 79462, + "☸": 79463, + "🏌🏾‍♂️": 79464, + "鬀": 79465, + "訙": 79466, + "鉘": 79467, + "昖": 79468, + "邧": 79469, + "禠": 79470, + "嫊": 79471, + "🏌🏿‍♀️": 79472, + "蕅": 79473, + "堥": 79474, + "緯": 79475, + "蛚": 79476, + "🇸🇭": 79477, + "⚤": 79478, + "谲": 79479, + "媎": 79480, + "╄": 79481, + "皍": 79482, + "ȇ": 79483, + "🤛": 79484, + "👨🏼‍⚖️": 79485, + "猳": 79486, + "噌": 79487, + "喺": 79488, + "牮": 79489, + "麳": 79490, + "漢": 79491, + "駄": 79492, + "絟": 79493, + "ℹ": 79494, + "🪢": 79495, + "🧙🏻": 79496, + "🫲🏿": 79497, + "ϑ": 79498, + "嵛": 79499, + "瓖": 79500, + "辺": 79501, + "蚻": 79502, + "⇲": 79503, + "鸢": 79504, + "⇳": 79505, + "侇": 79506, + "俓": 79507, + "褠": 79508, + "捶": 79509, + "鶭": 79510, + "遠": 79511, + "⊃": 79512, + "靱": 79513, + "绂": 79514, + "脽": 79515, + "碐": 79516, + "🧑🏿‍❤️‍🧑🏽": 79517, + "邁": 79518, + "嫸": 79519, + "詿": 79520, + "譞": 79521, + "絴": 79522, + "捠": 79523, + "滸": 79524, + "颽": 79525, + "⛧": 79526, + "癗": 79527, + "劇": 79528, + "烾": 79529, + "尋": 79530, + "漥": 79531, + "誨": 79532, + "👰🏼‍♂️": 79533, + "灀": 79534, + "ǥ": 79535, + "⇱": 79536, + "醝": 79537, + "氾": 79538, + "藆": 79539, + "誛": 79540, + "齓": 79541, + "🌮": 79542, + "ƾ": 79543, + "👨🏾‍🎤": 79544, + "瘂": 79545, + "莐": 79546, + "杗": 79547, + "鷌": 79548, + "ɱ": 79549, + "佖": 79550, + "柮": 79551, + "爚": 79552, + "⍲": 79553, + "搥": 79554, + "擆": 79555, + "⒁": 79556, + "沔": 79557, + "蓫": 79558, + "對": 79559, + "妌": 79560, + "绉": 79561, + "笒": 79562, + "捻": 79563, + "▌": 79564, + "殛": 79565, + "軪": 79566, + "幡": 79567, + "痧": 79568, + "繬": 79569, + "焬": 79570, + "聥": 79571, + "崼": 79572, + "媜": 79573, + "🤦🏿": 79574, + "頯": 79575, + "蝺": 79576, + "鹯": 79577, + "賴": 79578, + "🥄": 79579, + "慳": 79580, + "殎": 79581, + "艂": 79582, + "鸁": 79583, + "餞": 79584, + "🇬🇧": 79585, + "💁🏻‍♀️": 79586, + "伎": 79587, + "欷": 79588, + "ͮ": 79589, + "🚭": 79590, + "贚": 79591, + "尃": 79592, + "砰": 79593, + "漎": 79594, + "皡": 79595, + "💆🏾": 79596, + "捘": 79597, + "🦢": 79598, + "👩‍🦲": 79599, + "壌": 79600, + "宧": 79601, + "呎": 79602, + "沨": 79603, + "綳": 79604, + "↖": 79605, + "竸": 79606, + "梶": 79607, + "違": 79608, + "赧": 79609, + "酦": 79610, + "📒": 79611, + "👩🏾‍❤️‍👩🏿": 79612, + "勡": 79613, + "讂": 79614, + "糌": 79615, + "咴": 79616, + "⌂": 79617, + "廀": 79618, + "聴": 79619, + "麏": 79620, + "欻": 79621, + "佷": 79622, + "聏": 79623, + "臸": 79624, + "⍃": 79625, + "👱🏼‍♂️": 79626, + "嬒": 79627, + "🤰🏽": 79628, + "⃓": 79629, + "嶥": 79630, + "敋": 79631, + "⓮": 79632, + "歾": 79633, + "錶": 79634, + "Ɨ": 79635, + "勎": 79636, + "💕": 79637, + "縂": 79638, + "簵": 79639, + "糈": 79640, + "👷‍♂️": 79641, + "⚕": 79642, + "孍": 79643, + "霢": 79644, + "🤵🏾": 79645, + "匢": 79646, + "紴": 79647, + "戞": 79648, + "🧑🏿‍🔬": 79649, + "😮": 79650, + "褉": 79651, + "犋": 79652, + "礂": 79653, + "┭": 79654, + "坒": 79655, + "袪": 79656, + "堽": 79657, + "顥": 79658, + "蟜": 79659, + "輶": 79660, + "歊": 79661, + "墻": 79662, + "疎": 79663, + "躨": 79664, + "椩": 79665, + "臟": 79666, + "萁": 79667, + "簾": 79668, + "肅": 79669, + "⏹": 79670, + "⓬": 79671, + "♠︎": 79672, + "媹": 79673, + "摱": 79674, + "⃔": 79675, + "🫸🏼": 79676, + "≊": 79677, + "骶": 79678, + "縲": 79679, + "燼": 79680, + "邘": 79681, + "埤": 79682, + "蕌": 79683, + "痙": 79684, + "🧑🏿‍❤️‍🧑🏻": 79685, + "◑": 79686, + "懾": 79687, + "錞": 79688, + "籡": 79689, + "捀": 79690, + "遜": 79691, + "睽": 79692, + "貀": 79693, + "≿": 79694, + "葘": 79695, + "🫃": 79696, + "匲": 79697, + "琺": 79698, + "梥": 79699, + "薠": 79700, + "🗻": 79701, + "⑬": 79702, + "憰": 79703, + "🥺": 79704, + "獁": 79705, + "澇": 79706, + "砯": 79707, + "垳": 79708, + "輁": 79709, + "囝": 79710, + "嶝": 79711, + "酏": 79712, + "苌": 79713, + "⋔": 79714, + "塼": 79715, + "燋": 79716, + "溈": 79717, + "滪": 79718, + "纑": 79719, + "癅": 79720, + "ǂ": 79721, + "轥": 79722, + "骣": 79723, + "👩‍🎓": 79724, + "蘩": 79725, + "🙍🏼‍♀️": 79726, + "鶃": 79727, + "💖": 79728, + "瀾": 79729, + "蟍": 79730, + "🤵🏼‍♀️": 79731, + "鶳": 79732, + "🏙": 79733, + "芣": 79734, + "獃": 79735, + "囪": 79736, + "酲": 79737, + "樎": 79738, + "⒧": 79739, + "隟": 79740, + "⃕": 79741, + "鋣": 79742, + "鬋": 79743, + "鑻": 79744, + "璥": 79745, + "進": 79746, + "乊": 79747, + "齘": 79748, + "涆": 79749, + "蚽": 79750, + "菖": 79751, + "甎": 79752, + "💪🏻": 79753, + "釸": 79754, + "Ȏ": 79755, + "櫙": 79756, + "🧑🏽‍💼": 79757, + "颞": 79758, + "憳": 79759, + "绺": 79760, + "誠": 79761, + "梂": 79762, + "黊": 79763, + "僋": 79764, + "賻": 79765, + "吷": 79766, + "絢": 79767, + "騎": 79768, + "椁": 79769, + "瓺": 79770, + "🤵🏿": 79771, + "🌆": 79772, + "穰": 79773, + "瑫": 79774, + "啹": 79775, + "蕞": 79776, + "誕": 79777, + "卋": 79778, + "箴": 79779, + "鞐": 79780, + "霌": 79781, + "🧒🏽": 79782, + "屙": 79783, + "͇": 79784, + "≓": 79785, + "🧕🏻": 79786, + "霝": 79787, + "蜣": 79788, + "艋": 79789, + "馢": 79790, + "芿": 79791, + "疂": 79792, + "峩": 79793, + "灍": 79794, + "嬪": 79795, + "鍨": 79796, + "鈥": 79797, + "蓮": 79798, + "澵": 79799, + "燶": 79800, + "缹": 79801, + "滬": 79802, + "🧑🏾‍🍳": 79803, + "娍": 79804, + "鄼": 79805, + "俥": 79806, + "汚": 79807, + "婩": 79808, + "👩‍🔧": 79809, + "🤞🏻": 79810, + "璬": 79811, + "⛙": 79812, + "昣": 79813, + "詭": 79814, + "禗": 79815, + "熲": 79816, + "🚇": 79817, + "囹": 79818, + "曘": 79819, + "▪": 79820, + "帣": 79821, + "🧑‍✈️": 79822, + "👩🏼‍🔧": 79823, + "魉": 79824, + "萰": 79825, + "˘": 79826, + "蜪": 79827, + "櫟": 79828, + "鮬": 79829, + "鱃": 79830, + "侕": 79831, + "🛌": 79832, + "👳🏽‍♂️": 79833, + "鯏": 79834, + "🪂": 79835, + "⒥": 79836, + "笗": 79837, + "鴐": 79838, + "慴": 79839, + "": 79840, + "槪": 79841, + "┦": 79842, + "搘": 79843, + "謢": 79844, + "🇨🇱": 79845, + "🤾🏾‍♀️": 79846, + "🤷🏼‍♂️": 79847, + "↕": 79848, + "濺": 79849, + "笯": 79850, + "杧": 79851, + "鞓": 79852, + "綫": 79853, + "⌟": 79854, + "褵": 79855, + "澓": 79856, + "🤹🏽‍♀️": 79857, + "襭": 79858, + "👨🏿‍🚒": 79859, + "憀": 79860, + "簌": 79861, + "👶🏻": 79862, + "⅚": 79863, + "獝": 79864, + "嫑": 79865, + "摪": 79866, + "👨🏾‍💻": 79867, + "払": 79868, + "鄳": 79869, + "藥": 79870, + "蟏": 79871, + "軔": 79872, + "讈": 79873, + "佻": 79874, + "懌": 79875, + "🤦‍♂️": 79876, + "紪": 79877, + "🫷🏿": 79878, + "萖": 79879, + "秥": 79880, + "👩‍🦱": 79881, + "辧": 79882, + "疌": 79883, + "☹": 79884, + "␋": 79885, + "≵": 79886, + "翱": 79887, + "炋": 79888, + "👩🏿‍❤️‍💋‍👨🏼": 79889, + "箋": 79890, + "篠": 79891, + "⑴": 79892, + "垙": 79893, + "⒀": 79894, + "螫": 79895, + "鳛": 79896, + "嫘": 79897, + "毭": 79898, + "🚴🏼‍♀️": 79899, + "矒": 79900, + "👇🏽": 79901, + "櫫": 79902, + "欸": 79903, + "絏": 79904, + "⃧": 79905, + "曌": 79906, + "🚣🏿‍♀️": 79907, + "鷼": 79908, + "椼": 79909, + "匼": 79910, + "灅": 79911, + "橺": 79912, + "齭": 79913, + "袻": 79914, + "👩‍⚖️": 79915, + "😢": 79916, + "壯": 79917, + "橓": 79918, + "黿": 79919, + "頇": 79920, + "碁": 79921, + "蝍": 79922, + "尪": 79923, + "岵": 79924, + "酘": 79925, + "晜": 79926, + "œ": 79927, + "閦": 79928, + "缒": 79929, + "皕": 79930, + "碹": 79931, + "↔": 79932, + "覂": 79933, + "髇": 79934, + "灦": 79935, + "╟": 79936, + "曑": 79937, + "₷": 79938, + "袸": 79939, + "诩": 79940, + "☠": 79941, + "🍋": 79942, + "姛": 79943, + "蓖": 79944, + "圻": 79945, + "彟": 79946, + "👮🏻‍♀️": 79947, + "🧑🏿‍🦰": 79948, + "🪼": 79949, + "🧔🏼‍♂️": 79950, + "▅": 79951, + "枧": 79952, + "艅": 79953, + "̀": 79954, + "詜": 79955, + "◔": 79956, + "陗": 79957, + "彃": 79958, + "牖": 79959, + "竱": 79960, + "鱇": 79961, + "嶡": 79962, + "渜": 79963, + "🌗": 79964, + "Ć": 79965, + "檿": 79966, + "塦": 79967, + "娿": 79968, + "餙": 79969, + "🕺🏿": 79970, + "😍": 79971, + "澮": 79972, + "⒄": 79973, + "鄲": 79974, + "劤": 79975, + "⌉": 79976, + "撅": 79977, + "钿": 79978, + "譥": 79979, + "鴹": 79980, + "訹": 79981, + "盌": 79982, + "燂": 79983, + "矉": 79984, + "⍱": 79985, + "熭": 79986, + "Ǝ": 79987, + "蹖": 79988, + "妏": 79989, + "黡": 79990, + "瀔": 79991, + "剎": 79992, + "₢": 79993, + "镧": 79994, + "夡": 79995, + "飗": 79996, + "髏": 79997, + "踰": 79998, + "怏": 79999, + "棫": 80000, + "铰": 80001, + "絽": 80002, + "🤽‍♂️": 80003, + "翬": 80004, + "圸": 80005, + "欇": 80006, + "瀡": 80007, + "🏄": 80008, + "侓": 80009, + "冝": 80010, + "儠": 80011, + "嘆": 80012, + "憡": 80013, + "劶": 80014, + "Ë": 80015, + "盕": 80016, + "黽": 80017, + "👩‍👦‍👦": 80018, + "揔": 80019, + "僫": 80020, + "泐": 80021, + "蝄": 80022, + "鴏": 80023, + "珨": 80024, + "襋": 80025, + "笞": 80026, + "夑": 80027, + "塙": 80028, + "🖖🏽": 80029, + "冽": 80030, + "椢": 80031, + "訌": 80032, + "⌙": 80033, + "脫": 80034, + "俻": 80035, + "輰": 80036, + "🦤": 80037, + "頺": 80038, + "骔": 80039, + "谂": 80040, + "ǝ": 80041, + "櫌": 80042, + "镔": 80043, + "ɏ": 80044, + "虒": 80045, + "˞": 80046, + "梷": 80047, + "枴": 80048, + "ⅽ": 80049, + "韺": 80050, + "簢": 80051, + "礱": 80052, + "霯": 80053, + "椔": 80054, + "桖": 80055, + "濶": 80056, + "檭": 80057, + "聙": 80058, + "娽": 80059, + "∇": 80060, + "曤": 80061, + "筥": 80062, + "⌇": 80063, + "縈": 80064, + "餯": 80065, + "擈": 80066, + "籨": 80067, + "殞": 80068, + "騲": 80069, + "🌱": 80070, + "🧑🏼": 80071, + "🌼": 80072, + "粎": 80073, + "醙": 80074, + "壏": 80075, + "筃": 80076, + "魒": 80077, + "鮟": 80078, + "祆": 80079, + "佔": 80080, + "🙎🏿‍♀️": 80081, + "阗": 80082, + "🗄": 80083, + "侪": 80084, + "譽": 80085, + "Ð": 80086, + "泯": 80087, + "啅": 80088, + "楯": 80089, + "簅": 80090, + "驧": 80091, + "躟": 80092, + "🧔🏼‍♀️": 80093, + "💂🏽‍♀️": 80094, + "⎹": 80095, + "跊": 80096, + "🧍🏿": 80097, + "蛪": 80098, + "␫": 80099, + "瞺": 80100, + "猍": 80101, + "婂": 80102, + "榚": 80103, + "汃": 80104, + "偮": 80105, + "滧": 80106, + "铞": 80107, + "扗": 80108, + "壘": 80109, + "薱": 80110, + "輞": 80111, + "爼": 80112, + "橸": 80113, + "巑": 80114, + "骯": 80115, + "🧜🏿": 80116, + "藯": 80117, + "撴": 80118, + "": 80119, + "虱": 80120, + "譚": 80121, + "蠏": 80122, + "👵🏽": 80123, + "👨‍⚕️": 80124, + "羸": 80125, + "筕": 80126, + "嵁": 80127, + "栄": 80128, + "👱🏾‍♀️": 80129, + "👨🏾‍🦱": 80130, + "💆🏻‍♀️": 80131, + "⋴": 80132, + "钷": 80133, + "昩": 80134, + "蕍": 80135, + "胗": 80136, + "桅": 80137, + "╈": 80138, + "憷": 80139, + "🚶🏼‍♂️": 80140, + "攪": 80141, + "蚧": 80142, + "鋮": 80143, + "偻": 80144, + "Ⓜ": 80145, + "🧍🏻‍♀️": 80146, + "👩‍🦼": 80147, + "傑": 80148, + "參": 80149, + "⎘": 80150, + "✊": 80151, + "🌘": 80152, + "沺": 80153, + "熰": 80154, + "👩‍❤️‍💋‍👨": 80155, + "耆": 80156, + "録": 80157, + "⊍": 80158, + "觀": 80159, + "👩‍🚒": 80160, + "⇧": 80161, + "熦": 80162, + "😠": 80163, + "鋽": 80164, + "📻": 80165, + "皽": 80166, + "👨🏼‍❤️‍💋‍👨🏼": 80167, + "͖": 80168, + "🙏🏾": 80169, + "瓨": 80170, + "摑": 80171, + "💆🏿‍♀️": 80172, + "緽": 80173, + "衹": 80174, + "虇": 80175, + "🌄": 80176, + "枟": 80177, + "潞": 80178, + "秚": 80179, + "誃": 80180, + "蹍": 80181, + "餅": 80182, + "⇶": 80183, + "慙": 80184, + "␪": 80185, + "瓭": 80186, + "菼": 80187, + "⏠": 80188, + "诃": 80189, + "蟴": 80190, + "炏": 80191, + "蟎": 80192, + "👩🏽‍✈️": 80193, + "阂": 80194, + "韏": 80195, + "ȯ": 80196, + "錼": 80197, + "⊳": 80198, + "鬦": 80199, + "👷🏻‍♀️": 80200, + "筚": 80201, + "涹": 80202, + "🤧": 80203, + "↾": 80204, + "颲": 80205, + "慗": 80206, + "棡": 80207, + "╆": 80208, + "帙": 80209, + "執": 80210, + "☏": 80211, + "惀": 80212, + "胏": 80213, + "巽": 80214, + "議": 80215, + "珶": 80216, + "秐": 80217, + "糲": 80218, + "🇦🇸": 80219, + "🧑🏾‍🎨": 80220, + "🚎": 80221, + "繴": 80222, + "団": 80223, + "蚨": 80224, + "咰": 80225, + "˿": 80226, + "醎": 80227, + "唥": 80228, + "╬": 80229, + "揫": 80230, + "🚞": 80231, + "偐": 80232, + "阊": 80233, + "鰀": 80234, + "馔": 80235, + "🇲🇱": 80236, + "晵": 80237, + "薹": 80238, + "潷": 80239, + "掂": 80240, + "⋚": 80241, + "綇": 80242, + "偳": 80243, + "摓": 80244, + "🔋": 80245, + "🦊": 80246, + "擳": 80247, + "鵽": 80248, + "␔": 80249, + "🛀🏾": 80250, + "貲": 80251, + "憲": 80252, + "👮": 80253, + "鷅": 80254, + "嫛": 80255, + "篴": 80256, + "甾": 80257, + "珵": 80258, + "🪱": 80259, + "💂🏻‍♀️": 80260, + "癵": 80261, + "ₜ": 80262, + "睂": 80263, + "躋": 80264, + "🫱🏿‍🫲🏾": 80265, + "墿": 80266, + "帪": 80267, + "冃": 80268, + "轱": 80269, + "谾": 80270, + "佱": 80271, + "淐": 80272, + "鲹": 80273, + "済": 80274, + "摽": 80275, + "廙": 80276, + "柦": 80277, + "🍳": 80278, + "🏰": 80279, + "Ǜ": 80280, + "堾": 80281, + "篅": 80282, + "趸": 80283, + "ₑ": 80284, + "涇": 80285, + "桧": 80286, + "樏": 80287, + "閬": 80288, + "💬": 80289, + "⑕": 80290, + "🫱🏿‍🫲🏽": 80291, + "焝": 80292, + "🐩": 80293, + "卐": 80294, + "🚝": 80295, + "灞": 80296, + "硋": 80297, + "浐": 80298, + "烵": 80299, + "碷": 80300, + "Ⱦ": 80301, + "巕": 80302, + "笁": 80303, + "🤜": 80304, + "⎍": 80305, + "👩‍👧‍👧": 80306, + "繮": 80307, + "蝯": 80308, + "儏": 80309, + "蓾": 80310, + "⌳": 80311, + "👩🏾‍❤️‍👩🏽": 80312, + "鬕": 80313, + "⒣": 80314, + "湭": 80315, + "韇": 80316, + "紕": 80317, + "銥": 80318, + "錇": 80319, + "壞": 80320, + "♑": 80321, + "煓": 80322, + "👩🏾‍❤️‍👨🏽": 80323, + "攝": 80324, + "Ƅ": 80325, + "👩🏽‍🦯": 80326, + "鬧": 80327, + "℣": 80328, + "♤": 80329, + "髲": 80330, + "🦵🏻": 80331, + "獴": 80332, + "ʄ": 80333, + "埘": 80334, + "🚵🏼‍♂️": 80335, + "耒": 80336, + "🫅🏻": 80337, + "曡": 80338, + "齬": 80339, + "薨": 80340, + "恖": 80341, + "魌": 80342, + "滅": 80343, + "酔": 80344, + "癙": 80345, + "桯": 80346, + "脔": 80347, + "逄": 80348, + "燉": 80349, + "慆": 80350, + "Ǯ": 80351, + "👨🏿‍❤️‍👨🏾": 80352, + "黭": 80353, + "衞": 80354, + "娭": 80355, + "💂‍♀️": 80356, + "脣": 80357, + "櫖": 80358, + "奯": 80359, + "矃": 80360, + "煀": 80361, + "🇳🇷": 80362, + "烌": 80363, + "撈": 80364, + "尫": 80365, + "⍗": 80366, + "隱": 80367, + "≛": 80368, + "⬆️": 80369, + "刟": 80370, + "優": 80371, + "剰": 80372, + "斃": 80373, + "鯃": 80374, + "媸": 80375, + "葌": 80376, + "蕶": 80377, + "帯": 80378, + "掿": 80379, + "氀": 80380, + "甓": 80381, + "誢": 80382, + "粴": 80383, + "藂": 80384, + "壄": 80385, + "ĭ": 80386, + "崘": 80387, + "奲": 80388, + "濚": 80389, + "痃": 80390, + "喢": 80391, + "麭": 80392, + "莔": 80393, + "滳": 80394, + "颰": 80395, + "贅": 80396, + "🟪": 80397, + "謇": 80398, + "鱆": 80399, + "⃺": 80400, + "駭": 80401, + "侽": 80402, + "礢": 80403, + "␣": 80404, + "ɭ": 80405, + "🥬": 80406, + "痭": 80407, + "鰰": 80408, + "蘙": 80409, + "苉": 80410, + "🧍🏼‍♂️": 80411, + "Ⓓ": 80412, + "喑": 80413, + "💽": 80414, + "懺": 80415, + "馼": 80416, + "祪": 80417, + "铳": 80418, + "挢": 80419, + "牏": 80420, + "🧕": 80421, + "靏": 80422, + "緲": 80423, + "🚶🏻‍♀️": 80424, + "緹": 80425, + "˾": 80426, + "偨": 80427, + "翸": 80428, + "苨": 80429, + "#️⃣": 80430, + "👩🏾‍🚒": 80431, + "屣": 80432, + "駣": 80433, + "夆": 80434, + "沬": 80435, + "緆": 80436, + "匨": 80437, + "溓": 80438, + "∋": 80439, + "艜": 80440, + "隿": 80441, + "鮣": 80442, + "🦻🏽": 80443, + "駟": 80444, + "吅": 80445, + "觱": 80446, + "韻": 80447, + "顄": 80448, + "饆": 80449, + "瞐": 80450, + "洉": 80451, + "覝": 80452, + "扷": 80453, + "逹": 80454, + "審": 80455, + "锗": 80456, + "鯦": 80457, + "俈": 80458, + "瘸": 80459, + "炆": 80460, + "⤴️": 80461, + "嫜": 80462, + "⒌": 80463, + "␭": 80464, + "冴": 80465, + "岬": 80466, + "栟": 80467, + "鎥": 80468, + "乆": 80469, + "觶": 80470, + "戤": 80471, + "噷": 80472, + "膶": 80473, + "匑": 80474, + "≦": 80475, + "▸": 80476, + "🧑🏿‍🌾": 80477, + "潀": 80478, + "Ǩ": 80479, + "榇": 80480, + "朜": 80481, + "襓": 80482, + "鉡": 80483, + "炣": 80484, + "鯿": 80485, + "敽": 80486, + "🥘": 80487, + "鍮": 80488, + "暦": 80489, + "瀽": 80490, + "衊": 80491, + "⇃": 80492, + "🇬🇫": 80493, + "娹": 80494, + "🫷🏾": 80495, + "塮": 80496, + "🏃🏾‍♀️": 80497, + "孎": 80498, + "👋🏾": 80499, + "埞": 80500, + "涱": 80501, + "晊": 80502, + "廤": 80503, + "僩": 80504, + "剋": 80505, + "薣": 80506, + "渰": 80507, + "葞": 80508, + "▇": 80509, + "蹯": 80510, + "刼": 80511, + "閘": 80512, + "🌦": 80513, + "蜮": 80514, + "衶": 80515, + "軼": 80516, + "資": 80517, + "🐳": 80518, + "🦹🏻‍♀️": 80519, + "屪": 80520, + "籟": 80521, + "⇙": 80522, + "嚈": 80523, + "荦": 80524, + "🧘": 80525, + "⛹🏽‍♀️": 80526, + "捌": 80527, + "泧": 80528, + "崻": 80529, + "暊": 80530, + "鴘": 80531, + "觮": 80532, + "蚛": 80533, + "鐂": 80534, + "醽": 80535, + "忒": 80536, + "🤹🏽‍♂️": 80537, + "˶": 80538, + "蠘": 80539, + "👮🏽‍♂️": 80540, + "膍": 80541, + "🤽🏼‍♀️": 80542, + "椌": 80543, + "👰🏾‍♂️": 80544, + "畀": 80545, + "泃": 80546, + "暅": 80547, + "ȉ": 80548, + "幬": 80549, + "竨": 80550, + "🎬": 80551, + "↷": 80552, + "廰": 80553, + "棓": 80554, + "殦": 80555, + "婲": 80556, + "魞": 80557, + "芖": 80558, + "👐🏽": 80559, + "鉉": 80560, + "錙": 80561, + "蓈": 80562, + "⎛": 80563, + "◴": 80564, + "葰": 80565, + "狏": 80566, + "ɡ": 80567, + "嵃": 80568, + "橜": 80569, + "酐": 80570, + "掞": 80571, + "👱🏼‍♀️": 80572, + "槜": 80573, + "憵": 80574, + "藇": 80575, + "燸": 80576, + "聇": 80577, + "裊": 80578, + "湋": 80579, + "覐": 80580, + "羄": 80581, + "🧖🏼‍♂️": 80582, + "虩": 80583, + "℧": 80584, + "📉": 80585, + "♙": 80586, + "◾": 80587, + "緊": 80588, + "筈": 80589, + "🧝‍♂️": 80590, + "筦": 80591, + "頰": 80592, + "磑": 80593, + "嵍": 80594, + "🏊🏼‍♂️": 80595, + "隳": 80596, + "杔": 80597, + "穟": 80598, + "ͻ": 80599, + "鱵": 80600, + "璻": 80601, + "討": 80602, + "窉": 80603, + "槬": 80604, + "犒": 80605, + "狊": 80606, + "儉": 80607, + "釢": 80608, + "碕": 80609, + "♭": 80610, + "✌🏼": 80611, + "鑄": 80612, + "儤": 80613, + "螈": 80614, + "籞": 80615, + "🦑": 80616, + "豓": 80617, + "饨": 80618, + "摼": 80619, + "裶": 80620, + "⓭": 80621, + "渱": 80622, + "蝂": 80623, + "乤": 80624, + "🫄🏻": 80625, + "灄": 80626, + "🪣": 80627, + "笵": 80628, + "佚": 80629, + "🙆‍♂️": 80630, + "苂": 80631, + "粦": 80632, + "櫋": 80633, + "嘔": 80634, + "⇀": 80635, + "蹗": 80636, + "跒": 80637, + "铫": 80638, + "嶓": 80639, + "擴": 80640, + "✔️": 80641, + "✌🏻": 80642, + "弚": 80643, + "⃥": 80644, + "獏": 80645, + "͎": 80646, + "涐": 80647, + "✋🏼": 80648, + "鹐": 80649, + "🚣🏽‍♂️": 80650, + "桇": 80651, + "揸": 80652, + "⛹🏼‍♂️": 80653, + "👩🏻": 80654, + "💷": 80655, + "嚻": 80656, + "洿": 80657, + "骳": 80658, + "腲": 80659, + "襌": 80660, + "虳": 80661, + "⒏": 80662, + "竕": 80663, + "🔎": 80664, + "牦": 80665, + "儘": 80666, + "柅": 80667, + "鰞": 80668, + "∕": 80669, + "醫": 80670, + "簒": 80671, + "鬜": 80672, + "苾": 80673, + "峛": 80674, + "喦": 80675, + "騍": 80676, + "🧑🏼‍🍼": 80677, + "唂": 80678, + "🩱": 80679, + "鄎": 80680, + "椾": 80681, + "誖": 80682, + "🧟‍♀️": 80683, + "⁍": 80684, + "蕧": 80685, + "瀎": 80686, + "🇸🇪": 80687, + "👍🏾": 80688, + "💟": 80689, + "咅": 80690, + "堄": 80691, + "訲": 80692, + "🤦🏼‍♂️": 80693, + "🍂": 80694, + "垹": 80695, + "穤": 80696, + "儦": 80697, + "蟟": 80698, + "澃": 80699, + "焭": 80700, + "嫲": 80701, + "罇": 80702, + "🙎🏽": 80703, + "璁": 80704, + "🎸": 80705, + "藌": 80706, + "勦": 80707, + "膸": 80708, + "禕": 80709, + "Ō": 80710, + "̬": 80711, + "課": 80712, + "槿": 80713, + "皛": 80714, + "榋": 80715, + "🚪": 80716, + "🏹": 80717, + "👰🏼": 80718, + "👩🏾‍🍼": 80719, + "闑": 80720, + "👩🏿‍🦰": 80721, + "👨🏼‍🚀": 80722, + "躿": 80723, + "⑉": 80724, + "🤍": 80725, + "楕": 80726, + "˗": 80727, + "簚": 80728, + "暉": 80729, + "蝘": 80730, + "鰶": 80731, + "歵": 80732, + "蘟": 80733, + "瀢": 80734, + "溏": 80735, + "🇵🇾": 80736, + "螳": 80737, + "耂": 80738, + "👨🏻‍🔬": 80739, + "讱": 80740, + "⑍": 80741, + "悩": 80742, + "鰔": 80743, + "畿": 80744, + "垈": 80745, + "翑": 80746, + "🏴": 80747, + "ſ": 80748, + "🧑🏾‍🔧": 80749, + "Ⓝ": 80750, + "┗": 80751, + "肼": 80752, + "掜": 80753, + "貊": 80754, + "🚘": 80755, + "🤸🏼‍♂️": 80756, + "👨🏻‍🦳": 80757, + "🇩🇲": 80758, + "襬": 80759, + "踭": 80760, + "糾": 80761, + "牬": 80762, + "毻": 80763, + "倫": 80764, + "嫯": 80765, + "Ƶ": 80766, + "╓": 80767, + "⒱": 80768, + "掎": 80769, + "☴": 80770, + "剕": 80771, + "淓": 80772, + "灑": 80773, + "纟": 80774, + "🎋": 80775, + "鴽": 80776, + "愴": 80777, + "∑": 80778, + "魓": 80779, + "樌": 80780, + "菭": 80781, + "ġ": 80782, + "🤐": 80783, + "🤌🏽": 80784, + "✦": 80785, + "遟": 80786, + "峏": 80787, + "ˑ": 80788, + "罀": 80789, + "揅": 80790, + "😪": 80791, + "鑘": 80792, + "郙": 80793, + "鉟": 80794, + "🚴‍♂️": 80795, + "韮": 80796, + "曥": 80797, + "洆": 80798, + "🫱🏻‍🫲🏽": 80799, + "😤": 80800, + "鏁": 80801, + "╜": 80802, + "矟": 80803, + "Ⅵ": 80804, + "贍": 80805, + "斒": 80806, + "獜": 80807, + "爈": 80808, + "⑱": 80809, + "霐": 80810, + "畑": 80811, + "躡": 80812, + "柇": 80813, + "闣": 80814, + "決": 80815, + "哿": 80816, + "袨": 80817, + "蒩": 80818, + "纴": 80819, + "綀": 80820, + "峸": 80821, + "挕": 80822, + "◶": 80823, + "🚵‍♀️": 80824, + "跜": 80825, + "蔙": 80826, + "✋🏿": 80827, + "乯": 80828, + "扊": 80829, + "犼": 80830, + "仂": 80831, + "榮": 80832, + "繶": 80833, + "🀄️": 80834, + "揜": 80835, + "吽": 80836, + "呄": 80837, + "肒": 80838, + "刵": 80839, + "銖": 80840, + "⇑": 80841, + "爄": 80842, + "吳": 80843, + "枠": 80844, + "邎": 80845, + "🌫": 80846, + "‥": 80847, + "舖": 80848, + "ƀ": 80849, + "🇨🇳": 80850, + "盻": 80851, + "蕈": 80852, + "ȅ": 80853, + "籛": 80854, + "郓": 80855, + "麠": 80856, + "憃": 80857, + "宩": 80858, + "觻": 80859, + "赅": 80860, + "穸": 80861, + "妼": 80862, + "铐": 80863, + "浥": 80864, + "旽": 80865, + "歡": 80866, + "齤": 80867, + "呇": 80868, + "喳": 80869, + "巣": 80870, + "蠅": 80871, + "饞": 80872, + "銷": 80873, + "滮": 80874, + "🦃": 80875, + "惴": 80876, + "視": 80877, + "耩": 80878, + "🔀": 80879, + "傢": 80880, + "眧": 80881, + "柛": 80882, + "懋": 80883, + "陜": 80884, + "⇖": 80885, + "齊": 80886, + "婼": 80887, + "際": 80888, + "噴": 80889, + "倔": 80890, + "₴": 80891, + "蚿": 80892, + "🧙": 80893, + "邈": 80894, + "煋": 80895, + "糛": 80896, + "⋾": 80897, + "👰🏽": 80898, + "✋": 80899, + "纾": 80900, + "荨": 80901, + "霅": 80902, + "訩": 80903, + "Ⅽ": 80904, + "鉷": 80905, + "魩": 80906, + "⍒": 80907, + "珌": 80908, + "箓": 80909, + "埸": 80910, + "欚": 80911, + "啘": 80912, + "秊": 80913, + "₫": 80914, + "灺": 80915, + "💇🏿‍♂️": 80916, + "轙": 80917, + "Ι": 80918, + "狯": 80919, + "🅱️": 80920, + "恊": 80921, + "恱": 80922, + "瑌": 80923, + "莦": 80924, + "湠": 80925, + "菣": 80926, + "蓌": 80927, + "痶": 80928, + "畤": 80929, + "啞": 80930, + "🫸🏾": 80931, + "泘": 80932, + "躠": 80933, + "厒": 80934, + "巌": 80935, + "爇": 80936, + "墁": 80937, + "魈": 80938, + "諣": 80939, + "⍺": 80940, + "鏄": 80941, + "蓏": 80942, + "湼": 80943, + "嚆": 80944, + "鉔": 80945, + "傯": 80946, + "壗": 80947, + "榅": 80948, + "ʴ": 80949, + "琇": 80950, + "讃": 80951, + "鰡": 80952, + "⎺": 80953, + "̻": 80954, + "迚": 80955, + "渨": 80956, + "颴": 80957, + "糼": 80958, + "🛡": 80959, + "倓": 80960, + "躊": 80961, + "順": 80962, + "🔖": 80963, + "⛹🏻‍♂️": 80964, + "躄": 80965, + "≍": 80966, + "婙": 80967, + "駱": 80968, + "羝": 80969, + "喍": 80970, + "漬": 80971, + "夝": 80972, + "🇲🇺": 80973, + "矙": 80974, + "鶁": 80975, + "忕": 80976, + "觔": 80977, + "嗺": 80978, + "噤": 80979, + "堚": 80980, + "嗱": 80981, + "鳅": 80982, + "鮻": 80983, + "淃": 80984, + "甌": 80985, + "顙": 80986, + "♻": 80987, + "婘": 80988, + "⛔": 80989, + "👨‍🎓": 80990, + "巬": 80991, + "🤸🏻‍♂️": 80992, + "塽": 80993, + "🧑🏻": 80994, + "壠": 80995, + "垱": 80996, + "鑚": 80997, + "菟": 80998, + "瑑": 80999, + "👨🏿‍🦯": 81000, + "煃": 81001, + "⌎": 81002, + "贆": 81003, + "慜": 81004, + "赭": 81005, + "Ô": 81006, + "侾": 81007, + "鄬": 81008, + "鞷": 81009, + "膕": 81010, + "畠": 81011, + "褱": 81012, + "檴": 81013, + "欉": 81014, + "衯": 81015, + "🏊🏻": 81016, + "賜": 81017, + "␬": 81018, + "閹": 81019, + "珢": 81020, + "嗩": 81021, + "殁": 81022, + "鳼": 81023, + "檇": 81024, + "佲": 81025, + "🤚🏾": 81026, + "👨🏿‍🦰": 81027, + "綖": 81028, + "臼": 81029, + "艬": 81030, + "鯮": 81031, + "硩": 81032, + "蕎": 81033, + "蒥": 81034, + "帰": 81035, + "齒": 81036, + "孬": 81037, + "🇺🇸": 81038, + "╩": 81039, + "閁": 81040, + "🚅": 81041, + "嶣": 81042, + "銞": 81043, + "唜": 81044, + "臍": 81045, + "犦": 81046, + "钍": 81047, + "茠": 81048, + "蝹": 81049, + "暈": 81050, + "癮": 81051, + "👷🏽": 81052, + "蔊": 81053, + "旒": 81054, + "🤸🏻": 81055, + "傁": 81056, + "蓗": 81057, + "秭": 81058, + "犐": 81059, + "遾": 81060, + "歲": 81061, + "🤌🏼": 81062, + "👨🏻‍🦯": 81063, + "鄆": 81064, + "鰉": 81065, + "翇": 81066, + "噽": 81067, + "ʳ": 81068, + "鉾": 81069, + "↌": 81070, + "鶜": 81071, + "汢": 81072, + "謑": 81073, + "詨": 81074, + "翭": 81075, + "詼": 81076, + "芇": 81077, + "蛨": 81078, + "ɪ": 81079, + "🇭🇰": 81080, + "📄": 81081, + "锪": 81082, + "👨🏻‍🦽": 81083, + "🧑🏽‍❤️‍🧑🏼": 81084, + "🚣🏽‍♀️": 81085, + "▋": 81086, + "₣": 81087, + "鬫": 81088, + "麐": 81089, + "慃": 81090, + "锱": 81091, + "戛": 81092, + "赪": 81093, + "🚓": 81094, + "僙": 81095, + "柖": 81096, + "籘": 81097, + "ª": 81098, + "訐": 81099, + "墴": 81100, + "ϔ": 81101, + "捗": 81102, + "👨🏾‍❤️‍👨🏻": 81103, + "煏": 81104, + "坉": 81105, + "̆": 81106, + "鉗": 81107, + "襏": 81108, + "稊": 81109, + "睄": 81110, + "扽": 81111, + "🎪": 81112, + "癏": 81113, + "🎅🏼": 81114, + "冾": 81115, + "🇪🇬": 81116, + "梜": 81117, + "蠾": 81118, + "怹": 81119, + "鵿": 81120, + "兎": 81121, + "塳": 81122, + "轢": 81123, + "🚻": 81124, + "嶸": 81125, + "鞩": 81126, + "⁃": 81127, + "離": 81128, + "漲": 81129, + "鶇": 81130, + "敐": 81131, + "漇": 81132, + "恠": 81133, + "鎻": 81134, + "兌": 81135, + "ʻ": 81136, + "咮": 81137, + "唼": 81138, + "襖": 81139, + "誜": 81140, + "獙": 81141, + "駏": 81142, + "閅": 81143, + "鵬": 81144, + "槧": 81145, + "弝": 81146, + "铓": 81147, + "Ĵ": 81148, + "鑐": 81149, + "𓀈": 81150, + "譅": 81151, + "👩🏾‍🏫": 81152, + "Ȣ": 81153, + "趡": 81154, + "歍": 81155, + "🦹": 81156, + "債": 81157, + "ʗ": 81158, + "壃": 81159, + "餳": 81160, + "夅": 81161, + "怤": 81162, + "襼": 81163, + "鈙": 81164, + "孠": 81165, + "袈": 81166, + "👨🏻‍❤️‍💋‍👨🏼": 81167, + "從": 81168, + "◙": 81169, + "丗": 81170, + "釣": 81171, + "縧": 81172, + "蚍": 81173, + "攭": 81174, + "匂": 81175, + "茍": 81176, + "🇸🇰": 81177, + "殩": 81178, + "湞": 81179, + "鋆": 81180, + "🧙🏼‍♀️": 81181, + "眂": 81182, + "鸻": 81183, + "✍🏿": 81184, + "鬣": 81185, + "鄭": 81186, + "楤": 81187, + "稹": 81188, + "🕵🏾": 81189, + "柉": 81190, + "婖": 81191, + "🇬🇪": 81192, + "🐵": 81193, + "爯": 81194, + "Ʃ": 81195, + "👩🏼‍❤️‍💋‍👩🏼": 81196, + "頡": 81197, + "臫": 81198, + "姰": 81199, + "煊": 81200, + "缄": 81201, + "韣": 81202, + "↙": 81203, + "筮": 81204, + "ˈ": 81205, + "Ř": 81206, + "👩🏽‍❤️‍👩🏻": 81207, + "欩": 81208, + "菍": 81209, + "鵟": 81210, + "℗": 81211, + "藅": 81212, + "塷": 81213, + "軠": 81214, + "踁": 81215, + "篑": 81216, + "硦": 81217, + "ℯ": 81218, + "峓": 81219, + "鵹": 81220, + "雹": 81221, + "榌": 81222, + "▬": 81223, + "👨‍🍼": 81224, + "塧": 81225, + "躔": 81226, + "ͥ": 81227, + "猌": 81228, + "罷": 81229, + "冣": 81230, + "黚": 81231, + "芘": 81232, + "膂": 81233, + "👨🏾‍🚒": 81234, + "抔": 81235, + "👩🏿‍✈️": 81236, + "萓": 81237, + "媔": 81238, + "佴": 81239, + "蒄": 81240, + "儁": 81241, + "袮": 81242, + "缜": 81243, + "亝": 81244, + "豙": 81245, + "👜": 81246, + "‮": 81247, + "紖": 81248, + "纆": 81249, + "唗": 81250, + "Ɗ": 81251, + "楦": 81252, + "鏍": 81253, + "⌱": 81254, + "屆": 81255, + "簳": 81256, + "ǯ": 81257, + "侷": 81258, + "砃": 81259, + "鋎": 81260, + "潔": 81261, + "╘": 81262, + "儞": 81263, + "櫒": 81264, + "艨": 81265, + "屺": 81266, + "🍒": 81267, + "炦": 81268, + "櫮": 81269, + "秝": 81270, + "檼": 81271, + "茼": 81272, + "̯": 81273, + "荻": 81274, + "嵎": 81275, + "瑷": 81276, + "⋍": 81277, + "傖": 81278, + "🙌🏿": 81279, + "菗": 81280, + "彐": 81281, + "璸": 81282, + "鼄": 81283, + "襒": 81284, + "鑡": 81285, + "🤦‍♀️": 81286, + "侀": 81287, + "蟋": 81288, + "Ⓦ": 81289, + "蹥": 81290, + "愜": 81291, + "訋": 81292, + "绱": 81293, + "鵭": 81294, + "ͱ": 81295, + "骖": 81296, + "菘": 81297, + "杁": 81298, + "緪": 81299, + "鬉": 81300, + "瞂": 81301, + "⋼": 81302, + "繍": 81303, + "許": 81304, + "藎": 81305, + "🧏🏻": 81306, + "歂": 81307, + "驞": 81308, + "艹": 81309, + "終": 81310, + "🫶🏼": 81311, + "⒩": 81312, + "₤": 81313, + "譹": 81314, + "龠": 81315, + "🕉": 81316, + "鹑": 81317, + "👨🏼‍🦯": 81318, + "諙": 81319, + "褫": 81320, + "觵": 81321, + "蓕": 81322, + "墶": 81323, + "Ƀ": 81324, + "ή": 81325, + "♉": 81326, + "⁛": 81327, + "駖": 81328, + "俦": 81329, + "⑃": 81330, + "🧑🏽‍🏫": 81331, + "🇦🇼": 81332, + "⚽": 81333, + "🧍🏾‍♀️": 81334, + "櫇": 81335, + "諮": 81336, + "縏": 81337, + "脞": 81338, + "繿": 81339, + "氶": 81340, + "🇮🇳": 81341, + "丼": 81342, + "藞": 81343, + "醨": 81344, + "廄": 81345, + "嶯": 81346, + "趢": 81347, + "🧙🏾‍♀️": 81348, + "🧑‍⚖️": 81349, + "🧑🏿‍🏭": 81350, + "媋": 81351, + "忺": 81352, + "🛁": 81353, + "⁼": 81354, + "諠": 81355, + "🧝🏽‍♀️": 81356, + "͒": 81357, + "↞": 81358, + "媘": 81359, + "鸙": 81360, + "埍": 81361, + "🧜🏼‍♂️": 81362, + "嵉": 81363, + "橉": 81364, + "🧚🏼": 81365, + "曮": 81366, + "辡": 81367, + "螔": 81368, + "犉": 81369, + "稨": 81370, + "崂": 81371, + "鍬": 81372, + "疀": 81373, + "👌": 81374, + "腨": 81375, + "鶼": 81376, + "壍": 81377, + "麚": 81378, + "屴": 81379, + "👩‍🦳": 81380, + "夣": 81381, + "娰": 81382, + "貶": 81383, + "翺": 81384, + "癐": 81385, + "⇈": 81386, + "👩🏾‍❤️‍👩🏻": 81387, + "⚰": 81388, + "👩🏻‍🏫": 81389, + "褹": 81390, + "熺": 81391, + "夗": 81392, + "檨": 81393, + "怐": 81394, + "槚": 81395, + "▴": 81396, + "圝": 81397, + "ℬ": 81398, + "竦": 81399, + "🙇🏻": 81400, + "疳": 81401, + "🐕": 81402, + "🇮🇷": 81403, + "養": 81404, + "👨🏻‍❤️‍👨🏽": 81405, + "丣": 81406, + "莡": 81407, + "譳": 81408, + "餤": 81409, + "蠦": 81410, + "⁤": 81411, + "咵": 81412, + "荊": 81413, + "媾": 81414, + "聶": 81415, + "↏": 81416, + "毿": 81417, + "铥": 81418, + "橹": 81419, + "鼼": 81420, + "骦": 81421, + "嘺": 81422, + "暫": 81423, + "譨": 81424, + "詚": 81425, + "踹": 81426, + "⃭": 81427, + "鬑": 81428, + "図": 81429, + "🔏": 81430, + "賐": 81431, + "惎": 81432, + "漽": 81433, + "齆": 81434, + "璅": 81435, + "湡": 81436, + "褊": 81437, + "穡": 81438, + "贑": 81439, + "彳": 81440, + "🚵🏼": 81441, + "蜞": 81442, + "😋": 81443, + "⛹🏿‍♀️": 81444, + "̥": 81445, + "🤲": 81446, + "伻": 81447, + "洑": 81448, + "牠": 81449, + "總": 81450, + "🤘🏿": 81451, + "厸": 81452, + "睏": 81453, + "͸": 81454, + "奟": 81455, + "婥": 81456, + "挏": 81457, + "挅": 81458, + "👩🏼‍❤️‍💋‍👨🏾": 81459, + "洺": 81460, + "⃾": 81461, + "😚": 81462, + "鍒": 81463, + "␌": 81464, + "術": 81465, + "価": 81466, + "怶": 81467, + "藖": 81468, + "楬": 81469, + "🏨": 81470, + "攢": 81471, + "Ĭ": 81472, + "俕": 81473, + "螓": 81474, + "浵": 81475, + "轕": 81476, + "甛": 81477, + "晍": 81478, + "▿": 81479, + "槨": 81480, + "膉": 81481, + "雺": 81482, + "諥": 81483, + "恿": 81484, + "🇴🇲": 81485, + "窠": 81486, + "ₔ": 81487, + "揢": 81488, + "齟": 81489, + "篃": 81490, + "搋": 81491, + "毢": 81492, + "謳": 81493, + "🥜": 81494, + "⃎": 81495, + "ʹ": 81496, + "誱": 81497, + "獇": 81498, + "抅": 81499, + "拤": 81500, + "◂": 81501, + "⑅": 81502, + "魴": 81503, + "筽": 81504, + "獍": 81505, + "葪": 81506, + "👨🏻‍🍼": 81507, + "玁": 81508, + "😲": 81509, + "🎂": 81510, + "駤": 81511, + "圹": 81512, + "謹": 81513, + "㊗️": 81514, + "棙": 81515, + "瓃": 81516, + "嚦": 81517, + "憊": 81518, + "楻": 81519, + "覛": 81520, + "黱": 81521, + "爳": 81522, + "🚵🏽": 81523, + "螻": 81524, + "ŀ": 81525, + "⅋": 81526, + "帼": 81527, + "👳🏿": 81528, + "蜶": 81529, + "壨": 81530, + "鞺": 81531, + "廅": 81532, + "🙇🏿‍♀️": 81533, + "騗": 81534, + "妚": 81535, + "矁": 81536, + "矞": 81537, + "鐣": 81538, + "鯇": 81539, + "℩": 81540, + "榀": 81541, + "狻": 81542, + "蹼": 81543, + "霼": 81544, + "聈": 81545, + "穽": 81546, + "擗": 81547, + "譏": 81548, + "🗞": 81549, + "啜": 81550, + "紹": 81551, + "浨": 81552, + "龉": 81553, + "螟": 81554, + "浻": 81555, + "👩🏽‍❤️‍💋‍👨🏻": 81556, + "🧑🏻‍🤝‍🧑🏻": 81557, + "廨": 81558, + "🎉": 81559, + "犿": 81560, + "緂": 81561, + "虮": 81562, + "遦": 81563, + "費": 81564, + "🔌": 81565, + "梺": 81566, + "伱": 81567, + "鞉": 81568, + "悅": 81569, + "蕪": 81570, + "訍": 81571, + "髽": 81572, + "禵": 81573, + "咃": 81574, + "ȭ": 81575, + "👬🏾": 81576, + "噐": 81577, + "💂🏾": 81578, + "僲": 81579, + "輏": 81580, + "虖": 81581, + "庾": 81582, + "瀃": 81583, + "鐡": 81584, + "龐": 81585, + "盪": 81586, + "₸": 81587, + "愷": 81588, + "🧑🏼‍🎓": 81589, + "懘": 81590, + "鑔": 81591, + "岮": 81592, + "鐫": 81593, + "覟": 81594, + "雽": 81595, + "齞": 81596, + "覔": 81597, + "🙆🏾‍♂️": 81598, + "嗘": 81599, + "俶": 81600, + "觴": 81601, + "樒": 81602, + "騉": 81603, + "◁": 81604, + "皫": 81605, + "閻": 81606, + "塤": 81607, + "絶": 81608, + "夿": 81609, + "繫": 81610, + "秇": 81611, + "覄": 81612, + "捨": 81613, + "🤦🏿‍♂️": 81614, + "驁": 81615, + "妘": 81616, + "🙆": 81617, + "悳": 81618, + "酖": 81619, + "觐": 81620, + "鎣": 81621, + "鵎": 81622, + "莍": 81623, + "甋": 81624, + "稂": 81625, + "疺": 81626, + "鬲": 81627, + "🧽": 81628, + "碯": 81629, + "亼": 81630, + "啠": 81631, + "👷🏿‍♂️": 81632, + "蛗": 81633, + "鄉": 81634, + "🧑‍🔧": 81635, + "愨": 81636, + "瀴": 81637, + "毜": 81638, + "衛": 81639, + "👩🏿‍🦯": 81640, + "嶁": 81641, + "焳": 81642, + "斬": 81643, + "寈": 81644, + "岻": 81645, + "垛": 81646, + "🇧🇱": 81647, + "囅": 81648, + "╴": 81649, + "妯": 81650, + "軷": 81651, + "🧏🏾‍♀️": 81652, + "🤷🏾‍♂️": 81653, + "🏸": 81654, + "販": 81655, + "崀": 81656, + "頋": 81657, + "籥": 81658, + "硟": 81659, + "螮": 81660, + "毶": 81661, + "龇": 81662, + "侶": 81663, + "≰": 81664, + "塿": 81665, + "崄": 81666, + "泀": 81667, + "掱": 81668, + "亪": 81669, + "緩": 81670, + "🧑🏼‍🔧": 81671, + "渂": 81672, + "瓑": 81673, + "藊": 81674, + "⑹": 81675, + "傔": 81676, + "塄": 81677, + "媺": 81678, + "蛍": 81679, + "阣": 81680, + "钬": 81681, + "💿": 81682, + "達": 81683, + "🚴🏾": 81684, + "泇": 81685, + "誟": 81686, + "锃": 81687, + "🏃‍♀️": 81688, + "紾": 81689, + "矷": 81690, + "恓": 81691, + "🈁": 81692, + "鑇": 81693, + "🙅🏾‍♂️": 81694, + "腃": 81695, + "7️⃣": 81696, + "🏡": 81697, + "亣": 81698, + "萗": 81699, + "驇": 81700, + "🎣": 81701, + "鯞": 81702, + "哕": 81703, + "曞": 81704, + "Ϟ": 81705, + "🕥": 81706, + "慠": 81707, + "灷": 81708, + "侂": 81709, + "🧑🏻‍🎨": 81710, + "祴": 81711, + "钕": 81712, + "‭": 81713, + "鸨": 81714, + "曀": 81715, + "噗": 81716, + "🚴🏼": 81717, + "忞": 81718, + "霫": 81719, + "鑩": 81720, + "🧜🏽‍♀️": 81721, + "Ɓ": 81722, + "鐊": 81723, + "岡": 81724, + "🦡": 81725, + "亽": 81726, + "蘿": 81727, + "堌": 81728, + "銟": 81729, + "⍚": 81730, + "🫱🏽‍🫲🏿": 81731, + "礝": 81732, + "穎": 81733, + "🔹": 81734, + "犟": 81735, + "阧": 81736, + "秨": 81737, + "螱": 81738, + "譈": 81739, + "姀": 81740, + "🏌🏿": 81741, + "凢": 81742, + "楲": 81743, + "驒": 81744, + "怩": 81745, + "迲": 81746, + "👨🏾‍🏭": 81747, + "唺": 81748, + "⑆": 81749, + "瑝": 81750, + "隂": 81751, + "L": 81752, + "逵": 81753, + "旾": 81754, + "縄": 81755, + "罥": 81756, + "⌃": 81757, + "滽": 81758, + "莸": 81759, + "⒂": 81760, + "濈": 81761, + "瑋": 81762, + "鳜": 81763, + "藰": 81764, + "錬": 81765, + "獛": 81766, + "ℐ": 81767, + "ͪ": 81768, + "恁": 81769, + "鵶": 81770, + "澂": 81771, + "敫": 81772, + "芉": 81773, + "焐": 81774, + "櫞": 81775, + "ℵ": 81776, + "鈞": 81777, + "噰": 81778, + "鬾": 81779, + "峊": 81780, + "∿": 81781, + "瑹": 81782, + "鍔": 81783, + "🫶🏾": 81784, + "⋄": 81785, + "勣": 81786, + "🤟🏾": 81787, + "蠡": 81788, + "嘫": 81789, + "锫": 81790, + "鱖": 81791, + "Ƹ": 81792, + "邉": 81793, + "鵇": 81794, + "陞": 81795, + "絔": 81796, + "圔": 81797, + "锸": 81798, + "炈": 81799, + "烜": 81800, + "阃": 81801, + "篶": 81802, + "🦿": 81803, + "閍": 81804, + "👶🏽": 81805, + "玪": 81806, + "墖": 81807, + "⏚": 81808, + "攼": 81809, + "峔": 81810, + "棪": 81811, + "🩳": 81812, + "🧚🏻": 81813, + "🧑🏿‍⚖️": 81814, + "悇": 81815, + "🙆🏿": 81816, + "┆": 81817, + "蠤": 81818, + "蜒": 81819, + "烪": 81820, + "曇": 81821, + "蘳": 81822, + "戜": 81823, + "躮": 81824, + "較": 81825, + "宷": 81826, + "胩": 81827, + "婟": 81828, + "👩‍❤️‍👩": 81829, + "婏": 81830, + "🤽🏽": 81831, + "歛": 81832, + "烞": 81833, + "禒": 81834, + "蟊": 81835, + "楶": 81836, + "👨🏼‍❤️‍👨🏿": 81837, + "黕": 81838, + "哸": 81839, + "嚲": 81840, + "椶": 81841, + "🤽‍♀️": 81842, + "℀": 81843, + "暝": 81844, + "塱": 81845, + "卶": 81846, + "💒": 81847, + "橑": 81848, + "虃": 81849, + "皬": 81850, + "棅": 81851, + "褀": 81852, + "瓔": 81853, + "⚐": 81854, + "偒": 81855, + "🇰🇭": 81856, + "🙆🏻‍♀️": 81857, + "蒯": 81858, + "妫": 81859, + "偲": 81860, + "🙎🏼‍♂️": 81861, + "螿": 81862, + "襴": 81863, + "🧔🏽‍♀️": 81864, + "鏒": 81865, + "簫": 81866, + "🧝🏼‍♂️": 81867, + "樆": 81868, + "薵": 81869, + "騰": 81870, + "怇": 81871, + "闖": 81872, + "拊": 81873, + "靺": 81874, + "凲": 81875, + "羀": 81876, + "😹": 81877, + "膲": 81878, + "侻": 81879, + "浫": 81880, + "Ͱ": 81881, + "櫧": 81882, + "靲": 81883, + "🤹🏿": 81884, + "斔": 81885, + "茛": 81886, + "⛟": 81887, + "羾": 81888, + "诎": 81889, + "鑁": 81890, + "塠": 81891, + "🤗": 81892, + "钚": 81893, + "埌": 81894, + "嬟": 81895, + "皰": 81896, + "炿": 81897, + "👩🏻‍🌾": 81898, + "竪": 81899, + "袿": 81900, + "胻": 81901, + "嬗": 81902, + "舊": 81903, + "ǃ": 81904, + "🏄🏻‍♀️": 81905, + "帋": 81906, + "F": 81907, + "侔": 81908, + "踼": 81909, + "娎": 81910, + "馵": 81911, + "憮": 81912, + "鯡": 81913, + "儹": 81914, + "悮": 81915, + "腆": 81916, + "桻": 81917, + "悥": 81918, + "儥": 81919, + "💪": 81920, + "🇺🇬": 81921, + "⬛️": 81922, + "溇": 81923, + "莋": 81924, + "嘦": 81925, + "翵": 81926, + "黟": 81927, + "🎺": 81928, + "諧": 81929, + "怋": 81930, + "隃": 81931, + "鹱": 81932, + "♆": 81933, + "鉬": 81934, + "醓": 81935, + "詾": 81936, + "藾": 81937, + "🧍🏾": 81938, + "嚗": 81939, + "奊": 81940, + "邶": 81941, + "🧖🏼": 81942, + "桒": 81943, + "檥": 81944, + "嚓": 81945, + "氘": 81946, + "虍": 81947, + "悙": 81948, + "抷": 81949, + "🙎🏻‍♂️": 81950, + "⒦": 81951, + "陏": 81952, + "輇": 81953, + "髒": 81954, + "🇶🇦": 81955, + "谸": 81956, + "茻": 81957, + "攫": 81958, + "鏓": 81959, + "蔯": 81960, + "▧": 81961, + "霑": 81962, + "⅍": 81963, + "崈": 81964, + "諨": 81965, + "👵🏾": 81966, + "嗈": 81967, + "廆": 81968, + "褼": 81969, + "庩": 81970, + "嘳": 81971, + "笾": 81972, + "霃": 81973, + "鼬": 81974, + "幋": 81975, + "渏": 81976, + "狺": 81977, + "侌": 81978, + "漤": 81979, + "ű": 81980, + "🪮": 81981, + "崦": 81982, + "尥": 81983, + "Ⓔ": 81984, + "檮": 81985, + "礮": 81986, + "傡": 81987, + "梞": 81988, + "曗": 81989, + "釈": 81990, + "巂": 81991, + "🛖": 81992, + "恉": 81993, + "豼": 81994, + "廽": 81995, + "辢": 81996, + "诳": 81997, + "虺": 81998, + "蝐": 81999, + "飪": 82000, + "迯": 82001, + "僀": 82002, + "鉱": 82003, + "鬒": 82004, + "戕": 82005, + "Ϋ": 82006, + "話": 82007, + "蔈": 82008, + "掸": 82009, + "偟": 82010, + "騭": 82011, + "🇦🇱": 82012, + "鍤": 82013, + "₁": 82014, + "傟": 82015, + "潌": 82016, + "🥷🏾": 82017, + "👩‍👩‍👦‍👦": 82018, + "🏊🏿‍♂️": 82019, + "燡": 82020, + "艢": 82021, + "髢": 82022, + "湒": 82023, + "穓": 82024, + "蘌": 82025, + "謡": 82026, + "🤜🏽": 82027, + "脪": 82028, + "橪": 82029, + "漝": 82030, + "搉": 82031, + "鏮": 82032, + "🫰🏾": 82033, + "睨": 82034, + "蟈": 82035, + "😱": 82036, + "穅": 82037, + "稧": 82038, + "🏄‍♂️": 82039, + "肄": 82040, + "護": 82041, + "罟": 82042, + "罭": 82043, + "樹": 82044, + "👨🏾‍🎨": 82045, + "👩🏽‍⚕️": 82046, + "₥": 82047, + "P": 82048, + "赆": 82049, + "祢": 82050, + "🧘🏾‍♀️": 82051, + "📨": 82052, + "裻": 82053, + "擧": 82054, + "ˍ": 82055, + "骙": 82056, + "🤾🏾‍♂️": 82057, + "釷": 82058, + "蘗": 82059, + "蜴": 82060, + "🥁": 82061, + "坣": 82062, + "崠": 82063, + "氋": 82064, + "⏝": 82065, + "驃": 82066, + "涋": 82067, + "̫": 82068, + "樗": 82069, + "敎": 82070, + "濠": 82071, + "饃": 82072, + "𓀛": 82073, + "🧯": 82074, + "鐯": 82075, + "憛": 82076, + "嫽": 82077, + "🦨": 82078, + "╖": 82079, + "͂": 82080, + "饏": 82081, + "◪": 82082, + "穩": 82083, + "ⅺ": 82084, + "檾": 82085, + "👵🏻": 82086, + "跐": 82087, + "龆": 82088, + "👦": 82089, + "鋊": 82090, + "⒘": 82091, + "蛻": 82092, + "裖": 82093, + "麌": 82094, + "莝": 82095, + "洂": 82096, + "鵰": 82097, + "蹺": 82098, + "輻": 82099, + "蚑": 82100, + "燜": 82101, + "徟": 82102, + "枹": 82103, + "喿": 82104, + "👇🏻": 82105, + "髉": 82106, + "纔": 82107, + "囑": 82108, + "睭": 82109, + "飋": 82110, + "👨🏻‍🎤": 82111, + "鋤": 82112, + "鈹": 82113, + "柫": 82114, + "桋": 82115, + "濢": 82116, + "歚": 82117, + "↡": 82118, + "箖": 82119, + "涰": 82120, + "≌": 82121, + "👩‍✈️": 82122, + "蔣": 82123, + "怬": 82124, + "🖖🏾": 82125, + "貮": 82126, + "鉕": 82127, + "凐": 82128, + "騦": 82129, + "釀": 82130, + "庨": 82131, + "慬": 82132, + "裉": 82133, + "秖": 82134, + "鵧": 82135, + "⛹🏻": 82136, + "ϋ": 82137, + "垑": 82138, + "ɮ": 82139, + "梟": 82140, + "鯉": 82141, + "霘": 82142, + "👩🏿‍❤️‍💋‍👩🏼": 82143, + "🏋️‍♂️": 82144, + "炚": 82145, + "👨🏾‍🦼": 82146, + "釴": 82147, + "竈": 82148, + "🧶": 82149, + "狫": 82150, + "蛽": 82151, + "🫰🏼": 82152, + "鞖": 82153, + "👃🏼": 82154, + "👩🏼‍❤️‍💋‍👩🏻": 82155, + "蟚": 82156, + "⛹🏽‍♂️": 82157, + "賑": 82158, + "🧘‍♀️": 82159, + "🤵‍♂️": 82160, + "碅": 82161, + "̽": 82162, + "鲯": 82163, + "頑": 82164, + "窛": 82165, + "聞": 82166, + "↧": 82167, + "忤": 82168, + "哚": 82169, + "簼": 82170, + "👨‍🔬": 82171, + "揰": 82172, + "瞕": 82173, + "廔": 82174, + "🎞": 82175, + "轅": 82176, + "楺": 82177, + "媄": 82178, + "🙅🏽‍♂️": 82179, + "▀": 82180, + "🧎🏻‍♀️": 82181, + "鼗": 82182, + "旉": 82183, + "Ż": 82184, + "鶨": 82185, + "玜": 82186, + "翳": 82187, + "鍼": 82188, + "⊼": 82189, + "鯘": 82190, + "徚": 82191, + "傶": 82192, + "睬": 82193, + "餮": 82194, + "漑": 82195, + "釆": 82196, + "♲": 82197, + "鮴": 82198, + "襢": 82199, + "鎯": 82200, + "⅄": 82201, + "灳": 82202, + "🦒": 82203, + "⒨": 82204, + "亻": 82205, + "稕": 82206, + "汦": 82207, + "膌": 82208, + "🧑🏽‍🎨": 82209, + "嵽": 82210, + "煗": 82211, + "韞": 82212, + "拝": 82213, + "誫": 82214, + "頳": 82215, + "掃": 82216, + "👃🏻": 82217, + "癁": 82218, + "閯": 82219, + "逥": 82220, + "⚻": 82221, + "Ĥ": 82222, + "Ⓕ": 82223, + "棝": 82224, + "雴": 82225, + "迾": 82226, + "⌲": 82227, + "穻": 82228, + "👩🏿‍🔧": 82229, + "鈿": 82230, + "皐": 82231, + "淗": 82232, + "鰙": 82233, + "🚦": 82234, + "⓻": 82235, + "廑": 82236, + "爅": 82237, + "ˠ": 82238, + "飖": 82239, + "蔠": 82240, + "🍃": 82241, + "沏": 82242, + "♰": 82243, + "胯": 82244, + "晬": 82245, + "🚶‍♂️": 82246, + "愩": 82247, + "🤘🏻": 82248, + "⍎": 82249, + "": 82250, + "畮": 82251, + "菳": 82252, + "阒": 82253, + "蹟": 82254, + "禷": 82255, + "呿": 82256, + "瑁": 82257, + "瀷": 82258, + "厫": 82259, + "檦": 82260, + "🧑🏿‍🦼": 82261, + "痾": 82262, + "✌🏾": 82263, + "衖": 82264, + "赑": 82265, + "👩🏽‍🏭": 82266, + "诼": 82267, + "籙": 82268, + "埱": 82269, + "冔": 82270, + "铘": 82271, + "蜼": 82272, + "懹": 82273, + "鷚": 82274, + "緻": 82275, + "疓": 82276, + "🫳🏻": 82277, + "🏄🏼": 82278, + "⋟": 82279, + "趥": 82280, + "鑅": 82281, + "珋": 82282, + "茝": 82283, + "巒": 82284, + "皻": 82285, + "⎅": 82286, + "⃗": 82287, + "🐗": 82288, + "弢": 82289, + "╁": 82290, + "飴": 82291, + "⍛": 82292, + "驔": 82293, + "🧔🏻‍♀️": 82294, + "凫": 82295, + "閃": 82296, + "罖": 82297, + "铔": 82298, + "饛": 82299, + "橻": 82300, + "癆": 82301, + "楮": 82302, + "👩🏽‍⚖️": 82303, + "濘": 82304, + "檉": 82305, + "絎": 82306, + "霰": 82307, + "強": 82308, + "桠": 82309, + "⊿": 82310, + "鴺": 82311, + "怰": 82312, + "閿": 82313, + "仯": 82314, + "镴": 82315, + "🙆🏾": 82316, + "苮": 82317, + "蕟": 82318, + "鋬": 82319, + "翍": 82320, + "阤": 82321, + "🚥": 82322, + "劥": 82323, + "聵": 82324, + "紵": 82325, + "👨🏻‍🎨": 82326, + "💣": 82327, + "螣": 82328, + "苀": 82329, + "偩": 82330, + "🤦🏻‍♀️": 82331, + "🦀": 82332, + "斆": 82333, + "帥": 82334, + "眱": 82335, + "韓": 82336, + "迡": 82337, + "鐕": 82338, + "罝": 82339, + "ͼ": 82340, + "攗": 82341, + "伝": 82342, + "诨": 82343, + "垌": 82344, + "☍": 82345, + "晎": 82346, + "鄐": 82347, + "鱌": 82348, + "綮": 82349, + "媑": 82350, + "崉": 82351, + "✅": 82352, + "💁🏼‍♀️": 82353, + "⁈": 82354, + "ĵ": 82355, + "購": 82356, + "慯": 82357, + "鵲": 82358, + "☮": 82359, + "闀": 82360, + "蹃": 82361, + "⎸": 82362, + "襇": 82363, + "į": 82364, + "該": 82365, + "旡": 82366, + "啇": 82367, + "戅": 82368, + "輮": 82369, + "⓫": 82370, + "伮": 82371, + "皷": 82372, + "豰": 82373, + "窪": 82374, + "怌": 82375, + "褯": 82376, + "愾": 82377, + "🖐🏾": 82378, + "錦": 82379, + "瑼": 82380, + "鼪": 82381, + "興": 82382, + "娀": 82383, + "袆": 82384, + "瞞": 82385, + "餥": 82386, + "鲽": 82387, + "甪": 82388, + "❣️": 82389, + "帴": 82390, + "🤽🏽‍♀️": 82391, + "⒐": 82392, + "醌": 82393, + "⍳": 82394, + "嫐": 82395, + "👩🏼‍🦳": 82396, + "眥": 82397, + "蟳": 82398, + "鐝": 82399, + "🖨": 82400, + "漟": 82401, + "殝": 82402, + "閠": 82403, + "℡": 82404, + "怚": 82405, + "濬": 82406, + "悀": 82407, + "豍": 82408, + "砦": 82409, + "凚": 82410, + "霶": 82411, + "阺": 82412, + "孇": 82413, + "⃴": 82414, + "騪": 82415, + "宀": 82416, + "葼": 82417, + "谥": 82418, + "趵": 82419, + "🚶🏾": 82420, + "啍": 82421, + "愼": 82422, + "迧": 82423, + "⏟": 82424, + "揇": 82425, + "🧙🏽": 82426, + "🛫": 82427, + "厀": 82428, + "軀": 82429, + "聜": 82430, + "撻": 82431, + "淎": 82432, + "垠": 82433, + "Ⓗ": 82434, + "⚛": 82435, + "∓": 82436, + "ƈ": 82437, + "耛": 82438, + "擨": 82439, + "鍍": 82440, + "砲": 82441, + "ʱ": 82442, + "蝤": 82443, + "璷": 82444, + "鵈": 82445, + "袉": 82446, + "⇴": 82447, + "輫": 82448, + "駓": 82449, + "🤔": 82450, + "潦": 82451, + "👨🏻‍🌾": 82452, + "🥱": 82453, + "戋": 82454, + "👰🏾": 82455, + "腣": 82456, + "崙": 82457, + "僸": 82458, + "豦": 82459, + "箸": 82460, + "铡": 82461, + "棼": 82462, + "笤": 82463, + "↬": 82464, + "甧": 82465, + "讓": 82466, + "扡": 82467, + "逡": 82468, + "蹙": 82469, + "💌": 82470, + "錷": 82471, + "蟔": 82472, + "̀": 82473, + "🚵🏾": 82474, + "麅": 82475, + "💇🏾‍♂️": 82476, + "歝": 82477, + "饝": 82478, + "轚": 82479, + "👳🏾‍♀️": 82480, + "ʶ": 82481, + "鮏": 82482, + "✡️": 82483, + "泦": 82484, + "縡": 82485, + "👨🏼‍🦼": 82486, + "摁": 82487, + "🏃🏿‍♀️": 82488, + "摋": 82489, + "🧚🏾‍♂️": 82490, + "訚": 82491, + "磆": 82492, + "铢": 82493, + "葜": 82494, + "篣": 82495, + "掽": 82496, + "辫": 82497, + "💅": 82498, + "糃": 82499, + "薤": 82500, + "跿": 82501, + "🇯🇵": 82502, + "慀": 82503, + "摅": 82504, + "晘": 82505, + "溿": 82506, + "義": 82507, + "👨🏿‍🏭": 82508, + "莇": 82509, + "🇲🇻": 82510, + "韃": 82511, + "ǵ": 82512, + "踔": 82513, + "浿": 82514, + "貔": 82515, + "嶵": 82516, + "莨": 82517, + "裫": 82518, + "≧": 82519, + "✸": 82520, + "聑": 82521, + "峺": 82522, + "劌": 82523, + "谌": 82524, + "鰽": 82525, + "😿": 82526, + "ϊ": 82527, + "啖": 82528, + "漞": 82529, + "趆": 82530, + "紤": 82531, + "🏋🏿‍♀️": 82532, + "ʁ": 82533, + "葅": 82534, + "懴": 82535, + "稑": 82536, + "旴": 82537, + "≾": 82538, + "幣": 82539, + "餟": 82540, + "⃫": 82541, + "🧾": 82542, + "狚": 82543, + "嶗": 82544, + "🐨": 82545, + "钆": 82546, + "崓": 82547, + "🥾": 82548, + "鳪": 82549, + "謫": 82550, + "胑": 82551, + "搕": 82552, + "啌": 82553, + "耹": 82554, + "笉": 82555, + "惗": 82556, + "嶠": 82557, + "蔸": 82558, + "櫣": 82559, + "鍎": 82560, + "滃": 82561, + "籫": 82562, + "聛": 82563, + "懡": 82564, + "褽": 82565, + "敺": 82566, + "虿": 82567, + "🧛🏿‍♀️": 82568, + "🏋️": 82569, + "桱": 82570, + "彅": 82571, + "垉": 82572, + "跎": 82573, + "贀": 82574, + "篋": 82575, + "攠": 82576, + "Ⓒ": 82577, + "擾": 82578, + "啻": 82579, + "楜": 82580, + "鱈": 82581, + "圀": 82582, + "橃": 82583, + "鲌": 82584, + "髕": 82585, + "璄": 82586, + "扆": 82587, + "楩": 82588, + "飽": 82589, + "蘭": 82590, + "嫪": 82591, + "鑴": 82592, + "👨🏽‍❤️‍💋‍👨🏾": 82593, + "稲": 82594, + "橲": 82595, + "鬨": 82596, + "聨": 82597, + "汳": 82598, + "鎟": 82599, + "煒": 82600, + "🏢": 82601, + "勂": 82602, + "苎": 82603, + "凒": 82604, + "螢": 82605, + "麂": 82606, + "鳫": 82607, + "庫": 82608, + "韥": 82609, + "緇": 82610, + "✒️": 82611, + "葮": 82612, + "🇹🇹": 82613, + "👮🏽‍♀️": 82614, + "趍": 82615, + "┮": 82616, + "譧": 82617, + "錍": 82618, + "瀹": 82619, + "蝳": 82620, + "橣": 82621, + "👩🏾‍✈️": 82622, + "粕": 82623, + "鴁": 82624, + "燎": 82625, + "掹": 82626, + "墱": 82627, + "緃": 82628, + "搸": 82629, + "玦": 82630, + "🙋🏾": 82631, + "僷": 82632, + "🫸": 82633, + "驤": 82634, + "僉": 82635, + "頜": 82636, + "摢": 82637, + "👩🏽‍🍳": 82638, + "🦻🏼": 82639, + "邺": 82640, + "Ț": 82641, + "🤰🏻": 82642, + "櫸": 82643, + "缦": 82644, + "邊": 82645, + "🌡": 82646, + "盙": 82647, + "錮": 82648, + "⌒": 82649, + "嬅": 82650, + "萀": 82651, + "␀": 82652, + "🤾🏼‍♀️": 82653, + "⍑": 82654, + "蝭": 82655, + "豊": 82656, + "迶": 82657, + "桟": 82658, + "禈": 82659, + "湊": 82660, + "瑇": 82661, + "⚯": 82662, + "堛": 82663, + "筧": 82664, + "🧗🏾": 82665, + "釂": 82666, + "⒑": 82667, + "竢": 82668, + "渃": 82669, + "赨": 82670, + "悂": 82671, + "涀": 82672, + "⃌": 82673, + "讁": 82674, + "⛝": 82675, + "⋫": 82676, + "楇": 82677, + "秮": 82678, + "蒳": 82679, + "栻": 82680, + "🙇🏽‍♀️": 82681, + "轣": 82682, + "🦸‍♀️": 82683, + "聱": 82684, + "鲀": 82685, + "纩": 82686, + "飇": 82687, + "┤": 82688, + "禙": 82689, + "🙅🏾‍♀️": 82690, + "🎅🏾": 82691, + "襦": 82692, + "漸": 82693, + "鈬": 82694, + "呮": 82695, + "🧑🏾‍❤️‍🧑🏼": 82696, + "ⓗ": 82697, + "嚁": 82698, + "♷": 82699, + "缿": 82700, + "膻": 82701, + "袵": 82702, + "🧏🏻‍♀️": 82703, + "晀": 82704, + "裾": 82705, + "恎": 82706, + "燁": 82707, + "巪": 82708, + "蚓": 82709, + "🌟": 82710, + "鞥": 82711, + "秼": 82712, + "蒉": 82713, + "兡": 82714, + "袶": 82715, + "摀": 82716, + "👩🏼‍🏭": 82717, + "🏄🏿": 82718, + "溽": 82719, + "擏": 82720, + "駃": 82721, + "趨": 82722, + "柞": 82723, + "遛": 82724, + "垬": 82725, + "僘": 82726, + "昗": 82727, + "₧": 82728, + "贳": 82729, + "鶝": 82730, + "磰": 82731, + "廗": 82732, + "螭": 82733, + "蕀": 82734, + "坥": 82735, + "濩": 82736, + "沲": 82737, + "😙": 82738, + "閸": 82739, + "捹": 82740, + "凗": 82741, + "贄": 82742, + "👩🏼‍🎨": 82743, + "亴": 82744, + "Θ": 82745, + "爕": 82746, + "炲": 82747, + "掳": 82748, + "👩🏿‍❤️‍👨🏾": 82749, + "淈": 82750, + "剟": 82751, + "烣": 82752, + "┢": 82753, + "🧗🏻": 82754, + "毨": 82755, + "涒": 82756, + "🇰🇾": 82757, + "棳": 82758, + "眚": 82759, + "🦆": 82760, + "佧": 82761, + "洹": 82762, + "緌": 82763, + "◖": 82764, + "鴆": 82765, + "鈅": 82766, + "汏": 82767, + "體": 82768, + "👩🏽‍❤️‍👨🏿": 82769, + "徔": 82770, + "👨🏻‍🔧": 82771, + "脟": 82772, + "鄕": 82773, + "鑏": 82774, + "🪷": 82775, + "🧑🏽‍❤️‍💋‍🧑🏾": 82776, + "🫳🏽": 82777, + "🧛🏿‍♂️": 82778, + "琾": 82779, + "懇": 82780, + "偽": 82781, + "喏": 82782, + "堜": 82783, + "饕": 82784, + "ɝ": 82785, + "ȁ": 82786, + "墼": 82787, + "擌": 82788, + "魟": 82789, + "👰‍♀️": 82790, + "◚": 82791, + "奰": 82792, + "🙋🏼": 82793, + "轷": 82794, + "吜": 82795, + "鲉": 82796, + "🙏🏻": 82797, + "◥": 82798, + "⎚": 82799, + "蘂": 82800, + "🙉": 82801, + "⋩": 82802, + "祰": 82803, + "碡": 82804, + "◻": 82805, + "饍": 82806, + "␡": 82807, + "籧": 82808, + "挬": 82809, + "🤦🏾‍♂️": 82810, + "💰": 82811, + "敗": 82812, + "玡": 82813, + "敶": 82814, + "懼": 82815, + "勖": 82816, + "⏏": 82817, + "塬": 82818, + "廴": 82819, + "💆🏼": 82820, + "囆": 82821, + "埇": 82822, + "犱": 82823, + "渁": 82824, + "譪": 82825, + "芻": 82826, + "⒜": 82827, + "🛥": 82828, + "陎": 82829, + "禼": 82830, + "墌": 82831, + "🚣🏼‍♀️": 82832, + "枒": 82833, + "譖": 82834, + "玤": 82835, + "鈄": 82836, + "🇲🇿": 82837, + "詊": 82838, + "圕": 82839, + "澁": 82840, + "愥": 82841, + "胨": 82842, + "丯": 82843, + "宆": 82844, + "疋": 82845, + "郢": 82846, + "絀": 82847, + "痈": 82848, + "訞": 82849, + "斝": 82850, + "莚": 82851, + "鱅": 82852, + "嵮": 82853, + "湐": 82854, + "襻": 82855, + "虀": 82856, + "篒": 82857, + "嘁": 82858, + "💶": 82859, + "烝": 82860, + "卺": 82861, + "覒": 82862, + "夦": 82863, + "⇸": 82864, + "↍": 82865, + "闘": 82866, + "惣": 82867, + "Ē": 82868, + "ͩ": 82869, + "╹": 82870, + "⎉": 82871, + "🤶🏻": 82872, + "驪": 82873, + "鸵": 82874, + "腗": 82875, + "孲": 82876, + "愳": 82877, + "😁": 82878, + "鸎": 82879, + "韂": 82880, + "👨🏽‍❤️‍💋‍👨🏼": 82881, + "囈": 82882, + "痷": 82883, + "嶒": 82884, + "骺": 82885, + "乩": 82886, + "⁷": 82887, + "疧": 82888, + "鄹": 82889, + "隲": 82890, + "梊": 82891, + "⇰": 82892, + "😐": 82893, + "🧹": 82894, + "囩": 82895, + "垏": 82896, + "👨🏻‍🏭": 82897, + "飐": 82898, + "👩🏽‍🎨": 82899, + "鷣": 82900, + "瞱": 82901, + "⑷": 82902, + "氉": 82903, + "枮": 82904, + "槦": 82905, + "嬙": 82906, + "翨": 82907, + "蠮": 82908, + "垟": 82909, + "鬤": 82910, + "疬": 82911, + "💏🏼": 82912, + "🤒": 82913, + "燓": 82914, + "⅓": 82915, + "枓": 82916, + "圓": 82917, + "挰": 82918, + "檂": 82919, + "🦝": 82920, + "斂": 82921, + "蠙": 82922, + "盿": 82923, + "攑": 82924, + "鞗": 82925, + "蠞": 82926, + "賫": 82927, + "玣": 82928, + "霒": 82929, + "靰": 82930, + "🧝🏾‍♀️": 82931, + "腘": 82932, + "🙍🏽": 82933, + "跓": 82934, + "騚": 82935, + "甈": 82936, + "襥": 82937, + "葾": 82938, + "蘅": 82939, + "濊": 82940, + "搫": 82941, + "Υ": 82942, + "ℍ": 82943, + "矝": 82944, + "嬚": 82945, + "🧑🏻‍🚒": 82946, + "脧": 82947, + "鉅": 82948, + "絞": 82949, + "⏫": 82950, + "謧": 82951, + "摒": 82952, + "傽": 82953, + "🦹‍♂️": 82954, + "◺": 82955, + "驷": 82956, + "⛵": 82957, + "⃍": 82958, + "儫": 82959, + "蘈": 82960, + "Ě": 82961, + "屖": 82962, + "蝡": 82963, + "湓": 82964, + "釞": 82965, + "辮": 82966, + "瓀": 82967, + "⊞": 82968, + "趒": 82969, + "濇": 82970, + "郃": 82971, + "撠": 82972, + "儼": 82973, + "ǻ": 82974, + "潓": 82975, + "⍈": 82976, + "⍖": 82977, + "讇": 82978, + "繻": 82979, + "墒": 82980, + "灃": 82981, + "ϗ": 82982, + "雲": 82983, + "🤙🏻": 82984, + "搩": 82985, + "鰸": 82986, + "恹": 82987, + "瑩": 82988, + "埆": 82989, + "嚶": 82990, + "餠": 82991, + "醖": 82992, + "晲": 82993, + "DZ": 82994, + "稶": 82995, + "皒": 82996, + "🤢": 82997, + "旑": 82998, + "漍": 82999, + "嗒": 83000, + "⁇": 83001, + "ↇ": 83002, + "顳": 83003, + "鉇": 83004, + "犧": 83005, + "🐉": 83006, + "👲🏾": 83007, + "̍": 83008, + "🗑": 83009, + "墯": 83010, + "歟": 83011, + "觭": 83012, + "🥷🏿": 83013, + "攣": 83014, + "痐": 83015, + "厙": 83016, + "跲": 83017, + "♺": 83018, + "飫": 83019, + "🏴󠁧󠁢󠁷󠁬󠁳󠁿": 83020, + "珷": 83021, + "搌": 83022, + "⊺": 83023, + "⃯": 83024, + "隚": 83025, + "橞": 83026, + "蹠": 83027, + "殽": 83028, + "蜄": 83029, + "┯": 83030, + "緺": 83031, + "罫": 83032, + "鏷": 83033, + "埒": 83034, + "歕": 83035, + "錣": 83036, + "👩🏼‍❤️‍💋‍👨🏻": 83037, + "🦸🏻": 83038, + "♯": 83039, + "昤": 83040, + "⌑": 83041, + "🙏🏿": 83042, + "嬜": 83043, + "🎊": 83044, + "踐": 83045, + "攉": 83046, + "鎰": 83047, + "欆": 83048, + "惽": 83049, + "粂": 83050, + "滊": 83051, + "睮": 83052, + "灈": 83053, + "緳": 83054, + "珬": 83055, + "殲": 83056, + "🚛": 83057, + "🏟": 83058, + "璢": 83059, + "晭": 83060, + "砏": 83061, + "逩": 83062, + "锟": 83063, + "値": 83064, + "罛": 83065, + "❤️‍🩹": 83066, + "🤹🏼": 83067, + "鹺": 83068, + "垭": 83069, + "🕵🏿‍♀️": 83070, + "麨": 83071, + "鏂": 83072, + "瘺": 83073, + "嚞": 83074, + "鑪": 83075, + "拏": 83076, + "灝": 83077, + "畭": 83078, + "駢": 83079, + "辷": 83080, + "🕦": 83081, + "滗": 83082, + "診": 83083, + "妋": 83084, + "℻": 83085, + "祌": 83086, + "帤": 83087, + "烢": 83088, + "旎": 83089, + "穌": 83090, + "蜤": 83091, + "嗶": 83092, + "🎗": 83093, + "糉": 83094, + "魷": 83095, + "鬩": 83096, + "蘕": 83097, + "💎": 83098, + "茢": 83099, + "頧": 83100, + "阸": 83101, + "楿": 83102, + "腯": 83103, + "镃": 83104, + "颮": 83105, + "⛖": 83106, + "🪘": 83107, + "妬": 83108, + "螲": 83109, + "秎": 83110, + "刦": 83111, + "皈": 83112, + "酳": 83113, + "🚣🏽": 83114, + "🥐": 83115, + "呬": 83116, + "澷": 83117, + "鬐": 83118, + "匶": 83119, + "蔏": 83120, + "餸": 83121, + "👩‍👩‍👧‍👧": 83122, + "👨🏽‍⚕️": 83123, + "👲": 83124, + "鄨": 83125, + "臊": 83126, + "⑮": 83127, + "辿": 83128, + "₯": 83129, + "糅": 83130, + "暹": 83131, + "畈": 83132, + "濿": 83133, + "鶉": 83134, + "庒": 83135, + "撖": 83136, + "🇬🇾": 83137, + "陥": 83138, + "勏": 83139, + "耧": 83140, + "椘": 83141, + "⑰": 83142, + "礩": 83143, + "攆": 83144, + "🇨🇼": 83145, + "谘": 83146, + "耲": 83147, + "钲": 83148, + "埉": 83149, + "浺": 83150, + "乗": 83151, + "駈": 83152, + "⑾": 83153, + "矬": 83154, + "鼔": 83155, + "û": 83156, + "🏷": 83157, + "琹": 83158, + "椮": 83159, + "嗃": 83160, + "澒": 83161, + "簭": 83162, + "斚": 83163, + "罃": 83164, + "⊋": 83165, + "唨": 83166, + "鷔": 83167, + "鋑": 83168, + "驟": 83169, + "桫": 83170, + "眀": 83171, + "蕤": 83172, + "頓": 83173, + "👁‍🗨": 83174, + "🇱🇸": 83175, + "恄": 83176, + "絘": 83177, + "籺": 83178, + "👩‍🍳": 83179, + "🧑‍💻": 83180, + "鍥": 83181, + "俬": 83182, + "⏗": 83183, + "沤": 83184, + "鍕": 83185, + "蛝": 83186, + "潏": 83187, + "⚮": 83188, + "靤": 83189, + "壉": 83190, + "眿": 83191, + "鞆": 83192, + "觇": 83193, + "帢": 83194, + "⑜": 83195, + "蹝": 83196, + "葂": 83197, + "欿": 83198, + "焀": 83199, + "斍": 83200, + "咷": 83201, + "荍": 83202, + "柣": 83203, + "岷": 83204, + "🍧": 83205, + "珈": 83206, + "祵": 83207, + "棰": 83208, + "嚟": 83209, + "祜": 83210, + "斖": 83211, + "朠": 83212, + "劷": 83213, + "綘": 83214, + "涊": 83215, + "栴": 83216, + "彞": 83217, + "🥲": 83218, + "窧": 83219, + "浲": 83220, + "應": 83221, + "捊": 83222, + "ℾ": 83223, + "炗": 83224, + "ϛ": 83225, + "闃": 83226, + "牽": 83227, + "崏": 83228, + "竁": 83229, + "缧": 83230, + "侑": 83231, + "釙": 83232, + "🩴": 83233, + "覩": 83234, + "鑢": 83235, + "厷": 83236, + "旂": 83237, + "😼": 83238, + "鈀": 83239, + "摺": 83240, + "癑": 83241, + "簓": 83242, + "瞍": 83243, + "萒": 83244, + "獫": 83245, + "窳": 83246, + "嚠": 83247, + "煪": 83248, + "紂": 83249, + "涭": 83250, + "癕": 83251, + "箇": 83252, + "棲": 83253, + "櫢": 83254, + "孑": 83255, + "Ɛ": 83256, + "齑": 83257, + "唵": 83258, + "拄": 83259, + "覬": 83260, + "垇": 83261, + "笫": 83262, + "繼": 83263, + "皺": 83264, + "訿": 83265, + "鑖": 83266, + "戸": 83267, + "冏": 83268, + "岌": 83269, + "飃": 83270, + "嵯": 83271, + "錔": 83272, + "🤹🏻‍♂️": 83273, + "剌": 83274, + "汩": 83275, + "珗": 83276, + "犪": 83277, + "邭": 83278, + "宯": 83279, + "痓": 83280, + "糑": 83281, + "續": 83282, + "∽": 83283, + "婒": 83284, + "⇩": 83285, + "眅": 83286, + "溾": 83287, + "椲": 83288, + "嵅": 83289, + "籊": 83290, + "瘠": 83291, + "睙": 83292, + "🧪": 83293, + "绋": 83294, + "矊": 83295, + "靨": 83296, + "煉": 83297, + "💀": 83298, + "⛡": 83299, + "爰": 83300, + "魱": 83301, + "鸈": 83302, + "琠": 83303, + "榹": 83304, + "墋": 83305, + "壽": 83306, + "愭": 83307, + "👩🏻‍❤️‍👨🏼": 83308, + "胲": 83309, + "垩": 83310, + "椴": 83311, + "鵆": 83312, + "絝": 83313, + "劒": 83314, + "橾": 83315, + "🧑🏻‍🍼": 83316, + "堣": 83317, + "祹": 83318, + "抣": 83319, + "琁": 83320, + "癉": 83321, + "🏐": 83322, + "⎏": 83323, + "✊🏽": 83324, + "缵": 83325, + "滟": 83326, + "渌": 83327, + "驐": 83328, + "猶": 83329, + "謯": 83330, + "衪": 83331, + "趦": 83332, + "🥷": 83333, + "🗝": 83334, + "鰵": 83335, + "諎": 83336, + "滿": 83337, + "憇": 83338, + "哆": 83339, + "僅": 83340, + "👱🏿": 83341, + "🧝": 83342, + "鵊": 83343, + "铷": 83344, + "竏": 83345, + "幨": 83346, + "閎": 83347, + "煨": 83348, + "🗯": 83349, + "蝰": 83350, + "螏": 83351, + "羺": 83352, + "饓": 83353, + "帲": 83354, + "骃": 83355, + "祃": 83356, + "屾": 83357, + "怳": 83358, + "郳": 83359, + "鴶": 83360, + "皵": 83361, + "仏": 83362, + "👱🏿‍♀️": 83363, + "Ά": 83364, + "🦄": 83365, + "跞": 83366, + "🦬": 83367, + "🇧🇫": 83368, + "💚": 83369, + "ȟ": 83370, + "脥": 83371, + "梾": 83372, + "鮮": 83373, + "攕": 83374, + "🧎🏿‍♀️": 83375, + "┡": 83376, + "鍽": 83377, + "👩🏾‍❤️‍💋‍👨🏾": 83378, + "嬃": 83379, + "˂": 83380, + "閕": 83381, + "欑": 83382, + "濼": 83383, + "補": 83384, + "Ƿ": 83385, + "悁": 83386, + "獕": 83387, + "酁": 83388, + "瘁": 83389, + "🧗🏻‍♀️": 83390, + "₎": 83391, + "濽": 83392, + "🕊": 83393, + "鮂": 83394, + "⌔": 83395, + "秔": 83396, + "刄": 83397, + "柈": 83398, + "̭": 83399, + "槞": 83400, + "夋": 83401, + "焾": 83402, + "🦸🏾‍♀️": 83403, + "ȼ": 83404, + "悃": 83405, + "🧑🏼‍⚕️": 83406, + "泬": 83407, + "磗": 83408, + "🧑‍🎄": 83409, + "機": 83410, + "👷‍♀️": 83411, + "馪": 83412, + "橊": 83413, + "媏": 83414, + "綑": 83415, + "耈": 83416, + "幉": 83417, + "敻": 83418, + "👩🏽‍🚀": 83419, + "藳": 83420, + "̩": 83421, + "⚪": 83422, + "卂": 83423, + "棎": 83424, + "斸": 83425, + "瓘": 83426, + "恆": 83427, + "▾": 83428, + "幔": 83429, + "厗": 83430, + "🇬🇹": 83431, + "欘": 83432, + "燝": 83433, + "獊": 83434, + "奷": 83435, + "仦": 83436, + "櫦": 83437, + "鐇": 83438, + "賺": 83439, + "駍": 83440, + "誀": 83441, + "镘": 83442, + "奱": 83443, + "͹": 83444, + "擙": 83445, + "愖": 83446, + "瓤": 83447, + "皸": 83448, + "獸": 83449, + "🖼": 83450, + "砋": 83451, + "🕵🏻‍♀️": 83452, + "🏊🏼": 83453, + "籵": 83454, + "藿": 83455, + "鱜": 83456, + "🧝🏾": 83457, + "谙": 83458, + "⛷": 83459, + "匬": 83460, + "蝟": 83461, + "灬": 83462, + "🧜🏾‍♀️": 83463, + "": 83464, + "幏": 83465, + "溒": 83466, + "讖": 83467, + "嗄": 83468, + "槊": 83469, + "硸": 83470, + "蓣": 83471, + "蕵": 83472, + "☁": 83473, + "櫃": 83474, + "潠": 83475, + "鶗": 83476, + "◘": 83477, + "伃": 83478, + "攔": 83479, + "缳": 83480, + "镏": 83481, + "🕋": 83482, + "👨🏿‍❤️‍💋‍👨🏼": 83483, + "頥": 83484, + "💼": 83485, + "倇": 83486, + "🌜": 83487, + "💜": 83488, + "鏼": 83489, + "ͣ": 83490, + "曺": 83491, + "蚷": 83492, + "咛": 83493, + "綉": 83494, + "⛬": 83495, + "鷎": 83496, + "鋖": 83497, + "踸": 83498, + "贽": 83499, + "鳑": 83500, + "斦": 83501, + "矪": 83502, + "濰": 83503, + "▘": 83504, + "彘": 83505, + "辏": 83506, + "斴": 83507, + "逴": 83508, + "漴": 83509, + "🤽🏻‍♂️": 83510, + "⎾": 83511, + "🦼": 83512, + "纘": 83513, + "⒈": 83514, + "🧏🏾‍♂️": 83515, + "籶": 83516, + "侐": 83517, + "緤": 83518, + "殔": 83519, + "🔬": 83520, + "蓹": 83521, + "鲣": 83522, + "莬": 83523, + "叄": 83524, + "抴": 83525, + "叕": 83526, + "綿": 83527, + "膙": 83528, + "淕": 83529, + "秠": 83530, + "巘": 83531, + "粨": 83532, + "🏇": 83533, + "◯": 83534, + "秈": 83535, + "髚": 83536, + "赳": 83537, + "匊": 83538, + "晐": 83539, + "災": 83540, + "廹": 83541, + "🤾🏻‍♂️": 83542, + "鄷": 83543, + "♁": 83544, + "呡": 83545, + "汸": 83546, + "諱": 83547, + "蓿": 83548, + "峒": 83549, + "ʼ": 83550, + "崥": 83551, + "訰": 83552, + "玼": 83553, + "忖": 83554, + "峀": 83555, + "嵄": 83556, + "忲": 83557, + "🍫": 83558, + "偊": 83559, + "烱": 83560, + "🤶🏼": 83561, + "👨🏽‍🎤": 83562, + "ϕ": 83563, + "🧎🏾": 83564, + "榢": 83565, + "貙": 83566, + "🧑🏼‍🦲": 83567, + "駎": 83568, + "🙇🏾‍♂️": 83569, + "鞴": 83570, + "丠": 83571, + "毳": 83572, + "湰": 83573, + "摂": 83574, + "慤": 83575, + "袧": 83576, + "🧑🏼‍❤️‍💋‍🧑🏿": 83577, + "馘": 83578, + "粛": 83579, + "廏": 83580, + "瘜": 83581, + "幗": 83582, + "😴": 83583, + "♣︎": 83584, + "缯": 83585, + "隊": 83586, + "鳧": 83587, + "Ⓑ": 83588, + "鵑": 83589, + "顦": 83590, + "☔": 83591, + "冑": 83592, + "闊": 83593, + "醬": 83594, + "💂‍♂️": 83595, + "👦🏽": 83596, + "嘃": 83597, + "煹": 83598, + "丿": 83599, + "∰": 83600, + "櫓": 83601, + "癬": 83602, + "囔": 83603, + "熼": 83604, + "糴": 83605, + "菕": 83606, + "悈": 83607, + "👀": 83608, + "🐪": 83609, + "🫄🏽": 83610, + "🧏🏼‍♀️": 83611, + "琧": 83612, + "ʐ": 83613, + "⏍": 83614, + "薩": 83615, + "疒": 83616, + "羓": 83617, + "軬": 83618, + "喆": 83619, + "👎🏽": 83620, + "讆": 83621, + "堔": 83622, + "🧑🏻‍✈️": 83623, + "厩": 83624, + "萾": 83625, + "悜": 83626, + "諗": 83627, + "爉": 83628, + "铄": 83629, + "Ͳ": 83630, + "炡": 83631, + "搹": 83632, + "犛": 83633, + "🫲🏻": 83634, + "🇸🇬": 83635, + "斀": 83636, + "蜫": 83637, + "惚": 83638, + "🌅": 83639, + "愒": 83640, + "槾": 83641, + "璠": 83642, + "ƒ": 83643, + "準": 83644, + "👩🏾‍❤️‍👨🏾": 83645, + "竳": 83646, + "秵": 83647, + "🍏": 83648, + "🥖": 83649, + "賆": 83650, + "🍞": 83651, + "瀣": 83652, + "鳁": 83653, + "👩🏿‍❤️‍💋‍👨🏽": 83654, + "🤽🏻": 83655, + "欅": 83656, + "👷🏽‍♂️": 83657, + "忦": 83658, + "偛": 83659, + "籅": 83660, + "ʋ": 83661, + "👩🏼‍🎓": 83662, + "獟": 83663, + "🍬": 83664, + "駑": 83665, + "惁": 83666, + "鏻": 83667, + "⎋": 83668, + "單": 83669, + "窻": 83670, + "曓": 83671, + "蚇": 83672, + "鯾": 83673, + "鋹": 83674, + "蝼": 83675, + "∯": 83676, + "🦶🏼": 83677, + "踵": 83678, + "╞": 83679, + "螩": 83680, + "鴫": 83681, + "洄": 83682, + "嵏": 83683, + "✫": 83684, + "Ⓧ": 83685, + "鞽": 83686, + "鬬": 83687, + "忪": 83688, + "貘": 83689, + "蟤": 83690, + "⇷": 83691, + "渋": 83692, + "贠": 83693, + "🇮🇹": 83694, + "钣": 83695, + "👩‍🦰": 83696, + "捾": 83697, + "👩🏾‍❤️‍💋‍👨🏼": 83698, + "鬥": 83699, + "煱": 83700, + "鴑": 83701, + "艞": 83702, + "⋿": 83703, + "貚": 83704, + "莊": 83705, + "楏": 83706, + "菴": 83707, + "菿": 83708, + "🇦🇮": 83709, + "🆎": 83710, + "🚣🏾‍♀️": 83711, + "🏊🏽‍♀️": 83712, + "礵": 83713, + "🇸🇸": 83714, + "🤏🏾": 83715, + "躣": 83716, + "扤": 83717, + "蟙": 83718, + "昛": 83719, + "熎": 83720, + "樤": 83721, + "🈹": 83722, + "👙": 83723, + "祩": 83724, + "爮": 83725, + "豈": 83726, + "袗": 83727, + "澾": 83728, + "錗": 83729, + "鞮": 83730, + "楰": 83731, + "鞕": 83732, + "喖": 83733, + "刯": 83734, + "祚": 83735, + "🇯🇪": 83736, + "̔": 83737, + "蝓": 83738, + "輂": 83739, + "⚜": 83740, + "👮‍♀️": 83741, + "礆": 83742, + "訸": 83743, + "鐚": 83744, + "絵": 83745, + "綯": 83746, + "🤸🏽‍♀️": 83747, + "鐠": 83748, + "泺": 83749, + "龥": 83750, + "🚜": 83751, + "👩🏾‍❤️‍💋‍👩🏾": 83752, + "朇": 83753, + "🇬🇷": 83754, + "🔓": 83755, + "湟": 83756, + "僇": 83757, + "懚": 83758, + "緍": 83759, + "暭": 83760, + "🧑🏾‍🦰": 83761, + "🇬🇵": 83762, + "燈": 83763, + "⊔": 83764, + "⟹": 83765, + "縳": 83766, + "薟": 83767, + "鱉": 83768, + "🧑🏾‍❤️‍🧑🏽": 83769, + "鞚": 83770, + "罎": 83771, + "葉": 83772, + "翗": 83773, + "鷹": 83774, + "砡": 83775, + "蒾": 83776, + "靊": 83777, + "🐂": 83778, + "捤": 83779, + "褥": 83780, + "袱": 83781, + "栜": 83782, + "蘆": 83783, + "魶": 83784, + "ʬ": 83785, + "荿": 83786, + "醂": 83787, + "磄": 83788, + "🫵🏾": 83789, + "咁": 83790, + "沄": 83791, + "🦹🏿‍♂️": 83792, + "憐": 83793, + "靄": 83794, + "湪": 83795, + "鈎": 83796, + "⁙": 83797, + "標": 83798, + "魃": 83799, + "瑨": 83800, + "榧": 83801, + "祤": 83802, + "響": 83803, + "毽": 83804, + "筟": 83805, + "🧑🏼‍❤️‍🧑🏻": 83806, + "幒": 83807, + "💇🏿‍♀️": 83808, + "蕺": 83809, + "澣": 83810, + "👳🏻": 83811, + "嬻": 83812, + "⚎": 83813, + "👲🏻": 83814, + "🐭": 83815, + "嬽": 83816, + "🙆🏾‍♀️": 83817, + "緦": 83818, + "掙": 83819, + "殹": 83820, + "鎝": 83821, + "詯": 83822, + "阓": 83823, + "夢": 83824, + "圂": 83825, + "驆": 83826, + "濭": 83827, + "🚴🏿‍♀️": 83828, + "╵": 83829, + "詥": 83830, + "🌀": 83831, + "旚": 83832, + "🏇🏼": 83833, + "鵁": 83834, + "₽": 83835, + "隞": 83836, + "␹": 83837, + "␻": 83838, + "纡": 83839, + "̣": 83840, + "👲🏼": 83841, + "🤾🏽‍♂️": 83842, + "幺": 83843, + "⃁": 83844, + "脒": 83845, + "覻": 83846, + "墷": 83847, + "搛": 83848, + "妔": 83849, + "剸": 83850, + "揎": 83851, + "儸": 83852, + "🧑🏻‍🎤": 83853, + "赩": 83854, + "巎": 83855, + "齵": 83856, + "⊧": 83857, + "窼": 83858, + "鹇": 83859, + "鍯": 83860, + "梀": 83861, + "匰": 83862, + "掤": 83863, + "朑": 83864, + "訂": 83865, + "稅": 83866, + "晸": 83867, + "馗": 83868, + "₇": 83869, + "⃮": 83870, + "⇝": 83871, + "抌": 83872, + "烼": 83873, + "桪": 83874, + "摤": 83875, + "舙": 83876, + "嶫": 83877, + "薝": 83878, + "🤞🏿": 83879, + "⎧": 83880, + "琻": 83881, + "懲": 83882, + "🧑🏾": 83883, + "沑": 83884, + "紿": 83885, + "⃆": 83886, + "铤": 83887, + "ℨ": 83888, + "👲🏽": 83889, + "諳": 83890, + "耠": 83891, + "👩🏾‍❤️‍💋‍👨🏻": 83892, + "芟": 83893, + "嬄": 83894, + "👩🏽‍🎓": 83895, + "🪃": 83896, + "辝": 83897, + "矔": 83898, + "矏": 83899, + "📂": 83900, + "懳": 83901, + "仺": 83902, + "◟": 83903, + "黦": 83904, + "豝": 83905, + "蘷": 83906, + "蚼": 83907, + "婮": 83908, + "韜": 83909, + "躙": 83910, + "驎": 83911, + "🍑": 83912, + "獧": 83913, + "🪗": 83914, + "撏": 83915, + "躀": 83916, + "👨🏻‍🍳": 83917, + "🧑🏽‍💻": 83918, + "鏟": 83919, + "殐": 83920, + "碓": 83921, + "箯": 83922, + "👨🏾‍🍳": 83923, + "樲": 83924, + "🙎🏾‍♀️": 83925, + "⏞": 83926, + "阆": 83927, + "匷": 83928, + "🤞🏾": 83929, + "☻": 83930, + "炄": 83931, + "🙎🏽‍♀️": 83932, + "挴": 83933, + "👩🏿‍❤️‍💋‍👩🏿": 83934, + "齨": 83935, + "蠵": 83936, + "慂": 83937, + "巺": 83938, + "戾": 83939, + "诔": 83940, + "痱": 83941, + "糋": 83942, + "🙎🏼": 83943, + "佶": 83944, + "桛": 83945, + "琽": 83946, + "豎": 83947, + "嚥": 83948, + "镐": 83949, + "塏": 83950, + "擥": 83951, + "倐": 83952, + "椣": 83953, + "👷": 83954, + "忇": 83955, + "🥩": 83956, + "娑": 83957, + "⚊": 83958, + "籒": 83959, + "棗": 83960, + "΅": 83961, + "🧞‍♀️": 83962, + "🦵🏾": 83963, + "螀": 83964, + "醷": 83965, + "筂": 83966, + "¼": 83967, + "轳": 83968, + "ǘ": 83969, + "黒": 83970, + "镪": 83971, + "砘": 83972, + "骷": 83973, + "豂": 83974, + "👨‍🔧": 83975, + "👈🏻": 83976, + "銸": 83977, + "ʫ": 83978, + "✂": 83979, + "奍": 83980, + "祳": 83981, + "骭": 83982, + "蒹": 83983, + "🧏": 83984, + "揺": 83985, + "沓": 83986, + "🧑🏽‍❤️‍💋‍🧑🏼": 83987, + "⒵": 83988, + "壂": 83989, + "Ϧ": 83990, + "宻": 83991, + "🌂": 83992, + "盵": 83993, + "🤵🏽‍♀️": 83994, + "🫵": 83995, + "檆": 83996, + "癝": 83997, + "紗": 83998, + "潡": 83999, + "唏": 84000, + "岦": 84001, + "臤": 84002, + "蚈": 84003, + "👨🏽‍🍼": 84004, + "砨": 84005, + "勥": 84006, + "徱": 84007, + "螛": 84008, + "‒": 84009, + "懏": 84010, + "篲": 84011, + "👝": 84012, + "繑": 84013, + "堦": 84014, + "獋": 84015, + "👚": 84016, + "倠": 84017, + "⇭": 84018, + "衃": 84019, + "鱔": 84020, + "👨‍👩‍👧‍👧": 84021, + "渵": 84022, + "🧛🏼": 84023, + "刖": 84024, + "桚": 84025, + "⑁": 84026, + "鵄": 84027, + "湌": 84028, + "蟐": 84029, + "🧗🏼‍♂️": 84030, + "ʼn": 84031, + "殮": 84032, + "ɟ": 84033, + "💃": 84034, + "馾": 84035, + "鞶": 84036, + "齺": 84037, + "嘑": 84038, + "媶": 84039, + "膵": 84040, + "洨": 84041, + "櫱": 84042, + "羔": 84043, + "🇵🇭": 84044, + "🧑🏾‍🦱": 84045, + "莧": 84046, + "宎": 84047, + "蒁": 84048, + "牆": 84049, + "搨": 84050, + "鶔": 84051, + "胮": 84052, + "蘋": 84053, + "穄": 84054, + "鎓": 84055, + "巊": 84056, + "袳": 84057, + "黇": 84058, + "剄": 84059, + "孷": 84060, + "貯": 84061, + "髤": 84062, + "嗞": 84063, + "鬃": 84064, + "👰🏻‍♀️": 84065, + "颛": 84066, + "ɔ": 84067, + "耢": 84068, + "竓": 84069, + "脈": 84070, + "紼": 84071, + "谡": 84072, + "芫": 84073, + "鄻": 84074, + "🕺🏽": 84075, + "雰": 84076, + "賀": 84077, + "≽": 84078, + "嫴": 84079, + "駕": 84080, + "饘": 84081, + "👩‍💻": 84082, + "鹋": 84083, + "␍": 84084, + "鶓": 84085, + "婃": 84086, + "孺": 84087, + "伛": 84088, + "兩": 84089, + "遆": 84090, + "ℭ": 84091, + "眳": 84092, + "孉": 84093, + "賯": 84094, + "柺": 84095, + "癤": 84096, + "舺": 84097, + "餹": 84098, + "唝": 84099, + "悰": 84100, + "鞸": 84101, + "醐": 84102, + "庮": 84103, + "肧": 84104, + "⏴": 84105, + "瀳": 84106, + "墣": 84107, + "鑧": 84108, + "仾": 84109, + "蓼": 84110, + "擬": 84111, + "爘": 84112, + "猓": 84113, + "瀀": 84114, + "唈": 84115, + "嶩": 84116, + "👈🏼": 84117, + "簥": 84118, + "崣": 84119, + "鷬": 84120, + "臜": 84121, + "摾": 84122, + "軦": 84123, + "🍙": 84124, + "獤": 84125, + "🦸🏻‍♀️": 84126, + "掯": 84127, + "🐻‍❄️": 84128, + "傓": 84129, + "癰": 84130, + "🦛": 84131, + "彋": 84132, + "Ȭ": 84133, + "鍂": 84134, + "祉": 84135, + "聓": 84136, + "🫱🏼‍🫲🏻": 84137, + "単": 84138, + "瀊": 84139, + "鞹": 84140, + "◈": 84141, + "櫰": 84142, + "蜧": 84143, + "🇸🇲": 84144, + "绤": 84145, + "◊": 84146, + "ʎ": 84147, + "🧘🏿": 84148, + "碞": 84149, + "悾": 84150, + "🤸🏾‍♂️": 84151, + "鼂": 84152, + "焞": 84153, + "蕢": 84154, + "計": 84155, + "虂": 84156, + "稁": 84157, + "銫": 84158, + "茘": 84159, + "👶": 84160, + "ƕ": 84161, + "♄": 84162, + "瓊": 84163, + "怾": 84164, + "忥": 84165, + "腇": 84166, + "醏": 84167, + "铉": 84168, + "怗": 84169, + "揚": 84170, + "🙌🏽": 84171, + "贂": 84172, + "鰱": 84173, + "髿": 84174, + "幎": 84175, + "嫵": 84176, + "娆": 84177, + "轒": 84178, + "忹": 84179, + "岘": 84180, + "↠": 84181, + "👨🏼": 84182, + "偌": 84183, + "‌": 84184, + "奻": 84185, + "匦": 84186, + "🤦": 84187, + "穊": 84188, + "獭": 84189, + "酗": 84190, + "怙": 84191, + "漖": 84192, + "鉋": 84193, + "矸": 84194, + "骢": 84195, + "椏": 84196, + "鐷": 84197, + "傒": 84198, + "驛": 84199, + "縓": 84200, + "飰": 84201, + "Ŀ": 84202, + "敓": 84203, + "鑰": 84204, + "鉄": 84205, + "🥷🏽": 84206, + "衘": 84207, + "颼": 84208, + "🖖🏻": 84209, + "篼": 84210, + "侘": 84211, + "傄": 84212, + "詖": 84213, + "🍎": 84214, + "縻": 84215, + "皩": 84216, + "喣": 84217, + "昜": 84218, + "🧙🏿": 84219, + "覞": 84220, + "✮": 84221, + "瘝": 84222, + "覰": 84223, + "✵": 84224, + "🏺": 84225, + "魜": 84226, + "鯭": 84227, + "薢": 84228, + "遹": 84229, + "冦": 84230, + "🥻": 84231, + "慭": 84232, + "輭": 84233, + "鋏": 84234, + "挾": 84235, + "擐": 84236, + "🧑🏿‍🔧": 84237, + "🙅🏿": 84238, + "電": 84239, + "蹌": 84240, + "⊉": 84241, + "¾": 84242, + "熮": 84243, + "🥹": 84244, + "臁": 84245, + "🦟": 84246, + "隉": 84247, + "劓": 84248, + "🙍🏽‍♂️": 84249, + "鲗": 84250, + "ʅ": 84251, + "🎹": 84252, + "👨🏼‍❤️‍💋‍👨🏽": 84253, + "☞": 84254, + "頒": 84255, + "嚵": 84256, + "杼": 84257, + "瀮": 84258, + "🇮🇸": 84259, + "礓": 84260, + "桾": 84261, + "謜": 84262, + "👩🏻‍🎓": 84263, + "鼲": 84264, + "醄": 84265, + "嫹": 84266, + "👨🏽‍🔧": 84267, + "嵱": 84268, + "咶": 84269, + "峷": 84270, + "ℴ": 84271, + "赸": 84272, + "⃻": 84273, + "闗": 84274, + "踎": 84275, + "駙": 84276, + "堍": 84277, + "崵": 84278, + "⍰": 84279, + "˲": 84280, + "諿": 84281, + "賰": 84282, + "蓢": 84283, + "襱": 84284, + "齛": 84285, + "銃": 84286, + "輣": 84287, + "囜": 84288, + "蒧": 84289, + "蝩": 84290, + "盉": 84291, + "🤟🏼": 84292, + "🇱🇰": 84293, + "檌": 84294, + "椝": 84295, + "👩🏼‍🔬": 84296, + "隻": 84297, + "迬": 84298, + "̴": 84299, + "✏": 84300, + "擩": 84301, + "柎": 84302, + "庢": 84303, + "棑": 84304, + "聸": 84305, + "輌": 84306, + "徨": 84307, + "荠": 84308, + "🧑🏿‍🚀": 84309, + "欝": 84310, + "玅": 84311, + "旖": 84312, + "偓": 84313, + "喋": 84314, + "⋨": 84315, + "倵": 84316, + "曯": 84317, + "Ļ": 84318, + "ɚ": 84319, + "👸🏽": 84320, + "鼒": 84321, + "泟": 84322, + "迂": 84323, + "⑐": 84324, + "嚹": 84325, + "噭": 84326, + "⃏": 84327, + "騖": 84328, + "蝜": 84329, + "鹹": 84330, + "⓾": 84331, + "摷": 84332, + "迉": 84333, + "鼯": 84334, + "傾": 84335, + "🕖": 84336, + "狜": 84337, + "⛴": 84338, + "🖤": 84339, + "🇩🇯": 84340, + "喬": 84341, + "烔": 84342, + "騱": 84343, + "盍": 84344, + "偂": 84345, + "酭": 84346, + "🇮🇶": 84347, + "峢": 84348, + "🧞": 84349, + "賃": 84350, + "↤": 84351, + "📟": 84352, + "␂": 84353, + "篂": 84354, + "璍": 84355, + "琱": 84356, + "夼": 84357, + "須": 84358, + "癧": 84359, + "鞱": 84360, + "塶": 84361, + "鵙": 84362, + "鯐": 84363, + "唙": 84364, + "崫": 84365, + "舥": 84366, + "⒆": 84367, + "譐": 84368, + "嵨": 84369, + "褭": 84370, + "ħ": 84371, + "仃": 84372, + "滻": 84373, + "猹": 84374, + "皯": 84375, + "佤": 84376, + "🐯": 84377, + "鮀": 84378, + "篺": 84379, + "👨🏾‍🌾": 84380, + "齸": 84381, + "鐰": 84382, + "薍": 84383, + "蕜": 84384, + "🐛": 84385, + "軩": 84386, + "園": 84387, + "漕": 84388, + "耉": 84389, + "鈶": 84390, + "摞": 84391, + "觨": 84392, + "鮯": 84393, + "鲕": 84394, + "ʮ": 84395, + "辚": 84396, + "獓": 84397, + "蛧": 84398, + "💩": 84399, + "◛": 84400, + "眘": 84401, + "鸬": 84402, + "箼": 84403, + "祣": 84404, + "🧙🏾": 84405, + "詤": 84406, + "錆": 84407, + "貟": 84408, + "": 84409, + "誙": 84410, + "蹾": 84411, + "鎎": 84412, + "甖": 84413, + "礋": 84414, + "🧜🏻": 84415, + "嚨": 84416, + "👮🏽": 84417, + "尡": 84418, + "👂🏿": 84419, + "👩🏾‍❤️‍👨🏿": 84420, + "🪫": 84421, + "鳈": 84422, + "詈": 84423, + "倬": 84424, + "🧑🏼‍🦱": 84425, + "浀": 84426, + "鈦": 84427, + "皤": 84428, + "蜰": 84429, + "💁🏿": 84430, + "鑒": 84431, + "琰": 84432, + "績": 84433, + "叒": 84434, + "勌": 84435, + "緸": 84436, + "鏸": 84437, + "摶": 84438, + "🧑‍🎓": 84439, + "鎕": 84440, + "龀": 84441, + "鶆": 84442, + "ɵ": 84443, + "墉": 84444, + "钺": 84445, + "眓": 84446, + "🙎🏿‍♂️": 84447, + "腖": 84448, + "嵀": 84449, + "倌": 84450, + "勝": 84451, + "灙": 84452, + "崒": 84453, + "謾": 84454, + "珏": 84455, + "帍": 84456, + "麢": 84457, + "梿": 84458, + "硯": 84459, + "Õ": 84460, + "螆": 84461, + "陚": 84462, + "氙": 84463, + "⏑": 84464, + "柸": 84465, + "˻": 84466, + "衑": 84467, + "岲": 84468, + "👨🏾‍❤️‍💋‍👨🏻": 84469, + "哻": 84470, + "螄": 84471, + "👨🏻‍🦲": 84472, + "郱": 84473, + "鳙": 84474, + "積": 84475, + "昰": 84476, + "牱": 84477, + "濁": 84478, + "虉": 84479, + "餝": 84480, + "寎": 84481, + "恃": 84482, + "💱": 84483, + "煬": 84484, + "儭": 84485, + "樶": 84486, + "赗": 84487, + "🌁": 84488, + "覯": 84489, + "🤷🏿‍♂️": 84490, + "鑷": 84491, + "蓵": 84492, + "師": 84493, + "掬": 84494, + "ℶ": 84495, + "槭": 84496, + "扴": 84497, + "🍼": 84498, + "袽": 84499, + "渷": 84500, + "驚": 84501, + "🧑🏾‍🎤": 84502, + "侴": 84503, + "∺": 84504, + "芴": 84505, + "衋": 84506, + "儐": 84507, + "✹": 84508, + "睍": 84509, + "庠": 84510, + "縺": 84511, + "🗽": 84512, + "鈩": 84513, + "椐": 84514, + "満": 84515, + "鑜": 84516, + "劄": 84517, + "統": 84518, + "ɢ": 84519, + "⑸": 84520, + "🎰": 84521, + "癋": 84522, + "嗭": 84523, + "🫱🏾‍🫲🏼": 84524, + "抃": 84525, + "魠": 84526, + "惔": 84527, + "蝒": 84528, + "嶊": 84529, + "礲": 84530, + "👦🏾": 84531, + "喹": 84532, + "墵": 84533, + "閩": 84534, + "浢": 84535, + "喒": 84536, + "惘": 84537, + "🫰": 84538, + "鏝": 84539, + "猈": 84540, + "屒": 84541, + "竰": 84542, + "藨": 84543, + "╗": 84544, + "甍": 84545, + "纖": 84546, + "滉": 84547, + "獉": 84548, + "鬪": 84549, + "蹏": 84550, + "👩‍🏫": 84551, + "斏": 84552, + "泿": 84553, + "諼": 84554, + "侎": 84555, + "堮": 84556, + "🐜": 84557, + "🏊🏻‍♂️": 84558, + "👨🏽‍🚒": 84559, + "⋻": 84560, + "緙": 84561, + "髝": 84562, + "🚂": 84563, + "Ⅺ": 84564, + "怆": 84565, + "👩🏾‍💼": 84566, + "餵": 84567, + "塛": 84568, + "C": 84569, + "廕": 84570, + "潖": 84571, + "ď": 84572, + "暼": 84573, + "愰": 84574, + "👼🏽": 84575, + "嗍": 84576, + "梌": 84577, + "祟": 84578, + "葿": 84579, + "➙": 84580, + "裢": 84581, + "铚": 84582, + "淁": 84583, + "錄": 84584, + "鐁": 84585, + "嚝": 84586, + "🕞": 84587, + "娖": 84588, + "阏": 84589, + "鲵": 84590, + "悶": 84591, + "吔": 84592, + "🔁": 84593, + "肕": 84594, + "鰐": 84595, + "蓋": 84596, + "黧": 84597, + "戶": 84598, + "🧗🏼‍♀️": 84599, + "✬": 84600, + "🏊🏻‍♀️": 84601, + "軽": 84602, + "叞": 84603, + "纻": 84604, + "🚣": 84605, + "廯": 84606, + "侳": 84607, + "訅": 84608, + "癲": 84609, + "躛": 84610, + "璕": 84611, + "ij": 84612, + "曱": 84613, + "✣": 84614, + "🕴🏼": 84615, + "譕": 84616, + "姙": 84617, + "耔": 84618, + "∄": 84619, + "ϥ": 84620, + "📡": 84621, + "ɋ": 84622, + "鸂": 84623, + "鼵": 84624, + "矹": 84625, + "鹳": 84626, + "徥": 84627, + "▶": 84628, + "椤": 84629, + "钖": 84630, + "隍": 84631, + "🪸": 84632, + "杚": 84633, + "攊": 84634, + "筡": 84635, + "笸": 84636, + "🇾🇹": 84637, + "尛": 84638, + "瑿": 84639, + "葈": 84640, + "紡": 84641, + "騹": 84642, + "塩": 84643, + "🤭": 84644, + "犏": 84645, + "杬": 84646, + "粵": 84647, + "🪴": 84648, + "⇟": 84649, + "魤": 84650, + "硶": 84651, + "📗": 84652, + "笡": 84653, + "屔": 84654, + "嵣": 84655, + "🦻": 84656, + "傜": 84657, + "皳": 84658, + "瞓": 84659, + "茴": 84660, + "✌🏽": 84661, + "ʺ": 84662, + "🧔🏻": 84663, + "邒": 84664, + "🥡": 84665, + "媡": 84666, + "Ψ": 84667, + "◀": 84668, + "崱": 84669, + "⁑": 84670, + "🕴": 84671, + "檅": 84672, + "跅": 84673, + "👨🏿‍🎓": 84674, + "慐": 84675, + "⇡": 84676, + "轌": 84677, + "拑": 84678, + "輚": 84679, + "碙": 84680, + "軭": 84681, + "黆": 84682, + "躇": 84683, + "啽": 84684, + "🏋🏽‍♀️": 84685, + "嵼": 84686, + "鬈": 84687, + "肶": 84688, + "𓀄": 84689, + "泫": 84690, + "貦": 84691, + "鈔": 84692, + "̲": 84693, + "蛌": 84694, + "E": 84695, + "👮🏼‍♀️": 84696, + "熍": 84697, + "旃": 84698, + "襲": 84699, + "🧑🏻‍🦽": 84700, + "📮": 84701, + "俙": 84702, + "乲": 84703, + "🌾": 84704, + "胘": 84705, + "紑": 84706, + "蕳": 84707, + "膢": 84708, + "詩": 84709, + "鵱": 84710, + "Ů": 84711, + "戙": 84712, + "↜": 84713, + "葀": 84714, + "嬼": 84715, + "漈": 84716, + "掼": 84717, + "禢": 84718, + "ƹ": 84719, + "绢": 84720, + "齳": 84721, + "硎": 84722, + "🇭🇺": 84723, + "靈": 84724, + "嵝": 84725, + "箬": 84726, + "沀": 84727, + "籓": 84728, + "罤": 84729, + "檕": 84730, + "昬": 84731, + "暆": 84732, + "⋋": 84733, + "蟌": 84734, + "瀥": 84735, + "傚": 84736, + "淍": 84737, + "藬": 84738, + "姤": 84739, + "霗": 84740, + "篛": 84741, + "ʵ": 84742, + "渎": 84743, + "🧤": 84744, + "溷": 84745, + "揊": 84746, + "藀": 84747, + "🚁": 84748, + "🫴🏻": 84749, + "戀": 84750, + "钅": 84751, + "📚": 84752, + "Q": 84753, + "誔": 84754, + "🤕": 84755, + "麰": 84756, + "🪨": 84757, + "🙍🏽‍♀️": 84758, + "鳭": 84759, + "🤘": 84760, + "🐿": 84761, + "俇": 84762, + "慾": 84763, + "缼": 84764, + "翊": 84765, + "娊": 84766, + "峫": 84767, + "孯": 84768, + "┘": 84769, + "荶": 84770, + "攅": 84771, + "繗": 84772, + "畚": 84773, + "缣": 84774, + "🫐": 84775, + "喨": 84776, + "愑": 84777, + "芶": 84778, + "焑": 84779, + "凍": 84780, + "🇸🇨": 84781, + "猭": 84782, + "輓": 84783, + "颹": 84784, + "鮅": 84785, + "ͳ": 84786, + "🦥": 84787, + "🧑🏿‍🎓": 84788, + "糿": 84789, + "跙": 84790, + "騅": 84791, + "熢": 84792, + "擱": 84793, + "擇": 84794, + "搲": 84795, + "夻": 84796, + "眐": 84797, + "畁": 84798, + "J": 84799, + "闁": 84800, + "堩": 84801, + "₄": 84802, + "鑑": 84803, + "抳": 84804, + "嚊": 84805, + "╷": 84806, + "掝": 84807, + "潙": 84808, + "穾": 84809, + "👩🏾‍🦽": 84810, + "遈": 84811, + "敍": 84812, + "洎": 84813, + "虠": 84814, + "␦": 84815, + "諚": 84816, + "♐": 84817, + "涜": 84818, + "烅": 84819, + "👨‍🎤": 84820, + "祎": 84821, + "賏": 84822, + "👩🏽‍❤️‍💋‍👨🏽": 84823, + "🇳🇱": 84824, + "👲🏿": 84825, + "蛯": 84826, + "簖": 84827, + "邜": 84828, + "燗": 84829, + "钯": 84830, + "烚": 84831, + "熱": 84832, + "塸": 84833, + "猲": 84834, + "Ή": 84835, + "巻": 84836, + "瑖": 84837, + "鶴": 84838, + "売": 84839, + "榶": 84840, + "妤": 84841, + "👨🏻‍🦰": 84842, + "蟸": 84843, + "硾": 84844, + "楌": 84845, + "⅀": 84846, + "甙": 84847, + "🧄": 84848, + "騸": 84849, + "剾": 84850, + "囉": 84851, + "詳": 84852, + "圏": 84853, + "隰": 84854, + "嬲": 84855, + "🎙": 84856, + "篐": 84857, + "磾": 84858, + "軰": 84859, + "👩🏻‍⚕️": 84860, + "箲": 84861, + "梬": 84862, + "銆": 84863, + "騑": 84864, + "諟": 84865, + "🧑🏻‍❤️‍💋‍🧑🏿": 84866, + "鮲": 84867, + "膡": 84868, + "牰": 84869, + "楃": 84870, + "銙": 84871, + "膒": 84872, + "纛": 84873, + "釦": 84874, + "淛": 84875, + "咆": 84876, + "纗": 84877, + "儻": 84878, + "冩": 84879, + "擣": 84880, + "拲": 84881, + "竴": 84882, + "钔": 84883, + "鳘": 84884, + "0️⃣": 84885, + "壈": 84886, + "黙": 84887, + "🏊🏿": 84888, + "餩": 84889, + "煍": 84890, + "阞": 84891, + "垖": 84892, + "鄈": 84893, + "辴": 84894, + "郫": 84895, + "⚋": 84896, + "殕": 84897, + "蕗": 84898, + "貎": 84899, + "汮": 84900, + "陁": 84901, + "🤶🏾": 84902, + "駦": 84903, + "缞": 84904, + "踋": 84905, + "👘": 84906, + "禫": 84907, + "🍺": 84908, + "罞": 84909, + "👨🏼‍❤️‍💋‍👨🏾": 84910, + "畾": 84911, + "邰": 84912, + "⇄": 84913, + "笊": 84914, + "苪": 84915, + "靯": 84916, + "凬": 84917, + "皃": 84918, + "傭": 84919, + "Ƞ": 84920, + "颦": 84921, + "壇": 84922, + "犍": 84923, + "痿": 84924, + "湇": 84925, + "蛏": 84926, + "梹": 84927, + "隢": 84928, + "🏌🏼‍♂️": 84929, + "⍀": 84930, + "🙍🏿‍♀️": 84931, + "萅": 84932, + "桺": 84933, + "⑒": 84934, + "🏴󠁧󠁢󠁥󠁮󠁧󠁿": 84935, + "⒗": 84936, + "岨": 84937, + "⇏": 84938, + "旰": 84939, + "🫱🏽‍🫲🏼": 84940, + "嬏": 84941, + "蠁": 84942, + "🏜": 84943, + "⛽": 84944, + "噣": 84945, + "蝆": 84946, + "窡": 84947, + "翫": 84948, + "ɾ": 84949, + "煴": 84950, + "攱": 84951, + "臺": 84952, + "韙": 84953, + "🇨🇻": 84954, + "徃": 84955, + "盩": 84956, + "東": 84957, + "馻": 84958, + "🙁": 84959, + "偎": 84960, + "⃪": 84961, + "笖": 84962, + "認": 84963, + "瞥": 84964, + "吮": 84965, + "莤": 84966, + "躴": 84967, + "剒": 84968, + "鎘": 84969, + "礨": 84970, + "罌": 84971, + "脘": 84972, + "麜": 84973, + "睎": 84974, + "𓀓": 84975, + "陙": 84976, + "⛣": 84977, + "峉": 84978, + "喠": 84979, + "圉": 84980, + "È": 84981, + "臛": 84982, + "瑙": 84983, + "輢": 84984, + "溲": 84985, + "窸": 84986, + "齅": 84987, + "澏": 84988, + "捈": 84989, + "鳩": 84990, + "緈": 84991, + "🤺": 84992, + "眏": 84993, + "嗬": 84994, + "懶": 84995, + "撉": 84996, + "愪": 84997, + "🇲🇬": 84998, + "鲓": 84999, + "熿": 85000, + "杄": 85001, + "蓷": 85002, + "◓": 85003, + "亱": 85004, + "圥": 85005, + "谪": 85006, + "軱": 85007, + "鲙": 85008, + "庥": 85009, + "鴪": 85010, + "🥕": 85011, + "嚢": 85012, + "🟣": 85013, + "杢": 85014, + "溕": 85015, + "🧑🏾‍🌾": 85016, + "擼": 85017, + "裎": 85018, + "␮": 85019, + "🧑🏿‍🚒": 85020, + "徤": 85021, + "彨": 85022, + "嘞": 85023, + "🦹🏽‍♀️": 85024, + "愗": 85025, + "芑": 85026, + "😵‍💫": 85027, + "鱺": 85028, + "獽": 85029, + "誗": 85030, + "茥": 85031, + "矚": 85032, + "虼": 85033, + "瑍": 85034, + "👴🏼": 85035, + "寉": 85036, + "🥞": 85037, + "瀏": 85038, + "珞": 85039, + "骐": 85040, + "鄛": 85041, + "峝": 85042, + "楑": 85043, + "翞": 85044, + "灓": 85045, + "莜": 85046, + "卟": 85047, + "顫": 85048, + "烥": 85049, + "徸": 85050, + "鐞": 85051, + "犫": 85052, + "🤵🏻‍♂️": 85053, + "👱🏽‍♂️": 85054, + "蝔": 85055, + "😣": 85056, + "鱍": 85057, + "糷": 85058, + "⑦": 85059, + "竃": 85060, + "⌄": 85061, + "粃": 85062, + "灪": 85063, + "綄": 85064, + "🙋🏿‍♂️": 85065, + "鼝": 85066, + "姂": 85067, + "👩‍👧‍👦": 85068, + "賈": 85069, + "誌": 85070, + "🇻🇮": 85071, + "縝": 85072, + "🚋": 85073, + "匎": 85074, + "鼭": 85075, + "貈": 85076, + "🧎‍♂️": 85077, + "暵": 85078, + "囶": 85079, + "趼": 85080, + "瘊": 85081, + "抆": 85082, + "╼": 85083, + "🤲🏼": 85084, + "誵": 85085, + "👍🏿": 85086, + "腭": 85087, + "酛": 85088, + "穧": 85089, + "兞": 85090, + "潝": 85091, + "👨🏼‍🎨": 85092, + "鴔": 85093, + "Ƌ": 85094, + "塜": 85095, + "諭": 85096, + "␕": 85097, + "簨": 85098, + "讪": 85099, + "殬": 85100, + "躕": 85101, + "稫": 85102, + "魾": 85103, + "ɴ": 85104, + "犲": 85105, + "谳": 85106, + "儳": 85107, + "紁": 85108, + "啷": 85109, + "🖐🏼": 85110, + "蓲": 85111, + "颱": 85112, + "賵": 85113, + "≭": 85114, + "⏩": 85115, + "龛": 85116, + "轡": 85117, + "艑": 85118, + "颳": 85119, + "軶": 85120, + "👩🏿‍🦲": 85121, + "煚": 85122, + "靎": 85123, + "廎": 85124, + "蘴": 85125, + "秿": 85126, + "讐": 85127, + "雖": 85128, + "霿": 85129, + "🧝🏿": 85130, + "⎎": 85131, + "陸": 85132, + "浳": 85133, + "🎏": 85134, + "🛶": 85135, + "齃": 85136, + "蔲": 85137, + "◼": 85138, + "趏": 85139, + "馧": 85140, + "論": 85141, + "蘖": 85142, + "鄓": 85143, + "宖": 85144, + "喼": 85145, + "🫄🏾": 85146, + "瓰": 85147, + "槀": 85148, + "睓": 85149, + "͚": 85150, + "蕁": 85151, + "簩": 85152, + "🛞": 85153, + "碚": 85154, + "鹽": 85155, + "鲾": 85156, + "蟫": 85157, + "遡": 85158, + "∨": 85159, + "厳": 85160, + "╌": 85161, + "犗": 85162, + "彇": 85163, + "▊": 85164, + "氤": 85165, + "貒": 85166, + "筴": 85167, + "牊": 85168, + "": 85169, + "鮩": 85170, + "誹": 85171, + "飩": 85172, + "吰": 85173, + "邡": 85174, + "孥": 85175, + "圤": 85176, + "涠": 85177, + "撀": 85178, + "恥": 85179, + "藘": 85180, + "竗": 85181, + "糪": 85182, + "晫": 85183, + "撋": 85184, + "蠐": 85185, + "塚": 85186, + "筁": 85187, + "🫃🏿": 85188, + "朲": 85189, + "饴": 85190, + "璜": 85191, + "┍": 85192, + "邇": 85193, + "郻": 85194, + "␶": 85195, + "琏": 85196, + "侁": 85197, + "锔": 85198, + "昐": 85199, + "曻": 85200, + "褔": 85201, + "🏌🏻‍♂️": 85202, + "🤸🏿‍♂️": 85203, + "矴": 85204, + "箏": 85205, + "簍": 85206, + "贏": 85207, + "篙": 85208, + "颧": 85209, + "阼": 85210, + "哧": 85211, + "挀": 85212, + "繖": 85213, + "栒": 85214, + "觫": 85215, + "▦": 85216, + "埝": 85217, + "剗": 85218, + "亾": 85219, + "♫": 85220, + "鮭": 85221, + "編": 85222, + "湩": 85223, + "🐶": 85224, + "揾": 85225, + "隒": 85226, + "褘": 85227, + "🙍🏿‍♂️": 85228, + "唰": 85229, + "🗓": 85230, + "👩‍🔬": 85231, + "嚩": 85232, + "遃": 85233, + "▃": 85234, + "羮": 85235, + "勸": 85236, + "檹": 85237, + "匴": 85238, + "彊": 85239, + "孡": 85240, + "₨": 85241, + "玈": 85242, + "葄": 85243, + "滾": 85244, + "饔": 85245, + "蛲": 85246, + "蚯": 85247, + "🙅🏾": 85248, + "臥": 85249, + "ȥ": 85250, + "鮌": 85251, + "ƌ": 85252, + "齲": 85253, + "⌤": 85254, + "礅": 85255, + "◕": 85256, + "唖": 85257, + "蘍": 85258, + "慥": 85259, + "臵": 85260, + "幯": 85261, + "穫": 85262, + "🇬🇳": 85263, + "鶑": 85264, + "Ȱ": 85265, + "嘐": 85266, + "🇳🇦": 85267, + "👩🏽‍🦲": 85268, + "舋": 85269, + "阉": 85270, + "铈": 85271, + "ↄ": 85272, + "倹": 85273, + "嶦": 85274, + "饬": 85275, + "暾": 85276, + "惿": 85277, + "雛": 85278, + "➾": 85279, + "鯖": 85280, + "耜": 85281, + "撢": 85282, + "🧑🏻‍🎓": 85283, + "戧": 85284, + "焼": 85285, + "👆": 85286, + "🌉": 85287, + "⑓": 85288, + "亙": 85289, + "魧": 85290, + "洝": 85291, + "廬": 85292, + "絫": 85293, + "🫱🏻": 85294, + "菾": 85295, + "酇": 85296, + "埪": 85297, + "墹": 85298, + "稆": 85299, + "篻": 85300, + "畂": 85301, + "鑳": 85302, + "⊨": 85303, + "覸": 85304, + "韁": 85305, + "鈤": 85306, + "👩🏽‍❤️‍💋‍👩🏼": 85307, + "鯳": 85308, + "瓗": 85309, + "馌": 85310, + "鴠": 85311, + "蝾": 85312, + "竻": 85313, + "潥": 85314, + "👨🏼‍🦰": 85315, + "訇": 85316, + "騞": 85317, + "📱": 85318, + "氱": 85319, + "🙅🏼‍♂️": 85320, + "髯": 85321, + "赍": 85322, + "玾": 85323, + "✍🏼": 85324, + "掵": 85325, + "橈": 85326, + "鞯": 85327, + "␩": 85328, + "稒": 85329, + "覍": 85330, + "嘡": 85331, + "∅": 85332, + "畯": 85333, + "昺": 85334, + "誈": 85335, + "烠": 85336, + "蚾": 85337, + "弰": 85338, + "ɧ": 85339, + "麥": 85340, + "靵": 85341, + "♮": 85342, + "⋖": 85343, + "彥": 85344, + "碫": 85345, + "娗": 85346, + "煝": 85347, + "睴": 85348, + "鶂": 85349, + "貉": 85350, + "愘": 85351, + "⒒": 85352, + "翙": 85353, + "🕟": 85354, + "⋃": 85355, + "奺": 85356, + "馷": 85357, + "👨🏻‍🚒": 85358, + "笕": 85359, + "蘢": 85360, + "👨🏽‍❤️‍👨🏽": 85361, + "櫍": 85362, + "聼": 85363, + "驙": 85364, + "臄": 85365, + "⓷": 85366, + "饢": 85367, + "報": 85368, + "恂": 85369, + "蕩": 85370, + "蕝": 85371, + "∐": 85372, + "啈": 85373, + "垧": 85374, + "╇": 85375, + "⛪": 85376, + "▟": 85377, + "仞": 85378, + "珖": 85379, + "嗲": 85380, + "鬅": 85381, + "蘓": 85382, + "贊": 85383, + "👨🏿‍🏫": 85384, + "雦": 85385, + "鮖": 85386, + "笻": 85387, + "鴡": 85388, + "Ȕ": 85389, + "疷": 85390, + "🔸": 85391, + "曅": 85392, + "瘮": 85393, + "宔": 85394, + "醺": 85395, + "勄": 85396, + "🏃🏾": 85397, + "縼": 85398, + "Ƙ": 85399, + "🩶": 85400, + "🚌": 85401, + "閏": 85402, + "塆": 85403, + "耝": 85404, + "碭": 85405, + "類": 85406, + "杊": 85407, + "⋵": 85408, + "鶧": 85409, + "👩🏻‍🦯": 85410, + "🇹🇭": 85411, + "啔": 85412, + "搷": 85413, + "瘇": 85414, + "囌": 85415, + "懅": 85416, + "⒬": 85417, + "🏖": 85418, + "槂": 85419, + "湷": 85420, + "Ⅼ": 85421, + "錯": 85422, + "撺": 85423, + "鉐": 85424, + "夒": 85425, + "⚆": 85426, + "癎": 85427, + "🇿🇼": 85428, + "荄": 85429, + "誄": 85430, + "嘮": 85431, + "獐": 85432, + "摛": 85433, + "旆": 85434, + "鏊": 85435, + "🧘🏿‍♂️": 85436, + "鉊": 85437, + "潁": 85438, + "搊": 85439, + "☰": 85440, + "✍🏻": 85441, + "😅": 85442, + "鄒": 85443, + "🇪🇹": 85444, + "籈": 85445, + "鈪": 85446, + "躗": 85447, + "璡": 85448, + "踉": 85449, + "΄": 85450, + "駽": 85451, + "🎅": 85452, + "墏": 85453, + "嗡": 85454, + "縪": 85455, + "🏋🏿‍♂️": 85456, + "👌🏿": 85457, + "偬": 85458, + "蹷": 85459, + "┚": 85460, + "覲": 85461, + "糣": 85462, + "垺": 85463, + "暏": 85464, + "腴": 85465, + "🆒": 85466, + "鏳": 85467, + "璓": 85468, + "懝": 85469, + "鑤": 85470, + "👼🏻": 85471, + "叿": 85472, + "瓋": 85473, + "檈": 85474, + "👨🏽‍🏫": 85475, + "Ⅸ": 85476, + "⏖": 85477, + "霮": 85478, + "熐": 85479, + "℘": 85480, + "櫠": 85481, + "煆": 85482, + "蔋": 85483, + "‣": 85484, + "蝫": 85485, + "🙍🏾‍♀️": 85486, + "🏊🏽": 85487, + "乺": 85488, + "洍": 85489, + "瞮": 85490, + "墊": 85491, + "💏🏿": 85492, + "Ȗ": 85493, + "幑": 85494, + "迣": 85495, + "🤹‍♀️": 85496, + "庍": 85497, + "忰": 85498, + "🤵🏼‍♂️": 85499, + "🕵🏾‍♂️": 85500, + "髑": 85501, + "焢": 85502, + "鯓": 85503, + "襑": 85504, + "鑽": 85505, + "塇": 85506, + "💇‍♀️": 85507, + "耬": 85508, + "🤟🏽": 85509, + "佪": 85510, + "🖍": 85511, + "虯": 85512, + "枂": 85513, + "H": 85514, + "␰": 85515, + "ↅ": 85516, + "傪": 85517, + "罳": 85518, + "閟": 85519, + "🧛🏻‍♂️": 85520, + "袰": 85521, + "犺": 85522, + "陔": 85523, + "願": 85524, + "茿": 85525, + "␈": 85526, + "蝁": 85527, + "缃": 85528, + "蕖": 85529, + "扸": 85530, + "徳": 85531, + "🧖🏻": 85532, + "💘": 85533, + "釁": 85534, + "兊": 85535, + "脜": 85536, + "怭": 85537, + "疶": 85538, + "匵": 85539, + "揖": 85540, + "🍷": 85541, + "⌛": 85542, + "僌": 85543, + "😻": 85544, + "趩": 85545, + "⑳": 85546, + "焱": 85547, + "̷": 85548, + "覊": 85549, + "潐": 85550, + "螕": 85551, + "竑": 85552, + "倽": 85553, + "韕": 85554, + "醀": 85555, + "珅": 85556, + "嗮": 85557, + "恻": 85558, + "蹀": 85559, + "翣": 85560, + "籬": 85561, + "襂": 85562, + "撆": 85563, + "繳": 85564, + "💾": 85565, + "忛": 85566, + "溦": 85567, + "ʚ": 85568, + "碈": 85569, + "🏌🏽": 85570, + "膟": 85571, + "🍜": 85572, + "賡": 85573, + "雸": 85574, + "👨🏿‍🦱": 85575, + "鐹": 85576, + "罿": 85577, + "痡": 85578, + "扜": 85579, + "沜": 85580, + "渳": 85581, + "鴄": 85582, + "鵯": 85583, + "婋": 85584, + "榥": 85585, + "袲": 85586, + "豷": 85587, + "⒰": 85588, + "┏": 85589, + "👬🏼": 85590, + "賚": 85591, + "靾": 85592, + "梤": 85593, + "祶": 85594, + "ǀ": 85595, + "🧑": 85596, + "瑢": 85597, + "💁🏽‍♂️": 85598, + "👩": 85599, + "縀": 85600, + "呏": 85601, + "掛": 85602, + "💊": 85603, + "🇬🇩": 85604, + "蘄": 85605, + "朧": 85606, + "薭": 85607, + "滏": 85608, + "圌": 85609, + "鷠": 85610, + "焺": 85611, + "耨": 85612, + "雮": 85613, + "矾": 85614, + "兺": 85615, + "撛": 85616, + "艒": 85617, + "佌": 85618, + "靐": 85619, + "👮🏿": 85620, + "笳": 85621, + "燿": 85622, + "陽": 85623, + "磵": 85624, + "侺": 85625, + "櫔": 85626, + "屢": 85627, + "橮": 85628, + "旪": 85629, + "👨🏽‍❤️‍👨🏻": 85630, + "僈": 85631, + "蒢": 85632, + "謩": 85633, + "嵚": 85634, + "歬": 85635, + "濉": 85636, + "呃": 85637, + "₍": 85638, + "劋": 85639, + "丟": 85640, + "榪": 85641, + "Ò": 85642, + "嗏": 85643, + "啙": 85644, + "🐦": 85645, + "錘": 85646, + "郥": 85647, + "澴": 85648, + "亞": 85649, + "愡": 85650, + "˨": 85651, + "锨": 85652, + "脛": 85653, + "粙": 85654, + "👨🏽": 85655, + "鴾": 85656, + "謕": 85657, + "緿": 85658, + "≬": 85659, + "🧖‍♀️": 85660, + "喎": 85661, + "讬": 85662, + "務": 85663, + "誧": 85664, + "祒": 85665, + "湁": 85666, + "🧑🏽‍🔧": 85667, + "軖": 85668, + "ˢ": 85669, + "🌵": 85670, + "🇫🇷": 85671, + "⍯": 85672, + "苄": 85673, + "誩": 85674, + "婅": 85675, + "叧": 85676, + "̌": 85677, + "膞": 85678, + "軏": 85679, + "纨": 85680, + "訖": 85681, + "̏": 85682, + "鷶": 85683, + "靪": 85684, + "🦵": 85685, + "窤": 85686, + "戠": 85687, + "鑈": 85688, + "曍": 85689, + "👨🏻‍✈️": 85690, + "塝": 85691, + "👎🏼": 85692, + "館": 85693, + "⚶": 85694, + "渑": 85695, + "臈": 85696, + "鳳": 85697, + "緝": 85698, + "昑": 85699, + "繥": 85700, + "踱": 85701, + "🪡": 85702, + "👩‍🏭": 85703, + "崅": 85704, + "🪒": 85705, + "漒": 85706, + "棭": 85707, + "坕": 85708, + "␄": 85709, + "舁": 85710, + "💑🏾": 85711, + "蹑": 85712, + "倰": 85713, + "💇🏾‍♀️": 85714, + "狋": 85715, + "殨": 85716, + "夥": 85717, + "坰": 85718, + "╤": 85719, + "🙅🏻": 85720, + "蘠": 85721, + "∔": 85722, + "犽": 85723, + "儔": 85724, + "鑎": 85725, + "Ȍ": 85726, + "斠": 85727, + "厧": 85728, + "躚": 85729, + "鍉": 85730, + "📺": 85731, + "縤": 85732, + "錚": 85733, + "軐": 85734, + "毌": 85735, + "跤": 85736, + "🦹🏻‍♂️": 85737, + "鹣": 85738, + "驢": 85739, + "紲": 85740, + "畇": 85741, + "齯": 85742, + "鰇": 85743, + "勰": 85744, + "僒": 85745, + "硠": 85746, + "薽": 85747, + "ƫ": 85748, + "郿": 85749, + "踥": 85750, + "呑": 85751, + "≟": 85752, + "🕓": 85753, + "盹": 85754, + "袒": 85755, + "聝": 85756, + "⋇": 85757, + "眦": 85758, + "鵘": 85759, + "⛑": 85760, + "🤹🏾": 85761, + "鲑": 85762, + "澙": 85763, + "昿": 85764, + "胅": 85765, + "鯚": 85766, + "襤": 85767, + "娛": 85768, + "滵": 85769, + "臮": 85770, + "榎": 85771, + "鉥": 85772, + "讔": 85773, + "跘": 85774, + "剶": 85775, + "雉": 85776, + "∏": 85777, + "幞": 85778, + "ϖ": 85779, + "驘": 85780, + "劉": 85781, + "玝": 85782, + "🍨": 85783, + "K": 85784, + "鴯": 85785, + "瀜": 85786, + "騈": 85787, + "頹": 85788, + "嵂": 85789, + "潽": 85790, + "厪": 85791, + "≘": 85792, + "鹫": 85793, + "韈": 85794, + "涬": 85795, + "竂": 85796, + "蒼": 85797, + "🏋🏼‍♀️": 85798, + "啒": 85799, + "卥": 85800, + "ⓛ": 85801, + "🤷": 85802, + "翚": 85803, + "閶": 85804, + "盇": 85805, + "咾": 85806, + "镠": 85807, + "跶": 85808, + "🦶🏾": 85809, + "殂": 85810, + "👩🏽‍❤️‍👨🏻": 85811, + "灚": 85812, + "耾": 85813, + "⚀": 85814, + "謿": 85815, + "郉": 85816, + "蠃": 85817, + "🦸🏽": 85818, + "☜": 85819, + "🧏🏿‍♂️": 85820, + "桞": 85821, + "懐": 85822, + "譴": 85823, + "烶": 85824, + "酙": 85825, + "璑": 85826, + "〉": 85827, + "髱": 85828, + "隝": 85829, + "鶵": 85830, + "鮵": 85831, + "畊": 85832, + "頦": 85833, + "紅": 85834, + "⛋": 85835, + "餾": 85836, + "卆": 85837, + "甝": 85838, + "🆑": 85839, + "厣": 85840, + "魫": 85841, + "踺": 85842, + "靇": 85843, + "🐄": 85844, + "瓎": 85845, + "爨": 85846, + "麗": 85847, + "👩🏾‍🦱": 85848, + "⎇": 85849, + "荃": 85850, + "馺": 85851, + "虁": 85852, + "樕": 85853, + "挍": 85854, + "弙": 85855, + "掴": 85856, + "樧": 85857, + "🤷🏿": 85858, + "虴": 85859, + "縸": 85860, + "秡": 85861, + "蟀": 85862, + "⚧": 85863, + "Ə": 85864, + "⇤": 85865, + "遞": 85866, + "鍡": 85867, + "郼": 85868, + "₉": 85869, + "鴟": 85870, + "鷽": 85871, + "🔚": 85872, + "崟": 85873, + "瞣": 85874, + "橭": 85875, + "魵": 85876, + "糠": 85877, + "羢": 85878, + "猚": 85879, + "🧛‍♀️": 85880, + "眝": 85881, + "鋳": 85882, + "嗀": 85883, + "厍": 85884, + "🫁": 85885, + "垤": 85886, + "侰": 85887, + "💁🏾‍♀️": 85888, + "輾": 85889, + "飷": 85890, + "孁": 85891, + "歜": 85892, + "裬": 85893, + "萆": 85894, + "銑": 85895, + "椨": 85896, + "砼": 85897, + "Ď": 85898, + "暱": 85899, + "堊": 85900, + "Ŋ": 85901, + "♸": 85902, + "👴🏿": 85903, + "辶": 85904, + "萪": 85905, + "钁": 85906, + "掗": 85907, + "樻": 85908, + "譾": 85909, + "Ⅻ": 85910, + "魍": 85911, + "酽": 85912, + "鱙": 85913, + "鋘": 85914, + "轤": 85915, + "淴": 85916, + "🧬": 85917, + "萛": 85918, + "遺": 85919, + "薞": 85920, + "螤": 85921, + "Ϙ": 85922, + "姱": 85923, + "昚": 85924, + "🐺": 85925, + "捚": 85926, + "袡": 85927, + "讎": 85928, + "睘": 85929, + "篹": 85930, + "💸": 85931, + "薐": 85932, + "👨🏼‍🦱": 85933, + "湻": 85934, + "槉": 85935, + "菒": 85936, + "鐜": 85937, + "葁": 85938, + "厱": 85939, + "粷": 85940, + "玌": 85941, + "潎": 85942, + "🧜🏽": 85943, + "瘿": 85944, + "仸": 85945, + "🔘": 85946, + "騷": 85947, + "閲": 85948, + "鳤": 85949, + "坌": 85950, + "铽": 85951, + "⋯": 85952, + "妢": 85953, + "嗼": 85954, + "暽": 85955, + "👦🏼": 85956, + "1️⃣": 85957, + "繯": 85958, + "醊": 85959, + "ₒ": 85960, + "趷": 85961, + "捺": 85962, + "羿": 85963, + "匥": 85964, + "眾": 85965, + "鏶": 85966, + "歙": 85967, + "嶜": 85968, + "柧": 85969, + "煯": 85970, + "牝": 85971, + "👨🏽‍🦲": 85972, + "隹": 85973, + "朙": 85974, + "啫": 85975, + "繾": 85976, + "👳🏽‍♀️": 85977, + "甿": 85978, + "🧑🏾‍✈️": 85979, + "燬": 85980, + "蓥": 85981, + "竘": 85982, + "嵸": 85983, + "笝": 85984, + "蕻": 85985, + "糐": 85986, + "邌": 85987, + "⏥": 85988, + "蓞": 85989, + "🧑🏻‍❤️‍🧑🏾": 85990, + "🏳️‍⚧️": 85991, + "饟": 85992, + "婁": 85993, + "灆": 85994, + "簉": 85995, + "褲": 85996, + "👨🏻‍💼": 85997, + "🤹‍♂️": 85998, + "菂": 85999, + "瞴": 86000, + "紓": 86001, + "麖": 86002, + "珟": 86003, + "🥚": 86004, + "Ƒ": 86005, + "崝": 86006, + "辒": 86007, + "靀": 86008, + "牄": 86009, + "癒": 86010, + "溑": 86011, + "臠": 86012, + "鶄": 86013, + "煻": 86014, + "舳": 86015, + "翉": 86016, + "👩🏾‍🔬": 86017, + "湢": 86018, + "姹": 86019, + "樅": 86020, + "⅛": 86021, + "齮": 86022, + "鮒": 86023, + "鰣": 86024, + "賙": 86025, + "玑": 86026, + "鏚": 86027, + "傥": 86028, + "Ώ": 86029, + "砝": 86030, + "増": 86031, + "噸": 86032, + "楊": 86033, + "ℋ": 86034, + "麺": 86035, + "鴊": 86036, + "栁": 86037, + "餑": 86038, + "恑": 86039, + "裀": 86040, + "膱": 86041, + "T": 86042, + "鷮": 86043, + "🩻": 86044, + "🐮": 86045, + "瀱": 86046, + "麹": 86047, + "繆": 86048, + "ʲ": 86049, + "珳": 86050, + "🦹🏿": 86051, + "ͤ": 86052, + "艎": 86053, + "👩🏽‍❤️‍💋‍👨🏾": 86054, + "🌞": 86055, + "藦": 86056, + "跄": 86057, + "鎨": 86058, + "皴": 86059, + "熂": 86060, + "艀": 86061, + "鉸": 86062, + "灐": 86063, + "襈": 86064, + "軘": 86065, + "菙": 86066, + "郪": 86067, + "艌": 86068, + "陠": 86069, + "袺": 86070, + "鉪": 86071, + "鞛": 86072, + "◠": 86073, + "魣": 86074, + "衦": 86075, + "谖": 86076, + "儙": 86077, + "繟": 86078, + "疨": 86079, + "👩🏽‍🏫": 86080, + "憝": 86081, + "嚇": 86082, + "睜": 86083, + "睤": 86084, + "耏": 86085, + "髐": 86086, + "鋜": 86087, + "ₓ": 86088, + "賿": 86089, + "凃": 86090, + "🙅‍♂️": 86091, + "雝": 86092, + "⇪": 86093, + "🧏🏽‍♀️": 86094, + "⑩": 86095, + "🛄": 86096, + "彏": 86097, + "🏂🏿": 86098, + "棨": 86099, + "膅": 86100, + "瘢": 86101, + "嬬": 86102, + "🖌": 86103, + "⚅": 86104, + "🧕🏼": 86105, + "诐": 86106, + "蚴": 86107, + "淵": 86108, + "爾": 86109, + "蘵": 86110, + "佃": 86111, + "嵾": 86112, + "箝": 86113, + "錥": 86114, + "蛈": 86115, + "犓": 86116, + "賞": 86117, + "匏": 86118, + "掦": 86119, + "谿": 86120, + "廘": 86121, + "鄠": 86122, + "酧": 86123, + "剳": 86124, + "朎": 86125, + "逦": 86126, + "👨‍👨‍👦‍👦": 86127, + "庲": 86128, + "嫅": 86129, + "緷": 86130, + "≆": 86131, + "癥": 86132, + "🇲🇴": 86133, + "仨": 86134, + "馁": 86135, + "忷": 86136, + "梍": 86137, + "ʘ": 86138, + "翝": 86139, + "輩": 86140, + "珮": 86141, + "铖": 86142, + "驈": 86143, + "邔": 86144, + "駠": 86145, + "粐": 86146, + "貖": 86147, + "籠": 86148, + "餂": 86149, + "蠄": 86150, + "缬": 86151, + "緫": 86152, + "牎": 86153, + "疴": 86154, + "覇": 86155, + "⇠": 86156, + "藷": 86157, + "👨🏻": 86158, + "蠼": 86159, + "簑": 86160, + "苆": 86161, + "僃": 86162, + "湴": 86163, + "ǩ": 86164, + "🤟🏿": 86165, + "繊": 86166, + "烮": 86167, + "袹": 86168, + "厬": 86169, + "訆": 86170, + "寘": 86171, + "忶": 86172, + "🪄": 86173, + "ƙ": 86174, + "🇨🇭": 86175, + "僞": 86176, + "🦹🏼‍♂️": 86177, + "懃": 86178, + "罬": 86179, + "ŧ": 86180, + "澋": 86181, + "蚳": 86182, + "忚": 86183, + "靼": 86184, + "芎": 86185, + "專": 86186, + "噊": 86187, + "吿": 86188, + "婻": 86189, + "舘": 86190, + "⏁": 86191, + "虷": 86192, + "╀": 86193, + "唚": 86194, + "頕": 86195, + "衱": 86196, + "谤": 86197, + "🧑🏾‍⚕️": 86198, + "胒": 86199, + "鞦": 86200, + "祏": 86201, + "浼": 86202, + "呥": 86203, + "豵": 86204, + "菷": 86205, + "蝥": 86206, + "琚": 86207, + "🕣": 86208, + "⃐": 86209, + "⎓": 86210, + "赀": 86211, + "婞": 86212, + "🤾🏻": 86213, + "鳖": 86214, + "璴": 86215, + "脭": 86216, + "筏": 86217, + "🚶🏿‍♀️": 86218, + "ⓞ": 86219, + "👉": 86220, + "旘": 86221, + "戡": 86222, + "牪": 86223, + "♽": 86224, + "酩": 86225, + "仐": 86226, + "⏮": 86227, + "俆": 86228, + "荛": 86229, + "逋": 86230, + "怱": 86231, + "査": 86232, + "🪹": 86233, + "琓": 86234, + "矂": 86235, + "衜": 86236, + "膩": 86237, + "🐷": 86238, + "燄": 86239, + "慡": 86240, + "濔": 86241, + "☫": 86242, + "厾": 86243, + "氽": 86244, + "邛": 86245, + "雔": 86246, + "ť": 86247, + "燽": 86248, + "軕": 86249, + "鷵": 86250, + "繤": 86251, + "巟": 86252, + "Ŧ": 86253, + "": 86254, + "碆": 86255, + "焆": 86256, + "⃊": 86257, + "👨🏾‍🦯": 86258, + "趕": 86259, + "钴": 86260, + "齁": 86261, + "韽": 86262, + "颬": 86263, + "💇🏽‍♀️": 86264, + "鎢": 86265, + "🐾": 86266, + "🇹🇯": 86267, + "賳": 86268, + "↼": 86269, + "鍵": 86270, + "晥": 86271, + "倆": 86272, + "餣": 86273, + "谼": 86274, + "偱": 86275, + "👎": 86276, + "渼": 86277, + "̐": 86278, + "諫": 86279, + "饡": 86280, + "囁": 86281, + "忀": 86282, + "姝": 86283, + "☣": 86284, + "笪": 86285, + "鳝": 86286, + "險": 86287, + "鑿": 86288, + "♳": 86289, + "涸": 86290, + "恚": 86291, + "鎆": 86292, + "⚙": 86293, + "🌐": 86294, + "喁": 86295, + "諬": 86296, + "峾": 86297, + "娙": 86298, + "渽": 86299, + "蜓": 86300, + "🔰": 86301, + "挳": 86302, + "閑": 86303, + "坙": 86304, + "峑": 86305, + "錋": 86306, + "😊": 86307, + "輥": 86308, + "蔜": 86309, + "┥": 86310, + "峐": 86311, + "櫭": 86312, + "潆": 86313, + "葏": 86314, + "艖": 86315, + "⌜": 86316, + "瑐": 86317, + "泱": 86318, + "玓": 86319, + "鋫": 86320, + "彔": 86321, + "椊": 86322, + "竀": 86323, + "桏": 86324, + "鋈": 86325, + "🌌": 86326, + "柤": 86327, + "備": 86328, + "樖": 86329, + "靋": 86330, + "錵": 86331, + "🤏": 86332, + "熛": 86333, + "鹶": 86334, + "🧣": 86335, + "椳": 86336, + "杓": 86337, + "⒠": 86338, + "慮": 86339, + "👱🏻‍♀️": 86340, + "撨": 86341, + "綺": 86342, + "🧚🏽": 86343, + "摠": 86344, + "耄": 86345, + "僼": 86346, + "👱": 86347, + "糢": 86348, + "簂": 86349, + "霱": 86350, + "妝": 86351, + "🧑🏿‍❤️‍💋‍🧑🏽": 86352, + "軲": 86353, + "🇫🇰": 86354, + "讕": 86355, + "ⓠ": 86356, + "蠻": 86357, + "圛": 86358, + "叆": 86359, + "🎲": 86360, + "褎": 86361, + "焤": 86362, + "🪁": 86363, + "黈": 86364, + "鱑": 86365, + "枅": 86366, + "ŕ": 86367, + "遬": 86368, + "蛣": 86369, + "睼": 86370, + "璮": 86371, + "潗": 86372, + "锘": 86373, + "垥": 86374, + "姽": 86375, + "毖": 86376, + "≢": 86377, + "磌": 86378, + "🏌🏻‍♀️": 86379, + "幫": 86380, + "豠": 86381, + "睝": 86382, + "霬": 86383, + "␤": 86384, + "🧖🏼‍♀️": 86385, + "輋": 86386, + "峘": 86387, + "崸": 86388, + "镢": 86389, + "嬌": 86390, + "👨🏻‍❤️‍👨🏼": 86391, + "🧑‍🏭": 86392, + "🇷🇴": 86393, + "莥": 86394, + "嚕": 86395, + "慣": 86396, + "┠": 86397, + "蒞": 86398, + "隓": 86399, + "傉": 86400, + "🧓🏻": 86401, + "憉": 86402, + "谵": 86403, + "匒": 86404, + "溍": 86405, + "痜": 86406, + "焴": 86407, + "❓": 86408, + "🎓": 86409, + "🪜": 86410, + "丕": 86411, + "葹": 86412, + "員": 86413, + "🤲🏽": 86414, + "🤦🏻": 86415, + "岇": 86416, + "艄": 86417, + "槕": 86418, + "極": 86419, + "🫳": 86420, + "漣": 86421, + "👨🏿‍❤️‍👨🏽": 86422, + "🦠": 86423, + "狧": 86424, + "緔": 86425, + "ʦ": 86426, + "🙄": 86427, + "🌺": 86428, + "垀": 86429, + "鯁": 86430, + "檫": 86431, + "💂🏼": 86432, + "钋": 86433, + "✊🏻": 86434, + "贈": 86435, + "裒": 86436, + "嶌": 86437, + "👨🏽‍❤️‍💋‍👨🏽": 86438, + "槵": 86439, + "🧖🏻‍♀️": 86440, + "熸": 86441, + "馇": 86442, + "💆‍♂️": 86443, + "輐": 86444, + "顅": 86445, + "嘈": 86446, + "総": 86447, + "恇": 86448, + "礸": 86449, + "贙": 86450, + "鯻": 86451, + "疽": 86452, + "秢": 86453, + "🇪🇭": 86454, + "瞽": 86455, + "🇪🇪": 86456, + "鐵": 86457, + "脨": 86458, + "遽": 86459, + "桸": 86460, + "戥": 86461, + "噼": 86462, + "缻": 86463, + "謏": 86464, + "枍": 86465, + "蔟": 86466, + "簺": 86467, + "碤": 86468, + "╲": 86469, + "髸": 86470, + "孫": 86471, + "⋎": 86472, + "👩🏿‍❤️‍💋‍👨🏻": 86473, + "韌": 86474, + "硓": 86475, + "蹐": 86476, + "唘": 86477, + "🧖🏽": 86478, + "媣": 86479, + "Ⓚ": 86480, + "兲": 86481, + "₶": 86482, + "櫅": 86483, + "🇭🇳": 86484, + "🪟": 86485, + "楗": 86486, + "睊": 86487, + "👩‍👧": 86488, + "讜": 86489, + "∗": 86490, + "敯": 86491, + "榡": 86492, + "詍": 86493, + "😨": 86494, + "衭": 86495, + "🧖🏾‍♂️": 86496, + "̎": 86497, + "歑": 86498, + "⎞": 86499, + "跗": 86500, + "薮": 86501, + "鄘": 86502, + "轇": 86503, + "ⅳ": 86504, + "窮": 86505, + "聲": 86506, + "詀": 86507, + "🏌🏼": 86508, + "♗": 86509, + "椋": 86510, + "ₙ": 86511, + "😂": 86512, + "継": 86513, + "ϡ": 86514, + "⊁": 86515, + "👨🏽‍❤️‍💋‍👨🏻": 86516, + "顯": 86517, + "鳽": 86518, + "踾": 86519, + "朿": 86520, + "🙋🏿": 86521, + "埰": 86522, + "摕": 86523, + "艭": 86524, + "⚢": 86525, + "嚎": 86526, + "篏": 86527, + "朰": 86528, + "鯋": 86529, + "鴳": 86530, + "⚖": 86531, + "晧": 86532, + "渹": 86533, + "🤱🏾": 86534, + "髛": 86535, + "悫": 86536, + "碥": 86537, + "炾": 86538, + "眈": 86539, + "⃨": 86540, + "髳": 86541, + "緡": 86542, + "🦸🏿": 86543, + "汱": 86544, + "饹": 86545, + "檛": 86546, + "玹": 86547, + "飾": 86548, + "埳": 86549, + "虲": 86550, + "👳🏾‍♂️": 86551, + "聻": 86552, + "鎷": 86553, + "竛": 86554, + "鍑": 86555, + "尗": 86556, + "沎": 86557, + "寳": 86558, + "撌": 86559, + "蜚": 86560, + "🙊": 86561, + "栵": 86562, + "👧🏻": 86563, + "顰": 86564, + "殱": 86565, + "痵": 86566, + "閫": 86567, + "濤": 86568, + "貫": 86569, + "伭": 86570, + "鞂": 86571, + "緰": 86572, + "門": 86573, + "枌": 86574, + "圠": 86575, + "踠": 86576, + "妀": 86577, + "墪": 86578, + "👺": 86579, + "🏳️‍🌈": 86580, + "吀": 86581, + "呋": 86582, + "₪": 86583, + "⁰": 86584, + "澐": 86585, + "ȍ": 86586, + "苶": 86587, + "ɩ": 86588, + "🥼": 86589, + "蓂": 86590, + "黸": 86591, + "蘶": 86592, + "駉": 86593, + "喩": 86594, + "氒": 86595, + "🤸🏿‍♀️": 86596, + "兂": 86597, + "👩🏿‍⚕️": 86598, + "篩": 86599, + "紇": 86600, + "魙": 86601, + "梪": 86602, + "篤": 86603, + "亹": 86604, + "躌": 86605, + "皝": 86606, + "鄦": 86607, + "雂": 86608, + "沊": 86609, + "籃": 86610, + "説": 86611, + "鑠": 86612, + "🇮🇩": 86613, + "挃": 86614, + "ķ": 86615, + "懩": 86616, + "帳": 86617, + "👤": 86618, + "⊊": 86619, + "鄴": 86620, + "殄": 86621, + "旍": 86622, + "嬊": 86623, + "墲": 86624, + "👧🏿": 86625, + "🗳": 86626, + "瑣": 86627, + "🥊": 86628, + "🇲🇲": 86629, + "⓸": 86630, + "⋬": 86631, + "鐲": 86632, + "Ȫ": 86633, + "🇵🇫": 86634, + "巃": 86635, + "鎭": 86636, + "💍": 86637, + "憂": 86638, + "顭": 86639, + "麞": 86640, + "Ľ": 86641, + "橖": 86642, + "鬇": 86643, + "惛": 86644, + "戂": 86645, + "緑": 86646, + "燨": 86647, + "👩🏼‍❤️‍👨🏻": 86648, + "斨": 86649, + "曕": 86650, + "滛": 86651, + "螶": 86652, + "🇦🇽": 86653, + "鳨": 86654, + "鱽": 86655, + "膬": 86656, + "傩": 86657, + "刌": 86658, + "態": 86659, + "✋🏽": 86660, + "顕": 86661, + "摝": 86662, + "熧": 86663, + "膃": 86664, + "胐": 86665, + "鰤": 86666, + "鷂": 86667, + "🧘‍♂️": 86668, + "眤": 86669, + "⍂": 86670, + "鈠": 86671, + "铒": 86672, + "鷭": 86673, + "宱": 86674, + "👩🏾‍🎓": 86675, + "呺": 86676, + "🥰": 86677, + "禆": 86678, + "棌": 86679, + "浃": 86680, + "圁": 86681, + "踻": 86682, + "嘼": 86683, + "毰": 86684, + "渻": 86685, + "🧑🏼‍❤️‍💋‍🧑🏾": 86686, + "譀": 86687, + "摻": 86688, + "慻": 86689, + "🏃🏽‍♀️": 86690, + "₠": 86691, + "✀": 86692, + "霈": 86693, + "郤": 86694, + "唟": 86695, + "羇": 86696, + "頿": 86697, + "彽": 86698, + "噅": 86699, + "驺": 86700, + "腄": 86701, + "🤷🏿‍♀️": 86702, + "茐": 86703, + "篜": 86704, + "🐓": 86705, + "皞": 86706, + "蟝": 86707, + "讋": 86708, + "穮": 86709, + "軵": 86710, + "牜": 86711, + "🫖": 86712, + "龢": 86713, + "甒": 86714, + "偵": 86715, + "⃛": 86716, + "咘": 86717, + "榁": 86718, + "蠗": 86719, + "↲": 86720, + "鄮": 86721, + "🙎": 86722, + "鋇": 86723, + "昮": 86724, + "😰": 86725, + "嬺": 86726, + "諘": 86727, + "⑿": 86728, + "檪": 86729, + "旲": 86730, + "🤾🏿‍♂️": 86731, + "餧": 86732, + "釱": 86733, + "譟": 86734, + "袊": 86735, + "孴": 86736, + "ʿ": 86737, + "嵆": 86738, + "甔": 86739, + "🉑": 86740, + "啋": 86741, + "詋": 86742, + "🧑🏾‍⚖️": 86743, + "🐚": 86744, + "綤": 86745, + "鯫": 86746, + "槷": 86747, + "跣": 86748, + "🧎🏿‍♂️": 86749, + "轆": 86750, + "暜": 86751, + "択": 86752, + "莻": 86753, + "蕛": 86754, + "👨🏼‍❤️‍💋‍👨🏿": 86755, + "腏": 86756, + "亃": 86757, + "嵭": 86758, + "💠": 86759, + "踘": 86760, + "躸": 86761, + "馦": 86762, + "窺": 86763, + "馶": 86764, + "◩": 86765, + "衉": 86766, + "👨🏿‍❤️‍💋‍👨🏾": 86767, + "鶈": 86768, + "琌": 86769, + "靁": 86770, + "穁": 86771, + "˱": 86772, + "🦣": 86773, + "珼": 86774, + "✄": 86775, + "🇧🇶": 86776, + "ĕ": 86777, + "寱": 86778, + "┊": 86779, + "燢": 86780, + "鱏": 86781, + "ℕ": 86782, + "拡": 86783, + "⎳": 86784, + "蚐": 86785, + "🧑🏼‍🎄": 86786, + "剀": 86787, + "抻": 86788, + "銼": 86789, + "榖": 86790, + "皙": 86791, + "迩": 86792, + "桉": 86793, + "徖": 86794, + "🦙": 86795, + "黗": 86796, + "⇘": 86797, + "⅟": 86798, + "庛": 86799, + "枖": 86800, + "蛷": 86801, + "蠽": 86802, + "綻": 86803, + "徛": 86804, + "礪": 86805, + "膗": 86806, + "杴": 86807, + "闩": 86808, + "鏾": 86809, + "蒤": 86810, + "鱄": 86811, + "镫": 86812, + "⁩": 86813, + "♨": 86814, + "畋": 86815, + "跩": 86816, + "寵": 86817, + "痠": 86818, + "黫": 86819, + "盧": 86820, + "嫇": 86821, + "壜": 86822, + "🌒": 86823, + "捒": 86824, + "诲": 86825, + "荜": 86826, + "燘": 86827, + "🐰": 86828, + "嘧": 86829, + "锍": 86830, + "摥": 86831, + "⋶": 86832, + "晈": 86833, + "𓀚": 86834, + "霴": 86835, + "褋": 86836, + "鰦": 86837, + "發": 86838, + "尙": 86839, + "∟": 86840, + "媬": 86841, + "軉": 86842, + "歮": 86843, + "俴": 86844, + "垎": 86845, + "嘂": 86846, + "🥉": 86847, + "邨": 86848, + "廩": 86849, + "⁉": 86850, + "琂": 86851, + "泍": 86852, + "․": 86853, + "霵": 86854, + "̓": 86855, + "娬": 86856, + "墠": 86857, + "飁": 86858, + "ϭ": 86859, + "畢": 86860, + "憪": 86861, + "🤶🏽": 86862, + "鈯": 86863, + "猅": 86864, + "淩": 86865, + "凊": 86866, + "礀": 86867, + "轹": 86868, + "␅": 86869, + "圴": 86870, + "屮": 86871, + "菝": 86872, + "劂": 86873, + "芰": 86874, + "鮤": 86875, + "蕒": 86876, + "🚡": 86877, + "斊": 86878, + "肙": 86879, + "腦": 86880, + "🙇🏼‍♀️": 86881, + "郵": 86882, + "薳": 86883, + "鈵": 86884, + "🧜🏼‍♀️": 86885, + "⁖": 86886, + "蜝": 86887, + "🏋🏼‍♂️": 86888, + "誋": 86889, + "鲛": 86890, + "👩🏽‍❤️‍👩🏾": 86891, + "魎": 86892, + "窔": 86893, + "澺": 86894, + "懓": 86895, + "🧍‍♀️": 86896, + "坢": 86897, + "倿": 86898, + "🤹🏾‍♀️": 86899, + "👂🏻": 86900, + "繠": 86901, + "ℸ": 86902, + "🧑🏿‍🦯": 86903, + "🥫": 86904, + "蝑": 86905, + "🤹🏼‍♀️": 86906, + "菀": 86907, + "誯": 86908, + "缊": 86909, + "眮": 86910, + "槏": 86911, + "繺": 86912, + "👩🏿‍❤️‍👨🏼": 86913, + "蔢": 86914, + "檝": 86915, + "缡": 86916, + "鼜": 86917, + "🧑🏽‍🎤": 86918, + "霙": 86919, + "淔": 86920, + "瞲": 86921, + "詞": 86922, + "蘝": 86923, + "鬢": 86924, + "˯": 86925, + "羋": 86926, + "項": 86927, + "👨🏽‍✈️": 86928, + "奒": 86929, + "👩🏼": 86930, + "🤵‍♀️": 86931, + "苕": 86932, + "♥": 86933, + "穭": 86934, + "鱸": 86935, + "🍍": 86936, + "袬": 86937, + "臨": 86938, + "👆🏾": 86939, + "🦸🏿‍♀️": 86940, + "駅": 86941, + "Dz": 86942, + "羆": 86943, + "抦": 86944, + "礖": 86945, + "瞚": 86946, + "簮": 86947, + "踕": 86948, + "曋": 86949, + "豻": 86950, + "媉": 86951, + "🧴": 86952, + "嚂": 86953, + "讞": 86954, + "偧": 86955, + "👆🏻": 86956, + "築": 86957, + "爥": 86958, + "儇": 86959, + "斲": 86960, + "酊": 86961, + "‫": 86962, + "趖": 86963, + "納": 86964, + "伣": 86965, + "鰄": 86966, + "蟁": 86967, + "旔": 86968, + "倀": 86969, + "虙": 86970, + "鈊": 86971, + "劺": 86972, + "鋢": 86973, + "濌": 86974, + "嬂": 86975, + "ǫ": 86976, + "鏘": 86977, + "畃": 86978, + "遷": 86979, + "欎": 86980, + "駛": 86981, + "獣": 86982, + "郺": 86983, + "阯": 86984, + "͍": 86985, + "🫦": 86986, + "甗": 86987, + "嵵": 86988, + "馬": 86989, + "萫": 86990, + "ǹ": 86991, + "忋": 86992, + "篊": 86993, + "🏄🏽‍♂️": 86994, + "柆": 86995, + "柊": 86996, + "🇰🇪": 86997, + "😮‍💨": 86998, + "蕘": 86999, + "⛎": 87000, + "淧": 87001, + "悗": 87002, + "獻": 87003, + "踽": 87004, + "✋🏾": 87005, + "褖": 87006, + "蠺": 87007, + "贖": 87008, + "🤽🏿‍♂️": 87009, + "🌭": 87010, + "匛": 87011, + "涄": 87012, + "咈": 87013, + "珥": 87014, + "𓀇": 87015, + "繙": 87016, + "ʹ": 87017, + "懻": 87018, + "鼢": 87019, + "嵢": 87020, + "婰": 87021, + "熞": 87022, + "鍁": 87023, + "硌": 87024, + "N": 87025, + "狁": 87026, + "穢": 87027, + "彺": 87028, + "莵": 87029, + "笱": 87030, + "谫": 87031, + "沇": 87032, + "峟": 87033, + "嬫": 87034, + "濷": 87035, + "┬": 87036, + "鱓": 87037, + "戵": 87038, + "👩🏽‍❤️‍💋‍👨🏼": 87039, + "宨": 87040, + "蘽": 87041, + "🇰🇼": 87042, + "侒": 87043, + "杌": 87044, + "敹": 87045, + "僤": 87046, + "曨": 87047, + "燛": 87048, + "鷱": 87049, + "🫵🏿": 87050, + "纚": 87051, + "殪": 87052, + "莏": 87053, + "淝": 87054, + "褢": 87055, + "┞": 87056, + "棯": 87057, + "嬷": 87058, + "鞇": 87059, + "欽": 87060, + "🔍": 87061, + "凴": 87062, + "澆": 87063, + "塵": 87064, + "蒔": 87065, + "訬": 87066, + "棇": 87067, + "濸": 87068, + "隫": 87069, + "鯝": 87070, + "珰": 87071, + "鸩": 87072, + "晪": 87073, + "🈲": 87074, + "鋃": 87075, + "螘": 87076, + "喓": 87077, + "ɐ": 87078, + "獺": 87079, + "Τ": 87080, + "趑": 87081, + "圞": 87082, + "壒": 87083, + "鮄": 87084, + "贉": 87085, + "惤": 87086, + "👨🏻‍❤️‍💋‍👨🏽": 87087, + "稏": 87088, + "⃹": 87089, + "🧑🏽‍⚖️": 87090, + "撄": 87091, + "鐳": 87092, + "貹": 87093, + "恴": 87094, + "謓": 87095, + "✝️": 87096, + "劭": 87097, + "竄": 87098, + "臱": 87099, + "👏🏽": 87100, + "⊅": 87101, + "濳": 87102, + "嘸": 87103, + "蚰": 87104, + "営": 87105, + "誁": 87106, + "酺": 87107, + "櫬": 87108, + "趹": 87109, + "┄": 87110, + "娫": 87111, + "汼": 87112, + "笧": 87113, + "艃": 87114, + "衈": 87115, + "魪": 87116, + "⑪": 87117, + "敨": 87118, + "👐🏿": 87119, + "钡": 87120, + "鎁": 87121, + "裮": 87122, + "糔": 87123, + "蝗": 87124, + "💯": 87125, + "櫵": 87126, + "渦": 87127, + "鉌": 87128, + "晷": 87129, + "⒊": 87130, + "忐": 87131, + "髜": 87132, + "篪": 87133, + "羒": 87134, + "妩": 87135, + "黜": 87136, + "璉": 87137, + "😜": 87138, + "挐": 87139, + "梑": 87140, + "渆": 87141, + "夓": 87142, + "蘒": 87143, + "⇬": 87144, + "蕿": 87145, + "柡": 87146, + "麫": 87147, + "杷": 87148, + "ȱ": 87149, + "疠": 87150, + "蹵": 87151, + "豬": 87152, + "❎": 87153, + "窎": 87154, + "樨": 87155, + "🚯": 87156, + "枬": 87157, + "礜": 87158, + "⏲": 87159, + "箽": 87160, + "扱": 87161, + "🖕🏽": 87162, + "🚶🏾‍♂️": 87163, + "篫": 87164, + "🈵": 87165, + "ϐ": 87166, + "鰊": 87167, + "煿": 87168, + "燩": 87169, + "🍕": 87170, + "蹆": 87171, + "‿": 87172, + "螐": 87173, + "蚋": 87174, + "槩": 87175, + "⍨": 87176, + "蛴": 87177, + "叻": 87178, + "碨": 87179, + "駔": 87180, + "酠": 87181, + "抾": 87182, + "🖕🏾": 87183, + "矈": 87184, + "癷": 87185, + "鄁": 87186, + "隬": 87187, + "👉🏻": 87188, + "稗": 87189, + "Β": 87190, + "袝": 87191, + "阠": 87192, + "膖": 87193, + "Ε": 87194, + "🖲": 87195, + "嗝": 87196, + "愐": 87197, + "厭": 87198, + "🙆🏿‍♀️": 87199, + "👱🏼": 87200, + "瞔": 87201, + "簰": 87202, + "銅": 87203, + "郧": 87204, + "🫲🏾": 87205, + "槻": 87206, + "聯": 87207, + "🈴": 87208, + "🇦🇲": 87209, + "秄": 87210, + "🤵🏻‍♀️": 87211, + "亷": 87212, + "☵": 87213, + "窢": 87214, + "輯": 87215, + "🕕": 87216, + "⍏": 87217, + "灡": 87218, + "咩": 87219, + "減": 87220, + "粁": 87221, + "Ȉ": 87222, + "歿": 87223, + "🧜🏼": 87224, + "⇋": 87225, + "鞞": 87226, + "饤": 87227, + "⛁": 87228, + "櫴": 87229, + "閜": 87230, + "掄": 87231, + "喲": 87232, + "觙": 87233, + "躩": 87234, + "拕": 87235, + "鷘": 87236, + "潿": 87237, + "黲": 87238, + "勨": 87239, + "呒": 87240, + "狆": 87241, + "斁": 87242, + "絻": 87243, + "⌬": 87244, + "搵": 87245, + "箾": 87246, + "🏊": 87247, + "惓": 87248, + "觗": 87249, + "👩🏿": 87250, + "屲": 87251, + "↢": 87252, + "疦": 87253, + "👑": 87254, + "抿": 87255, + "娯": 87256, + "筺": 87257, + "瓽": 87258, + "嘌": 87259, + "🚴🏾‍♂️": 87260, + "‽": 87261, + "🤿": 87262, + "慲": 87263, + "榯": 87264, + "澬": 87265, + "釵": 87266, + "苰": 87267, + "🤰🏾": 87268, + "⏺": 87269, + "雎": 87270, + "溗": 87271, + "氵": 87272, + "🛌🏼": 87273, + "掍": 87274, + "🚴🏽": 87275, + "🤾🏼": 87276, + "蹿": 87277, + "坽": 87278, + "鸰": 87279, + "甏": 87280, + "蟖": 87281, + "💂🏼‍♂️": 87282, + "濙": 87283, + "痝": 87284, + "👩🏼‍🚀": 87285, + "銵": 87286, + "纼": 87287, + "驡": 87288, + "蚶": 87289, + "🪅": 87290, + "蕦": 87291, + "鲔": 87292, + "🙅🏻‍♀️": 87293, + "🦸🏼‍♀️": 87294, + "颺": 87295, + "鏔": 87296, + "麬": 87297, + "豞": 87298, + "鹞": 87299, + "冂": 87300, + "婐": 87301, + "衩": 87302, + "渒": 87303, + "乢": 87304, + "樜": 87305, + "槫": 87306, + "🦽": 87307, + "庣": 87308, + "幛": 87309, + "菦": 87310, + "ₘ": 87311, + "悎": 87312, + "邞": 87313, + "🚶🏽": 87314, + "🧑‍🔬": 87315, + "埮": 87316, + "烻": 87317, + "駷": 87318, + "Ⓡ": 87319, + "聄": 87320, + "緵": 87321, + "🦐": 87322, + "葃": 87323, + "饦": 87324, + "伇": 87325, + "👩🏽‍❤️‍👨🏼": 87326, + "贔": 87327, + "鄱": 87328, + "👁": 87329, + "葢": 87330, + "講": 87331, + "🫂": 87332, + "憅": 87333, + "👩🏿‍🍼": 87334, + "侸": 87335, + "艩": 87336, + "蕫": 87337, + "⬇️": 87338, + "畖": 87339, + "慺": 87340, + "🇹🇷": 87341, + "👏🏾": 87342, + "濕": 87343, + "呚": 87344, + "蟼": 87345, + "🚶‍♀️": 87346, + "邅": 87347, + "粰": 87348, + "憺": 87349, + "楋": 87350, + "偫": 87351, + "匍": 87352, + "阘": 87353, + "🙋": 87354, + "🙌🏾": 87355, + "瑉": 87356, + "慚": 87357, + "🧛🏽‍♀️": 87358, + "骡": 87359, + "🔯": 87360, + "蠫": 87361, + "禨": 87362, + "魦": 87363, + "敥": 87364, + "腷": 87365, + "韊": 87366, + "甑": 87367, + "眜": 87368, + "徼": 87369, + "垾": 87370, + "盄": 87371, + "脼": 87372, + "厵": 87373, + "鉦": 87374, + "˛": 87375, + "盬": 87376, + "撽": 87377, + "凇": 87378, + "劰": 87379, + "鐦": 87380, + "慩": 87381, + "朅": 87382, + "襛": 87383, + "╛": 87384, + "氿": 87385, + "獄": 87386, + "隁": 87387, + "枾": 87388, + "鍟": 87389, + "蔴": 87390, + "💂": 87391, + "匐": 87392, + "韆": 87393, + "戓": 87394, + "⊄": 87395, + "湵": 87396, + "刂": 87397, + "碒": 87398, + "⛱": 87399, + "盅": 87400, + "🚴🏽‍♀️": 87401, + "🚣‍♀️": 87402, + "朞": 87403, + "💂🏼‍♀️": 87404, + "Ⓤ": 87405, + "鐥": 87406, + "〽️": 87407, + "鈾": 87408, + "🫱🏽‍🫲🏾": 87409, + "鰢": 87410, + "⒯": 87411, + "駡": 87412, + "抐": 87413, + "栯": 87414, + "ℽ": 87415, + "摿": 87416, + "捰": 87417, + "畻": 87418, + "彵": 87419, + "轈": 87420, + "⒴": 87421, + "繡": 87422, + "🚒": 87423, + "👩🏽‍❤️‍💋‍👩🏽": 87424, + "鮾": 87425, + "幱": 87426, + "辔": 87427, + "鳓": 87428, + "鴀": 87429, + "😟": 87430, + "囍": 87431, + "蕹": 87432, + "蒵": 87433, + "🩼": 87434, + "🇪🇺": 87435, + "狲": 87436, + "潶": 87437, + "⒝": 87438, + "贋": 87439, + "曐": 87440, + "碣": 87441, + "醡": 87442, + "垻": 87443, + "👩🏼‍❤️‍👩🏼": 87444, + "嚴": 87445, + "嬠": 87446, + "詣": 87447, + "暌": 87448, + "堙": 87449, + "蘫": 87450, + "鸶": 87451, + "顒": 87452, + "⏶": 87453, + "饩": 87454, + "攘": 87455, + "˓": 87456, + "閌": 87457, + "裆": 87458, + "💇🏻‍♂️": 87459, + "耙": 87460, + "庖": 87461, + "壷": 87462, + "哓": 87463, + "🇧🇴": 87464, + "嗉": 87465, + "匜": 87466, + "灢": 87467, + "峄": 87468, + "🏕": 87469, + "觚": 87470, + "垨": 87471, + "鎗": 87472, + "幰": 87473, + "瑄": 87474, + "硡": 87475, + "閞": 87476, + "塻": 87477, + "⎖": 87478, + "簏": 87479, + "婾": 87480, + "彲": 87481, + "懯": 87482, + "連": 87483, + "悛": 87484, + "臓": 87485, + "⎿": 87486, + "薀": 87487, + "🙋🏽‍♂️": 87488, + "🍤": 87489, + "鄺": 87490, + "擂": 87491, + "╧": 87492, + "澠": 87493, + "乑": 87494, + "⊴": 87495, + "🪵": 87496, + "骪": 87497, + "氬": 87498, + "槆": 87499, + "📅": 87500, + "蝨": 87501, + "儺": 87502, + "糬": 87503, + "轋": 87504, + "ƨ": 87505, + "柰": 87506, + "⎂": 87507, + "陮": 87508, + "畆": 87509, + "嶻": 87510, + "捦": 87511, + "溊": 87512, + "縁": 87513, + "👳🏻‍♂️": 87514, + "藲": 87515, + "荲": 87516, + "枰": 87517, + "秙": 87518, + "袞": 87519, + "徭": 87520, + "顉": 87521, + "羍": 87522, + "嚸": 87523, + "逫": 87524, + "逭": 87525, + "巉": 87526, + "囯": 87527, + "齻": 87528, + "誂": 87529, + "漧": 87530, + "廚": 87531, + "慸": 87532, + "揂": 87533, + "俀": 87534, + "櫘": 87535, + "佘": 87536, + "鸼": 87537, + "巸": 87538, + "橳": 87539, + "耇": 87540, + "🇦🇷": 87541, + "🧛🏼‍♂️": 87542, + "飦": 87543, + "諔": 87544, + "➡️": 87545, + "莣": 87546, + "瀺": 87547, + "餇": 87548, + "👩🏿‍🔬": 87549, + "茊": 87550, + "躦": 87551, + "箚": 87552, + "🕸": 87553, + "鰷": 87554, + "纃": 87555, + "崁": 87556, + "魑": 87557, + "⓺": 87558, + "👩🏾‍🦲": 87559, + "觲": 87560, + "袚": 87561, + "僓": 87562, + "諞": 87563, + "🩺": 87564, + "淲": 87565, + "縔": 87566, + "⑑": 87567, + "縚": 87568, + "♓": 87569, + "匚": 87570, + "墆": 87571, + "‱": 87572, + "💔": 87573, + "🐡": 87574, + "毣": 87575, + "膭": 87576, + "🚣🏻‍♂️": 87577, + "窽": 87578, + "榏": 87579, + "🎭": 87580, + "趌": 87581, + "猇": 87582, + "徣": 87583, + "擯": 87584, + "̠": 87585, + "嚛": 87586, + "鹎": 87587, + "嫿": 87588, + "⊑": 87589, + "芄": 87590, + "獬": 87591, + "転": 87592, + "🇨🇬": 87593, + "ŭ": 87594, + "👨🏾‍🦲": 87595, + "蠳": 87596, + "娚": 87597, + "凎": 87598, + "託": 87599, + "羫": 87600, + "悿": 87601, + "芀": 87602, + "耴": 87603, + "祋": 87604, + "賮": 87605, + "ʈ": 87606, + "桜": 87607, + "勯": 87608, + "錀": 87609, + "怑": 87610, + "頸": 87611, + "噆": 87612, + "🕵️": 87613, + "擰": 87614, + "🕯": 87615, + "荭": 87616, + "滀": 87617, + "華": 87618, + "茤": 87619, + "埁": 87620, + "駐": 87621, + "鋀": 87622, + "啢": 87623, + "◵": 87624, + "⚴": 87625, + "琗": 87626, + "貄": 87627, + "庱": 87628, + "綾": 87629, + "櫎": 87630, + "🇹🇼": 87631, + "坫": 87632, + "👂🏼": 87633, + "瞜": 87634, + "⚺": 87635, + "醲": 87636, + "🔱": 87637, + "蔞": 87638, + "✳️": 87639, + "犝": 87640, + "莶": 87641, + "磚": 87642, + "攈": 87643, + "攎": 87644, + "扻": 87645, + "诮": 87646, + "蒈": 87647, + "禟": 87648, + "蘁": 87649, + "鬗": 87650, + "豇": 87651, + "導": 87652, + "‏": 87653, + "💅🏿": 87654, + "襷": 87655, + "Ȓ": 87656, + "辘": 87657, + "齴": 87658, + "🫑": 87659, + "̦": 87660, + "抭": 87661, + "匞": 87662, + "坓": 87663, + "ℂ": 87664, + "畘": 87665, + "诋": 87666, + "轸": 87667, + "產": 87668, + "桹": 87669, + "偺": 87670, + "嚌": 87671, + "妑": 87672, + "蟆": 87673, + "鉙": 87674, + "盞": 87675, + "絜": 87676, + "蔁": 87677, + "掶": 87678, + "藱": 87679, + "蜃": 87680, + "靕": 87681, + "琨": 87682, + "悤": 87683, + "瀬": 87684, + "裓": 87685, + "猑": 87686, + "荌": 87687, + "鍭": 87688, + "🇵🇹": 87689, + "艧": 87690, + "棜": 87691, + "翯": 87692, + "枑": 87693, + "皁": 87694, + "🧙🏾‍♂️": 87695, + "搗": 87696, + "钜": 87697, + "雙": 87698, + "┵": 87699, + "艕": 87700, + "薊": 87701, + "蛳": 87702, + "浧": 87703, + "焈": 87704, + "擃": 87705, + "豘": 87706, + "弨": 87707, + "笀": 87708, + "觯": 87709, + "📋": 87710, + "豑": 87711, + "樢": 87712, + "礕": 87713, + "撁": 87714, + "鼨": 87715, + "👩🏼‍❤️‍👨🏾": 87716, + "赕": 87717, + "鍜": 87718, + "蓩": 87719, + "⃦": 87720, + "睞": 87721, + "⃄": 87722, + "呞": 87723, + "🇱🇦": 87724, + "呾": 87725, + "鶌": 87726, + "萳": 87727, + "轄": 87728, + "⅁": 87729, + "🪬": 87730, + "劜": 87731, + "锩": 87732, + "埈": 87733, + "鷞": 87734, + "鶢": 87735, + "攲": 87736, + "揮": 87737, + "駲": 87738, + "淪": 87739, + "瘰": 87740, + "袥": 87741, + "諃": 87742, + "騟": 87743, + "哙": 87744, + "🦧": 87745, + "眫": 87746, + "彮": 87747, + "幐": 87748, + "夲": 87749, + "儛": 87750, + "螖": 87751, + "摉": 87752, + "竫": 87753, + "鷥": 87754, + "锏": 87755, + "🔣": 87756, + "🏌🏼‍♀️": 87757, + "菔": 87758, + "靧": 87759, + "戣": 87760, + "冋": 87761, + "孱": 87762, + "塟": 87763, + "⌾": 87764, + "綱": 87765, + "衲": 87766, + "莿": 87767, + "🤎": 87768, + "蕇": 87769, + "踍": 87770, + "愂": 87771, + "戃": 87772, + "岧": 87773, + "🚺": 87774, + "樉": 87775, + "筍": 87776, + "🇲🇾": 87777, + "🏎": 87778, + "🙅🏽": 87779, + "欜": 87780, + "鵥": 87781, + "頻": 87782, + "垓": 87783, + "˖": 87784, + "🔞": 87785, + "惉": 87786, + "₦": 87787, + "鈴": 87788, + "萺": 87789, + "媤": 87790, + "蓨": 87791, + "讗": 87792, + "禔": 87793, + "愽": 87794, + "痑": 87795, + "茚": 87796, + "踃": 87797, + "🧑🏿‍✈️": 87798, + "Ⅳ": 87799, + "∡": 87800, + "鍹": 87801, + "🤡": 87802, + "壊": 87803, + "孏": 87804, + "陭": 87805, + "辎": 87806, + "勱": 87807, + "尓": 87808, + "麿": 87809, + "雞": 87810, + "肐": 87811, + "鋉": 87812, + "🇳🇨": 87813, + "杍": 87814, + "萉": 87815, + "庡": 87816, + "👩🏼‍❤️‍👨🏽": 87817, + "咉": 87818, + "紀": 87819, + "倨": 87820, + "鵚": 87821, + "橎": 87822, + "⍷": 87823, + "諅": 87824, + "濱": 87825, + "舫": 87826, + "╿": 87827, + "👔": 87828, + "杻": 87829, + "⏽": 87830, + "螴": 87831, + "綩": 87832, + "荥": 87833, + "蓸": 87834, + "👩🏽‍❤️‍👨🏾": 87835, + "樸": 87836, + "襸": 87837, + "嗗": 87838, + "鱘": 87839, + "鱱": 87840, + "勩": 87841, + "🚴🏽‍♂️": 87842, + "祓": 87843, + "芼": 87844, + "裍": 87845, + "閚": 87846, + "豿": 87847, + "胙": 87848, + "臽": 87849, + "稪": 87850, + "◸": 87851, + "鉖": 87852, + "ˡ": 87853, + "␗": 87854, + "⚹": 87855, + "綷": 87856, + "☃": 87857, + "Ɠ": 87858, + "🧑🏽‍⚕️": 87859, + "鍛": 87860, + "⅌": 87861, + "鸫": 87862, + "莈": 87863, + "暕": 87864, + "🇲🇼": 87865, + "⚦": 87866, + "適": 87867, + "🇧🇦": 87868, + "妰": 87869, + "韄": 87870, + "畷": 87871, + "涥": 87872, + "鳋": 87873, + "怟": 87874, + "顲": 87875, + "殥": 87876, + "鼮": 87877, + "莙": 87878, + "🚩": 87879, + "愬": 87880, + "闐": 87881, + "咿": 87882, + "銺": 87883, + "鴱": 87884, + "覴": 87885, + "鶶": 87886, + "Ρ": 87887, + "↨": 87888, + "洕": 87889, + "悑": 87890, + "瑠": 87891, + "穦": 87892, + "偠": 87893, + "啣": 87894, + "覥": 87895, + "虋": 87896, + "顃": 87897, + "騙": 87898, + "尞": 87899, + "⁀": 87900, + "缱": 87901, + "颶": 87902, + "咻": 87903, + "旮": 87904, + "👩🏼‍❤️‍💋‍👩🏾": 87905, + "鏗": 87906, + "卮": 87907, + "繈": 87908, + "蚩": 87909, + "翆": 87910, + "🍟": 87911, + "扄": 87912, + "🧑🏾‍❤️‍💋‍🧑🏿": 87913, + "梙": 87914, + "骓": 87915, + "绬": 87916, + "壾": 87917, + "杋": 87918, + "🛴": 87919, + "揻": 87920, + "💇‍♂️": 87921, + "˒": 87922, + "橩": 87923, + "玞": 87924, + "瀟": 87925, + "峵": 87926, + "栙": 87927, + "觰": 87928, + "腼": 87929, + "韢": 87930, + "蟛": 87931, + "瘹": 87932, + "歠": 87933, + "🇦🇴": 87934, + "韷": 87935, + "👨🏽‍🦯": 87936, + "謥": 87937, + "鯰": 87938, + "牿": 87939, + "镥": 87940, + "農": 87941, + "嘕": 87942, + "蛖": 87943, + "➿": 87944, + "釧": 87945, + "👫🏿": 87946, + "婭": 87947, + "͗": 87948, + "靜": 87949, + "圯": 87950, + "🍵": 87951, + "踚": 87952, + "☗": 87953, + "嶴": 87954, + "赮": 87955, + "旝": 87956, + "楫": 87957, + "ǜ": 87958, + "埐": 87959, + "🚵🏿‍♀️": 87960, + "皠": 87961, + "蟻": 87962, + "亗": 87963, + "藑": 87964, + "顈": 87965, + "🧏🏼": 87966, + "牃": 87967, + "🎼": 87968, + "熈": 87969, + "柃": 87970, + "幄": 87971, + "戺": 87972, + "💪🏽": 87973, + "軻": 87974, + "氞": 87975, + "癚": 87976, + "歋": 87977, + "鈧": 87978, + "愲": 87979, + "鶾": 87980, + "🍶": 87981, + "鳥": 87982, + "虛": 87983, + "辥": 87984, + "鵜": 87985, + "ύ": 87986, + "🧑🏽‍🦳": 87987, + "劗": 87988, + "🤷‍♀️": 87989, + "▭": 87990, + "煛": 87991, + "頞": 87992, + "慁": 87993, + "黺": 87994, + "⃤": 87995, + "̱": 87996, + "罉": 87997, + "烇": 87998, + "焄": 87999, + "傐": 88000, + "鍻": 88001, + "鍦": 88002, + "質": 88003, + "欪": 88004, + "👨🏽‍❤️‍💋‍👨🏿": 88005, + "庴": 88006, + "疢": 88007, + "蘐": 88008, + "🇵🇷": 88009, + "🤲🏻": 88010, + "鉫": 88011, + "雧": 88012, + "銪": 88013, + "詑": 88014, + "墐": 88015, + "裺": 88016, + "讥": 88017, + "尨": 88018, + "滶": 88019, + "匃": 88020, + "蹎": 88021, + "🦸": 88022, + "⎄": 88023, + "鄩": 88024, + "尕": 88025, + "👇🏿": 88026, + "旐": 88027, + "氇": 88028, + "Ȯ": 88029, + "褡": 88030, + "焣": 88031, + "籌": 88032, + "👩🏼‍🏫": 88033, + "笟": 88034, + "浭": 88035, + "曢": 88036, + "⚼": 88037, + "坋": 88038, + "矦": 88039, + "鍆": 88040, + "謺": 88041, + "豀": 88042, + "裑": 88043, + "餛": 88044, + "絺": 88045, + "潉": 88046, + "🫅🏽": 88047, + "♕": 88048, + "蔄": 88049, + "礽": 88050, + "笴": 88051, + "藚": 88052, + "锾": 88053, + "磖": 88054, + "浱": 88055, + "🕹": 88056, + "🇸🇩": 88057, + "賭": 88058, + "玴": 88059, + "🤙🏽": 88060, + "嗇": 88061, + "紽": 88062, + "👰🏽‍♀️": 88063, + "薎": 88064, + "硏": 88065, + "躐": 88066, + "⃋": 88067, + "腓": 88068, + "儧": 88069, + "👋🏽": 88070, + "誦": 88071, + "硣": 88072, + "👱🏽‍♀️": 88073, + "📌": 88074, + "灤": 88075, + "緋": 88076, + "怈": 88077, + "葕": 88078, + "鄍": 88079, + "攓": 88080, + "柀": 88081, + "🧙🏻‍♂️": 88082, + "撾": 88083, + "撜": 88084, + "屬": 88085, + "🦔": 88086, + "🫱🏼‍🫲🏾": 88087, + "⒍": 88088, + "◞": 88089, + "隑": 88090, + "🧒🏻": 88091, + "幇": 88092, + "壙": 88093, + "龡": 88094, + "饽": 88095, + "獲": 88096, + "哞": 88097, + "朂": 88098, + "欏": 88099, + "👩🏿‍🚒": 88100, + "粄": 88101, + "榊": 88102, + "塢": 88103, + "蕑": 88104, + "瞾": 88105, + "̳": 88106, + "▥": 88107, + "🧑🏻‍🦱": 88108, + "👨🏿‍🔧": 88109, + "圵": 88110, + "騏": 88111, + "鲿": 88112, + "囥": 88113, + "濗": 88114, + "跈": 88115, + "⏙": 88116, + "烊": 88117, + "✁": 88118, + "擻": 88119, + "✡︎": 88120, + "🐏": 88121, + "鸪": 88122, + "圄": 88123, + "籀": 88124, + "蟰": 88125, + "🧑‍🦼": 88126, + "🇹🇨": 88127, + "🧑🏾‍🦯": 88128, + "♵": 88129, + "藄": 88130, + "婌": 88131, + "頃": 88132, + "腂": 88133, + "溔": 88134, + "磽": 88135, + "悢": 88136, + "👩🏻‍❤️‍👩🏾": 88137, + "瑴": 88138, + "羣": 88139, + "灲": 88140, + "幤": 88141, + "楓": 88142, + "鍣": 88143, + "👨🏿‍💻": 88144, + "焹": 88145, + "劊": 88146, + "Ⓘ": 88147, + "怿": 88148, + "莀": 88149, + "臖": 88150, + "俪": 88151, + "呉": 88152, + "驅": 88153, + "礞": 88154, + "畎": 88155, + "燚": 88156, + "諻": 88157, + "勚": 88158, + "蹸": 88159, + "哊": 88160, + "崺": 88161, + "Ǧ": 88162, + "泭": 88163, + "齉": 88164, + "鐒": 88165, + "💂🏿‍♀️": 88166, + "⍴": 88167, + "骎": 88168, + "┋": 88169, + "柼": 88170, + "濏": 88171, + "嵡": 88172, + "翾": 88173, + "蛫": 88174, + "鹙": 88175, + "跾": 88176, + "🫙": 88177, + "誘": 88178, + "覦": 88179, + "鐌": 88180, + "搔": 88181, + "鷐": 88182, + "冺": 88183, + "🧑‍🍼": 88184, + "媯": 88185, + "葖": 88186, + "🚴🏿": 88187, + "ʧ": 88188, + "瘛": 88189, + "歺": 88190, + "蝬": 88191, + "乽": 88192, + "鰌": 88193, + "曫": 88194, + "祑": 88195, + "鋕": 88196, + "⃩": 88197, + "佒": 88198, + "哳": 88199, + "隩": 88200, + "琒": 88201, + "窏": 88202, + "🤽🏾‍♂️": 88203, + "粓": 88204, + "晿": 88205, + "朳": 88206, + "鄜": 88207, + "跹": 88208, + "鞈": 88209, + "豒": 88210, + "橯": 88211, + "襎": 88212, + "歃": 88213, + "搽": 88214, + "▤": 88215, + "蚪": 88216, + "珉": 88217, + "巇": 88218, + "簔": 88219, + "覱": 88220, + "🫱": 88221, + "灗": 88222, + "冱": 88223, + "邲": 88224, + "瞇": 88225, + "誆": 88226, + "洌": 88227, + "倮": 88228, + "🧑‍💼": 88229, + "疉": 88230, + "║": 88231, + "麪": 88232, + "悓": 88233, + "惵": 88234, + "😦": 88235, + "煷": 88236, + "歎": 88237, + "譶": 88238, + "韐": 88239, + "🔵": 88240, + "訕": 88241, + "ₕ": 88242, + "歭": 88243, + "ζ": 88244, + "鳕": 88245, + "芛": 88246, + "瘗": 88247, + "苖": 88248, + "阥": 88249, + "濓": 88250, + "銯": 88251, + "Ⓖ": 88252, + "👨🏼‍🎓": 88253, + "鳆": 88254, + "輽": 88255, + "帿": 88256, + "載": 88257, + "镋": 88258, + "嚒": 88259, + "綁": 88260, + "圱": 88261, + "絰": 88262, + "🚴🏼‍♂️": 88263, + "镡": 88264, + "⍶": 88265, + "鱡": 88266, + "蕠": 88267, + "ͺ": 88268, + "珩": 88269, + "舏": 88270, + "禦": 88271, + "觸": 88272, + "邐": 88273, + "🪽": 88274, + "🕵🏼": 88275, + "搖": 88276, + "🦫": 88277, + "萭": 88278, + "🇸🇾": 88279, + "💂🏻‍♂️": 88280, + "馭": 88281, + "糓": 88282, + "媃": 88283, + "🧚🏻‍♂️": 88284, + "⚂": 88285, + "蹰": 88286, + "炩": 88287, + "踛": 88288, + "␁": 88289, + "鸐": 88290, + "轞": 88291, + "棴": 88292, + "郦": 88293, + "趤": 88294, + "牾": 88295, + "👎🏿": 88296, + "⁦": 88297, + "📯": 88298, + "鰹": 88299, + "箷": 88300, + "搃": 88301, + "誷": 88302, + "俵": 88303, + "櫾": 88304, + "🍩": 88305, + "欛": 88306, + "稥": 88307, + "觩": 88308, + "凵": 88309, + "͋": 88310, + "⑶": 88311, + "欳": 88312, + "怫": 88313, + "艈": 88314, + "摟": 88315, + "伀": 88316, + "騠": 88317, + "踳": 88318, + "翃": 88319, + "Ū": 88320, + "愸": 88321, + "鴭": 88322, + "👩‍👩‍👦": 88323, + "轟": 88324, + "垚": 88325, + "🧑🏽‍❤️‍🧑🏿": 88326, + "枔": 88327, + "歩": 88328, + "跦": 88329, + "瞉": 88330, + "𓀒": 88331, + "🧑🏽‍🔬": 88332, + "繌": 88333, + "埓": 88334, + "怸": 88335, + "碉": 88336, + "♎": 88337, + "🧑🏼‍⚖️": 88338, + "💆🏾‍♀️": 88339, + "膴": 88340, + "聳": 88341, + "殚": 88342, + "敧": 88343, + "擸": 88344, + "泔": 88345, + "⃅": 88346, + "┶": 88347, + "👨🏿‍❤️‍💋‍👨🏻": 88348, + "冪": 88349, + "磯": 88350, + "蔫": 88351, + "慏": 88352, + "橽": 88353, + "瀭": 88354, + "🪯": 88355, + "鐓": 88356, + "飄": 88357, + "🤹🏼‍♂️": 88358, + "痚": 88359, + "˥": 88360, + "蜇": 88361, + "🧒": 88362, + "𓀋": 88363, + "誰": 88364, + "鍲": 88365, + "🚉": 88366, + "ĸ": 88367, + "🕤": 88368, + "牞": 88369, + "磻": 88370, + "嘣": 88371, + "誥": 88372, + "🛸": 88373, + "熜": 88374, + "鰍": 88375, + "揳": 88376, + "廥": 88377, + "̕": 88378, + "鲢": 88379, + "僖": 88380, + "儬": 88381, + "鬡": 88382, + "魹": 88383, + "樠": 88384, + "鰆": 88385, + "鸹": 88386, + "💆🏽‍♂️": 88387, + "畽": 88388, + "絧": 88389, + "擺": 88390, + "謗": 88391, + "禸": 88392, + "讴": 88393, + "餍": 88394, + "⒇": 88395, + "M": 88396, + "虧": 88397, + "栘": 88398, + "僠": 88399, + "欈": 88400, + "玔": 88401, + "🧑🏻‍❤️‍💋‍🧑🏼": 88402, + "ˌ": 88403, + "嗌": 88404, + "栌": 88405, + "⁔": 88406, + "甡": 88407, + "挿": 88408, + "🌔": 88409, + "墦": 88410, + "棊": 88411, + "惒": 88412, + "🇲🇳": 88413, + "虘": 88414, + "顟": 88415, + "毘": 88416, + "🧑🏽‍🌾": 88417, + "仚": 88418, + "Α": 88419, + "🧘🏻‍♂️": 88420, + "鬔": 88421, + "赲": 88422, + "Ǥ": 88423, + "✉": 88424, + "梒": 88425, + "燖": 88426, + "抎": 88427, + "⊽": 88428, + "鯹": 88429, + "笷": 88430, + "噾": 88431, + "薘": 88432, + "沘": 88433, + "吢": 88434, + "洚": 88435, + "倖": 88436, + "鴚": 88437, + "廦": 88438, + "艚": 88439, + "🦵🏿": 88440, + "͠": 88441, + "崑": 88442, + "⛰": 88443, + "屨": 88444, + "Ű": 88445, + "朥": 88446, + "␏": 88447, + "槔": 88448, + "硷": 88449, + "矽": 88450, + "鬂": 88451, + "葋": 88452, + "璟": 88453, + "拺": 88454, + "礄": 88455, + "捭": 88456, + "娕": 88457, + "遱": 88458, + "👩‍👦": 88459, + "勴": 88460, + "峌": 88461, + "勹": 88462, + "秞": 88463, + "獨": 88464, + "唪": 88465, + "嗋": 88466, + "👨‍👦‍👦": 88467, + "閙": 88468, + "擜": 88469, + "鳮": 88470, + "赟": 88471, + "挵": 88472, + "ʠ": 88473, + "亂": 88474, + "閐": 88475, + "縒": 88476, + "柂": 88477, + "橆": 88478, + "👋": 88479, + "琷": 88480, + "劆": 88481, + "泏": 88482, + "秗": 88483, + "坱": 88484, + "诘": 88485, + "詠": 88486, + "⌕": 88487, + "踨": 88488, + "謟": 88489, + "": 88490, + "耣": 88491, + "🇳🇺": 88492, + "芩": 88493, + "鄋": 88494, + "菢": 88495, + "歏": 88496, + "珹": 88497, + "黢": 88498, + "乮": 88499, + "圑": 88500, + "誽": 88501, + "憟": 88502, + "👇🏼": 88503, + "攨": 88504, + "́": 88505, + "🔡": 88506, + "怘": 88507, + "則": 88508, + "🇾🇪": 88509, + "捽": 88510, + "荴": 88511, + "稺": 88512, + "薌": 88513, + "仴": 88514, + "雃": 88515, + "鐐": 88516, + "鼟": 88517, + "傝": 88518, + "炇": 88519, + "訢": 88520, + "閼": 88521, + "踇": 88522, + "鮉": 88523, + "櫜": 88524, + "韴": 88525, + "袓": 88526, + "伢": 88527, + "扂": 88528, + "🕵🏻‍♂️": 88529, + "昝": 88530, + "渄": 88531, + "缌": 88532, + "晹": 88533, + "胬": 88534, + "擤": 88535, + "👩🏻‍💻": 88536, + "栦": 88537, + "ⅻ": 88538, + "噠": 88539, + "豏": 88540, + "╉": 88541, + "雚": 88542, + "💆🏾‍♂️": 88543, + "噒": 88544, + "瘬": 88545, + "鮿": 88546, + "銧": 88547, + "奦": 88548, + "鋛": 88549, + "隼": 88550, + "艪": 88551, + "剐": 88552, + "≒": 88553, + "": 88554, + "棽": 88555, + "₺": 88556, + "彸": 88557, + "鷰": 88558, + "锵": 88559, + "勆": 88560, + "聦": 88561, + "鬸": 88562, + "堖": 88563, + "瀲": 88564, + "覷": 88565, + "🧍🏼‍♀️": 88566, + "4️⃣": 88567, + "鞲": 88568, + "岺": 88569, + "Ⓢ": 88570, + "👨🏽‍⚖️": 88571, + "礉": 88572, + "扃": 88573, + "娒": 88574, + "鼚": 88575, + "麈": 88576, + "妴": 88577, + "奧": 88578, + "蹨": 88579, + "邝": 88580, + "⍸": 88581, + "艝": 88582, + "耰": 88583, + "峋": 88584, + "熗": 88585, + "裄": 88586, + "鲂": 88587, + "🏑": 88588, + "帻": 88589, + "🛬": 88590, + "裌": 88591, + "蹢": 88592, + "Ī": 88593, + "🐈‍⬛": 88594, + "鱊": 88595, + "縎": 88596, + "螞": 88597, + "纉": 88598, + "🚕": 88599, + "銠": 88600, + "📿": 88601, + "鮥": 88602, + "揦": 88603, + "👨🏼‍❤️‍💋‍👨🏻": 88604, + "矠": 88605, + "👩‍🍼": 88606, + "鐾": 88607, + "鰭": 88608, + "欶": 88609, + "噃": 88610, + "籾": 88611, + "嘏": 88612, + "🇺🇦": 88613, + "茈": 88614, + "⍦": 88615, + "🚧": 88616, + "侲": 88617, + "噺": 88618, + "込": 88619, + "傊": 88620, + "鼍": 88621, + "巀": 88622, + "戼": 88623, + "謴": 88624, + "糎": 88625, + "訦": 88626, + "鷆": 88627, + "厏": 88628, + "蹛": 88629, + "🎃": 88630, + "屩": 88631, + "涫": 88632, + "忬": 88633, + "悕": 88634, + "癪": 88635, + "¸": 88636, + "郷": 88637, + "佗": 88638, + "戱": 88639, + "鮢": 88640, + "娾": 88641, + "鶩": 88642, + "硺": 88643, + "頱": 88644, + "鈮": 88645, + "瑘": 88646, + "⛄": 88647, + "礃": 88648, + "孳": 88649, + "汓": 88650, + "禥": 88651, + "彶": 88652, + "閉": 88653, + "燇": 88654, + "壓": 88655, + "┼": 88656, + "杒": 88657, + "捯": 88658, + "烩": 88659, + "乪": 88660, + "悒": 88661, + "諄": 88662, + "諡": 88663, + "╡": 88664, + "弌": 88665, + "喫": 88666, + "膑": 88667, + "彆": 88668, + "炷": 88669, + "諽": 88670, + "罡": 88671, + "💆‍♀️": 88672, + "淉": 88673, + "蜭": 88674, + "🙍🏼‍♂️": 88675, + "濲": 88676, + "瘧": 88677, + "臑": 88678, + "酤": 88679, + "譲": 88680, + "桀": 88681, + "幥": 88682, + "∳": 88683, + "迻": 88684, + "💹": 88685, + "貧": 88686, + "鎅": 88687, + "絸": 88688, + "蠯": 88689, + "🚠": 88690, + "桭": 88691, + "繂": 88692, + "偹": 88693, + "猠": 88694, + "鳚": 88695, + "胊": 88696, + "忊": 88697, + "迗": 88698, + "撪": 88699, + "ʽ": 88700, + "蓐": 88701, + "谝": 88702, + "蘇": 88703, + "☦": 88704, + "匳": 88705, + "馜": 88706, + "羂": 88707, + "伈": 88708, + "憱": 88709, + "邗": 88710, + "捿": 88711, + "嬇": 88712, + "猷": 88713, + "旀": 88714, + "烡": 88715, + "虰": 88716, + "🎅🏿": 88717, + "卼": 88718, + "癸": 88719, + "≡": 88720, + "饯": 88721, + "幖": 88722, + "蜏": 88723, + "祄": 88724, + "漮": 88725, + "圫": 88726, + "朁": 88727, + "匌": 88728, + "🕗": 88729, + "🏉": 88730, + "埗": 88731, + "⚗": 88732, + "曏": 88733, + "挶": 88734, + "岙": 88735, + "铟": 88736, + "鬏": 88737, + "櫚": 88738, + "檋": 88739, + "剞": 88740, + "ȧ": 88741, + "爜": 88742, + "汆": 88743, + "谠": 88744, + "🧑🏻‍🚀": 88745, + "卩": 88746, + "◣": 88747, + "拶": 88748, + "頊": 88749, + "桘": 88750, + "🍚": 88751, + "栤": 88752, + "🇦🇫": 88753, + "薿": 88754, + "錴": 88755, + "盚": 88756, + "梋": 88757, + "藹": 88758, + "髧": 88759, + "舕": 88760, + "縕": 88761, + "豥": 88762, + "纐": 88763, + "庝": 88764, + "抶": 88765, + "哣": 88766, + "忑": 88767, + "璚": 88768, + "瘋": 88769, + "燏": 88770, + "斈": 88771, + "🧎🏽": 88772, + "⛾": 88773, + "眕": 88774, + "堟": 88775, + "⊬": 88776, + "島": 88777, + "剽": 88778, + "郩": 88779, + "箃": 88780, + "👓": 88781, + "⇊": 88782, + "椉": 88783, + "蠂": 88784, + "癈": 88785, + "鉻": 88786, + "頾": 88787, + "壺": 88788, + "🤦🏾": 88789, + "🧑🏿‍❤️‍🧑🏼": 88790, + "紈": 88791, + "躾": 88792, + "濐": 88793, + "👨🏾‍🔧": 88794, + "韑": 88795, + "數": 88796, + "蒭": 88797, + "♊": 88798, + "煫": 88799, + "鷯": 88800, + "壟": 88801, + "紘": 88802, + "餢": 88803, + "猬": 88804, + "🤓": 88805, + "🇹🇰": 88806, + "🐤": 88807, + "唻": 88808, + "吙": 88809, + "嵖": 88810, + "🇵🇸": 88811, + "酅": 88812, + "皑": 88813, + "🌷": 88814, + "淠": 88815, + "畼": 88816, + "蒶": 88817, + "襐": 88818, + "鉠": 88819, + "Ģ": 88820, + "鼐": 88821, + "篿": 88822, + "鹸": 88823, + "趙": 88824, + "𓀑": 88825, + "繧": 88826, + "👩🏻‍⚖️": 88827, + "弴": 88828, + "✌": 88829, + "墥": 88830, + "罰": 88831, + "絣": 88832, + "緭": 88833, + "ǭ": 88834, + "☢": 88835, + "⛹🏿‍♂️": 88836, + "≁": 88837, + "鵒": 88838, + "奞": 88839, + "挦": 88840, + "暯": 88841, + "⊵": 88842, + "蟷": 88843, + "棸": 88844, + "💅🏾": 88845, + "軸": 88846, + "鵗": 88847, + "鐿": 88848, + "梻": 88849, + "怃": 88850, + "🧔‍♂️": 88851, + "🤷🏻‍♂️": 88852, + "琄": 88853, + "乼": 88854, + "ɀ": 88855, + "蟞": 88856, + "摵": 88857, + "漘": 88858, + "攡": 88859, + "畲": 88860, + "蕸": 88861, + "朸": 88862, + "🙋🏻‍♂️": 88863, + "蠭": 88864, + "瀐": 88865, + "炢": 88866, + "躅": 88867, + "⑞": 88868, + "嚑": 88869, + "🤷🏽": 88870, + "⓱": 88871, + "倊": 88872, + "杣": 88873, + "鴖": 88874, + "笿": 88875, + "⬅️": 88876, + "乹": 88877, + "🚆": 88878, + "矍": 88879, + "肈": 88880, + "庪": 88881, + "鏞": 88882, + "⒓": 88883, + "萇": 88884, + "笲": 88885, + "🧑🏿‍🦽": 88886, + "祻": 88887, + "襝": 88888, + "*️⃣": 88889, + "櫄": 88890, + "🧑🏽‍🚀": 88891, + "簞": 88892, + "🛩": 88893, + "雑": 88894, + "蟿": 88895, + "堀": 88896, + "摗": 88897, + "瘏": 88898, + "襜": 88899, + "奮": 88900, + "缇": 88901, + "庈": 88902, + "爊": 88903, + "級": 88904, + "嵪": 88905, + "纋": 88906, + "😕": 88907, + "孒": 88908, + "ƻ": 88909, + "鳂": 88910, + "💂🏽‍♂️": 88911, + "🐠": 88912, + "紮": 88913, + "͞": 88914, + "惦": 88915, + "蹁": 88916, + "燍": 88917, + "🤱🏻": 88918, + "🫒": 88919, + "暩": 88920, + "炛": 88921, + "🧍🏿‍♀️": 88922, + "鑙": 88923, + "🧑🏻‍❤️‍🧑🏽": 88924, + "婳": 88925, + "臷": 88926, + "💇🏿": 88927, + "溝": 88928, + "眊": 88929, + "␞": 88930, + "🍢": 88931, + "翎": 88932, + "梴": 88933, + "👷🏿‍♀️": 88934, + "峹": 88935, + "譱": 88936, + "鴌": 88937, + "渪": 88938, + "🧑🏽‍❤️‍🧑🏻": 88939, + "睗": 88940, + "迠": 88941, + "鰪": 88942, + "🤸🏽": 88943, + "珐": 88944, + "孭": 88945, + "黹": 88946, + "徲": 88947, + "搟": 88948, + "😧": 88949, + "👩🏻‍🦽": 88950, + "檗": 88951, + "钸": 88952, + "艠": 88953, + "菚": 88954, + "翢": 88955, + "氎": 88956, + "旳": 88957, + "乣": 88958, + "抋": 88959, + "凘": 88960, + "🏋🏾‍♂️": 88961, + "˼": 88962, + "儃": 88963, + "摏": 88964, + "👱‍♂️": 88965, + "靬": 88966, + "蝮": 88967, + "摍": 88968, + "沰": 88969, + "🧕🏾": 88970, + "韫": 88971, + "ɜ": 88972, + "瓫": 88973, + "栫": 88974, + "衄": 88975, + "殉": 88976, + "嗠": 88977, + "诜": 88978, + "🐼": 88979, + "騢": 88980, + "萻": 88981, + "黋": 88982, + "収": 88983, + "湮": 88984, + "螥": 88985, + "礯": 88986, + "鲪": 88987, + "哯": 88988, + "痟": 88989, + "🥅": 88990, + "鶙": 88991, + "籿": 88992, + "娸": 88993, + "蒣": 88994, + "乫": 88995, + "📞": 88996, + "⏎": 88997, + "鰯": 88998, + "漐": 88999, + "萘": 89000, + "♅": 89001, + "繃": 89002, + "椕": 89003, + "🧘🏽‍♀️": 89004, + "绾": 89005, + "熤": 89006, + "苐": 89007, + "衺": 89008, + "扢": 89009, + "闌": 89010, + "赂": 89011, + "擋": 89012, + "鱭": 89013, + "蓆": 89014, + "頟": 89015, + "瀶": 89016, + "髗": 89017, + "🦇": 89018, + "蜦": 89019, + "垐": 89020, + "🌸": 89021, + "螵": 89022, + "釰": 89023, + "⋙": 89024, + "夛": 89025, + "維": 89026, + "魮": 89027, + "瘶": 89028, + "鈋": 89029, + "⇺": 89030, + "錫": 89031, + "👨🏼‍🎤": 89032, + "埲": 89033, + "舎": 89034, + "翈": 89035, + "鮃": 89036, + "⬜️": 89037, + "璲": 89038, + "鱶": 89039, + "卄": 89040, + "惲": 89041, + "杵": 89042, + "📙": 89043, + "涖": 89044, + "⏅": 89045, + "🧑🏽‍✈️": 89046, + "✴️": 89047, + "锒": 89048, + "🎽": 89049, + "臶": 89050, + "🤽🏾‍♀️": 89051, + "踴": 89052, + "🔃": 89053, + "鯄": 89054, + "硙": 89055, + "闟": 89056, + "🧑🏽‍🦲": 89057, + "臦": 89058, + "壎": 89059, + "🍰": 89060, + "蚱": 89061, + "厔": 89062, + "簛": 89063, + "👩🏽‍💼": 89064, + "ⓡ": 89065, + "🔴": 89066, + "🤶🏿": 89067, + "🏝": 89068, + "僬": 89069, + "殑": 89070, + "🤾": 89071, + "⑗": 89072, + "軧": 89073, + "鳴": 89074, + "厡": 89075, + "炓": 89076, + "槁": 89077, + "篥": 89078, + "🛎": 89079, + "鲆": 89080, + "哢": 89081, + "孧": 89082, + "鲬": 89083, + "欂": 89084, + "鶿": 89085, + "竐": 89086, + "韲": 89087, + "🏮": 89088, + "禞": 89089, + "哖": 89090, + "莛": 89091, + "Ũ": 89092, + "釲": 89093, + "鬿": 89094, + "👨‍🎨": 89095, + "廱": 89096, + "鰎": 89097, + "楝": 89098, + "闂": 89099, + "馮": 89100, + "輕": 89101, + "喛": 89102, + "聧": 89103, + "矱": 89104, + "簝": 89105, + "🈶": 89106, + "🫱🏿‍🫲🏼": 89107, + "蓊": 89108, + "詟": 89109, + "蜩": 89110, + "💑🏼": 89111, + "⏈": 89112, + "睅": 89113, + "弉": 89114, + "惡": 89115, + "💁🏻": 89116, + "齫": 89117, + "鮑": 89118, + "🙅🏿‍♀️": 89119, + "ˮ": 89120, + "黖": 89121, + "📥": 89122, + "婛": 89123, + "💅🏼": 89124, + "獞": 89125, + "輙": 89126, + "⌠": 89127, + "鳉": 89128, + "穜": 89129, + "峆": 89130, + "闎": 89131, + "✢": 89132, + "⎐": 89133, + "筨": 89134, + "豴": 89135, + "ɿ": 89136, + "🙋🏾‍♂️": 89137, + "搮": 89138, + "櫆": 89139, + "👐🏼": 89140, + "珧": 89141, + "鐎": 89142, + "🫱🏿‍🫲🏻": 89143, + "馥": 89144, + "⍤": 89145, + "枺": 89146, + "🍖": 89147, + "訾": 89148, + "趛": 89149, + "蔔": 89150, + "鰨": 89151, + "敃": 89152, + "圜": 89153, + "姮": 89154, + "釘": 89155, + "☌": 89156, + "輄": 89157, + "書": 89158, + "憢": 89159, + "👨‍👧‍👦": 89160, + "曩": 89161, + "₅": 89162, + "♇": 89163, + "羠": 89164, + "戝": 89165, + "刪": 89166, + "🧗‍♀️": 89167, + "坭": 89168, + "棃": 89169, + "📛": 89170, + "鼙": 89171, + "嬞": 89172, + "讛": 89173, + "🏃🏼‍♀️": 89174, + "铏": 89175, + "纭": 89176, + "🧑🏼‍🦼": 89177, + "🧓": 89178, + "跡": 89179, + "瑎": 89180, + "騨": 89181, + "😏": 89182, + "蒡": 89183, + "🧭": 89184, + "鏹": 89185, + "逌": 89186, + "倭": 89187, + "禊": 89188, + "璺": 89189, + "🚣🏻": 89190, + "蚞": 89191, + "🧑‍🦰": 89192, + "瓁": 89193, + "🪐": 89194, + "🙍": 89195, + "譮": 89196, + "禌": 89197, + "⒡": 89198, + "舵": 89199, + "釐": 89200, + "⌀": 89201, + "‬": 89202, + "⅞": 89203, + "Ⅾ": 89204, + "虈": 89205, + "鴛": 89206, + "檁": 89207, + "劔": 89208, + "烉": 89209, + "鎸": 89210, + "蔦": 89211, + "👮🏾‍♀️": 89212, + "窣": 89213, + "👏🏿": 89214, + "": 89215, + "🦕": 89216, + "鎦": 89217, + "🫱🏿": 89218, + "樿": 89219, + "鎩": 89220, + "╝": 89221, + "玕": 89222, + "嫧": 89223, + "鐆": 89224, + "汔": 89225, + "瘱": 89226, + "鲥": 89227, + "勛": 89228, + "🧥": 89229, + "邫": 89230, + "蓺": 89231, + "銇": 89232, + "🥍": 89233, + "琡": 89234, + "👩🏿‍❤️‍💋‍👩🏽": 89235, + "⛠": 89236, + "馞": 89237, + "粌": 89238, + "鯍": 89239, + "嚰": 89240, + "腒": 89241, + "蚒": 89242, + "鷍": 89243, + "🕔": 89244, + "🧖🏿‍♀️": 89245, + "誤": 89246, + "酎": 89247, + "🧚🏿": 89248, + "🛹": 89249, + "5️⃣": 89250, + "🇹🇳": 89251, + "珪": 89252, + "钨": 89253, + "迋": 89254, + "圎": 89255, + "薧": 89256, + "🚗": 89257, + "渇": 89258, + "玧": 89259, + "刣": 89260, + "锕": 89261, + "琑": 89262, + "蛶": 89263, + "猡": 89264, + "縣": 89265, + "忈": 89266, + "鑊": 89267, + "璼": 89268, + "🤑": 89269, + "🇭🇷": 89270, + "ϓ": 89271, + "🫱🏽": 89272, + "鳔": 89273, + "俲": 89274, + "弾": 89275, + "雓": 89276, + "絼": 89277, + "賨": 89278, + "⚿": 89279, + "偪": 89280, + "縖": 89281, + "堃": 89282, + "罵": 89283, + "滝": 89284, + "🃏": 89285, + "浌": 89286, + "螅": 89287, + "籢": 89288, + "踙": 89289, + "峚": 89290, + "鱳": 89291, + "篚": 89292, + "惥": 89293, + "敼": 89294, + "秜": 89295, + "⊇": 89296, + "鯙": 89297, + "🧗🏿‍♀️": 89298, + "绔": 89299, + "姇": 89300, + "黰": 89301, + "妶": 89302, + "Ï": 89303, + "萲": 89304, + "餱": 89305, + "梩": 89306, + "🫱🏼‍🫲🏽": 89307, + "🪙": 89308, + "铪": 89309, + "勈": 89310, + "谗": 89311, + "枥": 89312, + "👨🏿‍⚖️": 89313, + "痯": 89314, + "🦋": 89315, + "芠": 89316, + "侫": 89317, + "骲": 89318, + "螸": 89319, + "👨‍🏭": 89320, + "👨🏾‍🦳": 89321, + "趜": 89322, + "鳱": 89323, + "颩": 89324, + "栞": 89325, + "駒": 89326, + "嶚": 89327, + "貴": 89328, + "鰫": 89329, + "埯": 89330, + "鏏": 89331, + "竝": 89332, + "寯": 89333, + "莮": 89334, + "倞": 89335, + "墇": 89336, + "蟧": 89337, + "🛂": 89338, + "偰": 89339, + "簠": 89340, + "攳": 89341, + "聃": 89342, + "磏": 89343, + "⓴": 89344, + "賛": 89345, + "珛": 89346, + "篬": 89347, + "憣": 89348, + "⎭": 89349, + "癶": 89350, + "倕": 89351, + "騽": 89352, + "鶠": 89353, + "捩": 89354, + "🇨🇿": 89355, + "饐": 89356, + "♣": 89357, + "艴": 89358, + "蹚": 89359, + "鹡": 89360, + "⚣": 89361, + "畹": 89362, + "𓀅": 89363, + "妦": 89364, + "逈": 89365, + "燔": 89366, + "薬": 89367, + "艮": 89368, + "竆": 89369, + "庿": 89370, + "晳": 89371, + "湣": 89372, + "闕": 89373, + "≹": 89374, + "唳": 89375, + "👨🏽‍🦼": 89376, + "仌": 89377, + "鞬": 89378, + "鹗": 89379, + "暙": 89380, + "🥒": 89381, + "鵕": 89382, + "藽": 89383, + "🤰": 89384, + "磟": 89385, + "琍": 89386, + "𓀂": 89387, + "🧑‍🎨": 89388, + "賶": 89389, + "⌿": 89390, + "⚒": 89391, + "蠴": 89392, + "褰": 89393, + "啀": 89394, + "撃": 89395, + "爿": 89396, + "⁺": 89397, + "禚": 89398, + "Ύ": 89399, + "谽": 89400, + "ļ": 89401, + "猼": 89402, + "棧": 89403, + "🦹🏼": 89404, + "秅": 89405, + "薋": 89406, + "🇩🇪": 89407, + "旟": 89408, + "👍🏼": 89409, + "💁🏿‍♂️": 89410, + "纀": 89411, + "锊": 89412, + "⇜": 89413, + "🇸🇦": 89414, + "姎": 89415, + "爺": 89416, + "濫": 89417, + "🧧": 89418, + "♶": 89419, + "訳": 89420, + "坳": 89421, + "🫎": 89422, + "扚": 89423, + "堷": 89424, + "谹": 89425, + "岹": 89426, + "層": 89427, + "洩": 89428, + "涏": 89429, + "玱": 89430, + "阩": 89431, + "桊": 89432, + "唊": 89433, + "🙇🏻‍♀️": 89434, + "🦹‍♀️": 89435, + "舂": 89436, + "絯": 89437, + "艟": 89438, + "棤": 89439, + "嬶": 89440, + "🧚🏾‍♀️": 89441, + "👩🏻‍✈️": 89442, + "⚥": 89443, + "餌": 89444, + "敇": 89445, + "姾": 89446, + "鞄": 89447, + "⚔": 89448, + "↽": 89449, + "癃": 89450, + "👩‍❤️‍💋‍👩": 89451, + "歁": 89452, + "💇🏼‍♀️": 89453, + "ⁿ": 89454, + "膋": 89455, + "Ê": 89456, + "🙍🏼": 89457, + "瀉": 89458, + "茆": 89459, + "🧝🏾‍♂️": 89460, + "镄": 89461, + "墄": 89462, + "冫": 89463, + "錟": 89464, + "脳": 89465, + "貳": 89466, + "鹕": 89467, + "噋": 89468, + "👇🏾": 89469, + "喙": 89470, + "辯": 89471, + "鐨": 89472, + "婑": 89473, + "錈": 89474, + "镻": 89475, + "瘅": 89476, + "郂": 89477, + "⒫": 89478, + "Ǚ": 89479, + "阦": 89480, + "躪": 89481, + "🏏": 89482, + "妭": 89483, + "珎": 89484, + "箩": 89485, + "弻": 89486, + "🇨🇦": 89487, + "邕": 89488, + "暲": 89489, + "闏": 89490, + "黷": 89491, + "👆🏼": 89492, + "熕": 89493, + "蒮": 89494, + "⑌": 89495, + "咟": 89496, + "膣": 89497, + "鱎": 89498, + "彌": 89499, + "弪": 89500, + "貏": 89501, + "脀": 89502, + "尌": 89503, + "箄": 89504, + "寑": 89505, + "彑": 89506, + "鞁": 89507, + "⌓": 89508, + "🏒": 89509, + "奿": 89510, + "⛦": 89511, + "婊": 89512, + "誳": 89513, + "歰": 89514, + "葻": 89515, + "嵒": 89516, + "鄶": 89517, + "雬": 89518, + "‴": 89519, + "颾": 89520, + "菨": 89521, + "伕": 89522, + "攖": 89523, + "褸": 89524, + "🙋🏿‍♀️": 89525, + "羗": 89526, + "邴": 89527, + "🥯": 89528, + "旞": 89529, + "铕": 89530, + "赼": 89531, + "👩🏾": 89532, + "憍": 89533, + "鍃": 89534, + "🙇🏼": 89535, + "朶": 89536, + "嘊": 89537, + "縵": 89538, + "楾": 89539, + "疞": 89540, + "巿": 89541, + "👩🏽‍🦽": 89542, + "ɥ": 89543, + "钽": 89544, + "尠": 89545, + "躭": 89546, + "鎈": 89547, + "惌": 89548, + "嬆": 89549, + "証": 89550, + "🌚": 89551, + "溮": 89552, + "🏄🏿‍♀️": 89553, + "岖": 89554, + "長": 89555, + "遙": 89556, + "稌": 89557, + "⍾": 89558, + "琞": 89559, + "♿": 89560, + "𓀆": 89561, + "鋄": 89562, + "⊭": 89563, + "歈": 89564, + "壭": 89565, + "埊": 89566, + "诿": 89567, + "绫": 89568, + "讘": 89569, + "ƞ": 89570, + "鉜": 89571, + "🤲🏿": 89572, + "蓒": 89573, + "殈": 89574, + "檶": 89575, + "忸": 89576, + "尣": 89577, + "犂": 89578, + "偋": 89579, + "泆": 89580, + "薓": 89581, + "悭": 89582, + "輱": 89583, + "📸": 89584, + "帔": 89585, + "↰": 89586, + "‗": 89587, + "尮": 89588, + "喪": 89589, + "🙆🏿‍♂️": 89590, + "Œ": 89591, + "榘": 89592, + "📐": 89593, + "矇": 89594, + "傗": 89595, + "軗": 89596, + "黐": 89597, + "嫗": 89598, + "🦓": 89599, + "⌺": 89600, + "諐": 89601, + "鸱": 89602, + "癄": 89603, + "栭": 89604, + "媕": 89605, + "峅": 89606, + "鷄": 89607, + "愌": 89608, + "吇": 89609, + "謠": 89610, + "籄": 89611, + "驏": 89612, + "額": 89613, + "🧛": 89614, + "🧙🏼": 89615, + "麤": 89616, + "傸": 89617, + "菪": 89618, + "窈": 89619, + "籇": 89620, + "馳": 89621, + "🍔": 89622, + "🧝‍♀️": 89623, + "鶞": 89624, + "怔": 89625, + "弆": 89626, + "𓀀": 89627, + "枃": 89628, + "鏠": 89629, + "΁": 89630, + "砶": 89631, + "甯": 89632, + "➛": 89633, + "貕": 89634, + "臅": 89635, + "🤷🏽‍♀️": 89636, + "ͽ": 89637, + "帹": 89638, + "耼": 89639, + "夞": 89640, + "🧻": 89641, + "砩": 89642, + "殃": 89643, + "舸": 89644, + "⅙": 89645, + "曉": 89646, + "₭": 89647, + "錰": 89648, + "汋": 89649, + "橦": 89650, + "ɠ": 89651, + "罂": 89652, + "🙅🏿‍♂️": 89653, + "犴": 89654, + "懜": 89655, + "葽": 89656, + "鎑": 89657, + "揯": 89658, + "趠": 89659, + "塹": 89660, + "垅": 89661, + "˦": 89662, + "猊": 89663, + "藝": 89664, + "🚴🏿‍♂️": 89665, + "暬": 89666, + "鮙": 89667, + "騝": 89668, + "嚃": 89669, + "蹡": 89670, + "瞋": 89671, + "嗆": 89672, + "🇳🇫": 89673, + "⛹🏽": 89674, + "脤": 89675, + "Ͷ": 89676, + "梈": 89677, + "蕲": 89678, + "👨‍🍳": 89679, + "👨🏻‍🦼": 89680, + "甦": 89681, + "嫒": 89682, + "👩🏼‍🌾": 89683, + "锖": 89684, + "釪": 89685, + "🏄🏾‍♂️": 89686, + "⚷": 89687, + "酞": 89688, + "艊": 89689, + "樄": 89690, + "躎": 89691, + "焜": 89692, + "👨🏿‍❤️‍💋‍👨🏿": 89693, + "朢": 89694, + "骒": 89695, + "⛹🏼‍♀️": 89696, + "呅": 89697, + "榣": 89698, + "焘": 89699, + "犠": 89700, + "睩": 89701, + "祾": 89702, + "👨🏼‍🌾": 89703, + "👎🏻": 89704, + "⓽": 89705, + "笂": 89706, + "鞿": 89707, + "堎": 89708, + "赾": 89709, + "ƚ": 89710, + "奤": 89711, + "臯": 89712, + "啗": 89713, + "鴨": 89714, + "焏": 89715, + "寋": 89716, + "譜": 89717, + "揙": 89718, + "粣": 89719, + "繋": 89720, + "緁": 89721, + "🙆🏻‍♂️": 89722, + "➖": 89723, + "叐": 89724, + "🧑🏻‍🦲": 89725, + "囎": 89726, + "觽": 89727, + "硘": 89728, + "筆": 89729, + "褅": 89730, + "🙏🏽": 89731, + "垯": 89732, + "乬": 89733, + "綽": 89734, + "豣": 89735, + "媰": 89736, + "🤦🏼‍♀️": 89737, + "巵": 89738, + "珓": 89739, + "溬": 89740, + "穨": 89741, + "🚶": 89742, + "轺": 89743, + "芈": 89744, + "迿": 89745, + "": 89746, + "菄": 89747, + "氁": 89748, + "學": 89749, + "甁": 89750, + "跸": 89751, + "駂": 89752, + "儩": 89753, + "铹": 89754, + "🦈": 89755, + "幾": 89756, + "🛗": 89757, + "顡": 89758, + "犰": 89759, + "瀯": 89760, + "溙": 89761, + "🛕": 89762, + "襮": 89763, + "絒": 89764, + "馯": 89765, + "肱": 89766, + "菮": 89767, + "搝": 89768, + "🟠": 89769, + "諲": 89770, + "菻": 89771, + "仜": 89772, + "椀": 89773, + "骠": 89774, + "細": 89775, + "褿": 89776, + "迕": 89777, + "窰": 89778, + "瞶": 89779, + "餁": 89780, + "捓": 89781, + "栮": 89782, + "樰": 89783, + "佯": 89784, + "斎": 89785, + "菎": 89786, + "瘵": 89787, + "樳": 89788, + "绀": 89789, + "┫": 89790, + "耵": 89791, + "蟶": 89792, + "圡": 89793, + "≺": 89794, + "煇": 89795, + "僰": 89796, + "呤": 89797, + "💆🏻": 89798, + "塐": 89799, + "ĥ": 89800, + "綡": 89801, + "監": 89802, + "🧑🏼‍❤️‍🧑🏾": 89803, + "婀": 89804, + "␥": 89805, + "錹": 89806, + "椓": 89807, + "噄": 89808, + "🧑🏼‍💼": 89809, + "␓": 89810, + "濍": 89811, + "鲱": 89812, + "廞": 89813, + "褙": 89814, + "帉": 89815, + "圇": 89816, + "屚": 89817, + "☯": 89818, + "撱": 89819, + "奣": 89820, + "🇻🇺": 89821, + "ɼ": 89822, + "祕": 89823, + "͆": 89824, + "濂": 89825, + "轲": 89826, + "鐖": 89827, + "😩": 89828, + "踀": 89829, + "嫭": 89830, + "罴": 89831, + "崋": 89832, + "稱": 89833, + "忏": 89834, + "睌": 89835, + "⃚": 89836, + "翖": 89837, + "儋": 89838, + "⋞": 89839, + "隗": 89840, + "蘺": 89841, + "諕": 89842, + "埄": 89843, + "‵": 89844, + "晅": 89845, + "惄": 89846, + "謣": 89847, + "絩": 89848, + "鲴": 89849, + "诹": 89850, + "湱": 89851, + "儆": 89852, + "鏴": 89853, + "炕": 89854, + "胵": 89855, + "鴣": 89856, + "秲": 89857, + "隌": 89858, + "賔": 89859, + "👨🏾‍🔬": 89860, + "🚶🏽‍♂️": 89861, + "戨": 89862, + "異": 89863, + "梱": 89864, + "脵": 89865, + "臎": 89866, + "譁": 89867, + "傎": 89868, + "昷": 89869, + "珔": 89870, + "現": 89871, + "畣": 89872, + "愕": 89873, + "墎": 89874, + "娈": 89875, + "礶": 89876, + "挧": 89877, + "⊏": 89878, + "Ɲ": 89879, + "镼": 89880, + "阭": 89881, + "奃": 89882, + "⌧": 89883, + "篈": 89884, + "憈": 89885, + "闳": 89886, + "艸": 89887, + "恵": 89888, + "甕": 89889, + "钃": 89890, + "苫": 89891, + "盰": 89892, + "鶻": 89893, + "⃝": 89894, + "̈́": 89895, + "碖": 89896, + "🇸🇷": 89897, + "💴": 89898, + "鯎": 89899, + "蕥": 89900, + "饚": 89901, + "眑": 89902, + "📍": 89903, + "墧": 89904, + "枲": 89905, + "▍": 89906, + "競": 89907, + "🧁": 89908, + "磢": 89909, + "儂": 89910, + "萐": 89911, + "馰": 89912, + "峯": 89913, + "🧑🏽‍🤝‍🧑🏽": 89914, + "針": 89915, + "龏": 89916, + "琎": 89917, + "屘": 89918, + "鉮": 89919, + "痍": 89920, + "賣": 89921, + "🧘🏾‍♂️": 89922, + "脗": 89923, + "熖": 89924, + "🕛": 89925, + "姭": 89926, + "柹": 89927, + "🟨": 89928, + "牁": 89929, + "卪": 89930, + "逨": 89931, + "茞": 89932, + "瞢": 89933, + "盷": 89934, + "🏄‍♀️": 89935, + "▕": 89936, + "蠪": 89937, + "乨": 89938, + "咑": 89939, + "佦": 89940, + "鵪": 89941, + "詺": 89942, + "钀": 89943, + "ÿ": 89944, + "蓭": 89945, + "橌": 89946, + "諯": 89947, + "Ĉ": 89948, + "鴸": 89949, + "厯": 89950, + "檜": 89951, + "汷": 89952, + "騯": 89953, + "滜": 89954, + "玟": 89955, + "肦": 89956, + "矐": 89957, + "篵": 89958, + "綔": 89959, + "蘮": 89960, + "💺": 89961, + "⊯": 89962, + "暟": 89963, + "砤": 89964, + "皊": 89965, + "澉": 89966, + "羛": 89967, + "癯": 89968, + "啺": 89969, + "👨🏿‍❤️‍👨🏿": 89970, + "貍": 89971, + "耯": 89972, + "🤾🏿‍♀️": 89973, + "鋔": 89974, + "怺": 89975, + "硆": 89976, + "缂": 89977, + "鞰": 89978, + "🐁": 89979, + "鞜": 89980, + "謔": 89981, + "荈": 89982, + "蕏": 89983, + "檤": 89984, + "襞": 89985, + "⎶": 89986, + "壚": 89987, + "ǰ": 89988, + "蛎": 89989, + "🙆🏻": 89990, + "厛": 89991, + "蓽": 89992, + "👨🏿‍💼": 89993, + "瘳": 89994, + "箰": 89995, + "駩": 89996, + "鴼": 89997, + "▎": 89998, + "🧝🏽": 89999, + "瑡": 90000, + "🇫🇯": 90001, + "🧗‍♂️": 90002, + "騘": 90003, + "🖐🏽": 90004, + "嗰": 90005, + "擊": 90006, + "ⓐ": 90007, + "蜋": 90008, + "髬": 90009, + "蒇": 90010, + "碩": 90011, + "麆": 90012, + "毧": 90013, + "🇬🇦": 90014, + "椯": 90015, + "鵢": 90016, + "珿": 90017, + "穒": 90018, + "鎶": 90019, + "👩🏾‍🚀": 90020, + "👨‍👨‍👦": 90021, + "⛮": 90022, + "🏌🏿‍♂️": 90023, + "錛": 90024, + "畉": 90025, + "踓": 90026, + "戲": 90027, + "壴": 90028, + "蚔": 90029, + "鼖": 90030, + "🫵🏽": 90031, + "軹": 90032, + "戁": 90033, + "◬": 90034, + "🫱🏼": 90035, + "雋": 90036, + "詎": 90037, + "🧞‍♂️": 90038, + "⇕": 90039, + "鞟": 90040, + "踄": 90041, + "盂": 90042, + "🕺🏾": 90043, + "匄": 90044, + "滍": 90045, + "攃": 90046, + "胂": 90047, + "↵": 90048, + "錁": 90049, + "⎨": 90050, + "叴": 90051, + "酈": 90052, + "🏃🏾‍♂️": 90053, + "蒌": 90054, + "凣": 90055, + "瘼": 90056, + "👸🏾": 90057, + "💏🏽": 90058, + "ʖ": 90059, + "觧": 90060, + "濅": 90061, + "⊓": 90062, + "廻": 90063, + "庹": 90064, + "噇": 90065, + "棄": 90066, + "🐢": 90067, + "枛": 90068, + "銈": 90069, + "蚡": 90070, + "夠": 90071, + "瞑": 90072, + "敜": 90073, + "慼": 90074, + "蓍": 90075, + "菶": 90076, + "簋": 90077, + "垆": 90078, + "荙": 90079, + "鄸": 90080, + "縅": 90081, + "談": 90082, + "潟": 90083, + "訑": 90084, + "枘": 90085, + "滒": 90086, + "縌": 90087, + "萮": 90088, + "🏊🏽‍♂️": 90089, + "🧜🏻‍♂️": 90090, + "黾": 90091, + "岓": 90092, + "皶": 90093, + "舑": 90094, + "弇": 90095, + "畵": 90096, + "💛": 90097, + "濋": 90098, + "醾": 90099, + "竎": 90100, + "裯": 90101, + "谻": 90102, + "🧑🏼‍🏫": 90103, + "鈑": 90104, + "朾": 90105, + "🦸🏽‍♀️": 90106, + "糞": 90107, + "D": 90108, + "買": 90109, + "ȩ": 90110, + "ň": 90111, + "枀": 90112, + "愞": 90113, + "🧑🏽": 90114, + "恀": 90115, + "躓": 90116, + "嚖": 90117, + "鈣": 90118, + "疄": 90119, + "媇": 90120, + "墸": 90121, + "檩": 90122, + "🤱🏼": 90123, + "棦": 90124, + "騬": 90125, + "撚": 90126, + "滯": 90127, + "嬡": 90128, + "艔": 90129, + "唁": 90130, + "琈": 90131, + "檞": 90132, + "嶪": 90133, + "弁": 90134, + "蜳": 90135, + "鬷": 90136, + "⇅": 90137, + "獮": 90138, + "👼🏾": 90139, + "瀵": 90140, + "習": 90141, + "嶱": 90142, + "窇": 90143, + "慅": 90144, + "錑": 90145, + "澶": 90146, + "橕": 90147, + "Ɋ": 90148, + "潸": 90149, + "侱": 90150, + "襽": 90151, + "閨": 90152, + "訥": 90153, + "茒": 90154, + "乥": 90155, + "🕵🏻": 90156, + "琙": 90157, + "🇱🇹": 90158, + "🧑🏾‍🤝‍🧑🏾": 90159, + "蓎": 90160, + "朹": 90161, + "咗": 90162, + "🤦🏻‍♂️": 90163, + "棂": 90164, + "闋": 90165, + "偦": 90166, + "箛": 90167, + "銜": 90168, + "粚": 90169, + "⎃": 90170, + "荎": 90171, + "偼": 90172, + "鵀": 90173, + "🏋🏽": 90174, + "珝": 90175, + "骞": 90176, + "郇": 90177, + "豕": 90178, + "腫": 90179, + "賥": 90180, + "厓": 90181, + "Ǹ": 90182, + "胠": 90183, + "倏": 90184, + "粠": 90185, + "赦": 90186, + "蔿": 90187, + "胭": 90188, + "閔": 90189, + "餭": 90190, + "曚": 90191, + "缰": 90192, + "歞": 90193, + "₰": 90194, + "狇": 90195, + "👩🏿‍🌾": 90196, + "🛀🏼": 90197, + "覜": 90198, + "顧": 90199, + "鶪": 90200, + "敊": 90201, + "🎌": 90202, + "曭": 90203, + "胾": 90204, + "A": 90205, + "劍": 90206, + "🧗🏾‍♀️": 90207, + "雒": 90208, + "隭": 90209, + "餦": 90210, + "吋": 90211, + "🇨🇷": 90212, + "👷🏼‍♀️": 90213, + "瞝": 90214, + "遀": 90215, + "🈳": 90216, + "筪": 90217, + "釯": 90218, + "撓": 90219, + "暳": 90220, + "桬": 90221, + "̛": 90222, + "刋": 90223, + "🖐🏻": 90224, + "👷🏼‍♂️": 90225, + "刳": 90226, + "捖": 90227, + "Ʒ": 90228, + "廌": 90229, + "👸🏻": 90230, + "裭": 90231, + "嬔": 90232, + "鏕": 90233, + "懎": 90234, + "ģ": 90235, + "箵": 90236, + "穣": 90237, + "馛": 90238, + "🤝🏼": 90239, + "挘": 90240, + "圪": 90241, + "觿": 90242, + "🐧": 90243, + "芏": 90244, + "💪🏼": 90245, + "焠": 90246, + "🙇‍♂️": 90247, + "🤚": 90248, + "🫶🏻": 90249, + "忁": 90250, + "窭": 90251, + "耺": 90252, + "蚥": 90253, + "⎜": 90254, + "殗": 90255, + "抨": 90256, + "⎝": 90257, + "効": 90258, + "唷": 90259, + "鹾": 90260, + "磱": 90261, + "絛": 90262, + "俷": 90263, + "坔": 90264, + "痽": 90265, + "骧": 90266, + "筌": 90267, + "蟲": 90268, + "煦": 90269, + "攧": 90270, + "糤": 90271, + "虵": 90272, + "滄": 90273, + "⅕": 90274, + "瀤": 90275, + "検": 90276, + "👩🏿‍❤️‍💋‍👩🏻": 90277, + "灠": 90278, + "靌": 90279, + "嫆": 90280, + "⁊": 90281, + "🐦‍⬛": 90282, + "⌰": 90283, + "鵣": 90284, + "淣": 90285, + "褃": 90286, + "氜": 90287, + "瀓": 90288, + "💃🏿": 90289, + "徹": 90290, + "🧑🏽‍🚒": 90291, + "俠": 90292, + "劀": 90293, + "洡": 90294, + "🇪🇷": 90295, + "娉": 90296, + "斘": 90297, + "🇨🇽": 90298, + "詷": 90299, + "埨": 90300, + "ǿ": 90301, + "⑺": 90302, + "踞": 90303, + "👨🏾‍🦽": 90304, + "垕": 90305, + "鍀": 90306, + "🧚🏼‍♀️": 90307, + "蟄": 90308, + "⁜": 90309, + "眎": 90310, + "瀕": 90311, + "暓": 90312, + "痺": 90313, + "⁻": 90314, + "禍": 90315, + "谟": 90316, + "嶢": 90317, + "忨": 90318, + "評": 90319, + "詙": 90320, + "镾": 90321, + "證": 90322, + "敳": 90323, + "殯": 90324, + "🚵🏽‍♀️": 90325, + "唴": 90326, + "灴": 90327, + "萷": 90328, + "╃": 90329, + "💁‍♂️": 90330, + "頚": 90331, + "🧑🏼‍🎨": 90332, + "ɬ": 90333, + "👏": 90334, + "🦺": 90335, + "姁": 90336, + "鎋": 90337, + "ϒ": 90338, + "槗": 90339, + "苼": 90340, + "鱥": 90341, + "韸": 90342, + "👩‍🚀": 90343, + "竬": 90344, + "檙": 90345, + "祲": 90346, + "碋": 90347, + "鎠": 90348, + "⍩": 90349, + "褑": 90350, + "衳": 90351, + "👭": 90352, + "🖕🏻": 90353, + "疇": 90354, + "焮": 90355, + "丌": 90356, + "🧕🏽": 90357, + "‶": 90358, + "⁓": 90359, + "剦": 90360, + "獩": 90361, + "🏃‍♂️": 90362, + "≲": 90363, + "蒷": 90364, + "穲": 90365, + "🎫": 90366, + "💇🏻‍♀️": 90367, + "啛": 90368, + "🏃🏿‍♂️": 90369, + "徝": 90370, + "広": 90371, + "☝🏽": 90372, + "権": 90373, + "枡": 90374, + "麲": 90375, + "猯": 90376, + "縩": 90377, + "鲚": 90378, + "⇣": 90379, + "Ζ": 90380, + "🧖": 90381, + "萵": 90382, + "⇾": 90383, + "鍅": 90384, + "瓼": 90385, + "麝": 90386, + "🧂": 90387, + "唕": 90388, + "巚": 90389, + "蛿": 90390, + "麍": 90391, + "🦎": 90392, + "ⅅ": 90393, + "炥": 90394, + "瘷": 90395, + "🏋️‍♀️": 90396, + "徬": 90397, + "ɳ": 90398, + "噻": 90399, + "賍": 90400, + "軒": 90401, + "☛": 90402, + "偸": 90403, + "諂": 90404, + "軯": 90405, + "姴": 90406, + "浈": 90407, + "蚵": 90408, + "🕵🏽": 90409, + "嶬": 90410, + "詔": 90411, + "牅": 90412, + "玒": 90413, + "扞": 90414, + "毪": 90415, + "🧎🏾‍♂️": 90416, + "Ș": 90417, + "⊕": 90418, + "罱": 90419, + "魇": 90420, + "柋": 90421, + "橴": 90422, + "揌": 90423, + "噿": 90424, + "⋛": 90425, + "🛻": 90426, + "宑": 90427, + "屓": 90428, + "榉": 90429, + "鯈": 90430, + "苧": 90431, + "ⅴ": 90432, + "蕂": 90433, + "蹽": 90434, + "糂": 90435, + "🧗🏼": 90436, + "ℱ": 90437, + "翽": 90438, + "☊": 90439, + "萿": 90440, + "猨": 90441, + "👰🏿‍♀️": 90442, + "喐": 90443, + "🕑": 90444, + "鉑": 90445, + "苚": 90446, + "豽": 90447, + "昀": 90448, + "👴🏽": 90449, + "珜": 90450, + "Ɣ": 90451, + "搈": 90452, + "🏗": 90453, + "罊": 90454, + "栕": 90455, + "鴦": 90456, + "硃": 90457, + "滙": 90458, + "爀": 90459, + "垞": 90460, + "🚏": 90461, + "榗": 90462, + "钒": 90463, + "勢": 90464, + "🪇": 90465, + "坹": 90466, + "稬": 90467, + "📷": 90468, + "繄": 90469, + "噘": 90470, + "👩🏻‍❤️‍💋‍👩🏿": 90471, + "鱁": 90472, + "碇": 90473, + "郶": 90474, + "💃🏻": 90475, + "Ŕ": 90476, + "矯": 90477, + "🇦🇩": 90478, + "犑": 90479, + "洰": 90480, + "鄏": 90481, + "冊": 90482, + "禮": 90483, + "咥": 90484, + "🏩": 90485, + "蟪": 90486, + "驉": 90487, + "鉿": 90488, + "呭": 90489, + "掁": 90490, + "迮": 90491, + "珆": 90492, + "傰": 90493, + "酹": 90494, + "抍": 90495, + "锜": 90496, + "栱": 90497, + "氚": 90498, + "豨": 90499, + "癴": 90500, + "👨🏾‍🎓": 90501, + "🏊‍♀️": 90502, + "螧": 90503, + "ȶ": 90504, + "镱": 90505, + "👨🏼‍🦲": 90506, + "榸": 90507, + "蠈": 90508, + "圿": 90509, + "🙍🏻‍♂️": 90510, + "尻": 90511, + "瀗": 90512, + "蘯": 90513, + "鬚": 90514, + "哹": 90515, + "🔕": 90516, + "槶": 90517, + "鐘": 90518, + "鼺": 90519, + "髻": 90520, + "糆": 90521, + "筅": 90522, + "賾": 90523, + "嵔": 90524, + "👩‍❤️‍👨": 90525, + "況": 90526, + "慉": 90527, + "肓": 90528, + "🗼": 90529, + "‧": 90530, + "鞑": 90531, + "徿": 90532, + "胛": 90533, + "🚵🏾‍♀️": 90534, + "穈": 90535, + "鷀": 90536, + "姯": 90537, + "糒": 90538, + "秾": 90539, + "🛜": 90540, + "袣": 90541, + "霟": 90542, + "椧": 90543, + "鮈": 90544, + "痻": 90545, + "🧛🏼‍♀️": 90546, + "縠": 90547, + "⎬": 90548, + "襠": 90549, + "魡": 90550, + "崪": 90551, + "筼": 90552, + "🔅": 90553, + "🕰": 90554, + "🧑🏽‍❤️‍💋‍🧑🏿": 90555, + "🫱🏼‍🫲🏿": 90556, + "⃘": 90557, + "祔": 90558, + "👬🏽": 90559, + "懕": 90560, + "顀": 90561, + "🧷": 90562, + "馿": 90563, + "劏": 90564, + "ⓢ": 90565, + "諀": 90566, + "🧑🏼‍🚒": 90567, + "⭕️": 90568, + "窬": 90569, + "偣": 90570, + "俌": 90571, + "蒎": 90572, + "縬": 90573, + "咠": 90574, + "蓯": 90575, + "謋": 90576, + "臝": 90577, + "稯": 90578, + "敆": 90579, + "熫": 90580, + "熻": 90581, + "💑🏿": 90582, + "巈": 90583, + "酆": 90584, + "🧑🏼‍🦽": 90585, + "臲": 90586, + "媭": 90587, + "♠": 90588, + "圦": 90589, + "𓀖": 90590, + "懨": 90591, + "🥓": 90592, + "ȓ": 90593, + "🧑🏻‍❤️‍🧑🏼": 90594, + "縱": 90595, + "魋": 90596, + "渮": 90597, + "趫": 90598, + "嗢": 90599, + "搶": 90600, + "👨🏽‍🦱": 90601, + "👩🏾‍❤️‍💋‍👩🏻": 90602, + "瓩": 90603, + "滭": 90604, + "ⓤ": 90605, + "欼": 90606, + "鷃": 90607, + "毹": 90608, + "🧜🏻‍♀️": 90609, + "鱚": 90610, + "狴": 90611, + "嫬": 90612, + "創": 90613, + "鑺": 90614, + "͊": 90615, + "笅": 90616, + "🟰": 90617, + "蟬": 90618, + "釽": 90619, + "Ş": 90620, + "鵍": 90621, + "垶": 90622, + "🧎🏿": 90623, + "帱": 90624, + "👩🏼‍🦲": 90625, + "🤦🏿‍♀️": 90626, + "👩🏿‍❤️‍👨🏽": 90627, + "窩": 90628, + "👴": 90629, + "Ţ": 90630, + "呔": 90631, + "澱": 90632, + "艗": 90633, + "蝷": 90634, + "鲳": 90635, + "➞": 90636, + "篸": 90637, + "媓": 90638, + "☐": 90639, + "藼": 90640, + "鴲": 90641, + "鳒": 90642, + "🧘🏻‍♀️": 90643, + "🏣": 90644, + "疍": 90645, + "踿": 90646, + "捁": 90647, + "衴": 90648, + "醯": 90649, + "鳣": 90650, + "穳": 90651, + "‡": 90652, + "ⓜ": 90653, + "鲻": 90654, + "Ⅿ": 90655, + "詅": 90656, + "槮": 90657, + "罧": 90658, + "Ư": 90659, + "耱": 90660, + "嬳": 90661, + "👨🏿‍🍳": 90662, + "呖": 90663, + "忟": 90664, + "鼩": 90665, + "骽": 90666, + "🧑‍🏫": 90667, + "💇🏽": 90668, + "顪": 90669, + "絈": 90670, + "诤": 90671, + "鋵": 90672, + "璭": 90673, + "煅": 90674, + "侢": 90675, + "軤": 90676, + "剭": 90677, + "🇧🇩": 90678, + "髆": 90679, + "籪": 90680, + "𓀏": 90681, + "峿": 90682, + "👸🏿": 90683, + "🔦": 90684, + "鏨": 90685, + "🏃🏼": 90686, + "␸": 90687, + "冭": 90688, + "蛡": 90689, + "誴": 90690, + "📠": 90691, + "袾": 90692, + "罒": 90693, + "霳": 90694, + "蠇": 90695, + "峤": 90696, + "髥": 90697, + "珯": 90698, + "葧": 90699, + "🕌": 90700, + "嚮": 90701, + "憑": 90702, + "跚": 90703, + "恔": 90704, + "匋": 90705, + "鉢": 90706, + "杦": 90707, + "🦻🏻": 90708, + "🧑🏽‍🦼": 90709, + "鰚": 90710, + "👩🏼‍❤️‍👩🏿": 90711, + "⏄": 90712, + "篞": 90713, + "夁": 90714, + "焲": 90715, + "溱": 90716, + "炐": 90717, + "⏣": 90718, + "裞": 90719, + "妉": 90720, + "髰": 90721, + "🏊🏾‍♀️": 90722, + "枈": 90723, + "躷": 90724, + "侹": 90725, + "╏": 90726, + "憚": 90727, + "焍": 90728, + "禎": 90729, + "詪": 90730, + "輧": 90731, + "郄": 90732, + "⌼": 90733, + "穚": 90734, + "俳": 90735, + "稉": 90736, + "桴": 90737, + "🔆": 90738, + "癠": 90739, + "龕": 90740, + "棾": 90741, + "梃": 90742, + "哏": 90743, + "垊": 90744, + "滖": 90745, + "鈻": 90746, + "🧒🏼": 90747, + "虪": 90748, + "ʔ": 90749, + "帞": 90750, + "欦": 90751, + "寽": 90752, + "ℰ": 90753, + "埕": 90754, + "翧": 90755, + "伓": 90756, + "笜": 90757, + "欫": 90758, + "椈": 90759, + "犢": 90760, + "↯": 90761, + "鸄": 90762, + "絕": 90763, + "碢": 90764, + "遌": 90765, + "鹈": 90766, + "鲅": 90767, + "搎": 90768, + "▚": 90769, + "誡": 90770, + "⋒": 90771, + "∣": 90772, + "靣": 90773, + "苲": 90774, + "烖": 90775, + "≱": 90776, + "埫": 90777, + "揈": 90778, + "漼": 90779, + "廡": 90780, + "漛": 90781, + "籝": 90782, + "˽": 90783, + "魻": 90784, + "渉": 90785, + "↫": 90786, + "浞": 90787, + "礇": 90788, + "櫩": 90789, + "涑": 90790, + "庼": 90791, + "儾": 90792, + "揘": 90793, + "攌": 90794, + "闝": 90795, + "妟": 90796, + "敠": 90797, + "洬": 90798, + "鈢": 90799, + "牑": 90800, + "漡": 90801, + "👩🏻‍🍳": 90802, + "⛺": 90803, + "跂": 90804, + "👮🏼": 90805, + "隷": 90806, + "廫": 90807, + "嗥": 90808, + "墛": 90809, + "☲": 90810, + "筭": 90811, + "🔪": 90812, + "祗": 90813, + "畬": 90814, + "🟤": 90815, + "⚸": 90816, + "鯗": 90817, + "焿": 90818, + "鉁": 90819, + "🍝": 90820, + "轪": 90821, + "騼": 90822, + "萸": 90823, + "鎮": 90824, + "譓": 90825, + "🔩": 90826, + "礴": 90827, + "頪": 90828, + "蚚": 90829, + "◮": 90830, + "彉": 90831, + "楡": 90832, + "纕": 90833, + "≀": 90834, + "換": 90835, + "眹": 90836, + "厐": 90837, + "🌠": 90838, + "倢": 90839, + "裪": 90840, + "彂": 90841, + "盫": 90842, + "💅🏻": 90843, + "🙌": 90844, + "鸸": 90845, + "ʌ": 90846, + "譢": 90847, + "🎟": 90848, + "▩": 90849, + "枵": 90850, + "👩🏼‍🍳": 90851, + "🇧🇪": 90852, + "🚣🏿‍♂️": 90853, + "嘝": 90854, + "🤦🏽‍♀️": 90855, + "≑": 90856, + "孃": 90857, + "┖": 90858, + "猏": 90859, + "洔": 90860, + "👰🏿": 90861, + "嚄": 90862, + "磭": 90863, + "紒": 90864, + "栀": 90865, + "ŏ": 90866, + "≇": 90867, + "🤷🏼": 90868, + "🎱": 90869, + "湧": 90870, + "羚": 90871, + "傀": 90872, + "磇": 90873, + "瑀": 90874, + "眗": 90875, + "🍻": 90876, + "茮": 90877, + "僄": 90878, + "礹": 90879, + "慶": 90880, + "龍": 90881, + "牤": 90882, + "👩🏼‍❤️‍👩🏽": 90883, + "俔": 90884, + "旻": 90885, + "📀": 90886, + "掑": 90887, + "╳": 90888, + "凖": 90889, + "嘄": 90890, + "肹": 90891, + "襚": 90892, + "蠆": 90893, + "鎚": 90894, + "愀": 90895, + "粅": 90896, + "霧": 90897, + "🤷🏻": 90898, + "廳": 90899, + "🫗": 90900, + "燧": 90901, + "幊": 90902, + "🟡": 90903, + "潂": 90904, + "脲": 90905, + "🛺": 90906, + "燅": 90907, + "孀": 90908, + "無": 90909, + "↴": 90910, + "🧙🏿‍♂️": 90911, + "🐇": 90912, + "榓": 90913, + "谆": 90914, + "窱": 90915, + "镊": 90916, + "鰘": 90917, + "媆": 90918, + "璱": 90919, + "儨": 90920, + "🍐": 90921, + "缎": 90922, + "澦": 90923, + "瞫": 90924, + "顐": 90925, + "蔝": 90926, + "聡": 90927, + "🐲": 90928, + "馣": 90929, + "⚈": 90930, + "鼤": 90931, + "遳": 90932, + "跫": 90933, + "🌥": 90934, + "銳": 90935, + "蕮": 90936, + "験": 90937, + "擞": 90938, + "酄": 90939, + "漚": 90940, + "逇": 90941, + "圶": 90942, + "風": 90943, + "檖": 90944, + "栣": 90945, + "勻": 90946, + "弖": 90947, + "崌": 90948, + "🍘": 90949, + "晼": 90950, + "領": 90951, + "獢": 90952, + "Ⓠ": 90953, + "ʢ": 90954, + "🧘🏿‍♀️": 90955, + "穐": 90956, + "鴕": 90957, + "ɑ": 90958, + "ǚ": 90959, + "枩": 90960, + "瞨": 90961, + "圢": 90962, + "啱": 90963, + "👶🏿": 90964, + "溩": 90965, + "⍁": 90966, + "鐮": 90967, + "儀": 90968, + "顊": 90969, + "✈": 90970, + "徢": 90971, + "膽": 90972, + "🥂": 90973, + "黥": 90974, + "醘": 90975, + "貭": 90976, + "↛": 90977, + "犤": 90978, + "榈": 90979, + "詌": 90980, + "闛": 90981, + "⚾": 90982, + "輅": 90983, + "娏": 90984, + "懀": 90985, + "儶": 90986, + "抩": 90987, + "厑": 90988, + "Ƣ": 90989, + "Ƴ": 90990, + "👩🏾‍🦳": 90991, + "闈": 90992, + "藁": 90993, + "遑": 90994, + "溭": 90995, + "朌": 90996, + "楟": 90997, + "ǁ": 90998, + "◜": 90999, + "鷙": 91000, + "艁": 91001, + "矕": 91002, + "漰": 91003, + "ⓙ": 91004, + "仛": 91005, + "🚰": 91006, + "⛭": 91007, + "鄔": 91008, + "霤": 91009, + "緞": 91010, + "栚": 91011, + "爴": 91012, + "🇷🇸": 91013, + "虦": 91014, + "🚾": 91015, + "🇧🇮": 91016, + "␉": 91017, + "燷": 91018, + "疟": 91019, + "👨🏼‍🔧": 91020, + "嶔": 91021, + "瞏": 91022, + "⊠": 91023, + "擲": 91024, + "🤹🏾‍♂️": 91025, + "鶣": 91026, + "濥": 91027, + "鰅": 91028, + "潫": 91029, + "徎": 91030, + "朖": 91031, + "⛹": 91032, + "渧": 91033, + "暒": 91034, + "蠝": 91035, + "櫕": 91036, + "霷": 91037, + "秕": 91038, + "💉": 91039, + "嶭": 91040, + "鱷": 91041, + "鉞": 91042, + "傷": 91043, + "⊎": 91044, + "狿": 91045, + "媻": 91046, + "薅": 91047, + "鶚": 91048, + "氖": 91049, + "甞": 91050, + "貞": 91051, + "燠": 91052, + "絁": 91053, + "詬": 91054, + "👨🏿": 91055, + "簄": 91056, + "駊": 91057, + "娼": 91058, + "🎮": 91059, + "虗": 91060, + "≻": 91061, + "柶": 91062, + "🧑🏼‍🍳": 91063, + "诌": 91064, + "⇦": 91065, + "呓": 91066, + "嵥": 91067, + "佹": 91068, + "湙": 91069, + "‪": 91070, + "螽": 91071, + "桙": 91072, + "🧲": 91073, + "˴": 91074, + "豭": 91075, + "鯺": 91076, + "戹": 91077, + "琕": 91078, + "灕": 91079, + "劑": 91080, + "ɤ": 91081, + "褏": 91082, + "陿": 91083, + "饧": 91084, + "嬈": 91085, + "⋮": 91086, + "腍": 91087, + "叺": 91088, + "̨": 91089, + "🫃🏻": 91090, + "譯": 91091, + "豋": 91092, + "痁": 91093, + "毷": 91094, + "骉": 91095, + "穃": 91096, + "◢": 91097, + "篗": 91098, + "🧑🏽‍🏭": 91099, + "Ų": 91100, + "鶏": 91101, + "𓀕": 91102, + "軴": 91103, + "鄰": 91104, + "軈": 91105, + "🍥": 91106, + "撗": 91107, + "𓀃": 91108, + "👨🏿‍🎨": 91109, + "鸕": 91110, + "貋": 91111, + "佇": 91112, + "辳": 91113, + "椖": 91114, + "閂": 91115, + "☖": 91116, + "兠": 91117, + "旫": 91118, + "嵰": 91119, + "饒": 91120, + "蕯": 91121, + "͟": 91122, + "艡": 91123, + "阷": 91124, + "趎": 91125, + "磍": 91126, + "弎": 91127, + "蘹": 91128, + "⌮": 91129, + "娂": 91130, + "澻": 91131, + "稇": 91132, + "檡": 91133, + "葙": 91134, + "剠": 91135, + "坅": 91136, + "顆": 91137, + "鉆": 91138, + "⇼": 91139, + "預": 91140, + "綨": 91141, + "滫": 91142, + "逜": 91143, + "ɘ": 91144, + "頖": 91145, + "錸": 91146, + "鏿": 91147, + "暎": 91148, + "👨🏼‍🏫": 91149, + "屝": 91150, + "蟽": 91151, + "帄": 91152, + "🔠": 91153, + "顱": 91154, + "🧑🏿‍🦲": 91155, + "跱": 91156, + "痏": 91157, + "鱩": 91158, + "堁": 91159, + "朮": 91160, + "仫": 91161, + "蘜": 91162, + "涣": 91163, + "鑋": 91164, + "絪": 91165, + "┉": 91166, + "撵": 91167, + "乭": 91168, + "👩🏽‍🎤": 91169, + "🏌️": 91170, + "菆": 91171, + "嘇": 91172, + "😗": 91173, + "丏": 91174, + "眣": 91175, + "🏄🏾‍♀️": 91176, + "👷🏾‍♂️": 91177, + "齎": 91178, + "馃": 91179, + "雈": 91180, + "凟": 91181, + "緖": 91182, + "⎙": 91183, + "鹬": 91184, + "麋": 91185, + "Ⓣ": 91186, + "斳": 91187, + "穕": 91188, + "橅": 91189, + "銓": 91190, + "烬": 91191, + "龤": 91192, + "ƣ": 91193, + "咼": 91194, + "顔": 91195, + "鑌": 91196, + "癹": 91197, + "籐": 91198, + "哽": 91199, + "製": 91200, + "燣": 91201, + "⛹🏾‍♂️": 91202, + "镺": 91203, + "鏧": 91204, + "穂": 91205, + "↮": 91206, + "🔂": 91207, + "👈": 91208, + "🏚": 91209, + "懰": 91210, + "戭": 91211, + "岝": 91212, + "🚑": 91213, + "毩": 91214, + "暔": 91215, + "✭": 91216, + "👨🏼‍🦽": 91217, + "丮": 91218, + "嶘": 91219, + "湉": 91220, + "屃": 91221, + "鵡": 91222, + "撡": 91223, + "斪": 91224, + "吶": 91225, + "🥳": 91226, + "鵤": 91227, + "釨": 91228, + "⏆": 91229, + "萈": 91230, + "髣": 91231, + "鈲": 91232, + "˹": 91233, + "辀": 91234, + "蛼": 91235, + "ȡ": 91236, + "澼": 91237, + "賂": 91238, + "╺": 91239, + "蒃": 91240, + "鄪": 91241, + "顬": 91242, + "👼": 91243, + "硵": 91244, + "⊦": 91245, + "渘": 91246, + "缮": 91247, + "袩": 91248, + "⎯": 91249, + "鄯": 91250, + "螝": 91251, + "纜": 91252, + "搦": 91253, + "樀": 91254, + "枇": 91255, + "⍙": 91256, + "🙋‍♂️": 91257, + "唲": 91258, + "箅": 91259, + "ɉ": 91260, + "💁🏾‍♂️": 91261, + "Ƽ": 91262, + "訄": 91263, + "🚈": 91264, + "卣": 91265, + "迃": 91266, + "蘾": 91267, + "╚": 91268, + "哤": 91269, + "壥": 91270, + "袔": 91271, + "赹": 91272, + "媠": 91273, + "👨🏽‍🍳": 91274, + "皭": 91275, + "鋷": 91276, + "嘯": 91277, + "錢": 91278, + "碿": 91279, + "🧑🏼‍🌾": 91280, + "遤": 91281, + "🚣🏻‍♀️": 91282, + "闦": 91283, + "蚅": 91284, + "聿": 91285, + "哛": 91286, + "刍": 91287, + "␐": 91288, + "⌅": 91289, + "🇲🇪": 91290, + "荕": 91291, + "鏌": 91292, + "餻": 91293, + "佡": 91294, + "🤷🏽‍♂️": 91295, + "怉": 91296, + "琊": 91297, + "珺": 91298, + "🐍": 91299, + "鎬": 91300, + "恷": 91301, + "魝": 91302, + "⍿": 91303, + "🫳🏿": 91304, + "秺": 91305, + "👨🏽‍❤️‍👨🏿": 91306, + "≃": 91307, + "巠": 91308, + "🦶🏻": 91309, + "籚": 91310, + "餽": 91311, + "倃": 91312, + "襙": 91313, + "俾": 91314, + "僪": 91315, + "殸": 91316, + "揹": 91317, + "眇": 91318, + "侙": 91319, + "槓": 91320, + "淢": 91321, + "爤": 91322, + "遰": 91323, + "岰": 91324, + "漻": 91325, + "ȵ": 91326, + "谧": 91327, + "瑯": 91328, + "聗": 91329, + "妡": 91330, + "詂": 91331, + "🇫🇴": 91332, + "👩🏻‍❤️‍👩🏻": 91333, + "繀": 91334, + "嗪": 91335, + "🧑🏼‍🎤": 91336, + "軞": 91337, + "∷": 91338, + "痮": 91339, + "觬": 91340, + "炪": 91341, + "唩": 91342, + "蒝": 91343, + "ˬ": 91344, + "😷": 91345, + "骫": 91346, + "颣": 91347, + "拁": 91348, + "👩🏿‍🦼": 91349, + "蛜": 91350, + "驗": 91351, + "抯": 91352, + "爃": 91353, + "柗": 91354, + "赿": 91355, + "渕": 91356, + "鄤": 91357, + "⁞": 91358, + "霋": 91359, + "🧙🏻‍♀️": 91360, + "芕": 91361, + "🧑🏾‍🍼": 91362, + "匽": 91363, + "癊": 91364, + "猽": 91365, + "俛": 91366, + "鬛": 91367, + "⑊": 91368, + "懔": 91369, + "稸": 91370, + "圮": 91371, + "🚶🏼‍♀️": 91372, + "👩🏾‍❤️‍💋‍👨🏿": 91373, + "疐": 91374, + "齄": 91375, + "譼": 91376, + "鈷": 91377, + "🧏🏻‍♂️": 91378, + "淊": 91379, + "壕": 91380, + "₌": 91381, + "📳": 91382, + "鷇": 91383, + "磪": 91384, + "谇": 91385, + "🇧🇬": 91386, + "礥": 91387, + "寍": 91388, + "👩🏼‍❤️‍💋‍👨🏼": 91389, + "⑫": 91390, + "扨": 91391, + "緼": 91392, + "硍": 91393, + "摴": 91394, + "🧑🏼‍❤️‍💋‍🧑🏻": 91395, + "祼": 91396, + "廋": 91397, + "橗": 91398, + "焫": 91399, + "竍": 91400, + "3️⃣": 91401, + "鬰": 91402, + "郾": 91403, + "齠": 91404, + "鐧": 91405, + "ⓧ": 91406, + "杅": 91407, + "蓠": 91408, + "戗": 91409, + "泲": 91410, + "🎍": 91411, + "夎": 91412, + "觾": 91413, + "鼹": 91414, + "🧑🏾‍🎄": 91415, + "髪": 91416, + "鵅": 91417, + "镲": 91418, + "卝": 91419, + "詸": 91420, + "聣": 91421, + "廼": 91422, + "誼": 91423, + "棁": 91424, + "🈚️": 91425, + "箕": 91426, + "籆": 91427, + "⇁": 91428, + "捫": 91429, + "🇲🇵": 91430, + "賟": 91431, + "揝": 91432, + "ȕ": 91433, + "諊": 91434, + "龎": 91435, + "駗": 91436, + "̺": 91437, + "🤼‍♀️": 91438, + "蓛": 91439, + "🇧🇼": 91440, + "🔒": 91441, + "⏡": 91442, + "愱": 91443, + "鄽": 91444, + "劚": 91445, + "稜": 91446, + "洭": 91447, + "犄": 91448, + "芁": 91449, + "漿": 91450, + "雐": 91451, + "黀": 91452, + "賠": 91453, + "簦": 91454, + "檏": 91455, + "箨": 91456, + "🏋🏻": 91457, + "墕": 91458, + "剉": 91459, + "😬": 91460, + "╨": 91461, + "崹": 91462, + "蜷": 91463, + "↸": 91464, + "仈": 91465, + "鵵": 91466, + "👩🏼‍🦯": 91467, + "臆": 91468, + "酑": 91469, + "洃": 91470, + "蓻": 91471, + "濻": 91472, + "飧": 91473, + "⃠": 91474, + "🇰🇲": 91475, + "皗": 91476, + "嗾": 91477, + "爏": 91478, + "砞": 91479, + "刡": 91480, + "🏂🏼": 91481, + "蛂": 91482, + "👩🏿‍❤️‍💋‍👩🏾": 91483, + "裡": 91484, + "禑": 91485, + "🫵🏼": 91486, + "廪": 91487, + "塯": 91488, + "獱": 91489, + "嬑": 91490, + "⅜": 91491, + "镦": 91492, + "朘": 91493, + "晔": 91494, + "淒": 91495, + "槹": 91496, + "鍶": 91497, + "壛": 91498, + "厁": 91499, + "狪": 91500, + "⎫": 91501, + "漨": 91502, + "蕱": 91503, + "鐛": 91504, + "竽": 91505, + "罘": 91506, + "嗛": 91507, + "惾": 91508, + "🤱": 91509, + "✌🏿": 91510, + "≳": 91511, + "🪪": 91512, + "囄": 91513, + "謘": 91514, + "荬": 91515, + "桿": 91516, + "鹌": 91517, + "巙": 91518, + "🇧🇾": 91519, + "▝": 91520, + "廣": 91521, + "👩🏾‍⚖️": 91522, + "̚": 91523, + "⚵": 91524, + "蛘": 91525, + "謂": 91526, + "舐": 91527, + "🕡": 91528, + "␊": 91529, + "濄": 91530, + "貁": 91531, + "垰": 91532, + "🤌🏿": 91533, + "礙": 91534, + "鷤": 91535, + "錺": 91536, + "蠹": 91537, + "曔": 91538, + "🚵🏼‍♀️": 91539, + "丳": 91540, + "烸": 91541, + "🧑🏿‍❤️‍💋‍🧑🏼": 91542, + "👩‍🦯": 91543, + "👩🏻‍🦲": 91544, + "漌": 91545, + "攇": 91546, + "瞵": 91547, + "躻": 91548, + "抏": 91549, + "駀": 91550, + "┻": 91551, + "⁐": 91552, + "⃶": 91553, + "🕐": 91554, + "繣": 91555, + "媊": 91556, + "🫄🏿": 91557, + "歸": 91558, + "脦": 91559, + "溠": 91560, + "鍢": 91561, + "Ù": 91562, + "弸": 91563, + "簽": 91564, + "👩🏽‍🦼": 91565, + "⃲": 91566, + "⃬": 91567, + "🧱": 91568, + "縍": 91569, + "鹓": 91570, + "␽": 91571, + "遢": 91572, + "ȴ": 91573, + "徻": 91574, + "纞": 91575, + "綪": 91576, + "氈": 91577, + "瘍": 91578, + "烲": 91579, + "隠": 91580, + "奬": 91581, + "請": 91582, + "稡": 91583, + "喥": 91584, + "毬": 91585, + "鬵": 91586, + "▨": 91587, + "莳": 91588, + "紳": 91589, + "酟": 91590, + "👷🏾‍♀️": 91591, + "萢": 91592, + "窴": 91593, + "🪠": 91594, + "♏": 91595, + "凱": 91596, + "猻": 91597, + "🍹": 91598, + "楽": 91599, + "疈": 91600, + "🇦🇹": 91601, + "👩🏾‍❤️‍👩🏼": 91602, + "謦": 91603, + "葝": 91604, + "↎": 91605, + "噝": 91606, + "🆙": 91607, + "☉": 91608, + "爛": 91609, + "飓": 91610, + "礍": 91611, + "謞": 91612, + "岽": 91613, + "⋉": 91614, + "🤞🏽": 91615, + "荽": 91616, + "睷": 91617, + "掓": 91618, + "🍮": 91619, + "猢": 91620, + "閛": 91621, + "濖": 91622, + "👬🏿": 91623, + "傼": 91624, + "舾": 91625, + "薖": 91626, + "餘": 91627, + "鐈": 91628, + "砆": 91629, + "😵": 91630, + "粋": 91631, + "掭": 91632, + "靽": 91633, + "傃": 91634, + "窅": 91635, + "螋": 91636, + "皣": 91637, + "🦷": 91638, + "産": 91639, + "蝢": 91640, + "洠": 91641, + "摎": 91642, + "⑻": 91643, + "̙": 91644, + "糽": 91645, + "👩🏻‍❤️‍💋‍👨🏼": 91646, + "嘾": 91647, + "咦": 91648, + "絤": 91649, + "Έ": 91650, + "琮": 91651, + "🦸🏼‍♂️": 91652, + "攚": 91653, + "撷": 91654, + "👸🏼": 91655, + "馠": 91656, + "驝": 91657, + "彙": 91658, + "菋": 91659, + "搄": 91660, + "⏘": 91661, + "跼": 91662, + "萟": 91663, + "聅": 91664, + "叱": 91665, + "躏": 91666, + "羈": 91667, + "惱": 91668, + "躖": 91669, + "🇳🇮": 91670, + "泙": 91671, + "爌": 91672, + "趶": 91673, + "鹟": 91674, + "℥": 91675, + "⊀": 91676, + "髩": 91677, + "偔": 91678, + "襣": 91679, + "畡": 91680, + "靘": 91681, + "謱": 91682, + "熷": 91683, + "薆": 91684, + "̹": 91685, + "剛": 91686, + "涾": 91687, + "👩🏻‍❤️‍💋‍👩🏻": 91688, + "轛": 91689, + "奭": 91690, + "餓": 91691, + "榲": 91692, + "诧": 91693, + "廸": 91694, + "👨🏽‍🚀": 91695, + "憒": 91696, + "笭": 91697, + "瞹": 91698, + "梉": 91699, + "◄": 91700, + "͓": 91701, + "🦹🏿‍♀️": 91702, + "婝": 91703, + "苵": 91704, + "琭": 91705, + "姒": 91706, + "🏊🏿‍♀️": 91707, + "⎟": 91708, + "砪": 91709, + "⊹": 91710, + "滈": 91711, + "┃": 91712, + "恅": 91713, + "獑": 91714, + "🇯🇴": 91715, + "負": 91716, + "甀": 91717, + "雊": 91718, + "鬍": 91719, + "弍": 91720, + "娐": 91721, + "潤": 91722, + "臌": 91723, + "詧": 91724, + "荏": 91725, + "罜": 91726, + "坃": 91727, + "🧎🏽‍♀️": 91728, + "鉛": 91729, + "蹹": 91730, + "🌧": 91731, + "係": 91732, + "╰": 91733, + "榷": 91734, + "猐": 91735, + "📤": 91736, + "♜": 91737, + "徜": 91738, + "緐": 91739, + "羵": 91740, + "✇": 91741, + "🧛🏾‍♀️": 91742, + "淚": 91743, + "⇥": 91744, + "聤": 91745, + "釛": 91746, + "¢": 91747, + "潑": 91748, + "挔": 91749, + "狨": 91750, + "吖": 91751, + "👩🏽‍🦰": 91752, + "錜": 91753, + "昋": 91754, + "豛": 91755, + "犌": 91756, + "郈": 91757, + "⏓": 91758, + "🛀🏿": 91759, + "葴": 91760, + "👊🏻": 91761, + "藟": 91762, + "襃": 91763, + "襶": 91764, + "∙": 91765, + "圬": 91766, + "觃": 91767, + "陊": 91768, + "銻": 91769, + "痩": 91770, + "衸": 91771, + "ℎ": 91772, + "💏🏾": 91773, + "苩": 91774, + "🧑🏻‍🦰": 91775, + "囨": 91776, + "⁆": 91777, + "馂": 91778, + "仩": 91779, + "恦": 91780, + "顖": 91781, + "愻": 91782, + "跍": 91783, + "瓒": 91784, + "鄚": 91785, + "瀨": 91786, + "蜾": 91787, + "💆": 91788, + "🧗🏾‍♂️": 91789, + "腢": 91790, + "焨": 91791, + "🖥": 91792, + "": 91793, + "縶": 91794, + "🍸": 91795, + "📈": 91796, + "靥": 91797, + "鴈": 91798, + "薙": 91799, + "擮": 91800, + "笶": 91801, + "🚍": 91802, + "蝋": 91803, + "🚳": 91804, + "撧": 91805, + "氩": 91806, + "鈛": 91807, + "桍": 91808, + "蛦": 91809, + "盀": 91810, + "🫘": 91811, + "駹": 91812, + "箣": 91813, + "🇽🇰": 91814, + "绌": 91815, + "絲": 91816, + "鹵": 91817, + "◰": 91818, + "隇": 91819, + "⚑": 91820, + "篍": 91821, + "👋🏿": 91822, + "🤱🏽": 91823, + "襰": 91824, + "🇰🇮": 91825, + "麼": 91826, + "嘢": 91827, + "坻": 91828, + "蚦": 91829, + "玭": 91830, + "閣": 91831, + "煾": 91832, + "蒒": 91833, + "🕜": 91834, + "勑": 91835, + "曧": 91836, + "矀": 91837, + "蒓": 91838, + "濜": 91839, + "🇮🇨": 91840, + "鑸": 91841, + "婇": 91842, + "潨": 91843, + "佀": 91844, + "宺": 91845, + "埚": 91846, + "轭": 91847, + "悪": 91848, + "🤏🏽": 91849, + "嘹": 91850, + "ⅹ": 91851, + "≼": 91852, + "噥": 91853, + "🚸": 91854, + "汙": 91855, + "訴": 91856, + "騣": 91857, + "裋": 91858, + "镬": 91859, + "偅": 91860, + "👨🏻‍💻": 91861, + "鴷": 91862, + "奆": 91863, + "躝": 91864, + "棈": 91865, + "猾": 91866, + "芔": 91867, + "薶": 91868, + "ͯ": 91869, + "驥": 91870, + "👍🏻": 91871, + "鬮": 91872, + "繭": 91873, + "丆": 91874, + "婍": 91875, + "匱": 91876, + "橋": 91877, + "葷": 91878, + "👃🏿": 91879, + "蟓": 91880, + "瑻": 91881, + "茔": 91882, + "⛹🏻‍♀️": 91883, + "毵": 91884, + "饀": 91885, + "嘰": 91886, + "蒆": 91887, + "搙": 91888, + "🧝🏻": 91889, + "澽": 91890, + "藸": 91891, + "諤": 91892, + "儑": 91893, + "橀": 91894, + "鐪": 91895, + "ɣ": 91896, + "訠": 91897, + "🛠": 91898, + "纝": 91899, + "💇🏾": 91900, + "缑": 91901, + "諵": 91902, + "爝": 91903, + "趓": 91904, + "純": 91905, + "醰": 91906, + "洧": 91907, + "啟": 91908, + "Ϩ": 91909, + "⛞": 91910, + "劧": 91911, + "🏦": 91912, + "↿": 91913, + "螒": 91914, + "醳": 91915, + "📁": 91916, + "凨": 91917, + "隮": 91918, + "驄": 91919, + "刞": 91920, + "癨": 91921, + "黮": 91922, + "鎤": 91923, + "​": 91924, + "⛈": 91925, + "誸": 91926, + "⌈": 91927, + "兪": 91928, + "🛰": 91929, + "龂": 91930, + "拠": 91931, + "瀧": 91932, + "脰": 91933, + "殤": 91934, + "齽": 91935, + "藡": 91936, + "媗": 91937, + "⑋": 91938, + "🤜🏾": 91939, + "盠": 91940, + "苻": 91941, + "🧔🏼": 91942, + "⚩": 91943, + "踌": 91944, + "簯": 91945, + "狦": 91946, + "獎": 91947, + "蒖": 91948, + "🚚": 91949, + "🍅": 91950, + "🇵🇪": 91951, + "怦": 91952, + "葲": 91953, + "ℒ": 91954, + "迀": 91955, + "蒊": 91956, + "魥": 91957, + "鐑": 91958, + "鉽": 91959, + "镽": 91960, + "鳿": 91961, + "璛": 91962, + "靑": 91963, + "亄": 91964, + "🐣": 91965, + "墺": 91966, + "釓": 91967, + "擽": 91968, + "懑": 91969, + "楧": 91970, + "輛": 91971, + "縘": 91972, + "柢": 91973, + "躜": 91974, + "砊": 91975, + "腽": 91976, + "賢": 91977, + "鏜": 91978, + "🏃🏿": 91979, + "兕": 91980, + "穼": 91981, + "嶕": 91982, + "🎒": 91983, + "烿": 91984, + "獵": 91985, + "鎵": 91986, + "̜": 91987, + "☑": 91988, + "網": 91989, + "👩🏽‍🍼": 91990, + "⎔": 91991, + "🍱": 91992, + "镹": 91993, + "灜": 91994, + "俁": 91995, + "溋": 91996, + "咣": 91997, + "涚": 91998, + "榦": 91999, + "鷧": 92000, + "钇": 92001, + "篔": 92002, + "寧": 92003, + "⛹️‍♂️": 92004, + "礟": 92005, + "曈": 92006, + "⃑": 92007, + "榿": 92008, + "馑": 92009, + "歽": 92010, + "₿": 92011, + "謝": 92012, + "∖": 92013, + "醵": 92014, + "偁": 92015, + "⏤": 92016, + "勭": 92017, + "🤞": 92018, + "萏": 92019, + "飉": 92020, + "誺": 92021, + "迱": 92022, + "襕": 92023, + "仧": 92024, + "⇿": 92025, + "藔": 92026, + "弿": 92027, + "🖊": 92028, + "嗁": 92029, + "拫": 92030, + "坲": 92031, + "澤": 92032, + "👳🏿‍♀️": 92033, + "疩": 92034, + "櫐": 92035, + "秫": 92036, + "扪": 92037, + "茌": 92038, + "🏇🏿": 92039, + "愍": 92040, + "猤": 92041, + "觓": 92042, + "砜": 92043, + "囱": 92044, + "鈘": 92045, + "🤵🏻": 92046, + "⎮": 92047, + "⎪": 92048, + "扖": 92049, + "殙": 92050, + "毑": 92051, + "豄": 92052, + "蛁": 92053, + "覓": 92054, + "櫡": 92055, + "髙": 92056, + "竊": 92057, + "⊘": 92058, + "岀": 92059, + "淰": 92060, + "箺": 92061, + "問": 92062, + "鑗": 92063, + "衵": 92064, + "誑": 92065, + "猱": 92066, + "憴": 92067, + "┙": 92068, + "呧": 92069, + "恽": 92070, + "襘": 92071, + "镈": 92072, + "蹇": 92073, + "葇": 92074, + "砉": 92075, + "簙": 92076, + "懪": 92077, + "胇": 92078, + "辻": 92079, + "鴜": 92080, + "浾": 92081, + "🗾": 92082, + "牼": 92083, + "缍": 92084, + "⊢": 92085, + "鎂": 92086, + "礠": 92087, + "椺": 92088, + "缋": 92089, + "溛": 92090, + "⎑": 92091, + "傕": 92092, + "➔": 92093, + "刜": 92094, + "膾": 92095, + "姄": 92096, + "髹": 92097, + "ↀ": 92098, + "🧒🏿": 92099, + "瀈": 92100, + "擘": 92101, + "訷": 92102, + "🐫": 92103, + "🇲🇰": 92104, + "慘": 92105, + "娧": 92106, + "💪🏿": 92107, + "鞢": 92108, + "罻": 92109, + "Ȥ": 92110, + "😌": 92111, + "🍣": 92112, + "樂": 92113, + "皀": 92114, + "妐": 92115, + "涔": 92116, + "牥": 92117, + "谔": 92118, + "🤹": 92119, + "⊣": 92120, + "謃": 92121, + "冞": 92122, + "鹢": 92123, + "掾": 92124, + "攙": 92125, + "堞": 92126, + "瓧": 92127, + "塊": 92128, + "📎": 92129, + "鉺": 92130, + "颪": 92131, + "🎤": 92132, + "檧": 92133, + "⇮": 92134, + "🧛🏾‍♂️": 92135, + "W": 92136, + "褤": 92137, + "糹": 92138, + "╸": 92139, + "聩": 92140, + "顚": 92141, + "疁": 92142, + "驨": 92143, + "崮": 92144, + "軟": 92145, + "剫": 92146, + "憭": 92147, + "跏": 92148, + "湬": 92149, + "蠀": 92150, + "籯": 92151, + "褴": 92152, + "衇": 92153, + "铋": 92154, + "📫": 92155, + "魳": 92156, + "🧛🏽": 92157, + "🔗": 92158, + "祡": 92159, + "猁": 92160, + "鎼": 92161, + "綴": 92162, + "荅": 92163, + "魗": 92164, + "冄": 92165, + "緄": 92166, + "þ": 92167, + "藮": 92168, + "魯": 92169, + "璔": 92170, + "縰": 92171, + "聀": 92172, + "楁": 92173, + "🫱🏻‍🫲🏿": 92174, + "陒": 92175, + "Ȳ": 92176, + "👩🏿‍🚀": 92177, + "₈": 92178, + "廐": 92179, + "愎": 92180, + "彎": 92181, + "篽": 92182, + "酜": 92183, + "瞗": 92184, + "挜": 92185, + "🧏🏼‍♂️": 92186, + "👩🏽": 92187, + "嵗": 92188, + "👱🏽": 92189, + "Ϝ": 92190, + "匉": 92191, + "≉": 92192, + "粭": 92193, + "奨": 92194, + "̖": 92195, + "漺": 92196, + "綼": 92197, + "綊": 92198, + "夽": 92199, + "暢": 92200, + "🐙": 92201, + "圼": 92202, + "謶": 92203, + "闱": 92204, + "塥": 92205, + "👩🏼‍🍼": 92206, + "嶆": 92207, + "倈": 92208, + "Ɏ": 92209, + "⋰": 92210, + "焗": 92211, + "莟": 92212, + "跽": 92213, + "囖": 92214, + "坵": 92215, + "☶": 92216, + "锼": 92217, + "👩🏽‍❤️‍💋‍👩🏾": 92218, + "嗿": 92219, + "乇": 92220, + "勍": 92221, + "🥸": 92222, + "卾": 92223, + "蠎": 92224, + "嚏": 92225, + "亁": 92226, + "赈": 92227, + "🔇": 92228, + "槥": 92229, + "牣": 92230, + "醜": 92231, + "氠": 92232, + "挊": 92233, + "嶎": 92234, + "倴": 92235, + "寚": 92236, + "魼": 92237, + "馽": 92238, + "Í": 92239, + "崨": 92240, + "朣": 92241, + "兤": 92242, + "🥏": 92243, + "栔": 92244, + "釥": 92245, + "🚹": 92246, + "🤰🏿": 92247, + "敝": 92248, + "鵏": 92249, + "皥": 92250, + "綹": 92251, + "謍": 92252, + "蝲": 92253, + "牍": 92254, + "銱": 92255, + "裧": 92256, + "髠": 92257, + "狶": 92258, + "萂": 92259, + "敟": 92260, + "曂": 92261, + "愮": 92262, + "駌": 92263, + "艤": 92264, + "⇹": 92265, + "嫎": 92266, + "💵": 92267, + "蠚": 92268, + "嚭": 92269, + "訽": 92270, + "儰": 92271, + "礈": 92272, + "🌿": 92273, + "瞆": 92274, + "嬴": 92275, + "嫨": 92276, + "糰": 92277, + "嫤": 92278, + "暷": 92279, + "鍴": 92280, + "燵": 92281, + "狽": 92282, + "當": 92283, + "骜": 92284, + "绠": 92285, + "🅿️": 92286, + "闙": 92287, + "倛": 92288, + "粜": 92289, + "冡": 92290, + "櫤": 92291, + "葺": 92292, + "觺": 92293, + "蜯": 92294, + "瑏": 92295, + "🐝": 92296, + "🛢": 92297, + "Ɯ": 92298, + "讚": 92299, + "恡": 92300, + "鄟": 92301, + "檚": 92302, + "曵": 92303, + "👫": 92304, + "擭": 92305, + "👨🏽‍🦽": 92306, + "纄": 92307, + "箿": 92308, + "鏭": 92309, + "鑯": 92310, + "╂": 92311, + "╔": 92312, + "畫": 92313, + "猉": 92314, + "👨‍🦰": 92315, + "蘪": 92316, + "汅": 92317, + "粞": 92318, + "鹲": 92319, + "淿": 92320, + "⋓": 92321, + "韨": 92322, + "蛱": 92323, + "泎": 92324, + "硴": 92325, + "漭": 92326, + "鴢": 92327, + "🚣🏾‍♂️": 92328, + "賷": 92329, + "笽": 92330, + "褾": 92331, + "🇵🇰": 92332, + "絿": 92333, + "俖": 92334, + "頠": 92335, + "縴": 92336, + "鴋": 92337, + "夶": 92338, + "ⓟ": 92339, + "谮": 92340, + "碴": 92341, + "讹": 92342, + "👨‍❤️‍👨": 92343, + "穘": 92344, + "苡": 92345, + "趬": 92346, + "菑": 92347, + "ⓒ": 92348, + "❔": 92349, + "彫": 92350, + "蛢": 92351, + "噁": 92352, + "⊚": 92353, + "灹": 92354, + "Ǡ": 92355, + "槤": 92356, + "鷒": 92357, + "箆": 92358, + "趺": 92359, + "帓": 92360, + "懤": 92361, + "詏": 92362, + "邋": 92363, + "埩": 92364, + "摚": 92365, + "🫱🏻‍🫲🏼": 92366, + "👨🏻‍🎓": 92367, + "⋁": 92368, + "憌": 92369, + "芲": 92370, + "镵": 92371, + "榰": 92372, + "焻": 92373, + "澲": 92374, + "̸": 92375, + "貇": 92376, + "🌰": 92377, + "熡": 92378, + "乚": 92379, + "炝": 92380, + "♛": 92381, + "敕": 92382, + "鸋": 92383, + "苠": 92384, + "畦": 92385, + "摮": 92386, + "鸔": 92387, + "嶶": 92388, + "蟺": 92389, + "🦵🏼": 92390, + "鍱": 92391, + "雘": 92392, + "👨‍✈️": 92393, + "薚": 92394, + "龅": 92395, + "‍": 92396, + "阌": 92397, + "ʇ": 92398, + "鞻": 92399, + "🧑🏾‍🦳": 92400, + "⋌": 92401, + "靃": 92402, + "厹": 92403, + "≴": 92404, + "臰": 92405, + "麄": 92406, + "鶷": 92407, + "ƶ": 92408, + "腚": 92409, + "ͧ": 92410, + "ℤ": 92411, + "盦": 92412, + "˸": 92413, + "觏": 92414, + "👱🏿‍♂️": 92415, + "圍": 92416, + "蟱": 92417, + "蜻": 92418, + "🫢": 92419, + "魬": 92420, + "🪥": 92421, + "睧": 92422, + "凧": 92423, + "垲": 92424, + "👩🏾‍💻": 92425, + "鄥": 92426, + "帎": 92427, + "峗": 92428, + "🎯": 92429, + "篯": 92430, + "幀": 92431, + "🇨🇨": 92432, + "曊": 92433, + "粶": 92434, + "斕": 92435, + "堨": 92436, + "◧": 92437, + "處": 92438, + "胢": 92439, + "ȏ": 92440, + "🚵": 92441, + "奡": 92442, + "鴍": 92443, + "繲": 92444, + "粻": 92445, + "弔": 92446, + "⑖": 92447, + "歓": 92448, + "˔": 92449, + "🎐": 92450, + "碬": 92451, + "脻": 92452, + "🧗🏻‍♂️": 92453, + "鄵": 92454, + "僊": 92455, + "🫧": 92456, + "👷🏻‍♂️": 92457, + "暶": 92458, + "嗻": 92459, + "隴": 92460, + "渓": 92461, + "蓦": 92462, + "襾": 92463, + "🫰🏿": 92464, + "紬": 92465, + "🧑🏾‍💻": 92466, + "褧": 92467, + "斡": 92468, + "杹": 92469, + "捄": 92470, + "🤾‍♂️": 92471, + "­": 92472, + "🤚🏼": 92473, + "⍟": 92474, + "侅": 92475, + "ȷ": 92476, + "焎": 92477, + "煣": 92478, + "焷": 92479, + "湫": 92480, + "尅": 92481, + "唅": 92482, + "汘": 92483, + "峎": 92484, + "铛": 92485, + "瑃": 92486, + "脄": 92487, + "颵": 92488, + "🇳🇵": 92489, + "譭": 92490, + "ˤ": 92491, + "詘": 92492, + "脶": 92493, + "盱": 92494, + "柍": 92495, + "蓰": 92496, + "樁": 92497, + "📽": 92498, + "镆": 92499, + "炍": 92500, + "灒": 92501, + "鋪": 92502, + "闄": 92503, + "飶": 92504, + "撯": 92505, + "邤": 92506, + "⌞": 92507, + "澖": 92508, + "😓": 92509, + "👨‍💻": 92510, + "澭": 92511, + "🚶🏾‍♀️": 92512, + "厼": 92513, + "斵": 92514, + "銚": 92515, + "噛": 92516, + "嶄": 92517, + "沠": 92518, + "稾": 92519, + "勜": 92520, + "侞": 92521, + "酨": 92522, + "敱": 92523, + "銗": 92524, + "惂": 92525, + "蛺": 92526, + "睱": 92527, + "樛": 92528, + "🌶": 92529, + "舛": 92530, + "Ė": 92531, + "剻": 92532, + "鍪": 92533, + "睖": 92534, + "荘": 92535, + "蘚": 92536, + "饠": 92537, + "筄": 92538, + "穔": 92539, + "嵈": 92540, + "煰": 92541, + "🦩": 92542, + "濴": 92543, + "幧": 92544, + "磞": 92545, + "≋": 92546, + "啉": 92547, + "ͭ": 92548, + "鎾": 92549, + "堸": 92550, + "鱀": 92551, + "ℛ": 92552, + "俣": 92553, + "険": 92554, + "闿": 92555, + "🧎‍♀️": 92556, + "豩": 92557, + "🏂🏾": 92558, + "⛅": 92559, + "🧘🏽‍♂️": 92560, + "詛": 92561, + "爁": 92562, + "绲": 92563, + "刾": 92564, + "薦": 92565, + "顨": 92566, + "暰": 92567, + "␾": 92568, + "ʀ": 92569, + "燻": 92570, + "銉": 92571, + "綵": 92572, + "ȃ": 92573, + "郆": 92574, + "彁": 92575, + "鵩": 92576, + "錿": 92577, + "΋": 92578, + "嶽": 92579, + "𓀁": 92580, + "🧓🏽": 92581, + "🇷🇼": 92582, + "嫝": 92583, + "伅": 92584, + "並": 92585, + "繽": 92586, + "癩": 92587, + "処": 92588, + "岊": 92589, + "醈": 92590, + "繝": 92591, + "縢": 92592, + "榐": 92593, + "斻": 92594, + "👨🏽‍🦰": 92595, + "🧔🏿": 92596, + "⍼": 92597, + "琖": 92598, + "诟": 92599, + "熋": 92600, + "脩": 92601, + "牒": 92602, + "鞏": 92603, + "葊": 92604, + "瘌": 92605, + "👩🏾‍❤️‍💋‍👩🏿": 92606, + "◹": 92607, + "鎹": 92608, + "蜛": 92609, + "鐉": 92610, + "ʛ": 92611, + "⎌": 92612, + "蜁": 92613, + "銴": 92614, + "攺": 92615, + "亅": 92616, + "酕": 92617, + "銁": 92618, + "輍": 92619, + "嘭": 92620, + "槝": 92621, + "🤽🏼": 92622, + "剺": 92623, + "裰": 92624, + "賖": 92625, + "痦": 92626, + "朼": 92627, + "圲": 92628, + "̇": 92629, + "箂": 92630, + "黤": 92631, + "蹧": 92632, + "奩": 92633, + "👩🏼‍❤️‍💋‍👩🏽": 92634, + "煠": 92635, + "🧑🏾‍🏭": 92636, + "斺": 92637, + "嚘": 92638, + "玗": 92639, + "🧏🏿": 92640, + "蹫": 92641, + "狤": 92642, + "⌹": 92643, + "👨🏿‍🎤": 92644, + "⃸": 92645, + "␳": 92646, + "🧑🏼‍🤝‍🧑🏼": 92647, + "姢": 92648, + "🦸🏿‍♂️": 92649, + "⎊": 92650, + "燞": 92651, + "🧑🏿‍🎄": 92652, + "簲": 92653, + "⚞": 92654, + "鯥": 92655, + "緢": 92656, + "👩🏿‍❤️‍👩🏽": 92657, + "🌋": 92658, + "砠": 92659, + "浝": 92660, + "Ǒ": 92661, + "牷": 92662, + "媫": 92663, + "庂": 92664, + "働": 92665, + "毀": 92666, + "慛": 92667, + "╾": 92668, + "⒛": 92669, + "鸊": 92670, + "罸": 92671, + "沱": 92672, + "艱": 92673, + "辪": 92674, + "寤": 92675, + "郣": 92676, + "ⓣ": 92677, + "Ⅹ": 92678, + "筓": 92679, + "尳": 92680, + "砣": 92681, + "剱": 92682, + "咡": 92683, + "嘜": 92684, + "靫": 92685, + "氥": 92686, + "礒": 92687, + "嗸": 92688, + "💇🏻": 92689, + "椪": 92690, + "鶱": 92691, + "飚": 92692, + "🚵🏿": 92693, + "鬘": 92694, + "👨🏼‍💼": 92695, + "🎅🏻": 92696, + "⛢": 92697, + "霡": 92698, + "ɒ": 92699, + "霦": 92700, + "桲": 92701, + "蠌": 92702, + "窶": 92703, + "髡": 92704, + "鼦": 92705, + "🦖": 92706, + "⌗": 92707, + "⓰": 92708, + "湲": 92709, + "佮": 92710, + "鲲": 92711, + "埡": 92712, + "聍": 92713, + "🧑🏻‍🦼": 92714, + "碵": 92715, + "🇲🇷": 92716, + "旹": 92717, + "蹮": 92718, + "苺": 92719, + "圧": 92720, + "✋🏻": 92721, + "讍": 92722, + "璵": 92723, + "甃": 92724, + "辵": 92725, + "偑": 92726, + "鉝": 92727, + "劎": 92728, + "庀": 92729, + "諁": 92730, + "镗": 92731, + "葨": 92732, + "搱": 92733, + "Ȩ": 92734, + "壩": 92735, + "堅": 92736, + "⏔": 92737, + "🧑🏾‍🏫": 92738, + "瓵": 92739, + "覽": 92740, + "椑": 92741, + "鼾": 92742, + "揕": 92743, + "喭": 92744, + "瓍": 92745, + "蓃": 92746, + "躼": 92747, + "譗": 92748, + "妺": 92749, + "➰": 92750, + "欤": 92751, + "絍": 92752, + "≶": 92753, + "涽": 92754, + "鳯": 92755, + "鹮": 92756, + "鷺": 92757, + "銀": 92758, + "矎": 92759, + "蝿": 92760, + "寭": 92761, + "ⅲ": 92762, + "˄": 92763, + "揥": 92764, + "岅": 92765, + "曒": 92766, + "剝": 92767, + "昍": 92768, + "👩🏻‍❤️‍💋‍👨🏽": 92769, + "禳": 92770, + "湸": 92771, + "衆": 92772, + "庅": 92773, + "鶛": 92774, + "燌": 92775, + "雟": 92776, + "🇵🇼": 92777, + "℈": 92778, + "ũ": 92779, + "枤": 92780, + "ɛ": 92781, + "椵": 92782, + "腀": 92783, + "猣": 92784, + "腵": 92785, + "∹": 92786, + "╭": 92787, + "雼": 92788, + "舢": 92789, + "坬": 92790, + "鋟": 92791, + "複": 92792, + "℠": 92793, + "玃": 92794, + "🧍‍♂️": 92795, + "👨‍👧‍👧": 92796, + "枏": 92797, + "囵": 92798, + "🥗": 92799, + "鳰": 92800, + "昽": 92801, + "眰": 92802, + "秛": 92803, + "🇳🇪": 92804, + "藗": 92805, + "錳": 92806, + "繢": 92807, + "👩🏿‍🦳": 92808, + "銎": 92809, + "🎛": 92810, + "頢": 92811, + "駻": 92812, + "👩🏻‍🔧": 92813, + "脙": 92814, + "溵": 92815, + "韚": 92816, + "雿": 92817, + "砐": 92818, + "圊": 92819, + "韟": 92820, + "劃": 92821, + "亍": 92822, + "齀": 92823, + "└": 92824, + "頔": 92825, + "鏋": 92826, + "倣": 92827, + "焛": 92828, + "廃": 92829, + "鷏": 92830, + "薒": 92831, + "聺": 92832, + "笘": 92833, + "氼": 92834, + "膼": 92835, + "緮": 92836, + "⏕": 92837, + "狘": 92838, + "鈕": 92839, + "疘": 92840, + "幦": 92841, + "👩🏾‍🎤": 92842, + "嫍": 92843, + "⤵️": 92844, + "🫤": 92845, + "🦚": 92846, + "歶": 92847, + "陑": 92848, + "玎": 92849, + "2️⃣": 92850, + "🕳": 92851, + "嶨": 92852, + "氌": 92853, + "⍡": 92854, + "瓲": 92855, + "Ⅴ": 92856, + "櫽": 92857, + "枊": 92858, + "憠": 92859, + "矰": 92860, + "╅": 92861, + "⁥": 92862, + "鐄": 92863, + "娺": 92864, + "⎱": 92865, + "貱": 92866, + "🚶🏻": 92867, + "Ǭ": 92868, + "恛": 92869, + "裐": 92870, + "媴": 92871, + "馟": 92872, + "洫": 92873, + "垴": 92874, + "轎": 92875, + "⚏": 92876, + "諓": 92877, + "頎": 92878, + "⊈": 92879, + "尟": 92880, + "悷": 92881, + "ȣ": 92882, + "柙": 92883, + "讠": 92884, + "ↆ": 92885, + "挈": 92886, + "驣": 92887, + "嫋": 92888, + "Ǣ": 92889, + "範": 92890, + "G": 92891, + "🐽": 92892, + "🏆": 92893, + "碪": 92894, + "茭": 92895, + "躃": 92896, + "鞫": 92897, + "鮸": 92898, + "隀": 92899, + "稐": 92900, + "怲": 92901, + "😎": 92902, + "簁": 92903, + "紙": 92904, + "楸": 92905, + "鏯": 92906, + "👩🏻‍🦱": 92907, + "譇": 92908, + "漋": 92909, + "穀": 92910, + "Į": 92911, + "⏵": 92912, + "狟": 92913, + "枎": 92914, + "湗": 92915, + "ɂ": 92916, + "♈": 92917, + "🚴🏻‍♀️": 92918, + "🤵🏽": 92919, + "焂": 92920, + "惺": 92921, + "椙": 92922, + "籷": 92923, + "緕": 92924, + "樦": 92925, + "⍮": 92926, + "🥣": 92927, + "🏋🏻‍♀️": 92928, + "镉": 92929, + "嘬": 92930, + "諉": 92931, + "🙅": 92932, + "橫": 92933, + "鎌": 92934, + "彜": 92935, + "🔭": 92936, + "纒": 92937, + "冖": 92938, + "囓": 92939, + "🤶": 92940, + "葟": 92941, + "🤵🏾‍♂️": 92942, + "砬": 92943, + "瞁": 92944, + "🇨🇲": 92945, + "趇": 92946, + "軛": 92947, + "👩🏼‍💻": 92948, + "檰": 92949, + "😄": 92950, + "⑏": 92951, + "勪": 92952, + "鋥": 92953, + "帗": 92954, + "黝": 92955, + "罔": 92956, + "儣": 92957, + "💃🏽": 92958, + "邟": 92959, + "牂": 92960, + "秣": 92961, + "鯢": 92962, + "桁": 92963, + "ǧ": 92964, + "╶": 92965, + "饙": 92966, + "埙": 92967, + "🎄": 92968, + "逪": 92969, + "罍": 92970, + "瘔": 92971, + "奪": 92972, + "🖐": 92973, + "🖕": 92974, + "澯": 92975, + "蓴": 92976, + "韉": 92977, + "輷": 92978, + "佢": 92979, + "挭": 92980, + "縋": 92981, + "鶋": 92982, + "揶": 92983, + "⎽": 92984, + "膁": 92985, + "丂": 92986, + "癡": 92987, + "胷": 92988, + "観": 92989, + "抺": 92990, + "瘃": 92991, + "卍": 92992, + "稰": 92993, + "🤵🏼": 92994, + "敤": 92995, + "蕽": 92996, + "綎": 92997, + "伔": 92998, + "訣": 92999, + "筩": 93000, + "捥": 93001, + "磓": 93002, + "篓": 93003, + "轏": 93004, + "顤": 93005, + "捛": 93006, + "櫊": 93007, + "⍓": 93008, + "脬": 93009, + "锴": 93010, + "専": 93011, + "揃": 93012, + "疛": 93013, + "袀": 93014, + "∸": 93015, + "₱": 93016, + "稤": 93017, + "熴": 93018, + "┣": 93019, + "🥢": 93020, + "泷": 93021, + "⏸": 93022, + "Ǟ": 93023, + "艣": 93024, + "飌": 93025, + "🐃": 93026, + "Ą": 93027, + "诖": 93028, + "🇳🇿": 93029, + "賬": 93030, + "┈": 93031, + "👨‍🦯": 93032, + "箻": 93033, + "玷": 93034, + "∲": 93035, + "槰": 93036, + "膹": 93037, + "讄": 93038, + "ǣ": 93039, + "帚": 93040, + "蒠": 93041, + "˩": 93042, + "焋": 93043, + "🔐": 93044, + "譎": 93045, + "🇹🇱": 93046, + "杶": 93047, + "燹": 93048, + "苒": 93049, + "Ɇ": 93050, + "🤳🏾": 93051, + "鼕": 93052, + "價": 93053, + "睉": 93054, + "僡": 93055, + "謀": 93056, + "艷": 93057, + "🧏🏿‍♀️": 93058, + "芗": 93059, + "贲": 93060, + "螡": 93061, + "蕼": 93062, + "甥": 93063, + "😯": 93064, + "≪": 93065, + "膮": 93066, + "🛀": 93067, + "嶍": 93068, + "戩": 93069, + "鼅": 93070, + "蚘": 93071, + "趐": 93072, + "歨": 93073, + "鎏": 93074, + "篳": 93075, + "🪛": 93076, + "佫": 93077, + "凈": 93078, + "肻": 93079, + "🇬🇮": 93080, + "∜": 93081, + "璯": 93082, + "瞌": 93083, + "垷": 93084, + "♹": 93085, + "K": 93086, + "翕": 93087, + "孅": 93088, + "硱": 93089, + "👩🏻‍❤️‍👨🏽": 93090, + "肵": 93091, + "錊": 93092, + "👳🏼‍♂️": 93093, + "蘥": 93094, + "⛛": 93095, + "🦶": 93096, + "矵": 93097, + "蛓": 93098, + "栠": 93099, + "砎": 93100, + "醭": 93101, + "嵇": 93102, + "瓕": 93103, + "汧": 93104, + "魸": 93105, + "儓": 93106, + "尢": 93107, + "鍰": 93108, + "̃": 93109, + "汯": 93110, + "讫": 93111, + "荇": 93112, + "茺": 93113, + "躤": 93114, + "鮇": 93115, + "欞": 93116, + "厽": 93117, + "🧛🏻‍♀️": 93118, + "嚱": 93119, + "晇": 93120, + "鷜": 93121, + "壸": 93122, + "鰋": 93123, + "彧": 93124, + "蜎": 93125, + "實": 93126, + "鮚": 93127, + "Ʊ": 93128, + "伖": 93129, + "🇧🇿": 93130, + "巼": 93131, + "🏄🏼‍♂️": 93132, + "✧": 93133, + "抮": 93134, + "瓐": 93135, + "箎": 93136, + "👰🏽‍♂️": 93137, + "蠩": 93138, + "諦": 93139, + "昹": 93140, + "⋹": 93141, + "曎": 93142, + "哂": 93143, + "絆": 93144, + "粬": 93145, + "鸺": 93146, + "繸": 93147, + "蕡": 93148, + "擕": 93149, + "榾": 93150, + "👱‍♀️": 93151, + "豗": 93152, + "👨🏾‍❤️‍👨🏼": 93153, + "慹": 93154, + " ": 93155, + "匁": 93156, + "疖": 93157, + "谉": 93158, + "∬": 93159, + "臃": 93160, + "芃": 93161, + "歗": 93162, + "壅": 93163, + "寃": 93164, + "馱": 93165, + "馸": 93166, + "瞡": 93167, + "蹔": 93168, + "耊": 93169, + "衁": 93170, + "膓": 93171, + "🧎🏼‍♂️": 93172, + "📊": 93173, + "曪": 93174, + "鎍": 93175, + "🐒": 93176, + "🫳🏾": 93177, + "鯪": 93178, + "┿": 93179, + "暺": 93180, + "👩🏿‍🎤": 93181, + "壆": 93182, + "婯": 93183, + "ĩ": 93184, + "␎": 93185, + "側": 93186, + "👩🏻‍🎤": 93187, + "嘀": 93188, + "歐": 93189, + "痲": 93190, + "洈": 93191, + "😥": 93192, + "皌": 93193, + "🏭": 93194, + "隣": 93195, + "ⓔ": 93196, + "憁": 93197, + "僨": 93198, + "敄": 93199, + "觛": 93200, + "忢": 93201, + "🤛🏿": 93202, + "戽": 93203, + "🏇🏽": 93204, + "螬": 93205, + "冇": 93206, + "鏎": 93207, + "腤": 93208, + "餒": 93209, + "👨🏼‍❤️‍👨🏾": 93210, + "桄": 93211, + "騮": 93212, + "榬": 93213, + "韠": 93214, + "🛌🏽": 93215, + "驜": 93216, + "耪": 93217, + "趉": 93218, + "🫄🏼": 93219, + "鮠": 93220, + "鈇": 93221, + "經": 93222, + "℅": 93223, + "⊟": 93224, + "⇫": 93225, + "̧": 93226, + "袯": 93227, + "敾": 93228, + "⇢": 93229, + "湔": 93230, + "箮": 93231, + "🤸‍♂️": 93232, + "粊": 93233, + "選": 93234, + "滌": 93235, + "纎": 93236, + "埖": 93237, + "🇬🇺": 93238, + "梚": 93239, + "咺": 93240, + "咜": 93241, + "箹": 93242, + "⎷": 93243, + "🎈": 93244, + "夀": 93245, + "紦": 93246, + "栳": 93247, + "🔄": 93248, + "厶": 93249, + "蝻": 93250, + "佭": 93251, + "嫕": 93252, + "岕": 93253, + "唎": 93254, + "垗": 93255, + "髶": 93256, + "🧑🏼‍🦰": 93257, + "鬴": 93258, + "譛": 93259, + "👨‍🌾": 93260, + "鱰": 93261, + "鈉": 93262, + "楐": 93263, + "磿": 93264, + "坖": 93265, + "曄": 93266, + "椡": 93267, + "鰻": 93268, + "裛": 93269, + "趿": 93270, + "舭": 93271, + "⚟": 93272, + "瓝": 93273, + "贐": 93274, + "槳": 93275, + "🖇": 93276, + "蠑": 93277, + "韎": 93278, + "嵲": 93279, + "繨": 93280, + "燑": 93281, + "↘": 93282, + "鵴": 93283, + "橔": 93284, + "舧": 93285, + "瀅": 93286, + "遯": 93287, + "👩🏽‍❤️‍👨🏽": 93288, + "⎈": 93289, + "菛": 93290, + "鳗": 93291, + "泩": 93292, + "慍": 93293, + "🇨🇺": 93294, + "👮🏾": 93295, + "🔺": 93296, + "舀": 93297, + "浘": 93298, + "ʏ": 93299, + "叏": 93300, + "絠": 93301, + "巭": 93302, + "⋘": 93303, + "啁": 93304, + "💁🏽‍♀️": 93305, + "崾": 93306, + "埢": 93307, + "歱": 93308, + "藪": 93309, + "ℑ": 93310, + "堋": 93311, + "炁": 93312, + "愔": 93313, + "Þ": 93314, + "氦": 93315, + "蹉": 93316, + "趃": 93317, + "鸛": 93318, + "鷓": 93319, + "鵌": 93320, + "嬎": 93321, + "貅": 93322, + "妅": 93323, + "蚸": 93324, + "呠": 93325, + "👩🏻‍🔬": 93326, + "⛿": 93327, + "鶯": 93328, + "繞": 93329, + "袦": 93330, + "🍽": 93331, + "澪": 93332, + "濹": 93333, + "鱧": 93334, + "ⓚ": 93335, + "脎": 93336, + "螰": 93337, + "杩": 93338, + "毈": 93339, + "轾": 93340, + "剮": 93341, + "👶🏾": 93342, + "娪": 93343, + "▖": 93344, + "題": 93345, + "痗": 93346, + "種": 93347, + "⅝": 93348, + "勳": 93349, + "躉": 93350, + "慟": 93351, + "嬵": 93352, + "🛏": 93353, + "😾": 93354, + "∉": 93355, + "🧙🏽‍♂️": 93356, + "廍": 93357, + "🏌️‍♀️": 93358, + "兛": 93359, + "⊛": 93360, + "橥": 93361, + "麇": 93362, + "飢": 93363, + "鄊": 93364, + "🤦🏽‍♂️": 93365, + "螗": 93366, + "🤏🏻": 93367, + "🕶": 93368, + "榤": 93369, + "鼊": 93370, + "͙": 93371, + "栢": 93372, + "腶": 93373, + "鱐": 93374, + "⏨": 93375, + "毸": 93376, + "詗": 93377, + "🐑": 93378, + "🧑🏽‍🦱": 93379, + "簘": 93380, + "犥": 93381, + "⁠": 93382, + "┺": 93383, + "駫": 93384, + "⎣": 93385, + "茑": 93386, + "👨‍👨‍👧": 93387, + "扵": 93388, + "👨🏿‍❤️‍👨🏻": 93389, + "崡": 93390, + "湥": 93391, + "竡": 93392, + "鋠": 93393, + "殺": 93394, + "尲": 93395, + "踧": 93396, + "輆": 93397, + "💏": 93398, + "醩": 93399, + "奝": 93400, + "笌": 93401, + "菤": 93402, + "🧘🏻": 93403, + "刱": 93404, + "恮": 93405, + "芢": 93406, + "👨‍🚒": 93407, + "峃": 93408, + "潱": 93409, + "␿": 93410, + "Ǎ": 93411, + "ϫ": 93412, + "俍": 93413, + "忄": 93414, + "罋": 93415, + "澧": 93416, + "灊": 93417, + "趈": 93418, + "襆": 93419, + "闆": 93420, + "✖️": 93421, + "玢": 93422, + "ʊ": 93423, + "¦": 93424, + "揱": 93425, + "汈": 93426, + "碦": 93427, + "鶘": 93428, + "勽": 93429, + "鍾": 93430, + "瑊": 93431, + "炔": 93432, + "姃": 93433, + "宄": 93434, + "傺": 93435, + "荹": 93436, + "镭": 93437, + "苝": 93438, + "襪": 93439, + "潪": 93440, + "⛯": 93441, + "觼": 93442, + "饜": 93443, + "訫": 93444, + "鵫": 93445, + "贘": 93446, + "🔔": 93447, + "💁🏼‍♂️": 93448, + "牻": 93449, + "簟": 93450, + "塰": 93451, + "诬": 93452, + "檳": 93453, + "鹷": 93454, + "耎": 93455, + "😘": 93456, + "聕": 93457, + "儈": 93458, + "儲": 93459, + "颡": 93460, + "饇": 93461, + "墍": 93462, + "譒": 93463, + "腛": 93464, + "擪": 93465, + "燰": 93466, + "🇧🇸": 93467, + "爓": 93468, + "佨": 93469, + "╋": 93470, + "锽": 93471, + "👩🏽‍❤️‍💋‍👩🏻": 93472, + "甂": 93473, + "👆🏿": 93474, + "🧑🏻‍🦯": 93475, + "痼": 93476, + "耋": 93477, + "劙": 93478, + "嘗": 93479, + "糥": 93480, + "⍔": 93481, + "厴": 93482, + "桳": 93483, + "蜲": 93484, + "𓀗": 93485, + "溌": 93486, + "辇": 93487, + "扝": 93488, + "爠": 93489, + "獥": 93490, + "饊": 93491, + "媢": 93492, + "峍": 93493, + "珄": 93494, + "╎": 93495, + "潈": 93496, + "邙": 93497, + "梖": 93498, + "襔": 93499, + "🎴": 93500, + "硂": 93501, + "鏦": 93502, + "詁": 93503, + "瑗": 93504, + "恏": 93505, + "嶃": 93506, + "莪": 93507, + "₊": 93508, + "ₚ": 93509, + "坼": 93510, + "櫨": 93511, + "犃": 93512, + "杙": 93513, + "兟": 93514, + "刈": 93515, + "鋚": 93516, + "麙": 93517, + "🖱": 93518, + "伂": 93519, + "🏋🏾": 93520, + "砻": 93521, + "蒅": 93522, + "唸": 93523, + "妠": 93524, + "俅": 93525, + "莩": 93526, + "珇": 93527, + "堇": 93528, + "迏": 93529, + "蠷": 93530, + "毱": 93531, + "諍": 93532, + "仝": 93533, + "哋": 93534, + "蒕": 93535, + "溨": 93536, + "📦": 93537, + "💈": 93538, + "葥": 93539, + "ⅇ": 93540, + "◿": 93541, + "🤱🏿": 93542, + "炃": 93543, + "🇰🇿": 93544, + "⛜": 93545, + "饂": 93546, + "▓": 93547, + "挋": 93548, + "↚": 93549, + "👨🏿‍❤️‍👨🏼": 93550, + "鯂": 93551, + "昄": 93552, + "蹻": 93553, + "饷": 93554, + "呟": 93555, + "厎": 93556, + "様": 93557, + "狳": 93558, + "諸": 93559, + "涙": 93560, + "鴇": 93561, + "譿": 93562, + "锶": 93563, + "🤾🏻‍♀️": 93564, + "Ⓨ": 93565, + "̑": 93566, + "釾": 93567, + "搴": 93568, + "⃜": 93569, + "≫": 93570, + "縷": 93571, + "蚣": 93572, + "肗": 93573, + "瞊": 93574, + "勼": 93575, + "颟": 93576, + "締": 93577, + "纰": 93578, + "弶": 93579, + "蹂": 93580, + "殧": 93581, + "🏅": 93582, + "龗": 93583, + "棆": 93584, + "酴": 93585, + "蒏": 93586, + "🎾": 93587, + "攍": 93588, + "⒤": 93589, + "楉": 93590, + "Ⅎ": 93591, + "栊": 93592, + "詒": 93593, + "鵝": 93594, + "凷": 93595, + "宐": 93596, + "嬰": 93597, + "筙": 93598, + "🧑🏾‍❤️‍💋‍🧑🏼": 93599, + "🙋🏼‍♂️": 93600, + "磘": 93601, + "赜": 93602, + "匇": 93603, + "鴰": 93604, + "綐": 93605, + "偞": 93606, + "🧑🏿‍⚕️": 93607, + "棏": 93608, + "鷕": 93609, + "頛": 93610, + "倄": 93611, + "訶": 93612, + "岆": 93613, + "悵": 93614, + "🤳🏻": 93615, + "餫": 93616, + "廵": 93617, + "惢": 93618, + "陓": 93619, + "荺": 93620, + "🏃🏻‍♀️": 93621, + "關": 93622, + "毴": 93623, + "褷": 93624, + "🤛🏽": 93625, + "搚": 93626, + "甆": 93627, + "👫🏼": 93628, + "嫙": 93629, + "🥨": 93630, + "睈": 93631, + "婸": 93632, + "勅": 93633, + "埿": 93634, + "妁": 93635, + "冹": 93636, + "👂": 93637, + "麀": 93638, + "啂": 93639, + "頂": 93640, + "绖": 93641, + "烒": 93642, + "🎀": 93643, + "鉹": 93644, + "浶": 93645, + "覾": 93646, + "鈱": 93647, + "齹": 93648, + "埥": 93649, + "🇼🇸": 93650, + "🤙🏿": 93651, + "啑": 93652, + "羃": 93653, + "👨🏻‍⚕️": 93654, + "鉧": 93655, + "訪": 93656, + "♍": 93657, + "🖋": 93658, + "慝": 93659, + "💧": 93660, + "羳": 93661, + "铊": 93662, + "≔": 93663, + "斱": 93664, + "篾": 93665, + "逞": 93666, + "兣": 93667, + "🚣‍♂️": 93668, + "蠜": 93669, + "圷": 93670, + "甤": 93671, + "龞": 93672, + "⃂": 93673, + "吩": 93674, + "檲": 93675, + "陣": 93676, + "珃": 93677, + "僥": 93678, + "👨🏽‍🦳": 93679, + "赓": 93680, + "🇮🇲": 93681, + "蒍": 93682, + "嶅": 93683, + "ˁ": 93684, + "噓": 93685, + "賤": 93686, + "🧑🏻‍💻": 93687, + "輀": 93688, + "🎥": 93689, + "峲": 93690, + "輳": 93691, + "🚵🏻‍♂️": 93692, + "傋": 93693, + "矌": 93694, + "̵": 93695, + "錕": 93696, + "👮‍♂️": 93697, + "颫": 93698, + "⚲": 93699, + "橐": 93700, + "戔": 93701, + "栶": 93702, + "俹": 93703, + "舉": 93704, + "昲": 93705, + "ℷ": 93706, + "婔": 93707, + "濟": 93708, + "鶅": 93709, + "👨‍👨‍👧‍👦": 93710, + "脺": 93711, + "忿": 93712, + "撊": 93713, + "诙": 93714, + "🧖🏻‍♂️": 93715, + "妱": 93716, + "👩🏿‍🎓": 93717, + "✶": 93718, + "👩🏾‍🍳": 93719, + "⍅": 93720, + "杕": 93721, + "岋": 93722, + "✎": 93723, + "枽": 93724, + "dž": 93725, + "🧑‍🤝‍🧑": 93726, + "嘨": 93727, + "怢": 93728, + "傆": 93729, + "狅": 93730, + "輴": 93731, + "纙": 93732, + "抇": 93733, + "劐": 93734, + "訤": 93735, + "蕬": 93736, + "🐆": 93737, + "噑": 93738, + "玙": 93739, + "瞷": 93740, + "灣": 93741, + "👷🏾": 93742, + "槈": 93743, + "泒": 93744, + "嗚": 93745, + "崢": 93746, + "秓": 93747, + "絹": 93748, + "湏": 93749, + "΍": 93750, + "🥙": 93751, + "👯‍♂️": 93752, + "▞": 93753, + "朷": 93754, + "汬": 93755, + "壐": 93756, + "苣": 93757, + "銨": 93758, + "╪": 93759, + "愛": 93760, + "缏": 93761, + "焽": 93762, + "🤛🏻": 93763, + "ʤ": 93764, + "仳": 93765, + "燐": 93766, + "🦞": 93767, + "埴": 93768, + "繅": 93769, + "軳": 93770, + "👖": 93771, + "ɇ": 93772, + "禃": 93773, + "̅": 93774, + "锝": 93775, + "燊": 93776, + "舣": 93777, + "硪": 93778, + "鑃": 93779, + "刭": 93780, + "舼": 93781, + "齙": 93782, + "弳": 93783, + "渿": 93784, + "箉": 93785, + "✃": 93786, + "揵": 93787, + "凾": 93788, + "鋯": 93789, + "嬕": 93790, + "壪": 93791, + "灥": 93792, + "緣": 93793, + "💑🏻": 93794, + "箤": 93795, + "璣": 93796, + "ͦ": 93797, + "⁧": 93798, + "囲": 93799, + "幍": 93800, + "₋": 93801, + "敮": 93802, + "錪": 93803, + "熚": 93804, + "👵": 93805, + "ƛ": 93806, + "氫": 93807, + "擝": 93808, + "⍜": 93809, + "撶": 93810, + "娷": 93811, + "🔷": 93812, + "滲": 93813, + "搳": 93814, + "蠉": 93815, + "汣": 93816, + "婠": 93817, + "💆🏼‍♀️": 93818, + "檯": 93819, + "鞣": 93820, + "絅": 93821, + "鎐": 93822, + "嫾": 93823, + "鋗": 93824, + "琸": 93825, + "禛": 93826, + "幮": 93827, + "楄": 93828, + "硢": 93829, + "觘": 93830, + "卭": 93831, + "噟": 93832, + "緛": 93833, + "🈂️": 93834, + "虭": 93835, + "⅒": 93836, + "👅": 93837, + "🟢": 93838, + "測": 93839, + "翦": 93840, + "畞": 93841, + "🏪": 93842, + "蒚": 93843, + "🥿": 93844, + "🐐": 93845, + "瘲": 93846, + "扈": 93847, + "坸": 93848, + "痤": 93849, + "礿": 93850, + "階": 93851, + "聁": 93852, + "豐": 93853, + "繉": 93854, + "羘": 93855, + "澀": 93856, + "銝": 93857, + "扐": 93858, + "Ϊ": 93859, + "犨": 93860, + "洘": 93861, + "💐": 93862, + "峳": 93863, + "櫻": 93864, + "枼": 93865, + "庳": 93866, + "僕": 93867, + "🥔": 93868, + "勶": 93869, + "⚨": 93870, + "馊": 93871, + "暪": 93872, + "瘓": 93873, + "▐": 93874, + "溥": 93875, + "邠": 93876, + "媐": 93877, + "Ĺ": 93878, + "誅": 93879, + "铌": 93880, + "💆🏻‍♂️": 93881, + "👨‍🏫": 93882, + "簶": 93883, + "傮": 93884, + "👨🏾‍✈️": 93885, + "💃🏾": 93886, + "捔": 93887, + "銹": 93888, + "👫🏻": 93889, + "👊🏾": 93890, + "囮": 93891, + "🍆": 93892, + "糨": 93893, + "鼶": 93894, + "鴥": 93895, + "剘": 93896, + "語": 93897, + "鹨": 93898, + "蓔": 93899, + "͵": 93900, + "舴": 93901, + "🕵🏽‍♂️": 93902, + "鼳": 93903, + "ɸ": 93904, + "戉": 93905, + "禡": 93906, + "⚘": 93907, + "彣": 93908, + "竮": 93909, + "☄": 93910, + "镸": 93911, + "釔": 93912, + "飔": 93913, + "臞": 93914, + "蚹": 93915, + "蘧": 93916, + "⇂": 93917, + "尩": 93918, + "👟": 93919, + "👨‍👩‍👧": 93920, + "暸": 93921, + "揞": 93922, + "🧍🏻": 93923, + "鶕": 93924, + "👿": 93925, + "枋": 93926, + "🤚🏽": 93927, + "澗": 93928, + "鵉": 93929, + "髅": 93930, + "賋": 93931, + "沶": 93932, + "徧": 93933, + "齧": 93934, + "菰": 93935, + "埣": 93936, + "🚲": 93937, + "旵": 93938, + "🦸🏾": 93939, + "捙": 93940, + "謬": 93941, + "檻": 93942, + "ʍ": 93943, + "埶": 93944, + "蒴": 93945, + "␆": 93946, + "💫": 93947, + "韅": 93948, + "扙": 93949, + "砿": 93950, + "宍": 93951, + "ɻ": 93952, + "哵": 93953, + "臬": 93954, + "軍": 93955, + "囐": 93956, + "磙": 93957, + "⃈": 93958, + "👩🏼‍🚒": 93959, + "砈": 93960, + "⏧": 93961, + "鞤": 93962, + "惖": 93963, + "為": 93964, + "媼": 93965, + "粢": 93966, + "腟": 93967, + "蠰": 93968, + "🪩": 93969, + "粩": 93970, + "绦": 93971, + "🍪": 93972, + "轐": 93973, + "緗": 93974, + "🇵🇲": 93975, + "⌽": 93976, + "罾": 93977, + "闞": 93978, + "阍": 93979, + "☪": 93980, + "鹼": 93981, + "👩🏻‍❤️‍👩🏽": 93982, + "鐃": 93983, + "劁": 93984, + "⅘": 93985, + "𓀍": 93986, + "💡": 93987, + "🇩🇴": 93988, + "澫": 93989, + "僯": 93990, + "軌": 93991, + "筲": 93992, + "💇🏽‍♂️": 93993, + "Ę": 93994, + "刲": 93995, + "🙇🏽‍♂️": 93996, + "👱🏻": 93997, + "🙀": 93998, + "匕": 93999, + "淂": 94000, + "🙍🏾‍♂️": 94001, + "騛": 94002, + "両": 94003, + "逿": 94004, + "灧": 94005, + "🧑🏻‍💼": 94006, + "🇵🇦": 94007, + "🧦": 94008, + "呯": 94009, + "瑓": 94010, + "婱": 94011, + "🫸🏿": 94012, + "鱲": 94013, + "倷": 94014, + "觖": 94015, + "堈": 94016, + "鲇": 94017, + "逬": 94018, + "⌁": 94019, + "觢": 94020, + "蝞": 94021, + "🇱🇻": 94022, + "媍": 94023, + "叀": 94024, + "ˎ": 94025, + "樍": 94026, + "👨🏽‍🌾": 94027, + "湂": 94028, + "鮧": 94029, + "箳": 94030, + "匭": 94031, + "薃": 94032, + "懗": 94033, + "槙": 94034, + "艍": 94035, + "媞": 94036, + "🇬🇬": 94037, + "🌏": 94038, + "傫": 94039, + "劕": 94040, + "鲟": 94041, + "🪦": 94042, + "蒬": 94043, + "毺": 94044, + "硖": 94045, + "瑆": 94046, + "👨🏻‍❤️‍💋‍👨🏻": 94047, + "硈": 94048, + "↳": 94049, + "嬀": 94050, + "🥋": 94051, + "ɲ": 94052, + "賁": 94053, + "巆": 94054, + "譵": 94055, + "黵": 94056, + "桝": 94057, + "蘲": 94058, + "喞": 94059, + "綕": 94060, + "驮": 94061, + "簴": 94062, + "乶": 94063, + "熁": 94064, + "熃": 94065, + "🇫🇲": 94066, + "虢": 94067, + "禐": 94068, + "顏": 94069, + "冘": 94070, + "ʓ": 94071, + "飨": 94072, + "🤦🏽": 94073, + "馕": 94074, + "礎": 94075, + "跉": 94076, + "鯛": 94077, + "甠": 94078, + "膯": 94079, + "氅": 94080, + "埽": 94081, + "爙": 94082, + "櫺": 94083, + "⋊": 94084, + "颀": 94085, + "␱": 94086, + "怞": 94087, + "⎢": 94088, + "觳": 94089, + "菓": 94090, + "吣": 94091, + "饎": 94092, + "讏": 94093, + "嚙": 94094, + "饑": 94095, + "鹖": 94096, + "褩": 94097, + "🙅🏽‍♀️": 94098, + "🖖🏿": 94099, + "憽": 94100, + "蒟": 94101, + "烎": 94102, + "亇": 94103, + "垼": 94104, + "瓪": 94105, + "睯": 94106, + "哅": 94107, + "娦": 94108, + "瓈": 94109, + "諒": 94110, + "🇩🇰": 94111, + "矓": 94112, + "寖": 94113, + "烑": 94114, + "莠": 94115, + "菹": 94116, + "蜺": 94117, + "隺": 94118, + "矗": 94119, + "🏄🏾": 94120, + "児": 94121, + "砮": 94122, + "嬨": 94123, + "捎": 94124, + "😀": 94125, + "礔": 94126, + "侟": 94127, + "廜": 94128, + "🔶": 94129, + "⊜": 94130, + "Ʀ": 94131, + "釄": 94132, + "讌": 94133, + "愺": 94134, + "滐": 94135, + "栬": 94136, + "胼": 94137, + "楣": 94138, + "🐹": 94139, + "鎱": 94140, + "獦": 94141, + "蜢": 94142, + "砳": 94143, + "漩": 94144, + "樬": 94145, + "糩": 94146, + "軜": 94147, + "軆": 94148, + "惪": 94149, + "⏻": 94150, + "頙": 94151, + "👨🏿‍🌾": 94152, + "忮": 94153, + "騋": 94154, + "懆": 94155, + "👩🏾‍🔧": 94156, + "犙": 94157, + "樇": 94158, + "盢": 94159, + "迵": 94160, + "邚": 94161, + "孓": 94162, + "ⅵ": 94163, + "👎🏾": 94164, + "卲": 94165, + "緅": 94166, + "肭": 94167, + "醧": 94168, + "躱": 94169, + "☝🏼": 94170, + "¹": 94171, + "肀": 94172, + "凥": 94173, + "欱": 94174, + "👩🏻‍❤️‍💋‍👩🏾": 94175, + "勠": 94176, + "楀": 94177, + "鍄": 94178, + "荳": 94179, + "糮": 94180, + "镮": 94181, + "旇": 94182, + "ĉ": 94183, + "凼": 94184, + "爦": 94185, + "🔙": 94186, + "鄾": 94187, + "🈷️": 94188, + "筳": 94189, + "屷": 94190, + "髼": 94191, + "郛": 94192, + "🏌🏾": 94193, + "ɷ": 94194, + "騁": 94195, + "Ķ": 94196, + "淖": 94197, + "膧": 94198, + "郏": 94199, + "唛": 94200, + "滠": 94201, + "敒": 94202, + "🙅🏻‍♂️": 94203, + "奌": 94204, + "烍": 94205, + "箜": 94206, + "┅": 94207, + "💁🏿‍♀️": 94208, + "聢": 94209, + "忣": 94210, + "≯": 94211, + "暍": 94212, + "坴": 94213, + "圖": 94214, + "旄": 94215, + "敭": 94216, + "袢": 94217, + "🧑🏿‍🦱": 94218, + "燙": 94219, + "蒛": 94220, + "缁": 94221, + "魆": 94222, + "🧑🏾‍🦽": 94223, + "薕": 94224, + "膔": 94225, + "鈖": 94226, + "齼": 94227, + "漉": 94228, + "鈓": 94229, + "👨🏾‍💼": 94230, + "鬳": 94231, + "葸": 94232, + "铨": 94233, + "姷": 94234, + "結": 94235, + "👩🏾‍🦯": 94236, + "🍌": 94237, + "👨🏿‍🦼": 94238, + "🚐": 94239, + "⑇": 94240, + "⁢": 94241, + "旼": 94242, + "縙": 94243, + "拀": 94244, + "蠿": 94245, + "🙆🏼‍♂️": 94246, + "醶": 94247, + "禂": 94248, + "👩🏻‍❤️‍👩🏼": 94249, + "🧚🏽‍♀️": 94250, + "壖": 94251, + "🍛": 94252, + "觊": 94253, + "蘎": 94254, + "₏": 94255, + "覤": 94256, + "荪": 94257, + "梡": 94258, + "🧡": 94259, + "焸": 94260, + "燒": 94261, + "阚": 94262, + "掋": 94263, + "絑": 94264, + "鐺": 94265, + "🧙🏽‍♀️": 94266, + "詢": 94267, + "轉": 94268, + "▯": 94269, + "岏": 94270, + "蘨": 94271, + "牗": 94272, + "悺": 94273, + "瓚": 94274, + "欐": 94275, + "齍": 94276, + "脍": 94277, + "腳": 94278, + "簕": 94279, + "祂": 94280, + "⓵": 94281, + "灎": 94282, + "鶍": 94283, + "忩": 94284, + "隯": 94285, + "禉": 94286, + "詴": 94287, + "🏋🏿": 94288, + "ℳ": 94289, + "🇻🇪": 94290, + "缛": 94291, + "澟": 94292, + "庬": 94293, + "₲": 94294, + "🇬🇸": 94295, + "蕷": 94296, + "筗": 94297, + "⑂": 94298, + "癓": 94299, + "讝": 94300, + "鯨": 94301, + "⍕": 94302, + "🫓": 94303, + "🦗": 94304, + "顣": 94305, + "🐀": 94306, + "嫞": 94307, + "瀖": 94308, + "愦": 94309, + "Ʈ": 94310, + "錻": 94311, + "邏": 94312, + "曛": 94313, + "豺": 94314, + "騐": 94315, + "覼": 94316, + "臏": 94317, + "棖": 94318, + "痌": 94319, + "嬖": 94320, + "桵": 94321, + "磔": 94322, + "砀": 94323, + "焵": 94324, + "鴿": 94325, + "陾": 94326, + "犞": 94327, + "ϙ": 94328, + "錽": 94329, + "遪": 94330, + "烳": 94331, + "👠": 94332, + "甇": 94333, + "🦹🏼‍♀️": 94334, + "⃽": 94335, + "虬": 94336, + "銶": 94337, + "碜": 94338, + "🪺": 94339, + "渙": 94340, + "彖": 94341, + "🇲🇹": 94342, + "鑣": 94343, + "😆": 94344, + "瓴": 94345, + "👩🏾‍🏭": 94346, + "👩🏾‍❤️‍👩🏾": 94347, + "🧏‍♂️": 94348, + "掔": 94349, + "🧛🏾": 94350, + "蹒": 94351, + "毟": 94352, + "瘈": 94353, + "诰": 94354, + "◡": 94355, + "椷": 94356, + "獷": 94357, + "🙅🏼": 94358, + "穵": 94359, + "鍷": 94360, + "崜": 94361, + "顮": 94362, + "簡": 94363, + "毚": 94364, + "↊": 94365, + "鋐": 94366, + "漃": 94367, + "砹": 94368, + "炴": 94369, + "湹": 94370, + "詄": 94371, + "👭🏽": 94372, + "锎": 94373, + "👩🏻‍🦳": 94374, + "臡": 94375, + "紩": 94376, + "墭": 94377, + "欃": 94378, + "蠟": 94379, + "黩": 94380, + "洙": 94381, + "瘨": 94382, + "傳": 94383, + "櫼": 94384, + "竵": 94385, + "灖": 94386, + "歳": 94387, + "瘪": 94388, + "∛": 94389, + "翓": 94390, + "嫈": 94391, + "忡": 94392, + "盺": 94393, + "壔": 94394, + "℉": 94395, + "✊🏾": 94396, + "攰": 94397, + "👨🏼‍🚒": 94398, + "嚾": 94399, + "沝": 94400, + "跔": 94401, + "👨🏽‍🎓": 94402, + "觠": 94403, + "媽": 94404, + "⌡": 94405, + "囂": 94406, + "毝": 94407, + "衽": 94408, + "锬": 94409, + "琝": 94410, + "鋼": 94411, + "訛": 94412, + "痸": 94413, + "👩🏿‍💻": 94414, + "🇹🇿": 94415, + "泈": 94416, + "佾": 94417, + "駘": 94418, + "🏌🏽‍♀️": 94419, + "霺": 94420, + "櫥": 94421, + "筣": 94422, + "対": 94423, + "彾": 94424, + "淯": 94425, + "暤": 94426, + "卻": 94427, + "˚": 94428, + "悏": 94429, + "輊": 94430, + "┾": 94431, + "烓": 94432, + "Ȅ": 94433, + "͘": 94434, + "閥": 94435, + "椗": 94436, + "絋": 94437, + "崃": 94438, + "ȿ": 94439, + "☷": 94440, + "🪆": 94441, + "賉": 94442, + "␯": 94443, + "泞": 94444, + "鬊": 94445, + "磲": 94446, + "🙅🏼‍♀️": 94447, + "幜": 94448, + "✍🏽": 94449, + "巹": 94450, + "骻": 94451, + "ʒ": 94452, + "糍": 94453, + "嘍": 94454, + "泹": 94455, + "掻": 94456, + "舩": 94457, + "悋": 94458, + "聰": 94459, + "檘": 94460, + "胤": 94461, + "裩": 94462, + "🧛‍♂️": 94463, + "緶": 94464, + "橇": 94465, + "鬁": 94466, + "箑": 94467, + "変": 94468, + "蔛": 94469, + "˺": 94470, + "嶿": 94471, + "匘": 94472, + "🧑🏼‍❤️‍🧑🏽": 94473, + "愫": 94474, + "獒": 94475, + "顢": 94476, + "旸": 94477, + "織": 94478, + "␃": 94479, + "👩🏽‍❤️‍👩🏼": 94480, + "ⅎ": 94481, + "夾": 94482, + "嬤": 94483, + "⚫": 94484, + "禘": 94485, + "犡": 94486, + "繰": 94487, + "螊": 94488, + "舽": 94489, + "🎶": 94490, + "抝": 94491, + "㊙️": 94492, + "⊝": 94493, + "娮": 94494, + "伧": 94495, + "🏄🏽": 94496, + "郟": 94497, + "🔳": 94498, + "謒": 94499, + "峧": 94500, + "砢": 94501, + "👬🏻": 94502, + "溎": 94503, + "饖": 94504, + "🙇🏿‍♂️": 94505, + "橷": 94506, + "🕺🏻": 94507, + "绻": 94508, + "⒮": 94509, + "惐": 94510, + "鷈": 94511, + "嘷": 94512, + "鑹": 94513, + "璖": 94514, + "鈝": 94515, + "搿": 94516, + "釤": 94517, + "🎿": 94518, + "ↁ": 94519, + "鷑": 94520, + "佺": 94521, + "毤": 94522, + "迸": 94523, + "硿": 94524, + "齂": 94525, + "琣": 94526, + "埭": 94527, + "媦": 94528, + "蔶": 94529, + "噳": 94530, + "湀": 94531, + "衕": 94532, + "►": 94533, + "蹤": 94534, + "竅": 94535, + "搰": 94536, + "栥": 94537, + "傦": 94538, + "釮": 94539, + "珽": 94540, + "℁": 94541, + "畝": 94542, + "🍗": 94543, + "絳": 94544, + "亶": 94545, + "🫃🏽": 94546, + "恜": 94547, + "靷": 94548, + "齣": 94549, + "铦": 94550, + "蟣": 94551, + "兇": 94552, + "礤": 94553, + "穥": 94554, + "▱": 94555, + "靦": 94556, + "👨‍👧": 94557, + "貿": 94558, + "錉": 94559, + "砵": 94560, + "蜐": 94561, + "🤸🏼‍♀️": 94562, + "闔": 94563, + "帨": 94564, + "槇": 94565, + "宭": 94566, + "萣": 94567, + "茋": 94568, + "镎": 94569, + "🤸🏾‍♀️": 94570, + "嫀": 94571, + "勀": 94572, + "❇️": 94573, + "👏🏼": 94574, + "ϝ": 94575, + "牘": 94576, + "🤽🏿‍♀️": 94577, + "灏": 94578, + "🗃": 94579, + "瞛": 94580, + "喾": 94581, + "炤": 94582, + "撍": 94583, + "👨🏾‍❤️‍💋‍👨🏿": 94584, + "楢": 94585, + "鞼": 94586, + "緬": 94587, + "ɓ": 94588, + "珣": 94589, + "🛌🏻": 94590, + "👳🏿‍♂️": 94591, + "⍧": 94592, + "谄": 94593, + "洖": 94594, + "裠": 94595, + "鑶": 94596, + "幟": 94597, + "罨": 94598, + "芚": 94599, + "⁶": 94600, + "˜": 94601, + "龃": 94602, + "鑮": 94603, + "藴": 94604, + "👩🏽‍❤️‍💋‍👨🏿": 94605, + "冼": 94606, + "碸": 94607, + "捪": 94608, + "蕐": 94609, + "薗": 94610, + "砓": 94611, + "⏱": 94612, + "💝": 94613, + "🏯": 94614, + "埦": 94615, + "粫": 94616, + "🫳🏼": 94617, + "騆": 94618, + "袼": 94619, + "賕": 94620, + "傏": 94621, + "艶": 94622, + "鑂": 94623, + "髎": 94624, + "眆": 94625, + "葶": 94626, + "挩": 94627, + "鴻": 94628, + "狥": 94629, + "篧": 94630, + "鹻": 94631, + "籜": 94632, + "薼": 94633, + "臿": 94634, + "靟": 94635, + "♚": 94636, + "噞": 94637, + "覕": 94638, + "鸗": 94639, + "📵": 94640, + "嗦": 94641, + "鰧": 94642, + "愄": 94643, + "蔒": 94644, + "絷": 94645, + "铩": 94646, + "嬣": 94647, + "ɫ": 94648, + "甴": 94649, + "舲": 94650, + "髵": 94651, + "罺": 94652, + "˭": 94653, + "🚵‍♂️": 94654, + "蝏": 94655, + "殀": 94656, + "磣": 94657, + "舠": 94658, + "鶽": 94659, + "鍳": 94660, + "👣": 94661, + "湯": 94662, + "肨": 94663, + "🫅🏼": 94664, + "奛": 94665, + "勧": 94666, + "嫺": 94667, + "🫲🏽": 94668, + "飆": 94669, + "虄": 94670, + "韀": 94671, + "嬋": 94672, + "碄": 94673, + "畺": 94674, + "🧑🏼‍🦳": 94675, + "砱": 94676, + "🧜🏿‍♂️": 94677, + "肏": 94678, + "徰": 94679, + "🕵🏼‍♀️": 94680, + "沆": 94681, + "恸": 94682, + "🦻🏿": 94683, + "鐅": 94684, + "鮎": 94685, + "騔": 94686, + "豯": 94687, + "犕": 94688, + "竉": 94689, + "⏂": 94690, + "秱": 94691, + "🤵": 94692, + "鸍": 94693, + "🧺": 94694, + "撿": 94695, + "螁": 94696, + "鯑": 94697, + "蚟": 94698, + "絊": 94699, + "睋": 94700, + "箶": 94701, + "厲": 94702, + "骕": 94703, + "蠧": 94704, + "诽": 94705, + "妕": 94706, + "蘼": 94707, + "⑘": 94708, + "顁": 94709, + "胕": 94710, + "荰": 94711, + "🤙": 94712, + "齪": 94713, + "檸": 94714, + "摖": 94715, + "扠": 94716, + "昇": 94717, + "翷": 94718, + "拮": 94719, + "🇺🇾": 94720, + "婦": 94721, + "😽": 94722, + "迆": 94723, + "僟": 94724, + "琘": 94725, + "藐": 94726, + "阖": 94727, + "阋": 94728, + "庑": 94729, + "👩🏻‍❤️‍👨🏿": 94730, + "臕": 94731, + "ℿ": 94732, + "疔": 94733, + "堘": 94734, + "磥": 94735, + "Γ": 94736, + "謤": 94737, + "⍆": 94738, + "銬": 94739, + "⏛": 94740, + "餆": 94741, + "煩": 94742, + "艏": 94743, + "蝵": 94744, + "鈏": 94745, + "玽": 94746, + "巔": 94747, + "噔": 94748, + "🙈": 94749, + "襵": 94750, + "嶼": 94751, + "騵": 94752, + "傿": 94753, + "僜": 94754, + "🧑🏿‍💻": 94755, + "泂": 94756, + "茷": 94757, + "泚": 94758, + "齩": 94759, + "黅": 94760, + "詓": 94761, + "☡": 94762, + "⃞": 94763, + "雜": 94764, + "釺": 94765, + "螚": 94766, + "劵": 94767, + "哜": 94768, + "樔": 94769, + "圽": 94770, + "🙍🏻": 94771, + "惝": 94772, + "繏": 94773, + "擑": 94774, + "稩": 94775, + "鰿": 94776, + "徍": 94777, + "潊": 94778, + "跠": 94779, + "🇱🇧": 94780, + "鲰": 94781, + "牶": 94782, + "膇": 94783, + "賗": 94784, + "褳": 94785, + "‹": 94786, + "⇎": 94787, + "⛉": 94788, + "関": 94789, + "髺": 94790, + "👂🏾": 94791, + "馴": 94792, + "镙": 94793, + "儴": 94794, + "剈": 94795, + "👨🏿‍🦽": 94796, + "ϣ": 94797, + "錧": 94798, + "嫶": 94799, + "僂": 94800, + "☋": 94801, + "喸": 94802, + "鰥": 94803, + "僔": 94804, + "徉": 94805, + "釻": 94806, + "職": 94807, + "笄": 94808, + "绗": 94809, + "傱": 94810, + "🏌️‍♂️": 94811, + "耞": 94812, + "ℼ": 94813, + "葭": 94814, + "痎": 94815, + "墫": 94816, + "竩": 94817, + "礬": 94818, + "蟨": 94819, + "犩": 94820, + "覹": 94821, + "◅": 94822, + "裷": 94823, + "🫰🏽": 94824, + "婶": 94825, + "歀": 94826, + "鯽": 94827, + "糸": 94828, + "鈟": 94829, + "帾": 94830, + "浄": 94831, + "🤾🏽‍♀️": 94832, + "塈": 94833, + "崶": 94834, + "勵": 94835, + "楱": 94836, + "隵": 94837, + "轖": 94838, + "搡": 94839, + "🍦": 94840, + "贃": 94841, + "厝": 94842, + "亠": 94843, + "艉": 94844, + "瀠": 94845, + "笹": 94846, + "殣": 94847, + "岈": 94848, + "誮": 94849, + "ⓓ": 94850, + "♼": 94851, + "慦": 94852, + "鯊": 94853, + "🧙‍♀️": 94854, + "將": 94855, + "曁": 94856, + "馝": 94857, + "鏤": 94858, + "洣": 94859, + "泋": 94860, + "瀄": 94861, + "鹁": 94862, + "齏": 94863, + "爗": 94864, + "晡": 94865, + "🧝🏿‍♂️": 94866, + "貤": 94867, + "聠": 94868, + "胈": 94869, + "🇼🇫": 94870, + "👩🏻‍🚒": 94871, + "洴": 94872, + "醢": 94873, + "璊": 94874, + "⒲": 94875, + "̶": 94876, + "鵦": 94877, + "餿": 94878, + "鳇": 94879, + "榃": 94880, + "飵": 94881, + "怽": 94882, + "🧑🏾‍❤️‍🧑🏿": 94883, + "🤖": 94884, + "饸": 94885, + "樈": 94886, + "娢": 94887, + "瓇": 94888, + "纁": 94889, + "臾": 94890, + "🏠": 94891, + "兙": 94892, + "瘒": 94893, + "赙": 94894, + "潚": 94895, + "炻": 94896, + "涞": 94897, + "菡": 94898, + "翹": 94899, + "焓": 94900, + "淾": 94901, + "莴": 94902, + "寫": 94903, + "🛅": 94904, + "殳": 94905, + "啴": 94906, + "🇿🇦": 94907, + "🗜": 94908, + "猃": 94909, + "🧜🏿‍♀️": 94910, + "⎻": 94911, + "夵": 94912, + "鐍": 94913, + "鲶": 94914, + "🛒": 94915, + "鼘": 94916, + "埬": 94917, + "塺": 94918, + "龘": 94919, + "斫": 94920, + "辠": 94921, + "⍞": 94922, + "旈": 94923, + "🤴🏽": 94924, + "蘀": 94925, + "猂": 94926, + "櫗": 94927, + "貑": 94928, + "棞": 94929, + "桕": 94930, + "孼": 94931, + "鍧": 94932, + "猰": 94933, + "瓟": 94934, + "⎠": 94935, + "‾": 94936, + "寊": 94937, + "👨🏾‍🍼": 94938, + "捇": 94939, + "笍": 94940, + "⚇": 94941, + "乧": 94942, + "櫹": 94943, + "╣": 94944, + "粆": 94945, + "ↂ": 94946, + "🟩": 94947, + "̿": 94948, + "陹": 94949, + "狔": 94950, + "荸": 94951, + "🧝🏻‍♂️": 94952, + "🧓🏾": 94953, + "琜": 94954, + "屸": 94955, + "倎": 94956, + "🚙": 94957, + "🌯": 94958, + "伒": 94959, + "郰": 94960, + "甹": 94961, + "讦": 94962, + "掮": 94963, + "⒖": 94964, + "槣": 94965, + "趭": 94966, + "儗": 94967, + "攵": 94968, + "🦘": 94969, + "⁨": 94970, + "寣": 94971, + "乿": 94972, + "摫": 94973, + "憘": 94974, + "抲": 94975, + "偡": 94976, + "嫼": 94977, + "畟": 94978, + "☳": 94979, + "跰": 94980, + "僳": 94981, + "簆": 94982, + "坆": 94983, + "暻": 94984, + "尶": 94985, + "躒": 94986, + "痋": 94987, + "澩": 94988, + "襀": 94989, + "咤": 94990, + "坺": 94991, + "鰕": 94992, + "👨🏿‍❤️‍💋‍👨🏽": 94993, + "霂": 94994, + "狒": 94995, + "鉂": 94996, + "滆": 94997, + "🉐": 94998, + "鶒": 94999, + "堶": 95000, + "麔": 95001, + "蠋": 95002, + "🤘🏽": 95003, + "凓": 95004, + "墰": 95005, + "🧛🏽‍♂️": 95006, + "🧠": 95007, + "獾": 95008, + "畐": 95009, + "謌": 95010, + "舤": 95011, + "磼": 95012, + "鞊": 95013, + "劽": 95014, + "鸴": 95015, + "袛": 95016, + "軄": 95017, + "颎": 95018, + "唶": 95019, + "菉": 95020, + "噎": 95021, + "饾": 95022, + "餗": 95023, + "湶": 95024, + "羭": 95025, + "倱": 95026, + "塭": 95027, + "Ŏ": 95028, + "埼": 95029, + "迌": 95030, + "👨🏻‍❤️‍👨🏻": 95031, + "柾": 95032, + "擢": 95033, + "镨": 95034, + "楘": 95035, + "張": 95036, + "鎀": 95037, + "🧎🏽‍♂️": 95038, + "爔": 95039, + "閄": 95040, + "閖": 95041, + "欋": 95042, + "🤞🏼": 95043, + "👩🏼‍🦰": 95044, + "畄": 95045, + "岴": 95046, + "ƃ": 95047, + "Ɂ": 95048, + "爐": 95049, + "鼏": 95050, + "🤼": 95051, + "𓀔": 95052, + "堓": 95053, + "駬": 95054, + "豖": 95055, + "🥟": 95056, + "縇": 95057, + "撘": 95058, + "拹": 95059, + "🐱": 95060, + "👩🏼‍🦱": 95061, + "🧑🏽‍🍼": 95062, + "喗": 95063, + "椇": 95064, + "茾": 95065, + "👮🏻": 95066, + "⛹🏿": 95067, + "📧": 95068, + "賓": 95069, + "呍": 95070, + "₀": 95071, + "矧": 95072, + "🛐": 95073, + "墳": 95074, + "陟": 95075, + "🧑🏻‍❤️‍💋‍🧑🏾": 95076, + "锞": 95077, + "↶": 95078, + "麶": 95079, + "👩🏿‍❤️‍👩🏼": 95080, + "苤": 95081, + "🥌": 95082, + "̞": 95083, + "嫱": 95084, + "晱": 95085, + "⑨": 95086, + "ʰ": 95087, + "弭": 95088, + "礘": 95089, + "℞": 95090, + "砕": 95091, + "΃": 95092, + "⅖": 95093, + "鸞": 95094, + "翪": 95095, + "遊": 95096, + "釠": 95097, + "帺": 95098, + "棬": 95099, + "茲": 95100, + "🕺🏼": 95101, + "棟": 95102, + "蘔": 95103, + "刢": 95104, + "鎴": 95105, + "🐟": 95106, + "◦": 95107, + "姅": 95108, + "踡": 95109, + "痥": 95110, + "∢": 95111, + "🤜🏼": 95112, + "钄": 95113, + "☚": 95114, + "": 95115, + "蕓": 95116, + "🥷🏼": 95117, + "🙋🏻‍♀️": 95118, + "尵": 95119, + "噶": 95120, + "輪": 95121, + "褄": 95122, + "衂": 95123, + "糘": 95124, + "綟": 95125, + "👰🏼‍♀️": 95126, + "遼": 95127, + "鲃": 95128, + "祽": 95129, + "禓": 95130, + "慇": 95131, + "譩": 95132, + "🧑🏽‍🎓": 95133, + "鷿": 95134, + "睒": 95135, + "🤬": 95136, + "漁": 95137, + "冟": 95138, + "謉": 95139, + "🍀": 95140, + "眻": 95141, + "伵": 95142, + "閗": 95143, + "🤟🏻": 95144, + "̂": 95145, + "浠": 95146, + "啭": 95147, + "蘏": 95148, + "憼": 95149, + "伨": 95150, + "銘": 95151, + "⏀": 95152, + "線": 95153, + "鞧": 95154, + "🤠": 95155, + "氻": 95156, + "ȗ": 95157, + "竤": 95158, + "纣": 95159, + "弤": 95160, + "冚": 95161, + "噉": 95162, + "縫": 95163, + "🥪": 95164, + "👩🏾‍🌾": 95165, + "儝": 95166, + "⋏": 95167, + "⒭": 95168, + "👮🏻‍♂️": 95169, + "丱": 95170, + "🤜🏿": 95171, + "茟": 95172, + "眙": 95173, + "謎": 95174, + "鬞": 95175, + "続": 95176, + "駶": 95177, + "纇": 95178, + "轃": 95179, + "垡": 95180, + "俟": 95181, + "泜": 95182, + "👆🏽": 95183, + "虸": 95184, + "🇻🇬": 95185, + "躑": 95186, + "裼": 95187, + "傧": 95188, + "偉": 95189, + "⎡": 95190, + "堐": 95191, + "籱": 95192, + "覣": 95193, + "炅": 95194, + "😶": 95195, + "汥": 95196, + "軇": 95197, + "👨🏾‍❤️‍💋‍👨🏼": 95198, + "⏯": 95199, + "ƴ": 95200, + "帵": 95201, + "惇": 95202, + "敡": 95203, + "櫏": 95204, + "暞": 95205, + "鲖": 95206, + "鱪": 95207, + "🍯": 95208, + "輑": 95209, + "Ο": 95210, + "憻": 95211, + "嶳": 95212, + "疅": 95213, + "袤": 95214, + "垵": 95215, + "恙": 95216, + "⒪": 95217, + "誶": 95218, + "鏑": 95219, + "嶑": 95220, + "痬": 95221, + "鳻": 95222, + "≸": 95223, + "坧": 95224, + "撦": 95225, + "漅": 95226, + "🧍🏿‍♂️": 95227, + "誝": 95228, + "槒": 95229, + "錠": 95230, + "磹": 95231, + "櫈": 95232, + "👉🏽": 95233, + "仼": 95234, + "葳": 95235, + "匟": 95236, + "髟": 95237, + "籂": 95238, + "🇫🇮": 95239, + "孖": 95240, + "欟": 95241, + "禶": 95242, + "繵": 95243, + "擄": 95244, + "綛": 95245, + "鈁": 95246, + "湈": 95247, + "恫": 95248, + "尀": 95249, + "詇": 95250, + "🇩🇿": 95251, + "👫🏽": 95252, + "洟": 95253, + "譂": 95254, + "挓": 95255, + "庤": 95256, + "牕": 95257, + "沗": 95258, + "乂": 95259, + "涼": 95260, + "矼": 95261, + "郚": 95262, + "╕": 95263, + "尯": 95264, + "讟": 95265, + "糝": 95266, + "桢": 95267, + "璾": 95268, + "淨": 95269, + "礻": 95270, + "袑": 95271, + "瞘": 95272, + "廭": 95273, + "🏋🏻‍♂️": 95274, + "ĝ": 95275, + "圅": 95276, + "鉓": 95277, + "珁": 95278, + "伆": 95279, + "雫": 95280, + "倉": 95281, + "⅏": 95282, + "貽": 95283, + "襍": 95284, + "佞": 95285, + "俎": 95286, + "🤽🏻‍♀️": 95287, + "饋": 95288, + "柭": 95289, + "靮": 95290, + "調": 95291, + "ₛ": 95292, + "憯": 95293, + "👨🏾‍🚀": 95294, + "🧍🏾‍♂️": 95295, + "腙": 95296, + "鞒": 95297, + "萔": 95298, + "醔": 95299, + "敂": 95300, + "漷": 95301, + "蛉": 95302, + "彴": 95303, + "脇": 95304, + "獡": 95305, + "‖": 95306, + "艻": 95307, + "🏀": 95308, + "👨🏻‍❤️‍👨🏿": 95309, + "▆": 95310, + "円": 95311, + "磃": 95312, + "垽": 95313, + "贒": 95314, + "黃": 95315, + "徺": 95316, + "汨": 95317, + "徦": 95318, + "醪": 95319, + "銤": 95320, + "垁": 95321, + "唬": 95322, + "👩🏻‍❤️‍💋‍👨🏿": 95323, + "綥": 95324, + "乄": 95325, + "猔": 95326, + "荵": 95327, + "狌": 95328, + "皨": 95329, + "貥": 95330, + "嵻": 95331, + "🧖🏽‍♀️": 95332, + "🕷": 95333, + "貐": 95334, + "凞": 95335, + "韔": 95336, + "汖": 95337, + "飠": 95338, + "俤": 95339, + "劅": 95340, + "🧍🏽‍♀️": 95341, + "🪿": 95342, + "胋": 95343, + "忂": 95344, + "澰": 95345, + "鯣": 95346, + "≞": 95347, + "噂": 95348, + "濎": 95349, + "瑦": 95350, + "輨": 95351, + "劢": 95352, + "峣": 95353, + "␴": 95354, + "兏": 95355, + "恲": 95356, + "煺": 95357, + "毲": 95358, + "鴤": 95359, + "捜": 95360, + "👩🏿‍❤️‍👨🏻": 95361, + "籑": 95362, + "🔈": 95363, + "◽": 95364, + "鉯": 95365, + "鄝": 95366, + "👷🏿": 95367, + "飂": 95368, + "🧗": 95369, + "貃": 95370, + "泶": 95371, + "凜": 95372, + "🟦": 95373, + "遨": 95374, + "🔥": 95375, + "嬧": 95376, + "熾": 95377, + "赯": 95378, + "⛹🏾": 95379, + "锳": 95380, + "↹": 95381, + "黓": 95382, + "懧": 95383, + "蕔": 95384, + "睶": 95385, + "嵠": 95386, + "薷": 95387, + "庉": 95388, + "諛": 95389, + "喕": 95390, + "͌": 95391, + "·": 95392, + "褬": 95393, + "⒙": 95394, + "🧑🏿‍❤️‍💋‍🧑🏾": 95395, + "殻": 95396, + "侉": 95397, + "娌": 95398, + "焃": 95399, + "譻": 95400, + "狵": 95401, + "鲋": 95402, + "肂": 95403, + "🇹🇩": 95404, + "🅾️": 95405, + "🦵🏽": 95406, + "鷾": 95407, + "顎": 95408, + "聮": 95409, + "褮": 95410, + "溳": 95411, + "迨": 95412, + "椞": 95413, + "🦌": 95414, + "妜": 95415, + "跷": 95416, + "📹": 95417, + "⍣": 95418, + "🧑🏿‍💼": 95419, + "鏩": 95420, + "鮰": 95421, + "汴": 95422, + "蹶": 95423, + "燺": 95424, + "Ω": 95425, + "蠛": 95426, + "☂": 95427, + "🧑🏻‍🍳": 95428, + "🇸🇿": 95429, + "竾": 95430, + "湆": 95431, + "綣": 95432, + "運": 95433, + "🇸🇴": 95434, + "蛆": 95435, + "👩🏽‍🦱": 95436, + "扺": 95437, + "⍫": 95438, + "暥": 95439, + "⛆": 95440, + "黬": 95441, + "骿": 95442, + "👐🏻": 95443, + "🧎🏻": 95444, + "玘": 95445, + "尷": 95446, + "蓅": 95447, + "🇲🇸": 95448, + "皜": 95449, + "🫲🏼": 95450, + "侤": 95451, + "嶮": 95452, + "樞": 95453, + "怊": 95454, + "⑚": 95455, + "沕": 95456, + "譋": 95457, + "嚀": 95458, + "攤": 95459, + "榽": 95460, + "昅": 95461, + "瑵": 95462, + "恌": 95463, + "🧘🏾": 95464, + "💞": 95465, + "覎": 95466, + "👸": 95467, + "␠": 95468, + "趗": 95469, + "🇱🇺": 95470, + "🍓": 95471, + "🙋🏽": 95472, + "衏": 95473, + "脠": 95474, + "隥": 95475, + "🪝": 95476, + "髄": 95477, + "ɹ": 95478, + "🙎‍♀️": 95479, + "魀": 95480, + "ͫ": 95481, + "啓": 95482, + "◐": 95483, + "梘": 95484, + "侖": 95485, + "浰": 95486, + "ⅾ": 95487, + "媟": 95488, + "瓾": 95489, + "璹": 95490, + "咢": 95491, + "👨🏼‍❤️‍👨🏽": 95492, + "俋": 95493, + "楥": 95494, + "鰝": 95495, + "汎": 95496, + "鑲": 95497, + "🇷🇪": 95498, + "戆": 95499, + "謪": 95500, + "拋": 95501, + "硞": 95502, + "鱬": 95503, + "🗣": 95504, + "簐": 95505, + "🕵🏾‍♀️": 95506, + "瘆": 95507, + "ǖ": 95508, + "蜸": 95509, + "🍠": 95510, + "鄇": 95511, + "瓿": 95512, + "🤼‍♂️": 95513, + "箌": 95514, + "钪": 95515, + "槍": 95516, + "磀": 95517, + "昞": 95518, + "狛": 95519, + "☝🏻": 95520, + "⋽": 95521, + "🇦🇿": 95522, + "嚤": 95523, + "Ǔ": 95524, + "稢": 95525, + "龒": 95526, + "秌": 95527, + "舿": 95528, + "≐": 95529, + "崤": 95530, + "🧓🏼": 95531, + "翤": 95532, + "崐": 95533, + "熓": 95534, + "胟": 95535, + "姩": 95536, + "兯": 95537, + "籼": 95538, + "銲": 95539, + "詵": 95540, + "趔": 95541, + "瀿": 95542, + "縃": 95543, + "藋": 95544, + "⌻": 95545, + "🧜": 95546, + "拚": 95547, + "鬠": 95548, + "Ƕ": 95549, + "🗡": 95550, + "賝": 95551, + "浂": 95552, + "👩🏻‍🚀": 95553, + "熅": 95554, + "≕": 95555, + "齡": 95556, + "漊": 95557, + "甅": 95558, + "膠": 95559, + "怮": 95560, + "ŷ": 95561, + "粿": 95562, + "睇": 95563, + "眄": 95564, + "覚": 95565, + "🧑🏻‍🦳": 95566, + "倻": 95567, + "胔": 95568, + "緀": 95569, + "蛒": 95570, + "銋": 95571, + "熑": 95572, + "嵶": 95573, + "鷛": 95574, + "钑": 95575, + "粼": 95576, + "蟮": 95577, + "誣": 95578, + "倁": 95579, + "Ⓛ": 95580, + "鲼": 95581, + "躘": 95582, + "疜": 95583, + "癳": 95584, + "櫝": 95585, + "🥵": 95586, + "👩🏽‍🌾": 95587, + "": 95588, + "": 95589, + "齱": 95590, + "妲": 95591, + "💂🏿‍♂️": 95592, + "檱": 95593, + "瘉": 95594, + "ⓕ": 95595, + "皚": 95596, + "👩🏽‍💻": 95597, + "肣": 95598, + "銾": 95599, + "癀": 95600, + "絬": 95601, + "挗": 95602, + "靗": 95603, + "濝": 95604, + "褨": 95605, + "臗": 95606, + "柁": 95607, + "璒": 95608, + "👩🏿‍❤️‍👨🏿": 95609, + "瓳": 95610, + "卽": 95611, + "佄": 95612, + "👨🏼‍🦳": 95613, + "鐙": 95614, + "坍": 95615, + "🤩": 95616, + "樘": 95617, + "亯": 95618, + "👩🏼‍❤️‍💋‍👨🏿": 95619, + "寷": 95620, + "铱": 95621, + "刧": 95622, + "¨": 95623, + "躧": 95624, + "⋜": 95625, + "🛣": 95626, + "🍈": 95627, + "赒": 95628, + "∾": 95629, + "祫": 95630, + "訁": 95631, + "謊": 95632, + "斣": 95633, + "篌": 95634, + "‛": 95635, + "⒎": 95636, + "伜": 95637, + "琤": 95638, + "齇": 95639, + "朩": 95640, + "醸": 95641, + "応": 95642, + "櫳": 95643, + "紌": 95644, + "臘": 95645, + "◫": 95646, + "噫": 95647, + "伬": 95648, + "▷": 95649, + "👩🏻‍🦰": 95650, + "⑵": 95651, + "傞": 95652, + "芐": 95653, + "顑": 95654, + "慪": 95655, + "堿": 95656, + "👨🏼‍💻": 95657, + "吂": 95658, + "釒": 95659, + "幙": 95660, + "麷": 95661, + "👩🏻‍❤️‍👨🏾": 95662, + "堏": 95663, + "巤": 95664, + "👒": 95665, + "啝": 95666, + "珻": 95667, + "岼": 95668, + "敉": 95669, + "曃": 95670, + "醗": 95671, + "衎": 95672, + "鹒": 95673, + "烋": 95674, + "螇": 95675, + "麃": 95676, + "舨": 95677, + "🇹🇬": 95678, + "鍋": 95679, + "韗": 95680, + "溆": 95681, + "⛩": 95682, + "籦": 95683, + "🎳": 95684, + "灉": 95685, + "爩": 95686, + "🧖‍♂️": 95687, + "汵": 95688, + "俧": 95689, + "⃒": 95690, + "鲭": 95691, + "乸": 95692, + "蟉": 95693, + "錐": 95694, + "🐈": 95695, + "冁": 95696, + "艙": 95697, + "獚": 95698, + "嫳": 95699, + "甐": 95700, + "駪": 95701, + "鲒": 95702, + "唀": 95703, + "餉": 95704, + "嵓": 95705, + "👩🏼‍💼": 95706, + "揓": 95707, + "🙎🏼‍♀️": 95708, + "虅": 95709, + "ɖ": 95710, + "嶷": 95711, + "灮": 95712, + "坁": 95713, + "圐": 95714, + "岠": 95715, + "慿": 95716, + "欕": 95717, + "😭": 95718, + "挌": 95719, + "雩": 95720, + "💂🏾‍♀️": 95721, + "踤": 95722, + "夬": 95723, + "啨": 95724, + "鄌": 95725, + "飛": 95726, + "玨": 95727, + "邿": 95728, + "膈": 95729, + "賲": 95730, + "褁": 95731, + "鷲": 95732, + "茓": 95733, + "熥": 95734, + "墤": 95735, + "稟": 95736, + "呫": 95737, + "ˀ": 95738, + "筻": 95739, + "麱": 95740, + "👩🏾‍🎨": 95741, + "脕": 95742, + "靛": 95743, + "苢": 95744, + "尭": 95745, + "阕": 95746, + "🙅‍♀️": 95747, + "鋻": 95748, + "轝": 95749, + "菫": 95750, + "⏐": 95751, + "蔪": 95752, + "鄧": 95753, + "鞔": 95754, + "🫀": 95755, + "👨🏽‍🔬": 95756, + "詻": 95757, + "鍺": 95758, + "𓀙": 95759, + "鬝": 95760, + "皟": 95761, + "膿": 95762, + "佅": 95763, + "懊": 95764, + "黼": 95765, + "🚄": 95766, + "錾": 95767, + "損": 95768, + "沴": 95769, + "⋲": 95770, + "頤": 95771, + "▏": 95772, + "齾": 95773, + "頷": 95774, + "窯": 95775, + "🫴🏽": 95776, + "謻": 95777, + "🤨": 95778, + "焁": 95779, + "🇿🇲": 95780, + "ΰ": 95781, + "⌆": 95782, + "舓": 95783, + "锧": 95784, + "肁": 95785, + "悞": 95786, + "晉": 95787, + "鋾": 95788, + "皔": 95789, + "🏇🏾": 95790, + "燯": 95791, + "樓": 95792, + "⚉": 95793, + "毾": 95794, + "盶": 95795, + "髁": 95796, + "堯": 95797, + "ȸ": 95798, + "鎧": 95799, + "ƅ": 95800, + "囷": 95801, + "籉": 95802, + "鬶": 95803, + "Ġ": 95804, + "懬": 95805, + "陲": 95806, + "醅": 95807, + "🦸‍♂️": 95808, + "🧔": 95809, + "憆": 95810, + "😺": 95811, + "虌": 95812, + "黪": 95813, + "Ⓞ": 95814, + "➜": 95815, + "騧": 95816, + "鎽": 95817, + "穬": 95818, + "鋲": 95819, + "螼": 95820, + "蚉": 95821, + "擷": 95822, + "擫": 95823, + "岜": 95824, + "蚏": 95825, + "🏄🏽‍♀️": 95826, + "獈": 95827, + "笢": 95828, + "✍🏾": 95829, + "僐": 95830, + "洅": 95831, + "濨": 95832, + "Ŷ": 95833, + "縦": 95834, + "肍": 95835, + "醃": 95836, + "軣": 95837, + "暘": 95838, + "秶": 95839, + "氡": 95840, + "🇹🇻": 95841, + "豅": 95842, + "邼": 95843, + "蔐": 95844, + "蘬": 95845, + "怵": 95846, + "👈🏾": 95847, + "箐": 95848, + "ɕ": 95849, + "鰈": 95850, + "饫": 95851, + "𓀎": 95852, + "嚡": 95853, + "轁": 95854, + "̝": 95855, + "璌": 95856, + "腧": 95857, + "澍": 95858, + "囟": 95859, + "熀": 95860, + "🫏": 95861, + "蝊": 95862, + "紺": 95863, + "唦": 95864, + "🤳🏽": 95865, + "鉣": 95866, + "砛": 95867, + "🚵🏿‍♂️": 95868, + "獶": 95869, + "筜": 95870, + "軡": 95871, + "囻": 95872, + "弫": 95873, + "綬": 95874, + "醁": 95875, + "輒": 95876, + "攽": 95877, + "骾": 95878, + "扏": 95879, + "艫": 95880, + "擖": 95881, + "魽": 95882, + "誎": 95883, + "仹": 95884, + "璤": 95885, + "燪": 95886, + "梫": 95887, + "雤": 95888, + "槑": 95889, + "丒": 95890, + "⃰": 95891, + "芆": 95892, + "俚": 95893, + "億": 95894, + "鞅": 95895, + "蒽": 95896, + "🗒": 95897, + "拸": 95898, + "頼": 95899, + "唭": 95900, + "蛃": 95901, + "🏤": 95902, + "蕰": 95903, + "紶": 95904, + "峱": 95905, + "鼱": 95906, + "榫": 95907, + "淏": 95908, + "⇆": 95909, + "綞": 95910, + "✷": 95911, + "聖": 95912, + "瑈": 95913, + "弩": 95914, + "磜": 95915, + "🤴🏻": 95916, + "瓬": 95917, + "杛": 95918, + "🧑🏼‍🚀": 95919, + "眵": 95920, + "宒": 95921, + "廒": 95922, + "駯": 95923, + "⏳": 95924, + "抜": 95925, + "🦜": 95926, + "舦": 95927, + "🧒🏾": 95928, + "蔃": 95929, + "lj": 95930, + "蔎": 95931, + "澥": 95932, + "阰": 95933, + "偙": 95934, + "🇨🇾": 95935, + "昃": 95936, + "韾": 95937, + "氄": 95938, + "裦": 95939, + "榝": 95940, + "蠍": 95941, + "▗": 95942, + "ǡ": 95943, + "譸": 95944, + "樚": 95945, + "嗵": 95946, + "銭": 95947, + "⌍": 95948, + "鵋": 95949, + "Nj": 95950, + "桽": 95951, + "矄": 95952, + "絗": 95953, + "饈": 95954, + "鐩": 95955, + "陖": 95956, + "∱": 95957, + "👨‍🚀": 95958, + "勓": 95959, + "👰🏻‍♂️": 95960, + "嵳": 95961, + "鑛": 95962, + "炧": 95963, + "晢": 95964, + "崚": 95965, + "狝": 95966, + "伹": 95967, + "煔": 95968, + "🤌🏾": 95969, + "諌": 95970, + "👨🏾‍❤️‍👨🏾": 95971, + "趯": 95972, + "劬": 95973, + "襫": 95974, + "◝": 95975, + "🧑🏻‍🏫": 95976, + "苭": 95977, + "刿": 95978, + "吭": 95979, + "奜": 95980, + "蠥": 95981, + "跭": 95982, + "潕": 95983, + "撹": 95984, + "漙": 95985, + "⃙": 95986, + "🧢": 95987, + "枞": 95988, + "潹": 95989, + "袎": 95990, + "🦦": 95991, + "沍": 95992, + "獂": 95993, + "靿": 95994, + "玀": 95995, + "鶟": 95996, + "₃": 95997, + "宼": 95998, + "Ƨ": 95999, + "靍": 96000, + "鋡": 96001, + "蹋": 96002, + "▹": 96003, + "铴": 96004, + "樴": 96005, + "鲞": 96006, + "綶": 96007, + "憓": 96008, + "韰": 96009, + "溹": 96010, + "婢": 96011, + "顂": 96012, + "鶫": 96013, + "仵": 96014, + "迤": 96015, + "犎": 96016, + "⚃": 96017, + "↻": 96018, + "🏂🏻": 96019, + "琲": 96020, + "踆": 96021, + "邬": 96022, + "浍": 96023, + "飹": 96024, + "倳": 96025, + "⏭": 96026, + "💆🏼‍♂️": 96027, + "蘦": 96028, + "▢": 96029, + "迍": 96030, + "廝": 96031, + "龔": 96032, + "ʑ": 96033, + "摃": 96034, + "鸅": 96035, + "🦻🏾": 96036, + "馫": 96037, + "硊": 96038, + "駺": 96039, + "埑": 96040, + "🚼": 96041, + "絥": 96042, + "巏": 96043, + "哐": 96044, + "鐗": 96045, + "氍": 96046, + "🦂": 96047, + "🤷‍♂️": 96048, + "澑": 96049, + "瓏": 96050, + "🫸🏻": 96051, + "襊": 96052, + "📆": 96053, + "⌸": 96054, + "毄": 96055, + "匔": 96056, + "鬺": 96057, + "煢": 96058, + "燭": 96059, + "厜": 96060, + "萞": 96061, + "鱛": 96062, + "辸": 96063, + "毎": 96064, + "爟": 96065, + "⁏": 96066, + "耭": 96067, + "偝": 96068, + "堼": 96069, + "欮": 96070, + "澕": 96071, + "罶": 96072, + "Ȑ": 96073, + "敔": 96074, + "覡": 96075, + "絙": 96076, + "苋": 96077, + "聉": 96078, + "🇸🇻": 96079, + "觥": 96080, + "闢": 96081, + "徾": 96082, + "👡": 96083, + "樣": 96084, + "🥧": 96085, + "觋": 96086, + "鴗": 96087, + "撎": 96088, + "箪": 96089, + "磦": 96090, + "筿": 96091, + "媷": 96092, + "逤": 96093, + "牓": 96094, + "爍": 96095, + "鶀": 96096, + "≂": 96097, + "蜖": 96098, + "栧": 96099, + "戦": 96100, + "🧑‍🦽": 96101, + "姞": 96102, + "脮": 96103, + "壦": 96104, + "🧑🏾‍🚀": 96105, + "⌨": 96106, + "Ȟ": 96107, + "🧼": 96108, + "吘": 96109, + "🧰": 96110, + "蕣": 96111, + "ƍ": 96112, + "Ť": 96113, + "瀒": 96114, + "Ȝ": 96115, + "搠": 96116, + "杘": 96117, + "镳": 96118, + "騻": 96119, + "̪": 96120, + "猸": 96121, + "鏆": 96122, + "🧑‍🦯": 96123, + "曣": 96124, + "⒉": 96125, + "釋": 96126, + "過": 96127, + "蔾": 96128, + "暋": 96129, + "橤": 96130, + "囏": 96131, + "锹": 96132, + "昸": 96133, + "昻": 96134, + "輝": 96135, + "胿": 96136, + "橠": 96137, + "珫": 96138, + "悆": 96139, + "柌": 96140, + "⓪": 96141, + "玸": 96142, + "灩": 96143, + "👳🏼‍♀️": 96144, + "🧑🏽‍❤️‍💋‍🧑🏻": 96145, + "玳": 96146, + "髫": 96147, + "眬": 96148, + "頀": 96149, + "邽": 96150, + "槄": 96151, + "囘": 96152, + "辂": 96153, + "捑": 96154, + "屗": 96155, + "⎥": 96156, + "缗": 96157, + "讙": 96158, + "筘": 96159, + "橝": 96160, + "貵": 96161, + "◳": 96162, + "👭🏻": 96163, + "確": 96164, + "蓤": 96165, + "惙": 96166, + "磬": 96167, + "謷": 96168, + "歴": 96169, + "👩🏿‍❤️‍👩🏿": 96170, + "鍏": 96171, + "鵓": 96172, + "糏": 96173, + "曖": 96174, + "🧔‍♀️": 96175, + "袄": 96176, + "␜": 96177, + "鐬": 96178, + "趻": 96179, + "驊": 96180, + "夃": 96181, + "孻": 96182, + "嚚": 96183, + "熩": 96184, + "祧": 96185, + "贎": 96186, + "憜": 96187, + "斢": 96188, + "郕": 96189, + "鸀": 96190, + "🧍🏼": 96191, + "⚭": 96192, + "誐": 96193, + "碏": 96194, + "慓": 96195, + "💆🏽‍♀️": 96196, + "铿": 96197, + "🔉": 96198, + "踦": 96199, + "🫅": 96200, + "玐": 96201, + "📘": 96202, + "焒": 96203, + "͢": 96204, + "屟": 96205, + "涁": 96206, + "🙍🏿": 96207, + "ɗ": 96208, + "硛": 96209, + "鵻": 96210, + "🤸🏻‍♀️": 96211, + "␝": 96212, + "📏": 96213, + "貾": 96214, + "瑭": 96215, + "詡": 96216, + "👰": 96217, + "冨": 96218, + "镅": 96219, + "褆": 96220, + "Ⅶ": 96221, + "↭": 96222, + "👴🏾": 96223, + "₼": 96224, + "泮": 96225, + "娵": 96226, + "缟": 96227, + "乀": 96228, + "緱": 96229, + "Å": 96230, + "IJ": 96231, + "悘": 96232, + "📪": 96233, + "姵": 96234, + "🚶🏻‍♂️": 96235, + "胪": 96236, + "ϯ": 96237, + "欬": 96238, + "剷": 96239, + "縨": 96240, + "⌚": 96241, + "匤": 96242, + "繷": 96243, + "褗": 96244, + "🌓": 96245, + "瞠": 96246, + "棿": 96247, + "粇": 96248, + "馓": 96249, + "糳": 96250, + "檃": 96251, + "⍠": 96252, + "̄": 96253, + "擛": 96254, + "叅": 96255, + "嶇": 96256, + "🤫": 96257, + "伄": 96258, + "鍩": 96259, + "笚": 96260, + "⍝": 96261, + "🐕‍🦺": 96262, + "狰": 96263, + "漶": 96264, + "礐": 96265, + "🗺": 96266, + "駝": 96267, + "訡": 96268, + "⋑": 96269, + "蔌": 96270, + "袴": 96271, + "🧑‍🌾": 96272, + "炶": 96273, + "宂": 96274, + "潻": 96275, + "🇸🇳": 96276, + "與": 96277, + "撫": 96278, + "👨🏽‍💼": 96279, + "紥": 96280, + "稄": 96281, + "Ⱥ": 96282, + "🤳": 96283, + "🏴󠁧󠁢󠁳󠁣󠁴󠁿": 96284, + "͈": 96285, + "嶰": 96286, + "丩": 96287, + "熣": 96288, + "埜": 96289, + "俰": 96290, + "⋷": 96291, + "鈡": 96292, + "醮": 96293, + "闼": 96294, + "╦": 96295, + "🐖": 96296, + "ȝ": 96297, + "眭": 96298, + "ĺ": 96299, + "🧑🏻‍⚕️": 96300, + "🕒": 96301, + "栉": 96302, + "岯": 96303, + "蜿": 96304, + "叜": 96305, + "鏡": 96306, + "睰": 96307, + "愊": 96308, + "蓪": 96309, + "鉵": 96310, + "6️⃣": 96311, + "瀸": 96312, + "簤": 96313, + "ⓦ": 96314, + "甮": 96315, + "釃": 96316, + "🎩": 96317, + "┰": 96318, + "莼": 96319, + "鴉": 96320, + "犅": 96321, + "郲": 96322, + "⏬": 96323, + "˕": 96324, + "揩": 96325, + "耡": 96326, + "惸": 96327, + "鉨": 96328, + "朄": 96329, + "埅": 96330, + "晞": 96331, + "疥": 96332, + "礦": 96333, + "Ϫ": 96334, + "埻": 96335, + "☨": 96336, + "苈": 96337, + "勫": 96338, + "鲘": 96339, + "庽": 96340, + "眍": 96341, + "憹": 96342, + "👩🏽‍🦳": 96343, + "╱": 96344, + "諹": 96345, + "呪": 96346, + "緟": 96347, + "嚯": 96348, + "蒐": 96349, + "🫕": 96350, + "蠸": 96351, + "B": 96352, + "閴": 96353, + "閰": 96354, + "╢": 96355, + "玍": 96356, + "繩": 96357, + "💓": 96358, + "巰": 96359, + "🛍": 96360, + "烐": 96361, + "萶": 96362, + "犚": 96363, + "拰": 96364, + "剴": 96365, + "訊": 96366, + "摜": 96367, + "🕧": 96368, + "攷": 96369, + "釭": 96370, + "曬": 96371, + "蔼": 96372, + "祍": 96373, + "鸉": 96374, + "镛": 96375, + "🙃": 96376, + "罣": 96377, + "荱": 96378, + "͔": 96379, + "屛": 96380, + "🇱🇾": 96381, + "謵": 96382, + "琯": 96383, + "奾": 96384, + "楈": 96385, + "夈": 96386, + "鑍": 96387, + "🫷🏽": 96388, + "鄢": 96389, + "鑆": 96390, + "搢": 96391, + "睥": 96392, + "岉": 96393, + "⁽": 96394, + "🇨🇮": 96395, + "簣": 96396, + "🤝": 96397, + "娨": 96398, + "禝": 96399, + "麧": 96400, + "閆": 96401, + "辋": 96402, + "賩": 96403, + "皧": 96404, + "咞": 96405, + "嗎": 96406, + "攮": 96407, + "軿": 96408, + "🧎🏼‍♀️": 96409, + "壵": 96410, + "盭": 96411, + "Ā": 96412, + "勬": 96413, + "槃": 96414, + "鳎": 96415, + "😞": 96416, + "岄": 96417, + "駵": 96418, + "羼": 96419, + "構": 96420, + "欄": 96421, + "箢": 96422, + "圙": 96423, + "帡": 96424, + "鏽": 96425, + "🏓": 96426, + "🏄🏻": 96427, + "❌": 96428, + "祮": 96429, + "🧗🏿": 96430, + "锠": 96431, + "燫": 96432, + "鮁": 96433, + "耷": 96434, + "👗": 96435, + "🙇🏿": 96436, + "臐": 96437, + "🧑‍🦳": 96438, + "沚": 96439, + "炱": 96440, + "鉩": 96441, + "穝": 96442, + "🍭": 96443, + "↝": 96444, + "👨🏻‍❤️‍💋‍👨🏾": 96445, + "℮": 96446, + "鏲": 96447, + "薈": 96448, + "ˣ": 96449, + "蔤": 96450, + "🧔🏾‍♀️": 96451, + "泅": 96452, + "鄄": 96453, + "鸮": 96454, + "抁": 96455, + "攄": 96456, + "羧": 96457, + "╥": 96458, + "憦": 96459, + "朆": 96460, + "🧜🏾": 96461, + "ˆ": 96462, + "蝚": 96463, + "縿": 96464, + "霊": 96465, + "🤯": 96466, + "滰": 96467, + "凕": 96468, + "骍": 96469, + "綂": 96470, + "鳢": 96471, + "🂠": 96472, + "鴧": 96473, + "奙": 96474, + "虻": 96475, + "崳": 96476, + "🍡": 96477, + "逎": 96478, + "媪": 96479, + "閡": 96480, + "🫄": 96481, + "襧": 96482, + "崞": 96483, + "⎵": 96484, + "氺": 96485, + "鷸": 96486, + "🤽🏿": 96487, + "🙏🏼": 96488, + "👐🏾": 96489, + "橰": 96490, + "亊": 96491, + "鼽": 96492, + "🧑🏼‍🦯": 96493, + "⊩": 96494, + "詰": 96495, + "馡": 96496, + "👨🏾‍🦰": 96497, + "👩🏼‍❤️‍👨🏼": 96498, + "櫶": 96499, + "臙": 96500, + "顇": 96501, + "郋": 96502, + "翛": 96503, + "🫱🏽‍🫲🏻": 96504, + "岿": 96505, + "⌋": 96506, + "👳🏼": 96507, + "🏌🏾‍♀️": 96508, + "🏈": 96509, + "℔": 96510, + "皏": 96511, + "嶏": 96512, + "憫": 96513, + "縗": 96514, + "⊶": 96515, + "霪": 96516, + "堬": 96517, + "殠": 96518, + "繎": 96519, + "囬": 96520, + "驠": 96521, + "纅": 96522, + "韹": 96523, + "庯": 96524, + "椹": 96525, + "訔": 96526, + "弲": 96527, + "🎢": 96528, + "垪": 96529, + "轠": 96530, + "殫": 96531, + "🛌🏿": 96532, + "孪": 96533, + "🕺": 96534, + "🧚‍♀️": 96535, + "鎺": 96536, + "⁕": 96537, + "窲": 96538, + "鰖": 96539, + "🧗🏽‍♀️": 96540, + "誻": 96541, + "🕵🏼‍♂️": 96542, + "蟢": 96543, + "鼷": 96544, + "Ό": 96545, + "捸": 96546, + "👃🏽": 96547, + "憙": 96548, + "掊": 96549, + "蘣": 96550, + "輵": 96551, + "殌": 96552, + "螪": 96553, + "蓇": 96554, + "扅": 96555, + "劼": 96556, + "鈜": 96557, + "諶": 96558, + "🙋🏾‍♀️": 96559, + "儵": 96560, + "菵": 96561, + "🤪": 96562, + "憞": 96563, + "鏖": 96564, + "💇🏼": 96565, + "覵": 96566, + "⁳": 96567, + "畗": 96568, + "偭": 96569, + "箟": 96570, + "绶": 96571, + "踗": 96572, + "耖": 96573, + "🧟‍♂️": 96574, + "篢": 96575, + "🚴🏻‍♂️": 96576, + "瘭": 96577, + "桡": 96578, + "壱": 96579, + "鎖": 96580, + "₆": 96581, + "猞": 96582, + "🔟": 96583, + "糵": 96584, + "幷": 96585, + "铇": 96586, + "榺": 96587, + "苃": 96588, + "┩": 96589, + "捝": 96590, + "👨‍🦽": 96591, + "茳": 96592, + "僑": 96593, + "螉": 96594, + "岤": 96595, + "塒": 96596, + "🙌🏻": 96597, + "咊": 96598, + "薜": 96599, + "躰": 96600, + "靅": 96601, + "槯": 96602, + "廠": 96603, + "🔼": 96604, + "̈": 96605, + "郐": 96606, + "粡": 96607, + "鬌": 96608, + "昡": 96609, + "👨🏻‍🦱": 96610, + "魲": 96611, + "罙": 96612, + "👩🏿‍🦱": 96613, + "涶": 96614, + "茪": 96615, + "姪": 96616, + "ƿ": 96617, + "🇪🇸": 96618, + "怷": 96619, + "蔨": 96620, + "浛": 96621, + "͐": 96622, + "鳏": 96623, + "🧘🏽": 96624, + "賌": 96625, + "豮": 96626, + "膆": 96627, + "🇲🇶": 96628, + "檣": 96629, + "齔": 96630, + "鐟": 96631, + "壡": 96632, + "≣": 96633, + "⍽": 96634, + "⌘": 96635, + "铻": 96636, + "衝": 96637, + "🚔": 96638, + "顋": 96639, + "嬱": 96640, + "輺": 96641, + "繐": 96642, + "龋": 96643, + "🦏": 96644, + "鋓": 96645, + "ʃ": 96646, + "🦉": 96647, + "豢": 96648, + "佂": 96649, + "罈": 96650, + "睵": 96651, + "♂": 96652, + "臹": 96653, + "蟯": 96654, + "鋿": 96655, + "揀": 96656, + "瀇": 96657, + "⌣": 96658, + "🤽🏽‍♂️": 96659, + "🧑🏽‍❤️‍🧑🏾": 96660, + "蔧": 96661, + "裥": 96662, + "🇳🇴": 96663, + "酼": 96664, + "⊗": 96665, + "樐": 96666, + "凁": 96667, + "訏": 96668, + "擹": 96669, + "懞": 96670, + "檢": 96671, + "鱫": 96672, + "≅": 96673, + "∝": 96674, + "隸": 96675, + "雵": 96676, + "👩🏽‍🔬": 96677, + "蘱": 96678, + "謭": 96679, + "墂": 96680, + "颉": 96681, + "⁸": 96682, + "堺": 96683, + "蔘": 96684, + "⛀": 96685, + "橛": 96686, + "♖": 96687, + "骴": 96688, + "👨‍👨‍👧‍👧": 96689, + "␵": 96690, + "庋": 96691, + "🫷🏼": 96692, + "涢": 96693, + "屻": 96694, + "⑭": 96695, + "蟅": 96696, + "👨‍🦲": 96697, + "嶋": 96698, + "罯": 96699, + "誚": 96700, + "彀": 96701, + "♱": 96702, + "醠": 96703, + "廇": 96704, + "坘": 96705, + "👪": 96706, + "🕵️‍♀️": 96707, + "揼": 96708, + "嫃": 96709, + "␺": 96710, + "穋": 96711, + "🏃": 96712, + "巯": 96713, + "绐": 96714, + "⁅": 96715, + "獘": 96716, + "鋞": 96717, + "憖": 96718, + "⃳": 96719, + "赥": 96720, + "戻": 96721, + "齢": 96722, + "曆": 96723, + "骮": 96724, + "懱": 96725, + "厊": 96726, + "鎊": 96727, + "嶞": 96728, + "💪🏾": 96729, + "瞀": 96730, + "堑": 96731, + "慒": 96732, + "颥": 96733, + "浗": 96734, + "譊": 96735, + "巐": 96736, + "吱": 96737, + "🦁": 96738, + "🥛": 96739, + "⇽": 96740, + "🚀": 96741, + "🇯🇲": 96742, + "̰": 96743, + "⍹": 96744, + "鴓": 96745, + "騩": 96746, + "儯": 96747, + "翶": 96748, + "纏": 96749, + "🙋‍♀️": 96750, + "鬄": 96751, + "🧏🏽‍♂️": 96752, + "☬": 96753, + "滢": 96754, + "巄": 96755, + "℆": 96756, + "👳‍♂️": 96757, + "樝": 96758, + "⍉": 96759, + "蜅": 96760, + "鉎": 96761, + "ȑ": 96762, + "谚": 96763, + "菈": 96764, + "😶‍🌫️": 96765, + "穯": 96766, + "🌕": 96767, + "🚿": 96768, + "鮹": 96769, + "鏥": 96770, + "僣": 96771, + "娋": 96772, + "蓜": 96773, + "🧑🏽‍🦽": 96774, + "叇": 96775, + "呩": 96776, + "🕴🏽": 96777, + "♒": 96778, + "頌": 96779, + "厇": 96780, + "🏋🏼": 96781, + "🥶": 96782, + "揆": 96783, + "杝": 96784, + "逽": 96785, + "🇺🇿": 96786, + "盽": 96787, + "☒": 96788, + "🫃🏼": 96789, + "砽": 96790, + "冐": 96791, + "湦": 96792, + "龓": 96793, + "瘯": 96794, + "坾": 96795, + "呰": 96796, + "稵": 96797, + "🫱🏾‍🫲🏻": 96798, + "槢": 96799, + "ƺ": 96800, + "腠": 96801, + "🧑🏽‍🦰": 96802, + "豱": 96803, + "帏": 96804, + "粲": 96805, + "勁": 96806, + "潧": 96807, + "🧑🏾‍🦲": 96808, + "Ⅷ": 96809, + "齈": 96810, + "ⓑ": 96811, + "泖": 96812, + "裵": 96813, + "媲": 96814, + "💃🏼": 96815, + "艵": 96816, + "谺": 96817, + "⇓": 96818, + "窨": 96819, + "珤": 96820, + "蹊": 96821, + "刅": 96822, + "⒃": 96823, + "🕍": 96824, + "腅": 96825, + "刓": 96826, + "嫔": 96827, + "⏒": 96828, + "畧": 96829, + "燀": 96830, + "騒": 96831, + "踟": 96832, + "卌": 96833, + "蒱": 96834, + "厞": 96835, + "犾": 96836, + "槱": 96837, + "鈸": 96838, + "鳃": 96839, + "🧎": 96840, + "👩🏻‍❤️‍💋‍👩🏼": 96841, + "婨": 96842, + "蔀": 96843, + "柵": 96844, + "👩‍⚕️": 96845, + "叓": 96846, + "囧": 96847, + "毇": 96848, + "陫": 96849, + "茩": 96850, + "苸": 96851, + "🪑": 96852, + "婣": 96853, + "辁": 96854, + "灋": 96855, + "嬸": 96856, + "啵": 96857, + "鮆": 96858, + "椚": 96859, + "嵷": 96860, + "軝": 96861, + "擉": 96862, + "犳": 96863, + "🐬": 96864, + "賄": 96865, + "✊🏼": 96866, + "⑧": 96867, + "🇦🇬": 96868, + "👦🏿": 96869, + "萠": 96870, + "獆": 96871, + "偆": 96872, + "📔": 96873, + "饅": 96874, + "👩‍🎨": 96875, + "👊🏿": 96876, + "ʾ": 96877, + "😖": 96878, + "皲": 96879, + "🥈": 96880, + "┇": 96881, + "🤷🏾‍♀️": 96882, + "惼": 96883, + "🍉": 96884, + "硨": 96885, + "鱴": 96886, + "洜": 96887, + "踈": 96888, + "謽": 96889, + "劘": 96890, + "髴": 96891, + "諢": 96892, + "⎼": 96893, + "傇": 96894, + "腎": 96895, + "砇": 96896, + "🪖": 96897, + "逘": 96898, + "銦": 96899, + "⍄": 96900, + "鷴": 96901, + "腈": 96902, + "伾": 96903, + "陯": 96904, + "痆": 96905, + "寔": 96906, + "聽": 96907, + "譙": 96908, + "魊": 96909, + "唍": 96910, + "甼": 96911, + "齥": 96912, + "🚶🏽‍♀️": 96913, + "⌏": 96914, + "焧": 96915, + "🫥": 96916, + "欒": 96917, + "趪": 96918, + "哰": 96919, + "讑": 96920, + "誇": 96921, + "畱": 96922, + "🖕🏼": 96923, + "𓀐": 96924, + "礡": 96925, + "❕": 96926, + "嵟": 96927, + "🧛🏿": 96928, + "羦": 96929, + "嚿": 96930, + "軫": 96931, + "鉍": 96932, + "鍿": 96933, + "ɰ": 96934, + "榍": 96935, + "⚍": 96936, + "👨🏾‍❤️‍💋‍👨🏾": 96937, + "陼": 96938, + "🤮": 96939, + "👩‍🌾": 96940, + "哃": 96941, + "駾": 96942, + "⚳": 96943, + "畳": 96944, + "榳": 96945, + "酃": 96946, + "遉": 96947, + "鑵": 96948, + "祿": 96949, + "稖": 96950, + "僮": 96951, + "蘰": 96952, + "咇": 96953, + "蔵": 96954, + "賦": 96955, + "溼": 96956, + "ɽ": 96957, + "聫": 96958, + "👨🏾‍🏫": 96959, + "潬": 96960, + "鄣": 96961, + "🤸🏽‍♂️": 96962, + "奵": 96963, + "鲧": 96964, + "糄": 96965, + "楒": 96966, + "鷝": 96967, + "滷": 96968, + "畛": 96969, + "鸒": 96970, + "鲎": 96971, + "郘": 96972, + "羶": 96973, + "媩": 96974, + "匩": 96975, + "🌩": 96976, + "捱": 96977, + "🇵🇱": 96978, + "卹": 96979, + "😳": 96980, + "暡": 96981, + "淶": 96982, + "黣": 96983, + "穛": 96984, + "蠨": 96985, + "鳊": 96986, + "🦸🏾‍♂️": 96987, + "塖": 96988, + "癿": 96989, + "灨": 96990, + "欖": 96991, + "🙏": 96992, + "👨🏿‍🍼": 96993, + "弮": 96994, + "碃": 96995, + "埏": 96996, + "俢": 96997, + "Lj": 96998, + "詽": 96999, + "Ĕ": 97000, + "‟": 97001, + "籖": 97002, + "潛": 97003, + "🪓": 97004, + "💻": 97005, + "銌": 97006, + "裟": 97007, + "瑲": 97008, + "糗": 97009, + "銮": 97010, + "潾": 97011, + "篟": 97012, + "👫🏾": 97013, + "渟": 97014, + "墽": 97015, + "姼": 97016, + "婓": 97017, + "玏": 97018, + "撲": 97019, + "💋": 97020, + "Ⓙ": 97021, + "熌": 97022, + "槖": 97023, + "👛": 97024, + "📕": 97025, + "躹": 97026, + "撝": 97027, + "🙎🏻": 97028, + "⃣": 97029, + "🧍🏽": 97030, + "蛰": 97031, + "裿": 97032, + "🤳🏼": 97033, + "爡": 97034, + "喰": 97035, + "卛": 97036, + "Û": 97037, + "莌": 97038, + "霠": 97039, + "鸃": 97040, + "跆": 97041, + "齜": 97042, + "骟": 97043, + "喅": 97044, + "駇": 97045, + "🪤": 97046, + "擠": 97047, + "橂": 97048, + "畕": 97049, + "筤": 97050, + "🏞": 97051, + "慱": 97052, + "ơ": 97053, + "🤦🏼": 97054, + "岥": 97055, + "狑": 97056, + "🤵🏿‍♀️": 97057, + "˫": 97058, + "筰": 97059, + "旣": 97060, + "阡": 97061, + "隕": 97062, + "⁒": 97063, + "襅": 97064, + "輹": 97065, + "👳🏻‍♀️": 97066, + "搑": 97067, + "褣": 97068, + "妣": 97069, + "⋱": 97070, + "醹": 97071, + "🤏🏿": 97072, + "鋧": 97073, + "蔻": 97074, + "焥": 97075, + "🫱🏾‍🫲🏿": 97076, + "讣": 97077, + "💁🏼": 97078, + "悌": 97079, + "☎": 97080, + "璳": 97081, + "椃": 97082, + "Ƭ": 97083, + "👩🏽‍❤️‍👩🏽": 97084, + "紝": 97085, + "塡": 97086, + "粸": 97087, + "唡": 97088, + "ⓖ": 97089, + "🟧": 97090, + "胓": 97091, + "矤": 97092, + "煖": 97093, + "浕": 97094, + "鋶": 97095, + "燱": 97096, + "蟭": 97097, + "楛": 97098, + "👩🏻‍❤️‍💋‍👨🏾": 97099, + "👢": 97100, + "⑯": 97101, + "訓": 97102, + "寠": 97103, + "姸": 97104, + "狈": 97105, + "佊": 97106, + "🤵🏾‍♀️": 97107, + "耫": 97108, + "紆": 97109, + "檽": 97110, + "蛬": 97111, + "冧": 97112, + "👉🏾": 97113, + "饣": 97114, + "貛": 97115, + "茣": 97116, + "娤": 97117, + "栝": 97118, + "鬙": 97119, + "🚶🏼": 97120, + "⌝": 97121, + "⊫": 97122, + "蜠": 97123, + "桤": 97124, + "炘": 97125, + "🧑🏿‍🏫": 97126, + "磠": 97127, + "▮": 97128, + "ȳ": 97129, + "🧗🏿‍♂️": 97130, + "啚": 97131, + "⁲": 97132, + "澛": 97133, + "槸": 97134, + "🧑🏻‍⚖️": 97135, + "眛": 97136, + "峮": 97137, + "坨": 97138, + "🌝": 97139, + "胍": 97140, + "9️⃣": 97141, + "砟": 97142, + "鯲": 97143, + "佸": 97144, + "鮕": 97145, + "堧": 97146, + "⃿": 97147, + "哾": 97148, + "叾": 97149, + "鳦": 97150, + "飬": 97151, + "戇": 97152, + "鈨": 97153, + "襉": 97154, + "槅": 97155, + "🧑🏻‍❤️‍🧑🏿": 97156, + "鼉": 97157, + "🇨🇩": 97158, + "鹄": 97159, + "鹍": 97160, + "襩": 97161, + "盋": 97162, + "⍌": 97163, + "ʜ": 97164, + "🏄🏿‍♂️": 97165, + "禩": 97166, + "庺": 97167, + "⁚": 97168, + "⛏": 97169, + "竧": 97170, + "蛭": 97171, + "鉤": 97172, + "鱗": 97173, + "諑": 97174, + "湅": 97175, + "澊": 97176, + "👬": 97177, + "葯": 97178, + "閳": 97179, + "嗖": 97180, + "🧑🏾‍🚒": 97181, + "嵫": 97182, + "沩": 97183, + "钎": 97184, + "糡": 97185, + "Ϭ": 97186, + "🗿": 97187, + "👩🏻‍❤️‍💋‍👨🏻": 97188, + "瓸": 97189, + "🚴": 97190, + "歔": 97191, + "遻": 97192, + "👩🏿‍💼": 97193, + "箙": 97194, + "蠠": 97195, + "炌": 97196, + "傴": 97197, + "礚": 97198, + "💨": 97199, + "🪕": 97200, + "鉼": 97201, + "枻": 97202, + "菬": 97203, + "腞": 97204, + "闬": 97205, + "🎁": 97206, + "袷": 97207, + "蝸": 97208, + "❤️‍🔥": 97209, + "窿": 97210, + "娞": 97211, + "奄": 97212, + "纮": 97213, + "🇹🇲": 97214, + "難": 97215, + "墬": 97216, + "嬾": 97217, + "雭": 97218, + "┹": 97219, + "醿": 97220, + "組": 97221, + "廲": 97222, + "🤷🏼‍♀️": 97223, + "襹": 97224, + "紛": 97225, + "匾": 97226, + "ų": 97227, + "盜": 97228, + "琿": 97229, + "ℚ": 97230, + "缙": 97231, + "萬": 97232, + "鷡": 97233, + "漦": 97234, + "🫱🏾": 97235, + "幪": 97236, + "擔": 97237, + "熳": 97238, + "熯": 97239, + "阾": 97240, + "嵐": 97241, + "鍙": 97242, + "穉": 97243, + "瘖": 97244, + "殒": 97245, + "˝": 97246, + "軺": 97247, + "懫": 97248, + "硤": 97249, + "👯": 97250, + "噲": 97251, + "锿": 97252, + "💥": 97253, + "☤": 97254, + "蛠": 97255, + "笏": 97256, + "鸝": 97257, + "賧": 97258, + "豜": 97259, + "癭": 97260, + "蚠": 97261, + "̮": 97262, + "ⅸ": 97263, + "👼🏿": 97264, + "橬": 97265, + "墀": 97266, + "杫": 97267, + "蜽": 97268, + "倜": 97269, + "↣": 97270, + "狹": 97271, + "訒": 97272, + "ƪ": 97273, + "醕": 97274, + "莑": 97275, + "韘": 97276, + "懛": 97277, + "綧": 97278, + "蔂": 97279, + "🧕🏿": 97280, + "Ğ": 97281, + "橼": 97282, + "財": 97283, + "鈺": 97284, + "↉": 97285, + "迼": 97286, + "骹": 97287, + "齝": 97288, + "螾": 97289, + "炑": 97290, + "瀘": 97291, + "粔": 97292, + "🤰🏼": 97293, + "朡": 97294, + "欗": 97295, + "幵": 97296, + "恈": 97297, + "⋗": 97298, + "🔝": 97299, + "儅": 97300, + "卨": 97301, + "⚚": 97302, + "醍": 97303, + "葑": 97304, + "♴": 97305, + "煈": 97306, + "闇": 97307, + "祊": 97308, + "镝": 97309, + "棢": 97310, + "皿": 97311, + "😛": 97312, + "🧑🏾‍❤️‍💋‍🧑🏽": 97313, + "欔": 97314, + "№": 97315, + "殟": 97316, + "荢": 97317, + "砅": 97318, + "搇": 97319, + "👩🏿‍🍳": 97320, + "🧑🏽‍🎄": 97321, + "̓": 97322, + "魘": 97323, + "͡": 97324, + "👨🏾": 97325, + "鯠": 97326, + "崍": 97327, + "蔹": 97328, + "⁝": 97329, + "♞": 97330, + "🧔🏽‍♂️": 97331, + "夨": 97332, + "檷": 97333, + "竚": 97334, + "憶": 97335, + "抈": 97336, + "喚": 97337, + "賹": 97338, + "殜": 97339, + "⋠": 97340, + "钫": 97341, + "淸": 97342, + "蕕": 97343, + "綆": 97344, + "✪": 97345, + "鏙": 97346, + "晌": 97347, + "姘": 97348, + "沷": 97349, + "跢": 97350, + "🇨🇫": 97351, + "𓀜": 97352, + "瀞": 97353, + "犸": 97354, + "痳": 97355, + "佁": 97356, + "🏊🏾": 97357, + "莁": 97358, + "姧": 97359, + "儚": 97360, + "ŗ": 97361, + "妷": 97362, + "伲": 97363, + "龖": 97364, + "嶀": 97365, + "⊱": 97366, + "淥": 97367, + "兒": 97368, + "🇮🇴": 97369, + "渶": 97370, + "薫": 97371, + "↗": 97372, + "▉": 97373, + "孋": 97374, + "囋": 97375, + "亰": 97376, + "☕": 97377, + "譄": 97378, + "堹": 97379, + "🦹🏽": 97380, + "窞": 97381, + "刽": 97382, + "苙": 97383, + "鍊": 97384, + "泴": 97385, + "⏊": 97386, + "鉳": 97387, + "鑬": 97388, + "🎎": 97389, + "鼰": 97390, + "頫": 97391, + "迊": 97392, + "🕵️‍♂️": 97393, + "骱": 97394, + "煑": 97395, + "🌬": 97396, + "樷": 97397, + "褝": 97398, + "愢": 97399, + "楎": 97400, + "羨": 97401, + "揷": 97402, + "彈": 97403, + "霨": 97404, + "凩": 97405, + "挼": 97406, + "镓": 97407, + "🤸🏿": 97408, + "跮": 97409, + "樭": 97410, + "皦": 97411, + "鉈": 97412, + "鸑": 97413, + "揁": 97414, + "␚": 97415, + "🤏🏼": 97416, + "瘐": 97417, + "禋": 97418, + "瞤": 97419, + "飱": 97420, + "🙆🏽‍♀️": 97421, + "禭": 97422, + "Ǫ": 97423, + "艓": 97424, + "⊰": 97425, + "貝": 97426, + "🔻": 97427, + "鯤": 97428, + "飊": 97429, + "麊": 97430, + "⏜": 97431, + "邖": 97432, + "▻": 97433, + "笩": 97434, + "🧑‍🚀": 97435, + "嘩": 97436, + "嚐": 97437, + "🇱🇨": 97438, + "驩": 97439, + "楍": 97440, + "厤": 97441, + "犷": 97442, + "傠": 97443, + "碼": 97444, + "驕": 97445, + "茏": 97446, + "▛": 97447, + "🧔🏽": 97448, + "鹩": 97449, + "愅": 97450, + "畒": 97451, + "蒘": 97452, + "🙋🏻": 97453, + "鍖": 97454, + "穑": 97455, + "曽": 97456, + "挱": 97457, + "尦": 97458, + "銢": 97459, + "晝": 97460, + "🙆🏽": 97461, + "👨🏾‍❤️‍👨🏿": 97462, + "骘": 97463, + "暐": 97464, + "朊": 97465, + "⎕": 97466, + "唄": 97467, + "Ǿ": 97468, + "舮": 97469, + "⌵": 97470, + "瀼": 97471, + "鳷": 97472, + "憤": 97473, + "罽": 97474, + "仠": 97475, + "🙎🏿": 97476, + "夊": 97477, + "敪": 97478, + "銏": 97479, + "👷🏻": 97480, + "裗": 97481, + "嘋": 97482, + "↪": 97483, + "娳": 97484, + "骀": 97485, + "敁": 97486, + "🫶": 97487, + "囦": 97488, + "褟": 97489, + "呛": 97490, + "巛": 97491, + "ⅱ": 97492, + "鋝": 97493, + "摙": 97494, + "駚": 97495, + "砑": 97496, + "澚": 97497, + "頄": 97498, + "粧": 97499, + "瘞": 97500, + "蘃": 97501, + "碀": 97502, + "镣": 97503, + "禇": 97504, + "罠": 97505, + "踣": 97506, + "膘": 97507, + "锛": 97508, + "幩": 97509, + "磧": 97510, + "腝": 97511, + "臇": 97512, + "覈": 97513, + "貓": 97514, + "啿": 97515, + "霽": 97516, + "槼": 97517, + "👨‍👩‍👦": 97518, + "荝": 97519, + "礳": 97520, + "🎚": 97521, + "🇱🇷": 97522, + "遒": 97523, + "蝽": 97524, + "🇳🇬": 97525, + "栆": 97526, + "蔉": 97527, + "幝": 97528, + "忼": 97529, + "砙": 97530, + "眽": 97531, + "艐": 97532, + "汜": 97533, + "橍": 97534, + "傌": 97535, + "巶": 97536, + "峞": 97537, + "🇧🇧": 97538, + "牋": 97539, + "笓": 97540, + "岣": 97541, + "熽": 97542, + "兗": 97543, + "刴": 97544, + "燆": 97545, + "娝": 97546, + "👃🏾": 97547, + "鷳": 97548, + "擓": 97549, + "抸": 97550, + "揄": 97551, + "蓶": 97552, + "🔽": 97553, + "療": 97554, + "癢": 97555, + "磒": 97556, + "嶺": 97557, + "霔": 97558, + "砄": 97559, + "飕": 97560, + "罄": 97561, + "諈": 97562, + "喟": 97563, + "鍇": 97564, + "椬": 97565, + "👩🏻‍🦼": 97566, + "◭": 97567, + "廂": 97568, + "車": 97569, + "⛚": 97570, + "晽": 97571, + "浡": 97572, + "礣": 97573, + "諜": 97574, + "擡": 97575, + "嶂": 97576, + "彡": 97577, + "燦": 97578, + "鰴": 97579, + "皼": 97580, + "灘": 97581, + "͜": 97582, + "Χ": 97583, + "🤜🏻": 97584, + "┌": 97585, + "嵿": 97586, + "邆": 97587, + "羏": 97588, + "⃵": 97589, + "昳": 97590, + "郖": 97591, + "屄": 97592, + "珸": 97593, + "␘": 97594, + "枨": 97595, + "✊🏿": 97596, + "髞": 97597, + "蚙": 97598, + "忳": 97599, + "搒": 97600, + "⛌": 97601, + "Ȇ": 97602, + "🇲🇦": 97603, + "⃃": 97604, + "🪔": 97605, + "🧏🏾": 97606, + "鹔": 97607, + "ņ": 97608, + "颢": 97609, + "👩🏿‍🏭": 97610, + "🇹🇫": 97611, + "Κ": 97612, + "孄": 97613, + "輔": 97614, + "剆": 97615, + "肳": 97616, + "樼": 97617, + "剚": 97618, + "駁": 97619, + "眔": 97620, + "喤": 97621, + "黴": 97622, + "👩🏿‍🏫": 97623, + "🧎🏾‍♀️": 97624, + "啮": 97625, + "堳": 97626, + "🚶🏿": 97627, + "殍": 97628, + "🕝": 97629, + "晛": 97630, + "駳": 97631, + "芓": 97632, + "镕": 97633, + "🇨🇴": 97634, + "脡": 97635, + "饄": 97636, + "灔": 97637, + "͑": 97638, + "橒": 97639, + "鼇": 97640, + "詐": 97641, + "氊": 97642, + "磈": 97643, + "湚": 97644, + "芌": 97645, + "嫏": 97646, + "綌": 97647, + "闅": 97648, + "螙": 97649, + "菃": 97650, + "跥": 97651, + "˳": 97652, + "⌫": 97653, + "嚳": 97654, + "儕": 97655, + "團": 97656, + "👌🏾": 97657, + "🧑🏿‍🍼": 97658, + "豃": 97659, + "濞": 97660, + "🤹🏽": 97661, + "🌲": 97662, + "艦": 97663, + "噦": 97664, + "騇": 97665, + "迖": 97666, + "椄": 97667, + "愋": 97668, + "黁": 97669, + "恗": 97670, + "惋": 97671, + "昴": 97672, + "蘊": 97673, + "霥": 97674, + "徫": 97675, + "钹": 97676, + "莗": 97677, + "篭": 97678, + "飍": 97679, + "砷": 97680, + "呱": 97681, + "觤": 97682, + "趧": 97683, + "恾": 97684, + "🧜‍♂️": 97685, + "钶": 97686, + "⏋": 97687, + "🕴🏿": 97688, + "🐅": 97689, + "篨": 97690, + "牸": 97691, + "嵺": 97692, + "孆": 97693, + "屭": 97694, + "奫": 97695, + "臒": 97696, + "椆": 97697, + "躳": 97698, + "堫": 97699, + "呂": 97700, + "🐌": 97701, + "剅": 97702, + "蚄": 97703, + "硥": 97704, + "鶎": 97705, + "磶": 97706, + "瘚": 97707, + "翏": 97708, + "珒": 97709, + "˟": 97710, + "👩🏻‍❤️‍💋‍👩🏽": 97711, + "郜": 97712, + "圚": 97713, + "迴": 97714, + "鍝": 97715, + "␇": 97716, + "閤": 97717, + "軥": 97718, + "毮": 97719, + "鵺": 97720, + "銡": 97721, + "變": 97722, + "硭": 97723, + "🙎🏻‍♀️": 97724, + "🏁": 97725, + "鞙": 97726, + "崬": 97727, + "嶲": 97728, + "悧": 97729, + "忴": 97730, + "簻": 97731, + "羱": 97732, + "瀰": 97733, + "蘉": 97734, + "⓲": 97735, + "⓳": 97736, + "欯": 97737, + "瑽": 97738, + "盤": 97739, + "奐": 97740, + "辬": 97741, + "孾": 97742, + "‸": 97743, + "卙": 97744, + "區": 97745, + "ː": 97746, + "ℏ": 97747, + "阢": 97748, + "碮": 97749, + "💆🏽": 97750, + "噀": 97751, + "⊻": 97752, + "ʥ": 97753, + "艽": 97754, + "粝": 97755, + "̗": 97756, + "嫥": 97757, + "攞": 97758, + "庻": 97759, + "猋": 97760, + "☓": 97761, + "鼁": 97762, + "猀": 97763, + "⛶": 97764, + "🇵🇬": 97765, + "斄": 97766, + "▰": 97767, + "燤": 97768, + ";": 97769, + "饗": 97770, + "␒": 97771, + "湎": 97772, + "瞦": 97773, + "醟": 97774, + "駆": 97775, + "蓧": 97776, + "🧝🏿‍♀️": 97777, + "呴": 97778, + "鲩": 97779, + "譔": 97780, + "獖": 97781, + "癇": 97782, + "媈": 97783, + "👈🏽": 97784, + "窾": 97785, + "S": 97786, + "🈸": 97787, + "⎁": 97788, + "ľ": 97789, + "₞": 97790, + "陝": 97791, + "🧗🏽": 97792, + "蝱": 97793, + "肟": 97794, + "ↈ": 97795, + "柩": 97796, + "薔": 97797, + "̾": 97798, + "嬯": 97799, + "鬻": 97800, + "🦅": 97801, + "熪": 97802, + "廢": 97803, + "蛞": 97804, + "鏛": 97805, + "鑥": 97806, + "鞡": 97807, + "🇬🇲": 97808, + "詉": 97809, + "鋍": 97810, + "郌": 97811, + "藈": 97812, + "吚": 97813, + "旙": 97814, + "跁": 97815, + "Ĩ": 97816, + "🧑🏾‍🎓": 97817, + "Ň": 97818, + "₻": 97819, + "埛": 97820, + "貣": 97821, + "仡": 97822, + "👼🏼": 97823, + "⏷": 97824, + "孹": 97825, + "籲": 97826, + "朻": 97827, + "鼑": 97828, + "詃": 97829, + "踯": 97830, + "闥": 97831, + "葔": 97832, + "🎷": 97833, + "喯": 97834, + "👽": 97835, + "🙋🏽‍♀️": 97836, + "坄": 97837, + "萹": 97838, + "嬹": 97839, + "錂": 97840, + "🕴🏻": 97841, + "逺": 97842, + "囕": 97843, + "涃": 97844, + "彗": 97845, + "忝": 97846, + "鶰": 97847, + "醻": 97848, + "DŽ": 97849, + "屐": 97850, + "蔭": 97851, + "煙": 97852, + "衒": 97853, + "垿": 97854, + "▫": 97855, + "👨🏻‍❤️‍💋‍👨🏿": 97856, + "铗": 97857, + "👧": 97858, + "絭": 97859, + "醤": 97860, + "鋅": 97861, + "矻": 97862, + "埂": 97863, + "👰🏾‍♀️": 97864, + "脷": 97865, + "咍": 97866, + "⍵": 97867, + "辌": 97868, + "◗": 97869, + "赇": 97870, + "姳": 97871, + "踬": 97872, + "🚣🏼": 97873, + "礧": 97874, + "礫": 97875, + "蜈": 97876, + "秂": 97877, + "朤": 97878, + "駨": 97879, + "炰": 97880, + "霚": 97881, + "🎡": 97882, + "旕": 97883, + "紏": 97884, + "賱": 97885, + "婈": 97886, + "浹": 97887, + "ǽ": 97888, + "筇": 97889, + "🪧": 97890, + "醣": 97891, + "綢": 97892, + "砧": 97893, + "妛": 97894, + "囇": 97895, + "蜍": 97896, + "漵": 97897, + "👨🏼‍❤️‍👨🏼": 97898, + "鯀": 97899, + "偀": 97900, + "┎": 97901, + "睟": 97902, + "♡": 97903, + "胄": 97904, + "暃": 97905, + "籩": 97906, + "➗": 97907, + "挙": 97908, + "甭": 97909, + "黠": 97910, + "陰": 97911, + "覌": 97912, + "澿": 97913, + "朓": 97914, + "觹": 97915, + "褍": 97916, + "赉": 97917, + "🧍🏽‍♂️": 97918, + "槡": 97919, + "簀": 97920, + "冮": 97921, + "✍": 97922, + "崊": 97923, + "🤳🏿": 97924, + "瀋": 97925, + "Ʌ": 97926, + "⎗": 97927, + "👩🏼‍⚖️": 97928, + "☝🏾": 97929, + "鐻": 97930, + "龜": 97931, + "玠": 97932, + "👩🏿‍❤️‍💋‍👨🏾": 97933, + "👷🏼": 97934, + "悻": 97935, + "頬": 97936, + "🧑🏻‍❤️‍💋‍🧑🏽": 97937, + "蝕": 97938, + "覺": 97939, + "🤾🏼‍♂️": 97940, + "檍": 97941, + "鍗": 97942, + "漜": 97943, + "姠": 97944, + "衐": 97945, + "韛": 97946, + "炂": 97947, + "🏧": 97948, + "👩🏼‍❤️‍💋‍👨🏽": 97949, + "💦": 97950, + "⇔": 97951, + "蟘": 97952, + "驲": 97953, + "籹": 97954, + "🙇🏻‍♂️": 97955, + "忎": 97956, + "懠": 97957, + "⌥": 97958, + "💗": 97959, + "饻": 97960, + "齶": 97961, + "☀": 97962, + "媮": 97963, + "崰": 97964, + "膤": 97965, + "躈": 97966, + "捋": 97967, + "鮽": 97968, + "嗊": 97969, + "逓": 97970, + "慔": 97971, + "哷": 97972, + "鏺": 97973, + "鳟": 97974, + "節": 97975, + "⇗": 97976, + "🧑🏿‍🎨": 97977, + "麕": 97978, + "葐": 97979, + "樫": 97980, + "⁎": 97981, + "👮🏿‍♀️": 97982, + "ͷ": 97983, + "跀": 97984, + "簹": 97985, + "滹": 97986, + "🏘": 97987, + "輲": 97988, + "僺": 97989, + "媨": 97990, + "賒": 97991, + "鬆": 97992, + "🇰🇬": 97993, + "敿": 97994, + "挒": 97995, + "膐": 97996, + "⚝": 97997, + "🩸": 97998, + "蕋": 97999, + "篕": 98000, + "疪": 98001, + "舝": 98002, + "ⅰ": 98003, + "鬱": 98004, + "刐": 98005, + "潰": 98006, + "懄": 98007, + "甉": 98008, + "蠲": 98009, + "⑙": 98010, + "檒": 98011, + "🛀🏻": 98012, + "饌": 98013, + "🇭🇹": 98014, + "瘴": 98015, + "紉": 98016, + "陦": 98017, + "敚": 98018, + "鏀": 98019, + "銂": 98020, + "昫": 98021, + "钤": 98022, + "骛": 98023, + "莰": 98024, + "紎": 98025, + "驖": 98026, + "朐": 98027, + "腁": 98028, + "玿": 98029, + "刉": 98030, + "鬖": 98031, + "蒻": 98032, + "気": 98033, + "瑳": 98034, + "蠱": 98035, + "🐻": 98036, + "袇": 98037, + "͛": 98038, + "🧑🏿‍❤️‍🧑🏾": 98039, + "幆": 98040, + "跧": 98041, + "楪": 98042, + "仮": 98043, + "萊": 98044, + "逰": 98045, + "殼": 98046, + "Ɖ": 98047, + "哶": 98048, + "⊡": 98049, + "🍾": 98050, + "飅": 98051, + "🧌": 98052, + "🏍": 98053, + "🇻🇳": 98054, + "毦": 98055, + "👨🏿‍✈️": 98056, + "瀻": 98057, + "荂": 98058, + "🫶🏿": 98059, + "蟥": 98060, + "ʡ": 98061, + "瑸": 98062, + "徏": 98063, + "🇰🇵": 98064, + "嫓": 98065, + "淞": 98066, + "棛": 98067, + "🌍": 98068, + "陱": 98069, + "皾": 98070, + "跬": 98071, + "⛥": 98072, + "鐽": 98073, + "🧵": 98074, + "薁": 98075, + "鈌": 98076, + "犻": 98077, + "餪": 98078, + "橶": 98079, + "⛳": 98080, + "🧉": 98081, + "聬": 98082, + "穪": 98083, + "靝": 98084, + "濡": 98085, + "狉": 98086, + "禖": 98087, + "⋥": 98088, + "祅": 98089, + "挻": 98090, + "搾": 98091, + "瑔": 98092, + "纥": 98093, + "瀂": 98094, + "瀍": 98095, + "嚧": 98096, + "幁": 98097, + "鴵": 98098, + "🛼": 98099, + "魰": 98100, + "🥽": 98101, + "🛃": 98102, + "👨🏾‍❤️‍💋‍👨🏽": 98103, + "芨": 98104, + "滘": 98105, + "棶": 98106, + "牔": 98107, + "勷": 98108, + "鈂": 98109, + "駞": 98110, + "⛹️‍♀️": 98111, + "緎": 98112, + "👞": 98113, + "蟗": 98114, + "⛊": 98115, + "裝": 98116, + "嶧": 98117, + "粯": 98118, + "🍴": 98119, + "ₗ": 98120, + "勞": 98121, + "噕": 98122, + "鮡": 98123, + "眡": 98124, + "愝": 98125, + "愆": 98126, + "檵": 98127, + "竜": 98128, + "👭🏼": 98129, + "歆": 98130, + "💇🏼‍♂️": 98131, + "衤": 98132, + "橿": 98133, + "⍇": 98134, + "剣": 98135, + "慽": 98136, + "陃": 98137, + "🕵🏿": 98138, + "🕠": 98139, + "謨": 98140, + "🔫": 98141, + "紋": 98142, + "踫": 98143, + "揋": 98144, + "𓀉": 98145, + "🆘": 98146, + "萚": 98147, + "🏃🏻‍♂️": 98148, + "羻": 98149, + "癍": 98150, + "̒": 98151, + "謮": 98152, + "埾": 98153, + "🏳️": 98154, + "Ŝ": 98155, + "謁": 98156, + "眲": 98157, + "喡": 98158, + "👃": 98159, + "塅": 98160, + "岞": 98161, + "鸤": 98162, + "軙": 98163, + "鹴": 98164, + "峇": 98165, + "🚫": 98166, + "蕚": 98167, + "壀": 98168, + "笎": 98169, + "鞳": 98170, + "膥": 98171, + "杪": 98172, + "🥤": 98173, + "嚔": 98174, + "鞀": 98175, + "👰🏻": 98176, + "掚": 98177, + "柨": 98178, + "氃": 98179, + "Π": 98180, + "檠": 98181, + "軁": 98182, + "吪": 98183, + "鹠": 98184, + "湨": 98185, + "欭": 98186, + "仉": 98187, + "秏": 98188, + "鑦": 98189, + "⍊": 98190, + "鎃": 98191, + "🌻": 98192, + "喴": 98193, + "瓂": 98194, + "僆": 98195, + "瘡": 98196, + "孶": 98197, + "铆": 98198, + "菅": 98199, + "洇": 98200, + "🤸": 98201, + "釗": 98202, + "簬": 98203, + "盓": 98204, + "潋": 98205, + "🧑🏻‍🔧": 98206, + "塾": 98207, + "鼿": 98208, + "↦": 98209, + "峼": 98210, + "饳": 98211, + "綃": 98212, + "醑": 98213, + "🐎": 98214, + "屧": 98215, + "箞": 98216, + "⌴": 98217, + "痄": 98218, + "謄": 98219, + "腜": 98220, + "ȋ": 98221, + "桰": 98222, + "彯": 98223, + "蔇": 98224, + "🧝🏻‍♀️": 98225, + "賸": 98226, + "瑧": 98227, + "褂": 98228, + "咹": 98229, + "🪚": 98230, + "鮱": 98231, + "逳": 98232, + "沯": 98233, + "縥": 98234, + "搐": 98235, + "␢": 98236, + "坿": 98237, + "蚃": 98238, + "姕": 98239, + "佉": 98240, + "縐": 98241, + "ʝ": 98242, + "頍": 98243, + "瞈": 98244, + "堻": 98245, + "痨": 98246, + "煡": 98247, + "⅔": 98248, + "涳": 98249, + "嶟": 98250, + "莢": 98251, + "洏": 98252, + "Ξ": 98253, + "稘": 98254, + "Ⓩ": 98255, + "櫂": 98256, + "🌇": 98257, + "錖": 98258, + "穠": 98259, + "🦍": 98260, + "嘓": 98261, + "鴩": 98262, + "峈": 98263, + "擶": 98264, + "铙": 98265, + "鉲": 98266, + "蓁": 98267, + "潒": 98268, + "絃": 98269, + "覠": 98270, + "煶": 98271, + "👨🏼‍⚕️": 98272, + "赱": 98273, + "👭🏾": 98274, + "瀌": 98275, + "ɨ": 98276, + "汑": 98277, + "罏": 98278, + "🆖": 98279, + "Ź": 98280, + "蔰": 98281, + "挮": 98282, + "镞": 98283, + "🚽": 98284, + "甶": 98285, + "峜": 98286, + "🅰️": 98287, + "醦": 98288, + "臔": 98289, + "拴": 98290, + "沞": 98291, + "鄗": 98292, + "╫": 98293, + "姈": 98294, + "🪀": 98295, + "憕": 98296, + "鑼": 98297, + "籋": 98298, + "♟": 98299, + "♝": 98300, + "🇮🇪": 98301, + "鄖": 98302, + "箠": 98303, + "🚴🏾‍♀️": 98304, + "煄": 98305, + "藃": 98306, + "箈": 98307, + "讧": 98308, + "駼": 98309, + "怍": 98310, + "嚬": 98311, + "癞": 98312, + "螯": 98313, + "🏌🏽‍♂️": 98314, + "坩": 98315, + "獳": 98316, + "枙": 98317, + "櫿": 98318, + "帊": 98319, + "🙎🏽‍♂️": 98320, + "🔲": 98321, + "ʨ": 98322, + "枱": 98323, + "NJ": 98324, + "窕": 98325, + "藍": 98326, + "哠": 98327, + "∎": 98328, + "┓": 98329, + "寪": 98330, + "攩": 98331, + "牫": 98332, + "🤙🏾": 98333, + "嘒": 98334, + "覭": 98335, + "吒": 98336, + "Ϛ": 98337, + "瓌": 98338, + "筫": 98339, + "彍": 98340, + "釼": 98341, + "藺": 98342, + "邾": 98343, + "蠬": 98344, + "🤾🏿": 98345, + "繛": 98346, + "喈": 98347, + "猘": 98348, + "蘞": 98349, + "潄": 98350, + "媙": 98351, + "蘻": 98352, + "恟": 98353, + "媧": 98354, + "蝃": 98355, + "🛵": 98356, + "阇": 98357, + "˷": 98358, + "寬": 98359, + "🇲🇽": 98360, + "哫": 98361, + "🔮": 98362, + "◲": 98363, + "🆚": 98364, + "兿": 98365, + "癘": 98366, + "蠊": 98367, + "荮": 98368, + "蛀": 98369, + "媵": 98370, + "佽": 98371, + "侭": 98372, + "禴": 98373, + "夰": 98374, + "🗂": 98375, + "👨🏼‍❤️‍👨🏻": 98376, + "瑅": 98377, + "肫": 98378, + "蓚": 98379, + "麘": 98380, + "吆": 98381, + "囼": 98382, + "⊒": 98383, + "镂": 98384, + "庰": 98385, + "諺": 98386, + "狓": 98387, + "👯‍♀️": 98388, + "🆗": 98389, + "斶": 98390, + "規": 98391, + "🙆‍♀️": 98392, + "鰓": 98393, + "僱": 98394, + "繪": 98395, + "攂": 98396, + "榞": 98397, + "磫": 98398, + "鉀": 98399, + "蛥": 98400, + "碔": 98401, + "🧊": 98402, + "瑬": 98403, + "尰": 98404, + "⛼": 98405, + "羑": 98406, + "錅": 98407, + "肬": 98408, + "靭": 98409, + "💁‍♀️": 98410, + "₵": 98411, + "霻": 98412, + "🏂": 98413, + "爻": 98414, + "➝": 98415, + "愙": 98416, + "杤": 98417, + "鬭": 98418, + "剬": 98419, + "🧑🏼‍❤️‍🧑🏿": 98420, + "犆": 98421, + "帒": 98422, + "紸": 98423, + "魿": 98424, + "↥": 98425, + "蠖": 98426, + "⏉": 98427, + "妵": 98428, + "昒": 98429, + "綍": 98430, + "🧑🏻‍🔬": 98431, + "掟": 98432, + "譣": 98433, + "璎": 98434, + "酻": 98435, + "銔": 98436, + "ʪ": 98437, + "翴": 98438, + "⃢": 98439, + "欓": 98440, + "傹": 98441, + "🚣🏿": 98442, + "魐": 98443, + "郹": 98444, + "啳": 98445, + "妽": 98446, + "🦸🏻‍♂️": 98447, + "Dž": 98448, + "麡": 98449, + "婫": 98450, + "伩": 98451, + "蝝": 98452, + "🏇🏻": 98453, + "橚": 98454, + "虶": 98455, + "埀": 98456, + "螌": 98457, + "🤚🏻": 98458, + "壼": 98459, + "鮫": 98460, + "骝": 98461, + "婽": 98462, + "愇": 98463, + "麎": 98464, + "蓡": 98465, + "蒺": 98466, + "踶": 98467, + "🤲🏾": 98468, + "袐": 98469, + "惃": 98470, + "屍": 98471, + "瀪": 98472, + "矨": 98473, + "殘": 98474, + "馲": 98475, + "⋧": 98476, + "銣": 98477, + "岍": 98478, + "📭": 98479, + "恞": 98480, + "📣": 98481, + "唌": 98482, + "緾": 98483, + "⊮": 98484, + "𓀊": 98485, + "鹆": 98486, + "👌🏽": 98487, + "蛹": 98488, + "📼": 98489, + "琫": 98490, + "👕": 98491, + "澨": 98492, + "👩🏻‍❤️‍👨🏻": 98493, + "嵬": 98494, + "髾": 98495, + "祬": 98496, + "郬": 98497, + "帶": 98498, + "📑": 98499, + "凮": 98500, + "惷": 98501, + "贇": 98502, + "昉": 98503, + "☝🏿": 98504, + "ȹ": 98505, + "墜": 98506, + "汫": 98507, + "🏛": 98508, + "僽": 98509, + "懁": 98510, + "緧": 98511, + "跕": 98512, + "ʷ": 98513, + "礰": 98514, + "💆🏿‍♂️": 98515, + "椽": 98516, + "轫": 98517, + "殾": 98518, + "壣": 98519, + "竷": 98520, + "鎜": 98521, + "👨‍🦳": 98522, + "諏": 98523, + "蹜": 98524, + "曟": 98525, + "🛟": 98526, + "恝": 98527, + "摦": 98528, + "諷": 98529, + "貜": 98530, + "鏫": 98531, + "糇": 98532, + "軨": 98533, + "馄": 98534, + "陧": 98535, + "諴": 98536, + "鼋": 98537, + "≙": 98538, + "爫": 98539, + "舯": 98540, + "亓": 98541, + "👨🏻‍⚖️": 98542, + "👩‍👩‍👧": 98543, + "躍": 98544, + "鼈": 98545, + "屳": 98546, + "墑": 98547, + "ŝ": 98548, + "笆": 98549, + "雥": 98550, + "檓": 98551, + "鯆": 98552, + "鷨": 98553, + "⑽": 98554, + "莖": 98555, + "🧑🏽‍🦯": 98556, + "穖": 98557, + "撐": 98558, + "郠": 98559, + "👨🏼‍🍳": 98560, + "遘": 98561, + "鎒": 98562, + "👩🏾‍❤️‍💋‍👩🏼": 98563, + "炀": 98564, + "栃": 98565, + "Ȋ": 98566, + "糶": 98567, + "騺": 98568, + "疸": 98569, + "梸": 98570, + "舚": 98571, + "✆": 98572, + "薺": 98573, + "浉": 98574, + "昢": 98575, + "阹": 98576, + "⋈": 98577, + "瑤": 98578, + "亜": 98579, + "懽": 98580, + "👉🏼": 98581, + "亖": 98582, + "蛸": 98583, + "鳺": 98584, + "丷": 98585, + "🧏🏽": 98586, + "輗": 98587, + "瑮": 98588, + "洀": 98589, + "觜": 98590, + "徠": 98591, + "偤": 98592, + "窵": 98593, + "诓": 98594, + "寏": 98595, + "🧑‍🎤": 98596, + "煭": 98597, + "銄": 98598, + "娻": 98599, + "牨": 98600, + "鼛": 98601, + "糭": 98602, + "墈": 98603, + "🇸🇧": 98604, + "⛓": 98605, + "☈": 98606, + "呣": 98607, + "🧍🏻‍♂️": 98608, + "泑": 98609, + "ʣ": 98610, + "蚢": 98611, + "◃": 98612, + "虡": 98613, + "捴": 98614, + "卬": 98615, + "硽": 98616, + "飼": 98617, + "慖": 98618, + "⊪": 98619, + "呝": 98620, + "挲": 98621, + "茀": 98622, + "鼡": 98623, + "覙": 98624, + "艼": 98625, + "颯": 98626, + "帑": 98627, + "萑": 98628, + "♦︎": 98629, + "歖": 98630, + "📢": 98631, + "鱞": 98632, + "韋": 98633, + "🧈": 98634, + "簈": 98635, + "釚": 98636, + "砫": 98637, + "🧑🏿‍🍳": 98638, + "乛": 98639, + "⏢": 98640, + "潳": 98641, + "禪": 98642, + "鈆": 98643, + "譑": 98644, + "🙍🏻‍♀️": 98645, + "撥": 98646, + "呶": 98647, + "穏": 98648, + "豔": 98649, + "刎": 98650, + "斾": 98651, + "纓": 98652, + "羐": 98653, + "閊": 98654, + "闶": 98655, + "艿": 98656, + "栎": 98657, + "蜔": 98658, + "猵": 98659, + "彠": 98660, + "≏": 98661, + "迒": 98662, + "媖": 98663, + "蒀": 98664, + "筯": 98665, + "爂": 98666, + "葤": 98667, + "👩🏾‍🦼": 98668, + "閺": 98669, + "攴": 98670, + "櫪": 98671, + "鮛": 98672, + "秴": 98673, + "紨": 98674, + "葒": 98675, + "旛": 98676, + "Ǖ": 98677, + "寗": 98678, + "淟": 98679, + "窆": 98680, + "🙍🏾": 98681, + "栨": 98682, + "籗": 98683, + "諪": 98684, + "蝪": 98685, + "🤾‍♀️": 98686, + "椟": 98687, + "肞": 98688, + "↩": 98689, + "🙇": 98690, + "🫣": 98691, + "奘": 98692, + "逖": 98693, + "蹅": 98694, + "脌": 98695, + "🧑🏾‍🦼": 98696, + "🧘🏼‍♂️": 98697, + "叝": 98698, + "飮": 98699, + "瓥": 98700, + "ɞ": 98701, + "̡": 98702, + "摯": 98703, + "譡": 98704, + "👩🏻‍🎨": 98705, + "👩🏾‍❤️‍💋‍👨🏽": 98706, + "⛇": 98707, + "檔": 98708, + "矑": 98709, + "濪": 98710, + "🆔": 98711, + "⇍": 98712, + "🔧": 98713, + "🌤": 98714, + "溻": 98715, + "🪻": 98716, + "ǒ": 98717, + "鸓": 98718, + "⊸": 98719, + "∘": 98720, + "蚤": 98721, + "舃": 98722, + "觟": 98723, + "👊🏼": 98724, + "旊": 98725, + "姉": 98726, + "櫑": 98727, + "涴": 98728, + "杽": 98729, + "琋": 98730, + "崷": 98731, + "Ʋ": 98732, + "🇬🇼": 98733, + "瞸": 98734, + "蔅": 98735, + "韯": 98736, + "攬": 98737, + "飭": 98738, + "麯": 98739, + "焔": 98740, + "釕": 98741, + "岾": 98742, + "↟": 98743, + "嶈": 98744, + "♬": 98745, + "溫": 98746, + "钘": 98747, + "̘": 98748, + "👦🏻": 98749, + "鰾": 98750, + "踑": 98751, + "ⁱ": 98752, + "洵": 98753, + "鶥": 98754, + "🤘🏼": 98755, + "繓": 98756, + "駜": 98757, + "揑": 98758, + "歯": 98759, + "💅🏽": 98760, + "鐴": 98761, + "叡": 98762, + "颿": 98763, + "😈": 98764, + "🧖🏾‍♀️": 98765, + "▔": 98766, + "幘": 98767, + "覗": 98768, + "囃": 98769, + "觪": 98770, + "洢": 98771, + "洊": 98772, + "⑈": 98773, + "崴": 98774, + "驍": 98775, + "鳸": 98776, + "揠": 98777, + "☝": 98778, + "🧙🏿‍♀️": 98779, + "⊖": 98780, + "⃡": 98781, + "⛍": 98782, + "嵦": 98783, + "峬": 98784, + "還": 98785, + "蜨": 98786, + "🧑🏿‍🤝‍🧑🏿": 98787, + "蟂": 98788, + "硧": 98789, + "鄫": 98790, + "颒": 98791, + "繒": 98792, + "鯸": 98793, + "🥦": 98794, + "肜": 98795, + "┸": 98796, + "鼃": 98797, + "🛋": 98798, + "謐": 98799, + "🧑🏼‍🏭": 98800, + "頉": 98801, + "戰": 98802, + "匧": 98803, + "陴": 98804, + "🧚🏼‍♂️": 98805, + "幭": 98806, + "睆": 98807, + "🧝🏼": 98808, + "😝": 98809, + "␲": 98810, + "汍": 98811, + "丵": 98812, + "鑭": 98813, + "籰": 98814, + "顓": 98815, + "權": 98816, + "蔕": 98817, + "⋸": 98818, + "腩": 98819, + "👩🏾‍❤️‍💋‍👩🏽": 98820, + "紜": 98821, + "锉": 98822, + "貸": 98823, + "⃱": 98824, + "🧔🏾‍♂️": 98825, + "燴": 98826, + "抧": 98827, + "偘": 98828, + "傂": 98829, + "👳": 98830, + "瘕": 98831, + "⋕": 98832, + "睲": 98833, + "兓": 98834, + "鑉": 98835, + "🧎🏻‍♂️": 98836, + "ⅶ": 98837, + "僁": 98838, + "⃼": 98839, + "挄": 98840, + "绡": 98841, + "🟥": 98842, + "摬": 98843, + "赻": 98844, + "🫰🏻": 98845, + "鸖": 98846, + "🙎🏾‍♂️": 98847, + "宓": 98848, + "夳": 98849, + "鋋": 98850, + "🏵": 98851, + "滼": 98852, + "砭": 98853, + "糺": 98854, + "荤": 98855, + "锑": 98856, + "豧": 98857, + "☼": 98858, + "矘": 98859, + "⋆": 98860, + "🧛🏻": 98861, + "阛": 98862, + "⋀": 98863, + "🫔": 98864, + "鰒": 98865, + "🛤": 98866, + "絾": 98867, + "鋌": 98868, + "鏇": 98869, + "鏪": 98870, + "♌": 98871, + "嘽": 98872, + "幃": 98873, + "瓉": 98874, + "樑": 98875, + "蜥": 98876, + "觎": 98877, + "蛵": 98878, + "姲": 98879, + "衧": 98880, + "聾": 98881, + "澸": 98882, + "逧": 98883, + "狀": 98884, + "👌🏼": 98885, + "📴": 98886, + "憗": 98887, + "殓": 98888, + "漹": 98889, + "🚟": 98890, + "瀁": 98891, + "簱": 98892, + "🏄🏻‍♂️": 98893, + "惞": 98894, + "蛐": 98895, + "凂": 98896, + "萴": 98897, + "煼": 98898, + "駋": 98899, + "顛": 98900, + "欴": 98901, + "猦": 98902, + "騥": 98903, + "犘": 98904, + "鮔": 98905, + "爑": 98906, + "帟": 98907, + "齚": 98908, + "鄑": 98909, + "奼": 98910, + "🧚🏻‍♀️": 98911, + "矖": 98912, + "挷": 98913, + "訉": 98914, + "鰗": 98915, + "茖": 98916, + "蠣": 98917, + "餰": 98918, + "榠": 98919, + "栿": 98920, + "🧙‍♂️": 98921, + "罹": 98922, + "鹪": 98923, + "椦": 98924, + "唋": 98925, + "🌪": 98926, + "鯱": 98927, + "湑": 98928, + "骈": 98929, + "🌳": 98930, + "忭": 98931, + "赽": 98932, + "瓹": 98933, + "趞": 98934, + "≩": 98935, + "⍐": 98936, + "硇": 98937, + "霩": 98938, + "緘": 98939, + "鷷": 98940, + "輤": 98941, + "攋": 98942, + "楨": 98943, + "猄": 98944, + "░": 98945, + "槺": 98946, + "帠": 98947, + "姦": 98948, + "烺": 98949, + "睸": 98950, + "綸": 98951, + "塣": 98952, + "蹞": 98953, + "☧": 98954, + "嬍": 98955, + "鯧": 98956, + "噹": 98957, + "⚁": 98958, + "浤": 98959, + "藶": 98960, + "🌽": 98961, + "Ĝ": 98962, + "⁁": 98963, + "蔆": 98964, + "剜": 98965, + "nj": 98966, + "泤": 98967, + "🙍‍♂️": 98968, + "飝": 98969, + "軂": 98970, + "吠": 98971, + "爲": 98972, + "暚": 98973, + "簜": 98974, + "😇": 98975, + "嗔": 98976, + "ℙ": 98977, + "媂": 98978, + "絉": 98979, + "惏": 98980, + "檑": 98981, + "磤": 98982, + "🧖🏿": 98983, + "翂": 98984, + "芺": 98985, + "掕": 98986, + "鮘": 98987, + "Ņ": 98988, + "嗧": 98989, + "識": 98990, + "ʞ": 98991, + "俸": 98992, + "梠": 98993, + "魖": 98994, + "韤": 98995, + "爭": 98996, + "鵞": 98997, + "騀": 98998, + "閇": 98999 + }, + "merges": [ + "。。。 。。。", + "`` `", + "` ``", + "▁ ▁", + "▁ t", + "i n", + "▁ a", + "e r", + "o n", + "h e", + "r e", + "a t", + "▁▁ ▁▁", + "▁▁▁ ▁", + "▁ ▁▁▁", + "o r", + "e n", + "▁ s", + "▁t he", + "▁th e", + "▁ the", + "e s", + "i s", + "▁ c", + "i t", + "a n", + "a l", + "▁ o", + "▁ w", + "e d", + "▁ f", + "▁ p", + "a r", + "in g", + "i ng", + "n d", + "io n", + "i on", + "i c", + "o u", + "▁ b", + "▁i n", + "▁ in", + "l e", + "▁o f", + "▁ of", + "▁ m", + "r o", + "a s", + "▁ d", + "▁a nd", + "▁an d", + "▁ and", + "▁t o", + "▁ to", + "en t", + "e nt", + "c t", + "e t", + "s t", + "o m", + "e l", + "▁ h", + "▁t h", + "▁ th", + "i l", + "▁▁ ▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁ ▁▁", + "▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁▁ ▁", + "▁ ▁▁▁▁▁▁▁", + "▁r e", + "▁ re", + "▁ n", + "a m", + "▁ l", + "i m", + "▁ e", + "i d", + "u t", + "o l", + "a c", + "u s", + "u r", + "▁ T", + "at ion", + "ati on", + "atio n", + "a tion", + "▁i s", + "▁ is", + "o t", + "v e", + "▁ S", + "▁ g", + "\\ \\", + "i g", + "▁ I", + "\\ '", + "▁ C", + "▁ A", + "▁f or", + "▁fo r", + "▁ for", + "a d", + "u l", + "o w", + "▁ |", + "▁ (", + "▁ y", + "; \\", + "it h", + "i th", + "ve r", + "v er", + "a y", + "▁o n", + "▁ on", + "▁s t", + "▁ st", + "l y", + "s e", + "i f", + "c e", + "o d", + "c h", + "t h", + "▁b e", + "▁ be", + "a g", + "te r", + "t er", + "u n", + "▁ M", + "at e", + "a te", + "es t", + "e st", + "i r", + "▁y ou", + "▁yo u", + "▁ you", + "▁w ith", + "▁wit h", + "▁wi th", + "▁ with", + "u m", + "▁ P", + "▁p ro", + "▁pr o", + "▁ pro", + "e m", + ") \\", + "a b", + "▁t hat", + "▁th at", + "▁ that", + "▁a n", + "▁ an", + "or t", + "o rt", + "r i", + "a p", + "q u", + "▁c on", + "▁co n", + "▁ con", + "o p", + "er s", + "e rs", + "is t", + "i st", + "▁a s", + "▁ as", + "ec t", + "e ct", + "▁ B", + "re s", + "r es", + "▁ v", + "o s", + "o c", + "▁a l", + "▁ al", + "ro m", + "r om", + "▁i t", + "▁ it", + "▁w h", + "▁ wh", + "h t", + "▁ D", + "▁c om", + "▁co m", + "▁ com", + "es s", + "e ss", + "me nt", + "men t", + "m ent", + "an d", + "a nd", + "u b", + "ai n", + "a in", + "er e", + "e re", + "il l", + "i ll", + "▁ r", + "am e", + "a me", + "▁ R", + "▁ H", + "▁e x", + "▁ ex", + "▁ F", + "▁ L", + "▁ W", + "▁ \"", + "u p", + "i v", + "it y", + "i ty", + "por t", + "po rt", + "p ort", + "e c", + "▁a re", + "▁ar e", + "▁ are", + "p l", + "▁ {", + "e w", + "e x", + "▁T he", + "▁Th e", + "▁ The", + "▁o r", + "▁ or", + "k e", + "▁a t", + "▁ at", + "u e", + "or e", + "o re", + "n t", + "o g", + "▁ N", + "an t", + "a nt", + "en d", + "e nd", + "ac t", + "a ct", + "iv e", + "i ve", + "▁b y", + "▁ by", + "e f", + "ar t", + "a rt", + "▁w as", + "▁wa s", + "▁ was", + "p t", + "▁f rom", + "▁fr om", + "▁fro m", + "▁ from", + ", \\", + "▁ G", + "u d", + "▁ E", + ": \\", + "▁u s", + "▁ us", + "ie s", + "i es", + "ag e", + "a ge", + "in e", + "i ne", + "▁▁ ▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁ ▁▁", + "▁▁▁ ▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁ ▁", + "▁ ▁▁▁▁▁▁▁▁▁▁▁", + "▁t his", + "▁th is", + "▁thi s", + "▁ this", + "as s", + "a ss", + "▁ $", + "ur e", + "u re", + "l d", + "al l", + "a ll", + "} \\", + "av e", + "a ve", + "▁h e", + "▁ he", + "); \\", + ") ;\\", + "ia l", + "i al", + "co m", + "c om", + "▁c h", + "▁ ch", + "▁ O", + "ig ht", + "igh t", + "i ght", + "c l", + "ct ion", + "c tion", + "n T", + "▁w e", + "▁ we", + "# #", + "at ed", + "ate d", + "a ted", + "i z", + "ac k", + "a ck", + "ul t", + "u lt", + "▁t r", + "▁ tr", + "g e", + "i p", + "ou r", + "o ur", + "▁d e", + "▁ de", + "in t", + "i nt", + "/ /", + "fo r", + "f or", + "el l", + "e ll", + "us t", + "u st", + "▁s h", + "▁ sh", + "▁c an", + "▁ca n", + "▁ can", + "os t", + "o st", + "▁n ot", + "▁no t", + "▁ not", + "ou t", + "o ut", + "▁\\ \\", + "▁ \\\\", + "pe r", + "p er", + "▁s e", + "▁ se", + "ar d", + "a rd", + "ar e", + "a re", + "▁h ave", + "▁ha ve", + "▁hav e", + "▁ have", + "▁i m", + "▁ im", + "as e", + "a se", + "ic al", + "ica l", + "i cal", + "▁c l", + "▁ cl", + "in d", + "i nd", + "t r", + "▁{ \\", + "▁ {\\", + "* *", + "ro u", + "r ou", + "p e", + "a v", + "ion s", + "io ns", + "i ons", + "▁l e", + "▁ le", + "▁p l", + "▁ pl", + "f f", + "co n", + "c on", + "ab le", + "abl e", + "a ble", + "at h", + "a th", + "i b", + "id e", + "i de", + "▁w ill", + "▁wi ll", + "▁ will", + "▁c omp", + "▁com p", + "▁co mp", + "▁ comp", + "il e", + "i le", + "ir e", + "i re", + "ur n", + "u rn", + "as t", + "a st", + "o k", + "▁re s", + "▁r es", + "▁ res", + "▁ J", + "or k", + "o rk", + "an s", + "a ns", + "▁ U", + "ic e", + "i ce", + "▁ *", + "▁y our", + "▁you r", + "▁yo ur", + "▁ your", + "▁ j", + "▁a d", + "▁ ad", + "▁s p", + "▁ sp", + "ou ld", + "oul d", + "ic h", + "i ch", + "▁ k", + "a k", + "ig n", + "i gn", + "im e", + "i me", + "d u", + "re t", + "r et", + "i a", + "▁a b", + "▁ ab", + "ar y", + "a ry", + "ai l", + "a il", + "▁ \\", + "▁T h", + "▁ Th", + "ac e", + "a ce", + "执 行", + "on g", + "o ng", + "e p", + "el f", + "e lf", + "en ts", + "ent s", + "on e", + "o ne", + "be r", + "b er", + "at ions", + "ation s", + "ati ons", + "atio ns", + "ea r", + "e ar", + "en s", + "e ns", + "pr o", + "p ro", + "▁a ll", + "▁al l", + "▁ all", + "▁I n", + "▁ In", + "en ce", + "enc e", + "e nce", + "▁a p", + "▁ ap", + "▁h as", + "▁ha s", + "▁ has", + "▁in t", + "▁i nt", + "▁ int", + "ex t", + "e xt", + "> \\", + "om e", + "o me", + "n I", + "or d", + "o rd", + "s o", + "an g", + "a ng", + "for m", + "fo rm", + "f orm", + "an ce", + "anc e", + "a nce", + "un d", + "u nd", + "li c", + "l ic", + "▁c ont", + "▁con t", + "▁co nt", + "▁ cont", + "at a", + "a ta", + "▁m e", + "▁ me", + "c c", + "▁| \\", + "▁ |\\", + "fe r", + "f er", + "he n", + "h en", + "( )", + "▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁", + "▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁", + "▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁", + "it e", + "i te", + "人 民", + "en c", + "e nc", + "re ss", + "res s", + "r ess", + "▁d o", + "▁ do", + "n A", + "is s", + "i ss", + "je ct", + "j ect", + "ou s", + "o us", + "er v", + "e rv", + "▁ K", + "th er", + "the r", + "t her", + "st r", + "s tr", + "ac h", + "a ch", + "l o", + "ge t", + "g et", + "r y", + "na me", + "nam e", + "n ame", + "t p", + "▁ V", + "▁n e", + "▁ ne", + "ve l", + "v el", + "or y", + "o ry", + "▁u n", + "▁ un", + "g h", + "▁b ut", + "▁bu t", + "▁ but", + "▁wh ich", + "▁ which", + "or s", + "o rs", + "l l", + "nT he", + "nTh e", + "n The", + "it ion", + "iti on", + "i tion", + "n S", + "▁p er", + "▁pe r", + "▁ per", + "▁▁ ▁▁▁▁", + "▁▁▁▁ ▁▁", + "▁▁▁ ▁▁▁", + "▁▁▁▁▁ ▁", + "▁ ▁▁▁▁▁", + "▁e n", + "▁ en", + "公 司", + "▁o ut", + "▁ou t", + "▁ out", + "f r", + "▁ [", + "ak e", + "a ke", + "▁\\ '", + "▁ \\'", + "▁u p", + "▁ up", + "▁q u", + "▁ qu", + "ou nt", + "oun t", + "o unt", + "▁n ew", + "▁ne w", + "▁ new", + "▁S t", + "▁ St", + "▁g o", + "▁ go", + "oo k", + "o ok", + "u g", + "re turn", + "ret urn", + "r eturn", + "os e", + "o se", + "▁a r", + "▁ ar", + "ub lic", + "u blic", + "im port", + "imp ort", + "f t", + "▁d is", + "▁di s", + "▁ dis", + "▁w ere", + "▁we re", + "▁wer e", + "▁ were", + "pl e", + "p le", + "y s", + "ve rs", + "ver s", + "v ers", + "< /", + "\" \\", + "▁s o", + "▁ so", + "od e", + "o de", + "il d", + "i ld", + "al ly", + "all y", + "yp e", + "y pe", + "p h", + "t e", + "▁s tr", + "▁st r", + "▁ str", + "re e", + "r ee", + "k s", + ") ,", + "一 个", + "▁o ne", + "▁on e", + "▁ one", + "\" :", + "ou nd", + "oun d", + "o und", + "▁g et", + "▁ge t", + "▁ get", + "po n", + "p on", + "ow n", + "o wn", + "▁al so", + "▁als o", + "▁ also", + "▁in ter", + "▁int er", + "▁i nter", + "▁ inter", + "▁m ore", + "▁mor e", + "▁mo re", + "▁ more", + "se lf", + "sel f", + "s elf", + "g r", + "{ \\", + "▁s c", + "▁ sc", + "▁w ork", + "▁wor k", + "▁wo rk", + "▁ work", + "▁p re", + "▁pr e", + "▁ pre", + "ot h", + "o th", + "cl ud", + "被 告", + "on t", + "o nt", + "] \\", + "r a", + "▁the ir", + "▁ their", + "re at", + "rea t", + "r eat", + "un ction", + "unc tion", + "unct ion", + "el y", + "e ly", + "ia n", + "i an", + "et h", + "e th", + "▁ '", + "ro w", + "r ow", + "ve ry", + "ver y", + "v ery", + "ys t", + "y st", + "▁e v", + "▁ ev", + "nim port", + "n import", + "i e", + "_ _", + "n R", + "\" ,", + "▁m an", + "▁ma n", + "▁ man", + "is h", + "i sh", + "if ic", + "ifi c", + "ri b", + "r ib", + "▁ <", + "w e", + "▁ Y", + "▁p art", + "▁par t", + "▁pa rt", + "▁ part", + "o b", + "m s", + "▁t e", + "▁ te", + "▁C h", + "▁ Ch", + "ig h", + "i gh", + "本 院", + "▁i f", + "▁ if", + "lo w", + "l ow", + "in gs", + "ing s", + "od el", + "ode l", + "o del", + "ie w", + "i ew", + "} {", + "可 以", + "le ct", + "lec t", + "l ect", + "o v", + "me r", + "m er", + "un der", + "und er", + "unde r", + "u nder", + "▁o ur", + "▁ou r", + "▁ our", + "ar k", + "a rk", + "ic k", + "i ck", + "on d", + "o nd", + "原 告", + ":/ /", + ": //", + "▁l i", + "▁ li", + "p r", + "ir st", + "irs t", + "i rst", + "▁s u", + "▁ su", + "▁t ime", + "▁tim e", + "▁ti me", + "▁ time", + "ys tem", + "yst em", + "y stem", + "▁st ud", + "▁ stud", + "▁p r", + "▁ pr", + "ic t", + "i ct", + "er t", + "e rt", + "at es", + "ate s", + "a tes", + "w o", + "▁r o", + "▁ ro", + "▁I t", + "▁ It", + "oc k", + "o ck", + "▁t hey", + "▁the y", + "▁th ey", + "▁ they", + "ay s", + "a ys", + "▁d es", + "▁de s", + "▁ des", + "申 请", + "( \"", + "n C", + "en er", + "ene r", + "e ner", + "▁ab out", + "▁ about", + "us er", + "use r", + "u ser", + "in k", + "i nk", + "▁c lass", + "▁cl ass", + "▁ class", + "i o", + "pt ion", + "p tion", + "a x", + "▁a ny", + "▁an y", + "▁ any", + "▁b een", + "▁be en", + "▁bee n", + "bl e", + "b le", + "▁a g", + "▁ ag", + "n W", + "ie nt", + "ien t", + "i ent", + "us e", + "u se", + "ol d", + "o ld", + "oo l", + "o ol", + "iz e", + "i ze", + "pu t", + "p ut", + "n g", + "fr ac", + "fra c", + "f rac", + "u c", + "▁y ear", + "▁ye ar", + "▁ year", + "ol og", + "olo g", + "o log", + "ul ar", + "ula r", + "u lar", + "▁h is", + "▁hi s", + "▁ his", + "ft er", + "f ter", + "n e", + "at er", + "ate r", + "a ter", + "▁m y", + "▁ my", + "ua l", + "u al", + "▁o ver", + "▁ov er", + "▁ over", + "ov e", + "o ve", + "al ue", + "alu e", + "▁ i", + "er m", + "e rm", + "ic s", + "i cs", + "as ed", + "ase d", + "a sed", + "▁w ho", + "▁wh o", + "▁ who", + "ul l", + "u ll", + "▁W e", + "▁ We", + "▁o ther", + "▁ot her", + "▁ other", + "▁a dd", + "▁ad d", + "▁ add", + "▁un der", + "▁u nder", + "▁und er", + "▁ under", + "▁k n", + "▁ kn", + "▁in d", + "▁i nd", + "▁ ind", + "ter n", + "te rn", + "t ern", + "▁b et", + "▁be t", + "▁ bet", + "▁w hen", + "▁wh en", + "▁whe n", + "▁ when", + "▁c omm", + "▁com m", + "▁co mm", + "▁ comm", + "▁c ol", + "▁co l", + "▁ col", + "s s", + "i x", + "▁t here", + "▁the re", + "▁th ere", + "▁ther e", + "▁ there", + "le s", + "l es", + "he d", + "h ed", + "执行 人", + "执 行人", + "▁a m", + "▁ am", + "el d", + "e ld", + "s c", + "an c", + "a nc", + "▁s ome", + "▁so me", + "▁som e", + "▁ some", + "▁us e", + "▁u se", + "▁ use", + "ri t", + "r it", + "ap p", + "a pp", + "▁s et", + "▁se t", + "▁ set", + "▁T his", + "▁Th is", + "▁ This", + "▁re c", + "▁r ec", + "▁ rec", + "): \\", + ") :\\", + "▁d if", + "▁di f", + "e g", + "at ive", + "ati ve", + "ativ e", + "▁a ss", + "▁as s", + "▁ ass", + "ie d", + "i ed", + "▁a ct", + "▁ac t", + "▁ act", + "s h", + "▁t han", + "▁th an", + "▁ than", + "中 国", + "▁e xp", + "▁ex p", + "▁ exp", + "an ge", + "ang e", + "a nge", + "▁f unction", + "▁fun ction", + "▁func tion", + "▁funct ion", + "▁ function", + "▁n um", + "▁nu m", + "▁ num", + "▁o b", + "▁ ob", + "ro up", + "rou p", + "r oup", + "oin t", + "oi nt", + "o int", + "▁n o", + "▁ no", + "ar i", + "a ri", + "▁ :", + "x a", + "n P", + "▁s up", + "▁su p", + "▁ sup", + "ht tp", + "h ttp", + "▁s ub", + "▁su b", + "▁ sub", + "a w", + "法 院", + "▁n eed", + "▁ne ed", + "▁ need", + "▁ &", + "▁im port", + "▁imp ort", + "▁ import", + "▁it s", + "▁i ts", + "▁ its", + "▁f irst", + "▁fi rst", + "▁fir st", + "▁ first", + "▁p rov", + "▁pro v", + "▁pr ov", + "▁ prov", + "s p", + "▁re g", + "▁r eg", + "▁ reg", + "ie ld", + "iel d", + "i eld", + "n f", + "▁t wo", + "▁tw o", + "▁ two", + "▁p h", + "▁ ph", + "自 己", + "ut ion", + "uti on", + "u tion", + "▁p e", + "▁ pe", + "ment s", + "men ts", + "m ents", + "▁a cc", + "▁ac c", + "▁ acc", + "ar ch", + "arc h", + "cr e", + "c re", + "▁e ff", + "▁ eff", + "▁ x", + "al s", + "a ls", + "▁in to", + "▁int o", + "▁i nto", + "▁ into", + "▁w ould", + "▁ would", + "▁f e", + "▁ fe", + "il ity", + "ilit y", + "ili ty", + "▁c o", + "▁ co", + "^ {", + "第 一", + "ad e", + "a de", + "at ing", + "atin g", + "ati ng", + "a ting", + "▁s pec", + "▁sp ec", + "▁spe c", + "▁ spec", + "t y", + "de f", + "d ef", + "iss ue", + "issu e", + "vel op", + "ar g", + "a rg", + "ni ng", + "nin g", + "n ing", + "le t", + "l et", + "pub lic", + "pu blic", + "p ublic", + "er r", + "e rr", + "▁in clud", + "▁incl ud", + "▁t rans", + "▁tr ans", + "▁tra ns", + "▁tran s", + "▁ trans", + "▁l ike", + "▁li ke", + "▁lik e", + "▁ like", + "▁re l", + "▁r el", + "▁ rel", + "op le", + "opl e", + "o ple", + "工 作", + "▁p at", + "▁pa t", + "▁ pat", + "▁a c", + "▁ ac", + "有 限", + "po s", + "p os", + "▁h ow", + "▁ho w", + "▁ how", + "▁h igh", + "▁hi gh", + "▁ high", + "▁m ay", + "▁ma y", + "▁ may", + "▁d ef", + "▁de f", + "▁ def", + "pa r", + "p ar", + "▁re qu", + "▁r equ", + "▁req u", + "▁ requ", + "n s", + "n M", + "at ional", + "ation al", + "ati onal", + "atio nal", + "问 题", + "▁p rodu", + "▁pro du", + "▁prod u", + "▁ produ", + "▁ –", + "ra p", + "r ap", + "人民 法院", + "or m", + "o rm", + "▁in v", + "▁i nv", + "▁ inv", + "li ne", + "lin e", + "l ine", + "ur re", + "is e", + "i se", + "我 们", + "E R", + "▁s a", + "▁ sa", + "▁o ff", + "▁of f", + "▁ off", + "▁h ad", + "▁ha d", + "▁ had", + "o y", + "n F", + "进 行", + "n c", + "▁d iffer", + "▁dif fer", + "▁diff er", + "▁the se", + "▁th ese", + "▁ these", + "E x", + "$ $", + "pl ic", + "p lic", + "ce ss", + "ces s", + "c ess", + "l p", + "uc t", + "u ct", + "t o", + "▁p lay", + "▁pl ay", + "▁ play", + "▁d ata", + "▁dat a", + "▁da ta", + "▁ data", + "O N", + "▁p os", + "▁po s", + "▁ pos", + "ur es", + "ure s", + "u res", + "in al", + "ina l", + "i nal", + "▁U n", + "▁ Un", + "▁w hat", + "▁wh at", + "▁ what", + "▁on ly", + "▁ only", + "() \\", + "( )\\", + "en ces", + "ence s", + "enc es", + "se t", + "s et", + "_ {", + "it ies", + "iti es", + "i ties", + "ha t", + "h at", + "▁d et", + "▁de t", + "▁ det", + ": :", + "n B", + "▁res ult", + "▁ result", + "e v", + "ue s", + "u es", + "ro und", + "rou nd", + "r ound", + "ui ld", + "u ild", + "n H", + "没 有", + "▁j ust", + "▁ju st", + "▁ just", + "▁c ons", + "▁con s", + "▁co ns", + "▁ cons", + "he s", + "h es", + "▁o p", + "▁ op", + "诉 讼", + "Pr o", + "P ro", + "ri v", + "r iv", + "y m", + "S t", + "▁e m", + "▁ em", + "▁d ec", + "▁de c", + "▁ dec", + "ic es", + "ice s", + "i ces", + "▁t hem", + "▁the m", + "▁th em", + "▁ them", + "▁a fter", + "▁af ter", + "▁ after", + "(\\ '", + "( \\'", + "ag es", + "age s", + "a ges", + "lo g", + "l og", + "id ent", + "ide nt", + "iden t", + "有限 公司", + "ro ugh", + "rou gh", + "r ough", + "什 么", + "▁H e", + "▁ He", + "oi d", + "o id", + "ib le", + "ibl e", + "i ble", + "se r", + "s er", + "▁us ing", + "▁u sing", + "▁ using", + "▁s ign", + "▁si gn", + "▁sig n", + "▁ sign", + "en se", + "ens e", + "e nse", + "▁s ystem", + "▁sy stem", + "▁sys tem", + "▁syst em", + "▁ system", + "▁f orm", + "▁for m", + "▁fo rm", + "▁ form", + "on s", + "o ns", + "at or", + "ato r", + "a tor", + "\", \\", + "\" ,\\", + "am es", + "ame s", + "a mes", + "▁t est", + "▁te st", + "▁ test", + "▁l oc", + "▁lo c", + "▁ loc", + "▁P ro", + "▁Pr o", + "▁ Pro", + "it s", + "i ts", + "时 间", + "ur ing", + "uri ng", + "urin g", + "u ring", + "ri ght", + "rig ht", + "r ight", + "▁de velop", + "▁ develop", + "eth od", + "▁s erv", + "▁se rv", + "▁ser v", + "▁ serv", + "▁us ed", + "▁use d", + "▁u sed", + "▁ used", + "▁s how", + "▁sh ow", + "▁ show", + "ke y", + "k ey", + "n L", + "user name", + "ol low", + "oll ow", + "ollo w", + "o x", + "nT h", + "n Th", + "▁s ec", + "▁se c", + "▁ sec", + "we en", + "w een", + "ient s", + "ien ts", + "i ents", + "I N", + "ut h", + "u th", + "▁ }", + "▁h er", + "▁he r", + "▁ her", + "规 定", + "at ch", + "con t", + "co nt", + "c ont", + "▁p eople", + "▁pe ople", + "▁ people", + "▁p res", + "▁pre s", + "▁pr es", + "▁ pres", + "▁d ist", + "▁dis t", + "▁di st", + "▁ dist", + "n D", + "c k", + "就 是", + "▁t hen", + "▁the n", + "▁th en", + "▁ then", + "▁h elp", + "▁he lp", + "▁hel p", + "▁ help", + "he m", + "h em", + "th is", + "thi s", + "t his", + "re ad", + "rea d", + "r ead", + "au se", + "aus e", + "a use", + "as h", + "a sh", + "ce pt", + "cep t", + "en g", + "e ng", + "▁w ell", + "▁we ll", + "▁wel l", + "▁ well", + "ne r", + "n er", + "▁m ost", + "▁mo st", + "▁mos t", + "▁ most", + "▁s im", + "▁si m", + "▁ sim", + "▁b r", + "▁ br", + "at ic", + "ati c", + "a tic", + "ti ng", + "tin g", + "t ing", + "y p", + "▁k now", + "▁kn ow", + "▁ know", + "▁th rough", + "▁thr ough", + "▁thro ugh", + "▁ through", + "mi n", + "m in", + "tr ing", + "tri ng", + "t ring", + "▁b etween", + "▁bet ween", + "▁ between", + "▁w here", + "▁wh ere", + "▁whe re", + "▁ where", + "▁c ell", + "▁ce ll", + "▁cel l", + "▁ cell", + "de r", + "d er", + "▁re t", + "▁r et", + "▁ ret", + "▁p ol", + "▁po l", + "▁ pol", + "▁ @", + "ir ect", + "ire ct", + "i rect", + "it ed", + "ite d", + "i ted", + "▁re m", + "▁r em", + "▁ rem", + "() ;\\", + "(); \\", + "( );\\", + "▁C om", + "▁Co m", + "▁ Com", + "▁c re", + "▁cr e", + "▁ cre", + "▁m ake", + "▁ma ke", + "▁ make", + "\\\\ (", + "ai r", + "a ir", + "▁sh ould", + "▁ should", + "▁ `", + "wo rk", + "wor k", + "w ork", + "这 个", + "▁ex per", + "▁exp er", + "▁ exper", + "fi g", + "f ig", + "I n", + "▁s ur", + "▁su r", + "▁ sur", + "被 执行人", + "管 理", + "oo d", + "o od", + "▁m odel", + "▁mod el", + "▁mode l", + "▁mo del", + "▁ model", + "ur rent", + "urre nt", + "al e", + "a le", + "ut e", + "u te", + "so n", + "s on", + "▁f ind", + "▁fin d", + "▁fi nd", + "▁ find", + "▁e nd", + "▁en d", + "▁ end", + "\\' ,", + "\\ ',", + "r t", + "▁s ol", + "▁so l", + "▁ sol", + "il y", + "i ly", + "裁 定", + "oo t", + "o ot", + "am p", + "a mp", + "发 展", + "R E", + "ar s", + "a rs", + "war d", + "wa rd", + "w ard", + "ow er", + "owe r", + "o wer", + "}\\ \\", + "} \\\\", + "io us", + "i ous", + "▁s er", + "▁se r", + "▁ ser", + "▁f il", + "▁fi l", + "▁ fil", + "ov er", + "ove r", + "o ver", + "cl ass", + "c lass", + "▁a tt", + "▁at t", + "▁ att", + "for e", + "fo re", + "f ore", + "▁f ollow", + "▁fol low", + "▁ follow", + "an y", + "a ny", + "in es", + "ine s", + "i nes", + "ra ph", + "rap h", + "r aph", + "▁n umber", + "▁num ber", + "▁nu mber", + "▁ number", + "ou gh", + "oug h", + "o ugh", + "m l", + "▁s m", + "▁ sm", + "▁l ook", + "▁lo ok", + "▁ look", + "▁b l", + "▁ bl", + "n O", + "▁in st", + "▁i nst", + "▁ins t", + "▁ inst", + "▁g r", + "▁ gr", + "▁s ee", + "▁se e", + "▁ see", + "e e", + "at ure", + "atur e", + "atu re", + "a ture", + "it le", + "i tle", + "iz ed", + "ize d", + "i zed", + "ve nt", + "ven t", + "v ent", + "▁m in", + "▁mi n", + "▁ min", + "服 务", + "gr am", + "gra m", + "g ram", + "our ce", + "Q u", + "da y", + "d ay", + "▁v ari", + "▁var i", + "▁va ri", + "▁ vari", + "b r", + "er y", + "e ry", + "▁s uch", + "▁su ch", + "▁suc h", + "▁ such", + "A T", + "a z", + "法 律", + "企 业", + "▁eff ect", + "▁ effect", + "Th e", + "T he", + "▁g ener", + "▁gen er", + "▁gene r", + "▁ge ner", + "▁ gener", + "中 华", + "ce nt", + "c ent", + "▁d ifferent", + "▁differ ent", + "▁diff erent", + "▁ different", + "form ation", + "format ion", + "t s", + "or ld", + "▁e nt", + "▁en t", + "▁ ent", + "es tion", + "est ion", + "vi ew", + "vie w", + "v iew", + "ie r", + "i er", + "an k", + "a nk", + "to n", + "t on", + "in s", + "i ns", + "an n", + "a nn", + "▁w ant", + "▁wa nt", + "▁ want", + "▁g roup", + "▁gr oup", + "▁gro up", + "▁ group", + "▁b ack", + "▁ba ck", + "▁bac k", + "▁ back", + "▁ /", + "oc i", + "o ci", + "第 二", + "## ##", + "### #", + "# ###", + "▁c or", + "▁co r", + "▁ cor", + "▁y ears", + "▁year s", + "▁ye ars", + "▁ years", + "ble m", + "bl em", + "b lem", + "▁p ar", + "▁pa r", + "▁ par", + "▁in f", + "▁i nf", + "▁ inf", + "ect ion", + "ec tion", + "e ction", + "con st", + "co nst", + "cons t", + "( '", + "ch n", + "c hn", + "cr i", + "c ri", + ") \\", + "pe ct", + "pec t", + "p ect", + "技 术", + "id er", + "ide r", + "i der", + "▁d i", + "▁ di", + "和 国", + "▁n ame", + "▁na me", + "▁nam e", + "▁ name", + "com ment", + "comm ent", + "va l", + "v al", + "re n", + "r en", + "▁m on", + "▁mo n", + "▁ mon", + "/ \\", + "▁s aid", + "▁sa id", + "le ase", + "lea se", + "in ed", + "ine d", + "i ned", + "S U", + "I T", + "as es", + "ase s", + "a ses", + "▁A l", + "▁ Al", + "▁s he", + "▁sh e", + "▁ she", + "la nd", + "lan d", + "l and", + "如 果", + "▁b ec", + "▁be c", + "▁ bec", + "N A", + "▁s elf", + "▁se lf", + "▁sel f", + "▁ self", + "ir ed", + "ire d", + "i red", + "▁T r", + "▁ Tr", + "▁st art", + "▁star t", + "▁ start", + "http s", + "▁m ed", + "▁me d", + "▁ med", + "da ta", + "dat a", + "d ata", + "nI n", + "n In", + "di v", + "d iv", + "fu l", + "f ul", + "▁c ould", + "▁cou ld", + "▁ could", + "▁f r", + "▁ fr", + "▁l ong", + "▁lo ng", + "▁lon g", + "▁ long", + "ad d", + "a dd", + "▁e qu", + "▁eq u", + "▁ equ", + "▁e very", + "▁ev ery", + "▁ever y", + "▁ every", + "▁Y ou", + "▁Yo u", + "▁ You", + "共和 国", + "共 和国", + "if y", + "i fy", + "▁f l", + "▁ fl", + "ri c", + "r ic", + "em ent", + "emen t", + "eme nt", + "e ment", + "▁in cre", + "▁inc re", + "▁ incre", + "am ple", + "amp le", + "al ity", + "ali ty", + "in ce", + "inc e", + "i nce", + "▁m any", + "▁man y", + "▁ma ny", + "▁ many", + "▁f ound", + "▁fo und", + "▁ found", + "if e", + "i fe", + "ga n", + "g an", + "hi p", + "h ip", + "n N", + "is ts", + "ist s", + "i sts", + "al th", + "alt h", + "ev er", + "eve r", + "e ver", + "人民 共和国", + "S T", + "au lt", + "aul t", + "a ult", + "▁c all", + "▁ca ll", + "▁cal l", + "▁ call", + "中华 人民共和国", + "▁m od", + "▁mo d", + "▁ mod", + "w n", + "ce d", + "c ed", + "▁b oth", + "▁bo th", + "▁bot h", + "▁ both", + "um ent", + "ume nt", + "umen t", + "u ment", + "▁m em", + "▁me m", + "▁ mem", + "ra y", + "r ay", + "ic ally", + "ical ly", + "A R", + "ol e", + "o le", + "ol ogy", + "olog y", + "olo gy", + "o logy", + "re d", + "r ed", + ") )", + "od y", + "o dy", + "民 事", + "fil e", + "fi le", + "f ile", + "er son", + "ers on", + "▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁", + "▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁", + "▁ ▁▁▁▁▁▁▁▁▁", + "he ck", + "h eck", + "▁a nal", + "▁an al", + "▁ana l", + "▁ anal", + "▁n ow", + "▁no w", + "▁ now", + "uc h", + "u ch", + "im es", + "ime s", + "i mes", + "▁a pp", + "▁ap p", + "▁ app", + "▁c har", + "▁ch ar", + "▁cha r", + "▁ char", + "ro l", + "r ol", + "' ,", + "E N", + "le ction", + "lect ion", + "lec tion", + "l ection", + "▁v alue", + "▁val ue", + "▁valu e", + "▁ value", + "com m", + "co mm", + "c omm", + "判 决", + "ea d", + "e ad", + "it t", + "i tt", + "le d", + "l ed", + "▁e ach", + "▁ each", + "▁r ight", + "▁rig ht", + "▁ri ght", + "▁ right", + "研 究", + "▁f act", + "▁fac t", + "▁fa ct", + "▁ fact", + "or n", + "o rn", + "iz ation", + "iza tion", + "▁m ain", + "▁ma in", + "▁ main", + "▁ap pro", + "▁app ro", + "▁ appro", + "ro n", + "r on", + "▁de sign", + "▁des ign", + "▁ design", + "▁pro cess", + "▁proc ess", + "▁ process", + "▁v ery", + "▁ve ry", + "▁ver y", + "▁ very", + "re qu", + "req u", + "r equ", + "▁e d", + "▁ ed", + "iv ers", + "ive rs", + "iver s", + "i vers", + "▁$ $", + "▁ $$", + "▁stud y", + "▁ study", + "▁c ar", + "▁ca r", + "▁ car", + "▁w ay", + "▁wa y", + "▁ way", + "▁a v", + "▁ av", + "i k", + "▁m ethod", + "▁meth od", + "▁ method", + "▁d oes", + "▁do es", + "▁ does", + "▁v al", + "▁va l", + "▁ val", + "su p", + "s up", + "▁re ad", + "▁r ead", + "▁ read", + "ie nce", + "ien ce", + "i ence", + "▁res pon", + "▁resp on", + "▁ respon", + "et s", + "e ts", + "] (", + "▁l ist", + "▁li st", + "▁ list", + "o f", + "▁g u", + "▁ gu", + "te xt", + "tex t", + "t ext", + "▁p ost", + "▁pos t", + "▁po st", + "▁ post", + "lo ad", + "l oad", + "▁E x", + "▁ Ex", + "▁pat ients", + "▁patient s", + "▁ patients", + "al se", + "als e", + "Na me", + "N ame", + "co l", + "c ol", + "is ion", + "isi on", + "ul e", + "u le", + "ch ool", + "cho ol", + "ak ing", + "aki ng", + "akin g", + "a king", + "su b", + "s ub", + "vers ion", + "v ersion", + "需 要", + "▁r un", + "▁ru n", + "▁ run", + "▁e xt", + "▁ex t", + "▁ ext", + "war e", + "wa re", + "w are", + "▁e st", + "▁es t", + "▁ est", + "tt p", + "t tp", + "▁N ew", + "▁Ne w", + "▁ New", + "te n", + "t en", + "ar ed", + "are d", + "a red", + "▁g reat", + "▁gr eat", + "▁gre at", + "▁ great", + "的 人", + "ul ation", + "ula tion", + "u lation", + "O R", + "ot her", + "oth er", + "othe r", + "o ther", + "▁p oint", + "▁po int", + "▁ point", + "wa y", + "w ay", + "mer ic", + "me ric", + "m eric", + "▁d isc", + "▁dis c", + "▁di sc", + "▁ disc", + "se arch", + "sear ch", + "s earch", + "an ts", + "ant s", + "ect ed", + "ec ted", + "▁S h", + "▁ Sh", + "a h", + "因 为", + "as on", + "a son", + "不 是", + "▁d on", + "▁do n", + "▁ don", + "iq u", + "i qu", + "▁A n", + "▁ An", + "信 息", + "ef er", + "efe r", + "e fer", + "d d", + "ess age", + "essa ge", + "Con t", + "Co nt", + "C ont", + "使 用", + "▁$ \\\\", + "▁$\\ \\", + "▁ $\\\\", + "▁in formation", + "▁inform ation", + "▁ information", + "fi l", + "f il", + "ion al", + "io nal", + "iona l", + "i onal", + "▁re p", + "▁r ep", + "▁ rep", + "▁h ere", + "▁he re", + "▁her e", + "▁ here", + "▁f am", + "▁fa m", + "in ess", + "ine ss", + "ines s", + "i ness", + "ou se", + "ous e", + "o use", + "▁I f", + "▁ If", + "ent ial", + "enti al", + "pat h", + "pa th", + "p ath", + "th e", + "t he", + "▁a rt", + "▁ar t", + "▁ art", + "y n", + "** \\", + "* *\\", + "根 据", + "ma n", + "m an", + "\" \"", + "▁act iv", + "▁ activ", + "p s", + "系 统", + "产 品", + "▁sup port", + "▁ support", + "日 期", + "▁g iv", + "▁gi v", + "▁d uring", + "▁du ring", + "▁dur ing", + "op y", + "o py", + "▁s ame", + "▁sa me", + "▁sam e", + "▁ same", + "at eg", + "ate g", + "▁f ile", + "▁fil e", + "▁fi le", + "▁ file", + "ty pe", + "typ e", + "t ype", + "通 过", + "pr int", + "pri nt", + "p rint", + "is hed", + "ish ed", + "ra l", + "r al", + "e k", + "审 判", + "▁g ood", + "▁go od", + "▁ good", + "I G", + "▁l ine", + "▁li ne", + "▁lin e", + "▁ line", + "所 以", + "da te", + "dat e", + "d ate", + "ur al", + "ura l", + "u ral", + "ic ense", + "ice nse", + "icens e", + "▁e ven", + "▁ev en", + "▁ even", + "S E", + "## #", + "# ##", + "中 文", + "el se", + "els e", + "n E", + "\" )", + "us s", + "u ss", + "} $", + "▁t ype", + "▁typ e", + "▁ty pe", + "▁ type", + "en cy", + "enc y", + "e ncy", + "▁le vel", + "▁lev el", + "▁ level", + "d e", + "he r", + "h er", + "认 为", + "▁b ecause", + "▁be cause", + "▁bec ause", + "▁ because", + "y l", + "▁b el", + "▁be l", + "▁ bel", + "▁ >", + "ce r", + "c er", + "▁ %", + "ain ing", + "ai ning", + "a ining", + "ur l", + "u rl", + "M E", + "主 要", + "▁te chn", + "▁tech n", + "▁ techn", + "nf rom", + "n from", + "▁per form", + "▁perf orm", + "▁perfor m", + "▁ perform", + "▁st ate", + "▁stat e", + "▁ state", + "▁c ent", + "▁ce nt", + "▁ cent", + "iu m", + "i um", + "o h", + "▁m et", + "▁me t", + "▁ met", + "riv ate", + "r ivate", + "ber s", + "be rs", + "b ers", + "▁pro gram", + "▁pr ogram", + "▁ program", + "if ied", + "ifi ed", + "▁pro ject", + "▁proj ect", + "▁ project", + "提 供", + "▁a gain", + "▁ag ain", + "▁ again", + "▁R e", + "▁ Re", + "as k", + "a sk", + "ac tion", + "act ion", + "a ction", + "ain s", + "ai ns", + "a ins", + "▁F or", + "▁Fo r", + "▁ For", + "w h", + "▁d own", + "▁do wn", + "▁dow n", + "▁ down", + "时 候", + "教 育", + "▁m at", + "▁ma t", + "▁ mat", + "ce s", + "c es", + "ro ll", + "rol l", + "r oll", + "▁c urrent", + "▁cur rent", + "▁curr ent", + "▁ current", + "资 料", + "pl ay", + "p lay", + "▁b efore", + "▁be fore", + "▁ before", + "▁C l", + "▁ Cl", + "▁e rr", + "▁er r", + "▁ err", + "le x", + "l ex", + "I d", + "b s", + "选 择", + "▁ z", + "A N", + "▁part ic", + "▁par tic", + "如 下", + "us tom", + "ust om", + "ter s", + "te rs", + "t ers", + "p p", + "▁g en", + "▁ge n", + "▁ gen", + "▁A r", + "▁ Ar", + "a j", + "ve d", + "v ed", + "▁m ult", + "▁mu lt", + "▁mul t", + "▁ mult", + "am s", + "a ms", + "ba ck", + "bac k", + "b ack", + "▁se cond", + "▁sec ond", + "▁ second", + "▁d ep", + "▁de p", + "▁ dep", + "] ,", + "ual ly", + "u ally", + "▁b est", + "▁be st", + "▁bes t", + "▁ best", + "Co n", + "C on", + "▁be ing", + "▁bei ng", + "▁ being", + "te st", + "tes t", + "t est", + "efer ences", + "eference s", + "e ferences", + "▁m ade", + "▁ma de", + "▁mad e", + "▁ made", + "b l", + "us iness", + "▁th ree", + "▁thr ee", + "▁ three", + "参 考", + "▁c are", + "▁car e", + "▁ca re", + "▁ care", + "▁pro vid", + "▁prov id", + "大 学", + "Co m", + "C om", + "▁ Z", + "▁ “", + "** **", + "*** *", + "* ***", + "St ring", + "Str ing", + "S tring", + "io r", + "i or", + "I D", + "ot e", + "o te", + "▁d id", + "▁di d", + "▁ did", + "ress ion", + "r ession", + "▁m ark", + "▁mar k", + "▁ma rk", + "▁ mark", + "可 能", + "is m", + "i sm", + "▁C on", + "▁Co n", + "▁ Con", + "df rac", + "d frac", + "C T", + "▁h and", + "▁ha nd", + "▁han d", + "▁ hand", + "yl e", + "y le", + "▁d irect", + "▁di rect", + "▁dir ect", + "▁dire ct", + "▁ direct", + "ri but", + "rib ut", + "it al", + "ita l", + "i tal", + "社 会", + "ab ility", + "abil ity", + "cc ess", + "c cess", + "▁pro duct", + "▁produ ct", + "▁prod uct", + "▁ product", + "▁wh ile", + "▁ while", + "s q", + "we r", + "w er", + "▁c ount", + "▁co unt", + "▁cou nt", + "▁ count", + "他 们", + "发 生", + "nR eferences", + "nRe ferences", + "n References", + "▁d r", + "▁ dr", + "国 家", + "it hub", + "ith ub", + "ack age", + "▁l ead", + "▁le ad", + "▁ lead", + "▁th ose", + "生 活", + "▁b uild", + "▁bu ild", + "▁ build", + "an e", + "a ne", + "方 法", + "▁f in", + "▁fi n", + "▁ fin", + "L E", + "ac ter", + "act er", + "cl ude", + "clud e", + "▁o pen", + "▁op en", + "▁ open", + "▁* /\\", + "▁*/ \\", + "▁ */\\", + "ar n", + "a rn", + ", \"", + "审 理", + "情 况", + "en ds", + "end s", + "▁res ults", + "▁result s", + "▁ results", + "ab el", + "abe l", + "a bel", + "ba ll", + "bal l", + "b all", + "但 是", + "n G", + "▁th ink", + "▁thin k", + "▁thi nk", + "▁ think", + "p y", + "us ing", + "u sing", + "nT his", + "nTh is", + "n This", + "诉讼 法", + "现 在", + "▁n on", + "▁no n", + "▁ non", + "▁m uch", + "▁muc h", + "▁mu ch", + "▁in s", + "▁i ns", + "▁ ins", + "ro ss", + "ros s", + "r oss", + "经 济", + "的 一", + "ar m", + "a rm", + "b e", + "va r", + "v ar", + "▁ch ild", + "▁chi ld", + "▁ child", + "b y", + "ne t", + "n et", + "or g", + "o rg", + "fa ce", + "fac e", + "f ace", + "是 一", + "▁re port", + "▁rep ort", + "▁repo rt", + "▁ report", + "al c", + "a lc", + "▁l ast", + "▁la st", + "▁las t", + "▁ last", + "▁ #", + "提 出", + "▁H ow", + "▁Ho w", + "▁ How", + "▁com mun", + "▁comm un", + "▁ commun", + "ic ro", + "i cro", + "it ive", + "iti ve", + "▁c ap", + "▁ca p", + "▁ cap", + "eng th", + "e ngth", + "▁t ake", + "▁ta ke", + "▁tak e", + "▁ take", + "ain ed", + "ai ned", + "aine d", + "a ined", + "li sh", + "lis h", + "l ish", + "▁d el", + "▁de l", + "▁ del", + "\") \\", + "\" )\\", + "at us", + "atu s", + "og raph", + "ogr aph", + "ograp h", + "o graph", + "已 经", + "设 计", + "▁p oss", + "▁pos s", + "▁po ss", + "▁ poss", + "▁p resent", + "▁pre sent", + "▁pres ent", + "▁ present", + "t a", + "▁in vest", + "▁inv est", + "▁ invest", + "com e", + "co me", + "c ome", + "▁or der", + "▁ord er", + "▁ order", + "▁d ay", + "▁da y", + "▁ day", + "I C", + "▁ 书", + "▁o per", + "▁op er", + "▁ oper", + "上 诉", + "ow s", + "o ws", + "eq u", + "e qu", + "ge r", + "g er", + "▁s om", + "▁so m", + "▁A s", + "▁ As", + "▁re search", + "▁res earch", + "▁resear ch", + "▁ research", + "分 析", + "出 生", + "st and", + "stan d", + "sta nd", + "s tand", + "▁o pt", + "▁op t", + "▁ opt", + "erv ice", + "\\\\ )", + "tim e", + "ti me", + "t ime", + "ar get", + "arg et", + "arge t", + "▁is s", + "▁i ss", + "▁ iss", + "vi r", + "v ir", + "▁h ome", + "▁hom e", + "▁ho me", + "▁ home", + "还 是", + "▁v is", + "▁vi s", + "▁ vis", + "at her", + "ath er", + "athe r", + "a ther", + "▁o wn", + "▁ow n", + "▁ own", + "▁re turn", + "▁r eturn", + "▁ret urn", + "▁ return", + "▁a nt", + "▁an t", + "▁ ant", + "git hub", + "g ithub", + "▁t op", + "▁to p", + "▁ top", + "代 表", + "▁A meric", + "▁Am eric", + "▁Amer ic", + "▁ Americ", + "ut hor", + "uth or", + "u thor", + "▁s k", + "▁ sk", + "ail able", + "ht ml", + "htm l", + "h tml", + "▁h ttp", + "▁ http", + "ma th", + "mat h", + "m ath", + "ne ss", + "nes s", + "n ess", + "▁t reat", + "▁tr eat", + "▁tre at", + "T r", + "▁pro per", + "▁pr oper", + "▁prop er", + "▁ proper", + "▁s mall", + "▁sm all", + "▁ small", + "引 用", + "▁c r", + "▁ cr", + ")) \\", + ") )\\", + "▁ap plic", + "▁app lic", + "▁appl ic", + "E F", + "汉 族", + "内 容", + "le ft", + "lef t", + "l eft", + "r r", + "m a", + "ug g", + "u gg", + "▁c hang", + "▁ch ang", + "▁cha ng", + "▁chan g", + "▁ chang", + "iv ely", + "ive ly", + "ivel y", + "i vely", + "▁S c", + "▁ Sc", + "du ct", + "duc t", + "d uct", + "oa d", + "o ad", + "ut il", + "uti l", + "u til", + "ce ption", + "cept ion", + "cep tion", + "ivers ity", + "▁A nd", + "▁An d", + "▁ And", + "T h", + "要 求", + "ne w", + "n ew", + "re am", + "rea m", + "市 场", + "▁p op", + "▁po p", + "▁ pop", + "▁s ing", + "▁sin g", + "▁si ng", + "▁ sing", + "or th", + "ort h", + "C l", + "▁D e", + "▁ De", + "E S", + "▁with out", + "▁ without", + "ak es", + "ake s", + "a kes", + "▁ide nt", + "▁id ent", + "▁ ident", + "出 版", + "▁in cluding", + "▁includ ing", + "▁incl uding", + "▁ including", + "A S", + "em s", + "e ms", + "ys is", + "y sis", + "▁C ol", + "▁Co l", + "▁ Col", + "▁tr ue", + "▁ true", + "▁he alth", + "▁heal th", + "▁ health", + "过 程", + "其 他", + "re g", + "r eg", + "▁I nd", + "▁In d", + "▁ Ind", + "▁ _", + "me d", + "m ed", + "st ring", + "str ing", + "stri ng", + "s tring", + "bi n", + "b in", + "申请 执行人", + "申请执行 人", + "is ter", + "ist er", + "iste r", + "i ster", + "} }", + "▁s tring", + "▁st ring", + "▁str ing", + "▁stri ng", + "▁ string", + "引用 日期", + "di t", + "d it", + "st art", + "star t", + "sta rt", + "ur o", + "u ro", + "le ment", + "lem ent", + "l ement", + "C h", + "▁p ath", + "▁pat h", + "▁pa th", + "▁ path", + "▁e lect", + "▁el ect", + "▁ele ct", + "▁ elect", + "Li st", + "L ist", + "▁t ri", + "▁tr i", + "▁ tri", + "▁c le", + "▁cl e", + "▁ cle", + "代 理", + "▁ X", + "▁b ased", + "▁bas ed", + "▁base d", + "▁ba sed", + "▁ based", + "▁p erson", + "▁per son", + "▁pers on", + "▁ person", + "A L", + "al k", + "at s", + "a ts", + "cri ption", + "cript ion", + "\" >", + "in clude", + "\"> \\", + "\" >\\", + "民事 诉讼法", + "民事诉讼 法", + "er g", + "e rg", + "av a", + "a va", + "tr act", + "tra ct", + "” \\", + "▁f ollowing", + "▁follow ing", + "▁ following", + "y t", + "iv es", + "ive s", + "i ves", + "Typ e", + "Ty pe", + "T ype", + "Re s", + "R es", + "审判 员", + "re en", + "ree n", + "r een", + "th s", + "t hs", + "oc ument", + "▁w orld", + "▁wor ld", + "▁ world", + "▁l ife", + "▁li fe", + "▁lif e", + "▁ life", + "ar ge", + "arg e", + "oi n", + "o in", + "中华人民共和国 民事诉讼法", + "▁W h", + "▁ Wh", + "iv id", + "ivi d", + "i vid", + "l i", + "wo rd", + "wor d", + "w ord", + "▁sign ific", + "et y", + "e ty", + "▁k e", + "▁ ke", + "om en", + "ome n", + "o men", + "le ss", + "les s", + "l ess", + "▁中 文", + "▁ 中文", + "sq rt", + "s qrt", + "e y", + "▁m eas", + "▁me as", + "pos e", + "po se", + "p ose", + "▁con st", + "▁co nst", + "▁cons t", + "▁ const", + "ir c", + "i rc", + "▁R es", + "▁Re s", + "▁ Res", + "ol ution", + "▁st ruct", + "▁str uct", + "▁ struct", + "am et", + "ame t", + "a met", + "▁b usiness", + "▁bus iness", + "▁ business", + "▁a ut", + "▁au t", + "▁ aut", + "▁P l", + "▁ Pl", + "▁e as", + "▁ eas", + "▁e ar", + "▁ ear", + "都 是", + "▁te am", + "▁tea m", + "▁ team", + "re f", + "r ef", + "po r", + "p or", + "▁p ass", + "▁pa ss", + "▁pas s", + "▁ pass", + "▁c ase", + "▁ca se", + "▁cas e", + "▁ case", + "文 化", + "ve n", + "v en", + "ur y", + "u ry", + "▁b u", + "▁ bu", + "▁f ree", + "▁fr ee", + "▁fre e", + "▁ free", + "ra tion", + "rat ion", + "ratio n", + "r ation", + "ac es", + "ace s", + "a ces", + "▁w rit", + "▁wr it", + "▁ writ", + "很 多", + "中 的", + "财 产", + "oa rd", + "o ard", + "way s", + "wa ys", + "w ays", + "▁a dv", + "▁ad v", + "▁ adv", + "项 目", + "人 的", + "▁F r", + "▁ Fr", + "▁L icense", + "▁Lic ense", + "▁ License", + "▁中文 名", + "▁中 文名", + "▁ 中文名", + "▁f ield", + "▁fi eld", + "▁ field", + "▁re ce", + "▁rec e", + "iss ion", + "学 习", + "二 〇", + "}, \\", + "} ,\\", + "▁S p", + "▁ Sp", + "au t", + "a ut", + "▁av ailable", + "▁avail able", + "▁ available", + "▁cont rol", + "▁contr ol", + "▁ control", + "a u", + "ur s", + "u rs", + "ap er", + "ape r", + "a per", + "re m", + "r em", + "SU P", + "S UP", + "▁con tin", + "▁cont in", + "▁ contin", + "▁c ells", + "▁cell s", + "▁cel ls", + "▁ cells", + "n p", + "学 生", + "二〇 一", + "数 据", + "▁pl ace", + "▁plac e", + "▁ place", + "n Y", + "或 者", + "in a", + "i na", + "▁prov ide", + "▁provid e", + "▁ provide", + "依 照", + "di s", + "d is", + "ac he", + "ach e", + "a che", + "建 设", + "专 业", + "mo d", + "m od", + "ap e", + "a pe", + "不 同", + "ter nal", + "tern al", + "t ernal", + "▁I s", + "▁ Is", + "lo b", + "l ob", + "开 始", + "▁re al", + "▁r eal", + "▁ real", + "us h", + "u sh", + "] [", + "▁pro blem", + "▁prob lem", + "▁ problem", + "▁d em", + "▁de m", + "▁ dem", + "向 本院", + "ind ex", + "inde x", + "ic le", + "icl e", + "i cle", + "r c", + "▁st ill", + "▁ still", + "iv ed", + "ive d", + "i ved", + "作 者", + "▁a round", + "▁ar ound", + "▁ around", + "▁t em", + "▁te m", + "▁ tem", + "j s", + "FI G", + "F IG", + "le te", + "let e", + "l ete", + "▁c our", + "▁co ur", + "▁cou r", + "▁s tand", + "▁st and", + "▁ stand", + "op e", + "o pe", + "书 记", + "\\' \\", + "\\ '\\", + "vir on", + "vi ron", + "v iron", + "世 界", + "as ter", + "ast er", + "aste r", + "a ster", + "▁h um", + "▁hu m", + "▁ hum", + "no t", + "n ot", + "▁or gan", + "▁org an", + "▁ organ", + "▁ex pl", + "▁exp l", + "▁ expl", + "ve rt", + "ver t", + "v ert", + "这 样", + "ou th", + "out h", + "o uth", + "c m", + "pl oy", + "p loy", + "in ks", + "ink s", + "ti l", + "t il", + "活 动", + "ri te", + "rit e", + "r ite", + "▁k ey", + "▁ke y", + "▁ key", + "知 道", + "参考 资料", + "te m", + "t em", + "▁P h", + "▁ Ph", + "▁l og", + "▁lo g", + "▁ log", + "w w", + "▁sign ificant", + "▁signific ant", + "re sent", + "res ent", + "工 程", + "in it", + "ini t", + "i nit", + "ail s", + "ai ls", + "a ils", + "银 行", + "{\\ \\", + "{ \\\\", + "▁b ook", + "▁bo ok", + "▁ book", + "▁g row", + "▁gr ow", + "▁gro w", + "▁ grow", + "▁de velopment", + "▁develop ment", + "▁ development", + "▁a rea", + "▁are a", + "▁ar ea", + "▁ area", + "关 于", + "▁im pro", + "▁imp ro", + "▁v e", + "▁ ve", + "▁d eterm", + "▁de term", + "▁det erm", + "▁deter m", + "▁ determ", + "重 要", + "▁l im", + "▁li m", + "▁ lim", + "iv ing", + "ivi ng", + "i ving", + "▁L et", + "▁Le t", + "▁ Let", + "at t", + "a tt", + "av ing", + "avi ng", + "avin g", + "a ving", + "el s", + "e ls", + "li st", + "lis t", + "l ist", + "以 及", + "ar ent", + "are nt", + "aren t", + "a rent", + "▁T here", + "▁The re", + "▁Th ere", + "▁Ther e", + "▁ There", + "的 是", + "ot s", + "o ts", + "nd ef", + "nde f", + "n def", + "if ication", + "ific ation", + "ifi cation", + "▁s ever", + "▁se ver", + "▁ sever", + "a f", + "安 全", + "▁import ant", + "▁ important", + "re l", + "r el", + "an gu", + "ang u", + "关 系", + "os s", + "o ss", + "ww w", + "w ww", + "方 式", + "好 的", + "ai t", + "a it", + "▁S e", + "▁ Se", + "本 案", + "▁m us", + "▁mu s", + "▁ mus", + "游 戏", + "▁re du", + "▁r edu", + "▁red u", + "▁ redu", + "▁f amily", + "▁fam ily", + "▁famil y", + "▁ family", + "▁h im", + "▁hi m", + "▁ him", + "cri b", + "cr ib", + "c rib", + "▁con f", + "▁co nf", + "▁ conf", + "▁b i", + "▁ bi", + "中 心", + "mu n", + "m un", + "部 分", + "▁ad dition", + "▁add ition", + "n a", + "val ue", + "v alue", + "▁h ead", + "▁he ad", + "▁ head", + "▁ 定", + "op t", + "o pt", + "na l", + "n al", + "), \\", + ") ,\\", + "依 法", + "▁l ocal", + "▁loc al", + "▁lo cal", + "▁ local", + "比 较", + "▁L e", + "▁ Le", + "l u", + "▁T o", + "▁ To", + "ot t", + "o tt", + "st ruct", + "str uct", + "影 响", + "▁with in", + "▁wit hin", + "▁wi thin", + "▁ within", + "▁ch ange", + "▁chang e", + "▁cha nge", + "▁chan ge", + "▁ change", + "▁s ince", + "▁sin ce", + "▁si nce", + "▁sinc e", + "▁ since", + "uc k", + "u ck", + "— —", + "iqu e", + "iq ue", + "i que", + "自己 的", + "lish ed", + "lis hed", + "l ished", + "at ely", + "ate ly", + "不 能", + "gh t", + "g ht", + "▁A ll", + "▁Al l", + "▁ All", + "▁o bject", + "▁ob ject", + "▁obj ect", + "▁ object", + "发 现", + "▁m anag", + "▁man ag", + "▁ma nag", + "同 时", + "▁im p", + "▁i mp", + "▁ imp", + "▁cons ider", + "▁ consider", + "怎 么", + "vi ous", + "v ious", + "mod el", + "mode l", + "mo del", + "m odel", + "( \\", + "▁g iven", + "▁giv en", + "▁give n", + "▁gi ven", + "▁ given", + "rr or", + "r ror", + "▁ass oci", + "▁ associ", + "IO N", + "I ON", + "相 关", + "▁ ,", + "I S", + "生 产", + "▁p ublic", + "▁pub lic", + "▁pu blic", + "▁ public", + "▁b eh", + "▁be h", + "▁ beh", + "et work", + "▁ Q", + "▁p ot", + "▁po t", + "▁ pot", + "▁b as", + "▁ba s", + "▁ bas", + "▁S o", + "▁ So", + "eg r", + "e gr", + "Dat a", + "Da ta", + "D ata", + "▁c ustom", + "▁cust om", + "▁ custom", + "▁s ervice", + "▁serv ice", + "▁ service", + "▁us er", + "▁use r", + "▁u ser", + "▁ user", + "le r", + "l er", + "nE x", + "n Ex", + "▁Un iversity", + "▁Univers ity", + "▁ University", + "', \\", + "' ,\\", + "▁v oid", + "▁vo id", + "▁ void", + "U T", + "▁W hat", + "▁Wh at", + "▁ What", + "计 算", + "▁re quire", + "▁requ ire", + "▁ require", + "▁n ext", + "▁ne xt", + "▁ next", + "nu m", + "n um", + "▁s it", + "▁si t", + "▁ sit", + "▁b re", + "▁br e", + "▁ bre", + "第一 百", + "第 一百", + "em ber", + "emb er", + "e mber", + "fe ss", + "f ess", + "▁s pecific", + "▁spec ific", + "▁ specific", + "▁c ode", + "▁co de", + "▁cod e", + "▁ code", + "▁t ry", + "▁tr y", + "▁ try", + "ent ly", + "▁c ou", + "▁co u", + "▁ cou", + "A C", + "北 京", + "▁p ower", + "▁po wer", + "▁pow er", + "▁ power", + "ir d", + "i rd", + "▁i de", + "▁id e", + "▁ ide", + "\"\" \"\\", + "\"\"\" \\", + "\" \"\"\\", + "m p", + "▁v iew", + "▁vi ew", + "▁ view", + "能 力", + "方 面", + "um m", + "u mm", + "Qu estion", + "Quest ion", + "▁m ust", + "▁mus t", + "▁mu st", + "▁ must", + "字 第", + "ft ware", + "er n", + "e rn", + "▁re ally", + "▁real ly", + "▁ really", + "被告 人", + "en ame", + "ena me", + "e name", + "/* *\\", + "/** \\", + "/ **\\", + "le v", + "l ev", + "▁inter est", + "▁ interest", + "也 是", + "▁s chool", + "▁sch ool", + "▁ school", + "he ad", + "hea d", + "h ead", + "然 后", + "一 定", + "▁s l", + "▁ sl", + "▁h ist", + "▁his t", + "▁hi st", + "▁ hist", + "nW e", + "n We", + "ex port", + "exp ort", + "结 果", + "▁l et", + "▁le t", + "▁ let", + "os ed", + "ose d", + "o sed", + "c o", + "▁ap pe", + "▁app e", + "▁ appe", + "参 加", + "me t", + "m et", + "如 何", + "ep end", + "e pend", + "▁under stand", + "▁unders tand", + "网 络", + "作 为", + "▁p ur", + "▁pu r", + "▁ pur", + "▁w ater", + "▁wa ter", + "▁wat er", + "▁ water", + "pl es", + "ple s", + "p les", + "g o", + "▁w eek", + "▁we ek", + "▁ week", + "A P", + "R O", + "履 行", + "▁v ersion", + "▁vers ion", + "▁ version", + "环 境", + "的 时候", + "it or", + "ito r", + "i tor", + "纠 纷", + "▁r ange", + "▁ra nge", + "▁ran ge", + "▁ range", + "\\' )\\", + "\\') \\", + "\\ ')\\", + "ol ogical", + "olog ical", + "ologic al", + "o logical", + "▁A t", + "▁ At", + "uf f", + "u ff", + "or mal", + "orm al", + "\\' ,\\", + "\\', \\", + "\\ ',\\", + "▁c reate", + "▁cre ate", + "▁creat e", + "▁ create", + "pa ce", + "pac e", + "p ace", + "nc lass", + "ncl ass", + "n class", + "un c", + "u nc", + "期 间", + "支 持", + "▁f our", + "▁fo ur", + "▁ four", + "af f", + "a ff", + "or der", + "ord er", + "orde r", + "▁O n", + "▁ On", + "▁f ew", + "▁fe w", + "\") ;\\", + "\"); \\", + "\" );\\", + "id th", + "nR EF", + "nRE F", + "n REF", + "ur ed", + "ure d", + "u red", + "iv er", + "ive r", + "i ver", + "th on", + "t hon", + "▁b etter", + "▁bet ter", + "▁ better", + "▁B ut", + "▁Bu t", + "▁ But", + "程 序", + "ch an", + "cha n", + "c han", + "]; \\", + "] ;\\", + "▁p rote", + "▁pro te", + "▁pr ote", + "▁prot e", + "▁ prote", + "ul es", + "ule s", + "u les", + "ial ly", + "i ally", + "Co l", + "C ol", + "▁p rot", + "▁pro t", + "▁pr ot", + "▁ prot", + "▁in it", + "▁i nit", + "▁ini t", + "▁ init", + "ra w", + "r aw", + "viron ment", + "▁re cord", + "▁rec ord", + "▁ record", + "▁of fer", + "▁off er", + "▁ offer", + "E T", + "▁comp any", + "▁ company", + "表 示", + "▁t ext", + "▁te xt", + "▁tex t", + "▁ text", + "▁a rg", + "▁ar g", + "▁ arg", + "大 家", + "it her", + "ith er", + "ithe r", + "i ther", + "▁e vent", + "▁ev ent", + "▁even t", + "▁ event", + "组 织", + "▁d ise", + "▁dis e", + "▁di se", + "▁char acter", + "▁ character", + "这 些", + "了 一", + "ro p", + "r op", + "id d", + "i dd", + "孩 子", + "▁c heck", + "▁ch eck", + "▁che ck", + "▁ check", + "合 同", + "▁c onn", + "▁con n", + "▁co nn", + "▁ conn", + "fer ence", + "fe rence", + "et hing", + "eth ing", + "e thing", + "y d", + "大 的", + "▁d ev", + "▁de v", + "▁ dev", + "类 型", + "政 府", + "▁re f", + "▁r ef", + "▁ ref", + "it tle", + "itt le", + "i ttle", + "▁o cc", + "▁oc c", + "▁ occ", + "alc ul", + "en e", + "e ne", + "那 么", + "▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁", + "▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁", + "▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁", + "is k", + "i sk", + "▁f oot", + "▁fo ot", + "▁foo t", + "▁ foot", + "个 人", + "id eo", + "ide o", + "科 学", + "e b", + "所 有", + "▁t reatment", + "▁treat ment", + "▁ treatment", + "答 案", + "第 三", + "▁go ing", + "▁ going", + "▁s ure", + "▁su re", + "▁sur e", + ") $", + "at erial", + "ate rial", + "ater ial", + "▁A p", + "▁ Ap", + "开 发", + "选 项", + "▁A d", + "▁ Ad", + "hi b", + "h ib", + "at ures", + "ature s", + "atur es", + "atu res", + "a tures", + "lo c", + "l oc", + "aj or", + "ajo r", + "u f", + "▁o ld", + "▁ol d", + "▁ old", + "n U", + "▁a ccess", + "▁acc ess", + "▁ac cess", + "▁ access", + "▁n ull", + "▁nu ll", + "▁ null", + "▁c ost", + "▁co st", + "▁cos t", + "▁ cost", + "▁ 裁", + "id es", + "ide s", + "i des", + "一 案", + "裁定 如下", + "学 校", + "a i", + "基 本", + "▁t yp", + "▁ty p", + "▁ typ", + "A D", + "ur ther", + "urt her", + "▁o rig", + "▁or ig", + "▁ orig", + "▁l ess", + "▁le ss", + "▁les s", + "▁ less", + "▁l ow", + "▁lo w", + "▁ low", + "受 理", + "n J", + "对 于", + "angu age", + "▁s ay", + "▁sa y", + "▁ say", + "▁anal ysis", + "▁analy sis", + "▁analys is", + "▁ analysis", + "▁h app", + "▁ha pp", + "▁hap p", + "▁p rom", + "▁pro m", + "▁pr om", + "▁ prom", + "▁p ossible", + "▁poss ible", + "▁ possible", + "ib r", + "i br", + "▁_ _", + "▁ __", + "bj ect", + "b ject", + "▁k nown", + "▁kn own", + "▁know n", + "▁ known", + "作 品", + "▁t oo", + "▁to o", + "▁ too", + "▁s ize", + "▁si ze", + "▁ size", + "ac y", + "a cy", + "▁ex ample", + "▁exam ple", + "▁ example", + "ve s", + "v es", + "▁c ho", + "▁ch o", + "▁ cho", + "▁O r", + "▁ Or", + "p x", + "pl ement", + "ple ment", + "p lement", + "平 台", + "▁s ugg", + "▁su gg", + "▁sug g", + "▁ sugg", + "ou rs", + "our s", + "o urs", + "案 件", + "某 某", + "tr eturn", + "tre turn", + "tret urn", + "t return", + "应 用", + "[\\ '", + "[ \\'", + "▁l arge", + "▁larg e", + "▁lar ge", + "▁ large", + "▁S tring", + "▁St ring", + "▁Str ing", + "▁Stri ng", + "▁ String", + "▁p layers", + "▁pl ayers", + "▁play ers", + "▁player s", + "▁ players", + "▁l aw", + "▁la w", + "▁ law", + "▁t ot", + "▁to t", + "▁ tot", + "in ter", + "int er", + "i nter", + "▁T e", + "▁ Te", + "▁m ov", + "▁mo v", + "▁ mov", + "oc ial", + "oci al", + "▁a ns", + "▁an s", + "▁ ans", + "▁again st", + "um p", + "u mp", + "se rv", + "ser v", + "s erv", + "▁A merican", + "▁Americ an", + "▁America n", + "▁Amer ican", + "▁ American", + "▁invest ig", + "si ze", + "s ize", + "▁com mon", + "▁comm on", + "▁ common", + "▁g ame", + "▁gam e", + "▁ga me", + "▁ game", + "un g", + "u ng", + "cl e", + "c le", + "日出 生", + "日 出生", + "▁s ite", + "▁sit e", + "▁si te", + "▁ site", + "▁f ull", + "▁ful l", + "▁fu ll", + "▁ full", + "um e", + "u me", + "io d", + "i od", + ") :", + "▁S he", + "▁Sh e", + "▁ She", + "▁S ystem", + "▁Sy stem", + "▁Sys tem", + "▁ System", + "▁e s", + "▁ es", + "▁ex am", + "▁ exam", + "处 理", + "ass ert", + "asse rt", + "asser t", + "非 常", + "is ed", + "ise d", + "i sed", + "al u", + "a lu", + "▁B r", + "▁ Br", + "▁M ar", + "▁Ma r", + "▁ Mar", + "▁f ac", + "▁fa c", + "▁ fac", + "单 位", + "im al", + "ima l", + "i mal", + "▁child ren", + "▁ children", + "科 技", + "I L", + "er ing", + "eri ng", + "e ring", + "▁g l", + "▁ gl", + "▁P r", + "▁ Pr", + "▁s uccess", + "▁su ccess", + "▁suc cess", + "▁succ ess", + "▁ success", + "▁v ol", + "▁vo l", + "▁ vol", + "▁T hey", + "▁The y", + "▁Th ey", + "▁ They", + "▁s ingle", + "▁sing le", + "▁ single", + "▁s pe", + "▁sp e", + "▁ spe", + "uc tion", + "uct ion", + "u ction", + "▁re quest", + "▁requ est", + "▁ request", + "our ces", + "ource s", + "具 有", + "al es", + "ale s", + "a les", + "ct or", + "c tor", + "th ing", + "thi ng", + "thin g", + "t hing", + "en tal", + "ent al", + "enta l", + "▁m ean", + "▁me an", + "▁ mean", + "这 种", + "▁p lan", + "▁pl an", + "▁ plan", + "▁e ng", + "▁en g", + "▁ eng", + "喜 欢", + "▁E ng", + "▁En g", + "▁ Eng", + "▁pro pos", + "▁prop os", + "▁The se", + "▁Th ese", + "▁ These", + "de s", + "d es", + "ua ry", + "u ary", + "▁a nother", + "▁an other", + "▁ another", + "at ors", + "ator s", + "ato rs", + "pon se", + "po nse", + "pons e", + "上 海", + "in ation", + "ina tion", + "i nation", + "E D", + "in c", + "i nc", + ") ;", + "\", \"", + "\" ,\"", + "wi t", + "w it", + "▁qu estion", + "▁quest ion", + "▁ question", + "n y", + "▁r ad", + "▁ra d", + "▁ rad", + "▁l inks", + "▁link s", + "▁lin ks", + "▁ links", + "p i", + "上 的", + "还 有", + "mi t", + "m it", + "Vi ew", + "V iew", + "▁p ut", + "▁pu t", + "▁ put", + "at ory", + "ator y", + "ato ry", + "到 了", + "朋 友", + "▁a ble", + "▁ab le", + "▁ able", + "▁s omething", + "▁some thing", + "▁som ething", + "▁ something", + "▁sugg est", + "▁sug gest", + "成 为", + "▁l ight", + "▁li ght", + "▁lig ht", + "▁ light", + "▁p hot", + "▁ph ot", + "▁ phot", + "▁a ff", + "▁af f", + "▁ aff", + "▁mark et", + "▁mar ket", + "▁ market", + "▁in clude", + "▁includ e", + "▁incl ude", + "▁ include", + "nI t", + "n It", + "▁ u", + "▁exper ience", + "▁experi ence", + "▁ experience", + "▁k eep", + "▁ke ep", + "▁ keep", + "▁pr act", + "▁pra ct", + "▁ pract", + "en ded", + "end ed", + "ende d", + "le y", + "l ey", + "Err or", + "Er ror", + "E rror", + "mb er", + "m ber", + "▁s ervices", + "▁serv ices", + "▁service s", + "▁ services", + "▁g over", + "▁go ver", + "▁gov er", + "A r", + "> <", + "ag n", + "a gn", + "功 能", + "ab les", + "able s", + "abl es", + "a bles", + "▁p age", + "▁pa ge", + "▁pag e", + "▁ page", + "州 市", + "\"; \\", + "\" ;\\", + "▁g ive", + "▁giv e", + "▁gi ve", + "▁ give", + "不 会", + "pr ivate", + "priv ate", + "p rivate", + "即 可", + "ri x", + "r ix", + "Te st", + "T est", + "基 础", + "A B", + "▁al ways", + "▁ always", + "an ks", + "ank s", + "▁stud ies", + "▁e t", + "▁ et", + "觉 得", + "or ies", + "ori es", + "orie s", + "o ries", + "▁w he", + "▁wh e", + "ri es", + "rie s", + "r ies", + "ar r", + "a rr", + "出 现", + "it er", + "ite r", + "i ter", + "iv ity", + "ivi ty", + "▁al low", + "▁all ow", + "▁ allow", + "il ar", + "ila r", + "i lar", + "▁d ays", + "▁day s", + "▁da ys", + "▁ days", + "M A", + "▁C an", + "▁Ca n", + "▁ Can", + "▁m ight", + "▁mi ght", + "▁ might", + "▁l eft", + "▁le ft", + "▁ left", + "▁work ing", + "▁wor king", + "▁ working", + "▁in vol", + "▁inv ol", + "责 任", + "▁inst all", + "▁ins tall", + "▁ install", + "an ds", + "and s", + "om et", + "ome t", + "o met", + "ti es", + "tie s", + "t ies", + "nI f", + "n If", + "nu sing", + "nus ing", + "n using", + "终 结", + "ou ght", + "ough t", + "oug ht", + "o ught", + "▁e l", + "▁ el", + "▁h uman", + "▁hum an", + "▁hu man", + "▁ human", + "us ed", + "use d", + "u sed", + "bu t", + "b ut", + "▁C ent", + "▁Ce nt", + "▁ Cent", + "di ct", + "dic t", + "d ict", + "▁f alse", + "▁fals e", + "▁fal se", + "▁ false", + "▁p rob", + "▁pro b", + "▁pr ob", + "▁ prob", + "ou ble", + "o uble", + "▁C ount", + "▁Co unt", + "▁Cou nt", + "▁ Count", + "▁ch anges", + "▁chang es", + "▁change s", + "▁chan ges", + "▁ changes", + "an dom", + "and om", + "ando m", + "▁l a", + "▁ la", + "▁i d", + "▁ id", + "H E", + "▁res ponse", + "▁respon se", + "▁respons e", + "▁ response", + "gr ound", + "gro und", + "g round", + "T o", + "ge n", + "g en", + "U R", + "( $", + "' \\", + "▁e rror", + "▁err or", + "▁er ror", + "▁ error", + "成 立", + "iv idual", + "ivid ual", + "美 国", + "▁qu ality", + "▁q uality", + "▁qual ity", + "▁ quality", + "ame space", + "ames pace", + "} ,", + "m e", + "▁r ole", + "▁ro le", + "▁ role", + "人 员", + "两 个", + "ri pt", + "rip t", + "r ipt", + "▁B l", + "▁ Bl", + "▁spec ial", + "▁ special", + "直 接", + "▁b ro", + "▁br o", + "▁ bro", + "re c", + "r ec", + "其 中", + "国 际", + "], \\", + "] ,\\", + "▁f inal", + "▁fin al", + "▁fi nal", + "▁ final", + "con fig", + "co nfig", + "conf ig", + "ic i", + "i ci", + "or ed", + "ore d", + "o red", + "纠纷 一案", + "mo n", + "m on", + "▁* \\", + "▁ *\\", + "ur ation", + "ura tion", + "u ration", + "申请 人", + "▁M ay", + "▁Ma y", + "▁ May", + "ef f", + "e ff", + "li ng", + "lin g", + "l ing", + "er tain", + "ert ain", + "erta in", + "▁a nn", + "▁an n", + "▁ ann", + "条 件", + "▁me chan", + "in f", + "i nf", + "▁t arget", + "▁tar get", + "▁ target", + "▁de scrib", + "▁des crib", + "▁desc rib", + "ip le", + "ipl e", + "i ple", + "am b", + "a mb", + "一 些", + "wit h", + "wi th", + "w ith", + "▁s everal", + "▁sever al", + "送 达", + "▁p aper", + "▁pa per", + "▁pap er", + "▁ paper", + "d b", + "▁G r", + "▁ Gr", + "▁b ig", + "▁bi g", + "▁ big", + "▁c lin", + "▁cl in", + "▁cli n", + "▁s eries", + "▁se ries", + "▁ser ies", + "▁ series", + "你 的", + "um n", + "u mn", + "▁l ittle", + "▁li ttle", + "▁lit tle", + "▁ little", + "▁a ction", + "▁act ion", + "▁ac tion", + "▁ action", + "▁o bt", + "▁ob t", + "日 起", + "▁How ever", + "▁ However", + "ap t", + "a pt", + "简 介", + "城 市", + "合 作", + "ut ure", + "u ture", + "事 实", + "▁t er", + "▁te r", + "▁ ter", + "▁re view", + "▁rev iew", + "▁ review", + "H O", + "re ct", + "rec t", + "r ect", + "▁model s", + "▁mod els", + "▁mode ls", + "▁ models", + "▁l ove", + "▁lo ve", + "▁ love", + "▁Un ited", + "▁Unit ed", + "▁Uni ted", + "▁ United", + "提 高", + "id s", + "i ds", + "▁m ax", + "▁ma x", + "▁ max", + "ap s", + "a ps", + "▁in c", + "▁i nc", + "▁ inc", + "▁h ard", + "▁har d", + "▁ha rd", + "▁ hard", + "'; \\", + "' ;\\", + "id ence", + "ide nce", + "iden ce", + "or ding", + "ord ing", + "▁U S", + "▁ US", + "▁pot ential", + "▁potent ial", + "▁ potential", + "ar gs", + "arg s", + "▁w omen", + "▁wo men", + "▁ women", + "{ {", + "▁re st", + "▁r est", + "▁res t", + "▁ rest", + "fi eld", + "f ield", + "我 的", + "知 识", + "en ding", + "end ing", + "\": \"", + "\" :\"", + "op h", + "o ph", + "▁sh ort", + "▁ short", + "f e", + "ab ly", + "abl y", + "a bly", + "▁est ab", + "▁es tab", + "▁esta b", + "▁ estab", + "M P", + "范 围", + "m y", + "投 资", + "▁f oc", + "▁fo c", + "▁S up", + "▁Su p", + "▁ Sup", + "▁pro fess", + "▁prof ess", + "an ces", + "ance s", + "anc es", + "▁* *", + "▁ **", + "}\\\\ )", + "} \\\\)", + "▁m ajor", + "▁maj or", + "▁ major", + "▁e ither", + "▁ either", + "▁c a", + "▁ ca", + "▁int egr", + "▁ integr", + "ra ft", + "raf t", + "法 定", + "▁b o", + "▁ bo", + "▁p ay", + "▁pa y", + "▁ pay", + "ap i", + "a pi", + "▁requ ired", + "▁require d", + "▁ required", + "s y", + "▁b ir", + "▁bi r", + "▁ bir", + "▁e xc", + "▁ex c", + "▁ exc", + "▁s elect", + "▁se lect", + "▁sel ect", + "▁ select", + "n n", + "▁se ason", + "▁sea son", + "▁seas on", + "▁ season", + "if t", + "i ft", + "t t", + "▁c ard", + "▁car d", + "▁ca rd", + "▁ card", + "s l", + "▁a long", + "▁al ong", + "▁ along", + "en tion", + "ent ion", + "enti on", + "一 般", + "ti f", + "t if", + "▁ev alu", + "▁eval u", + "▁ evalu", + "▁re present", + "▁rep resent", + "▁ represent", + "▁B e", + "▁ Be", + "ri st", + "ris t", + "r ist", + "▁g ot", + "▁go t", + "▁ got", + "▁s pace", + "▁sp ace", + "▁spac e", + "▁spa ce", + "▁ space", + "// /", + "/ //", + "来 的", + "u x", + "pl ate", + "plat e", + "p late", + "目 前", + "▁ 判", + "最 高", + "适 用", + "nt er", + "nte r", + "n ter", + "▁de fault", + "▁def ault", + "▁ default", + "治 疗", + "▁} \\", + "▁ }\\", + "借 款", + "▁c ome", + "▁com e", + "▁co me", + "▁ come", + "▁a ge", + "▁ag e", + "▁ age", + "▁ph ys", + "▁phy s", + "▁ phys", + "▁st ep", + "▁ste p", + "▁ step", + "ens ion", + "▁t otal", + "▁to tal", + "▁tot al", + "▁ total", + "小 说", + "利 用", + "iv al", + "iva l", + "i val", + "▁f ri", + "▁fr i", + "▁n etwork", + "▁net work", + "▁ network", + "▁b en", + "▁be n", + "▁ ben", + "▁ 事", + "an ag", + "ana g", + "a nag", + "质 量", + "书记 员", + "为 了", + "▁th ings", + "▁thing s", + "▁thin gs", + "▁ things", + "bo ok", + "b ook", + "} )", + "最 后", + "▁o rg", + "▁or g", + "▁ org", + "委 托", + "▁we bs", + "▁web s", + "▁ webs", + "标 准", + "▁ind ividual", + "▁ individual", + "pon ent", + "▁c alled", + "▁call ed", + "▁cal led", + "▁ called", + "▁un til", + "▁u ntil", + "▁unt il", + "▁ until", + "cri pt", + "cr ipt", + "c ript", + "ri ct", + "ric t", + "r ict", + "▁d ue", + "▁du e", + "▁ due", + "▁st atic", + "▁stat ic", + "▁ static", + "re ady", + "read y", + "rea dy", + "os is", + "osi s", + "o sis", + "le g", + "l eg", + "设 备", + "}; \\", + "} ;\\", + "▁d er", + "▁de r", + "▁ der", + "▁stud ents", + "▁student s", + "▁ students", + "▁t imes", + "▁time s", + "▁tim es", + "▁ti mes", + "▁ times", + "介 绍", + "co unt", + "cou nt", + "c ount", + "二 十", + "st ate", + "stat e", + "sta te", + "O S", + "机 关", + "O T", + "▁t urn", + "▁tur n", + "▁tu rn", + "▁ turn", + "▁cont ent", + "▁ content", + "▁l ater", + "▁la ter", + "▁late r", + "▁lat er", + "▁ later", + "pl y", + "p ly", + "作 用", + "资 源", + "il lion", + "ill ion", + "illi on", + "实 现", + "}) ;\\", + "}); \\", + "} );\\", + "of f", + "o ff", + "}^ {", + "} ^{", + "▁l eg", + "▁le g", + "▁ leg", + "▁fe el", + "▁fee l", + "nex port", + "n export", + "\\' )", + "\\ ')", + "\\' :", + "\\ ':", + "ie ve", + "iev e", + "i eve", + "cu lar", + "c ular", + "律 师", + "定 的", + "▁n ear", + "▁ne ar", + "▁ near", + "og n", + "o gn", + "file name", + "fil ename", + "fi lename", + "▁s y", + "▁ sy", + "▁p ub", + "▁pu b", + "▁ pub", + "▁C ar", + "▁Ca r", + "▁ Car", + "包 括", + "▁el se", + "▁ else", + "▁com plet", + "▁comp let", + "▁compl et", + "存 在", + "par am", + "pa ram", + "para m", + "p aram", + "ab or", + "abo r", + "a bor", + "co de", + "cod e", + "c ode", + "gi n", + "g in", + "▁com put", + "▁comp ut", + "▁ comput", + "Pro blem", + "Prob lem", + "js on", + "j son", + "▁r ate", + "▁rat e", + "▁ra te", + "▁ rate", + "▁d isease", + "▁dise ase", + "▁http s", + "▁ https", + "经 营", + "▁s ide", + "▁si de", + "▁sid e", + "▁ side", + "行 政", + "IN G", + "I NG", + "而 且", + "Fil e", + "Fi le", + "F ile", + "ro id", + "r oid", + "si n", + "s in", + "NA ME", + "N AME", + "▁e nerg", + "▁en erg", + "Mod el", + "Mode l", + "Mo del", + "M odel", + "est ions", + "estion s", + "▁C ont", + "▁Con t", + "▁Co nt", + "▁ Cont", + "起 诉", + "连 载", + "▁per iod", + "▁peri od", + "▁ period", + "ui t", + "u it", + "▁a sk", + "▁as k", + "▁ ask", + "▁t erm", + "▁te rm", + "▁ter m", + "▁ term", + "▁l ot", + "▁lo t", + "▁ lot", + "ve rage", + "ver age", + "… …", + "▁N o", + "▁ No", + "m b", + "Ti tle", + "T itle", + "▁m icro", + "▁mic ro", + "▁mi cro", + "▁ micro", + "$ \\", + "lo bal", + "lob al", + "ess ion", + "rib ution", + "ribut ion", + "▁t ool", + "▁to ol", + "▁too l", + "▁ tool", + "in put", + "inp ut", + "c d", + "▁in dic", + "▁ind ic", + "解 决", + "▁o nline", + "▁on line", + "▁ online", + "▁me et", + "▁ meet", + "▁e nc", + "▁en c", + "▁ enc", + "str uction", + "struct ion", + "五 十", + "▁gener al", + "▁gen eral", + "▁gene ral", + "▁genera l", + "▁ general", + "m m", + "符 合", + "on ey", + "one y", + "o ney", + "一 次", + "func tion", + "fun ction", + "f unction", + "ward s", + "war ds", + "w ards", + "效 力", + "S c", + "col or", + "co lor", + "c olor", + "vo id", + "v oid", + "▁p ain", + "▁pa in", + "▁ pain", + "▁stand ard", + "▁ standard", + "应 该", + "ay er", + "aye r", + "a yer", + "og le", + "教 学", + "▁value s", + "▁val ues", + "▁valu es", + "▁ values", + "▁com plex", + "▁comp lex", + "▁compl ex", + "▁ complex", + "ar ning", + "arn ing", + "ti tle", + "tit le", + "t itle", + "之 规定", + "he l", + "h el", + "cont ent", + "ur ity", + "uri ty", + "bu m", + "b um", + "ma x", + "m ax", + "▁im age", + "▁imag e", + "▁ image", + "本院 认为", + "n o", + "控 制", + "a e", + "▁ex ist", + "▁ exist", + "ting s", + "tin gs", + "t ings", + "ograph y", + "ograp hy", + "pe c", + "p ec", + "▁acc ount", + "▁ac count", + "▁ account", + "u k", + "ncon st", + "nco nst", + "n const", + "▁comm unity", + "▁commun ity", + "▁ community", + "m d", + "▁disc uss", + "本 裁定", + "面 积", + "on es", + "one s", + "o nes", + "▁com pet", + "▁comp et", + "▁ compet", + "行 业", + "nd er", + "nde r", + "n der", + "▁en vironment", + "▁ environment", + "ma p", + "m ap", + "代理 人", + "第二 百", + "第 二百", + "▁re spect", + "▁res pect", + "▁resp ect", + "▁ respect", + "民 初", + "▁p rim", + "▁pr im", + "▁pri m", + "▁ prim", + "▁f ootball", + "▁foot ball", + "▁ football", + "▁b ody", + "▁bo dy", + "▁bod y", + "▁ body", + "▁ass ociated", + "▁associ ated", + "▁associate d", + "▁ associated", + "▁m en", + "▁me n", + "▁ men", + "is ing", + "isi ng", + "isin g", + "i sing", + "ob er", + "obe r", + "o ber", + "之 后", + "U S", + "材 料", + "▁A N", + "▁ AN", + "▁O ur", + "▁ Our", + "▁t re", + "▁tr e", + "▁ tre", + "▁ab ove", + "▁ above", + "函 数", + "]) \\", + "] )\\", + "▁eff ects", + "▁effect s", + "▁ effects", + "▁s ym", + "▁sy m", + "▁ sym", + "sid e", + "si de", + "s ide", + "能 够", + "▁act ivity", + "▁activ ity", + "▁ activity", + "ne y", + "n ey", + "▁e p", + "▁ ep", + "▁r isk", + "▁ris k", + "▁ri sk", + "▁ risk", + "ar ing", + "ari ng", + "arin g", + "a ring", + "▁m ar", + "▁ma r", + "▁ mar", + "▁s olution", + "▁sol ution", + "▁ solution", + ") /", + "▁m aterial", + "▁mat erial", + "▁mate rial", + "▁mater ial", + "▁ material", + "▁s ens", + "▁se ns", + "▁sen s", + "▁ sens", + "▁I S", + "▁ IS", + "us ion", + "▁part icular", + "▁partic ular", + "er ror", + "err or", + "e rror", + "▁a ir", + "▁ai r", + "▁ air", + "品 牌", + "▁e arly", + "▁ear ly", + "▁ early", + "nm ent", + "nme nt", + "n ment", + "▁per formance", + "▁perform ance", + "▁ performance", + "li b", + "l ib", + "真 的", + "ma t", + "m at", + "▁l ink", + "▁li nk", + "▁lin k", + "▁ link", + "▁a mong", + "▁am ong", + "Pa r", + "P ar", + "全 国", + "om s", + "o ms", + "fr om", + "fro m", + "f rom", + "ib ility", + "出版 社", + "▁iss ue", + "▁ issue", + "▁c rit", + "▁cr it", + "bo x", + "b ox", + "z e", + "的 规定", + "▁w ord", + "▁wor d", + "▁wo rd", + "▁ word", + "完 成", + "ol ic", + "oli c", + "o lic", + "▁d at", + "▁da t", + "▁ dat", + "**** ****", + "in ary", + "ina ry", + "inar y", + "▁e nergy", + "▁en ergy", + "▁energ y", + "▁ energy", + "正 确", + "er o", + "e ro", + "▁b ase", + "▁bas e", + "▁ba se", + "▁ base", + "▁p ort", + "▁po rt", + "▁por t", + "▁ port", + "▁m ove", + "▁mov e", + "▁mo ve", + "▁ move", + "il t", + "i lt", + "un e", + "u ne", + "▁pre vious", + "▁prev ious", + "▁ previous", + "▁l ooking", + "▁look ing", + "▁lo oking", + "▁ looking", + "as ing", + "asi ng", + "asin g", + "a sing", + "en der", + "end er", + "ende r", + "e nder", + "od es", + "ode s", + "o des", + "▁W ith", + "▁Wi th", + "▁Wit h", + "▁ With", + "▁J an", + "▁Ja n", + "▁ Jan", + "▁e duc", + "▁ed uc", + "▁edu c", + "▁ educ", + "▁s imilar", + "▁sim ilar", + "▁ similar", + "▁be low", + "▁bel ow", + "▁ below", + "Se t", + "S et", + "Val ue", + "V alue", + "(\\ \\", + "( \\\\", + "▁rel ations", + "▁relation s", + "▁ relations", + "pl ied", + "▁re spons", + "▁res pons", + "▁respon s", + "▁resp ons", + "▁ respons", + "一 起", + "▁m ot", + "▁mo t", + "▁ mot", + "in st", + "ins t", + "i nst", + "▁w hy", + "▁wh y", + "▁ why", + "其 实", + "▁c ourse", + "▁co urse", + "▁cour se", + "▁ course", + "ic ient", + "ici ent", + "ro ller", + "rol ler", + "roll er", + "▁f ix", + "▁fi x", + "▁ fix", + "or es", + "ore s", + "o res", + "▁C ounty", + "▁Count y", + "▁Cou nty", + "co s", + "c os", + "miss ion", + "m ission", + "▁c reat", + "▁cre at", + "▁cr eat", + "▁ creat", + "价 格", + "ip p", + "i pp", + "▁appro ach", + "▁produ cts", + "▁product s", + "▁ products", + "▁m aking", + "▁ma king", + "▁ making", + "Serv ice", + "S ervice", + "to p", + "t op", + "代表 人", + "四 十", + "I m", + "d a", + "nEx ternal", + "nExt ernal", + "n External", + "不 要", + "委 员", + "f l", + "ight s", + "igh ts", + "▁system s", + "▁syst ems", + "▁ systems", + "支 付", + "▁t oday", + "▁to day", + "▁ today", + "▁f lo", + "▁fl o", + "▁ flo", + "▁so ftware", + "▁soft ware", + "▁ software", + "▁me ans", + "▁mean s", + "▁ means", + "ro du", + "rod u", + "▁ind ust", + "▁indu st", + "▁ indust", + "建 议", + "ma in", + "m ain", + "▁con fig", + "▁co nfig", + "▁conf ig", + "▁ config", + "▁d om", + "▁do m", + "▁ dom", + "▁o bserv", + "▁ob serv", + "▁obs erv", + "▁ observ", + "C O", + "▁n eeds", + "▁ne eds", + "▁need s", + "▁ needs", + "▁s ource", + "▁sour ce", + "▁ source", + "Fi eld", + "F ield", + "▁im prove", + "▁impro ve", + "▁imp rove", + "▁improv e", + "tr a", + "t ra", + "有 效", + "Re qu", + "Req u", + "R equ", + "地 区", + "im um", + "▁h aving", + "▁ha ving", + "▁hav ing", + "▁l o", + "▁ lo", + "▁ —", + "go r", + "g or", + "过程 中", + "建 筑", + "pa ss", + "pas s", + "p ass", + "ok en", + "oke n", + "o ken", + "S h", + "ph a", + "p ha", + "la bel", + "lab el", + "l abel", + "▁al ready", + "▁t her", + "▁the r", + "▁th er", + "▁ ther", + "ic a", + "i ca", + "▁n ever", + "▁ne ver", + "▁ never", + "▁add ress", + "▁addr ess", + "▁ address", + "tr ans", + "tra ns", + "t rans", + "证 据", + "I P", + "pr e", + "p re", + "▁d one", + "▁do ne", + "▁don e", + "▁ done", + "▁le vels", + "▁level s", + "▁lev els", + "▁ levels", + "op er", + "ope r", + "o per", + "n b", + "is tic", + "ist ic", + "ut ions", + "ution s", + "uti ons", + "ind ows", + "indow s", + "▁j ob", + "▁jo b", + "▁ job", + "▁m embers", + "▁mem bers", + "▁member s", + "▁ members", + "▁o ffic", + "▁off ic", + "In t", + "I nt", + "▁n ec", + "▁ne c", + "▁ nec", + "职 业", + "▁w hether", + "▁wh ether", + "▁whe ther", + "ag ue", + "agu e", + "a gue", + "res ult", + "rib ute", + "ribut e", + "▁J oh", + "▁Jo h", + "▁ Joh", + "ho ld", + "hol d", + "h old", + "di r", + "d ir", + "in o", + "i no", + "nY ou", + "n You", + "▁A ss", + "▁As s", + "▁ Ass", + "一 下", + "采 用", + "一 直", + "▁a nswer", + "▁ans wer", + "▁ answer", + "▁c irc", + "▁cir c", + "▁ci rc", + "▁ circ", + "▁be hav", + "▁beh av", + "rib uted", + "ribut ed", + "ribute d", + "▁to get", + "ph p", + "p hp", + "ia tion", + "iat ion", + "i ation", + "▁t ogether", + "▁toget her", + "▁ together", + "▁d ocument", + "▁doc ument", + "▁ document", + "▁de ath", + "▁ death", + "Ex ception", + "一 样", + "port s", + "por ts", + "p orts", + "表 现", + "▁ex pression", + "▁exp ression", + "▁express ion", + "▁expr ession", + "▁ expression", + "▁em ploy", + "▁emp loy", + "操 作", + "▁l ik", + "▁li k", + "▁ lik", + "▁group s", + "▁gro ups", + "▁ groups", + "Te xt", + "Tex t", + "T ext", + "行 为", + "▁l east", + "▁le ast", + "▁ least", + "▁p ress", + "▁pre ss", + "▁pr ess", + "▁pres s", + "▁ press", + "▁v ideo", + "▁vide o", + "▁vid eo", + "▁ video", + "▁P ar", + "▁Pa r", + "▁ Par", + "▁w in", + "▁wi n", + "▁ win", + "al f", + "a lf", + "D E", + "il ls", + "ill s", + "▁– \\", + "▁ –\\", + "▁ap plication", + "▁applic ation", + "▁appl ication", + "▁ application", + "art ment", + "结 构", + "进行 了", + "进 行了", + "▁N ational", + "▁Nation al", + "▁Nat ional", + "▁ National", + "base d", + "ba sed", + "bas ed", + "b ased", + "th ers", + "ther s", + "the rs", + "▁c opy", + "▁co py", + "▁cop y", + "▁ copy", + "▁I m", + "▁ Im", + "▁v arious", + "▁vari ous", + "▁var ious", + "ear ch", + "e arch", + "▁exper im", + "▁experi m", + "▁fe atures", + "▁feature s", + "▁feat ures", + "▁ features", + "at ter", + "att er", + "▁o ften", + "▁of ten", + "▁ often", + "各 种", + "▁we bsite", + "▁webs ite", + "▁web site", + "▁ website", + "▁St ates", + "▁State s", + "▁Stat es", + "▁Sta tes", + "▁ States", + "ain er", + "ai ner", + "aine r", + "a iner", + "▁f ail", + "▁fa il", + "▁ fail", + "pl ace", + "plac e", + "Us er", + "Use r", + "U ser", + "▁par amet", + "▁para met", + "▁param et", + "▁ paramet", + "▁high er", + "▁s equ", + "▁se qu", + "▁seq u", + "▁ sequ", + "ar row", + "arr ow", + "▁s ocial", + "▁soc ial", + "▁soci al", + "▁ social", + "之 间", + "▁v ir", + "▁vi r", + "▁ vir", + "Ob ject", + "Obj ect", + "O bject", + "▁/ /", + "▁ //", + "oo r", + "o or", + "了 解", + "获 得", + "lo r", + "l or", + "/ *", + "决 定", + "ou nc", + "oun c", + "o unc", + "Ke y", + "K ey", + "▁t rad", + "▁tr ad", + "▁tra d", + "▁ trad", + "▁c ur", + "▁cu r", + "▁ cur", + "▁re lated", + "▁rel ated", + "▁relate d", + "▁ related", + "o o", + "罪 犯", + "umm ary", + "no w", + "n ow", + "it em", + "ite m", + "i tem", + "▁c ases", + "▁case s", + "▁ca ses", + "▁cas es", + "▁ cases", + "▁im plement", + "▁imp lement", + "▁impl ement", + "b b", + "os p", + "o sp", + "以 下", + "▁A ust", + "▁Au st", + "▁Aus t", + "健 康", + "ou d", + "o ud", + "▁F e", + "▁ Fe", + "▁d ig", + "▁di g", + "▁ dig", + "▁s imple", + "▁sim ple", + "▁simpl e", + "▁ simple", + "ut es", + "ute s", + "u tes", + "自 然", + "▁M ed", + "▁Me d", + "▁ Med", + "gin g", + "gi ng", + "g ing", + "第一 款", + "第 一款", + "交 通", + "og en", + "oge n", + "o gen", + "▁a cross", + "▁ac ross", + "以 上", + "法定 代表人", + "积 极", + "法律 效力", + "nW hat", + "nWh at", + "n What", + "▁w on", + "▁wo n", + "▁ won", + "eg in", + "e gin", + "ru n", + "r un", + "▁ 员", + "Tim e", + "Ti me", + "T ime", + "注 意", + "dit ions", + "dition s", + "d itions", + "由 于", + "▁s um", + "▁su m", + "▁ sum", + "▁D es", + "▁De s", + "▁ Des", + "ag s", + "a gs", + "▁N one", + "▁No ne", + "▁Non e", + "▁ None", + "gor ith", + "▁f low", + "▁fl ow", + "▁flo w", + "▁ flow", + "er c", + "e rc", + "am ed", + "ame d", + "a med", + "am m", + "a mm", + "om ic", + "omi c", + "o mic", + "li m", + "l im", + "▁R eg", + "▁Re g", + "▁ Reg", + "n V", + "re quest", + "requ est", + "▁fil m", + "▁fi lm", + "▁ film", + "ba r", + "b ar", + "▁I nt", + "▁In t", + "▁ Int", + "▁c lear", + "▁cl ear", + "▁cle ar", + "▁ clear", + "▁in put", + "▁ input", + "P l", + "ble ms", + "blem s", + "bl ems", + "ch es", + "che s", + "c hes", + "▁p ast", + "▁pa st", + "▁pas t", + "▁ past", + "▁( )", + "▁ ()", + "▁c ult", + "▁cul t", + "▁cu lt", + "▁ cult", + "▁f und", + "▁fun d", + "▁fu nd", + "▁ fund", + "学 院", + "▁h ouse", + "▁hous e", + "▁ho use", + "▁ house", + "ye ar", + "y ear", + "st it", + "s tit", + "pe n", + "p en", + "S S", + "▁M in", + "▁Mi n", + "▁ Min", + "作 出", + "▁com pon", + "▁comp on", + "po int", + "p oint", + "▁f urther", + "▁fur ther", + "▁h ost", + "▁ho st", + "▁ host", + "is on", + "iso n", + "i son", + "ud e", + "u de", + "~ ~", + "▁p lease", + "▁ple ase", + "▁pleas e", + "▁plea se", + "▁ please", + "发生 法律效力", + "par t", + "pa rt", + "p art", + "pl it", + "p lit", + "st yle", + "sty le", + "styl e", + "▁n ormal", + "▁nor mal", + "▁norm al", + "▁ normal", + "▁incre ase", + "分 钟", + "▁f un", + "▁fu n", + "▁ fun", + "ai m", + "a im", + "运 动", + "▁W hen", + "▁Wh en", + "▁ When", + "li n", + "l in", + "万 元", + "ip s", + "i ps", + "ave l", + "av el", + "a vel", + "x y", + "com p", + "co mp", + "c omp", + "bo dy", + "b ody", + "pl ication", + "plic ation", + "plica tion", + "▁p oints", + "▁point s", + "▁po ints", + "▁ points", + "do m", + "d om", + "个 月", + "▁cont act", + "▁ contact", + "▁a bs", + "▁ab s", + "▁ abs", + "Tr ue", + "▁C o", + "▁ Co", + "▁c he", + "▁ch e", + "▁ che", + "▁J ul", + "▁Ju l", + "▁ Jul", + "▁work s", + "▁wor ks", + "▁ works", + "ic ult", + "icul t", + "i cult", + "▁d ri", + "▁dr i", + "( (", + "dit ion", + "di tion", + "d ition", + "▁M y", + "▁ My", + "产 业", + "▁f actors", + "▁fact ors", + "▁factor s", + "▁fa ctors", + "▁ factors", + "▁as sess", + "▁ass ess", + "ri de", + "rid e", + "r ide", + "ir m", + "i rm", + "▁S outh", + "▁So uth", + "▁Sou th", + "▁ South", + "am ework", + "ame work", + "# \\", + "价 值", + "vin g", + "vi ng", + "v ing", + "▁mon ths", + "▁month s", + "▁mont hs", + "▁ months", + "▁su bject", + "▁sub ject", + "▁ subject", + "义 务", + "in dow", + "ind ow", + "▁mult iple", + "▁multi ple", + "▁multip le", + "▁ multiple", + "▁W orld", + "▁Wor ld", + "▁ World", + "▁cl inical", + "▁clin ical", + "▁clinic al", + "▁ clinical", + "ci n", + "c in", + "▁I N", + "▁ IN", + "▁d eg", + "▁de g", + "▁ deg", + "le ge", + "leg e", + "这 是", + "▁c ancer", + "▁can cer", + "▁ cancer", + "▁f ood", + "▁fo od", + "▁foo d", + "▁ food", + "希 望", + "不 过", + "▁ter ms", + "▁term s", + "▁ terms", + "特 别", + "at form", + "do wn", + "dow n", + "d own", + "▁st yle", + "▁styl e", + "▁ style", + "用 户", + "▁b it", + "▁bi t", + "▁ bit", + "患 者", + "条第 一款", + "条 第一款", + "▁ex press", + "▁exp ress", + "▁expr ess", + "▁ express", + "▁s earch", + "▁se arch", + "▁sear ch", + "▁ search", + "▁St ate", + "▁Stat e", + "▁Sta te", + "▁ State", + "▁st rong", + "▁str ong", + "▁stro ng", + "▁ strong", + "ag ing", + "agi ng", + "agin g", + "a ging", + "组 成", + "▁me asure", + "▁meas ure", + "▁ measure", + "予 以", + "I V", + "## ######", + "#### ####", + "### #####", + "##### ###", + "###### ##", + ")) ;\\", + ")); \\", + ") );\\", + "▁f ore", + "▁for e", + "▁fo re", + "▁ fore", + "机 构", + "st d", + "s td", + "gr oup", + "gro up", + "g roup", + "起 来", + "as tic", + "ast ic", + "sr c", + "s rc", + "▁l arg", + "▁la rg", + "▁lar g", + "▁ larg", + "im ate", + "ima te", + "i mate", + "act ions", + "action s", + "ver se", + "vers e", + "▁A m", + "▁ Am", + "W e", + "fe ct", + "f ect", + "on str", + "ons tr", + "o nstr", + "d f", + "▁d iff", + "▁dif f", + "▁di ff", + "▁ diff", + "▁con ditions", + "▁condition s", + "▁cond itions", + "▁ conditions", + "这 一", + "实 际", + "il it", + "ili t", + "i lit", + "效 果", + "ect or", + "ec tor", + "e ctor", + "▁G ener", + "▁Ge ner", + "▁Gen er", + "▁Gene r", + "▁ Gener", + "ir l", + "i rl", + "▁S chool", + "▁Sch ool", + "▁ School", + "ni nt", + "nin t", + "n int", + "gr ess", + "gres s", + "gre ss", + "g ress", + "per ty", + "pert y", + "p erty", + "for d", + "fo rd", + "f ord", + "▁E uro", + "▁Eur o", + "▁ Euro", + "▁m ass", + "▁ma ss", + "▁mas s", + "▁ mass", + "yt hon", + "y thon", + "历 史", + "手 机", + "▁f uture", + "▁fu ture", + "▁fut ure", + "▁ future", + "\\' ]", + "\\ ']", + "▁method s", + "▁meth ods", + "▁ methods", + "综 合", + "ef ul", + "e ful", + "Lo g", + "L og", + "是 否", + "am a", + "a ma", + "▁part icip", + "▁partic ip", + "▁ particip", + "St ate", + "Stat e", + "C H", + "▁G u", + "▁ Gu", + "为 什么", + "P I", + "▁f ar", + "▁fa r", + "▁ far", + "保 护", + "jo y", + "j oy", + "▁< <", + "▁ <<", + "ap y", + "a py", + "ad a", + "a da", + "▁m usic", + "▁mus ic", + "▁ music", + "住 所", + "酒 店", + "级 人民法院", + "Th is", + "T his", + "Ge t", + "G et", + "an a", + "a na", + "em pt", + "emp t", + "▁pro tein", + "▁prote in", + "▁prot ein", + "▁ protein", + "ia te", + "iat e", + "i ate", + "ba se", + "bas e", + "b ase", + "多 少", + "▁& &", + "▁ &&", + "▁does n", + "▁s tre", + "▁st re", + "▁str e", + "▁ stre", + "▁k ind", + "▁kin d", + "▁ki nd", + "▁ kind", + "▁l oad", + "▁lo ad", + "▁ load", + "▁incre ased", + "▁increase d", + "nF or", + "n For", + "老 师", + "ab ase", + "aba se", + "a base", + "U L", + "▁Q u", + "▁ Qu", + "yn am", + "yna m", + "y nam", + "▁comp ared", + "▁compar ed", + "▁compare d", + "状 态", + "▁m essage", + "▁mess age", + "▁ message", + "▁m iss", + "▁mis s", + "▁mi ss", + "▁ miss", + "▁contin u", + "只 有", + "▁p rint", + "▁pr int", + "▁pri nt", + "▁ print", + "得 到", + "le ngth", + "l ength", + "th ough", + "集 团", + "ch o", + "c ho", + "ou te", + "out e", + "o ute", + "n K", + "▁e asy", + "▁eas y", + "▁ easy", + "▁t able", + "▁tab le", + "▁ta ble", + "▁ table", + "▁O ct", + "▁Oc t", + "▁ Oct", + "is c", + "i sc", + "▁al bum", + "▁ album", + "bo ard", + "b oard", + "因 此", + "▁a im", + "▁ai m", + "▁ aim", + "▁p osition", + "▁pos ition", + "▁posit ion", + "▁ position", + "▁str ateg", + "▁strat eg", + "ob ject", + "obj ect", + "o bject", + "▁m akes", + "▁make s", + "▁ma kes", + "im age", + "ima ge", + "imag e", + "le ased", + "lease d", + "lea sed", + "at ural", + "atur al", + "atu ral", + "atura l", + "cre ate", + "creat e", + "c reate", + "▁vis it", + "▁vi sit", + "▁ visit", + "▁ben ef", + "▁ benef", + "ri or", + "rio r", + "r ior", + "at al", + "ata l", + "a tal", + "li nk", + "lin k", + "l ink", + "▁A pr", + "▁Ap r", + "▁ Apr", + "et a", + "e ta", + "ic ation", + "ica tion", + "i cation", + "se c", + "s ec", + "nuser name", + "n username", + "销 售", + "▁tr aining", + "▁train ing", + "▁tra ining", + "▁ training", + "看 到", + "▁l ower", + "▁low er", + "▁lo wer", + "▁ lower", + "ep endent", + "epend ent", + "▁c oll", + "▁col l", + "▁co ll", + "▁ coll", + "C L", + "▁c y", + "▁ cy", + "感 觉", + "▁o s", + "▁ os", + "▁l earn", + "▁le arn", + "▁lear n", + "▁ learn", + "▁a ch", + "▁ac h", + "▁ ach", + "▁p olit", + "▁pol it", + "▁po lit", + "▁ polit", + "eg er", + "e ger", + "▁c ity", + "▁cit y", + "▁ci ty", + "▁ city", + "er a", + "e ra", + "lo od", + "loo d", + "l ood", + "an ced", + "ance d", + "anc ed", + "不 断", + "bu ild", + "b uild", + "il ities", + "ilit ies", + "ili ties", + "> >", + "▁l imit", + "▁li mit", + "▁lim it", + "▁ limit", + "▁c olor", + "▁col or", + "▁co lor", + "▁ color", + "年 的", + "日 内", + "依 据", + "ak en", + "ake n", + "a ken", + "▁be come", + "▁bec ome", + "▁ become", + "ibr ary", + "bi t", + "b it", + "利 息", + "et ic", + "eti c", + "e tic", + "股 份", + "原 因", + "十 二", + "▁p roduction", + "▁pro duction", + "▁produ ction", + "▁product ion", + "▁prod uction", + "▁ production", + "ers ion", + "应 当", + "劳 动", + "om an", + "oma n", + "o man", + "▁v ia", + "▁vi a", + "▁ via", + "▁t rack", + "▁tr ack", + "▁tra ck", + "▁ track", + "部 门", + "ateg ory", + "ategor y", + "ound s", + "oun ds", + "面 的", + "$$ \\", + "$ $\\", + "en n", + "e nn", + "an nel", + "ann el", + "anne l", + "co re", + "cor e", + "c ore", + "pl ac", + "负 责", + "){ \\", + ") {\\", + "br e", + "b re", + "▁rel ationship", + "▁relations hip", + "▁relation ship", + "▁ relationship", + "nc e", + "n ce", + "创 新", + "▁s qu", + "▁sq u", + "▁ squ", + "▁In tern", + "▁Int ern", + "▁Inter n", + "▁str ucture", + "▁struct ure", + "▁ structure", + "or age", + "ora ge", + "o rage", + "A M", + "▁M e", + "▁ Me", + "▁f requ", + "▁fr equ", + "▁fre qu", + "▁freq u", + "ir es", + "ire s", + "i res", + "ol l", + "o ll", + "▁G o", + "▁ Go", + "▁G e", + "▁ Ge", + "南 省", + "计 划", + "Con fig", + "Co nfig", + "Conf ig", + "▁ad ded", + "▁add ed", + "▁ added", + "▁I I", + "▁ II", + "▁c orrect", + "▁cor rect", + "▁ correct", + "虽 然", + "▁ 作者", + "▁c over", + "▁co ver", + "▁cov er", + "▁ cover", + "▁A dd", + "▁Ad d", + "▁ Add", + "▁R ec", + "▁Re c", + "▁ Rec", + "解 释", + "led ge", + "l edge", + "st ars", + "star s", + "sta rs", + "er al", + "era l", + "e ral", + "住所 地", + "▁e vents", + "▁ev ents", + "▁even ts", + "▁event s", + "▁ events", + "ns wer", + "wid th", + "w idth", + "▁im mun", + "▁imm un", + "▁ immun", + "op s", + "o ps", + "def ault", + "de fault", + "$ ,", + "▁dem onstr", + "▁demo nstr", + "▁demon str", + "▁h y", + "▁ hy", + "▁pro blems", + "▁problem s", + "▁ problems", + "om y", + "o my", + "▁g rowth", + "▁grow th", + "▁ growth", + "有 关", + "▁ 连载", + "▁re d", + "▁r ed", + "▁ red", + "地 方", + "▁R ep", + "▁Re p", + "▁ Rep", + "▁re ceived", + "▁rece ived", + "▁receive d", + "▁ received", + "di ng", + "din g", + "d ing", + "am ent", + "ame nt", + "amen t", + "a ment", + "▁pos itive", + "▁posit ive", + "▁ positive", + "的 话", + "be gin", + "beg in", + "b egin", + "▁Y ork", + "▁Yo rk", + "tp ublic", + "t public", + "R e", + "安 装", + "▁j ava", + "▁jav a", + "▁ja va", + "▁ java", + "▁T hat", + "▁Th at", + "▁ That", + "成 功", + "il es", + "ile s", + "i les", + "sp ec", + "spe c", + "s pec", + "▁fe ature", + "▁feat ure", + "▁ feature", + "▁l anguage", + "▁ language", + "I R", + "回 答", + "受理 费", + "▁D r", + "▁ Dr", + "▁count ry", + "▁cou ntry", + "▁ country", + "▁l ength", + "▁le ngth", + "▁leng th", + "▁ length", + "I t", + "idd le", + "▁th ought", + "▁though t", + "▁ thought", + "▁f actor", + "▁fact or", + "▁fac tor", + "▁fa ctor", + "▁ factor", + "▁h om", + "▁ho m", + "▁ hom", + "pack age", + "p ackage", + "EN T", + "E NT", + "医 院", + "▁ad min", + "▁adm in", + "▁ admin", + "▁a way", + "▁aw ay", + "▁awa y", + "▁ away", + "水 平", + "也 不", + "▁h yp", + "▁hy p", + "▁ hyp", + "本 次", + "\\\\ (\\\\", + "\\\\( \\\\", + "pos t", + "po st", + "p ost", + "U n", + "▁P art", + "▁Par t", + "▁Pa rt", + "▁ Part", + "▁pop ulation", + "▁popul ation", + "▁ population", + "nT o", + "n To", + "▁re fer", + "▁r efer", + "▁ref er", + "▁ refer", + "▁n eg", + "▁ne g", + "▁ neg", + "▁b lock", + "▁bl ock", + "▁blo ck", + "▁ block", + "▁out put", + "▁ output", + "ist ics", + "istic s", + "▁pro posed", + "▁propos ed", + "▁prop osed", + "▁propose d", + "▁m anagement", + "▁man agement", + "▁manag ement", + "▁manage ment", + "▁ management", + "mo st", + "mos t", + "m ost", + "qu e", + "q ue", + "消 费", + "▁qu estions", + "▁question s", + "▁quest ions", + "▁ questions", + "医 学", + "▁d rug", + "▁dr ug", + "▁ drug", + "Requ est", + "Re quest", + "▁th ird", + "▁thi rd", + "▁ third", + "▁f ive", + "▁fi ve", + "▁ five", + "艺 术", + "必 须", + "ar ray", + "arr ay", + "arra y", + "um ents", + "ument s", + "umen ts", + "u ments", + "et er", + "ete r", + "e ter", + "▁w eb", + "▁we b", + "▁ web", + "国 内", + "分 别", + "▁o ption", + "▁op tion", + "▁opt ion", + "▁ option", + "▁D o", + "▁ Do", + "s k", + "so le", + "sol e", + "s ole", + "之 一", + "▁O ne", + "▁On e", + "▁ One", + "▁a mount", + "▁am ount", + "▁ amount", + "来 说", + "▁c ertain", + "▁cert ain", + "▁cer tain", + "it es", + "ite s", + "i tes", + "只 是", + "方 程", + "十 一", + "op en", + "ope n", + "o pen", + "▁prov ides", + "▁provid es", + "▁provide s", + "▁c reated", + "▁cre ated", + "▁create d", + "▁creat ed", + "▁ created", + "▁A ug", + "▁Au g", + "▁ Aug", + "▁N orth", + "▁Nor th", + "▁ North", + "▁h old", + "▁hol d", + "▁ho ld", + "▁ hold", + "▁Ch rist", + "▁Chris t", + "▁ Christ", + "▁s ong", + "▁so ng", + "▁son g", + "▁ song", + "请 求", + "▁L ist", + "▁Li st", + "▁Lis t", + "▁ List", + "▁l ocated", + "▁loc ated", + "▁locate d", + "▁ located", + "re pon", + "rep on", + "repo n", + "▁det ermine", + "▁determ ine", + "▁determin e", + "▁deter mine", + "▁m or", + "▁mo r", + "▁ mor", + "▁in cluded", + "▁includ ed", + "▁include d", + "▁incl uded", + "▁ included", + "A G", + "▁develop ed", + "▁ developed", + "电 子", + "▁a uthor", + "▁aut hor", + "▁auth or", + "▁au thor", + "▁ author", + "▁l and", + "▁la nd", + "▁lan d", + "▁ land", + "for mat", + "form at", + "str act", + "stra ct", + "s tract", + "▁ )", + "▁a ng", + "▁an g", + "▁ ang", + "port un", + "por tun", + "repon ame", + "repo name", + "ne rs", + "ner s", + "n ers", + "▁h istory", + "▁hist ory", + "▁histor y", + "▁hi story", + "▁ history", + "el ling", + "ell ing", + "elli ng", + "▁you ng", + "▁yo ung", + "▁ young", + "▁r at", + "▁ra t", + "▁ rat", + "▁c hall", + "▁ch all", + "▁cha ll", + "Pat h", + "Pa th", + "P ath", + "us es", + "use s", + "u ses", + "▁C al", + "▁Ca l", + "▁ Cal", + "▁com plete", + "▁comp lete", + "▁complet e", + "▁compl ete", + "▁ complete", + "他 的", + "▁m ole", + "▁mo le", + "▁mol e", + "▁mon th", + "▁mo nth", + "▁mont h", + "▁ month", + "pr ess", + "pre ss", + "pres s", + "p ress", + "it ory", + "itor y", + "ito ry", + "▁pre dict", + "▁pred ict", + "▁ predict", + "um b", + "u mb", + "iz ing", + "izi ng", + "i zing", + "ma il", + "m ail", + "▁c alcul", + "▁calc ul", + "▁ calcul", + "np ublic", + "npub lic", + "n public", + "do c", + "d oc", + "ri ed", + "rie d", + "r ied", + "撤 诉", + "生 效", + "un ch", + "unc h", + "u nch", + "▁t hing", + "▁th ing", + "▁thin g", + "▁thi ng", + "▁ thing", + "精 神", + "al ing", + "ali ng", + "alin g", + "a ling", + "no de", + "nod e", + "n ode", + "▁e ns", + "▁en s", + "▁ ens", + "▁m oney", + "▁mon ey", + "▁mo ney", + "▁ money", + "U N", + "it ions", + "ition s", + "iti ons", + "▁ind ex", + "▁ index", + "O r", + "▁o ptions", + "▁opt ions", + "▁option s", + "▁ options", + "P S", + "结 合", + "▁s at", + "▁sa t", + "▁ sat", + "一 步", + "L O", + "▁v alid", + "▁val id", + "▁ valid", + "中级 人民法院", + "中 级人民法院", + "▁prov ided", + "▁provid ed", + "▁provide d", + "▁ provided", + "se qu", + "seq u", + "s equ", + "▁iss ues", + "▁issue s", + "▁ issues", + "汽 车", + "se ction", + "sec tion", + "sect ion", + "s ection", + "无 法", + "▁o nce", + "▁on ce", + "▁onc e", + "▁ once", + "山 东", + "ul a", + "u la", + "▁A b", + "▁ Ab", + "▁O F", + "▁ OF", + "ic les", + "icle s", + "icl es", + "i cles", + "▁P ol", + "▁Po l", + "▁ Pol", + "M S", + "▁[ \\", + "▁ [\\", + "ist ance", + "istan ce", + "ista nce", + "i stance", + "B y", + "▁$ $\\\\", + "▁$$ \\\\", + "▁ $$\\\\", + "▁c amp", + "▁ca mp", + "▁cam p", + "▁ camp", + "▁C ity", + "▁Cit y", + "▁Ci ty", + "▁ City", + "▁pro perty", + "▁proper ty", + "▁prop erty", + "▁ property", + "ik e", + "i ke", + "▁imp act", + "▁ impact", + "▁start ed", + "▁star ted", + "▁ started", + "Ad d", + "A dd", + "al t", + "a lt", + "▁build ing", + "▁ building", + "it ional", + "ition al", + "iti onal", + "增 加", + "he st", + "hes t", + "h est", + "[ ]", + "▁or iginal", + "▁orig inal", + "▁origin al", + "▁ original", + "▁N ot", + "▁No t", + "▁ Not", + "ur ch", + "in fo", + "inf o", + "这 里", + "ang le", + "ir ection", + "ire ction", + "irect ion", + "i rection", + "u i", + "双 方", + "am ples", + "amp les", + "ample s", + "it ted", + "itt ed", + "▁E urope", + "▁Euro pe", + "▁Eur ope", + "▁ Europe", + "er ed", + "ere d", + "e red", + "ul ts", + "ult s", + "sc ript", + "scri pt", + "scr ipt", + "s cript", + "▁p arent", + "▁par ent", + "▁pa rent", + "▁pare nt", + "▁paren t", + "▁ parent", + "▁v er", + "▁ve r", + "▁ ver", + "模 式", + "ra m", + "r am", + "▁per cent", + "▁perc ent", + "▁ percent", + "▁con text", + "▁cont ext", + "▁co ntext", + "▁ context", + "判决 书", + "▁m ag", + "▁ma g", + "▁ mag", + "__ __", + "___ _", + "_ ___", + "mess age", + "m essage", + "ic tion", + "ict ion", + "i ction", + "▁t each", + "▁te ach", + "▁tea ch", + "▁S er", + "▁Se r", + "▁ Ser", + "▁ q", + "an ies", + "ani es", + "anie s", + "▁s uper", + "▁su per", + "▁sup er", + "▁ super", + "▁f iles", + "▁fil es", + "▁file s", + "▁fi les", + "▁ files", + "an go", + "ang o", + "a ngo", + "act ive", + "activ e", + "目 标", + "政 策", + "dis play", + "disp lay", + "▁o thers", + "▁other s", + "▁ others", + "▁s ex", + "▁se x", + "▁ sex", + "▁te chnology", + "▁techn ology", + "▁ technology", + "od ing", + "odi ng", + "o ding", + "▁A rt", + "▁Ar t", + "▁ Art", + "文 件", + "ic on", + "ico n", + "i con", + "` \\", + "▁re lease", + "▁ release", + "▁m ix", + "▁mi x", + "▁ mix", + "▁m atch", + "▁mat ch", + "▁ match", + "$\\ \\", + "$ \\\\", + "▁a reas", + "▁are as", + "▁ar eas", + "▁area s", + "可 供", + "at est", + "ate st", + "ates t", + "a test", + "▁r andom", + "▁ran dom", + "▁rand om", + "▁ random", + "▁h ot", + "▁ho t", + "▁ hot", + "ol ve", + "olv e", + "系 列", + "[ \"", + "▁C O", + "▁ CO", + "客 户", + "wh ile", + "软 件", + "▁d iv", + "▁di v", + "▁ div", + "我 国", + "▁op portun", + "这 么", + "继 续", + "le ments", + "lement s", + "lem ents", + "l ements", + "▁function s", + "▁funct ions", + "▁ functions", + "| \\", + "▁h ours", + "▁hour s", + "▁ho urs", + "▁ hours", + "▁y et", + "▁ye t", + "▁ yet", + "ua tion", + "u ation", + "ul ated", + "ula ted", + "ulate d", + "u lated", + "▁g rad", + "▁gr ad", + "▁gra d", + "▁ grad", + "For m", + "F orm", + "▁current ly", + "▁curr ently", + "▁ currently", + "an ch", + "anc h", + "a nch", + "os ph", + "osp h", + "su m", + "s um", + "ens ive", + "▁spec ies", + "▁ species", + "▁eng ine", + "▁ engine", + "im g", + "i mg", + "▁g overnment", + "▁gover nment", + "▁govern ment", + "▁ government", + "▁art icle", + "▁artic le", + "▁ article", + "if f", + "i ff", + "▁l ive", + "▁li ve", + "▁liv e", + "▁ live", + "▁t ypes", + "▁type s", + "▁typ es", + "▁ty pes", + "▁ types", + "工 业", + "av or", + "avo r", + "a vor", + "位 置", + "▁re ason", + "▁ reason", + "▁m ember", + "▁me mber", + "▁mem ber", + "▁ member", + "▁p ick", + "▁pi ck", + "▁pic k", + "▁ pick", + "Ma p", + "M ap", + "进 入", + "▁St ud", + "▁ Stud", + "▁en ough", + "ay out", + "a yout", + "▁re gard", + "▁reg ard", + "ma rk", + "mar k", + "m ark", + "▁d ate", + "▁dat e", + "▁da te", + "▁ date", + "Se r", + "S er", + "▁c los", + "▁cl os", + "▁ex ec", + "▁ exec", + "}} {", + "} }{", + "▁A ustral", + "▁Aust ral", + "▁g etting", + "▁get ting", + "▁ getting", + "▁th ough", + "▁ though", + "▁A fter", + "▁Af ter", + "▁ After", + "con n", + "co nn", + "c onn", + "') \\", + "' )\\", + "农 村", + "▁p rice", + "▁pr ice", + "▁pri ce", + "▁ price", + "in ding", + "ind ing", + "indi ng", + "ex pect", + "exp ect", + "ro om", + "r oom", + "ur g", + "u rg", + "▁c omes", + "▁com es", + "▁co mes", + "▁come s", + "▁ comes", + "pa t", + "p at", + "}) \\", + "} )\\", + "ur b", + "u rb", + "▁n umbers", + "▁num bers", + "▁number s", + "▁ numbers", + "r m", + "出 来", + "案件 受理费", + "opy right", + "▁r oom", + "▁ro om", + "▁ room", + "M L", + "▁en joy", + "ob ile", + "obi le", + "obil e", + "简 单", + "▁de signed", + "▁des igned", + "▁design ed", + "▁ designed", + "▁in hib", + "▁inh ib", + "▁ inhib", + "证 明", + "▁s ix", + "▁si x", + "▁ six", + "股份 有限公司", + "▁qu ant", + "▁q uant", + "▁ quant", + "自 动", + "') ;\\", + "'); \\", + "' );\\", + "nL et", + "nLe t", + "n Let", + "电 影", + "~ \\", + "准 许", + "▁s een", + "▁se en", + "▁see n", + "▁ seen", + "▁p ersonal", + "▁person al", + "▁pers onal", + "▁ personal", + "▁do ing", + "▁doi ng", + "▁ doing", + "▁S ec", + "▁Se c", + "▁ Sec", + "▁s w", + "▁ sw", + "▁min utes", + "▁minute s", + "▁ minutes", + "▁aut om", + "▁auto m", + "▁au tom", + "▁ autom", + "wh ere", + "w here", + "▁pat tern", + "▁ pattern", + "min g", + "mi ng", + "m ing", + "um ber", + "umb er", + "u mber", + "▁qu ick", + "▁qui ck", + "▁ quick", + "▁ne cess", + "▁nec ess", + "es e", + "e se", + "▁O R", + "▁ OR", + "$ {", + "按 照", + "In f", + "I nf", + "▁pro perties", + "▁proper ties", + "▁ properties", + "on y", + "o ny", + "re ate", + "reat e", + "rea te", + "产 生", + "更 多", + "▁g raph", + "▁gr aph", + "▁grap h", + "▁gra ph", + "▁ graph", + "de v", + "d ev", + "▁act ually", + "▁actual ly", + "▁actu ally", + "▁ actually", + "▁c lose", + "▁cl ose", + "▁clos e", + "▁ close", + "\\' ;\\", + "\\'; \\", + "\\ ';\\", + "完 全", + "通 知", + "▁in flu", + "▁inf lu", + "▁infl u", + "▁un ique", + "▁uniqu e", + "▁uni que", + "▁ unique", + "浙 江", + "{ \"", + "▁m illion", + "▁mill ion", + "▁mil lion", + "▁ million", + "▁b ar", + "▁ba r", + "▁ bar", + "▁init ial", + "▁initi al", + "▁ initial", + "so ft", + "sof t", + "s oft", + "▁s urface", + "▁sur face", + "▁surf ace", + "▁ surface", + "▁m om", + "▁mo m", + "▁per fect", + "▁perf ect", + "▁ perfect", + "is try", + "ist ry", + "istr y", + "i stry", + "ge s", + "g es", + "sin g", + "si ng", + "s ing", + "▁int rodu", + "▁intro du", + "▁di agn", + "▁dia gn", + "▁ diagn", + "▁J ohn", + "▁Joh n", + "▁Jo hn", + "▁ John", + "▁c lean", + "▁cl ean", + "▁cle an", + "▁ clean", + "C C", + "▁c ut", + "▁cu t", + "▁ cut", + "▁s td", + "▁st d", + "▁ std", + "g n", + "▁he art", + "▁hear t", + "▁ heart", + "▁us ers", + "▁use rs", + "▁user s", + "▁ users", + "新 的", + "之 前", + "▁de cre", + "▁dec re", + "▁ decre", + "▁de tails", + "▁det ails", + "▁detail s", + "▁ details", + "nA s", + "n As", + "▁P er", + "▁Pe r", + "▁ Per", + "ho st", + "h ost", + "▁b uy", + "▁bu y", + "▁ buy", + "▁H igh", + "▁Hi gh", + "▁ High", + "P O", + "▁se par", + "▁sep ar", + "▁ separ", + "n m", + "领 导", + "位 于", + "A l", + "上 述", + "in ally", + "inal ly", + "om a", + "o ma", + "东 西", + "we b", + "w eb", + "容 易", + "iu s", + "i us", + "▁e con", + "▁ec on", + "▁eco n", + "▁ econ", + "经 过", + "▁sh ows", + "▁show s", + "共 同", + "平 方", + "re sh", + "res h", + "r esh", + "▁c omb", + "▁com b", + "▁co mb", + "▁ comb", + "业 务", + "日 本", + "▁ar ch", + "▁arc h", + "▁ arch", + "▁n ovel", + "▁no vel", + "▁nov el", + "▁ novel", + "P E", + "nS t", + "n St", + "is es", + "ise s", + "i ses", + "▁be aut", + "▁t um", + "▁tu m", + "▁ tum", + "▁in tern", + "▁int ern", + "▁inter n", + "▁ intern", + "▁b egin", + "▁be gin", + "▁beg in", + "▁ begin", + "理 论", + "开 展", + "信 用", + "It em", + "I tem", + "▁t itle", + "▁tit le", + "▁ti tle", + "▁ title", + "委托 代理人", + "▁b reak", + "▁bre ak", + "▁ break", + "ta ble", + "tab le", + "t able", + "uc le", + "ucl e", + "u cle", + "▁b lood", + "▁bl ood", + "▁blo od", + "▁ blood", + "▁con cent", + "▁conc ent", + "▁conce nt", + "传 统", + "ha nd", + "han d", + "h and", + "之日 起", + "之 日起", + "最高 人民法院", + "网 站", + "en v", + "e nv", + "处 罚", + "Mo d", + "M od", + "▁g ames", + "▁game s", + "▁gam es", + "▁ga mes", + "▁ games", + "ca st", + "cas t", + "c ast", + "▁t ook", + "▁to ok", + "▁too k", + "on al", + "ona l", + "o nal", + "▁con duct", + "▁cond uct", + "▁ conduct", + "▁l oss", + "▁lo ss", + "▁los s", + "▁ loss", + "的 大", + "val id", + "v alid", + "家 庭", + "▁re ported", + "▁rep orted", + "▁report ed", + "▁ reported", + "月 二十", + "具 体", + "ug in", + "u gin", + "is tration", + "ist ration", + "istr ation", + "▁p olic", + "▁pol ic", + "▁po lic", + "委员 会", + "yd ro", + "y dro", + "ac hed", + "ach ed", + "ache d", + "a ched", + "nW h", + "n Wh", + "领 域", + "▁re comm", + "▁rec omm", + "▁ recomm", + "▁dist ributed", + "▁distribut ed", + "▁distribute d", + "▁ distributed", + "ap pend", + "app end", + "appe nd", + "li ght", + "lig ht", + "l ight", + "意 义", + "Cont ext", + "Con text", + "Co ntext", + "B C", + "▁success ful", + "enc ies", + "县 人民法院", + "is ms", + "ism s", + "i sms", + "▁ext ends", + "▁extend s", + "▁ extends", + "ub e", + "u be", + "id ge", + "检 察", + "cl ient", + "cli ent", + "有 一", + "撤 回", + "▁pre vent", + "▁pr event", + "▁prev ent", + "▁ prevent", + "▁need ed", + "▁ needed", + "▁C or", + "▁Co r", + "▁ Cor", + "▁signific antly", + "▁significant ly", + "▁sh owed", + "▁show ed", + "政 治", + "in ate", + "ina te", + "▁tem per", + "▁temp er", + "▁re leased", + "▁release d", + "▁ released", + "▁E n", + "▁ En", + "形 成", + "▁reg ion", + "▁ region", + "ge d", + "g ed", + "目 的", + "ie f", + "i ef", + "的 事", + "mod ule", + "mo dule", + "m odule", + "no wn", + "now n", + "n own", + "▁m edia", + "▁med ia", + "▁medi a", + "▁ media", + "▁s creen", + "▁sc reen", + "▁scr een", + "▁ screen", + "or ing", + "ori ng", + "o ring", + "ja ngo", + "jan go", + "j ango", + "yn c", + "y nc", + "▁equ ation", + "▁eq uation", + "▁ equation", + "ai d", + "a id", + "▁e mail", + "▁em ail", + "▁ email", + "▁acc ording", + "▁accord ing", + "主 任", + "▁s ays", + "▁sa ys", + "▁say s", + "pro t", + "pr ot", + "p rot", + "▁indust ry", + "▁indu stry", + "au r", + "a ur", + "▁col lection", + "▁coll ection", + "▁collect ion", + "▁colle ction", + "▁ collection", + "re st", + "res t", + "r est", + "ro s", + "r os", + "ad em", + "ade m", + "a dem", + "现 代", + "b t", + "▁how ever", + "▁know ledge", + "▁ knowledge", + "▁e ss", + "▁es s", + "▁ ess", + "nT here", + "nThe re", + "nTh ere", + "n There", + "ac hes", + "ach es", + "ache s", + "a ches", + "▁for mer", + "▁form er", + "▁ former", + "图 书", + "lect ed", + "lec ted", + "l ected", + "ri ng", + "rin g", + "r ing", + "gorith m", + "▁s hare", + "▁sh are", + "▁sha re", + "▁shar e", + "▁ share", + "il led", + "ill ed", + "ille d", + "▁pro fessional", + "▁profess ional", + "▁profession al", + "▁ professional", + "▁pl ayed", + "▁play ed", + "▁ played", + "▁c hem", + "▁ch em", + "▁che m", + "▁ chem", + "da t", + "d at", + "▁l earning", + "▁le arning", + "▁learn ing", + "▁lear ning", + "▁ learning", + "act ory", + "actor y", + "承 担", + "需 求", + "▁e ver", + "▁ev er", + "▁ ever", + "▁re cent", + "▁rec ent", + "▁rece nt", + "▁ recent", + "电 视", + "amp ions", + "ampion s", + "st atus", + "stat us", + "当 事", + "负 担", + "% )", + "显 示", + "▁| |", + "▁ ||", + "▁D ist", + "▁Dis t", + "▁Di st", + "▁ Dist", + "▁n ight", + "▁ni ght", + "▁nig ht", + "▁ night", + "▁s top", + "▁st op", + "▁sto p", + "▁ stop", + "ig ned", + "ign ed", + "igne d", + "re w", + "r ew", + "▁G et", + "▁Ge t", + "▁ Get", + "an ager", + "anag er", + "ana ger", + "努 力", + "▁T HE", + "▁TH E", + "▁ THE", + "属 于", + "▁t alk", + "▁tal k", + "▁ talk", + "under line", + "可供 执行", + "▁M arch", + "▁Mar ch", + "▁Marc h", + "▁ March", + "会 议", + "▁car eer", + "▁care er", + "P h", + "nH e", + "n He", + "教 师", + "今 天", + "不 到", + "ro ws", + "row s", + "r ows", + "接 受", + "Ev ent", + "Even t", + "E vent", + "tr y", + "t ry", + "▁pat ient", + "▁ patient", + "▁a gre", + "▁ag re", + "▁agr e", + "nu se", + "nus e", + "n use", + "▁m ut", + "▁mu t", + "▁ mut", + "数 的", + "ch ange", + "chan ge", + "cha nge", + "chang e", + "任 何", + "小 时", + "io l", + "i ol", + "▁b uilt", + "▁bu ilt", + "▁ built", + "pr ing", + "pri ng", + "p ring", + "▁i dea", + "▁ide a", + "▁id ea", + "▁ idea", + "公 里", + "▁writ ing", + "▁wr iting", + "▁ writing", + "人民 币", + "fl ow", + "flo w", + "f low", + "▁pub lished", + "▁publish ed", + "▁ published", + "帮 助", + ", ”", + "[ '", + "提 升", + "收 入", + "导 致", + "最 大", + "▁sh own", + "▁show n", + "▁st ory", + "▁sto ry", + "▁ story", + "登 记", + "ia ted", + "iate d", + "iat ed", + "i ated", + "ect s", + "ec ts", + "e cts", + "T E", + "确 定", + "pos ition", + "p osition", + "h a", + "▁go al", + "▁ goal", + "ch ed", + "che d", + "c hed", + "ol ean", + "ole an", + "o lean", + "ro nic", + "ron ic", + "r onic", + "有 的", + "C E", + "▁ar ray", + "▁arr ay", + "▁ array", + "毕 业", + "▁c ross", + "▁cr oss", + "▁cro ss", + "▁ cross", + "im ens", + "ime ns", + "imen s", + "i mens", + "ly ing", + "l ying", + "▁p ack", + "▁pa ck", + "▁pac k", + "▁ pack", + "故 事", + "▁B rit", + "▁Br it", + "▁Bri t", + "ap an", + "apa n", + "a pan", + "▁h alf", + "▁ha lf", + "▁hal f", + "▁ half", + "▁up date", + "▁upd ate", + "▁ update", + "] )", + "▁i r", + "▁ ir", + "▁ex pected", + "▁exp ected", + "▁expect ed", + "▁ expected", + "ee d", + "e ed", + "普 通", + "H T", + "he sis", + "hes is", + "h esis", + "▁p ict", + "▁pi ct", + "▁pic t", + "bo rn", + "bor n", + "b orn", + "qu ery", + "que ry", + "quer y", + "▁w hole", + "▁wh ole", + "▁who le", + "▁ whole", + "▁comp anies", + "▁in j", + "▁i nj", + "▁ inj", + "com es", + "come s", + "co mes", + "c omes", + "A A", + "st atic", + "stat ic", + "sta tic", + "▁pr imary", + "▁prim ary", + "▁ primary", + "▁w rite", + "▁writ e", + "▁wr ite", + "▁ write", + "重 庆", + "id ay", + "ida y", + "i day", + "▁n atural", + "▁nat ural", + "▁ natural", + "C R", + "Cl ass", + "C lass", + "任 务", + "▁s pect", + "▁sp ect", + "▁spec t", + "▁spe ct", + "▁ spect", + "el e", + "e le", + "▁rec ogn", + "▁ recogn", + "▁eff ective", + "▁effect ive", + "▁ effective", + "▁m ap", + "▁ma p", + "▁ map", + "\\\\ \\\\", + "\\\\\\ \\", + "\\ \\\\\\", + "il li", + "ill i", + "i lli", + "甚 至", + "oc ol", + "oco l", + "o col", + "▁B y", + "▁ By", + "▁de scribed", + "▁des cribed", + "▁describ ed", + "▁describe d", + "▁ described", + "送达 后", + "SU B", + "S UB", + "▁h ref", + "▁hr ef", + "▁ href", + "▁st atus", + "▁stat us", + "▁ status", + "th ern", + "ther n", + "the rn", + "▁C omp", + "▁Com p", + "▁Co mp", + "▁ Comp", + "▁a verage", + "▁aver age", + "▁ average", + "▁A pril", + "▁Ap ril", + "▁Apr il", + "▁ April", + "▁t w", + "▁ tw", + "bo l", + "b ol", + "空 间", + "d o", + "ter m", + "te rm", + "t erm", + "与被 告", + "与 被告", + "▁S im", + "▁Si m", + "▁ Sim", + "AN T", + "A NT", + "ser ver", + "serv er", + "serve r", + "s erver", + "▁O ff", + "▁Of f", + "▁ Off", + "▁G erm", + "▁Ge rm", + "▁Ger m", + "aut hor", + "au thor", + "auth or", + "a uthor", + "▁▁ ▁", + "▁ ▁▁", + "iv en", + "ive n", + "i ven", + ") (", + "▁e y", + "▁ ey", + "nt he", + "nth e", + "n the", + "▁s tat", + "▁st at", + "▁ stat", + "▁T est", + "▁Te st", + "▁Tes t", + "▁ Test", + "__ (", + "_ _(", + "▁add itional", + "▁addition al", + "▁ additional", + "本 判决", + "if ul", + "i ful", + "▁ap pear", + "▁app ear", + "▁appe ar", + "l n", + "man d", + "ma nd", + "m and", + "▁bl ack", + "▁ black", + "▁in du", + "▁ind u", + "▁con dition", + "▁cond ition", + "▁ condition", + "▁bir ths", + "▁birth s", + "刑 事", + "▁a go", + "▁ag o", + "▁ ago", + "百 科", + "▁c enter", + "▁cent er", + "▁ce nter", + "▁ center", + "ad es", + "ade s", + "a des", + "() );\\", + "()) ;\\", + "()); \\", + "( ));\\", + "▁se ems", + "▁see ms", + "▁seem s", + "▁D ep", + "▁De p", + "▁ Dep", + "▁d am", + "▁da m", + "▁ dam", + "u z", + "lic k", + "li ck", + "l ick", + "t x", + "金 融", + "sp an", + "s pan", + "旅 游", + "c s", + "I M", + "思 想", + "\"\" \"", + "\" \"\"", + "▁f em", + "▁fe m", + "▁ fem", + "id ed", + "ide d", + "i ded", + "un t", + "u nt", + "▁Jan uary", + "▁ January", + "▁t our", + "▁to ur", + "▁tou r", + "▁ tour", + "▁con cer", + "▁conc er", + "▁conce r", + "推 荐", + "▁r unning", + "▁run ning", + "▁ running", + "上诉 人", + "变 化", + "文 章", + "▁m ach", + "▁mac h", + "▁ma ch", + "▁ mach", + "s m", + "ar ies", + "ari es", + "arie s", + "a ries", + "pa ck", + "pac k", + "p ack", + "▁like ly", + "▁lik ely", + "▁ likely", + "▁w eight", + "▁we ight", + "▁weigh t", + "▁ weight", + "▁p ers", + "▁per s", + "▁pe rs", + "▁ pers", + "▁s ent", + "▁se nt", + "▁sen t", + "▁ sent", + "▁Se pt", + "▁Sep t", + "▁d epend", + "▁de pend", + "▁dep end", + "▁ depend", + "▁B ar", + "▁Ba r", + "▁ Bar", + "O ver", + "培 训", + "No de", + "N ode", + "保 险", + "▁com mand", + "▁comm and", + "▁comma nd", + "▁ command", + "日向 本院", + "日 向本院", + "四 川", + "农 业", + "ro wn", + "row n", + "r own", + "time s", + "tim es", + "ti mes", + "t imes", + "out put", + "▁M an", + "▁Ma n", + "▁ Man", + "▁di dn", + "▁did n", + "nS o", + "n So", + "▁dis play", + "▁disp lay", + "▁ display", + "▁estab lished", + "▁establish ed", + "▁ established", + "▁dist ribution", + "▁distribut ion", + "▁ distribution", + "nH ow", + "n How", + "关 键", + "osp ital", + "ospit al", + "▁g ene", + "▁gen e", + "▁ge ne", + "▁ gene", + "ens ity", + "ensit y", + "ju st", + "j ust", + "nS ee", + "nSe e", + "n See", + "F or", + "ca se", + "cas e", + "c ase", + "nA l", + "n Al", + "▁f ig", + "▁fi g", + "▁ fig", + "▁be havior", + "▁behav ior", + "▁behavi or", + "▁ behavior", + "× ×", + "pec ially", + "ek s", + "e ks", + "▁J une", + "▁Jun e", + "▁Ju ne", + "▁ June", + "li ke", + "lik e", + "l ike", + "lo cal", + "loc al", + "l ocal", + "ca l", + "c al", + "时 代", + "▁e tc", + "▁et c", + "▁ etc", + "In d", + "I nd", + "▁g e", + "▁ ge", + "il le", + "ill e", + "▁cons ist", + "our nal", + "o urnal", + "明 显", + "▁in cludes", + "▁includ es", + "▁include s", + "▁incl udes", + "▁ includes", + "▁ident ify", + "随 着", + "是一 个", + "是 一个", + "▁re ve", + "▁r eve", + "▁rev e", + "ap h", + "a ph", + "O D", + "不 服", + "视 频", + "▁A pp", + "▁Ap p", + "▁ App", + "Mess age", + "M essage", + "for t", + "fo rt", + "f ort", + "▁d eal", + "▁de al", + "▁ deal", + "▁t rying", + "▁tr ying", + "▁try ing", + "xi m", + "x im", + "▁e nh", + "▁en h", + "▁ enh", + "的 问题", + "pn g", + "p ng", + "▁fr ont", + "▁fro nt", + "▁ front", + "k g", + "En t", + "E nt", + "▁in stead", + "▁inst ead", + "▁ instead", + "经 验", + "▁h eld", + "▁he ld", + "▁hel d", + "▁ held", + "▁W ar", + "▁Wa r", + "▁ War", + "vi s", + "v is", + "▁inv olved", + "▁invol ved", + "▁involve d", + "事 务", + "▁ex act", + "▁ exact", + "icro soft", + "江 苏", + "nC h", + "n Ch", + "▁it em", + "▁i tem", + "▁ item", + "ak er", + "ake r", + "a ker", + "de scription", + "des cription", + "▁w r", + "▁ wr", + "音 乐", + "▁b ring", + "▁br ing", + "当事 人", + "▁M on", + "▁Mo n", + "▁ Mon", + "g y", + "▁c ame", + "▁ca me", + "▁cam e", + "▁ac cept", + "▁ accept", + "A d", + "▁a ud", + "▁au d", + "▁ aud", + "ty p", + "t yp", + "▁u til", + "▁ut il", + "▁ util", + "▁t aking", + "▁ta king", + "▁tak ing", + "▁ taking", + "重 点", + "关 注", + "▁a w", + "▁ aw", + "in ing", + "ini ng", + "inin g", + "i ning", + "ist ory", + "istor y", + "isto ry", + "i story", + "性 的", + "eo ple", + "e ople", + "l a", + "EC T", + "E CT", + "条 之规定", + "summ ary", + "s ummary", + "▁i ll", + "▁il l", + "▁ ill", + "费 用", + "一 点", + "ag ed", + "age d", + "a ged", + "res pon", + "resp on", + "▁M at", + "▁Ma t", + "▁ Mat", + "▁eff ort", + "F r", + "▁of fers", + "▁off ers", + "▁offer s", + "距 离", + "▁happ en", + "▁hap pen", + "cur rent", + "curr ent", + "c urrent", + "▁t aken", + "▁take n", + "▁ta ken", + "▁tak en", + "▁E l", + "▁ El", + "ap ter", + "apt er", + "▁M c", + "▁ Mc", + "▁f eed", + "▁fe ed", + "▁fee d", + "▁ feed", + "S e", + "cin g", + "ci ng", + "c ing", + "▁T rans", + "▁Tr ans", + "▁Tra ns", + "▁ Trans", + "ov ember", + "ove mber", + "ig r", + "i gr", + "正 常", + "pro ject", + "proj ect", + "达 到", + "In fo", + "Inf o", + "]( /", + "] (/", + "wit ch", + "w itch", + "C D", + "▁mult i", + "▁mul ti", + "▁ multi", + "的 小", + "▁Gener al", + "▁Gen eral", + "▁Gene ral", + "▁ General", + "▁com bin", + "▁comb in", + "▁ combin", + "▁r a", + "▁ ra", + "▁l ines", + "▁li nes", + "▁line s", + "▁lin es", + "▁ lines", + "ra d", + "r ad", + "con text", + "cont ext", + "co ntext", + "un k", + "u nk", + "air s", + "ai rs", + "a irs", + "ol es", + "ole s", + "o les", + "() ,", + "( ),", + "▁some one", + "▁W est", + "▁We st", + "▁Wes t", + "▁ West", + "制 作", + "▁us eful", + "▁use ful", + "T R", + "▁S m", + "▁ Sm", + "no v", + "n ov", + "pr i", + "p ri", + "Al l", + "A ll", + "}_ {", + "} _{", + "io s", + "i os", + "▁ 记", + "() :\\", + "(): \\", + "( ):\\", + "▁t ell", + "▁te ll", + "▁tel l", + "商 品", + "▁diff icult", + "o e", + "▁under standing", + "▁understand ing", + "广 东", + "Ha nd", + "H and", + "调 查", + "法律 规定", + "oc h", + "o ch", + "▁b ox", + "▁bo x", + "▁ box", + "▁e lement", + "▁el ement", + "▁ele ment", + "▁elem ent", + "▁ element", + "▁l abel", + "▁la bel", + "▁lab el", + "▁ label", + "fin d", + "fi nd", + "f ind", + "▁bec ame", + "▁A fr", + "▁Af r", + "▁writ ten", + "▁wr itten", + "▁ written", + "号 民事", + "al pha", + "alph a", + "▁con sum", + "▁cons um", + "▁ consum", + "▁com pl", + "▁comp l", + "▁ compl", + "ic ip", + "ici p", + "}$ \\", + "} $\\", + "Eq u", + "E qu", + "ot es", + "ote s", + "o tes", + "ui d", + "u id", + "▁exp eri", + "▁exper i", + ")\\ \\", + ") \\\\", + "▁ent ire", + "▁wh ite", + "▁whit e", + "▁ white", + "权 利", + "方 案", + "ou ch", + "o uch", + "主 义", + "▁n ational", + "▁nation al", + "▁nat ional", + "▁ national", + "la tion", + "lat ion", + "l ation", + "不 仅", + "pa ge", + "pag e", + "p age", + "▁I nter", + "▁In ter", + "▁Int er", + "▁ Inter", + "fo nt", + "fon t", + "f ont", + "it ing", + "iti ng", + "itin g", + "i ting", + "▁per formed", + "▁perform ed", + "▁perfor med", + "ain t", + "ai nt", + "a int", + "▁n p", + "▁ np", + "▁up d", + "▁u pd", + "▁m ind", + "▁min d", + "▁mi nd", + "▁ mind", + "你 们", + "商 业", + "公 开", + "理 由", + "▁in sp", + "▁i nsp", + "▁ins p", + "▁ insp", + "▁d ouble", + "▁do uble", + "▁dou ble", + "▁doub le", + "▁ double", + "立 案", + "▁p rior", + "▁pr ior", + "▁pri or", + "▁ prior", + "以 后", + "▁ 其", + "▁e stim", + "▁est im", + "▁es tim", + "▁ estim", + "al ls", + "all s", + "▁M ark", + "▁Mar k", + "▁Ma rk", + "▁ Mark", + "▁\\\\ \\\\", + "▁\\ \\\\\\", + "▁\\\\\\ \\", + "▁ \\\\\\\\", + "ch eck", + "che ck", + "c heck", + "b o", + "▁f amil", + "▁fam il", + "▁fa mil", + "ov ed", + "ove d", + "o ved", + "ce mber", + "c ember", + "安 徽", + "特 点", + "▁J uly", + "▁Jul y", + "▁Ju ly", + "▁ July", + "发 布", + "Dat e", + "Da te", + "D ate", + "▁conn ect", + "▁ connect", + "ri p", + "r ip", + "一 种", + "代 码", + "检 查", + "▁p urch", + "▁pur ch", + "文 学", + "en ced", + "ence d", + "enc ed", + "ave s", + "av es", + "a ves", + "ha m", + "h am", + "U p", + "re lated", + "rel ated", + "▁act ive", + "▁activ e", + "▁ active", + "ue l", + "u el", + "离 婚", + "▁Oct ober", + "▁ October", + "▁e ducation", + "▁educ ation", + "▁edu cation", + "▁ education", + "造 成", + "▁ 行", + "Ap p", + "A pp", + "▁e specially", + "▁es pecially", + "▁ especially", + "at ives", + "ative s", + "ati ves", + "ativ es", + "▁un d", + "▁u nd", + "▁ und", + "uf act", + "u fact", + "实 验", + "I s", + "Co de", + "Cod e", + "C ode", + "▁s uff", + "▁su ff", + "▁n ews", + "▁ne ws", + "▁new s", + "▁ news", + "an i", + "a ni", + "T P", + "减 刑", + "▁d en", + "▁de n", + "▁ den", + "ot tom", + "ott om", + "otto m", + "拥 有", + "▁cl ub", + "▁ club", + "▁s em", + "▁se m", + "▁ sem", + "▁re plac", + "名 称", + "▁m edical", + "▁med ical", + "▁medi cal", + "▁medic al", + "▁ medical", + "▁R ed", + "▁Re d", + "▁ Red", + "ail y", + "ai ly", + "a ily", + "▁c annot", + "▁can not", + "▁ca nnot", + "▁cann ot", + "▁ cannot", + "▁P ark", + "▁Par k", + "▁Pa rk", + "▁ Park", + "▁A c", + "▁ Ac", + "up t", + "u pt", + "▁A ct", + "▁Ac t", + "▁ Act", + "▁cl aim", + "▁ claim", + "语 言", + "现 场", + "▁t ax", + "▁ta x", + "▁ tax", + "卫 生", + "mi ss", + "mis s", + "m iss", + "▁s af", + "▁sa f", + "▁ saf", + "▁ex pect", + "▁exp ect", + "▁ expect", + "▁A ugust", + "▁Aug ust", + "▁Au gust", + "▁ August", + "ry pt", + "▁f ocus", + "▁foc us", + "▁fo cus", + "▁ focus", + "le n", + "l en", + "▁p ret", + "▁pre t", + "▁pr et", + "▁ pret", + "▁d est", + "▁de st", + "▁des t", + "▁ dest", + "al id", + "ali d", + "▁reg ular", + "▁regul ar", + "▁ regular", + "▁f ast", + "▁fa st", + "▁ fast", + "al ed", + "ale d", + "a led", + "▁C enter", + "▁Cent er", + "▁Ce nter", + "▁ Center", + "▁fil ms", + "▁film s", + "▁ films", + "O L", + "▁Se ptember", + "▁Sept ember", + "▁ September", + "ee s", + "e es", + "writ e", + "wr ite", + "w rite", + "▁l ocation", + "▁loc ation", + "▁lo cation", + "▁ location", + "▁( \\", + "▁ (\\", + "▁re cept", + "▁rece pt", + "▁r ound", + "▁ro und", + "▁rou nd", + "▁ round", + "▁d ifference", + "▁dif ference", + "▁differ ence", + "▁ difference", + "pro cess", + "proc ess", + "▁c ause", + "▁ca use", + "▁caus e", + "▁ cause", + "最高人民法院 关于", + "file s", + "fil es", + "fi les", + "f iles", + "▁s peed", + "▁sp eed", + "▁spe ed", + "▁ speed", + "▁p rivate", + "▁pr ivate", + "▁priv ate", + "▁ private", + "经 理", + "jo in", + "j oin", + "anc ial", + "物 业", + "ave n", + "av en", + "a ven", + "▁t ests", + "▁te sts", + "▁test s", + "▁ tests", + "he mat", + "hem at", + "hema t", + "h emat", + "形 式", + "al ign", + "ali gn", + "ce ed", + "c eed", + "▁pl atform", + "▁plat form", + "▁ platform", + "bo r", + "b or", + "ar ds", + "ard s", + "▁pr actice", + "▁pract ice", + "▁ practice", + "▁b ound", + "▁bo und", + "▁bou nd", + "▁ bound", + "▁cl ient", + "▁cli ent", + "▁ client", + "▁observ ed", + "▁observe d", + "▁obs erved", + "比 如", + "▁prob ably", + "▁ probably", + "十 五", + "保 证", + "对 方", + "ro ph", + "rop h", + "r oph", + "▁im ages", + "▁image s", + "▁imag es", + "▁ images", + "▁off ice", + "▁offic e", + "▁ office", + "an did", + "and id", + "andi d", + "▁con tract", + "▁contr act", + "▁ contract", + "▁p layer", + "▁pl ayer", + "▁play er", + "▁ player", + "▁r ather", + "▁rat her", + "▁ra ther", + "▁cons idered", + "▁consider ed", + "ri al", + "ria l", + "r ial", + "▁l iving", + "▁li ving", + "▁liv ing", + "▁ living", + "ef ore", + "e fore", + "ot al", + "ota l", + "o tal", + "▁r oot", + "▁ro ot", + "▁ root", + "▁w eeks", + "▁we eks", + "▁week s", + "▁ weeks", + "▁v ill", + "▁vi ll", + "▁ vill", + "方 向", + "▁un it", + "▁u nit", + "▁uni t", + "▁ unit", + "▁b and", + "▁ban d", + "▁ba nd", + "▁ band", + "今 年", + "▁act ivities", + "▁activ ities", + "▁ activities", + "▁h ope", + "▁hop e", + "▁ho pe", + "本院 于", + "全 部", + "ie t", + "i et", + "ve y", + "v ey", + "▁Eng lish", + "▁ English", + "ail ed", + "ai led", + "a iled", + "le ep", + "lee p", + "l eep", + "ni f", + "n if", + "cal l", + "ca ll", + "c all", + "ne xt", + "nex t", + "n ext", + "E n", + "▁f it", + "▁fi t", + "▁ fit", + "Bu ild", + "B uild", + "▁d efined", + "▁def ined", + "▁define d", + "▁defin ed", + "▁ defined", + "B A", + "▁w ent", + "▁we nt", + "ev ent", + "even t", + "eve nt", + "e vent", + "pi ng", + "pin g", + "p ing", + "i j", + "▁f riend", + "▁fri end", + "▁ friend", + "全 面", + "oc al", + "oca l", + "o cal", + "▁ab ility", + "▁ ability", + "▁s olutions", + "▁sol utions", + "▁solution s", + "▁ solutions", + "数 字", + "并 且", + "▁S ub", + "▁Su b", + "▁ Sub", + "iz er", + "ize r", + "i zer", + "ia nce", + "ian ce", + "i ance", + "才 能", + "nn amespace", + "nname space", + "n namespace", + "ke n", + "k en", + "▁M ore", + "▁Mor e", + "▁Mo re", + "▁ More", + "▁G roup", + "▁Gr oup", + "▁Gro up", + "▁ Group", + "▁for mat", + "▁form at", + "▁ format", + "首 先", + "左 右", + "▁acc ur", + "▁ac cur", + "▁ accur", + "RE F", + "R EF", + "lo ck", + "loc k", + "l ock", + "au l", + "a ul", + "▁obt ained", + "▁obtain ed", + "ch ar", + "cha r", + "c har", + "▁f ace", + "▁fac e", + "▁fa ce", + "▁ face", + "农 民", + "ne s", + "n es", + "De s", + "D es", + "▁H ouse", + "▁Ho use", + "▁Hou se", + "▁ House", + "▁P res", + "▁Pr es", + "▁Pre s", + "▁ Pres", + "be d", + "b ed", + "at ur", + "atu r", + "a tur", + "nu ll", + "n ull", + "▁m id", + "▁mi d", + "▁ mid", + "H e", + "ect ive", + "res ponse", + "respon se", + "respons e", + "身 体", + "▁N ovember", + "▁Nov ember", + "▁ November", + "▁st ress", + "▁str ess", + "▁stre ss", + "▁ stress", + "▁s il", + "▁si l", + "▁ sil", + "iqu es", + "ique s", + "iq ues", + "i ques", + "▁m aint", + "▁main t", + "▁ma int", + "▁ maint", + "▁every thing", + "▁P ublic", + "▁Pub lic", + "▁Pu blic", + "▁ Public", + "oc ket", + "ock et", + "当 然", + "i i", + "▁p rec", + "▁pre c", + "▁pr ec", + "▁ prec", + "▁P at", + "▁Pa t", + "▁ Pat", + "▁an aly", + "▁anal y", + "▁ana ly", + "q l", + "一 年", + "都 有", + "Cl ient", + "Cli ent", + "' )", + "au gh", + "aug h", + "a ugh", + "▁com pos", + "▁comp os", + "No t", + "N ot", + "现 已", + "▁par ameters", + "▁paramet ers", + "▁parameter s", + "▁param eters", + "▁ parameters", + "lo at", + "ool s", + "oo ls", + "o ols", + "( [", + "准 备", + "▁reg ul", + "▁st aff", + "▁ staff", + "▁n ode", + "▁no de", + "▁nod e", + "▁ node", + "▁pop ular", + "▁popul ar", + "▁ popular", + "in ition", + "init ion", + "ini tion", + "E L", + "▁u t", + "▁ ut", + "nO n", + "n On", + "▁A g", + "▁ Ag", + "▁all ows", + "▁allow s", + "▁f ul", + "▁fu l", + "▁ ful", + "▁press ure", + "▁ pressure", + "▁S ee", + "▁Se e", + "▁ See", + "T H", + "ap ping", + "app ing", + "a pping", + "儿 童", + "ac c", + "a cc", + "▁L a", + "▁ La", + "ar gin", + "arg in", + "▁rec ently", + "▁recent ly", + "▁Tr ue", + "▁ True", + "ad o", + "a do", + "▁ ]", + "说 明", + "▁high ly", + "▁st ore", + "▁sto re", + "▁ store", + "en u", + "e nu", + "▁g lobal", + "▁glob al", + "▁glo bal", + "▁ global", + "▁d ynam", + "▁dy nam", + "▁ dynam", + "S D", + "阅 读", + "la st", + "las t", + "l ast", + "参 数", + "▁ap plications", + "▁applic ations", + "▁application s", + "▁appl ications", + "▁ applications", + "Res ponse", + "Respon se", + "he me", + "hem e", + "h eme", + "就 会", + "ch e", + "c he", + "▁n amed", + "▁name d", + "▁na med", + "▁nam ed", + "▁ named", + "P L", + "▁l en", + "▁le n", + "▁ len", + "▁s us", + "▁su s", + "▁ sus", + "\\' );\\", + "\\') ;\\", + "\\'); \\", + "\\ ');\\", + "s ource", + "de c", + "d ec", + "协 议", + "▁l ate", + "▁la te", + "▁lat e", + "▁ late", + "g s", + "Com ponent", + "智 能", + "▁for ward", + "▁ forward", + "▁s urg", + "▁su rg", + "▁sur g", + "en ses", + "ens es", + "ense s", + "也 有", + "bu g", + "b ug", + "十 九", + "本次 执行", + "充 分", + "▁S w", + "▁ Sw", + "▁De cember", + "▁Dec ember", + "▁ December", + "▁custom ers", + "▁customer s", + "▁cust omers", + "▁ customers", + "实 施", + "▁mat rix", + "▁ matrix", + "Cont roller", + "Control ler", + "ic o", + "i co", + "▁in tr", + "▁int r", + "▁i ntr", + "▁ intr", + "进 一步", + "▁in side", + "▁ins ide", + "▁ inside", + "▁direct ly", + "▁Le ague", + "▁ League", + "( {", + "In ter", + "Int er", + "I nter", + "▁st ay", + "▁ stay", + "▁s erver", + "▁serv er", + "▁ser ver", + "▁serve r", + "▁ server", + "▁p ackage", + "▁pack age", + "▁ package", + "// //", + "/// /", + "/ ///", + "▁c lick", + "▁cl ick", + "▁cli ck", + "▁ click", + "com mit", + "comm it", + "创 建", + "▁a cid", + "▁ac id", + "▁ acid", + "ampions hip", + "ampion ship", + "加 强", + "▁v ers", + "▁ve rs", + "▁ver s", + "▁ vers", + "▁off icial", + "▁offic ial", + "▁ official", + "but ton", + "b utton", + "超 过", + "ho od", + "h ood", + "十 三", + "▁con cept", + "▁conce pt", + "▁ concept", + "▁t own", + "▁to wn", + "▁tow n", + "▁ town", + "▁s ection", + "▁se ction", + "▁sec tion", + "▁ section", + "ce ll", + "cel l", + "c ell", + "人 们", + "mod els", + "model s", + "mode ls", + "民 族", + "▁w alk", + "▁wal k", + "▁ walk", + "▁g irl", + "▁gi rl", + "▁gir l", + "▁ girl", + "r l", + "re nch", + "ren ch", + "r ench", + "▁in ternational", + "▁inter national", + "▁intern ational", + "▁b ed", + "▁be d", + "▁ bed", + "el ine", + "eli ne", + "elin e", + "e line", + "▁J apan", + "▁Ja pan", + "▁ Japan", + "规 划", + "le vel", + "lev el", + "' :", + "建 立", + "▁contin ue", + "▁continu e", + "▁ continue", + "是 在", + "审 查", + "下 的", + "同 学", + "ip e", + "i pe", + "办 公", + "tr ue", + "I F", + "满 足", + "▁at tempt", + "▁att empt", + "▁ attempt", + "公 安", + "优 秀", + "ro me", + "rom e", + "r ome", + "ol der", + "old er", + "Sys tem", + "Sy stem", + "S ystem", + "ype s", + "yp es", + "y pes", + "▁w ays", + "▁way s", + "▁wa ys", + "▁ ways", + "on don", + "ond on", + "ondo n", + "o ndon", + "ro te", + "rot e", + "r ote", + "▁us es", + "▁use s", + "▁u ses", + "▁ uses", + "De f", + "D ef", + "▁ 长", + "▁any thing", + "g l", + "▁sec urity", + "▁ security", + "▁N e", + "▁ Ne", + "is f", + "i sf", + "几 个", + "▁incre asing", + "em ail", + "ema il", + "e mail", + "▁e nsure", + "▁ens ure", + "▁ ensure", + "▁al most", + "▁ almost", + "cl osed", + "close d", + "▁d ownload", + "▁down load", + "▁ download", + "评 价", + "O P", + "▁l iter", + "▁li ter", + "▁lit er", + "▁ liter", + "▁P ost", + "▁Po st", + "▁Pos t", + "▁ Post", + "d s", + "措 施", + "if ier", + "ifi er", + "▁hy per", + "▁hyp er", + "▁hype r", + "▁ hyper", + "判 断", + "lo ng", + "lon g", + "l ong", + "▁s ites", + "▁sit es", + "▁site s", + "▁si tes", + "▁ sites", + "只 要", + "未 来", + "com ing", + "co ming", + "c oming", + "re et", + "ree t", + "M M", + "期 限", + "▁C r", + "▁ Cr", + "七 年", + "▁ ‘", + "▁com ment", + "▁comm ent", + "▁ comment", + "P r", + "ac ity", + "aci ty", + "a city", + "ab led", + "able d", + "abl ed", + "a bled", + "问题 的", + "考 虑", + "体 系", + "驾 驶", + "▁su rv", + "▁sur v", + "每 天", + "br uary", + "▁cont ains", + "▁contain s", + "▁ contains", + "er ation", + "era tion", + "e ration", + "▁d raw", + "▁dr aw", + "▁ draw", + "▁le ading", + "▁lead ing", + "▁ leading", + "D e", + "第 四", + "报 告", + "Ar ray", + "Arr ay", + "第一百 四十", + "Wi th", + "W ith", + "▁s te", + "▁st e", + "▁ ste", + "bo n", + "b on", + "每 个", + "性 能", + "▁con stant", + "▁const ant", + "▁ constant", + "▁qu ite", + "▁q uite", + "▁quit e", + "▁qui te", + "▁v eh", + "▁ve h", + "▁ veh", + "地 址", + "▁pro ced", + "▁proc ed", + "▁w ond", + "▁won d", + "▁wo nd", + "▁H ere", + "▁He re", + "▁Her e", + "▁ Here", + "▁t old", + "▁to ld", + "平 均", + "re act", + "rea ct", + "iz es", + "ize s", + "i zes", + "调 解", + "nA nd", + "nAn d", + "n And", + "▁ev idence", + "▁evid ence", + "▁r oad", + "▁ro ad", + "▁ road", + "除 了", + "▁t akes", + "▁take s", + "▁ta kes", + "▁tak es", + "▁se em", + "▁see m", + "给 出", + "▁st ation", + "▁stat ion", + "▁ station", + "公 诉", + "输 入", + "▁a rr", + "▁ar r", + "▁ arr", + "▁sim ply", + "▁simpl y", + "▁dev ice", + "▁ device", + "fi t", + "f it", + "amb da", + "▁g round", + "▁gr ound", + "▁gro und", + "▁ ground", + "oc ker", + "ock er", + "know n", + "kn own", + "k nown", + "▁U p", + "▁ Up", + "▁S et", + "▁Se t", + "▁ Set", + "ar a", + "a ra", + ") *", + "▁inter face", + "▁interf ace", + "▁ interface", + "b f", + "▁C D", + "▁ CD", + "▁ne uro", + "▁neur o", + "▁ neuro", + "▁P R", + "▁ PR", + "S C", + "oo n", + "o on", + "检 测", + "▁s equence", + "▁sequ ence", + "▁ sequence", + "▁w ait", + "▁wa it", + "▁ wait", + "制 度", + "▁D ec", + "▁De c", + "▁ Dec", + "▁it ems", + "▁item s", + "▁ items", + "pt y", + "p ty", + "▁nec essary", + "▁necess ary", + "交 流", + "right arrow", + "sy ch", + "s ych", + "▁con tr", + "▁cont r", + "▁co ntr", + "▁ contr", + "oc iation", + "oci ation", + "不知 道", + "不 知道", + "oc r", + "o cr", + "▁bel ieve", + "▁belie ve", + "培 养", + "def ine", + "de fine", + "▁g as", + "▁ga s", + "▁ gas", + "▁Col lege", + "有 些", + "▁t ravel", + "▁tr avel", + "▁tra vel", + "▁trav el", + "▁ travel", + "徒 刑", + "立 即", + "▁b rain", + "▁br ain", + "▁bra in", + "▁ brain", + "▁ther apy", + "▁therap y", + "▁ therapy", + "▁D ata", + "▁Dat a", + "▁Da ta", + "▁ Data", + "参 与", + "考 试", + "Wh at", + "W hat", + "Bu t", + "B ut", + "A s", + "▁R uss", + "▁Ru ss", + "▁Rus s", + "▁e lements", + "▁el ements", + "▁element s", + "▁ele ments", + "▁elem ents", + "▁ elements", + "期 徒刑", + "▁qu e", + "▁q ue", + "▁ que", + "五 年", + "那 个", + "▁c apt", + "▁cap t", + "▁ca pt", + "▁ capt", + "B e", + "▁project s", + "▁proj ects", + "▁ projects", + "ok e", + "o ke", + "本院 在", + "不 可", + "▁s ample", + "▁sam ple", + "▁ sample", + "ar ter", + "art er", + "arte r", + "合同 纠纷一案", + "合同纠纷 一案", + "▁respect ively", + "▁respective ly", + "ot ic", + "oti c", + "o tic", + "本裁定 送达后", + "cs s", + "c ss", + "▁T hen", + "▁The n", + "▁Th en", + "▁ Then", + "联 网", + "人 物", + "只 能", + "% ,", + "▁f riends", + "▁fri ends", + "▁friend s", + "▁ friends", + "▁H is", + "▁Hi s", + "▁ His", + "mer c", + "me rc", + "m erc", + "程 度", + "ic an", + "ica n", + "i can", + "▁d irection", + "▁di rection", + "▁direct ion", + "▁dir ection", + "▁dire ction", + "▁ direction", + "he ma", + "hem a", + "h ema", + "() )\\", + "()) \\", + "( ))\\", + "▁A ng", + "▁An g", + "▁ Ang", + "▁a nim", + "▁an im", + "▁ anim", + "▁ch oose", + "▁cho ose", + "▁ choose", + "Ne w", + "N ew", + "▁com mit", + "▁comm it", + "▁ commit", + "当 时", + "事务 所", + "的 财产", + "机 械", + "六 年", + "▁work ed", + "ly mp", + "ro ot", + "r oot", + "P C", + "速 度", + "数 量", + "I I", + "▁p roduced", + "▁produ ced", + "▁produce d", + "▁prod uced", + "▁ produced", + "at ively", + "ative ly", + "ati vely", + "ativ ely", + "改 革", + "it ude", + "itud e", + "itu de", + "ra z", + "r az", + "▁In ternational", + "▁Intern ational", + "▁Inter national", + "▁ International", + "市中 级人民法院", + "市 中级人民法院", + "] :", + "▁b oard", + "▁bo ard", + "▁ board", + "▁l atest", + "▁la test", + "▁late st", + "▁lat est", + "▁ latest", + "O f", + "▁be autiful", + "▁beaut iful", + "if orn", + "av id", + "avi d", + "a vid", + "st er", + "ste r", + "s ter", + "nW hen", + "nWh en", + "n When", + "tu al", + "t ual", + "es tern", + "est ern", + "ester n", + "este rn", + "El ement", + "Elem ent", + "Ele ment", + "E lement", + "ig en", + "ige n", + "i gen", + "本次 执行程序", + "本次执行 程序", + "▁E d", + "▁ Ed", + "math bb", + "ur ance", + "ura nce", + "uran ce", + "u rance", + "▁de riv", + "▁der iv", + "cl us", + "ol ar", + "ola r", + "o lar", + "▁in stance", + "▁inst ance", + "▁ instance", + "▁l ooks", + "▁look s", + "▁lo oks", + ",\\ \\", + ", \\\\", + "mor e", + "mo re", + "m ore", + "ing ton", + "an cy", + "anc y", + "a ncy", + "▁e mer", + "▁em er", + "认 定", + "课 程", + "▁estab lish", + "▁ establish", + "▁tem perature", + "▁temper ature", + "▁ temperature", + "电 话", + "ue d", + "u ed", + "ia ns", + "ian s", + "i ans", + "自 治", + "▁s oon", + "▁so on", + "▁soo n", + "▁ soon", + "▁C opyright", + "▁Copy right", + "▁ Copyright", + "制 造", + "gr ad", + "gra d", + "g rad", + "理 解", + "av y", + "a vy", + "}{ \\\\", + "} {\\\\", + "▁is n", + "▁i sn", + "ex p", + "e xp", + "▁p rep", + "▁pre p", + "▁pr ep", + "▁ prep", + "心 理", + "媒 体", + "英 语", + "▁b ad", + "▁ba d", + "▁ bad", + "▁P lease", + "▁Ple ase", + "▁ Please", + "成 本", + "▁al tern", + "▁alter n", + "▁alt ern", + "▁ altern", + "▁S ch", + "▁Sc h", + "▁ Sch", + "nT r", + "n Tr", + "▁pl ac", + "▁ plac", + "▁> >", + "▁ >>", + "保 持", + "▁b asis", + "▁bas is", + "▁ba sis", + "▁ basis", + "oci ety", + "坚 持", + "lect ions", + "lection s", + "l ections", + "分 享", + "▁b log", + "▁bl og", + "▁blo g", + "▁ blog", + "▁b road", + "▁br oad", + "▁bro ad", + "▁ broad", + "id get", + "idge t", + "oc ks", + "ock s", + "o cks", + "下 来", + "适 合", + "▁t im", + "▁ti m", + "▁ tim", + "▁f avor", + "▁fa vor", + "▁fav or", + "oe s", + "o es", + "▁re ceive", + "▁rece ive", + "▁ receive", + "▁Dist rict", + "▁Di strict", + "el ta", + "elt a", + "▁com par", + "▁comp ar", + "▁ compar", + "▁ob tain", + "▁obt ain", + "针 对", + "哪 些", + "▁vari ety", + "el low", + "ell ow", + "ello w", + "▁Ind ia", + "▁ India", + "up date", + "▁w ide", + "▁wid e", + "▁wi de", + "▁ wide", + "▁f ire", + "▁fi re", + "▁fir e", + "▁ fire", + "serv ice", + "s ervice", + "社 区", + "▁s end", + "▁se nd", + "▁sen d", + "▁ send", + "A n", + "第 六", + "▁pres ented", + "▁present ed", + "se mb", + "sem b", + "s emb", + "} (", + "▁deg ree", + "▁ degree", + "▁trans fer", + "▁transf er", + "▁ transfer", + "▁ident ified", + "▁ identified", + "的情 况", + "的 情况", + "iforn ia", + "▁p arts", + "▁part s", + "▁par ts", + "▁ parts", + "wi se", + "w ise", + "S P", + "风 险", + "Man ager", + "Manag er", + "Manage r", + "M anager", + "ic ians", + "ici ans", + "ician s", + "icia ns", + "ce l", + "c el", + "许 多", + "▁p arty", + "▁part y", + "▁par ty", + "▁ party", + "▁ 王", + "hi ng", + "hin g", + "h ing", + "中 央", + "ead er", + "ea der", + "e ader", + "联 合", + "持 续", + "In put", + "▁re sid", + "▁res id", + "▁att ack", + "▁ attack", + "et ime", + "eti me", + "e time", + "▁s ort", + "▁so rt", + "▁sor t", + "▁ sort", + "▁u lt", + "▁ul t", + "▁ ult", + "严 重", + "资 金", + "▁comp uter", + "▁comput er", + "▁compute r", + "▁ computer", + "or ph", + "orp h", + "aut h", + "au th", + "a uth", + "交 易", + "▁great er", + "▁gre ater", + "▁ greater", + "▁g ives", + "▁giv es", + "▁give s", + "▁gi ves", + "\" ]", + "▁s tage", + "▁st age", + "▁ stage", + "加 入", + "Bas e", + "Ba se", + "B ase", + "▁n umer", + "▁num er", + "▁nu mer", + "k a", + "▁r ates", + "▁rate s", + "▁rat es", + "▁ra tes", + "▁ rates", + "丰 富", + "▁qu al", + "▁q ual", + "▁ qual", + "ie rs", + "ier s", + "i ers", + "▁F rom", + "▁Fr om", + "▁Fro m", + "▁ From", + "▁b orn", + "▁bo rn", + "▁bor n", + "▁ born", + "▁us ually", + "▁usual ly", + "▁ usually", + "▁phys ical", + "▁physic al", + "▁physi cal", + "▁ physical", + "深 圳", + "意 见", + "▁through out", + "it ect", + "ite ct", + "指 导", + "▁M us", + "▁Mu s", + "▁ Mus", + "C P", + "内容 简介", + "比 赛", + "▁a x", + "▁ ax", + "par se", + "pars e", + "p arse", + "▁S tr", + "▁St r", + "▁ Str", + "▁D is", + "▁Di s", + "▁ Dis", + "▁m oment", + "▁mom ent", + "▁mo ment", + "▁ moment", + "du c", + "d uc", + "咨 询", + "▁p oly", + "▁pol y", + "▁po ly", + "▁ poly", + "初 字第", + "sh ip", + "shi p", + "s hip", + "合 法", + "▁Fe bruary", + "▁ February", + "▁hy pot", + "▁hyp ot", + "ici ency", + "▁J ust", + "▁Ju st", + "▁ Just", + "全 球", + "▁t ools", + "▁to ols", + "▁too ls", + "▁tool s", + "▁ tools", + "▁sec ret", + "▁ secret", + "▁de liver", + "▁del iver", + "No ne", + "Non e", + "N one", + "▁stud ied", + "增 长", + "收 取", + "▁the ory", + "▁theor y", + "▁ theory", + "▁m ale", + "▁mal e", + "▁ma le", + "▁ male", + "▁long er", + "▁lon ger", + "o z", + "▁o il", + "▁ oil", + "▁w atch", + "▁wat ch", + "▁ watch", + "▁dist rict", + "▁di strict", + "▁distr ict", + "▁ district", + "▁m atter", + "▁mat ter", + "▁matt er", + "▁ matter", + "设 置", + "Tr ans", + "Tra ns", + "T rans", + "▁R E", + "▁ RE", + "▁L ondon", + "▁Lo ndon", + "▁Lon don", + "▁ London", + "▁ex isting", + "▁exist ing", + "▁ existing", + "不 得", + "▁w or", + "▁wo r", + "▁ wor", + "as ons", + "ason s", + "▁s kin", + "▁sk in", + "▁ski n", + "▁ skin", + "it ation", + "ita tion", + "itat ion", + "感 情", + "er ve", + "erv e", + "▁I nc", + "▁In c", + "▁ Inc", + "ja va", + "jav a", + "j ava", + "▁C ON", + "▁CO N", + "▁ CON", + "de n", + "d en", + "ti c", + "t ic", + "▁man ufact", + "▁ manufact", + "北 省", + "doc ument", + "d ocument", + "▁R ev", + "▁Re v", + "▁ Rev", + "ab s", + "a bs", + "Over ride", + "▁C har", + "▁Ch ar", + "▁Cha r", + "▁ Char", + "h y", + "meth od", + "m ethod", + "n w", + "▁con struct", + "▁co nstruct", + "▁const ruct", + "▁constr uct", + "▁ construct", + "tar get", + "t arget", + "Re p", + "R ep", + "▁re ading", + "▁read ing", + "▁ reading", + "ms g", + "m sg", + "nB ut", + "n But", + "an el", + "ane l", + "a nel", + "st ream", + "stre am", + "细 胞", + "▁re sources", + "▁res ources", + "▁resource s", + "▁ resources", + "▁K ing", + "▁Kin g", + "▁Ki ng", + "▁ King", + "▁an ti", + "▁ant i", + "▁ anti", + "▁st ates", + "▁state s", + "▁stat es", + "▁ states", + "▁S pec", + "▁Sp ec", + "▁Spe c", + "▁ Spec", + "D S", + "ri ver", + "riv er", + "rive r", + "r iver", + "▁up on", + "▁u pon", + "医学 百科", + "▁Y our", + "▁You r", + "▁Yo ur", + "▁ Your", + "▁w ords", + "▁word s", + "▁wor ds", + "▁ words", + "更 加", + "it c", + "i tc", + "▁r ights", + "▁right s", + "▁ rights", + "生 物", + "\\\\ _", + "▁A ir", + "▁ Air", + "正 在", + "ex cept", + "稳 定", + "检察 院", + "▁P M", + "▁ PM", + "T S", + "三 角", + "查 明", + "特 色", + "律师 事务所", + "ia s", + "i as", + "这样 的", + "这 样的", + "越 来", + "▁I nst", + "▁In st", + "▁Ins t", + "▁ Inst", + "▁n ucle", + "▁nu cle", + "▁ nucle", + "取 得", + "~~ ~\\", + "~~~ \\", + "~ ~~\\", + "西 省", + "有 期徒刑", + "ge ner", + "gen er", + "gene r", + "g ener", + "I f", + "oi ce", + "o ice", + "as ks", + "ask s", + "A p", + "▁pl ant", + "▁plan t", + "▁ plant", + "▁appro xim", + "▁approx im", + "pt ions", + "ption s", + "监 狱", + "▁$ {", + "▁ ${", + "▁techn iques", + "▁technique s", + "▁s ave", + "▁sa ve", + "▁sav e", + "▁ save", + "▁e qual", + "▁equ al", + "▁eq ual", + "▁ equal", + "▁n il", + "▁ni l", + "▁ nil", + "n h", + "▁: :", + "▁ ::", + "▁N ow", + "▁No w", + "▁ Now", + "保 障", + "Ge ner", + "Gen er", + "Gene r", + "G ener", + "▁A M", + "▁ AM", + "▁f orce", + "▁for ce", + "▁ force", + "▁ex cept", + "▁ except", + "p m", + "▁m aterials", + "▁material s", + "▁mater ials", + "越来 越", + "购 买", + "区 域", + "样 的", + "▁li near", + "▁line ar", + "▁lin ear", + "▁ linear", + "t d", + "目 录", + "▁ess ential", + "▁ essential", + "体 验", + "▁op tim", + "▁opt im", + "▁ optim", + "用 于", + "专 家", + "▁He alth", + "▁ Health", + "gi t", + "g it", + "ig hest", + "igh est", + "提 交", + "代理 审判员", + "▁out side", + "▁outs ide", + "点 击", + "运 行", + "▁ch alleng", + "▁chall eng", + "▁F irst", + "▁Fi rst", + "▁ First", + "▁Ch ina", + "▁Chi na", + "▁Chin a", + "▁ China", + "新 闻", + "阶 段", + "▁f all", + "▁fa ll", + "▁fal l", + "▁ fall", + "▁al gorithm", + "▁ algorithm", + "AT E", + "A TE", + "▁ex tra", + "▁ext ra", + "▁extr a", + "▁ extra", + "因 素", + "那 些", + "▁A cc", + "▁Ac c", + "▁ Acc", + "求 出", + "▁w rong", + "▁wr ong", + "▁ wrong", + "后 的", + "为 主", + "▁P re", + "▁Pr e", + "▁ Pre", + "输 出", + "▁D NA", + "▁DN A", + "▁ DNA", + "广 告", + "▁B ritish", + "▁Brit ish", + "▁ British", + "▁p retty", + "▁pre tty", + "▁pret ty", + "▁ pretty", + "cd ot", + "c dot", + "el ves", + "elve s", + "改 造", + "▁ph one", + "▁phon e", + "▁ phone", + "▁Th anks", + "▁Thank s", + "▁Than ks", + "▁ Thanks", + "▁t esting", + "▁test ing", + "▁ testing", + "▁\\\\ \\", + "▁\\ \\\\", + "▁ \\\\\\", + "ie ce", + "iec e", + "▁ 李", + "al le", + "all e", + "▁mechan isms", + "▁mechanism s", + "合 理", + "第 七", + "▁re main", + "▁rem ain", + "▁b asic", + "▁bas ic", + "▁ basic", + "▁H ar", + "▁Ha r", + "▁ Har", + "▁O ut", + "▁ Out", + "促 进", + "▁s erved", + "▁serv ed", + "▁ser ved", + "▁serve d", + "出 了", + "C A", + "▁d istance", + "▁dist ance", + "▁di stance", + "▁ distance", + "▁t ask", + "▁ta sk", + "▁ task", + "▁s elected", + "▁se lected", + "▁select ed", + "▁sel ected", + "▁ selected", + "ai gn", + "a ign", + "er ved", + "erv ed", + "erve d", + "pl ications", + "plic ations", + "plication s", + "第 五", + "人 才", + "R A", + "▁Americ a", + "▁Amer ica", + "▁ America", + "▁S ome", + "▁So me", + "▁Som e", + "▁ Some", + "▁b irth", + "▁bir th", + "▁ birth", + "▁pro mot", + "▁prom ot", + "▁promo t", + "▁re ach", + "▁r each", + "▁ reach", + "食 品", + "受 到", + "uc cess", + "ucc ess", + "u ccess", + "▁pro grams", + "▁pr ograms", + "▁program s", + "▁ programs", + "p g", + "▁s n", + "▁ sn", + "▁G od", + "▁Go d", + "▁ God", + "ra n", + "r an", + "▁ap ply", + "▁app ly", + "▁appl y", + "▁ apply", + "改 变", + "▁u rl", + "▁ur l", + "▁ url", + "▁D ef", + "▁De f", + "▁ Def", + "▁over all", + "▁$ (", + "▁ $(", + "vi der", + "vid er", + "v ider", + "▁b al", + "▁ba l", + "▁ bal", + "有 人", + "▁c entral", + "▁cent ral", + "▁centr al", + "▁ central", + "mer ican", + "meric an", + "]) ;\\", + "]); \\", + "] );\\", + "▁it self", + "▁i tself", + "▁its elf", + "测 试", + "▁prov iding", + "▁provid ing", + "不同 的", + "stit ute", + "stitu te", + "▁Cal ifornia", + "▁ California", + "opt ions", + "option s", + "o ptions", + "▁M ich", + "▁Mi ch", + "▁Mic h", + "▁c ritical", + "▁crit ical", + "▁critic al", + "▁ critical", + "▁h it", + "▁hi t", + "▁ hit", + "员 工", + "▁f ib", + "▁fi b", + "▁ fib", + "T O", + "cent ury", + "G B", + "▁ph ase", + "▁ phase", + "K E", + "▁p olicy", + "▁pol icy", + "▁polic y", + "▁ policy", + "▁trans form", + "▁transf orm", + "▁ transform", + "解 答", + "都 会", + "oot h", + "oo th", + "o oth", + "lev ant", + "▁dec ision", + "▁S an", + "▁Sa n", + "▁ San", + "宣 传", + "In st", + "Ins t", + "I nst", + "▁d oc", + "▁do c", + "▁ doc", + "犯 罪", + "yl es", + "yle s", + "y les", + "▁neg ative", + "▁ negative", + "统 计", + "以 来", + "设 施", + "▁e ntry", + "▁en try", + "▁ent ry", + "▁entr y", + "▁ entry", + "▁C lass", + "▁Cl ass", + "▁ Class", + "pon ents", + "ponent s", + "▁pres ence", + "▁ presence", + "我们 的", + "我 们的", + "ep s", + "e ps", + "▁com ponent", + "▁compon ent", + "▁ component", + "wi n", + "w in", + "量 的", + "An d", + "A nd", + "▁individual s", + "ad min", + "▁m er", + "▁me r", + "▁ mer", + "merc ial", + "▁h eight", + "▁he ight", + "▁ height", + "优 势", + "ug e", + "u ge", + "() )", + "( ))", + "▁ 张", + "民 间", + "pl ies", + "p lies", + "c a", + "▁ch oice", + "▁cho ice", + "▁ choice", + "人民 检察院", + "▁v it", + "▁vi t", + "▁ vit", + "的发 展", + "的 发展", + "▁vari ables", + "▁variable s", + "▁ variables", + "bl ock", + "blo ck", + "b lock", + "直 线", + "▁c al", + "▁ca l", + "▁ cal", + "▁a void", + "▁av oid", + "▁ avoid", + "ut ils", + "util s", + "uti ls", + "▁Go ogle", + "▁ Google", + "快 速", + "恢 复", + "se e", + "s ee", + "le vision", + "lev ision", + "▁ap plied", + "▁appl ied", + "et urn", + "etur n", + "e turn", + "▁c andid", + "▁can did", + "▁cand id", + "身 份", + "▁F l", + "▁ Fl", + "Si ze", + "S ize", + "性 质", + "or ds", + "ord s", + "是一 种", + "是 一种", + "记 者", + "▁every one", + "ul ations", + "ulation s", + "im ages", + "image s", + "ima ges", + "imag es", + "▁s al", + "▁sa l", + "▁ sal", + "num ber", + "nu mber", + "n umber", + "▁s rc", + "▁sr c", + "▁ src", + "nC om", + "nCo m", + "n Com", + "▁s atisf", + "▁sat isf", + "▁eas ily", + "▁s ynt", + "▁sy nt", + "▁syn t", + "▁ synt", + "he nt", + "hen t", + "h ent", + "▁s ound", + "▁so und", + "▁sou nd", + "▁ sound", + "ounc ed", + "ounce d", + "oun ced", + "成 绩", + "土 地", + "▁B ro", + "▁Br o", + "▁ Bro", + "▁F ound", + "▁Fo und", + "▁ Found", + "协 会", + "体 育", + "VE R", + "V ER", + "▁l imited", + "▁lim ited", + "▁limit ed", + "▁ limited", + "en ge", + "eng e", + "e nge", + "▁redu ce", + "▁red uce", + "▁ reduce", + "▁s tim", + "▁st im", + "▁ stim", + "免 费", + "▁W ork", + "▁Wor k", + "▁Wo rk", + "▁ Work", + "▁pro gress", + "▁ progress", + "▁d eep", + "▁de ep", + "▁ deep", + "na nd", + "nan d", + "n and", + "sh ow", + "s how", + "yt es", + "yte s", + "y tes", + "▁pl aces", + "▁place s", + "▁plac es", + "▁ places", + "办 法", + "的 高", + "申请 执行", + "▁O pen", + "▁Op en", + "▁ Open", + "▁D et", + "▁De t", + "▁ Det", + "告 诉", + "▁trans port", + "▁tran sport", + "▁ transport", + "别 人", + "▁fin ancial", + "▁financ ial", + "▁s on", + "▁so n", + "▁ son", + "he ight", + "h eight", + "▁s hop", + "▁sh op", + "▁ shop", + "▁c am", + "▁ca m", + "▁ cam", + "再 次", + "▁d ivid", + "▁di vid", + "▁div id", + "\"> < /", + "\" >\\", + "▁/> \\", + "▁ />\\", + "▁c ardi", + "▁car di", + "▁card i", + "▁n et", + "▁ne t", + "▁ net", + "RA NT", + "RAN T", + "R ANT", + "▁p roduce", + "▁produ ce", + "▁prod uce", + "▁reg arding", + "▁regard ing", + "道 路", + "an not", + "ann ot", + "anno t", + "a nnot", + "▁t ag", + "▁ta g", + "▁ tag", + "的重 要", + "的 重要", + "P A", + "ve st", + "ves t", + "v est", + "ou nter", + "ount er", + "oun ter", + "o unter", + "▁t ree", + "▁tr ee", + "▁tre e", + "▁ tree", + "打 开", + "形 的", + "gr aph", + "gra ph", + "g raph", + "ug ht", + "ugh t", + "u ght", + "pl ant", + "plan t", + "引 起", + "te e", + "t ee", + "观 察", + "▁Re public", + "▁Rep ublic", + "uff er", + "uf fer", + "▁s ympt", + "▁sym pt", + "mat rix", + "▁w ood", + "▁wo od", + "▁ wood", + "▁j son", + "▁js on", + "▁ json", + "文 名", + "▁V ersion", + "▁Vers ion", + "▁ Version", + "▁hand le", + "▁ handle", + "▁t owards", + "▁to wards", + "▁toward s", + "▁tow ards", + "特 征", + "描 述", + "se m", + "s em", + "▁de aths", + "▁death s", + "▁organ ization", + "▁ organization", + "冻 结", + "必 要", + "▁p ark", + "▁par k", + "▁pa rk", + "▁ park", + "我 是", + "温 度", + "▁n ames", + "▁name s", + "▁na mes", + "▁nam es", + "▁ names", + "▁in nov", + "▁inn ov", + "技 能", + "▁ex pand", + "▁exp and", + "▁ expand", + "▁o x", + "▁ ox", + "▁ch annel", + "▁chan nel", + "▁ channel", + "ri er", + "rie r", + "r ier", + "▁h ospital", + "▁hospit al", + "▁ hospital", + "AR T", + "A RT", + "▁sign al", + "▁sig nal", + "▁ signal", + "高 的", + "▁in form", + "▁inf orm", + "▁info rm", + "▁ inform", + "▁s ales", + "▁sa les", + "▁sal es", + "▁sale s", + "▁ sales", + "▁s election", + "▁se lection", + "▁select ion", + "▁sel ection", + "▁ selection", + "ens or", + "ik i", + "i ki", + "▁W illi", + "▁Will i", + "▁Wil li", + "▁Wi lli", + "U s", + "▁techn ique", + "▁b all", + "▁bal l", + "▁ba ll", + "▁ ball", + "▁dam age", + "▁ damage", + "▁re source", + "▁res ource", + "▁ resource", + "化 学", + "▁H el", + "▁He l", + "▁ Hel", + "par ams", + "param s", + "para ms", + "▁Pro gram", + "▁Pr ogram", + "▁ Program", + "ic ated", + "ica ted", + "icate d", + "▁adv ant", + "▁ advant", + "he ader", + "head er", + "hea der", + "h eader", + "Fr om", + "F rom", + "per ties", + "pert ies", + "▁n or", + "▁no r", + "▁ nor", + "▁p olitical", + "▁polit ical", + "E M", + "▁v ar", + "▁va r", + "▁ var", + "in ner", + "inn er", + "▁b ank", + "▁ban k", + "▁ba nk", + "▁ bank", + "日 立案", + "▁w orth", + "▁wor th", + "▁ worth", + "▁inter view", + "▁u r", + "▁ ur", + "▁aff ect", + "▁af fect", + "ic ian", + "ici an", + "icia n", + "nhttp s", + "n https", + "规 模", + "▁l if", + "▁li f", + "▁ lif", + "▁f lex", + "▁fl ex", + "▁fle x", + "▁ flex", + "里 面", + "St r", + "S tr", + "▁F orm", + "▁For m", + "▁Fo rm", + "▁ Form", + "▁So ftware", + "▁Soft ware", + "▁ Software", + "▁g enes", + "▁gen es", + "▁gene s", + "▁ge nes", + "▁ genes", + "ri d", + "r id", + "▁struct ures", + "▁structure s", + "▁ structures", + "nv ar", + "n var", + "▁D i", + "▁ Di", + "ha s", + "h as", + "成 了", + "世 纪", + "ic ensed", + "icense d", + "icens ed", + "相 对", + "▁camp aign", + "▁ campaign", + "Com mand", + "Comm and", + "并 不", + "▁pol ice", + "▁polic e", + "▁ 页", + "之间 的", + "之 间的", + "F L", + "▁R iver", + "▁Ri ver", + "▁Riv er", + "in ese", + "ine se", + "ines e", + "im ent", + "ime nt", + "imen t", + "i ment", + "it ch", + "itc h", + "▁M or", + "▁Mo r", + "▁ Mor", + "h o", + "▁s core", + "▁sc ore", + "▁ score", + "Fact ory", + "Factor y", + "F actory", + "从 事", + "▁re str", + "▁r estr", + "▁res tr", + "▁rest r", + "ym ph", + "y mph", + "Mod ule", + "Mo dule", + "M odule", + "Le t", + "L et", + "nf or", + "n for", + "一 份", + "pr et", + "pre t", + "p ret", + "be ta", + "bet a", + "b eta", + "fr ee", + "fre e", + "f ree", + "ig ration", + "igr ation", + "ua te", + "u ate", + "▁a uto", + "▁aut o", + "▁au to", + "▁ auto", + "▁go als", + "▁goal s", + "st ack", + "sta ck", + "撤回 起诉", + "At t", + "A tt", + "▁g old", + "▁go ld", + "▁gol d", + "▁ gold", + "▁dev ices", + "▁device s", + "▁ devices", + "is hing", + "ish ing", + "ishi ng", + "▁L aw", + "▁La w", + "▁ Law", + "分 为", + "ri ve", + "riv e", + "r ive", + "la s", + "l as", + "we ight", + "wei ght", + "w eight", + "▁s ell", + "▁se ll", + "▁sel l", + "▁ sell", + "▁g oes", + "▁go es", + "▁str ategy", + "▁strateg y", + "▁ strategy", + "减半 收取", + "判 处", + "▁c reating", + "▁cre ating", + "▁creat ing", + "▁ creating", + "▁cor rel", + "平方 米", + "▁ann ounced", + "▁announce d", + "▁announc ed", + "起 点", + "成 长", + "夫 妻", + "香 港", + "台 湾", + "ace book", + "he lp", + "hel p", + "h elp", + "mar gin", + "m argin", + "人 类", + "nA nswer", + "n Answer", + "确定 的", + "确 定的", + "▁g reen", + "▁gr een", + "▁gre en", + "▁ green", + "nA fter", + "n After", + "时 期", + "ho me", + "hom e", + "h ome", + "▁appro priate", + "▁appropri ate", + "▁ appropriate", + "ed eral", + "eder al", + "ede ral", + "▁c atch", + "▁cat ch", + "▁ catch", + "工 资", + "sp ring", + "spr ing", + "s pring", + "▁Sup pose", + "▁ Suppose", + "ad ding", + "add ing", + "use um", + "房地 产", + "房 地产", + "is tor", + "ist or", + "isto r", + "i stor", + "▁B el", + "▁Be l", + "▁ Bel", + "如 此", + "▁quick ly", + "ne l", + "n el", + "To ken", + "Tok en", + "T oken", + "子 的", + "C I", + "有 点", + "采 取", + "O n", + "▁l abor", + "▁la bor", + "▁lab or", + "相 信", + "不 少", + "办 理", + "ain e", + "ai ne", + "a ine", + "▁V ir", + "▁Vi r", + "▁ Vir", + "▁r out", + "▁ro ut", + "▁rou t", + "Su p", + "S up", + "▁ad apt", + "▁adap t", + "▁ adapt", + "▁H T", + "▁ HT", + "▁g ets", + "▁get s", + "▁ge ts", + "▁ gets", + "有限 责任", + "▁inter ested", + "▁interest ed", + "▁re levant", + "▁ relevant", + "RN A", + "R NA", + "商 务", + "▁B o", + "▁ Bo", + "▁St reet", + "▁Stre et", + "▁ Street", + "ro y", + "r oy", + "nU n", + "n Un", + "ad ian", + "adi an", + "adia n", + "R I", + "la mm", + "lam m", + "l amm", + "▁con tain", + "▁cont ain", + "um mer", + "umm er", + "es ts", + "est s", + "e sts", + "第一百四十 五", + "sup er", + "su per", + "s uper", + "im er", + "ime r", + "i mer", + "Qu ery", + "Que ry", + "CO N", + "C ON", + "Au t", + "A ut", + "ad ata", + "ada ta", + "a data", + "▁E ar", + "推 进", + "解 题", + "居 民", + "in i", + "i ni", + "▁conn ection", + "▁connect ion", + "▁ connection", + "R L", + "重要 的", + "ex ec", + "exe c", + "有限责任 公司", + "▁inf ection", + "▁infect ion", + "▁ infection", + "教 授", + "对 象", + "妈 妈", + "hed ul", + "▁view s", + "▁vi ews", + "▁ views", + "▁S ing", + "▁Si ng", + "▁Sin g", + "▁ Sing", + "▁w onder", + "▁won der", + "▁wond er", + "▁wo nder", + "ograph ic", + "o graphic", + "接 口", + "▁st eps", + "▁step s", + "▁ste ps", + "▁ steps", + "▁D iv", + "▁Di v", + "▁ Div", + "▁M al", + "▁Ma l", + "▁ Mal", + "op ic", + "o pic", + "▁l es", + "▁le s", + "▁ les", + "▁l ives", + "▁li ves", + "▁live s", + "▁liv es", + "▁requ ires", + "▁require s", + "▁ requires", + "▁t reated", + "▁treat ed", + "▁tre ated", + "▁ treated", + "确 实", + "手 术", + "▁rel ative", + "▁ relative", + "ge bra", + "g ebra", + "▁O ver", + "▁ Over", + "▁WAR RANT", + "ag o", + "a go", + "陪 审", + "▁N OT", + "▁NO T", + "▁ NOT", + "par ser", + "parse r", + "pars er", + "▁F il", + "▁Fi l", + "▁ Fil", + "Build er", + "▁ap point", + "▁app oint", + "▁ appoint", + "▁inf luence", + "▁influ ence", + "结 束", + "ur t", + "u rt", + "▁evalu ate", + "▁eval uate", + "▁ evaluate", + "条 的规定", + "▁l arger", + "▁large r", + "▁larg er", + "▁lar ger", + "▁m oved", + "▁mov ed", + "▁move d", + "▁mo ved", + "iss ues", + "issue s", + "issu es", + "详 细", + "ab y", + "a by", + "▁B en", + "▁Be n", + "▁ Ben", + "F F", + "l ambda", + "训 练", + "k i", + "到庭 参加", + "n i", + "▁health y", + "▁heal thy", + "▁ healthy", + "Di s", + "D is", + "en ty", + "ent y", + "e nty", + "an o", + "a no", + "U I", + "ig ma", + "igm a", + "nh ttp", + "n http", + "Ent ity", + "规 范", + "▁ca used", + "▁cause d", + "▁caus ed", + "当 前", + "▁part icularly", + "▁particular ly", + "陪审 员", + "掌 握", + "▁im plementation", + "▁implement ation", + "▁ implementation", + "np rint", + "npr int", + "n print", + "▁p las", + "▁pl as", + "▁com mercial", + "▁ commercial", + "▁h ol", + "▁ho l", + "▁ hol", + "re ated", + "reat ed", + "reate d", + "rea ted", + "▁H ome", + "▁Hom e", + "▁Ho me", + "▁ Home", + "涉 及", + "er ate", + "era te", + "e rate", + "▁s ession", + "▁sess ion", + "▁ session", + "▁p ul", + "▁pu l", + "nt h", + "n th", + "od ies", + "odi es", + "o dies", + "报 道", + "ne tic", + "net ic", + "n etic", + "公 共", + "nv oid", + "n void", + "的 最", + "▁e r", + "▁ er", + "k w", + "尤 其", + "Equ al", + "Eq ual", + "E qual", + "ay ers", + "ayer s", + "aye rs", + "a yers", + "以 前", + "▁arch itect", + "Ru n", + "R un", + "▁re ports", + "▁rep orts", + "▁report s", + "▁ reports", + "ri a", + "r ia", + "日 止", + "危 险", + "▁con ver", + "▁conv er", + "▁conve r", + "▁p air", + "▁pa ir", + "▁ pair", + "本 文", + "▁inj ury", + "公 式", + "ia t", + "i at", + "in stance", + "inst ance", + "▁t ested", + "▁te sted", + "▁test ed", + "▁ tested", + "上诉 状", + "U E", + "na v", + "n av", + "她 的", + "nP eople", + "nPe ople", + "n People", + "es ter", + "est er", + "este r", + "e ster", + "U til", + "▁pl ans", + "▁plan s", + "on day", + "ond ay", + "onda y", + "▁F ind", + "▁Fin d", + "▁Fi nd", + "▁ Find", + "避 免", + "▁l egal", + "▁le gal", + "▁leg al", + "▁ legal", + "的 值", + "ci rc", + "cir c", + "c irc", + "ag on", + "ago n", + "a gon", + "本裁定送达后 即发生法律效力", + "▁f emale", + "▁fe male", + "▁fem ale", + "▁ female", + "▁reve aled", + "▁reveal ed", + "▁S olution", + "▁Sol ution", + "▁ Solution", + "▁c elebr", + "▁cele br", + "行 的", + "E O", + "▁p oor", + "▁po or", + "偿 还", + "ounc il", + "▁der ivative", + "▁deriv ative", + "人民 陪审员", + "▁S te", + "▁St e", + "▁ Ste", + "微 信", + "id ing", + "idi ng", + "idin g", + "i ding", + "as tr", + "ast r", + "a str", + "河南 省", + "河 南省", + "ma s", + "m as", + "▁cap acity", + "▁capac ity", + "▁ capacity", + "▁te levision", + "▁tele vision", + "▁telev ision", + "▁c lasses", + "▁class es", + "▁ classes", + "四川 省", + "▁ser ious", + "▁p ython", + "▁py thon", + "▁pyt hon", + "▁ python", + "IT Y", + "I TY", + "运 输", + "▁equ ipment", + "▁equip ment", + "▁V ol", + "▁Vo l", + "▁ Vol", + "Creat e", + "Cre ate", + "C reate", + "本 书", + "▁pl anning", + "▁plan ning", + "独 立", + "nW ith", + "n With", + "pe d", + "p ed", + "的 新", + "四 年", + "si m", + "s im", + "b i", + "审判 长", + "▁t rain", + "▁tr ain", + "▁tra in", + "▁ train", + "▁U sing", + "▁Us ing", + "▁ Using", + "St ream", + "▁f a", + "▁ fa", + "绝 对", + "▁r ules", + "▁rule s", + "▁rul es", + "▁ru les", + "▁ rules", + "uc ed", + "uce d", + "u ced", + "xm l", + "x ml", + "▁Ass ociation", + "▁Associ ation", + "▁ Association", + "▁I ll", + "▁Il l", + "▁ Ill", + "▁develop ing", + "▁re ceptor", + "▁recept or", + "▁ receptor", + "创 造", + "面 对", + "▁form ation", + "▁format ion", + "▁ formation", + "pro du", + "prod u", + "p rodu", + "机 制", + "▁s en", + "▁se n", + "▁ sen", + "{ %", + "▁Fr iday", + "▁Fri day", + "▁ Friday", + "for ce", + "f orce", + "力 量", + "▁en zym", + "ib ly", + "ibl y", + "i bly", + "or ders", + "ord ers", + "order s", + "orde rs", + "维 护", + "▁d ensity", + "▁dens ity", + "▁ density", + "▁ 公司", + "深 入", + "文 明", + "c i", + "▁g enerate", + "▁gener ate", + "▁gen erate", + "▁gene rate", + "▁genera te", + "▁ generate", + "▁sh ape", + "▁sha pe", + "▁ shape", + "nm s", + "n ms", + "▁sc ience", + "▁sci ence", + "▁ science", + "fi x", + "f ix", + "▁Found ation", + "▁ Foundation", + "Vers ion", + "V ersion", + "▁m oving", + "▁mov ing", + "▁mo ving", + "▁ moving", + "IT E", + "I TE", + "整 体", + "▁D avid", + "▁Da vid", + "▁Dav id", + "▁ David", + "▁( $", + "▁ ($", + "▁s yn", + "▁sy n", + "▁ syn", + "if ically", + "ific ally", + "▁h air", + "▁ha ir", + "▁ hair", + "▁benef its", + "▁benefit s", + "We b", + "W eb", + "消费 者", + "de lete", + "del ete", + "delet e", + "ca rd", + "car d", + "c ard", + "se s", + "s es", + "N O", + "▁m iddle", + "▁ middle", + "▁p icture", + "▁pict ure", + "▁pic ture", + "▁ picture", + "Lo ad", + "L oad", + "皮 肤", + "理 念", + "▁par ents", + "▁parent s", + "▁paren ts", + "▁ parents", + "Tab le", + "Ta ble", + "T able", + "▁T O", + "▁ TO", + "指 控", + "und le", + "▁st ream", + "▁stre am", + "▁ stream", + "E C", + "$$ \\\\", + "$$\\ \\", + "$ $\\\\", + "▁c ert", + "▁cer t", + "▁ce rt", + "▁ cert", + "s g", + "▁large st", + "▁larg est", + "▁lar gest", + "▁ largest", + "er ry", + "err y", + "u a", + "贸 易", + "▁T ime", + "▁Tim e", + "▁Ti me", + "▁ Time", + "nI s", + "n Is", + "ru m", + "r um", + "s w", + "自 身", + "he dule", + "hed ule", + "hedul e", + "▁re duction", + "▁redu ction", + "▁red uction", + "▁reduct ion", + "▁ reduction", + "▁Tr ump", + "▁ Trump", + "it chen", + "itc hen", + "itch en", + "分 布", + "讨 论", + "▁G reat", + "▁Gr eat", + "▁Gre at", + "▁ Great", + "▁A nal", + "▁An al", + "▁Ana l", + "▁ Anal", + "▁e lectric", + "▁elect ric", + "▁electr ic", + "▁ electric", + "特 殊", + "ry st", + "rys t", + "r yst", + "ac ters", + "act ers", + "acter s", + "▁M odel", + "▁Mod el", + "▁Mo del", + "▁Mode l", + "▁ Model", + "ve ctor", + "vec tor", + "v ector", + "▁c at", + "▁ca t", + "▁ cat", + "▁f resh", + "▁fr esh", + "▁fre sh", + "▁fres h", + "▁ fresh", + "一定 要", + "re q", + "r eq", + "▁act ual", + "▁ac tual", + "▁actu al", + "▁ actual", + "▁respon ses", + "▁response s", + "▁respons es", + "▁ responses", + "P D", + "▁re pe", + "▁rep e", + "flo at", + "f loat", + "▁al though", + "▁ although", + "▁j ud", + "▁ju d", + "▁ jud", + "nA ll", + "nAl l", + "n All", + "▁W ash", + "▁Was h", + "▁Wa sh", + "u y", + "包 含", + "▁f igure", + "▁fig ure", + "▁ figure", + "▁form ula", + "▁ formula", + "▁U se", + "▁Us e", + "▁ Use", + "角 色", + "▁b us", + "▁bu s", + "▁ bus", + "▁b ud", + "▁bu d", + "▁ bud", + "▁s erve", + "▁serv e", + "▁ser ve", + "▁ serve", + "多 次", + "南 京", + "合 议", + "el lo", + "ell o", + "▁w rote", + "▁wr ote", + "重 新", + "line s", + "li nes", + "lin es", + "l ines", + "f alse", + "er ia", + "eri a", + "e ria", + "利 率", + "地 点", + "ie n", + "i en", + "go ogle", + "goog le", + "了一 个", + "了 一个", + "▁Eng land", + "▁f at", + "▁fa t", + "▁ fat", + "▁p y", + "▁ py", + "▁b inding", + "▁bin ding", + "▁bind ing", + "▁ binding", + "推 动", + "▁all owed", + "▁allow ed", + "▁ allowed", + "它 们", + "sy s", + "s ys", + "M O", + "oo m", + "o om", + "▁s ources", + "▁source s", + "▁sour ces", + "▁ sources", + "▁re member", + "▁rem ember", + "▁ remember", + "发 挥", + "▁ch ance", + "▁cha nce", + "▁chan ce", + "case s", + "ca ses", + "cas es", + "c ases", + "k y", + "pro perty", + "prop erty", + "proper ty", + "计算 机", + "▁c m", + "▁ cm", + "风 格", + "ide os", + "ideo s", + "▁B ook", + "▁Bo ok", + "▁ Book", + "先 生", + "▁me asures", + "▁meas ures", + "▁measure s", + "display style", + "em plate", + "emp late", + "empl ate", + "限 制", + "ol f", + "o lf", + "os c", + "o sc", + "▁pro cessing", + "▁process ing", + "▁proc essing", + "▁ processing", + "▁s aw", + "▁sa w", + "十日 内", + "十 日内", + "武 汉", + "相 同", + "▁s urgery", + "▁surg ery", + "▁surge ry", + "▁dec ided", + "▁decide d", + "▁s ou", + "▁so u", + "IE S", + "I ES", + "▁b utton", + "▁but ton", + "▁butt on", + "▁ button", + "st ore", + "sto re", + "stor e", + "负责 人", + "sl ant", + "ce nter", + "cent er", + "c enter", + "▁r ock", + "▁ro ck", + "▁ rock", + "▁T ex", + "▁Te x", + "▁ Tex", + "无 论", + "▁C ouncil", + "资 产", + "L L", + "▁ex tract", + "▁extra ct", + "▁extr act", + "▁extrac t", + "▁ extract", + "▁im proved", + "▁impro ved", + "▁improve d", + "▁improv ed", + "ki ng", + "kin g", + "k ing", + "ber g", + "be rg", + "b erg", + "▁exper imental", + "▁experim ental", + "▁experi mental", + "▁experiment al", + "▁ experimental", + "▁w oman", + "▁wo man", + "▁ woman", + "三 年", + "nA t", + "n At", + "▁m aster", + "▁ma ster", + "▁mast er", + "▁mas ter", + "▁ master", + "iv il", + "ivi l", + "i vil", + "合议 庭", + "▁S T", + "▁ ST", + "▁there fore", + "▁ther efore", + "▁ therefore", + "▁D el", + "▁De l", + "▁ Del", + "▁del ivery", + "▁deliver y", + "▁ delivery", + "▁m ys", + "▁my s", + "▁ mys", + "▁t ouch", + "▁to uch", + "▁tou ch", + "▁ touch", + "▁part ners", + "▁partner s", + "数 是", + "▁l isted", + "▁li sted", + "▁list ed", + "▁ listed", + "▁div ided", + "▁divid ed", + "▁divide d", + "nTh anks", + "nThank s", + "n Thanks", + "es h", + "e sh", + "营 养", + "▁trans l", + "▁tra nsl", + "▁tran sl", + "▁ transl", + "消 息", + "▁W ed", + "▁We d", + "▁help s", + "▁hel ps", + "▁g iving", + "▁giv ing", + "▁gi ving", + "▁ giving", + "nor mal", + "norm al", + "n ormal", + "if ying", + "ify ing", + "▁In stitute", + "▁Instit ute", + "pat ch", + "p atch", + "▁enc our", + "Num ber", + "Nu mber", + "N umber", + "▁v ict", + "▁vi ct", + "▁vic t", + "ri ef", + "rie f", + "r ief", + "年 轻", + "▁def init", + "▁defin it", + "现 象", + "可 是", + "Fi l", + "F il", + "co ut", + "cou t", + "c out", + "图 片", + "异 议", + "M y", + "开 放", + "坐 标", + "▁at tract", + "▁attr act", + "二〇一 五年", + "pro ps", + "pr ops", + "prop s", + "▁O bject", + "▁Ob ject", + "▁ Object", + "让 人", + "\\\\ \"", + "th en", + "the n", + "t hen", + "▁r oll", + "▁ro ll", + "▁ roll", + "ar ant", + "ara nt", + "aran t", + "a rant", + "发展 的", + "▁N ov", + "▁No v", + "▁ Nov", + "▁h ous", + "▁ho us", + "▁F urther", + "▁Fur ther", + "▁外 文名", + "st on", + "sto n", + "s ton", + "▁character istics", + "▁characteristic s", + "▁c alc", + "▁ca lc", + "▁cal c", + "▁ calc", + "▁m ort", + "▁mor t", + "▁mo rt", + "▁ mort", + "照 片", + "AT H", + "A TH", + "▁s leep", + "▁sl eep", + "▁sle ep", + "▁ sleep", + "ph one", + "phon e", + "oy al", + "oya l", + "o yal", + "P R", + "▁school s", + "▁sch ools", + "创 业", + "▁连载 平台", + "亿 元", + "▁ad just", + "▁adj ust", + "▁ adjust", + "ha ps", + "h aps", + "▁中 国", + "▁ 中国", + "an tic", + "ant ic", + "anti c", + "▁s un", + "▁su n", + "▁ sun", + "an ges", + "ang es", + "ange s", + "as ket", + "ask et", + "▁th anks", + "▁than ks", + "▁thank s", + "▁ thanks", + "少 年", + "基 于", + "▁respons ible", + "▁S und", + "▁Sun d", + "▁Su nd", + "▁r apid", + "▁ra pid", + "▁rap id", + "pa n", + "p an", + "op tion", + "opt ion", + "o ption", + "▁de fine", + "▁def ine", + "▁defin e", + "▁ define", + "▁C am", + "▁Ca m", + "▁ Cam", + "▁s ys", + "▁sy s", + "▁ sys", + "▁T wo", + "▁Tw o", + "▁ Two", + "Ch ar", + "C har", + "▁in ternal", + "▁int ernal", + "▁inter nal", + "▁intern al", + "▁ internal", + "江苏 省", + "Ser ver", + "Serv er", + "Serve r", + "S erver", + "▁g rowing", + "▁gr owing", + "▁grow ing", + "▁gro wing", + "▁ growing", + "▁P rov", + "▁Pro v", + "▁Pr ov", + "▁ Prov", + "▁T H", + "▁ TH", + "ra nge", + "ran ge", + "r ange", + "log ger", + "▁res istance", + "▁resist ance", + "▁ resistance", + "ins tall", + "inst all", + "分 类", + "该 公司", + "et imes", + "etime s", + "eti mes", + "e times", + "is ation", + "isa tion", + "▁equ ations", + "▁equation s", + "▁eq uations", + "成 都", + "▁M ag", + "▁Ma g", + "▁ Mag", + "▁s ports", + "▁sp orts", + "▁sport s", + "▁spor ts", + "会 有", + "▁n eur", + "▁ne ur", + "▁ neur", + "ES S", + "E SS", + "而 是", + "ri m", + "r im", + "元 素", + "我 觉得", + "▁anal yz", + "▁analy z", + "▁ex cellent", + "▁excell ent", + "▁occ ur", + "▁oc cur", + "效 率", + "仔 细", + "▁ph osph", + "▁ phosph", + "▁ 刘", + "▁cent ury", + "▁ century", + "连 续", + "遇 到", + "▁A ny", + "▁An y", + "▁ Any", + "等 等", + "▁and roid", + "▁ android", + "ab et", + "abe t", + "a bet", + "▁pro file", + "▁prof ile", + "▁profil e", + "▁ profile", + "at tr", + "att r", + "行 动", + "▁e ight", + "▁ eight", + "▁l ib", + "▁li b", + "▁ lib", + "▁P al", + "▁Pa l", + "▁ Pal", + "数 学", + "ca r", + "c ar", + "▁c ounter", + "▁co unter", + "▁count er", + "▁cou nter", + "▁ counter", + "ig ger", + "igg er", + "不 了", + "值 得", + "比 例", + "ms elves", + "安 排", + "P T", + "最高人民法院 关于适用", + "最高人民法院关于 适用", + "▁oper ations", + "▁operation s", + "▁ operations", + "重庆 市", + "重 庆市", + "re te", + "ret e", + "r ete", + ") }", + "▁s tar", + "▁st ar", + "▁ star", + "▁v ent", + "▁ve nt", + "▁ven t", + "▁ vent", + "▁re action", + "▁react ion", + "▁ reaction", + "▁Re act", + "▁ React", + "▁p iece", + "▁pie ce", + "▁ piece", + "青 年", + "▁P aul", + "▁Pa ul", + "▁ Paul", + "▁t rust", + "▁tr ust", + "▁ trust", + "▁k in", + "▁ki n", + "▁ kin", + "▁st ock", + "▁sto ck", + "▁ stock", + "rib utes", + "ribut es", + "ribute s", + "▁sit uation", + "▁situ ation", + "it ems", + "ite ms", + "item s", + "构 成", + "▁m embr", + "▁mem br", + "nN ow", + "nNo w", + "n Now", + "力 的", + "ri cal", + "ric al", + "r ical", + "ic ine", + "ici ne", + "icin e", + "i cine", + "▁D ate", + "▁Dat e", + "▁Da te", + "▁ Date", + "广东 省", + "▁Q ue", + "▁Qu e", + "▁ Que", + "符合 法律规定", + "▁al ter", + "▁alt er", + "▁ alter", + "au d", + "a ud", + "▁p en", + "▁pe n", + "▁ pen", + "可 得", + "▁\\\\ (", + "▁ \\\\(", + "Js on", + "J son", + "▁f irm", + "▁fi rm", + "▁fir m", + "▁ firm", + "ar den", + "ard en", + "arde n", + "▁K e", + "▁ Ke", + "▁pos ted", + "▁post ed", + "▁po sted", + "augh ter", + "aught er", + "根 本", + "ra ise", + "rais e", + "r aise", + "进行了 审理", + "▁ad ding", + "▁add ing", + "▁ adding", + "保 全", + "北京 市", + "▁appro ximately", + "▁approxim ately", + "▁approx imately", + "▁approximate ly", + "▁ approximately", + "no r", + "n or", + "as er", + "ase r", + "a ser", + "uf eff", + "▁cont aining", + "▁contain ing", + "▁ containing", + "委 会", + "od ay", + "oda y", + "o day", + "▁comb ined", + "▁combin ed", + "▁combine d", + "▁ combined", + "▁old er", + "▁ol der", + "▁ older", + "▁R un", + "▁Ru n", + "▁ Run", + "幸 福", + "工 商", + "▁e arlier", + "▁ear lier", + "▁G reen", + "▁Gr een", + "▁Gree n", + "▁Gre en", + "▁ Green", + "主 题", + "▁rem ains", + "▁remain s", + "va n", + "v an", + "▁mor ning", + "ak ers", + "ake rs", + "aker s", + "a kers", + "▁the mselves", + "ec h", + "e ch", + "f a", + "on a", + "o na", + "val ues", + "value s", + "▁c arry", + "▁car ry", + "▁G erman", + "▁Germ an", + "▁Ger man", + "▁ German", + "的一 个", + "的 一个", + "os itory", + "osit ory", + "▁col umn", + "▁colum n", + "▁ column", + "re y", + "r ey", + "▁strateg ies", + "吉 林", + "▁d im", + "▁di m", + "▁ dim", + "▁Cl ub", + "▁ Club", + "的 影响", + "ic ate", + "ica te", + "▁l icense", + "▁lic ense", + "▁ license", + "成 果", + "球 队", + "▁n orth", + "▁nor th", + "▁ north", + "▁commun ication", + "▁communic ation", + "▁ communication", + "法律 文书", + "试 验", + "▁r ace", + "▁ra ce", + "▁rac e", + "▁ race", + "▁sup ply", + "▁suppl y", + "ape ut", + "de d", + "d ed", + "uc ture", + "uct ure", + "▁com ments", + "▁comm ents", + "▁comment s", + "▁ comments", + "▁conduct ed", + "ho use", + "hou se", + "h ouse", + "ri an", + "ria n", + "r ian", + "▁Al though", + "▁ Although", + "大 多", + "▁c redit", + "▁cre dit", + "▁cr edit", + "▁cred it", + "▁ credit", + "现 实", + "^{ \\\\", + "^ {\\\\", + "▁me aning", + "▁mean ing", + "▁ meaning", + "▁a ware", + "▁aw are", + "▁awa re", + "▁ aware", + "▁act ivation", + "▁activ ation", + "▁ activation", + "EM A", + "E MA", + "▁v ehicle", + "▁veh icle", + "▁ vehicle", + "▁err ors", + "▁error s", + "▁er rors", + "▁ errors", + "本 身", + "ap ped", + "app ed", + "appe d", + "a pped", + "▁app ears", + "▁appe ars", + "▁appear s", + "连 接", + "▁phot os", + "▁photo s", + "▁ photos", + "▁l ip", + "▁li p", + "▁ lip", + "om ial", + "omi al", + "urre nc", + "▁det ection", + "▁detect ion", + "▁ detection", + "▁H all", + "▁Ha ll", + "▁Hal l", + "▁d jango", + "▁ django", + "▁bo olean", + "▁bool ean", + "▁ boolean", + "por ary", + "pora ry", + "d i", + "▁k ids", + "▁kid s", + "▁ki ds", + "il s", + "i ls", + "▁an imals", + "▁anim als", + "▁animal s", + "▁M icrosoft", + "▁Micro soft", + "▁ Microsoft", + "▁subject s", + "▁G over", + "▁Go ver", + "▁Gov er", + "蛋 白", + "差 异", + "▁ins urance", + "▁s outh", + "▁so uth", + "▁sou th", + "▁ south", + "原 则", + ")/ (", + ") /(", + ": \"", + "no n", + "n on", + "▁h our", + "▁ho ur", + "▁ hour", + "算 法", + "所 在", + "F I", + "iv eness", + "ive ness", + "iven ess", + "的 工作", + "▁con vert", + "▁conver t", + "▁conv ert", + "▁conve rt", + "▁ convert", + "完 善", + "▁C heck", + "▁Ch eck", + "▁Che ck", + "▁ Check", + "▁gen etic", + "▁gene tic", + "▁ge netic", + "民间 借贷", + "▁c hemical", + "▁chem ical", + "▁ chemical", + "▁par ameter", + "▁paramet er", + "▁para meter", + "▁param eter", + "▁ parameter", + "se nd", + "sen d", + "s end", + "▁invest igate", + "▁investig ate", + "证 实", + "und red", + "▁t al", + "▁ta l", + "▁ tal", + "自治 区", + "' ]", + "▁direct ory", + "▁director y", + "▁ directory", + "A V", + "ke r", + "k er", + "机 器", + "UL L", + "U LL", + "▁pl us", + "▁ plus", + "背 景", + "▁de mand", + "▁dem and", + "▁ demand", + "改 善", + "年 代", + "▁s ometimes", + "▁some times", + "▁som etimes", + "▁sometime s", + "▁ sometimes", + "ateg ories", + "ategor ies", + "▁d ark", + "▁da rk", + "▁dar k", + "▁ dark", + "Cal l", + "Ca ll", + "C all", + "百 度", + "ro ught", + "rou ght", + "rough t", + "r ought", + "um an", + "uma n", + "u man", + "▁econ omic", + "▁ec onomic", + "▁econom ic", + "▁ economic", + "本 题", + "C K", + "nP l", + "n Pl", + "▁con centration", + "▁concent ration", + "▁concentr ation", + "组成 合议庭", + "▁A D", + "▁ AD", + "▁R el", + "▁Re l", + "▁ Rel", + "wh ich", + "▁S ur", + "▁Su r", + "▁ Sur", + "▁r ank", + "▁ra nk", + "▁ran k", + "▁ rank", + "over rightarrow", + "▁ap prec", + "▁app rec", + "▁appre c", + "以 为", + "▁s tri", + "▁st ri", + "▁str i", + "▁ stri", + "运 营", + "作出 的", + "作 出的", + "▁o rd", + "▁or d", + "▁ ord", + "▁in fo", + "▁inf o", + "▁ info", + "▁co ach", + "女 性", + "c p", + "欢 迎", + "推 广", + "▁t ra", + "▁tr a", + "▁ tra", + "▁e pis", + "▁ep is", + "事 情", + "来 源", + "▁p i", + "▁ pi", + "▁demonstr ated", + "▁demonstrate d", + "▁M ost", + "▁Mo st", + "▁Mos t", + "▁ Most", + "Lin k", + "Li nk", + "L ink", + "ol ved", + "olve d", + "olv ed", + "▁De sign", + "▁Des ign", + "▁ Design", + "▁m m", + "▁ mm", + "in ity", + "init y", + "ini ty", + "上海 市", + "上 海市", + "ar ts", + "art s", + "po l", + "p ol", + "幼 儿", + "▁g ave", + "▁ga ve", + "▁p ages", + "▁page s", + "▁pa ges", + "▁pag es", + "▁ pages", + "▁{ \\\\", + "▁{\\ \\", + "▁ {\\\\", + "ea l", + "e al", + "▁not ice", + "▁ notice", + "的 时间", + "▁small er", + "▁r ule", + "▁rul e", + "▁ru le", + "▁ rule", + "▁B ay", + "▁Ba y", + "▁ Bay", + "爱 情", + "S I", + "il la", + "ill a", + "i lla", + "▁fail ure", + "▁ failure", + "▁f loat", + "▁flo at", + "▁ float", + "H z", + "我 就", + "▁m g", + "▁ mg", + "▁sup ported", + "▁support ed", + "▁ supported", + "不 用", + "de p", + "d ep", + "▁s itu", + "▁sit u", + "▁si tu", + "▁cons ult", + "▁ consult", + "} /", + "▁b ur", + "▁bu r", + "▁ bur", + "fr ont", + "fro nt", + "} ^", + "▁Ar ch", + "▁Arc h", + "▁ Arch", + "ab ilities", + "abil ities", + "hem ical", + ">< /", + "> (", + "▁con v", + "▁co nv", + "▁ conv", + "an ta", + "ant a", + "▁i gn", + "▁ig n", + "▁ ign", + "另 一", + "▁ex plain", + "▁exp lain", + "▁expl ain", + "▁com pre", + "▁comp re", + "▁compr e", + "W A", + "期间 的", + "期 间的", + "▁p regn", + "▁pre gn", + "此 外", + "DI T", + "D IT", + "▁S ervices", + "▁Service s", + "▁Serv ices", + "▁ Services", + "▁op erator", + "▁oper ator", + "▁opera tor", + "▁ operator", + "▁w ed", + "▁we d", + "▁ wed", + "▁s ymbol", + "▁sym bol", + "▁ symbol", + "ab in", + "abi n", + "a bin", + "▁gu arant", + "▁min or", + "▁mi nor", + "▁ minor", + "▁S how", + "▁Sh ow", + "▁ Show", + "▁bud get", + "▁ budget", + "婚 姻", + "动 车", + "革 命", + "▁B usiness", + "▁Bus iness", + "▁ Business", + "歌 曲", + "▁I ts", + "▁It s", + "▁ Its", + "dr aw", + "d raw", + "mi d", + "m id", + "▁K ey", + "▁Ke y", + "▁ Key", + "▁un known", + "▁ unknown", + "▁com pare", + "▁comp are", + "▁compar e", + "▁ compare", + "公 示", + "▁l iver", + "▁li ver", + "▁live r", + "▁liv er", + "▁ liver", + "▁cor responding", + "▁correspon ding", + "▁correspond ing", + "▁de lay", + "▁del ay", + "▁ delay", + "▁M ichael", + "▁Mich ael", + "▁Mic hael", + "▁ Michael", + "▁s in", + "▁si n", + "▁ sin", + "广 大", + "el ines", + "eline s", + "eli nes", + "elin es", + "e lines", + "装 修", + "in ite", + "init e", + "ini te", + "民间借贷 纠纷一案", + "民间借贷纠纷 一案", + "Si m", + "S im", + "的人 数", + "的 人数", + "▁be comes", + "▁bec omes", + "▁become s", + "ur a", + "u ra", + "▁aff ected", + "▁affect ed", + "▁ affected", + "RO M", + "R OM", + "循 环", + "多 个", + "下 降", + "八 年", + "▁br anch", + "▁bra nch", + "▁ branch", + "el i", + "e li", + "▁A R", + "▁ AR", + "中华人民共和国 刑法", + "▁in struction", + "▁instr uction", + "▁instruct ion", + "▁ instruction", + "pl ements", + "ple ments", + "plement s", + "p lements", + "▁S am", + "▁Sa m", + "▁ Sam", + "▁De velopment", + "▁Develop ment", + "▁ Development", + "Pos t", + "Po st", + "P ost", + "文 字", + "## ###", + "#### #", + "### ##", + "# ####", + "微 博", + "▁business es", + "requ ired", + "require d", + "生 育", + "▁p ictures", + "▁pict ures", + "▁picture s", + "▁pic tures", + "几 乎", + "ro ad", + "r oad", + "ou ter", + "out er", + "oute r", + "o uter", + "▁d eb", + "▁de b", + "▁ deb", + "评 估", + "选 出", + "dir ect", + "di rect", + "d irect", + "F l", + "英 雄", + "▁L ine", + "▁Lin e", + "▁Li ne", + "▁ Line", + "▁decre ased", + "▁decrease d", + "▁G ood", + "▁Go od", + "▁ Good", + "OR D", + "O RD", + "搜 索", + "er man", + "erm an", + "pl an", + "p lan", + "▁stat ist", + "l anguage", + "是 因为", + "az ine", + "azi ne", + "▁p et", + "▁pe t", + "▁ pet", + "▁ne ut", + "▁ neut", + "▁st ories", + "▁sto ries", + "▁ stories", + "us tr", + "ust r", + "u str", + "pa y", + "p ay", + ")\\\\ )", + ") \\\\)", + "▁off ered", + "▁offer ed", + "▁[ \"", + "▁ [\"", + "▁b order", + "▁bor der", + "▁ border", + "sh ire", + "shi re", + "s hire", + "▁G NU", + "▁ GNU", + "▁network s", + "▁net works", + "▁ networks", + "良好 的", + "良 好的", + "应 予", + "bl og", + "blo g", + "b log", + "Re d", + "R ed", + "▁control s", + "▁contr ols", + "▁ controls", + "▁appe ared", + "▁appear ed", + "大 量", + "的 好", + "上 了", + "to tal", + "tot al", + "t otal", + "高 校", + "具 备", + "▁B oard", + "▁Bo ard", + "▁ Board", + "▁in ternet", + "▁inter net", + "▁intern et", + "▁ internet", + "▁invest ment", + "贵 州", + "向本院 申请", + "▁J er", + "▁Je r", + "▁d ress", + "▁dr ess", + "▁fin ish", + "▁ finish", + "de l", + "d el", + "主 席", + "▁feed back", + "▁ feedback", + "bl ob", + "blo b", + "b lob", + "pl ugin", + "plug in", + "▁Fr anc", + "▁Fra nc", + "▁ex ternal", + "▁ext ernal", + "▁extern al", + "▁ external", + "▁f ish", + "▁fi sh", + "▁ fish", + "接 触", + "ience s", + "ien ces", + "i ences", + "▁ad ults", + "▁adult s", + "▁adul ts", + "自 我", + "▁work ers", + "▁wor kers", + "▁worker s", + "▁ workers", + "生 长", + "bo ot", + "b oot", + "ag en", + "age n", + "a gen", + "▁f urn", + "▁fur n", + "▁fu rn", + "▁ 选项", + "▁[ \\'", + "▁[\\ '", + "▁ [\\'", + "▁ex amine", + "▁exam ine", + "在 服刑", + "神 经", + "▁e lev", + "▁el ev", + "▁ele v", + "B O", + "▁arg ument", + "▁argu ment", + "▁ argument", + "▁An gel", + "▁Ang el", + "导 演", + "唯 一", + "对 其", + "▁( \"", + "▁ (\"", + "▁op ening", + "▁open ing", + "▁ opening", + "▁St ep", + "▁Ste p", + "▁ Step", + "▁T uesday", + "W S", + "ro ke", + "r oke", + "▁invest igation", + "▁investig ation", + "▁dep artment", + "▁depart ment", + "▁ department", + "B l", + "▁de tail", + "▁det ail", + "▁ detail", + "re fix", + "ref ix", + "up s", + "u ps", + "\\' :\\", + "\\': \\", + "\\ ':\\", + "▁A tt", + "▁At t", + "▁ Att", + "挑 战", + "▁S y", + "▁ Sy", + "er ies", + "eri es", + "erie s", + "e ries", + "it ure", + "itu re", + "i ture", + "▁s hot", + "▁sh ot", + "▁ shot", + "in ates", + "ina tes", + "inate s", + "▁s ides", + "▁side s", + "▁si des", + "▁sid es", + "▁d u", + "▁ du", + "▁m il", + "▁mi l", + "▁ mil", + "通知 书", + "男 人", + "▁rem oved", + "▁remove d", + "▁remov ed", + "▁ removed", + "Op en", + "O pen", + "us ers", + "user s", + "use rs", + "nS h", + "n Sh", + "▁demonstr ate", + "会 计", + "conn ect", + "ig nment", + "ign ment", + "▁w ind", + "▁win d", + "▁wi nd", + "▁ wind", + "ir t", + "i rt", + "am il", + "ami l", + "a mil", + "▁co eff", + "▁ coeff", + "cm d", + "c md", + "an der", + "and er", + "ande r", + "a nder", + "ro c", + "r oc", + "▁ins ert", + "▁ insert", + "▁immun e", + "▁imm une", + "▁ immune", + "▁came ra", + "▁cam era", + "▁ camera", + "线 索", + "▁Se cond", + "▁Sec ond", + "▁ Second", + "▁S l", + "▁ Sl", + "ul ty", + "ult y", + "▁p an", + "▁pa n", + "▁ pan", + "公 路", + "ak s", + "a ks", + "il on", + "ilo n", + "i lon", + "西 安", + "一定 的", + "一 定的", + "▁f ol", + "▁fo l", + "▁ fol", + "▁A nn", + "▁An n", + "▁ Ann", + "d r", + "▁Car ol", + "▁Ca rol", + "es ome", + "e some", + "下 午", + "给 我", + "▁con firm", + "▁conf irm", + "▁ confirm", + "▁ob jective", + "▁object ive", + "▁obj ective", + "▁ objective", + "sh ould", + "▁inter pret", + "▁ interpret", + "数 列", + "▁b rought", + "▁br ought", + "▁bro ught", + "um s", + "u ms", + "▁Th ank", + "▁Than k", + "▁ Thank", + "LIC ENSE", + "▁s pot", + "▁sp ot", + "▁spo t", + "▁ spot", + "▁sec onds", + "▁second s", + "▁ seconds", + "▁reg ulation", + "▁regul ation", + "▁ regulation", + "本院在审理 原告", + "ip ping", + "ipp ing", + "ippi ng", + "i pping", + "ed y", + "e dy", + "Res ource", + "Re source", + "月 份", + "▁compar ison", + "向 原告", + "▁let ters", + "▁letter s", + "▁ letters", + "ba l", + "b al", + "受理 后", + "▁出版 社", + "▁ 出版社", + "▁ac ute", + "▁ acute", + "en ed", + "ene d", + "e ned", + "Int eger", + "asket ball", + "供 应", + "终结 本次执行程序", + "终结本次执行 程序", + "▁Olymp ics", + "▁Olympic s", + "am ing", + "amin g", + "ami ng", + "a ming", + "考 核", + "放 弃", + "en a", + "e na", + "含 量", + "▁ch anging", + "▁chang ing", + "▁chan ging", + "▁ changing", + "▁adv antage", + "▁advant age", + "▁pl ants", + "▁plan ts", + "▁plant s", + "▁ plants", + "▁art icles", + "▁article s", + "▁artic les", + "▁ articles", + "math cal", + "t n", + "▁integr al", + "be fore", + "b efore", + "重 视", + "▁T ur", + "▁Tu r", + "▁ Tur", + "AC K", + "A CK", + "▁c it", + "▁ci t", + "▁ cit", + "act iv", + "st ep", + "ste p", + "▁le ads", + "▁lead s", + "管 辖", + "urs or", + "▁g rand", + "▁gr and", + "▁gran d", + "▁gra nd", + "▁ grand", + "做 出", + "al low", + "all ow", + "allo w", + "▁in come", + "▁inc ome", + "▁ income", + "olog ic", + "olo gic", + "o logic", + "愿 意", + "更 好", + "▁aspect s", + "▁asp ects", + "▁B ank", + "▁Ba nk", + "▁Ban k", + "▁ Bank", + "▁a sync", + "▁as ync", + "▁ async", + "▁he avy", + "▁heav y", + "▁ heavy", + "色 的", + "在一 起", + "在 一起", + "种 植", + "感 受", + "ir o", + "i ro", + "▁r ing", + "▁ri ng", + "▁ ring", + "▁off ering", + "▁offer ing", + "Pro ject", + "* (", + "第一百四十五 条第一款", + "第一百四十五条 第一款", + "▁m agn", + "▁mag n", + "▁ma gn", + "▁ magn", + "PR O", + "P RO", + "▁c atal", + "▁ca tal", + "▁cat al", + "▁ catal", + "E E", + "n Q", + "Pe r", + "P er", + "y e", + "ag ment", + "a gment", + "Ed it", + "E dit", + "am ine", + "amin e", + "ami ne", + "a mine", + "▁sy nd", + "▁syn d", + "Pa ss", + "P ass", + "▁t rip", + "▁tr ip", + "▁tri p", + "▁ trip", + "fil l", + "fi ll", + "f ill", + "ran dom", + "rand om", + "r andom", + "▁l iqu", + "▁li qu", + "▁c arbon", + "▁car bon", + "▁carb on", + "▁ carbon", + "▁Th ursday", + "▁ Thursday", + "电 池", + "▁conf irmed", + "▁confirm ed", + "▁ confirmed", + "▁C ode", + "▁Co de", + "▁Cod e", + "▁ Code", + "▁b eta", + "▁be ta", + "▁bet a", + "▁ beta", + "▁A v", + "▁ Av", + "组 合", + "▁con sequ", + "▁cons equ", + "▁L ake", + "▁La ke", + "▁Lak e", + "▁at tend", + "▁att end", + "▁atten d", + "▁oper ating", + "▁opera ting", + "哈 哈", + "河北 省", + "河 北省", + "▁v an", + "▁va n", + "▁ van", + "nC on", + "nCo n", + "n Con", + "▁d river", + "▁dr iver", + "▁dri ver", + "▁driv er", + "▁drive r", + "▁ driver", + "▁E qu", + "▁Eq u", + "▁ Equ", + "vo l", + "v ol", + "方面 的", + "方 面的", + "节 目", + "▁k itchen", + "▁kit chen", + "▁d rink", + "▁dr ink", + "▁dri nk", + "▁t opic", + "▁to pic", + "▁top ic", + "▁ topic", + "做 到", + "▁spec ified", + "▁ specified", + "__ ______", + "____ ____", + "______ __", + "___ _____", + "_____ ___", + "▁prep ared", + "▁prepar ed", + "▁prepare d", + "▁ prepared", + "▁M ad", + "▁Ma d", + "▁ Mad", + "▁W estern", + "▁West ern", + "▁Wes tern", + "▁ Western", + "categor y", + "c ategory", + "▁c onstr", + "▁con str", + "▁co nstr", + "▁cons tr", + "▁const r", + "cl oud", + "趋 势", + "▁E very", + "▁Ev ery", + "▁Ever y", + "▁Eve ry", + "▁ Every", + "▁c auses", + "▁ca uses", + "▁cause s", + "▁caus es", + "会 员", + "配 合", + "cu t", + "c ut", + "固 定", + "故 选", + "▁met abol", + "▁metab ol", + "▁meta bol", + "经 典", + "▁f ocused", + "▁foc used", + "▁focus ed", + "▁ focused", + "▁ 的", + "ven ue", + "v enue", + "▁football ers", + "▁footballer s", + "yi ng", + "y ing", + "▁C all", + "▁Cal l", + "▁Ca ll", + "▁ Call", + "▁C olor", + "▁Col or", + "▁Co lor", + "▁ Color", + "il ing", + "ili ng", + "ilin g", + "i ling", + "d t", + "▁T or", + "▁To r", + "▁ Tor", + "▁re nt", + "▁r ent", + "▁ rent", + "▁mem brane", + "▁membr ane", + "▁ membrane", + "() ,\\", + "(), \\", + "( ),\\", + "art icle", + "素 质", + "▁success fully", + "▁successful ly", + "声 音", + "▁M usic", + "▁Mus ic", + "▁ Music", + "本 金", + "un te", + "unt e", + "u nte", + "fa st", + "fas t", + "f ast", + "网络 小说", + "▁relations hips", + "▁relationship s", + "▁relation ships", + "▁O b", + "▁ Ob", + "▁ed itor", + "▁edit or", + "▁ editor", + "//// ////", + "▁e yes", + "▁ey es", + "▁eye s", + "▁e nable", + "▁en able", + "▁ enable", + "▁week end", + "▁out come", + "▁de tailed", + "▁det ailed", + "▁detail ed", + "▁w ants", + "▁want s", + "br id", + "b rid", + "t ension", + "ogen esis", + "ogene sis", + "ogenes is", + "o genesis", + "en try", + "ent ry", + "e ntry", + "ze n", + "z en", + "▁sugg ested", + "▁suggest ed", + ")) ,\\", + ")), \\", + ") ),\\", + "cri be", + "crib e", + "cr ibe", + "c ribe", + "态 度", + "投 入", + "优 质", + "那 种", + "吸 引", + ")$ \\", + ") $\\", + "▁a lt", + "▁al t", + "▁ alt", + "▁主 要", + "▁ 主要", + "Up date", + "准 确", + "▁c as", + "▁ca s", + "▁ cas", + "▁w asn", + "▁was n", + "▁wa sn", + "▁C onn", + "▁Con n", + "▁Co nn", + "▁ Conn", + "经 本院", + "▁W ednesday", + "▁Wed nesday", + "in gu", + "ing u", + "的 方式", + "ri e", + "r ie", + "怎 样", + "est amp", + "esta mp", + "e stamp", + "装 饰", + "▁adv ance", + "的一 种", + "的 一种", + "B U", + "se ct", + "sec t", + "s ect", + "▁trans ition", + "▁transit ion", + "▁ transition", + "▁R oman", + "▁Ro man", + "▁Rom an", + "▁Roma n", + "▁ Roman", + "实 力", + "or ter", + "ort er", + "orte r", + "▁Off ice", + "▁ Office", + "▁T our", + "▁To ur", + "▁Tou r", + "▁ Tour", + "▁cl oud", + "▁ cloud", + "研究 生", + "rom ise", + "▁M anagement", + "▁Man agement", + "▁Manag ement", + "▁Manage ment", + "▁ Management", + "ot hing", + "oth ing", + "o thing", + "追 求", + "dj ango", + "djang o", + "d jango", + "您 的", + "▁fe et", + "▁fee t", + "认 罪", + "逐 渐", + "▁main tain", + "▁maint ain", + "例 如", + "湖南 省", + "湖 南省", + "▁b atter", + "▁bat ter", + "▁batt er", + "tp rivate", + "t private", + "物 流", + "ou l", + "o ul", + "▁requ ests", + "▁request s", + "▁ requests", + "▁P ress", + "▁Pr ess", + "▁Pres s", + "▁Pre ss", + "▁ Press", + "▁tra ffic", + "▁traff ic", + "▁ traffic", + "▁R equ", + "▁Re qu", + "▁ Requ", + "spring framework", + "▁measure ments", + "▁measurement s", + "an al", + "ana l", + "a nal", + "我 也", + "nH istory", + "nHi story", + "n History", + "号 刑事", + "▁V er", + "▁Ve r", + "▁ Ver", + "in ant", + "ina nt", + "i nant", + "与被 执行人", + "与 被执行人", + "▁c overed", + "▁cover ed", + "▁cov ered", + "▁ covered", + "ta sk", + "tas k", + "t ask", + "ar c", + "a rc", + "▁C le", + "▁Cl e", + "上 市", + "资 格", + "qu are", + "qua re", + "高 速", + "▁th ick", + "▁thi ck", + "▁ thick", + "让 你", + "fo und", + "f ound", + "▁p aid", + "▁pa id", + "▁ paid", + "▁出版 时间", + "▁ 出版时间", + "le ts", + "let s", + "l ets", + "▁M ass", + "▁Ma ss", + "▁Mas s", + "▁ Mass", + "▁big gest", + "▁se vere", + "▁sever e", + "收 到", + "▁Com put", + "▁Comp ut", + "▁ Comput", + "▁other wise", + "▁ otherwise", + "▁power ful", + "最 小", + "公司 的", + "Ne t", + "N et", + "t m", + "去 年", + "% \\", + "▁T om", + "▁To m", + "▁ Tom", + "▁art ist", + "▁ artist", + "永 远", + "as ion", + "asi on", + "▁D ev", + "▁De v", + "▁ Dev", + "de m", + "d em", + "▁S il", + "▁Si l", + "▁ Sil", + "认 证", + "cl usive", + "clus ive", + "▁U RL", + "▁UR L", + "▁ URL", + "称 为", + "▁o nto", + "▁on to", + "▁ont o", + "▁ onto", + "ner gy", + "nerg y", + "n ergy", + "▁ £", + "指 数", + "F e", + "污 染", + "自 行", + "▁p ip", + "▁pi p", + "▁ pip", + "▁un c", + "▁u nc", + "▁ unc", + "传 奇", + "▁c ellular", + "▁cell ular", + "▁ cellular", + "美 术", + "ge q", + "g eq", + "il ler", + "ill er", + "ille r", + "i ller", + "ook s", + "oo ks", + "o oks", + "原 理", + "工作 的", + "工 作的", + "point s", + "po ints", + "p oints", + "房 产", + "▁▁ ▁▁▁", + "▁▁▁▁ ▁", + "▁▁▁ ▁▁", + "▁ ▁▁▁▁", + "▁ 游戏", + "指 出", + "▁k id", + "▁ki d", + "▁ kid", + "math bf", + "os a", + "o sa", + ")$ $", + ") $$", + "名 单", + "检 验", + "Ac c", + "A cc", + "▁spec ifically", + "▁specific ally", + "▁t oken", + "▁to ken", + "▁tok en", + "▁ token", + "O K", + "简 易", + "m g", + "ri z", + "r iz", + "▁Ge orge", + "▁Georg e", + "▁ George", + "▁de rived", + "▁der ived", + "▁deriv ed", + "▁derive d", + "▁ derived", + "▁p late", + "▁pl ate", + "▁plat e", + "▁ plate", + "cu r", + "c ur", + "▁c alls", + "▁call s", + "▁cal ls", + "▁ calls", + "提供 了", + "ya n", + "y an", + "护 理", + "获 取", + "▁\" \"", + "▁ \"\"", + "豆 瓣", + "▁Can adian", + "▁Canad ian", + "▁ Canadian", + "▁al pha", + "▁alph a", + "▁ alpha", + "▁W ell", + "▁We ll", + "▁Wel l", + "▁ Well", + "▁Com mit", + "▁Comm it", + "▁ Commit", + "▁S cott", + "▁Sc ott", + "▁Scot t", + "▁ Scott", + "多 年", + "缴 纳", + "我 想", + "▁i ce", + "▁ic e", + "▁ ice", + "ac cess", + "acc ess", + "a ccess", + "▁major ity", + "▁W hy", + "▁Wh y", + "▁ Why", + "▁ext remely", + "▁extrem ely", + "▁extreme ly", + "bi g", + "b ig", + "▁ex change", + "▁ exchange", + "▁com prehens", + "▁compre hens", + "ans ion", + "ansi on", + "▁g ar", + "▁ga r", + "▁ gar", + "ic tor", + "ict or", + "i ctor", + "▁autom atically", + "▁automatic ally", + "有 着", + "▁B oth", + "▁Bo th", + "▁Bot h", + "▁ Both", + "主 持", + "bur g", + "bu rg", + "b urg", + "ia nt", + "ian t", + "i ant", + "▁Ex per", + "▁Exp er", + "▁ Exper", + "格 式", + "W ork", + "po wer", + "pow er", + "p ower", + "V al", + "就 不", + "广 场", + "▁ob vious", + "▁d aughter", + "▁ daughter", + "KE Y", + "K EY", + "▁WARRANT IES", + "一 位", + "修 改", + "th row", + "thro w", + "thr ow", + "▁t heme", + "▁the me", + "▁th eme", + "▁them e", + "▁ theme", + "官 方", + "▁O per", + "▁Op er", + "▁ Oper", + "校 园", + "▁own er", + "▁ow ner", + "▁ owner", + "▁% }\\", + "▁%} \\", + "▁ %}\\", + "> :", + "fr ame", + "fram e", + "fra me", + "f rame", + "▁c ash", + "▁ca sh", + "▁cas h", + "▁ cash", + "▁Di vision", + "▁Div ision", + "▁Divis ion", + "mo r", + "m or", + "▁con ference", + "▁confer ence", + "▁ conference", + "出版 的", + "出 版的", + "ag ement", + "age ment", + "agem ent", + "▁c orpor", + "▁cor por", + "um er", + "ume r", + "u mer", + "| |", + "P P", + "▁al bums", + "▁album s", + "am l", + "a ml", + "urre ncy", + "urrenc y", + "al i", + "a li", + "▁fac ilit", + "批 准", + "他 人", + "nt o", + "n to", + "re place", + "名 的", + "▁def initely", + "▁definit ely", + "▁defin itely", + "▁definite ly", + "有 哪些", + "la b", + "l ab", + "▁U nder", + "▁Un der", + "▁Und er", + "▁ Under", + "ad y", + "a dy", + "uc e", + "u ce", + "▁v en", + "▁ve n", + "▁ ven", + "▁turn ed", + "▁tur ned", + "▁ turned", + "反 映", + "▁acc uracy", + "▁accur acy", + "▁ accuracy", + "fo l", + "f ol", + "▁ 国", + "爱 的", + "▁e lim", + "▁el im", + "▁ach ieved", + "▁achieve d", + "” “", + "▁main tenance", + "▁bal ance", + "▁ balance", + "▁de ploy", + "▁dep loy", + "▁ deploy", + "上 面", + "sc ri", + "scr i", + "s cri", + "欧 洲", + "im s", + "i ms", + "▁adv ice", + "oc ytes", + "ocyte s", + "ocyt es", + "▁ad vert", + "▁adv ert", + "▁ advert", + "▁integr ation", + "▁ integration", + "美 的", + "od er", + "ode r", + "o der", + "至 于", + "nN o", + "n No", + "▁st rict", + "▁str ict", + "▁stri ct", + "▁ strict", + "▁s pend", + "▁sp end", + "▁spe nd", + "被 害", + "nC an", + "n Can", + "av is", + "avi s", + "a vis", + "pd f", + "p df", + "总 部", + "▁h ab", + "▁ha b", + "▁ hab", + "▁he ard", + "▁hear d", + "ri nt", + "rin t", + "r int", + "正 当", + "in n", + "i nn", + "担 任", + "nS up", + "n Sup", + "晚 上", + "▁concentration s", + "▁concentr ations", + "▁rep resents", + "▁represent s", + "好 了", + "如 今", + "am i", + "a mi", + "▁W omen", + "▁Wo men", + "▁ Women", + "ec k", + "e ck", + "M C", + "▁b illion", + "▁bill ion", + "▁bil lion", + "▁rel ax", + "▁ relax", + "▁m ixed", + "▁mix ed", + "▁ mixed", + "多 了", + "▁re strict", + "▁rest rict", + "▁restr ict", + "▁I L", + "▁ IL", + "yn omial", + "] ]", + "▁C ap", + "▁Ca p", + "▁ Cap", + "ro t", + "r ot", + "确定 的义务", + "确定的 义务", + "do uble", + "dou ble", + "d ouble", + "▁m orph", + "▁mor ph", + "▁ morph", + "的 不", + "▁em erg", + "▁emer g", + "▁ emerg", + "( _", + "▁per missions", + "▁permission s", + "▁perm issions", + "▁ permissions", + "en ter", + "ent er", + "ente r", + "e nter", + "▁F lorida", + "▁Flor ida", + "职 务", + "et t", + "e tt", + "ess ions", + "ession s", + "▁organ izations", + "▁organization s", + "abet es", + "abe tes", + "▁ther apeutic", + "es ted", + "est ed", + "este d", + "e sted", + "▁W illiam", + "▁Willi am", + "▁Will iam", + "▁ William", + "此 次", + "** (", + "* *(", + "T C", + "递交 上诉状", + "河 南", + "性 和", + "▁h arm", + "▁har m", + "▁ha rm", + "▁ harm", + "太 阳", + "▁s plit", + "▁sp lit", + "▁spl it", + "▁ split", + "发 行", + "同 样", + "▁J apanese", + "▁Japan ese", + "▁ Japanese", + "所 属", + "公 园", + "▁M any", + "▁Man y", + "▁Ma ny", + "▁ Many", + "▁S ep", + "▁Se p", + "▁ Sep", + "都 能", + "Ta sk", + "T ask", + "▁w ire", + "▁wi re", + "▁ wire", + "od ed", + "ode d", + "o ded", + "司 法", + "List ener", + "Listen er", + "▁c andidate", + "▁candid ate", + "▁ candidate", + "德 国", + "▁inv olve", + "▁invol ve", + "D I", + "▁we ather", + "▁ weather", + "id ers", + "ide rs", + "ider s", + "i ders", + "▁m otion", + "▁mot ion", + "▁mo tion", + "▁ motion", + "av our", + "avo ur", + "line ar", + "li near", + "lin ear", + "V E", + "Pr e", + "P re", + "适 应", + "▁l eader", + "▁le ader", + "▁lead er", + "▁ leader", + "S p", + "print ln", + "各 项", + "▁ ^", + "at ever", + "ate ver", + "mi c", + "m ic", + "即 使", + "家 里", + "选项 中", + "ip l", + "i pl", + "▁de cor", + "▁dec or", + "▁ decor", + "▁res pond", + "▁respon d", + "▁resp ond", + "▁ respond", + "vent ional", + "vention al", + "高 度", + "相 比", + "▁anal yzed", + "▁analy zed", + "▁analyz ed", + "▁analyze d", + "总 是", + "▁ag reement", + "▁agre ement", + "▁agree ment", + "▁acc el", + "▁ac cel", + "实 行", + "▁man age", + "▁manag e", + "▁ manage", + "▁p ed", + "▁pe d", + "▁ ped", + "▁girl s", + "▁gir ls", + "▁R obert", + "▁Rob ert", + "▁Ro bert", + "▁Rober t", + "▁ Robert", + "ni ght", + "n ight", + "▁b elong", + "▁be long", + "▁bel ong", + "Th read", + "▁ne arest", + "▁near est", + "▁p lot", + "▁pl ot", + "▁ plot", + "do or", + "d oor", + "▁aff ord", + "▁af ford", + "▁ded icated", + "Ho w", + "H ow", + "想 到", + "遵 守", + "▁M ont", + "▁Mon t", + "▁Mo nt", + "▁ Mont", + "ell ular", + "▁S un", + "▁Su n", + "▁ Sun", + "V D", + "F O", + "贡 献", + "▁f ont", + "▁fo nt", + "▁ font", + "我 不", + "▁pract ices", + "▁practice s", + "▁Ch ild", + "▁Chi ld", + "▁ Child", + "▁con ven", + "▁conv en", + "▁conve n", + "ud o", + "u do", + "\\\\ )\\", + "\\\\) \\", + "▁Christ mas", + "M I", + "▁improve ment", + "▁improv ement", + "▁G en", + "▁Ge n", + "▁ Gen", + "一 段", + "{ }", + "手 段", + "ed it", + "edi t", + "e dit", + "提 示", + "▁decre ase", + "ma ke", + "mak e", + "m ake", + "▁B ecause", + "▁Be cause", + "▁Bec ause", + "▁ Because", + "▁s table", + "▁st able", + "▁stab le", + "▁ stable", + "相 互", + "村 民", + "其 它", + "cl ear", + "cle ar", + "c lear", + "战 争", + "▁A lex", + "▁Al ex", + "▁Ale x", + "▁ Alex", + "▁est imated", + "▁estim ated", + "▁estimate d", + "▁sc heme", + "▁sch eme", + "▁ scheme", + "▁m essages", + "▁message s", + "▁mess ages", + "▁ messages", + "玻 璃", + "Cl ick", + "Cli ck", + "C lick", + "▁th ank", + "▁than k", + "& #", + "cus tom", + "c ustom", + "Ba ck", + "B ack", + "nD es", + "nDe s", + "n Des", + "▁n ative", + "▁nat ive", + "▁ native", + "▁d riving", + "▁dr iving", + "▁dri ving", + "▁driv ing", + "▁ driving", + "Fil ter", + "▁inter val", + "▁ interval", + "罗 斯", + "h r", + "▁d oll", + "▁do ll", + "▁dol l", + "▁Pro fess", + "▁Prof ess", + "▁f inite", + "▁fin ite", + "▁) ;\\", + "▁); \\", + "▁ );\\", + "确有 悔改表现", + "▁A S", + "▁ AS", + "▁W ill", + "▁Wil l", + "▁Wi ll", + "▁ Will", + "▁{ }", + "▁ {}", + "name s", + "na mes", + "nam es", + "n ames", + "▁G rand", + "▁Gr and", + "▁Gra nd", + "▁Gran d", + "▁ Grand", + "流 程", + "▁sc hedul", + "gorith ms", + "gorithm s", + "▁al cohol", + "ak ed", + "ake d", + "end if", + "▁re views", + "▁review s", + "▁ reviews", + "ut ed", + "ute d", + "u ted", + "才 是", + "Func tion", + "Fun ction", + "F unction", + "上诉 于", + "▁R ussian", + "▁Russ ian", + "▁Russia n", + "▁ Russian", + "ac ks", + "ack s", + "a cks", + "各 类", + "▁D O", + "▁ DO", + "…… \\", + "… …\\", + "▁I nf", + "▁In f", + "▁ Inf", + "▁de lete", + "▁del ete", + "▁delet e", + "▁ delete", + "Log ger", + "就 像", + "an ning", + "ann ing", + "anni ng", + "io logical", + "iol ogical", + "iologic al", + "i ological", + "最 新", + "Ap plication", + "▁re ached", + "▁reach ed", + "▁ident ity", + "▁id entity", + "▁ identity", + "raz il", + "系统 的", + "il ed", + "ile d", + "i led", + "▁c alculate", + "▁calcul ate", + "▁calc ulate", + "▁ calculate", + "很 难", + "AG E", + "A GE", + "管理 有限公司", + "过 的", + "date d", + "da ted", + "dat ed", + "d ated", + "o i", + "辽 宁", + "▁M ake", + "▁Ma ke", + "▁Mak e", + "▁ Make", + "▁t end", + "▁te nd", + "▁ten d", + "▁ tend", + "变 得", + "志 愿", + "信 号", + "▁Ap ple", + "▁App le", + "▁Appl e", + "▁ Apple", + "对方 当事人", + "op ath", + "opa th", + "o path", + "▁M A", + "▁ MA", + "▁te aching", + "▁teach ing", + "▁tea ching", + "▁vir tual", + "▁virt ual", + "▁ virtual", + "▁him self", + "p a", + "el ement", + "ele ment", + "elem ent", + "e lement", + "st op", + "sto p", + "s top", + "la m", + "l am", + "▁m ission", + "▁miss ion", + "▁ mission", + "un ately", + "unate ly", + "变 成", + "sh op", + "s hop", + "▁struct ural", + "▁ structural", + "▁p al", + "▁pa l", + "▁ pal", + "onym ous", + "离 开", + "▁O N", + "▁ ON", + "哪 里", + "▁happ ens", + "▁happen s", + "▁E nd", + "▁En d", + "▁ End", + "▁re lation", + "▁rel ation", + "▁ relation", + "最 佳", + "▁cont ribute", + "▁contribut e", + "▁fac ilities", + "▁facilit ies", + "▁sec ure", + "▁ secure", + "▁hot el", + "▁ho tel", + "L S", + "▁se rum", + "▁ser um", + "▁represent ed", + "▁ represented", + "大 陆", + "IN E", + "I NE", + "结 案", + "ni s", + "n is", + "扩 大", + "▁d iss", + "▁dis s", + "▁di ss", + "▁ diss", + "er nel", + "ern el", + "思 维", + "品 种", + "▁f lag", + "▁fl ag", + "▁ flag", + "ful l", + "fu ll", + "f ull", + "违 反", + "扣 押", + "▁build ings", + "▁building s", + "Sp ec", + "Spe c", + "S pec", + "C o", + "other apy", + "otherap y", + "o therapy", + "时 的", + "大 型", + "hel ial", + "▁U SA", + "▁US A", + "▁ USA", + "▁det ected", + "▁detect ed", + "ta ge", + "tag e", + "t age", + "▁J ournal", + "▁Jo urnal", + "▁Jour nal", + "▁ Journal", + "等 于", + "▁b ow", + "▁bo w", + "▁ bow", + "▁numer ous", + "▁th row", + "▁thr ow", + "▁thro w", + "▁ throw", + "本 科", + "进 步", + "▁rel atively", + "▁relative ly", + "很 大", + "pad ding", + "p adding", + "▁[ ]", + "▁ []", + "}$ $\\", + "}$$ \\", + "} $$\\", + "ul ating", + "ula ting", + "还 能", + "二〇一 四年", + "▁second ary", + "▁ secondary", + "▁f lat", + "▁fl at", + "▁ flat", + "经营 范围", + "身 边", + "策 略", + "▁disc ussion", + "▁discuss ion", + "ip al", + "ipa l", + "i pal", + "mod e", + "mo de", + "m ode", + "ex it", + "e xit", + "tr ee", + "tre e", + "t ree", + "▁s uitable", + "▁su itable", + "▁suit able", + "ad er", + "ade r", + "a der", + "集 体", + "▁to ward", + "▁tow ard", + "依 然", + "▁gover ning", + "▁govern ing", + "res hold", + "resh old", + "▁h omes", + "▁home s", + "▁hom es", + "▁ho mes", + "山 区", + "GE T", + "G ET", + "盗 窃", + "院 校", + "往 往", + "▁S tand", + "▁St and", + "▁Stan d", + "▁Sta nd", + "▁ Stand", + "un ched", + "unc hed", + "unch ed", + "▁mod ify", + "▁ modify", + "▁equ ivalent", + "▁equival ent", + "▁ equivalent", + "财 政", + "▁Vir gin", + "容 量", + "规 律", + "T V", + "CI TE", + "C ITE", + "原 来", + "io logy", + "iol ogy", + "i ology", + "▁where as", + "▁whe reas", + "▁p ow", + "▁po w", + "▁ pow", + "g t", + "上述 事实", + "or al", + "ora l", + "o ral", + "并 按", + "is tan", + "ist an", + "ista n", + "i stan", + "_ \\", + "▁o k", + "▁ ok", + "▁exper iences", + "▁experience s", + "▁experi ences", + "ra s", + "r as", + "▁occ up", + "▁oc cup", + "▁ occup", + "名 字", + "父 亲", + "astr ucture", + "astruct ure", + "a structure", + "▁s chedule", + "▁sc hedule", + "▁schedul e", + "▁ schedule", + "的 前", + "▁E ven", + "▁Ev en", + "▁Eve n", + "▁ Even", + "u v", + "pe ople", + "p eople", + "port ed", + "por ted", + "p orted", + "▁part ial", + "▁ partial", + "眼 睛", + "屏 幕", + "▁g ift", + "▁gi ft", + "物 理", + "▁art ists", + "▁artist s", + "▁Te am", + "▁Tea m", + "▁ Team", + "▁col ors", + "▁color s", + "▁ colors", + "▁S tar", + "▁St ar", + "▁Sta r", + "▁ Star", + "Ser ial", + "Se rial", + "S erial", + "减 去", + "per son", + "pers on", + "p erson", + "id ae", + "ida e", + "▁E rror", + "▁Er ror", + "▁Err or", + "▁ Error", + "ic ing", + "ici ng", + "icin g", + "i cing", + "st yles", + "style s", + "sty les", + "styl es", + "> ,", + "▁inter vention", + "▁interven tion", + "天 下", + "ac ts", + "act s", + "a cts", + "W h", + "EN D", + "E ND", + "病 毒", + "▁M el", + "▁Me l", + "▁ Mel", + "▁sugg ests", + "▁suggest s", + "电 源", + "▁a head", + "▁ah ead", + "▁ ahead", + "▁qu arter", + "▁quart er", + "▁ quarter", + "▁L ear", + "▁Le ar", + "▁s hift", + "▁sh ift", + "▁ shift", + "ef ined", + "k l", + "▁H ill", + "▁Hi ll", + "▁Hil l", + "日向本院 提出撤诉申请", + "日向本院提出 撤诉申请", + "日 向本院提出撤诉申请", + "▁help ed", + "▁hel ped", + "▁m al", + "▁ma l", + "▁ mal", + "好 像", + "▁C ard", + "▁Car d", + "▁Ca rd", + "▁ Card", + "先 后", + "地 理", + "中 共", + "Window s", + "Wind ows", + "W indows", + "处 于", + "的 生活", + "▁admin istr", + "作 业", + "▁d ys", + "▁dy s", + "▁mention ed", + "▁ment ioned", + "▁ mentioned", + "未 按", + "▁monitor ing", + "▁ monitoring", + "终 于", + "不 知", + "▁C amp", + "▁Cam p", + "▁Ca mp", + "▁ Camp", + "模 拟", + "ud io", + "udi o", + "\": \\", + "\" :\\", + "▁w ear", + "▁we ar", + "▁ wear", + "zi p", + "z ip", + "▁stand ards", + "▁standard s", + "▁sen ior", + "▁Z eal", + "▁Ze al", + "og ene", + "ogen e", + "oge ne", + "o gene", + "T I", + "id ential", + "ident ial", + "ap plication", + "▁ext ended", + "▁extend ed", + "▁ extended", + "te sts", + "test s", + "tes ts", + "t ests", + "是 由", + "or gan", + "org an", + "▁sub stant", + "▁subst ant", + "▁m ental", + "▁men tal", + "▁ment al", + "▁ mental", + "▁连载 状态", + "U B", + "处罚 金", + "处 罚金", + "规 则", + "▁help ing", + "▁hel ping", + "▁h aven", + "▁have n", + "▁ha ven", + "▁hav en", + "▁ haven", + "女 生", + "gr id", + "g rid", + "在 这", + "▁cent re", + "▁centr e", + "ur ban", + "urb an", + "u rban", + "▁m agnetic", + "▁mag netic", + "▁magn etic", + "▁magnet ic", + "Of f", + "O ff", + "ur i", + "u ri", + "sc ope", + ") ]", + "▁H istor", + "▁His tor", + "▁Hi stor", + "▁Hist or", + "▁o bj", + "▁ob j", + "▁ obj", + "▁b eg", + "▁be g", + "▁ beg", + "▁r oles", + "▁ro les", + "▁role s", + "▁ roles", + "的 心", + "nA cc", + "nAc c", + "n Acc", + "高 中", + "et ry", + "etr y", + "e try", + "下面 的", + "下 面的", + "Ba r", + "B ar", + "▁abs olute", + "▁absol ute", + "▁ absolute", + "▁C alculate", + "▁Calcul ate", + "▁Calc ulate", + "▁ Calculate", + "e q", + "存 储", + "he t", + "h et", + "▁St art", + "▁Star t", + "▁Sta rt", + "▁ Start", + "可能 会", + "情 绪", + "is l", + "i sl", + "▁It alian", + "▁Ital ian", + "定 位", + "re source", + "res ource", + ") <", + "xy gen", + "▁t asks", + "▁task s", + "▁ tasks", + "ick ets", + "icket s", + "z h", + "▁G ame", + "▁Ga me", + "▁Gam e", + "▁ Game", + "dep endent", + "depend ent", + "d ependent", + "aw s", + "a ws", + "Out put", + "ic ago", + "ica go", + "▁l oop", + "▁lo op", + "▁ loop", + "ri ch", + "ric h", + "r ich", + "Me t", + "M et", + "看 了", + "nO r", + "n Or", + "▁Re view", + "▁Rev iew", + "▁ Review", + "▁n otes", + "▁not es", + "▁no tes", + "▁note s", + "▁ notes", + "igr ations", + "igration s", + "▁ra ised", + "▁raise d", + "▁And roid", + "▁Andr oid", + "▁ Android", + "在 于", + "动 作", + "▁main ly", + "ac count", + "acc ount", + "acco unt", + "▁K IND", + "S QL", + "美 丽", + "▁E ducation", + "▁Edu cation", + "▁Educ ation", + "▁di vision", + "▁div ision", + "▁ division", + "有 所", + "▁f ans", + "▁fa ns", + "▁fan s", + "▁re place", + "▁replac e", + "▁ replace", + "就 要", + "▁F ire", + "▁Fi re", + "▁ Fire", + "um in", + "umi n", + "u min", + "▁I P", + "▁ IP", + "▁e dit", + "▁ed it", + "▁ edit", + "print f", + "tm p", + "t mp", + "com pl", + "comp l", + "Pro ps", + "Pr ops", + "Prop s", + "▁res idents", + "▁resid ents", + "▁resident s", + "Par ser", + "Parse r", + "Pars er", + "公 告", + "▁B ack", + "▁Ba ck", + "▁Bac k", + "▁ Back", + "▁Zeal and", + "R C", + "▁vel ocity", + "▁veloc ity", + "▁ velocity", + "▁s pring", + "▁sp ring", + "▁spr ing", + "▁ spring", + "长 度", + "az z", + "a zz", + "步 骤", + "财 务", + "▁l aws", + "▁law s", + "▁la ws", + "▁ laws", + "探 索", + "▁Ex ception", + "▁Except ion", + "▁ Exception", + "▁成 立", + "▁ 成立", + "▁T witter", + "▁Tw itter", + "▁ Twitter", + "▁a ren", + "▁are n", + "▁ar en", + "▁ aren", + "业 有限公司", + "传 唤", + "pl ates", + "plate s", + "plat es", + "ur ies", + "uri es", + "u ries", + "p o", + "明 白", + "儿 子", + "人 家", + "▁dis orders", + "▁disorder s", + "▁Ac ademy", + "▁Academ y", + "▁Acad emy", + "hand le", + "win dow", + "wind ow", + "w indow", + "k r", + "▁b uff", + "▁bu ff", + "▁buf f", + "▁ buff", + "\\' ,\\'", + "\\', \\'", + "\\',\\ '", + "湖北 省", + "湖 北省", + "▁h el", + "▁he l", + "▁ hel", + "▁c old", + "▁col d", + "▁co ld", + "▁sign aling", + "▁signal ing", + "龙 江", + "迅 速", + "▁four th", + "日 被", + "▁s and", + "▁sa nd", + "▁san d", + "▁ sand", + "de st", + "des t", + "d est", + "▁per spect", + "▁pers pect", + "ogn itive", + "ug ins", + "ugin s", + "▁s exual", + "▁sex ual", + "▁ sexual", + "ar rant", + "arr ant", + "arra nt", + "Re m", + "R em", + "▁ox id", + "▁ oxid", + "▁meas urement", + "▁measure ment", + "' '", + "十 年", + "ig an", + "iga n", + "i gan", + "成 就", + "▁I r", + "▁ Ir", + "is hes", + "ish es", + "M D", + "ym bol", + "▁L im", + "▁Li m", + "_{ \\\\", + "_ {\\\\", + "特 性", + "深圳 市", + "re ens", + "ree ns", + "reen s", + "线 的", + "ff ee", + "f fee", + "▁c ryst", + "▁cr yst", + "▁cry st", + "Bl ock", + "B lock", + "li fe", + "lif e", + "l ife", + "nS he", + "nSh e", + "n She", + "Cont ainer", + "▁c ards", + "▁car ds", + "▁card s", + "▁ cards", + "轻 松", + "完 毕", + "▁prom ote", + "▁promot e", + "▁promo te", + "▁ag ree", + "▁agre e", + "▁agr ee", + "本 人", + "▁M ax", + "▁Ma x", + "▁ Max", + "▁most ly", + "▁ mostly", + "▁r ich", + "▁ri ch", + "▁ric h", + "▁ rich", + "▁isol ated", + "▁iso lated", + "▁isolate d", + "▁t un", + "▁tu n", + "▁ tun", + "在中 国", + "在 中国", + "ost ream", + "o stream", + "▁L ife", + "▁Li fe", + "▁Lif e", + "▁ Life", + "一 家", + "ER S", + "E RS", + "io t", + "i ot", + "LE D", + "L ED", + "体 现", + "日 作出", + "奖 励", + "om er", + "ome r", + "o mer", + "▁b aby", + "▁bab y", + "▁ba by", + "▁ baby", + "▁f ashion", + "▁ fashion", + "判处 有期徒刑", + "▁st arts", + "▁start s", + "▁star ts", + "▁ starts", + "▁R oyal", + "▁Ro yal", + "▁Roy al", + "每 年", + "▁we ak", + "▁ weak", + "原告 的", + "▁techn ologies", + "积极 参加", + "▁i on", + "▁io n", + "▁ ion", + "▁F unction", + "▁Fun ction", + "▁Func tion", + "▁ Function", + "▁C A", + "▁ CA", + "强 的", + "▁h us", + "▁hu s", + "▁ hus", + "▁g ly", + "▁gl y", + "▁ gly", + "▁c art", + "▁car t", + "▁ca rt", + "▁ cart", + "om es", + "ome s", + "o mes", + "▁s ea", + "▁se a", + "▁ sea", + "▁scient ific", + "客 房", + "▁engine ering", + "▁engineer ing", + "▁ engineering", + "向本院 递交上诉状", + "▁m el", + "▁me l", + "▁ mel", + "▁Direct or", + "▁Dir ector", + "], [", + "] ,[", + "ip her", + "iph er", + "i pher", + "om al", + "oma l", + "o mal", + "▁j obs", + "▁job s", + "▁jo bs", + "▁ jobs", + "▁mod ified", + "▁ modified", + "em pty", + "empt y", + "emp ty", + "▁t ub", + "▁tu b", + "▁ tub", + "▁high light", + "▁ highlight", + "H S", + "▁l ocations", + "▁loc ations", + "▁location s", + "▁ locations", + "Re turn", + "Ret urn", + "R eturn", + "▁m ist", + "▁mis t", + "▁mi st", + "命 令", + "as ync", + "asy nc", + "a sync", + "句 话", + "og enic", + "ogen ic", + "oge nic", + "o genic", + "▁re covery", + "▁rec overy", + "▁recover y", + "▁c red", + "▁cre d", + "▁cr ed", + "▁ cred", + "网 友", + "bu r", + "b ur", + "▁b rief", + "▁br ief", + "▁ brief", + "for ms", + "form s", + "f orms", + "▁M ap", + "▁Ma p", + "▁ Map", + "Op er", + "O per", + "▁p icked", + "▁pick ed", + "ar ia", + "ari a", + "a ria", + "Add ress", + "Addr ess", + "bin d", + "bi nd", + "b ind", + "▁sc ene", + "▁scen e", + "▁ scene", + "▁S ign", + "▁Si gn", + "▁Sig n", + "▁ Sign", + "是 我", + "▁exp erts", + "▁exper ts", + "▁expert s", + "各 个", + "▁书 名", + "▁ 书名", + "▁cons istent", + "▁consist ent", + "▁pr actical", + "▁pract ical", + "▁{ \"", + "▁ {\"", + "pp ed", + "p ped", + "文 献", + "ad s", + "a ds", + "▁In formation", + "▁Inform ation", + "▁ Information", + "▁C I", + "▁ CI", + "em ia", + "emi a", + "e mia", + "an notation", + "ann otation", + "annot ation", + "执行 过程中", + "▁Wh ich", + "▁ Which", + "▁o pin", + "▁op in", + "第一百 零", + "▁Mar ket", + "▁Mark et", + "▁ Market", + "▁cons ists", + "▁consist s", + "con s", + "co ns", + "c ons", + "dom ain", + "do main", + "d omain", + "▁s hip", + "▁sh ip", + "▁ ship", + "▁l ock", + "▁loc k", + "▁lo ck", + "▁ lock", + "ce an", + "cea n", + "c ean", + "▁J ava", + "▁Ja va", + "▁Jav a", + "▁ Java", + "理 想", + "▁d a", + "▁ da", + "inter face", + ")* (", + ") *(", + "请 你", + "▁M ot", + "▁Mo t", + "韩 国", + "记 得", + "▁st ations", + "▁stat ions", + "▁station s", + "▁ stations", + "▁document s", + "▁doc uments", + "▁ documents", + "三角 形", + "um a", + "u ma", + "也没 有", + "也 没有", + "li ament", + "lia ment", + "▁C are", + "▁Car e", + "▁Ca re", + "▁ Care", + "▁Ch ristian", + "▁Christ ian", + "▁ Christian", + "▁m iles", + "▁mil es", + "▁mi les", + "▁mile s", + "▁t or", + "▁to r", + "▁ tor", + "几 年", + "▁re lig", + "▁rel ig", + "Ch ange", + "Chan ge", + "▁Im age", + "▁ Image", + "Ma t", + "M at", + "▁l ab", + "▁la b", + "▁ lab", + "▁o dd", + "▁od d", + "▁ odd", + "▁M o", + "▁ Mo", + "▁s usp", + "▁su sp", + "▁sus p", + "▁pro cedures", + "▁proced ures", + "▁procedure s", + "队 伍", + "en dar", + "end ar", + "enda r", + "不 予", + "▁acc urate", + "▁accur ate", + "▁M essage", + "▁Mess age", + "▁ Message", + "保 存", + "居 住", + "▁par allel", + "▁paralle l", + "▁ parallel", + "aw ait", + "awa it", + "awai t", + "a wait", + "ho t", + "h ot", + "▁co verage", + "▁cover age", + "▁ coverage", + "▁cor relation", + "▁correl ation", + "▁ correlation", + "满 意", + "pl ayer", + "play er", + "p layer", + "D P", + "en ted", + "ent ed", + "ente d", + "su ccess", + "s uccess", + "共 有", + "mu lt", + "mul t", + "m ult", + "▁rem aining", + "▁remain ing", + "▁ remaining", + "▁certain ly", + "▁Ad min", + "▁ Admin", + "中 间", + "▁Min ister", + "▁Mini ster", + "的 水", + "▁p lane", + "▁pl ane", + "▁plan e", + "▁ plane", + "▁s umm", + "▁su mm", + "▁sum m", + "▁ summ", + "▁s omew", + "▁some w", + "▁som ew", + "▁phot ograph", + "▁photo graph", + "ev en", + "eve n", + "e ven", + "大 利", + "id x", + "i dx", + "▁P lay", + "▁Pl ay", + "▁ Play", + "▁F eb", + "▁Fe b", + "▁ Feb", + "foo t", + "fo ot", + "f oot", + "ad r", + "a dr", + "公 众", + "oh n", + "o hn", + "nR es", + "nRe s", + "n Res", + "▁s ynthesis", + "▁synt hesis", + "▁synthes is", + "▁synth esis", + "召 开", + "▁sim ulation", + "▁ simulation", + "▁be coming", + "▁bec oming", + "es tic", + "est ic", + "▁m enu", + "▁me nu", + "▁men u", + "▁ menu", + "ig ital", + "igi tal", + "机 的", + "▁c ort", + "▁co rt", + "▁cor t", + "▁piece s", + "▁pi eces", + "▁pie ces", + "▁ pieces", + "▁b iological", + "▁bi ological", + "▁bio logical", + "▁biologic al", + "▁ biological", + "▁w elcome", + "▁wel come", + "▁ welcome", + "▁des pite", + "he ther", + "het her", + "h ether", + "Pro cess", + "Proc ess", + "简易 程序", + "▁F re", + "▁Fr e", + "▁ Fre", + "▁P RO", + "▁PR O", + "▁ PRO", + "▁S mith", + "▁Sm ith", + "▁ Smith", + "] ;", + "▁p or", + "▁po r", + "▁ por", + "▁v oice", + "▁vo ice", + "▁ voice", + "诊 断", + "▁e sc", + "▁es c", + "▁ esc", + "情 形", + "维 持", + "下 去", + "▁p anel", + "▁pan el", + "▁pa nel", + "▁pane l", + "▁ panel", + "▁N ote", + "▁No te", + "▁Not e", + "▁ Note", + "La yout", + "L ayout", + "▁integr ated", + "▁integrate d", + "▁l ots", + "▁lot s", + "▁lo ts", + "▁L ib", + "▁Li b", + "▁ Lib", + "▁pro port", + "▁prop ort", + "▁for ces", + "▁force s", + "▁ forces", + "母 亲", + "[ \\", + "▁im plemented", + "▁implement ed", + "ap pro", + "app ro", + "▁link ed", + "▁ linked", + "▁occ urs", + "▁occur s", + "ach ine", + "achi ne", + "慢 慢", + "尤其 是", + "on ald", + "onal d", + "ona ld", + "▁cont rolled", + "▁control led", + "▁ controlled", + "▁v ary", + "▁var y", + "▁va ry", + "ur er", + "ure r", + "u rer", + "G L", + "相应 的", + "相 应的", + "▁: \\", + "▁ :\\", + "▁f elt", + "▁fe lt", + "▁fel t", + "▁ felt", + "wa ter", + "wat er", + "w ater", + "▁F inally", + "▁Fin ally", + "▁Final ly", + "hemat ical", + "hema tical", + "hematic al", + "st rap", + "str ap", + "stra p", + "S o", + "▁great est", + "▁gre atest", + "pl icated", + "plic ated", + "plicate d", + "plica ted", + "Col umn", + "Colum n", + "ic acy", + "ica cy", + "智 慧", + "时 尚", + "自 愿", + "▁Reg ister", + "▁ Register", + "主 张", + "▁version s", + "▁vers ions", + "▁ versions", + "▁m atches", + "▁mat ches", + "▁match es", + "▁ matches", + "▁sh aring", + "▁sha ring", + "▁shar ing", + "▁ sharing", + "▁L ove", + "▁Lo ve", + "▁Lov e", + "▁ Love", + "青 春", + "IL ITY", + "心 里", + "ki t", + "k it", + "▁D en", + "▁De n", + "▁ Den", + "技 巧", + "▁man if", + "▁ma nif", + "▁ manif", + "▁B ill", + "▁Bi ll", + "▁Bil l", + "▁ Bill", + "▁ar rest", + "▁arr est", + "The re", + "Th ere", + "T here", + "四 个", + "▁abs or", + "▁min im", + "▁mini m", + "▁mi nim", + "an da", + "and a", + "a nda", + "Vi s", + "V is", + "▁f ederal", + "▁fed eral", + "▁under lying", + "的 执行", + "▁Com mission", + "▁Comm ission", + "sc opy", + "s copy", + "Aut h", + "Au th", + "A uth", + "arg v", + "▁opt imal", + "▁optim al", + "▁ optimal", + "▁fore ign", + "▁ foreign", + "HE R", + "H ER", + "▁Is ra", + "▁b inary", + "▁bin ary", + "▁ binary", + "而 言", + "▁le ague", + "▁ league", + "签 订", + "▁M er", + "▁Me r", + "▁ Mer", + "的情况 下", + "的 情况下", + "突 出", + "em porary", + "empor ary", + "▁occ urred", + "▁occur red", + "▁occurre d", + "女 人", + "利 润", + "停 止", + "类 似", + "▁man aged", + "▁manag ed", + "▁manage d", + "▁ managed", + "制 定", + "▁al umni", + "▁con vers", + "▁conver s", + "▁conv ers", + "▁conve rs", + "f riend", + "▁Commit tee", + "未 履行", + "v m", + "法 国", + "▁me ant", + "▁mean t", + "Or der", + "Ord er", + "岗 位", + "▁Or der", + "▁Ord er", + "▁ Order", + "监 管", + "▁M il", + "▁Mi l", + "▁ Mil", + "ha v", + "h av", + "更 是", + "解 得", + "▁arch itecture", + "▁architect ure", + "▁ architecture", + "▁se gment", + "▁seg ment", + "▁ segment", + "iat ric", + "的事 实", + "的 事实", + "G o", + "▁st ability", + "▁stabil ity", + "▁stab ility", + "▁i con", + "▁ic on", + "▁ icon", + "cl uded", + "clud ed", + "clude d", + "▁G al", + "▁Ga l", + "▁ Gal", + "▁all owing", + "▁allow ing", + "I E", + "放 入", + "▁pro sp", + "▁pr osp", + "▁pros p", + "bo und", + "b ound", + "企业 的", + "企 业的", + "等 证据", + "sh ape", + "sha pe", + "H ub", + "科学 院", + "科 学院", + "▁成立 时间", + "地 位", + "dimension al", + "d imensional", + ": (", + "Form at", + "For mat", + "▁cl early", + "▁cle arly", + "▁clear ly", + "M e", + "▁di git", + "▁dig it", + "▁ digit", + "do t", + "d ot", + "np m", + "n pm", + "▁fe eling", + "▁feel ing", + "▁fee ling", + "流 量", + "查 看", + "空 调", + "Se arch", + "S earch", + "Ar g", + "A rg", + "等 级", + "▁e state", + "▁est ate", + "▁esta te", + "▁ ·", + "被 上诉人", + "▁conf idence", + "▁ confidence", + "给 予", + "突 破", + "N T", + "还 款", + "R ight", + "▁W ater", + "▁Wat er", + "▁Wa ter", + "▁ Water", + "得 出", + "记 忆", + "B r", + "▁gu ys", + "▁guy s", + "AB LE", + "A BLE", + "强 调", + "▁e mph", + "▁em ph", + "▁emp h", + "▁ emph", + "ut ter", + "utt er", + "ax is", + "▁C ore", + "▁Co re", + "▁Cor e", + "▁ Core", + "▁f ant", + "▁fa nt", + "▁fan t", + "▁g luc", + "▁gl uc", + "▁glu c", + "▁ gluc", + "▁v acc", + "▁vac c", + "▁va cc", + "▁f unding", + "▁fund ing", + "▁fun ding", + "ct x", + "c tx", + "▁est imate", + "▁estim ate", + "▁ estimate", + "H A", + "▁slight ly", + "▁p arse", + "▁par se", + "▁pars e", + "▁ parse", + "▁th rows", + "▁throw s", + "▁thr ows", + "▁thro ws", + "▁ throws", + "日 在", + "D L", + "▁per haps", + "显 着", + "人 数", + "复 议", + "pos ite", + "po site", + "▁pos ts", + "▁post s", + "▁po sts", + "▁ posts", + "▁program ming", + "▁ programming", + "Writ e", + "Wr ite", + "W rite", + "pro file", + "prof ile", + "ig er", + "ige r", + "i ger", + "ic ious", + "ici ous", + "icio us", + "St ore", + "成 熟", + "▁typ ically", + "▁typical ly", + "▁b ill", + "▁bi ll", + "▁bil l", + "▁ bill", + "▁log ging", + "▁ logging", + "la yout", + "lay out", + "l ayout", + "垃 圾", + "▁reg ional", + "▁region al", + "▁s ector", + "▁se ctor", + "▁sec tor", + "▁ sector", + "分 配", + "ion e", + "io ne", + "i one", + "词 条", + "装 备", + "学 历", + "cre ated", + "create d", + "creat ed", + "c reated", + "并处 罚金", + "并 处罚金", + "矛 盾", + ")] \\", + ") ]\\", + "▁W il", + "▁Wi l", + "▁ Wil", + "Inter face", + "▁elect ro", + "▁electr o", + "▁ electro", + "▁res erved", + "▁reserve d", + "▁reserv ed", + "▁ reserved", + "la te", + "lat e", + "l ate", + "▁t ele", + "▁te le", + "▁tel e", + "▁ tele", + "摄 影", + "▁s ensitivity", + "▁sens itivity", + "▁sensit ivity", + "观 众", + "▁L ouis", + "▁Lou is", + "▁Lo uis", + "▁ Louis", + "预 防", + "▁ac ademic", + "▁academ ic", + "▁F rank", + "▁Fr ank", + "▁Fra nk", + "▁ Frank", + "▁professional s", + "▁profession als", + "l t", + "完 整", + "▁C ustom", + "▁ Custom", + "v a", + "访 问", + "wr it", + "w rit", + "区 别", + "感 谢", + "ui nt", + "u int", + "view s", + "vi ews", + "vie ws", + "De v", + "D ev", + "▁u tf", + "▁ut f", + "▁ utf", + "▁re tail", + "▁ret ail", + "at ial", + "ati al", + "▁f ounded", + "▁found ed", + "▁ founded", + "▁a st", + "▁as t", + "▁ ast", + "Le ngth", + "L ength", + "uc ky", + "uck y", + "\"] \\", + "\" ]\\", + "十 七", + "衣 服", + "▁pay ment", + "▁ payment", + "▁wonder ful", + "on tal", + "ont al", + "▁R ock", + "▁Ro ck", + "▁Roc k", + "▁ Rock", + "La bel", + "Lab el", + "L abel", + "eg a", + "e ga", + "青 岛", + "做 的", + "▁synd rome", + "▁Franc is", + "使 得", + "▁mort ality", + "▁th ousands", + "▁thous ands", + "▁thousand s", + "angu ages", + "anguage s", + "▁W ood", + "▁Wo od", + "▁ Wood", + "▁m ur", + "▁mu r", + "▁ mur", + "AT A", + "A TA", + "长 的", + "▁d uration", + "▁du ration", + "▁dur ation", + "▁ duration", + "at ers", + "ate rs", + "ater s", + "a ters", + "ts elf", + "t self", + "Par t", + "Pa rt", + "P art", + "本题 考查", + "▁Further more", + "一 张", + "as tern", + "ast ern", + "aster n", + "aste rn", + "▁L and", + "▁La nd", + "▁Lan d", + "▁ Land", + "▁g uitar", + "▁gu itar", + "▁guit ar", + "▁gui tar", + "测 量", + "om orph", + "o morph", + "▁P oint", + "▁Po int", + "▁ Point", + "▁I ns", + "▁In s", + "▁ Ins", + "▁L icensed", + "▁License d", + "▁Lic ensed", + "▁ Licensed", + "▁n oise", + "▁no ise", + "▁ noise", + "pl t", + "p lt", + "▁Te chnology", + "▁Techn ology", + "充 满", + "ar ian", + "ari an", + "aria n", + "a rian", + "bo se", + "bos e", + "b ose", + "ad ow", + "ado w", + "a dow", + "▁v ote", + "▁vot e", + "▁vo te", + "▁ vote", + "ex ports", + "export s", + "exp orts", + "▁B AS", + "▁BA S", + "黑 龙江", + "ne ws", + "new s", + "n ews", + "▁d ifferential", + "▁differ ential", + "▁different ial", + "▁le aves", + "▁leave s", + "也 没", + "ug ar", + "uga r", + "u gar", + "um inate", + "umin ate", + "umina te", + "AP P", + "A PP", + "bit s", + "bi ts", + "b its", + "湖 南", + "M T", + "阳 光", + "▁cur ve", + "▁curv e", + "▁ curve", + "可能 是", + "▁c ars", + "▁car s", + "▁ca rs", + "▁ cars", + "出版的 图书", + "/* *", + "/ **", + "▁n oted", + "▁not ed", + "▁no ted", + "▁note d", + "el ess", + "ele ss", + "eles s", + "e less", + "▁str ugg", + "发现 被执行人有", + "发现被执行人 有", + "ition ally", + "itional ly", + "在服刑 期间", + "在 服刑期间", + "铁 路", + "▁concer ns", + "▁concern s", + "t w", + "不 再", + "sig ma", + "s igma", + "教 材", + "成 分", + "▁D E", + "▁ DE", + "nB y", + "n By", + "▁F ootball", + "▁Foot ball", + "展 开", + "Ma x", + "M ax", + "营 业", + "ch ron", + "chr on", + "出 去", + "周 期", + "▁com prehensive", + "▁comprehens ive", + "▁E nt", + "▁En t", + "▁ Ent", + "Se e", + "S ee", + "实 在", + "可供执行 财产", + "证 书", + "对 比", + "un ct", + "unc t", + "▁c ivil", + "▁ci vil", + "▁calcul ated", + "▁calc ulated", + "▁calculate d", + "▁cre ative", + "▁creat ive", + "▁ creative", + "R S", + "之 外", + "med ia", + "m edia", + "▁appe arance", + "▁appear ance", + "res sed", + "ress ed", + "r essed", + "引 导", + "▁Pro duct", + "▁Produ ct", + "▁ Product", + "B I", + "gr icult", + "对 称", + "A Y", + "▁Th omas", + "▁Thom as", + "▁ Thomas", + "▁w hom", + "▁wh om", + "▁who m", + "ad ing", + "adi ng", + "adin g", + "a ding", + "▁j av", + "▁ja v", + "▁ jav", + "▁s q", + "▁ sq", + "▁trans mission", + "成 的", + "来 到", + "du ction", + "duct ion", + "duc tion", + "d uction", + "小 组", + "▁re ct", + "▁r ect", + "▁rec t", + "▁ rect", + "▁s ociety", + "▁soci ety", + "▁l iquid", + "▁liqu id", + "▁ liquid", + "nWh ile", + "n While", + "▁int ended", + "▁intend ed", + "▁# #", + "▁ ##", + "He ader", + "Head er", + "H eader", + "▁O S", + "▁ OS", + "▁R eal", + "▁Re al", + "▁ Real", + "▁E nter", + "▁En ter", + "▁Ent er", + "▁ Enter", + "up lic", + "u plic", + "▁a dj", + "▁ad j", + "▁ adj", + "大 于", + "裁定 书", + "▁ex tensive", + "▁ext ensive", + "英 文", + "平 面", + "▁research ers", + "▁researcher s", + "已经 发生法律效力", + "oc key", + "ock ey", + "it ud", + "itu d", + "▁ind icated", + "▁indic ated", + "▁indicate d", + "的原 因", + "的 原因", + "的 作用", + "ab il", + "abi l", + "a bil", + "▁rem ote", + "▁remot e", + "▁ remote", + "▁w riter", + "▁writ er", + "▁write r", + "▁wr iter", + "▁ writer", + "逾 期", + "分 公司", + "黄 金", + "ut y", + "u ty", + "构 建", + "he et", + "hee t", + "▁S ocial", + "▁Soc ial", + "▁Soci al", + "▁ Social", + "▁m o", + "▁ mo", + "▁al gebra", + "▁alg ebra", + "▁ algebra", + "A I", + "Di r", + "D ir", + "做 法", + "并按 对方当事人", + "并不 是", + "并 不是", + "▁A T", + "▁ AT", + "at eral", + "ate ral", + "ater al", + "▁g ather", + "▁ga ther", + "▁ gather", + "人 士", + "▁character ized", + "▁characterize d", + "▁ …", + "▁contin ues", + "▁continu es", + "▁continue s", + "不 如", + "十五 日内", + "十五日 内", + "十 五日内", + "▁ans wers", + "▁answer s", + "▁ answers", + "重 量", + "一 致", + "人 工", + "▁V alue", + "▁Val ue", + "▁ Value", + "我 在", + "be n", + "b en", + "▁t alking", + "▁talk ing", + "▁tal king", + "▁Cont rol", + "▁Contr ol", + "▁ Control", + "▁car cin", + "▁fr action", + "▁fract ion", + "▁fra ction", + "▁ fraction", + "▁H and", + "▁Ha nd", + "▁Han d", + "▁ Hand", + "▁mark ed", + "▁ marked", + "d c", + "▁c ircle", + "▁circ le", + "▁cir cle", + "▁ circle", + "▁R NA", + "▁RN A", + "▁ RNA", + "trans form", + "▁{ {", + "▁ {{", + "▁see ing", + "▁ seeing", + "▁s am", + "▁sa m", + "▁ sam", + "▁N umber", + "▁Num ber", + "▁Nu mber", + "▁ Number", + "▁dis covered", + "▁disc overed", + "▁discover ed", + "排 名", + "违 法", + "▁N ame", + "▁Na me", + "▁Nam e", + "▁ Name", + "▁n it", + "▁ni t", + "▁ nit", + "▁recomm ended", + "▁recommend ed", + "ch ain", + "cha in", + "chai n", + "▁up load", + "▁u pload", + "▁ upload", + "y g", + "am ental", + "ament al", + "amen tal", + "a mental", + "▁e pit", + "▁ep it", + "▁ epit", + "动 态", + "▁m anner", + "▁man ner", + "集 合", + "our se", + "ours e", + "o urse", + "经 审查", + "ol it", + "oli t", + "o lit", + "一 十九", + "是一 款", + "是 一款", + "提出 了", + "提 出了", + "还可 以", + "还 可以", + "▁内容 简介", + "▁ 内容简介", + "kt op", + "k top", + "防 止", + "▁H en", + "▁He n", + "▁A uthor", + "▁Aut hor", + "▁Auth or", + "▁Au thor", + "▁ Author", + "就 算", + "▁proper ly", + "▁prop erly", + "产品 的", + "产 品的", + "▁r ain", + "▁ra in", + "▁ rain", + "提出 副本", + "io stream", + "i ostream", + "Mi n", + "M in", + "▁Ar ray", + "▁Arr ay", + "▁ Array", + "此 时", + "▁di abetes", + "▁E X", + "▁ EX", + "▁b urn", + "▁bu rn", + "▁bur n", + "▁ burn", + "▁pol ynomial", + "杭 州", + "wi ki", + "wik i", + "w iki", + "强 化", + "▁pe pt", + "▁pep t", + "子 女", + "▁ste el", + "re land", + "rel and", + "r eland", + "▁v oc", + "▁vo c", + "▁ voc", + "Le vel", + "▁M useum", + "▁Muse um", + "▁fac ility", + "▁facilit y", + "fi n", + "f in", + "▁e volution", + "▁ev olution", + "生效 法律文书", + "▁wed ding", + "leq slant", + "▁f amous", + "▁fam ous", + "Config uration", + "▁国 籍", + "▁ 国籍", + "▁F ield", + "▁Fi eld", + "▁ Field", + "▁install ation", + "▁ installation", + "im ensions", + "imens ions", + "imension s", + "被害 人", + "都 要", + "通 道", + "ut ch", + "utc h", + "hent ication", + "单 元", + "▁sub mit", + "▁ submit", + "▁e at", + "▁ eat", + "▁s erving", + "▁serv ing", + "▁ser ving", + "▁ serving", + "ac le", + "acl e", + "a cle", + "▁en zyme", + "▁enzym e", + "▁ enzyme", + "适用 简易程序", + "▁} ,\\", + "▁}, \\", + "▁ },\\", + "Ass ert", + "▁n odes", + "▁no des", + "▁node s", + "▁nod es", + "▁ nodes", + "S L", + "出来 的", + "出 来的", + "▁hus band", + "允 许", + "▁S eries", + "▁Se ries", + "▁Ser ies", + "▁Serie s", + "▁ Series", + "▁Commun ity", + "▁Comm unity", + "▁ Community", + "▁W al", + "▁Wa l", + "▁ Wal", + "nC l", + "n Cl", + "带 着", + "b c", + "og g", + "o gg", + "equ al", + "eq ual", + "e qual", + "met ric", + "m etric", + "氧 化", + "解 析", + "ta b", + "t ab", + "攻 击", + "▁s ustain", + "▁sus tain", + "▁sust ain", + "hi gh", + "h igh", + "se cond", + "sec ond", + "secon d", + "PA TH", + "PAT H", + "P ATH", + "▁ 合作", + "相 等", + "补 充", + "独 特", + "on go", + "ong o", + "o ngo", + "还 在", + "不 多", + "类 别", + "▁elect ronic", + "▁electron ic", + "▁electro nic", + "▁electr onic", + "▁dep th", + "▁ depth", + "俄 罗斯", + "▁ (", + "▁de pending", + "▁dep ending", + "▁depend ing", + "各 地", + "fun c", + "fu nc", + "f unc", + "na p", + "n ap", + "▁P an", + "▁Pa n", + "▁ Pan", + "\"> <", + "\" ><", + "pl ed", + "ple d", + "p led", + "▁ap parent", + "▁app arent", + "▁appar ent", + "▁n uclear", + "▁nucle ar", + "▁nu clear", + "▁Bl ue", + "▁Blu e", + "▁ Blue", + "伙 伴", + "▁b rowser", + "▁brow ser", + "▁browse r", + "▁ browser", + "▁vol unte", + "\\\\ {", + "副 主任", + "▁t ail", + "▁ta il", + "▁ tail", + "ir a", + "i ra", + "案 例", + "▁ch osen", + "▁cho sen", + "▁chose n", + "▁ chosen", + "N N", + "主 体", + "通 信", + "▁wide ly", + "▁wid ely", + "sc ape", + "ro gen", + "rog en", + "r ogen", + "▁p resents", + "▁pres ents", + "▁present s", + "▁P ub", + "▁Pu b", + "▁ Pub", + "il ation", + "ila tion", + "i lation", + "▁T em", + "▁Te m", + "▁ Tem", + "pl ex", + "ple x", + "p lex", + "天 然", + "}} \\", + "} }\\", + "package s", + "pack ages", + "近 日", + "并 给出", + "▁trans cription", + "▁transcript ion", + "▁tran scription", + "▁ne ighbor", + "▁neigh bor", + "▁neighb or", + "战 斗", + "bt n", + "b tn", + "▁T im", + "▁Ti m", + "▁ Tim", + "身 上", + "条第 二", + "条 第二", + "债 权", + "▁i l", + "▁ il", + "▁P eople", + "▁Pe ople", + "▁ People", + "▁Con gress", + "▁Cong ress", + "de pend", + "dep end", + "d epend", + "Des cription", + "De scription", + "▁f if", + "▁fi f", + "▁ fif", + "▁F ort", + "▁For t", + "▁Fo rt", + "▁ Fort", + "Cont rol", + "▁y es", + "▁ye s", + "▁ yes", + "In it", + "I nit", + "fol d", + "fo ld", + "f old", + "te mp", + "tem p", + "t emp", + "um es", + "ume s", + "u mes", + "不 变", + "▁h eter", + "▁he ter", + "▁het er", + "▁ heter", + "D C", + "▁w arrant", + "▁war rant", + "il ot", + "ilo t", + "i lot", + "▁p urs", + "▁pur s", + "▁pu rs", + "平 衡", + "▁st ack", + "▁ stack", + "▁f abric", + "▁fab ric", + "▁ fabric", + "基 因", + "▁s ufficient", + "▁suff icient", + "▁help ful", + "▁E vent", + "▁Ev ent", + "▁Even t", + "▁Eve nt", + "▁ Event", + "sv g", + "s vg", + "▁econ omy", + "▁ec onomy", + "▁econom y", + "▁pro vider", + "▁prov ider", + "▁provid er", + "▁provide r", + "▁ provider", + "芯 片", + "▁f older", + "▁fol der", + "▁fold er", + "▁ folder", + "争 议", + "▁event ually", + "▁eventual ly", + "ad or", + "ado r", + "a dor", + "特别 是", + "▁wait ing", + "▁wa iting", + "▁ waiting", + "nN ot", + "nNo t", + "n Not", + "▁house hold", + "ut f", + "u tf", + "▁N ULL", + "▁NU LL", + "▁ NULL", + "▁v ision", + "▁vis ion", + "▁ vision", + "▁la unched", + "▁launch ed", + "▁y outh", + "▁you th", + "▁yo uth", + "第一 个", + "第 一个", + "非 法", + "▁i o", + "▁ io", + "搭 配", + "▁ch annels", + "▁channel s", + "▁chan nels", + "▁ channels", + "▁ 在", + "▁up dates", + "▁update s", + "▁upd ates", + "▁ updates", + "▁m unicip", + "▁ass ume", + "▁assum e", + "二〇一 八年", + "▁f aster", + "▁fast er", + "▁fa ster", + "▁ faster", + "▁re con", + "▁r econ", + "▁rec on", + "▁ass essed", + "▁assess ed", + "que ue", + "▁cont ainer", + "▁contain er", + "▁ container", + "t c", + "ro le", + "rol e", + "r ole", + "▁part ies", + "▁par ties", + "▁s hall", + "▁sh all", + "▁sha ll", + "▁ shall", + "▁m ent", + "▁me nt", + "▁men t", + "▁ ment", + "▁grad u", + "▁gra du", + "▁im plements", + "▁imp lements", + "▁implement s", + "▁impl ements", + "n v", + "ba d", + "b ad", + "▁R ef", + "▁Re f", + "▁ Ref", + "k o", + "期 待", + "▁o xygen", + "▁ oxygen", + "▁learn ed", + "▁lear ned", + "glob al", + "g lobal", + "学生 的", + "学 生的", + "ef t", + "e ft", + "pt r", + "p tr", + "▁h orm", + "▁hor m", + "▁ho rm", + "▁R ussia", + "▁Russ ia", + "▁a nc", + "▁an c", + "▁ anc", + "▁tr ials", + "▁tri als", + "▁trial s", + "LO G", + "L OG", + "▁b oy", + "▁bo y", + "▁ boy", + "mon th", + "mo nth", + "mont h", + "E ff", + "( :", + "当 代", + "E A", + "天 的", + "▁c riteria", + "▁crit eria", + "▁criter ia", + "▁ criteria", + "▁win ning", + "▁ winning", + "cs v", + "c sv", + "▁arg uments", + "▁argument s", + "▁argu ments", + "▁ arguments", + "Mod e", + "Mo de", + "M ode", + "ki ns", + "kin s", + "k ins", + "物 品", + "直 播", + "都可 以", + "都 可以", + "br idge", + "brid ge", + "b ridge", + "号 码", + "as sets", + "ass ets", + "asset s", + "asse ts", + "ins ert", + "inse rt", + "▁M edical", + "▁Med ical", + "▁Medic al", + "▁f an", + "▁fa n", + "▁ fan", + "j i", + "▁D isc", + "▁Dis c", + "▁Di sc", + "▁ Disc", + "▁B ased", + "▁Base d", + "▁Bas ed", + "▁Ba sed", + "▁ Based", + "▁sup ports", + "▁support s", + "▁me dal", + "▁med al", + "▁ax is", + "▁axi s", + "▁ axis", + "w s", + "ear s", + "ea rs", + "e ars", + "▁rec ognition", + "▁recogn ition", + "▁mot iv", + "Util s", + "交 纳", + "▁O nce", + "▁On ce", + "▁Onc e", + "▁ Once", + "▁path way", + "▁tr uly", + "( *", + "ne g", + "n eg", + "▁ 杨", + "▁min ute", + "▁ minute", + "man ager", + "manage r", + "m anager", + "▁look ed", + "▁lo oked", + "') ,\\", + "'), \\", + "' ),\\", + "是 有", + "哪 个", + "▁te acher", + "▁teach er", + "▁tea cher", + "▁ teacher", + "▁re presentation", + "▁rep resentation", + "▁represent ation", + "▁ representation", + "▁r ise", + "▁ris e", + "▁ri se", + "▁ rise", + "▁s port", + "▁sp ort", + "▁spo rt", + "▁spor t", + "▁ sport", + "user content", + "▁出生 日期", + "人 体", + "▁tw ice", + "▁Acc ording", + "▁ According", + "at re", + "a tre", + "▁P age", + "▁Pa ge", + "▁Pag e", + "▁ Page", + "nm odule", + "nmod ule", + "n module", + "浏 览", + "FI LE", + "FIL E", + "F ILE", + "性 格", + "▁c hair", + "▁ch air", + "▁cha ir", + "▁ chair", + "▁fl uid", + "▁flu id", + "▁ fluid", + "▁Ge org", + "▁Geo rg", + "pos es", + "pose s", + "po ses", + "p oses", + "最 多", + "iction ary", + "练 习", + "ch annel", + "chan nel", + "ok es", + "oke s", + "o kes", + "▁over ride", + "▁ override", + "▁comfort able", + "▁ comfortable", + "▁C H", + "▁ CH", + "dev ice", + "▁l oved", + "▁love d", + "▁lo ved", + "▁labor atory", + "del ta", + "d elta", + "▁CON DIT", + "Ta g", + "T ag", + "硕 士", + "▁M exico", + "▁Mex ico", + "▁w indows", + "▁window s", + "▁wind ows", + "▁ windows", + "权 益", + "he ster", + "hes ter", + "hest er", + "h ester", + "的 东西", + "gr ession", + "gress ion", + "g ression", + "ec ho", + "ech o", + "e cho", + "▁s weet", + "▁swe et", + "▁or iginally", + "▁orig inally", + "▁original ly", + "▁origin ally", + "审 批", + "金 钱", + "▁L os", + "▁Lo s", + "▁bi om", + "▁bio m", + "顺 利", + "oc hemical", + "ochem ical", + "o chemical", + "▁c offee", + "▁co ffee", + "▁coff ee", + "▁ coffee", + "的 基本", + "▁C ath", + "▁Ca th", + "▁Cat h", + "租 赁", + "后 面", + "人 在", + "覆 盖", + "提 取", + "初 始", + "▁happ ened", + "▁happen ed", + "▁I II", + "▁II I", + "▁ III", + "nThe se", + "nTh ese", + "n These", + "▁P aris", + "▁Par is", + "▁Pa ris", + "本案 现已审理终结", + "▁design s", + "nS ince", + "n Since", + "大多 数", + "大 多数", + "还 会", + "▁le aving", + "▁re liable", + "▁rel iable", + "▁anal yses", + "▁analy ses", + "▁analys es", + "▁analyse s", + "nN ew", + "nNe w", + "n New", + "推 出", + "nAcc ording", + "n According", + "请 回答", + "▁P eter", + "▁Pet er", + "▁Pe ter", + "▁Pete r", + "▁ Peter", + "▁m olecules", + "▁molec ules", + "▁molecule s", + "me nu", + "men u", + "m enu", + "▁Ch icago", + "▁Chic ago", + "▁s tick", + "▁st ick", + "▁ stick", + "▁e cho", + "▁ec ho", + "▁ech o", + "▁ echo", + "▁mult ip", + "▁multi p", + "▁mul tip", + "▁V ictor", + "▁Vi ctor", + "▁Vic tor", + "▁ Victor", + "东 方", + "▁b io", + "▁bi o", + "▁ bio", + "\") ,", + "\" ),", + "in ds", + "ind s", + "人 大", + "▁B et", + "▁Be t", + "▁Val ley", + "▁Vall ey", + "▁Valle y", + "▁the orem", + "▁theore m", + "▁theor em", + "bot tom", + "b ottom", + "▁The ir", + "re lease", + "的人数 提出副本", + "日 前", + "AC T", + "A CT", + "▁S ou", + "▁So u", + "▁h a", + "▁ ha", + "wor ld", + "w orld", + "成 年", + "ni t", + "n it", + "▁m ail", + "▁ma il", + "▁ mail", + "报 名", + "▁E arth", + "▁Ear th", + "▁ Earth", + "更多 的", + "更 多的", + "object s", + "obj ects", + "▁spir it", + "有 没有", + "▁al leg", + "▁all eg", + "▁alle g", + "ro oms", + "room s", + "第二百 四十", + "机 场", + "证 券", + "回 家", + "维 修", + "le rs", + "ler s", + "l ers", + "▁effect ively", + "▁effective ly", + "Att ribute", + "iddle ware", + "uit s", + "ui ts", + "u its", + "el led", + "ell ed", + "elle d", + "Ar gs", + "Arg s", + "▁BAS IS", + "il a", + "i la", + "efer ence", + "efe rence", + "e ference", + "▁in iti", + "▁init i", + "▁ini ti", + "▁Ar my", + "▁Arm y", + "▁CONDIT IONS", + "形 态", + "协 调", + "日起 至", + "▁pre val", + "▁pr eval", + "▁prev al", + "▁n ic", + "▁ni c", + "▁ nic", + "▁conf lic", + "▁pl astic", + "▁plas tic", + "▁ plastic", + "ia na", + "ian a", + "i ana", + "晋 江", + "col umn", + "colum n", + "▁c opyright", + "▁copy right", + "▁ copyright", + "▁un ivers", + "▁uni vers", + "也 许", + "新 疆", + "St ack", + "ble s", + "bl es", + "b les", + "百 分", + "项 之规定", + "ra t", + "r at", + "▁inv olving", + "▁invol ving", + "▁indust rial", + "if ies", + "ifi es", + "自 主", + "▁r aw", + "▁ra w", + "▁ raw", + "良 好", + "▁j ump", + "▁ju mp", + "▁ jump", + "▁H y", + "▁ Hy", + "合 并", + "▁un less", + "▁unle ss", + "▁ unless", + "▁B razil", + "股 票", + "▁c alling", + "▁call ing", + "▁cal ling", + "▁e ducational", + "▁educ ational", + "▁education al", + "▁cl assic", + "▁class ic", + "▁ classic", + "▁连载 中", + "和 谐", + "Conn ection", + "Connect ion", + "▁L ight", + "▁Li ght", + "▁Lig ht", + "▁ Light", + "▁Spec ial", + "▁ Special", + "▁G overnment", + "▁Gover nment", + "▁Govern ment", + "▁lo an", + "S l", + ">( );\\", + ">() ;\\", + "> ();\\", + "em a", + "e ma", + "提 前", + "yt e", + "y te", + "n j", + "Me nu", + "Men u", + "M enu", + "也 能", + "▁n ine", + "▁nin e", + "▁ni ne", + "▁ nine", + "(_ _", + "( __", + "▁ke pt", + "▁in strument", + "▁instr ument", + "▁ instrument", + "R T", + "▁C urrent", + "▁Cur rent", + "▁ Current", + "ok ing", + "okin g", + "oki ng", + "o king", + "ce ived", + "ceive d", + "ut orial", + "utor ial", + "uto rial", + "仲 裁", + "▁H ospital", + "▁Hospit al", + "平 时", + "▁comp ounds", + "▁compound s", + "▁e arth", + "▁ear th", + "▁ earth", + "▁dec isions", + "▁decision s", + "nHow ever", + "n However", + "res ults", + "result s", + "面 临", + "Acc ess", + "Ac cess", + "A ccess", + "ed om", + "edo m", + "e dom", + "AN D", + "A ND", + "▁On ly", + "▁ Only", + "读 者", + "▁s pin", + "▁sp in", + "▁ spin", + "▁Vir ginia", + "▁Virgin ia", + "nL ist", + "n List", + "▁N a", + "▁ Na", + "co py", + "cop y", + "c opy", + "▁c limate", + "▁cl imate", + "▁clim ate", + "▁cli mate", + "ov ers", + "ove rs", + "over s", + "o vers", + "le ton", + "let on", + "l eton", + "▁s eat", + "▁se at", + "▁sea t", + "▁ seat", + "▁f requently", + "▁frequ ently", + "▁frequent ly", + "▁M a", + "▁ Ma", + "Mo n", + "M on", + "并 没有", + "( &", + "Pro duct", + "Prod uct", + "Produ ct", + "▁b ird", + "▁bi rd", + "▁bir d", + "▁ bird", + ";\\ \\", + "; \\\\", + "▁could n", + "大学 生", + "大 学生", + "▁Carol ina", + "▁o ral", + "▁or al", + "▁ oral", + "红 色", + "▁al gorithms", + "▁algorithm s", + "不 够", + "▁S and", + "▁San d", + "▁Sa nd", + "ail ability", + "Com p", + "Co mp", + "C omp", + "▁t ab", + "▁ta b", + "▁ tab", + "cl es", + "cle s", + "c les", + "▁st reet", + "▁stre et", + "▁ street", + "com mod", + "comm od", + "or ough", + "oro ugh", + "o rough", + "eng ine", + "▁w inter", + "▁win ter", + "▁wi nter", + "sc ribe", + "scrib e", + "scri be", + "scr ibe", + "s cribe", + "▁' @", + "▁p ure", + "▁pur e", + "▁pu re", + "▁ pure", + "Col lections", + "Collection s", + "Collect ions", + "Coll ections", + "等 奖", + "整 理", + "vent s", + "ven ts", + "v ents", + "▁as king", + "▁ask ing", + "AB ILITY", + "▁dep ends", + "▁depend s", + "▁ depends", + "▁J ose", + "▁Jo se", + "▁Jos e", + "区 间", + "ix ed", + "sc reen", + "scr een", + "s creen", + "▁s ensitive", + "▁sens itive", + "▁sensit ive", + "▁ sensitive", + "策 划", + "as p", + "a sp", + "配 套", + "原 料", + "▁for est", + "▁fore st", + "▁fo rest", + "▁ forest", + "授 权", + "ro ute", + "rou te", + "r oute", + "IG HT", + "IGH T", + "ru it", + "r uit", + "▁pos itions", + "▁position s", + "▁posit ions", + "▁ positions", + "▁S wed", + "▁Sw ed", + "▁Swe d", + "▁\" <", + "▁ \"<", + "也 很", + "▁e lected", + "▁elect ed", + "▁el ected", + "▁ elected", + "逻 辑", + "▁s hell", + "▁sh ell", + "▁she ll", + "▁shel l", + "▁ shell", + "▁target s", + "▁tar gets", + "▁ targets", + "cl uding", + "clud ing", + "an es", + "ane s", + "a nes", + "故 答案", + "有 个", + "▁comm only", + "▁common ly", + "Del ta", + "D elta", + "▁c ities", + "▁cit ies", + "▁ci ties", + "ic ular", + "icul ar", + "i cular", + "—— ——", + "——— —", + "— ———", + "JS ON", + "J SON", + "() :", + "( ):", + "▁de let", + "▁del et", + "▁ delet", + "同 志", + "▁re ceiving", + "▁rece iving", + "▁hum ans", + "▁human s", + "▁hu mans", + "Ad min", + "st itution", + "stit ution", + "stitu tion", + "法 的", + "吉林 省", + "天津 市", + "公开开庭 进行了审理", + "Op tion", + "Opt ion", + "O ption", + "▁c omposition", + "▁com position", + "▁comp osition", + "▁compos ition", + "住 房", + "融 合", + "可以 在", + "令 人", + "利 于", + "ha r", + "h ar", + "nt ype", + "nty pe", + "n type", + "▁o rient", + "▁or ient", + "▁ orient", + "向本院 提出", + "一个 月", + "一 个月", + "▁a bstract", + "▁ab stract", + "▁abs tract", + "▁ abstract", + "▁t rees", + "▁tr ees", + "▁tre es", + "▁tree s", + "▁ trees", + "▁[ '", + "▁ ['", + "ollow ing", + "oll owing", + "ollo wing", + "ha l", + "h al", + "▁Y es", + "▁Ye s", + "▁ Yes", + "优 惠", + "▁circ um", + "▁cir cum", + "▁keep ing", + "▁ keeping", + "arg ument", + "▁h olds", + "▁hold s", + "▁hol ds", + "▁re ceptors", + "▁recept ors", + "▁receptor s", + "▁innov ative", + "服 装", + "tv ar", + "t var", + "始 终", + "F ound", + "制 品", + "两 年", + "论 坛", + "form ance", + "▁ ±", + "也 要", + "▁re gression", + "▁reg ression", + "} _", + "类 的", + "拍 摄", + "▁cor ner", + "▁corn er", + "W idget", + "▁J es", + "▁Je s", + "▁i ron", + "▁ir on", + "▁ iron", + "im b", + "i mb", + "周 围", + "▁circ uit", + "▁ circuit", + "▁J SON", + "▁JS ON", + "▁ JSON", + "老 年", + "ep er", + "e per", + "na b", + "n ab", + "▁c ere", + "▁cer e", + "▁ce re", + "w d", + "▁n umpy", + "▁num py", + "▁ numpy", + "Re ader", + "Read er", + "R eader", + "Po rt", + "P ort", + "▁I nit", + "▁In it", + "▁ Init", + "nD o", + "n Do", + "上 午", + "情 节", + "lo se", + "los e", + "l ose", + "▁c raft", + "▁cra ft", + "▁ craft", + "▁jour ney", + "▁页 数", + "▁ 页数", + "Has h", + "Ha sh", + "H ash", + "女 儿", + "▁g rid", + "▁gr id", + "▁gri d", + "▁ grid", + "pos s", + "po ss", + "p oss", + "朋友 圈", + "▁re ality", + "▁real ity", + "不 想", + "ist ent", + "iste nt", + "▁v ehicles", + "▁veh icles", + "▁vehicle s", + "▁fac ulty", + "▁O ld", + "▁Ol d", + "▁ Old", + ")) )\\", + "))) \\", + ") ))\\", + "▁k m", + "▁ km", + "千 万", + "寻 找", + "房 间", + "ut ely", + "ute ly", + "▁exp ansion", + "▁expans ion", + "纤 维", + "内 蒙古", + "▁st udio", + "▁stud io", + "▁ studio", + "血 管", + "act ivity", + "activ ity", + "ce rs", + "cer s", + "c ers", + "dr op", + "dro p", + "d rop", + "▁A im", + "▁ Aim", + "▁Rec ords", + "▁Record s", + "▁ Records", + "▁Or gan", + "▁Org an", + "▁ Organ", + "▁treat ments", + "▁treatment s", + "她 们", + "预 测", + "▁d ict", + "▁di ct", + "▁dic t", + "▁ dict", + "f amily", + "ro g", + "r og", + "产 权", + "范围 内", + "ik ip", + "iki p", + "i kip", + "Win dow", + "Wind ow", + "W indow", + "中文 网", + "装 置", + "in ical", + "ini cal", + "inic al", + "Tem plate", + "Temp late", + "T emplate", + "随 机", + "ed ing", + "edi ng", + "e ding", + "接 到", + "po ol", + "p ool", + "▁Anal ysis", + "▁ Analysis", + "at i", + "a ti", + "▁con ventional", + "▁convention al", + "陈 述", + "Ex ec", + "ap es", + "ape s", + "a pes", + "▁e dition", + "▁ed ition", + "▁edit ion", + "本 来", + "S ession", + "pr ise", + "pri se", + "p rise", + "▁re produ", + "▁rep rodu", + "▁repro du", + "Un it", + "U nit", + "ri age", + "ria ge", + "r iage", + "▁cont ribution", + "▁contribut ion", + "▁t rail", + "▁tr ail", + "▁tra il", + "▁ trail", + "▁poss ibly", + "▁ possibly", + "▁correct ly", + "小 的", + "Tr ee", + "T ree", + "it z", + "i tz", + "机动 车", + "机 动车", + "ar ks", + "ark s", + "if icate", + "ific ate", + "r f", + "▁h eader", + "▁he ader", + "▁head er", + "▁ header", + "ed ge", + "的内 容", + "的 内容", + "Equ als", + "Equal s", + "对照 组", + "半 年", + "也 就", + "▁ п", + "▁col our", + "▁ colour", + "▁us age", + "▁ usage", + "▁b ag", + "▁ba g", + "▁ bag", + "函数 的", + "函 数的", + "nN ote", + "nNo te", + "nNot e", + "n Note", + "附 近", + "N F", + "电 力", + "▁f orget", + "▁for get", + "▁forg et", + "▁ forget", + "▁s cores", + "▁sc ores", + "▁score s", + "▁ scores", + "Li n", + "L in", + "新 区", + "▁re placed", + "▁replac ed", + "▁replace d", + "▁k illed", + "▁kil led", + "▁kill ed", + "I con", + "▁E nergy", + "▁En ergy", + "▁ Energy", + "高 等", + "ufeff using", + "th read", + "thr ead", + "▁ac compl", + "▁accomp l", + "yo u", + "y ou", + "近年 来", + "近 年来", + "im pl", + "imp l", + "超 级", + "天 气", + "Dir ect", + "Di rect", + "D irect", + "▁fr act", + "▁fra ct", + "▁pl ugin", + "▁plug in", + "▁ plugin", + "▁c ourses", + "▁co urses", + "▁cour ses", + "▁course s", + "▁ courses", + "高 效", + "▁T er", + "▁Te r", + "▁ Ter", + "▁ident ification", + "地 图", + "By Id", + "吸 收", + "▁c ultural", + "▁cult ural", + "▁ cultural", + "▁l aser", + "▁la ser", + "▁las er", + "做 了", + "ap se", + "aps e", + "账 户", + "IV E", + "I VE", + "▁g arden", + "▁gar den", + "▁gard en", + "▁w est", + "▁we st", + "▁ west", + "翻 译", + "▁co ast", + "▁n urs", + "▁nur s", + "▁nu rs", + "▁c er", + "▁ce r", + "▁ cer", + "ri ze", + "riz e", + "r ize", + "id ity", + "idi ty", + "▁Con ference", + "▁g one", + "▁go ne", + "▁gon e", + "▁ gone", + "▁exc ited", + "▁excit ed", + "千 克", + "条 规定", + "▁R ichard", + "▁Rich ard", + "▁Ric hard", + "▁Ri chard", + "▁ Richard", + "▁s erial", + "▁se rial", + "▁ser ial", + "▁ serial", + "中国 的", + "中 国的", + "▁D oes", + "▁Do es", + "▁ Does", + "出 发", + "ce nce", + "c ence", + "周 边", + "▁a gency", + "▁ag ency", + "▁age ncy", + "▁ agency", + "ac hing", + "ach ing", + "achi ng", + "a ching", + "it o", + "i to", + "▁s urgical", + "▁surg ical", + "▁ surgical", + "an iel", + "ani el", + "anie l", + "▁More over", + "▁col on", + "▁co lon", + "▁ colon", + "ul s", + "u ls", + "oint er", + "oin ter", + "oi nter", + "o inter", + "房 子", + "▁J ew", + "▁Je w", + "介绍 了", + "J ECT", + "ac ket", + "ack et", + "▁law y", + "▁la wy", + "tr ain", + "tra in", + "t rain", + "$$ ,", + "$ $,", + "▁B ur", + "▁Bu r", + "▁ Bur", + "▁cons umption", + "▁consum ption", + "▁a rm", + "▁ar m", + "▁ arm", + "S M", + "st rip", + "str ip", + "stri p", + "s trip", + "H R", + "▁B rown", + "▁Br own", + "▁Bro wn", + "▁Brow n", + "▁ Brown", + "葡 萄", + "明 星", + "z z", + "银行 存款", + "▁Sec ret", + "▁ Secret", + "三 十", + "基 层", + "环 节", + "▁br other", + "▁bro ther", + "▁broth er", + "中国 人民", + "中国人 民", + "os ton", + "ost on", + "o ston", + "net work", + "n etwork", + "▁S pring", + "▁Sp ring", + "▁Spr ing", + "▁ Spring", + "▁King dom", + "▁c oron", + "▁co ron", + "▁cor on", + "PO ST", + "POS T", + "P OST", + "渠 道", + "nI nd", + "nIn d", + "n Ind", + "A F", + "达 成", + "现 任", + "▁S tat", + "▁St at", + "▁Sta t", + "▁ Stat", + "女 孩", + "用 品", + "▁C orpor", + "▁Cor por", + "▁Corp or", + "▁friend ly", + "▁ friendly", + "开 心", + "一 名", + "script ion", + "scri ption", + "s cription", + "转 化", + "▁s oc", + "▁so c", + "交 付", + "▁re ject", + "▁ reject", + "休 闲", + "mos ph", + "m osph", + "en ger", + "eng er", + "enge r", + "ikip edia", + "▁claim s", + "▁ claims", + "▁Cent re", + "▁eff icacy", + "▁effic acy", + "▁ efficacy", + "▁un iversity", + "▁univers ity", + "St yle", + "Sty le", + "▁p resentation", + "▁present ation", + "▁ presentation", + "▁enh anced", + "▁enhance d", + "▁ enhanced", + "▁d ivers", + "▁di vers", + "▁div ers", + "▁diver s", + "▁dive rs", + "▁sign s", + "▁sig ns", + "f n", + "国 土", + "▁support ing", + "U P", + "▁tr igger", + "▁trig ger", + "▁ trigger", + "▁c hart", + "▁ch art", + "▁char t", + "▁cha rt", + "▁ chart", + "▁offic ials", + "▁official s", + "] {", + "h u", + "om ics", + "omic s", + "omi cs", + "▁is land", + "nt itle", + "n title", + "▁fund s", + "▁fun ds", + "__ ____", + "____ __", + "___ ___", + "_____ _", + "_ _____", + "▁rad ius", + "▁radi us", + "▁ radius", + "▁re tro", + "▁ret ro", + "ual ity", + "u ality", + "nA bstract", + "nAb stract", + "nAbs tract", + "n Abstract", + "n k", + "治 理", + "Car d", + "Ca rd", + "C ard", + "▁Com mand", + "▁Comm and", + "▁ Command", + "▁att ached", + "▁attach ed", + "wid get", + "w idget", + "▁sub str", + "▁subst r", + "▁subs tr", + "▁ substr", + "▁T re", + "▁Tr e", + "难 以", + "调 节", + "▁P ass", + "▁Pa ss", + "▁Pas s", + "▁ Pass", + "剧 情", + "刺 激", + "▁neuro ns", + "▁neur ons", + "▁neuron s", + "▁p olicies", + "▁polic ies", + "供 述", + "E G", + "▁en ded", + "▁end ed", + "▁ende d", + "▁ ended", + "▁U N", + "▁ UN", + "▁e ast", + "▁eas t", + "▁ east", + "▁S earch", + "▁Se arch", + "▁ Search", + "▁path ways", + "▁pathway s", + "fo o", + "f oo", + "is or", + "iso r", + "O M", + "▁L o", + "▁ Lo", + "n u", + "专 门", + "nT hey", + "nThe y", + "nTh ey", + "n They", + "▁v alu", + "▁val u", + "▁va lu", + "▁s ounds", + "▁sound s", + "▁emer gency", + "▁emerg ency", + "▁emerge ncy", + "▁b right", + "▁br ight", + "▁brig ht", + "▁ bright", + "由 此", + "ic ode", + "ico de", + "i code", + "这个 问题", + "失 败", + "ac ellular", + "a cellular", + "▁c reation", + "▁cre ation", + "▁creat ion", + "▁ creation", + "sc an", + "s can", + "Fr ame", + "F rame", + "air ed", + "ai red", + "aire d", + "a ired", + "Wh en", + "W hen", + "lic ense", + "l icense", + "公 交", + "m i", + "▁stat istics", + "▁statist ics", + "▁statistic s", + "▁ statistics", + "▁expert ise", + "▁percent age", + "▁ percentage", + "什么 是", + "货 币", + "▁acc omp", + "▁ac comp", + "(\\' /", + "(\\ '/", + "( \\'/", + "饮 食", + "本 地", + "▁W all", + "▁Wal l", + "▁Wa ll", + "▁ Wall", + "Set tings", + "Setting s", + "▁d ynamics", + "▁dynam ics", + "▁dynamic s", + "▁ dynamics", + "▁reg istered", + "▁register ed", + "▁ registered", + "强 度", + "iab ility", + "i ability", + "▁e mbed", + "▁em bed", + "▁emb ed", + "▁ embed", + "▁I reland", + "▁Ir eland", + "▁ Ireland", + "转 移", + "好 好", + "▁in ner", + "▁inn er", + "▁ inner", + "▁s ensor", + "▁sens or", + "▁ sensor", + "合同 纠纷一案中", + "合同纠纷一案 中", + "合同纠纷 一案中", + "▁ap ps", + "▁app s", + "▁ apps", + "混 合", + "ER R", + "E RR", + "▁fe atured", + "▁feature d", + "▁feat ured", + "▁ featured", + "▁vol tage", + "▁volt age", + "▁ voltage", + "n Z", + "现 金", + "▁ep isode", + "▁epis ode", + "▁ episode", + "▁B al", + "▁Ba l", + "▁ Bal", + "▁min imal", + "▁minim al", + "▁mini mal", + "▁ minimal", + "▁f old", + "▁fol d", + "▁fo ld", + "▁ fold", + "D o", + "ro ud", + "rou d", + "r oud", + "▁Championship s", + "▁Champions hips", + "▁Champion ships", + "外 的", + "▁M edia", + "▁Med ia", + "▁ Media", + "Ar e", + "A re", + "▁d ependent", + "▁dep endent", + "▁depend ent", + "▁ dependent", + "▁cit iz", + "▁gr ade", + "▁grad e", + "▁gra de", + "▁ grade", + "▁in cred", + "▁incre d", + "▁inc red", + "▁consider ing", + "运 算", + "n r", + "Sc hema", + "Sch ema", + "▁lead ership", + "▁leaders hip", + "▁leader ship", + "怎么 办", + "说 是", + "体 积", + "第一百五十四 条第一款第", + "第一百五十四条第一款 第", + "荣 誉", + "▁It aly", + "▁Ital y", + "ma l", + "m al", + "ga mma", + "gam ma", + "g amma", + "决 策", + "▁su spect", + "▁sus pect", + "▁susp ect", + "高 考", + "IS T", + "I ST", + "▁con j", + "▁co nj", + "▁c lar", + "▁cl ar", + "▁H istory", + "▁Histor y", + "▁Hi story", + "▁Hist ory", + "▁ History", + "▁S cot", + "▁Sc ot", + "▁A tl", + "▁At l", + "pro p", + "pr op", + "p rop", + "wh ite", + "whit e", + "▁aud ience", + "▁audi ence", + "nTh ank", + "n Thank", + "▁Th ree", + "▁Thr ee", + "▁ Three", + "to ols", + "tool s", + "too ls", + "t ools", + "▁Am azon", + "▁ Amazon", + "child ren", + "冠 军", + "为 由", + "收 益", + "▁R et", + "▁Re t", + "▁ Ret", + "主要 是", + "主 要是", + "▁f uel", + "▁fu el", + "▁ fuel", + "内 存", + "器 的", + "▁fund amental", + "▁fundament al", + "▁H D", + "▁ HD", + "实 用", + "率 为", + "▁L ibrary", + "▁ Library", + "否 则", + "▁r is", + "▁ri s", + "▁ ris", + "ak a", + "a ka", + "av ity", + "avit y", + "avi ty", + "▁I ran", + "▁Ir an", + "事 项", + "▁sh opping", + "▁shop ping", + "▁Sec urity", + "▁ Security", + "at uring", + "atur ing", + "atu ring", + "▁ver sus", + "▁vers us", + "▁k new", + "▁kn ew", + "▁kne w", + "▁in stitution", + "▁inst itution", + "▁instit ution", + "▁sub set", + "▁subs et", + "▁ subset", + "▁s tem", + "▁st em", + "▁ste m", + "▁ stem", + "路 径", + "est yle", + "esty le", + "e style", + "▁ad vent", + "▁adv ent", + "▁screen ing", + "▁P ay", + "▁Pa y", + "▁ Pay", + "\") ,\\", + "\"), \\", + "\" ),\\", + "Ga me", + "G ame", + "▁e pid", + "▁ep id", + "▁ epid", + "▁do ctor", + "▁doc tor", + "▁ doctor", + "呈 现", + "▁sw im", + "com bin", + "comb in", + "ma c", + "m ac", + "代 入", + "el ect", + "ele ct", + "e lect", + "▁ne ural", + "▁neur al", + "加 快", + "室 内", + "最好 的", + "最 好的", + "▁sequ ences", + "▁sequence s", + "▁ sequences", + "有 多", + "▁Un less", + "▁ Unless", + "vent ions", + "vention s", + "再 审", + "▁N on", + "▁No n", + "▁ Non", + "S V", + "um ps", + "ump s", + "▁te achers", + "▁teach ers", + "▁teacher s", + "im a", + "i ma", + "工作 人员", + "一 体", + "迟 延", + "OD O", + "O DO", + "回 到", + "指定 的", + "指 定的", + "仍 然", + "▁st ars", + "▁star s", + "▁ stars", + "爸 爸", + "▁Ar ts", + "▁Art s", + "过 来", + "上 下", + "在 此", + "\\' ),\\", + "\\') ,\\", + "\\'), \\", + "\\ '),\\", + "▁r aise", + "▁ra ise", + "▁ raise", + "▁ke ys", + "▁key s", + "▁ keys", + "▁wh atever", + "▁what ever", + "▁ whatever", + "ta gs", + "tag s", + "t ags", + "金 额", + "都没 有", + "都 没有", + "ed s", + "e ds", + "▁Sp anish", + "▁ Spanish", + "▁人 物", + "▁ 人物", + "▁card iac", + "▁cardi ac", + "SU L", + "S UL", + "ibr aries", + "▁d raft", + "▁ draft", + "▁T R", + "▁ TR", + "▁d efe", + "▁de fe", + "▁def e", + "om ega", + "ome ga", + "o mega", + "un tu", + "unt u", + "▁would n", + "cre en", + "cr een", + "c reen", + "\"{ {", + "\" {{", + "▁s oil", + "▁so il", + "色 彩", + "iz ontal", + "izon tal", + "on ia", + "oni a", + "o nia", + "▁S erver", + "▁Ser ver", + "▁Serv er", + "▁Serve r", + "▁ Server", + "by te", + "b yte", + "wa n", + "w an", + "} ;", + "▁pro ceed", + "▁proc eed", + "很 有", + "nA ss", + "nAs s", + "n Ass", + "细 节", + "发 动", + "Em pty", + "Emp ty", + "br o", + "b ro", + "▁A ff", + "▁Af f", + "▁ Aff", + "博 物", + "Buff er", + "Buf fer", + "B uffer", + "▁t ips", + "▁tip s", + "▁ti ps", + "▁ tips", + "开发 区", + "▁ev ening", + "▁even ing", + "up le", + "u ple", + "▁v ot", + "▁vo t", + "▁c row", + "▁cr ow", + "▁cro w", + "▁ crow", + "▁dis count", + "▁disc ount", + "▁ discount", + "有 很多", + "i y", + "▁pass ion", + "}$ ,", + "} $,", + "甘 肃", + "▁appoint ed", + "ip t", + "i pt", + "cont roller", + "control ler", + "知 名", + "om atic", + "oma tic", + "omat ic", + "o matic", + "}} \\\\", + "}}\\ \\", + "} }\\\\", + "▁ext ent", + "cl aim", + "▁H a", + "▁ Ha", + "▁st ores", + "▁store s", + "▁sto res", + "▁ stores", + "▁ph il", + "▁phi l", + "▁ phil", + "me an", + "m ean", + "▁ph armac", + "▁pharm ac", + "信用 卡", + "▁s alt", + "▁sa lt", + "▁sal t", + "▁ salt", + "in ternal", + "int ernal", + "inter nal", + "intern al", + "的 同时", + "▁c ognitive", + "▁cogn itive", + "▁ cognitive", + "故答案 为", + "登 录", + "▁sign als", + "▁signal s", + "▁sig nals", + "▁ signals", + "down load", + "d ownload", + "学 位", + "回 来", + "性 别", + "}, {\"", + "},{ \"", + "▁pot entially", + "▁potential ly", + "▁potent ially", + "正当 理由", + "▁n a", + "▁ na", + "精 彩", + "om ain", + "oma in", + "o main", + "▁pack ages", + "▁package s", + "▁ packages", + "▁b asketball", + "▁basket ball", + "数据 库", + "▁C R", + "▁ CR", + "▁As ian", + "▁Asia n", + "▁t ypical", + "▁typ ical", + "▁c andidates", + "▁candid ates", + "▁candidate s", + "▁h em", + "▁he m", + "▁ hem", + "▁C ross", + "▁Cr oss", + "▁Cro ss", + "▁Cros s", + "▁ Cross", + "Gener ic", + "Gen eric", + "Gene ric", + "▁h earing", + "▁he aring", + "▁hear ing", + "印 度", + "ov es", + "ove s", + "o ves", + "ent ials", + "ential s", + "enti als", + "Te X", + "tic al", + "ti cal", + "t ical", + "宁 波", + "O b", + "▁h istorical", + "▁histor ical", + "▁historic al", + "▁o ptical", + "▁op tical", + "▁opt ical", + "▁optic al", + "的 关键", + "Ca n", + "C an", + "▁Con fig", + "▁Co nfig", + "▁Conf ig", + "▁ Config", + "刑初 字第", + "刑 初字第", + "丰富 的", + "▁recogn ized", + "▁recognize d", + "▁ recognized", + "专业 的", + "专 业的", + "预 交", + "▁f ormal", + "▁for mal", + "▁form al", + "▁ formal", + "la r", + "l ar", + "EF A", + "E FA", + "▁A bstract", + "▁Ab stract", + "▁Abs tract", + "▁ Abstract", + "▁c e", + "▁ ce", + "情况 下", + "▁acc um", + "▁ac cum", + "▁ accum", + "▁pop ulations", + "▁population s", + "▁popul ations", + "▁ populations", + "▁m ir", + "▁mi r", + "▁ mir", + "上 升", + "di g", + "d ig", + "▁vari ation", + "▁var iation", + "▁P rem", + "▁Pr em", + "▁Pre m", + "▁ Prem", + "▁un iform", + "▁uni form", + "▁ uniform", + "if ts", + "ift s", + "i fts", + "li nt", + "lin t", + "l int", + "▁Up date", + "▁ Update", + "师 范", + "▁m ic", + "▁mi c", + "▁ mic", + "老 人", + "房地产 开发", + "▁b oot", + "▁bo ot", + "▁ boot", + "解题 过程", + "▁d iverse", + "▁di verse", + "▁divers e", + "▁diver se", + "▁d ream", + "▁ dream", + "▁tum ors", + "▁tumor s", + "▁K ar", + "▁Ka r", + "▁ Kar", + "梦 想", + "▁spe ech", + "▁ speech", + "▁par ams", + "▁para ms", + "▁param s", + "▁ params", + "未 能", + "不 起", + "共 享", + "Bo dy", + "B ody", + "▁ve get", + "el ler", + "ell er", + "elle r", + "e ller", + "化 工", + "▁ac commod", + "取 消", + "型 的", + "G R", + "▁hol iday", + "id ents", + "ident s", + "iden ts", + "▁h ash", + "▁has h", + "▁ha sh", + "▁ hash", + "tr i", + "t ri", + "▁un ion", + "▁uni on", + "▁ union", + "迟延 履行", + "WO RD", + "WOR D", + "W ORD", + "▁cle aning", + "▁clean ing", + "▁dis order", + "▁Ang eles", + "▁Angel es", + "答 辩", + "▁d ir", + "▁di r", + "▁ dir", + "地 球", + "▁O nline", + "▁On line", + "▁ Online", + "▁b ott", + "▁bo tt", + "▁bot t", + "▁G lobal", + "▁Glo bal", + "▁Glob al", + "▁ Global", + "▁u rban", + "▁ur ban", + "▁ urban", + "cont rib", + "contr ib", + "conn ection", + "connect ion", + "▁clos ely", + "▁close ly", + "▁w w", + "▁ ww", + "hy dro", + "hyd ro", + "h ydro", + "▁rem ained", + "▁remain ed", + "▁surround ing", + "▁l ig", + "▁li g", + "▁ lig", + "en nis", + "enn is", + "B D", + "SI ON", + "S ION", + "▁ro oms", + "▁room s", + "▁ rooms", + "▁comp act", + "▁ compact", + "互 动", + "的 研究", + "HT ML", + "d l", + "ag r", + "a gr", + "uo us", + "u ous", + "em on", + "emo n", + "e mon", + "▁anal og", + "▁ana log", + "生活 中", + "第 八", + "uk e", + "u ke", + "ov ing", + "ovi ng", + "o ving", + "▁N E", + "▁ NE", + "▁t oler", + "▁to ler", + "▁dec ide", + "art ments", + "artment s", + "▁E ff", + "▁ Eff", + "▁r ub", + "▁ru b", + "▁ rub", + "IN T", + "I NT", + "▁g ender", + "▁gen der", + "▁ge nder", + "▁ gender", + "▁ro of", + "▁e nv", + "▁en v", + "▁ env", + "I X", + "▁a udio", + "▁aud io", + "▁audi o", + "▁ audio", + "新 华", + "▁E p", + "▁ Ep", + "审 核", + "▁ch ief", + "▁chi ef", + "▁ chief", + "▁w ine", + "▁win e", + "▁wi ne", + "^\\ \\", + "^ \\\\", + "▁a mb", + "▁am b", + "▁ amb", + "▁ac counts", + "▁account s", + "▁ accounts", + "ia no", + "ian o", + "i ano", + "免 疫", + "▁organ ic", + "▁org anic", + "▁ organic", + "▁p od", + "▁po d", + "▁ pod", + "and roid", + "andro id", + "andr oid", + "▁A dv", + "▁Ad v", + "▁ Adv", + "道 德", + "▁new ly", + "▁C ast", + "▁Ca st", + "▁Cas t", + "▁ Cast", + "属 性", + "uc ket", + "uck et", + "so l", + "s ol", + "现在 的", + "doc ker", + "dock er", + "d ocker", + "ch er", + "che r", + "c her", + "县 人", + "无 正当理由", + "▁rad iation", + "▁radi ation", + "▁As ia", + "▁ Asia", + "▁re verse", + "▁revers e", + "▁rever se", + "▁ reverse", + "nF il", + "n Fil", + "▁F estival", + "▁Fest ival", + "mo ck", + "m ock", + "图书 馆", + "东 北", + "▁st ages", + "▁stage s", + "直 到", + "is ters", + "ist ers", + "ister s", + "iste rs", + "i sters", + "许 可", + "nT hen", + "nThe n", + "nTh en", + "n Then", + "Ch ild", + "▁r iver", + "▁ri ver", + "▁riv er", + "▁ river", + "▁in stant", + "▁inst ant", + "▁ instant", + "as cript", + "asc ript", + "a script", + "▁int ellig", + "示 范", + "H D", + "▁f illed", + "▁fil led", + "▁fill ed", + "▁ filled", + "▁M en", + "▁Me n", + "▁ Men", + "收 费", + "Col lection", + "Collect ion", + "Coll ection", + "的 其他", + "▁ ×", + "归 还", + "▁r ac", + "▁ra c", + "▁ rac", + "▁class ification", + "▁ classification", + "M R", + "看 待", + "▁trans formation", + "▁transform ation", + "工作 者", + "工 作者", + "▁s now", + "▁sn ow", + "▁ snow", + "nR ec", + "nRe c", + "n Rec", + "▁A ction", + "▁Ac tion", + "▁Act ion", + "▁ Action", + "每一 个", + "每 一个", + "ix el", + "▁c overs", + "▁co vers", + "▁cover s", + "▁cov ers", + "▁t issues", + "▁tissue s", + "▁se asons", + "▁season s", + "▁seas ons", + "▁ad opt", + "▁adop t", + ")} {", + ") }{", + "▁Y O", + "▁ YO", + "▁com pat", + "▁comp at", + "▁ compat", + "每 一", + "Pos ition", + "P osition", + "▁pre pare", + "▁prep are", + "▁prepar e", + "▁ prepare", + "▁sc ope", + "▁ scope", + "ne x", + "n ex", + "▁B as", + "▁Ba s", + "▁ Bas", + "故 意", + "▁result ed", + "▁p oll", + "▁pol l", + "▁po ll", + "▁ poll", + "进 口", + "幼儿 园", + "▁c ris", + "▁cr is", + "▁ex plan", + "▁exp lan", + "▁expl an", + "mon ary", + "河 北", + "▁t on", + "▁to n", + "▁ ton", + "▁com pr", + "▁comp r", + "责 令", + "▁pe ak", + "▁ peak", + "在 我", + "▁R eturn", + "▁Re turn", + "▁Ret urn", + "▁ Return", + "感 到", + "不 良", + "Pro gram", + "Pr ogram", + "ash board", + "▁T imes", + "▁Time s", + "▁Tim es", + "▁Ti mes", + "▁ Times", + "ai s", + "a is", + "▁re nal", + "User s", + "Us ers", + "Use rs", + "pr ed", + "pre d", + "p red", + "▁own ed", + "▁ow ned", + "▁ owned", + "▁c rypt", + "▁cry pt", + "▁ crypt", + "该 犯", + "j o", + "▁mark ets", + "▁market s", + "▁T w", + "▁ Tw", + "S R", + "ug by", + "ro duction", + "rodu ction", + "rod uction", + "▁d imension", + "▁dim ension", + "▁ dimension", + "lo or", + "loo r", + "l oor", + "估 计", + "场 景", + "▁med icine", + "▁medi cine", + "▁medic ine", + "▁ medicine", + "▁com plement", + "▁comp lement", + "▁compl ement", + "▁m ess", + "▁me ss", + "▁mes s", + "▁ mess", + "nL ast", + "nLa st", + "n Last", + "ch a", + "c ha", + "羁 押", + "▁C T", + "▁ CT", + "▁l imits", + "▁li mits", + "▁lim its", + "▁limit s", + "▁ limits", + "ul um", + "ulu m", + "▁Prov ince", + "or ney", + "orn ey", + "orne y", + "本院 在执行", + "本院在 执行", + "大 道", + "Data base", + "Dat abase", + "D atabase", + "能 量", + "En um", + "E num", + "B P", + "ip les", + "iple s", + "ipl es", + "i ples", + "干 净", + "真 是", + "nA dd", + "nAd d", + "n Add", + "▁P rot", + "▁Pro t", + "▁Pr ot", + "▁ Prot", + "▁cl uster", + "▁clust er", + "▁ cluster", + "▁dest roy", + "▁destr oy", + "▁ destroy", + "▁sil ver", + "执行 通知书", + "执行通知 书", + "等 方面", + "时 刻", + "▁poss ibility", + "▁S olve", + "▁Sol ve", + "▁ Solve", + "和 平", + "表 演", + "la t", + "l at", + "▁remain der", + "W E", + "监 测", + "Pr int", + "P rint", + "ui s", + "u is", + "解 放", + "▁be haviour", + "▁behav iour", + "▁behavi our", + "购 物", + "(\" /", + "( \"/", + "▁T able", + "▁Ta ble", + "▁Tab le", + "▁ Table", + "▁L O", + "▁ LO", + "Ro ute", + "R oute", + "▁re cover", + "▁rec over", + "▁con sole", + "▁cons ole", + "▁ console", + "判决书 送达之日起", + "be l", + "b el", + "ap py", + "app y", + "test ing", + "tes ting", + "t esting", + "缺 乏", + "ns on", + "nso n", + "n son", + "ter ior", + "te rior", + "t erior", + "reat ment", + "轴 承", + "IC E", + "I CE", + "▁rest aurant", + "▁restaur ant", + "▁ restaurant", + "江西 省", + "江 西省", + "U M", + "%; \\", + "% ;\\", + "RE AD", + "食 用", + "▁to pics", + "▁top ics", + "▁topic s", + "▁ topics", + "的 产品", + "条第二 款", + "条 第二款", + "ar ea", + "are a", + "a rea", + "联 盟", + "▁prim arily", + "▁v ul", + "▁acc ident", + "适 当", + "▁hy brid", + "▁ hybrid", + "似 乎", + "餐 厅", + "er rors", + "err ors", + "error s", + "C F", + "▁G it", + "▁Gi t", + "▁ Git", + "宠 物", + "男 生", + "ap ed", + "ape d", + "a ped", + "▁t a", + "▁ ta", + "▁A rab", + "▁Ar ab", + "▁st ated", + "▁state d", + "▁stat ed", + "▁l isting", + "▁list ing", + "▁ listing", + "过 了", + "▁Ex ec", + "▁ Exec", + "二 条", + "me s", + "m es", + "汉 语", + "咖 啡", + "▁pro lif", + "▁prol if", + "▁R am", + "▁Ra m", + "UL T", + "U LT", + "担 心", + "▁L ast", + "▁La st", + "▁Las t", + "▁ Last", + "▁redu cing", + "▁red ucing", + "▁K en", + "▁Ke n", + "▁ Ken", + "▁E R", + "▁ ER", + "r h", + "▁\" \\\\", + "▁\"\\ \\", + "▁ \"\\\\", + "航 空", + "▁describ es", + "▁describe s", + "社会 主义", + "ra wn", + "raw n", + "r awn", + "▁elect rical", + "▁electric al", + "▁electr ical", + "▁per spective", + "▁pers pective", + "▁perspect ive", + "▁mer ge", + "▁merg e", + "▁ merge", + "求 解", + "sh ot", + "s hot", + "ut or", + "uto r", + "u tor", + "▁p olar", + "▁pol ar", + "▁po lar", + "▁ polar", + "▁E dit", + "▁Ed it", + "▁ Edit", + "oc ard", + "oca rd", + "ocar d", + "o card", + "at ar", + "ata r", + "a tar", + "共 产", + "▁aw arded", + "▁award ed", + "▁L anguage", + "▁ Language", + "nE ng", + "nEn g", + "n Eng", + "▁w ww", + "▁ww w", + "▁ www", + "St orage", + "ycl e", + "yc le", + "y cle", + "▁r an", + "▁ra n", + "▁ ran", + "前 的", + "穿 越", + "nF irst", + "n First", + "部 长", + "▁cr uc", + "▁cru c", + "ov a", + "o va", + "现 状", + "▁s peak", + "▁spe ak", + "大 众", + "er ts", + "ert s", + "▁in depend", + "▁i ndepend", + "▁ind epend", + "某 些", + "期 的", + "含 有", + "▁inter act", + "▁im proving", + "▁impro ving", + "▁improv ing", + "с т", + "E ach", + "▁s izes", + "▁size s", + "▁si zes", + "▁ sizes", + "▁所 属", + "▁ 所属", + "辅 助", + "合适 的", + "舒 适", + "▁p p", + "▁ pp", + "serv ices", + "service s", + "s ervices", + "▁P op", + "▁Po p", + "▁ Pop", + "pre fix", + "pref ix", + "p refix", + "et ics", + "etic s", + "eti cs", + "较 大", + "▁P ac", + "▁Pa c", + "▁ Pac", + "td ef", + "t def", + "t i", + "P G", + "▁java x", + "▁jav ax", + "下面 的问题", + "下面的 问题", + "st ar", + "sta r", + "s tar", + "un a", + "u na", + "厦 门", + "im ation", + "ima tion", + "C ustom", + "nC ont", + "nCon t", + "nCo nt", + "n Cont", + "不 在", + "ir craft", + "irc raft", + "这 款", + "▁med ian", + "▁media n", + "▁medi an", + "▁ median", + "sc hema", + "sch ema", + "sche ma", + "湖 北", + "美 食", + "l f", + "▁M aster", + "▁Ma ster", + "▁Mas ter", + "▁Mast er", + "▁ Master", + "位 数", + "▁f light", + "▁fl ight", + "▁ flight", + "协 助", + "老 板", + "▁spect rum", + "▁ spectrum", + "i ography", + "zo ne", + "zon e", + "z one", + "平 行", + "▁C lick", + "▁Cl ick", + "▁ Click", + "▁phen omen", + "生 存", + "异 常", + "▁p ara", + "▁par a", + "▁pa ra", + "▁ para", + "▁strong ly", + "生效 后", + "▁accept ed", + "▁ accepted", + "单 调", + "想 法", + "请回答 下面的问题", + "▁L ink", + "▁Lin k", + "▁Li nk", + "▁ Link", + "分别 为", + "第 九", + "pl us", + "ON E", + "O NE", + "lo wer", + "low er", + "l ower", + "yn amic", + "ynam ic", + "yna mic", + "▁f amiliar", + "▁fam iliar", + "▁famil iar", + "Qu e", + "Q ue", + "bl ing", + "b ling", + "兄 弟", + "▁kn ows", + "▁know s", + "一 旦", + "N G", + "nB e", + "n Be", + "Pl ayer", + "Play er", + "P layer", + "z y", + "的要 求", + "的 要求", + "\\\\ ()", + "\\\\( )", + "▁effect iveness", + "▁effective ness", + "▁ effectiveness", + "▁f avour", + "▁fav our", + "密 码", + "em bers", + "ember s", + "emb ers", + "▁b locks", + "▁bl ocks", + "▁block s", + "▁blo cks", + "▁ blocks", + "▁a pi", + "▁ap i", + "▁ api", + "这就 是", + "这 就是", + "ta ke", + "t ake", + "相 应", + "就 在", + "os pit", + "osp it", + "指 定", + "▁g uy", + "▁gu y", + "▁ guy", + "▁E st", + "▁Es t", + "▁ Est", + "▁exec utive", + "▁execut ive", + "▁B E", + "▁ BE", + "▁r ough", + "▁ro ugh", + "▁rou gh", + "▁ rough", + "▁ann ounce", + "▁announc e", + "陕西 省", + "陕 西省", + "太 多", + "有 机", + "ri ev", + "rie v", + "r iev", + "▁del ivered", + "▁deliver ed", + "债务 利息", + "▁comp etitive", + "▁compet itive", + "▁competit ive", + "认 可", + "白 色", + "▁pre vention", + "▁prevent ion", + "▁prev ention", + "▁inc idence", + "▁prom pt", + "▁ prompt", + "▁in frastructure", + "▁infr astructure", + "▁Mar tin", + "▁Mart in", + "▁ Martin", + "▁s olar", + "▁so lar", + "▁sol ar", + "链 接", + "LE CT", + "L ECT", + "▁t ables", + "▁table s", + "▁tab les", + "▁ta bles", + "▁ tables", + "问题 的答案", + "问题的 答案", + "ru b", + "r ub", + "▁ins ulin", + "▁ insulin", + "课 堂", + "W idth", + "适用 于", + "适 用于", + "A b", + "部 署", + "方式 结案", + "尝 试", + "▁V ari", + "▁Var i", + "▁Va ri", + "▁ Vari", + "▁me chanical", + "▁mechan ical", + "▁mechanic al", + "用 来", + "集 成", + "▁b attery", + "▁batter y", + "▁bat tery", + "▁batt ery", + "规 格", + "▁ing red", + "项的 规定", + "项 的规定", + "▁c up", + "▁cu p", + "▁ cup", + "党 的", + "采 购", + "d p", + "Ca r", + "C ar", + "▁st yles", + "▁style s", + "▁styl es", + "▁ styles", + "ir us", + "i rus", + "纪 念", + "不 住", + "围 绕", + "▁char ges", + "▁charg es", + "▁charge s", + "▁instit utions", + "▁institution s", + "ro uter", + "rou ter", + "route r", + "r outer", + "▁H uman", + "▁Hu man", + "▁Hum an", + "▁ Human", + "元 及", + "▁tr ained", + "▁train ed", + "▁tra ined", + "▁ trained", + "nS ome", + "nSo me", + "n Some", + "全 体", + "▁l atter", + "▁lat ter", + "u h", + "▁B each", + "▁Be ach", + "▁Bea ch", + "解 除", + "或 许", + "yl van", + "or rect", + "orr ect", + "拒 绝", + "cp p", + "c pp", + "le ases", + "lease s", + "lea ses", + "▁c ategories", + "▁categor ies", + "▁ categories", + "▁be auty", + "▁beaut y", + "本裁定 书", + "本 裁定书", + "s a", + "都 市", + "Hom e", + "Ho me", + "H ome", + "▁s elling", + "▁sell ing", + "▁sel ling", + "▁ selling", + "▁d anger", + "▁dan ger", + "▁ danger", + "Gr aph", + "G raph", + "▁e num", + "▁en um", + "▁ enum", + "nAl so", + "n Also", + "清 洁", + "ans as", + "出版社 出版的图书", + "nA ny", + "nAn y", + "n Any", + "an th", + "ant h", + "a nth", + "人 力", + "▁ex posed", + "▁exp osed", + "▁expose d", + "▁ exposed", + "▁ 出", + "▁in hibition", + "▁inhib ition", + "▁inhibit ion", + "▁dec ades", + "▁decade s", + "身份 证", + "味 道", + "bs ite", + "b site", + "说 话", + "我 会", + "Ca che", + "C ache", + "旅 行", + "观 点", + "▁l at", + "▁la t", + "▁ lat", + "▁ex cess", + "▁exc ess", + "▁tour nament", + "等 待", + "▁D C", + "▁ DC", + "▁stim ul", + "▁d ating", + "▁dat ing", + "▁da ting", + "▁ dating", + "▁furn iture", + "Var i", + "V ari", + "不一 样", + "不 一样", + "收 藏", + "▁sub sequent", + "▁subsequ ent", + "rol lers", + "roll ers", + "roller s", + "▁h tml", + "▁ html", + "▁Char les", + "▁Charl es", + "nD e", + "n De", + "▁com mitted", + "▁comm itted", + "▁commit ted", + "▁m sg", + "▁ms g", + "▁ msg", + "Pass word", + "晋江 文学", + "▁l it", + "▁li t", + "▁ lit", + "ed u", + "e du", + "▁ag greg", + "▁ aggreg", + "▁sim ult", + "▁si mult", + "▁b eat", + "▁be at", + "▁ beat", + "▁de als", + "▁deal s", + "▁p erman", + "▁per man", + "▁perm an", + "服务 器", + "ni c", + "n ic", + "宣 布", + "pl et", + "ple t", + "p let", + "▁ch oices", + "▁cho ices", + "▁choice s", + "▁ choices", + "up y", + "u py", + "▁H ead", + "▁He ad", + "▁ Head", + "邀 请", + "×× ×", + "× ××", + "to ol", + "too l", + "t ool", + "nSup pose", + "n Suppose", + "▁M ur", + "▁Mu r", + "▁ Mur", + "▁v aluable", + "▁valu able", + "te x", + "t ex", + "▁a thlet", + "▁b ought", + "▁bo ught", + "▁bou ght", + "两 人", + "应该 是", + "可 靠", + "家 人", + "华 为", + "ers onal", + "erson al", + "▁en ds", + "▁end s", + "▁ ends", + "▁sc ored", + "▁score d", + "▁a sym", + "▁as ym", + "not e", + "no te", + "n ote", + "▁hard ware", + "▁ hardware", + "it ness", + "▁Fil m", + "▁Fi lm", + "开 启", + "生 素", + "ach ment", + "log ging", + "val s", + "va ls", + "v als", + "识 别", + "ress ive", + "r essive", + "▁p ig", + "▁pi g", + "▁ pig", + ") (", + "生 于", + "bl ue", + "▁p articles", + "▁part icles", + "▁partic les", + "▁particle s", + "▁ particles", + "uss ian", + "ussia n", + "说 了", + "▁v ess", + "▁ve ss", + "▁ves s", + "A m", + "▁re son", + "▁r eson", + "▁res on", + "撤 销", + "▁t empor", + "▁tem por", + "▁temp or", + "▁tempo r", + "▁collabor ation", + "总 体", + "nSub ject", + "n Subject", + "第五 十", + "第 五十", + "准 予", + "▁t hr", + "▁th r", + "▁ thr", + "on ds", + "ond s", + "cl udes", + "clud es", + "clude s", + "write r", + "writ er", + "wr iter", + "w riter", + "乡 村", + "▁s pons", + "▁sp ons", + "▁spo ns", + "▁ spons", + "▁sp atial", + "▁spat ial", + "▁ spatial", + "▁s eek", + "▁se ek", + "▁see k", + "▁ seek", + "ay a", + "a ya", + "hand ler", + "handle r", + "第二百五十 七条", + "第二百五十七 条", + "▁Stud y", + "▁ Study", + "le gal", + "leg al", + "l egal", + "ur able", + "ura ble", + "▁ass istance", + "▁assist ance", + "融 资", + "he ast", + "hea st", + "h east", + "P H", + "手 续", + "iff erent", + "iffer ent", + "iffe rent", + "▁rob ust", + "决定 书", + "当 年", + "更好 的", + "更 好的", + "物业 服务", + "▁exc iting", + "▁excit ing", + "中 小", + "▁c oh", + "▁co h", + "▁ coh", + "os oph", + "oso ph", + "e a", + "pu ll", + "p ull", + "的 关系", + "足 够", + "▁N S", + "▁ NS", + "▁dat etime", + "▁date time", + "▁ datetime", + "▁r ural", + "▁ru ral", + "这 道", + "▁p roud", + "▁pro ud", + "▁pr oud", + "▁m aps", + "▁map s", + "▁ma ps", + "▁ maps", + "立即 生效", + "评 审", + "▁l in", + "▁li n", + "▁ lin", + "笔 记", + "Mar k", + "Ma rk", + "M ark", + "▁in her", + "▁inh er", + "▁You ng", + "▁Yo ung", + "▁ Young", + "Ar t", + "A rt", + "ui ng", + "u ing", + "Hel per", + "Help er", + "▁trans plant", + "ic ken", + "ick en", + "以 调解", + "▁hyp othes", + "▁hypot hes", + "▁hypoth es", + "公 民", + "转 换", + "▁In vest", + "▁Inv est", + "▁ Invest", + "正确 的答案", + "正确的 答案", + "ol ds", + "old s", + "▁pur poses", + "▁purpose s", + "▁Ind ust", + "▁H istoric", + "▁Histor ic", + "▁Hist oric", + "各 位", + "wa r", + "w ar", + "接 下来", + "▁ap proved", + "▁appro ved", + "▁approve d", + "▁ approved", + "ob s", + "o bs", + "i ón", + "以调解 方式结案", + "盗窃 罪", + "▁stat istical", + "▁statist ical", + "▁statistic al", + "之 中", + "▁ 职业", + "▁P y", + "▁ Py", + "▁a ged", + "▁ag ed", + "▁age d", + "▁ aged", + "判 令", + "▁exp ensive", + "▁ expensive", + "wat ch", + "w atch", + "C V", + "sh a", + "s ha", + "▁gu ests", + "▁guest s", + "元 的", + "▁at mosph", + "古 代", + "是 对", + "虚 拟", + "HO U", + "H OU", + "zu re", + "z ure", + "▁d ogs", + "▁do gs", + "▁dog s", + "▁partners hip", + "▁partner ship", + "▁s tone", + "▁st one", + "▁sto ne", + "▁ stone", + "as ts", + "ast s", + "a sts", + "▁com plications", + "▁compl ications", + "▁complication s", + "▁ex amination", + "▁exam ination", + "PO SE", + "POS E", + "Si gn", + "Sig n", + "S ign", + "▁\\ '/", + "▁\\' /", + "▁ \\'/", + "w a", + "日 子", + "▁De scription", + "▁Des cription", + "▁ Description", + "c b", + "停 车", + "▁s uc", + "▁su c", + "同 一", + "合 格", + "Aut hor", + "Auth or", + "Au thor", + "A uthor", + "ook ing", + "oo king", + "o oking", + "怎么 样", + "并按对方当事人 的人数提出副本", + "并按对方当事人的人数 提出副本", + "▁att ended", + "▁attend ed", + "▁atten ded", + "Eng ine", + "曲 线", + "写 作", + "众 多", + "▁N et", + "▁Ne t", + "▁ Net", + "▁cap able", + "▁ca pable", + "} ]", + "车 程", + "OR M", + "O RM", + "▁c in", + "▁ci n", + "▁ cin", + "viron ments", + "vironment s", + "nY our", + "nYou r", + "n Your", + "▁li sten", + "▁list en", + "▁ listen", + "▁us ual", + "▁off icer", + "▁offic er", + "▁office r", + "ar ly", + "arl y", + "ate gor", + "ateg or", + "▁ 黄", + "以调解方式结案 的", + "▁establish ments", + "▁establishment s", + "判决书送达之日起 十五日内", + "▁sh ut", + "▁bound ary", + "▁ boundary", + "▁m RNA", + "▁ mRNA", + "保 留", + "he aders", + "head ers", + "header s", + "hea ders", + "官 网", + "Acc ount", + "Ac count", + "面 试", + "胜 利", + "毫 米", + "血 液", + "▁br oken", + "▁bro ken", + "▁broke n", + "▁ broken", + "▁n om", + "▁no m", + "▁ nom", + "ex ists", + "exist s", + "▁P ak", + "▁Pa k", + "▁P ath", + "▁Pat h", + "▁Pa th", + "▁ Path", + "▁ 主", + "T D", + "▁M S", + "▁ MS", + "is ted", + "ist ed", + "iste d", + "i sted", + "ylvan ia", + "黑 色", + "ea h", + "e ah", + "彻 底", + "er ic", + "eri c", + "e ric", + "on gs", + "ong s", + "标 的", + "笔 录", + "节 点", + "▁t ow", + "▁to w", + "sam ple", + "s ample", + "危 害", + "ou ts", + "out s", + "o uts", + "& &", + "▁s ed", + "▁se d", + "▁ sed", + "恋 爱", + "经营范围 包括", + "Act ivity", + "民 主", + "%) ,", + "% ),", + "re port", + "rep ort", + "repo rt", + "创作 的", + "创 作的", + "▁L ocal", + "▁Lo cal", + "▁Loc al", + "▁ Local", + "▁ex plicit", + "▁expl icit", + "▁ explicit", + "进 程", + "▁w aste", + "▁was te", + "▁wa ste", + "▁wast e", + "ay lor", + "Model s", + "Mod els", + "Mode ls", + "▁b rings", + "▁br ings", + "▁bring s", + "or em", + "ore m", + "o rem", + "▁ne ighborhood", + "▁neighbor hood", + "et al", + "eta l", + "e tal", + "会 上", + "▁HT ML", + "▁ HTML", + "▁reg ulatory", + "▁regul atory", + "▁regulator y", + "▁world wide", + "Cur rent", + "C urrent", + "▁H aw", + "▁Ha w", + "征 收", + "▁ex tend", + "▁ext end", + "▁ extend", + "pl atform", + "plat form", + "ra nd", + "ran d", + "r and", + "g i", + "在这 里", + "在 这里", + "▁ent ity", + "▁ entity", + "B o", + "不等 式", + "不 等式", + "ac ed", + "ace d", + "a ced", + "执行 员", + "▁t rav", + "▁tr av", + "▁tra v", + "|\\ \\", + "| \\\\", + "▁Oh io", + "动 画", + "▁unc ertain", + "N D", + "▁as say", + "▁ass ay", + "▁ assay", + "▁in terior", + "▁int erior", + "▁inter ior", + "▁I F", + "▁ IF", + "\") )\\", + "\")) \\", + "\" ))\\", + "RO N", + "R ON", + "考 生", + "▁pl enty", + "▁ple nty", + "▁re peated", + "▁repe ated", + "▁repeat ed", + "▁A ccess", + "▁Ac cess", + "▁Acc ess", + "▁ Access", + "ir ation", + "ira tion", + "i ration", + "▁v ascular", + "▁vas cular", + "▁vascul ar", + "▁ vascular", + "to String", + "▁G a", + "▁ Ga", + "完 美", + "▁quant um", + "▁ quantum", + "sec urity", + "▁H i", + "▁ Hi", + "Pl ugin", + "的 故事", + "ig in", + "igi n", + "i gin", + "▁S D", + "▁ SD", + "us ic", + "▁expl ained", + "▁explain ed", + "ov ascular", + "o vascular", + "▁st ored", + "▁store d", + "▁sto red", + "Doc ument", + "D ocument", + "普 遍", + "夫妻 感情", + "情 感", + "损 伤", + "▁t ight", + "▁ti ght", + "▁ tight", + "注 重", + "▁Pro cess", + "▁Proc ess", + "▁ Process", + "▁T ri", + "▁Tr i", + "▁ Tri", + "▁person s", + "▁pers ons", + "向 被执行人", + "车 站", + "▁F our", + "▁Fo ur", + "▁ Four", + "加 倍", + "▁r ig", + "▁ri g", + "▁ rig", + "ja v", + "j av", + "▁c hat", + "▁ch at", + "▁cha t", + "▁ chat", + "ui lt", + "u ilt", + "一 场", + "型 号", + "▁s tret", + "▁st ret", + "▁str et", + "▁stre t", + "▁ stret", + "▁Inst all", + "▁Ins tall", + "▁ Install", + "▁z one", + "▁ zone", + "▁in structions", + "▁instruction s", + "▁instruct ions", + "▁ instructions", + "▁North ern", + "▁Nor thern", + "pi n", + "p in", + "▁writ ers", + "▁write rs", + "▁writer s", + "▁ writers", + "st ood", + "sto od", + "uit e", + "ui te", + "u ite", + "消 防", + "二 年", + "▁ 作品", + "▁L i", + "▁ Li", + "▁En vironment", + "▁ Environment", + "page s", + "pa ges", + "pag es", + "p ages", + "▁b in", + "▁bi n", + "▁ bin", + "▁inc ident", + "fi re", + "f ire", + "▁L ee", + "▁Le e", + "▁ Lee", + "尽 量", + "reg ion", + "to r", + "t or", + "一 边", + "if iers", + "ifier s", + "ifi ers", + "▁B oston", + "▁Bo ston", + "▁Bos ton", + "▁particip ate", + "区 人民检察院", + "an cel", + "ance l", + "anc el", + "有限 公司于", + "有限公司 于", + "频 率", + "▁N av", + "▁Na v", + "▁ Nav", + "熟 悉", + "公司 经营范围包括", + ") [", + "▁aim ed", + "▁ai med", + "▁ab normal", + "▁abnorm al", + "▁b each", + "▁be ach", + "一 路", + "Mu lt", + "M ult", + "户 籍", + "发 的", + "▁h idden", + "▁ hidden", + "el a", + "e la", + "nd es", + "nde s", + "n des", + "▁man ual", + "▁ manual", + "▁prov iders", + "▁provid ers", + "▁provide rs", + "▁provider s", + "▁ providers", + "综 上", + "并 在", + "▁diagn ostic", + "▁As sembly", + "▁ Assembly", + "深 度", + "AC E", + "A CE", + "▁System s", + "▁L td", + "▁Lt d", + "数 组", + "▁e ld", + "▁el d", + "▁ eld", + "G e", + "▁construct ed", + "诉讼 费用", + "诉讼费 用", + "便 宜", + "▁different iation", + "▁pro fit", + "▁prof it", + "▁ profit", + "▁d rivers", + "▁dr ivers", + "▁dri vers", + "▁driv ers", + "▁drive rs", + "▁driver s", + "▁ drivers", + "uc ks", + "uck s", + "u cks", + "▁aw esome", + "▁awe some", + "▁ awesome", + "另一 个", + "另 一个", + "co ver", + "cov er", + "c over", + "” ,", + "▁H elp", + "▁He lp", + "▁Hel p", + "▁ Help", + "一 审", + "ad ium", + "adi um", + "诉 称", + "T arget", + "▁as signed", + "▁ass igned", + "▁assign ed", + "▁ assigned", + "的 设计", + "▁sc heduled", + "▁schedul ed", + "▁schedule d", + "▁ scheduled", + "nA r", + "n Ar", + "En c", + "E nc", + "时 光", + "▁C atholic", + "▁Cath olic", + "DN A", + "D NA", + "▁J im", + "▁Ji m", + "▁ Jim", + "▁m es", + "▁me s", + "▁ mes", + "SE R", + "S ER", + "云南 省", + "云 南省", + "▁s pending", + "▁sp ending", + "▁spend ing", + "复 合", + "▁p article", + "▁part icle", + "▁partic le", + "▁ particle", + "人 间", + "的基础 上", + "的 基础上", + "▁f unc", + "▁fun c", + "▁fu nc", + "▁ func", + "▁p and", + "▁pan d", + "▁pa nd", + "▁ pand", + "▁R est", + "▁Re st", + "▁Res t", + "▁ Rest", + "驱 动", + "▁de pos", + "▁dep os", + "毒 品", + "ge rs", + "ger s", + "g ers", + "▁Col umb", + "▁dist ribut", + "{ (", + "▁ent ered", + "▁enter ed", + "de g", + "d eg", + "rol ling", + "roll ing", + "bl ank", + "bla nk", + "森 林", + "国 外", + "▁h ousing", + "▁hous ing", + "▁ho using", + "▁f ruit", + "▁fr uit", + "▁ fruit", + "oid s", + "oi ds", + "o ids", + "安 市", + "字 符", + "▁ill ustr", + "▁illust r", + "m o", + "支 撑", + "而不 是", + "而 不是", + "med iate", + "media te", + "不 上", + "▁e c", + "▁ ec", + "▁w alking", + "▁walk ing", + "▁wal king", + "sc ore", + "s core", + "▁inv olves", + "▁invol ves", + "▁involve s", + "▁s essions", + "▁session s", + "▁sess ions", + "▁ sessions", + "▁l ayout", + "▁la yout", + "▁lay out", + "▁ layout", + "▁P DF", + "▁PD F", + "▁ PDF", + "▁a id", + "▁ai d", + "▁ aid", + "▁tr ading", + "▁trad ing", + "▁tra ding", + "▁m erg", + "▁me rg", + "▁mer g", + "说 法", + "▁re pository", + "▁rep ository", + "▁repos itory", + "▁ repository", + "不 太", + "ag ger", + "agg er", + "▁R o", + "▁ Ro", + "▁p m", + "▁ pm", + "Ma n", + "M an", + "op erator", + "oper ator", + "re me", + "rem e", + "r eme", + "▁des ired", + "▁desire d", + "▁un defined", + "▁u ndefined", + "▁und efined", + "▁ undefined", + "op eration", + "ope ration", + "oper ation", + "▁anal yze", + "▁analy ze", + "▁analyz e", + "▁pl anned", + "▁plan ned", + "▁ planned", + "博物 馆", + "▁pro gression", + "▁progress ion", + "塑 料", + "vid eo", + "v ideo", + "nR E", + "n RE", + "su r", + "s ur", + "ul ator", + "ula tor", + "▁s erves", + "▁serv es", + "▁ser ves", + "▁serve s", + "met adata", + "meta data", + "▁c orporate", + "▁corpor ate", + "现 住", + "▁complex ity", + "▁con version", + "▁co nversion", + "▁conv ersion", + "▁convers ion", + "▁ conversion", + "分 解", + "理 事", + "▁P lan", + "▁Pl an", + "▁ Plan", + "调解 书", + "▁rec ording", + "▁record ing", + "▁insp ired", + "▁inspire d", + "▁inspir ed", + "▁ inspired", + "e z", + "轻 处罚", + "( `", + "▁u tility", + "▁util ity", + "▁ut ility", + "▁ utility", + "ge nce", + "gen ce", + "g ence", + "pro v", + "pr ov", + "p rov", + "层 次", + "破 坏", + "for each", + "fore ach", + "fo reach", + "随 时", + "re cord", + "rec ord", + "dir name", + "▁p ump", + "▁pu mp", + "eps ilon", + "e psilon", + "顾 客", + "oi r", + "o ir", + "▁it er", + "▁i ter", + "▁ iter", + "mer ce", + "merc e", + "▁g un", + "▁gu n", + "▁ gun", + "el ls", + "ell s", + "▁l ies", + "▁li es", + "▁lie s", + "▁ lies", + "借 条", + "▁E con", + "▁Ec on", + "▁Eco n", + "▁ Econ", + "▁N Y", + "▁ NY", + "Loc ation", + "Lo cation", + "L ocation", + "贯 彻", + "▁put ting", + "ic ker", + "ick er", + "fer ences", + "ference s", + "▁com mission", + "▁comm ission", + "▁c heap", + "▁che ap", + "Ma in", + "M ain", + "▁} }\\", + "▁}} \\", + "▁ }}\\", + "amp ion", + "Re cord", + "Rec ord", + "oc us", + "o cus", + "▁cap ture", + "▁capt ure", + "▁ capture", + "拼 音", + "▁A L", + "▁ AL", + "重 复", + "让我 们", + "让 我们", + "杂 志", + "同 年", + "的一 些", + "的 一些", + "中国 科学院", + "▁定 价", + "▁ 定价", + "人 均", + "▁H ave", + "▁Ha ve", + "▁Hav e", + "▁ Have", + "Par ams", + "Param s", + "buf fer", + "buff er", + "b uffer", + "aw a", + "a wa", + "▁l ose", + "▁lo se", + "▁los e", + "▁ lose", + "▁manufact uring", + "▁m amm", + "▁ma mm", + "▁o ngoing", + "▁on going", + "▁init ially", + "▁initial ly", + "▁initi ally", + "Fi rst", + "F irst", + "B L", + "蔬 菜", + "cl i", + "c li", + "▁anal yt", + "▁analy t", + "sh ort", + "打 车", + "对 外", + "▁ed ited", + "▁edit ed", + "▁ edited", + "con structor", + "construct or", + "▁gen us", + "▁ge nus", + "▁genu s", + "▁sup posed", + "▁suppose d", + "▁其 一", + "▁ 其一", + "日 至", + "▁polit ician", + "别 的", + "▁log ic", + "▁lo gic", + "▁ logic", + "▁bo ost", + "▁ boost", + "▁S ar", + "▁Sa r", + "ight er", + "igh ter", + "Mat ch", + "M atch", + "tp rint", + "t print", + "poss ible", + "p ossible", + "▁l ists", + "▁li sts", + "▁list s", + "▁ lists", + "▁gluc ose", + "▁ glucose", + "▁out door", + "▁t hin", + "▁th in", + "▁thi n", + "▁ thin", + "▁optim ization", + "▁M i", + "▁ Mi", + "▁c opies", + "▁co pies", + "▁cop ies", + "▁trans lation", + "▁transl ation", + "▁ translation", + "家 具", + "▁s cal", + "▁sc al", + "▁ scal", + "期间的 债务利息", + "o a", + "е н", + "有效 的", + "乐 部", + "▁char ged", + "▁charg ed", + "▁charge d", + "▁ charged", + "图 像", + "in ois", + "ino is", + "Em ail", + "E mail", + "▁B ul", + "▁Bu l", + "▁ Bul", + "▁tri angle", + "▁triang le", + "▁ triangle", + "▁les ions", + "▁lesion s", + "▁c rim", + "▁cr im", + "▁cont ained", + "▁contain ed", + "▁ contained", + "▁rem oval", + "▁remov al", + "be c", + "b ec", + "验 证", + "线 上", + "▁turn s", + "▁tur ns", + "▁r adi", + "▁rad i", + "▁ra di", + "▁pre paration", + "▁prepar ation", + "▁bu ying", + "▁buy ing", + "▁Ap plication", + "▁Appl ication", + "▁ Application", + "ib ilities", + "▁M ichigan", + "▁Mich igan", + "he tic", + "het ic", + "h etic", + "F S", + "set up", + "ns ylvania", + "met ry", + "me try", + "m etry", + "▁ver tical", + "▁vert ical", + "▁ vertical", + "up load", + "u pload", + "▁guid elines", + "▁guide lines", + "▁guideline s", + "▁ex istence", + "▁exist ence", + "▁ existence", + "▁cont roller", + "▁control ler", + "▁ controller", + "sm all", + "s mall", + "Th at", + "T hat", + "样 例", + "▁class ical", + "▁classic al", + "▁B ob", + "▁Bo b", + "▁ Bob", + "你 要", + "gi an", + "gia n", + "g ian", + "li k", + "l ik", + "▁G irl", + "▁Gi rl", + "▁Gir l", + "▁ Girl", + "ester day", + "▁B ud", + "▁Bu d", + "▁ Bud", + "▁M O", + "▁ MO", + "▁p orn", + "▁po rn", + "▁por n", + "or ship", + "ors hip", + "▁tr uth", + "▁ truth", + "ch em", + "che m", + "c hem", + "li ve", + "l ive", + "▁or ders", + "▁order s", + "▁ord ers", + "▁ orders", + "俱 乐部", + "nG e", + "n Ge", + "▁Ch ief", + "▁Chi ef", + "▁ Chief", + "nTr ue", + "n True", + "oc yte", + "ocyt e", + "o cyte", + "▁em ployed", + "▁employ ed", + "足 以", + "▁k g", + "▁ kg", + "▁cont ents", + "▁content s", + "▁ contents", + "P Y", + "删 除", + "▁thought s", + "▁though ts", + "ip h", + "i ph", + "如果 是", + "▁al ign", + "▁ali gn", + "▁ align", + "▁ 平", + "会 在", + "VA L", + "V AL", + "Loc al", + "Lo cal", + "L ocal", + "▁c ache", + "▁ca che", + "▁ cache", + "pr es", + "pre s", + "p res", + "不 动", + "件 事", + "Sh ow", + "S how", + "ist ence", + "iste nce", + "▁f ear", + "▁fe ar", + "▁s emi", + "▁se mi", + "▁sem i", + "现 有", + "▁mus ical", + "▁music al", + "▁f ellow", + "▁fell ow", + "▁fel low", + "▁com mands", + "▁comm ands", + "▁command s", + "▁ commands", + "▁p airs", + "▁pair s", + "▁pa irs", + "▁ pairs", + "均 匀", + "首 次", + "st ud", + "破 裂", + "▁r i", + "▁ ri", + "是一 家", + "是 一家", + "▁en coding", + "▁enc oding", + "▁ encoding", + "▁m ilk", + "▁mil k", + "提 醒", + "交通 事故", + "▁s we", + "▁sw e", + "▁L ike", + "▁Li ke", + "▁Lik e", + "▁ Like", + "▁N ode", + "▁No de", + "▁ Node", + "▁w illing", + "▁will ing", + "off set", + "offs et", + "SE T", + "S ET", + "共 计", + "▁D eterm", + "▁De term", + "▁Det erm", + "▁ Determ", + "处 分", + "▁prot ected", + "▁protect ed", + "▁ protected", + "V A", + "起点 中文网", + "l g", + "▁cons umer", + "▁consum er", + "▁consume r", + "▁ consumer", + "no f", + "n of", + "贵州 省", + "ri ers", + "rier s", + "rie rs", + "r iers", + "最 低", + "本院 依法组成合议庭", + "本院依法 组成合议庭", + "生 成", + "u j", + "pon s", + "po ns", + "p ons", + "Ex t", + "E xt", + "▁d ram", + "▁dr am", + "▁dis played", + "▁display ed", + "肿 瘤", + "nP ost", + "nPo st", + "n Post", + "▁C irc", + "▁Ci rc", + "▁Cir c", + "▁ Circ", + "▁ind icates", + "▁indic ates", + "▁indicate s", + "▁Sup port", + "▁ Support", + "▁O ption", + "▁Opt ion", + "▁Op tion", + "▁ Option", + "pr imary", + "prim ary", + "eg ers", + "eger s", + "e gers", + "▁公司 名称", + "国 民", + "货 物", + "无 人", + "contin ue", + "返 回", + "▁report ing", + "▁ reporting", + "wh en", + "w hen", + "▁observ ations", + "▁observation s", + "▁th reshold", + "▁ threshold", + "国 务", + "花 园", + "零 售", + "exec ute", + "▁w orry", + "▁wor ry", + "意 味", + "Ro w", + "R ow", + "Ent ry", + "En try", + "E ntry", + "印 象", + "ir ms", + "irm s", + "ub er", + "ube r", + "u ber", + "▁f ee", + "▁fe e", + "▁ fee", + "fol io", + "fo lio", + "▁di ameter", + "▁dia meter", + "▁hundred s", + "缓 刑", + "▁r ational", + "▁rat ional", + "▁ratio nal", + "▁ration al", + "cn t", + "c nt", + "oc iated", + "oci ated", + "▁F ed", + "▁Fe d", + "▁W ord", + "▁Wor d", + "▁Wo rd", + "▁ Word", + "哲 学", + "深 刻", + "group s", + "gro ups", + "▁antib odies", + "涉 嫌", + "▁l anguages", + "▁language s", + "▁ languages", + "en dor", + "end or", + "endo r", + "执 法", + "▁S C", + "▁ SC", + "▁s train", + "▁st rain", + "▁str ain", + "▁ strain", + "ype d", + "yp ed", + "y ped", + "▁off set", + "▁ offset", + "院 长", + "▁H E", + "▁ HE", + "▁A rea", + "▁Ar ea", + "▁Are a", + "▁ Area", + "▁l ived", + "▁li ved", + "▁live d", + "▁liv ed", + "▁ lived", + "ox y", + "o xy", + "▁d imensions", + "▁dim ensions", + "▁dimension s", + "▁ dimensions", + "▁s ections", + "▁section s", + "▁ sections", + "▁c ounc", + "▁co unc", + "▁cou nc", + "ba n", + "b an", + "述 了", + "▁b rown", + "▁br own", + "▁bro wn", + "▁brow n", + "▁ brown", + "par e", + "pa re", + "p are", + "nt hetic", + "nthe tic", + "nth etic", + "nthet ic", + "st one", + "ston e", + "sto ne", + "s tone", + "Re nder", + "Ren der", + "R ender", + "B undle", + "▁l ux", + "▁lu x", + "▁ lux", + "UN D", + "U ND", + "▁W ild", + "▁Wil d", + "▁Wi ld", + "▁ Wild", + "р а", + "▁o pinion", + "▁opin ion", + "高 于", + "▁} );\\", + "▁}) ;\\", + "▁ });\\", + "样 子", + "▁\" ,", + "▁ \",", + "▁E r", + "▁ Er", + "▁Engine ering", + "▁Engineer ing", + "▁p in", + "▁pi n", + "▁ pin", + "ig ate", + "iga te", + "i gate", + "▁a er", + "监 规", + "在这 个", + "在 这个", + "刚 刚", + "▁C EO", + "▁CE O", + "▁ CEO", + "▁qu adr", + "▁quad r", + "鼓 励", + "go v", + "g ov", + "Ne xt", + "N ext", + "运动 员", + "运 动员", + "er ves", + "erv es", + "erve s", + "连载 于", + "▁W ay", + "▁Wa y", + "▁ Way", + "ap pe", + "app e", + "▁loc ally", + "▁local ly", + "的 感觉", + "互 相", + "▁\" $", + "▁ \"$", + "▁represent ing", + "流 行", + "▁d ual", + "▁du al", + "▁m apping", + "▁map ping", + "▁ma pping", + "▁ mapping", + "Sh e", + "S he", + "En ron", + "\": {\"", + "▁g it", + "▁gi t", + "▁ git", + "▁abs ence", + "▁com posite", + "▁compos ite", + "▁f ly", + "▁fl y", + "▁ fly", + "To p", + "T op", + "物业 管理有限公司", + "物业管理 有限公司", + "▁a ds", + "▁ad s", + "▁ ads", + "D M", + "▁L ab", + "▁La b", + "▁ Lab", + "PA SS", + "P ASS", + "th at", + "tha t", + "t hat", + "即 将", + "这个 问题的答案", + "这个问题 的答案", + "▁met abolism", + "▁metabol ism", + "▁t aste", + "▁ta ste", + "▁tast e", + "Re l", + "R el", + "▁V an", + "▁Va n", + "▁ Van", + "ot ox", + "oto x", + "o tox", + "be ll", + "bel l", + "b ell", + "▁G ive", + "▁Gi ve", + "▁ Give", + "▁T oday", + "▁To day", + "▁ Today", + "ca m", + "c am", + "ane ously", + "aneous ly", + "就 有", + "故 障", + "▁col umns", + "▁column s", + "▁colum ns", + "▁ columns", + "悔 罪", + "si s", + "s is", + "▁Th rough", + "▁Thr ough", + "▁ Through", + "▁In put", + "▁ Input", + "▁r om", + "▁ro m", + "▁ rom", + "▁F amily", + "▁ Family", + "▁concer n", + "▁conc ern", + "▁conce rn", + "▁watch ing", + "▁wat ching", + "▁c abin", + "▁ca bin", + "▁cab in", + ", ,", + "行 驶", + "▁re new", + "▁ renew", + "(( )", + "( ()", + "e h", + "千 米", + "▁met ast", + "▁meta st", + "▁vis itors", + "▁visit ors", + "▁visitor s", + "喜欢 的", + "vi n", + "v in", + "▁F ood", + "▁Foo d", + "▁Fo od", + "▁ Food", + "Dial og", + "D ialog", + "看 见", + "▁N ext", + "▁Ne xt", + "▁ Next", + "专 辑", + "▁S E", + "▁ SE", + "进 而", + "无 限", + "▁bl ank", + "▁ blank", + "G O", + "▁order ed", + "▁ord ered", + "▁ ordered", + "▁de pression", + "▁dep ression", + "写 的", + "▁d ance", + "▁da nce", + "▁dan ce", + "难 度", + "▁ 演员", + "我 说", + "档 案", + "黑龙江 省", + "调 研", + "▁Pol ice", + "▁p regnancy", + "▁pregn ancy", + "ol ver", + "olve r", + "olv er", + "▁ch apter", + "▁chap ter", + "▁ chapter", + "▁function ality", + "▁functional ity", + "实 数", + "▁A C", + "▁ AC", + "▁as sign", + "▁ass ign", + "▁ assign", + "NE T", + "N ET", + "▁其 二", + "▁a ctor", + "▁act or", + "▁ac tor", + "▁ actor", + "ou n", + "o un", + "▁den omin", + "▁small est", + "对 手", + "▁mat ching", + "▁match ing", + "▁ matching", + "▁M id", + "▁Mi d", + "▁ Mid", + "vir tual", + "virt ual", + "▁int roduction", + "▁introdu ction", + "▁intro duction", + "▁ introduction", + "▁J eff", + "▁Je ff", + "▁ Jeff", + "正 方", + "▁b tn", + "▁bt n", + "▁ btn", + "清 晰", + "▁I V", + "▁ IV", + "fl u", + "f lu", + "▁Is rael", + "▁Isra el", + "两 次", + "第五 百", + "第 五百", + "▁J ud", + "▁Ju d", + "这个问题的答案 是", + "▁cre ates", + "▁create s", + "▁creat es", + "▁see king", + "▁seek ing", + "预 计", + "▁g ap", + "▁ga p", + "▁ gap", + "画 面", + "▁t ickets", + "▁ticket s", + "▁tick ets", + "in v", + "i nv", + "▁mut ations", + "▁mutation s", + "UR E", + "U RE", + "▁in n", + "▁i nn", + "▁ inn", + "▁ 基本", + "▁D ie", + "▁Di e", + "▁ Die", + "As ync", + "A sync", + "王 某", + "▁ 元", + "▁Com mon", + "▁Comm on", + "▁ Common", + "re ction", + "rec tion", + "rect ion", + "r ection", + "住 宅", + "▁p apers", + "▁paper s", + "▁pa pers", + "▁pap ers", + "▁ papers", + "port er", + "por ter", + "p orter", + "可 知", + "we ek", + "w eek", + "▁man ip", + "▁ma nip", + "pan d", + "pa nd", + "p and", + "op las", + "opl as", + "步 行", + "▁d esc", + "▁de sc", + "▁des c", + "▁ desc", + "P V", + "go t", + "g ot", + "▁tot ally", + "▁total ly", + "名 为", + "减刑 建议", + "人 群", + "实际 上", + "od o", + "o do", + "▁in duction", + "▁ind uction", + "▁indu ction", + "▁induct ion", + "W N", + "return s", + "S m", + "风 景", + "B M", + "ns el", + "nse l", + "n sel", + "migration s", + "m igrations", + "收 集", + "▁abs olutely", + "▁absol utely", + "▁absolute ly", + "▁any where", + "us ep", + "use p", + "u sep", + "的 热", + "▁G raph", + "▁Gr aph", + "▁Gra ph", + "▁ Graph", + "▁m and", + "▁man d", + "▁ma nd", + "▁ mand", + "wa it", + "w ait", + "▁S em", + "▁Se m", + "▁ Sem", + "Nu m", + "N um", + "功 率", + "ig inally", + "iginal ly", + "igin ally", + "▁J ones", + "▁Jo nes", + "▁Jon es", + "▁ Jones", + "ag ent", + "age nt", + "agen t", + "a gent", + "▁inj uries", + "▁Ind ex", + "▁ Index", + "re nt", + "ren t", + "r ent", + "▁new sp", + "▁news p", + "▁p ermission", + "▁per mission", + "▁perm ission", + "▁ permission", + "▁re ferred", + "▁refer red", + "的 起诉", + "研究 所", + "飞 机", + "不需 要", + "不 需要", + "▁M ic", + "▁Mi c", + "▁webs ites", + "▁website s", + "▁web sites", + "G S", + "简单 的", + "▁B ang", + "▁Ba ng", + "▁Ban g", + "K e", + "地 的", + "▁Stud ies", + "▁h abit", + "▁hab it", + "▁ha bit", + "迟延履行 期间的债务利息", + "展 现", + "ew ork", + "e work", + "AR Y", + "A RY", + "▁y ellow", + "▁ yellow", + "▁S outhern", + "▁South ern", + "▁Sou thern", + "▁b attle", + "▁bat tle", + "▁batt le", + "▁ba ttle", + "▁per forming", + "▁perform ing", + "▁perfor ming", + "▁v iral", + "▁vir al", + "▁vi ral", + "▁ viral", + "▁acqu ired", + "▁acquire d", + "对 罪犯", + "▁W eek", + "▁We ek", + "▁ Week", + "▁comp ute", + "▁comput e", + "▁ compute", + "ort unately", + "▁e xit", + "▁ex it", + "▁ exit", + "标 志", + "▁ в", + "AS E", + "A SE", + "孩子 的", + "孩 子的", + "▁cruc ial", + "▁the rap", + "▁ther ap", + "data base", + "dat abase", + "datab ase", + "d atabase", + "local host", + "st orage", + "sto rage", + "stor age", + "哈 尔", + "hp p", + "h pp", + "on to", + "ont o", + "o nto", + "减去 有期徒刑", + "▁s qrt", + "▁sq rt", + "▁ sqrt", + "▁b ridge", + "▁br idge", + "▁brid ge", + "▁ bridge", + "小说 网", + "fl ex", + "f lex", + "告诉 我", + "▁s inger", + "▁sing er", + "▁sin ger", + "▁act ress", + "条 文", + "Na v", + "N av", + "小 于", + "尽 管", + "ch arge", + "char ge", + "charg e", + "▁as sets", + "▁ass ets", + "▁asset s", + "▁ assets", + "清 单", + "▁D ownload", + "▁Down load", + "▁ Download", + "电 器", + "▁L ive", + "▁Li ve", + "▁Liv e", + "▁ Live", + "sec ret", + "中 有", + "平 安", + "TY PE", + "T YPE", + "流 动", + "g b", + "no ne", + "non e", + "n one", + "li e", + "l ie", + "▁F ull", + "▁Fu ll", + "▁Ful l", + "▁ Full", + "la test", + "late st", + "lat est", + "l atest", + "▁Re port", + "▁Rep ort", + "▁ Report", + "你 是", + "到 达", + "今 日", + "创 意", + "kn ow", + "k now", + "▁rec ruit", + "▁recru it", + "oc ated", + "ocate d", + "oca ted", + "▁en counter", + "▁enc ounter", + "云 南", + "军 事", + "▁mod ules", + "▁module s", + "▁ modules", + "▁g ran", + "▁gr an", + "▁gra n", + "▁ gran", + "十七 条", + "十 七条", + "▁b igger", + "▁big ger", + "▁stud ying", + "▁study ing", + "▁low est", + "▁lo west", + "不 出", + "考 察", + "▁T ask", + "▁Ta sk", + "▁Tas k", + "▁ Task", + "Ho st", + "H ost", + "▁A wards", + "▁Award s", + "▁Aw ards", + "use package", + "usep ackage", + "fu ture", + "f uture", + "个 体", + "▁Co ast", + "▁b ench", + "▁be nch", + "▁ben ch", + "▁ bench", + "▁v isible", + "▁vis ible", + "▁ visible", + "▁O x", + "▁ Ox", + "pk g", + "p kg", + "地 下", + "身 高", + "▁; \\", + "▁ ;\\", + "▁G ar", + "▁Ga r", + "▁int roduce", + "▁introdu ce", + "工 人", + "~~ ~~", + "~~~ ~", + "~ ~~~", + "专 利", + "损 害", + "ea st", + "eas t", + "e ast", + "▁th ermal", + "▁ther mal", + "▁therm al", + "▁ thermal", + "岁 的", + "bit r", + "bi tr", + "b itr", + "▁s ugar", + "▁su gar", + "▁sug ar", + "▁inf ections", + "▁infection s", + "▁infect ions", + "而 已", + "Lo ng", + "L ong", + "西 方", + "▁Res ponse", + "▁Respon se", + "▁Respons e", + "▁ Response", + "▁log in", + "▁lo gin", + "▁ login", + "▁c odes", + "▁co des", + "▁code s", + "▁cod es", + "▁ codes", + "是 以", + "济 南", + "micro soft", + "m icrosoft", + "分 局", + "ri ck", + "ric k", + "r ick", + "▁F orce", + "▁For ce", + "▁ Force", + "几 天", + "▁Lin ux", + "▁ Linux", + "▁mag azine", + "作 家", + "or i", + "o ri", + "▁b on", + "▁bo n", + "▁ bon", + "的 行为", + "实 习", + "任 意", + "▁P o", + "▁ Po", + "长 沙", + "la y", + "l ay", + "市 民", + "▁S ource", + "▁ Source", + "警 察", + "▁ab use", + "告 知", + "▁m ob", + "▁mo b", + "▁ mob", + "占 地", + "B R", + "▁F und", + "▁Fun d", + "▁Fu nd", + "▁ Fund", + "▁ •", + "▁w al", + "▁wa l", + "▁ wal", + "pro perties", + "proper ties", + "所 得", + "ef ully", + "eful ly", + "e fully", + "清 洗", + "▁St ation", + "▁Stat ion", + "▁Sta tion", + "▁ Station", + "▁sugg esting", + "▁suggest ing", + "il ib", + "ili b", + "i lib", + "▁st roke", + "▁str oke", + "▁stro ke", + "▁ stroke", + "变 量", + "as i", + "a si", + "ec raft", + "e craft", + "C s", + "▁sup erior", + "▁super ior", + "an do", + "and o", + "a ndo", + "▁apprec iate", + "有 时", + "▁health care", + "脂 肪", + "低 于", + "nJ ust", + "n Just", + "▁the oretical", + "▁theore tical", + "路 上", + "▁P ART", + "▁PA RT", + "▁PAR T", + "▁ PART", + "石 油", + "爱 好", + "日 报", + "L Y", + "ho l", + "h ol", + "ve ly", + "vel y", + "v ely", + "▁c ritic", + "▁cr itic", + "▁crit ic", + "▁w inner", + "▁win ner", + "▁ winner", + "广州 市", + "广 州市", + "nC ol", + "nCo l", + "n Col", + "▁C reat", + "▁Cr eat", + "▁Cre at", + "▁ Creat", + "长 方", + "Q U", + "▁cons umers", + "▁consum ers", + "▁consumer s", + "▁consume rs", + "设 定", + "边 的", + "每个 人", + "每 个人", + "▁s ingles", + "▁sing les", + "▁single s", + "nC ON", + "nCO N", + "n CON", + "▁a ircraft", + "▁air craft", + "是 最", + "▁ro ots", + "▁root s", + "▁ roots", + "ME NT", + "M ENT", + "▁b roadcast", + "▁broad cast", + "▁ broadcast", + "te en", + "tee n", + "t een", + "ee n", + "e en", + "▁an onymous", + "▁anonym ous", + "▁ anonymous", + "▁o ste", + "▁os te", + "▁ost e", + "to ns", + "ton s", + "t ons", + "▁j u", + "▁ ju", + "Mat h", + "Ma th", + "M ath", + "k t", + "▁M ember", + "▁Me mber", + "▁Mem ber", + "▁ Member", + "▁comp ens", + "▁cl ust", + "行政 处罚", + "▁M ike", + "▁Mi ke", + "▁Mik e", + "▁ Mike", + "▁H ttp", + "▁ Http", + "} `", + "办 事", + "实验 室", + "▁ent ertain", + "▁enter tain", + "▁entert ain", + "▁tr acks", + "▁track s", + "▁tra cks", + "▁ tracks", + "De b", + "D eb", + "na n", + "n an", + "美 好", + "▁Pen nsylvania", + "Test s", + "Te sts", + "T ests", + "将 其", + "▁s outhern", + "▁sou thern", + "▁south ern", + "效 益", + "nC are", + "nCar e", + "n Care", + "一 代", + "▁h ack", + "▁ha ck", + "▁ hack", + "▁g overn", + "▁go vern", + "▁gover n", + "▁gov ern", + "想 象", + "un ning", + "unn ing", + "re pository", + "rep ository", + "repos itory", + "公 寓", + "副 书记", + "大 队", + "▁r ul", + "▁ru l", + "家 族", + "▁Ch ris", + "▁ Chris", + "▁b uffer", + "▁buff er", + "▁buf fer", + "▁ buffer", + "打 印", + "ur ers", + "ure rs", + "urer s", + "ut able", + "uta ble", + "u table", + "适 宜", + "Vec tor", + "V ector", + "L a", + "▁v ectors", + "▁ve ctors", + "▁vector s", + "▁ vectors", + "call back", + "▁Ap pro", + "▁App ro", + "▁ Appro", + "UR POSE", + "罚 金", + "re du", + "red u", + "r edu", + "WA RE", + "WAR E", + "W ARE", + "▁m igr", + "▁mi gr", + "▁Jer sey", + "编 号", + "▁fil ename", + "▁file name", + "▁fi lename", + "▁ filename", + "pr ice", + "pri ce", + "p rice", + "\\' \\'\\'\\", + "\\'\\' \\'\\", + "\\'\\'\\' \\", + "\\'\\'\\ '\\", + "on om", + "ono m", + "o nom", + "ri um", + "r ium", + "ut s", + "u ts", + "▁for ced", + "▁force d", + "▁ forced", + "▁re ader", + "▁r eader", + "▁read er", + "▁ reader", + "在执行 过程中", + "在 执行过程中", + "ivers e", + "iver se", + "i verse", + "▁fig ures", + "▁figure s", + "▁H ard", + "▁Har d", + "▁Ha rd", + "▁ Hard", + "▁Re quest", + "▁Requ est", + "▁ Request", + "Z E", + "▁m ovies", + "▁mov ies", + "▁movie s", + "▁ movies", + "om p", + "o mp", + "re ams", + "ream s", + "rea ms", + "▁c ream", + "▁cre am", + "over ride", + "他 说", + "▁pre valence", + "▁preval ence", + "▁fa ith", + "课 题", + "▁ad ds", + "▁add s", + "▁R h", + "▁ Rh", + "an na", + "ann a", + "模 块", + "布 局", + "体 重", + "新 技术", + "▁ex ceed", + "▁exc eed", + "女 子", + "me ga", + "meg a", + "m ega", + "t k", + "ro ns", + "ron s", + "r ons", + "▁s ister", + "▁si ster", + "防 控", + "你可 以", + "你 可以", + "▁C ost", + "▁Co st", + "▁Cos t", + "▁ Cost", + "re sources", + "res ources", + "resource s", + "▁cont emporary", + "很 快", + "鸡 蛋", + "▁ 装", + "▁L ord", + "▁Lo rd", + "▁Lor d", + "留 下", + "▁k inds", + "▁kind s", + "▁kin ds", + "us hed", + "ush ed", + "▁model ing", + "▁mod eling", + "▁mode ling", + "很好 的", + "很 好的", + "外 国", + "▁S pain", + "▁Sp ain", + "▁Spa in", + "▁pr incipal", + "▁princ ipal", + "▁princip al", + "▁ principal", + "▁B ow", + "▁Bo w", + "▁F C", + "▁ FC", + "▁p aint", + "▁pain t", + "▁pa int", + "▁ paint", + "页 面", + "f d", + "ri ate", + "ria te", + "r iate", + "真的 是", + "真 的是", + "re pre", + "rep re", + "repr e", + "本院 受理后", + "本院受理 后", + "造 型", + "监 控", + "build er", + "▁qual ified", + "▁ qualified", + "} \"", + "▁ill ness", + "ba t", + "b at", + "▁s av", + "▁sa v", + "▁ sav", + "体 制", + "▁h ouses", + "▁house s", + "▁hous es", + "▁ho uses", + "▁ houses", + "▁J esus", + "▁Jes us", + "▁Je sus", + "La st", + "L ast", + "▁w heel", + "▁whe el", + "▁ wheel", + "基本 上", + "▁c ounty", + "▁count y", + "▁cou nty", + "▁ county", + "di m", + "d im", + "on ed", + "one d", + "o ned", + "hy th", + "▁enc ourage", + "▁encour age", + "工 厂", + "的 主", + "▁E ll", + "▁El l", + "▁ Ell", + "▁Int egr", + "▁ Integr", + "名 下", + "re v", + "r ev", + "的 应用", + "ate gy", + "ateg y", + "▁f ell", + "▁fe ll", + "▁fel l", + "▁s ucceed", + "▁suc ceed", + "▁succ eed", + "知 乎", + "当 中", + "Jav a", + "J ava", + "应予 准许", + "电 动", + "assert Equals", + "assertEqual s", + "剥 夺", + "ov ie", + "ovi e", + "o vie", + "▁t icket", + "▁tick et", + "▁ ticket", + "顺 序", + "天 天", + "▁fe aturing", + "▁feat uring", + "第五百 一十九", + "com mun", + "comm un", + "▁Method s", + "▁Meth ods", + "▁ Methods", + "▁P hot", + "▁Ph ot", + "▁ Phot", + "nF alse", + "n False", + "pi p", + "p ip", + ">> >", + "> >>", + "▁T ake", + "▁Ta ke", + "▁Tak e", + "▁ Take", + "▁p atch", + "▁pat ch", + "▁ patch", + "将 会", + "nw ith", + "n with", + "▁cor related", + "▁correl ated", + "▁correlate d", + "ns et", + "nse t", + "n set", + "▁un able", + "▁u nable", + "▁una ble", + "ploy ment", + "▁em ployee", + "▁employ ee", + "▁ employee", + "▁h olding", + "▁hold ing", + "▁hol ding", + "▁ holding", + "}) ;", + "} );", + "▁or th", + "▁ orth", + "计划 生育", + "G r", + "▁b ron", + "▁br on", + "▁bro n", + "▁ bron", + "He ight", + "H eight", + "pro gram", + "pr ogram", + "prog ram", + "通 讯", + "am ber", + "amb er", + "a mber", + "▁concept s", + "▁conce pts", + "▁W here", + "▁Wh ere", + "▁ Where", + "▁t een", + "▁te en", + "▁tee n", + "▁ teen", + "nEng lish", + "n English", + "az ure", + "a zure", + "nW hy", + "nWh y", + "n Why", + "▁H om", + "▁Ho m", + "▁ Hom", + "▁r ide", + "▁ri de", + "▁rid e", + "▁ ride", + "▁mass ive", + "药 品", + "改 进", + "C G", + "olog ist", + "olo gist", + "▁ins ight", + "▁v ulner", + "▁vul ner", + "无 线", + "▁Int eger", + "▁ Integer", + "no on", + "n oon", + "▁op posite", + "指 南", + "分 数", + "fu n", + "f un", + "题 主", + "▁data set", + "▁dat aset", + "▁datas et", + "▁ dataset", + "op rote", + "opro te", + "oprot e", + "o prote", + "is hop", + "ish op", + "i shop", + "▁ear ned", + "▁earn ed", + "漂 亮", + "▁substant ial", + "▁ α", + "us et", + "use t", + "u set", + "', '", + "' ,'", + "nF ind", + "nFin d", + "n Find", + "▁off icers", + "▁offic ers", + "▁office rs", + "▁officer s", + "▁sit uations", + "▁situation s", + "▁situ ations", + "园 区", + "我 要", + "▁k ick", + "▁ki ck", + "▁ kick", + "▁m ine", + "▁min e", + "▁mi ne", + "▁ mine", + "▁M anager", + "▁Man ager", + "▁Manag er", + "▁Manage r", + "▁ Manager", + "评 为", + "la n", + "l an", + "lo op", + "loo p", + "l oop", + "man n", + "ma nn", + "m ann", + "▁scient ists", + "▁scientist s", + "▁large ly", + "▁larg ely", + "▁con sec", + "▁cons ec", + "Par ameter", + "Param eter", + "rep rene", + "repre ne", + "repr ene", + "st at", + "sta t", + "s tat", + "分 离", + "day s", + "da ys", + "d ays", + "▁pass ing", + "▁pas sing", + "▁challeng ing", + "▁sup press", + "cl usions", + "clus ions", + "clusion s", + "景 观", + "对 应", + "防 治", + "s f", + "适 量", + "to pic", + "top ic", + "t opic", + "障 碍", + "▁l ect", + "▁le ct", + "▁ lect", + "▁P A", + "▁ PA", + "▁P rop", + "▁Pro p", + "▁Pr op", + "▁ Prop", + "▁sh ock", + "▁ shock", + "▁near by", + "▁com posed", + "▁comp osed", + "▁compos ed", + "▁compose d", + "▁t emp", + "▁te mp", + "▁tem p", + "▁ temp", + "▁F ROM", + "▁FR OM", + "▁ FROM", + "▁fem ales", + "▁female s", + "▁rapid ly", + "也不 是", + "也 不是", + "▁int ensity", + "▁intens ity", + "▁ intensity", + "▁Sen ate", + "iz able", + "iza ble", + "▁in vent", + "▁inv ent", + "▁Stand ard", + "▁ Standard", + "对 此", + "um my", + "umm y", + "▁H or", + "▁Ho r", + "▁ Hor", + "车程 约", + "随 后", + "三 月", + "付 款", + "▁A P", + "▁ AP", + "▁O pt", + "▁Op t", + "▁ Opt", + "好 看", + "▁dr ama", + "▁dram a", + "nY es", + "n Yes", + "一 级", + "▁normal ly", + "▁norm ally", + "yl ed", + "yle d", + "y led", + "▁P O", + "▁ PO", + "▁gu est", + "▁ guest", + "od ium", + "odi um", + "UL AR", + "秘 书", + "途 径", + "不 见", + "海 洋", + "致 力", + "la ss", + "las s", + "l ass", + "og ether", + "oge ther", + "第一 节", + "▁ с", + "男 子", + "▁W is", + "▁Wi s", + "c n", + "di ff", + "d iff", + "▁en vironments", + "▁environment s", + "▁re solve", + "▁res olve", + "▁ resolve", + "it age", + "ita ge", + "i tage", + "意 外", + "加倍 支付", + "推 理", + "ow nt", + "own t", + "Bo ok", + "B ook", + "硬 件", + "▁( \\'", + "▁(\\ '", + "▁ (\\'", + "aw n", + "a wn", + "▁p ortion", + "▁port ion", + "▁por tion", + "▁ portion", + "▁Americ ans", + "▁American s", + "▁America ns", + "▁Amer icans", + "▁ Americans", + "E l", + "场 所", + "餐 饮", + "▁Hot el", + "▁Ho tel", + "▁act ing", + "▁ac ting", + "▁actin g", + "▁ acting", + "▁p relim", + "▁pre lim", + "书 法", + "逐 步", + "三 大", + "李 某", + "看 来", + "如不服 本裁定", + "Americ an", + "America n", + "A merican", + "▁D ub", + "▁Du b", + "▁i Phone", + "▁ iPhone", + "▁coord inates", + "▁coordinate s", + "▁ coordinates", + "ac r", + "a cr", + "▁iss ued", + "▁issue d", + "▁ issued", + "RE E", + "R EE", + "养 殖", + "▁att acks", + "▁attack s", + "关 心", + "▁pr ison", + "▁pri son", + "▁ prison", + "▁w a", + "▁ wa", + "▁J ac", + "▁Ja c", + "▁ Jac", + "is a", + "i sa", + "▁M IT", + "▁MI T", + "▁ MIT", + "群 体", + "te am", + "小 编", + "▁s aved", + "▁sa ved", + "▁save d", + "▁sav ed", + "▁ saved", + "▁begin s", + "▁beg ins", + "mon d", + "mo nd", + "m ond", + "从 来", + "概 率", + "▁nor thern", + "▁north ern", + "关 节", + "玉 米", + "接 近", + "个 数", + "▁ca using", + "▁caus ing", + "▁{ \\'", + "▁{\\ '", + "▁ {\\'", + "▁under stood", + "第二百 零", + "ye s", + "y es", + "修 复", + "la yer", + "lay er", + "l ayer", + "预 算", + "P lease", + "▁e ntr", + "▁en tr", + "▁ent r", + "▁Ill inois", + "相关 的", + "▁fl owers", + "▁flo wers", + "▁flow ers", + "▁flower s", + "个 性", + "▁s an", + "▁sa n", + "▁ san", + "那 样", + "▁target ed", + "▁ targeted", + "也不 会", + "也 不会", + "▁$ {\\\\", + "▁${ \\\\", + "▁ ${\\\\", + "Pa y", + "P ay", + "an dy", + "and y", + "▁month ly", + "US ER", + "USE R", + "U SER", + "▁person nel", + "▁av ailability", + "▁avail ability", + "▁ availability", + "第二 节", + "el ly", + "ell y", + "阳 县", + "材 质", + "东 南", + "水 果", + "▁Corpor ation", + "▁Corp oration", + "▁pro ducer", + "▁produ cer", + "▁produce r", + "▁prod ucer", + "▁ producer", + "▁n arrow", + "▁narr ow", + "az y", + "a zy", + "▁estim ates", + "▁estimate s", + "▁Cont act", + "▁ Contact", + "以上 的", + "以 上的", + "ce rt", + "cer t", + "c ert", + "一 道", + "▁b le", + "▁bl e", + "▁ ble", + "▁re ferences", + "▁r eferences", + "▁refer ences", + "▁reference s", + "▁ references", + "还 没", + "▁e ating", + "▁eat ing", + "医 师", + "light s", + "l ights", + "可 爱", + "▁sign ificance", + "▁signific ance", + "▁Phys ics", + "▁ Physics", + "Write r", + "Writ er", + "Wr iter", + "W riter", + "as m", + "a sm", + "▁g rown", + "▁gr own", + "▁grow n", + "▁gro wn", + "▁ grown", + "VER SION", + "V ERSION", + "辽宁 省", + "竟 然", + "▁st rings", + "▁str ings", + "▁string s", + "▁ strings", + "et c", + "e tc", + "其 次", + "▁hon est", + "▁ho nest", + "▁hone st", + "sp ect", + "spec t", + "spe ct", + "s pect", + "UI D", + "U ID", + "▁dist ingu", + "公 益", + "nI m", + "n Im", + "li mit", + "lim it", + "l imit", + "Do c", + "D oc", + "▁user name", + "▁ username", + "▁p H", + "▁ pH", + "必 然", + "的 申请", + "nA d", + "n Ad", + "▁oper ators", + "▁operator s", + "▁ operators", + ") \"", + "ic ients", + "ici ents", + "icient s", + "/\\ \\", + "/ \\\\", + "交 换", + "ot ion", + "oti on", + "o tion", + "Pro perties", + "▁I O", + "▁ IO", + "陕 西", + "▁conven ient", + "▁respons ibility", + "为 此", + "▁found ation", + "▁ foundation", + "▁Child ren", + "▁ Children", + "es ting", + "est ing", + "am ic", + "ami c", + "a mic", + "▁re vers", + "▁reve rs", + "▁rev ers", + "▁rever s", + "▁s ummary", + "▁summ ary", + "▁summar y", + "▁ summary", + "保 健", + "▁s pl", + "▁sp l", + "▁ spl", + "C ategory", + "▁Kore a", + "▁Ko rea", + "▁Kor ea", + "▁W ales", + "▁Wal es", + "▁Wa les", + "if icial", + "ific ial", + "▁M P", + "▁ MP", + "▁# ##", + "▁## #", + "▁ ###", + "▁int egers", + "▁integer s", + "UT H", + "U TH", + "em y", + "e my", + "al ian", + "ali an", + "alia n", + "超 市", + "▁ant igen", + "▁anti gen", + "▁Rad io", + "▁ Radio", + "▁p rivacy", + "▁priv acy", + "▁ privacy", + "▁hand ling", + "▁stim ulation", + "▁stimul ation", + "▁pe ace", + "▁peac e", + "▁Ge orgia", + "▁Georg ia", + "把 握", + "PO RT", + "POR T", + "P ORT", + "▁arr ang", + "氛 围", + "nf ortunately", + "▁platform s", + "▁plat forms", + "▁ platforms", + "呼 吸", + "N C", + "▁o urs", + "▁our s", + "▁ou rs", + "▁ ours", + "▁J o", + "▁ Jo", + "▁K h", + "▁ Kh", + "▁quant itative", + "▁May be", + "▁ Maybe", + "的 中", + "▁occ asion", + "▁occas ion", + "H L", + "▁concer ned", + "▁concern ed", + "▁tr acking", + "▁track ing", + "▁ tracking", + "国务 院", + "释 放", + "\" #", + "▁re actions", + "▁reaction s", + "▁react ions", + "Char Field", + "H C", + "nQ u", + "n Qu", + "▁p olymer", + "▁poly mer", + "▁polym er", + "▁ polymer", + "▁risk s", + "▁ris ks", + "很 少", + "张 某", + "ba sh", + "bas h", + "b ash", + "f etch", + "你 会", + "姐 姐", + "▁par king", + "▁park ing", + "小 米", + "▁M icro", + "▁Mi cro", + "▁Mic ro", + "▁ Micro", + "et ing", + "eti ng", + "etin g", + "e ting", + "re solve", + "res olve", + "▁St ore", + "▁ Store", + "ver ter", + "vert er", + "verte r", + "▁review ed", + "▁ reviewed", + "▁S aint", + "▁Sa int", + "▁guarant ee", + "取 值", + "ies t", + "ie st", + "i est", + "▁im plications", + "▁impl ications", + "▁implication s", + "的 能力", + "系 数", + "结果 表明", + "从 轻处罚", + "▁purch ased", + "▁purchase d", + "ERR OR", + "er ly", + "▁bu sy", + "▁bus y", + "▁h ence", + "▁he nce", + "▁hen ce", + "▁Franc isco", + "▁Francis co", + "▁as sembly", + "▁assembl y", + "▁ assembly", + "大 连", + "▁总 部", + "▁ 总部", + "不错 的", + "不 错的", + "▁/ >", + "▁ />", + "▁program me", + "携 带", + "ex e", + "e xe", + "详 情", + "lar ge", + "larg e", + "l arge", + "部 位", + "▁W ho", + "▁Wh o", + "▁ Who", + "com put", + "comp ut", + "im ately", + "imate ly", + "▁com pound", + "▁comp ound", + "▁M ah", + "▁Ma h", + "▁ Mah", + "▁S af", + "▁Sa f", + "▁U l", + "▁ Ul", + "ti nt", + "tin t", + "t int", + "NE SS", + "N ESS", + "in als", + "inal s", + "ina ls", + "i nals", + "hem istry", + "ie ves", + "ieve s", + "iev es", + "i eves", + "可 见", + "也 在", + "都 没", + "▁U nit", + "▁Un it", + "▁Uni t", + "▁ Unit", + "▁call back", + "▁ callback", + "▁club s", + "真正 的", + "EFA ULT", + "▁re spir", + "▁res pir", + "▁resp ir", + "▁flex ible", + "加 速", + "带来 的", + "带 来的", + "舞 台", + "和 解", + "▁inter ests", + "▁interest s", + "▁dest ination", + "▁ destination", + "累 计", + "er ior", + "eri or", + "e rior", + "/> \\", + "/ >\\", + "▁pro ved", + "▁pr oved", + "▁prov ed", + "▁prove d", + "▁ proved", + "ac tic", + "act ic", + "a ctic", + "▁bath room", + "se x", + "s ex", + "承 诺", + "▁S pace", + "▁Sp ace", + "▁Spa ce", + "▁ Space", + "五 月", + "▁re act", + "▁ react", + "劳 务", + "播 放", + "节 能", + "▁cit izens", + "▁citiz ens", + "▁citizen s", + "▁p itch", + "▁pit ch", + "▁ pitch", + "is ta", + "ist a", + "i sta", + "▁man agers", + "▁manag ers", + "▁manager s", + "▁manage rs", + "游 客", + "尊 重", + "▁entire ly", + "▁t ip", + "▁ti p", + "▁ tip", + "▁d ates", + "▁dat es", + "▁date s", + "▁da tes", + "▁ dates", + "▁app lying", + "▁apply ing", + "▁appl ying", + "可在 判决书送达之日起十五日内", + "危 机", + "▁commit ment", + "▁mach ines", + "▁machine s", + "地 铁", + "▁ent ries", + "▁entr ies", + "▁ entries", + "▁sur faces", + "▁surface s", + "▁surf aces", + "展 览", + "▁V ideo", + "▁Vid eo", + "▁ Video", + "ipher al", + "iph eral", + "▁\" \"\\", + "▁\"\" \\", + "▁ \"\"\\", + "▁K ent", + "▁Ke nt", + "▁Ken t", + "na s", + "n as", + "▁Joh nson", + "▁John son", + "▁Johns on", + "▁Ill uminate", + "▁ Illuminate", + "十二 月", + "十 二月", + "▁Pac ific", + "▁ Pacific", + "为 何", + "▁ 周", + "间 的", + "sh ared", + "sha red", + "share d", + "接受 教育", + "加 大", + "▁viol ence", + "▁m ountain", + "▁mount ain", + "▁Dem ocratic", + "▁Democr atic", + "▁Democrat ic", + "name space", + "names pace", + "n amespace", + "▁dom estic", + "▁domest ic", + "小 数", + "och ond", + "十八 条", + "十 八条", + "▁c oc", + "▁co c", + "▁ coc", + "第二百五十 三", + "▁d ental", + "▁den tal", + "▁dent al", + "▁L ow", + "▁Lo w", + "▁ Low", + "视 觉", + "ju nit", + "jun it", + "j unit", + "▁Pro blem", + "▁Prob lem", + "▁ Problem", + "▁en abled", + "▁enable d", + "▁ enabled", + "近 期", + "nT e", + "n Te", + "国 的", + "▁e g", + "▁ eg", + "in er", + "ine r", + "i ner", + "抚养 费", + "\") ]\\", + "\" )]\\", + "站 在", + "T ube", + "init ial", + "om etimes", + "ome times", + "omet imes", + "▁f le", + "▁fl e", + "战 士", + "j u", + "el lite", + "ell ite", + "elli te", + "总 统", + "▁sur ve", + "▁surv e", + "的 本次执行程序", + "▁ass uming", + "▁assum ing", + "▁ assuming", + "常 规", + "b d", + "assert Equal", + "II I", + "I II", + "▁b acteria", + "▁bacter ia", + "▁A BC", + "▁AB C", + "▁ ABC", + "▁we ap", + "bi an", + "bia n", + "b ian", + "法律 法规", + "▁anti body", + "▁antib ody", + "F i", + "Mo ck", + "M ock", + "外 观", + "电 压", + "养 老", + "ist ered", + "ister ed", + "iste red", + "设 立", + "▁I de", + "▁Id e", + "补 偿", + "▁p ert", + "▁per t", + "▁pe rt", + "▁ pert", + "得到 了", + "得 到了", + "mi r", + "m ir", + "N e", + "▁inflamm atory", + "▁ inflammatory", + "v c", + "▁Mat hematics", + "▁Math ematics", + "▁Mathematic s", + "is ition", + "isi tion", + "pl ugins", + "plugin s", + "plug ins", + "婚 后", + "▁m useum", + "混 凝", + "明 的", + "不 然", + "消 失", + "▁F ar", + "▁Fa r", + "▁ Far", + "bur y", + "bu ry", + "b ury", + "ib li", + "ibl i", + "▁ver ify", + "▁ verify", + "SUL TS", + "SULT S", + "V M", + "▁S U", + "▁ SU", + "▁L ittle", + "▁Li ttle", + "▁Lit tle", + "▁ Little", + "▁ex port", + "▁exp ort", + "▁ export", + "xi ety", + "id o", + "i do", + "联 赛", + "bl ack", + "bla ck", + "长 春", + "▁s heet", + "▁she et", + "▁ sheet", + "▁Le vel", + "▁Lev el", + "▁ Level", + "▁f actory", + "▁fact ory", + "▁factor y", + "▁ factory", + "▁term inal", + "▁ terminal", + "申 报", + "▁a wards", + "▁aw ards", + "▁award s", + "▁Ab out", + "▁ About", + "疗 效", + "优 点", + "▁reg istration", + "▁registr ation", + "▁ registration", + "ic ted", + "ict ed", + "▁总部 地点", + "O ur", + "广 播", + "io x", + "i ox", + "cl ean", + "cle an", + "c lean", + "术 后", + "S F", + "▁Par liament", + "▁inflamm ation", + "▁ 我", + "row se", + "rows e", + "▁I rish", + "▁Ir ish", + "ac ent", + "ace nt", + "a cent", + "本院 审理", + "▁conc rete", + "in ton", + "int on", + "into n", + "i nton", + "Date Time", + "▁St udio", + "▁Stud io", + "▁ Studio", + "▁re veal", + "▁reve al", + "▁rev eal", + "re view", + "rev iew", + "▁S ports", + "▁Sp orts", + "▁Sport s", + "▁ Sports", + "▁N C", + "▁ NC", + "▁admin istrative", + "▁administr ative", + "八 日", + "▁a ges", + "▁ag es", + "▁age s", + "▁ ages", + "▁im mediate", + "▁immed iate", + "扩 展", + "▁r ailway", + "▁rail way", + "▁Ex ample", + "▁Exam ple", + "▁ Example", + "▁in jection", + "▁inj ection", + "▁inject ion", + "▁ injection", + "in son", + "ins on", + "i nson", + "mat erial", + "mate rial", + "m aterial", + "▁warrant y", + "面 前", + "圆 的", + "▁▁ ▁▁▁▁▁", + "▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁ ▁", + "▁▁▁ ▁▁▁▁", + "▁▁▁▁▁ ▁▁", + "▁ ▁▁▁▁▁▁", + "▁I g", + "▁ Ig", + "▁h ospit", + "账 号", + "ri ces", + "ric es", + "rice s", + "r ices", + "和 社会", + "▁E U", + "▁ EU", + "江 西", + "ogg le", + "▁C oll", + "▁Col l", + "▁Co ll", + "▁ Coll", + "v o", + "▁p reliminary", + "▁prelim inary", + "▁Ac count", + "▁Acc ount", + "▁ Account", + "承 包", + "▁fant astic", + "▁fantas tic", + "nat ive", + "n ative", + "▁S P", + "▁ SP", + "il ly", + "ill y", + "▁Re present", + "▁Rep resent", + "au s", + "a us", + "▁lo ading", + "▁load ing", + "▁ loading", + "那 里", + "He ad", + "H ead", + "▁def ense", + "▁defe nse", + "应 对", + "nCare er", + "nCar eer", + "▁access ible", + "▁ accessible", + "拘 留", + "的第 二", + "的 第二", + "市 委", + "It ems", + "Item s", + "工程 师", + "▁le uk", + "▁ leuk", + "期限 内", + "休 息", + "▁br inging", + "▁bring ing", + "内 心", + "lo ader", + "load er", + "八 月", + "指 挥", + "▁s ter", + "▁st er", + "▁ste r", + "▁ ster", + "▁em otional", + "▁emot ional", + "▁emotion al", + "▁enjoy ed", + "i h", + "▁P romise", + "▁Prom ise", + "▁ Promise", + "▁U I", + "▁ UI", + "指控 被告人", + "▁bas eline", + "▁base line", + "▁ baseline", + "图 形", + "CL US", + "▁M iddle", + "▁Midd le", + "▁ Middle", + "nt hat", + "nth at", + "n that", + "▁character istic", + "for ward", + "▁bre ath", + "▁breat h", + "仪 式", + "geq slant", + "▁p ulmonary", + "▁pul monary", + "提出 上诉", + "о в", + "货 款", + "孩子 们", + "麻 烦", + "▁c ensus", + "▁cens us", + "气 候", + "oc olate", + "ocol ate", + "oco late", + "商 标", + "▁pro fessor", + "▁profess or", + "ga r", + "g ar", + "▁p roducing", + "▁produ cing", + "▁prod ucing", + "▁ producing", + "▁u m", + "▁ um", + "ta r", + "t ar", + "▁p up", + "▁pu p", + "著 名", + "\\' ],", + "\\'] ,", + "\\ '],", + "▁rec ipe", + "▁recip e", + "▁ recipe", + "远 程", + "客 观", + "az e", + "a ze", + "▁cont ributions", + "▁contribut ions", + "▁contribution s", + "▁f ault", + "▁fa ult", + "▁ fault", + "▁am ino", + "▁amin o", + "▁ amino", + "▁valid ate", + "▁ validate", + "ir th", + "irt h", + "▁af fordable", + "▁afford able", + "▁L abor", + "▁La bor", + "▁Lab or", + "▁ é", + "海 外", + "is er", + "ise r", + "i ser", + "▁coh ort", + "垂 直", + "合 肥", + "if er", + "ife r", + "i fer", + "武 器", + "▁met abolic", + "▁metab olic", + "▁metabol ic", + "▁meta bolic", + "/ )", + "sub mit", + "健 身", + "近 代", + "▁mark ers", + "▁mar kers", + "▁marker s", + "sub ject", + "su bject", + "学 的", + "该 村", + "as ters", + "ast ers", + "aster s", + "aste rs", + "a sters", + "年 底", + "如 实", + "校 长", + "▁L I", + "▁ LI", + "▁young er", + "▁f eas", + "▁fe as", + "▁inter ventions", + "▁intervention s", + "an ol", + "ano l", + "a nol", + "Que ue", + "▁ac ids", + "▁acid s", + "▁a gricult", + "▁agr icult", + "于 本判决", + "原审 被告", + "L P", + "br al", + "bra l", + "b ral", + "ch at", + "cha t", + "c hat", + "二 审", + "▁ 赵", + "▁l ayers", + "▁la yers", + "▁layer s", + "▁lay ers", + "▁ layers", + "▁aware ness", + "▁calc ium", + "\" }", + "▁att ribute", + "▁ attribute", + "维 生素", + "产 量", + "▁con sequences", + "▁consequ ences", + "▁consequence s", + "A c", + "▁v eter", + "▁ve ter", + "▁vet er", + "▁m igration", + "▁migr ation", + "▁ migration", + "_\\ \\", + "_ \\\\", + "ho m", + "h om", + "纷 纷", + "si d", + "s id", + "▁L oad", + "▁Lo ad", + "▁ Load", + "▁br ands", + "▁brand s", + "en ders", + "end ers", + "ender s", + "ende rs", + "\" <", + "▁cr ime", + "▁crim e", + "▁flu ores", + "▁fluor es", + "▁tr ends", + "▁trend s", + "ic ons", + "icon s", + "ico ns", + "i cons", + "▁en dot", + "▁end ot", + "▁W illiams", + "▁Willi ams", + "▁William s", + "▁he pat", + "很大 的", + "很 大的", + "hu s", + "h us", + "投资 者", + "N E", + "▁d oubt", + "▁dou bt", + "▁doub t", + "com plete", + "comp lete", + "compl ete", + "▁sup plement", + "▁suppl ement", + "▁great ly", + "▁T ry", + "▁Tr y", + "▁ Try", + "吃 饭", + "图 象", + "▁I ss", + "▁Is s", + "▁ Iss", + "后 期", + "紧 张", + "▁not iced", + "▁notice d", + "Us e", + "U se", + "而 不", + "▁tr ouble", + "▁tro uble", + "▁trou ble", + "▁regular ly", + "▁regul arly", + "▁P ut", + "▁Pu t", + "▁ Put", + "▁nut r", + "▁nu tr", + "PASS WORD", + "纠纷 一案中", + "纠纷一案 中", + "▁R ay", + "▁Ra y", + "▁ Ray", + "olog ists", + "ologist s", + "合同 法", + "▁t ags", + "▁tag s", + "▁ta gs", + "▁ tags", + "演 唱", + "看 起来", + "出现 了", + "▁t ells", + "▁tell s", + "▁tel ls", + "▁m ales", + "▁male s", + "▁mal es", + "▁ma les", + "▁re fr", + "▁ref r", + "生活 的", + "生 活的", + "** *", + "* **", + "市场 的", + "市 场的", + "解决 方案", + "▁K im", + "▁Ki m", + "▁ Kim", + "▁H on", + "▁Ho n", + "▁op erated", + "▁oper ated", + "▁operate d", + "▁opera ted", + "▁ operated", + "▁ins ights", + "▁insight s", + "条 款", + "L D", + "▁a cts", + "▁act s", + "▁ac ts", + "▁ acts", + "oc c", + "o cc", + "iz ers", + "ize rs", + "izer s", + "is ting", + "ist ing", + "▁a ctors", + "▁act ors", + "▁actor s", + "▁ actors", + "G u", + "es c", + "e sc", + "od ec", + "ode c", + "o dec", + "▁mix ture", + "nre quire", + "n require", + "车 的", + "% ;", + "血 压", + "▁U kr", + "ne q", + "n eq", + "▁re aders", + "▁read ers", + "▁reader s", + "wa ll", + "wal l", + "w all", + "集团 有限公司", + "▁R en", + "▁Re n", + "▁ Ren", + "iss ions", + "ission s", + "un ting", + "unt ing", + "▁miss ed", + "▁mis sed", + "j e", + "▁ind eed", + "f c", + "▁t err", + "▁te rr", + "▁ter r", + "▁ terr", + "温 暖", + "▁re put", + "▁rep ut", + "和 分析", + "不 宜", + "是中 国", + "是 中国", + "星 级", + "as ty", + "ast y", + "a sty", + "强 烈", + "▁K n", + "▁ Kn", + "苏 州", + "团 体", + "og a", + "o ga", + "▁conn ections", + "▁connect ions", + "▁connection s", + "▁ connections", + "文 艺", + "▁str ains", + "▁strain s", + "食 材", + "est inal", + "▁e lections", + "▁elect ions", + "▁el ections", + "▁election s", + "For e", + "F ore", + "六 月", + "界 面", + "De lete", + "Del ete", + "ze ro", + "zer o", + "z ero", + "▁m s", + "▁ ms", + "▁vis iting", + "▁visit ing", + "be t", + "b et", + "▁cut ting", + "▁label s", + "▁lab els", + "▁ labels", + "命 运", + "▁W hether", + "▁Wh ether", + "▁ Whether", + "▁f ro", + "▁fr o", + "▁ fro", + "ot ypes", + "otype s", + "otyp es", + "o types", + "▁F IT", + "▁FI T", + "cl s", + "c ls", + "混凝 土", + "▁Ex pl", + "▁Exp l", + "▁ Expl", + "iz z", + "i zz", + "新 型", + "不到 庭", + "不 到庭", + "有时 候", + "有 时候", + "▁disc rim", + "cat ch", + "c atch", + "Af ter", + "A fter", + "▁f acing", + "▁fac ing", + "▁fa cing", + "▁ facing", + "ST R", + "S TR", + "或 是", + "File s", + "Fil es", + "Fi les", + "F iles", + "▁commit tee", + "▁ committee", + "Py thon", + "P ython", + "▁col lections", + "▁coll ections", + "▁collection s", + "▁collect ions", + "▁ collections", + "▁CO VID", + "▁ COVID", + "▁d iversity", + "▁divers ity", + "▁E s", + "▁ Es", + "山 西", + "▁b oys", + "▁bo ys", + "▁boy s", + "▁ boys", + "接受教育 改造", + "▁( \\\\", + "▁(\\ \\", + "▁ (\\\\", + "意味 着", + "危险 驾驶", + "▁T ODO", + "▁TO DO", + "▁ TODO", + "re ference", + "refer ence", + "r eference", + "加倍支付 迟延履行期间的债务利息", + "ev eral", + "ever al", + "eve ral", + "ul ture", + "ult ure", + "ev ents", + "event s", + "even ts", + "e vents", + "Call back", + "ok ed", + "oke d", + "en code", + "enc ode", + "e ncode", + "是一 道", + "是 一道", + "▁p ilot", + "▁pi lot", + "▁pil ot", + "▁C ur", + "▁Cu r", + "▁ Cur", + "▁pro ven", + "▁pr oven", + "▁prov en", + "▁prove n", + "▁Cl oud", + "▁Clo ud", + "▁ Cloud", + "▁re q", + "▁r eq", + "▁ req", + "\\' ))\\", + "\\') )\\", + "\\')) \\", + "\\ '))\\", + "同 步", + "诉讼 费", + "\") );\\", + "\")) ;\\", + "\" ));\\", + "上 涨", + "▁develop ers", + "▁developer s", + "▁ developers", + "No n", + "N on", + "at eway", + "ate way", + "re po", + "rep o", + "▁cent ers", + "▁center s", + "▁ce nters", + "Ro ot", + "R oot", + "较 为", + "法律 条文", + "ud den", + "udd en", + "支 部", + "▁V ill", + "▁Vi ll", + "▁Vil l", + "cont act", + "走 了", + "都 很", + "线 路", + "世界 上", + "▁d ial", + "▁di al", + "▁dia l", + "▁ dial", + "ak i", + "a ki", + "每 月", + "▁polit icians", + "▁politician s", + "▁free dom", + "▁fre edom", + "▁freed om", + "op es", + "ope s", + "o pes", + "厨 房", + "▁S ea", + "▁Se a", + "[ [", + "刑事 诉讼法", + "大 师", + "▁pain ting", + "▁paint ing", + "使用 的", + "使 用的", + "▁s olving", + "▁sol ving", + "▁solv ing", + "▁ solving", + "▁m oth", + "▁mot h", + "▁mo th", + "ber ry", + "b erry", + "▁r outine", + "▁rout ine", + "▁ routine", + "▁r id", + "▁ri d", + "▁ rid", + "电 路", + "▁L earning", + "▁Le arning", + "▁Lear ning", + "▁Learn ing", + "▁ Learning", + "▁up coming", + "▁A mong", + "▁Am ong", + "▁ap opt", + "▁apo pt", + "▁ apopt", + "▁w alls", + "▁wall s", + "▁wal ls", + "瞬 间", + "处 的", + "\\' ])\\", + "\\'] )\\", + "\\']) \\", + "\\ '])\\", + "▁H am", + "▁Ha m", + "▁ Ham", + "let ter", + "lett er", + "lette r", + "l etter", + "▁m ini", + "▁min i", + "▁mi ni", + "▁ mini", + "漫 画", + "主 角", + "gr een", + "gre en", + "g reen", + "ou ston", + "ous ton", + "oust on", + "▁sh ipping", + "▁ship ping", + "▁ shipping", + "传 票", + "Pa d", + "P ad", + "▁s aving", + "▁sa ving", + "▁sav ing", + "▁ saving", + "相 反", + "▁A uto", + "▁Aut o", + "▁Au to", + "▁ Auto", + "灵 活", + "给 了", + "▁L uc", + "▁Lu c", + "▁ Luc", + "▁de script", + "▁des cript", + "▁desc ript", + "学 者", + "Par am", + "Pa ram", + "P aram", + "▁g lob", + "▁gl ob", + "▁glo b", + "▁ glob", + "▁S ym", + "▁Sy m", + "▁ Sym", + "福 利", + "▁ed ges", + "▁edge s", + "▁ edges", + "▁real ize", + "▁ing redients", + "▁ingred ients", + "▁ingredient s", + "▁te eth", + "▁tee th", + "月 至", + "▁p anc", + "▁pan c", + "▁pa nc", + "ab out", + "abo ut", + "▁Pat ients", + "▁Patient s", + "物 的", + "▁b ot", + "▁bo t", + "▁ bot", + "优 先", + "▁voc als", + "▁vocal s", + "▁n erve", + "▁nerv e", + "de tails", + "det ails", + "detail s", + "入 住", + "force ment", + "审 计", + "申请 撤诉", + "▁maint ained", + "▁maintain ed", + "\\\\( (\\\\)", + "\\\\(( \\\\)", + "认 知", + "履行 给付", + "▁S uch", + "▁Su ch", + "▁ Such", + "▁denomin ator", + "▁g al", + "▁ga l", + "▁ gal", + "水 的", + "▁cl oser", + "▁clos er", + "▁close r", + "国内 外", + "国 内外", + "政治 权利", + "▁B ox", + "▁Bo x", + "▁ Box", + "▁M R", + "▁ MR", + "▁magn itude", + "电 机", + "lin ux", + "▁E mp", + "▁Em p", + "▁ Emp", + "▁increasing ly", + "}> \\", + "} >\\", + "▁装 帧", + "E P", + "又 是", + "▁r ows", + "▁ro ws", + "▁row s", + "▁ rows", + "▁p aths", + "▁pat hs", + "▁path s", + "▁pa ths", + "▁ paths", + "学 员", + "script s", + "scri pts", + "▁stand ing", + "▁ standing", + "▁b an", + "▁ba n", + "▁ ban", + "mo ve", + "mov e", + "m ove", + "fe ature", + "feat ure", + "▁c lock", + "▁cl ock", + "▁ clock", + "bu l", + "b ul", + "更 有", + "男 性", + "nB ack", + "n Back", + "nP h", + "n Ph", + "上 一", + "▁F ederal", + "▁Fed eral", + "▁Feder al", + "除 以", + "en dl", + "end l", + "t v", + "选 手", + "▁b odies", + "▁bo dies", + "▁bod ies", + "▁w arning", + "▁war ning", + "▁warn ing", + "▁ warning", + "▁bel ieved", + "▁believe d", + "▁belie ved", + "▁C arl", + "▁Car l", + "▁Ca rl", + "▁behavior al", + "▁behavi oral", + "( @", + "▁d ent", + "▁de nt", + "▁den t", + "分 行", + "▁con clusion", + "fa ll", + "f all", + "▁Pl aces", + "▁Place s", + "▁sup erv", + "▁super v", + "▁ superv", + "民 警", + "▁A nother", + "▁An other", + "▁ Another", + "qu ality", + "qual ity", + "q uality", + "O B", + "全 市", + "tl e", + "t le", + "▁C ond", + "▁Con d", + "▁Co nd", + "▁ Cond", + "他 在", + "▁c ro", + "▁cr o", + "▁ cro", + "▁m argin", + "▁mar gin", + "▁marg in", + "▁ margin", + "教 程", + "根据 题意", + "抑 制", + "号刑事 判决", + "Ma r", + "M ar", + "西 南", + "pa per", + "p aper", + "▁sh ares", + "▁share s", + "▁sha res", + "▁shar es", + "▁S pe", + "▁Sp e", + "▁ Spe", + "▁Sc iences", + "▁Science s", + "▁Sci ences", + "▁e lig", + "▁el ig", + "▁character ize", + "▁f iber", + "▁fib er", + "▁fi ber", + "▁ fiber", + "▁O p", + "▁ Op", + "▁PART IC", + "▁C ou", + "▁Co u", + "▁ Cou", + "CH ANT", + "CHA NT", + "▁pre diction", + "▁predict ion", + "▁pred iction", + "▁ prediction", + "▁guid ance", + "痛 苦", + "知识 的", + "▁re po", + "▁rep o", + "▁ repo", + "▁h istoric", + "▁hist oric", + "▁histor ic", + "▁ historic", + "了 吗", + "he mes", + "hem es", + "heme s", + "boot strap", + "▁organ ized", + "▁organize d", + "▁ organized", + "▁s ole", + "▁so le", + "▁sol e", + "▁ sole", + "▁bed room", + "▁ bedroom", + "▁ 高", + "百 年", + "▁pro min", + "▁pr omin", + "▁prom in", + "upy ter", + "art icles", + "article s", + "D D", + "▁m outh", + "▁mo uth", + "▁ mouth", + "uset ts", + "id al", + "ida l", + "i dal", + "▁amount s", + "▁pol ym", + "▁poly m", + "ol y", + "o ly", + "ach usetts", + "那 就", + "▁H enry", + "▁Hen ry", + "nD uring", + "n During", + "▁exec ute", + "▁execut e", + "▁ execute", + "▁go ods", + "▁good s", + "▁ goods", + "土 壤", + "▁facilit ate", + "nS c", + "n Sc", + "▁com plicated", + "▁compl icated", + "▁dom ains", + "▁domain s", + "▁ domains", + "T F", + "▁D an", + "▁Da n", + "▁ Dan", + "积 累", + "ou st", + "ous t", + "o ust", + "ho ur", + "hou r", + "h our", + "锻 炼", + "Ra nge", + "R ange", + "er as", + "era s", + "e ras", + "nH i", + "n Hi", + "▁s can", + "▁sc an", + "▁ scan", + "▁public ation", + "▁ publication", + "剥夺 政治权利", + "▁involve ment", + "oo p", + "o op", + "▁att ributes", + "▁attribute s", + "▁ attributes", + "ic ture", + "ict ure", + "AN CE", + "依 赖", + "Pa t", + "P at", + "om ething", + "ome thing", + "omet hing", + "ometh ing", + "▁J on", + "▁Jo n", + "▁ Jon", + "▁合作 作品", + "专 项", + "▁l ay", + "▁la y", + "▁ lay", + "st ein", + "ste in", + "s tein", + "▁W alk", + "▁Wal k", + "▁ Walk", + "▁after noon", + "▁rel igious", + "▁relig ious", + "U C", + "Map ping", + "Ma pping", + "M apping", + "AN G", + "A NG", + "还没 有", + "还 没有", + "Gi t", + "G it", + "拒不 到庭", + "拒 不到庭", + "▁ar bitr", + "浓 度", + "▁val idation", + "▁valid ation", + "▁ validation", + "面 向", + "▁ 中", + "il ateral", + "▁m i", + "▁ mi", + "▁D ocument", + "▁Doc ument", + "▁ Document", + "公 主", + "ER CHANT", + "▁under w", + "de sign", + "des ign", + "五 日", + "▁a den", + "▁ad en", + "▁ aden", + "ik a", + "i ka", + "▁foc uses", + "▁focus es", + "ch i", + "c hi", + "▁p it", + "▁pi t", + "▁ pit", + "九 日", + "不 受", + "从 小", + "▁Com ponent", + "▁ Component", + "ig a", + "i ga", + "▁predict ed", + "▁pred icted", + "▁A uth", + "▁Aut h", + "▁Au th", + "▁ Auth", + "中华人民共和国 行政", + "关 闭", + "▁mat hematics", + "▁math ematics", + "▁mathematic s", + "人 为", + "无异 议", + "无 异议", + "谢 谢", + "▁H N", + "▁ HN", + "▁se arching", + "▁search ing", + "▁sear ching", + "▁sign ature", + "▁ signature", + "▁d inner", + "▁din ner", + "▁perfect ly", + "▁advert ising", + "▁advertis ing", + "ac er", + "ace r", + "a cer", + "▁en ables", + "▁enable s", + "言 情", + "% %", + "nb sp", + "ya ml", + "yam l", + "y aml", + "▁max im", + "▁ma xim", + "aw ay", + "awa y", + "a way", + "▁numer ical", + "▁numeric al", + "ac ker", + "ack er", + "▁ 小", + "▁F air", + "▁Fa ir", + "▁ag encies", + "Value s", + "Val ues", + "▁n eck", + "▁ne ck", + "▁nec k", + "▁ neck", + "▁P URPOSE", + "▁J oe", + "▁Jo e", + "▁ Joe", + "接 着", + "农 户", + "财产 可供执行", + "同 期", + "burg h", + "bur gh", + "se rial", + "ser ial", + "s erial", + "con sin", + "cons in", + "的 朋友", + "对 被告", + "sup port", + "上 去", + "山西 省", + "山 西省", + "赚 钱", + "dr iver", + "driv er", + "drive r", + "d river", + "▁And rew", + "▁Andre w", + "▁Andr ew", + "▁ Andrew", + "▁dis covery", + "▁disc overy", + "▁discover y", + "▁ discovery", + "▁p riority", + "▁prior ity", + "▁priorit y", + "▁priori ty", + "▁ priority", + "反 正", + "▁pro files", + "▁profile s", + "▁prof iles", + "▁profil es", + "▁ profiles", + "▁ch ampionship", + "▁champion ship", + "▁champions hip", + "▁k il", + "▁ki l", + "▁ kil", + "▁con stitu", + "▁const itu", + "▁constit u", + "ro phy", + "rop hy", + "roph y", + "▁w arn", + "▁war n", + "▁wa rn", + "▁ warn", + "▁inhib itors", + "▁inhibitor s", + "▁inhibit ors", + "相 似", + "▁G reek", + "▁Gr eek", + "▁Gree k", + "▁Gre ek", + "▁prolif eration", + "▁prolifer ation", + "提出 的", + "提 出的", + "定 理", + "th eme", + "the me", + "them e", + "t heme", + "各 自", + "▁mar riage", + "ho r", + "h or", + "qu ir", + "的 技术", + "▁st ands", + "▁stand s", + "▁re venue", + "▁rev enue", + "▁reven ue", + "▁D igital", + "▁Dig ital", + "▁ Digital", + "\\\\ ,", + "第二百 六", + "▁ex clusive", + "▁exclus ive", + "ave r", + "av er", + "a ver", + "ou tes", + "out es", + "oute s", + "o utes", + "大 大", + "▁de grad", + "▁deg rad", + "fl ag", + "f lag", + "de sc", + "des c", + "d esc", + "▁D ou", + "▁Do u", + "▁J oseph", + "▁Jose ph", + "▁Jos eph", + "▁produ ces", + "▁produce s", + "▁prod uces", + "▁at tr", + "▁att r", + "▁ attr", + "意 大利", + "ro py", + "rop y", + "r opy", + "▁m align", + "▁mal ign", + "辅 导", + "框 架", + "▁mat hematical", + "▁mathematic al", + "万 人", + "scan f", + "危险驾驶 罪", + "en th", + "ent h", + "e nth", + "][ \\'", + "] [\\'", + "ri cular", + "ric ular", + "ricula r", + "r icular", + "▁d rawn", + "▁dr awn", + "▁draw n", + "上 班", + "大 赛", + "\"] ,", + "\" ],", + "▁d oors", + "▁do ors", + "▁door s", + "▁ doors", + "qu estion", + "ques tion", + "quest ion", + "若干 问题", + "早 期", + "▁concer ning", + "▁concern ing", + "九 月", + "se n", + "s en", + "切 实", + "餐 馆", + "▁b ass", + "▁bas s", + "▁ba ss", + "▁ bass", + "Log in", + "Lo gin", + "wort h", + "wor th", + "w orth", + "▁app ointment", + "▁appoint ment", + "密 度", + "▁' /", + "▁ '/", + "f usion", + "ja r", + "j ar", + "}\\\\ )\\", + "}\\\\) \\", + "} \\\\)\\", + "ERCHANT ABILITY", + "med iated", + "media ted", + "mediate d", + "pl ays", + "play s", + "▁en dl", + "▁end l", + "▁ endl", + "dep th", + "化 妆", + "▁be am", + "▁ beam", + "yn t", + "y nt", + "Id ent", + "▁p lain", + "▁pl ain", + "▁ plain", + "de velop", + "devel op", + "一 是", + "ha rd", + "har d", + "h ard", + "name d", + "na med", + "nam ed", + "n amed", + "F R", + "居 然", + "工程 有限公司", + "▁B ol", + "▁Bo l", + "观 念", + "od s", + "o ds", + "▁cr isis", + "▁cris is", + "▁temper atures", + "▁temperature s", + "nO ther", + "n Other", + "纳 入", + "▁d x", + "▁ dx", + "ul pt", + "ulp t", + "st age", + "sta ge", + "s tage", + "en ess", + "ene ss", + "enes s", + "e ness", + "Co r", + "C or", + "▁Conn ect", + "▁ Connect", + "н а", + "整 合", + "▁princ iples", + "▁principle s", + "▁princip les", + "业 主", + "京 东", + "有 权", + "本 质", + "▁trans action", + "▁ transaction", + "ser ve", + "serv e", + "s erve", + "这 两", + "▁w et", + "▁we t", + "l ibrary", + "▁co efficient", + "▁coeff icient", + "中华人民共和国 刑事诉讼法", + "\"` \\", + "\" `\\", + "\") )", + "\" ))", + "▁doll ars", + "▁dollar s", + "FT WARE", + "iv ari", + "iva ri", + "ivar i", + "i vari", + "▁ne got", + "▁neg ot", + "J S", + "▁re in", + "▁r ein", + "▁ rein", + "电视 剧", + "欠 款", + "▁PARTIC ULAR", + "▁op erate", + "▁oper ate", + "▁opera te", + "my s", + "m ys", + "(' /", + "( '/", + "便 利", + "ir ement", + "ire ment", + "▁improve ments", + "▁improvement s", + "▁improv ements", + "▁div ide", + "▁divid e", + "立 方", + "pu r", + "p ur", + "▁sch olar", + "▁W in", + "▁Wi n", + "▁ Win", + "pl acement", + "place ment", + "plac ement", + "▁re direct", + "▁red irect", + "▁ redirect", + "▁Im port", + "▁Imp ort", + "▁ Import", + "▁check ed", + "▁ checked", + "形 势", + "▁ad oles", + "用 途", + "▁draw ing", + "▁opt ional", + "▁option al", + "▁ optional", + "▁football er", + "▁ footballer", + "ag ues", + "ague s", + "agu es", + "起 了", + "传 递", + "nS e", + "n Se", + "▁ge ometry", + "▁geomet ry", + "▁geo metry", + "▁geom etry", + "▁ geometry", + "▁fe els", + "▁feel s", + "▁fee ls", + "count ry", + "cou ntry", + "es ides", + "esi des", + "▁observ ation", + "▁obs ervation", + "联 社", + "小 心", + "▁Is lam", + "ag raph", + "agr aph", + "agra ph", + "a graph", + "婴 儿", + "fe ed", + "fee d", + "f eed", + "▁coeff icients", + "▁coefficient s", + "▁f ort", + "▁for t", + "▁fo rt", + "▁ fort", + "]: \\", + "] :\\", + "▁D A", + "▁ DA", + "称 号", + "州市 中级人民法院", + "州 市中级人民法院", + "▁kin ase", + "▁ kinase", + "族 自治", + "nA re", + "nAr e", + "n Are", + "nN otes", + "nNo tes", + "nNot es", + "nNote s", + "n Notes", + "gr essive", + "gress ive", + "g ressive", + "▁camp us", + "▁cam pus", + "` `", + "马 上", + "▁cap abilities", + "七 日", + "求 得", + "用 了", + "▁sup pl", + "▁A f", + "▁ Af", + "Ro le", + "R ole", + "▁chrom os", + "▁dec ade", + "恢复 执行", + "t b", + "▁ 大", + "el en", + "ele n", + "e len", + "▁m ock", + "▁mo ck", + "▁ mock", + "▁\" #", + "▁ \"#", + "ag a", + "a ga", + "▁ar rived", + "▁arr ived", + "▁arriv ed", + "▁arrive d", + "▁T aylor", + "▁Tay lor", + "Ad apter", + "▁sc atter", + "▁ scatter", + "▁reason able", + "▁bo at", + "▁ boat", + "▁m oves", + "▁mov es", + "▁move s", + "▁mo ves", + "▁ moves", + "▁F A", + "▁ FA", + "功 效", + "▁p ermanent", + "▁perman ent", + "V er", + "▁N avy", + "▁Na vy", + "▁Nav y", + "▁f ees", + "▁fe es", + "▁fee s", + "消 化", + "如何 看待", + "助 理", + "el le", + "ell e", + "v s", + "致力 于", + "▁com pletion", + "▁comp letion", + "▁complet ion", + "▁ completion", + "ES T", + "E ST", + "▁t ough", + "▁to ugh", + "▁tou gh", + "▁toug h", + "▁r ib", + "▁ri b", + "▁ rib", + "ex press", + "exp ress", + "expr ess", + "or row", + "orr ow", + "▁P ot", + "▁Po t", + "▁ Pot", + "▁Brit ain", + "▁Bri tain", + "不可 能", + "不 可能", + "回 收", + ") {", + "同学 们", + "▁Ch ange", + "▁Cha nge", + "▁Chang e", + "▁Chan ge", + "▁ Change", + "il ey", + "ile y", + "i ley", + "▁Scot land", + "视 为", + "▁b utter", + "▁but ter", + "▁butt er", + "算 是", + "CR E", + "C RE", + "部 队", + "▁T rust", + "▁Tr ust", + "▁ Trust", + "▁land scape", + "▁landsc ape", + "定 期", + "▁C ro", + "▁Cr o", + "将 在", + "yr oid", + "yro id", + "y roid", + "▁k ing", + "▁kin g", + "▁ki ng", + "▁ king", + "N P", + "▁Un ivers", + "▁Univ ers", + "▁Uni vers", + "既 然", + "▁e le", + "▁el e", + "▁ ele", + "▁h all", + "▁ha ll", + "▁hal l", + "▁ hall", + "factor y", + "fact ory", + "f actory", + "y o", + "ail ing", + "ai ling", + "a iling", + "▁S H", + "▁ SH", + "▁diagn osed", + "▁diagnose d", + "▁comp uting", + "▁comput ing", + "▁inf inite", + "▁infinit e", + "庭 审", + "ul ous", + "ulo us", + "Ab stract", + "Abs tract", + "A bstract", + "Or iginal", + "Origin al", + "大量 的", + "大 量的", + "上诉 的", + "▁F ac", + "▁Fa c", + "▁ Fac", + "▁grad uate", + "▁gradu ate", + "▁ graduate", + "▁e leg", + "▁el eg", + "▁ele g", + "禁 止", + "并处罚金 人民币", + "并处 罚金人民币", + "力 度", + "依法 组成合议庭", + "▁b ytes", + "▁by tes", + "▁byte s", + "▁ bytes", + "▁D ar", + "▁Da r", + "▁ Dar", + "time stamp", + "tim estamp", + "十一 月", + "十 一月", + "不 行", + "▁M ean", + "▁Me an", + "▁ Mean", + "▁d ining", + "▁di ning", + "▁din ing", + "▁m edi", + "▁me di", + "▁med i", + "▁O nt", + "▁On t", + "▁k ill", + "▁kil l", + "▁ki ll", + "▁ kill", + "semb le", + "sem ble", + "sembl e", + "▁S anta", + "▁San ta", + "▁Sant a", + "赛 季", + "方 的", + "人 都", + "▁int ent", + "▁ intent", + "走 向", + "or b", + "o rb", + "▁pro portion", + "▁prop ortion", + "▁proport ion", + "▁ proportion", + "ax y", + "a xy", + "Dis play", + "▁ult imately", + "▁ul timately", + "▁ultimate ly", + "▁t aught", + "▁ta ught", + "▁tau ght", + "牺 牲", + "借款 本金", + "ou red", + "our ed", + "o ured", + "he x", + "h ex", + "▁l icensed", + "▁license d", + "▁lic ensed", + "ow a", + "o wa", + "sc ious", + "sci ous", + "▁Sh ould", + "▁ Should", + "▁partic ipation", + "▁particip ation", + "▁up grade", + "▁upgrad e", + "▁ upgrade", + "▁res idential", + "▁resid ential", + "▁resident ial", + "ro vers", + "rov ers", + "rove rs", + "r overs", + "▁ind icating", + "▁indic ating", + "▁prom ising", + "回 归", + "se lected", + "select ed", + "sel ected", + "s elected", + "CT ION", + "ook ie", + "oo kie", + "▁kid ney", + "▁kidn ey", + "▁Des pite", + "▁ Despite", + "ra nk", + "ran k", + "r ank", + "▁requ irement", + "▁require ment", + "p u", + "}} $", + "} }$", + "\" _", + "Gr id", + "G rid", + "▁M ir", + "▁Mi r", + "▁ Mir", + "nw here", + "n where", + "▁V ector", + "▁Ve ctor", + "▁Vec tor", + "▁ Vector", + "Im pl", + "Imp l", + "▁Med icine", + "▁Medic ine", + "依 旧", + "▁Pol and", + "▁Po land", + "▁recommend ations", + "▁recommendation s", + "in ations", + "ination s", + "的 特点", + "▁Air port", + "▁ar tery", + "▁art ery", + "▁arter y", + "承 认", + "传 输", + "教育 部", + "秘 密", + "▁w estern", + "▁west ern", + "▁ western", + "影 视", + "引 发", + "▁k ne", + "▁kn e", + "▁N ight", + "▁Ni ght", + "▁Nig ht", + "▁ Night", + "多 项", + "▁de bt", + "▁deb t", + "返 还", + "随 便", + "al d", + "a ld", + "季 度", + "Select or", + "▁carcin oma", + "全 省", + "ET HO", + "ETH O", + "▁emb ry", + "▁embr y", + "▁author ities", + "PE R", + "P ER", + "生 涯", + "▁A ud", + "▁Au d", + "▁ Aud", + "▁h ockey", + "▁hoc key", + "职 责", + "区 的", + "▁De fault", + "▁Def ault", + "▁ Default", + "▁开 本", + "▁ 开本", + "au x", + "a ux", + "Eff ect", + "OR S", + "O RS", + "pp ing", + "p ping", + "专 题", + "▁exp lo", + "▁expl o", + "Dev ice", + "▁e igen", + "影 片", + "分享 到", + "ev in", + "e vin", + ")$ ,", + ") $,", + "MA X", + "M AX", + "▁innov ation", + "▁e ase", + "▁eas e", + "同 比", + "▁qu ote", + "▁quot e", + "▁quo te", + "▁ quote", + "▁W H", + "▁ WH", + "▁ass ert", + "▁ assert", + "st ra", + "str a", + "s tra", + "▁s cr", + "▁sc r", + "▁ scr", + "▁ep isodes", + "▁epis odes", + "▁episode s", + "以下 简称", + "一直 在", + "w t", + "等证据 证实", + "新 生", + "▁a part", + "▁ap art", + "▁ad equ", + "▁ adequ", + "▁C at", + "▁Ca t", + "▁ Cat", + "tw o", + "t wo", + "ta in", + "t ain", + "演 出", + "▁attempt s", + "▁represent ative", + "▁S imple", + "▁Sim ple", + "▁ Simple", + "▁m etric", + "▁met ric", + "▁ metric", + "传统 的", + "▁as set", + "▁ass et", + "▁ asset", + "房地产 开发有限公司", + "房地产开发 有限公司", + "… \\", + "ib er", + "ibe r", + "i ber", + "十三 条", + "十 三条", + "ro sis", + "ros is", + "r osis", + "RE SS", + "RES S", + "R ESS", + "▁L IC", + "▁LI C", + "▁ LIC", + "ans wer", + "a nswer", + "by tes", + "byte s", + "b ytes", + "Act ive", + "em p", + "e mp", + "▁h am", + "▁ha m", + "▁ ham", + "领 先", + "初 中", + "am big", + "amb ig", + "▁along side", + "uc id", + "u cid", + "▁sub mitted", + "▁submit ted", + "▁Ex press", + "▁Exp ress", + "▁ Express", + "▁B ern", + "▁Be rn", + "▁Ber n", + "▁ Bern", + "▁st yl", + "▁ styl", + "进 去", + "▁Ob ama", + "自 信", + "▁con versation", + "▁convers ation", + "则 是", + "政 协", + "▁m ask", + "▁ma sk", + "▁mas k", + "▁ mask", + "反 而", + "显 得", + "gy pt", + "▁period s", + "▁peri ods", + "cre d", + "cr ed", + "c red", + "am ount", + "amo unt", + "a mount", + "加 盟", + "三 日", + "▁T itle", + "▁Ti tle", + "▁Tit le", + "▁ Title", + "▁hon or", + "▁ho nor", + "▁host ed", + "▁ho sted", + "▁ hosted", + "他 是", + "▁t ech", + "▁te ch", + "▁ tech", + "赢 得", + "▁week ly", + "▁ weekly", + "] $", + "▁s itting", + "▁sit ting", + "▁t race", + "▁tr ace", + "▁tra ce", + "▁ trace", + "分 辨", + "▁re mark", + "▁rem ark", + "▁ remark", + "全 村", + "▁stop ped", + "▁sto pped", + "direct ory", + "director y", + "▁re ward", + "▁r eward", + "▁ reward", + "▁dys function", + "▁add resses", + "▁address es", + "▁addr esses", + "▁ addresses", + "▁g on", + "▁go n", + "▁ gon", + "▁Reg ion", + "▁ Region", + "▁E V", + "▁ EV", + "▁S tan", + "▁St an", + "▁Sta n", + "requ ency", + "原 式", + "寿 命", + "▁B a", + "▁ Ba", + "book s", + "bo oks", + "b ooks", + "▁meet ings", + "▁meeting s", + "▁S ir", + "▁Si r", + "▁R ights", + "▁Right s", + "听 到", + "敏 感", + "▁Republic an", + "▁ex planation", + "▁explan ation", + "nP op", + "nPo p", + "n Pop", + "E d", + "in line", + "i nline", + "三 条", + "若干问题 的规定", + "若干问题的 规定", + "ow ner", + "own er", + "▁m yst", + "▁my st", + "▁mys t", + "O H", + "产生 的", + "产 生的", + "▁S us", + "▁Su s", + "od ynam", + "ody nam", + "o dynam", + "▁E th", + "▁Et h", + "▁ Eth", + "▁th rom", + "▁thr om", + "▁thro m", + "▁ 马", + "▁s kill", + "▁sk ill", + "▁ski ll", + "▁ skill", + "缺 点", + "met ic", + "me tic", + "m etic", + "违 约", + "▁bel ief", + "▁belie f", + "▁b iology", + "▁bi ology", + "▁bio logy", + "▁ biology", + "▁kn ock", + "wr ap", + "w rap", + "ac king", + "ack ing", + "ad el", + "ade l", + "a del", + "族自治 区", + "族 自治区", + "▁S pr", + "▁Sp r", + "▁place holder", + "▁ placeholder", + "}^{ \\\\", + "}^ {\\\\", + "} ^{\\\\", + "▁T ree", + "▁Tr ee", + "▁Tre e", + "▁ Tree", + "了 本案", + "▁C as", + "▁Ca s", + "▁ Cas", + "▁satisf action", + "▁s creens", + "▁sc reens", + "▁screen s", + "▁ screens", + "ri ne", + "rin e", + "r ine", + "rh o", + "r ho", + "win g", + "wi ng", + "w ing", + "▁ch lor", + "▁ chlor", + "▁d uplic", + "▁du plic", + "G T", + "at omic", + "ato mic", + "atom ic", + "高 端", + "bo olean", + "bool ean", + "on omy", + "onom y", + "ono my", + "\\' ],\\", + "\\'] ,\\", + "\\'], \\", + "\\ '],\\", + "▁C hair", + "▁Ch air", + "▁Cha ir", + "▁comb ine", + "▁combin e", + "▁ combine", + "▁car efully", + "▁care fully", + "▁careful ly", + "li ter", + "lit er", + "lite r", + "l iter", + "rupt ion", + "ru ption", + "rup tion", + "ar go", + "arg o", + "▁per ipheral", + "oi s", + "o is", + "▁r otation", + "▁rot ation", + "▁ rotation", + "▁D er", + "▁De r", + "▁ Der", + "▁c aught", + "▁ca ught", + "▁m ild", + "▁mil d", + "▁mi ld", + "▁FIT NESS", + "▁sus cept", + "的 那", + "D r", + "大 力", + "鼠 标", + "ier arch", + "才 会", + "Con st", + "Co nst", + "Cons t", + "plan ation", + "的 过程", + "cl er", + "cle r", + "c ler", + "▁v on", + "▁vo n", + "▁ von", + "▁phys ics", + "▁physic s", + "▁physi cs", + "▁ physics", + "h s", + "▁l ights", + "▁light s", + "▁ lights", + "ip se", + "ips e", + "▁consec utive", + "让 他", + "延 长", + "不 敢", + "▁P D", + "▁ PD", + "仪 器", + "fi sh", + "f ish", + "nes ota", + "▁{ @", + "规定 的", + "规 定的", + "▁ 吴", + "遭 遇", + "▁B ad", + "▁Ba d", + "▁ Bad", + "地 震", + "▁C reek", + "▁Cr eek", + "▁Cre ek", + "正 是", + "▁Add itionally", + "▁Additional ly", + "▁Addition ally", + "▁pre mium", + "▁prem ium", + "or er", + "ore r", + "o rer", + "不 懂", + "nG et", + "nGe t", + "n Get", + "宇 宙", + "无正当理由 拒不到庭", + "▁p ars", + "▁par s", + "▁pa rs", + "▁ pars", + "人力 资源", + "人 力资源", + "▁W atch", + "▁Wat ch", + "▁ Watch", + "▁R ub", + "▁Ru b", + "▁ Rub", + "▁d ecom", + "▁de com", + "▁dec om", + "转 变", + "BU G", + "B UG", + "me mber", + "mem ber", + "m ember", + "的 数", + "z o", + "指定的 期间", + "▁synt hes", + "▁synth es", + "▁ synthes", + "▁em ployment", + "▁employ ment", + "▁anc ient", + "表 扬", + "▁per mit", + "▁perm it", + "正确 答案", + "olog ically", + "ological ly", + "ologic ally", + "ya rd", + "yar d", + "y ard", + "▁Mass achusetts", + "星 期", + "很 容易", + "▁act ivated", + "▁activ ated", + "▁activate d", + "▁ activated", + "▁elev ated", + "的 企业", + "▁d ocker", + "▁doc ker", + "▁dock er", + "▁ docker", + "da rt", + "dar t", + "d art", + "一 只", + "起点 网", + "▁n m", + "▁ nm", + "ru le", + "r ule", + "太 平", + "▁aut hent", + "▁auth ent", + "▁ authent", + "▁print ed", + "▁ printed", + "更 为", + "▁expand ed", + "▁ expanded", + "发 病", + "valid ate", + "▁S QL", + "▁ SQL", + "▁inter active", + "▁interact ive", + "▁ interactive", + "iv a", + "i va", + "é s", + "�� �", + "� ��", + "▁y esterday", + "继 承", + "▁p romise", + "▁prom ise", + "▁ promise", + "的 结果", + "▁cardi ovascular", + "▁cardio vascular", + "us her", + "ush er", + "▁R ound", + "▁Ro und", + "▁Rou nd", + "▁ Round", + "lo t", + "l ot", + "▁Pl us", + "▁ Plus", + "ogen eous", + "ogene ous", + "ie m", + "i em", + "直 径", + "巨 大", + "class es", + "c lasses", + "▁Jack son", + "▁fif th", + "▁K ong", + "▁Kon g", + "▁Ko ng", + "▁K orean", + "▁Kore an", + "▁Korea n", + "▁Kor ean", + "hav ior", + "▁w orse", + "▁wor se", + "▁wors e", + "百 姓", + "▁air port", + "犯 盗窃罪", + "▁p recision", + "▁prec ision", + "▁ precision", + "▁birth day", + "▁Br ook", + "▁Bro ok", + "ny ou", + "n you", + "▁quant ity", + "▁ quantity", + "收 获", + "▁E mer", + "▁Em er", + "▁In stead", + "▁Inst ead", + "企业 信用", + "面 上", + "舞 蹈", + "要求 被告", + "▁ter rit", + "▁terr it", + "▁rest aurants", + "▁restaur ants", + "▁restaurant s", + "▁M ill", + "▁Mil l", + "▁Mi ll", + "▁ Mill", + "天 地", + "部 的", + "▁in verse", + "▁ inverse", + "传 说", + "rad ius", + "分析 了", + "tel se", + "t else", + "▁j e", + "▁ je", + "前 往", + "Arg ument", + "am ps", + "amp s", + "发 育", + "▁S at", + "▁Sa t", + "▁ Sat", + "ra zy", + "raz y", + "r azy", + "▁plan et", + "▁plane t", + "▁ planet", + "▁lo aded", + "▁load ed", + "▁ loaded", + "An al", + "A nal", + "写 出", + "ole cular", + "olec ular", + "▁disc ipl", + "▁ discipl", + "效 应", + "▁cr icket", + "直接 向", + "变 形", + "镜 头", + "斯 特", + "▁t ack", + "▁ta ck", + "这 位", + "▁read only", + "▁ readonly", + "若干 问题的", + "若干问题 的", + "▁Pr ime", + "▁Prim e", + "▁Pri me", + "▁ Prime", + "▁Pro fessor", + "▁Profess or", + "著 作", + "次 数", + "电 商", + "▁spec ify", + "on omic", + "onom ic", + "ono mic", + "▁invest igators", + "▁investig ators", + "▁investigator s", + "▁par ser", + "▁parse r", + "▁pars er", + "▁ parser", + "▁rad ical", + "▁radi cal", + "ob e", + "o be", + "▁g lo", + "▁gl o", + "ly wood", + "▁bas ically", + "▁basic ally", + "▁s ke", + "▁sk e", + "疼 痛", + "▁n g", + "▁ ng", + "报 送", + "▁u int", + "▁ui nt", + "▁ uint", + "oc ate", + "oca te", + "获 奖", + "bs erv", + "b serv", + "re set", + "res et", + "▁invest ors", + "▁investor s", + "▁g rew", + "▁gr ew", + "▁gre w", + "号民事 调解书", + "date time", + "dat etime", + "▁circum st", + "▁O K", + "▁ OK", + "萝 卜", + "▁r ating", + "▁rat ing", + "▁ra ting", + "▁ rating", + "ad i", + "a di", + "三 种", + "买 了", + "十 月", + "an ches", + "anc hes", + "anch es", + "anche s", + "▁check ing", + "导 师", + "▁} ;\\", + "▁}; \\", + "▁ };\\", + "at urally", + "atural ly", + "atur ally", + "▁tr uck", + "▁phil osoph", + "na pp", + "nap p", + "n app", + "转 型", + "ogen ous", + "▁object ives", + "▁objective s", + "考 研", + "▁mur der", + "应 急", + "老 公", + "七 月", + "▁t rick", + "▁tr ick", + "▁tri ck", + "六 日", + "Fi nd", + "Fin d", + "F ind", + "▁a bund", + "▁ab und", + "的 形式", + "▁s ending", + "▁send ing", + "▁sen ding", + "pat tern", + "公 务", + "er mal", + "erm al", + "▁he av", + "Map per", + "M apper", + "▁an xiety", + "▁b atch", + "▁bat ch", + "▁ batch", + "▁v ital", + "▁vit al", + "▁vi tal", + "讲 解", + "▁g ained", + "▁gain ed", + "▁ga ined", + "沒 有", + "▁im plant", + "▁impl ant", + "请 您", + "v y", + "nY ear", + "n Year", + "▁h yd", + "▁hy d", + "▁ hyd", + "▁love ly", + "▁lo vely", + "豆瓣 读书", + "心 情", + "▁d ialog", + "▁dial og", + "▁dia log", + "▁ dialog", + "对 被执行人", + "▁sup plies", + "▁suppl ies", + "▁Pl ace", + "▁ Place", + "en vironment", + "environ ment", + "管 道", + "Pro file", + "▁C ancer", + "▁Can cer", + "▁s le", + "▁sl e", + "仓 库", + "▁princ iple", + "▁princip le", + "Load er", + "Lo ader", + "ad v", + "a dv", + "al o", + "a lo", + "▁requ ested", + "▁request ed", + "▁R ight", + "▁Ri ght", + "▁Rig ht", + "▁ Right", + "▁St eve", + "▁Ste ve", + "▁ Steve", + "▁crim inal", + "▁B all", + "▁Bal l", + "▁Ba ll", + "▁ Ball", + "▁kn owing", + "▁know ing", + "De bug", + "Deb ug", + "D ebug", + "▁L ess", + "▁Le ss", + "▁Les s", + "▁ Less", + "一 片", + "Micro soft", + "M icrosoft", + "暴 力", + "共产 党", + "热 情", + "V S", + "▁l ic", + "▁li c", + "▁ lic", + "▁des ire", + "he el", + "hee l", + "yd ney", + "Bi g", + "B ig", + "测 定", + "取值 范围", + "▁l ibraries", + "▁libr aries", + "▁ libraries", + "ç ão", + "▁child hood", + "Res t", + "Re st", + "R est", + "本裁定书 送达后", + "▁cl osest", + "▁clos est", + "▁close st", + "▁closes t", + "第一百四十 四", + "ig ue", + "igu e", + "i gue", + "ie ving", + "iev ing", + "TH ER", + "THE R", + "T HER", + "x s", + "n X", + "大 约", + "差不 多", + "差 不多", + "▁} )", + "▁ })", + "ad esh", + "ade sh", + "ades h", + "少 女", + "bu s", + "b us", + "财 富", + "每 日", + "ta il", + "t ail", + "回 复", + "In s", + "I ns", + "al gorithm", + "▁r ab", + "▁ra b", + "▁ rab", + "▁C ert", + "▁Cer t", + "▁Ce rt", + "▁ Cert", + "▁a ging", + "▁ag ing", + "▁ aging", + "ba s", + "b as", + "是 连载于", + "▁advant ages", + "▁advantage s", + "st ats", + "stat s", + "sta ts", + "A K", + "[\\ \\", + "[ \\\\", + "▁f requent", + "▁frequ ent", + "▁freq uent", + "履行给付 金钱", + "nM ay", + "nMa y", + "n May", + "▁ 上", + "sh ell", + "she ll", + "s hell", + "▁man aging", + "▁manag ing", + "Ch annel", + "Chan nel", + "种 类", + "西 北", + "pon ential", + "ponent ial", + "▁un us", + "▁u nus", + "农村 商业", + "▁Det ermine", + "▁Determ ine", + "农村 信用", + "erv ative", + "原 创", + "▁dec imal", + "▁ decimal", + "in ating", + "ina ting", + "▁aut omatic", + "▁autom atic", + "▁auto matic", + "▁ automatic", + "sub set", + "了一 些", + "了 一些", + "lo go", + "log o", + "l ogo", + "主 办", + "▁alleg ed", + "▁alle ged", + "▁fore cast", + "▁mit ochond", + "▁happ ening", + "▁happen ing", + "▁gl ut", + "▁glu t", + "▁ glut", + "P K", + "离 子", + "▁ro bot", + "▁rob ot", + "▁ robot", + "▁com edy", + "▁come dy", + "▁comed y", + "税 务", + "加 床", + "X T", + "ol i", + "o li", + "利 亚", + "病 人", + "▁s pr", + "▁sp r", + "▁ spr", + "Con sole", + "Cons ole", + "无 数", + "▁m eat", + "▁me at", + "▁m ining", + "▁min ing", + "▁mini ng", + "▁mi ning", + "▁necess arily", + "▁t ea", + "▁te a", + "缓 解", + "do ne", + "don e", + "d one", + "▁th orough", + "▁out standing", + "摄 像", + "▁ant icip", + "▁antic ip", + "▁C ase", + "▁Ca se", + "▁Cas e", + "▁ Case", + "▁St atus", + "▁Stat us", + "▁ Status", + "ar ry", + "arr y", + "▁sm oking", + "▁smo king", + "▁exec ution", + "▁execut ion", + "▁ execution", + "O C", + "▁d riven", + "▁dr iven", + "▁dri ven", + "▁driv en", + "▁drive n", + "▁ driven", + "拍 卖", + "一 套", + "配 件", + "舒 服", + "中华人民共和国 合同法", + "▁ne utral", + "▁neut ral", + "▁neutr al", + "▁ neutral", + "▁Z bl", + "▁ Zbl", + "同 事", + "Hel lo", + "H ello", + "al ert", + "ale rt", + "aler t", + "▁LIC ENSE", + "▁ LICENSE", + "带 领", + "▁E dition", + "▁Ed ition", + "▁Edit ion", + "▁ret ired", + "▁retire d", + "▁m eta", + "▁me ta", + "▁met a", + "▁ meta", + "宿 舍", + "审理 过程中", + "▁Wis consin", + "ap os", + "apo s", + "a pos", + "多 人", + "第三 款", + "第 三款", + "▁Color ado", + "▁se emed", + "▁see med", + "▁seem ed", + "as ka", + "ask a", + "a ska", + "监狱 服刑", + "▁design er", + "▁re dist", + "▁red ist", + "▁redis t", + "▁B efore", + "▁Be fore", + "▁ Before", + "判决 执行", + "▁conf lict", + "▁conflic t", + "uss ion", + "窗 口", + "Re v", + "R ev", + "办 学", + "退 休", + "f b", + "一 句", + "ust ral", + "ustr al", + "小 型", + "回 忆", + "主 管", + "▁in formed", + "▁inform ed", + "科学 技术", + "▁C M", + "▁ CM", + "▁v ictory", + "▁vict ory", + "ug s", + "u gs", + "▁f o", + "▁ fo", + "如实 供述", + "▁gr anted", + "▁grant ed", + "▁gran ted", + "场 上", + "▁me asuring", + "▁meas uring", + "▁sam pling", + "▁ sampling", + "nl et", + "n let", + "Si ng", + "Sin g", + "S ing", + "▁R oom", + "▁Ro om", + "▁ Room", + "人 事", + "ap point", + "app oint", + "▁w earing", + "▁we aring", + "▁wear ing", + "▁e ra", + "▁er a", + "▁ era", + "nM embers", + "n Members", + "▁pro gn", + "▁pr ogn", + "//////// ////////", + "▁B C", + "▁ BC", + "提供 被执行人", + "▁l ighting", + "▁light ing", + "▁r ail", + "▁ra il", + "▁ rail", + "认罪 悔罪", + "后 果", + "▁inter section", + "▁intersect ion", + "▁check s", + "▁che cks", + "▁ checks", + "城 镇", + "pay load", + "Not e", + "No te", + "N ote", + "▁Build ing", + "▁ Building", + "▁Con tin", + "▁Cont in", + "▁ Contin", + "分享到 朋友圈", + "V C", + "sd k", + "s dk", + "nR eg", + "nRe g", + "n Reg", + "跟 着", + "▁mat ters", + "▁matter s", + "▁matt ers", + "▁B on", + "▁Bo n", + "▁ Bon", + "▁S hop", + "▁Sh op", + "▁ Shop", + "前 面", + "▁st retch", + "▁str etch", + "▁stret ch", + "nM ore", + "nMor e", + "n More", + "小 孩", + "▁A sh", + "▁As h", + "三角 形的", + "三角形 的", + "▁S mall", + "▁Sm all", + "▁ Small", + "▁Col umbia", + "▁Columb ia", + "名 词", + "To ol", + "Too l", + "T ool", + "▁E lement", + "▁El ement", + "▁Ele ment", + "▁ Element", + "对应 的", + "对 应的", + "▁hydro gen", + "▁hyd rogen", + "▁T urn", + "▁Tur n", + "▁Tu rn", + "▁ Turn", + "▁B ed", + "▁Be d", + "▁ Bed", + "amil ton", + "▁l ie", + "▁li e", + "▁ lie", + "长 时间", + "新 建", + "▁determ ination", + "▁determin ation", + "新 鲜", + "高 兴", + "all enge", + "alle nge", + "alleng e", + "▁F ox", + "▁Fo x", + "▁ Fox", + "▁spe aking", + "▁speak ing", + "▁ speaking", + "激 光", + "nA m", + "n Am", + "ap ore", + "apor e", + "apo re", + "▁HT TP", + "▁ HTTP", + "th al", + "tha l", + "t hal", + "▁Qu een", + "▁Que en", + "▁ Queen", + "▁t rig", + "▁tr ig", + "▁tri g", + "▁ trig", + "he matic", + "hem atic", + "hemat ic", + "hema tic", + "h ematic", + "出 席", + "球 员", + "A v", + "con dition", + "cond ition", + "qu estions", + "question s", + "quest ions", + "打 击", + "▁spec tro", + "▁spect ro", + "ra se", + "ras e", + "r ase", + "▁state ments", + "▁stat ements", + "▁statement s", + "it us", + "itu s", + "▁WARRANT Y", + "美 容", + "▁k ernel", + "▁ker nel", + "▁ kernel", + "et ies", + "eti es", + "e ties", + "nC lick", + "nCl ick", + "n Click", + "▁t ube", + "▁tub e", + "▁tu be", + "▁ tube", + "▁enter tainment", + "▁entertain ment", + "▁entert ainment", + "▁expect ations", + "▁expectation s", + "▁SO FTWARE", + "pt on", + "pto n", + "p ton", + "哥 哥", + "▁z ip", + "▁ zip", + "印 刷", + "h m", + "之日起 计算", + "▁D aniel", + "▁Dan iel", + "▁Dani el", + "▁ Daniel", + "sp eed", + "spe ed", + "s peed", + "无论 是", + "▁im possible", + "▁imp ossible", + "sock et", + "s ocket", + "拓 展", + "▁f iled", + "▁fil ed", + "▁file d", + "▁fi led", + "▁p aying", + "▁pay ing", + "▁pa ying", + "▁t y", + "▁ ty", + "又 有", + "▁res piratory", + "▁respir atory", + "at om", + "ato m", + "a tom", + "St ud", + "cu e", + "c ue", + "▁U t", + "am ond", + "amo nd", + "amon d", + "a mond", + "将 文章", + "▁h ole", + "▁hol e", + "▁ho le", + "▁ hole", + "国 庆", + "电子 商务", + "前 后", + "message s", + "mess ages", + "m essages", + "生 日", + "▁con test", + "▁cont est", + "▁co ntest", + "pro fit", + "prof it", + "▁aff ects", + "▁affect s", + "Le ft", + "L eft", + "▁s orry", + "▁sor ry", + "il st", + "ils t", + "i lst", + "冲 击", + "单 纯", + "▁B lock", + "▁Bl ock", + "▁Blo ck", + "▁ Block", + "on da", + "ond a", + "o nda", + "fm t", + "f mt", + "▁m eal", + "▁me al", + "▁ meal", + "▁mom ents", + "▁moment s", + "▁mo ments", + "ke s", + "k es", + "at han", + "ath an", + "atha n", + "a than", + "▁H op", + "▁Ho p", + "▁ Hop", + "▁coron ary", + "少 数", + "照 顾", + "\\\\ \\", + "\\ \\\\", + "生效 法律文书确定的义务", + "生效法律文书 确定的义务", + "腾 讯", + "审理 了本案", + "OU T", + "O UT", + "nP re", + "nPr e", + "n Pre", + "财产 保全", + "▁b anks", + "▁bank s", + "▁ban ks", + "▁determ ining", + "▁determin ing", + "团 结", + "ad dr", + "add r", + "的就 是", + "的 就是", + "▁di agram", + "▁dia gram", + "▁j udge", + "▁jud ge", + "▁judg e", + "ep h", + "e ph", + "▁r outes", + "▁ro utes", + "▁rout es", + "▁route s", + "▁rou tes", + "▁ routes", + "▁O k", + "▁ Ok", + "机器 人", + "的 有", + "▁s olved", + "▁sol ved", + "▁solve d", + "▁solv ed", + "之 路", + "了 吧", + "An y", + "A ny", + "Me m", + "M em", + "▁I C", + "▁ IC", + "所 需", + "将文章 分享到朋友圈", + "▁L atin", + "▁La tin", + "▁Lat in", + "ar ters", + "art ers", + "arter s", + "arte rs", + "B B", + "st able", + "sta ble", + "s table", + "半 径", + "多 元", + "col lection", + "coll ection", + "collect ion", + "▁n erv", + "▁ne rv", + "▁i p", + "▁ ip", + "▁P rint", + "▁Pr int", + "▁Pri nt", + "▁ Print", + "的 效果", + "▁简 介", + "▁ 简介", + "ot yp", + "o typ", + "▁c ov", + "▁co v", + "▁ cov", + "in x", + "i nx", + "▁L y", + "▁ Ly", + "h h", + "并 非", + "ac on", + "aco n", + "a con", + "sw itch", + "s witch", + "粮 食", + "▁st uck", + "匹 配", + "第三 节", + "▁claim ed", + "▁ claimed", + "合 金", + "▁R od", + "▁Ro d", + "ps i", + "p si", + "▁sugg estions", + "▁suggest ions", + "▁suggestion s", + "江 南", + "le gate", + "leg ate", + "▁recogn ize", + "ar ios", + "ari os", + "ario s", + "a rios", + "window s", + "wind ows", + "w indows", + "▁re peat", + "▁rep eat", + "▁repe at", + "▁ repeat", + "Aut o", + "Au to", + "A uto", + "男 女", + "▁d ebug", + "▁de bug", + "▁deb ug", + "▁ debug", + "哈尔 滨", + "ab eth", + "abet h", + "abe th", + "or ous", + "oro us", + "o rous", + "▁co al", + "▁ coal", + "▁bre aking", + "▁break ing", + "▁ breaking", + "se ud", + "▁K now", + "▁Kn ow", + "▁ Know", + "▁Tr aining", + "▁Tra ining", + "▁Train ing", + "▁ Training", + "▁le af", + "▁ leaf", + "和 其他", + "六个 月", + "六 个月", + "▁prov ince", + "▁ province", + "▁al ert", + "▁ale rt", + "▁ alert", + "姑 娘", + "▁E nc", + "▁En c", + "▁ Enc", + "▁de aling", + "▁deal ing", + "ti p", + "t ip", + "保 修", + "未按 本判决", + "▁` `", + "▁ ``", + "ad der", + "add er", + "▁ke eps", + "▁keep s", + "昨 天", + "要 是", + "wh at", + "w hat", + "信息 公示", + "同 类", + "▁s udden", + "生 意", + "的 解", + "下 了", + "公 斤", + "贫 困", + "St ep", + "Ste p", + "ar et", + "are t", + "a ret", + "履行给付金钱 义务", + "▁mod erate", + "▁mode rate", + "▁moder ate", + "ac her", + "ach er", + "ache r", + "a cher", + "re gon", + "reg on", + "刑 罚", + "直 角", + "▁l unch", + "▁lu nch", + "ze ch", + "z ech", + "失 去", + "忘 记", + "成 人", + "当 天", + "▁Pak istan", + "▁H arr", + "▁Har r", + "▁Ha rr", + "▁inhib itor", + "▁inhibit or", + "▁E astern", + "▁East ern", + "▁Easter n", + "▁Eas tern", + "sc ill", + "sci ll", + "ul p", + "u lp", + "▁horm one", + "▁Just ice", + "'] \\", + "' ]\\", + "二 日", + "▁wire less", + "▁est imation", + "▁estim ation", + "▁D onald", + "▁Don ald", + "▁ Donald", + "▁f lash", + "▁fl ash", + "▁ flash", + "▁p icking", + "▁pick ing", + "▁pic king", + "所在 地", + "所 在地", + "▁st ead", + "▁ste ad", + "▁ stead", + "这两 个", + "这 两个", + "▁mod ification", + "▁b acterial", + "▁bacter ial", + "▁bacteria l", + "▁ours elves", + "bat ch", + "b atch", + "种 子", + "ec l", + "e cl", + "▁maint aining", + "▁maintain ing", + "上 有", + "Er r", + "E rr", + "▁H O", + "▁ HO", + "▁S a", + "▁ Sa", + "到 期", + "发表 于", + "的一 部", + "的 一部", + "▁c rew", + "▁cre w", + "▁cr ew", + "▁ar ts", + "▁art s", + "▁ arts", + "▁li pid", + "▁lip id", + "▁ lipid", + "充 电", + "be an", + "b ean", + "▁w rap", + "▁wr ap", + "▁ wrap", + "▁G i", + "▁ Gi", + "\") ;", + "\" );", + "▁St ock", + "▁ Stock", + "g z", + "▁D utch", + "nCON CLUS", + "医 药", + "▁l ogo", + "▁log o", + "▁lo go", + "▁ logo", + "▁cover ing", + "▁cov ering", + "▁W inter", + "▁Win ter", + "▁Wi nter", + "▁join ing", + "▁jo ining", + "▁ joining", + "▁con straints", + "▁constr aints", + "▁constraint s", + "▁ constraints", + "int egr", + "ol ester", + "ole ster", + "oles ter", + "in cluding", + "主 编", + "▁p refix", + "▁pre fix", + "▁ prefix", + "四 月", + "f i", + "▁S elect", + "▁Se lect", + "▁Sel ect", + "▁ Select", + "诚 信", + "IM E", + "I ME", + "▁J r", + "Com mon", + "Comm on", + "▁polit ics", + "hid den", + "h idden", + "v i", + "vu e", + "v ue", + "语 文", + "周 长", + "▁atmosph ere", + "G C", + "EN RON", + "道 理", + "▁O s", + "▁ Os", + "▁inf ected", + "▁infect ed", + "▁ infected", + "反 对", + "西 亚", + "复 印", + "精 准", + "▁The ory", + "▁m eth", + "▁me th", + "▁met h", + "▁ meth", + "奋 斗", + "sl eep", + "s leep", + "常 用", + "压 缩", + "存在 的", + "信息 化", + "▁w at", + "▁wa t", + "▁ wat", + "中 药", + "水 泥", + "原 本", + "自动 化", + "▁im agine", + "▁imag ine", + "▁vac cine", + "▁vacc ine", + "▁vaccin e", + "厂 商", + "▁G iven", + "▁Give n", + "▁Gi ven", + "▁ Given", + "社 交", + "防 护", + "ture s", + "tu res", + "tur es", + "t ures", + "▁Sh ort", + "▁ Short", + "▁S ection", + "▁Se ction", + "▁Sec tion", + "▁ Section", + "▁comp eted", + "▁compet ed", + "▁compete d", + "▁A k", + "▁ Ak", + "▁equ ipped", + "▁equip ped", + "▁underw ent", + "▁b ind", + "▁bi nd", + "▁bin d", + "▁ bind", + "▁l ift", + "▁li ft", + "▁lif t", + "▁ lift", + "nP er", + "nPe r", + "n Per", + "▁R oute", + "▁Ro ute", + "▁Rou te", + "▁ Route", + "尚 未", + "label s", + "lab els", + "▁t error", + "▁te rror", + "▁ter ror", + "▁terr or", + "▁ terror", + "▁f ed", + "▁fe d", + "▁ fed", + "ir ty", + "irt y", + "▁H ong", + "▁Hon g", + "▁Ho ng", + "▁c ock", + "▁co ck", + "▁coc k", + "▁ cock", + "▁c ouncil", + "▁counc il", + "典 型", + "▁B road", + "▁Br oad", + "▁Bro ad", + "▁ Broad", + "的 相关", + "反 复", + "ut ing", + "uti ng", + "u ting", + "旋 转", + "▁all erg", + "▁alle rg", + "▁t utorial", + "▁tut orial", + "▁tutor ial", + "▁ tutorial", + "一 行", + "▁v ast", + "▁vas t", + "▁va st", + "▁grad uated", + "▁gradu ated", + "▁graduate d", + "da m", + "d am", + "java script", + "jav ascript", + "神 秘", + "其 行为", + "▁l ens", + "▁le ns", + "▁len s", + "键 盘", + "NO T", + "N OT", + "▁[ [", + "▁ [[", + "ke ep", + "kee p", + "k eep", + "▁K r", + "READ ME", + "if i", + "i fi", + "Jo b", + "J ob", + "复 制", + "og ram", + "ogr am", + "o gram", + "Re ference", + "R eference", + "地 质", + "成立 于", + "es ity", + "esi ty", + "▁ident ifying", + "▁identify ing", + "tw itter", + "t witter", + "▁t ro", + "▁tr o", + "▁ tro", + "xa d", + "x ad", + "ol id", + "oli d", + "小 游戏", + "▁s trip", + "▁st rip", + "▁str ip", + "▁stri p", + "▁ strip", + "ee k", + "e ek", + "▁members hip", + "▁member ship", + "t const", + "一 生", + "活 性", + "地理 位置", + "▁vis ited", + "▁visit ed", + "▁ visited", + "Ru le", + "R ule", + "一 款", + "pro m", + "pr om", + "p rom", + "景 区", + "患者 的", + "患 者的", + "厉 害", + "资 讯", + "主 人", + "▁E xt", + "▁Ex t", + "▁ Ext", + "▁ent reprene", + "▁s hel", + "▁sh el", + "▁she l", + "Cl ose", + "C lose", + "所 示", + "公 平", + "▁ à", + "▁i OS", + "▁ iOS", + "pl oad", + "p load", + "ch anged", + "chan ged", + "change d", + "chang ed", + "二 级", + "▁col le", + "▁coll e", + "Man y", + "Ma ny", + "M any", + "▁we alth", + "▁ wealth", + "ep age", + "e page", + "par ameters", + "param eters", + "parameter s", + "paramet ers", + "as set", + "ass et", + "asse t", + "究 竟", + "▁f uck", + "▁fu ck", + "▁pos sess", + "▁poss ess", + "▁econ om", + "▁ec onom", + "▁eco nom", + "国 有", + "出 庭", + "男 孩", + "AM P", + "A MP", + "▁t all", + "▁tal l", + "▁ta ll", + "▁ tall", + "局 部", + "▁random ized", + "▁rand omized", + "Pr ess", + "Pre ss", + "Pres s", + "P ress", + "创作 的网络小说", + "创作的 网络小说", + "Requ ired", + "Require d", + "的 两", + "妇 女", + "ud a", + "u da", + "▁f aces", + "▁fac es", + "▁face s", + "▁fa ces", + "▁ faces", + "▁Comp uter", + "▁Comput er", + "▁Compute r", + "▁ Computer", + "山 县", + "as hed", + "ash ed", + "▁rel iability", + "路 线", + "马 克", + "专 用", + "▁dro pped", + "▁drop ped", + "▁B oy", + "▁Bo y", + "▁ass istant", + "▁assist ant", + "▁ assistant", + "▁Pr act", + "▁Pra ct", + "th rough", + "thro ugh", + "thr ough", + "co st", + "cos t", + "c ost", + "营 造", + "截 至", + "in ator", + "ina tor", + "▁Count ry", + "▁Cou ntry", + "▁ Country", + "▁D own", + "▁Do wn", + "▁Dow n", + "▁ Down", + "你 说", + "▁calcul ation", + "▁calc ulation", + "▁V alid", + "▁Val id", + "▁ Valid", + "▁life style", + "▁lif estyle", + "project s", + "proj ects", + "S N", + "▁m olecule", + "▁molec ule", + "▁ molecule", + "hold ers", + "holder s", + "hol ders", + "信息公示 系统", + "nO ver", + "n Over", + "▁million s", + "▁mill ions", + "▁u rg", + "▁ur g", + "▁ urg", + "▁aff il", + "▁af fil", + "▁is instance", + "▁re ply", + "▁rep ly", + "▁ reply", + "▁Cont ent", + "▁ Content", + "▁L ED", + "▁LE D", + "▁ LED", + "ea ch", + "e ach", + "▁s hooting", + "▁sh ooting", + "▁shoot ing", + "对 我", + "US T", + "U ST", + "周 年", + "有利 于", + "有 利于", + "▁se ats", + "▁sea ts", + "▁seat s", + "飞 行", + "▁ 产品", + "▁h orse", + "▁hor se", + "▁hors e", + "▁ horse", + "nWh ich", + "n Which", + "▁Ont ario", + "▁g allery", + "▁gall ery", + "▁ gallery", + "▁s ql", + "▁sq l", + "▁ sql", + "的 条件", + "使 命", + "加 油", + "▁m uc", + "▁mu c", + "▁eng agement", + "▁engage ment", + "▁complex es", + "▁pre ferred", + "▁prefer red", + "▁ preferred", + "这 段", + "at ile", + "ati le", + "a tile", + "se q", + "s eq", + "at ernal", + "ater nal", + "atern al", + "a ternal", + "gm ent", + "g ment", + "是 要", + "研究 院", + "加 热", + "▁cho osing", + "▁Con f", + "▁Co nf", + "▁ Conf", + "▁Tor onto", + "▁cont rovers", + "▁contr overs", + "考 验", + "▁t ank", + "▁ta nk", + "▁tan k", + "沈 阳", + "企业信用 信息公示系统", + "▁w aves", + "▁wave s", + "▁wa ves", + "▁ waves", + "级 的", + "yi eld", + "y ield", + "▁N ic", + "▁Ni c", + "宁 夏", + "▁should n", + "家 居", + "绿 化", + "▁cy tok", + "▁cyt ok", + "▁cyto k", + "an te", + "ant e", + "a nte", + "对 该", + "▁S elf", + "▁Se lf", + "▁Sel f", + "▁ Self", + "B E", + "▁par ad", + "▁para d", + "▁pa rad", + "▁g olf", + "▁go lf", + "▁gol f", + "neg ative", + "欠 条", + "▁emer ging", + "▁emerg ing", + "▁adopt ed", + "▁adop ted", + "nD ef", + "nDe f", + "n Def", + "▁b ike", + "▁bi ke", + "▁bik e", + "▁ bike", + "转 让", + "▁A rg", + "▁Ar g", + "▁ Arg", + "▁fair ly", + "的 选择", + "▁non linear", + "ap ply", + "app ly", + "▁平 装", + "▁ 平装", + ", $", + "▁f itness", + "▁fit ness", + "教 练", + "取得 了", + "取 得了", + "eli hood", + "▁You Tube", + "商 家", + "给 大家", + "你 就", + "▁_ ___", + "▁__ __", + "▁ ____", + "▁p red", + "▁pre d", + "▁pr ed", + "▁ pred", + "聊 天", + "▁R s", + "▁ Rs", + "▁add ressed", + "▁address ed", + "▁addr essed", + "▁prec ise", + "▁ 和", + "传 承", + "▁r ounded", + "▁round ed", + "▁ rounded", + "请 仔细", + "▁sustain able", + "OL D", + "O LD", + "ib ration", + "ibr ation", + "文 物", + "lo om", + "loo m", + "l oom", + "也 可", + "ra it", + "r ait", + "强 大", + "im mun", + "imm un", + "▁w itness", + "▁wit ness", + "op l", + "o pl", + "De tails", + "Det ails", + "Detail s", + "▁Col lection", + "▁Coll ection", + "▁Collect ion", + "▁ Collection", + "▁H as", + "▁Ha s", + "▁ Has", + "Test Case", + "ki nd", + "kin d", + "k ind", + "▁ch icken", + "▁chick en", + "▁chic ken", + "Par ameters", + "Parameter s", + "Param eters", + "▁s ulf", + "▁su lf", + "▁sul f", + "▁ sulf", + "▁f orum", + "▁for um", + "▁fo rum", + "▁ forum", + "▁dr inking", + "▁drink ing", + "▁b read", + "▁br ead", + "▁bre ad", + "▁ bread", + "▁min ister", + "▁mini ster", + "▁hor izontal", + "▁horizon tal", + "▁horiz ontal", + "▁ horizontal", + "▁] \\", + "▁ ]\\", + "ca pt", + "cap t", + "c apt", + "业 绩", + "开 了", + "独 任", + "▁gu ard", + "▁ guard", + "的 变化", + "▁Y OU", + "▁YO U", + "▁\" \\", + "▁ \"\\", + "▁l osing", + "▁lo sing", + "▁los ing", + "百 万", + "邮 政", + "▁b ear", + "▁be ar", + "▁ bear", + "▁del icious", + "▁pro f", + "▁pr of", + "▁ prof", + "▁qu iet", + "▁qui et", + "▁ quiet", + "显 卡", + "厂 家", + "A g", + "m k", + "▁f etch", + "▁fet ch", + "▁ fetch", + "▁r anging", + "▁ran ging", + "▁ ranging", + "之 下", + "▁l os", + "▁lo s", + "▁ los", + "招 生", + "大家 都", + "Con s", + "Co ns", + "C ons", + "领域 的", + "并 将", + "Ce ll", + "C ell", + "pro xy", + "pr oxy", + "prox y", + "oo se", + "oos e", + "o ose", + "Ver t", + "V ert", + "en da", + "end a", + "e nda", + "ex pression", + "exp ression", + "express ion", + "expr ession", + "▁f estival", + "▁fest ival", + "法 师", + "节 奏", + "ci ty", + "cit y", + "c ity", + "ld ots", + "l dots", + "硬 盘", + "强大 的", + "强 大的", + "en eration", + "ener ation", + "ene ration", + "Pro t", + "Pr ot", + "P rot", + "▁apprec iated", + "▁appreciate d", + "▁c able", + "▁ca ble", + "▁cab le", + "▁ 代码", + "▁title s", + "▁tit les", + "▁ titles", + "▁que ue", + "▁ queue", + "▁ μ", + "nW ell", + "nWe ll", + "n Well", + "no rm", + "nor m", + "n orm", + "▁f irms", + "▁firm s", + "▁fir ms", + "国家 企业信用信息公示系统", + "▁cr ash", + "▁cra sh", + "nL e", + "n Le", + "Ge n", + "G en", + "▁ad verse", + "▁advers e", + "\": [", + "\" :[", + "▁m arks", + "▁mark s", + "▁mar ks", + "▁ marks", + "▁M aterial", + "▁Mat erial", + "▁Mate rial", + "▁ Material", + "地 上", + "▁am pl", + "▁amp l", + "▁return ing", + "pro vider", + "prov ider", + "provide r", + "社会 的", + "社 会的", + "bin g", + "bi ng", + "b ing", + "ilib rium", + "riz ona", + "fa il", + "f ail", + "y z", + "▁Post ed", + "▁Po sted", + "▁Pos ted", + "▁ Posted", + "▁h int", + "▁hi nt", + "▁ hint", + "正 本", + "MI T", + "M IT", + "▁\" %", + "▁ \"%", + "Sy nc", + "Syn c", + "S ync", + "▁gr ass", + "▁gra ss", + "▁ grass", + "本裁定送达后 立即生效", + "▁ident ical", + "ab ling", + "abl ing", + "a bling", + "s n", + "建筑 面积", + "ex ception", + "except ion", + "起诉 书", + "ga ge", + "g age", + "▁L ead", + "▁Le ad", + "▁ Lead", + "an ti", + "ant i", + "▁separ ated", + "▁separate d", + "▁ separated", + "▁method ology", + "▁图 书", + "▁ 图书", + "lo v", + "l ov", + "▁acqu isition", + "▁acquis ition", + "▁Min nesota", + "▁ext reme", + "▁extrem e", + "▁extr eme", + "▁consider ation", + "▁Ch apter", + "▁Chap ter", + "▁ Chapter", + "发 送", + "▁when ever", + "▁whe never", + "De p", + "D ep", + "▁phys iological", + "▁physi ological", + "▁physiologic al", + "毕业 于", + "▁every day", + "cal led", + "call ed", + "c alled", + "▁gen ome", + "▁ge nome", + "▁ genome", + "ar en", + "are n", + "a ren", + "▁nurs ing", + "▁nur sing", + "▁O THER", + "▁OT HER", + "▁ OTHER", + "▁pe ptide", + "▁pept ide", + "▁ peptide", + "自 觉", + "▁L ew", + "▁Le w", + "此 题", + "ri n", + "r in", + "Net work", + "N etwork", + "默 认", + "▁M ountain", + "▁Mount ain", + "叫 做", + "▁pro pag", + "▁prop ag", + "▁ propag", + "消 除", + "未 成年", + "▁ne ighb", + "▁neigh b", + "▁Victor ia", + "地 面", + "建 成", + "▁co ordinate", + "▁coord inate", + "▁ coordinate", + "á n", + "▁sent ence", + "▁ sentence", + "F P", + "▁inter views", + "▁interview s", + "▁a cet", + "▁ac et", + "▁ace t", + "▁ acet", + "▁c lot", + "▁cl ot", + "equ ality", + "eq uality", + "equal ity", + "e quality", + "hr ef", + "h ref", + "mod al", + "mo dal", + "m odal", + "▁c yl", + "▁cy l", + "\" ;", + "▁ »", + "的 外", + "▁some what", + "▁somew hat", + "▁t ang", + "▁ta ng", + "▁tan g", + "▁ tang", + "▁real ized", + "▁realize d", + "▁simult aneously", + "▁simultaneous ly", + "▁w ound", + "▁wo und", + "奥 运", + "▁d isk", + "▁dis k", + "▁di sk", + "▁ disk", + "过 滤", + "▁Min istry", + "▁Mini stry", + "▁Port ug", + "pl er", + "ple r", + "p ler", + "L R", + "en nes", + "enn es", + "enne s", + "发 放", + "难 道", + "ig ure", + "igu re", + "Name s", + "Na mes", + "N ames", + "▁ap pl", + "▁app l", + "▁cur ves", + "▁curve s", + "▁curv es", + "en um", + "enu m", + "e num", + "编 制", + "own town", + "ownt own", + "T T", + "出 租", + "ot ted", + "ott ed", + "证 人", + "ul us", + "ulu s", + "▁C lean", + "▁Cl ean", + "▁Cle an", + "▁ Clean", + "▁pro ps", + "▁pr ops", + "▁prop s", + "▁ props", + "▁f ails", + "▁fail s", + "▁fa ils", + "▁mo ist", + "▁moi st", + "▁con verted", + "▁conver ted", + "▁convert ed", + "nS ports", + "nSp orts", + "nSport s", + "n Sports", + "▁cl osing", + "▁clos ing", + "▁ closing", + "▁民 族", + "▁ 民族", + "ag ic", + "agi c", + "a gic", + "从 选项中", + "定 制", + "nC ons", + "nCon s", + "nCo ns", + "n Cons", + "▁B and", + "▁Ba nd", + "▁Ban d", + "▁ Band", + "▁n am", + "▁na m", + "▁ nam", + "▁L at", + "▁La t", + "▁ Lat", + "▁A B", + "▁ AB", + "A E", + "▁E gypt", + "▁S ix", + "▁Si x", + "▁ 是", + "be st", + "bes t", + "b est", + "冲 突", + "郑 州", + "r angle", + "an z", + "a nz", + "协 商", + "▁in puts", + "▁input s", + "▁ inputs", + "▁b its", + "▁bi ts", + "▁bit s", + "▁ bits", + "▁particip ated", + "▁participate d", + "▁dist urb", + "传 媒", + "ou ri", + "our i", + "o uri", + "▁f ocusing", + "▁foc using", + "▁focus ing", + "高 温", + "▁m arg", + "▁mar g", + "▁ma rg", + "竞 赛", + "▁turn ing", + "▁tur ning", + "ou ses", + "ous es", + "ouse s", + "o uses", + "▁b at", + "▁ba t", + "▁ bat", + "▁cult ures", + "▁culture s", + "▁cul tures", + "的 价格", + "or dan", + "ord an", + "祖 国", + "▁P os", + "▁Po s", + "▁ Pos", + "▁redu ces", + "▁red uces", + "▁reduce s", + "▁pe nal", + "▁pen al", + "▁Cl ient", + "▁ Client", + "▁behav iors", + "▁behavior s", + "▁behavi ors", + "截 止", + "超 越", + "找 出", + "np lt", + "npl t", + "n plt", + "▁transport ation", + ",\\ '", + ", \\'", + "fol der", + "fold er", + "f older", + "no des", + "node s", + "nod es", + "n odes", + "Ra d", + "R ad", + "▁inv ited", + "▁invite d", + "od a", + "o da", + "一 方", + "武汉 市", + "er mission", + "erm ission", + "浪 费", + "这 部", + "▁o uter", + "▁out er", + "▁ou ter", + "▁ outer", + "▁mat rices", + "ID S", + "I DS", + "▁M obile", + "▁Mob ile", + "▁ Mobile", + "明 天", + "en ron", + "▁man ifest", + "▁manif est", + "▁ manifest", + "▁th ickness", + "▁thick ness", + "▁S pecific", + "▁Spec ific", + "▁ Specific", + "ant ly", + "bour ne", + "▁h ook", + "▁ho ok", + "▁ hook", + "▁direct ions", + "▁direction s", + "▁dir ections", + "▁enzym es", + "▁enzyme s", + "的数 据", + "的 数据", + "信 任", + "▁off ices", + "▁offic es", + "▁office s", + "▁P rice", + "▁Pr ice", + "▁Pri ce", + "▁ Price", + "▁box es", + "▁ boxes", + "电 气", + "rop ical", + "ropic al", + "成都 市", + "成 都市", + "▁to mor", + "▁tom or", + "剩 余", + "s i", + "▁n either", + "▁ne ither", + "▁develop er", + "▁ developer", + "黄 色", + "ma de", + "mad e", + "m ade", + "ü r", + "消 耗", + "N a", + "反 馈", + "ac et", + "ace t", + "a cet", + "▁M D", + "▁ MD", + "▁De velop", + "▁ Develop", + "if ndef", + "顾 问", + "nRE SULTS", + "▁some where", + "▁somew here", + "发动 机", + "发 动机", + "不得 不", + "不 得不", + "▁Phil ipp", + "▁Philip p", + "▁arr ested", + "▁arrest ed", + "т о", + "第一 章", + "第 一章", + "▁ 一", + "青 少年", + "ph al", + "pha l", + "p hal", + "qu es", + "que s", + "q ues", + "▁pay ments", + "▁payment s", + "更 换", + "▁N eed", + "▁Ne ed", + "▁ Need", + "▁v ibr", + "▁vi br", + "▁vib r", + "▁f er", + "▁fe r", + "▁ fer", + "do n", + "d on", + "▁m eters", + "▁me ters", + "▁met ers", + "▁meter s", + "的 服务", + "▁law yer", + "▁lawy er", + "▁vari ations", + "▁var iations", + "▁variation s", + "ue r", + "u er", + "就 行", + "nO ut", + "n Out", + "▁contin uing", + "▁continu ing", + "大 厦", + "明 明", + "▁vari ant", + "▁var iant", + "▁ variant", + "ar on", + "aro n", + "a ron", + "▁s ocket", + "▁soc ket", + "▁sock et", + "▁ socket", + "权 的", + "nr e", + "n re", + "起 到", + "肌 肉", + "over flow", + "▁cor rection", + "▁correct ion", + "sk y", + "s ky", + "招 聘", + "妻 子", + "▁g all", + "▁gal l", + "▁ga ll", + "▁d il", + "▁di l", + "▁attract ive", + "▁attr active", + "▁c ub", + "▁cu b", + "▁ cub", + "甘肃 省", + "us hing", + "ush ing", + "ushi ng", + "b g", + "多 样", + "On ly", + "ect ors", + "ector s", + "e ctors", + "ag onal", + "ago nal", + "agon al", + "W orld", + "技术 的", + "▁exhib it", + "▁host ing", + "▁cons isting", + "▁consist ing", + "▁ign ore", + "▁ignor e", + "▁ ignore", + "▁dec line", + "▁decl ine", + "部 件", + "pos itive", + "▁ 徐", + "你 在", + "▁ad hes", + "▁Pr inc", + "▁Pri nc", + "HE RE", + "HER E", + "H ERE", + "▁t urb", + "▁tur b", + "▁tu rb", + "la w", + "l aw", + "ne um", + "▁tomor row", + "▁tom orrow", + "▁b ab", + "▁ba b", + "▁ bab", + "经济 发展", + "▁Sub ject", + "▁Su bject", + "▁ Subject", + "公众 号", + "nU se", + "nUs e", + "n Use", + "so me", + "s ome", + "▁sub sequently", + "▁subsequ ently", + "▁subsequent ly", + "▁D B", + "▁ DB", + "nD on", + "nDo n", + "n Don", + "农村商业 银行股份有限公司", + "不 开", + "干 燥", + "▁b old", + "▁bo ld", + "▁bol d", + "▁ bold", + "发 言", + "sh are", + "sha re", + "s hare", + "_ ,", + "▁base ball", + "ill ary", + "illa ry", + "illar y", + "uc l", + "u cl", + "▁s ear", + "▁se ar", + "▁sea r", + "▁ sear", + "ob by", + "Do wn", + "D own", + "歌 手", + "引 进", + "合法 权益", + "▁g raft", + "▁gra ft", + "▁key board", + "▁ keyboard", + "I H", + "▁in take", + "▁int ake", + "▁t ensor", + "▁tens or", + "▁ tensor", + "Gener ator", + "Gen erator", + "彼 此", + "ata log", + "atal og", + "合 成", + "这 类", + "▁re ar", + "▁r ear", + "▁strateg ic", + "差 距", + "en gers", + "eng ers", + "enge rs", + "enger s", + "nT wo", + "nTw o", + "n Two", + "▁in fer", + "▁inf er", + "▁ infer", + "▁b yte", + "▁by te", + "▁ byte", + "AR D", + "A RD", + "lin ks", + "link s", + "l inks", + "or tic", + "ort ic", + "▁R aj", + "▁Ra j", + "ap l", + "a pl", + "HT TP", + "▁Vis ual", + "▁ Visual", + "发 达", + "假 设", + "城 乡", + "▁sub stance", + "▁subst ance", + "▁S ex", + "▁Se x", + "▁ Sex", + "东 莞", + "通过 本院", + "ed itor", + "edit or", + "edi tor", + "m n", + "角 的", + "ot or", + "oto r", + "o tor", + "▁ins piration", + "▁insp iration", + "▁inspir ation", + "▁P ur", + "▁Pu r", + "▁ Pur", + "▁calcul ations", + "▁calc ulations", + "▁calculation s", + "欣 赏", + "气 温", + "▁food s", + "▁fo ods", + "▁foo ds", + "▁apopt osis", + "扮 演", + "im it", + "imi t", + "i mit", + "ic er", + "ice r", + "i cer", + "▁f inds", + "▁find s", + "▁fin ds", + "县 人民检察院", + "foot er", + "foo ter", + "fo oter", + "f ooter", + "▁C reated", + "▁Create d", + "▁Creat ed", + "▁Cre ated", + "▁ Created", + "▁A venue", + "▁Av enue", + "au g", + "a ug", + "E V", + "$ )", + "▁reg ardless", + "▁regard less", + "▁ −", + "Wrap per", + "Wr apper", + "W rapper", + "li ving", + "l iving", + "im ental", + "iment al", + "imen tal", + "i mental", + "没 什么", + "equ iv", + "▁s ynthetic", + "▁sy nthetic", + "▁synt hetic", + "▁synth etic", + "▁synthet ic", + "▁C ivil", + "▁Ci vil", + "▁S ydney", + "我 院", + "S k", + "▁Cl inical", + "▁Clinic al", + "▁Clin ical", + "▁ Clinical", + "▁sever ity", + "▁ severity", + "▁b eer", + "▁be er", + "▁bee r", + "bin ding", + "bind ing", + "b inding", + "as tro", + "ast ro", + "astr o", + "▁admin istered", + "▁administer ed", + "吃 的", + "实现 了", + "as hes", + "ash es", + "▁he aling", + "▁heal ing", + "ov iet", + "ovie t", + "ovi et", + "ou tube", + "out ube", + "给 他", + "打 算", + "na ire", + "nai re", + "n aire", + "▁D aily", + "▁Da ily", + "▁ Daily", + "▁nerv ous", + "耕 地", + "▁g lad", + "▁gl ad", + "职业 技术", + "魅 力", + "un ique", + "uni que", + "it led", + "itle d", + "ig m", + "i gm", + "▁For est", + "▁Fore st", + "▁Fo rest", + "本院 经审查", + "ps y", + "p sy", + "▁el ucid", + "▁moment um", + "▁depend encies", + "▁ dependencies", + "▁L es", + "▁Le s", + "▁ Les", + "条 例", + "慢 性", + "le an", + "lea n", + "l ean", + "nAl though", + "n Although", + "▁wond ering", + "▁wonder ing", + "常 务", + "ga l", + "g al", + "ur ls", + "url s", + "be ing", + "bo w", + "b ow", + "▁gener ator", + "▁gen erator", + "▁genera tor", + "▁ generator", + "▁int elligence", + "▁intellig ence", + "是 多少", + "▁re call", + "▁rec all", + "ETHO DS", + "ETHOD S", + "ta u", + "t au", + "▁c ord", + "▁co rd", + "▁cor d", + "▁ cord", + "comp ile", + "国土 资源", + "国土资 源", + "我 和", + "但 在", + "od d", + "o dd", + "热 度", + "se ason", + "sea son", + "nO nce", + "nOn ce", + "n Once", + "▁Secret ary", + "毫 无", + "两 组", + "ic ide", + "ici de", + "各 级", + "选择 的", + "▁my ocard", + "▁subst rate", + "▁substr ate", + "对 话", + "Right arrow", + "om eter", + "ome ter", + "omet er", + "o meter", + "▁/ *", + "▁ /*", + "的 历史", + "价 比", + "▁s oci", + "▁so ci", + "▁soc i", + "▁com patible", + "▁compat ible", + "▁ compatible", + "▁f inger", + "▁fin ger", + "▁fing er", + "▁ finger", + "ia ry", + "iar y", + "i ary", + "罪 名", + "▁w el", + "▁we l", + "ear ing", + "ea ring", + "e aring", + "▁benef icial", + "▁benefici al", + "▁B ridge", + "▁Br idge", + "▁Brid ge", + "▁ Bridge", + "专 注", + "暂 无", + "之日 止", + "之 日止", + "▁hyper tension", + "▁hypert ension", + "▁e ll", + "▁el l", + "▁ ell", + "% (", + "▁Gu ide", + "▁Guid e", + "▁ Guide", + "▁pro motion", + "▁prom otion", + "▁promot ion", + "▁promo tion", + "▁ar ms", + "▁arm s", + "▁ arms", + "nO ff", + "nOf f", + "n Off", + "je t", + "j et", + "要 么", + "批 发", + "▁l uck", + "▁luc k", + "▁lu ck", + "较 高", + "ar se", + "ars e", + "▁ex pat", + "▁exp at", + "(\" \\\\", + "( \"\\\\", + "▁Be aut", + "▁Bea ut", + "▁Beau t", + "农村信用 合作", + "bi al", + "bia l", + "b ial", + "▁pass es", + "▁pas ses", + "pre sent", + "pres ent", + "p resent", + "▁M ajor", + "▁Maj or", + "▁ Major", + "糖 尿", + "一 线", + "朝 鲜", + "▁com paring", + "▁comp aring", + "▁compar ing", + "▁D am", + "▁Da m", + "▁ Dam", + "▁d op", + "▁do p", + "▁gener ic", + "▁gen eric", + "▁gene ric", + "▁ generic", + "老 婆", + "▁adj acent", + "mark s", + "mar ks", + "m arks", + "▁op ens", + "▁open s", + "▁ opens", + "pect ed", + "pec ted", + "p ected", + "▁phosph ory", + "▁in credible", + "▁incred ible", + "▁wor st", + "▁wors t", + "▁wo rst", + "了 很多", + "c ursor", + "注 射", + "一 开始", + "▁Ar gent", + "▁Arg ent", + "极 速", + "▁text ure", + "▁tex ture", + "▁ texture", + "全 新", + "wrap per", + "wr apper", + "w rapper", + "宗 旨", + "子 里", + "亿 美元", + "or ts", + "ort s", + "的 使用", + "▁S imilar", + "▁Sim ilar", + "▁ Similar", + "Ma c", + "M ac", + "▁I mp", + "▁Im p", + "▁ Imp", + "The y", + "Th ey", + "T hey", + "师范 大学", + "圆 形", + "不 大", + "sh ips", + "ship s", + "shi ps", + "s hips", + "nM ost", + "n Most", + "im et", + "ime t", + "i met", + "▁Ox ford", + "ri tis", + "rit is", + "r itis", + "▁Out put", + "▁ Output", + "▁ ©", + "▁T her", + "▁The r", + "▁Th er", + "的 取值范围", + "股 权", + "▁t iny", + "▁ti ny", + "▁tin y", + "▁ tiny", + "▁ass umed", + "▁assum ed", + "▁assume d", + "to Be", + "▁Prem ier", + "▁H ence", + "▁He nce", + "▁Hen ce", + "▁gener ating", + "▁gene rating", + "▁genera ting", + "进 展", + "▁sim ulations", + "▁simulation s", + "号民事 判决", + "常见 的", + "常 见的", + "▁m utation", + "▁mut ation", + "▁ mutation", + "▁commun ications", + "▁communication s", + "▁communic ations", + "▁ communications", + "▁t ill", + "▁til l", + "▁ti ll", + "sim ple", + "s imple", + "▁sh ower", + "▁show er", + "▁acc eler", + "▁accel er", + "边 形", + "▁att orney", + "▁pro spective", + "▁prosp ective", + "▁pros pective", + "▁prospect ive", + "心 中", + "电 流", + "精 度", + "\\' ),", + "\\') ,", + "\\ '),", + "蛋白 质", + "▁a sc", + "▁as c", + "▁ asc", + "te in", + "t ein", + "PU T", + "P UT", + "▁sp okes", + "▁spoke s", + "▁spo kes", + "基础 上", + "▁cor respond", + "▁correspon d", + "▁mac ro", + "▁ma cro", + "▁ macro", + "▁Git Hub", + "▁ GitHub", + "un signed", + "uns igned", + "前 期", + "pa l", + "p al", + "▁sc ulpt", + "Su ccess", + "S uccess", + "实 体", + "d m", + "re ader", + "read er", + "rea der", + "r eader", + "▁c ancel", + "▁can cel", + "▁ cancel", + "de mo", + "dem o", + "d emo", + "后 续", + "▁appro val", + "▁ approval", + "我们 可以", + "en able", + "ena ble", + "e nable", + "▁car rying", + "▁carry ing", + "ot ton", + "ott on", + "otto n", + "的人 生", + "的 人生", + "▁c um", + "▁cu m", + "▁ cum", + "re dit", + "red it", + "r edit", + "诉 至", + "▁k it", + "▁ki t", + "▁ kit", + "ov erset", + "over set", + "overs et", + "▁Th ose", + "▁v irt", + "▁vir t", + "▁vi rt", + "▁ virt", + "应当 依照", + "采 访", + "Pl ay", + "P lay", + "ok er", + "oke r", + "o ker", + "积 分", + "大 幅", + "▁comput ational", + "▁computation al", + "纺 织", + "而 在", + "位 的", + "▁He art", + "▁Hear t", + "▁ Heart", + "门 口", + "分 支", + "▁t oxic", + "▁tox ic", + "▁ toxic", + "ah a", + "a ha", + "▁emph as", + "▁emp has", + "发现被执行人有 可供执行财产", + "de tail", + "det ail", + "▁alter ed", + "▁alt ered", + "” )", + "ve x", + "v ex", + "▁K eep", + "▁Ke ep", + "▁ Keep", + "he ng", + "hen g", + "h eng", + "▁Ber lin", + "二 是", + "▁u l", + "▁ ul", + "某 个", + "ER T", + "E RT", + "▁t alks", + "▁talk s", + "▁tal ks", + "▁danger ous", + "▁rep roduce", + "▁reprodu ce", + "▁reproduc e", + "▁cou nsel", + "▁couns el", + "会 长", + "▁b low", + "▁bl ow", + "▁blo w", + "▁pro minent", + "▁prom inent", + "▁promin ent", + "收 录", + "▁c rystal", + "▁cryst al", + "▁circumst ances", + "▁Tur key", + "op her", + "oph er", + "o pher", + "ic king", + "ick ing", + "icki ng", + "▁T otal", + "▁To tal", + "▁Tot al", + "▁ Total", + "▁perform ances", + "▁performance s", + "▁c ooking", + "▁co oking", + "▁cook ing", + "▁* /", + "▁ */", + "▁U SB", + "▁US B", + "▁ USB", + "▁D ouble", + "▁Do uble", + "▁Dou ble", + "▁ Double", + "长 江", + "省 级", + "构 造", + "出 血", + "▁A I", + "▁ AI", + "te ch", + "tec h", + "t ech", + "的 位置", + "▁Off icial", + "nA nother", + "nAn other", + "n Another", + "bu f", + "b uf", + "▁re nd", + "▁r end", + "▁ rend", + "▁s oph", + "▁so ph", + "▁sop h", + "精 品", + "的最 大", + "的 最大", + "nM any", + "nMan y", + "nMa ny", + "n Many", + "▁d ish", + "▁dis h", + "▁di sh", + "▁un expected", + "▁inst ances", + "▁instance s", + "▁ instances", + "▁system ic", + "▁syst emic", + "▁micro scopy", + "▁micros copy", + "支 出", + "▁win ners", + "▁winner s", + "如何 评价", + "▁h ers", + "▁he rs", + "▁her s", + "▁d ot", + "▁do t", + "▁ dot", + "▁ap artment", + "▁apart ment", + "▁con cert", + "▁concer t", + "▁conc ert", + "▁conce rt", + "四 日", + "▁S ite", + "▁Si te", + "▁Sit e", + "▁ Site", + "▁deb ate", + "缺 席", + "▁P layer", + "▁Pl ayer", + "▁Play er", + "▁ Player", + "or ient", + "ori ent", + "orie nt", + "o rient", + "▁N i", + "▁ Ni", + "气 的", + "co urse", + "c ourse", + "▁integr ate", + "股 东", + "ma king", + "mak ing", + "m aking", + "▁M ERCHANTABILITY", + "▁ MERCHANTABILITY", + "一 人", + "▁s olo", + "▁so lo", + "▁sol o", + "▁ solo", + "▁t f", + "▁ tf", + "or ne", + "orn e", + "o rne", + "威 胁", + "▁Ind ones", + "林 业", + "会 的", + "卫 星", + "▁b ands", + "▁band s", + "▁ban ds", + "▁ bands", + "S ocket", + "▁Pub lish", + "▁ Publish", + "▁just ice", + "an gel", + "ang el", + "ange l", + "▁sc enario", + "▁scen ario", + "▁ scenario", + "▁def ects", + "▁defe cts", + "▁defect s", + "这 时", + "并 发", + "▁h ire", + "▁hi re", + "▁ hire", + "▁manufact urer", + "▁manufacture r", + "▁h its", + "▁hit s", + "▁hi ts", + "▁ hits", + "ex per", + "exp er", + "nt yped", + "ntype d", + "nty ped", + "n typed", + "传票 传唤", + "▁im pressive", + "▁imp ressive", + "▁impress ive", + "温 馨", + "▁inf ants", + "▁infant s", + "灵 魂", + "简 直", + "▁app arently", + "▁apparent ly", + "▁appar ently", + "不 喜欢", + "们 的", + "▁e scape", + "▁esc ape", + "▁escap e", + "▁ escape", + "总 裁", + "日向本院 提起", + "日 向本院提起", + "指定的期间 履行给付金钱义务", + "Q t", + "Mat rix", + "▁dis appe", + "丛 书", + "▁const antly", + "▁constant ly", + "▁B Y", + "▁ BY", + "暂 时", + "第二百五十 三条之规定", + "第二百五十三 条之规定", + "▁volunte ers", + "▁volunteer s", + "肌 肤", + "▁v otes", + "▁vote s", + "▁vot es", + "▁vo tes", + "▁ votes", + "ur name", + "urn ame", + "分 米", + "▁ad mitted", + "▁admit ted", + "▁adm itted", + "礼 物", + "equ als", + "equal s", + "▁ 三", + "▁in tra", + "▁int ra", + "▁intr a", + "ol ine", + "oli ne", + "olin e", + "o line", + "ambig uation", + "冰 箱", + "▁d rag", + "▁dr ag", + "▁ drag", + "depend encies", + "▁p otent", + "▁pot ent", + "▁S on", + "▁So n", + "▁ Son", + "tv oid", + "t void", + "板 块", + "扶 贫", + "▁p d", + "▁ pd", + "C B", + "▁B ell", + "▁Be ll", + "▁Bel l", + "▁s ick", + "▁si ck", + "不 明", + "▁F ix", + "▁Fi x", + "▁ Fix", + "正 文", + "do ts", + "dot s", + "d ots", + "第二百五十七条 第", + "第二百五十七 条第", + "▁O regon", + "▁Ore gon", + "助 于", + "ter national", + "tern ational", + "▁any way", + "MI N", + "M IN", + "ig o", + "i go", + "▁出生 地", + "▁ 出生地", + "终 端", + "▁host s", + "▁ho sts", + "▁ hosts", + "it ter", + "itt er", + "排 列", + "独任 审判", + "化 简", + "▁P a", + "▁ Pa", + "毕业 生", + "全 力", + "▁n arr", + "▁na rr", + "Sc reen", + "S creen", + "水 利", + "▁f ert", + "▁fe rt", + "▁fer t", + "死 了", + "▁o nset", + "▁on set", + "▁ onset", + "▁hand ler", + "▁handle r", + "▁ handler", + "▁Admin istration", + "▁Administr ation", + "日向本院 申请", + "日 向本院申请", + "▁vari ance", + "▁var iance", + "▁ variance", + "▁new spaper", + "▁news paper", + "▁newsp aper", + "▁I MP", + "▁IM P", + "▁ IMP", + "▁im pair", + "▁imp air", + "ri ends", + "riend s", + "rien ds", + "▁man ually", + "▁manual ly", + "财产 保险", + "Ti m", + "T im", + "nE arly", + "n Early", + "▁comp uted", + "▁comput ed", + "▁compute d", + "▁ computed", + "▁trans ferred", + "▁transfer red", + "It er", + "I ter", + "园 林", + "民 一", + "ak h", + "a kh", + "▁t alent", + "▁tal ent", + "▁tale nt", + "日 的", + "里面 的", + "里 面的", + "\\\\( )\\\\)", + "\\\\() \\\\)", + "oph ys", + "o phys", + "便 是", + "ym l", + "y ml", + "▁t ur", + "▁tu r", + "▁ tur", + ")] (", + ") ](", + "有 趣", + "减 肥", + "季 节", + "减刑建议 书", + "提交 上诉状", + "tri angle", + "温 柔", + "清 华", + "行业 的", + "行 业的", + "▁p osit", + "▁pos it", + "▁po sit", + "OR K", + "▁P S", + "▁ PS", + "ap ol", + "apo l", + "a pol", + "▁H ouston", + "▁Hou ston", + "▁grad ient", + "▁ gradient", + "绝对 值", + "over line", + "▁graph ics", + "▁graphic s", + "▁ graphics", + "摩 托", + "▁en gage", + "▁eng age", + "Direct ory", + "fe atures", + "feature s", + "feat ures", + "标 题", + "ns t", + "n st", + "ch ant", + "chan t", + "cha nt", + "Sim ple", + "S imple", + "as ets", + "ase ts", + "aset s", + "a sets", + "at eur", + "ate ur", + "不符 合", + "不 符合", + "▁h ur", + "▁hu r", + "▁st abil", + "▁stab il", + "检察 员", + "▁R ose", + "▁Ro se", + "▁Ros e", + "▁target ing", + "正本 一份", + "▁mer ged", + "▁merge d", + "▁merg ed", + "▁ merged", + "字 母", + "pi d", + "p id", + "al ities", + "ali ties", + "def ined", + "define d", + "d efined", + "н о", + "千 元", + "ab etic", + "abet ic", + "abe tic", + "isl ative", + "▁lux ury", + "▁Sen ior", + "▁view ed", + "é e", + "▁S i", + "▁ Si", + "英 寸", + "rit ish", + "ritis h", + "能 否", + "▁sur prise", + "▁surpr ise", + "▁re set", + "▁res et", + "▁ reset", + "ether lands", + "序 列", + "▁work shop", + "▁works hop", + "体 会", + "cept or", + "cep tor", + "内 置", + "统计 学", + "▁g rab", + "▁gr ab", + "▁gra b", + "▁ grab", + "nD r", + "n Dr", + "了一 下", + "了 一下", + "TE ST", + "TES T", + "T EST", + "▁over view", + "▁ overview", + "从 此", + "Ca l", + "C al", + "▁hospital s", + "▁hospit als", + "▁t emporary", + "▁tem porary", + "▁tempor ary", + "▁R os", + "▁Ro s", + "▁found er", + "▁fo under", + "▁ founder", + "▁j un", + "▁ju n", + "▁ jun", + "IG N", + "I GN", + "IA L", + "I AL", + "篮 球", + "▁D id", + "▁Di d", + "▁ Did", + "og s", + "o gs", + "▁目 录", + "▁ 目录", + "or iginal", + "origin al", + "orig inal", + "Fr amework", + "Frame work", + "run time", + "ru ntime", + "常 常", + "time out", + "nDes cription", + "nDe scription", + "n Description", + "引 擎", + "较 好", + "▁S quare", + "▁Squ are", + "▁ Square", + "yl l", + "y ll", + "In valid", + "Inv alid", + "nAss ociation", + "n Association", + "糖尿 病", + "早 上", + "家 庄", + "牛 奶", + "ro ck", + "roc k", + "r ock", + "nT rans", + "nTr ans", + "n Trans", + "▁h ip", + "▁hi p", + "▁ hip", + "刘 某", + "预 期", + "▁l ake", + "▁la ke", + "▁ lake", + "农村信用合作 联社", + "是为 了", + "是 为了", + "书面 上诉的", + "iz abeth", + "▁in correct", + "▁inc orrect", + "▁port folio", + "▁ portfolio", + "仅 仅", + "司 机", + "m c", + "刑 诉", + "▁accompl ish", + "▁accomp lish", + "W I", + "hel per", + "help er", + "▁M achine", + "▁Mach ine", + "▁ Machine", + "▁s odium", + "co unter", + "count er", + "cou nter", + "c ounter", + "▁s pac", + "▁sp ac", + "▁spa c", + "▁sl ope", + "▁ slope", + "ol ving", + "olv ing", + "al so", + "als o", + "ntype def", + "ntyped ef", + "n typedef", + "▁bi ochemical", + "▁bio chemical", + "西 部", + "年轻 人", + "▁h az", + "▁ha z", + "▁ haz", + "▁ap pend", + "▁app end", + "▁appe nd", + "▁ append", + "V R", + "▁Mc C", + "▁pow der", + "hab ilit", + "habi lit", + "р о", + "an ny", + "ann y", + "权 限", + "▁S ab", + "▁Sa b", + "密 切", + "▁R og", + "▁Ro g", + "it test", + "itt est", + "i ttest", + "is lation", + "isl ation", + "ns o", + "n so", + "▁es say", + "▁ess ay", + "Po ol", + "P ool", + "uu id", + "u uid", + "动 的", + "房 价", + "▁m ile", + "▁mil e", + "▁mi le", + "▁ mile", + "se ns", + "sen s", + "s ens", + "请 问", + "▁\\' __", + "▁\\'_ _", + "\\\\ }", + "▁Olymp ic", + "更 高", + "MA T", + "M AT", + "Service s", + "Serv ices", + "S ervices", + "▁el igible", + "▁elig ible", + "▁The atre", + "▁municip ality", + "▁municipal ity", + "例 子", + "Med ia", + "M edia", + "▁j ew", + "▁je w", + "一 流", + "未来 的", + "未 来的", + "▁c yst", + "▁cy st", + "▁ cyst", + "Met a", + "Me ta", + "M eta", + "▁ch ose", + "▁cho se", + "接 收", + "nSt ep", + "nSte p", + "n Step", + "▁sur ge", + "▁surg e", + "▁g el", + "▁ge l", + "▁ gel", + "▁} {", + "▁ }{", + "一 辆", + "std out", + "▁n omin", + "▁no min", + "▁nom in", + "可在 接到", + "受 伤", + "▁Scott ish", + "> \"", + "颗 粒", + "▁is chem", + "▁s take", + "▁st ake", + "▁se lective", + "▁select ive", + "▁sel ective", + "▁ selective", + "活动 的", + "活 动的", + "怎样 的", + "怎 样的", + "斗 争", + "per m", + "pe rm", + "p erm", + "ad ed", + "ade d", + "a ded", + "id ine", + "idi ne", + "idin e", + "▁T ok", + "▁To k", + "▁ Tok", + "▁cap ac", + "▁ca pac", + "up dated", + "update d", + "▁vari ants", + "▁variant s", + "▁ variants", + "参 观", + "响 应", + "我 很", + "▁co unts", + "▁count s", + "▁ counts", + "▁ess entially", + "▁essential ly", + "▁s ad", + "▁sa d", + "} [", + "▁N ever", + "▁Ne ver", + "▁Nev er", + "▁ Never", + "县 委", + "临 时", + "▁W i", + "▁ Wi", + "日起 十日内", + "▁f n", + "▁ fn", + "形 状", + "▁第 二", + "▁ 第二", + "▁V en", + "▁Ve n", + "容 器", + "▁se paration", + "▁separ ation", + "ra q", + "r aq", + "▁d ust", + "▁du st", + "▁P olicy", + "▁Pol icy", + "▁ Policy", + "实 时", + "频 道", + "▁m arker", + "▁mark er", + "▁mar ker", + "▁ marker", + "Vo l", + "V ol", + "lect ric", + "▁G O", + "▁ GO", + "▁O l", + "▁ Ol", + "决 赛", + "车 型", + "': \\", + "' :\\", + "▁u b", + "▁ ub", + "Par se", + "Pars e", + "P arse", + "ik es", + "ike s", + "i kes", + "监 察", + "抛 物", + "宁 市", + "▁d oses", + "▁do ses", + "▁dose s", + "▁dos es", + "▁ 性别", + "但 被执行人", + "▁under t", + "▁und ert", + "▁sh oes", + "▁shoe s", + "▁u ltimate", + "▁ult imate", + "▁s ought", + "▁so ught", + "▁sou ght", + "ap ps", + "app s", + "▁in valid", + "▁inv alid", + "▁ invalid", + "加 拿", + "▁F ord", + "▁For d", + "▁Fo rd", + "签 约", + "经济 学", + "ag netic", + "agn etic", + "agne tic", + "agnet ic", + "Copy right", + "C opyright", + "▁M E", + "▁ ME", + "▁v ice", + "▁vi ce", + "▁vic e", + "line d", + "li ned", + "lin ed", + "l ined", + "nO lymp", + "▁suff ering", + "▁suffer ing", + "▁J ean", + "▁Je an", + "▁ Jean", + "斯 坦", + "ph ia", + "phi a", + "der s", + "de rs", + "d ers", + "▁G ro", + "▁Gr o", + "▁t emporal", + "▁tem poral", + "▁tempor al", + "▁temp oral", + "▁tempo ral", + "▁ temporal", + "均 为", + "ct ic", + "c tic", + "▁res onance", + "▁reson ance", + "通过 对", + "▁interpret ation", + "▁N A", + "▁ NA", + "De l", + "D el", + "和 计划生育", + "▁in ches", + "▁inc hes", + "▁inch es", + "▁ inches", + "P y", + "▁Inst agram", + "▁break fast", + "▁over l", + "睡 觉", + "ad os", + "ado s", + "a dos", + "▁M att", + "▁Mat t", + "▁Ma tt", + "▁ Matt", + "▁n aturally", + "▁natural ly", + "▁nat urally", + "EN V", + "E NV", + "夏 天", + "style sheet", + "styles heet", + "的 需求", + "▁fr agment", + "▁frag ment", + "▁fra gment", + "▁ fragment", + "▁m agic", + "▁mag ic", + "▁ma gic", + "▁ magic", + "nE very", + "nEver y", + "nEv ery", + "n Every", + "Sup port", + "▁celebr ate", + "U G", + "扫 描", + "▁tw enty", + "▁twe nty", + "oprote in", + "opro tein", + "oprot ein", + "o protein", + "▁epit helial", + "▁ epithelial", + "独特 的", + "pe nd", + "pen d", + "p end", + "了 我", + "it udes", + "itude s", + "itud es", + "itu des", + "真的 很", + "真 的很", + "▁cl one", + "▁ clone", + "▁g am", + "▁ga m", + "▁ gam", + "巨大 的", + "巨 大的", + "▁Id ent", + "▁Ide nt", + "▁ Ident", + "▁life time", + "▁lif etime", + "派 出", + "bol ic", + "bo lic", + "b olic", + "cl osure", + "key words", + "keyword s", + "▁f lav", + "▁fl av", + "▁c ir", + "▁ci r", + "▁ cir", + "▁ang les", + "▁angle s", + "▁ angles", + "▁P rom", + "▁Pro m", + "▁Pr om", + "▁ Prom", + "阿 里", + "im p", + "i mp", + "▁eld erly", + "▁elder ly", + ", '", + "ja n", + "j an", + "▁streng then", + "▁strength en", + "▁inj ured", + "走 进", + "标 签", + "无 效", + "在 家", + "ver bose", + "verb ose", + "处 置", + "结 算", + "oc om", + "oco m", + "o com", + "▁[ ];\\", + "▁[] ;\\", + "▁ [];\\", + ": /", + "er ship", + "ers hip", + "V P", + "dis patch", + "disp atch", + "▁arbitr ary", + "nA p", + "n Ap", + "fo x", + "f ox", + "怀 疑", + "拿 到", + "▁he ating", + "▁heat ing", + "Bo olean", + "Bool ean", + "lo n", + "l on", + "处理 器", + "晋江文学 网", + "▁print ing", + "▁ob viously", + "▁obvious ly", + "Route r", + "Ro uter", + "R outer", + "sl ug", + "由 题意", + "▁Exec utive", + "▁ch ocolate", + "▁C apt", + "▁Ca pt", + "▁Cap t", + "▁ Capt", + "建 材", + "hel lo", + "hell o", + "h ello", + "▁Ph ase", + "▁ Phase", + "▁Mus lim", + "今 后", + "Serial izer", + "Serialize r", + "S erializer", + "书 画", + "报 警", + "辈 子", + "▁ac know", + "▁F ish", + "▁Fi sh", + "id ays", + "iday s", + "ida ys", + "i days", + "▁b irds", + "▁bir ds", + "▁bird s", + "▁ birds", + "号 起诉书", + "class Name", + "▁j s", + "▁ js", + "级 别", + "it able", + "ita ble", + "i table", + "▁s orted", + "▁sort ed", + "▁sor ted", + "▁ sorted", + "荣 获", + "▁cou pled", + "▁couple d", + "▁coup led", + "▁ coupled", + "▁he ads", + "▁head s", + "▁ heads", + "现代 化", + "不 当", + "▁R om", + "▁Ro m", + "▁ Rom", + "足以 认定", + "监 护", + "▁sit uated", + "▁situ ated", + "ar ring", + "arr ing", + "国家 的", + "国 家的", + "▁efficient ly", + "▁abs orption", + "▁absor ption", + "▁he aders", + "▁head ers", + "▁header s", + "▁ headers", + "ir k", + "i rk", + "▁P ers", + "▁Per s", + "▁Pe rs", + "▁ Pers", + "的大 小", + "的 大小", + "O p", + "信 心", + "待 遇", + "de code", + "dec ode", + "d ecode", + "data set", + "dat aset", + "datas et", + "▁fil ters", + "▁filter s", + "▁ filters", + "olester ol", + "▁Re source", + "▁Res ource", + "▁ Resource", + "▁sc hema", + "▁sch ema", + "▁ schema", + "cl uster", + "clus ter", + "▁en ding", + "▁end ing", + "▁ ending", + "▁L LC", + "▁LL C", + "▁o scill", + "▁L ie", + "▁Li e", + "ag ma", + "ma sk", + "mas k", + "m ask", + "▁ и", + "gen erate", + "gener ate", + "gene rate", + "g enerate", + "en abled", + "ena bled", + "enable d", + "传 感", + "▁TH IS", + "电 信", + "皇 帝", + "Ex pression", + "Exp ression", + "Express ion", + "Expr ession", + ")* *", + ") **", + "▁re ly", + "▁r ely", + "▁rel y", + "透 明", + "▁Cam bridge", + "▁Camb ridge", + "▁b ounded", + "▁bound ed", + "▁ bounded", + "▁as ympt", + "▁asym pt", + "par ty", + "part y", + "p arty", + "C N", + "\" @", + "的 定义", + "▁T ele", + "▁Te le", + "▁Tel e", + "▁ Tele", + "中华人民共和国行政 诉讼法", + "留 学", + "▁t om", + "▁to m", + "▁ tom", + "st ory", + "sto ry", + "stor y", + "Time out", + "▁Sing apore", + "▁Q uant", + "▁Qu ant", + "▁ Quant", + "▁re combin", + "这也 是", + "这 也是", + "ab ases", + "abase s", + "aba ses", + "a bases", + "的 学生", + "▁h at", + "▁ha t", + "▁ hat", + "本院 予以支持", + "本院予以 支持", + "▁rel ief", + "讲 话", + "fig ure", + "f igure", + "ur rence", + "urre nce", + "urrenc e", + "▁\" __", + "▁\"_ _", + "▁ \"__", + "▁ 发", + "▁en thus", + "▁ent hus", + "▁class ified", + "Re t", + "R et", + "adel phia", + "已 发生法律效力", + "▁Sup reme", + "np ub", + "n pub", + "▁c ond", + "▁con d", + "▁co nd", + "▁ cond", + "▁decre asing", + "▁Pro perty", + "▁Prop erty", + "▁Proper ty", + "▁ Property", + "▁W ITH", + "▁WIT H", + "▁WI TH", + "▁ WITH", + "要 注意", + "col l", + "co ll", + "c oll", + "笔记 本", + "性 价比", + "▁A le", + "▁Al e", + "▁ Ale", + "相当 于", + "江 湖", + "▁d elta", + "▁del ta", + "▁ delta", + "▁inter mediate", + "▁intermed iate", + "▁Sil ver", + "▁ill ust", + "▁exp ressions", + "▁expression s", + "▁express ions", + "▁expr essions", + "明显 的", + "▁less ons", + "▁lesson s", + "Ta b", + "T ab", + "一 块", + "▁off icially", + "▁offic ially", + "▁official ly", + "▁p aram", + "▁par am", + "▁para m", + "▁pa ram", + "▁ param", + "城 县", + "in os", + "ino s", + "i nos", + "内 涵", + "▁s i", + "▁ si", + "ul atory", + "ulator y", + "im ents", + "iment s", + "imen ts", + "i ments", + "▁f usion", + "▁fus ion", + "▁ fusion", + "▁H amilton", + "▁reg ulations", + "▁regul ations", + "▁regulation s", + "browse r", + "b rowser", + "▁h al", + "▁ha l", + "▁ hal", + "T M", + "AB C", + "A BC", + "▁n ur", + "▁nu r", + "▁ nur", + "OR Y", + "O RY", + "ix in", + "i xin", + "▁re aching", + "▁reach ing", + "▁Cons ider", + "清 理", + "▁expl ains", + "▁explain s", + "还 不", + "BA SE", + "B ASE", + "us al", + "usa l", + "u sal", + "▁S oc", + "▁So c", + "en sis", + "ens is", + "商 场", + "的过程 中", + "的 过程中", + "not ation", + "n otation", + "▁art ificial", + "ig e", + "i ge", + "▁A rizona", + "Ar r", + "A rr", + "vious ly", + "vi ously", + "v iously", + "▁therap ies", + "▁con clude", + "▁de light", + "▁del ight", + "Pol icy", + "P olicy", + "耳 机", + "▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁", + "▁▁▁▁▁▁ ▁▁▁", + "▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁", + "▁ ▁▁▁▁▁▁▁▁", + "▁t elling", + "▁tell ing", + "▁tel ling", + "▁ telling", + "▁manufact urers", + "▁manufacturer s", + "▁manufacture rs", + "Me d", + "M ed", + "疫 苗", + "Trans form", + "▁s avings", + "▁sav ings", + "▁saving s", + "邮 件", + "▁cal endar", + "▁ calendar", + "ST RA", + "STR A", + "S TRA", + "Hi gh", + "H igh", + "▁der ivatives", + "▁deriv atives", + "▁derivative s", + "▁ver tex", + "▁vert ex", + "▁verte x", + "▁ vertex", + "▁in struments", + "▁instr uments", + "▁instrument s", + "不 但", + "▁Mult i", + "▁Mul ti", + "▁ Multi", + "▁O cean", + "▁Oc ean", + "▁g iant", + "▁gi ant", + "No w", + "N ow", + "nW ork", + "n Work", + "au ge", + "aug e", + "a uge", + "nJ ohn", + "nJoh n", + "nJo hn", + "n John", + "▁J ewish", + "▁Jew ish", + "失 信", + "▁Ind iana", + "▁India na", + "▁Indian a", + "arch ive", + "arc hive", + "ave length", + "avel ength", + "组成 员", + "组 成员", + "▁end othelial", + "▁endot helial", + "纪 律", + "▁eng aged", + "▁engage d", + "开 关", + "ass ociated", + "associ ated", + "年 在", + "▁A nton", + "▁An ton", + "▁Ant on", + "十二 条第二款", + "十二条 第二款", + "成 交", + "* ;\\", + "SE LECT", + "QU E", + "Q UE", + "V I", + "í a", + "cf g", + "c fg", + "头 发", + "an gers", + "ang ers", + "ange rs", + "anger s", + "▁re spective", + "▁res pective", + "▁respect ive", + "▁resp ective", + "▁f rag", + "▁fr ag", + "▁fra g", + "▁ frag", + "And roid", + "线 性", + "三个 月", + "三 个月", + "ri tical", + "rit ical", + "ritic al", + "▁C F", + "▁ CF", + "▁m odes", + "▁mod es", + "▁mode s", + "▁mo des", + "销 量", + "n z", + "密 封", + "es tab", + "est ab", + "esta b", + "val idation", + "valid ation", + "ous tic", + "oust ic", + "▁im plies", + "▁imp lies", + "▁impl ies", + "▁ implies", + "▁ch ampion", + "▁Trans port", + "▁ Transport", + "▁S mart", + "▁Sm art", + "▁ Smart", + "PA R", + "P AR", + "▁Qu estions", + "▁Question s", + "▁Quest ions", + "物 资", + "nH is", + "nHi s", + "n His", + "▁Stud ents", + "▁Student s", + "▁ Students", + "已 有", + "\\' ):\\", + "\\') :\\", + "\\ '):\\", + "▁athlet es", + "▁athlete s", + "▁H R", + "▁ HR", + "▁m ature", + "▁mat ure", + "▁ma ture", + "stand ard", + "终 审", + "et ary", + "eta ry", + "p k", + "▁accomp an", + "c v", + "回 顾", + "▁ar th", + "▁art h", + "▁ arth", + "▁F inal", + "▁Fin al", + "▁Fi nal", + "▁ Final", + "Pack age", + "P ackage", + "hyth m", + "ri eve", + "rie ve", + "riev e", + "r ieve", + "别 名", + "he alth", + "squ are", + "s quare", + "这 篇", + "▁p ic", + "▁pi c", + "▁ pic", + "▁indust ries", + "终结 执行", + "南 方", + "▁phot ography", + "▁photograph y", + "下 一", + "Ser v", + "Se rv", + "S erv", + "el lect", + "ell ect", + "elle ct", + "fl y", + "f ly", + "▁g ang", + "▁ga ng", + "▁gan g", + "▁ gang", + "▁strong er", + "圆 柱", + "nM ed", + "nMe d", + "n Med", + "并 从", + "▁w ins", + "▁win s", + "▁wi ns", + "▁intr acellular", + "▁intra cellular", + "▁intrac ellular", + "中国 人", + "中 国人", + "cri bed", + "crib ed", + "cribe d", + "▁a pt", + "▁ap t", + "▁ apt", + "▁own ership", + "▁owners hip", + "▁owner ship", + "杭州 市", + "杭 州市", + "dis ambiguation", + "Da y", + "D ay", + "地区 的", + "地 区的", + "朝 阳", + "向 上", + "▁ar rive", + "▁arr ive", + "▁arriv e", + "per ature", + "▁ 支持", + "▁che ese", + "▁chees e", + "动 脉", + "元及 利息", + "元 及利息", + "▁C op", + "▁Co p", + "▁ Cop", + "江 市", + "Do main", + "Dom ain", + "D omain", + "生 理", + "tre ated", + "t reated", + "声 明", + "▁W at", + "▁Wa t", + "在一 个", + "在 一个", + "▁H ash", + "▁Ha sh", + "▁Has h", + "▁ Hash", + "概 述", + "▁Bo olean", + "▁Bool ean", + "▁ Boolean", + "er os", + "ero s", + "e ros", + "▁F arm", + "▁Far m", + "▁Fa rm", + "▁C ould", + "▁Cou ld", + "▁Coul d", + "▁ Could", + "io rs", + "ior s", + "i ors", + "By tes", + "Byte s", + "B ytes", + "riv ial", + "问题 和", + "▁g est", + "▁ge st", + "▁ gest", + "设计 师", + "▁D atabase", + "▁Data base", + "▁Dat abase", + "▁ Database", + "过 于", + "▁fl ows", + "▁flo ws", + "▁flow s", + "民 众", + "补 贴", + "en z", + "e nz", + "nN ational", + "n National", + "实 例", + "Edit or", + "Ed itor", + "▁N atural", + "▁Nat ural", + "▁ Natural", + "un es", + "une s", + "u nes", + "▁con cluded", + "▁conclude d", + "Be an", + "B ean", + "▁res istant", + "▁resist ant", + "▁ resistant", + "Ob j", + "O bj", + "▁d ocs", + "▁do cs", + "▁doc s", + "▁ docs", + "▁( '", + "▁ ('", + "▁prom oting", + "▁promot ing", + "▁promo ting", + "work s", + "wor ks", + "▁E N", + "▁ EN", + "▁embed ded", + "▁ embedded", + "▁disc rete", + "▁discre te", + "▁discret e", + "网 页", + "log ical", + "logic al", + "l ogical", + "▁dis plays", + "▁display s", + "et r", + "e tr", + "▁L A", + "▁ LA", + "col umns", + "column s", + "colum ns", + "So rt", + "S ort", + "辐 射", + "port ers", + "por ters", + "porter s", + "p orters", + "的 世界", + "排 除", + "________ ________", + "▁random ly", + "乘 法", + "▁s ky", + "▁sk y", + "▁ sky", + "S W", + "Oper ation", + "Op eration", + "▁f inance", + "▁fin ance", + "▁financ e", + "▁ finance", + "▁degrad ation", + "参考 文献", + "'] ,\\", + "'], \\", + "' ],\\", + "▁an ten", + "▁ant en", + "海 南", + "▁w rt", + "▁wr t", + "in king", + "ink ing", + "inki ng", + "config uration", + "Def inition", + "▁in equality", + "link ed", + "▁go ogle", + "▁goog le", + "▁ google", + "▁part ially", + "▁partial ly", + "▁im g", + "▁i mg", + "▁ img", + "的 知识", + "▁eg gs", + "▁egg s", + "is ations", + "isation s", + "or ption", + "orp tion", + "De pend", + "Dep end", + "D epend", + "▁work er", + "▁wor ker", + "▁ worker", + "iz za", + "izz a", + "cre at", + "cr eat", + "c reat", + "nS ent", + "nSe nt", + "nSen t", + "n Sent", + "害 怕", + "pl ify", + "p lify", + "▁specific ity", + "as ive", + "asi ve", + "oe n", + "o en", + "市 长", + "▁h oping", + "▁hop ing", + "▁ho ping", + "▁p eer", + "▁pe er", + "▁ peer", + "▁unus ual", + "▁inter vals", + "▁interval s", + "▁c ancell", + "▁can cell", + "▁cancel l", + "日 上午", + "nA rt", + "nAr t", + "n Art", + "nE n", + "n En", + "▁ о", + "▁c arb", + "▁car b", + "▁ca rb", + "▁sw imming", + "▁swim ming", + "pe at", + "p eat", + "秩 序", + "import ant", + "▁ 孙", + "作 物", + "无 锡", + "▁re fresh", + "▁ref resh", + "▁refr esh", + "▁refres h", + "▁ refresh", + "un ter", + "unt er", + "unte r", + "u nter", + "▁dis abled", + "▁disable d", + "▁ disabled", + "▁develop mental", + "▁development al", + "工作 中", + "ivari ate", + "iva riate", + "ivar iate", + "▁W rit", + "▁Wr it", + "▁ Writ", + "▁o rientation", + "▁orient ation", + "▁ orientation", + "* )", + "▁e gg", + "▁eg g", + "▁ egg", + "ap pa", + "app a", + "▁m ethyl", + "▁meth yl", + "▁ methyl", + "▁favour ite", + "新 冠", + "▁ver bose", + "▁verb ose", + "▁ verbose", + "D i", + "▁rep utation", + "▁reput ation", + "证 言", + "提高 了", + "提 高了", + "彩 票", + "att ributes", + "attribute s", + "attrib utes", + "O mega", + "副 局长", + "撤回 上诉", + "音 频", + "▁ant agon", + "att ribute", + "attrib ute", + "equ ence", + "eque nce", + "re ation", + "reat ion", + "rea tion", + "ic hael", + "ich ael", + "nOlymp ic", + "▁ad venture", + "▁advent ure", + "拘 役", + "国 产", + "幸 运", + "ab a", + "a ba", + "▁em pir", + "▁emp ir", + "od ge", + "▁r h", + "▁ rh", + "诈 骗", + "▁C ub", + "▁Cu b", + "见 过", + "判决书 的第二", + "第一百 七", + "单 独", + "因 被执行人", + "▁re form", + "▁ref orm", + "gr es", + "gre s", + "g res", + "百度 百科", + "▁B rand", + "▁Br and", + "▁Bra nd", + "▁ Brand", + "Hand le", + "Go ogle", + "别人 的", + "别 人的", + "▁出 处", + "▁ 出处", + "co ord", + "sp ective", + "spect ive", + "s pective", + "▁process ed", + "▁proc essed", + "▁ processed", + "优 良", + "它 是", + "各 大", + ">; \\", + "> ;\\", + "▁system atic", + "▁syst ematic", + "能 不能", + "将 军", + "nU sing", + "nUs ing", + "n Using", + "To tal", + "T otal", + "一 系列", + "IM IT", + "I MIT", + "▁V iet", + "▁Vi et", + "▁Vie t", + "con struct", + "const ruct", + "co nstruct", + "▁chem otherapy", + "▁chemo therapy", + "ight h", + "igh th", + "▁ser iously", + "▁serious ly", + "编 写", + "pat ient", + "▁R O", + "▁ RO", + "收 购", + "▁pro state", + "▁prost ate", + "适用 法律", + "ric ulum", + "看 的", + "美 女", + "的 专业", + "ivers ary", + "▁n ob", + "▁no b", + "▁ nob", + "监督 管理局", + "监督管理 局", + "w ikipedia", + "▁Ed ward", + "Do n", + "D on", + "激 励", + "我 知道", + "看 法", + "▁cert ified", + "ne cho", + "nec ho", + "n echo", + "▁author ity", + "▁L ook", + "▁Lo ok", + "▁ Look", + "住 安徽省", + "▁ob esity", + "▁t ens", + "▁te ns", + "▁ten s", + "背 后", + "▁ass ays", + "▁assay s", + "复 习", + "判令 被告", + "本院经审查 认为", + "锈 钢", + "不 久", + "履行 义务", + "口 味", + "清 偿", + "bu ilt", + "b uilt", + "nG iven", + "nGive n", + "n Given", + "订 单", + "Ex ample", + "▁conf ident", + "▁list ening", + "▁listen ing", + "▁up take", + "要 素", + "dir ection", + "di rection", + "direct ion", + "d irection", + "nA b", + "n Ab", + "lo ss", + "los s", + "l oss", + "是非 常", + "是 非常", + "▁T ag", + "▁Ta g", + "▁ Tag", + "▁H ung", + "▁Hu ng", + "▁Hun g", + "▁W rite", + "▁Writ e", + "▁Wr ite", + "▁ Write", + "d h", + "睡 眠", + "▁conf used", + "YP E", + "Y PE", + "▁n ums", + "▁num s", + "▁nu ms", + "▁ nums", + "rior ity", + "细 菌", + "▁med ication", + "▁medi cation", + "▁medic ation", + "US E", + "U SE", + "▁\\' @", + "uc lear", + "ucle ar", + "ucl ear", + "u clear", + "▁\\\\ \"", + "▁ \\\\\"", + "▁r ose", + "▁ro se", + "▁ros e", + "▁ rose", + "▁S ound", + "▁So und", + "▁Sou nd", + "▁ Sound", + "高 质量", + "▁r iv", + "▁ri v", + "▁ riv", + "') ,", + "' ),", + "公开开庭 审理了本案", + "▁D avis", + "▁Da vis", + "▁Dav is", + "gl y", + "g ly", + "oc yt", + "o cyt", + "▁prom oted", + "▁promot ed", + "▁promote d", + "▁promo ted", + "er d", + "e rd", + "▁C PU", + "▁CP U", + "▁ CPU", + "洗 衣", + "▁occ as", + "▁oc cas", + "wa l", + "w al", + "▁s pectral", + "▁spect ral", + "▁spectra l", + "▁公司 类型", + "▁s pan", + "▁sp an", + "▁spa n", + "▁ span", + "▁C y", + "▁ Cy", + "癫 痫", + "plot lib", + "新 增", + "an ga", + "ang a", + "▁S A", + "▁ SA", + "▁A thlet", + "▁Ath let", + "dis c", + "di sc", + "d isc", + "▁e astern", + "▁eas tern", + "▁east ern", + "▁ eastern", + "▁j oy", + "▁jo y", + "▁ joy", + "az a", + "a za", + "Lo c", + "L oc", + "▁Q uality", + "▁Qu ality", + "▁Qual ity", + "▁ Quality", + "C r", + "pa g", + "p ag", + "▁pos ting", + "▁post ing", + "工 会", + "▁p our", + "▁po ur", + "▁pou r", + "尼 亚", + "Ch anged", + "Change d", + "Chan ged", + "im en", + "ime n", + "i men", + "引 领", + "▁_ {", + "▁ _{", + "wi ch", + "w ich", + "因 涉嫌", + "▁sur prising", + "▁surpr ising", + "交付 执行", + "初 步", + "买卖 合同纠纷一案", + "买卖合同 纠纷一案", + "买卖合同纠纷 一案", + "试 行", + "▁ 拼音", + "▁p owers", + "▁power s", + "▁po wers", + "▁pow ers", + "▁ powers", + "▁R a", + "▁ Ra", + "▁tox icity", + "▁toxic ity", + "▁ toxicity", + "被 评为", + "▁electric ity", + "▁electr icity", + "▁l ikes", + "▁li kes", + "▁like s", + "▁lik es", + "▁ likes", + "ut o", + "u to", + "▁cap ability", + "这是 一个", + "这是一 个", + "这 是一个", + "▁\\\\ {", + "▁ \\\\{", + "项目 的", + "项 目的", + "Y S", + "le arn", + "lear n", + "lea rn", + "l earn", + "▁pre ced", + "▁pr eced", + "▁prec ed", + "▁ preced", + "em ony", + "emon y", + "emo ny", + "人 文", + "▁influ enced", + "▁influence d", + "▁c ute", + "▁cut e", + "▁cu te", + "▁Ch annel", + "▁Chan nel", + "▁ Channel", + "昆 明", + "快 递", + "m x", + "期 刊", + "ry ption", + "rypt ion", + "Create d", + "Creat ed", + "Cre ated", + "C reated", + "质 证", + "▁p ep", + "▁pe p", + "▁ pep", + "av ailable", + "搅 拌", + "▁person ality", + "▁personal ity", + "is ely", + "ise ly", + "▁graph s", + "▁grap hs", + "▁ graphs", + "or able", + "ora ble", + "nb ut", + "n but", + "世界 的", + "世 界的", + "凤 凰", + "▁Re move", + "▁Rem ove", + "▁ Remove", + "er ty", + "ert y", + "ha ust", + "haus t", + "所谓 的", + "▁ex traction", + "▁extra ction", + "▁extract ion", + "▁extr action", + "▁extrac tion", + "my sql", + "mys ql", + "m ysql", + "▁f ighting", + "▁fight ing", + "没 想到", + "em an", + "ema n", + "e man", + "le tal", + "let al", + "l etal", + "▁g ear", + "▁ge ar", + "▁ gear", + "电视 台", + "▁C alcul", + "▁Calc ul", + "▁ Calcul", + "报送 本院审理", + "▁d os", + "▁do s", + "▁ dos", + "▁a rc", + "▁ar c", + "▁ arc", + "G lobal", + "值 为", + "宣 告", + "编 剧", + "一 大", + "西 班", + "▁tr act", + "▁tra ct", + "▁ tract", + "▁ 用", + "▁b id", + "▁bi d", + "▁ bid", + "▁ex hibition", + "▁exhib ition", + "▁exhibit ion", + "anal ysis", + "回 应", + "▁cl inic", + "▁clin ic", + "▁cli nic", + "▁d eck", + "▁de ck", + "▁dec k", + "▁ deck", + "SI ZE", + "S IZE", + "树 立", + "go od", + "g ood", + "▁b owl", + "▁bo wl", + "▁bow l", + "刑 执字第", + "si t", + "s it", + "TI ME", + "TIM E", + "T IME", + "话 题", + "▁sett lement", + "▁settle ment", + "▁leg islation", + "▁legisl ation", + "▁Gover nor", + "▁Govern or", + "一 共", + "依 靠", + "▁c aps", + "▁cap s", + "▁ca ps", + "▁ caps", + "▁autom ated", + "▁automate d", + "完 了", + "▁stre ets", + "▁street s", + "▁\\ '\\\\", + "▁\\' \\\\", + "▁\\'\\ \\", + "▁ \\'\\\\", + "▁m atched", + "▁mat ched", + "▁match ed", + "▁ matched", + "信息 的", + "▁Gold en", + "▁Gol den", + "iv ation", + "iva tion", + "i vation", + "} |", + "ul o", + "u lo", + "▁} )\\", + "▁}) \\", + "▁ })\\", + "< %", + "GE R", + "G ER", + "ph ase", + "pha se", + "▁integr ity", + "▁s ynchron", + "▁syn chron", + "▁ synchron", + "se ed", + "see d", + "s eed", + "▁F ollowing", + "▁Follow ing", + "▁ Following", + "▁C ell", + "▁Cel l", + "▁Ce ll", + "▁ Cell", + "▁recon struction", + "▁reconstruct ion", + "深 化", + "tr ace", + "tra ce", + "t race", + "▁engine er", + "▁car eful", + "▁care ful", + "▁e mission", + "▁em ission", + "显 然", + "▁l oves", + "▁love s", + "▁lo ves", + "保 养", + "西班 牙", + "mo l", + "m ol", + "ap ters", + "apt ers", + "apter s", + "▁G reg", + "▁Gr eg", + "▁Gre g", + "▁ Greg", + "进 度", + "н и", + "par ts", + "part s", + "p arts", + "CL UD", + "pub lish", + "▁g ym", + "▁gy m", + "▁r od", + "▁ro d", + "▁ rod", + "普 及", + "ic it", + "ici t", + "i cit", + "▁N etherlands", + "▁dis appoint", + "领 取", + "▁al le", + "▁all e", + "▁ alle", + "dis able", + "病 例", + "关 联", + "By te", + "B yte", + "宗 教", + "▁dist ributions", + "▁distribution s", + "▁distribut ions", + "▁ind uce", + "▁indu ce", + "nM ar", + "nMa r", + "n Mar", + "▁her self", + "▁hers elf", + "理 工", + "边 缘", + "通 用", + "▁t olerance", + "▁toler ance", + "▁A gency", + "▁Ag ency", + "▁Age ncy", + "▁appro ximation", + "▁approxim ation", + "▁approx imation", + "Sp ace", + "S pace", + "ul as", + "ula s", + "u las", + "▁suff ered", + "▁suffer ed", + "判决书的第二 日起十日内", + "nFil ms", + "nFilm s", + "▁b undle", + "▁bund le", + "▁ bundle", + "qu is", + "q uis", + "In v", + "I nv", + "▁s hips", + "▁sh ips", + "▁ship s", + "▁ ships", + "An g", + "A ng", + "▁prot ective", + "▁protect ive", + "▁ protective", + "ar dens", + "ard ens", + "arden s", + "arde ns", + "商 贸", + "▁f ishing", + "▁fish ing", + "▁B an", + "▁Ba n", + "▁ Ban", + "▁P ed", + "▁Pe d", + "▁ Ped", + "中医 药", + "中 医药", + "Cl oud", + "消 毒", + "短 期", + "大 街", + "急 性", + "疯 狂", + "▁C S", + "▁ CS", + "─ ─", + "an chester", + "anc hester", + "anch ester", + "anches ter", + "anche ster", + "▁D VD", + "▁ DVD", + "▁exhib ited", + "▁exhibit ed", + "▁l ets", + "▁le ts", + "▁let s", + "▁ lets", + "B T", + "you r", + "yo ur", + "y our", + "к о", + "▁st unning", + "▁r ental", + "▁rent al", + "代表 作品", + "代表作 品", + "十四 条", + "十 四条", + "▁med iated", + "▁media ted", + "▁medi ated", + "▁mediate d", + "▁ mediated", + "▁seg ments", + "▁segment s", + "▁ segments", + "抓 住", + "pro d", + "pr od", + "p rod", + "▁am plit", + "▁ampl it", + "▁amp lit", + "师 生", + "▁pand emic", + "一 件", + "表 情", + "听 说", + "▁le gs", + "▁leg s", + "▁consider able", + "▁r ice", + "▁ri ce", + "▁ric e", + "▁ rice", + "▁name ly", + "▁nam ely", + "▁sat ellite", + "▁ satellite", + "Ca m", + "C am", + "▁f lux", + "▁fl ux", + "▁flu x", + "▁ flux", + "▁we ights", + "▁weight s", + "▁weigh ts", + "▁ weights", + "com mands", + "comm ands", + "command s", + "not es", + "no tes", + "note s", + "n otes", + "心 脏", + "日 下午", + "文化 的", + "文 化的", + "Ent er", + "En ter", + "E nter", + "其 余", + "▁w er", + "▁we r", + "▁ wer", + "st an", + "sta n", + "s tan", + "大 了", + "▁r acing", + "▁ra cing", + "▁rac ing", + "▁c hest", + "▁ch est", + "▁che st", + "F loat", + "▁mis take", + "▁mist ake", + "▁emph asis", + "▁emphas is", + "▁reg ulated", + "▁regul ated", + "▁regulate d", + "▁ regulated", + "▁c md", + "▁cm d", + "▁ cmd", + "pos ts", + "post s", + "po sts", + "▁slow ly", + "▁s ensors", + "▁sens ors", + "▁sensor s", + "日 成立", + "原 始", + "we gian", + "▁cont ributed", + "▁contribut ed", + "▁contribute d", + "ou rier", + "our ier", + "ouri er", + "号起诉书 指控被告人", + "的 管理", + "▁P ack", + "▁Pac k", + "▁Pa ck", + "▁ Pack", + "▁I owa", + "▁Io wa", + "▁sec retion", + "▁secret ion", + "mit s", + "mi ts", + "m its", + "▁psych ological", + "▁psycho logical", + "之 处", + "的 手", + "挖 掘", + "RE D", + "R ED", + "Op t", + "O pt", + "了 个", + "作品 简介", + "(\" #", + "( \"#", + "▁Sw eden", + "▁Swed en", + "▁Swe den", + "▁E val", + "▁Ev al", + "▁Eva l", + "▁ Eval", + "▁d ependence", + "▁depend ence", + "t l", + "▁K al", + "▁Ka l", + ")} ^{", + ") }^{", + "ce ive", + "▁Art icle", + "▁ Article", + "ple mentation", + "plement ation", + "sh ift", + "shi ft", + "s hift", + "▁T ra", + "▁Tr a", + "▁ Tra", + "▁serv ers", + "▁ser vers", + "▁server s", + "▁serve rs", + "▁ servers", + "丈 夫", + "▁D I", + "▁ DI", + "▁Gu ard", + "▁ Guard", + "理 财", + "cu p", + "c up", + "纪 录", + "Pa nel", + "Pane l", + "Pan el", + "P anel", + "▁pre dom", + "▁pr edom", + "▁pred om", + "nP ar", + "n Par", + "▁O UT", + "▁ OUT", + "队 员", + "常 委", + "▁cont ributing", + "▁contribut ing", + "相 结合", + "ar ound", + "aro und", + "a round", + "nBack ground", + "n Background", + "▁util ize", + "岁 月", + "av irus", + "avi rus", + "avir us", + "a virus", + "type of", + "是 很", + "设计 的", + "west ern", + "w estern", + "y y", + "苏 联", + "RE S", + "R ES", + "付 出", + "anc ies", + "和 我", + "/) \\", + "/ )\\", + "带 动", + "lo ading", + "load ing", + "org eous", + "orge ous", + "in ch", + "inc h", + "i nch", + "▁s nap", + "▁sn ap", + "▁ snap", + "on i", + "o ni", + "有 可能", + "▁Stud ent", + "▁ Student", + "▁o cean", + "▁oc ean", + "中国 农业", + "模 板", + "▁mus icians", + "▁music ians", + "▁musician s", + "并 对", + "▁mac roph", + "▁macro ph", + "代 谢", + "▁Mod ern", + "▁Mode rn", + "无 需", + "ri ent", + "rie nt", + "rien t", + "r ient", + "▁protocol s", + "▁proto cols", + "▁cons ervation", + "▁conserv ation", + "▁p robe", + "▁pro be", + "▁pr obe", + "▁prob e", + "▁ probe", + "▁Que ens", + "▁Queen s", + "nS im", + "n Sim", + "in tage", + "int age", + "▁stat istically", + "▁statist ically", + "▁statistical ly", + "▁statistic ally", + "ploy ee", + "▁sc oring", + "▁U nfortunately", + "▁B uy", + "▁Bu y", + "▁ Buy", + "na t", + "n at", + "新 能源", + "she et", + "s heet", + "录 取", + "ho ok", + "h ook", + "▁s urf", + "▁su rf", + "▁sur f", + "ph ere", + "pher e", + "p here", + "D b", + "hm a", + "h ma", + "千 年", + "看 出", + "▁over come", + "▁re stricted", + "▁restr icted", + "▁restrict ed", + "▁ restricted", + "nW here", + "nWh ere", + "n Where", + "几 十", + "财产保险 股份有限公司", + "我们 在", + "我 们在", + "▁C orp", + "▁Co rp", + "▁Cor p", + "▁ Corp", + "刑期 自", + "诉讼 权利", + "Re port", + "Rep ort", + "Repo rt", + "▁v arying", + "▁var ying", + "▁vary ing", + "▁va rying", + "▁ varying", + "▁S hare", + "▁Sh are", + "▁Sha re", + "▁Shar e", + "▁ Share", + "▁crow d", + "▁cro wd", + "端 口", + "▁cop per", + "P ub", + "豆 腐", + "▁app eal", + "▁appe al", + "想 着", + "▁loss es", + "▁los ses", + "符 号", + "▁do ctors", + "▁doctor s", + "▁comp utation", + "▁comput ation", + "▁G h", + "om at", + "oma t", + "o mat", + "or tion", + "ort ion", + "ache lor", + "achel or", + "▁N ig", + "▁Ni g", + "us c", + "u sc", + "认真 遵守", + "▁ret irement", + "▁retire ment", + "be s", + "b es", + "La yer", + "L ayer", + "▁util ized", + "▁utilize d", + "en ant", + "ena nt", + "e nant", + "▁s quad", + "▁squ ad", + "re direct", + "red irect", + "对本 案", + "对 本案", + "Middle ware", + "M iddleware", + "词 汇", + "j upyter", + "br anch", + "bra nch", + "▁c v", + "▁ cv", + "已 构成", + "▁\" @", + "▁ \"@", + "公安 机关", + "内 外", + "ap tic", + "apt ic", + "a ptic", + "▁vict im", + "▁vic tim", + "ly n", + "l yn", + "爱 国", + "con vert", + "conv ert", + "▁special ist", + "▁B asic", + "▁Bas ic", + "▁ Basic", + "恐 怖", + "▁G ra", + "▁Gr a", + "▁Th read", + "▁Thr ead", + "▁ Thread", + "▁Mal ays", + "▁Malay s", + "激 发", + "法律 服务", + "▁mov ements", + "▁move ments", + "▁movement s", + "UT F", + "U TF", + "合理 的", + "▁mut ant", + "▁p aras", + "▁par as", + "▁para s", + "▁pa ras", + "▁Al gebra", + "▁ Algebra", + "▁Is lands", + "▁Island s", + "全 程", + "× (", + "ing ham", + "Pr ice", + "P rice", + "dr iv", + "d riv", + "LI NE", + "LIN E", + "L INE", + "tc ase", + "t case", + "▁decl ared", + "▁declar ed", + "▁declare d", + "前 景", + "女 士", + "方程 为", + "▁cert ificate", + "▁ certificate", + "▁R andom", + "▁Rand om", + "▁Ran dom", + "▁ Random", + "▁g ate", + "▁ga te", + "▁ gate", + "hi story", + "hist ory", + "h istory", + "F M", + "第三 章", + "第 三章", + "▁t ooth", + "▁to oth", + "▁too th", + "mem ory", + "memo ry", + "m emory", + "▁bo nus", + "▁bon us", + "▁Sw edish", + "▁Swed ish", + "▁G arden", + "▁Gar den", + "▁Gard en", + "已经发生法律效力 的", + "IL L", + "I LL", + "ot rop", + "otr op", + "▁m arine", + "▁mar ine", + "▁ma rine", + "▁ marine", + "re nd", + "ren d", + "r end", + "▁d emo", + "▁de mo", + "▁dem o", + "▁ demo", + "再次 申请执行", + "再次申请 执行", + "nG o", + "n Go", + "澳 门", + "▁t rim", + "▁tr im", + "▁tri m", + "▁ trim", + "ap ing", + "api ng", + "a ping", + "▁there by", + "▁vict ims", + "▁victim s", + "Return s", + "if act", + "ifa ct", + "i fact", + "▁f aced", + "▁fac ed", + "▁face d", + "▁fa ced", + "对 你", + "ap top", + "apt op", + "编 程", + "> )", + "什么 的", + "▁Emp ire", + "▁ent ering", + "▁enter ing", + "分 泌", + "▁redist ribute", + "De m", + "D em", + "▁diff iculty", + "▁difficult y", + "▁C L", + "▁ CL", + "▁A ge", + "▁Ag e", + "▁ Age", + "这 就", + "▁N ick", + "▁Nic k", + "▁Ni ck", + "▁ Nick", + "可能 性", + "▁gar age", + "▁ga rage", + "pa d", + "p ad", + "先 行", + "AG S", + "A GS", + "有两 个", + "有 两个", + "pi c", + "p ic", + "t z", + "▁qu ot", + "▁quo t", + "▁ quot", + "dist ance", + "di stance", + "d istance", + "▁p ricing", + "▁pr icing", + "▁pri cing", + "心 态", + "▁public ations", + "▁publication s", + "▁flex ibility", + "一 百", + "▁p leased", + "▁please d", + "▁ple ased", + "▁pleas ed", + "▁plea sed", + "▁trans actions", + "▁transaction s", + "▁ transactions", + "vol ume", + "nF urther", + "气 体", + "优秀 的", + "▁any more", + "▁I l", + "▁ Il", + "▁\" \"\"\\", + "▁\"\" \"\\", + "▁\"\"\" \\", + "▁ \"\"\"\\", + "po t", + "p ot", + "一 月", + "▁B BC", + "▁BB C", + "▁b ias", + "▁bi as", + "▁ bias", + "\\\\ ;", + "pa ir", + "p air", + "▁dom inant", + "Ha s", + "H as", + "内 核", + "▁vis its", + "▁visit s", + "/ #", + "as ant", + "asa nt", + "asan t", + "st ock", + "sto ck", + "df s", + "d fs", + "▁ens uring", + "nC alculate", + "n Calculate", + "公务 员", + "需要 的", + "Cr eat", + "Cre at", + "C reat", + "yt ics", + "ytic s", + "friend ly", + ": %", + "se ts", + "set s", + "s ets", + ";/ /", + "; //", + "Fr agment", + "middle ware", + "m iddleware", + "▁le ather", + "s b", + "att ice", + "atti ce", + "к а", + "nT rack", + "nTr ack", + "n Track", + "in ar", + "ina r", + "i nar", + "▁aff ecting", + "▁affect ing", + "▁ang ular", + "▁ angular", + "回 去", + "引 入", + "▁pro vision", + "▁prov ision", + "▁ provision", + "([ \\", + "( [\\", + "哪 怕", + "高 达", + "分 割", + "en ch", + "enc h", + "e nch", + "▁S ingle", + "▁Sing le", + "▁ Single", + "▁La TeX", + "▁ LaTeX", + "▁fe wer", + "▁few er", + "ject ion", + "je ction", + "j ection", + "ru s", + "r us", + "头 的", + "浏览 器", + "▁bl ind", + "▁ blind", + "std io", + "▁s uite", + "▁su ite", + "▁suit e", + "▁ suite", + "▁s kip", + "▁sk ip", + "▁ski p", + "▁ skip", + "▁F all", + "▁Fa ll", + "▁Fal l", + "▁ Fall", + "教 室", + "▁f alls", + "▁fall s", + "▁fal ls", + "▁ falls", + "是 怎么", + "bl ast", + "bla st", + "b last", + "激 烈", + "AR CH", + "ARC H", + "撤回 对被告", + "▁met rics", + "▁metric s", + "▁ metrics", + "ac ht", + "ach t", + "a cht", + "作为 一个", + "作 为一个", + "▁ox ide", + "▁oxid e", + "▁ oxide", + "▁fol ks", + "▁folk s", + "▁d ies", + "▁di es", + "▁die s", + "▁ dies", + "▁acc eleration", + "▁accel eration", + "▁acceler ation", + "售 后", + "IN K", + "I NK", + "fl at", + "f lat", + "Met adata", + "Meta data", + "变 更", + "▁b ulk", + "▁bul k", + "▁ bulk", + "▁spec imens", + "▁specimen s", + "▁phys ician", + "▁physic ian", + "▁L ind", + "▁Lin d", + "▁Li nd", + "出现 在", + "出 现在", + "提交上诉状 正本一份", + "▁capt ured", + "▁capture d", + "▁de leted", + "▁del eted", + "▁delete d", + "▁delet ed", + "▁ deleted", + "气 象", + "op athy", + "opath y", + "opa thy", + "o pathy", + "▁Re cord", + "▁Rec ord", + "▁ Record", + "е р", + "ol s", + "o ls", + "对 待", + "G M", + "▁S av", + "▁Sa v", + "le ar", + "lea r", + "l ear", + "▁dec ay", + "▁\\' \\'\\", + "▁\\'\\' \\", + "▁\\'\\ '\\", + "▁ \\'\\'\\", + "▁commun icate", + "▁communic ate", + "ce ptions", + "cept ions", + "ception s", + "▁c ake", + "▁ca ke", + "▁ cake", + "▁b are", + "▁bar e", + "▁ba re", + "op ts", + "opt s", + "o pts", + "▁B rad", + "▁Br ad", + "▁Bra d", + "▁I R", + "▁ IR", + "nP art", + "nPar t", + "n Part", + "▁s yntax", + "▁synt ax", + "▁syn tax", + "▁ syntax", + "▁re moving", + "▁rem oving", + "▁remov ing", + "浪 漫", + "中国 共产党", + "row th", + "for Each", + "外 出", + "▁S everal", + "▁Sever al", + "▁Sev eral", + "操作 系统", + "D to", + "V ar", + "var d", + "va rd", + "v ard", + "选 用", + "GR O", + "G RO", + "因 式", + "力 和", + "uu m", + "u um", + "▁Miss ouri", + "▁medal ists", + "▁pay load", + "▁ payload", + "坐 在", + "▁investig ations", + "▁investigation s", + "> &", + "分辨 率", + "ya l", + "y al", + "类型 的", + "类 型的", + "▁oper ational", + "▁operation al", + "conn ected", + "connect ed", + "焦 点", + "▁ex ponential", + "▁exponent ial", + "▁T a", + "▁ Ta", + "ir al", + "ira l", + "i ral", + "▁restr iction", + "▁restrict ion", + "i O", + "iz on", + "i zon", + "grad uate", + "奶 奶", + "sy m", + "s ym", + "▁Prop Types", + "▁ PropTypes", + "Da t", + "D at", + "▁f ra", + "▁fr a", + "▁ fra", + "▁in clusion", + "▁incl usion", + "安全 生产", + "▁ 朱", + "▁s park", + "▁sp ark", + "▁spa rk", + "▁ spark", + "▁C art", + "▁Car t", + "▁Ca rt", + "▁ Cart", + "prot otype", + "proto type", + "▁d ipl", + "▁di pl", + "▁dip l", + "sc opic", + "nQu estion", + "n Question", + "▁path ogenesis", + "▁pathogen esis", + "▁ 林", + "▁d escent", + "▁des cent", + "▁desc ent", + "▁s wit", + "▁sw it", + "出 门", + "lu x", + "l ux", + "qu er", + "que r", + "q uer", + "▁Vol ume", + "▁ Volume", + "疫情 防控", + "Sa ve", + "S ave", + "不 含", + "▁trad ition", + "▁tra dition", + "权 威", + "▁I tem", + "▁It em", + "▁ Item", + "▁Dis ney", + "我 现在", + "▁C orn", + "▁Co rn", + "▁Cor n", + "nb ool", + "n bool", + "管理 的", + "贵 的", + "▁re volution", + "▁rev olution", + "▁v o", + "▁ vo", + "▁P L", + "▁ PL", + "▁ 个", + "▁cont rolling", + "▁control ling", + "ac o", + "a co", + "h d", + "mer s", + "me rs", + "m ers", + "ar ma", + "arm a", + "▁sp inal", + "▁spin al", + "▁ spinal", + "数 为", + "Task s", + "T asks", + "S w", + "▁V o", + "▁ Vo", + "sh ops", + "shop s", + "▁ap plies", + "▁app lies", + "▁appl ies", + "▁Pr ince", + "▁Princ e", + "▁Pri nce", + "▁M oh", + "▁Mo h", + "er ving", + "erv ing", + "不 锈钢", + "字符 串", + "Dr aw", + "D raw", + "in ic", + "ini c", + "i nic", + "市 公安局", + "职 能", + "病 情", + "M W", + "▁a ug", + "▁au g", + "▁ aug", + "th ere", + "ther e", + "the re", + "t here", + "▁particip ating", + "▁reg ulate", + "▁regul ate", + "分别 是", + "Ki t", + "K it", + "附 带", + "ab c", + "a bc", + "du mp", + "d ump", + "nUn iversity", + "nUnivers ity", + "n University", + "▁phenomen on", + "US B", + "U SB", + "一样 的", + "一 样的", + "\"] ,\\", + "\"], \\", + "\" ],\\", + "ki sh", + "k ish", + "▁poly morph", + "▁polym orph", + "信息 均", + "ou ting", + "out ing", + "o uting", + "ne c", + "n ec", + "▁for got", + "▁forg ot", + "▁symbol s", + "▁ symbols", + "南 昌", + "back end", + "▁util izing", + "的 三", + "指 派", + "▁r ugby", + "▁rug by", + "志愿 者", + "房 型", + "日 电", + "▁p uts", + "▁put s", + "▁pu ts", + "▁ puts", + "▁b ottle", + "▁bo ttle", + "▁bott le", + "▁bot tle", + "nt r", + "n tr", + "F ull", + "轿 车", + "▁Act ive", + "▁Activ e", + "▁ Active", + "▁independent ly", + "▁independ ently", + "商 初字第", + "▁W ars", + "▁War s", + "▁Wa rs", + "▁dis able", + "▁ disable", + "一 批", + "▁M ove", + "▁Mo ve", + "▁ Move", + "▁P erson", + "▁Per son", + "▁Pers on", + "▁ Person", + "妹 妹", + "▁D ue", + "▁Du e", + "▁ Due", + "学校 的", + "▁ult r", + "▁ul tr", + "不 清", + "▁sc enes", + "▁scen es", + "▁scene s", + "▁ scenes", + "▁tim ing", + "▁ti ming", + "▁P HP", + "▁PH P", + "▁ PHP", + "授 予", + "▁s ight", + "▁si ght", + "▁sig ht", + "▁B ath", + "▁Ba th", + "▁Bat h", + "只 会", + "▁g astr", + "▁gas tr", + "▁ga str", + "▁gast r", + "pro ve", + "pr ove", + "prov e", + "p rove", + "▁I raq", + "▁Ir aq", + "▁t weet", + "▁twe et", + "▁ tweet", + "▁c urrency", + "▁curr ency", + "▁ currency", + "c u", + "▁M T", + "▁ MT", + "因 而", + "▁t rib", + "▁tr ib", + "▁tri b", + "▁bar rier", + "▁barr ier", + "成为 了", + "成 为了", + "▁obt aining", + "▁obtain ing", + "▁T al", + "▁Ta l", + "F ont", + "日 益", + "▁R ailway", + "▁Rail way", + "爆 炸", + "Pub lic", + "P ublic", + "洗 净", + "out heast", + "outh east", + "▁d uty", + "▁du ty", + "▁ duty", + "ho ver", + "h over", + "▁al umin", + "绘 画", + "采 集", + "▁trans cript", + "▁tra nscript", + "▁tran script", + "▁transc ript", + "na ls", + "nal s", + "n als", + "▁\\' \\'", + "▁\\'\\ '", + "▁ \\'\\'", + "cy cle", + "cycl e", + "c ycle", + "公诉机关 指控", + "▁circ ular", + "▁cir cular", + "▁trans f", + "▁tran sf", + "▁pro gressive", + "▁progress ive", + "▁cl othing", + "▁clot hing", + "▁cloth ing", + "出 行", + "当 初", + "终 身", + "▁t hemes", + "▁the mes", + "▁them es", + "▁theme s", + "▁ themes", + "nO h", + "n Oh", + "▁cook ies", + "▁cookie s", + "▁ cookies", + "不 易", + "人 和", + "本院 依据", + "合 计", + "▁P u", + "Po wer", + "P ower", + "bur n", + "bu rn", + "b urn", + "分 手", + "姓 名", + "▁me ets", + "▁meet s", + "文 本", + "▁c erebral", + "▁cere bral", + "to k", + "t ok", + "万 里", + "▁T el", + "▁Te l", + "▁ Tel", + "ma link", + "mal ink", + "▁associ ations", + "▁association s", + "▁b ars", + "▁bar s", + "▁ba rs", + "▁ bars", + "控 股", + "春 节", + "▁H ay", + "▁Ha y", + "▁satisf y", + "这么 多", + "d n", + "引 自", + "▁Ass oci", + "es ian", + "esi an", + "▁de mands", + "▁dem ands", + "▁demand s", + "科 大", + "▁R T", + "▁ RT", + "ip er", + "ipe r", + "i per", + "法 庭", + "▁t el", + "▁te l", + "▁ tel", + "▁vari ed", + "▁var ied", + "▁va ried", + "▁al k", + "▁ alk", + "R andom", + "p b", + "▁fr ames", + "▁frame s", + "▁fra mes", + "▁ frames", + "占地 面积", + "占 地面积", + "加拿 大", + "中文 化", + "中 文化", + "但 我", + "▁t we", + "▁tw e", + "z i", + "▁const ants", + "▁constant s", + "▁ constants", + "▁F L", + "▁ FL", + "牛 肉", + "▁K ansas", + "▁P i", + "▁ Pi", + "▁leg end", + "▁ legend", + "ill ance", + "illa nce", + "职 称", + "na uthor", + "n author", + "▁p regnant", + "▁pregn ant", + "▁part ition", + "▁ partition", + "▁accum ulation", + "▁sa uce", + "▁vac ation", + "▁va cation", + "IS O", + "I SO", + "at ted", + "att ed", + "▁g amma", + "▁gam ma", + "▁ga mma", + "▁ gamma", + "▁bre aks", + "▁break s", + "▁Fr ont", + "▁Fro nt", + "▁ Front", + "▁nav igation", + "▁ navigation", + "化 为", + "▁g rap", + "▁gr ap", + "▁gra p", + "}{ {", + "} {{", + "▁ 导演", + ")) :\\", + ") ):\\", + "▁ret riev", + "▁f acts", + "▁fact s", + "▁fac ts", + "▁fa cts", + "▁ facts", + "▁p ink", + "▁pi nk", + "▁pin k", + "▁ pink", + "}\" \\", + "} \"\\", + "一段 时间", + "一 段时间", + "no m", + "n om", + "可以 通过", + "ac cept", + "ol or", + "olo r", + "o lor", + "▁K at", + "▁Ka t", + "更好 地", + "date s", + "da tes", + "dat es", + "d ates", + "▁ap prox", + "▁app rox", + "▁appro x", + "▁ approx", + "Fe ature", + "▁con vergence", + "▁conver gence", + "▁converge nce", + "pan el", + "pa nel", + "p anel", + "▁con form", + "▁conf orm", + "▁document ed", + "ol ute", + "感 动", + "Mod al", + "Mo dal", + "M odal", + "▁Wil son", + "^ (", + "设 有", + "▁s ync", + "▁sy nc", + "▁syn c", + "▁ sync", + "▁high lights", + "▁highlight s", + "▁Fin ancial", + "▁t rou", + "▁tr ou", + "▁tro u", + "▁p ipeline", + "▁pip eline", + "▁pipe line", + "▁ pipeline", + "it coin", + "itc oin", + "▁des ktop", + "▁desk top", + "▁ desktop", + "em at", + "ema t", + "e mat", + "轨 道", + "op ter", + "opt er", + "ign ore", + "的 机会", + "看 过", + "Con f", + "Co nf", + "▁g ent", + "▁gen t", + "▁ge nt", + "▁ gent", + "询 问", + "▁d rain", + "▁dr ain", + "参加 了", + "参 加了", + "▁de part", + "▁dep art", + "旗 下", + "▁F uture", + "▁Fu ture", + "▁ Future", + "ex amples", + "example s", + "exam ples", + "地 板", + "本题 考查了", + "本题考查 了", + "办事 处", + "▁trans late", + "▁transl ate", + "▁ translate", + "habilit ation", + "ix els", + "ixel s", + "it ting", + "itt ing", + "FO RM", + "FOR M", + "F ORM", + "生效 之日起", + "魔 法", + "▁re leases", + "▁release s", + "▁ releases", + "▁H u", + "大 数据", + "▁C ook", + "▁Co ok", + "▁ Cook", + "▁a nch", + "▁an ch", + "▁anc h", + "▁ anch", + "▁ill egal", + "▁il legal", + "▁illeg al", + "▁comb inations", + "▁combin ations", + "▁combination s", + "▁A LL", + "▁AL L", + "▁ ALL", + "ent ral", + "▁el astic", + "▁elast ic", + "▁ elastic", + "▁S n", + "▁ Sn", + "▁p el", + "▁pe l", + "▁ pel", + "ol itan", + "olit an", + "oli tan", + "▁person ally", + "▁personal ly", + "▁vit amin", + "▁ch arts", + "▁char ts", + "▁chart s", + "▁ charts", + "到 位", + "CO L", + "C OL", + "▁h asn", + "▁has n", + "▁ha sn", + "市政 府", + "市 政府", + "LO W", + "L OW", + "口 腔", + "▁ 餐馆", + "发 明", + "▁E P", + "▁ EP", + "t g", + "▁cl othes", + "▁clot hes", + "▁cloth es", + "▁t ast", + "▁ta st", + "▁exec uted", + "▁execute d", + "▁execut ed", + "▁C C", + "▁ CC", + "男 朋友", + "防 水", + "批 评", + "凭 借", + "▁vert ices", + "▁ vertices", + "*\\ \\", + "* \\\\", + "▁m ood", + "▁mo od", + "▁enter prise", + "▁ enterprise", + "对 自己", + "上 是", + "se d", + "s ed", + "▁ad aptive", + "▁adapt ive", + "▁ adaptive", + "重 的", + "▁P T", + "▁ PT", + "诞 生", + "▁ →", + "Sup pose", + "ne tes", + "net es", + "▁ed iting", + "▁edit ing", + "▁A gain", + "▁Ag ain", + "▁C P", + "▁ CP", + "itud inal", + "ry pto", + "rypt o", + "▁w aters", + "▁water s", + "▁wa ters", + "▁wat ers", + "▁h ang", + "▁ha ng", + "▁han g", + "▁ hang", + "培 育", + "放 心", + "▁E ric", + "▁Er ic", + "▁ Eric", + "ennes see", + "IL D", + "I LD", + "ial s", + "ia ls", + "i als", + "▁x ml", + "▁ xml", + "二 首", + "in gly", + "ing ly", + "__ \\':\\", + "__\\ ':\\", + "▁res olved", + "▁resolve d", + "▁ resolved", + "排 序", + "opt ional", + "option al", + "}) ^{", + "})^ {", + "} )^{", + "ur ches", + "urch es", + "f x", + "cont ains", + "co very", + "cover y", + "cov ery", + "c overy", + "Ms g", + "M sg", + "事实 清楚", + "ot ive", + "oti ve", + "ab ad", + "aba d", + "a bad", + "th ur", + "可在接到 判决书的第二日起十日内", + "精 心", + "那就 是", + "那 就是", + "一 项", + "▁T ax", + "▁Ta x", + "▁ Tax", + "pe g", + "p eg", + "ult ural", + "▁m a", + "▁ ma", + "增加 了", + "增 加了", + "较大 的", + "较 大的", + "▁Con st", + "▁Co nst", + "▁Cons t", + "▁ Const", + "军 队", + "CA D", + "C AD", + "Tw o", + "T wo", + "ol o", + "o lo", + "ch rome", + "chr ome", + "chrom e", + "nw e", + "n we", + "▁appear ances", + "▁appearance s", + "eu r", + "e ur", + "▁C u", + "▁ Cu", + "入 口", + "新华 社", + "▁l ateral", + "▁later al", + "▁late ral", + "▁lat eral", + "at on", + "ato n", + "a ton", + "▁compar able", + "▁S port", + "▁Sp ort", + "▁ Sport", + "▁ 有", + "静 脉", + "▁N ations", + "▁Nation s", + "▁Nat ions", + "▁: )", + "▁ :)", + "住 院", + "▁neuro nal", + "▁neur onal", + "▁neuron al", + "进行 分析", + "▁re fers", + "▁ref ers", + "▁refer s", + "按 摩", + "st eps", + "ste ps", + "step s", + "▁c rack", + "▁cr ack", + "▁cra ck", + "带 有", + "bas ic", + "b asic", + "▁equ ally", + "▁equal ly", + "▁eq ually", + "诗 人", + "osc opic", + "o scopic", + "▁ 新", + "▁l ambda", + "▁lamb da", + "▁ lambda", + "▁Per formance", + "▁Perform ance", + "▁ Performance", + "▁Town ship", + "S B", + "一 部", + "县 城", + "▁c ry", + "▁cr y", + "du ration", + "d uration", + "游 泳", + "nt his", + "nth is", + "n this", + "文 档", + "词 语", + "合法 传唤", + "北 方", + "▁mus cles", + "▁muscle s", + "▁musc les", + "那么 多", + "▁s eeds", + "▁se eds", + "▁see ds", + "▁seed s", + ")) ,", + ") ),", + "▁accompan ied", + "ps ilon", + "psi lon", + "多 数", + "num s", + "nu ms", + "n ums", + "▁every where", + "水 中", + "ap sed", + "aps ed", + "apse d", + "▁sh ops", + "▁shop s", + "▁ shops", + "▁comp uters", + "▁comput ers", + "▁computer s", + "▁compute rs", + "▁Cap ital", + "ER E", + "E RE", + "▁s pont", + "▁sp ont", + "▁spo nt", + "常委 会", + "常 委会", + "▁s tain", + "▁st ain", + "▁dam aged", + "▁damage d", + "两 边", + "gh an", + "g han", + "发 电", + "aw are", + "awa re", + "a ware", + "▁sp ots", + "▁spot s", + "▁spo ts", + "▁ spots", + "▁S her", + "▁Sh er", + "▁She r", + "海 拔", + "▁c razy", + "▁cr azy", + "▁cra zy", + "▁A h", + "▁ Ah", + "▁district s", + "▁n otation", + "▁not ation", + "▁ notation", + "▁with draw", + "▁withd raw", + "是 你", + "br and", + "bra nd", + "b rand", + "in yl", + "iny l", + "▁W ould", + "▁ Would", + "场 的", + "am er", + "ame r", + "a mer", + "an ia", + "ani a", + "a nia", + "▁fl avor", + "▁flav or", + "▁anal ytical", + "▁analy tical", + "▁analyt ical", + "▁analytic al", + "获得 了", + "获 得了", + "经 纪", + "ect omy", + "e ctomy", + "ga te", + "g ate", + "登记 机关", + "▁Ste phen", + "▁Step hen", + "▁co aches", + "▁coach es", + "IB UT", + "I BUT", + "▁L imited", + "▁Lim ited", + "▁Limit ed", + "it ecture", + "itect ure", + "▁f unny", + "▁fun ny", + "▁p s", + "▁ ps", + "ex pand", + "exp and", + "▁f orth", + "▁for th", + "▁fort h", + "▁ forth", + "▁Vill age", + "▁Villa ge", + "st arts", + "start s", + "star ts", + "▁r aces", + "▁ra ces", + "▁race s", + "▁rac es", + "mer ge", + "▁cl osure", + "▁clos ure", + "▁ closure", + "qu ant", + "qua nt", + "q uant", + "为 止", + "\\' \"", + "发生 了", + "发 生了", + "▁st orm", + "▁sto rm", + "▁ storm", + "cont ents", + "content s", + "m L", + "为 例", + "▁I nsp", + "▁In sp", + "▁Ins p", + "▁ Insp", + "▁g ithub", + "▁git hub", + "▁ github", + "审批 表", + "审 批表", + "▁fund ed", + "▁fun ded", + "▁ funded", + "▁r u", + "▁ ru", + "▁re store", + "▁rest ore", + "▁restor e", + "▁ restore", + "▁ 金", + "某 种", + "}( \\\\", + "} (\\\\", + "ur ations", + "uration s", + "喜 爱", + "融 入", + "▁met adata", + "▁meta data", + "▁ metadata", + "op ed", + "ope d", + "o ped", + "数 额", + "增 大", + "感 兴趣", + "▁a ver", + "▁av er", + "▁ aver", + "▁un clear", + "▁unc lear", + "▁uncle ar", + "二 月", + "整 治", + "爆 发", + "▁D ise", + "▁Dis e", + "▁Di se", + "cd ots", + "cdot s", + "c dots", + "ibli ography", + "ibl iography", + "Me mber", + "Mem ber", + "M ember", + "用 药", + "好 多", + "yn chron", + "ynch ron", + "终 字第", + "进出 口", + "进 出口", + "{\\ '", + "{ \\'", + "创建 通道", + "sym bol", + "s ymbol", + "词条 初始", + "om ing", + "omin g", + "omi ng", + "o ming", + "信息均 引自", + "词条初始 信息均引自", + "ac co", + "acc o", + "▁b unch", + "▁bu nch", + "企业 词条", + "企业词条 极速", + "企业词条极速 创建通道", + "百度百科 企业词条极速创建通道", + "▁S olutions", + "▁Solution s", + "▁Sol utions", + "▁h ide", + "▁hi de", + "▁ hide", + "▁d estr", + "▁de str", + "▁des tr", + "▁dest r", + "▁Current ly", + "▁ Currently", + "▁fe eding", + "▁feed ing", + "▁fee ding", + "▁ feeding", + "▁s lot", + "▁sl ot", + "▁ slot", + "▁n eon", + "▁ne on", + "▁neo n", + "▁ass ignment", + "▁assign ment", + "▁ assignment", + "▁sub mission", + "▁ submission", + "uber netes", + "comp any", + "ad ies", + "adi es", + "a dies", + "▁surpr ised", + "▁surprise d", + "}} {\\\\", + "}}{ \\\\", + "} }{\\\\", + "▁A mb", + "▁Am b", + "▁ Amb", + "▁household s", + "两 位", + "▁V eg", + "▁Ve g", + "Ma y", + "M ay", + "Di ct", + "D ict", + "的 天", + "蛋 糕", + "ne rg", + "ner g", + "n erg", + "赶 紧", + "nS pec", + "nSp ec", + "nSpe c", + "n Spec", + "▁t owns", + "▁town s", + "▁tow ns", + "的 信息", + "▁g ay", + "▁ga y", + "ig nKey", + "ign Key", + "> )", + "▁Sc ient", + "▁Sci ent", + "oc l", + "o cl", + "▁m yel", + "▁my el", + "is ons", + "ison s", + "iso ns", + "▁a nth", + "▁an th", + "▁ant h", + "▁ anth", + "he rence", + "her ence", + "here nce", + "逮 捕", + "PC R", + "P CR", + "▁comp ete", + "▁compet e", + "工商 行政", + "C a", + "▁Phil adelphia", + "▁F orum", + "▁For um", + "▁Fo rum", + "形成 了", + "形 成了", + "▁Alex ander", + "▁Alexand er", + "▁Alexa nder", + "_ (", + "ace ut", + "an ted", + "ant ed", + "ante d", + "▁c ycles", + "▁cy cles", + "▁cycl es", + "▁cycle s", + "▁ cycles", + "▁w ash", + "▁was h", + "▁wa sh", + "▁ wash", + "▁equ ilibrium", + "\\\\ /", + "▁inhib ited", + "▁inhibit ed", + "▁accur ately", + "▁accurate ly", + "▁C os", + "▁Co s", + "▁ Cos", + ":* *", + ": **", + "▁log ger", + "▁ logger", + "▁H al", + "▁Ha l", + "陶 瓷", + "ir ts", + "irt s", + "财 经", + "sk ip", + "ski p", + "s kip", + "▁F low", + "▁Fl ow", + "▁Flo w", + "▁ Flow", + "▁wh ilst", + "病 的", + "as ia", + "asi a", + "厚 的", + "社会 抚养费", + "▁北 京", + "▁ 北京", + "▁r ising", + "▁ris ing", + "▁ri sing", + "法 人", + "可以 说", + "纪 委", + "隐 藏", + "▁f est", + "▁fe st", + "▁ fest", + "LE V", + "L EV", + "看到 了", + "看 到了", + "▁p ulse", + "▁pul se", + "▁puls e", + "▁ pulse", + "nt est", + "nte st", + "n test", + "时 许", + "▁S tone", + "▁St one", + "最 为", + "▁fr actions", + "▁fraction s", + "▁fract ions", + "爱 你", + "在 外", + "▁sh arp", + "▁sha rp", + "▁shar p", + "▁ sharp", + "nB uild", + "n Build", + "co d", + "c od", + "残 疾", + "▁Over all", + "书 籍", + "精 确", + "▁p rize", + "▁pr ize", + "▁pri ze", + "▁priz e", + "高 压", + "▁s oul", + "▁so ul", + "▁sou l", + "▁t ou", + "▁to u", + "Fl ow", + "F low", + "宝 贝", + "▁rec ipient", + "▁recip ient", + "▁ recipient", + "▁un iversal", + "▁univers al", + "▁uni versal", + "大 气", + "十一 日", + "十 一日", + "▁t agged", + "▁tag ged", + "▁ tagged", + "▁En ron", + "▁ Enron", + "nD oes", + "nDo es", + "n Does", + "中 山", + "as sign", + "ass ign", + "ni a", + "n ia", + "▁Res ult", + "▁ Result", + "▁h opes", + "▁hope s", + "▁hop es", + "▁ho pes", + "责令 被执行人", + "▁expl ored", + "▁explore d", + "▁explo red", + "▁explor ed", + "气 质", + "▁a tom", + "▁at om", + "▁ atom", + "▁ 歌曲", + "ru les", + "rule s", + "r ules", + "ure au", + "Fun c", + "F unc", + "▁B rian", + "▁Br ian", + "▁Bri an", + "uit y", + "ui ty", + "u ity", + "▁Di ego", + "▁Die go", + "pr ime", + "pri me", + "prim e", + "安 县", + "▁Pro fessional", + "▁Profess ional", + "▁Profession al", + "法 则", + "州 区", + "替 代", + "ik ing", + "iki ng", + "i king", + "▁ 男", + "▁comp ile", + "▁ compile", + "▁int ention", + "▁intent ion", + "▁lo ans", + "▁loan s", + "动 漫", + "▁satisf ied", + "发 射", + "被 人", + "身 为", + "op ro", + "o pro", + "▁ind ices", + "▁indic es", + "▁ indices", + "▁M iller", + "▁Mil ler", + "▁Mi ller", + "▁Mill er", + "]] \\", + "] ]\\", + "▁B attle", + "▁Ba ttle", + "▁Bat tle", + "▁Batt le", + "se a", + "s ea", + "▁init iative", + "▁initi ative", + "in ery", + "ine ry", + "iner y", + "▁d iver", + "▁di ver", + "▁div er", + "▁dive r", + "▁p neum", + "服务 的", + "X ml", + "造成 的", + "造 成的", + "▁El izabeth", + "task s", + "tas ks", + "t asks", + "▁L iving", + "▁Li ving", + "▁Liv ing", + "入 手", + "▁special ized", + "▁specialize d", + "le m", + "l em", + "▁de form", + "▁def orm", + "上 网", + "▁Com par", + "▁Comp ar", + "▁ Compar", + "敌 人", + "▁G allery", + "▁Gall ery", + "▁ Gallery", + "讨 厌", + "▁ir re", + "▁irr e", + "下来 的", + "下 来的", + "▁l ogs", + "▁log s", + "▁lo gs", + "▁ logs", + "▁F un", + "▁Fu n", + "▁ Fun", + "偶 尔", + "ob ic", + "obi c", + "o bic", + "▁Return s", + "▁ Returns", + "ST AT", + "STA T", + "ill iant", + "illi ant", + "illian t", + "▁v enue", + "▁ven ue", + "▁ venue", + "▁ 酒店", + "▁l ang", + "▁la ng", + "▁lan g", + "▁ lang", + "▁H o", + "▁ Ho", + "re ement", + "ree ment", + "未 知", + "留 言", + "▁s hed", + "▁sh ed", + "▁she d", + "ch anges", + "chan ges", + "change s", + "chang es", + "De tail", + "Det ail", + "lim ited", + "limit ed", + "l imited", + "▁C zech", + "▁Cz ech", + "ov o", + "o vo", + "相同 的", + "不 及", + "相关 部门", + "▁S ort", + "▁So rt", + "▁Sor t", + "▁ Sort", + "康 复", + "em bed", + "emb ed", + "e mbed", + "▁implement ing", + "的 距离", + "第二百六 十二条第二款", + "▁Un ity", + "▁Unit y", + "▁Uni ty", + "▁ Unity", + "mo unt", + "m ount", + "▁trans plantation", + "▁transplant ation", + "io tic", + "iot ic", + "i otic", + "rem ote", + "op sy", + "ops y", + "o psy", + "▁* )", + "▁ *)", + "不 对", + "us age", + "usa ge", + "以 此", + "}} }", + "} }}", + "on ing", + "oni ng", + "o ning", + "而 成", + "▁St ory", + "▁ Story", + "▁k nee", + "▁kn ee", + "▁kne e", + "▁ex patriate", + "▁expat riate", + "▁ch olesterol", + "的第 一", + "的 第一", + "AS H", + "A SH", + "一方 面", + "一 方面", + "▁sh apes", + "▁shape s", + "▁sha pes", + "▁ shapes", + "的 目的", + "▁att ending", + "▁attend ing", + "▁atten ding", + "假 释", + "os ity", + "osit y", + "osi ty", + "de scribe", + "des cribe", + "desc ribe", + "prot ocol", + "proto col", + "min ute", + "▁P roduction", + "▁Pro duction", + "▁Product ion", + "▁Produ ction", + "▁ Production", + "亚 洲", + "奇 怪", + "ex tension", + "ext ension", + "▁consist ently", + "▁consistent ly", + "▁V ery", + "▁Ver y", + "▁Ve ry", + "▁ Very", + "乡 镇", + "豪 华", + "et e", + "e te", + "▁t one", + "▁to ne", + "▁ton e", + "▁ tone", + "▁s pher", + "▁sp her", + "▁sph er", + "▁adequ ate", + "▁P it", + "▁Pi t", + "co in", + "c oin", + "▁vol umes", + "▁volume s", + "▁ volumes", + "▁in fect", + "▁inf ect", + "▁ infect", + "▁in vari", + "▁inv ari", + "Vari able", + "Var iable", + "▁vess els", + "▁vessel s", + "想 想", + "▁R yan", + "▁Ry an", + "RE CT", + "REC T", + "R ECT", + "▁c hemistry", + "▁chem istry", + "▁n ick", + "▁nic k", + "▁ni ck", + "▁ nick", + "节 约", + "ple tion", + "plet ion", + "p letion", + "▁Pol ish", + "▁Po lish", + "W ord", + "]) )\\", + "])) \\", + "] ))\\", + "▁t ile", + "▁til e", + "▁ti le", + "▁ tile", + "ow ers", + "ower s", + "owe rs", + "o wers", + "条件 下", + "B F", + "▁l as", + "▁la s", + "▁ las", + "白 云", + "▁design ing", + "立 体", + "/ {", + "ne st", + "nes t", + "n est", + "配 有", + "陈 某", + "移 民", + "内蒙古 自治区", + "▁tem plates", + "▁template s", + "▁ templates", + "▁w ing", + "▁win g", + "▁wi ng", + "▁ wing", + "▁s poke", + "▁sp oke", + "▁spo ke", + "▁A dam", + "▁Ad am", + "▁Ada m", + "▁ Adam", + "▁t ennis", + "▁ten nis", + "▁B UT", + "▁BU T", + "▁ BUT", + "▁T ool", + "▁To ol", + "▁Too l", + "▁ Tool", + "▁ β", + "um bn", + "umb n", + "▁ д", + "将 于", + "▁equ als", + "▁equal s", + "▁ equals", + "man agement", + "manage ment", + "m anagement", + "[ (", + "村 委会", + "▁uncertain ty", + "of fs", + "off s", + "IN FO", + "INF O", + "▁disc ussions", + "▁discuss ions", + "▁discussion s", + "第四 十", + "第 四十", + "ub ble", + "为 一", + "进 攻", + "▁ex cit", + "▁exc it", + "▁organ isation", + "一次 性", + "aq ue", + "aqu e", + "a que", + "ok u", + "o ku", + ">> \\", + "> >\\", + "So me", + "S ome", + "▁Lew is", + "i w", + "Se ction", + "Sec tion", + "S ection", + "▁st yled", + "▁style d", + "▁styl ed", + "▁ styled", + "path s", + "pat hs", + "pa ths", + "p aths", + "b matrix", + "客 服", + "▁product ivity", + "坚 定", + "▁im per", + "▁imp er", + "▁impe r", + "向原告 借款", + "mem bers", + "member s", + "m embers", + "et he", + "eth e", + "e the", + "占 有", + "tr l", + "t rl", + "com pat", + "comp at", + "Off set", + "cy cl", + "c ycl", + "ul er", + "ule r", + "u ler", + "ar th", + "art h", + "▁S ong", + "▁So ng", + "▁Son g", + "▁ Song", + "二 手", + "▁B uff", + "▁Bu ff", + "▁ Buff", + "▁re plic", + "▁rep lic", + "完成 了", + "完 成了", + "▁requ iring", + "▁car rier", + "发出 执行通知书", + "▁We bsite", + "▁Web site", + "▁ Website", + "▁bur den", + "▁phys icians", + "▁physician s", + "▁physic ians", + "▁r ings", + "▁ring s", + "▁ rings", + "▁del ayed", + "▁delay ed", + "组 件", + "语 音", + "随 意", + "A x", + "的 安全", + "▁sc rap", + "▁scr ap", + "▁ scrap", + "▁mir ror", + "▁mi rror", + "▁ mirror", + "▁h ex", + "▁he x", + "▁ hex", + "▁E arly", + "▁Ear ly", + "▁Earl y", + "▁ Early", + "he rit", + "her it", + "in ction", + "inc tion", + "inct ion", + "是 谁", + "Trans action", + "变成 了", + "变 成了", + "nH ave", + "nHa ve", + "n Have", + "售 价", + "风 雨", + "▁c lip", + "▁cl ip", + "▁cli p", + "▁ clip", + "快 捷", + "chn ology", + "▁at oms", + "▁atom s", + "▁ atoms", + "▁T ech", + "▁Te ch", + "▁ Tech", + "的 美", + "▁di etary", + "▁diet ary", + "首 发", + "▁D rive", + "▁Dr ive", + "▁ Drive", + "en ergy", + "ener gy", + "e nergy", + "am ination", + "amin ation", + "ami nation", + "ia c", + "i ac", + "加 载", + "颜 值", + "▁conn ecting", + "▁connect ing", + "▁consult ation", + "ah oma", + "aho ma", + "▁in ventory", + "▁invent ory", + "▁inventor y", + "▁ inventory", + "nO f", + "n Of", + "Q Q", + "▁develop ments", + "▁development s", + "列 表", + "▁L as", + "▁La s", + "nr eturn", + "nre turn", + "n return", + "ph ones", + "phone s", + "phon es", + "酒 精", + "▁clin ically", + "▁clinical ly", + "▁clinic ally", + "▁ 胡", + "▁( {", + "▁ ({", + "▁t reating", + "▁treat ing", + "▁tre ating", + "ab ama", + "aba ma", + "em et", + "eme t", + "e met", + "▁st ere", + "▁ste re", + "▁ster e", + "▁ stere", + "▁p un", + "▁pu n", + "ellect ual", + "▁t axes", + "▁tax es", + "可 惜", + "罗 马", + "犯 危险驾驶罪", + "全 身", + "然后 再", + "然 后再", + "NI NG", + "N ING", + "或者 直接向", + "Down load", + "D ownload", + "ams ung", + "党 组", + "la d", + "l ad", + "▁eng ines", + "▁engine s", + "扎 实", + "Ident ifier", + "付 费", + "▁fa tty", + "▁fat ty", + "▁G as", + "▁Ga s", + "▁ Gas", + "▁ent rance", + "▁entr ance", + "▁colle agues", + "▁colleague s", + "第四 章", + "第 四章", + "▁co at", + "rupt ed", + "rup ted", + "▁ 注", + "aceut ical", + "结 局", + "争 取", + "制 的", + "的一 切", + "的 一切", + "pat ic", + "pa tic", + "p atic", + "主 流", + "▁pan creat", + "▁panc reat", + "ur ope", + "uro pe", + "▁Ex change", + "▁ Exchange", + "L ibrary", + "Reg ister", + "第二 次", + "第 二次", + "ess ment", + "Po p", + "P op", + "厚 度", + "▁C it", + "▁Ci t", + "Valid ator", + "gn u", + "g nu", + "像 素", + "uz zy", + "uzz y", + "条件 的", + "条 件的", + "air e", + "ai re", + "a ire", + "▁d isp", + "▁dis p", + "▁di sp", + "▁ disp", + "▁o bst", + "▁ob st", + "▁obs t", + "▁U SE", + "▁US E", + "▁ USE", + "▁bel ieves", + "▁believe s", + "▁belie ves", + "盈 利", + "Par ent", + "Pa rent", + "P arent", + "缺 陷", + "▁tra uma", + "nPop ulated", + "以 被告人", + "Re move", + "Rem ove", + "创 办", + "es sed", + "ess ed", + "esse d", + "▁depend ency", + "▁ dependency", + "can cel", + "c ancel", + "▁dig its", + "▁digit s", + "▁ digits", + "ll ib", + "lli b", + "l lib", + "F E", + "Dis t", + "Di st", + "D ist", + "▁y ields", + "▁yield s", + "一 把", + "▁or bit", + "▁ orbit", + "的 精神", + "lo cale", + "loc ale", + "local e", + "人 心", + "nR em", + "nRe m", + "n Rem", + "Res ults", + "Result s", + "一 看", + "▁s event", + "▁se vent", + "▁seven t", + "抵 押", + "日向本院提起 公诉", + "▁cl icking", + "▁click ing", + "▁b roke", + "▁br oke", + "▁bro ke", + "▁me tres", + "▁met res", + "▁metre s", + "{} \\", + "{ }\\", + "om orphic", + "omorph ic", + "▁inc orporated", + "▁incorpor ated", + "▁incorporate d", + "▁ incorporated", + "▁m esh", + "▁me sh", + "▁mes h", + "▁ mesh", + "▁s occer", + "▁soc cer", + "▁c nt", + "▁cn t", + "▁ cnt", + "劳动 任务", + "KE N", + "K EN", + "▁min eral", + "▁mine ral", + "es tone", + "est one", + "esto ne", + "eston e", + "e stone", + "▁M exican", + "▁Mex ican", + "机 遇", + "▁t mp", + "▁tm p", + "▁ tmp", + "pro of", + "裁 决", + "ka n", + "k an", + "自行 车", + "自 行车", + "爷 爷", + "▁a qu", + "▁ aqu", + "oy s", + "o ys", + "▁p ill", + "▁pi ll", + "▁pil l", + "上 课", + "不 论", + "▁M u", + "▁ Mu", + "▁sc hemes", + "▁scheme s", + "Ex tension", + "Ext ension", + "cript or", + "▁O ak", + "▁Com plex", + "▁Comp lex", + "▁Compl ex", + "▁ Complex", + "# [", + "е т", + "}< /", + "} \\ \\", + "> \\\\", + "bo ne", + "bon e", + "b one", + "b untu", + "Be fore", + "B efore", + "▁D un", + "▁Du n", + "' (", + "越 南", + "举 报", + "为 人", + "▁p df", + "▁pd f", + "▁ pdf", + "▁ad mission", + "▁adm ission", + "贩 卖", + "面 包", + "▁O il", + "▁m ol", + "▁mo l", + "▁ mol", + "▁comb ining", + "▁combin ing", + "▁switch ing", + "▁swit ching", + "min ecraft", + "mine craft", + "ol k", + "欠 原告", + "以 便", + "ho p", + "h op", + "警 方", + "▁: )\\", + "▁:) \\", + "▁p ipe", + "▁pi pe", + "▁pip e", + "▁ pipe", + "H tml", + "▁Or iginally", + "▁Original ly", + "▁Origin ally", + "不 去", + "伟 大", + "▁M embers", + "▁Mem bers", + "▁Member s", + "▁ Members", + "om m", + "o mm", + "▁ext ensions", + "▁extension s", + "▁ extensions", + "说 道", + "▁Nor way", + "会 不会", + "应用 于", + "应 用于", + "▁Democr ats", + "▁Democrat s", + "▁J en", + "▁Je n", + "▁ Jen", + "do r", + "d or", + "▁a live", + "▁al ive", + "▁ali ve", + "▁ alive", + "下 落", + "荣 耀", + "事业 单位", + "AR S", + "A RS", + "几 次", + "帮 我", + "应当 提交上诉状正本一份", + "饭 店", + "Event s", + "Ev ents", + "Even ts", + "E vents", + "nB ritish", + "n British", + "遗 产", + "▁l iked", + "▁like d", + "▁lik ed", + "▁ph ases", + "▁phase s", + "时代 的", + "时 代的", + "弟 弟", + "▁f lower", + "▁fl ower", + "▁flo wer", + "▁flow er", + "▁ flower", + "▁t ap", + "▁ta p", + "▁ tap", + "持 有", + "计 量", + "▁start up", + "▁ startup", + "or igin", + "ori gin", + "orig in", + "冬 季", + "__ )\\", + "__) \\", + "_ _)\\", + "几 种", + "л и", + "co system", + "cos ystem", + "c osystem", + "两 条", + "ri sk", + "ris k", + "r isk", + "▁E lectric", + "▁Elect ric", + "好 处", + "sing le", + "s ingle", + "影 像", + "是一 名", + "是 一名", + "的 多", + "▁ar my", + "▁arm y", + "▁ep idem", + "▁epid em", + "▁jun ior", + "十二 条", + "十 二条", + "编 码", + "航 天", + "er ver", + "erv er", + "erve r", + "ation ship", + "ations hip", + "▁pl acement", + "▁place ment", + "▁plac ement", + "▁ placement", + "en o", + "e no", + "没有 任何", + "没 有任何", + "P F", + "腐 蚀", + "▁T emplate", + "▁Tem plate", + "▁Temp late", + "▁ Template", + "XX X", + "X XX", + "▁rough ly", + "至今 未履行", + "至今未 履行", + "黑 暗", + "服务 中心", + "▁we ird", + "inf lamm", + "有多 少", + "有 多少", + "▁p ri", + "▁pr i", + "▁ pri", + "月 出生", + "el ve", + "取保 候审", + "民 生", + "▁sc anning", + "▁scan ning", + "gen erated", + "gener ated", + "generate d", + "gene rated", + "g enerated", + "▁pres idential", + "▁president ial", + "▁High way", + "▁Kent ucky", + "gen erator", + "gener ator", + "▁In tel", + "▁Int el", + "▁ Intel", + "▁lo ads", + "▁load s", + "▁ loads", + "▁a dip", + "▁ad ip", + "▁w avelength", + "▁wave length", + "▁R A", + "▁ RA", + "▁j unction", + "▁jun ction", + "▁e mails", + "▁em ails", + "▁email s", + "▁ emails", + "住 址", + "▁c ategor", + "▁cate gor", + "▁ categor", + "▁restr ictions", + "▁restrict ions", + "▁restriction s", + "故意 伤害", + "▁in ch", + "▁i nch", + "▁inc h", + "▁ inch", + "▁ 起点中文网", + "党 支部", + "▁att ach", + "▁ attach", + "▁k illing", + "▁kil ling", + "▁kill ing", + "sc h", + "s ch", + "因 子", + "报 考", + "▁f ake", + "▁fa ke", + "▁ fake", + "trans fer", + "br ew", + "bre w", + "b rew", + "切 换", + "av it", + "avi t", + "a vit", + "原审 原告", + "▁opt imize", + "▁optim ize", + "▁ optimize", + "蓝 色", + "不 超过", + "主 机", + "▁R ome", + "▁Ro me", + "▁Rom e", + "▁d ictionary", + "▁ dictionary", + "▁H ind", + "▁Hi nd", + "urs ive", + "国土资源 局", + "▁cl imb", + "▁clim b", + "▁cli mb", + "▁M L", + "▁ ML", + "▁Con text", + "▁Cont ext", + "▁Co ntext", + "▁ Context", + "▁Iss ue", + "▁ Issue", + "▁quadr atic", + "▁quad ratic", + "▁F ast", + "▁Fa st", + "▁Fas t", + "▁ Fast", + "▁Del hi", + "ei n", + "e in", + "辖 区", + "饮 料", + "与 其", + "的 钱", + "▁R ot", + "▁Ro t", + "▁ Rot", + "高新 技术", + "高 新技术", + "▁P rize", + "▁Pr ize", + "▁Pri ze", + "▁except ional", + "▁exception al", + "O F", + "re nce", + "ren ce", + "r ence", + "LE S", + "L ES", + "却 是", + "▁def end", + "▁defe nd", + "▁i ons", + "▁ion s", + "▁io ns", + "▁ ions", + "▁co uples", + "▁cou ples", + "▁couple s", + "▁coup les", + "▁B log", + "▁Bl og", + "▁Blo g", + "▁ Blog", + "▁D R", + "▁ DR", + "ap or", + "apo r", + "a por", + "▁encour aged", + "▁encourage d", + "照 明", + "离婚 诉讼", + "▁dis charge", + "▁discharg e", + "▁st rike", + "▁str ike", + "▁stri ke", + "我 自己", + "入 选", + "M G", + "的 光", + "om ent", + "ome nt", + "omen t", + "o ment", + "im eter", + "ime ter", + "imet er", + "i meter", + "pl eted", + "ple ted", + "plete d", + "plet ed", + "p leted", + "ig ator", + "iga tor", + "▁y ours", + "▁you rs", + "▁your s", + "▁yo urs", + "期 货", + "Li b", + "L ib", + "依法 由", + "▁\\' <", + "▁ \\'<", + "ex tract", + "extra ct", + "extr act", + "sc roll", + "scr oll", + "在 使用", + "放 松", + "DE S", + "D ES", + "▁def iciency", + "▁Y outh", + "▁You th", + "▁Yo uth", + "Ar ea", + "Are a", + "A rea", + "▁mem ories", + "▁memo ries", + "▁memor ies", + "> `", + "手 动", + "▁In dependent", + "▁Ind ependent", + "▁conven ience", + "var iable", + "vari able", + "▁occ urrence", + "▁occur rence", + "▁occurre nce", + "解 读", + "除 外", + "▁c erv", + "▁cer v", + "▁ce rv", + "青 海", + "遗 传", + "▁rat ings", + "▁ra tings", + "▁rating s", + "er ator", + "era tor", + "▁g orgeous", + "配 备", + "pt ic", + "p tic", + "看 完", + "oph il", + "o phil", + "▁s hots", + "▁sh ots", + "▁shot s", + "▁ shots", + "▁per ceived", + "▁perceive d", + "▁biom ark", + "▁bio mark", + "Te rm", + "Ter m", + "T erm", + "我 认为", + "x t", + "号 楼", + "提 到", + "▁M otor", + "▁Mot or", + "▁Mo tor", + "▁Moto r", + "▁ Motor", + "▁m aternal", + "▁mat ernal", + "▁ma ternal", + "▁mater nal", + "行 长", + "祝 福", + "东 京", + "▁D raw", + "▁Dr aw", + "▁ Draw", + "监狱 于", + "▁deliver ing", + "▁w idget", + "▁wid get", + "▁ widget", + "神 奇", + "干 扰", + "▁sm oke", + "▁smo ke", + "心 灵", + "正 规", + "th eless", + "the less", + "thel ess", + "▁I nv", + "▁In v", + "▁ Inv", + "▁B at", + "▁Ba t", + "function s", + "▁m l", + "▁ ml", + "▁B urn", + "▁Bur n", + "▁Bu rn", + "nN ext", + "nNe xt", + "n Next", + "租 金", + "▁soph istic", + "生产 的", + "生 产的", + "▁c ortex", + "▁cor tex", + "▁cort ex", + "▁dis put", + "▁disp ut", + "▁mult iply", + "▁multi ply", + "▁multip ly", + "很 高", + "基础 设施", + "▁vari ability", + "▁var iability", + "▁h ierarch", + "东 风", + "year s", + "ye ars", + "y ears", + "发现被执行人有可供执行财产 的", + "资 质", + "▁Ph oto", + "▁Phot o", + "▁ Photo", + "▁an imation", + "▁anim ation", + "▁ animation", + "mark et", + "mar ket", + "per iod", + "ca rt", + "car t", + "c art", + "▁O bserv", + "▁Ob serv", + "▁Obs erv", + "▁ Observ", + "买 的", + "in itely", + "init ely", + "inite ly", + "▁univers ities", + "Re ct", + "Rec t", + "R ect", + "▁fr anch", + "▁fra nch", + "▁mob ility", + "▁mobil ity", + "nU p", + "n Up", + "栽 培", + "▁an terior", + "▁ant erior", + "大学 出版社", + "▁Re cent", + "▁Rec ent", + "▁ Recent", + "▁Me chan", + "re tt", + "ret t", + "r ett", + "nS olve", + "n Solve", + "▁establish ment", + "▁Ch rome", + "▁Chrom e", + "▁ Chrome", + "mo s", + "m os", + "建设 的", + "摄像 头", + "ri k", + "r ik", + "▁un f", + "▁u nf", + "振 兴", + "有一 种", + "有 一种", + "▁A st", + "▁As t", + "▁ Ast", + "an tom", + "ant om", + "anto m", + "▁f s", + "▁ fs", + "ys ts", + "yst s", + "y sts", + "▁ch ains", + "▁chain s", + "▁cha ins", + "▁ chains", + "▁R ap", + "▁Ra p", + "供应 商", + "ac ial", + "aci al", + "acia l", + "长 安", + "ll a", + "l la", + "▁ 然后", + "在 大", + "文件 夹", + "M F", + "带来 了", + "带 来了", + "▁ast hma", + "▁work flow", + "▁ workflow", + "▁back up", + "▁ backup", + "不仅 仅", + "不 仅仅", + "复印 件", + "稍 微", + ") |", + "路 由", + "▁des cribing", + "▁describ ing", + "ul ative", + "▁r outer", + "▁ro uter", + "▁rout er", + "▁route r", + "▁rou ter", + "▁ router", + "▁engine ers", + "▁engineer s", + "架 构", + "rec ip", + "享 有", + "快 的", + "Com ment", + "Comm ent", + "inter est", + "in gers", + "ing ers", + "inger s", + "inge rs", + "严重 的", + "严 重的", + "服 饰", + "▁F O", + "▁ FO", + "▁ar rival", + "▁arr ival", + "▁arriv al", + "难 题", + "▁st ats", + "▁stat s", + "▁ stats", + "act ivation", + "activ ation", + "w p", + "身 材", + "Bi t", + "B it", + "价值 观", + "改 为", + "▁S ize", + "▁Si ze", + "▁ Size", + "流 通", + "path y", + "pat hy", + "pa thy", + "p athy", + "▁ob serve", + "▁observ e", + "▁obs erve", + "emet ery", + "eme tery", + "ith metic", + "ti t", + "t it", + "sequ ence", + "s equence", + "> {", + "风 机", + "▁M un", + "▁Mu n", + "▁far mers", + "▁farm ers", + "▁farmer s", + "▁T reatment", + "▁Treat ment", + "某 乙", + "罚 款", + "高 层", + "▁p lt", + "▁pl t", + "▁ plt", + "Eng lish", + "▁art erial", + "▁arter ial", + "▁Pro file", + "▁Prof ile", + "▁ Profile", + "张 家", + "广西 壮", + "通 报", + "▁bron ze", + "交 叉", + "▁build s", + "▁ builds", + "模 具", + "的发 生", + "的 发生", + "Sec urity", + "▁k w", + "▁ kw", + "ro us", + "rou s", + "r ous", + "ov erty", + "over ty", + "▁N ative", + "▁Nat ive", + "▁ Native", + "以 外", + "体 内", + "▁in direct", + "▁ind irect", + "▁travel ing", + "▁trav eling", + "十九 条", + "十 九条", + "▁s mile", + "▁sm ile", + "▁design ers", + "▁designer s", + "▁meaning ful", + "博 客", + "诸 多", + "▁sc ales", + "▁scale s", + "▁scal es", + "隐 患", + "水 分", + "一 会", + "wit zer", + "witz er", + "w itzer", + "yr ics", + "y rics", + "掉 了", + "▁de termin", + "▁determ in", + "▁deter min", + "▁T ai", + "▁Ta i", + "Loc k", + "Lo ck", + "L ock", + "pl ane", + "plan e", + "p lane", + "挑 选", + "透 露", + "秘书 长", + "br ace", + "bra ce", + "b race", + "nA ct", + "nAc t", + "n Act", + "TR IBUT", + "▁Mi ami", + "ah oo", + "aho o", + "▁ult ra", + "▁ul tra", + "▁ultr a", + "nEx ample", + "n Example", + "向 被告", + "▁M aria", + "▁Mar ia", + "▁Ma ria", + "▁Mari a", + "▁separ ately", + "▁separate ly", + "DA TA", + "DAT A", + "D ATA", + "最 早", + "▁Re sources", + "▁Res ources", + "▁Resource s", + "▁ Resources", + "▁v essel", + "▁vess el", + "▁ves sel", + "研 讨", + "管辖 权", + "澳 大利", + "▁qu otes", + "▁quote s", + "▁quot es", + "▁quo tes", + "▁ quotes", + "get Logger", + "win d", + "wi nd", + "w ind", + "▁D J", + "▁ DJ", + "▁defe ated", + "▁defeat ed", + "(\\' #", + "( \\'#", + "▁top ology", + "▁har vest", + "拍 照", + "nB iography", + "nBi ography", + "▁h oles", + "▁hol es", + "▁hole s", + "▁ho les", + "▁di visor", + "▁div isor", + "nB efore", + "nBe fore", + "n Before", + "zh e", + "z he", + "▁t hesis", + "▁the sis", + "▁th esis", + "gm ail", + "g mail", + "En abled", + "Enable d", + "ph osph", + "▁l augh", + "▁la ugh", + "▁S R", + "▁ SR", + "▁A A", + "▁ AA", + "ro it", + "r oit", + "st im", + "s tim", + "山 水", + "wal k", + "w alk", + ")) /", + ") )/", + "\"/ >\\", + "\"/> \\", + "\" />\\", + "re lation", + "rel ation", + "广西壮 族自治区", + "让 自己", + "cle rosis", + "cler osis", + "▁inter fer", + "▁interf er", + "澳大利 亚", + "▁St ill", + "有关 法律规定", + "ا ل", + "▁answer ed", + "▁ answered", + "▁Th ird", + "▁ Third", + "B V", + "就没 有", + "就 没有", + "▁h ub", + "▁hu b", + "▁ hub", + "▁ra ising", + "▁ raising", + "▁c oli", + "▁col i", + "▁co li", + "▁old est", + "▁ol dest", + "\\' ))", + "\\') )", + "\\ '))", + "ic ator", + "ica tor", + "Jo in", + "J oin", + "较 低", + "ot ide", + "otid e", + "oti de", + "nC ar", + "n Car", + "▁adapt ed", + "▁adap ted", + "短 信", + "开 设", + "对 原告", + "[: ,", + "[ :,", + "▁J S", + "▁ JS", + "擅 长", + "多 么", + "▁St yle", + "▁Styl e", + "▁ Style", + "▁expand ing", + "fl ags", + "flag s", + "紧 急", + "▁short ly", + "▁Mark eting", + "▁Market ing", + "整 改", + "社会 信用", + "con sum", + "cons um", + "▁scen arios", + "▁scenario s", + "的 质量", + "本院 不予", + "▁spe akers", + "▁speak ers", + "▁speaker s", + "Sc ope", + "qu ot", + "quo t", + "nap shot", + "▁sing ular", + "▁St aff", + "▁Staf f", + "▁Sta ff", + "tem plates", + "template s", + "ru p", + "r up", + "相 识", + "au di", + "aud i", + "a udi", + "\\' ][\\'", + "\\'] [\\'", + "\\'][ \\'", + "外 部", + "os cow", + "osc ow", + "dial og", + "d ialog", + "数 码", + "re dis", + "red is", + "为什么 要", + "懂 得", + "Ev al", + "E val", + "b x", + "▁f etal", + "▁fe tal", + "▁fet al", + "▁Adv anced", + "▁Advance d", + "▁ Advanced", + "▁ord inary", + "▁ ordinary", + "Se nd", + "Sen d", + "S end", + "▁( @", + "▁ (@", + "▁sub sid", + "▁subs id", + "的最 小", + "的 最小", + "失信 被执行人", + "▁priv ile", + "▁ privile", + "▁d ump", + "▁du mp", + "▁ dump", + "能 在", + "这 条", + "一 半", + "▁d esk", + "▁de sk", + "▁des k", + "▁ desk", + "饲 料", + "▁fin ishing", + "▁finish ing", + "la v", + "l av", + "▁P I", + "▁ PI", + "bin ary", + "b inary", + "; ;", + "▁rank ed", + "▁ ranked", + "▁graph ic", + "▁ graphic", + "▁c uts", + "▁cut s", + "▁cu ts", + "▁ cuts", + "▁phen otype", + "id en", + "ide n", + "i den", + "▁fl ags", + "▁flag s", + "▁ flags", + "▁cur riculum", + "▁H awai", + "▁Haw ai", + "阿 拉", + "▁H ope", + "▁Hop e", + "▁Ho pe", + "▁ass ault", + "附 加", + "▁en rolled", + "▁enroll ed", + "▁A TP", + "▁AT P", + "▁ ATP", + "▁v ec", + "▁ve c", + "▁ vec", + "▁sub stit", + "▁subst it", + "▁subs tit", + "▁H arry", + "▁Har ry", + "▁Harr y", + "跟 我", + "▁H art", + "▁Har t", + "▁Ha rt", + "▁in hab", + "▁inh ab", + "Wi n", + "W in", + "Con d", + "Co nd", + "C ond", + "▁pan els", + "▁panel s", + "▁pa nels", + "▁pane ls", + "bo y", + "b oy", + "od ynamic", + "odynam ic", + "o dynamic", + "裁 判", + "相关 法律条文", + "▁ 不", + "▁d owntown", + "▁down town", + "▁downt own", + "st dc", + "std c", + "▁philosoph y", + "淘 宝", + "ot on", + "oto n", + "o ton", + "储 蓄", + "ace ae", + "acea e", + "越来 越多", + "越来越 多", + "ie v", + "i ev", + "▁ 宋", + "前 进", + "段 时间", + "选 答案", + "此 前", + "Run time", + "Ru ntime", + "ma y", + "m ay", + "另一 方面", + "另一方 面", + "另 一方面", + "▁P rivate", + "▁Pr ivate", + "▁Priv ate", + "▁ Private", + "▁dev iation", + "▁M oon", + "▁Mo on", + "▁Tr ade", + "▁Tra de", + "▁Trad e", + "▁ Trade", + "人大 常委会", + "op ens", + "ope ns", + "open s", + "▁a side", + "▁as ide", + "▁ aside", + "▁b ounds", + "▁bound s", + "▁ bounds", + "oc on", + "oco n", + "o con", + "wi ll", + "w ill", + "or ses", + "ors es", + "orse s", + "▁e legant", + "▁eleg ant", + "▁re ceiver", + "▁rece iver", + "▁receive r", + "▁ receiver", + "▁a fr", + "▁af r", + "() `", + "( )`", + "▁res idence", + "▁resid ence", + "▁reside nce", + "de let", + "del et", + "前 提", + "可供执行的财产 线索", + "CP U", + "C PU", + "▁bl end", + "▁ble nd", + "诗 词", + "▁Array List", + "▁ ArrayList", + "▁ 红", + "火 车", + "学 名", + "组织 的", + "▁wood en", + "▁wo oden", + "摩托 车", + "▁H ello", + "▁Hel lo", + "▁Hell o", + "▁ Hello", + "脱 贫", + "▁un iverse", + "▁univers e", + "▁uni verse", + "非 洲", + "供 给", + "▁poor ly", + "j query", + "依 托", + "su ch", + "s uch", + "▁E ver", + "▁Ev er", + "▁Eve r", + "▁under going", + "▁undergo ing", + "党组 成员", + "党 组成员", + "▁Com ment", + "▁Comm ent", + "▁ Comment", + "▁end point", + "▁ endpoint", + "▁we apons", + "▁weap ons", + "▁weapon s", + "▁ann ouncement", + "▁announce ment", + "▁announc ement", + "MH z", + "M Hz", + "▁Al abama", + "附 件", + "▁} ^{", + "▁ }^{", + "出 场", + "落 地", + "是 从", + "witzer land", + "Fore ignKey", + "▁D at", + "▁Da t", + "▁ Dat", + "▁per f", + "▁pe rf", + "▁ perf", + "▁pro xy", + "▁pr oxy", + "▁prox y", + "▁ proxy", + "sp e", + "s pe", + "J ust", + "▁com bat", + "▁comb at", + "] *", + "亦 未", + "▁L ev", + "▁Le v", + "第二 天", + "▁Ad vis", + "▁Adv is", + "sk i", + "s ki", + "▁Fed eration", + "▁Feder ation", + "▁St adium", + "加 以", + "大 地", + "理 性", + "▁g enu", + "▁gen u", + "▁ge nu", + "▁con scious", + "▁ conscious", + "▁en forcement", + "▁enforce ment", + "▁ 登记机关", + "rypt ed", + "▁sup plied", + "▁suppl ied", + "▁prot otype", + "▁proto type", + "▁ prototype", + "ol in", + "oli n", + "o lin", + "wa ve", + "wav e", + "w ave", + "见 到", + "巴 黎", + "▁p review", + "▁pre view", + "▁prev iew", + "▁ preview", + "▁general ized", + "▁generalize d", + "×× ×××", + "××× ××", + "×××× ×", + "× ××××", + "净 化", + "会 被", + "电 梯", + "id ad", + "ida d", + "i dad", + "ut ies", + "uti es", + "u ties", + "Dr iver", + "Drive r", + "D river", + "线 下", + "Li ght", + "L ight", + "▁S ant", + "▁San t", + "▁Sa nt", + "我 都", + "之所 以", + "之 所以", + "四 大", + "参 赛", + "无 关", + "▁con figure", + "▁conf igure", + "▁config ure", + "▁ configure", + "吃 了", + "▁de ployment", + "▁deploy ment", + "▁ deployment", + "se nt", + "sen t", + "s ent", + "的 长", + "am ous", + "amo us", + "kl ahoma", + "忘 了", + "▁inf ant", + "第四 百", + "第 四百", + "He re", + "Her e", + "H ere", + "在 北京", + "▁int ense", + "▁intens e", + "经 查", + "Fa il", + "F ail", + "CR IPT", + "辩 称", + "退 出", + "Inst all", + "Ins tall", + "错 了", + "Ex p", + "E xp", + "▁feel ings", + "▁feeling s", + "▁fee lings", + "Po l", + "P ol", + "▁not able", + "▁no table", + "▁H an", + "▁Ha n", + "▁f t", + "▁ ft", + "括 号", + "NU LL", + "N ULL", + "▁re sort", + "▁res ort", + "其他 的", + "其 他的", + "▁h urt", + "▁hur t", + "▁hu rt", + "小 姐", + "▁d ip", + "▁di p", + "▁ dip", + "友 好", + "om orphism", + "omorph ism", + "AV E", + "A VE", + "▁un icode", + "▁uni code", + "▁ unicode", + "▁D u", + "▁ Du", + "▁ 操作", + "▁t ok", + "▁to k", + "▁ tok", + "▁o c", + "▁ oc", + "借 鉴", + "▁re ads", + "▁read s", + "▁ reads", + "eff ective", + "effect ive", + "Lin ux", + "视 野", + "pro gress", + "prog ress", + "活 跃", + "RO OT", + "ch art", + "char t", + "cha rt", + "c hart", + "▁J ay", + "▁Ja y", + "▁agricult ural", + "▁agr icultural", + "建 造", + "排 放", + "Ca p", + "C ap", + "da rk", + "dar k", + "d ark", + "ö r", + "▁P ier", + "▁Pi er", + "▁Pie r", + "界 的", + "▁J son", + "▁ Json", + "AT ED", + "ATE D", + "十五 日", + "十 五日", + "▁p ointer", + "▁point er", + "▁po inter", + "▁ pointer", + "am mar", + "amm ar", + "amma r", + "▁L earn", + "▁Le arn", + "▁Lear n", + "▁ Learn", + "民间借贷 纠纷一案中", + "民间借贷纠纷一案 中", + "民间借贷纠纷 一案中", + "Valid ation", + "Val idation", + "零 件", + "ke eper", + "keep er", + "kee per", + "k eeper", + "款 项", + "手 册", + "▁J ob", + "▁Jo b", + "▁ Job", + "▁prec isely", + "▁precise ly", + "嫌 疑", + "▁Indones ia", + "ia z", + "i az", + "▁C ape", + "▁Ca pe", + "▁Cap e", + "ex change", + "▁C hen", + "▁Ch en", + "▁Che n", + "wa s", + "w as", + "高级 人民法院", + "高 级人民法院", + "mob ile", + "m obile", + "▁attempt ed", + "党 建", + "出具 的", + "ex pr", + "exp r", + "▁Off icer", + "▁Office r", + "▁bound aries", + "打 破", + "重 组", + "不容 易", + "不 容易", + "国家 级", + "有一 天", + "有 一天", + "▁nucle us", + "▁some how", + "攻 坚", + "▁coll agen", + "lang le", + "l angle", + "▁hot els", + "▁hotel s", + "总 局", + "▁s pray", + "▁sp ray", + "▁spr ay", + "▁time out", + "▁ timeout", + "第五 章", + "▁w ider", + "▁wide r", + "▁wid er", + "▁wi der", + "Des t", + "De st", + "D est", + "▁in door", + "▁ind oor", + "机 电", + "工商行政 管理局", + "▁def ining", + "▁defin ing", + "▁b ases", + "▁bas es", + "▁base s", + "▁ba ses", + "▁ bases", + "▁un fort", + "▁unf ort", + "▁impro ves", + "▁improve s", + "▁improv es", + "▁The orem", + "▁am plitude", + "▁ampl itude", + "▁amplit ude", + "nM r", + "n Mr", + "ins ic", + "i nsic", + "分 成", + "▁phosph orylation", + "▁phosphory lation", + "已成 为", + "已 成为", + "EE E", + "E EE", + "▁re tain", + "▁ret ain", + "如果 有", + "弹 性", + "hel pers", + "help ers", + "helper s", + "getElement ById", + "象 限", + "举 证", + "▁un a", + "▁u na", + "▁ una", + "▁S pect", + "▁Sp ect", + "▁Spec t", + "▁Spe ct", + "▁ Spect", + "醉 酒", + "▁d f", + "▁ df", + "▁law yers", + "▁lawy ers", + "▁lawyer s", + "▁d p", + "▁ dp", + "▁phot ographs", + "▁photo graphs", + "▁photograph s", + "ur is", + "uri s", + "u ris", + "执行 费", + "ur ious", + "uri ous", + "▁d t", + "▁ dt", + "▁ch ances", + "▁chance s", + "▁chan ces", + "Ag ent", + "Age nt", + "A gent", + "▁str uggle", + "▁strugg le", + "纽 约", + "美好 的", + "美 好的", + "关系 的", + "关 系的", + "Cont act", + "找 不到", + "▁t ie", + "▁ti e", + "▁ tie", + "尽 快", + "▁valid ated", + "▁validate d", + "▁ validated", + "▁A z", + "▁ Az", + "▁me tall", + "▁met all", + "▁metal l", + "▁meta ll", + "浦 东", + "平方 公里", + "▁B ooks", + "▁Bo oks", + "▁Book s", + "▁ Books", + "og ens", + "ogen s", + "oge ns", + "o gens", + "透 过", + "pos ing", + "po sing", + "p osing", + "一 本", + "▁l ucky", + "▁luck y", + "▁luc ky", + "打 电话", + "Program ming", + "▁question naire", + "▁over w", + "▁s ki", + "▁sk i", + "▁ ski", + "完成 劳动任务", + "ma tes", + "mat es", + "mate s", + "m ates", + "pi ck", + "pic k", + "p ick", + "nR ead", + "nRe ad", + "n Read", + "▁pe ptides", + "▁pept ides", + "▁peptide s", + "▁L iter", + "▁Li ter", + "▁Lit er", + "▁Lite r", + "▁ Liter", + "西安 市", + "西 安市", + "tain ment", + "t ainment", + "据 悉", + "D U", + "▁c out", + "▁co ut", + "▁cou t", + "▁ cout", + "▁me als", + "▁meal s", + "col n", + "co ln", + "养 生", + "▁sub scription", + "▁subs cription", + "▁ subscription", + "▁b ic", + "▁bi c", + "▁ bic", + "nB l", + "n Bl", + "也 未", + "这件 事", + "这 件事", + "光 明", + "移 送", + "af ka", + "走 到", + "th ew", + "the w", + "t hew", + "给 自己", + "渐 渐", + "mic ro", + "mi cro", + "m icro", + "ha i", + "h ai", + "经本院 合法传唤", + "▁re ception", + "▁rece ption", + "▁recept ion", + "▁publish ing", + "▁exp enses", + "▁expense s", + "罪名 成立", + "▁o lig", + "▁ol ig", + "▁G R", + "▁ GR", + "nB ecause", + "nBe cause", + "n Because", + "iox id", + "i oxid", + "on ce", + "onc e", + "o nce", + "▁res idual", + "▁resid ual", + "的 范围", + "▁s ymmetric", + "▁sym metric", + "▁symmet ric", + "▁ symmetric", + "▁enh ancement", + "▁enhance ment", + "过 度", + "you tube", + "yout ube", + "y outube", + "▁c tx", + "▁ct x", + "▁ ctx", + "师 傅", + "抑 郁", + "▁b es", + "▁be s", + "▁ bes", + "▁Al tern", + "▁Alt ern", + "▁Alter n", + "▁ Altern", + "el astic", + "结束 后", + "已 被", + "LI B", + "L IB", + "▁co operation", + "▁cooper ation", + "▁_ ,", + "▁ _,", + "▁trans ient", + "▁trans formed", + "▁transform ed", + "▁ transformed", + "▁B O", + "▁ BO", + "▁d ont", + "▁do nt", + "▁don t", + "ul ates", + "ula tes", + "ulate s", + "▁D a", + "▁ Da", + "▁c ant", + "▁can t", + "▁ca nt", + "▁ cant", + "▁M ichel", + "▁Mich el", + "▁Mi chel", + "▁Mic hel", + "▁Miche l", + "事实 上", + "text color", + "tex tcolor", + "到 来", + "Pt r", + "P tr", + "ac ión", + "aci ón", + "a ción", + "Fail ed", + "Fa iled", + "F ailed", + "Ch at", + "C hat", + "▁Aff airs", + "▁Mag azine", + "▁lik elihood", + "; &", + "▁c ul", + "▁cu l", + "▁a nest", + "▁an est", + "▁B it", + "▁Bi t", + "▁ Bit", + "▁stre aming", + "▁stream ing", + "▁ streaming", + "代表 大会", + "▁P K", + "▁ PK", + "期限 为", + "▁ver ified", + "▁ verified", + "物业 管理", + "or don", + "ord on", + "尴 尬", + "▁l um", + "▁lu m", + "我 家", + "的 项目", + "▁C over", + "▁Co ver", + "▁Cov er", + "▁Cove r", + "▁ Cover", + "解答 即可", + "▁pack aging", + "▁t orch", + "▁tor ch", + "▁ torch", + "▁arr anged", + "▁arrang ed", + "▁arrange d", + "like ly", + "lik ely", + "采 纳", + "▁Cont roller", + "▁Control ler", + "▁ Controller", + "▁g onna", + "▁gon na", + "珍 惜", + "▁col ours", + "▁colour s", + "Bl ue", + "▁empir ical", + "▁emp irical", + "h l", + "▁d eeper", + "▁de eper", + "▁deep er", + "▁N ev", + "▁Ne v", + "ide spread", + "ides pread", + "三 次", + "OS S", + "O SS", + "▁G il", + "▁Gi l", + "▁Stat istics", + "▁ Statistics", + "__ \":\\", + "▁b alls", + "▁bal ls", + "▁ball s", + "▁ balls", + "▁prevent ing", + "派出 所", + "四 条", + "那 是", + "▁F actor", + "▁Fac tor", + "▁Fa ctor", + "▁Fact or", + "▁ Factor", + "Key s", + "Ke ys", + "▁上 海", + "▁ 上海", + "输 送", + "nT oday", + "nTo day", + "n Today", + "and ra", + "andr a", + "a ndra", + "▁M as", + "▁Ma s", + "▁ Mas", + "从 业", + "干 预", + "穿 着", + "nR el", + "nRe l", + "n Rel", + "人民法院 裁定", + "▁S M", + "▁ SM", + "Hol der", + "Hold er", + "H older", + "MO DE", + "MOD E", + "th ird", + "thi rd", + "▁S pir", + "▁Sp ir", + "▁h ero", + "▁he ro", + "▁her o", + "▁ hero", + "▁r ated", + "▁rate d", + "▁rat ed", + "▁ra ted", + "▁ rated", + "▁six th", + "三 星", + "hy per", + "hyp er", + "sc ience", + "sci ence", + "tu rn", + "tur n", + "t urn", + "▁exclusive ly", + "▁exclus ively", + "▁п о", + "▁ по", + "ol ly", + "oll y", + "▁H il", + "▁Hi l", + "▁ab ilities", + "▁ abilities", + "▁comp iled", + "▁compile d", + "▁ compiled", + "▁d reams", + "▁dream s", + "Do uble", + "D ouble", + "Gu i", + "G ui", + "▁pro sec", + "▁pros ec", + "▁prose c", + "▁explicit ly", + "e u", + "pol y", + "po ly", + "p oly", + "讲 述", + "▁E C", + "▁ EC", + "▁ent ities", + "▁ entities", + "▁abnormal ities", + "▁abnorm alities", + "审 美", + "不 履行", + "▁Hol lywood", + "▁Holly wood", + "▁d ollar", + "▁doll ar", + "▁dol lar", + "▁ dollar", + "本院 已", + "我 还", + "海 市", + "可以 再次申请执行", + "上 线", + "ex tend", + "ext end", + "青 山", + "Im port", + "Imp ort", + "方 针", + "财产 线索", + "ob acter", + "obac ter", + "▁ent itled", + "le ges", + "leg es", + "lege s", + "放 大", + "的 意义", + "的 市场", + "▁t ries", + "▁tr ies", + "▁tri es", + "▁predom inant", + "▁trans parent", + "▁ transparent", + "定 价", + "St at", + "S tat", + "ro se", + "ros e", + "r ose", + "▁St ream", + "▁Stre am", + "▁ Stream", + "▁im pl", + "▁imp l", + "▁ impl", + "▁ach ieving", + "s r", + "cl ock", + "c lock", + "▁saf ely", + "▁safe ly", + "执行 工作", + "▁B ody", + "▁Bo dy", + "▁Bod y", + "▁ Body", + "▁ag gressive", + "▁aggress ive", + "▁vulner able", + "em pl", + "emp l", + "nW omen", + "n Women", + "少 的", + "▁ 科", + "▁aff inity", + "▁ affinity", + "▁sub stitute", + "▁substit ute", + "▁s urname", + "▁sur name", + "▁ surname", + "ia ting", + "iat ing", + "i ating", + "犯罪 事实", + "▁liter ally", + "▁literal ly", + "社会信用 代码", + "以 往", + "含 义", + "il iary", + "ili ary", + "ilia ry", + "iliar y", + "Cont rollers", + "Controller s", + "Control lers", + "矩 阵", + "都 知道", + "试 试", + "up per", + "upp er", + "协 同", + "评 分", + "ac char", + "acc har", + "▁mid field", + "燃 烧", + "▁f ixes", + "▁fix es", + "精 致", + "▁Ch allenge", + "▁Chall enge", + "▁the atre", + "▁theat re", + "▁Cast le", + "▁Cas tle", + "▁accept able", + "▁ acceptable", + "▁res ume", + "▁ resume", + "户 外", + "▁respon ded", + "▁respond ed", + "an im", + "ani m", + "a nim", + "天 使", + "▁S ales", + "▁Sal es", + "▁Sa les", + "▁Sale s", + "▁ Sales", + "▁do nor", + "▁don or", + "▁oxid ative", + "爱 心", + "▁pos terior", + "▁post erior", + "▁poster ior", + "tl og", + "t log", + "▁A ustin", + "▁Aust in", + "▁Aus tin", + "▁} ,", + "▁ },", + "ogn ition", + "rop olitan", + "▁typ ing", + "▁ty ping", + "nD isc", + "nDis c", + "nDi sc", + "n Disc", + "全 世界", + "▁e missions", + "▁em issions", + "▁emission s", + "▁di abetic", + "▁flu orescence", + "▁fluores cence", + "▁fluor escence", + "说 不", + "▁n as", + "▁na s", + "▁ nas", + "term inal", + "termin al", + "▁C ategory", + "▁ Category", + "过 敏", + "原 判", + "并 有", + "▁F a", + "▁ Fa", + "第十 三", + "第 十三", + "▁D oc", + "▁Do c", + "▁ Doc", + "▁汉 族", + "▁ 汉族", + "分 工", + "差 别", + "▁o nc", + "▁on c", + "▁ onc", + "Not Found", + "▁D ifferent", + "▁Diff erent", + "▁ Different", + "HO ST", + "H OST", + "法律服务 所", + "ge nic", + "gen ic", + "g enic", + "ble d", + "bl ed", + "b led", + "O w", + "St ar", + "S tar", + "con tract", + "contr act", + "淀 粉", + "▁elect roph", + "▁electro ph", + "▁electr oph", + "MO D", + "M OD", + "歌 词", + "▁S ri", + "▁Sr i", + "▁place bo", + "▁plac ebo", + "▁nut rition", + "▁nutr ition", + "▁nutrit ion", + "▁ nutrition", + "到 现在", + "牙 齿", + "冬 天", + "at hon", + "ath on", + "a thon", + "ba bel", + "bab el", + "b abel", + "▁c od", + "▁co d", + "▁ cod", + "▁Se ason", + "▁Sea son", + "▁ Season", + "为 你", + ": `", + "Su r", + "S ur", + "马克 思", + "▁came ras", + "▁cam eras", + "▁camera s", + "会 出现", + "▁c ow", + "▁co w", + "▁ cow", + "积极参加 劳动", + "等 问题", + "▁S om", + "▁So m", + "S K", + "原来 的", + "原 来的", + "pi pe", + "pip e", + "p ipe", + "¶ \\", + "水 电", + "法律 工作者", + "▁n otion", + "▁not ion", + "▁no tion", + "CLUD ING", + "心理 学", + "心 理学", + "▁optim ized", + "▁optimize d", + "二 维", + "眼 前", + "▁int act", + "par ameter", + "param eter", + "para meter", + "paramet er", + "ap ple", + "app le", + "统一 社会信用代码", + "▁oper ates", + "▁operate s", + "▁opera tes", + "冒 险", + "▁Nig eria", + "▁Niger ia", + "▁tele phone", + "打 工", + "nP ol", + "nPo l", + "n Pol", + "ol ves", + "olve s", + "olv es", + "▁L iver", + "▁Li ver", + "▁Live r", + "▁Liv er", + "▁y ard", + "▁ya rd", + "▁ yard", + "ma te", + "mat e", + "m ate", + "▁not ification", + "▁ notification", + "知识的 选择题", + "et o", + "e to", + "Fi n", + "F in", + "附 录", + "▁( *", + "▁ (*", + "本院在执行 申请执行人", + "na ma", + "nam a", + "n ama", + "resent ation", + "登记 结婚", + "最后 一", + "行 情", + "月二十 八日", + "导 向", + "▁c ats", + "▁ca ts", + "▁cat s", + "▁ cats", + "sp l", + "s pl", + "DE BUG", + "on ical", + "onic al", + "oni cal", + "onica l", + "/ >", + "nt il", + "n til", + "▁fro zen", + "oc hemistry", + "ochem istry", + "有 序", + "▁sur viv", + "▁surv iv", + "▁e levation", + "▁elev ation", + "▁ele vation", + "摘 要", + "XM L", + "X ML", + "▁chair man", + "▁recruit ment", + "▁T ravel", + "▁Tr avel", + "▁Tra vel", + "▁Trav el", + "▁ Travel", + "▁V ice", + "▁Vi ce", + "▁Vic e", + "Pa l", + "P al", + "也就是 说", + "也 就是说", + "▁le sson", + "▁less on", + "▁les son", + "▁aug ment", + "▁au gment", + "陆 续", + "每 人", + "▁predict ions", + "▁prediction s", + "▁pred ictions", + "你 能", + "南京 市", + "▁invest igating", + "▁investig ating", + "▁spir itual", + "▁spirit ual", + "我们 将", + "▁t ons", + "▁to ns", + "▁ton s", + "▁ tons", + "▁H ur", + "▁Hu r", + "▁T arget", + "▁Tar get", + "▁ Target", + "en coding", + "enc oding", + "IN GS", + "ING S", + "▁int estinal", + "▁ intestinal", + "孤 独", + "ni e", + "n ie", + "▁mass age", + "▁rel ating", + "历 程", + "执行 完毕", + "▁n urses", + "▁nurs es", + "▁nur ses", + "▁nurse s", + "绩 效", + "数 值", + "▁direct ors", + "▁director s", + "▁dir ectors", + "▁dire ctors", + "▁Ph D", + "▁ 类别", + "▁t ar", + "▁ta r", + "▁ tar", + "的通 知", + "的 通知", + "升 高", + "为 准", + "来 讲", + "的 状态", + "日 以", + "▁ 地理位置", + "谅 解", + "▁Represent atives", + "▁Representative s", + "的 和", + "▁for ming", + "▁form ing", + "▁ forming", + "▁under go", + "▁J am", + "▁Ja m", + "特 定", + "▁en abling", + "▁S ide", + "▁Si de", + "▁Sid e", + "▁ Side", + "MM MM", + "ma rt", + "mar t", + "m art", + "Re al", + "R eal", + "▁exp los", + "▁expl os", + "▁explo s", + "oc o", + "o co", + "留 在", + "▁ag reements", + "▁agre ements", + "▁agreement s", + "▁agree ments", + "▁ 什么是", + "那 一", + "▁incred ibly", + "er k", + "e rk", + ")$ $\\", + ")$$ \\", + ") $$\\", + "or se", + "ors e", + "▁malign ant", + "小 程序", + "Serv let", + "or us", + "o rus", + "con v", + "co nv", + "ni k", + "n ik", + "▁att itude", + "块 钱", + "dom inal", + "夏 季", + "▁att achment", + "▁attach ment", + "▁ attachment", + "取 决", + "的 生产", + "reg istry", + "nP ersonal", + "nPerson al", + "n Personal", + "▁co aching", + "▁coach ing", + "▁re placing", + "▁replac ing", + "▁Aut om", + "▁Auto m", + "▁Au tom", + "▁ Autom", + "ort heast", + "orth east", + "对 策", + "▁S top", + "▁St op", + "▁ Stop", + ") <", + "驳回 原告", + "关键 词", + "ar do", + "ard o", + "▁New ton", + "▁f lights", + "▁fl ights", + "▁flight s", + "▁p ainted", + "▁pain ted", + "▁paint ed", + "nel se", + "nels e", + "n else", + "▁M arc", + "▁Mar c", + "▁Ma rc", + "▁ Marc", + "st ation", + "stat ion", + "sta tion", + "———— ————", + "UN T", + "U NT", + "你 想", + "▁K enn", + "▁Ke nn", + "▁Ken n", + "期 望", + "两 国", + "▁pro poses", + "▁propos es", + "▁prop oses", + "▁propose s", + "as cin", + "asc in", + "asci n", + "克 斯", + "人 人", + "科技 大学", + "▁p ocket", + "tr ation", + "tra tion", + "t ration", + "人工 智能", + "的中 国", + "的 中国", + "▁ad voc", + "▁adv oc", + "的 所有", + "▁b ios", + "▁bi os", + "▁bio s", + "▁b oss", + "▁bo ss", + "▁bos s", + "▁ boss", + "周 末", + "从选项中 选出", + "相 机", + "在 新", + "▁hard er", + "▁har der", + "pos al", + "po sal", + "p osal", + "焊 接", + "▁fr aud", + "▁fra ud", + "▁{ };\\", + "▁{} ;\\", + "/ $", + "后 再", + "为 您", + "or o", + "o ro", + "▁fl our", + "▁flo ur", + "or ms", + "orm s", + "▁work shops", + "▁workshop s", + "▁data bases", + "▁dat abases", + "▁database s", + "▁ databases", + "让 她", + "万 吨", + "比 亚", + "ic ut", + "i cut", + "▁D ave", + "▁Da ve", + "▁Dav e", + "▁B ry", + "▁Br y", + "▁b omb", + "▁bo mb", + "▁bom b", + "平 移", + "回 事", + "▁S ometimes", + "▁Some times", + "▁Som etimes", + "你 不", + "▁rec urrence", + "ho u", + "h ou", + "az ines", + "azine s", + "azi nes", + "▁con structor", + "▁construct or", + "▁ constructor", + "▁f mt", + "▁ fmt", + "▁s ew", + "▁se w", + "▁p ace", + "▁pa ce", + "▁pac e", + "▁ pace", + "▁morb idity", + "bi rd", + "bir d", + "b ird", + "The me", + "Th eme", + "T heme", + "Ga mma", + "G amma", + "多 久", + "▁Th ough", + "▁S peed", + "▁Sp eed", + "▁Spe ed", + "▁ Speed", + "less ly", + "齐 全", + "▁H aving", + "▁Ha ving", + "▁Hav ing", + "凭 证", + "▁H ills", + "▁Hill s", + "▁Hil ls", + "▁e cosystem", + "▁ec osystem", + "▁eco system", + "和 发展", + "轻 轻", + "▁ne ighbour", + "▁neigh bour", + "▁neighb our", + "下一 步", + "下 一步", + "sch ool", + "s chool", + "▁w rites", + "▁writ es", + "▁write s", + "▁wr ites", + "防 范", + "▁arch ive", + "▁arc hive", + "▁ archive", + "婚 礼", + "▁n od", + "▁no d", + "▁ nod", + "nn ame", + "n name", + "使 其", + "▁f ibr", + "▁fib r", + "▁fi br", + "▁mod ifications", + "▁modification s", + "可 怜", + "el son", + "els on", + "法 官", + "实 话", + "nF r", + "n Fr", + "▁elect rons", + "▁electron s", + "▁electro ns", + "▁electr ons", + "▁arg parse", + "▁b locked", + "▁block ed", + "玫 瑰", + "N R", + "▁j et", + "▁je t", + "▁ jet", + "str ucture", + "struct ure", + "▁D ocker", + "▁Doc ker", + "▁Dock er", + "▁ Docker", + "in cludes", + "include s", + "加 坡", + "就 开始", + "▁res ist", + "▁b ol", + "▁bo l", + "▁ bol", + "ja ck", + "jac k", + "j ack", + "路 口", + "波 动", + "了 诉讼", + "▁g re", + "▁gr e", + "▁ gre", + "▁bar riers", + "▁barrier s", + "▁barr iers", + "当 庭", + "很 久", + "实 战", + "▁pro ducers", + "▁produ cers", + "▁produce rs", + "▁producer s", + "一 带", + "在 开庭", + "初中 文化", + "初 中文化", + "标准 化", + "节 日", + "▁min imize", + "▁minim ize", + "▁imm igr", + "由被告 承担", + "Th reading", + "Thread ing", + "▁the ories", + "▁theor ies", + "▁nit rogen", + "▁nitro gen", + "fa ctor", + "fac tor", + "fact or", + "f actor", + "层 的", + "▁com poser", + "▁comp oser", + "▁compos er", + "▁compose r", + "▁ composer", + "▁destroy ed", + "延 伸", + "pr ev", + "pre v", + "p rev", + "Y P", + "渗 透", + "注意 事项", + "▁ens ures", + "▁ensure s", + "ail and", + "ai land", + "▁organ isations", + "▁organisation s", + "▁Organ ization", + "▁ Organization", + "显 著", + "经 销", + "▁H ost", + "▁Ho st", + "▁ Host", + "▁X ML", + "▁ XML", + "▁K itchen", + "▁Kit chen", + "借款 合同纠纷一案", + "借款合同 纠纷一案", + "orpor ated", + "orporate d", + "▁is olation", + "▁isol ation", + "▁iso lation", + "Ro b", + "R ob", + "▁( <", + "▁ (<", + "▁S imon", + "▁Sim on", + "▁Si mon", + "Not Null", + "ig ious", + "igi ous", + "最 初", + "char acter", + "▁ref lection", + "▁reflect ion", + "ou ver", + "ouve r", + "县 公安局", + "点 评", + "} :", + "桃 花", + "▁J ane", + "▁Jan e", + "▁Ja ne", + "ect ure", + "ec ture", + "dr iven", + "driv en", + "drive n", + "d riven", + "的 权利", + "nH igh", + "nHi gh", + "n High", + "演 讲", + "组成 的", + "组 成的", + "an ka", + "ank a", + "▁par liament", + "▁ ≤", + "▁ 软件", + "▁c lim", + "▁cl im", + "▁cli m", + "高速 公路", + "向本院 提起", + "▁t itled", + "▁title d", + "▁tit led", + "▁pro jection", + "▁project ion", + "▁proj ection", + "▁ projection", + "客 人", + "▁gr avity", + "▁grav ity", + "▁ gravity", + "▁M and", + "▁Man d", + "▁Ma nd", + "▁s ees", + "▁se es", + "▁see s", + "▁pro hib", + "de ep", + "d eep", + "等 差", + "á s", + "▁F iles", + "▁Fil es", + "▁File s", + "▁Fi les", + "▁ Files", + "▁sust ained", + "▁sustain ed", + "▁ar rays", + "▁array s", + "▁arr ays", + "▁ arrays", + "▁ult ras", + "▁ul tras", + "▁ultr as", + "▁ultra s", + "照 时间", + "▁N otes", + "▁No tes", + "▁Not es", + "▁Note s", + "▁ Notes", + "is ode", + "iso de", + "▁U r", + "▁ Ur", + "bad ge", + "▁E ag", + "ef fect", + "eff ect", + "以下 的", + "以 下的", + "未 经", + "▁enjoy ing", + "f p", + "ess ary", + "essa ry", + "▁rec ipes", + "▁recip es", + "▁recipe s", + "▁ recipes", + "一 对", + "le arning", + "learn ing", + "lear ning", + "l earning", + "▁B itcoin", + "▁Bit coin", + "年 纪", + "精 力", + "л ь", + "▁cool ing", + "▁def ines", + "▁define s", + "▁defin es", + "平 等", + "▁vill ages", + "▁village s", + "▁villa ges", + "校 区", + "▁p rev", + "▁pre v", + "▁pr ev", + "▁ prev", + "am y", + "a my", + "插 入", + "▁D or", + "▁Do r", + "▁overw hel", + "▁terr itory", + "▁territ ory", + "cs tring", + "c string", + "▁p ounds", + "▁pound s", + "▁L eon", + "▁Le on", + "▁Leo n", + "▁bel ongs", + "▁belong s", + "▁ belongs", + "et ition", + "eti tion", + "激 素", + "点 赞", + "Re act", + "中共 党员", + "登记 成立", + "▁ann iversary", + "▁odd s", + "▁od ds", + "▁ odds", + "▁Pat rick", + "▁Patri ck", + "贝 尔", + "nt ry", + "ntr y", + "n try", + "nI nst", + "nIn st", + "nIns t", + "n Inst", + "▁St orage", + "▁ Storage", + "aud io", + "audi o", + "a udio", + "▁f ailing", + "▁fail ing", + "▁fa iling", + "▁hol idays", + "▁holiday s", + "gu ide", + "gui de", + "guid e", + "inc ial", + "▁With out", + "▁ Without", + "nD em", + "nDe m", + "n Dem", + "▁purs ue", + "Mo ve", + "M ove", + "▁pass engers", + "▁passenger s", + "助 力", + "ca mp", + "cam p", + "c amp", + "min us", + "mi nus", + "m inus", + "取决 于", + "▁but tons", + "▁button s", + "▁butt ons", + "▁ buttons", + "▁Philipp ines", + "▁Philippine s", + "Il l", + "I ll", + "for ming", + "form ing", + "in valid", + "inv alid", + "损 坏", + "gb a", + "g ba", + "▁o ven", + "▁ov en", + "▁ oven", + "▁w ake", + "▁wa ke", + "的 性质", + "▁L arge", + "▁Lar ge", + "▁ Large", + "▁ir rad", + "▁irr ad", + "▁b orrow", + "▁bor row", + "假 如", + ")\" \\", + ") \"\\", + "nl ayout", + "n layout", + "▁$ $(", + "▁$$ (", + "▁ $$(", + "um atic", + "uma tic", + "umat ic", + "u matic", + "▁dist ribute", + "▁distribut e", + "select or", + "sel ector", + "▁D ead", + "▁De ad", + "▁ Dead", + "▁sc roll", + "▁scr oll", + "▁ scroll", + "▁Char acter", + "▁ Character", + "导 航", + "pl ain", + "p lain", + "Field s", + "F ields", + "▁B us", + "▁Bu s", + "▁ Bus", + "ol ars", + "olar s", + "ola rs", + "▁t ied", + "▁tie d", + "▁ti ed", + "报 酬", + "▁E mb", + "▁Em b", + "程度 上", + "▁mort gage", + "col ors", + "color s", + "副 主席", + "高 血压", + "▁C ome", + "▁Com e", + "▁Co me", + "▁ Come", + "供 电", + "Wh y", + "W hy", + "St op", + "S top", + "hi de", + "hid e", + "h ide", + "▁p as", + "▁pa s", + "▁ pas", + "([ \\'", + "([\\ '", + "( [\\'", + "nSports people", + "▁Girl s", + "▁Gir ls", + "inflamm atory", + "ou p", + "o up", + "▁b onds", + "▁bond s", + "▁bon ds", + "MP L", + "M PL", + "▁qual itative", + "▁ar gue", + "▁arg ue", + "▁argu e", + "ab b", + "a bb", + "▁rest oration", + "▁restor ation", + "om on", + "omo n", + "o mon", + "ens ively", + "ensive ly", + "▁purch asing", + "▁Veg as", + "▁Ve gas", + "时间 内", + "nc h", + "n ch", + "做 一个", + "As k", + "A sk", + "伴随 着", + "伴 随着", + "f requency", + "\"}, {\"", + "\" },{\"", + "▁P UB", + "▁PU B", + "▁ PUB", + "▁cas ual", + "去 除", + "sh aped", + "shape d", + "sha ped", + "组织机构 代码", + "遇 见", + "某 的", + "k h", + "权 力", + "▁ind icator", + "▁indic ator", + "▁ indicator", + "▁L yn", + "▁Ly n", + "str aint", + "stra int", + "strain t", + "▁Col lect", + "▁Coll ect", + "▁ Collect", + "更 大", + "ndes cribe", + "nde scribe", + "n describe", + "小时 候", + "小 时候", + "真 相", + "到庭参加 了诉讼", + "▁Fore ign", + "▁p rost", + "▁pro st", + "▁pr ost", + "▁pros t", + "▁D uke", + "▁Du ke", + "▁F ollow", + "▁Fol low", + "▁ Follow", + "▁Se attle", + "▁Sea ttle", + "▁Seat tle", + "▁w idespread", + "▁wide spread", + "发展 有限公司", + "并 于", + "阶 级", + "▁surve illance", + "民事 诉讼", + "Mo re", + "Mor e", + "M ore", + "看 守", + "na dd", + "nad d", + "n add", + "▁mod ulation", + "Pat tern", + "▁suscept ibility", + "▁sim plify", + "▁simpl ify", + "和计划生育 局", + "▁pers istent", + "▁persist ent", + "有关 部门", + "pie ce", + "p iece", + "document class", + "ss h", + "s sh", + "▁B lu", + "▁Bl u", + "ay ing", + "a ying", + "幅 度", + "▁R ange", + "▁Ra nge", + "▁Ran ge", + "▁ Range", + "▁r iding", + "▁ri ding", + "▁rid ing", + "▁ riding", + "▁[ ],\\", + "▁[] ,\\", + "▁[], \\", + "▁ [],\\", + "▁initi atives", + "▁initiative s", + "多少 钱", + "war ning", + "warn ing", + "w arning", + "该公司 董事长", + "该 公司董事长", + "▁par ish", + "▁pa rish", + "▁pari sh", + "▁list ings", + "▁listing s", + "on de", + "ond e", + "o nde", + "▁im paired", + "▁imp aired", + "▁impair ed", + "▁cons isted", + "▁consist ed", + "眼 镜", + "▁fib ro", + "▁fibr o", + "▁fi bro", + "▁di vor", + "▁div or", + "▁B oot", + "▁Bo ot", + "▁ Boot", + "旁 边", + "▁process or", + "▁ processor", + "▁extra cellular", + "▁extr acellular", + "▁extrac ellular", + "失信被执行人 名单", + "▁ac company", + "▁accomp any", + "▁accompan y", + "Att ributes", + "Attribute s", + "at io", + "ati o", + "▁De tails", + "▁Det ails", + "▁Detail s", + "▁ Details", + "ab i", + "a bi", + "最重要 的", + "最 重要的", + "ip pi", + "ipp i", + "ow ed", + "owe d", + "o wed", + "热 门", + "未到庭 参加诉讼", + "未 到庭参加诉讼", + "nE ven", + "nEv en", + "n Even", + "奉 献", + "防 火", + "nP olit", + "nPol it", + "nPo lit", + "ne ed", + "nee d", + "n eed", + "▁E L", + "▁ EL", + "统计学 意义", + "▁F inance", + "▁Fin ance", + "天 空", + "pre dict", + "pred ict", + "▁else where", + "^ ^", + "EN CE", + "Load ing", + "Lo ading", + "▁associ ate", + "▁e merged", + "▁emer ged", + "▁emerg ed", + "▁emerge d", + "相 处", + "CO MM", + "COM M", + "戏 剧", + "nT ax", + "n Tax", + "so ng", + "son g", + "s ong", + "▁kin etic", + "▁ki netic", + "B JECT", + "▁init ialize", + "▁initial ize", + "▁ initialize", + "▁re model", + "▁rem odel", + "超 声", + "▁can vas", + "▁ canvas", + "▁comp ilation", + "退 还", + "▁compet itions", + "▁competition s", + "▁competit ions", + "婚姻 法", + "tem pt", + "temp t", + "t empt", + "ee p", + "e ep", + "旅 客", + "▁bu yers", + "▁buy ers", + "▁buyer s", + "MA G", + "M AG", + "处 处", + "期间 不", + "ha ng", + "han g", + "h ang", + "生态 环境", + "初 期", + "en ez", + "ene z", + "e nez", + "▁size of", + "▁ sizeof", + "▁inv asive", + "▁ invasive", + "宁波 市", + "列 出", + "▁ 有限责任公司", + "Init ial", + "▁F ourier", + "▁Four ier", + "Reg istry", + "煤 炭", + "▁小 说", + "▁ 小说", + "in ea", + "ine a", + "i nea", + "tr e", + "t re", + "▁ox idation", + "▁oxid ation", + "▁B ible", + "▁Bi ble", + "▁Bib le", + "▁s id", + "▁si d", + "▁ sid", + "▁l aptop", + "▁lap top", + "保 温", + "Y ear", + "约 束", + "▁B alt", + "▁Bal t", + "▁Ba lt", + "进 了", + "elen ium", + "▁F I", + "▁ FI", + "cd n", + "c dn", + "war n", + "wa rn", + "w arn", + "an ion", + "ani on", + "附 属", + "▁D ur", + "▁Du r", + "▁represent atives", + "▁representative s", + "▁g aming", + "▁gam ing", + "▁ga ming", + "产 地", + "▁W E", + "▁ WE", + "▁Tok yo", + "女 朋友", + "▁p references", + "▁pre ferences", + "▁pr eferences", + "▁prefer ences", + "▁preference s", + "▁ preferences", + "和 你", + "交 警", + "onom ous", + "家 属", + "▁G A", + "▁ GA", + "第六 十七条", + "第六十七 条", + "守 护", + "Col lect", + "Coll ect", + "▁v oters", + "▁vote rs", + "▁vot ers", + "▁vo ters", + "▁voter s", + "▁select ing", + "▁sel ecting", + "▁roll ing", + "▁ rolling", + "▁P E", + "▁ PE", + "▁Pl ant", + "▁Plan t", + "The se", + "Th ese", + "trans lation", + "transl ation", + "服 从", + "市场 上", + "市 场上", + "st roke", + "str oke", + "台 北", + "日立案 执行", + "日 立案执行", + "高 峰", + "美丽 的", + "美 丽的", + "}) $", + "} )$", + "▁Jac ob", + "▁Ja cob", + "全 县", + "只 不过", + "花 费", + "本案 在执行过程中", + "协 作", + "pl aces", + "place s", + "plac es", + "火 锅", + "种 种", + "家 用", + "build ing", + "▁ 郑", + "▁hand led", + "▁handle d", + "▁ handled", + "问 我", + "▁Add itional", + "▁Addition al", + "▁ Additional", + "电 缆", + "\"\\ \\", + "\" \\\\", + "▁N ik", + "▁Ni k", + "al am", + "ala m", + "a lam", + "▁R oy", + "▁Ro y", + "ock ets", + "ocket s", + "▁S uccess", + "▁Su ccess", + "▁ Success", + "▁insp ection", + "▁inspect ion", + "▁\" \",\\", + "▁\"\" ,\\", + "▁\"\", \\", + "便 捷", + "科 普", + "▁among st", + "查 找", + "▁A RE", + "▁AR E", + "▁ ARE", + "▁cont acts", + "▁contact s", + "▁ contacts", + "ar ith", + "ari th", + "▁spect rom", + "▁spectro m", + "V O", + "▁Part icip", + "▁ Particip", + "骨 折", + "请 给出", + "en h", + "e nh", + "rb an", + "r ban", + "▁tr iple", + "▁tri ple", + "▁trip le", + "▁G ET", + "▁GE T", + "▁ GET", + "▁H oly", + "▁Hol y", + "▁Ho ly", + "▁D ak", + "▁Da k", + "en viron", + "env iron", + "ac les", + "acle s", + "acl es", + "a cles", + "▁M odule", + "▁Mod ule", + "▁Mo dule", + "▁ Module", + "ab stract", + "abs tract", + "a bstract", + "▁ind icators", + "▁indic ators", + "▁indicator s", + "紧 密", + "pol icy", + "p olicy", + "充 足", + "View Model", + "▁he patic", + "▁hepat ic", + "}{ (", + "} {(", + "是我 们", + "是 我们", + "▁e q", + "▁ eq", + "社 保", + "鉴 于", + "复杂 度", + "▁rec ru", + "气 氛", + "▁H P", + "▁ HP", + "▁at omic", + "▁atom ic", + "▁ atomic", + "▁th yroid", + "▁thy roid", + "▁t rem", + "▁tr em", + "▁tre m", + "▁long itudinal", + "▁sugg estion", + "▁suggest ion", + "家 中", + "ev al", + "eva l", + "e val", + "▁max imal", + "▁maxim al", + "被 称为", + "▁tra ject", + "民 国", + "fl ix", + "nM ETHODS", + "布 置", + "第一百四十五 条第一款之规定", + "第一百四十五条第一款 之规定", + "▁Atl anta", + "fo ur", + "f our", + "大 战", + "ack ets", + "acket s", + "arg uments", + "argument s", + "下 跌", + "幻 想", + "PI O", + "P IO", + "四 边形", + "▁ident ifier", + "▁ identifier", + "* /", + "▁ 郭", + "▁dep osit", + "▁depos it", + "▁element ary", + "el fare", + "elf are", + "▁Ex planation", + "复杂 的", + "考查 了", + "本院 予以确认", + "本院予以 确认", + "填 写", + "侵 权", + "▁b ull", + "▁bu ll", + "▁bul l", + "▁ bull", + "假 期", + "艺术 家", + "▁ex ercises", + "▁exerc ises", + "▁exercise s", + "还是 要", + "还 是要", + "Ma ke", + "M ake", + "′ (", + "nF e", + "n Fe", + "Con verter", + "Convert er", + "▁volunte er", + "少 许", + "王 子", + "semb l", + "sem bl", + "re tion", + "ret ion", + "is p", + "i sp", + "el and", + "ela nd", + "e land", + "▁T ony", + "▁To ny", + "▁Ton y", + "}} $\\", + "}}$ \\", + "} }$\\", + "给 人", + "▁Ass istant", + "陷 入", + "is cal", + "isc al", + "i scal", + "Per son", + "Pers on", + "P erson", + "首 都", + "▁g ut", + "▁gu t", + "ot ing", + "otin g", + "oti ng", + "o ting", + "▁prom oter", + "▁promot er", + "▁promote r", + "▁promo ter", + "不 违反", + "是真 的", + "是 真的", + "ter r", + "te rr", + "t err", + "▁c rystall", + "▁cryst all", + "▁crystal l", + "▁G er", + "▁Ge r", + "qu ote", + "quot e", + "quo te", + "▁rel igion", + "▁relig ion", + "std err", + "建立 了", + "i ć", + "后 悔", + "in ine", + "ini ne", + "inin e", + "i nine", + "宣 判", + "riv acy", + "roph ic", + "over nment", + "overn ment", + "有 钱", + "月 底", + "▁re vision", + "▁rev ision", + "▁revis ion", + "▁ revision", + "▁T y", + "▁ Ty", + "▁Java Script", + "▁ JavaScript", + "▁record ings", + "▁recording s", + "▁B B", + "▁ BB", + "和解 协议", + "▁Tem ple", + "▁Temp le", + "库 存", + "琐 事", + "▁ ∴", + "▁comp leting", + "▁complet ing", + "▁compl eting", + "▁chrom osome", + "▁chromos ome", + "▁S tre", + "▁St re", + "▁Str e", + "▁rom antic", + "同一 个", + "同 一个", + "指 令", + "微 笑", + "er able", + "era ble", + "▁发 照时间", + "▁c otton", + "▁cot ton", + "▁kil omet", + "▁ind ependence", + "▁independ ence", + "▁g astric", + "▁gastr ic", + "▁gast ric", + "▁de rive", + "▁der ive", + "▁deriv e", + "▁ derive", + "▁C redit", + "▁Cr edit", + "▁Cre dit", + "▁Cred it", + "▁ Credit", + "os in", + "osi n", + "o sin", + "其行为 已构成", + "▁o verse", + "▁over se", + "▁overs e", + "le e", + "l ee", + "▁comp eting", + "▁compet ing", + "的 教学", + "鉴定 表", + "▁ac oustic", + "▁ acoustic", + "m q", + "一 遍", + "本案 按", + "全 书", + "惊 喜", + "ia ng", + "ian g", + "i ang", + "▁pod cast", + "▁aut hentication", + "▁authent ication", + "▁authentic ation", + "▁ authentication", + "▁P oly", + "▁Pol y", + "▁Po ly", + "▁ Poly", + "og y", + "o gy", + "op sis", + "ops is", + "o psis", + "▁S witzerland", + "插 件", + "▁bal anced", + "▁balance d", + "▁ balanced", + "二 份", + "试 点", + "▁And erson", + "▁Anders on", + "▁arr angement", + "▁arrang ement", + "▁arrange ment", + "Sc ore", + "S core", + "▁Product s", + "▁Produ cts", + "▁ Products", + "▁B ureau", + "▁act ivate", + "▁activ ate", + "▁ activate", + "▁squ ares", + "▁square s", + "▁L IMIT", + "▁LI MIT", + "▁ LIMIT", + "▁network ing", + "▁net working", + "▁C ov", + "▁Co v", + "▁ Cov", + "▁M oscow", + "▁Mos cow", + "▁de fect", + "▁def ect", + "▁defe ct", + "面 粉", + "细 致", + "▁M s", + "▁ Ms", + "二 被告", + "指 示", + "ac ion", + "aci on", + "acio n", + "▁no vels", + "▁novel s", + "▁nov els", + "说 我", + "财 物", + "太 原", + "▁I ron", + "▁Ir on", + "若干问题 的解释", + "若干问题的 解释", + "度 假", + "▁ac quire", + "▁acqu ire", + "脸 上", + "be nch", + "ben ch", + "b ench", + "▁remark able", + "S ql", + "频 繁", + "ig g", + "i gg", + "▁w rapper", + "▁wr apper", + "▁wrap per", + "▁ wrapper", + "善 良", + "▁b ills", + "▁bill s", + "▁bil ls", + "▁m arrow", + "▁mar row", + "▁inter ference", + "▁interfer ence", + "▁interfere nce", + "▁F red", + "▁Fr ed", + "▁Fre d", + "▁expl oration", + "▁explo ration", + "▁explor ation", + "▁o v", + "▁ ov", + "es lint", + "一 声", + "▁\\' %", + "▁ \\'%", + "▁jour nals", + "▁journal s", + "ol ip", + "oli p", + "o lip", + "成 效", + "▁c ru", + "▁cr u", + "assert True", + "o T", + "域 名", + "对 面", + "al y", + "a ly", + "▁A uthors", + "▁Author s", + "▁Auth ors", + "job s", + "jo bs", + "j obs", + "ra ted", + "rate d", + "rat ed", + "r ated", + "nS w", + "n Sw", + "▁re habilitation", + "mu s", + "m us", + "日 提出", + "担 当", + "第二百四十 二条", + "第二百四十二 条", + "▁d é", + "▁Im ages", + "▁Image s", + "▁ Images", + "▁P red", + "▁Pr ed", + "▁Pre d", + "▁ Pred", + "▁A li", + "▁Al i", + "▁ Ali", + "▁d rives", + "▁dr ives", + "▁dri ves", + "▁driv es", + "▁drive s", + "▁inhib itory", + "▁inhibitor y", + "▁inhibit ory", + "注 销", + "第二 个", + "第 二个", + "LE TE", + "LET E", + "Com par", + "Comp ar", + "正常 的", + "只 需", + "▁op position", + "▁K it", + "▁Ki t", + "▁ Kit", + "L anguage", + "▁int ellectual", + "A X", + "▁f acial", + "▁fac ial", + "▁ facial", + "▁accompl ished", + "▁accomp lished", + "▁accomplish ed", + "In ject", + "正 义", + "▁解 释", + "▁ 解释", + "判 定", + "ur u", + "u ru", + "忽 略", + "必要 的", + "▁sk illed", + "▁skill ed", + "▁feas ibility", + "履 历", + "接 待", + "信息 技术", + "▁Gree ce", + "微博 热度", + "并发 症", + "▁cabin et", + "▁cab inet", + "▁F if", + "▁Fi f", + "地 说", + "nCons ider", + "冷 却", + "▁M ix", + "▁Mi x", + "▁ Mix", + "▁O P", + "▁ OP", + "」 \\", + "▁C OPY", + "▁CO PY", + "▁ COPY", + "▁r um", + "▁ru m", + "▁ rum", + "▁Ed itor", + "▁Edit or", + "▁ Editor", + "ug u", + "u gu", + "▁s ensory", + "▁sens ory", + "▁sensor y", + "得到 的", + "得 到的", + "▁Ap plications", + "▁Application s", + "▁Appl ications", + "▁ Applications", + "▁M ade", + "▁Mad e", + "▁Ma de", + "▁ Made", + "mit h", + "mi th", + "m ith", + "UR I", + "U RI", + "▁val ve", + "▁inv ite", + "al one", + "alo ne", + "alon e", + "的原 则", + "的 原则", + "▁reg ime", + "创 始", + "信 仰", + "逝 世", + "▁c oin", + "▁co in", + "▁ coin", + "it ories", + "itor ies", + "ito ries", + "ation ally", + "ational ly", + "第三 方", + "第 三方", + "备 案", + "▁up grad", + "第四 节", + "▁dr inks", + "▁drink s", + "早 已", + "▁char set", + "▁chars et", + "▁ charset", + "/ \"", + "Pro v", + "Pr ov", + "P rov", + "▁se xy", + "▁sex y", + "自身 的", + "自 身的", + "▁form ats", + "▁format s", + "▁ formats", + "▁B utton", + "▁But ton", + "▁ Button", + "▁E S", + "▁ ES", + "剩 下", + "], \"", + "] ,\"", + "就 被", + "iz ational", + "ization al", + "和 他", + "▁Al len", + "▁All en", + "var e", + "va re", + "v are", + "▁sh oulder", + "▁should er", + "的 确", + "nB el", + "nBe l", + "n Bel", + "▁ur inary", + "▁Dis play", + "▁ Display", + "d j", + "product ive", + "prod uctive", + "ij ing", + "iji ng", + "i jing", + "la ted", + "late d", + "lat ed", + "l ated", + "▁Mo ore", + "▁Moor e", + "Ev ery", + "E very", + "▁strict ly", + "▁fin est", + "▁fine st", + "▁fi nest", + "▁fines t", + "认 同", + "转化 为", + "转 化为", + "▁a est", + "均 有", + "▁u rine", + "▁ur ine", + "▁uri ne", + "MA P", + "M AP", + "▁mot ivation", + "▁motiv ation", + "sample s", + "sam ples", + "s amples", + "边 长", + "am ide", + "ami de", + "am azon", + "ama zon", + "▁c ater", + "▁ca ter", + "▁cat er", + "▁cate r", + "▁cont ributes", + "▁contribut es", + "▁contribute s", + "in cess", + "ince ss", + "inc ess", + "inces s", + "恶 心", + "▁Cons ult", + "▁Part ners", + "▁Partner s", + "▁val idity", + "▁valid ity", + "▁g em", + "▁ge m", + "▁ gem", + "提 请", + "题 材", + "▁t ape", + "▁ta pe", + "▁tap e", + "▁ tape", + "市场 监督管理局", + "▁ad option", + "▁adopt ion", + "▁adop tion", + "版 权", + "投 影", + "▁dram atic", + "▁drama tic", + "▁m others", + "▁mother s", + "▁mo thers", + "▁moth ers", + "▁re late", + "▁rel ate", + "AC H", + "A CH", + "▁ 海", + "ID E", + "I DE", + "大 脑", + "普通 的", + "普 通的", + "▁C ourse", + "▁Co urse", + "▁Cour se", + "▁ Course", + "真 心", + "th ree", + "thr ee", + "pu s", + "p us", + "is tical", + "ist ical", + "istic al", + "优 雅", + "防 御", + "▁I SO", + "▁IS O", + "▁ ISO", + "▁a gon", + "▁ag on", + "▁ago n", + "▁ agon", + "▁co inc", + "▁coin c", + "▁al ignment", + "▁align ment", + "▁ alignment", + "▁S W", + "▁ SW", + "▁sub group", + "泰 国", + "▁equ ity", + "▁eq uity", + "符合 有关法律规定", + "▁vir uses", + "▁virus es", + "▁over look", + "▁overl ook", + "也 将", + "绍 兴", + "通 风", + "▁util ization", + "▁ut ilization", + "▁contin uously", + "▁continu ously", + "▁continuous ly", + "液 体", + "sh adow", + "sha dow", + "古 典", + "ar ding", + "ard ing", + "ardi ng", + "曾 任", + "ter y", + "te ry", + "t ery", + "这 场", + "▁par agraph", + "▁para graph", + "▁ paragraph", + "nG ener", + "nGe ner", + "nGen er", + "n Gener", + "q q", + "号 为", + "▁surv ive", + "▁surviv e", + "的 具体", + "的 目标", + "ustr alian", + "ustral ian", + "ustralia n", + "日 志", + "阳 性", + "ag an", + "aga n", + "a gan", + "Hi story", + "Hist ory", + "H istory", + "▁dep artments", + "▁department s", + "▁depart ments", + "▁membr anes", + "▁membrane s", + "sc ene", + "▁period ic", + "▁peri odic", + "▁ periodic", + "▁b ooking", + "▁book ing", + "▁bo oking", + "▁ booking", + "id i", + "i di", + "▁Malays ia", + "这种 情况", + "去 做", + "▁Qu ick", + "▁ Quick", + "除 法", + "格 兰", + "▁B run", + "▁Br un", + "▁Bru n", + "想 起", + "op tim", + "opt im", + "拿 着", + "Sp ring", + "S pring", + "代 替", + "dict ion", + "di ction", + "dic tion", + "d iction", + "▁bo ards", + "▁board s", + "▁ boards", + "茶 叶", + "的 样子", + "但是 我", + "但 是我", + "▁s ha", + "▁sh a", + "▁ sha", + "两 点", + "民 政", + "两 天", + "^ *", + "dash board", + "d ashboard", + "iv ities", + "ivi ties", + "▁o ct", + "▁oc t", + "▁ oct", + "▁B arn", + "▁Bar n", + "▁Ba rn", + "categor ies", + "c ategories", + "▁ent repreneur", + "▁entreprene ur", + "og r", + "o gr", + "Base d", + "Bas ed", + "Ba sed", + "B ased", + "▁En joy", + "定 了", + "▁O klahoma", + "▁p reference", + "▁pre ference", + "▁pr eference", + "▁prefer ence", + "▁smart phone", + "M s", + "全新 的", + "全 新的", + "E Y", + "▁ant ioxid", + "▁anti oxid", + "reg ulation", + "谈 判", + "▁M rs", + "▁Mr s", + "▁s lide", + "▁sl ide", + "▁ slide", + "▁Id eas", + "▁Ide as", + "▁Idea s", + "▁Ne uro", + "nV iew", + "n View", + "in us", + "i nus", + "▁mat plotlib", + "▁ matplotlib", + "nR oute", + "n Route", + "帮 忙", + "▁ret ention", + "判决 发生法律效力后", + "▁comb ines", + "▁combin es", + "▁combine s", + "王某 某", + "王 某某", + "▁he aded", + "▁head ed", + "▁ headed", + "一 台", + "an notations", + "annot ations", + "annotation s", + "▁> \\", + "▁ >\\", + "mod ified", + "不 说", + "▁c urious", + "▁cur ious", + "▁lim itation", + "▁limit ation", + "实 地", + "▁图书 目录", + "Render er", + "人 与", + "单 一", + "sy nt", + "syn t", + "s ynt", + "▁St ack", + "▁Sta ck", + "▁ Stack", + "dis ci", + "di sci", + "disc i", + "料 的", + "两 者", + "住 了", + "▁Gu ys", + "▁Guy s", + "书 中", + "▁to night", + "▁ton ight", + "Ma il", + "M ail", + "▁d ense", + "▁de nse", + "▁den se", + "▁dens e", + "▁ dense", + "▁Spec ifically", + "▁Specific ally", + "▁ θ", + "场 地", + "▁encounter ed", + "pro c", + "pr oc", + "p roc", + "▁K elly", + "▁Kel ly", + "▁Kell y", + "а т", + "▁re active", + "▁react ive", + "▁ reactive", + "增 值", + "市 区", + "把 自己", + "年 初", + "执行工作 若干问题的规定", + "▁c c", + "▁ cc", + "re spons", + "res pons", + "respon s", + "resp ons", + "▁adjust ed", + "▁adj usted", + "▁ adjusted", + ">\\ '", + "> \\'", + "▁And re", + "▁Andr e", + "▁p ushed", + "▁push ed", + "id ase", + "ida se", + "idas e", + "lo id", + "l oid", + "Ar ch", + "Arc h", + "▁Enter tainment", + "生 气", + "表 彰", + "▁p acked", + "▁pack ed", + "▁ packed", + "er mat", + "erm at", + "▁cap tion", + "▁ca ption", + "▁capt ion", + "▁ caption", + "的 声音", + "健 全", + "等差 数列", + "▁relax ation", + "六 条", + "disc ipl", + "disci pl", + "凌 晨", + "相 遇", + "▁b earing", + "▁be aring", + "▁bear ing", + "▁ bearing", + "▁ 何", + "nc c", + "n cc", + "该公司 总经理", + "该 公司总经理", + "▁S ummary", + "▁Summ ary", + "▁ Summary", + "▁别 名", + "▁ 别名", + "在 美国", + "在 互联网", + "第三 人", + "第 三人", + "ro b", + "r ob", + "▁r unner", + "▁run ner", + "▁ runner", + "nI nit", + "nIn it", + "n Init", + "遗 憾", + "▁Nor wegian", + "▁les ion", + "▁car pet", + "▁carp et", + "Not ification", + "新 浪", + "▁( )\\", + "▁() \\", + "▁ ()\\", + "▁enthus i", + "发 酵", + "将 来", + "▁M ust", + "▁Mus t", + "▁Mu st", + "▁ Must", + "积极参加 思想", + "春 风", + "in herit", + "的 意思", + "▁L aure", + "▁La ure", + "▁Laur e", + "we alth", + "▁veget ables", + "▁vegetable s", + "Fold er", + "F older", + "nexport s", + "nex ports", + "n exports", + "pro duction", + "product ion", + "produ ction", + "prod uction", + "p roduction", + "air y", + "ai ry", + "a iry", + "▁D epend", + "▁De pend", + "▁Dep end", + "▁ Depend", + "案 后", + "custom er", + "de lay", + "del ay", + "长 大", + "▁sold iers", + "▁soldier s", + "uit ion", + "ui tion", + "u ition", + "褐 色", + "nT HE", + "nTH E", + "n THE", + "iat ive", + "i ative", + "web pack", + "▁Mat hematical", + "▁Mathematic al", + "▁Mathematica l", + "▁Commun ications", + "▁Communication s", + "▁Ed ge", + "▁ Edge", + "便 于", + "gu n", + "g un", + "▁calcul ator", + "▁calc ulator", + "▁H old", + "▁Hol d", + "▁Ho ld", + "▁ Hold", + "iot ics", + "iotic s", + "i otics", + "中国人民 银行", + "nC ast", + "n Cast", + "▁g astro", + "▁gas tro", + "▁gastr o", + "▁gast ro", + "▁Al ber", + "▁Alb er", + "一 元", + "月 利率", + "ud ge", + "mi ll", + "mil l", + "m ill", + "后 台", + "al ine", + "ali ne", + "alin e", + "a line", + "▁_ _____", + "▁__ ____", + "▁____ __", + "▁ ______", + "的 爱", + "职业技术 教育", + "开 幕", + "美 味", + "▁o var", + "▁ov ar", + "Pre fix", + "Pref ix", + "P refix", + "▁B lood", + "▁Bl ood", + "▁Blo od", + "sign al", + "sig nal", + "疑 问", + "▁sophistic ated", + "▁con vex", + "▁conv ex", + "▁conve x", + "▁ convex", + "ng e", + "n ge", + "车 间", + "纳 税", + "med ium", + "▁g rain", + "▁gr ain", + "▁gra in", + "Jo hn", + "Joh n", + "J ohn", + "du ctor", + "duct or", + "duc tor", + "▁p ortal", + "▁port al", + "▁por tal", + "▁ portal", + "人民法院 认为", + "简 历", + "back s", + "ba cks", + "bac ks", + "b acks", + "▁G all", + "▁Gal l", + "▁Ga ll", + "ac ular", + "a cular", + "▁inv asion", + "f o", + "▁v as", + "▁va s", + "▁ vas", + "▁bas al", + "▁ba sal", + "▁s ender", + "▁se nder", + "▁send er", + "▁sen der", + "▁ sender", + "W elcome", + "li sts", + "list s", + "lis ts", + "l ists", + "你 知道", + "递 增", + "▁H arris", + "▁Har ris", + "▁Harr is", + "▁coll ision", + "▁B or", + "▁Bo r", + "▁impair ment", + "▁p ap", + "▁pa p", + "▁Ex amples", + "▁Example s", + "▁Exam ples", + "▁ Examples", + "较高 的", + "较 高的", + "▁ad mit", + "▁adm it", + "罪 行", + "▁A ns", + "▁An s", + "▁ Ans", + "金 华", + "face book", + "f acebook", + "▁A x", + "▁ Ax", + "跟 踪", + "w x", + "of t", + "o ft", + "add le", + "▁B R", + "▁ BR", + "ar an", + "ara n", + "a ran", + "连 带", + "邮 箱", + "é t", + "]) ,", + "] ),", + "il ty", + "ilt y", + "ol ec", + "ole c", + "o lec", + "▁con sent", + "▁cons ent", + "Dis c", + "Di sc", + "D isc", + "第六 章", + "▁c sv", + "▁cs v", + "▁ csv", + "Calcul ate", + "Calc ulate", + "C alculate", + "al ling", + "all ing", + "alli ng", + "er gic", + "erg ic", + "▁her itage", + "bol d", + "bo ld", + "b old", + "▁util s", + "▁ut ils", + "▁ utils", + "▁m u", + "▁ mu", + "}) ,\\", + "}), \\", + "} ),\\", + "▁Per haps", + "us sy", + "uss y", + "Ext ensions", + "Extension s", + "以下 问题", + "为 基础", + "▁Prot ection", + "▁Prote ction", + "去 看", + "有些 人", + "▁t et", + "▁te t", + "▁ tet", + "▁O tt", + "▁Ot t", + "▁ 题目", + "▁f itted", + "▁fit ted", + "nCom mun", + "n Commun", + "\\' ])", + "\\'] )", + "\\ '])", + "▁m oon", + "▁mo on", + "▁ moon", + "计算 即可", + "污 水", + "▁Value Error", + "▁ ValueError", + "平 米", + "he im", + "▁l on", + "▁lo n", + "▁ lon", + "Bl ack", + "的两 个", + "的 两个", + "▁sim ulated", + "▁simulate d", + "▁ultra sound", + "▁ultras ound", + "▁其 三", + "▁Me asure", + "▁ Measure", + "要 点", + "▁Islam ic", + "▁leg acy", + "▁ legacy", + "▁v oting", + "▁vot ing", + "▁vo ting", + "借 助", + "ng it", + "n git", + "经济 技术", + "签 字", + "ryst al", + "rys tal", + "执 业", + "▁l act", + "▁la ct", + "▁lac t", + "▁ lact", + "em ale", + "ema le", + "e male", + "淄 博", + "讲 座", + "if ting", + "ift ing", + "农 产品", + "br as", + "bra s", + "b ras", + "▁ref uge", + "▁Viet nam", + "nD is", + "nDi s", + "n Dis", + "录 音", + "▁import antly", + "▁important ly", + "nu n", + "n un", + "三 国", + "▁re b", + "▁r eb", + "▁ reb", + "▁conduct ing", + "▁sur rounded", + "▁surround ed", + "聚 集", + "救 援", + "▁to ile", + "不动 产", + "数据 的", + "▁D allas", + "▁Dal las", + "研究 中心", + "▁K han", + "▁Kh an", + "债 券", + "D EFAULT", + "一等 奖", + "一 等奖", + "▁cons ervative", + "▁conserv ative", + "▁P ear", + "▁Pe ar", + "▁代表 作品", + "▁ 代表作品", + "▁th romb", + "▁thr omb", + "▁throm b", + "▁thro mb", + "灾 害", + "▁d uct", + "▁du ct", + "▁ duct", + "▁p ros", + "▁pro s", + "▁pr os", + "n which", + "月二十 五日", + "▁eng aging", + "▁时 间", + "▁ 时间", + "现有 的", + "现 有的", + "▁ch arity", + "▁char ity", + "Sh ould", + "pl icity", + "plic ity", + "plicit y", + "▁celebr ation", + "剩下 的", + "剩 下的", + "▁R eference", + "▁Re ference", + "▁Refer ence", + "▁ Reference", + "ord ered", + "order ed", + "orde red", + "us cript", + "usc ript", + "u script", + "▁pl ates", + "▁plate s", + "▁plat es", + "▁ plates", + "▁ 已", + "巴 西", + "▁S S", + "▁ SS", + "St and", + "S tand", + "▁c yclic", + "▁cycl ic", + "▁ cyclic", + "▁For ward", + "▁ Forward", + "}\\ '", + "} \\'", + "Aut hentication", + "Authent ication", + "▁G rant", + "▁Gr ant", + "▁Gra nt", + "▁Gran t", + "张某 某", + "张 某某", + "ok in", + "oki n", + "o kin", + "▁T rail", + "▁Tr ail", + "▁Tra il", + "▁v enues", + "▁ven ues", + "▁venue s", + "倾 向", + "试 题", + "ni l", + "n il", + "▁Ann ual", + "精 英", + "en za", + "enz a", + "le et", + "lee t", + "▁res cue", + "▁resc ue", + "塑 造", + "nP ublic", + "nPub lic", + "n Public", + "Ra te", + "R ate", + "安 卓", + "纳 米", + "Action s", + "Act ions", + "三 分", + "的 风", + "O k", + "▁un iqu", + "▁uni qu", + "▁x x", + "▁ xx", + "▁sym metry", + "▁symmet ry", + "▁ 政", + "黄 河", + "c z", + "▁al arm", + "▁ alarm", + "▁det ector", + "▁detect or", + "qu iry", + "quir y", + "▁struct ured", + "▁structure d", + "▁ structured", + "▁trans lated", + "▁transl ated", + "▁translate d", + "▁ translated", + "设备 的", + "lo ads", + "load s", + "ut her", + "uth er", + "u ther", + "dl l", + "d ll", + "▁str uggling", + "▁strugg ling", + "wi ck", + "w ick", + "es a", + "e sa", + "▁br others", + "▁bro thers", + "▁brother s", + "▁broth ers", + "em it", + "emi t", + "e mit", + "▁RE AD", + "▁ READ", + "▁D ream", + "▁ Dream", + "▁R ol", + "▁Ro l", + "# {", + "▁su icide", + "接 种", + "Di v", + "D iv", + "执行 中", + "枚 举", + "道 的", + "ed er", + "ede r", + "e der", + "▁mult id", + "▁multi d", + "▁mul tid", + "▁ 相关", + "var s", + "va rs", + "v ars", + "▁In cre", + "▁Inc re", + "▁ Incre", + "局 局长", + "▁H ans", + "▁Ha ns", + "▁Han s", + "中 午", + "两 岸", + "▁ 年", + "▁E T", + "▁ ET", + "tr im", + "tri m", + "t rim", + "新 兴", + "▁ 输出", + "▁m old", + "▁mo ld", + "▁mol d", + "执行 申请", + "▁M ail", + "▁Ma il", + "▁Mai l", + "▁ Mail", + "手 指", + "这一 切", + "这 一切", + "PE CT", + "PEC T", + "P ECT", + "oc a", + "o ca", + "▁Brazil ian", + "▁s eeks", + "▁se eks", + "▁see ks", + "▁seek s", + "ic tures", + "ict ures", + "icture s", + "开 户", + "▁morph ology", + "nF rench", + "nFr ench", + "nFre nch", + "n French", + "就 这样", + "▁length s", + "▁leng ths", + "och astic", + "▁ 天", + "玄 幻", + "` ;\\", + "用 心", + "椭 圆", + "▁discuss es", + "PD ATE", + "P DATE", + "评审 鉴定表", + "▁With in", + "▁Wi thin", + "▁Wit hin", + "血 清", + "上 学", + "▁K y", + "子 宫", + "de ploy", + "dep loy", + "ur ities", + "uri ties", + "▁Indust ry", + "家 园", + "▁p roc", + "▁pro c", + "▁pr oc", + "▁ proc", + "zhe imer", + "▁ant enna", + "▁anten na", + "▁st aying", + "▁stay ing", + "平 凡", + "▁Log ger", + "▁ Logger", + "▁s tops", + "▁st ops", + "▁stop s", + "▁sto ps", + "ud d", + "u dd", + "▁resid ues", + "▁residue s", + "▁gener ates", + "▁gene rates", + "▁generate s", + "▁genera tes", + "▁N um", + "▁Nu m", + "▁ Num", + "Gener al", + "Gen eral", + "Gene ral", + "▁S K", + "▁ SK", + "▁g ray", + "▁gr ay", + "▁gra y", + "▁ gray", + "▁a rom", + "▁ar om", + "um ing", + "umin g", + "umi ng", + "u ming", + "trans action", + "▁conj unction", + "W T", + "日出生 于", + "日出 生于", + "日 出生于", + "职 位", + "▁altern atives", + "▁alternative s", + "坐 落", + "▁B ishop", + "▁Bi shop", + "▁Bis hop", + "遵 循", + "▁Tur kish", + "▁ann ually", + "▁annual ly", + "▁chem icals", + "▁chemical s", + "▁adoles cents", + "▁adolescent s", + "五 金", + "Se lected", + "Select ed", + "S elected", + "ir i", + "i ri", + "▁Fe ature", + "▁ Feature", + "还需 要", + "还 需要", + "hu man", + "hum an", + "h uman", + "Mem ory", + "M emory", + "封 闭", + "Array List", + "告诉 你", + "▁p overty", + "▁A lb", + "▁Al b", + "▁lig and", + "gi um", + "g ium", + "sl ice", + "时间 的", + "时 间的", + "杀 人", + "▁deep ly", + "ri o", + "r io", + "在开庭 审理过程中", + "▁cr usher", + "▁crush er", + "▁quant ities", + "违 规", + "法律服务所 法律工作者", + "▁t win", + "▁tw in", + "▁H amp", + "▁Ha mp", + "▁Ham p", + "▁inhib it", + "sa fe", + "saf e", + "s afe", + "Sing le", + "S ingle", + "nA c", + "n Ac", + "让他 们", + "让 他们", + "▁Pl atform", + "▁Plat form", + "▁ Platform", + "▁un likely", + "▁unlike ly", + "for med", + "form ed", + "ch r", + "c hr", + "ma ss", + "mas s", + "m ass", + "▁experi encing", + "▁r ust", + "▁ru st", + "▁ rust", + "win ning", + "小 额", + "▁out puts", + "▁output s", + "▁ outputs", + "就 没", + "an cell", + "ance ll", + "anc ell", + "ancel l", + "汇 报", + "pro cessing", + "process ing", + "proc essing", + "▁j azz", + "▁ja zz", + "代 数", + "CO DE", + "COD E", + "侵 犯", + "的 角度", + "备 用", + "要 想", + "的其他 情形", + "队 的", + "▁Do ctor", + "▁Doc tor", + "彩 色", + "电 磁", + "▁run time", + "▁ru ntime", + "▁ runtime", + "裁定书 送达之日起", + "CO MP", + "COM P", + "▁re pairs", + "▁rep airs", + "▁repair s", + "requ ires", + "require s", + "▁D isease", + "▁Dise ase", + "复议 一次", + "▁ 亚", + "writ ing", + "wr iting", + "av al", + "ava l", + "a val", + "▁Con struction", + "▁Construct ion", + "品牌 的", + "EN G", + "E NG", + "▁we igh", + "S Y", + "▁re levance", + "▁concept ual", + "子女 抚养", + "特 朗", + "爱好 者", + "O G", + "ow ned", + "own ed", + "生 动", + "▁s tom", + "▁st om", + "▁sto m", + "▁m inus", + "▁min us", + "▁mi nus", + "▁ minus", + "▁fib ers", + "▁fiber s", + "▁fi bers", + "为终审 裁定", + "力 学", + "▁d ishes", + "▁dis hes", + "▁dish es", + "▁ant igens", + "▁anti gens", + "▁antigen s", + "▁D omin", + "▁Do min", + "▁Dom in", + "▁M ort", + "▁Mor t", + "▁Mo rt", + "▁N F", + "▁ NF", + "▁un signed", + "▁uns igned", + "▁ unsigned", + "繁 殖", + "老师 的", + "老 师的", + "▁talk ed", + "还 原", + "ter net", + "tern et", + "▁S cale", + "▁Sc ale", + "▁ Scale", + "rec ated", + "▁journal ist", + "老年 人", + "reg ulated", + "何 处", + "M igration", + "xx x", + "x xx", + "▁in cent", + "▁inc ent", + "▁Sw iss", + "inter val", + "回 头", + "热 点", + "▁jew el", + "解决 了", + "vel ope", + "velop e", + "O A", + "容 积", + "放 置", + "l c", + "▁b last", + "▁bl ast", + "▁ blast", + "os omal", + "oso mal", + "▁W el", + "▁We l", + "▁Work ing", + "▁Wor king", + "▁ Working", + "形 容", + "it an", + "ita n", + "i tan", + "二 人", + "if ference", + "iffer ence", + "iffe rence", + "本裁定 为终审裁定", + "加 班", + "mult i", + "mul ti", + "▁att ributed", + "▁attribute d", + "气 息", + "▁col lective", + "▁coll ective", + "▁collect ive", + "▁f ired", + "▁fire d", + "▁fi red", + "▁fir ed", + "in ject", + "inj ect", + "抛物 线", + "▁re start", + "▁rest art", + "▁ restart", + "ed ical", + "edi cal", + "edic al", + "\") [", + "\" )[", + "液 压", + "纵 横", + "回 报", + "ke e", + "k ee", + "血 糖", + "▁C er", + "▁Ce r", + "国 防", + "等 人", + "▁sequ encing", + "癜 风", + "le asing", + "lea sing", + "发 起", + "辩 护", + "据 了解", + "▁opin ions", + "▁opinion s", + "▁ok ay", + "▁B ah", + "▁Ba h", + "延 续", + "▁c ig", + "▁ci g", + "writ ten", + "wr itten", + "un defined", + "und efined", + "undef ined", + "u ndefined", + "▁e motion", + "▁em otion", + "▁emot ion", + "li a", + "l ia", + "▁Ch ile", + "▁Chi le", + "▁s ectors", + "▁se ctors", + "▁sector s", + "桥 梁", + "▁mist akes", + "▁mistake s", + "▁% }", + "因 与", + "花 生", + "▁pre serve", + "▁pres erve", + "▁ preserve", + "é n", + "▁B u", + "▁ Bu", + "nO pen", + "n Open", + "▁p ixel", + "▁ pixel", + "▁arr angements", + "▁arrang ements", + "▁arrangement s", + "▁arrange ments", + "is ible", + "isi ble", + "re solution", + "res olution", + "Inter val", + "▁Add ress", + "▁ Address", + "am ento", + "ame nto", + "ament o", + "amen to", + "为 啥", + "的 诉讼请求", + "act ivated", + "activ ated", + "activate d", + "十 字", + "▁fl oors", + "▁flo ors", + "▁floor s", + "he ter", + "het er", + "h eter", + "投 诉", + "in ge", + "ing e", + "i nge", + "和 小", + "▁a str", + "▁as tr", + "▁ast r", + "▁ astr", + "向 量", + "ident ifier", + "umbn ail", + "班 级", + "hel ium", + "不 算", + "oc ar", + "oca r", + "o car", + "▁cult ured", + "▁culture d", + "▁w ard", + "▁war d", + "▁wa rd", + "▁ ward", + "▁f ascin", + "▁fasc in", + "出来 了", + "出 来了", + "▁K am", + "▁Ka m", + "▁p ride", + "▁pr ide", + "▁pri de", + "▁b rid", + "▁br id", + "▁ brid", + "▁inst alling", + "▁install ing", + "Dr op", + "D rop", + "ov en", + "ove n", + "o ven", + "作 了", + "Mult i", + "▁synthes ized", + "▁synthesize d", + "D a", + "▁s acr", + "▁sa cr", + "▁sac r", + "▁sc alar", + "▁scal ar", + "▁scala r", + "▁ scalar", + "▁a broad", + "▁ab road", + "▁ 罗", + "▁Init ial", + "▁ Initial", + "\"> {{", + "\">{ {", + "\" >{{", + "▁reg ards", + "▁regard s", + "沈阳 市", + "沈 阳市", + "▁N ag", + "▁Na g", + "▁cle arance", + "▁clear ance", + "gr ay", + "gra y", + "g ray", + "多 媒体", + "学习 的", + "▁I ce", + "如果 没有", + "ear n", + "ea rn", + "e arn", + "work er", + "wor ker", + "▁eth nic", + "▁ethn ic", + "客户 端", + "▁accommod ation", + "立即 执行", + "我 校", + "nJ oined", + "nJoin ed", + "nJo ined", + "HE CK", + "新 时代", + "陌 生", + "▁T E", + "▁ TE", + "I Z", + "om pson", + "omp son", + "▁g auge", + "▁ga uge", + "▁work place", + "除 非", + "up er", + "upe r", + "u per", + "▁po etry", + "▁poet ry", + "▁B ull", + "▁Bul l", + "▁Bu ll", + "在 一", + "当 下", + "▁pert urb", + "卓 越", + "eo r", + "e or", + "Nor mal", + "Norm al", + "N ormal", + "以 免", + "白 癜风", + "这个 时候", + "▁U til", + "▁Ut il", + "▁ Util", + "土 豆", + "李某 某", + "李 某某", + "en te", + "ent e", + "e nte", + "nD et", + "nDe t", + "n Det", + "主 演", + "ar ity", + "ari ty", + "余 人", + "▁mount ains", + "▁mountain s", + "亦 无异议", + "当 日", + "▁Con tract", + "▁Contr act", + "▁ Contract", + "▁acknow led", + "ement ia", + "▁Ant onio", + "▁Anton io", + "▁con sequence", + "▁cons equence", + "▁consequ ence", + "he art", + "hea rt", + "开 口", + "com fort", + "da le", + "dal e", + "d ale", + "护 士", + "TE XT", + "TEX T", + "T EXT", + "▁Th ailand", + "▁Thai land", + "р и", + "介 质", + "充分 发挥", + "▁me chanics", + "▁mechan ics", + "▁mechanic s", + "好 评", + "服 用", + "sec onds", + "secon ds", + "second s", + "佐 证", + "▁represent ations", + "▁representation s", + "不管 是", + "有效 地", + "治 愈", + "to o", + "t oo", + "辉 煌", + "▁d ismiss", + "▁dis miss", + "▁ dismiss", + "▁comp iler", + "▁compile r", + "▁ compiler", + "▁ref lected", + "▁reflect ed", + "▁S end", + "▁Se nd", + "▁Sen d", + "▁ Send", + "▁pub lisher", + "▁publish er", + "▁ publisher", + "官 员", + "▁D og", + "▁Do g", + "▁ Dog", + "▁b att", + "▁bat t", + "▁ba tt", + "▁immun ity", + "▁imm unity", + "mi a", + "m ia", + "▁w rest", + "▁wr est", + "▁wre st", + "▁Ch ap", + "▁Cha p", + "▁inc orporate", + "▁incorpor ate", + "lo gs", + "log s", + "l ogs", + "传 染", + "▁he arts", + "▁heart s", + "▁hear ts", + "sc ala", + "scal a", + "▁re covered", + "▁rec overed", + "▁recover ed", + "因为 我", + "因 为我", + "得 以", + "ue se", + "ues e", + "u ese", + "之前 的", + "之 前的", + ") ×", + "十六 条", + "十 六条", + "▁Be autiful", + "▁Beaut iful", + "▁ Beautiful", + "交通 运输", + "▁l oving", + "▁lo ving", + "▁real istic", + "ns ub", + "n sub", + "▁Lin coln", + "▁gather ed", + "▁Econ omic", + "▁Ec onomic", + "宾 馆", + "层 面", + "▁init iated", + "▁initi ated", + "▁initiate d", + "iss ippi", + "ie re", + "ier e", + "i ere", + "Object s", + "Obj ects", + "kl e", + "k le", + "U V", + "水 量", + "诗 歌", + "▁] ,\\", + "▁], \\", + "▁ ],\\", + "队 友", + "▁l attice", + "▁b ip", + "▁bi p", + "ein e", + "ei ne", + "e ine", + "▁J oin", + "▁Jo in", + "▁ Join", + "▁connect ivity", + "民 二", + "▁s inging", + "▁sing ing", + "▁sin ging", + "到 处", + "中 止", + "▁N ature", + "▁Na ture", + "▁Nat ure", + "乘 坐", + "第一 时间", + "at eful", + "ate ful", + "▁S amsung", + "节 省", + "予以 证实", + "▁st ir", + "t u", + "实 的", + "su n", + "s un", + "同样 的", + "同 样的", + "fr ed", + "fre d", + "f red", + "CC ESS", + "\\\\ }$", + "\\\\} $", + "anc ouver", + "钢 琴", + "▁ex amines", + "▁exam ines", + "▁examine s", + "日 公开开庭进行了审理", + "▁bu ried", + "▁bur ied", + "com a", + "co ma", + "c oma", + "要 在", + "▁t ropical", + "▁trop ical", + "buck et", + "b ucket", + "▁sc attering", + "▁scatter ing", + "▁W as", + "▁Wa s", + "商 城", + "nH ello", + "nHel lo", + "n Hello", + "▁gold en", + "▁gol den", + "友 谊", + "法律法规 及", + "烦 恼", + "ri tic", + "rit ic", + "r itic", + "tr action", + "tract ion", + "tra ction", + "▁invest ments", + "▁investment s", + "▁special ists", + "▁specialist s", + "烟 台", + "▁Queens land", + "ju ana", + "▁g rows", + "▁gr ows", + "▁grow s", + "▁gro ws", + "提 问", + "▁P CR", + "▁PC R", + "▁ PCR", + "▁T ogether", + "之 和", + "如 有", + "▁tr ips", + "▁tri ps", + "▁trip s", + "To ols", + "Tool s", + "Too ls", + "T ools", + "在哪 里", + "在 哪里", + "nGe ography", + "Wh ere", + "W here", + "时 效", + "nIn ternational", + "nInter national", + "n International", + "占 用", + "做 什么", + "▁G ib", + "▁Gi b", + "▁clar ify", + "中 等", + "nM at", + "nMa t", + "n Mat", + "的最 佳", + "的 最佳", + "▁an omal", + "▁dec lar", + "▁decl ar", + "▁ declar", + "清 除", + "ari juana", + "el ements", + "ele ments", + "element s", + "elem ents", + "e lements", + "RE G", + "R EG", + "▁t ob", + "▁to b", + "ro wave", + "row ave", + "▁hope fully", + "▁hop efully", + "▁hopeful ly", + "人 性", + "ious ly", + "i ously", + "ynt hesis", + "ynth esis", + "晋江文学 城", + "▁em power", + "▁emp ower", + "▁spec ification", + "▁specific ation", + "▁gover nor", + "▁govern or", + "综合 性", + "你 好", + "ath ers", + "ather s", + "athe rs", + "a thers", + "ol er", + "ole r", + "o ler", + "er als", + "era ls", + "eral s", + "e rals", + "▁In fo", + "▁Inf o", + "▁ Info", + "▁med ications", + "▁medication s", + "▁medic ations", + "▁Log in", + "▁Lo gin", + "▁ Login", + "str ument", + "作 风", + "var iant", + "vari ant", + "×× ××", + "××× ×", + "× ×××", + "▁u re", + "▁ur e", + "▁ ure", + "▁n ose", + "▁no se", + "▁nos e", + "▁ nose", + "▁per me", + "▁perm e", + "的 现象", + "▁a spir", + "▁as pir", + "▁asp ir", + "vis ual", + "st rings", + "str ings", + "string s", + "▁power ed", + "▁pow ered", + "▁ powered", + "在 了", + "la rg", + "lar g", + "l arg", + "fess ional", + "的 游戏", + "D K", + "Dis patch", + "ver ify", + "yn amics", + "ynam ics", + "ynamic s", + "circ le", + "cir cle", + "c ircle", + "▁fl uct", + "▁flu ct", + "这 也", + "▁Af ghan", + "▁sub stitution", + "▁subst itution", + "▁substit ution", + "我们 就", + "▁Phys ical", + "▁ Physical", + "热 带", + "相 邻", + "其中 的", + "其 中的", + "▁Mat rix", + "▁ Matrix", + "ha ve", + "hav e", + "h ave", + "▁s lic", + "▁sl ic", + "又 称", + "▁incre ment", + "▁ increment", + "还 好", + "男 主", + "▁differ ently", + "▁different ly", + "▁Ut ah", + "▁pass enger", + "民 法", + "较 多", + "▁v ag", + "▁va g", + "私 人", + "▁assum ptions", + "▁assumption s", + "每 周", + "ik z", + "姐 妹", + "IS A", + "I SA", + "尽 可能", + "能力 和", + "能 力和", + "▁report edly", + "▁reported ly", + "总 理", + "▁re named", + "▁rename d", + "▁a rise", + "▁ar ise", + "网 易", + "nV ill", + "ph abet", + "pha bet", + "▁r anking", + "▁rank ing", + "▁ran king", + "▁ ranking", + "陪 伴", + "▁ign ored", + "▁ignore d", + "▁ignor ed", + "划 拨", + "切 成", + "临 沂", + "▁P ersonal", + "▁Pers onal", + "▁Person al", + "▁ Personal", + "你 看", + "空 中", + "▁cert ification", + "▁m im", + "▁mi m", + "▁IO Exception", + "▁ IOException", + "▁ch amber", + "▁cha mber", + "▁cerv ical", + "用户 的", + "▁S ession", + "▁ Session", + "▁R on", + "▁Ro n", + "期间不 停止", + "▁p il", + "▁pi l", + "境 内", + "副本 二份", + "can vas", + "▁M C", + "▁ MC", + "st rong", + "str ong", + "▁p acket", + "▁pack et", + "▁pac ket", + "▁ packet", + "▁reflect s", + "▁p yl", + "▁py l", + "▁ pyl", + "说 到", + "▁H appy", + "▁Happ y", + "▁ Happy", + "实行 独任审判", + "不同 意", + "不 同意", + "十 大", + "▁make up", + "耐 心", + "Da o", + "D ao", + "▁ 白", + "▁A qu", + "▁c and", + "▁can d", + "▁ca nd", + "标 记", + "饰 演", + "▁A w", + "▁ Aw", + "一 口", + "再 生", + "▁G T", + "▁ GT", + "大 专", + "投 票", + "调解 协议", + "▁PUB LIC", + "▁ PUBLIC", + "▁in far", + "▁inf ar", + "发 作", + "▁L u", + "▁ Lu", + "▁pancreat ic", + "投 标", + "▁eth anol", + "号 线", + "▁M ut", + "▁Mu t", + "▁ Mut", + "赋 予", + "▁l ear", + "▁le ar", + "▁ lear", + "M V", + "ó w", + "nb l", + "n bl", + "去 世", + "有一 些", + "有 一些", + "走 势", + "▁ob lig", + "▁obl ig", + "▁i Pad", + "▁ iPad", + "▁t act", + "▁ta ct", + "▁c ube", + "▁cub e", + "▁cu be", + "▁ cube", + "无 疑", + "▁port ions", + "▁portion s", + "▁pos itively", + "▁positive ly", + "▁posit ively", + "届 满", + "▁B ron", + "▁Br on", + "▁Bro n", + "▁ Bron", + "▁p ione", + "▁pi one", + "南 部", + "Vis ual", + "线 段", + "st rict", + "str ict", + "stri ct", + "▁cyt otox", + "▁cyto tox", + "at ories", + "ator ies", + "ato ries", + "<< \"", + "那时 候", + "那 时候", + "nT ake", + "n Take", + "▁tr ains", + "▁train s", + "▁tra ins", + "▁accommod ate", + "▁dis patch", + "▁disp atch", + "▁ dispatch", + "▁N IH", + "▁NI H", + "▁cy ber", + "▁Mon te", + "▁Mont e", + "▁Mo nte", + "务 工", + "石 头", + "一个 是", + "Com put", + "Comp ut", + "复议 期间不停止", + "▁l oyal", + "▁lo yal", + "▁S ale", + "▁Sal e", + "▁Sa le", + "▁ Sale", + "月二十 七日", + "un ks", + "unk s", + "自然 科学", + "ph y", + "p hy", + "▁Me tro", + "▁Met ro", + "▁Sing h", + "▁Sin gh", + "igen ous", + "龙 头", + "均 衡", + "▁down loaded", + "▁download ed", + "▁back end", + "▁ backend", + "花 钱", + "▁br illiant", + "▁brilli ant", + "▁un like", + "▁u nlike", + "▁ 无", + "▁Republic ans", + "▁Republican s", + "储 备", + "口 罩", + "li t", + "l it", + "▁F lo", + "▁Fl o", + "功 夫", + "化妆 品", + "▁T oy", + "▁To y", + "中华人民共和国 婚姻法", + "安 静", + "fun d", + "fu nd", + "f und", + "▁pain tings", + "▁paint ings", + "▁painting s", + "asc ade", + "if acts", + "ifact s", + "ifa cts", + "i facts", + "出 台", + "吐 槽", + "run ner", + "r unner", + "▁t raits", + "▁tra its", + "▁trait s", + "▁ traits", + "nS impl", + "nSim pl", + "▁Int ellig", + "▁Intel lig", + "Des ign", + "De sign", + "ain ian", + "a inian", + "▁F ellow", + "▁Fel low", + "也不 知道", + "也 不知道", + "▁establish ing", + "▁pur ified", + "al loc", + "all oc", + "allo c", + "▁Hy per", + "▁Hyp er", + "▁ Hyper", + "m v", + "▁B eng", + "▁Be ng", + "▁Ben g", + "▁token s", + "▁tok ens", + "▁ tokens", + "决 心", + "量 刑", + "这时 候", + "这 时候", + "gl as", + "g las", + "本案 受理费", + "▁Environment al", + "▁inst itutional", + "▁institution al", + "专 科", + "默 默", + "的 思路", + "▁w atched", + "▁watch ed", + "▁wat ched", + "▁isol ates", + "▁isolate s", + "小 明", + "的 路", + "支 公司", + "▁circ ulation", + "run ning", + "r unning", + "负 数", + "▁re porter", + "▁rep orter", + "▁report er", + "▁ reporter", + "ext ensions", + "extension s", + "Ur i", + "U ri", + "在 国内", + "▁cas ino", + "佛山 市", + "佛 山市", + "sequ ently", + "sequent ly", + "▁pop ularity", + "▁popular ity", + "▁popul arity", + "诉至 法院", + "▁W hit", + "▁Wh it", + "▁ Whit", + "fil m", + "fi lm", + "新 手", + "社 团", + "▁ 制作", + "Te am", + "nE l", + "n El", + "▁afr aid", + "meth yl", + "m ethyl", + "变 换", + "组 的", + "试 图", + "\") :\\", + "\" ):\\", + "▁up dating", + "▁upd ating", + "▁sup pliers", + "▁suppl iers", + "▁supplier s", + "▁d rums", + "▁dr ums", + "▁drum s", + "▁L ater", + "▁La ter", + "▁Lat er", + "▁Late r", + "iffer ential", + "ifferent ial", + "不 成", + "▁gen tle", + "▁gent le", + "he at", + "hea t", + "h eat", + "▁in cub", + "▁inc ub", + "depend ency", + "体 检", + "本院 依据已经发生法律效力的", + "本院依据 已经发生法律效力的", + "携 手", + "mo uth", + "m outh", + "▁vent ure", + "▁ven ture", + "▁ venture", + "s ocial", + "Res ources", + "Re sources", + "Resource s", + "▁Connect icut", + "ver ted", + "vert ed", + "verte d", + "▁ble eding", + "▁gr ounds", + "▁ground s", + "▁want ing", + "▁O ptions", + "▁Option s", + "▁Opt ions", + "▁ Options", + "靠 谱", + "▁S arah", + "▁Sar ah", + "▁Sa rah", + "▁Sara h", + "▁tr usted", + "▁trust ed", + "▁Opt im", + "▁Op tim", + "▁ Optim", + "▁walk ed", + "模 糊", + "编 译", + "给 原告", + "bal ance", + "operator name", + "▁as ks", + "▁ask s", + "▁ asks", + ": #", + "富 有", + "▁gen omic", + "透 支", + "交 往", + "十八 日", + "十 八日", + "高 职", + "▁c ha", + "▁ch a", + "▁ cha", + "▁reg istry", + "▁registr y", + "▁ registry", + ">\" ,\\", + ">\", \\", + "> \",\\", + "偶 像", + "▁form ulas", + "▁formula s", + "con figure", + "config ure", + "conf igure", + "▁data sets", + "▁dat asets", + "▁dataset s", + "▁datas ets", + "▁ datasets", + "▁Labor atory", + "ord inary", + "ple mented", + "plement ed", + "企业 管理", + "选择 了", + "竞 技", + "常用 的", + "常 用的", + "▁add ressing", + "▁address ing", + "▁addr essing", + "nUn ited", + "nUnit ed", + "n United", + "很 简单", + "深 的", + "R F", + "fil led", + "fill ed", + "f illed", + "研 制", + "涵 盖", + "形成 的", + "形 成的", + "▁highlight ed", + "▁Custom er", + "▁ Customer", + "▁Fr amework", + "▁Frame work", + "▁ Framework", + "▁t omat", + "▁to mat", + "▁tom at", + "亲 自", + "it one", + "ito ne", + "iton e", + "i tone", + "▁sal ary", + "Sh ort", + "看守 所", + "▁hab itat", + "▁habit at", + "▁c one", + "▁con e", + "▁co ne", + "▁ cone", + "▁Res erved", + "▁Reserve d", + "▁Reserv ed", + "▁gener ations", + "▁generation s", + "▁Col umn", + "▁ Column", + "南 海", + "trans late", + "transl ate", + "故意伤害 罪", + "▁rec ipients", + "▁recip ients", + "▁recipient s", + "特朗 普", + "ap prox", + "app rox", + "appro x", + "ph oto", + "phot o", + "▁label ed", + "▁ labeled", + "民 营", + "立 足", + "ap is", + "api s", + "a pis", + "▁f itting", + "▁fit ting", + "▁ fitting", + "的 我", + "Su m", + "S um", + "ac tual", + "act ual", + "▁p seud", + "备 选答案", + "▁sus pected", + "▁susp ected", + "▁suspect ed", + "▁[ `", + "它们 的", + "它 们的", + "▁T ools", + "▁To ols", + "▁Tool s", + "▁Too ls", + "▁ Tools", + "▁order ing", + "▁ord ering", + "▁ ordering", + "寻 求", + "▁url lib", + "▁ur llib", + "▁ urllib", + "▁Re volution", + "▁Rev olution", + "▁cred entials", + "▁credential s", + "▁ credentials", + "▁ce iling", + "▁ceil ing", + "▁ass essing", + "▁assess ing", + "见 面", + "郑州 市", + "郑 州市", + "月二十 六日", + "科 目", + "▁M ach", + "▁Mac h", + "▁Ma ch", + "Fi re", + "F ire", + "联合 国", + "dest roy", + "▁B os", + "▁Bo s", + "和 技术", + "end ors", + "endor s", + "endo rs", + "年 后", + "as a", + "a sa", + "多 多", + "L V", + "▁Author ity", + "的 表现", + "ru by", + "rub y", + "第一百 三", + "▁con vention", + "▁conv ention", + "▁conven tion", + "主要 有", + "主 要有", + "ori ented", + "orient ed", + "rom agnetic", + "的 孩子", + "▁L ower", + "▁Lo wer", + "▁Low er", + "▁ Lower", + "▁st ood", + "▁sto od", + "▁ stood", + "ol ph", + "nN e", + "n Ne", + "▁E D", + "▁ ED", + "仪 表", + "十 几", + "三十 日", + "三 十日", + "NE CT", + "N ECT", + "bar a", + "ba ra", + "b ara", + "Bas ic", + "B asic", + "新 加坡", + "ol utions", + "olution s", + "QU EST", + "QUE ST", + "Q UEST", + "var phi", + "许可 证", + "р е", + "” (", + "之 际", + "对 接", + "时 空", + "人员 的", + "人 员的", + "▁b ugs", + "▁bu gs", + "▁bug s", + "▁ bugs", + "pi ne", + "pin e", + "p ine", + "解决 问题", + "b n", + "期 内", + "▁ju ice", + "▁multi plication", + "az i", + "a zi", + "▁S V", + "▁ SV", + "▁i rr", + "▁ir r", + "润 滑", + "载 体", + "十一 章", + "十 一章", + "中 介", + "对 抗", + "* }", + "把 它", + "re leases", + "release s", + "cp u", + "c pu", + "建设 工程", + "▁R ural", + "▁Ru ral", + "▁compet itors", + "▁competitor s", + "▁competit ors", + "溶 液", + "▁c rop", + "▁cr op", + "▁cro p", + "▁ crop", + "▁ev ident", + "▁evid ent", + "Con structor", + "Construct or", + "不 必", + "ro utes", + "rou tes", + "route s", + "r outes", + "▁C ulture", + "▁Cul ture", + "▁Cult ure", + "▁ Culture", + "人们 的", + "人 们的", + "p d", + "qu al", + "qua l", + "q ual", + "se udo", + "seud o", + "graph ics", + "graphic s", + "▁elucid ate", + "▁enum erate", + "▁enumer ate", + "▁ enumerate", + "oe nix", + "oen ix", + "▁sh adow", + "▁sha dow", + "▁ shadow", + "顶 点", + "▁B etween", + "▁Bet ween", + "▁ Between", + "▁time stamp", + "▁tim estamp", + "▁ timestamp", + "▁de put", + "▁dep ut", + "Const ants", + "Constant s", + "▁rest ored", + "▁restore d", + "▁restor ed", + "选 取", + "Element s", + "El ements", + "Elem ents", + "Ele ments", + "E lements", + "Sam ple", + "S ample", + "▁franch ise", + "第一百四十四 条之规定", + "第一百四十四条 之规定", + "▁campaign s", + "▁dec lare", + "▁decl are", + "▁declar e", + "▁ declare", + "▁government s", + "▁govern ments", + "▁In nov", + "▁Inn ov", + "Char acter", + "早 就", + "re ach", + "rea ch", + "r each", + "▁An thony", + "▁Anth ony", + "美 人", + "res istant", + "▁anal yzing", + "▁analy zing", + "▁analyz ing", + "的 点", + "ut ers", + "ute rs", + "uter s", + "u ters", + "远 远", + "目的 是", + "目 的是", + "▁B ra", + "▁Br a", + "nav bar", + "▁min istry", + "▁mini stry", + "不 适", + "nD ist", + "nDis t", + "nDi st", + "n Dist", + "it ored", + "itor ed", + "ito red", + "▁N ormal", + "▁Nor mal", + "▁Norm al", + "▁ Normal", + "▁de feat", + "▁def eat", + "▁defe at", + "▁br ush", + "▁bru sh", + "▁ brush", + "▁b anking", + "▁bank ing", + "▁ban king", + "至今 未", + "开发 商", + "上 来", + "▁个 人", + "▁ 个人", + "▁minor ity", + "越 大", + "▁den ied", + "il de", + "ild e", + "♪ \\", + "New s", + "Ne ws", + "N ews", + "组 建", + "nm y", + "n my", + "▁n u", + "▁ nu", + "淘 汰", + "▁a uction", + "▁au ction", + "市中级人民法院 提出上诉", + "任 免", + "年 级", + "i u", + "AC C", + "A CC", + "fr action", + "frac tion", + "fra ction", + "h n", + "▁c omic", + "▁com ic", + "▁co mic", + "个小 时", + "个 小时", + "s d", + "▁R F", + "▁ RF", + "Pro gress", + "▁ 双", + "催 要", + "没有 什么", + "没 有什么", + "立 刻", + "gi ving", + "g iving", + "▁Qu ery", + "▁Que ry", + "▁ Query", + "▁Tour nament", + "▁fast est", + "▁M atch", + "▁Mat ch", + "▁ Match", + "urg ical", + "金融 机构", + "在 校", + "semb led", + "sem bled", + "semble d", + "sembl ed", + "▁poll ution", + "▁pollut ion", + "\" {", + "▁B ird", + "▁Bi rd", + "▁Bir d", + "先进 的", + "先 进的", + "so uth", + "s outh", + "[] (", + "[ ](", + "▁vis itor", + "▁visit or", + "▁ visitor", + "▁L ang", + "▁La ng", + "▁Lan g", + "▁ Lang", + "Up load", + "U pload", + "ch oice", + "cho ice", + "▁p arks", + "▁par ks", + "▁park s", + "得 很", + "…… ……", + "区 块", + "极 其", + "▁S u", + "▁ Su", + "▁J ason", + "▁Ja son", + "He alth", + "▁s team", + "▁ste am", + "▁ steam", + "激 情", + "▁r ounds", + "▁round s", + "Run ner", + "R unner", + "的小 说", + "的 小说", + "价 的", + "er on", + "ero n", + "e ron", + "▁se am", + "▁sea m", + "潜 力", + "▁in struct", + "▁i nstruct", + "▁inst ruct", + "▁instr uct", + "▁l yrics", + "▁ly rics", + "▁lyric s", + "即 便", + "等 到", + "Sc ale", + "S cale", + "▁S orry", + "▁Sor ry", + "▁ Sorry", + "▁Fil ter", + "▁ Filter", + "is tol", + "ist ol", + "isto l", + "▁cour ts", + "▁court s", + "Cr ed", + "Cre d", + "C red", + "▁lymph ocytes", + "▁lymphocyte s", + "ong oose", + "ongo ose", + "多年 来", + "多 年来", + "服务 有限公司", + "re ak", + "rea k", + "ri ving", + "riv ing", + "r iving", + "rel ative", + "▁Base ball", + "re ll", + "rel l", + "r ell", + "额 外", + "▁ €", + "▁A gricult", + "▁Agr icult", + "▁con straint", + "▁constr aint", + "▁ constraint", + "▁P ap", + "▁Pa p", + "rib utions", + "ribut ions", + "ribution s", + "▁dis contin", + "▁d uplicate", + "▁du plicate", + "▁duplic ate", + "▁ duplicate", + "gu i", + "g ui", + "inc orporated", + "nM e", + "n Me", + "▁K ind", + "▁Kin d", + "▁Ki nd", + "▁ Kind", + "▁h ill", + "▁hi ll", + "▁hil l", + "▁ hill", + "▁advert is", + "▁distingu ish", + "▁dec lined", + "▁decl ined", + "▁decline d", + "▁Argent ina", + "家 电", + "的 部分", + "XX XX", + "XXX X", + "X XXX", + "图 案", + "▁User s", + "▁Use rs", + "▁Us ers", + "▁ Users", + "个人 的", + "个 人的", + "▁y east", + "▁ye ast", + "▁just ify", + "▁ justify", + "▁scr atch", + "▁scrat ch", + "▁ scratch", + "▁m os", + "▁mo s", + "▁ mos", + "▁L ag", + "▁La g", + "▁ex terior", + "▁ext erior", + "置业 有限公司", + "置 业有限公司", + "ic y", + "i cy", + "释 义", + "Fa c", + "F ac", + "Conn ect", + "▁sub scrib", + "▁subs crib", + "nL a", + "n La", + "▁l ady", + "▁la dy", + "▁s heets", + "▁she ets", + "▁sheet s", + "▁ sheets", + "籍 贯", + "活动 中", + "▁rub ber", + "To pic", + "Top ic", + "T opic", + "散 热", + "合同 纠纷", + "▁p recip", + "▁prec ip", + "▁dis aster", + "▁tom ography", + "▁O range", + "▁Or ange", + "佛 教", + "▁Us age", + "▁ Usage", + "▁\\\\ ;", + "▁ \\\\;", + "截 图", + "▁f et", + "▁fe t", + "lo qu", + "l oqu", + "深 受", + "高 铁", + "ad en", + "ade n", + "a den", + "pl ier", + "p lier", + "▁sil ent", + "▁N ation", + "▁Na tion", + "▁Nat ion", + "▁virtual ly", + "▁virt ually", + "ker nel", + "k ernel", + "lo aded", + "load ed", + "▁art istic", + "▁artist ic", + "优 越", + "dyn amic", + "dynam ic", + "d ynamic", + "发布 的", + "像 是", + "预 约", + "调 用", + "市 人民检察院", + "un i", + "u ni", + "it ol", + "ito l", + "i tol", + "▁init iation", + "▁initi ation", + "X Y", + "您 认为", + "▁M arine", + "▁Mar ine", + "▁Ma rine", + "▁Mari ne", + "▁Marin e", + "▁re aches", + "▁reach es", + "G I", + "▁B h", + "水平 的", + "记 数", + "▁accept ance", + "不 高", + "nS outh", + "nSo uth", + "n South", + "Pl atform", + "U K", + "▁p ad", + "▁pa d", + "▁ pad", + "▁E state", + "▁Est ate", + "▁Form ula", + "▁ Formula", + "▁ 唐", + "G D", + "▁Spir it", + "创 立", + "▁con gr", + "▁co ngr", + "▁cong r", + "▁public ly", + "▁pen alty", + "▁penal ty", + "▁ph rase", + "▁ phrase", + "ma g", + "m ag", + "这 项", + "前 言", + "制造 业", + "fl ash", + "f lash", + "in ance", + "ina nce", + "▁Al zheimer", + "ip pet", + "ipp et", + "西 藏", + "pe s", + "p es", + "▁Is raeli", + "▁Isra eli", + "▁Israel i", + "Sec ret", + "没有 人", + "没 有人", + "▁land ing", + "▁lan ding", + "的 概念", + "招 标", + "口 碑", + "较好 的", + "较 好的", + "▁Int roduction", + "▁Intro duction", + "▁ Introduction", + "oj i", + "o ji", + "▁ne west", + "▁new est", + "rec ision", + "达到 了", + "达 到了", + "▁E asy", + "▁Eas y", + "▁ Easy", + "▁hy pert", + "▁hyp ert", + "▁hyper t", + "▁hype rt", + "住 四川省", + "TO KEN", + "li est", + "lie st", + "lies t", + "l iest", + "vis ible", + "v isible", + "明 年", + "▁G P", + "▁ GP", + "可 达", + "nd ate", + "nda te", + "ndat e", + "n date", + "▁discrim ination", + "▁F lu", + "▁Fl u", + "▁ Flu", + "▁vac uum", + "▁vacu um", + "源 于", + "▁G lass", + "▁Gl ass", + "▁Glas s", + "▁P ain", + "▁Pa in", + "▁Ad ded", + "▁Add ed", + "▁ Added", + "▁ 使用", + "的一 部分", + "的一部 分", + "的 一部分", + "▁W ikipedia", + "▁N ap", + "▁Na p", + "工作 室", + "Te m", + "T em", + "▁stim uli", + "▁stimul i", + "Sp an", + "S pan", + "min d", + "mi nd", + "m ind", + "nC o", + "n Co", + "市 政", + "职 场", + "宏 观", + "as ures", + "asure s", + "asu res", + "LI ED", + "▁C ut", + "▁Cu t", + "▁ Cut", + "Sc ene", + "▁s ink", + "▁sin k", + "▁si nk", + "▁ sink", + "▁cons istency", + "▁consist ency", + "从 中", + "nF ull", + "n Full", + "▁T ABLE", + "▁TA BLE", + "▁ TABLE", + "演 技", + "▁p ra", + "▁pr a", + "▁en coded", + "▁enc oded", + "▁encode d", + "▁ encoded", + "▁o h", + "▁ oh", + "▁b acking", + "▁back ing", + "▁bac king", + "▁tack le", + "克 服", + "▁b is", + "▁bi s", + "▁ bis", + "都不 会", + "都 不会", + "rid ge", + "r idge", + "H i", + "小 白", + "read only", + "▁Re serve", + "▁Res erve", + "▁Reserv e", + "▁Bang l", + "▁Ban gl", + "\"] )\\", + "\"]) \\", + "\" ])\\", + "病 变", + "CON FIG", + "CONF IG", + "ar tz", + "art z", + "▁dis semin", + "S i", + "nR ev", + "nRe v", + "n Rev", + "▁fract ure", + "完 结", + "() [", + "( )[", + "▁tal ented", + "▁talent ed", + "伦 敦", + "法 制", + "当 今", + "百分 之", + "百 分之", + "巩 固", + "开 通", + "our ses", + "ours es", + "ourse s", + "o urses", + "器 材", + "trans ition", + "▁P in", + "▁Pi n", + "▁ Pin", + "▁s car", + "▁sc ar", + "▁ scar", + "经济 的", + "▁kw args", + "▁ kwargs", + "偿还 原告", + "聚 焦", + "本院 作出的", + "nG erman", + "n German", + "▁survey s", + "▁surve ys", + "走 出", + "▁F M", + "▁ FM", + "▁analy sed", + "▁analys ed", + "▁analyse d", + "size d", + "si zed", + "s ized", + "▁b rick", + "▁br ick", + "▁pro test", + "▁prote st", + "▁prot est", + "▁Option al", + "▁Opt ional", + "▁ Optional", + "缺 少", + "特别 授权", + "科学 家", + "科 学家", + "▁is o", + "▁i so", + "▁ iso", + "第六十七条 第三款", + "Ig n", + "I gn", + "ge tName", + "get Name", + "Col l", + "Co ll", + "C oll", + "▁Vir tual", + "▁ Virtual", + "Us age", + "▁H im", + "▁Hi m", + "▁G uid", + "▁Gu id", + "▁ Guid", + "▁spont aneous", + "ost ics", + "ostic s", + "eff icient", + "ap olis", + "apol is", + "apo lis", + "Text ure", + "Tex ture", + "概 况", + "▁C ow", + "▁Co w", + "▁path ology", + "AR K", + "治疗 组", + "▁Pal est", + "▁Pa lest", + "▁Pale st", + "客 厅", + "▁organ s", + "▁org ans", + "偿还 借款", + "join t", + "jo int", + "j oint", + "nG ood", + "nGo od", + "n Good", + "建 国", + "▁may or", + "ol en", + "ole n", + "o len", + "同 行", + "▁l am", + "▁la m", + "▁ lam", + "` )", + "煤 矿", + "lo bin", + "lob in", + "omb ok", + "ombo k", + "申请 符合法律规定", + "划 分", + "od b", + "o db", + "▁M aine", + "▁Main e", + "▁Ma ine", + "▁Mai ne", + "Bo t", + "B ot", + "隧 道", + "▁N ob", + "▁No b", + "fil ters", + "filter s", + "▁sett led", + "▁settle d", + "本 报", + "ext ends", + "extend s", + "月二十 三日", + "▁un w", + "▁u nw", + "▁g ains", + "▁gain s", + "▁ga ins", + "nG r", + "n Gr", + "▁approxim ate", + "▁approx imate", + "Y es", + "▁ver ification", + "▁proport ional", + "▁proportion al", + "▁techn ological", + "这 句话", + "▁n ights", + "▁night s", + "▁S EO", + "▁SE O", + "▁ SEO", + "an ean", + "ane an", + "▁mut ants", + "▁mutant s", + "▁cre ativity", + "▁creat ivity", + "的 标准", + "aj ax", + "aja x", + "a jax", + "▁r oyal", + "▁ro yal", + "▁manufact ured", + "▁manufacture d", + "▁time ly", + "▁tim ely", + "▁▁ ▁▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁ ▁", + "▁▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁▁", + "▁ ▁▁▁▁▁▁▁▁▁▁", + "pt ide", + "combin ator", + "comb inator", + "nG reat", + "nGr eat", + "n Great", + "Pro p", + "Pr op", + "P rop", + "判决 生效后", + "一 群", + "扩 张", + "▁ 详情", + "▁Pr actice", + "▁Pract ice", + "地 域", + "总 数", + "am el", + "ame l", + "a mel", + "确 诊", + "振 动", + "及其 他", + "及 其他", + "▁m erc", + "▁me rc", + "▁mer c", + "▁ merc", + "um at", + "uma t", + "u mat", + "▁B ag", + "▁Ba g", + "▁ Bag", + "▁Cl ark", + "▁Clar k", + "▁Th ink", + "▁Thin k", + "▁ Think", + "务 必", + "手 工", + "▁un nec", + "г о", + "me l", + "m el", + "毒品 罪", + "▁B aron", + "▁Bar on", + "▁Ba ron", + "▁text s", + "▁tex ts", + "▁Mult iple", + "▁Multi ple", + "▁ Multiple", + "▁ch urches", + "▁church es", + "市 人", + "nA B", + "n AB", + "家 协会", + "▁G ab", + "▁Ga b", + "▁S tage", + "▁St age", + "▁Sta ge", + "▁ Stage", + "ot ropic", + "otrop ic", + "otr opic", + "把 我", + "火车 站", + "火 车站", + "um ar", + "uma r", + "u mar", + "的高 度", + "的 高度", + "▁secret ary", + "▁coll ecting", + "▁collect ing", + "球 的", + "亮 点", + "uff le", + "▁ на", + "ent ially", + "ential ly", + "enti ally", + "▁feas ible", + "in puts", + "input s", + "inp uts", + "哈哈 哈", + "哈 哈哈", + "▁b elt", + "▁be lt", + "▁bel t", + "▁ belt", + "nPost s", + "nPo sts", + "n Posts", + "法律法规及 监规", + "列 车", + "St yles", + "Sty les", + "Style s", + "▁nom inated", + "▁nomin ated", + "}\\ \\\\\\", + "}\\\\ \\\\", + "} \\\\\\\\", + "网 址", + "圆 心", + "意 的", + "PD F", + "P DF", + "▁An ne", + "▁Ann e", + "Id s", + "I ds", + "▁compar ative", + "▁con vey", + "▁conv ey", + "▁conve y", + "得 了", + "▁c ookie", + "▁cook ie", + "▁ cookie", + "追 踪", + "▁s ensing", + "▁sens ing", + "▁sen sing", + "▁flo ating", + "▁float ing", + "ul ent", + "ule nt", + "项 和", + "组成 部分", + "▁circ uits", + "▁circuit s", + "产 物", + "有 几", + "lov ak", + "~~~~ ~~~~", + "▁pr ints", + "▁print s", + "▁ prints", + "X R", + "孕 妇", + "nK ey", + "nKe y", + "n Key", + "▁m edic", + "▁me dic", + "▁med ic", + "▁medi c", + "nb y", + "n by", + "▁bi opsy", + "▁bio psy", + "▁C onc", + "▁Con c", + "▁Co nc", + "环境 保护", + "▁fl ask", + "▁ flask", + "▁Cl assic", + "▁Class ic", + "▁le git", + "▁leg it", + "统 治", + "▁h anging", + "▁hang ing", + "▁han ging", + "▁illustr ate", + "▁illust rate", + "感 冒", + "月 参加", + "▁tob acco", + "▁pass ionate", + "▁passion ate", + "▁b il", + "▁bi l", + "▁ bil", + "erc ul", + "▁Re lease", + "▁ Release", + "▁em otions", + "▁emot ions", + "▁emotion s", + "En v", + "E nv", + "▁R ain", + "▁Ra in", + "▁ Rain", + "▁st arring", + "▁star ring", + "▁threat s", + "兴 奋", + "质 疑", + "sa l", + "s al", + "安 置", + "ee r", + "e er", + "gr eat", + "gre at", + "g reat", + "▁R ole", + "▁Ro le", + "▁Rol e", + "▁ Role", + "▁subst rates", + "▁substr ates", + "▁substrate s", + "外 人", + "al ias", + "ali as", + "alia s", + "') )", + "' ))", + "▁alumin um", + "▁confirm ation", + "▁ confirmation", + "监护 的", + "▁p rox", + "▁pro x", + "▁pr ox", + "▁ prox", + "Event Listener", + "劳动 力", + "劳 动力", + "尼 斯", + "▁adhes ion", + "MA GE", + "MAG E", + "M AGE", + "▁S DK", + "▁SD K", + "▁ SDK", + "▁pro spect", + "▁prosp ect", + "▁pros pect", + "g p", + "用 地", + "都 被", + "ul i", + "u li", + "离婚 纠纷一案", + "▁brief ly", + "在全 国", + "在 全国", + "time r", + "tim er", + "ti mer", + "t imer", + "▁M other", + "▁Mot her", + "▁Mo ther", + "▁S eg", + "▁Se g", + "▁ Seg", + "Mat erial", + "Mate rial", + "M aterial", + "▁th rown", + "▁throw n", + "▁thr own", + "▁thro wn", + "向本院申请 复议一次", + "▁B io", + "▁Bi o", + "▁ Bio", + "科学 记数", + "▁K a", + "▁ Ka", + "中小 企业", + "ill iam", + "illi am", + "舆 论", + "▁retro spective", + "▁retrospect ive", + "比较 好", + "比 较好", + "▁h ipp", + "▁hip p", + "▁hi pp", + "▁is lands", + "▁island s", + "▁v intage", + "取 出", + "Sym bol", + "S ymbol", + "▁Set tings", + "▁Setting s", + "▁Sett ings", + "▁ Settings", + "夫 人", + "Fe ed", + "Fee d", + "F eed", + "容 纳", + "法 治", + "话 说", + "▁S ER", + "▁SE R", + "▁ SER", + "IO Exception", + "▁cont ributor", + "▁contribut or", + "▁ contributor", + "apan ese", + "也 好", + "的 作品", + "涉及 未成年", + "▁every body", + "对 错", + "▁Ad vent", + "▁Adv ent", + "▁product ive", + "▁prod uctive", + "▁ productive", + "克 兰", + "<>( );\\", + "<> ();\\", + "< >();\\", + "cont rolled", + "control led", + "暴 露", + "ip tic", + "ipt ic", + "i ptic", + "rs t", + "r st", + "得 知", + "▁n ations", + "▁nation s", + "▁nat ions", + "▁V in", + "▁Vi n", + "▁l ogical", + "▁log ical", + "▁logic al", + "▁ logical", + "▁T un", + "▁Tu n", + "W ait", + "▁f atal", + "▁fa tal", + "▁fat al", + "▁ fatal", + "▁M organ", + "▁Mor gan", + "v g", + "Ha ve", + "H ave", + "Option al", + "Opt ional", + "这 点", + "sa m", + "s am", + "▁( ,", + "的 经济", + "厦门 市", + "厦 门市", + "▁attempt ing", + "分 散", + "ov ies", + "ovie s", + "ovi es", + "▁May or", + "▁Mayo r", + "▁ м", + "▁adjust ment", + "又 不", + "nM on", + "n Mon", + "你 自己", + "ce iver", + "ceive r", + "的范围 内", + "的 范围内", + "ivid ually", + "ividual ly", + "hi re", + "hir e", + "h ire", + "▁di min", + "▁dim in", + "▁Tai wan", + "▁port able", + "▁por table", + "涉及未成年 子女抚养", + "N Y", + "可 行", + "dis abled", + "disable d", + "nT ype", + "n Type", + "为大 家", + "为 大家", + "离婚诉讼 或者", + "▁G olf", + "▁Go lf", + "▁Gol f", + "▁soc io", + "▁soci o", + "at um", + "atu m", + "a tum", + "nSt art", + "nSta rt", + "n Start", + "离婚诉讼或者 涉及未成年子女抚养", + "▁read ily", + "▁s our", + "▁so ur", + "▁sou r", + "com pass", + "comp ass", + "at orial", + "ator ial", + "ato rial", + "这本 书", + "这 本书", + "▁form ulation", + "▁formula tion", + "成 品", + "is sa", + "iss a", + "ma ps", + "map s", + "m aps", + "兼 容", + "无 力", + "没 事", + "更大 的", + "更 大的", + "班 子", + "Si te", + "S ite", + "▁ery th", + "▁eryt h", + "实 质", + "精 选", + "LO AD", + "▁re fund", + "▁ref und", + "计算 至", + "▁sup pression", + "▁suppress ion", + "ul u", + "u lu", + "给出 的", + "给 出的", + "忽 视", + "年 开始", + "bund le", + "b undle", + "利 的", + "k x", + "就可以 了", + "提供 担保", + "边 界", + "▁exp ressing", + "▁express ing", + "▁expr essing", + "▁ expressing", + "本院依法组成合议庭 进行了审理", + "ec onomic", + "econ omic", + "合 伙", + "向 前", + "oc amp", + "oca mp", + "o camp", + "▁pro ton", + "▁pr oton", + "▁prot on", + "▁proto n", + "▁ proton", + "精 华", + "▁$ [", + "an non", + "ann on", + "anno n", + "hes ia", + "▁tour ism", + "we i", + "w ei", + "com b", + "co mb", + "c omb", + "南 通", + "▁For mat", + "▁Form at", + "▁ Format", + "▁e quality", + "▁equ ality", + "▁equal ity", + "▁eq uality", + "▁ equality", + "▁null able", + "▁ nullable", + "Back ground", + "▁R ick", + "▁Ric k", + "▁Ri ck", + "▁p ole", + "▁pol e", + "▁po le", + "▁ pole", + "叶 片", + "包含 了", + "同比 增长", + "▁high way", + "▁s wing", + "▁sw ing", + "▁ swing", + "os terone", + "oster one", + "▁B SD", + "▁BS D", + "▁ BSD", + "▁S cript", + "▁Sc ript", + "▁Scr ipt", + "▁ Script", + "C md", + "完整 的", + "▁Th ings", + "▁Thing s", + "▁Thin gs", + "▁Re lated", + "▁Rel ated", + "▁ Related", + "') )\\", + "')) \\", + "' ))\\", + "▁W HERE", + "▁WH ERE", + "▁ WHERE", + "▁Dub lin", + "凝 聚", + "Du ration", + "D uration", + "▁Indust rial", + "▁sub process", + "▁ subprocess", + "▁Louis iana", + "▁macroph ages", + "▁macrophage s", + "▁S umm", + "▁Su mm", + "▁Sum m", + "nP ub", + "n Pub", + "▁P harm", + "▁Ph arm", + "W D", + "ow ski", + "ows ki", + "家 乡", + "ip y", + "i py", + "qu et", + "que t", + "DT O", + "D TO", + "▁B ush", + "▁Bus h", + "▁Bu sh", + "urg ery", + "urger y", + "▁h ired", + "▁hire d", + "▁hi red", + "原 子", + "▁W y", + "▁per mitted", + "▁permit ted", + "▁perm itted", + "bi e", + "b ie", + "Message s", + "Mess ages", + "M essages", + "~ \\", + "VI CE", + "V ICE", + "二次 方程", + "nL ike", + "n Like", + "л а", + "▁land sc", + "▁lands c", + "一起 来", + "一 起来", + "▁P hill", + "▁Ph ill", + "▁Phil l", + "ogene ity", + "▁S F", + "▁ SF", + "▁coord ination", + "% )", + "ch unk", + "G V", + "词 典", + "的前 提", + "的 前提", + "▁hypot heses", + "▁hypothes es", + "▁N ep", + "▁Ne p", + "Git Hub", + "▁chromat ography", + "▁\" \",", + "▁\"\" ,", + "▁ \"\",", + "/$ {", + "/ ${", + "语 法", + "it ations", + "itation s", + "itat ions", + "▁mount ed", + "▁mo unted", + "▁ mounted", + "host s", + "ho sts", + "▁end ogenous", + "十六 日", + "十 六日", + "可 怕", + "签 署", + "▁Def inition", + "▁ Definition", + "▁pep per", + "▁de ployed", + "▁deploy ed", + "▁^ {", + "▁ ^{", + "不断 的", + "▁S ET", + "▁SE T", + "▁ SET", + "▁con trad", + "▁cont rad", + "▁contr ad", + "id el", + "ide l", + "i del", + "oid al", + "oi dal", + "o idal", + "▁im pression", + "▁imp ression", + "▁impress ion", + "▁g ross", + "▁gr oss", + "▁gro ss", + "mon itor", + "▁key word", + "▁ keyword", + "▁c ylinder", + "▁cyl inder", + "▁cylind er", + "▁ cylinder", + "迎 来", + "再 根据", + "在 他", + "bus iness", + "b usiness", + "▁st ainless", + "▁stain less", + "未 到庭", + "▁controvers ial", + "ub untu", + "u buntu", + "▁Work s", + "▁Wor ks", + "▁ Works", + "▁Har vard", + "nb e", + "n be", + "urch ase", + "pr ises", + "pri ses", + "prise s", + "▁Med al", + "▁Me dal", + "H I", + "W atch", + "ag ers", + "age rs", + "ager s", + "a gers", + "\", &", + "\" ,&", + "下一 个", + "下 一个", + "组 长", + "由原告 负担", + "requ ests", + "request s", + "ir s", + "i rs", + "的公 司", + "的 公司", + "al bum", + "▁moist ure", + "▁moistur e", + "剂 量", + "服 法", + "▁S now", + "▁Sn ow", + "com mons", + "comm ons", + "common s", + "ograph ics", + "ographic s", + "o graphics", + "小 麦", + "uk i", + "u ki", + "ob last", + "obl ast", + "o blast", + "活 着", + "com pose", + "comp ose", + "▁vari eties", + "局 面", + "执行 的", + "执 行的", + "这 家", + "▁th inks", + "▁think s", + "▁thin ks", + "ific ant", + "ifi cant", + "一 一", + "ho ts", + "hot s", + "h ots", + "▁l ar", + "▁la r", + "▁ lar", + "长春 市", + "队 长", + "▁long est", + "▁lon gest", + "开 车", + "▁ful fill", + "▁fulfil l", + "▁B ey", + "▁Be y", + "极 限", + "双方 当事人", + "▁employ er", + "▁grad ually", + "▁gradu ally", + "▁gradual ly", + "▁mamm alian", + "▁infect ious", + "▁R isk", + "▁Ri sk", + "▁Ris k", + "▁ Risk", + "▁sl ice", + "▁slic e", + "▁ slice", + "▁polynomial s", + "王 者", + "'] ,", + "' ],", + "采用 了", + "采 用了", + "▁c orn", + "▁co rn", + "▁cor n", + "▁ corn", + "▁s lip", + "▁sl ip", + "验 收", + "met rics", + "metric s", + "▁b und", + "▁bu nd", + "▁ bund", + "▁Port land", + "潮 流", + "▁ch unk", + "▁ chunk", + "', ['", + "遍 历", + "mi x", + "m ix", + "二 等奖", + "Go od", + "G ood", + "au ra", + "aur a", + "a ura", + "mit t", + "mi tt", + "m itt", + "Sub mit", + "东 路", + "IE NT", + "I ENT", + "村民 委员会", + "卫生 间", + "im ore", + "imo re", + "i more", + "▁l inking", + "▁link ing", + "▁lin king", + "▁ linking", + "▁att itudes", + "▁attitude s", + "日向本院 申请执行", + "日向本院申请 执行", + "日 向本院申请执行", + "▁X X", + "▁ XX", + "ac a", + "a ca", + "nO k", + "n Ok", + "born e", + "bo rne", + "bor ne", + "b orne", + "be cause", + "bec ause", + "b ecause", + "承 办", + "重 生", + "gl ob", + "g lob", + "si l", + "s il", + "座 谈", + "▁J u", + "▁tra iler", + "▁trail er", + "▁w eren", + "▁we ren", + "▁were n", + "▁wer en", + "at ility", + "a tility", + "死 的", + "加 深", + "▁gl obe", + "▁glob e", + "▁glo be", + "海 上", + "nH er", + "nHe r", + "n Her", + "远 离", + "CE S", + "C ES", + "出 于", + "▁\\\\ ((", + "▁\\\\( (", + "▁ \\\\((", + "▁W ind", + "▁Win d", + "▁Wi nd", + "▁ Wind", + "r x", + "tf mt", + "t fmt", + "城市 的", + "城 市的", + "pr ite", + "pri te", + "prit e", + "p rite", + "Ma ster", + "Mas ter", + "M aster", + "中 原", + "pub lished", + "publish ed", + "▁d ens", + "▁de ns", + "▁den s", + "▁ dens", + "▁haz ard", + "am o", + "a mo", + "Form atter", + "For matter", + "Format ter", + "▁flu or", + "▁ fluor", + "▁band width", + "▁bench mark", + "▁ benchmark", + "P i", + "▁A bs", + "▁Ab s", + "▁ Abs", + "it i", + "i ti", + "▁J osh", + "▁Jo sh", + "▁Jos h", + "os ine", + "osin e", + "osi ne", + "牡 丹", + "▁A WS", + "▁AW S", + "▁ AWS", + "▁All iance", + "k u", + "ge nder", + "gen der", + "g ender", + "成 语", + "ndes cription", + "nde scription", + "n description", + "to wn", + "t own", + "▁Ga ussian", + "▁Gauss ian", + "▁ Gaussian", + "▁inter faces", + "▁interface s", + "▁interf aces", + "▁ interfaces", + "Se cond", + "Sec ond", + "▁A ch", + "▁Ac h", + "an ne", + "ann e", + "ev alu", + "eval u", + "eva lu", + "不 为", + "的有 效", + "的 有效", + "▁exam ining", + "不一 定", + "不 一定", + "▁C ool", + "▁Co ol", + "▁re current", + "▁rec urrent", + "Pa ck", + "Pac k", + "P ack", + "日立案 后", + "is son", + "iss on", + "i sson", + "▁d urable", + "▁dur able", + "劳动 争议", + "意思 表示", + "了 几", + "▁got ten", + "▁School s", + "▁Sch ools", + "_ ;\\", + "▁题目 描述", + "Ch e", + "C he", + "\\' /", + "\\ '/", + "解析 式", + "十二 日", + "十 二日", + "索 引", + "过 渡", + "▁S I", + "▁ SI", + "Ba d", + "B ad", + "▁T ab", + "▁Ta b", + "▁ Tab", + "▁n urse", + "▁nurs e", + "▁nur se", + "▁Im mun", + "▁Imm un", + "nC har", + "nCh ar", + "n Char", + "▁St ew", + "▁Ste w", + "cl inical", + "骑 士", + "正 面", + "约定 的", + "约 定的", + "需要 注意", + "需 要注意", + "▁sim pler", + "▁simple r", + "▁simpl er", + "过 多", + "限 于", + "per cent", + "摩 擦", + "is sing", + "iss ing", + "▁Chair man", + "▁ «", + "涂 料", + "li sten", + "list en", + "lis ten", + "▁Com plete", + "▁Comp lete", + "▁Compl ete", + "▁ Complete", + "本 土", + "就 已经", + "▁g erm", + "▁ge rm", + "▁ger m", + "精 灵", + "St ruct", + "Str uct", + "▁prom otes", + "▁promot es", + "▁promote s", + "▁promo tes", + "▁hyp ox", + "▁f ork", + "▁for k", + "▁fo rk", + "▁ fork", + "▁T oken", + "▁To ken", + "▁Tok en", + "▁ Token", + "从 未", + "LA B", + "L AB", + "▁progn osis", + "▁phys ically", + "▁physical ly", + "▁physic ally", + "付 清", + "欢 乐", + "const ants", + "constant s", + "▁Be ing", + "▁ Being", + "眼 里", + "▁B ot", + "▁Bo t", + "▁ Bot", + "▁Co ord", + "▁ Coord", + "▁str uck", + "猪 肉", + "▁p aste", + "▁past e", + "▁pa ste", + "▁pas te", + "▁ paste", + "nB est", + "nBe st", + "n Best", + "nE nter", + "nEn ter", + "nEnt er", + "n Enter", + "Write Line", + "▁instance of", + "PL C", + "P LC", + "七日 内", + "七 日内", + "▁di agonal", + "▁diagon al", + "▁N an", + "▁Na n", + "月二十 二日", + "▁ref erring", + "▁refer ring", + "T B", + "去 的", + "的 图象", + "该 如何", + "手 法", + ">\" \\", + "> \"\\", + "第七 章", + ") ÷", + "▁sh aped", + "▁shape d", + "▁sha ped", + "▁ shaped", + "▁c ortical", + "▁cor tical", + "▁cort ical", + "▁cortic al", + "nM ake", + "nMa ke", + "n Make", + "养 成", + "▁reg arded", + "▁regard ed", + "▁dis placement", + "place holder", + "In ternal", + "Int ernal", + "Inter nal", + "产生 了", + "产 生了", + "实际 情况", + "▁ °", + "说 过", + "▁H ub", + "▁Hu b", + "▁ Hub", + "▁LIMIT ED", + "▁l oose", + "▁lo ose", + "▁loos e", + "一个 小", + "一 个小", + "湿 度", + "▁Admin istr", + "一 层", + "武 装", + "给 定", + "我 有", + "nC omp", + "nCom p", + "nCo mp", + "n Comp", + "▁cap tain", + "▁capt ain", + "▁p ixels", + "▁pixel s", + "▁ pixels", + "▁r acial", + "▁rac ial", + "▁ racial", + "一 组", + "外 面", + "AS T", + "A ST", + "▁B aby", + "▁Ba by", + "▁Bab y", + "▁ Baby", + "▁d imensional", + "▁dimension al", + "▁ dimensional", + "日 晚", + "登 场", + "▁tun nel", + "tr igger", + "trig ger", + "▁La bour", + "▁Lab our", + "不 止", + "nor th", + "n orth", + "▁How ard", + "▁Ho ward", + "工 委", + "▁b ash", + "▁bas h", + "▁ba sh", + "▁ bash", + "物业 服务有限公司", + "物业服务 有限公司", + "▁a z", + "▁ az", + "最后 的", + "最 后的", + "第三 百", + "第 三百", + "了 他", + "美 观", + "▁S audi", + "▁Sa udi", + "▁Sau di", + "▁st ayed", + "▁stay ed", + "▁P arent", + "▁Par ent", + "▁Pa rent", + "▁Pare nt", + "▁ Parent", + "▁Te chnical", + "▁Techn ical", + "意 志", + "▁dis par", + "▁disp ar", + "▁cult iv", + "▁[ (", + "▁ [(", + "折 抵", + "ha lf", + "hal f", + "h alf", + "') );\\", + "')) ;\\", + "' ));\\", + "之 旅", + "▁L ocation", + "▁Lo cation", + "▁Loc ation", + "▁ Location", + "▁ar range", + "▁arr ange", + "▁arrang e", + "ad ded", + "add ed", + "oph ag", + "北 部", + "▁out break", + "▁ou tbreak", + "▁con fusion", + "▁conf usion", + "sp ir", + "spi r", + "s pir", + "▁A sk", + "▁As k", + "▁ Ask", + "▁present ations", + "▁presentation s", + "拉 斯", + "里 斯", + "bp s", + "b ps", + "受 害", + "th an", + "tha n", + "t han", + "io id", + "i oid", + "▁R oc", + "▁Ro c", + "d w", + "▁el abor", + "Com pat", + "Comp at", + "▁( _", + "▁ (_", + "Co py", + "Cop y", + "C opy", + "▁cons ensus", + "▁t ired", + "▁tire d", + "▁ti red", + "于本判决 生效后", + "于 本判决生效后", + "乃 至", + "宽 度", + "刑 更", + "▁d istr", + "▁dis tr", + "▁dist r", + "▁di str", + "▁M ock", + "▁Mo ck", + "▁ Mock", + "▁credit s", + "▁cred its", + "▁t imer", + "▁time r", + "▁tim er", + "▁ti mer", + "▁ timer", + "Re lease", + "do i", + "d oi", + "立 法", + "▁ach ievement", + "▁achieve ment", + "才 有", + "al er", + "ale r", + "a ler", + "▁G ot", + "▁Go t", + "▁ Got", + "▁s tiff", + "▁st iff", + "拿 出", + "Th anks", + "Thank s", + "Than ks", + "▁pl acing", + "▁plac ing", + "▁ placing", + "荷 兰", + "了解 到", + "we ar", + "w ear", + "nSim plify", + "nSimpl ify", + "n Simplify", + "pan ic", + "pa nic", + "p anic", + "▁h iring", + "▁hi ring", + "olog ous", + "Str ategy", + "▁dev oted", + "▁devote d", + "移 植", + "nS et", + "nSe t", + "n Set", + "合作 社", + "▁prolong ed", + "nc y", + "n cy", + "▁Gal axy", + "ia o", + "i ao", + "▁a men", + "▁am en", + "▁ amen", + "▁pre sum", + "▁pres um", + "\\\\( )\\\\)\\", + "\\\\() \\\\)\\", + "\\\\()\\\\) \\", + "改革 开放", + "联 想", + "claim ed", + "l r", + "is co", + "isc o", + "io logic", + "i ologic", + "▁form erly", + "▁former ly", + "▁ formerly", + "▁l etting", + "▁let ting", + "重 启", + "]\\ \\", + "] \\\\", + "nCONCLUS IONS", + "nCONCLUSION S", + "ra ns", + "ran s", + "r ans", + "寂 寞", + "▁susp ended", + "▁suspend ed", + "太 大", + "感 恩", + "H F", + "病 理", + "的 态度", + "语 种", + "▁Miss issippi", + "救 助", + "▁Rec ently", + "▁Recent ly", + "放 到", + "▁P ackage", + "▁Pack age", + "▁ Package", + "stud ent", + "▁\" \";\\", + "▁\"\" ;\\", + "八 条", + "平 常", + "选出 正确的答案", + "有 理", + "▁R ab", + "▁Ra b", + "统 筹", + "ma kers", + "make rs", + "maker s", + "mak ers", + "m akers", + "梅 花", + "缩 小", + "▁v aries", + "▁vari es", + "▁var ies", + "▁va ries", + "考虑 到", + "▁T X", + "▁ TX", + "th rows", + "throw s", + "thro ws", + "thr ows", + "象 征", + "欧 盟", + "内容 介绍", + "▁prot ecting", + "▁protect ing", + "t ensor", + "▁Run time", + "▁Ru ntime", + "▁ Runtime", + "命 名", + "▁d in", + "▁di n", + "▁ din", + "iz oph", + "▁Date Time", + "▁ DateTime", + "set ting", + "sett ing", + "s etting", + "占 据", + "@ @", + "人民 医院", + "pro blem", + "prob lem", + "per formance", + "perform ance", + "▁V el", + "▁Ve l", + "▁ Vel", + "▁plate let", + "目 光", + "▁N ut", + "▁Nu t", + "▁a ux", + "▁au x", + "▁ aux", + "是没 有", + "是 没有", + "nB oth", + "nBo th", + "n Both", + "Int egr", + "nO bject", + "nOb ject", + "n Object", + "spec ial", + "▁organ isms", + "▁organism s", + "▁ organisms", + "▁ent ert", + "▁enter t", + "▁S ud", + "▁Su d", + "▁abund ance", + "排 水", + "▁accord ance", + "这是 一", + "这 是一", + "▁R ule", + "▁Ru le", + "▁ Rule", + "▁G un", + "▁Gu n", + "GB T", + "G BT", + "▁sudden ly", + "HE AD", + "的 首", + "em ed", + "eme d", + "e med", + "com pare", + "comp are", + "compar e", + "att rs", + "attr s", + "▁d B", + "▁ dB", + "面 板", + "▁TH AT", + "ge bras", + "gebra s", + "ta x", + "t ax", + "▁Or th", + "▁Ort h", + "con firm", + "conf irm", + "重 建", + "▁exc essive", + "▁excess ive", + "▁ 阿", + "▁int roducing", + "▁introdu cing", + "登 陆", + "船 舶", + "pro to", + "pr oto", + "prot o", + "La b", + "L ab", + "映 时间", + "nst atic", + "n static", + "▁co unting", + "▁count ing", + "我 个人", + "而 来", + "▁be gun", + "▁beg un", + "班 主任", + "▁c rown", + "▁cr own", + "▁crow n", + "▁cro wn", + "书 写", + "Bind ing", + "Bin ding", + "B inding", + "▁car ries", + "▁head quarters", + "▁headqu arters", + "自 从", + "▁j o", + "▁ jo", + "▁de cent", + "▁dec ent", + "▁dece nt", + "▁ov arian", + "▁ovar ian", + "月二十 九日", + "▁J os", + "▁Jo s", + "▁D jango", + "▁Dj ango", + "▁ Django", + "商品 房", + "十七 日", + "十 七日", + "经 费", + "▁expl ores", + "▁explore s", + "▁explo res", + "▁explor es", + "真 诚", + "▁L am", + "▁La m", + "▁f oss", + "▁fo ss", + "▁V eter", + "▁Ve ter", + "新 人", + "hed uler", + "hedul er", + "hedule r", + "Si de", + "S ide", + "觉得 自己", + "党 校", + "in to", + "int o", + "i nto", + "VAL UE", + "is i", + "i si", + "经济 社会", + "au rant", + "aur ant", + "aura nt", + "`, \\", + "` ,\\", + "的不 同", + "的 不同", + "▁S L", + "▁ SL", + "FL AGS", + "FLAG S", + "▁surv ived", + "▁surviv ed", + "▁survive d", + "▁R ober", + "▁Rob er", + "▁Ro ber", + "如 同", + "十二 章", + "十 二章", + "\\' );", + "\\') ;", + "\\ ');", + "CT YPE", + "C TYPE", + "▁Phil ip", + "公 积", + "▁Det roit", + "十三 日", + "十 三日", + "▁e in", + "▁ ein", + "▁Man ufact", + "am ped", + "amp ed", + "re verse", + "▁E vents", + "▁Ev ents", + "▁Even ts", + "▁Event s", + "▁ Events", + "▁fr ustr", + "具体 的", + "具 体的", + "In formation", + "▁do nation", + "▁don ation", + "mus ic", + "m usic", + "▁Av ailable", + "▁ Available", + "学 士", + "监 会", + "ir able", + "ira ble", + "时 不", + "▁Con clusions", + "▁Conclusion s", + "▁bed rooms", + "▁bedroom s", + "ound ing", + "oun ding", + "o unding", + "恐 惧", + "ab ul", + "a bul", + "的 全", + "眼 神", + "配 方", + "在 本", + "se par", + "sep ar", + "▁st ocks", + "▁stock s", + "▁sto cks", + "▁A lan", + "▁Al an", + "▁Her itage", + "disc iplinary", + "discipl inary", + "d isciplinary", + "着 力", + "la g", + "l ag", + "▁mon itored", + "▁monitor ed", + "][ \"", + "] [\"", + "▁ 将", + "▁b eds", + "▁be ds", + "▁bed s", + "▁occasion ally", + "▁occasional ly", + "▁H ockey", + "▁str iking", + "▁stri king", + "太平 洋", + "▁M ini", + "▁Min i", + "▁Mi ni", + "▁ Mini", + "▁spec ifications", + "▁specific ations", + "▁specification s", + "▁T alk", + "▁Tal k", + "▁ Talk", + "▁local ized", + "▁localize d", + "▁table t", + "▁tab let", + "▁similar ity", + "▁t ear", + "▁te ar", + "▁tea r", + "公 元", + "后 卫", + "▁st reams", + "▁stre ams", + "▁stream s", + "▁ streams", + "▁b ypass", + "▁by pass", + "▁ab dominal", + "▁fragment s", + "▁frag ments", + "发 性", + "▁W ire", + "▁Wi re", + "▁ Wire", + "us k", + "u sk", + "学 家", + "og onal", + "ogo nal", + "ogon al", + "▁gu ilty", + "▁guilt y", + "▁mer ely", + "▁mere ly", + "▁art work", + "并 无", + "▁ad diction", + "▁add iction", + "▁addict ion", + "啤 酒", + "ip eline", + "ipe line", + "ipel ine", + "Sc h", + "S ch", + "on line", + "o nline", + "uff icient", + "▁dist ances", + "▁distance s", + "双 手", + "▁Al bert", + "▁Alber t", + "▁Alb ert", + "ad dy", + "add y", + "if iable", + "ifi able", + "p matrix", + "细 腻", + "调 控", + "和 管理", + "Mi xin", + "Mix in", + "M ixin", + "ain ers", + "ai ners", + "ainer s", + "aine rs", + "▁Col omb", + "▁ref used", + "▁refuse d", + "▁pro pri", + "▁prop ri", + "▁mus ician", + "▁music ian", + "oh yd", + "o hyd", + "▁b urst", + "▁bu rst", + "▁bur st", + "▁ burst", + "▁Re member", + "▁Rem ember", + "▁ Remember", + "▁S erial", + "▁Se rial", + "▁Ser ial", + "▁ Serial", + "b p", + "明确 的", + "▁inf inity", + "▁infinit y", + "▁ infinity", + "减刑 条件", + "▁$ |", + "▁a na", + "▁an a", + "▁ ana", + "immun e", + "imm une", + "Process or", + "▁subst ances", + "▁substance s", + "外 形", + "破 碎", + "判处 拘役", + "向本院提起 上诉", + "▁dec omposition", + "▁decom position", + "给我 们", + "给 我们", + "▁phot ographer", + "▁photograph er", + "▁K in", + "▁Ki n", + "▁ Kin", + "▁Wal ker", + "▁Walk er", + "▁belong ing", + "借款 人", + "il lo", + "ill o", + "▁b locking", + "▁block ing", + "▁ blocking", + "向本院 申请执行", + "向本院申请 执行", + "就是 一个", + "就 是一个", + "▁Car ib", + "▁Ca rib", + "▁sh irt", + "▁ shirt", + "reg ex", + "▁B reak", + "▁Bre ak", + "▁ Break", + "[ $", + "计 数", + "▁F ixed", + "▁Fix ed", + "▁ Fixed", + "一 度", + "繁 荣", + "一体 化", + "甲 基", + "▁p adding", + "▁pad ding", + "▁padd ing", + "▁ padding", + "▁Ar thur", + "▁ Arthur", + "高等 教育", + "token s", + "tok ens", + "标准 的", + "Prot ocol", + "Proto col", + "弘 扬", + "▁D ick", + "▁Di ck", + "▁Ent ity", + "▁ Entity", + "用 人", + "▁h ell", + "▁he ll", + "▁hel l", + "▁ hell", + "▁t ours", + "▁to urs", + "▁tour s", + "▁tou rs", + "举 措", + ")) /(", + "))/ (", + ") )/(", + "▁he sit", + "con cept", + "▁P ast", + "▁Pa st", + "▁Pas t", + "ow ners", + "own ers", + "owner s", + ":\\ '", + ": \\'", + "yl ation", + "yla tion", + "y lation", + "il ization", + "▁s ons", + "▁so ns", + "▁son s", + "▁Bel gium", + "▁p ushing", + "▁push ing", + "碰 撞", + "的 速度", + "▁r endering", + "▁render ing", + "▁rend ering", + "▁h orses", + "▁hor ses", + "▁horse s", + "▁hors es", + "▁ 运动", + "▁M erc", + "▁Me rc", + "▁Mer c", + "变 革", + "y combinator", + "nVill ages", + "▁reg ulating", + "▁regul ating", + "认罪 服法", + "ä r", + "Do es", + "D oes", + "▁M ars", + "▁Mar s", + "▁Ma rs", + "▁recombin ant", + "to x", + "t ox", + "Cent er", + "Ce nter", + "C enter", + "年 间", + "日立案 受理", + "体 质", + "十四 日", + "十 四日", + "▁K ids", + "▁Ki ds", + "▁Kid s", + "▁T rack", + "▁Tr ack", + "▁Tra ck", + "▁ Track", + "有一 定的", + "有一定 的", + "有 一定的", + "▁aggreg ate", + "▁ aggregate", + "▁occasion s", + "▁occas ions", + "▁re section", + "▁res ection", + "▁resect ion", + "酒店 的", + "酒 店的", + "涉 案", + "▁Fin land", + "▁hypothes ize", + "lev eland", + "level and", + "▁s wap", + "▁sw ap", + "▁ swap", + "▁Pre vious", + "▁ Previous", + "促 销", + "分析 和", + "▁Dak ota", + "阐 述", + "▁g od", + "▁go d", + "▁ god", + "▁re jected", + "▁reject ed", + "份 额", + "▁Ag reement", + "两 侧", + "▁Ch oose", + "▁Cho ose", + "▁ Choose", + "ho le", + "hol e", + "h ole", + "izoph ren", + "Dir ection", + "Direct ion", + "Di rection", + "D irection", + "▁De ath", + "▁ Death", + "ch ell", + "che ll", + "chel l", + "c hell", + "VE D", + "V ED", + "ley ball", + "cre ens", + "creen s", + "c reens", + "AN GE", + "ANG E", + "▁R io", + "▁Ri o", + "ex ternal", + "ext ernal", + "exter nal", + "extern al", + "nThere fore", + "气 管", + "▁t uple", + "▁tu ple", + "▁ tuple", + "给 她", + "put s", + "pu ts", + "p uts", + "oh ist", + "o hist", + "▁T ests", + "▁Te sts", + "▁Test s", + "▁Tes ts", + "▁ Tests", + "▁l ombok", + "ener ative", + "ene rative", + "] }", + "以上 事实", + "网 卡", + "行政处罚 决定书", + "行政处罚决定 书", + "LO C", + "L OC", + "▁re productive", + "B Y", + "用 量", + "注 入", + "▁L ane", + "▁La ne", + "▁Lan e", + "▁基本 信息", + "▁ 基本信息", + "看 似", + "he astern", + "heast ern", + "h eastern", + "属 实", + "ph ot", + "p hot", + "▁Q ual", + "▁Qu al", + "▁ Qual", + "▁license s", + "▁lic enses", + "▁ licenses", + "nU nder", + "nUn der", + "n Under", + "▁en emy", + "▁Den mark", + "电动 车", + "电 动车", + "▁we apon", + "▁weap on", + "an che", + "anc he", + "anch e", + "a nche", + "配 送", + "GRO UND", + "▁B owl", + "▁Bo wl", + "▁Bow l", + "end point", + "应当 按照", + "▁A G", + "▁ AG", + "厕 所", + "时间 为", + "▁se iz", + "▁Frank lin", + "▁employ ers", + "▁employer s", + "▁l iv", + "▁li v", + "人 气", + "约 为", + "▁N CAA", + "▁NC AA", + "AT CH", + "麦 克", + "▁D om", + "▁Do m", + "▁ Dom", + "▁\\\\ $", + "▁ \\\\$", + "▁N ash", + "▁Na sh", + "▁Nas h", + "▁L ux", + "▁Lu x", + "н ы", + "▁\" [", + "▁ \"[", + "▁po et", + "桂 林", + "ob a", + "o ba", + "▁con stitution", + "▁const itution", + "▁constit ution", + "▁constitu tion", + "ii i", + "i ii", + "home page", + "hom epage", + "欧 美", + "▁rev ised", + "▁revis ed", + "nd e", + "n de", + "▁f ocal", + "▁foc al", + "▁fo cal", + "下 方", + "▁R oot", + "▁Ro ot", + "▁ Root", + "▁V ancouver", + "▁per mut", + "▁perm ut", + "▁Be havior", + "▁ Behavior", + "面 貌", + "la ter", + "late r", + "lat er", + "l ater", + "说 出", + "催 化", + "百 货", + "Li ve", + "L ive", + "▁T rib", + "▁Tr ib", + "▁Tri b", + "з а", + "\\' \\\\", + "\\'\\ \\", + "\\ '\\\\", + "\"} \\", + "\" }\\", + "▁con front", + "▁C B", + "▁ CB", + "▁c ls", + "▁cl s", + "▁ cls", + "▁max imize", + "▁maxim ize", + "os ures", + "osure s", + "解放 军", + "▁C V", + "▁ CV", + "发现 了", + "nO BJECT", + "n OBJECT", + "▁nav igate", + "▁ navigate", + "▁l oud", + "▁lo ud", + "▁lou d", + "ic he", + "ich e", + "i che", + "▁condition ing", + "▁ conditioning", + "R a", + "▁ 时", + "进 球", + "▁def ensive", + "ts burgh", + "火 灾", + "▁M ovie", + "▁Mo vie", + "▁ Movie", + "▁a ther", + "▁at her", + "▁ ather", + "▁H z", + "▁ Hz", + "第一百 一十九", + "第一百一 十九", + "▁Z one", + "▁ Zone", + "estab lished", + "establish ed", + "bit al", + "bi tal", + "b ital", + "la unch", + "l aunch", + "in burgh", + "enez uel", + "样 品", + "再 说", + "法律 保护", + "▁M oney", + "▁Mon ey", + "▁Mo ney", + "▁ Money", + "nAb out", + "n About", + "的 教育", + "月二十 一日", + "上半 年", + "上 半年", + "nCan adian", + "n Canadian", + "▁global ly", + "▁glob ally", + "等 比", + "青岛 市", + "▁h ung", + "▁hun g", + "▁hu ng", + "▁Ark ansas", + "贯彻 落实", + "不 下", + "▁Que bec", + "t M", + "区 分", + "▁stom ach", + "▁sto mach", + "▁fr uits", + "▁fruit s", + "▁log ged", + "▁ logged", + "圆 锥", + "▁S el", + "▁Se l", + "后面 的", + "后 面的", + "for ced", + "force d", + "▁F lash", + "▁Fl ash", + "▁ Flash", + "的 通", + "nF ollowing", + "nFollow ing", + "n Following", + "股 市", + "▁J enn", + "▁Jen n", + "▁Je nn", + "道路 上", + "道 路上", + "tt ry", + "t try", + "▁sc aling", + "▁scal ing", + "是 大", + "存在 的问题", + "存在的 问题", + "努力 完成劳动任务", + "comm unity", + "commun ity", + "▁M agic", + "▁Mag ic", + "▁Ma gic", + "▁ Magic", + "with out", + "前 列", + "▁C hat", + "▁Ch at", + "▁Cha t", + "▁ Chat", + "▁co ins", + "▁coin s", + "▁ coins", + "春 天", + "▁f oo", + "▁fo o", + "▁ foo", + "ne m", + "n em", + "ен и", + "е ни", + "for ge", + "f orge", + "nA wards", + "nAw ards", + "nAward s", + "▁mer ch", + "▁merc h", + "明 月", + "必须 要", + "pers istence", + "依法 由审判员", + "依法由 审判员", + "路 面", + "▁b ucket", + "▁buck et", + "▁ bucket", + "▁D EFAULT", + "▁ DEFAULT", + "▁narr ative", + "发 了", + "希 腊", + "疲 劳", + "观 测", + "买 房", + "师 资", + "▁V erm", + "▁Ver m", + "▁Ve rm", + "oc rine", + "ocr ine", + "▁ag enda", + "▁age nda", + "Anal ysis", + "▁anc est", + "▁y oga", + "▁yog a", + "▁yo ga", + "Am ount", + "A mount", + "和 服务", + "fl oor", + "flo or", + "f loor", + "事实 和", + "next ern", + "nex tern", + "n extern", + "▁St ruct", + "▁Str uct", + "▁ Struct", + "▁M ilitary", + "▁Mil itary", + "物 体", + "▁w heels", + "▁whe els", + "▁wheel s", + "▁help er", + "▁hel per", + "▁ helper", + "名 人", + "▁sup porters", + "▁support ers", + "▁supporter s", + "err anean", + "满 满", + "scrib er", + "scri ber", + "scribe r", + "scr iber", + "储 存", + "▁gather ing", + "桌 面", + "CO M", + "C OM", + "fa ther", + "fat her", + "f ather", + "草 原", + "de cor", + "dec or", + "▁L L", + "▁ LL", + "Sp eed", + "Spe ed", + "S peed", + "▁C lear", + "▁Cl ear", + "▁Cle ar", + "▁ Clear", + "F D", + "吸 毒", + "er ald", + "era ld", + "eral d", + "残疾 人", + "▁N umer", + "▁Num er", + "▁Nu mer", + "▁ Numer", + ">, \\", + "> ,\\", + "▁some body", + "评 选", + "▁P ick", + "▁Pi ck", + "▁Pic k", + "▁ Pick", + "U A", + "仅 供", + "ight ers", + "igh ters", + "ighter s", + "\"\\ '", + "\" \\'", + "子 上", + "白 天", + "一 时", + "▁A udio", + "▁Aud io", + "▁Audi o", + "▁ Audio", + "G a", + "▁hand les", + "▁handle s", + "ion ic", + "io nic", + "ioni c", + "i onic", + "tu ple", + "t uple", + "缩 短", + "ol ang", + "ola ng", + "olan g", + "o lang", + "▁rece ives", + "▁receive s", + "以 其", + "福 州", + "▁f lood", + "▁fl ood", + "▁flo od", + "Res olver", + "Re solver", + "Resolve r", + "▁Aust ria", + "勇 敢", + "to m", + "t om", + "▁celebr ated", + "▁celebrate d", + "月二十 四日", + "ON G", + "O NG", + "单 价", + "号刑事 裁定", + "oz illa", + "o zilla", + "▁M ind", + "▁Min d", + "▁Mi nd", + "▁ Mind", + "▁tem ple", + "▁temp le", + "内 在", + "中 毒", + "▁mut ual", + "▁mu tual", + "▁met als", + "▁metal s", + "▁meta ls", + "▁nanop articles", + "▁nano particles", + "▁nanoparticle s", + "▁Exper ience", + "▁config ured", + "▁configure d", + "先 锋", + "教 研", + "otyp ic", + "▁sec rets", + "▁secret s", + "▁ secrets", + "就 读", + "ex ceptions", + "except ions", + "exception s", + "▁V ent", + "▁Ven t", + "▁Ve nt", + "Ab out", + "内 地", + "he rent", + "her ent", + "here nt", + "h erent", + "▁coast al", + "膨 胀", + "of fee", + "off ee", + "o ffee", + "en cer", + "ence r", + "enc er", + "to Equal", + "▁s keletal", + "▁ske letal", + "户 型", + "▁# {", + "▁ #{", + "ol ia", + "oli a", + "o lia", + "q a", + "▁leuk emia", + "▁P od", + "▁Po d", + "▁ Pod", + "▁B art", + "▁Bar t", + "▁Ba rt", + "ti er", + "tie r", + "t ier", + "▁l ean", + "▁le an", + "▁ lean", + "enc il", + "▁M emory", + "▁Mem ory", + "▁ Memory", + "▁Trans form", + "▁ Transform", + "我 对", + "red ux", + "redu x", + "真 空", + "T L", + "▁d ur", + "▁du r", + "▁Att orney", + "感 的", + "Fl ag", + "F lag", + "▁sup plier", + "▁suppl ier", + "十一 条", + "十 一条", + "ye r", + "y er", + "> }", + "与 此", + "▁custom ized", + "▁cust omized", + "▁customize d", + "▁发 行", + "▁ 发行", + "▁gu ided", + "▁guid ed", + "▁guide d", + "▁gui ded", + "▁ guided", + "发 热", + "月 生", + "GH z", + "G Hz", + "▁v i", + "▁ vi", + "},\\ \\", + "}, \\\\", + "} ,\\\\", + "私 服", + "▁succeed ed", + "乐 趣", + "▁Portug al", + "美国 的", + "美 国的", + "▁lim iting", + "▁limit ing", + "导 弹", + "([ '", + "( ['", + "co v", + "c ov", + "nM ark", + "nMar k", + "nMa rk", + "n Mark", + "ercul osis", + "总 额", + "ph er", + "p her", + "os copy", + "osc opy", + "o scopy", + "ven dor", + "v endor", + "标 识", + "这 份", + "▁p ose", + "▁pos e", + "▁po se", + "▁ pose", + "左 边", + "氨 基", + "▁t rivial", + "▁triv ial", + "▁ trivial", + "▁Other wise", + "▁susp ension", + "ct l", + "c tl", + "▁liter ary", + "ni ck", + "nic k", + "n ick", + "我 只", + "▁ind ividually", + "▁individual ly", + "li ver", + "live r", + "l iver", + "Sequ ence", + "S equence", + "▁Law rence", + "ac eful", + "ace ful", + "栏 目", + "nPl ace", + "n Place", + "抱 着", + "ua rio", + "u ario", + "▁V S", + "▁ VS", + "ni m", + "n im", + "▁o bl", + "▁ob l", + "▁ obl", + "东 部", + "十九 日", + "十 九日", + "UR CE", + "姆 斯", + "▁gener a", + "▁gen era", + "▁gene ra", + "nM in", + "nMi n", + "n Min", + "嘉 宾", + "or ters", + "ort ers", + "orter s", + "orte rs", + "pic ture", + "p icture", + "tS tring", + "t String", + "总 会", + "正确 的是", + "正确的 是", + "▁bul let", + "▁bull et", + "▁ bullet", + "ch rom", + "chr om", + "▁m eter", + "▁me ter", + "▁met er", + "▁ meter", + "▁personal ized", + "综 艺", + "hi ll", + "h ill", + "is an", + "isa n", + "i san", + "s u", + "潜 在", + "▁` ${", + "▁`$ {", + "▁ `${", + "护 肤", + "▁belief s", + "▁belie fs", + "▁d ementia", + "adv ant", + "▁sol ely", + "▁sole ly", + "▁sur ely", + "▁sure ly", + "她 说", + "Fl ags", + "Flag s", + "公 顷", + "▁st adium", + "’ ,", + "▁m art", + "▁mar t", + "▁ma rt", + "▁ mart", + "re peat", + "rep eat", + "开 奖", + "▁C E", + "▁ CE", + "AU TH", + "A UTH", + "Input Stream", + "J an", + "he ne", + "hen e", + "h ene", + "选择 的依据", + "选择的 依据", + "精 细", + "comp ute", + "comput e", + "▁practition ers", + "▁practitioner s", + "▁s uck", + "▁su ck", + "▁suc k", + "▁l acking", + "▁lack ing", + "▁lac king", + "我 妈", + "nSt ud", + "n Stud", + "ra ig", + "WA R", + "W AR", + "酱 油", + "▁N P", + "▁ NP", + "augh ters", + "aughter s", + "aught ers", + "▁pr inter", + "▁print er", + "▁pri nter", + "▁ printer", + "▁con solid", + "▁cons olid", + "物 料", + "▁wr apped", + "▁wrap ped", + "▁ wrapped", + "全 民", + "▁P un", + "▁Pu n", + "▁ch ron", + "▁chr on", + "▁ chron", + "n while", + "约 翰", + "▁l ocate", + "▁loc ate", + "et ically", + "etic ally", + "e tically", + "的 花", + "Bu s", + "B us", + "就是 在", + "就 是在", + "裁定 的执行", + "ra wer", + "raw er", + "▁I nn", + "▁In n", + "勇 气", + "go n", + "g on", + "ay an", + "aya n", + "a yan", + "hen yl", + "初 级", + "▁qual ify", + "ys et", + "yse t", + "y set", + "▁Def ense", + "▁in cl", + "▁i ncl", + "▁inc l", + "è re", + "IT H", + "I TH", + "Json Property", + "Per mission", + "Perm ission", + "P ermission", + "fi ve", + "f ive", + "▁N ord", + "▁No rd", + "▁Nor d", + "▁T esting", + "▁Test ing", + "▁Tes ting", + "▁ Testing", + "攻 略", + "▁N ich", + "▁Nic h", + "▁Ni ch", + "ex c", + "e xc", + "▁B ulg", + "▁Bul g", + "▁Bu lg", + "▁Gr ade", + "▁Gra de", + "▁Grad e", + "▁ Grade", + "中国农业 银行股份有限公司", + "中国农业银行 股份有限公司", + "激 活", + "▁l ands", + "▁land s", + "▁lan ds", + "▁ lands", + "调 味", + "事 物", + "▁w orship", + "▁wor ship", + "▁wors hip", + "▁M igration", + "▁Mig ration", + "▁ Migration", + "创始 人", + "▁v es", + "▁ve s", + "▁ ves", + "ut ures", + "uture s", + "u tures", + "▁transcription al", + "▁transcript ional", + "▁V A", + "▁ VA", + "▁e norm", + "▁en orm", + "▁M ission", + "▁Miss ion", + "长 得", + "et on", + "eto n", + "e ton", + "差 的", + "▁batter ies", + "▁batt eries", + "li bs", + "lib s", + "研究 了", + "▁T NF", + "▁TN F", + "▁ TNF", + "▁Ch anges", + "▁Change s", + "▁Chang es", + "▁Chan ges", + "▁ Changes", + "▁gr ateful", + "▁grat eful", + "问题和 选项", + "cl one", + "她 是", + "出 国", + "公 正", + "▁en roll", + "▁mag azines", + "▁magazine s", + "联 络", + "男 友", + "mem set", + "▁D anish", + "▁Dan ish", + "▁Dani sh", + "▁t an", + "▁ta n", + "▁ tan", + "DO CTYPE", + "DOC TYPE", + "▁del ivers", + "▁deliver s", + "▁I mm", + "▁Im m", + "▁ Imm", + "nCl ub", + "n Club", + "能 认罪悔罪", + "之 地", + "ad ic", + "adi c", + "a dic", + "全 年", + "在 其", + "公积 金", + "▁jud ges", + "▁judge s", + "▁judg es", + "▁m arijuana", + "▁col leges", + "▁college s", + "▁colle ges", + "▁Link ed", + "▁ Linked", + "▁cont ainers", + "▁contain ers", + "▁container s", + "▁ containers", + "▁not eb", + "▁note b", + "in ae", + "ina e", + "▁Mc G", + "iv als", + "ival s", + "iva ls", + "i vals", + "与其 他", + "与 其他", + "Des criptor", + "不 怕", + "还 清", + "▁ret inal", + "▁retin al", + "▁retina l", + "情 的", + "数字 化", + "▁assess ments", + "▁assessment s", + "▁M os", + "▁Mo s", + "en cia", + "enc ia", + "e ncia", + "谨 慎", + "Aut ow", + "Auto w", + "▁Mon th", + "▁Mont h", + "▁Mo nth", + "▁ Month", + "▁l asting", + "▁last ing", + "▁las ting", + "▁ lasting", + "▁w are", + "▁war e", + "▁wa re", + "▁ ware", + "▁im ped", + "▁imp ed", + "▁impe d", + "▁o rche", + "▁or che", + "▁orch e", + "就 很", + "do se", + "dos e", + "d ose", + "低 温", + "南 县", + "▁sp oken", + "▁spoke n", + "▁spo ken", + "政 务", + "Lo wer", + "Low er", + "L ower", + "▁authent ic", + "et ooth", + "eto oth", + "▁Pl anning", + "▁Plan ning", + "▁K ath", + "▁Kat h", + "▁Ka th", + "▁ann oy", + "ru ct", + "r uct", + "▁Config uration", + "▁ Configuration", + "uplic ate", + "u plicate", + "▁cont ributors", + "▁contribut ors", + "▁contributor s", + "▁ contributors", + "材料 的", + "材 料的", + "的 银行存款", + "gen eral", + "gener al", + "gene ral", + "五日 内", + "五 日内", + "积极 分子", + "▁C ole", + "▁Col e", + "▁Co le", + "nMed al", + "nMe dal", + "▁Network s", + "▁Net works", + "▁exec ut", + "违约 金", + "详细 的", + "▁season al", + "▁seas onal", + "vers ely", + "verse ly", + "就好 了", + "就 好了", + "▁w ings", + "▁win gs", + "▁wing s", + "▁ wings", + "▁R oll", + "▁Ro ll", + "▁Rol l", + "▁ Roll", + "▁cyt okines", + "▁cytok ines", + "▁cytokine s", + "ro les", + "rol es", + "role s", + "r oles", + "Po d", + "P od", + "iqu id", + "iq uid", + "▁Tw enty", + "▁L abel", + "▁La bel", + "▁Lab el", + "▁ Label", + "v d", + "co p", + "c op", + "▁straight forward", + "户 口", + "剧 本", + "完美 的", + "完 美的", + "▁G on", + "▁Go n", + "信 念", + "ic ht", + "ich t", + "i cht", + "镜 像", + "▁B esides", + "▁Bes ides", + "н е", + "▁per forms", + "▁perform s", + "▁perf orms", + "▁perfor ms", + "就不 会", + "就 不会", + "text bf", + "▁Ch ampions", + "▁Champion s", + "酌 情", + "▁A F", + "▁ AF", + "▁t ort", + "▁to rt", + "▁tor t", + "vers ions", + "version s", + "▁pl ugins", + "▁plugin s", + "▁plug ins", + "▁ plugins", + "fer red", + "▁gen re", + "▁ge nre", + "▁ genre", + "身 心", + "▁app earing", + "▁appe aring", + "▁appear ing", + "R Y", + "▁t oys", + "▁to ys", + "▁toy s", + "▁( [", + "▁ ([", + "oplas mic", + "oplasm ic", + "$ _", + "▁C in", + "▁Ci n", + "路 人", + "电 网", + "▁type of", + "▁ typeof", + "▁d ad", + "▁da d", + "▁ dad", + "▁substant ially", + "▁substantial ly", + "交 互", + "▁P ages", + "▁Page s", + "▁Pa ges", + "▁Pag es", + "▁ Pages", + "江 县", + "▁de struction", + "▁destr uction", + "ss l", + "s sl", + "白 酒", + "ja x", + "j ax", + "re pos", + "rep os", + "repo s", + "▁ 工作", + "欲 望", + "影响 力", + "中华 民族", + "情 报", + "为 其", + "被执行人 王", + "ser vers", + "serv ers", + "server s", + "serve rs", + "▁Post s", + "▁Po sts", + "▁Pos ts", + "▁ Posts", + "的一 款", + "的 一款", + "世界 杯", + "▁Function s", + "▁ Functions", + "之 上", + "▁th reads", + "▁thread s", + "▁ threads", + "▁enh ancing", + "Ci ty", + "C ity", + "在 你", + "罢 了", + "登记 表", + "▁the ater", + "▁theat er", + "▁point ing", + "手 的", + "安 区", + "第二百 一", + "Sh ell", + "She ll", + "S hell", + "一 同", + "可以 说是", + "可以说 是", + "ar in", + "ari n", + "a rin", + "上市 公司", + "nW orld", + "n World", + "斯 拉", + "安全 性", + "▁im plicit", + "▁impl icit", + "▁ implicit", + "▁j ail", + "▁ja il", + "地 处", + "le en", + "lee n", + "l een", + "一 眼", + "加 密", + "▁l ith", + "▁li th", + "▁lit h", + "Di d", + "D id", + "AL TH", + "ALT H", + "平 稳", + "▁N am", + "▁Na m", + "▁encour aging", + "▁light weight", + "O ct", + "等多 种", + "等 多种", + "am mad", + "amm ad", + "amma d", + "▁organ izational", + "▁organization al", + "nOff icial", + "nR ep", + "nRe p", + "n Rep", + "▁altern ate", + "▁alt ernate", + "加 重", + "ro rs", + "ror s", + "r ors", + "nS ources", + "nSource s", + "n Sources", + "▁U nc", + "▁Un c", + "S n", + "抖 音", + "▁F ab", + "▁Fa b", + "ge l", + "g el", + "As set", + "Ass et", + "沙 发", + "▁[ ],", + "▁[] ,", + "▁ [],", + "▁W olf", + "▁Wol f", + "▁Wo lf", + "▁in fusion", + "▁inf usion", + "▁hab its", + "▁ha bits", + "▁habit s", + "向本院提出 诉讼请求", + "▁F ont", + "▁Fo nt", + "▁ Font", + "购 房", + "▁dram atically", + "▁drama tically", + "▁dramatic ally", + "▁under graduate", + "▁undergrad uate", + "历史 上", + "历 史上", + "ass ador", + "assa dor", + "开展 了", + "iqu it", + "iq uit", + "i quit", + "极 大", + "学 期", + "业 内", + "con cat", + "co ncat", + "conc at", + "▁p rest", + "▁pre st", + "▁pr est", + "▁pres t", + "画 家", + "任 职", + "It erator", + "Iter ator", + "行 程", + "Pa ir", + "P air", + "User name", + "即可 得出", + "▁qu it", + "▁q uit", + "▁qui t", + "▁ quit", + "法 学", + "▁ch ampions", + "▁champion s", + "ou sing", + "ous ing", + "o using", + "后 者", + "转 向", + "▁G re", + "▁Gr e", + "im plies", + "impl ies", + "imp lies", + "的 活动", + "; }\\", + "Custom er", + "string ify", + "▁invest igator", + "▁investig ator", + "▁m igrations", + "▁migr ations", + "▁migration s", + "▁ migrations", + "▁m oder", + "▁mod er", + "▁mode r", + "▁mo der", + "▁p oster", + "▁pos ter", + "▁post er", + "▁po ster", + "▁ poster", + "▁ 算法", + "▁B L", + "▁ BL", + "▁s ac", + "▁sa c", + "▁H ero", + "▁He ro", + "▁Her o", + "▁ Hero", + "▁hepat itis", + "du cer", + "duc er", + "d ucer", + "Ba l", + "B al", + "微 软", + "St atic", + "Stat ic", + "▁a ortic", + "▁ind uces", + "▁indu ces", + "▁induce s", + "▁Or iginal", + "▁Origin al", + "▁ Original", + "▁intr aven", + "▁intra ven", + "▁intrav en", + "▁r abbit", + "▁rab bit", + "▁ rabbit", + "▁S ens", + "▁Se ns", + "▁Sen s", + "基 准", + "▁re per", + "▁r eper", + "▁rep er", + "▁repe r", + "▁down stream", + "内 角", + "的 利息", + "▁fr iction", + "▁fri ction", + "的 日子", + "洛 阳", + "水 稻", + "为 中心", + "西 湖", + "在 职", + "神 话", + "意思 是", + "▁D elta", + "▁Del ta", + "▁ Delta", + "oc occ", + "oco cc", + "ococ c", + "Sw itch", + "S witch", + "nF inally", + "nFinal ly", + "nFin ally", + "og ly", + "o gly", + "') ),\\", + "')) ,\\", + "' )),\\", + "▁Techn ologies", + "大 桥", + "▁d c", + "▁ dc", + "▁b aking", + "▁ba king", + "▁bak ing", + "芝 麻", + "ninter face", + "n interface", + "▁intellig ent", + "K S", + "▁correspon ds", + "▁correspond s", + "bo th", + "bot h", + "b oth", + "▁im migration", + "▁imm igration", + "▁immigr ation", + "up iter", + "Y Y", + "se nder", + "send er", + "sen der", + "s ender", + "▁D ance", + "▁Dan ce", + "▁Da nce", + "海 关", + "bo rough", + "bor ough", + "boro ugh", + "b orough", + "长 城", + "▁( ;", + "― ―", + "▁G ordon", + "▁Gor don", + "▁c url", + "▁cur l", + "▁cu rl", + "▁ curl", + "Auto wired", + "Autow ired", + "▁Mc K", + "Ca pt", + "Cap t", + "C apt", + "名 义", + "vis it", + "vi sit", + "遗 址", + "太阳 能", + "一般 的", + "一 般的", + "庆 祝", + "▁top ological", + "▁fat igue", + "器 械", + "ish ment", + "▁bro ader", + "▁broad er", + "nDes pite", + "n Despite", + "▁Conn ection", + "▁Connect ion", + "▁ Connection", + "pay ment", + "▁pain ter", + "▁paint er", + "▁pa inter", + "一 颗", + "再 用", + "▁attract ions", + "▁attr actions", + "▁attraction s", + "参 演", + "列 入", + "▁p ie", + "▁pi e", + "▁ pie", + "ent ries", + "Time r", + "Tim er", + "Ti mer", + "T imer", + "▁N othing", + "▁No thing", + "▁Not hing", + "▁ Nothing", + "nI N", + "n IN", + "▁ch airs", + "▁chair s", + "▁cha irs", + "▁un lock", + "▁s ail", + "▁sa il", + "▁char ging", + "▁charg ing", + "pend icular", + "▁COPY RIGHT", + "Tag s", + "Ta gs", + "T ags", + "著名 的", + "著 名的", + "▁inhab it", + "▁inh abit", + "ne n", + "n en", + "▁M ess", + "▁Me ss", + "▁Mes s", + "▁ Mess", + "asc ul", + "nInd ian", + "▁H um", + "▁Hu m", + "要 把", + "▁c ited", + "▁cit ed", + "▁ci ted", + "▁cite d", + "万 平方米", + "cel ona", + "▁e uro", + "▁eu ro", + "▁p iv", + "▁pi v", + "补 助", + "▁l ocom", + "▁loc om", + "▁lo com", + "t protected", + "切 除", + "阵 容", + "毕业 院校", + "▁G rid", + "▁Gr id", + "▁ Grid", + "向本院 申请恢复执行", + "向本院申请 恢复执行", + "阳 台", + "▁w alks", + "▁walk s", + "▁wal ks", + "不是 很", + "不 是很", + "▁sub tle", + "▁subt le", + "nA tt", + "nAt t", + "n Att", + "▁ep ile", + "▁sub jected", + "▁subject ed", + "Sub ject", + "Su bject", + "ather ine", + "athe rine", + "自 首", + "▁sc iences", + "▁science s", + "▁sci ences", + "▁ا ل", + "▁ ال", + "▁第 三", + "▁ 第三", + "折抵 刑期", + "▁d uties", + "▁du ties", + "▁Con clusion", + "旗 舰", + "错 过", + "顶 级", + "ia tes", + "iate s", + "iat es", + "i ates", + "▁U rban", + "▁Ur ban", + "す る", + "场 合", + "▁ne wer", + "▁new er", + "没 收", + "选 购", + "pos er", + "pose r", + "po ser", + "p oser", + "▁F inn", + "▁Fin n", + "▁Fi nn", + "▁ ≥", + "▁$ _", + "▁ $_", + "▁f av", + "▁fa v", + "▁ fav", + "审 定", + "矫 正", + "` ](", + "te le", + "tel e", + "t ele", + "▁h itting", + "▁hit ting", + "这 边", + "▁col oring", + "▁color ing", + "▁dis ag", + "Ch art", + "Char t", + "C hart", + "▁mult ic", + "▁multi c", + "▁mul tic", + "国家 和", + "国 家和", + "▁in duct", + "▁ind uct", + "▁indu ct", + "圆 满", + "建筑 工程", + "▁C hel", + "▁Ch el", + "▁Che l", + "的 上", + "▁recommend ation", + "▁sc heduling", + "▁schedul ing", + "▁compl aint", + "▁complain t", + "▁B ab", + "▁Ba b", + "\\' \\'\\'", + "\\'\\' \\'", + "\\'\\'\\ '", + "▁fib rosis", + "▁fibr osis", + "▁fibro sis", + "▁ ♪\\", + "PR ESS", + "PRE SS", + "P RESS", + "▁tro ops", + "入 学", + "初 心", + "un icode", + "uni code", + "失 望", + "▁e arnings", + "▁ear nings", + "▁earn ings", + "▁earning s", + "em en", + "eme n", + "e men", + "▁Vis it", + "▁Vi sit", + "▁ Visit", + "▁cent uries", + "▁exhib its", + "▁exhibit s", + "修 正", + "▁undert aken", + "▁undertake n", + "小 儿", + "问题 是", + "in vas", + "inv as", + "香 味", + "(\\' \\\\", + "(\\ '\\\\", + "( \\'\\\\", + "触 摸", + "gu ard", + "女 友", + "▁integr ating", + "变 动", + "fit s", + "fi ts", + "f its", + "▁un cover", + "▁unc over", + "米 的", + "游戏 中", + "▁constitu ency", + "▁m ast", + "▁ma st", + "▁mas t", + "▁H ug", + "▁Hu g", + "▁tr adem", + "▁trad em", + "▁tra dem", + "▁trade m", + "Ill uminate", + "Se g", + "S eg", + "▁ext ensively", + "▁extensive ly", + "▁arth ritis", + "▁ arthritis", + "▁M anag", + "▁Man ag", + "▁Ma nag", + "▁ Manag", + "多 名", + "le ading", + "lead ing", + "lea ding", + "四 季", + "He lp", + "Hel p", + "H elp", + "▁circ les", + "▁circle s", + "▁cir cles", + "mon ths", + "month s", + "mont hs", + "▁O d", + "▁S N", + "▁ SN", + "▁man uscript", + "应 力", + "nFil m", + "撤诉 处理", + "暂 停", + "负 荷", + "送 到", + "}^ \\\\", + "} ^\\\\", + "必 备", + "夫妻 关系", + "▁ 二", + "▁S ie", + "▁Si e", + "来源 于", + "来 源于", + "驾驶 机动车", + "Ph ys", + "ocl onal", + "南 路", + "食 堂", + "end ment", + "乐 观", + "极 为", + "▁tail ored", + "▁tailor ed", + "同 等", + "▁T ro", + "▁Tr o", + "▁al location", + "▁all ocation", + "▁alloc ation", + "ys ter", + "yst er", + "y ster", + "乙 醇", + "▁agricult ure", + "▁condition al", + "▁cond itional", + "▁ conditional", + "Re view", + "Rev iew", + "▁su ited", + "▁suit ed", + "▁suite d", + "nT op", + "nTo p", + "n Top", + "ur ring", + "▁in aug", + "可 谓", + "co des", + "code s", + "cod es", + "c odes", + "ug ged", + "ugg ed", + "up id", + "u pid", + "先行 羁押", + "分 管", + "bo ost", + "ic its", + "ici ts", + "icit s", + "un ches", + "unc hes", + "unch es", + "▁ 华", + "清 新", + "▁L ore", + "▁Lo re", + "▁Lor e", + "▁sp eeds", + "▁spe eds", + "▁speed s", + "▁Ph one", + "▁ Phone", + "▁thorough ly", + "uff ix", + "uf fix", + "安全 的", + "▁br oker", + "▁bro ker", + "▁broke r", + "▁ broker", + "人 是", + "▁dep ict", + "na tal", + "nat al", + "n atal", + "的数 量", + "的 数量", + "▁Con vert", + "▁Conv ert", + "▁ Convert", + "运 转", + "我 市", + "; \"", + "所确定的 义务", + "所 确定的义务", + "script ions", + "scri ptions", + "scription s", + "s criptions", + "复议期间不停止 裁定的执行", + "Kin d", + "Ki nd", + "K ind", + "指派 检察员", + "tr avis", + "tra vis", + "▁rect angle", + "▁ rectangle", + "▁l iability", + "▁li ability", + "W M", + "ACK GROUND", + "▁IMP LIED", + "灯 光", + "▁S olar", + "▁So lar", + "▁Sol ar", + "发生 在", + "▁wild life", + "Car t", + "Ca rt", + "C art", + "oper ations", + "operation s", + "og lobin", + "oglob in", + "卧 室", + "▁elect ronics", + "▁electron ics", + "▁electronic s", + "情 侣", + "ro bot", + "rob ot", + "▁ar row", + "▁arr ow", + "▁ arrow", + "mach ine", + "m achine", + "艰 难", + "▁bl adder", + "阐述 了", + "阐 述了", + "▁cross ing", + "▁D al", + "▁Da l", + "▁Sy ria", + "▁Syr ia", + "av atar", + "ava tar", + "du cible", + "duc ible", + "▁g aps", + "▁gap s", + "▁ga ps", + "▁C abin", + "▁Ca bin", + "▁Cab in", + "▁Cap tain", + "▁Capt ain", + "▁lock ed", + "▁ locked", + "博 览", + "三 是", + "奖 金", + "▁mass es", + "▁mas ses", + "▁con current", + "▁co ncurrent", + "▁conc urrent", + "▁ concurrent", + "价值 的", + "价 值的", + "日 语", + "首 歌", + "▁z ones", + "▁zone s", + "▁neuro logical", + "▁neur ological", + "▁neurologic al", + "im on", + "imo n", + "i mon", + "▁an imated", + "▁anim ated", + "▁A pi", + "▁Ap i", + "▁ Api", + "▁un ders", + "▁under s", + "▁und ers", + "▁ unders", + "▁o d", + "▁ od", + "▁r ocks", + "▁ro cks", + "▁rock s", + "▁bab ies", + "▁ba bies", + "{\\\\ ,\\\\", + "{ \\\\,\\\\", + "近 似", + "out ine", + "▁adv ise", + "▁advis e", + "判决执行 之日起计算", + "▁calcul ating", + "▁calc ulating", + "▁use State", + "en ta", + "ent a", + "pr iate", + "pri ate", + "p riate", + "pat riate", + "省 委", + "ge ometry", + "geo metry", + "geom etry", + "三 级", + "▁di gest", + "▁dig est", + "▁ digest", + "er ial", + "eria l", + "eri al", + "e rial", + "State ment", + "Stat ement", + "联 邦", + "风 云", + "> $", + "一 分", + "an try", + "ant ry", + "a ntry", + "▁bur ning", + "▁burn ing", + "平 板", + "at ivity", + "ativ ity", + "西 路", + "▁Al aska", + "出 自", + "ah o", + "a ho", + "or ted", + "ort ed", + "orte d", + "▁w orn", + "▁wor n", + "▁wo rn", + "IN ST", + "INS T", + "▁rul ing", + "▁ru ling", + "Ra w", + "R aw", + "y i", + "永 久", + "▁sp ell", + "▁spe ll", + "▁w arnings", + "▁war nings", + "▁warning s", + "▁warn ings", + "▁ warnings", + "TR ACT", + "TRA CT", + "今年 的", + "今 年的", + "反 弹", + "情 人", + "参加 诉讼", + "Don ald", + "D onald", + "潍 坊", + "住 重庆市", + "▁compl aints", + "▁complaint s", + "▁complain ts", + "▁re construct", + "▁recon struct", + "▁reconst ruct", + "这不 是", + "这 不是", + "ry ing", + "r ying", + "▁F ine", + "▁Fin e", + "▁Fi ne", + "大学 的", + "大 学的", + "▁mod ular", + "fr ak", + "fra k", + "f rak", + "d B", + "▁Act ivity", + "▁Activ ity", + "▁ Activity", + "刚 开始", + "生 前", + "im ated", + "imate d", + "ima ted", + "▁Ch amber", + "▁Cha mber", + "▁Cham ber", + "ik o", + "i ko", + "if icates", + "ific ates", + "ificate s", + "一 支", + "ko v", + "k ov", + "or ac", + "ora c", + "o rac", + "▁genu ine", + "落 后", + "ch ing", + "chi ng", + "chin g", + "c hing", + "抢 劫", + "▁ 参考文献", + "不 妨", + "▁un e", + "▁u ne", + "▁ une", + "ear ly", + "e arly", + "▁An na", + "▁Ann a", + "Id entity", + "Ident ity", + "MR I", + "M RI", + "Count er", + "Co unter", + "Cou nter", + "C ounter", + "轻 易", + "▁L ate", + "▁La te", + "▁Lat e", + "▁N eg", + "▁Ne g", + "▁ Neg", + "▁D ean", + "▁De an", + "单 项", + "nS ing", + "n Sing", + "▁An imal", + "▁ Animal", + "▁e vil", + "▁ev il", + "▁ evil", + "▁gr ades", + "▁grad es", + "▁grade s", + "▁gra des", + "▁ grades", + "qu ick", + "▁G ulf", + "▁Gu lf", + "▁Gul f", + "在 法定", + "▁Up per", + "▁ Upper", + "nA pp", + "nAp p", + "n App", + "in cre", + "inc re", + "▁weak ness", + "进 来", + "找到 了", + "找 到了", + "▁cricket ers", + "▁cricketer s", + "即 自", + "▁P rior", + "▁Pr ior", + "▁Pri or", + "▁c avity", + "▁cav ity", + "re tty", + "ret ty", + "rett y", + "变 为", + "▁c ycling", + "▁cycl ing", + "▁cyclin g", + "R R", + "▁ap ple", + "▁app le", + "▁appl e", + "▁ apple", + "素 养", + "硬 化", + "Ed ge", + "▁B eat", + "▁Be at", + "▁Bea t", + "供应 链", + "风 吹", + "为主 题", + "为 主题", + "▁car riers", + "▁carrier s", + "▁de position", + "▁dep osition", + "▁depos ition", + "▁deposit ion", + "野 生", + "▁dr ops", + "▁dro ps", + "▁drop s", + "▁D M", + "▁ DM", + "▁h oney", + "▁hon ey", + "▁ho ney", + "▁hone y", + "▁exp ense", + "fo cus", + "f ocus", + "ed a", + "e da", + "Pr ed", + "Pre d", + "P red", + "交通事故 责任", + "▁Re ading", + "▁Read ing", + "▁ Reading", + "▁ 为", + "web kit", + "▁for ests", + "▁fore sts", + "▁forest s", + "▁st opping", + "▁stop ping", + "▁sto pping", + ") `", + "gu lp", + "g ulp", + "我 看", + "教 堂", + "not ations", + "notation s", + "首 席", + "▁M om", + "▁Mo m", + "▁cor relations", + "▁correl ations", + "▁correlation s", + "k n", + "复 兴", + "ge m", + "g em", + "▁pre vents", + "▁pr events", + "▁prevent s", + "▁prev ents", + "▁spons ored", + "▁sponsor ed", + "▁ sponsored", + "lo tte", + "lot te", + "▁Pu erto", + "ex isting", + "exist ing", + "next Int", + "▁hyp oth", + "▁hypot h", + "相 交", + "for all", + "性 强", + "} ×", + "ur d", + "u rd", + "健康 的", + "▁R ing", + "▁Ri ng", + "▁ Ring", + "中 路", + "▁pass ive", + "Per s", + "Pe rs", + "P ers", + "O O", + "▁D ictionary", + "▁ Dictionary", + "() ))\\", + "()) )\\", + "())) \\", + "( )))\\", + "or ect", + "ore ct", + "o rect", + "在开庭审理过程中 亦无异议", + "始 建于", + "a q", + "card s", + "car ds", + "c ards", + "车 主", + "ro wing", + "row ing", + "r owing", + "LI ST", + "L IST", + "▁ext ending", + "▁extend ing", + "nd o", + "n do", + "▁extra cts", + "▁extract s", + "▁extr acts", + "▁extrac ts", + "K A", + "▁respons ive", + "▁ responsive", + ":\\\\ (", + ": \\\\(", + "ok a", + "o ka", + "产品 质量", + "ac hel", + "ach el", + "ache l", + "a chel", + "▁expl aining", + "▁explain ing", + "IN TER", + "INT ER", + "▁co vari", + "▁cov ari", + "Vi r", + "V ir", + "疾病 的", + "疾 病的", + "sc r", + "s cr", + "▁journal ists", + "▁journalist s", + "所以 在", + "▁De lete", + "▁Del ete", + "▁ Delete", + "▁psych iatric", + "▁psychiat ric", + "” (", + "go w", + "g ow", + "▁ 地址", + "ast rop", + "astr op", + "astro p", + "Pr ivate", + "P rivate", + "▁E xp", + "▁Ex p", + "▁ Exp", + "fix ed", + "f ixed", + "▁l ocks", + "▁loc ks", + "▁lo cks", + "▁lock s", + "▁ locks", + "▁f ever", + "▁fe ver", + "▁con ject", + "▁conj ect", + "建筑 物", + "切 割", + "re ne", + "ren e", + "r ene", + "正 数", + "边形 的", + "边 形的", + "的 义务", + "▁J udge", + "▁Jud ge", + "copy right", + "c opyright", + "pl aced", + "place d", + "plac ed", + "几 点", + "报 价", + "is ure", + "▁P ad", + "▁Pa d", + "▁ Pad", + "树 脂", + "▁android x", + "▁D ES", + "▁DE S", + "▁ DES", + "简 体", + "胡 萝卜", + "起来 的", + "起 来的", + "Lo ok", + "L ook", + "▁Y ears", + "▁Year s", + "▁Ye ars", + "nAB STRACT", + "n ABSTRACT", + "method s", + "meth ods", + "▁don ors", + "▁donor s", + "▁an gi", + "▁ang i", + "▁ angi", + "门 诊", + "io let", + "iol et", + "nEx patriate", + "Co ord", + "归 来", + "▁Leg islative", + "▁Legisl ative", + "▁s hr", + "▁sh r", + "ie val", + "iev al", + "i eval", + "▁sh ifts", + "▁shift s", + "▁Pr adesh", + "▁L ock", + "▁Lo ck", + "▁Loc k", + "▁ Lock", + "做 事", + "lo gy", + "log y", + "l ogy", + "▁pre scription", + "▁pres cription", + "do g", + "d og", + "▁c d", + "▁ cd", + "** *\\", + "*** \\", + "* **\\", + "▁B ou", + "▁Bo u", + "Con vert", + "Conv ert", + "更 改", + "直 至", + "▁H ad", + "▁Ha d", + "新 一", + "▁F igure", + "▁Fig ure", + "▁ Figure", + "床 上", + "sq u", + "s qu", + "it arian", + "itar ian", + "ita rian", + "当 当", + "贷款 利率", + "di git", + "dig it", + "▁tang ent", + "▁tan gent", + "▁G ets", + "▁Ge ts", + "▁Get s", + "势 力", + "GF R", + "G FR", + "流 畅", + "un ion", + "uni on", + "▁simult aneous", + "up lex", + "uple x", + "u plex", + "ik h", + "i kh", + "fl utter", + "据 说", + "li sted", + "list ed", + "lis ted", + "l isted", + "去 掉", + "nBuild ings", + "nBuilding s", + "nM ult", + "n Mult", + "▁architect ural", + "ra g", + "r ag", + "蓝 牙", + "▁b ay", + "▁ba y", + "▁ bay", + "Ex per", + "Exp er", + "筛 选", + "▁ab sent", + "▁abs ent", + "▁Stud ios", + "▁Studio s", + "▁coron avirus", + "说 实话", + "▁municip al", + "综上 所述", + "▁G ran", + "▁Gr an", + "▁Gra n", + "▁t ent", + "▁te nt", + "▁ten t", + "▁Ind eed", + "▁unnec essary", + "先行羁押 的", + "两 大", + "液 晶", + "▁illustr ated", + "▁illust rated", + "▁illustrate d", + "▁C hart", + "▁Ch art", + "▁Char t", + "▁Cha rt", + "▁ Chart", + "▁S ony", + "▁So ny", + "▁Son y", + "本院 将", + "人民 群众", + "im als", + "imal s", + "ima ls", + "ni x", + "n ix", + "Aud io", + "A udio", + "▁W indow", + "▁Win dow", + "▁Wind ow", + "▁ Window", + "微 生物", + "vari ables", + "variable s", + "N H", + "irm ingham", + "调 试", + "G H", + "字 典", + "那 天", + "▁F ly", + "▁Fl y", + "▁ Fly", + "ri g", + "r ig", + "▁C ant", + "▁Can t", + "▁Ca nt", + "▁th ym", + "▁thy m", + "▁s ynaptic", + "▁syn aptic", + "三 天", + "情 怀", + "▁in tro", + "▁int ro", + "▁intr o", + "▁ intro", + "Un known", + "应 在", + "温 泉", + "支付 利息", + "单位 的", + "单 位的", + "sec ure", + "上面 的", + "上 面的", + "号之 一", + "号 之一", + "我还 是", + "我 还是", + ")/ ((", + ")/( (", + ") /((", + "▁gu ides", + "▁guid es", + "▁guide s", + "▁gui des", + "▁ guides", + "▁sch olars", + "▁scholar s", + "▁h i", + "▁ hi", + "错误 的", + "▁Mat thew", + "▁Matt hew", + "▁search ed", + "▁sear ched", + "nA ustralian", + "n Australian", + "▁Bangl adesh", + "号案 件", + "号 案件", + "ia m", + "i am", + "iz a", + "i za", + "▁Ex cel", + "▁Exc el", + "▁ Excel", + "▁de leg", + "▁del eg", + "▁leg isl", + "na ll", + "nal l", + "n all", + "▁ 苏", + "对 了", + "▁com patibility", + "▁compat ibility", + "▁ compatibility", + "最 具", + "查 获", + "▁Dev ice", + "▁ Device", + "▁T yp", + "▁Ty p", + "▁ Typ", + "假 日", + "te nd", + "ten d", + "t end", + "ca ption", + "cap tion", + "capt ion", + "现 原告", + "▁% >\\", + "▁%> \\", + "▁Carib bean", + "▁C el", + "▁Ce l", + "制 备", + "▁其 他", + "▁ 其他", + "十 条", + "▁C ab", + "▁Ca b", + "ier ra", + "nSe cond", + "nSec ond", + "n Second", + "process or", + "▁in jected", + "▁inj ected", + "▁inject ed", + "▁M edic", + "▁Med ic", + "▁Me dic", + "▁fin ancing", + "▁financ ing", + "▁ar ithmetic", + "P a", + "▁trigger ed", + "▁mult im", + "▁multi m", + "▁mul tim", + "羁押 一日", + "▁U sed", + "▁Use d", + "▁Us ed", + "▁ Used", + "ag ine", + "agi ne", + "agin e", + "uate d", + "ua ted", + "u ated", + "分 开", + "▁C re", + "▁Cr e", + "▁ Cre", + "▁program mes", + "▁programme s", + "热 烈", + "▁off ensive", + "贸易 有限公司", + "し て", + "产业 发展", + "con duct", + "cond uct", + "▁part ly", + "当 场", + "的 存在", + "头 部", + "股 价", + "gr e", + "g re", + "最大 值", + "等比 数列", + "没 办法", + "▁claim ing", + "▁t oy", + "▁to y", + "的 力量", + "资 助", + "看到 的", + "看 到的", + "in ely", + "ine ly", + "inel y", + "▁care ers", + "▁career s", + "上 级", + "▁ret rieve", + "▁retriev e", + "▁ retrieve", + "研究 员", + "▁un re", + "▁u nre", + "实业 有限公司", + "实 业有限公司", + "▁Be ijing", + "中 所", + "驳回 上诉", + "par ency", + "pare ncy", + "paren cy", + "拆 除", + "术 语", + "dan ger", + "d anger", + "pre view", + "prev iew", + "p review", + "IC AL", + "ICA L", + "I CAL", + "却 被", + "nB orn", + "nBo rn", + "▁mot ivated", + "▁motiv ated", + "▁motivate d", + "▁Ed inburgh", + "分 期", + "▁\" {{", + "▁\"{ {", + "▁ \"{{", + "新 城", + "激 动", + "▁v iable", + "▁via ble", + "▁vi able", + "M o", + "▁c alm", + "▁ca lm", + "▁cal m", + "最多 的", + "最 多的", + "▁f olk", + "▁fol k", + "▁ folk", + "▁ver te", + "▁vert e", + "▁ verte", + "典型 的", + "典 型的", + "ar ium", + "ari um", + "a rium", + "▁h ind", + "▁hi nd", + "▁ hind", + "th ead", + "the ad", + "t head", + "▁D rug", + "▁Dr ug", + "▁occup ied", + "▁ occupied", + "门 户", + "第一百 一", + "这 张", + "▁M I", + "▁ MI", + "st ates", + "state s", + "stat es", + "sta tes", + ")) );\\", + "))) ;\\", + ") ));\\", + "▁path ological", + "▁pathologic al", + "Se lf", + "S elf", + "误 差", + "▁che aper", + "▁cheap er", + "▁V alent", + "▁Val ent", + "▁Vale nt", + "除 此", + "qu in", + "光 学", + "▁r he", + "▁rh e", + "再审 申请人", + "再审申请 人", + "▁S witch", + "▁Sw itch", + "▁ Switch", + "减去有期徒刑 一年", + "ht m", + "h tm", + "▁pharm aceutical", + "要 看", + "▁A CT", + "▁AC T", + "▁ ACT", + "▁fant asy", + "▁fantas y", + "的面 积", + "的 面积", + "正方 形", + "正 方形", + "ar as", + "ara s", + "a ras", + "Art icle", + "▁m oral", + "▁mor al", + "▁mo ral", + "tr aining", + "tra ining", + "train ing", + "▁ev olved", + "▁evolve d", + "动 手", + "无 可", + "模 范", + "折抵刑期 一日", + "礼 品", + "▁L eft", + "▁Le ft", + "▁ Left", + "ra ys", + "ray s", + "r ays", + "re na", + "ren a", + "r ena", + "经历 了", + "li ning", + "lin ing", + "l ining", + "▁F ern", + "▁Fe rn", + "▁Fer n", + "▁Mount ains", + "▁Mountain s", + "▁qu est", + "▁que st", + "▁ quest", + "cal c", + "ca lc", + "c alc", + "▁ 西", + "红 旗", + "▁sub sets", + "▁subset s", + "▁subs ets", + "▁Hamp shire", + "▁c ement", + "▁ce ment", + "▁m akers", + "▁make rs", + "▁ma kers", + "▁maker s", + "▁ makers", + "▁v ein", + "▁ve in", + "靠 近", + "▁cur v", + "▁cu rv", + "▁cons erved", + "▁conserv ed", + "▁conserve d", + "精 密", + "off ice", + "nS ource", + "n Source", + "▁M uch", + "▁Mu ch", + "le ans", + "lean s", + "lea ns", + "▁config urations", + "▁configuration s", + "ba ch", + "bac h", + "b ach", + "fr astructure", + "fra structure", + "于本判决 生效之日起", + "▁anal ytics", + "▁analyt ics", + "▁analytic s", + "▁ analytics", + "t T", + "各 界", + "TO N", + "T ON", + "not ification", + "an dal", + "and al", + "anda l", + "渴 望", + "你 有", + "▁act resses", + "▁actress es", + "物 种", + "行政 区", + "▁t iles", + "▁tile s", + "▁til es", + "▁ti les", + "▁ tiles", + "红 包", + "We st", + "W est", + "▁Ex cell", + "▁Excel l", + "▁Exc ell", + "▁P ow", + "▁Po w", + "▁tour ist", + "▁tou rist", + "om i", + "o mi", + "▁V M", + "▁ VM", + "▁D est", + "▁De st", + "▁Des t", + "▁ Dest", + "▁out fit", + "▁styl ish", + "▁Sp rings", + "▁Spring s", + "▁Spr ings", + "AN S", + "A NS", + "客户 的", + "W F", + "▁p izza", + "▁conf idential", + "▁confident ial", + "愿 望", + "ch t", + "c ht", + "显 存", + "re fresh", + "ref resh", + "wi fi", + "w ifi", + "ft en", + "f ten", + "▁fig ured", + "▁figure d", + "{{ \\\\", + "{{\\ \\", + "{ {\\\\", + "▁ne ighbors", + "▁neighbor s", + "▁neighb ors", + "▁ neighbors", + "] \"", + "WI N", + "W IN", + "ac cur", + "acc ur", + "▁B erg", + "▁Be rg", + "▁Ber g", + "管理 工作", + "av i", + "a vi", + "sc ar", + "s car", + "▁M SC", + "▁MS C", + "▁ MSC", + "▁adv ised", + "▁advis ed", + "▁advise d", + "▁don ations", + "▁donation s", + "▁( `", + "▁ (`", + "大 规模", + "也是 一", + "也 是一", + "qu it", + "q uit", + "~ /", + "▁sh eep", + "▁she ep", + "▁K ings", + "▁King s", + "▁Kin gs", + "下 次", + "] /", + "大 人", + "抵 抗", + "man ds", + "mand s", + "m ands", + "oi l", + "o il", + "rc he", + "r che", + "志愿 服务", + "▁Great er", + "▁Gre ater", + "is tically", + "ist ically", + "istic ally", + "istical ly", + "结构 的", + "终结 本院", + "▁E VENT", + "▁EV ENT", + "▁EVEN T", + "▁ EVENT", + "He aders", + "Header s", + "Head ers", + "版 的", + "nE nd", + "nEn d", + "n End", + "ind ent", + "inde nt", + "av age", + "ava ge", + "▁weight ed", + "▁weigh ted", + "▁ weighted", + "▁compl iment", + "考 点", + "fo ny", + "fon y", + "f ony", + "▁B ec", + "▁Be c", + "▁Brook lyn", + "你 怎么", + "▁acc essed", + "▁access ed", + "在 卷", + "na bla", + "nab la", + "▁s pine", + "▁sp ine", + "▁spin e", + "▁sub tract", + "开始 了", + "So ftware", + "Soft ware", + "在互联网 公布", + "PRO JECT", + "▁wor ried", + "吸 附", + "第二百零 六条", + "k appa", + "un ate", + "una te", + "一 座", + "天然 气", + "do ors", + "door s", + "d oors", + "▁st aining", + "▁stain ing", + "还 将", + "▁pass age", + "el lers", + "ell ers", + "eller s", + "elle rs", + "隐 私", + "▁V it", + "▁Vi t", + "民二 初字第", + "claim er", + "我 去", + "AL SE", + "ALS E", + "已经 成为", + "▁coll isions", + "▁collision s", + "及 相关", + "St ation", + "Stat ion", + "é r", + "全 方位", + "Li mit", + "L imit", + "ul ence", + "ule nce", + "▁p orts", + "▁port s", + "▁por ts", + "▁ ports", + "▁demonstr ation", + "▁c ursor", + "▁ cursor", + "▁Con dition", + "▁Cond ition", + "▁ Condition", + "毕业 后", + "经济 损失", + "十 足", + "ge ts", + "get s", + "g ets", + "▁M all", + "▁Mal l", + "▁Ma ll", + "如果 不", + "in sp", + "ins p", + "i nsp", + "▁p hp", + "▁ph p", + "▁ php", + "制 冷", + "口 市", + "▁D ays", + "▁Day s", + "▁Da ys", + "▁ Days", + "善 于", + "▁antib iotics", + "▁antibiotic s", + "▁consult ing", + "▁Arch ive", + "▁Arc hive", + "▁ Archive", + "及 利息", + "” )", + "就 把", + "刑期 从", + "▁f uzzy", + "▁G B", + "▁ GB", + "最新 的", + "最 新的", + "▁f lip", + "▁fl ip", + "▁ flip", + "主 力", + "等 腰", + "▁stim ulus", + "▁stimul us", + "一句 话", + "一 句话", + "▁compr ised", + "▁comprise d", + "inf ected", + "infect ed", + "有的 人", + "有 的人", + "▁margin al", + "▁marg inal", + "看 得", + "▁商 品", + "▁ 商品", + "▁cent res", + "▁centre s", + "▁centr es", + "nCONCLUS ION", + "▁crit ically", + "▁critical ly", + "▁critic ally", + "▁similar ly", + "▁Enter prise", + "分 居", + "参 照", + "▁c hips", + "▁ch ips", + "▁chip s", + "▁chi ps", + "会 导致", + "▁D rop", + "▁Dr op", + "▁Dro p", + "▁ Drop", + "妊 娠", + "ma ker", + "make r", + "mak er", + "m aker", + "bre aking", + "break ing", + "刚 好", + "▁es cap", + "▁esc ap", + "▁pat ent", + "化 合物", + "▁arg ued", + "▁argue d", + "▁argu ed", + "▁cent ered", + "▁center ed", + "▁ centered", + "starts with", + "说 什么", + "duc ational", + "ducation al", + "射 击", + "nF C", + "n FC", + "it erator", + "iter ator", + "▁in k", + "▁i nk", + "▁ ink", + "ass ium", + "废 弃", + "▁ent ropy", + "▁entr opy", + "▁ entropy", + "▁T rad", + "▁Tr ad", + "▁Tra d", + "严 谨", + "的 比", + "联合 会", + "▁cons iders", + "▁consider s", + "▁intr insic", + "ka r", + "k ar", + "▁satisf ying", + "▁satisfy ing", + "ff f", + "f ff", + "▁complement ary", + "Qu ant", + "Q uant", + "H B", + "好 奇", + "反 射", + "骨 干", + "bet ween", + "b etween", + "所有 人", + "所 有人", + "▁K az", + "▁Ka z", + "可以 使用", + "可以使 用", + "▁Every thing", + "▁ Everything", + "三 维", + "▁ 做法", + "т е", + "▁Mad rid", + "受 益", + "▁h unting", + "▁hun ting", + "▁hunt ing", + "不宜 在互联网公布", + "▁eth ical", + "政 法", + "nS p", + "n Sp", + "▁E sc", + "▁Es c", + "▁ Esc", + "▁S lo", + "▁Sl o", + "之一 的", + "之 一的", + "▁G ary", + "▁Ga ry", + "▁Gar y", + "▁anal ytic", + "▁analy tic", + "▁analyt ic", + "▁ analytic", + "ge ncy", + "gen cy", + "g ency", + "▁c ust", + "▁cu st", + "▁re sp", + "▁r esp", + "▁res p", + "▁ resp", + "在服刑期间 确有悔改表现", + "** :", + "大 鼠", + "nC opyright", + "n Copyright", + "fl uid", + "flu id", + "▁Eff ect", + "▁ Effect", + "ent ities", + "enti ties", + "G l", + "▁b g", + "▁ bg", + "▁N T", + "▁ NT", + "nOr iginally", + "nOriginal ly", + "时 时", + "▁C ycl", + "▁Cy cl", + "立 场", + "▁f ür", + "淋 浴", + "sens itive", + "s ensitive", + "▁discuss ing", + "ac s", + "a cs", + "MA KE", + "▁D eg", + "▁De g", + "▁ Deg", + "▁O cc", + "▁Oc c", + "▁ Occ", + "Ci rc", + "C irc", + "番 茄", + "签 名", + "▁B uck", + "▁Bu ck", + "▁Buc k", + "▁W ait", + "▁Wa it", + "▁ Wait", + "nR ailway", + "C u", + "是 用", + "We ight", + "W eight", + "▁th ro", + "▁thr o", + "▁ thro", + "▁ass isted", + "▁assist ed", + "▁ assisted", + "到 大", + "口 服", + "区块 链", + "说 说", + "▁k er", + "▁ke r", + "▁ ker", + "经 传票传唤", + "OP T", + "O PT", + "产业 链", + "▁fail ures", + "▁failure s", + "高 手", + "▁Me eting", + "▁Meet ing", + "th a", + "t ha", + "▁ 毕业院校", + "有一 定", + "有 一定", + "Be st", + "B est", + "io ur", + "i our", + "▁g rat", + "▁gr at", + "▁gra t", + "特 种", + "ma pping", + "map ping", + "m apping", + "▁gover ned", + "▁govern ed", + "▁travel ling", + "▁trav elling", + "▁stake holders", + "或 查封", + "▁be ef", + "▁bee f", + "▁c ure", + "▁cur e", + "▁cu re", + "ut enant", + "ute nant", + "uten ant", + "u tenant", + "▁Cor ps", + "▁Corp s", + "▁inst antly", + "▁instant ly", + "▁hipp ocamp", + "极 端", + "▁r ivers", + "▁river s", + "▁ri vers", + "▁riv ers", + "▁ rivers", + "ar ms", + "arm s", + "跑 步", + "总 监", + "G G", + "申请 人的", + "申请人 的", + "▁inter pol", + "▁ interpol", + "第一百四十五 条第一款的规定", + "第一百四十五条第一款 的规定", + "he ading", + "head ing", + "hea ding", + "自 学", + "脾 气", + "▁B P", + "▁ BP", + "▁t ies", + "▁tie s", + "▁ti es", + "▁ ties", + "质 保", + "ri el", + "rie l", + "r iel", + "re x", + "r ex", + "▁com pass", + "▁comp ass", + "▁ compass", + "▁C ircle", + "▁Circ le", + "▁Cir cle", + "▁ Circle", + "▁g ardens", + "▁gar dens", + "▁garden s", + "▁gard ens", + "▁l adies", + "▁la dies", + "斯 科", + "no s", + "n os", + "▁ad ren", + "▁ adren", + "自 来", + "唯一 的", + "唯 一的", + "develop er", + "devel oper", + "ra me", + "ram e", + "r ame", + "▁K ay", + "▁Ka y", + "▁propos als", + "▁proposal s", + "普通 人", + "根据 您的", + "第七 十九条", + "第七十九 条", + "有 力", + "▁B ruce", + "▁Br uce", + "▁Bru ce", + "Com ponents", + "Component s", + "防 腐", + "▁is ot", + "▁iso t", + "▁pro found", + "▁prof ound", + "染 色", + "此 类", + "职 权", + "▁K ir", + "▁Ki r", + "▁H ERE", + "▁HE RE", + "▁HER E", + "▁ HERE", + "东莞 市", + "▁f ounding", + "▁found ing", + "▁fo unding", + "▁dead line", + "的 各种", + "▁b acked", + "▁back ed", + "▁ backed", + "▁stim ulated", + "▁stimul ated", + "▁stimulate d", + "▁ stimulated", + "Set ting", + "S etting", + "h p", + "调 料", + "bum s", + "bu ms", + "b ums", + "裁定书送达之日起 十日内", + "▁horm ones", + "▁hormone s", + "▁sustain ability", + "user Id", + "ex tr", + "ext r", + "▁Th ompson", + "▁Thom pson", + "帮 你", + "ap on", + "apo n", + "a pon", + "▁reserv oir", + "res olved", + "resolve d", + "▁h older", + "▁hold er", + "▁hol der", + "▁ holder", + "▁Col on", + "▁Co lon", + "dump s", + "d umps", + "很 重要", + "这道 题", + "这 道题", + "le tt", + "let t", + "l ett", + "▁De cor", + "▁Dec or", + "▁ Decor", + "一 身", + "▁▁ ▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁ ▁", + "▁▁▁▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁ ▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁ ▁▁", + "▁ ▁▁▁▁▁▁▁▁▁▁▁▁", + "诱 导", + "▁n ov", + "▁no v", + "▁ nov", + "▁Per fect", + "ia h", + "i ah", + "IS H", + "I SH", + "特殊 的", + "▁tw elve", + "㈰ ㈰", + "果 然", + "am ping", + "amp ing", + "res ses", + "ress es", + "r esses", + "▁purch ases", + "▁purchase s", + "mm a", + "m ma", + "给定 的", + "给 定的", + "拯 救", + "nW ho", + "nWh o", + "n Who", + "族自治 县", + "cor rect", + "c orrect", + "Bi nd", + "Bin d", + "B ind", + "organ ization", + "CS S", + "C SS", + "nA uthor", + "nAut hor", + "n Author", + "号 的", + "▁sch izophren", + "演 绎", + "▁conf using", + "lo cks", + "loc ks", + "lock s", + "l ocks", + "▁F riends", + "▁Friend s", + "▁Fri ends", + "▁st ochastic", + "起 码", + "os omes", + "osome s", + "oso mes", + "} &", + "com merce", + ": “", + "支 队", + "nR eturn", + "nRe turn", + "nRet urn", + "n Return", + "▁nutr itional", + "▁nutrition al", + "▁nutrit ional", + "春 秋", + "▁B ug", + "▁Bu g", + "▁ Bug", + "携带 宠物", + "手 中", + "▁o pts", + "▁op ts", + "▁opt s", + "▁ opts", + "hat tan", + "器 件", + "O W", + "or p", + "o rp", + "▁p aired", + "▁pair ed", + "▁pa ired", + "▁ paired", + "站 点", + "被执行人 李", + "ke rs", + "ker s", + "k ers", + "ew ise", + "e wise", + "▁Pub lished", + "▁Publish ed", + "▁ Published", + "▁anticip ated", + "▁anticipate d", + "客 车", + "主持 人", + "bl ocks", + "block s", + "blo cks", + "b locks", + "▁recruit ed", + "▁recru ited", + "▁U buntu", + "▁ Ubuntu", + "we bsite", + "web site", + "webs ite", + "section al", + "sect ional", + "int estinal", + "▁bre athing", + "▁breath ing", + "▁breat hing", + "▁in fil", + "▁i nfil", + "▁inf il", + "▁inv esting", + "▁invest ing", + "▁G PS", + "▁GP S", + "▁ GPS", + "▁Ass essment", + "▁Assess ment", + "▁ Assessment", + "▁u nfortunately", + "▁unf ortunately", + "▁unfort unately", + "▁unfortunate ly", + "都 需要", + "阻 止", + "|| |", + "| ||", + "uc er", + "uce r", + "u cer", + "即可 求出", + "▁r hythm", + "▁rhyth m", + "准 则", + "示 例", + "向 人民法院", + "hib ition", + "▁p reserved", + "▁pres erved", + "▁preserve d", + "且 有", + "恒 成立", + "▁Creat ive", + "▁Cre ative", + "▁rot ate", + "▁ rotate", + "无 穷", + "▁scholar ship", + "▁scholars hip", + "身体 健康", + "▁render ed", + "▁rend ered", + "▁Fe el", + "▁Fee l", + "as hi", + "ash i", + "a shi", + "ma tic", + "mat ic", + "m atic", + "▁vers atile", + "▁versa tile", + "证 件", + "▁fund ra", + "▁fu ndra", + "▁parad igm", + "▁Elect ron", + "▁Electro n", + "▁J ess", + "▁Jes s", + "▁Je ss", + "RE FIX", + "REF IX", + "▁contract ors", + "▁contr actors", + "▁contractor s", + "oc ent", + "o cent", + "▁S creen", + "▁Sc reen", + "▁Scre en", + "▁Scr een", + "▁ Screen", + "还 得", + "谷 歌", + "se lection", + "select ion", + "sel ection", + "s election", + "▁A rc", + "▁Ar c", + "▁ Arc", + "mark down", + "可以 选择", + "▁B achelor", + "Ro t", + "R ot", + "▁G M", + "▁ GM", + "ol ished", + "olis hed", + "o lished", + "幽 默", + "uit ive", + "u itive", + "医学 院", + "医 学院", + "▁v endors", + "▁vendor s", + "进行 的", + "进 行的", + "ut ors", + "utor s", + "uto rs", + "研究 的", + "▁E RR", + "▁ER R", + "▁ ERR", + "▁A IDS", + "▁AI DS", + "▁ AIDS", + "RE T", + "R ET", + "be ans", + "bean s", + "▁Install ation", + "▁convers ations", + "▁conversation s", + "肯定 是", + "rist ian", + "▁U nlike", + "▁Un like", + "▁home work", + "▁hom ework", + "til e", + "ti le", + "t ile", + "▁metast asis", + "nL ife", + "n Life", + "Bo ot", + "B oot", + "▁phosph at", + "▁f ur", + "▁fu r", + "▁ fur", + "▁desc ending", + "\" $", + "的 存款", + "▁flo oring", + "▁floor ing", + "▁biomark ers", + "▁biomarker s", + "▁主 演", + "▁ 主演", + "的人 物", + "的 人物", + "用 法", + "▁a u", + "▁ au", + "▁Hawai i", + "单 身", + "王 国", + "拆 迁", + "▁d ors", + "▁do rs", + "都 说", + "崛 起", + "▁cr imes", + "▁crim es", + "▁crime s", + "▁g land", + "▁gl and", + "取 代", + "▁aud it", + "▁au dit", + "▁audi t", + "▁ audit", + "▁shel ter", + "合 约", + "▁t ender", + "▁te nder", + "▁ten der", + "▁tend er", + "▁Liver pool", + "ding s", + "din gs", + "d ings", + "数 位", + "月 经", + "浴 室", + "免费 的", + "免 费的", + "一个 个", + "一 个个", + "con d", + "co nd", + "c ond", + "亲 戚", + "的 同学", + "▁z inc", + "当 选", + "sm art", + "s mart", + "肚 子", + "不 允许", + "器 官", + "▁M Y", + "▁ MY", + "▁phenomen a", + "▁Ex pression", + "▁Express ion", + "▁Exp ression", + "▁ Expression", + "▁interpret ed", + "立案 执行", + "▁dial ogue", + "▁dialog ue", + "▁t s", + "▁ ts", + "的重要 性", + "的 重要性", + "File Name", + "世 间", + "童 话", + "续 航", + "才 知道", + "nt emplate", + "n template", + "CU R", + "C UR", + "ole sale", + "oles ale", + "▁p g", + "▁ pg", + "转 载", + "被执行人 张", + "Sh ared", + "Share d", + "Sha red", + "乘 客", + "▁F alls", + "▁Fall s", + "▁Fal ls", + "▁perspect ives", + "▁perspective s", + "▁Element ary", + "Ab s", + "A bs", + "St ats", + "Stat s", + "▁W ard", + "▁War d", + "▁Wa rd", + "▁autom ation", + "数 十", + "秉 承", + "花 了", + "赛 车", + "▁excell ence", + "or neys", + "orney s", + "orne ys", + "▁C ass", + "▁Ca ss", + "▁Cas s", + "上 门", + "ki ll", + "kil l", + "k ill", + "oph age", + "ophag e", + "高 清", + "▁ch apters", + "▁chapter s", + "▁chap ters", + "芜 湖", + "一 笑", + "im mer", + "imm er", + "ie mann", + "iem ann", + "i emann", + "▁m ad", + "▁ma d", + "▁ mad", + "所以 我", + "pro tein", + "prot ein", + "prote in", + "大家 的", + "大 家的", + "▁visual ization", + "▁m p", + "▁ mp", + "▁M Ps", + "▁MP s", + "us ive", + "▁Mon itor", + "▁ Monitor", + "▁L em", + "▁Le m", + "▁att enu", + "▁atten u", + "np rivate", + "npr ivate", + "n private", + "▁respond ents", + "cent ral", + "c entral", + "▁G las", + "▁Gl as", + "ec ycle", + "e cycle", + "▁P eters", + "▁Pet ers", + "▁Pe ters", + "▁Peter s", + "▁Pete rs", + "ER Y", + "E RY", + "ze ns", + "zen s", + "z ens", + "Da vid", + "D avid", + "▁C emetery", + "图 文", + "▁I BM", + "▁IB M", + "▁ IBM", + "▁dr aws", + "▁draw s", + "对 中国", + "▁out line", + "▁ou tline", + "▁ outline", + "Pr es", + "Pre s", + "P res", + "▁P ET", + "▁PE T", + "▁ PET", + "▁s orts", + "▁sort s", + "▁sor ts", + "nP erson", + "nPer son", + "n Person", + "主 观", + "P B", + "ab olic", + "abol ic", + "abo lic", + "a bolic", + "羁押一日 折抵刑期一日", + "为主 要", + "为 主要", + "ro st", + "ros t", + "r ost", + "vi c", + "v ic", + "▁ex ceptions", + "▁except ions", + "▁exception s", + "▁ exceptions", + "> _", + "▁air way", + "el ection", + "ele ction", + "elect ion", + "e lection", + "▁t ends", + "▁ten ds", + "▁tend s", + "▁Te X", + "▁ TeX", + "修 订", + "▁re nown", + "目的 探讨", + "ze ros", + "zer os", + "zero s", + "z eros", + "▁M ode", + "▁Mod e", + "▁Mo de", + "▁ Mode", + "▁F ather", + "▁Fa ther", + "▁Fat her", + "default s", + "过 后", + "▁det ecting", + "▁detect ing", + "in ian", + "ini an", + "inia n", + "agram s", + "agr ams", + "agra ms", + "a grams", + "▁C roat", + "▁Cro at", + "少 了", + "IC S", + "I CS", + "▁am ateur", + "区 委", + "▁aband oned", + "▁abandon ed", + "星 星", + "na ments", + "nam ents", + "nament s", + "n aments", + "年中 国", + "年 中国", + "um bai", + "umb ai", + "umba i", + "▁n eph", + "▁ne ph", + "▁nep h", + "ur ally", + "ural ly", + "▁ 剧", + "水 库", + "oc ese", + "▁作品 目录", + "▁conflic ts", + "▁conflict s", + "预 警", + "it ects", + "ite cts", + "itect s", + "Sc roll", + "▁st rat", + "▁str at", + "▁col ored", + "▁color ed", + "▁ colored", + "▁log arith", + "ococc us", + "ococ cus", + "权利 人", + "▁网络 小说", + "▁ 网络小说", + "▁h elic", + "▁he lic", + "▁hel ic", + "Pre sent", + "Pres ent", + "P resent", + "т а", + "果 实", + "淋 巴", + "让 孩子", + "▁trem end", + "率 先", + "▁w elfare", + "▁wel fare", + "ke ley", + "kel ey", + "M obile", + "▁insp ire", + "▁inspir e", + "▁attract ed", + "▁attr acted", + "av an", + "ava n", + "a van", + "on gue", + "ong ue", + "▁G ram", + "▁Gr am", + "▁Gra m", + "道 士", + "Se lection", + "Select ion", + "S election", + "乌 克兰", + "▁acc idents", + "▁accident s", + "▁f leet", + "▁fle et", + "▁flee t", + "▁O t", + "IF A", + "I FA", + "▁K ap", + "▁Ka p", + "st o", + "s to", + "hed ules", + "hedul es", + "hedule s", + "▁kin etics", + "▁kinetic s", + "高新 区", + "高 新区", + "▁pl ots", + "▁plot s", + "▁ plots", + "时 机", + "▁Re pair", + "▁Rep air", + "间 隔", + "▁m d", + "▁ md", + "▁d as", + "▁da s", + "▁ das", + "▁T ob", + "▁To b", + "代 价", + "▁insert ed", + "素 材", + "般 的", + "▁J uan", + "▁Ju an", + "nS ongs", + "nSong s", + "size of", + "▁v endor", + "▁ven dor", + "▁ vendor", + "华 人", + "▁A bb", + "▁Ab b", + "新 开", + "▁B irth", + "▁Bir th", + "▁ Birth", + "▁gr ants", + "▁grant s", + "▁gran ts", + "畜 牧", + "▁im ported", + "▁import ed", + "▁imp orted", + "▁exp ecting", + "▁expect ing", + "▁o nClick", + "▁on Click", + "▁ onClick", + "电子 产品", + "var epsilon", + "vare psilon", + "原 文", + "▁jewel ry", + "▁s oup", + "▁so up", + "▁sou p", + "▁ soup", + "an ners", + "ann ers", + "anner s", + "anne rs", + "▁manip ulation", + "奥运 会", + "奥 运会", + "的 地", + "un ittest", + "unit test", + "uni ttest", + "合肥 市", + "ats by", + "▁M edit", + "▁Med it", + "▁Me dit", + "zi ng", + "z ing", + "sh ore", + "综合 运用", + "▁B etter", + "▁Bet ter", + "▁Fr eder", + "▁Fre der", + "▁Fred er", + "点 点", + "▁foot age", + "▁foo tage", + "gr ades", + "grad es", + "grade s", + "gra des", + "▁d fs", + "▁df s", + "▁ dfs", + "▁se venth", + "▁seven th", + "▁sevent h", + "▁enc ryption", + "▁encrypt ion", + "MAG ES", + "MAGE S", + "M AGES", + "q quad", + "na re", + "nar e", + "n are", + "月 的", + "等 着", + "▁S um", + "▁Su m", + "▁ Sum", + "▁trans itions", + "▁transition s", + "▁transit ions", + "异 性", + "enn ial", + "▁R y", + "应当 在", + "nin clude", + "n include", + "天 涯", + "▁D ir", + "▁Di r", + "▁ Dir", + "ab lab", + "abl ab", + "nM oths", + "客 运", + "▁t ick", + "▁ti ck", + "▁ tick", + "本院 不予支持", + "本院不予 支持", + "he ld", + "hel d", + "h eld", + "▁r uled", + "▁rule d", + "▁rul ed", + "▁ru led", + "但 他", + "▁laws uit", + "▁antib iotic", + "毫 升", + "▁bar rel", + "▁barr el", + "End point", + "副 教授", + "案 发", + "▁P rim", + "▁Pr im", + "▁Pri m", + "▁ Prim", + "何 时", + "严 肃", + "的女 人", + "的 女人", + "▁B loom", + "▁Bl oom", + "▁Blo om", + "▁metast atic", + "▁meta static", + "但是 在", + "但 是在", + "▁T ower", + "▁To wer", + "▁Tow er", + "涉及 到", + "▁over night", + "nH on", + "温 州", + "援 助", + "▁C ash", + "▁Ca sh", + "▁Cas h", + "▁ Cash", + "倡 导", + "对 他", + "酒 吧", + "os al", + "osa l", + "o sal", + "▁Ad ams", + "▁Adam s", + "▁Ada ms", + "oo ns", + "oon s", + "o ons", + "* ,", + "大 佬", + "我 没", + "board s", + "bo ards", + "▁com prom", + "▁comp rom", + "▁compr om", + "▁dem ographic", + "▁demo graphic", + "被告 的", + "Wh ile", + "() ));\\", + "()) );\\", + "())) ;\\", + "( )));\\", + "执行 期间", + "▁A y", + "▁spect acular", + "▁A bd", + "▁Ab d", + "te l", + "t el", + "▁P ool", + "▁Po ol", + "▁ Pool", + "▁C lose", + "▁Cl ose", + "▁Clo se", + "▁ Close", + "▁intern ationally", + "▁international ly", + "▁M etal", + "▁Me tal", + "▁Met al", + "▁Meta l", + "比赛 中", + "比 赛中", + "▁consider ably", + "今天 的", + "今 天的", + "▁ex cluded", + "▁exclude d", + "妹 子", + "Sc anner", + "Scan ner", + "An imation", + "Anim ation", + "三 人", + "暖 气", + "▁l ys", + "▁ly s", + "▁ lys", + "▁la bour", + "▁lab our", + "关 怀", + "主 导", + "曾 在", + "玩 的", + "▁it eration", + "▁iter ation", + "▁ iteration", + "at able", + "ata ble", + "a table", + "怀 特", + "▁sh ear", + "▁she ar", + "work flow", + "▁S hel", + "▁Sh el", + "▁She l", + "有 害", + "IE W", + "I EW", + "为 中国", + "体现 了", + "▁L ot", + "▁Lo t", + "▁repeated ly", + "▁repeat edly", + "肇 事", + "▁K EY", + "▁KE Y", + "▁ KEY", + "▁f ingers", + "▁fin gers", + "▁finger s", + "▁fing ers", + "大 使", + "▁N elson", + "的 文化", + "math frak", + "▁b ilateral", + "▁bil ateral", + "▁inc idents", + "▁incident s", + "见 证", + "▁sk etch", + "承 载", + "广 阔", + "下落 不明", + "▁introdu ces", + "▁introduce s", + "ng inx", + "n ginx", + "足球 运动员", + "▁s eal", + "▁se al", + "▁sea l", + "▁prom ises", + "▁promise s", + "▁v ine", + "▁vi ne", + "▁ vine", + "im ension", + "imens ion", + "▁sports people", + "▁dev ast", + "锅 炉", + "▁Fac ulty", + "趣 味", + "▁prevent ed", + "▁prev ented", + "▁HE ALTH", + "您的 选择", + "您 的选择", + "▁Con stitution", + "▁Const itution", + "▁my th", + "▁c argo", + "▁car go", + "▁ cargo", + "AB A", + "A BA", + "党组 书记", + "备 注", + "br ief", + "b rief", + "nex cept", + "n except", + "type name", + "typ ename", + "值 的", + "判断 对错", + "▁r ival", + "▁ri val", + "▁riv al", + "▁ rival", + "▁b row", + "▁br ow", + "▁bro w", + "反 思", + "la yers", + "lay ers", + "layer s", + "l ayers", + "▁int ens", + "▁b er", + "▁be r", + "▁ ber", + "真实 的", + "真 实的", + "rit eria", + "rite ria", + "riter ia", + "动 员", + "▁R eferences", + "▁Re ferences", + "▁Reference s", + "▁Refer ences", + "▁ References", + "▁veter an", + "▁p ets", + "▁pe ts", + "▁pet s", + "大 奖", + "nD id", + "nDi d", + "n Did", + "▁Den ver", + "um bing", + "umb ing", + "制作 的", + "制 作的", + "▁F urn", + "▁Fu rn", + "▁Fur n", + "Reg ion", + "ang hai", + "▁h andy", + "▁hand y", + "▁han dy", + "▁extra ordinary", + "▁ ”", + "▁nation wide", + "▁T B", + "▁ TB", + "/ :", + "轨 迹", + "小 红", + "轮 胎", + "▁c riter", + "▁cr iter", + "▁crit er", + "▁H A", + "▁ HA", + "an cers", + "ance rs", + "anc ers", + "ancer s", + "▁trans genic", + "▁b rowse", + "▁brow se", + "▁ browse", + "杨 某", + "▁m elt", + "▁me lt", + "▁mel t", + "en berg", + "me sh", + "mes h", + "m esh", + "id entity", + "ident ity", + "表现 为", + "表 现为", + "▁ac res", + "▁acre s", + "▁Dou glas", + "▁Doug las", + "收 缩", + "UL E", + "U LE", + "Sh op", + "S hop", + "▁B oys", + "▁Bo ys", + "▁Boy s", + "乌 鲁", + "合适 的答案", + "合适的 答案", + "阅读 选项", + "qu eous", + "que ous", + "▁icon ic", + "▁ic onic", + "▁reason ing", + "▁commission ed", + "噪 音", + "该 案", + "▁de serve", + "▁des erve", + "W H", + "军 人", + "在 中", + "man y", + "ma ny", + "m any", + "科 长", + "这里 的", + "这 里的", + "▁M AT", + "▁MA T", + "▁ MAT", + "热 的", + "年 至", + "lo ra", + "lor a", + "l ora", + "▁W elcome", + "▁Wel come", + "▁ Welcome", + "▁propag ation", + "pr il", + "pri l", + "p ril", + "ri ents", + "rient s", + "rien ts", + "r ients", + "▁author ized", + "▁ authorized", + "伊 朗", + "发展 和", + "▁e pic", + "▁ep ic", + "▁t une", + "▁tun e", + "▁tu ne", + "最高 的", + "最 高的", + "sh ields", + "shield s", + "▁s ingers", + "▁sing ers", + "▁sin gers", + "▁singer s", + "无 聊", + "战 术", + "超 出", + "北 路", + "nc an", + "n can", + "集团 公司", + "▁Scient ific", + "ablab la", + "▁pr ayer", + "▁pra yer", + "▁pray er", + "▁mys tery", + "▁myst ery", + "▁myster y", + "▁An dy", + "▁And y", + "cook ie", + "c ookie", + "▁coll apse", + "▁ collapse", + "iO S", + "i OS", + "▁different iate", + "Ce rt", + "C ert", + "py test", + "导 入", + "▁hor ror", + "▁ho rror", + "▁horr or", + "hu m", + "h um", + "的一 次", + "的 一次", + "> /", + "De velopment", + "Develop ment", + "je n", + "j en", + "nP lot", + "nPl ot", + "n Plot", + "▁D ig", + "▁Di g", + "▁ Dig", + "Col um", + "C olum", + "▁sl ides", + "▁slide s", + "▁ slides", + "要求 的", + "▁tor que", + "nM an", + "nMa n", + "n Man", + "SER VER", + "ja min", + "jam in", + "j amin", + "姿 态", + "▁alleg edly", + "▁alleged ly", + "大 楼", + "ir ates", + "ira tes", + "i rates", + "orect al", + "▁mur ine", + "▁mu rine", + "▁l imb", + "▁li mb", + "▁lim b", + "本 息", + "聚 会", + "天 赋", + "非常 的", + "▁ischem ia", + "丽 的", + "CL A", + "C LA", + "排 查", + "Sig ma", + "S igma", + "全 是", + "▁H eat", + "▁He at", + "uis ine", + "常 识", + "▁I M", + "▁ IM", + "▁R SS", + "▁RS S", + "▁ RSS", + "▁c ss", + "▁cs s", + "▁ css", + "▁High er", + "De mo", + "Dem o", + "D emo", + "em or", + "emo r", + "e mor", + "▁y eah", + "▁ye ah", + "口 头", + "面 部", + "▁e ncode", + "▁en code", + "▁enc ode", + "▁ encode", + "的 核心", + "▁N BA", + "▁NB A", + "▁ NBA", + "▁M arie", + "▁Mar ie", + "▁Ma rie", + "▁Mari e", + "▁ Marie", + "▁s its", + "▁sit s", + "▁si ts", + "▁C leveland", + "一辈 子", + "一 辈子", + "un dry", + "und ry", + "流 传", + "▁a ria", + "▁ar ia", + "▁ aria", + "▁F er", + "▁Fe r", + "得 分", + "言 论", + "▁any body", + "▁sec ured", + "▁secure d", + "ot imes", + "oti mes", + "o times", + "os ome", + "oso me", + "o some", + "其 在", + "偶 然", + "▁ 企业", + "强 势", + "▁v inyl", + "未 发现", + "deg ree", + "▁Mont real", + "螺 旋", + "Mi ll", + "Mil l", + "M ill", + "iv an", + "iva n", + "i van", + "▁S ure", + "▁Sur e", + "▁Su re", + "日立案 受理后", + "日立案受理 后", + "▁toile t", + "▁r ay", + "▁ra y", + "▁ ray", + "奖 项", + "Ser ies", + "Se ries", + "S eries", + "▁T amil", + "▁Ta mil", + "▁Tam il", + "受 法律保护", + "▁Common wealth", + "▁H at", + "▁Ha t", + "[] \\", + "[ ]\\", + "▁G raham", + "▁Gra ham", + "▁Nev ada", + "▁check out", + "▁ checkout", + "▁运动 项目", + "日 记", + "燃 料", + "表面 积", + "表 面积", + "即可 得到", + "▁P ref", + "▁Pr ef", + "▁Pre f", + "▁ Pref", + "▁up loaded", + "▁upload ed", + "婚 生", + "观 赏", + "ev a", + "e va", + "▁happ iness", + "偶 数", + "用 电", + "▁per pendicular", + "▁Christ opher", + "R P", + "▁ 地区", + "读 音", + "ment ation", + "▁L ar", + "▁La r", + "▁ Lar", + "占 比", + "▁c alculus", + "▁calcul us", + "▁calc ulus", + "柔 软", + "阴 阳", + "人才 培养", + "▁C ensus", + "▁F actory", + "▁Factor y", + "▁Fact ory", + "▁ Factory", + "▁sim plified", + "▁simpl ified", + "LO CK", + "LOC K", + "手 里", + "马 来", + "他们 在", + "他 们在", + "Sup er", + "Su per", + "S uper", + "不 满", + "都不 是", + "都 不是", + "▁p atio", + "▁pat io", + "报 错", + "▁Man ual", + "人民 代表大会", + "▁crypt oc", + "▁crypto c", + "▁inf lation", + "▁infl ation", + "无 敌", + "此 后", + "hi st", + "his t", + "h ist", + "▁b uck", + "▁bu ck", + "▁ buck", + "curr ency", + "c urrency", + "▁sleep ing", + "uation s", + "u ations", + "之 为", + "是我 国", + "是 我国", + "nB ibliography", + "▁aggreg ation", + "中 最", + "an nes", + "ann es", + "anne s", + "oa uth", + "o auth", + "AT IONS", + "ATION S", + "空 白", + "诉 请", + "ch lor", + "▁Equ ations", + "▁Equation s", + "▁Eq uations", + "re lim", + "rel im", + "reli m", + "loc file", + "▁{ '", + "▁ {'", + "▁cont amin", + "▁Per iod", + "▁ Period", + "▁att endance", + "▁attend ance", + "▁distinct ive", + "好 吃", + "▁m aker", + "▁make r", + "▁ma ker", + "▁ maker", + "valid ator", + "▁compar isons", + "▁comparison s", + "伟大 的", + "伟 大的", + "昨 日", + "委员会 委员", + "▁val ley", + "▁a like", + "▁al ike", + "▁ali ke", + "完成 后", + "re ply", + "rep ly", + "▁t orn", + "▁to rn", + "▁tor n", + "▁L ooking", + "▁Lo oking", + "▁Look ing", + "▁ Looking", + "越 多", + "本院 予以准许", + "本院予以 准许", + "柠 檬", + "ah l", + "a hl", + "史 上", + "Bin ary", + "B inary", + "▁sh ade", + "▁sha de", + "▁Exper imental", + "▁Experiment al", + "▁ Experimental", + "▁上 映时间", + "羡 慕", + "坐标 为", + "大 致", + "til ity", + "t ility", + "▁submit ting", + "por al", + "po ral", + "pora l", + "p oral", + "▁re lay", + "▁rel ay", + "▁w ishes", + "▁wish es", + "▁wis hes", + "▁earth qu", + "就是 要", + "就 是要", + "▁in complete", + "▁develop s", + "▁C alc", + "▁Cal c", + "▁Ca lc", + "▁ Calc", + "打 了", + "▁f iscal", + "▁fi scal", + "source s", + "s ources", + "▁H ydro", + "▁Hy dro", + "▁Hyd ro", + "▁ Hydro", + "外 汇", + "▁s inus", + "▁sin us", + "▁si nus", + "运 气", + "▁L P", + "▁ LP", + "搭 载", + "yl on", + "y lon", + "sur face", + "s urface", + "疗 法", + "font s", + "fon ts", + "的 思想", + "▁Un iversal", + "▁Univers al", + "▁Uni versal", + "▁ 否", + "▁ind ent", + "▁ indent", + "也 被", + "th lete", + "thlet e", + "▁s ne", + "▁sn e", + "年 以来", + "not ify", + "▁particip ant", + "▁W ang", + "▁Wa ng", + "▁Wan g", + "▁M aterials", + "▁Material s", + "▁re ven", + "▁r even", + "▁reve n", + "▁rev en", + "前 端", + "宁 县", + "其实 是", + "的 价值", + "▁d ans", + "▁da ns", + "▁dan s", + "▁In ternal", + "▁Int ernal", + "▁Intern al", + "▁Inter nal", + "▁ Internal", + "tS ystem", + "t System", + "直 观", + "一 波", + "▁W right", + "▁Wr ight", + "首 届", + "为 客户", + "▁up stream", + "▁V AL", + "▁VA L", + "▁ VAL", + "▁B und", + "▁Bu nd", + "▁Bun d", + "'] )\\", + "']) \\", + "' ])\\", + "Z one", + "▁block chain", + "有 线", + "梳 理", + "▁progn ostic", + "奇 数", + "▁M AX", + "▁MA X", + "▁ MAX", + "▁\" );\\", + "▁\") ;\\", + "▁ \");\\", + "q s", + "传 达", + "ME T", + "M ET", + "▁overs eas", + "▁overse as", + "之间 的关系", + "之间的 关系", + "燃 气", + "[ {", + "H g", + "}\" )\\", + "} \")\\", + "NU MBER", + "NUM BER", + "追 究", + "\\\\ |", + "还是 很", + "还 是很", + "д а", + "▁Russ ell", + "▁Rus sell", + "的 理由", + "风 光", + "in itions", + "init ions", + "inition s", + "T W", + "▁critic ism", + "▁\\' #", + "▁ \\'#", + "▁Balt imore", + "Al i", + "A li", + "的 优势", + "▁经营 范围", + "▁ 经营范围", + "星 座", + "ster dam", + "us p", + "u sp", + "▁th irty", + "comp iler", + "compile r", + "尔 多", + "纠 结", + "的 空间", + "ros ine", + "r osine", + "▁W alter", + "▁Wal ter", + "▁Walt er", + "liter als", + "lit erals", + "literal s", + "lite rals", + "缓 存", + "ic hi", + "ich i", + "i chi", + "fr ames", + "frame s", + "fram es", + "fra mes", + "▁inter f", + "▁dist inguished", + "▁distingu ished", + "▁distinguish ed", + "nS tr", + "nSt r", + "n Str", + "不 详", + "ah n", + "a hn", + "受 欢迎", + "Vol ume", + "警 告", + "ff ff", + "fff f", + "f fff", + "cam era", + "just ify", + "散 文", + "▁ar med", + "▁arm ed", + "▁ armed", + "ub a", + "u ba", + "\\' ];\\", + "\\'] ;\\", + "\\']; \\", + "\\ '];\\", + "H y", + "x l", + "▁w is", + "▁wi s", + "num py", + "n umpy", + "▁C NN", + "▁CN N", + "▁ CNN", + "▁micro wave", + "▁mic rowave", + "UD E", + "U DE", + "he a", + "h ea", + "人 介绍", + "来自 于", + "▁dam ages", + "▁damage s", + "▁' '", + "▁ ''", + "st ick", + "s tick", + "▁b reat", + "▁br eat", + "▁bre at", + "struct ions", + "struction s", + "nG u", + "n Gu", + "ch air", + "cha ir", + "chai r", + "c hair", + "制 成", + "分 会", + "([ ]", + "( []", + "开 业", + "不愿 意", + "不 愿意", + "▁E ight", + "▁ 英", + "▁re leasing", + "▁H allow", + "▁Hall ow", + "▁Hal low", + "爱 上", + "国 王", + "ac ted", + "act ed", + "▁predict ing", + "▁biom edical", + "▁bio medical", + "sem antic", + "写 了", + "so ftware", + "soft ware", + "▁R ate", + "▁Ra te", + "▁Rat e", + "▁ Rate", + "▁N H", + "▁ NH", + "▁p ending", + "▁pen ding", + "▁pend ing", + "▁ pending", + "港 口", + "ce ster", + "ces ter", + "c ester", + "农 药", + "▁pan das", + "▁pand as", + "▁ pandas", + "▁St even", + "▁Ste ven", + "▁Steve n", + "> (", + "▁p ent", + "▁pe nt", + "▁pen t", + "▁ pent", + "nD avid", + "n David", + "抓 好", + "▁en compass", + "▁mand atory", + "门 市", + "nTh ree", + "n Three", + "▁news letter", + "▁predominant ly", + "▁\\ ',", + "▁\\' ,", + "▁ \\',", + "▁list ener", + "▁listen er", + "▁ listener", + "▁ret ained", + "▁retain ed", + "乳 腺", + "实 业", + "嫌疑 人", + "nV ol", + "n Vol", + "O ther", + "▁con verter", + "▁conver ter", + "▁convert er", + "▁ converter", + "Depend encies", + "▁C atal", + "▁Ca tal", + "▁Cat al", + "ro d", + "r od", + "十四 章", + "十 四章", + "per mission", + "perm ission", + "p ermission", + "以 内", + "▁K on", + "▁Ko n", + "希望 能", + "▁im pressed", + "▁imp ressed", + "▁impress ed", + "做 过", + "Point s", + "Po ints", + "P oints", + "▁PRO VID", + "▁port ray", + "Bo ard", + "B oard", + "另 行", + "核 算", + "谢 邀", + "个 单位", + "Ex pand", + "Exp and", + "▁F loor", + "▁Fl oor", + "▁Flo or", + "nw hat", + "n what", + "都是 一", + "都 是一", + "LEV ANCE", + "▁Br anch", + "▁Bra nch", + "▁ Branch", + "的 双", + "▁{ (", + "▁ {(", + "不等 式的", + "不等式 的", + "不 等式的", + "r v", + "其他 人", + "其 他人", + "ne ys", + "ney s", + "ter ns", + "tern s", + "nP at", + "n Pat", + "▁ π", + "▁pneum onia", + "刘某 某", + "刘 某某", + "wa sh", + "was h", + "w ash", + "Tr ack", + "Tra ck", + "T rack", + "▁a mid", + "▁am id", + "简 洁", + "▁P H", + "▁ PH", + "▁L oc", + "▁Lo c", + "▁ Loc", + "▁T i", + "▁ Ti", + "▁can nab", + "▁cann ab", + "▁c ab", + "▁ca b", + "▁ cab", + "Me r", + "M er", + "▁r outing", + "▁ro uting", + "▁rout ing", + "▁rou ting", + "▁ routing", + "A ir", + "db c", + "d bc", + "si g", + "s ig", + "▁r gba", + "▁rgb a", + "▁ rgba", + "▁vacc ines", + "▁vaccine s", + "▁vaccin es", + "▁mach inery", + "▁machine ry", + "小伙 伴", + "小 伙伴", + "学习 和", + "▁} }\"", + "▁}} \"", + "▁ }}\"", + "月 在", + "秋 季", + "▁Alber ta", + "▁Alb erta", + "▁Albert a", + "sp ath", + "s path", + "▁P ictures", + "▁Pic tures", + "▁Picture s", + "▁l l", + "▁ ll", + "搞 笑", + "▁r anks", + "▁rank s", + "▁ran ks", + "否 定", + "谈 话", + "方程 组", + "听 力", + "证据 确实", + "Print ln", + "的 车", + "破 产", + "▁o ils", + "▁oil s", + "讲 究", + "▁value d", + "▁val ued", + "▁valu ed", + "▁ valued", + "▁bas ement", + "▁base ment", + "▁amen ities", + "经销 商", + "▁b orders", + "▁border s", + "▁bor ders", + "不 像", + "▁end if", + "▁ endif", + "门 槛", + "▁filter ing", + "原告 诉称", + "atin um", + "ati num", + "▁est rogen", + "智 力", + "▁co ating", + "▁coat ing", + "▁standard ized", + "▁demonstr ating", + "有 问题", + "搜索 引擎", + "作 曲", + "的 说", + "as se", + "ass e", + "球 迷", + "Di g", + "D ig", + "sc ode", + "s code", + "▁w iring", + "▁wi ring", + "ng o", + "n go", + "doc tor", + "do ctor", + "▁C osta", + "▁Co sta", + "▁Cost a", + "▁Cos ta", + "▁search es", + "▁sear ches", + "host name", + "F B", + "nW hether", + "nWh ether", + "n Whether", + "non atomic", + "人 格", + "爸 妈", + "合同 履行", + "unt ary", + "▁f oster", + "▁fo ster", + "▁fost er", + "▁morph ological", + "厂 房", + "木 齐", + "▁l atex", + "▁la tex", + "▁late x", + "▁lat ex", + "▁ latex", + "生 平", + "中 部", + "▁over head", + "▁div orce", + "▁divor ce", + "es te", + "est e", + "e ste", + "▁Int elligence", + "▁Intellig ence", + "com plex", + "comp lex", + "compl ex", + "的 临床", + "年 起", + "nL ooking", + "nLook ing", + "nLo oking", + "n Looking", + "nT hus", + "nTh us", + "探 测", + "▁游戏 类型", + "自 带", + "▁di amond", + "▁dia mond", + "的 海", + "/\" \\", + "/ \"\\", + "icro bial", + "▁dist ress", + "▁di stress", + "▁distr ess", + "中 西", + "\"} ,", + "\" },", + "▁A V", + "▁ AV", + "Stand ard", + "▁C omb", + "▁Com b", + "▁Co mb", + "▁ Comb", + "cont aining", + "圣 诞", + "Mo use", + "M ouse", + "▁R AM", + "▁RA M", + "▁ RAM", + "▁st ones", + "▁stone s", + "▁sto nes", + "▁ stones", + "进 制", + "碰 到", + "▁H end", + "▁He nd", + "▁Hen d", + "对 着", + "大 批", + "▁U P", + "▁ UP", + "机动车 交通事故责任", + "与 服务", + "Le g", + "L eg", + "▁Ke nya", + "▁Ken ya", + "第十 五", + "第 十五", + "si x", + "s ix", + "政府 的", + "▁B right", + "▁Br ight", + "▁Brig ht", + "▁Bri ght", + "fa c", + "f ac", + "nV is", + "n Vis", + "▁ 韩", + "gen eric", + "gener ic", + "gene ric", + "意识 到", + "足球 俱乐部", + "▁Cent ury", + "▁k een", + "▁ke en", + "${ \\\\", + "$ {\\\\", + "us ions", + "usion s", + "异 的", + "▁Dep uty", + "▁sh allow", + "▁shall ow", + "司 马", + "▁cy tos", + "▁cyt os", + "▁cyto s", + "▁organ ize", + "C trl", + "花 开", + "fn ame", + "f name", + "套 房", + "▁L anka", + "▁Lan ka", + "▁Lank a", + "nM od", + "n Mod", + "▁l ag", + "▁la g", + "▁ lag", + "▁An ti", + "▁Ant i", + "月 任", + "sc hedule", + "sche dule", + "s chedule", + "**** ********", + "******** ****", + "wh y", + "w hy", + "▁S yn", + "▁Sy n", + "▁ Syn", + "▁fascin ating", + "▁fasc inating", + "\\\\) \\\\(", + "跟 你", + "na r", + "n ar", + "}} {{", + "}}{ {", + "} }{{", + "▁un em", + "▁u nem", + "▁une m", + "乌鲁 木齐", + ")) ;", + ") );", + "▁Similar ly", + "欧 阳", + "▁ 本", + "社会 科学", + "道 歉", + "\"$ {", + "\" ${", + "一 根", + "xx xx", + "xxx x", + "x xxx", + "▁Commun ication", + "离 心", + "SS L", + "S SL", + "▁Oper ations", + "▁Operation s", + "▁ Operations", + "▁J a", + "▁U SD", + "▁US D", + "▁ USD", + "扶 持", + "致 使", + "TP S", + "T PS", + "sc reens", + "screen s", + "s creens", + "▁de letion", + "▁delet ion", + "▁ deletion", + "礼 仪", + ":\" ,", + ": \",", + "is ec", + "ise c", + "i sec", + "网络 安全", + "即 为", + "只有 一个", + "只 有一个", + "gen eration", + "gener ation", + "gene ration", + "g eneration", + "▁C hi", + "▁Ch i", + "sh al", + "sha l", + "s hal", + "▁C hemistry", + "▁Chem istry", + "yn tax", + "ynt ax", + "Cam era", + "▁le ase", + "▁ lease", + "基金 会", + "▁s perm", + "▁sp erm", + "▁spe rm", + "▁sper m", + "经营 者", + "K B", + "脱 离", + "hydro xy", + "hydrox y", + "▁switch ed", + "▁swit ched", + "▁Ap pe", + "▁App e", + "▁T ags", + "▁Tag s", + "▁Ta gs", + "▁ Tags", + "( /", + "▁sub scribe", + "▁subscrib e", + "▁subs cribe", + "▁ subscribe", + "信 贷", + "ien na", + "i enna", + "▁P orn", + "▁Po rn", + "▁Por n", + "这个 人", + "这 个人", + "执行 案件", + "op a", + "o pa", + "等 工作", + "nFor mer", + "nForm er", + "▁Or leans", + ">( )", + "> ()", + "▁re pro", + "▁rep ro", + "▁repr o", + "se gment", + "seg ment", + "ne a", + "n ea", + "▁f ate", + "▁fa te", + "▁fat e", + "spec ies", + "不 忘", + "br ain", + "bra in", + "b rain", + "▁d ancing", + "▁dan cing", + "▁discipl ine", + "`) \\", + "` )\\", + "▁work force", + "选 定", + "不好 的", + "不 好的", + "更 容易", + "▁M enu", + "▁Me nu", + "▁Men u", + "▁ Menu", + "▁h o", + "▁ ho", + "▁S ay", + "▁Sa y", + "▁ Say", + "Found ation", + "▁Medit erranean", + "▁ 安", + "▁ 对", + "管理 和", + "可以 看到", + "可以看 到", + "▁ch ick", + "▁chi ck", + "▁chic k", + "▁under ground", + "▁und erground", + "癌 症", + "三 位", + "消 灭", + "兰 州", + "se g", + "s eg", + "▁opt imum", + "▁optim um", + "▁loc ality", + "▁local ity", + "▁S oft", + "▁So ft", + "▁Sof t", + "▁ Soft", + "act ivate", + "activ ate", + "ncon sole", + "n console", + "▁sub unit", + "▁G ray", + "▁Gr ay", + "▁Gra y", + "Error f", + "Err orf", + "▁Bar celona", + "特色 的", + "特 色的", + "ch annels", + "chan nels", + "channel s", + "nbl ablabla", + "▁C N", + "▁ CN", + "▁J oy", + "▁Jo y", + "▁wall et", + "▁wal let", + "▁ wallet", + "iz ar", + "iza r", + "无 比", + "更高 的", + "更 高的", + "is ol", + "iso l", + "i sol", + "重 阳", + "恶 性", + "▁qu asi", + "▁quas i", + "▁con gen", + "▁cong en", + "▁mon oclonal", + "胡 椒", + "▁RE LEVANCE", + "▁de scriptions", + "▁des criptions", + "▁description s", + "▁descript ions", + "抗 日", + "电 阻", + "纯 粹", + "放 下", + "tor ch", + "t orch", + "▁infar ction", + "乐 园", + "aj a", + "a ja", + "马克思 主义", + "▁R ank", + "▁Ra nk", + "▁Ran k", + "▁ Rank", + "喝 酒", + "Sh ape", + "Sha pe", + "公司 在", + "▁o m", + "▁ om", + "那 时", + "▁de fin", + "▁def in", + "出租 车", + "出 租车", + "UU ID", + "U UID", + "修 理", + "▁dis abilities", + "▁be et", + "▁bee t", + "ogram s", + "ogr ams", + "o grams", + "▁I DE", + "▁ID E", + "▁ IDE", + "党委 副书记", + "fol low", + "f ollow", + "▁re dis", + "▁red is", + "▁ redis", + "is Empty", + "x c", + "ak u", + "a ku", + "▁主要 食材", + "Is s", + "I ss", + "尔 斯", + "nM ean", + "nMe an", + "n Mean", + "▁ap olog", + "▁apo log", + "BU ILD", + "权 证", + "得 更", + "扩 散", + "应用 程序", + "▁fract ures", + "▁fracture s", + "Te ch", + "T ech", + "▁Ph oenix", + "迎 接", + "▁trans mitted", + "▁transmit ted", + "co u", + "c ou", + "人生 的", + "人 生的", + "▁H yp", + "▁Hy p", + "▁ Hyp", + "相等 的", + "相 等的", + "▁I FN", + "▁IF N", + "▁ IFN", + "▁streng ths", + "▁strength s", + "к и", + "▁follow ers", + "县 长", + "管理 系统", + "钻 石", + "等 相关", + "▁trans it", + "▁tran sit", + "风 扇", + "nS ta", + "nSt a", + "▁sm ell", + "ib e", + "i be", + "ra f", + "r af", + "▁Con vention", + "▁Conv ention", + "tb reak", + "t break", + "久 的", + "▁st eep", + "▁ste ep", + "Pl us", + "第四百 八", + "报 纸", + "红 外", + "▁V enezuel", + "▁c aring", + "▁car ing", + "▁ca ring", + "▁trouble s", + "▁trou bles", + "ba i", + "b ai", + "▁M M", + "▁ MM", + "Sp lit", + "Spl it", + "S plit", + "传统 文化", + "▁an tim", + "▁ant im", + "▁anti m", + "wo man", + "w oman", + "▁S pot", + "▁Sp ot", + "▁ Spot", + "之 家", + "sa t", + "s at", + "DO M", + "D OM", + "▁m att", + "▁mat t", + "▁ma tt", + "展 会", + "▁threat ened", + "▁threaten ed", + "IF I", + "I FI", + "设备 有限公司", + "▁C opy", + "▁Co py", + "▁Cop y", + "▁ Copy", + "▁renown ed", + "type script", + "types cript", + "▁appl iances", + "▁appliance s", + "▁determ ines", + "▁determine s", + "▁determin es", + "▁Pit tsburgh", + "呵 呵", + "▁S even", + "▁Se ven", + "▁Sev en", + "恶 意", + "fa iled", + "fail ed", + "f ailed", + "不 确定", + "Browse r", + "B rowser", + "和 大", + "K T", + "归 纳", + "为 目的", + "向 申请执行人", + "这个 世界", + "mo use", + "m ouse", + "R D", + "▁Net flix", + "▁pro fits", + "▁profit s", + "▁prof its", + "▁ profits", + "▁B asketball", + "P ut", + "▁Comp ared", + "▁Compar ed", + "▁Compare d", + "村 庄", + "克 力", + "▁N iger", + "▁Ni ger", + "▁Nig er", + "def inition", + "▁transl ational", + "▁translation al", + "▁ translational", + "之 内", + "讲 师", + "▁ischem ic", + "情 景", + "技术 和", + "▁Ste wart", + "▁Stew art", + "Sol ve", + "S olve", + "▁所属 地区", + "S ummary", + "w b", + "相 加", + "用 到", + "Cu r", + "C ur", + "外 语", + "天 堂", + "专 属", + "ME D", + "M ED", + "的 治疗", + "立方 米", + "言情 小说", + "▁ 南", + "}} ,", + "} },", + "遭 到", + "拉 克", + "▁P oss", + "▁Po ss", + "▁Pos s", + "oot ing", + "oo ting", + "o oting", + "For ce", + "F orce", + "▁Sim ply", + "基础 题", + "▁neon atal", + "▁neo natal", + "ed ges", + "edge s", + "认真 遵守法律法规及监规", + "认真遵守 法律法规及监规", + "og ue", + "o gue", + "▁M eg", + "▁Me g", + "▁p hy", + "▁ph y", + "▁ phy", + "nH ey", + "nHe y", + "n Hey", + "年 利率", + "▁游戏 目标", + "▁surviv ors", + "▁survivor s", + "巅 峰", + "可以 直接", + "▁fluores cent", + "▁fluor escent", + "防 守", + "腹 部", + "assert That", + "▁contract or", + "▁contr actor", + "终 点", + "▁' #", + "▁H unter", + "▁Hu nter", + "▁Hun ter", + "▁Hunt er", + ":** \\", + ":* *\\", + ": **\\", + "▁consult ant", + "▁in variant", + "▁invari ant", + "▁ invariant", + "签 证", + "bo ss", + "bos s", + "b oss", + "困 扰", + "增 多", + "▁w heat", + "▁wh eat", + "▁whe at", + "Di ff", + "D iff", + "ra ting", + "rat ing", + "r ating", + "▁mot if", + "▁mo tif", + "前 来", + "▁dis advant", + "再 来", + "指 针", + "已经 是", + "an ic", + "ani c", + "a nic", + "▁cl ustering", + "▁cluster ing", + "▁clust ering", + "▁according ly", + "▁accord ingly", + "roc ytes", + "rocyte s", + "r ocytes", + "出 身", + "▁re lies", + "▁rel ies", + "▁Rub y", + "▁Ru by", + "▁ Ruby", + "▁im plicated", + "▁impl icated", + "真实 意思表示", + "▁stim ulate", + "▁stimul ate", + "▁f iling", + "▁fil ing", + "▁fi ling", + "▁B ear", + "▁Be ar", + "▁Bea r", + "▁ Bear", + "▁s pherical", + "▁spher ical", + "微 波", + "bi a", + "b ia", + "▁Ind ividual", + "简体 中文", + "流 浪", + "▁B irmingham", + "▁metabol ites", + "▁metabolite s", + "▁n ude", + "▁nu de", + "▁nud e", + "▁sol uble", + "▁solub le", + "▁ 品牌", + "的 建议", + "▁re generation", + "▁reg eneration", + "说明 书", + "ip ly", + "ipl y", + "i ply", + "产 能", + "治 安", + "▁人物 履历", + "▁view ers", + "▁viewer s", + "又 能", + "▁break down", + "名下 的", + "名 下的", + "▁j uris", + "▁ju ris", + "▁jur is", + "▁L egal", + "▁Le gal", + "▁Leg al", + "▁l ying", + "▁ly ing", + "▁ lying", + "as ted", + "ast ed", + "aste d", + "a sted", + "套 路", + "▁Imp act", + "▁ Impact", + "ut er", + "ute r", + "u ter", + "▁path ogen", + "带 头", + "▁F ame", + "▁Fa me", + "nl ocal", + "n local", + "会 对", + "感 激", + "他 就", + "▁spokes man", + "Pl an", + "P lan", + "▁P el", + "▁Pe l", + "ev ery", + "ever y", + "eve ry", + "e very", + "▁cub ic", + "▁cu bic", + "cl ip", + "cli p", + "c lip", + "▁c ad", + "▁ca d", + "▁ cad", + "ar ious", + "ari ous", + "ario us", + "宝 石", + "pre vious", + "prev ious", + "pos able", + "北 区", + "河 流", + "▁LI ABILITY", + "向 下", + "▁S equ", + "▁Se qu", + "▁Seq u", + "▁ Sequ", + "▁po ison", + "▁l ever", + "▁le ver", + "▁lev er", + "耳 朵", + "Wh ich", + "Wh ite", + "Whit e", + "月参加 工作", + "忍 不住", + "▁Sh ah", + "▁Sha h", + "L T", + "Vis ible", + "V isible", + "表 格", + "▁Mod els", + "▁Model s", + "▁Mode ls", + "▁ Models", + "毫 不", + "▁G round", + "▁Gr ound", + "▁Gro und", + "ot hy", + "oth y", + "o thy", + "▁H ud", + "▁Hu d", + "▁Afghan istan", + "犹 豫", + "UE S", + "U ES", + "▁main stream", + "▁W ant", + "▁Wa nt", + "▁Wan t", + "▁ Want", + "金 山", + "▁car eg", + "▁care g", + "▁ca reg", + "▁P V", + "▁ PV", + "ho lm", + "hol m", + "▁viol ent", + "▁com press", + "▁comp ress", + "▁compre ss", + "▁compr ess", + "▁ compress", + "li p", + "l ip", + "ic hard", + "ich ard", + "i chard", + "CRIPT ION", + "IT S", + "I TS", + "he nd", + "hen d", + "h end", + "w heel", + "▁path ogens", + "▁pathogen s", + "▁remodel ing", + "▁pe ers", + "▁peer s", + "en cephal", + "ence phal", + "p H", + "ns udo", + "n sudo", + "sy n", + "s yn", + "▁Z e", + "▁model ling", + "▁mod elling", + "oc t", + "o ct", + "id ea", + "ide a", + "i dea", + "▁W ol", + "▁Wo l", + "▁g reet", + "▁gre et", + "nM us", + "n Mus", + "check ed", + "▁elim inated", + "▁eliminate d", + "获 悉", + "▁trans mit", + "了 好", + "Te x", + "T ex", + "▁} \\\\", + "▁}\\ \\", + "▁ }\\\\", + "哈哈 哈哈", + "哈哈哈 哈", + "哈 哈哈哈", + "▁h emor", + "▁he mor", + "▁hem or", + "生 死", + "▁ind ication", + "▁indic ation", + "▁con ferences", + "▁conference s", + "▁confer ences", + "N ative", + "it ance", + "ita nce", + "itan ce", + "▁retail ers", + "▁retailer s", + "is y", + "i sy", + "全 局", + "eh icle", + "▁E aster", + "▁East er", + "▁Eas ter", + "▁orient ed", + "▁ oriented", + "bin om", + "bi nom", + "▁w ashing", + "▁was hing", + "▁wash ing", + "导 体", + "一 九", + "但 不", + "or ic", + "ori c", + "o ric", + "▁f avorable", + "▁favor able", + "▁fav orable", + "▁cyt okine", + "▁cytok ine", + "nPost ed", + "nPo sted", + "n Posted", + "ul ia", + "uli a", + "u lia", + "个 小", + "al ym", + "aly m", + "▁econ omics", + "▁economic s", + "▁econom ics", + "Doc ker", + "D ocker", + "▁ex ped", + "▁exp ed", + "\\\\ \":", + "\\\\\" :", + "▁M aur", + "▁Ma ur", + "▁dist inction", + "▁distinct ion", + "▁H ey", + "▁He y", + "▁ Hey", + "进 化", + "▁V ert", + "▁Ver t", + "▁Ve rt", + "▁ Vert", + "▁Pe ace", + "▁R ugby", + "发现被执行人 有可供执行的财产", + "发现被执行人有 可供执行的财产", + "▁commun ic", + "▁In valid", + "▁Inv alid", + "▁ Invalid", + "外 界", + "失 业", + "▁G uy", + "▁Gu y", + "ns ure", + "app ings", + "apping s", + "▁S usan", + "▁Sus an", + "▁Su san", + "▁ear liest", + "mat ches", + "match es", + "m atches", + "▁T ig", + "▁Ti g", + "队 列", + "ad just", + "adj ust", + "▁K i", + "▁ Ki", + "慈 善", + "阿 姨", + "at hs", + "ath s", + "a ths", + "in stein", + "ins tein", + "inst ein", + "环境 下", + "理事 长", + "建 华", + "▁l ecture", + "▁lect ure", + "这个 数", + "这 个数", + "存 放", + "▁com mented", + "▁comm ented", + "▁comment ed", + "▁dis counts", + "▁discount s", + "住 福建省", + "DI S", + "D IS", + "▁enorm ous", + "▁dom inated", + "▁dominate d", + "你 觉得", + "▁N MR", + "▁NM R", + "农 场", + "抽 取", + "nt hen", + "nthe n", + "nth en", + "n then", + "模 仿", + "▁ex ports", + "▁exp orts", + "▁export s", + "▁ exports", + "以前 先行羁押的", + "O h", + "uc ker", + "uck er", + "▁vis ibility", + "▁ visibility", + "▁` /", + "▁b ra", + "▁br a", + "▁ bra", + "ug ust", + "ugu st", + "u gust", + "us tain", + "ust ain", + "▁bu yer", + "▁buy er", + "多 彩", + "▁V R", + "▁ VR", + "一 万", + "fr e", + "f re", + "执行 情况", + "▁B our", + "▁Bo ur", + "▁Bou r", + "▁Hallow een", + "▁neg atively", + "▁negative ly", + "防 疫", + "foo d", + "fo od", + "f ood", + "▁st ays", + "▁stay s", + "常 态", + "保 安", + "he my", + "hem y", + "h emy", + "少 量", + "故 原告", + "Rem ote", + "物 联网", + "▁t rait", + "▁tr ait", + "▁tra it", + "▁ trait", + "cut aneous", + "多项 式", + "▁coc aine", + "合作 伙伴", + "▁U pon", + "▁Up on", + "▁Com bin", + "▁Comb in", + "▁ Combin", + "▁c riterion", + "▁criter ion", + "▁K an", + "▁Ka n", + "Dec imal", + "▁pro fil", + "▁prof il", + "▁count ies", + "通 则", + "▁eas iest", + "某 一", + "汉 字", + "TA G", + "T AG", + "并 与", + "Ba y", + "B ay", + "us hes", + "ush es", + "马 拉", + "▁pur ple", + "▁ purple", + "ode ship", + "odes hip", + "query Selector", + "有 用", + "▁ 数据", + "背 包", + "了自己 的", + "了 自己的", + "大 事", + "M Q", + "▁pr imes", + "▁prim es", + "▁prime s", + "▁pri mes", + "▁ primes", + "▁lig ands", + "▁ligand s", + "我 喜欢", + "## \\", + "# #\\", + "ob serv", + "obs erv", + "o bserv", + "null able", + "▁H erm", + "▁He rm", + "▁Her m", + "何 况", + "▁r ally", + "▁rall y", + "度 和", + "是 他", + "▁F riend", + "▁Fri end", + "▁ Friend", + "先 把", + "的 国家", + "▁A long", + "▁Al ong", + "▁do zen", + "str aints", + "stra ints", + "straint s", + "strain ts", + "▁C LI", + "▁CL I", + "▁ CLI", + "听 取", + "外 包", + "存在 着", + "et ween", + "跟 随", + "Me sh", + "M esh", + "改 编", + "拖 欠", + "▁~ /", + "▁ ~/", + "▁re versed", + "▁rev ersed", + "▁reverse d", + "▁revers ed", + "▁rever sed", + "烈 士", + "▁c rypto", + "▁crypt o", + "▁cry pto", + "▁ crypto", + "难 点", + "的 答案", + "▁ex ert", + "po d", + "p od", + "ov al", + "ova l", + "o val", + "上 帝", + "▁f ought", + "▁fo ught", + "征收 社会抚养费", + "▁ter rible", + "▁terr ible", + "游戏 的", + "▁fab ulous", + "Ver tex", + "Vert ex", + "▁P rix", + "▁Pr ix", + "▁Pri x", + "▁S occer", + "▁Soc cer", + "转 发", + "V ec", + "第一百四十 五条", + "第一百四十五 条", + "婴儿 床", + "▁b uf", + "▁bu f", + "▁ buf", + "nF ootball", + "nFoot ball", + "▁mult ivariate", + "▁l y", + "▁ ly", + "就 知道", + "珠 宝", + "nH ence", + "nHe nce", + "▁Cont ainer", + "▁ Container", + "智能 化", + "没 啥", + "▁b lot", + "▁bl ot", + "▁blo t", + "nW ill", + "nWil l", + "n Will", + "等 多", + "▁R ace", + "▁Ra ce", + "▁Rac e", + "▁arch ae", + "▁p uzzle", + "▁puzz le", + "▁pu zzle", + "\" %", + "日向 被执行人", + "日 向被执行人", + "▁en rich", + "▁harm ful", + "AT OR", + "A TOR", + "▁g lasses", + "▁glass es", + "刑期从 判决执行之日起计算", + "▁air line", + "Com plete", + "Comp lete", + "▁bro nch", + "▁bron ch", + "朋友 们", + "朋 友们", + ") >", + "泡 沫", + "(* *", + "( **", + "▁s lower", + "▁sl ower", + "▁slow er", + "▁Al ice", + "▁Ali ce", + "▁Fe atures", + "▁Feature s", + "▁ Features", + "▁don ated", + "▁donate d", + "蜂 蜜", + "rows ers", + "rowser s", + "rowse rs", + "▁withdraw al", + "▁Vo iv", + "▁s pare", + "▁sp are", + "▁spa re", + "▁S TR", + "▁ST R", + "▁ STR", + "传奇 私服", + "▁Com mercial", + ", &", + "不 准", + "an ç", + "▁def ence", + "▁defe nce", + "中小 学", + "中 小学", + "▁dis tal", + "▁dist al", + "AR GET", + "ARG ET", + "▁READ ME", + "▁ README", + "et itive", + "De legate", + "▁cannab is", + "▁cann abis", + "当事 人的", + "当事人 的", + "▁剧 名", + "羽 毛", + "还有 一个", + "还 有一个", + "▁dep uty", + "▁deput y", + "▁b ust", + "▁bu st", + "▁bus t", + "经济技术 开发区", + "ion ed", + "io ned", + "ione d", + "i oned", + "老 的", + "Sh arp", + "Sha rp", + "▁N ad", + "▁Na d", + "yg on", + "y gon", + "▁Oper ation", + "▁Op eration", + "▁Opera tion", + "▁ Operation", + "麻 醉", + "az ed", + "aze d", + "a zed", + "开发 的", + "开 发的", + "教育 局", + "ol ytic", + "oly tic", + "▁al igned", + "▁align ed", + "▁ aligned", + "女 神", + "影响 到", + "▁c attle", + "▁ca ttle", + "▁cat tle", + "▁Arch itecture", + "▁Architect ure", + "m r", + "思想 政治", + "▁s ends", + "▁send s", + "▁sen ds", + "▁ 月", + "St e", + "S te", + "中 美", + "不一样 的", + "不一 样的", + "不 一样的", + "▁rad ar", + "▁ra dar", + "or ia", + "ori a", + "o ria", + "眼 泪", + "▁G C", + "▁ GC", + "ins ula", + "唱 歌", + "▁T ar", + "▁Ta r", + "▁g uns", + "▁gu ns", + "▁gun s", + "red uce", + "redu ce", + "▁esc ort", + "▁R ic", + "▁Ri c", + "▁c is", + "▁ci s", + "▁ cis", + "car bon", + "c arbon", + "▁D IS", + "▁DI S", + "▁ DIS", + "投 放", + "pr act", + "战 场", + "和分析 思路", + "inv asive", + "invas ive", + "自 杀", + "Li fe", + "Lif e", + "L ife", + "▁polymer ase", + "▁polym erase", + "找 个", + "▁R at", + "▁Ra t", + "▁l azy", + "▁la zy", + "▁ lazy", + "Re direct", + "Red irect", + "塞 尔", + "有关 规定", + "理论 与", + "一般 来说", + "▁YO UR", + "▁YOU R", + "跨 越", + "pers onal", + "person al", + "p ersonal", + "As p", + "A sp", + "的风 险", + "的 风险", + "pect ive", + "p ective", + "▁d aughters", + "▁daughter s", + "不 堪", + "减半收取 计", + "▁Al pha", + "▁Alp ha", + "▁ Alpha", + "▁aff iliate", + "▁affil iate", + "al igned", + "align ed", + "澳 洲", + "▁G hana", + "▁Gh ana", + "我真 的", + "我 真的", + "年 毕业于", + "瑞 士", + "让 学生", + "如 图", + "▁c ous", + "▁co us", + "▁cou s", + "▁ cous", + "▁b less", + "▁bl ess", + "▁ble ss", + "ar ded", + "ard ed", + "arde d", + "ict ional", + "iction al", + "钥 匙", + "ud es", + "ude s", + "u des", + "▁&& \\", + "比如 说", + "ri tion", + "rit ion", + "r ition", + "▁Jon athan", + "▁St ars", + "▁Star s", + "▁Sta rs", + "管 制", + "仅供 参考", + "▁cast le", + "▁cas tle", + "▁ castle", + "分 裂", + "at omy", + "ato my", + "atom y", + "▁State ment", + "▁Stat ement", + "▁ Statement", + "▁p ine", + "▁pi ne", + "▁pin e", + "▁ pine", + "Per m", + "Pe rm", + "P erm", + "ac ting", + "act ing", + "actin g", + "起 步", + "]) )", + "] ))", + "sh ine", + "shi ne", + "▁harm onic", + "▁harmon ic", + "▁ harmonic", + "中 外", + "紧 紧", + "fe d", + "f ed", + "to t", + "t ot", + "出生 于", + "出 生于", + "深 深", + "技术 人员", + "▁h emorrh", + "▁hemor rh", + "▁def icits", + "▁deficit s", + "▁comm une", + "▁commun e", + "的 原", + "▁pre scribed", + "▁pres cribed", + "浸 泡", + "▁s ized", + "▁size d", + "▁si zed", + "▁ sized", + "▁j oints", + "▁join ts", + "▁joint s", + "▁jo ints", + "江 山", + "lu ence", + "知识 和", + "vis ion", + "v ision", + "较强 的", + "较 强的", + "▁$ \\\\{", + "▁$\\\\ {", + "▁I con", + "▁ Icon", + "▁int rac", + "▁intr ac", + "▁intra c", + "心 动", + "▁( {\\", + "▁({ \\", + "▁ ({\\", + "t while", + "炎 症", + "ju n", + "j un", + "▁cost ly", + "th ey", + "the y", + "t hey", + "这道 选择题", + "PE G", + "P EG", + "per malink", + "OT E", + "O TE", + "la ration", + "lar ation", + "ad apter", + "adapt er", + "nIt alian", + "end ant", + "enda nt", + "▁ad herence", + "▁adher ence", + "▁adhere nce", + "▁d end", + "▁de nd", + "▁den d", + "IC ATION", + "▁T an", + "▁Ta n", + "▁War ren", + "▁am bit", + "▁amb it", + "不受 申请执行", + "feed back", + "in dependent", + "ind ependent", + "准予 原告", + "▁Pro blems", + "▁Problem s", + "度 过", + "▁p rogen", + "▁pro gen", + "▁pr ogen", + "▁per mits", + "▁permit s", + "▁perm its", + "▁u ter", + "▁ut er", + "▁ uter", + "du e", + "d ue", + "nMay be", + "n Maybe", + "▁m ilit", + "▁mil it", + "▁mi lit", + "le af", + "lea f", + "▁T GF", + "▁TG F", + "▁ TGF", + "Sh are", + "Sha re", + "S hare", + "▁Pal ace", + "亏 损", + "▁注 音", + "▁F ried", + "▁Fr ied", + "▁Fri ed", + "有 益", + "LE ASE", + "ok ers", + "oke rs", + "oker s", + "o kers", + "▁ass ured", + "▁assure d", + "制 片", + "灰 色", + "对自己 的", + "对 自己的", + "▁Im prove", + "▁Imp rove", + "ad ays", + "ada ys", + "aday s", + "a days", + "▁home ost", + "▁S ent", + "▁Se nt", + "▁Sen t", + "▁ Sent", + "D ynamic", + "▁spectro metry", + "▁spectrom etry", + "▁relax ing", + "仔细 阅读", + "▁K le", + "▁Kl e", + "▁Port uguese", + "▁Portug uese", + "/\\ '", + "/ \\'", + "ho oks", + "hook s", + "h ooks", + "着 的", + "▁ir rit", + "▁irr it", + "若 是", + "▁dop amine", + "na x", + "n ax", + "▁Camp bell", + "fl ush", + "flu sh", + "▁p enet", + "▁pe net", + "▁pen et", + "nJ an", + "n Jan", + "▁L C", + "▁ LC", + "▁n ested", + "▁ne sted", + "▁nest ed", + "▁ nested", + "Ex pected", + "Exp ected", + "Expect ed", + "Man agement", + "Manag ement", + "Manage ment", + "M anagement", + "▁vent ilation", + "▁ventil ation", + "▁u g", + "▁ ug", + "▁b out", + "▁bo ut", + "▁bou t", + "sup ported", + "support ed", + "▁energ ies", + "建 军", + "▁a queous", + "▁aqu eous", + "亲 子", + "越 高", + "OR E", + "O RE", + "post gres", + "M Y", + "核 实", + "失去 了", + "失 去了", + "▁n aked", + "][ '", + "] ['", + "行 包含", + "hav iour", + "▁C e", + "▁ Ce", + "的 交", + "ar ct", + "arc t", + "mat ched", + "match ed", + "m atched", + "▁c rystals", + "▁cryst als", + "▁crystal s", + "}} (", + "} }(", + "un known", + "unk nown", + "▁W eight", + "▁We ight", + "▁Wei ght", + "▁ Weight", + "这 对", + "War ning", + "W arning", + "▁re jection", + "▁reject ion", + "create Element", + "▁re sil", + "▁res il", + "▁b logs", + "▁bl ogs", + "▁blog s", + "▁blo gs", + "▁ blogs", + "▁s helf", + "▁sh elf", + "▁she lf", + "▁shel f", + "nS T", + "n ST", + "缓 慢", + "xim ity", + "▁r anged", + "▁range d", + "▁ran ged", + "佩 戴", + "op ol", + "opo l", + "o pol", + "en es", + "ene s", + "e nes", + "▁g aining", + "▁gain ing", + "▁ga ining", + "▁p ics", + "▁pi cs", + "▁pic s", + "▁ pics", + "▁predict ors", + "▁predictor s", + "urope an", + "滨 海", + "银 川", + "独 自", + "▁K u", + "▁o u", + "▁ ou", + "▁S TE", + "▁ST E", + "▁ STE", + "▁S alt", + "▁Sal t", + "▁Sa lt", + "ar ians", + "ari ans", + "aria ns", + "arian s", + "a rians", + "Cl uster", + "as sy", + "ass y", + "摆 脱", + "ra in", + "r ain", + "▁sh ipped", + "▁ship ped", + "总 量", + "ma ll", + "mal l", + "m all", + "▁im ports", + "▁import s", + "▁imp orts", + "▁ imports", + "▁an chor", + "▁anc hor", + "▁anch or", + "▁ anchor", + "▁Home work", + "▁Hom ework", + "op edia", + "oped ia", + "▁hom ogeneous", + "▁homogen eous", + "▁ homogeneous", + "走 的", + "yl er", + "yle r", + "y ler", + "ach ers", + "ache rs", + "acher s", + "花 的", + "cl ipse", + "clip se", + "▁D omain", + "▁Do main", + "▁Dom ain", + "▁ Domain", + "J P", + "本裁定书送达后 立即生效", + "▁accompan ying", + "▁accompany ing", + "di e", + "d ie", + "判决执行 以前先行羁押的", + "负 面", + "▁F al", + "▁Fa l", + "▁E ntry", + "▁En try", + "▁Ent ry", + "▁ Entry", + "▁free ly", + "▁fre ely", + "▁freel y", + "∈ [", + "递 减", + "Ar rays", + "Array s", + "Arr ays", + "img ur", + "前 锋", + "▁ex pend", + "▁exp end", + "推 行", + "Ex ists", + "Exist s", + "改造 积极分子", + "的 销售", + "分 母", + "若干问题 的意见", + "若干问题的 意见", + "▁expect ation", + "▁ex isted", + "▁exist ed", + "▁scient ist", + "▁Document ation", + "▁ Documentation", + "延 迟", + "中 秋", + "▁key words", + "▁keyword s", + "▁ keywords", + "nS er", + "nSe r", + "n Ser", + "智 商", + "▁satisf ies", + "relim inary", + "▁sil icon", + "战 胜", + "am ate", + "ama te", + "a mate", + "aut hent", + "auth ent", + "▁co oked", + "▁cook ed", + "ty ped", + "type d", + "typ ed", + "t yped", + "▁C arbon", + "▁Car bon", + "▁ Carbon", + "▁Voiv odeship", + "她 在", + "▁S EC", + "▁SE C", + "▁ SEC", + "▁F ant", + "▁Fa nt", + "▁Fan t", + "▁is olate", + "▁isol ate", + "▁iso late", + "各 有", + "艺 人", + "企业 家", + "▁R ud", + "▁Ru d", + "缓刑 考验", + "wi re", + "w ire", + "fe n", + "f en", + "电 站", + "▁conn ects", + "▁connect s", + "▁% (", + "▁ %(", + "的一 项", + "的 一项", + "▁D av", + "▁Da v", + "▁T s", + "▁ Ts", + "功能 的", + "▁S qu", + "▁ Squ", + "att ach", + "atta ch", + "▁tub erculosis", + "蝴 蝶", + "Text Field", + "▁inter sect", + "进行了 审查", + "借款 合同纠纷一案中", + "借款合同纠纷一案 中", + "借款合同 纠纷一案中", + "avit ational", + "得 多", + "Author ization", + "刊 物", + "所 作", + "if fs", + "iff s", + "奖 惩", + "专注 于", + "▁sympt om", + "rad io", + "肠 道", + "备 考", + "ta t", + "t at", + "se ver", + "sev er", + "s ever", + "罪犯 评审鉴定表", + "▁heter ogeneous", + "▁dis rupt", + "D H", + "cell s", + "cel ls", + "c ells", + "▁D ynamic", + "▁Dynam ic", + "▁ Dynamic", + "▁vibr ant", + "▁vib rant", + "Error s", + "Err ors", + "Er rors", + "> #", + "沉 默", + "▁sh ore", + "▁ shore", + "ast ics", + "astic s", + "EN S", + "E NS", + "ba y", + "b ay", + "dr ive", + "driv e", + "d rive", + "▁W oman", + "▁Wo man", + "▁Com mons", + "▁Common s", + "▁Comm ons", + "是 为", + "▁S ter", + "▁St er", + "▁Ste r", + "IC K", + "I CK", + "MA C", + "M AC", + "▁pos session", + "▁poss ession", + "▁possess ion", + "优 于", + "不可 以", + "不 可以", + "▁n ons", + "▁no ns", + "▁non s", + "▁ub iquit", + "中 级", + "\"} ,\\", + "\"}, \\", + "\" },\\", + "andid ate", + "andi date", + "om o", + "o mo", + "ou rt", + "our t", + "o urt", + "ot omy", + "oto my", + "▁prom ised", + "▁promise d", + "om ers", + "ome rs", + "omer s", + "o mers", + "▁des per", + "▁Ig G", + "境 界", + "rat io", + "r atio", + "▁wall paper", + "不 合", + "▁IN CLUDING", + "▁ INCLUDING", + "▁aff airs", + "▁affair s", + "▁rect angular", + "混 乱", + "看 作", + "▁com prises", + "▁compr ises", + "▁comprise s", + "▁d ess", + "▁de ss", + "▁des s", + "▁antioxid ant", + "▁U krainian", + "▁Ukr ainian", + "受到 了", + "受 到了", + "▁sl ots", + "▁slot s", + "▁ slots", + "周 岁", + "pi t", + "p it", + "▁press ures", + "▁pressure s", + "▁c hop", + "▁ch op", + "▁cho p", + "▁research er", + "▁resear cher", + "nR ed", + "nRe d", + "n Red", + "gen ase", + "▁resid ue", + "▁操作 指南", + "▁d irty", + "▁dir ty", + "▁dirt y", + "▁ dirty", + "∞ )", + "侵 害", + "lo ve", + "lov e", + "l ove", + "▁pro bes", + "▁prob es", + "▁probe s", + "Y O", + "刷 新", + "▁S ets", + "▁Se ts", + "▁Set s", + "▁ Sets", + "▁end emic", + "▁ende mic", + "▁F el", + "▁Fe l", + "平 县", + "济南 市", + "济 南市", + "一 阵", + "标 本", + "▁c s", + "▁ cs", + "cut s", + "cu ts", + "c uts", + "▁Athlet ics", + "▁Athletic s", + "暑 假", + "▁N ASA", + "▁NA SA", + "▁NAS A", + "▁L E", + "▁ LE", + "▁d ashboard", + "▁dash board", + "▁ dashboard", + "支 援", + "al ph", + "abul ary", + "全面 的", + "全 面的", + "▁re ceipt", + "▁rece ipt", + "▁Trans fer", + "▁ Transfer", + "▁elim ination", + "j l", + "apt ist", + "f m", + "口 语", + "和 高", + "▁beautiful ly", + "U X", + "ic ensing", + "icens ing", + "▁log istic", + "计 生", + "各 部门", + "我不 知道", + "我 不知道", + "▁r am", + "▁ra m", + "▁ ram", + "CA S", + "C AS", + "EM ENT", + "E MENT", + "木 材", + "▁ 清", + "▁un ve", + "▁w hit", + "▁wh it", + "▁ whit", + "白 菜", + "mon g", + "mo ng", + "m ong", + "▁tr ucks", + "▁truck s", + "第一百三 十三条", + "所 长", + "辨 认", + "▁{ },\\", + "▁{} ,\\", + "▁{}, \\", + "▁lo ops", + "▁loop s", + "Pr imary", + "Prim ary", + "在 意", + "RE QUEST", + "▁relax ed", + "▁in clusive", + "▁incl usive", + "纳入 失信被执行人名单", + "赌 博", + "▁demand ing", + "到期 后", + "▁G ene", + "▁Ge ne", + "▁Gen e", + "▁ Gene", + "▁sp acious", + "▁spac ious", + "等 的", + "▁E le", + "▁El e", + "▁ Ele", + "可爱 的", + "可 爱的", + "Point er", + "Po inter", + "P ointer", + "线 程", + "▁o re", + "▁or e", + "▁ ore", + "你 还", + "婆 婆", + "PR E", + "P RE", + "如实供述 自己的", + "如实供述自己 的", + "的 方程", + "支付 原告", + "cast le", + "cas tle", + "门 店", + "一点 点", + "一 点点", + "▁ 界", + "黑 白", + "▁$ {{", + "▁${ {", + "▁M AP", + "▁MA P", + "▁ MAP", + "长沙 市", + "Ign ore", + "▁irrad iation", + "uc lide", + "ucl ide", + "uclid e", + "co ok", + "c ook", + "▁bank rupt", + "un ge", + "ung e", + "u nge", + "开 学", + "PO S", + "P OS", + "hip s", + "hi ps", + "h ips", + "▁p riz", + "▁pr iz", + "▁pri z", + "se en", + "see n", + "s een", + "▁b lo", + "▁bl o", + "▁ blo", + "咨询 服务", + "he ap", + "hea p", + "▁govern ance", + "华 夏", + "form atics", + "format ics", + "▁T hai", + "▁Th ai", + "as sembly", + "▁ 样例", + "章 节", + "ur on", + "uro n", + "u ron", + "▁C ox", + "▁Co x", + "he ro", + "her o", + "h ero", + "▁Word Press", + "弥 补", + "▁acc red", + "▁ac cred", + "▁accr ed", + "▁im plants", + "▁implant s", + "▁impl ants", + "每一 位", + "每 一位", + "▁del ays", + "▁delay s", + "nN ame", + "n Name", + "▁determin ants", + "▁determinant s", + "▁ann ounc", + "in da", + "ind a", + "i nda", + "倒 是", + "▁need le", + "▁th rowing", + "▁throw ing", + "▁thr owing", + "▁thro wing", + "i q", + "发 光", + "的 时代", + "▁n eat", + "▁ne at", + "ot id", + "oti d", + "o tid", + "▁cou pon", + "▁coup on", + "rp c", + "r pc", + "▁分 类", + "▁ 分类", + "过程 中的", + "过程中 的", + "su ite", + "s uite", + "Lo op", + "L oop", + "投资 有限公司", + ") [", + "re size", + "res ize", + "▁Every one", + "al ib", + "ali b", + "a lib", + "东 区", + "AM L", + "A ML", + "的水 景", + "iv ic", + "ivi c", + "i vic", + "▁H it", + "▁Hi t", + "▁ Hit", + "导致 的", + "导 致的", + "▁A ld", + "▁Al d", + "sc ss", + "s css", + "▁s eller", + "▁se ller", + "▁sell er", + "▁sel ler", + "▁ seller", + "▁F err", + "▁Fe rr", + "▁Fer r", + "▁Be low", + "▁Bel ow", + "in formation", + "inform ation", + ") _", + "▁Co oper", + "均 可", + "▁b ones", + "▁bo nes", + "▁bone s", + "▁bon es", + "▁J e", + "市 级", + "▁Publish ing", + "\\\\ %", + "货 车", + "nB ACKGROUND", + "し た", + "突 发", + "提交 的", + "观 光", + "ene ath", + "e neath", + "▁re arr", + "▁rear r", + "nSt aff", + "nSta ff", + "H H", + "一 杯", + "既 有", + "▁phosph ate", + "▁phosphat e", + "▁ phosphate", + "ou nters", + "ount ers", + "ounter s", + "oun ters", + "I K", + "有人 说", + "有 人说", + "▁Car lo", + "▁Carl o", + "num bers", + "number s", + "n umbers", + "▁de terior", + "▁det erior", + "▁deter ior", + "关 村", + "小学 生", + "小 学生", + "▁o live", + "▁ol ive", + "▁reg ulates", + "▁regul ates", + "▁regulate s", + "SH A", + "S HA", + "▁Lib eral", + "▁overwhel ming", + "▁prec ious", + "▁vacc ination", + "▁vaccin ation", + "安 慰", + "水 质", + "▁pain ful", + "就行 了", + "就 行了", + "不 应", + "扮演 角色", + "▁r and", + "▁ra nd", + "▁ran d", + "▁ rand", + "之 道", + "au er", + "a uer", + "▁\" \\'", + "▁\"\\ '", + "▁ \"\\'", + "▁depart ure", + "▁e arning", + "▁ear ning", + "▁earn ing", + "▁ earning", + "▁insert ion", + "▁aff iliated", + "▁affil iated", + "▁affiliate d", + "▁is t", + "▁i st", + "▁ ist", + "subset eq", + "IS ING", + "nG roup", + "nGr oup", + "n Group", + "或 其他", + "B i", + "su do", + "s udo", + "缺席 判决", + "il les", + "ill es", + "ille s", + "最近 的", + "▁inhabit ants", + "党组 织", + "党 组织", + "am pa", + "amp a", + "▁op era", + "▁oper a", + "Null able", + "▁C ounter", + "▁Count er", + "▁Co unter", + "▁Cou nter", + "▁ Counter", + "▁Min or", + "▁Mi nor", + "▁Know ledge", + "▁conver ges", + "▁converge s", + "一个 数", + "一 个数", + "奇 迹", + "有 球队", + "▁show case", + "▁showc ase", + "ur red", + "urre d", + "init ialize", + "initial ize", + "▁B A", + "▁ BA", + "urrenc ies", + "ic ul", + "at tery", + "att ery", + "atter y", + "Oper ator", + "Op erator", + "▁Second ary", + "食品 安全", + "葡萄 酒", + "与此 同时", + "ia sis", + "ias is", + "i asis", + "▁T am", + "▁Ta m", + "▁Fire fox", + "▁Particip ants", + "▁S uite", + "▁Su ite", + "▁Suit e", + "▁ Suite", + "▁Municip ality", + "▁Municipal ity", + "环境 的", + "ct rine", + "ctr ine", + "▁circ ulating", + "al is", + "ali s", + "a lis", + "▁manif old", + "▁b ridges", + "▁bridge s", + "▁brid ges", + "▁prepar ations", + "▁preparation s", + "初始 化", + "▁ 通", + "▁qual ifying", + "▁qualify ing", + "▁Rob inson", + "▁Robin son", + "好 事", + "▁J ews", + "▁Jew s", + "▁Je ws", + "▁p ale", + "▁pal e", + "▁pa le", + "▁Con stant", + "▁Const ant", + "▁ Constant", + "CO UNT", + "▁crit ics", + "▁critic s", + "—— \\", + "— —\\", + "信 誉", + "▁no body", + "▁nob ody", + "▁ 职务", + "▁b ump", + "▁bu mp", + "▁H OLD", + "▁HO LD", + "▁ HOLD", + "N B", + "减 小", + "过去 的", + "过 去的", + "▁A lt", + "▁Al t", + "▁ Alt", + "▁abund ant", + "看 好", + "En able", + "E nable", + "你的 遭遇", + "▁IN TO", + "▁INT O", + "nl og", + "n log", + "有 过", + "Az ure", + "A zure", + "▁w eld", + "▁we ld", + "▁wel d", + "▁S core", + "▁Sc ore", + "▁ Score", + "ue nt", + "uen t", + "u ent", + "县 级", + "阳 区", + "判决 确定", + "的值 为", + "的 值为", + "▁Circ uit", + "饱 和", + "ver tical", + "vert ical", + "排 行", + "▁h un", + "▁hu n", + "▁ hun", + "另一 种", + "另 一种", + "Int ent", + "▁Writ ing", + "▁Wr iting", + "RE NT", + "REN T", + "R ENT", + "分 式", + "▁Att ribute", + "▁ Attribute", + "▁so ap", + "▁E SP", + "▁ES P", + "▁ ESP", + "▁the ta", + "▁th eta", + "▁ theta", + "▁t t", + "▁ tt", + "▁A UTH", + "▁AU TH", + "▁ AUTH", + "▁F eed", + "▁Fe ed", + "▁Fee d", + "▁ Feed", + "▁v ig", + "▁vi g", + "▁z oom", + "▁zoo m", + "▁ zoom", + "▁m inds", + "▁min ds", + "▁mind s", + "▁H ell", + "▁He ll", + "▁Hel l", + "▁Way ne", + "▁c DNA", + "She et", + "S heet", + "▁des ert", + "On line", + "O nline", + "▁c atalytic", + "▁catal ytic", + "▁pot entials", + "▁potential s", + "▁potent ials", + "· ·", + "ST ART", + "STA RT", + "STAR T", + "▁discipl ines", + "▁discipline s", + "sp aces", + "space s", + "s paces", + "喜 剧", + "▁ 梁", + "et ric", + "etr ic", + "▁ex ponent", + "老 百姓", + "▁ven ous", + "F uture", + "▁Mean while", + "赤 峰", + "br aska", + "bra ska", + "bras ka", + "小区 的水景", + "届 全国", + "Li ke", + "L ike", + "多少 小区的水景", + "酒 后", + "是 如何", + "▁m L", + "▁ mL", + "一个 人的", + "一个人 的", + "一 个人的", + "不违反 法律规定", + "不 违反法律规定", + "▁ather os", + "▁E c", + "▁orth ogonal", + "E v", + "WI SE", + "▁review ing", + "▁s pecially", + "▁spec ially", + "▁special ly", + "▁ specially", + "▁K night", + "▁Kn ight", + "播 出", + "▁PROVID ED", + "l b", + "年 内", + "战 役", + "速 率", + "我已 经", + "我 已经", + "数据 显示", + "▁g er", + "▁ge r", + "▁ ger", + "▁ap artments", + "▁apart ments", + "▁apartment s", + "与 发展", + "nF inal", + "nFin al", + "n Final", + "太多 了", + "太 多了", + "▁l ob", + "▁lo b", + "▁ lob", + "额 定", + "an imation", + "anim ation", + "学 费", + "up tools", + "upt ools", + "A h", + "知识 点", + "▁sp reading", + "▁spread ing", + "▁Str ateg", + "▁Strat eg", + "▁Z ero", + "▁Ze ro", + "▁ Zero", + "去 找", + "葫 芦", + "因 其", + "苏州 市", + "苏 州市", + "▁dis ruption", + "▁disrupt ion", + "一 篇", + "\"/ >", + "\" />", + "▁' '\\", + "▁'' \\", + "nav igation", + "nc on", + "nco n", + "n con", + "rib utor", + "ribut or", + "▁disappe ar", + "▁e nde", + "▁en de", + "▁end e", + "▁ ende", + "all owed", + "allow ed", + "allo wed", + "真 题", + "▁rad ial", + "▁ra dial", + "▁radi al", + "▁l amp", + "▁la mp", + "▁lam p", + "▁in cons", + "▁inc ons", + "▁incon s", + "con stant", + "const ant", + "▁Pass word", + "▁ Password", + "t ikz", + "副 院长", + "履行 完毕", + "▁Eval uation", + "▁ Evaluation", + "▁# \\", + "▁ #\\", + "▁be aches", + "▁beach es", + "单调 性", + "第五百一十九 条的规定", + "第五百一十九条 的规定", + "▁Mor ris", + "▁Morr is", + "▁de note", + "▁den ote", + "小数 点", + "离 不开", + "▁P ull", + "▁Pu ll", + "▁Pul l", + "▁ Pull", + "▁special ty", + "水 晶", + "▁micro bi", + "an nah", + "ann ah", + "anna h", + "▁preval ent", + "▁prev alent", + "▁mat hematic", + "▁math ematic", + "▁d ub", + "▁du b", + "▁ dub", + "▁Never theless", + "婚 前", + "尔 夫", + "▁D raft", + "的 食物", + "joy s", + "jo ys", + "j oys", + "cur l", + "cu rl", + "c url", + "经纪 人", + "自 定义", + "汉语 词语", + "之 日", + "较 小", + "贩卖 毒品罪", + "终 止", + "xy z", + "x yz", + "appro priate", + "侧 面", + "建 模", + "▁m apped", + "▁map ped", + "▁ma pped", + "▁ mapped", + "▁L anc", + "▁La nc", + "▁Lan c", + "id y", + "i dy", + "▁s ynth", + "▁sy nth", + "▁synt h", + "▁syn th", + "放 射", + "线 条", + "nW ould", + "n Would", + "ha rm", + "har m", + "h arm", + "uls ion", + "SU CCESS", + "杆 菌", + "M N", + "士 兵", + "es ium", + "esi um", + "机 身", + "不 爱", + "或 打车", + "我没 有", + "我 没有", + "玩 法", + "Ph oto", + "Phot o", + "Mu t", + "M ut", + "▁ 扮演角色", + "▁cru ise", + "必 需", + "无 所", + "长 为", + "期 满", + "甲 醛", + "菜 品", + "▁S urface", + "▁Sur face", + "▁Surf ace", + "▁ Surface", + "class method", + "ts et", + "t set", + "港 市", + "▁l emon", + "▁le mon", + "▁melan oma", + "十 章", + "▁e ch", + "▁ec h", + "▁ ech", + "M achine", + "To day", + "T oday", + "▁d irt", + "▁di rt", + "▁dir t", + "下 滑", + "prior ity", + "p riority", + "abs olute", + "年 被", + "底 部", + "路 段", + "▁p ussy", + "op us", + "o pus", + "▁ 当", + "ba ge", + "bag e", + "b age", + "Si nce", + "Sin ce", + "S ince", + "▁S ynt", + "▁Sy nt", + "▁Syn t", + "▁Dist ribution", + "▁ Distribution", + "显示 屏", + "ac hi", + "ach i", + "a chi", + "▁nice ly", + "▁nic ely", + "▁ 你", + "十 万", + "▁psych ology", + "▁psycho logy", + "▁inst ability", + "br ead", + "bre ad", + "b read", + "资源 的", + "▁form ally", + "▁formal ly", + "▁instrument al", + "mail to", + "犯 故意伤害罪", + "正 弦", + "▁o uts", + "▁out s", + "▁ou ts", + "▁ outs", + "▁trans formations", + "▁transform ations", + "▁transformation s", + "▁a sh", + "▁as h", + "▁ ash", + "▁t rails", + "▁tr ails", + "▁tra ils", + "▁trail s", + "▁tun ed", + "▁tune d", + "▁tu ned", + "▁c omed", + "▁com ed", + "▁co med", + "▁come d", + "▁ comed", + "▁ple asant", + "▁pleas ant", + "▁ pleasant", + "授 课", + "漏 洞", + "这 块", + "途 中", + "in et", + "ine t", + "i net", + "忽 然", + "密 集", + "um i", + "u mi", + "没 错", + "退 房", + "▁d type", + "▁dt ype", + "▁ dtype", + "繁 华", + "' ;", + "▁' <", + "▁cont acted", + "▁contact ed", + "tem perature", + "nT ime", + "nTim e", + "n Time", + "▁s parse", + "▁sp arse", + "▁spars e", + "▁ sparse", + "▁dis cre", + "▁disc re", + "门 窗", + ")\" ,", + ") \",", + "t C", + "经 贸", + "的 表达", + "re vision", + "rev ision", + "L ambda", + "▁Char lotte", + "不 让", + "活 泼", + "▁in tend", + "▁int end", + "ts td", + "t std", + "ar ness", + "arn ess", + "▁mod est", + "▁mode st", + "▁mo dest", + "▁modes t", + "大 火", + "▁N urs", + "▁Nur s", + "▁Nu rs", + "▁g i", + "▁ gi", + "Pub lish", + "▁s ettle", + "▁se ttle", + "▁set tle", + "▁sett le", + "ag ar", + "aga r", + "a gar", + "脑 子", + "▁P ic", + "▁Pi c", + "▁ Pic", + "▁L etter", + "▁Let ter", + "▁ Letter", + "标 注", + "nF ree", + "nFr ee", + "nFre e", + "n Free", + "心 肌", + "义 乌", + "▁S weet", + "▁Swe et", + "▁run ners", + "▁runner s", + "太 空", + "og raft", + "ograf t", + "▁Set up", + "▁ Setup", + "他 还", + "虚 假", + "总 面积", + "▁t oss", + "▁to ss", + "在 上", + "nn ot", + "nno t", + "n not", + "▁首 发", + "▁ 首发", + "▁Te levision", + "▁Tele vision", + "没 了", + "▁t at", + "▁ta t", + "▁ tat", + "▁pain ters", + "▁paint ers", + "▁pa inters", + "▁painter s", + "in ces", + "ince s", + "inc es", + "amil ies", + "ami lies", + "谁 能", + "程度 的", + "程 度的", + "RNA s", + "RN As", + "ound ed", + "oun ded", + "被 动", + "除此 之外", + "▁sequ el", + "▁seq uel", + "中华人民共和国 民法", + "nE ducation", + "te sy", + "tes y", + "▁aud iences", + "▁audience s", + "▁audi ences", + "NA L", + "N AL", + "▁L isa", + "▁Li sa", + "▁Lis a", + "▁ 籍贯", + "ET HER", + "ETH ER", + "E THER", + "▁suscept ible", + "开 工", + "▁home less", + "▁hom eless", + "per or", + "pe ror", + "ave rage", + "aver age", + "a verage", + "五 条", + "抽 象", + "本案 中", + "理工 大学", + "▁re open", + "▁war ned", + "▁warn ed", + "关 爱", + "To m", + "T om", + "per ial", + "pe rial", + "p erial", + "th ink", + "thi nk", + "thin k", + "▁ 原", + "着 重", + "▁intraven ous", + "▁Ther apy", + "网 红", + "▁l ingu", + "▁lin gu", + "▁ling u", + "▁maint ains", + "▁maintain s", + "mo ther", + "mot her", + "m other", + "▁le verage", + "▁lever age", + "万 物", + "时期 的", + "时 期的", + "三 等奖", + "女 的", + "ng et", + "nge t", + "n get", + "央 视", + "▁sent ences", + "▁sentence s", + "贝 壳", + "▁e ager", + "fa ct", + "fac t", + "f act", + "Or gan", + "Org an", + "套 装", + "▁u ma", + "▁um a", + "▁ uma", + "不 利", + "▁Ev ans", + "▁Evan s", + "▁Eva ns", + "▁Sam uel", + "▁S ad", + "▁Sa d", + "Pl ot", + "P lot", + "▁F resh", + "▁Fr esh", + "▁Fre sh", + "▁Fres h", + "▁bo ats", + "▁boat s", + "▁curv ature", + "背景 下", + "▁EX PRESS", + "习 题", + "▁A gent", + "▁Ag ent", + "▁Age nt", + "▁ Agent", + "开 水", + "STR ING", + "在我 国", + "在 我国", + "越 好", + "at oes", + "ato es", + "▁E num", + "▁En um", + "▁ Enum", + "▁launch ing", + "开 机", + "land o", + "la ndo", + "lan do", + "l ando", + "▁f ancy", + "▁fa ncy", + "▁fan cy", + "nh ow", + "n how", + "et ter", + "ette r", + "ett er", + "nM usic", + "nMus ic", + "n Music", + "▁context s", + "▁refr iger", + "机 床", + "ua rt", + "u art", + "自 助", + "▁un t", + "▁u nt", + "▁ unt", + "ob i", + "o bi", + "▁off line", + "▁ offline", + "▁p unct", + "▁pun ct", + "author s", + "auth ors", + "a uthors", + "Exec utor", + "▁cor ners", + "▁corner s", + "▁corn ers", + "介 入", + "▁hard ly", + "咳 嗽", + "Y W", + "{ '", + "沉 淀", + "[] ;\\", + "[ ];\\", + "ns up", + "n sup", + "一直 是", + "ra ul", + "r aul", + "▁T es", + "▁Te s", + "▁support ive", + "邻 居", + "Work er", + "pip eline", + "pipe line", + "p ipeline", + "FR OM", + "F ROM", + "▁in ev", + "右 边", + "▁L ex", + "▁Le x", + "▁ Lex", + "基 部", + "▁neut roph", + "▁neutr oph", + "Us ing", + "U sing", + "▁hand ed", + "▁han ded", + "▁ handed", + "Ax is", + "en ic", + "eni c", + "e nic", + "crypt o", + "c rypto", + "▁ б", + "全 区", + "▁u k", + "▁ uk", + "▁se aled", + "▁sea led", + "▁seal ed", + ">{ \\", + "> {\\", + "Pl ace", + "▁p sy", + "▁ps y", + "▁ psy", + "▁G rey", + "▁Gr ey", + "▁Gre y", + "dep ends", + "depend s", + "▁cat heter", + "▁cath eter", + "▁cathe ter", + "▁sequ ential", + "得 好", + "second ary", + "进 取", + "女孩 子", + "女 孩子", + "Mon th", + "Mo nth", + "Mont h", + "integr ation", + "我们 会", + "▁G enerated", + "▁Gener ated", + "▁Gen erated", + "▁Gene rated", + "▁Generate d", + "▁ Generated", + "▁immun os", + "▁immuno s", + "▁un ittest", + "▁unit test", + "▁uni ttest", + "▁ unittest", + "见 的", + "k ubernetes", + "▁z u", + "▁ zu", + "ba g", + "b ag", + "▁E M", + "▁ EM", + "Node s", + "No des", + "N odes", + "el ian", + "eli an", + "elia n", + "▁vulner ability", + "▁) ,", + "▁ ),", + "kd ir", + "k dir", + "í n", + "指 向", + "▁安 装", + "▁ 安装", + "在 该", + "最 有", + "▁ 单", + "▁J oint", + "▁Jo int", + "▁Join t", + "▁ Joint", + "码 头", + "fa re", + "far e", + "f are", + "▁B ond", + "▁Bo nd", + "▁Bon d", + "P ush", + "ar us", + "aru s", + "a rus", + "仲裁 委员会", + "插 槽", + "球 场", + "▁O m", + "▁not ify", + "▁ notify", + "In tel", + "Int el", + "ophag eal", + "ophage al", + "刚 才", + "干 嘛", + "Le n", + "L en", + "il ine", + "ili ne", + "ilin e", + "i line", + "论 述", + "bu y", + "b uy", + "现 羁押", + "巴 巴", + "rib utors", + "ribut ors", + "ributor s", + "Ad v", + "A dv", + "▁news papers", + "▁newsp apers", + "▁newspaper s", + "▁entertain ing", + "▁entert aining", + "vi d", + "v id", + "坚 守", + "▁Dr agon", + "▁Drag on", + "成 型", + "▁Sch olar", + "生 肖", + "▁Program ming", + "▁ Programming", + "▁h orn", + "▁hor n", + "▁ho rn", + "▁ horn", + "▁station ary", + "}_{ \\\\", + "}_ {\\\\", + "} _{\\\\", + "▁o bs", + "▁ob s", + "▁ obs", + "▁pull ing", + "▁pul ling", + "号民事判决书 的本次执行程序", + "▁pro jected", + "▁project ed", + "▁proj ected", + "丧 失", + "与被告 离婚", + "▁Mur ray", + "的 无", + "不 属于", + "ad equ", + "ade qu", + "小 镇", + "▁tw ist", + "▁tr unc", + "▁ trunc", + "▁Am sterdam", + "▁D oor", + "▁Do or", + "技术 服务", + "▁prox imal", + "▁ 许", + "▁s ensit", + "▁sens it", + "▁sen sit", + "▁fo am", + "mb ed", + "m bed", + "pr eter", + "pre ter", + "pret er", + "▁respon ding", + "▁respond ing", + "▁ responding", + "定 量", + "▁con clusions", + "▁conclusion s", + ")} \\\\", + ")}\\ \\", + ") }\\\\", + "▁B rew", + "▁Br ew", + "▁Bre w", + "▁cyl ind", + "lo yd", + "loy d", + "▁inher ited", + "▁inherit ed", + "行政处罚 决定", + "serv let", + "▁ 谢", + "▁k iller", + "▁kil ler", + "▁kill er", + "▁ki ller", + "次 韵", + "足够 的", + "中的 应用", + "中 的应用", + "▁L ith", + "▁Li th", + "▁Lit h", + "respons ive", + "▁rel atives", + "▁relative s", + "资 深", + "▁N R", + "▁ NR", + "▁depos its", + "▁deposit s", + "▁M umbai", + "▁Com merce", + "▁ Commerce", + "▁s erialize", + "▁ser ialize", + "▁serial ize", + "▁ serialize", + "▁H em", + "▁He m", + "em ies", + "emi es", + "步 伐", + "to do", + "t odo", + "le uk", + "▁l ocus", + "▁loc us", + "▁lo cus", + "天 才", + "▁O rche", + "▁Or che", + "Exec ution", + "西 兰", + "▁Glas gow", + "借款 合同", + "管理 部门", + "你 也", + "Co st", + "Cos t", + "C ost", + "▁c ave", + "▁ca ve", + "▁cav e", + "▁qu i", + "▁q ui", + "又 名", + "年 经", + "Ins ert", + "▁i cons", + "▁icon s", + "▁ic ons", + "▁ icons", + "▁he ated", + "▁heat ed", + "L o", + "▁p icks", + "▁pick s", + "▁pi cks", + "▁pic ks", + "nS pe", + "nSp e", + "n Spe", + "▁fol lic", + "ograph er", + "ograp her", + "而 出", + "▁D iff", + "▁Di ff", + "▁ Diff", + "▁liter acy", + "▁\" _", + "▁ \"_", + "▁ra ises", + "▁raise s", + "▁ raises", + "an ium", + "ani um", + "▁Ar men", + "▁Arm en", + "▁in frared", + "▁infr ared", + "▁ infrared", + "EL L", + "E LL", + "▁DA MAGES", + "▁DAMAGE S", + "交 给", + "Set up", + "ed e", + "e de", + "he ses", + "hes es", + "N s", + "争 吵", + "▁M ent", + "▁Me nt", + "▁Men t", + "▁G ay", + "▁Ga y", + "余 额", + "Buf f", + "Bu ff", + "B uff", + "▁ ↑", + "][ ]", + "] []", + "ch en", + "che n", + "c hen", + "行为 的", + "科技 创新", + "狮 子", + "▁cent r", + "▁ce ntr", + "▁s ums", + "▁su ms", + "▁sum s", + "b m", + "no ld", + "nol d", + "n old", + "▁gar lic", + "▁over lap", + "▁overl ap", + "▁d uo", + "▁du o", + "▁double s", + "▁dou bles", + "▁doub les", + "▁un changed", + "▁po em", + "▁reg ulator", + "▁regul ator", + "儿 的", + "▁Val idation", + "▁Valid ation", + "▁ Validation", + "行政 诉讼", + "▁sufficient ly", + "▁f ence", + "▁fe nce", + "▁fen ce", + "锅 中", + "司法 鉴定", + "▁ar ising", + "▁pe aks", + "▁peak s", + "为 核心", + "等方面 的", + "等 方面的", + "支付 宝", + "▁N ova", + "▁No va", + "▁Nov a", + "越来越 多的", + "越来越多 的", + "卡 片", + "间 接", + "▁sim ulate", + "nCont act", + "n Contact", + "sp y", + "s py", + "▁lymph oma", + "SE D", + "S ED", + "bl asts", + "blast s", + "bla sts", + "▁Direct ory", + "▁Director y", + "▁ Directory", + "行 星", + "的 城市", + "▁en velope", + "▁envelop e", + "外 卖", + "▁ 于", + "多 吃", + "▁c rate", + "▁cr ate", + "▁cra te", + "▁ crate", + "▁Ge ometry", + "▁Geo metry", + "▁ Geometry", + "re z", + "r ez", + "al chemy", + "alc hemy", + "▁hydro x", + "▁hyd rox", + "▁ hydrox", + "▁bott les", + "▁bottle s", + "我 来", + "▁bre eding", + "▁breed ing", + "▁executive s", + "▁execut ives", + "▁Under standing", + "用 手", + "是 其", + "en ue", + "enu e", + "am pton", + "amp ton", + "▁hesit ate", + "Form s", + "For ms", + "F orms", + "直 属", + ")} $", + ") }$", + "ic ion", + "ici on", + "icio n", + "▁Econ omics", + "▁Economic s", + "▁N EW", + "▁NE W", + "▁ NEW", + "期限 届满", + "光 滑", + "AT AB", + "ATA B", + "pr ints", + "print s", + "l m", + "▁R and", + "▁Ra nd", + "▁Ran d", + "▁out lined", + "▁outline d", + "▁comp anion", + "紫 外", + "▁n ail", + "▁na il", + "▁avoid ing", + "开 门", + "▁K rist", + "▁Kr ist", + "▁Kris t", + "▁Con cept", + "▁ Concept", + "▁L if", + "▁Li f", + "▁ Lif", + "▁Di amond", + "Ex press", + "Exp ress", + "Expr ess", + "▁U g", + "北 大", + "Ac cept", + "向本院 申请强制执行", + "向本院申请 强制执行", + "▁gen etics", + "▁genetic s", + "▁py test", + "▁pyt est", + "▁ pytest", + "▁im ply", + "▁imp ly", + "▁impl y", + "inter faces", + "interface s", + "人民 的", + "▁N at", + "▁Na t", + "al ter", + "alt er", + "path etic", + "pat hetic", + "Method s", + "遭 受", + "nM en", + "nMe n", + "n Men", + "▁A lp", + "▁Al p", + "state ment", + "stat ement", + "▁kn ife", + "考 古", + "Ex it", + "E xit", + "▁C AN", + "▁CA N", + "▁ CAN", + "证 监会", + "ss on", + "s son", + "▁Bl ues", + "▁Blue s", + "▁Blu es", + "nE d", + "n Ed", + "来 进行", + "▁W a", + "某某 的", + "某 某的", + "it ic", + "iti c", + "i tic", + "个 别", + "底 层", + "sp ark", + "s park", + "专 栏", + "▁m b", + "▁ mb", + "不断 地", + "▁T ed", + "▁Te d", + "▁con gress", + "▁congr ess", + "▁cong ress", + "吾 尔", + "在我 们", + "在 我们", + "▁cons umed", + "▁consum ed", + "▁consume d", + "首先 要", + "Pay ment", + "品 的", + "推出 的", + "推 出的", + "ey er", + "eye r", + "e yer", + "▁M ak", + "▁Ma k", + "▁immun ohist", + "▁immuno hist", + "替 换", + "▁wis dom", + "土 木", + "过去 了", + "过 去了", + "▁N ice", + "▁Nic e", + "▁Ni ce", + "▁determ inant", + "▁determin ant", + "▁rem inder", + "▁remind er", + "▁remin der", + "os er", + "ose r", + "o ser", + "ill us", + "▁en joys", + "▁enjoy s", + "▁auto immune", + "▁P P", + "▁ PP", + "j p", + "Exec ute", + "绝 望", + "感觉 到", + "益 智", + "▁Ch rom", + "▁act in", + "▁ac tin", + "▁ actin", + "仓 储", + "▁path ophys", + "▁T u", + "了 起来", + "的分 析", + "的 分析", + "周 知", + "▁I E", + "▁ IE", + "▁n est", + "▁ne st", + "▁ nest", + "▁Man hattan", + "f u", + "▁c omo", + "▁com o", + "▁co mo", + "Mi cro", + "M icro", + "回 国", + "▁J O", + "▁ JO", + "▁con verting", + "▁conver ting", + "▁convert ing", + "上 方", + "感 应", + "nOut put", + "n Output", + "每 小时", + "▁c anal", + "▁can al", + "▁ca nal", + "▁M aking", + "▁Ma king", + "▁Mak ing", + "▁ Making", + "我就 是", + "我 就是", + "Wi ll", + "Wil l", + "W ill", + "ple ase", + "p lease", + "Name space", + "Names pace", + "N amespace", + "▁san ction", + "皇 家", + "Ch ain", + "▁cre ator", + "▁creat or", + "▁ creator", + "热 量", + "Page s", + "Pa ges", + "Pag es", + "P ages", + "▁col ony", + "▁colon y", + "ca s", + "c as", + "▁ 种", + "▁s ans", + "▁sa ns", + "▁san s", + "▁P G", + "▁ PG", + "我 又", + "tc p", + "t cp", + "op les", + "ople s", + "opl es", + "o ples", + "▁num erator", + "▁numer ator", + "▁Mor ning", + "▁B rig", + "▁Br ig", + "▁Bri g", + "网 游", + "有机 会", + "有 机会", + "极大 的", + "极 大的", + "gi ven", + "give n", + "g iven", + "▁Y ellow", + "▁default s", + "▁ defaults", + "▁p atches", + "▁pat ches", + "▁patch es", + "▁ patches", + "▁Co ach", + "▁P OST", + "▁PO ST", + "▁POS T", + "▁ POST", + "▁correl ate", + ">\" ,", + "> \",", + "▁Y an", + "▁Ya n", + "▁Book mark", + "▁polar ization", + "第一百四十五 条第一款规定", + "第一百四十五条第一款 规定", + "nc d", + "n cd", + "ish ops", + "ishop s", + "i shops", + "为 企业", + "▁ben ign", + "剧 院", + "iss ance", + "issa nce", + "issan ce", + "公 证", + ":] \\", + ": ]\\", + "不仅 是", + "roc ery", + "并给出 你的", + "的长 度", + "的 长度", + "▁not ifications", + "▁notification s", + "▁ notifications", + "it ual", + "itu al", + "i tual", + "▁Hon or", + "▁Ho nor", + "▁L esser", + "▁Less er", + "▁Les ser", + "▁G etting", + "▁Get ting", + "▁ Getting", + "保 定", + "的人 员", + "的 人员", + "▁Y ang", + "▁Yan g", + "▁Ya ng", + "▁CON TRACT", + "▁Char lie", + "▁Charl ie", + "▁veter ans", + "▁veteran s", + "▁com plication", + "▁compl ication", + "人 不", + "Mus ic", + "M usic", + "▁Oper a", + "▁Op era", + "▁ass ists", + "▁assist s", + "▁tend ency", + "平 静", + "it ime", + "iti me", + "i time", + "▁lib eral", + "恶 魔", + "dens ity", + "d ensity", + "Z ero", + "死 刑", + "降 价", + "Hash Map", + "▁work out", + "is ch", + "isc h", + "i sch", + "▁F DA", + "▁FD A", + "▁ FDA", + "号民事判决书 已经发生法律效力", + "里 有", + "uit ar", + "ui tar", + "u itar", + "噪 声", + "方 可", + "TO P", + "T OP", + "借 据", + "笑 容", + "w y", + "控制 器", + "加入 中国共产党", + "DIR ECT", + "DI RECT", + "交易 所", + "▁autom otive", + "▁cal ibration", + "▁calibr ation", + "ew ay", + "e way", + "恶 劣", + "nU s", + "n Us", + "汉 典", + "注 定", + "组织 部", + "的 对", + "维 吾尔", + "安 心", + "nCurrent ly", + "n Currently", + "td ata", + "t data", + "催 告", + "an gan", + "ang an", + "anga n", + "并 通过", + "▁experimental ly", + "▁experiment ally", + "E Q", + "q t", + "F s", + "us a", + "u sa", + "岁以下 的", + "岁 以下的", + "nE dit", + "nEd it", + "n Edit", + "申请执行人 于", + "PH P", + "P HP", + "min a", + "mi na", + "m ina", + "困 境", + "▁SH ALL", + "▁SHA LL", + "▁M asters", + "▁Ma sters", + "▁Master s", + "▁Mas ters", + "▁Mast ers", + "▁prem ature", + "浩 特", + "ra wl", + "raw l", + "▁nucle i", + "▁redu nd", + "▁red und", + "▁after wards", + "▁afterward s", + "▁C old", + "▁Col d", + "▁Co ld", + "▁s ucc", + "▁su cc", + "▁suc c", + "之 时", + "▁B row", + "▁Br ow", + "▁Bro w", + "▁ed itors", + "▁editor s", + "▁edit ors", + "л я", + "▁B aker", + "▁Ba ker", + "▁Bak er", + "▁B ass", + "▁Bas s", + "▁Ba ss", + "re ason", + "reas on", + "rea son", + "Time stamp", + "Tim estamp", + "玩 笑", + "▁w ise", + "▁wis e", + "▁wi se", + "▁ wise", + "业 的", + "售后 服务", + "▁not ably", + "▁K il", + "▁Ki l", + "▁pharmac ological", + "▁pharmacologic al", + "和国 家", + "和 国家", + "PL AY", + "PLA Y", + "P LAY", + "▁nic ot", + "▁ni cot", + "Di stance", + "Dist ance", + "D istance", + "检 索", + "dest ination", + "nD ep", + "nDe p", + "n Dep", + "之后 的", + "之 后的", + "▁in structor", + "▁instruct or", + "有 无", + "▁gener ous", + "▁gene rous", + "▁d iox", + "▁di ox", + "月 初", + "▁renew able", + "▁t rap", + "▁tr ap", + "▁tra p", + "▁re wards", + "▁reward s", + "调 度", + "pr im", + "pri m", + "p rim", + "▁s oy", + "▁so y", + "PRE FIX", + "P REFIX", + "D ictionary", + "et ta", + "ett a", + "莫 名", + "ot he", + "oth e", + "o the", + "▁T rain", + "▁Tr ain", + "▁Tra in", + "▁ Train", + "▁t il", + "▁ti l", + "▁ til", + "af fold", + "aff old", + "主 板", + "W i", + "盛 世", + "的 方向", + "▁M olecular", + "▁U nd", + "▁Un d", + "商贸 有限公司", + "index Of", + "▁D river", + "▁Dr iver", + "▁Drive r", + "▁ Driver", + "▁viol ation", + "▁vi olation", + "温 和", + "产 后", + "永 恒", + "▁sub project", + "ra its", + "rait s", + "nT H", + "n TH", + "Off ice", + "更 快", + "▁per ox", + "▁pe rox", + "▁qu oted", + "▁quote d", + "▁quot ed", + "▁quo ted", + "随 之", + "内 科", + "zym e", + "zy me", + "z yme", + "▁Project s", + "▁ Projects", + "恐 怕", + "负 债", + "奶 茶", + "十六 章", + "▁P anel", + "▁Pan el", + "▁Pa nel", + "▁ Panel", + "给出的 选项中", + "▁st rive", + "▁str ive", + "▁stri ve", + "法律文书 确定的义务", + "坚 信", + "ATA BASE", + "ATAB ASE", + ":: \\", + ": :\\", + "化 成", + "▁rig id", + "▁ri gid", + "也很 好", + "也 很好", + "▁C arter", + "▁Car ter", + "▁Cart er", + "最 少", + "if def", + "ra b", + "r ab", + "ount ain", + "oun tain", + "的人 才", + "的 人才", + "▁insp iring", + "▁inspir ing", + "▁format ting", + "▁dest inations", + "▁destination s", + "热 血", + "走 在", + "en ario", + "ena rio", + "nN orth", + "nNor th", + "n North", + "东 海", + "we ather", + "大 胆", + "▁arg v", + "▁ argv", + "▁B rain", + "▁Br ain", + "▁Bra in", + "▁ Brain", + "▁neg lig", + "脚 步", + "▁screen ed", + "简 约", + "做出 了", + "做 出了", + "el er", + "ele r", + "e ler", + "▁j er", + "▁je r", + "▁ jer", + "▁own s", + "▁ow ns", + "▁ owns", + "纪 检", + "案 外人", + "Re po", + "Rep o", + "感 知", + "B atch", + "不 容", + "▁CO MP", + "▁COM P", + "▁ COMP", + "as ting", + "ast ing", + "▁Stat istical", + "▁carb ohyd", + "▁f i", + "▁ fi", + "ew ater", + "e water", + "re present", + "rep resent", + "repre sent", + "▁Mar shall", + "▁Marsh all", + "▁Mars hall", + "▁Marshal l", + "实 物", + "停车 场", + "第一百零 二条", + "ro ng", + "ron g", + "r ong", + "狗 狗", + "▁pot assium", + "/ @", + "场 比赛", + "as ma", + "asm a", + "nMedal ists", + "▁P ER", + "▁PE R", + "▁ PER", + "▁h unt", + "▁hun t", + "▁hu nt", + "▁Ch oice", + "▁Cho ice", + "▁ Choice", + "▁anth rop", + "▁att acked", + "▁attack ed", + "可在 裁定书送达之日起十日内", + "力 求", + "难 得", + "nN or", + "nNo r", + "n Nor", + "银行 卡", + "▁H istorical", + "▁Histor ical", + "▁Historic al", + "▁de aler", + "▁deal er", + "意义 的", + "▁R aw", + "▁Ra w", + "▁ Raw", + "▁challeng ed", + "▁challenge d", + "▁inter acting", + "▁interact ing", + "X P", + "九 年", + "缴 费", + "互 为", + "我会 给你", + "▁where ver", + "we n", + "w en", + "▁Ir anian", + "▁Iran ian", + "ho urs", + "hour s", + "hou rs", + "h ours", + "▁sort ing", + "▁sor ting", + "▁sever ely", + "▁severe ly", + "鼻 子", + "▁prim itive", + "因为 他", + "因 为他", + "▁u id", + "▁ui d", + "▁ uid", + "也 都", + "只能 说", + "t static", + "遇到 了", + "遇 到了", + "▁h erb", + "▁he rb", + "▁her b", + "▁clin icians", + "▁clinic ians", + "▁clinician s", + "ri se", + "ris e", + "r ise", + "ra h", + "r ah", + "▁Arab ia", + "miss ing", + "mis sing", + "m issing", + "中 考", + "所 致", + "as onic", + "ason ic", + "修 建", + "file path", + "培训 班", + "Al ert", + "Ale rt", + "打 包", + "▁Bar bara", + "▁Barb ara", + "轴 对称", + "▁enh ances", + "▁enhance s", + "历 任", + "包 裹", + "环 球", + "in come", + "inc ome", + "皇 后", + "er set", + "ers et", + "二〇一 三年", + "▁in spect", + "▁ins pect", + "▁insp ect", + "▁ inspect", + "很多 的", + "很 多的", + "ac hy", + "ach y", + "a chy", + "买卖 合同纠纷一案中", + "买卖合同纠纷一案 中", + "买卖合同 纠纷一案中", + "买卖合同纠纷 一案中", + "▁Inter esting", + "▁Interest ing", + "日生 育", + "日 生育", + "lu a", + "l ua", + "贵 族", + "处分 自己的", + "转 为", + "▁nec rosis", + "要 用", + ": $", + "抱 怨", + "st en", + "ste n", + "s ten", + "▁ro bots", + "▁rob ots", + "▁robot s", + "ri vers", + "riv ers", + "river s", + "rive rs", + "r ivers", + "▁I ter", + "▁It er", + "▁ Iter", + "真 人", + "▁V E", + "▁ VE", + "交纳 办法", + "qu o", + "q uo", + "科 院", + "al led", + "all ed", + "alle d", + "if ice", + "ific e", + "ifi ce", + "▁con dens", + "▁cond ens", + "▁employ ing", + "▁decor ated", + "▁decorate d", + "最小 的", + "最 小的", + "▁F at", + "▁Fa t", + "▁ Fat", + "ip es", + "ipe s", + "i pes", + "ft ime", + "f time", + "▁M agn", + "▁Mag n", + "▁Ma gn", + "▁O H", + "▁ OH", + "及 以上", + "的事实 清楚", + "的 事实清楚", + "▁Le ban", + "▁travel s", + "▁tra vels", + "▁trav els", + "sc he", + "sch e", + "s che", + "L i", + "IC ES", + "ICE S", + "I CES", + "▁t ogg", + "▁to gg", + "▁def inite", + "▁definit e", + "▁defin ite", + "热 闹", + "邯 郸", + "F etch", + "认定 事实", + "▁For ces", + "▁Force s", + "莲 花", + "饲 养", + "学 金", + "实 事", + "这 几", + "mb ox", + "m box", + "领导 干部", + "ex clude", + "芙 蓉", + "õ es", + "▁accept ing", + "你认为 正确的答案", + "▁P le", + "▁Pl e", + "开发 者", + "div ision", + "di vision", + "▁C hemical", + "▁Chem ical", + "▁T ak", + "▁Ta k", + "ce land", + "cel and", + "c eland", + "▁tour ists", + "▁tourist s", + "id ade", + "ida de", + "idad e", + "西 瓜", + "us ters", + "ust ers", + "uster s", + "u sters", + "▁Unity Engine", + "传 动", + "mo vie", + "mov ie", + "m ovie", + "▁quant ify", + "同类 项", + "SO URCE", + "par k", + "pa rk", + "p ark", + "▁Roman ia", + "▁Ro mania", + "▁Rom ania", + "▁Roma nia", + "▁Arg ument", + "▁ Argument", + "▁F BI", + "▁FB I", + "货 运", + "ge o", + "g eo", + "进行 审理", + "▁ur gent", + "▁urg ent", + "▁urge nt", + "▁grad uates", + "▁gradu ates", + "▁graduate s", + "红 军", + "▁J azz", + "▁Ja zz", + "▁H S", + "▁ HS", + "开 创", + "显示 器", + "▁p ressing", + "▁pr essing", + "▁pres sing", + "▁press ing", + "▁qu alities", + "▁qual ities", + "接下来 的", + "接 下来的", + "合同履行 地", + "▁out let", + "▁ou tlet", + "▁Pro gress", + "▁ Progress", + "pt s", + "p ts", + "os ition", + "osit ion", + "osi tion", + "▁U C", + "▁ UC", + "▁| ||", + "▁|| |", + "▁ |||", + "一 千", + "pro ved", + "pr oved", + "prov ed", + "prove d", + "power ed", + "pow ered", + "ev ens", + "even s", + "eve ns", + "e vens", + "da o", + "d ao", + "Br o", + "B ro", + "▁ 应用", + "loqu ent", + "▁prior it", + "▁priori t", + "▁rig orous", + "▁l obby", + "▁lob by", + "▁P resent", + "▁Pres ent", + "▁Pre sent", + "▁ Present", + "▁m icrobial", + "▁micro bial", + "▁microbi al", + "分 区", + "▁p ools", + "▁po ols", + "▁pool s", + "▁In terior", + "▁Int erior", + "▁Inter ior", + "长方 形", + "长 方形", + "出 处", + "受 损", + "整 形", + "经济 开发区", + "▁J ustin", + "▁Just in", + "▁un limited", + "add EventListener", + "ul ly", + "ull y", + "ur ia", + "uri a", + "u ria", + "▁g li", + "▁gl i", + "大 哥", + "省 市", + "ra c", + "r ac", + "nPre vious", + "n Previous", + "▁ É", + "FO R", + "F OR", + "最小 值", + "ke l", + "k el", + "▁evolution ary", + "by e", + "b ye", + "▁L eader", + "▁Le ader", + "▁Lead er", + "▁d istant", + "▁dist ant", + "▁di stant", + "▁manufact ure", + "主 播", + "gl uc", + "g luc", + "of fer", + "off er", + "县 农村信用合作联社", + "▁re porters", + "▁rep orters", + "▁report ers", + "▁reporter s", + "▁ir regular", + "b u", + "的 结构", + "▁consider ations", + "▁consideration s", + "▁elect romagnetic", + "▁electrom agnetic", + "庆 市", + "Gr een", + "G reen", + "▁h ood", + "▁ho od", + "▁ hood", + "▁st raw", + "▁str aw", + "奶 粉", + "ds t", + "d st", + "阅读 网", + "Ro om", + "R oom", + "▁ 问题", + "第一 项", + "第 一项", + "ito neal", + "itone al", + "iton eal", + "Hi s", + "H is", + "可持续 发展", + "▁ 房型", + "▁C arr", + "▁Car r", + "▁Ca rr", + "TH E", + "T HE", + "▁R V", + "▁ RV", + "▁ph oton", + "▁phot on", + "▁photo n", + "▁ photon", + "elect ron", + "electro n", + "▁o g", + "▁ og", + "ts uper", + "t super", + "DV D", + "D VD", + "▁Y eah", + "▁Ye ah", + "体 裁", + "an gi", + "ang i", + "▁cross ed", + "▁inv ested", + "▁invest ed", + "▁amb ient", + "J s", + "三 百", + "▁G eneration", + "▁Gener ation", + "▁Gen eration", + "▁Gene ration", + "▁ Generation", + "▁N K", + "▁ NK", + "pt ember", + "摄 入", + "dj ang", + "▁Ter rit", + "▁Terr it", + "AN K", + "A NK", + "君 子", + "▁v oices", + "▁voice s", + "▁vo ices", + "▁Ex tension", + "▁Ext ension", + "▁ Extension", + "▁aut onomous", + "是 的", + "cred entials", + "静 态", + "▁York shire", + "Ti le", + "T ile", + "pos itions", + "position s", + "姿 势", + "th reshold", + "nOBJECT IVE", + "static method", + "Pack et", + "Pac ket", + "P acket", + "NE CTION", + "NECT ION", + "▁d ock", + "▁do ck", + "▁doc k", + "▁ dock", + "倾 斜", + "普通 话", + "普 通话", + "ab spath", + "abs path", + "▁res erves", + "▁reserve s", + "▁reserv es", + "▁D S", + "▁ DS", + "公 子", + "▁K ate", + "▁Kat e", + "▁Ka te", + "▁Sal v", + "▁Sa lv", + "金 刚", + "um per", + "ump er", + "▁p ray", + "▁pr ay", + "▁pra y", + "▁ pray", + "但 也", + "ov irus", + "ovi rus", + "ovir us", + "o virus", + "), (", + ") ,(", + "▁cit izen", + "▁citiz en", + "▁chlor ide", + "该 怎么", + "▁sh ield", + "▁ shield", + "水 市", + "equ alities", + "equal ities", + "▁R iemann", + "▁Ri emann", + "添 香", + "MA IN", + "M AIN", + "▁Re views", + "▁Review s", + "▁nucle otide", + "look up", + "其 间", + "▁al ias", + "▁ali as", + "▁ alias", + "ge ne", + "gen e", + "g ene", + "▁T on", + "▁To n", + "按 时", + "▁ 足球", + "开 的", + "▁r if", + "▁ri f", + "Pe ople", + "P eople", + "神 仙", + "街道 办事处", + "日 照", + "To k", + "T ok", + "▁B egin", + "▁Be gin", + "▁Beg in", + "▁ Begin", + "▁P osition", + "▁Pos ition", + "▁ Position", + "▁turn over", + "▁tur nover", + "▁Str ucture", + "▁Struct ure", + "▁ Structure", + "con current", + "co ncurrent", + "conc urrent", + "▁seem ingly", + "王 朝", + "ad ows", + "ado ws", + "adow s", + "te chn", + "tech n", + "tec hn", + "co ding", + "cod ing", + "c oding", + "▁c ancelled", + "▁cancel led", + "▁cancell ed", + "nC reate", + "n Create", + "▁nut rients", + "▁nutr ients", + "▁nutrient s", + "华 东", + "保全 措施", + "数 控", + "千万 不要", + "▁S Y", + "▁ SY", + "▁l enses", + "▁len ses", + "▁lens es", + "出 道", + "否 认", + "est rian", + "estr ian", + "▁es lint", + "▁ eslint", + "童 年", + "▁Jim my", + "dt o", + "d to", + "了 不少", + "nW rit", + "n Writ", + "▁o nt", + "▁on t", + "▁ ont", + "▁C K", + "▁ CK", + "jo urnal", + "jour nal", + "j ournal", + "fa ke", + "f ake", + "final s", + "fin als", + "fi nals", + "f inals", + "差 不", + "▁b anned", + "▁ban ned", + "对 不起", + "相对 于", + "相 对于", + "er ialize", + "erial ize", + "▁b a", + "▁ ba", + "垄 断", + "公交 车", + "▁o ught", + "▁ou ght", + "▁ ought", + "Enc oder", + "Encode r", + "民 终", + "▁R oger", + "▁Ro ger", + "▁Rog er", + "nP res", + "nPre s", + "nPr es", + "n Pres", + "▁rot ating", + "▁pron ounced", + "▁gen etically", + "▁gene tically", + "▁genetic ally", + "不 着", + "那 边", + "Se m", + "S em", + "▁ 若", + "hi t", + "h it", + "你们 的", + "你 们的", + "发布 会", + "▁WH ETHER", + "Con dition", + "Cond ition", + "样 式", + "▁Al ways", + "▁bar ely", + "▁bare ly", + "▁sport ing", + "▁spor ting", + "▁s tub", + "▁st ub", + "▁ stub", + "▁be ans", + "▁bean s", + "▁ beans", + "▁d airy", + "▁da iry", + "▁De fine", + "▁Def ine", + "▁ Define", + "▁co oper", + "ut a", + "u ta", + "▁p ants", + "▁pan ts", + "▁pant s", + "▁div isions", + "▁division s", + "▁enjoy able", + "QU I", + "Q UI", + "co unts", + "count s", + "▁incorpor ating", + "遵守 监规", + "▁Or acle", + "▁ Oracle", + "是否 准许", + "com patible", + "compat ible", + "log out", + "logo ut", + "tra nsl", + "trans l", + "并 承担", + "▁R u", + "▁ Ru", + "未 果", + "▁Ch ampion", + "经本院 传票传唤", + "▁m t", + "▁ mt", + "▁har mon", + "▁harm on", + "▁Bill board", + "nS te", + "nSt e", + "n Ste", + "湖 区", + "os pel", + "osp el", + "view er", + "vie wer", + "▁en semble", + "范 畴", + "le st", + "les t", + "l est", + "普通 程序", + "▁pr iced", + "▁price d", + "▁pri ced", + "忠 诚", + "▁j aw", + "▁ja w", + "ric ane", + "将 自己", + "cl ub", + "▁atmosph eric", + "os tat", + "ost at", + "osta t", + "o stat", + "gr ams", + "gram s", + "gra ms", + "start ed", + "star ted", + "▁ 都市", + "▁st olen", + "▁sto len", + "▁stole n", + "绝 缘", + "也比 较", + "也 比较", + "▁F ace", + "▁Fac e", + "▁Fa ce", + "▁ Face", + "▁W heel", + "▁s uits", + "▁su its", + "▁suit s", + "nC lass", + "nCl ass", + "n Class", + "pr eced", + "pre ced", + "prec ed", + "珍 珠", + "▁op ioid", + "柴 油", + "▁schizophren ia", + "▁T S", + "▁ TS", + "底 面", + "nI S", + "n IS", + "ri ched", + "ric hed", + "rich ed", + "po w", + "p ow", + "Cou ld", + "C ould", + "Stud y", + "\"} ,\"", + "\"}, \"", + "\" },\"", + "Can cel", + "C ancel", + "修 炼", + "生命 的", + "生 命的", + "▁C lar", + "▁Cl ar", + "F W", + "给付 原告", + "推出 了", + "推 出了", + "an ine", + "ani ne", + "a nine", + "▁Con sole", + "▁Cons ole", + "▁ Console", + "ici encies", + "的情 形", + "的 情形", + "▁r ack", + "▁ra ck", + "▁rac k", + "▁ rack", + "[] ,", + "[ ],", + "所以 说", + "控制 系统", + "Bot tom", + "B ottom", + "纳 金", + "租 房", + "讲述 了", + "讲 述了", + "od ic", + "odi c", + "o dic", + "经济 效益", + "▁any time", + "÷ (", + "头 上", + "▁se ating", + "▁sea ting", + "▁seat ing", + "s z", + "入 侵", + "▁m ud", + "▁mu d", + "▁ mud", + "▁sed iment", + "▁def icit", + "汇 率", + "披 露", + "时间 和", + "me asure", + "▁des irable", + "优 美", + "提供 证据", + "▁add itionally", + "▁addition ally", + "▁additional ly", + "▁e ars", + "▁ear s", + "▁ ears", + "le ad", + "lea d", + "l ead", + "bir th", + "b irth", + "年 年", + "nI ts", + "nIt s", + "n Its", + "几 百", + "da l", + "d al", + "▁C offee", + "▁Co ffee", + "▁gen otype", + "ah an", + "aha n", + "a han", + "▁Kenn edy", + "gi rl", + "g irl", + "▁R ico", + "▁Ric o", + "▁Ri co", + "E B", + "原 点", + "平台 的", + "平 台的", + "Res et", + "Re set", + "眼 光", + "月 亮", + "发布 了", + "eg u", + "e gu", + "表现 出", + "保险 公司", + "的那 种", + "的 那种", + "认为 是", + "的名 字", + "的 名字", + "▁I an", + "▁Ne pal", + "▁Nep al", + "com ed", + "come d", + "co med", + "c omed", + "▁b esides", + "▁bes ides", + "▁beside s", + "▁prior ities", + "▁priorit ies", + "▁priori ties", + "p n", + "实在 是", + "oc used", + "ocus ed", + "N i", + "化 和", + "▁ 五", + "光 电", + "▁s ul", + "▁su l", + "出具 借条", + "▁mem orial", + "▁memo rial", + "▁memor ial", + "Sa m", + "S am", + "钓 鱼", + "▁M g", + "▁ Mg", + "T unes", + "▁C raft", + "▁Cra ft", + "▁ Craft", + "看 上去", + "▁O wn", + "▁Ow n", + "▁ Own", + "▁D oll", + "▁Do ll", + "▁Dol l", + "▁sp acing", + "▁spac ing", + "▁spa cing", + "▁ spacing", + "▁tra jectory", + "▁traject ory", + "进 率", + "▁pl anes", + "▁plan es", + "▁plane s", + "▁ planes", + "▁contin uity", + "▁continu ity", + "▁y arn", + "▁ya rn", + "▁ yarn", + "▁Car los", + "▁Carl os", + "▁Carlo s", + "求 职", + "评 定", + "第一百 六", + "▁C alculus", + "▁Calcul us", + "▁Calc ulus", + "f w", + "\\' ^", + "\\ '^", + "正 整数", + "▁ec ological", + "▁eco logical", + "▁techn icians", + "▁technician s", + "歧 视", + "▁Back ground", + "▁ Background", + "ga s", + "g as", + "▁P ok", + "▁Po k", + "▁d ated", + "▁dat ed", + "▁date d", + "▁da ted", + "▁ dated", + "▁ad apter", + "▁adapt er", + "▁adap ter", + "▁ adapter", + "丢 失", + "左 侧", + "各 方", + "\": [{\"", + "\":[ {\"", + "答 应", + "Ho t", + "H ot", + "ps ych", + "psy ch", + "p sych", + "▁Al gorithm", + "▁ Algorithm", + "pol l", + "po ll", + "p oll", + "▁re flex", + "▁ref lex", + "日向本院 申请强制执行", + "日向本院申请 强制执行", + "日 向本院申请强制执行", + "比 起", + "ia e", + "i ae", + "leg end", + "lege nd", + "冷 冻", + "行 李", + "适当 的", + "or ch", + "现羁押 于", + "▁\" ;\\", + "▁ \";\\", + "▁fall en", + "▁fal len", + "选 拔", + "难 受", + "\": \"<", + "\":\" <", + "▁C hand", + "▁Ch and", + "▁Cha nd", + "▁Chan d", + "一 面", + "脱贫 攻坚", + "set minus", + "次 的", + "am d", + "a md", + "▁S ha", + "▁Sh a", + "▁ Sha", + "co dec", + "code c", + "cod ec", + "c odec", + "强 行", + "▁Pat ri", + "▁Pa tri", + "中华人民共和国民法 通则", + "料 酒", + "▁a uf", + "▁au f", + "▁ auf", + "▁LI ABLE", + "per missions", + "perm issions", + "permission s", + "D s", + "▁N HL", + "▁NH L", + "▁correct ed", + "▁Cr uz", + "▁Cru z", + "▁t ongue", + "▁ton gue", + "自 收到", + "制 约", + "▁or igins", + "▁orig ins", + "▁origin s", + "日 向", + "该公司 经理", + "平 原", + "▁G H", + "▁ GH", + "▁Prot ocol", + "▁ Protocol", + "汇 总", + "il lin", + "ill in", + "illi n", + "\" (", + "二维 码", + "不断 提高", + "Al ter", + "Alt er", + "▁pres ervation", + "▁Br others", + "▁Bro thers", + "▁Brother s", + "大 理", + "gl ut", + "▁ 水", + "▁reg ret", + "▁b ubble", + "▁bub ble", + "ME SS", + "MES S", + "M ESS", + "▁T reat", + "▁Tr eat", + "▁Tre at", + "▁V ision", + "▁Vis ion", + "▁ Vision", + "▁custom ize", + "ref lect", + "▁congen ital", + "▁a sp", + "▁as p", + "▁ asp", + "es ters", + "est ers", + "ester s", + "este rs", + "e sters", + "document ation", + "od ont", + "odo nt", + "odon t", + "▁Hung ary", + "▁Hun gary", + "空 格", + "▁pre cursor", + "▁prec ursor", + "he w", + "h ew", + "九 龙", + "为 自己", + "▁Sen ator", + "▁j ack", + "▁ja ck", + "▁ jack", + "成一 个", + "成 一个", + "▁cl ever", + "▁cle ver", + "▁cin ema", + "甲 状", + "▁prosp ects", + "▁prospect s", + "▁T M", + "▁ TM", + "哈尔滨 市", + "又 要", + "▁IN TER", + "▁INT ER", + "▁ INTER", + "▁Pro of", + "▁ Proof", + "其他 可供执行的财产", + "▁f u", + "▁ fu", + "WOR K", + "W ORK", + "▁in con", + "▁i ncon", + "▁inc on", + "核 桃", + "DE X", + "D EX", + "▁train ees", + "▁In stit", + "▁Inst it", + "▁Ins tit", + "一 夜", + "▁C arm", + "▁Car m", + "▁Ca rm", + "工 序", + "逾期 不", + "▁re production", + "▁rep roduction", + "▁reprodu ction", + "▁repro duction", + "▁reproduc tion", + "应 承担", + "目前 的", + "目 前的", + "STAT US", + "▁out doors", + "▁outdoor s", + "管理 体系", + "灌 溉", + "风 味", + "他 也", + "▁p seudo", + "▁pseud o", + "im o", + "i mo", + "在 网上", + "▁Victor ian", + "▁Victoria n", + "sw ap", + "s wap", + "▁dis pers", + "▁disp ers", + "▁cum ulative", + "来 临", + "ja b", + "j ab", + "宁夏 回", + "Im plemented", + "娃 娃", + "蒸 汽", + "机 理", + "眼 中", + "▁w iki", + "▁wi ki", + "▁ wiki", + "▁a thlete", + "▁athlet e", + "ti n", + "t in", + "再 度", + "▁cop ied", + "▁Cam era", + "▁ Camera", + "科技 进步", + "扬 州", + "票 据", + "ou sel", + "ous el", + "ouse l", + "▁B eta", + "▁Be ta", + "▁Bet a", + "▁ Beta", + "▁par sed", + "▁parse d", + "▁pars ed", + "▁ parsed", + "е м", + "Fac t", + "Fa ct", + "F act", + "▁Mat hematic", + "▁Math ematic", + "NB A", + "N BA", + "▁R idge", + "▁Rid ge", + "▁com ply", + "▁comp ly", + "▁compl y", + "手 表", + "SD K", + "S DK", + "原审 法院", + "▁r iders", + "▁ri ders", + "▁ride rs", + "▁rid ers", + "▁rider s", + "等 式", + "▁c ups", + "▁cup s", + "▁cu ps", + "ag ination", + "agi nation", + "agin ation", + "um ble", + "umb le", + "猫 咪", + "▁exp ects", + "▁expect s", + "弟 子", + "Ex port", + "Exp ort", + "▁int imate", + "▁intim ate", + "▁electro de", + "▁electr ode", + "兼 职", + "se ek", + "see k", + "s eek", + "▁b rew", + "▁br ew", + "▁bre w", + "▁ brew", + "▁V e", + "可以 从", + "na c", + "n ac", + "▁Co al", + "辞 职", + "nt ime", + "n time", + "th y", + "t hy", + "ne tt", + "net t", + "n ett", + "▁re sign", + "▁res ign", + "render er", + "is b", + "i sb", + "▁offer ings", + "▁offering s", + "前 款", + "Bus iness", + "B usiness", + "充满 了", + "充 满了", + "Com mun", + "Comm un", + "ph il", + "phi l", + "in ja", + "inj a", + "▁educ ators", + "▁educator s", + "▁ 逝世", + "可靠 性", + "nOn ly", + "n Only", + "▁t oll", + "▁to ll", + "▁Di agn", + "▁ Diagn", + "rg b", + "r gb", + "Cl ear", + "C lear", + "en sin", + "ens in", + "共 识", + "太 极", + "▁T ORT", + "▁TO RT", + "▁ 门", + "el ing", + "eli ng", + "elin g", + "e ling", + "▁b reed", + "▁br eed", + "▁bre ed", + "de b", + "d eb", + "back up", + "事 儿", + "EL D", + "E LD", + "项 公式", + "▁T ol", + "▁To l", + "南 市", + "比 特", + "\": [\"", + "\":[ \"", + "邮政 储蓄", + "▁pro ving", + "▁pr oving", + "▁prov ing", + "▁ proving", + "▁Free dom", + "▁Fre edom", + "▁uniform ly", + "nS cott", + "nSc ott", + "n Scott", + "▁fix ing", + "▁fi xing", + "Ba nk", + "Ban k", + "B ank", + "▁S of", + "▁So f", + "顺 便", + "ri l", + "r il", + "ol ysis", + "oly sis", + "▁do zens", + "▁dozen s", + "▁mark edly", + "▁marked ly", + "D N", + "▁Medic are", + "op acity", + "opa city", + "ER N", + "E RN", + "▁roll ed", + "▁ rolled", + "会 让", + "党 史", + "▁al phabet", + "▁alpha bet", + "▁alph abet", + "▁trans parency", + "简 便", + "▁occup ational", + "▁occupation al", + "▁\" *", + "▁ \"*", + "▁print f", + "▁ printf", + "签订 的", + "el o", + "e lo", + "ob ar", + "oba r", + "o bar", + "sh irt", + "shi rt", + "勇 士", + "口 号", + "▁AR ISING", + "妙 的", + "▁t ran", + "▁tr an", + "▁tra n", + "▁u uid", + "▁ uuid", + "▁entreprene urs", + "▁entrepreneur s", + "连 云", + "nn pm", + "nnp m", + "n npm", + "▁sur geon", + "▁surg eon", + "▁surge on", + "▁note book", + "▁noteb ook", + "▁ notebook", + "di ed", + "die d", + "d ied", + "▁d ying", + "▁dy ing", + "▁adv ocate", + "▁advoc ate", + "关 税", + "风 情", + "▁G PU", + "▁GP U", + "▁ GPU", + "宁夏回 族自治区", + "work space", + "works pace", + "▁inv itation", + "▁ 龙", + "之 人", + "▁I GF", + "▁IG F", + "▁ IGF", + "▁tremend ous", + "Sc an", + "S can", + "ipl inary", + "众 人", + "▁S PE", + "▁SP E", + "▁ SPE", + "骄 傲", + "▁C LA", + "▁CL A", + "▁ CLA", + "▁F ig", + "▁Fi g", + "▁ Fig", + "cur r", + "cu rr", + "▁其 四", + "日受理 后", + "日 受理后", + "Ow ner", + "Own er", + "▁table ts", + "▁tab lets", + "▁tablet s", + "▁ell iptic", + "▁ellipt ic", + "▁end orse", + "▁endors e", + "看 书", + "ls t", + "l st", + "伤 心", + "袖 添香", + "m iddle", + "增 速", + "at iv", + "ati v", + "ul ators", + "ulator s", + "▁mem orable", + "▁memor able", + "烹 饪", + "有多 种", + "有 多种", + "▁in ert", + "oc s", + "o cs", + "▁ 材料", + "la tex", + "late x", + "lat ex", + "l atex", + "实 训", + "quis ite", + "▁tum our", + "本 届", + "翻 炒", + "nC ould", + "n Could", + "腐 败", + "具体 情况", + "光 伏", + "媳 妇", + "man ifest", + "manif est", + "mani fest", + "院 士", + "Child ren", + "eth eless", + "ethe less", + "e theless", + "▁for wards", + "▁forward s", + "▁cle aned", + "▁clean ed", + "▁ cleaned", + "▁st upid", + "▁activ ists", + "▁activist s", + "▁concent rated", + "▁concentr ated", + "▁concentrate d", + "国民 党", + "演 奏", + "op ing", + "o ping", + "air o", + "ai ro", + "a iro", + "▁no mine", + "▁nom ine", + "▁nomin e", + "银 河", + "cont rollers", + "control lers", + "controller s", + "▁counsel ing", + "▁couns eling", + "三 千", + "synt ax", + "syn tax", + "s yntax", + "Stud ent", + "中 关村", + "的取值范围 是", + "▁end less", + "▁endl ess", + "款 式", + "lo gen", + "log en", + "l ogen", + "C U", + "k b", + "▁ret reat", + "坚 强", + "德 市", + "辅 料", + "前 沿", + "▁H orn", + "▁Hor n", + "▁Ho rn", + "ceed ings", + "▁att orneys", + "▁attorney s", + "我 能", + "下 属", + "廉 政", + "对称 轴", + "查明 被执行人", + "▁gr ammar", + "▁gram mar", + "Eff ects", + "Effect s", + "n parser", + "▁celebr ating", + "科大 学", + "科 大学", + "f h", + "百 家", + "▁c u", + "▁ cu", + "▁Coll ins", + "▁alleg ations", + "Mon itor", + "nRe search", + "nRes earch", + "n Research", + "五 大", + "沿 海", + "法 和", + "▁Ap plied", + "▁Appl ied", + "▁port rait", + "▁por trait", + "▁al located", + "▁all ocated", + "▁alloc ated", + "▁allocate d", + "各方 面", + "各 方面", + "▁f arming", + "▁far ming", + "▁farm ing", + "太 子", + "把 你", + "Bo ol", + "B ool", + "nY eah", + "▁I EEE", + "▁IE EE", + "▁ IEEE", + "当 作", + "花 卉", + "▁Ver mont", + "▁Verm ont", + "采 信", + "ens itive", + "ensit ive", + "il lation", + "ill ation", + "illa tion", + "▁V I", + "▁ VI", + "▁H eader", + "▁He ader", + "▁Head er", + "▁ Header", + "联 动", + "▁p etition", + "▁pet ition", + "的 成绩", + "香 蕉", + "'] ;\\", + "' ];\\", + "py plot", + "pyp lot", + "▁Cr icket", + "▁excit ement", + "吸 烟", + "通 话", + "▁Gr iff", + "▁in coming", + "▁inc oming", + "nE m", + "n Em", + "▁organ ised", + "▁organise d", + "夕 阳", + "的话 题", + "的 话题", + "▁com promise", + "▁comp romise", + "▁comprom ise", + "衡 量", + "apt ive", + "a ptive", + "把 他", + "通过 了", + "通 过了", + "▁or bital", + "▁orbit al", + "奇 幻", + "绘 制", + "▁g ig", + "▁gi g", + "▁E arl", + "▁Ear l", + "▁get attr", + "▁ getattr", + "▁delight ed", + "per t", + "pe rt", + "p ert", + "或者 其他", + "▁util ities", + "▁ut ilities", + "▁ utilities", + "自 有", + "两个 月", + "两 个月", + "▁t ex", + "▁te x", + "▁ tex", + "n q", + "▁micro m", + "▁mic rom", + "▁p igs", + "▁pi gs", + "▁pig s", + "▁o t", + "▁ ot", + "in go", + "ing o", + "i ngo", + "▁bl ame", + "▁art ifacts", + "▁artifact s", + "▁ artifacts", + "▁op ponent", + "▁std out", + "▁ stdout", + "▁b om", + "▁bo m", + "通 俗", + "▁F an", + "▁Fa n", + "aw esome", + "庭审 中", + "spec ially", + "special ly", + "s pecially", + "▁highlight ing", + "▁im press", + "▁imp ress", + "▁renew al", + "头 脑", + "▁T ypes", + "▁Type s", + "▁Ty pes", + "▁Typ es", + "▁ Types", + "or ious", + "ori ous", + "orio us", + "▁ach ievements", + "▁achieve ments", + "▁achievement s", + "▁C ultural", + "▁Cult ural", + "周 转", + "出一 个", + "出 一个", + "art ifact", + "▁art eries", + "▁arter ies", + "▁pl aque", + "▁m ysql", + "▁my sql", + "▁mys ql", + "▁ mysql", + "▁V i", + "▁ Vi", + "LI NK", + "LIN K", + "L INK", + "re as", + "rea s", + "r eas", + "is ors", + "isor s", + "iso rs", + "▁V oice", + "▁Vo ice", + "▁ Voice", + "nA nt", + "nAn t", + "n Ant", + "nT ry", + "nTr y", + "n Try", + "▁Sc hema", + "▁Sch ema", + "▁Sche ma", + "▁ Schema", + "▁festival s", + "▁fest ivals", + "▁ 创作", + "▁z eros", + "▁zero s", + "▁ze ros", + "▁ zeros", + "▁re sc", + "▁r esc", + "▁res c", + "▁My SQL", + "▁ MySQL", + "▁Cert ificate", + "▁ Certificate", + "▁asc ending", + "投 稿", + "▁t v", + "▁ tv", + "▁d ough", + "▁do ugh", + "▁dou gh", + "▁end omet", + "▁ 全", + "巧 克力", + "研究 会", + "Un der", + "U nder", + "nW elcome", + "n Welcome", + "▁p acking", + "▁pack ing", + "▁pac king", + "▁Integr ation", + "▁ Integration", + "in ology", + "ino logy", + "▁current s", + "▁curr ents", + "ur pose", + "▁R ou", + "▁Ro u", + "必要 条件", + "▁set Up", + "子 公司", + "滞 纳金", + "▁re pos", + "▁rep os", + "▁repo s", + "▁ repos", + "回 首", + "通 行", + "▁\\\\ \\\\\\", + "▁\\ \\\\\\\\", + "▁\\\\\\\\ \\", + "▁\\\\\\ \\\\", + "▁ \\\\\\\\\\", + "sa n", + "s an", + "工 地", + "▁Dub ai", + "▁Du bai", + "是一 位", + "是 一位", + "▁C raig", + "▁Cra ig", + "▁sub jective", + "▁subject ive", + "▁inform ative", + "非常 好", + "▁j acket", + "▁jack et", + "ob il", + "obi l", + "o bil", + "变 的", + "右 侧", + "▁s ig", + "▁si g", + "▁ sig", + "ful ness", + "▁hydro ly", + "▁b ite", + "▁bi te", + "▁bit e", + "▁par sing", + "▁pars ing", + "▁sol vent", + "▁solve nt", + "▁solv ent", + "向 往", + "当时 的", + "当 时的", + "钢 筋", + "▁des criptive", + "▁descript ive", + "ur tle", + "urt le", + "不 幸", + "▁l n", + "▁ ln", + "EN ER", + "ENE R", + "E NER", + "诉讼费用 交纳办法", + "nTe levision", + "▁prob abilities", + "书 院", + "机 型", + "▁sc anner", + "▁scan ner", + "▁ scanner", + "伤 口", + "候 选", + "oz yg", + "县 政府", + "等 方式", + "县 人民政府", + "基 督", + "本 品", + "CHE CK", + "C HECK", + "▁m issions", + "▁miss ions", + "▁mission s", + "▁ missions", + "Test ing", + "T esting", + "常 数", + "钱 的", + "▁appro ached", + "▁approach ed", + "语 句", + "▁s aves", + "▁sa ves", + "▁save s", + "▁sav es", + "是 通过", + "的大 型", + "的 大型", + "山 路", + "}\" ,", + "} \",", + "ar ten", + "art en", + "arte n", + "found er", + "fo under", + "▁G ard", + "▁Ga rd", + "▁Gar d", + "▁Stan ley", + "I g", + "▁L GBT", + "▁LG BT", + "最 优", + "退 役", + "十七 章", + "▁l id", + "▁li d", + "stack overflow", + "iv alent", + "ival ent", + "▁leg islative", + "▁legisl ative", + "一 期", + "打 扮", + "▁K B", + "▁ KB", + "▁S r", + "▁ Sr", + "se ar", + "sea r", + "s ear", + "▁ne eding", + "▁need ing", + "f y", + "▁u ri", + "▁ur i", + "▁ uri", + "▁ch arter", + "▁char ter", + "▁chart er", + "或者 说", + "▁col orectal", + "og o", + "o go", + "原 被告", + "▁C row", + "▁Cr ow", + "▁Cro w", + "春 季", + "US A", + "U SA", + "▁background s", + "ra ses", + "ras es", + "rase s", + "r ases", + "▁Ne braska", + "帮 扶", + "二 百", + "St udio", + "Stud io", + "ib ular", + "ibu lar", + "是 比较", + "▁Colomb ia", + "末 尾", + "嵌 入", + "▁i i", + "▁ ii", + "▁sc ans", + "▁scan s", + "__ _", + "_ __", + "nM c", + "n Mc", + "▁Pr incess", + "▁Princ ess", + "▁Prince ss", + "▁sem antic", + "▁ semantic", + "问 卷", + "AA A", + "A AA", + "▁CO MM", + "▁COM M", + "▁ COMM", + "记 功", + "这 件", + "CL UDE", + "CLUD E", + "就 需要", + "▁K o", + "异 界", + "▁Ad ult", + "在 哪", + "▁b ell", + "▁be ll", + "▁bel l", + "▁ bell", + "im iter", + "imit er", + "imi ter", + "▁immigr ants", + "▁immigrant s", + "uk a", + "u ka", + "ric ally", + "rical ly", + "r ically", + "nC PU", + "n CPU", + "扣 除", + "特 效", + "请求 法院", + "an ship", + "ans hip", + "詹 姆斯", + "▁ 释义", + "▁Rem ote", + "▁ Remote", + "▁equival ence", + "▁ у", + "▁invest or", + "▁Sim ulation", + "▁ Simulation", + "原因 是", + "▁sp am", + "▁spa m", + "▁ spam", + "▁Mil an", + "▁Mi lan", + "▁Appro ach", + "▁Transport ation", + "抢 救", + "▁spe aks", + "▁speak s", + "对 角", + "意 愿", + "al ar", + "ala r", + "a lar", + "ar ta", + "art a", + "早 在", + "愤 怒", + "自然 人", + "▁con stitute", + "▁constit ute", + "▁constitu te", + "伦 理", + "二次 根", + "Ex tract", + "Extra ct", + "▁market place", + "ot ics", + "otic s", + "oti cs", + "Cons umer", + "小学 文化", + "out puts", + "output s", + "▁ 从", + "乐 队", + "▁simple st", + "▁simpl est", + "▁as sembled", + "▁assembl ed", + "▁assemble d", + "耐 磨", + "道 具", + "nH aving", + "nHa ving", + "▁ 叶", + "衍 生", + "▁Emer gency", + "▁逝世 日期", + "▁W onder", + "▁Won der", + "▁Wo nder", + "▁mag ical", + "▁magic al", + "▁reg ulators", + "▁regul ators", + "▁regulator s", + "适 配", + "农 田", + "ch ol", + "cho l", + "c hol", + "感 和", + "▁Associ ate", + "▁prov incial", + "ro v", + "r ov", + "nh ave", + "n have", + "确 立", + "▁ 项目", + "▁} }\"\\", + "▁}} \"\\", + "▁}}\" \\", + "▁St rong", + "▁Str ong", + "▁influ ential", + "save d", + "sa ved", + "sav ed", + "s aved", + "▁m eg", + "▁me g", + "▁ meg", + "元 件", + "ov ine", + "ovi ne", + "o vine", + "▁E uler", + "xim ately", + "x imately", + "ig raph", + "igr aph", + "i graph", + "oplas tic", + "opl astic", + "oplast ic", + "o plastic", + "▁clin ics", + "▁clinic s", + "特 別", + "fi ction", + "f iction", + "▁B eyond", + "▁Be yond", + "▁Bey ond", + "▁loc als", + "▁local s", + "▁ locals", + "深 处", + "CE O", + "C EO", + "的 患者", + "Se p", + "S ep", + "代 书记员", + "▁P ope", + "▁Pop e", + "▁Po pe", + "nS orry", + "n Sorry", + "第一百五十四 条第一款", + "第一百五十四条 第一款", + "关键 是", + "地 名", + "op last", + "oplas t", + "opl ast", + "set State", + "re ational", + "reat ional", + "reation al", + "场上 位置", + "▁A my", + "▁Am y", + "▁d rew", + "▁dr ew", + "▁cr ops", + "▁cro ps", + "▁crop s", + "▁R unning", + "▁Run ning", + "▁ Running", + "与 中国", + "德 里", + "没 法", + "莆 田", + "nJ ames", + "n James", + "冶 金", + "人类 的", + "人 类的", + "ucl id", + "▁Wel sh", + "SE S", + "S ES", + "od i", + "o di", + "L F", + "point er", + "po inter", + "p ointer", + "▁unique ly", + "▁uniqu ely", + "▁Mont ana", + "}, \"", + "} ,\"", + "指 的是", + "同 居", + "零 部件", + "Fac tor", + "Fact or", + "Fa ctor", + "F actor", + "▁can onical", + "▁canon ical", + "▁ canonical", + "立 马", + "▁a dm", + "▁ad m", + "▁et hn", + "▁eth n", + "▁m ism", + "▁mis m", + "▁mi sm", + "新 颖", + "▁h ello", + "▁hel lo", + "▁hell o", + "▁ hello", + "主要 的", + "an onymous", + "方法 的", + "方 法的", + "on Click", + "o nClick", + "▁drain age", + "At tr", + "Att r", + "基本 的", + "基 本的", + "File name", + "Fil ename", + "Fi lename", + "▁travel ed", + "打 的", + "好 吧", + "Co rp", + "Cor p", + "C orp", + "实践 中", + "▁b eneath", + "▁be neath", + "在 不", + "cons umer", + "consum er", + "▁aest hetic", + "诠 释", + "pe l", + "p el", + "▁t ire", + "▁ti re", + "chan ical", + "武 术", + "已经 被", + "▁furn ished", + "▁furnish ed", + "AS K", + "A SK", + "▁B iology", + "▁Bi ology", + "▁Bio logy", + "▁position ing", + "▁E ye", + "▁Ey e", + "▁ Eye", + "乙 烯", + "\\\\ :", + "境 外", + "异 地", + "转 账", + "首 批", + "综合 征", + "lo oking", + "look ing", + "loo king", + "l ooking", + "▁gener ators", + "▁generator s", + "▁rec ycling", + "▁recycl ing", + "pl asia", + "ie u", + "i eu", + "主管 部门", + "▁ident ifies", + "并 已", + "ta bs", + "tab s", + "t abs", + "▁TR UE", + "▁ TRUE", + "本 着", + "CA P", + "C AP", + "m ajor", + "▁P erm", + "▁Per m", + "▁Pe rm", + "▁ Perm", + "▁C hem", + "▁Ch em", + "▁Che m", + "中 期", + "袭 击", + "党委 委员", + "▁trans fers", + "▁transfer s", + "▁transf ers", + "▁at traction", + "▁attract ion", + "▁attr action", + "相 亲", + "下 班", + "▁at tain", + "▁att ain", + "▁ 属", + "▁p ac", + "▁pa c", + "▁ pac", + "▁c lay", + "▁cl ay", + "化 解", + "有 望", + "▁O FF", + "▁OF F", + "▁ OFF", + "▁applic ants", + "▁applicant s", + "de term", + "det erm", + "d eterm", + "va e", + "v ae", + "ar char", + "arch ar", + "arc har", + "包 容", + "心 疼", + "模 特", + "▁P oll", + "▁Pol l", + "▁Po ll", + "▁ Poll", + "▁OTHER WISE", + "味 精", + "劳动 者", + "▁sign atures", + "▁signature s", + "▁trad itionally", + "▁traditional ly", + "▁tradition ally", + "愉 快", + "▁per malink", + "▁ permalink", + "Des c", + "De sc", + "D esc", + "远 的", + "or r", + "o rr", + "nD ata", + "n Data", + "▁com prising", + "▁compr ising", + "阀 门", + "生物 学", + "▁Re sort", + "▁Res ort", + "▁sub groups", + "▁subgroup s", + "co t", + "c ot", + "大 门", + "▁late ncy", + "▁lat ency", + "in ist", + "ini st", + "inis t", + "i nist", + "▁A rena", + "▁Ar ena", + "▁Are na", + "胶 囊", + "da r", + "d ar", + "本案 诉讼费", + "▁c once", + "▁con ce", + "▁co nce", + "▁conc e", + "trans port", + "可 视", + "aw k", + "a wk", + "▁ 身高", + "不适 合", + "不 适合", + "os hi", + "osh i", + "o shi", + "we ights", + "weight s", + "▁per ceptions", + "▁perception s", + "▁percept ions", + "我 可以", + "ov ich", + "ovic h", + "ovi ch", + "and box", + "ch oices", + "cho ices", + "choice s", + "▁N J", + "▁ex ams", + "▁exam s", + "E p", + "故 乡", + "▁influ enza", + "▁L V", + "▁ LV", + "▁A MP", + "▁AM P", + "▁ AMP", + "▁f law", + "▁fl aw", + "配 音", + "▁Finn ish", + "le tte", + "let te", + "lett e", + "l ette", + "▁e lite", + "▁el ite", + "▁elit e", + "无 业", + "Sim plify", + "{ :", + "▁h ass", + "▁has s", + "▁ha ss", + "▁ hass", + "▁w age", + "▁wa ge", + "▁wag e", + "三 包", + "低 的", + "▁d ermat", + "▁der mat", + "路 程", + "ta bles", + "table s", + "tab les", + "t ables", + "opath ic", + "▁pro ximity", + "в а", + "第八 章", + "第 八章", + "▁to String", + "▁ toString", + "ser if", + "▁int uitive", + "ad as", + "ada s", + "a das", + "角 落", + "▁G rowth", + "▁Grow th", + "▁museum s", + "长 达", + "▁Eff ects", + "▁Effect s", + "▁ Effects", + "相 思", + "▁L iga", + "▁Li ga", + "▁Lig a", + "oc ytic", + "ocyt ic", + "▁Al low", + "▁All ow", + "▁ Allow", + "Th ree", + "三 点", + "教学 中", + "im ag", + "ima g", + "i mag", + "▁d iesel", + "▁die sel", + "▁dies el", + "云 中", + "od ox", + "odo x", + "▁sl iding", + "并 以", + "态 势", + "如下 图", + "如 下图", + "阿拉 伯", + "▁P arse", + "▁Par se", + "▁Pars e", + "▁ Parse", + "才 发现", + "▁ob server", + "▁observ er", + "▁observe r", + "▁obs erver", + "▁ observer", + "众 所", + "住 河南省", + "at en", + "ate n", + "a ten", + "no ut", + "n out", + "大 神", + "▁here by", + "▁Br istol", + "抵 达", + "▁C OL", + "▁CO L", + "▁ COL", + "▁p ays", + "▁pay s", + "▁pa ys", + "往 来", + "▁an ger", + "▁ang er", + "▁ anger", + "▁Per u", + "▁Pe ru", + "Prom ise", + "P romise", + "▁V ar", + "▁Va r", + "▁ Var", + "▁s weep", + "▁sw eep", + "▁swe ep", + "杀 手", + "front end", + "▁t ier", + "▁tie r", + "▁ti er", + "▁ tier", + "第一百五十 四条", + "第一百五十四 条", + "六 个", + "旋 律", + "雷 达", + "▁Mit chell", + "▁Mitch ell", + "R M", + "可 选", + "▁assign ments", + "▁assignment s", + "头 痛", + "满 了", + "保 守", + "am os", + "amo s", + "a mos", + "▁re fin", + "▁ref in", + "▁pup ils", + "▁pupil s", + "▁inhib its", + "▁inhibit s", + "个性 化", + "称 之为", + "ch apter", + "na pi", + "nap i", + "n api", + "▁recogn ised", + "▁recognise d", + "的 责任", + "的 建设", + "吵 架", + "▁T oo", + "▁To o", + "▁ Too", + "▁P ermission", + "▁Per mission", + "▁Perm ission", + "▁ Permission", + "写 字", + "的 书", + "向本院 提出撤诉申请", + "向本院提出 撤诉申请", + "▁S omething", + "▁Some thing", + "▁Som ething", + "▁ Something", + "▁i ps", + "▁ip s", + "▁ ips", + "了 自己", + "site s", + "si tes", + "sit es", + "s ites", + "ocar cin", + "部 落", + "IM P", + "I MP", + "不出 来", + "不 出来", + "行 人", + "▁C ob", + "▁Co b", + "ib lings", + "ibl ings", + "ibling s", + "G N", + "齿 轮", + "▁conj ecture", + "▁conject ure", + "hi nd", + "hin d", + "h ind", + "▁ob ese", + "Th row", + "▁H AVE", + "▁HA VE", + "▁de formation", + "▁deform ation", + "▁A ve", + "▁Av e", + "▁P ent", + "▁Pen t", + "▁Pe nt", + "▁eth ics", + "如下 所示", + "▁bas ics", + "▁basic s", + "▁op ponents", + "▁opponent s", + "ab ol", + "abo l", + "a bol", + "il ia", + "ili a", + "i lia", + "巡 视", + "担任 职务", + "诉 求", + "坐落 于", + "温州 市", + "温 州市", + "岁以下的 儿童", + "和 对", + "▁C rown", + "▁Cr own", + "▁Cro wn", + "▁Crow n", + "偷 偷", + "▁treat s", + "▁tre ats", + "▁Pat ient", + "▁ Patient", + "▁activ ist", + "降低 了", + "▁H alf", + "▁Ha lf", + "▁Hal f", + "▁ Half", + "▁font s", + "▁ fonts", + "生产 线", + "Ex pl", + "Exp l", + "座 位", + "新冠 肺炎", + "中 年", + "igh bor", + "ighb or", + "BA CK", + "B ACK", + "明 亮", + "夜 晚", + "▁\" )\\", + "▁\") \\", + "▁ \")\\", + "▁up graded", + "▁upgrade d", + "▁upgrad ed", + "▁s igma", + "▁sig ma", + "▁ sigma", + "无 财产可供执行", + "▁V ienna", + "▁Vi enna", + "失 踪", + "▁St eps", + "▁Ste ps", + "▁Step s", + "▁ Steps", + "上诉 案件受理费", + "上诉案件 受理费", + "主 治", + "会 展", + "▁U pload", + "▁Up load", + "▁ Upload", + "的申请 符合法律规定", + "的 申请符合法律规定", + "无正当理由拒不到庭 参加诉讼", + "▁knowledge able", + "地 狱", + "▁v ic", + "▁vi c", + "▁ vic", + "▁ab ortion", + "▁abort ion", + "in ent", + "ine nt", + "inen t", + "▁enter prises", + "▁enterprise s", + "总 的", + "▁quot ient", + "▁Inter face", + "▁ Interface", + "刻 苦", + "Group s", + "悲 剧", + "▁Fl ore", + "▁Flor e", + "▁Flo re", + "月 中", + "▁elect oral", + "试 卷", + "内 有", + "ed uc", + "edu c", + "e duc", + "▁Wed ding", + "▁antagon ist", + "能 让", + "buf f", + "bu ff", + "b uff", + "▁E sp", + "▁Es p", + "Stack Trace", + "期间 的限制", + "期间的 限制", + "Vir tual", + "CI AL", + "C IAL", + "Z X", + "▁ 曹", + "DE F", + "D EF", + "te es", + "tee s", + "t ees", + "▁d oi", + "▁do i", + "▁ doi", + "▁l esser", + "▁less er", + "▁les ser", + "▁dis charg", + "做 个", + "明 朝", + "▁te ens", + "▁teen s", + "▁tee ns", + "cast ing", + "cas ting", + "c asting", + "▁Innov ation", + "un ny", + "unn y", + "事实和 理由", + "实 务", + "▁` <", + "▁ `<", + "还不 错", + "还 不错", + "最 短", + "▁embry onic", + "▁embryo nic", + "VAL ID", + "mk dir", + "m kdir", + "折 扣", + "▁L en", + "▁Le n", + "▁ Len", + "check box", + "▁Met ropolitan", + "林 地", + "大 厅", + "生活 在", + "生 活在", + "体 力", + "饮 用", + "ur st", + "urs t", + "u rst", + "yz er", + "yze r", + "y zer", + "然后 根据", + "▁acet yl", + "▁ acetyl", + "function al", + "f unctional", + "批 判", + "亲 切", + "▁P ure", + "▁Pur e", + "▁Pu re", + "震 撼", + "sq lite", + "sql ite", + "过 年", + "E loquent", + "nD ec", + "nDe c", + "n Dec", + "nP ort", + "nPo rt", + "n Port", + "avor ite", + "avo rite", + "R s", + "▁f asc", + "▁fa sc", + "▁T ouch", + "▁To uch", + "▁Tou ch", + "▁ Touch", + "四 周", + "▁tri angles", + "▁triangle s", + "▁triang les", + "▁p kg", + "▁pk g", + "▁ pkg", + "yn asty", + "yna sty", + "lo d", + "l od", + "出 资", + "抽 样", + "im ir", + "imi r", + "i mir", + "nJ oin", + "nJo in", + "n Join", + "▁R acing", + "▁Ra cing", + "▁Rac ing", + "▁C NS", + "▁CN S", + "▁bo ots", + "▁boot s", + "▁cons ume", + "▁consum e", + "he y", + "h ey", + "了 中国", + "在一 定", + "在 一定", + "▁X box", + "▁ 人", + "▁u i", + "▁ ui", + "▁Ap pl", + "▁App l", + "v t", + "nIn put", + "n Input", + "▁labor atories", + "▁R ever", + "▁Re ver", + "▁Rev er", + "▁ Rever", + "br ane", + "bra ne", + "▁Str ategy", + "▁Strateg y", + "▁ Strategy", + "▁disappoint ed", + "We ll", + "W ell", + ", (", + "业 界", + "促 使", + "ST M", + "S TM", + "八个 月", + "八 个月", + "▁a ired", + "▁air ed", + "▁ai red", + "▁ aired", + "section s", + "sect ions", + "s ections", + "▁R C", + "▁ RC", + "▁ch ef", + "▁che f", + "▁ chef", + "同 人", + "ar el", + "are l", + "a rel", + "ar l", + "a rl", + "sp acing", + "re ck", + "rec k", + "r eck", + "可 分为", + "▁T ell", + "▁Te ll", + "▁Tel l", + "娱乐 圈", + "宽 带", + "nAr ch", + "n Arch", + "压 器", + "Mo st", + "M ost", + "温馨 提示", + "人 对", + "写 成", + "▁had n", + "▁ha dn", + "▁ty rosine", + "▁S ean", + "▁Se an", + "▁Sea n", + "▁squ ared", + "▁square d", + "▁ squared", + "▁n ationally", + "▁national ly", + "▁nation ally", + "科学 的", + "科 学的", + "▁s hit", + "▁sh it", + "▁ shit", + "▁un con", + "▁u ncon", + "▁unc on", + "刑期 至", + "atomic al", + "atom ical", + "nTh rough", + "n Through", + "\\' )[", + "\\') [", + "\\ ')[", + "▁mat uration", + "ur ated", + "ura ted", + "urate d", + "u rated", + "▁municip alities", + "▁municipal ities", + "Ph i", + "P hi", + "in ts", + "int s", + "un iform", + "uni form", + "荧 光", + "探 究", + "▁P alm", + "▁Pal m", + "▁Pa lm", + "▁W iley", + "▁Wil ey", + "▁Wi ley", + "美 洲", + "金 牌", + "ev es", + "eve s", + "e ves", + "增 产", + "widget s", + "wid gets", + "由 中国", + "GD P", + "G DP", + "▁S tri", + "▁St ri", + "▁Str i", + "科学记数 法", + "nd f", + "n df", + "▁B eck", + "▁Be ck", + "▁Bec k", + "▁W ave", + "▁Wa ve", + "▁ Wave", + "▁ill um", + "▁shift ed", + "▁A sp", + "▁As p", + "▁ Asp", + "() ),\\", + "()) ,\\", + "()), \\", + "( )),\\", + "▁H ist", + "▁His t", + "▁Hi st", + "▁ Hist", + "流 失", + "作为 一名", + "Th ank", + "Than k", + "▁ste roid", + "▁ster oid", + "▁国 家", + "▁ 国家", + "▁s isters", + "▁sister s", + "▁si sters", + "▁ 请", + "海 鲜", + "▁f arms", + "▁far ms", + "▁farm s", + "▁Rich mond", + "z b", + "▁C rim", + "▁Cr im", + "it ution", + "itu tion", + "Integer Field", + "小 平", + "▁m ant", + "▁man t", + "▁ma nt", + "▁ mant", + "双 向", + "R U", + "br is", + "b ris", + "原判 决", + "原 判决", + "Ce nt", + "C ent", + "将被 执行人", + "将 被执行人", + "▁R outer", + "▁Ro uter", + "▁Route r", + "▁Rou ter", + "▁ Router", + "Nav igation", + "差异 有", + "▁S leep", + "▁Sl eep", + "▁Sle ep", + "▁ Sleep", + "▁sup erb", + "▁super b", + "淡 淡", + "既 是", + "▁super vision", + "▁superv ision", + "col s", + "co ls", + "c ols", + "▁Bel gian", + "ro nes", + "ron es", + "rone s", + "r ones", + "nMean while", + "历史 的", + "B s", + "令 牌", + "描 写", + "▁Y am", + "▁Ya m", + "常 年", + "am med", + "amm ed", + "和社会 保障", + "和 社会保障", + "▁sum mit", + "▁summ it", + "▁null ptr", + "▁ nullptr", + "ri sh", + "ris h", + "r ish", + "商业 银行", + "C Y", + "__ ,", + "_ _,", + "万 美元", + "执行 标的", + "索 尼", + "N K", + "▁dis playing", + "▁display ing", + "副 部长", + "jp eg", + "j peg", + "看不 到", + "看 不到", + "泽 东", + "管 控", + "^{ (", + "^ {(", + "\\' ][", + "\\'] [", + "\\ '][", + "oc ha", + "och a", + "o cha", + "▁rel ates", + "▁relate s", + "青 睐", + "原 有", + "pro j", + "pr oj", + "运营 商", + "运 营商", + "现已 审查", + "▁A CTION", + "▁ACT ION", + "▁ ACTION", + "la zy", + "l azy", + "qu est", + "que st", + "ques t", + "玩 意", + "▁L ayout", + "▁La yout", + "▁Lay out", + "▁ Layout", + "opro ject", + "o project", + "▁M ann", + "▁Man n", + "▁Ma nn", + "▁in adequ", + "▁for cing", + "▁ forcing", + "▁cor ruption", + "▁corrupt ion", + "增 添", + "向本院 提交", + "▁sa fer", + "▁saf er", + "▁safe r", + "ir lines", + "irl ines", + "Cont ents", + "Content s", + "▁per fusion", + "▁perf usion", + "▁ perfusion", + "出 入", + "▁o l", + "▁ ol", + "▁f iring", + "▁fi ring", + "▁fir ing", + "▁be ating", + "▁beat ing", + "▁st ating", + "▁stat ing", + "宣判 前", + "or tex", + "ort ex", + "orte x", + "▁F ashion", + "Ol d", + "O ld", + "get Instance", + "本案 案件受理费", + "▁C urt", + "▁Cur t", + "▁Cu rt", + "u o", + "▁S it", + "▁Si t", + "catal og", + "c atalog", + "▁hand ful", + "高 档", + "▁G em", + "▁Ge m", + "no ise", + "n oise", + "▁h umor", + "▁hum or", + "▁hu mor", + "An notation", + "Ann otation", + "▁l akes", + "▁la kes", + "▁lake s", + "▁w ines", + "▁win es", + "▁wine s", + "▁wi nes", + "▁K id", + "▁Ki d", + "长方 形的", + "长方形 的", + "▁prest igious", + "▁Elect ronic", + "▁Electron ic", + "▁Electro nic", + "▁C BS", + "▁CB S", + "▁s hoe", + "▁sh oe", + "▁in herent", + "▁inher ent", + "▁inh erent", + "AT P", + "A TP", + "▁a my", + "▁am y", + "▁ amy", + "▁Sh anghai", + "欺 负", + "▁p t", + "▁ pt", + "▁S anders", + "▁San ders", + "▁Sand ers", + "开 源", + "旅 馆", + "▁trad itions", + "▁tra ditions", + "▁tradition s", + "▁partners hips", + "▁partner ships", + "▁partnership s", + "旅行 社", + "买卖 合同", + "▁Move ment", + "▁Orche stra", + "▁深圳 市", + "▁ 深圳市", + "日常 生活", + "▁text book", + "子 和", + "Se ed", + "See d", + "S eed", + "in ced", + "ince d", + "inc ed", + "p f", + "▁r s", + "▁ rs", + "ed ly", + "一 枚", + "排 队", + "消费 者的", + "消费者 的", + "App le", + "Ap ple", + "▁r oster", + "▁ro ster", + "▁ros ter", + "▁dif fraction", + "亮 相", + "▁normal ized", + "▁normalize d", + "▁ normalized", + "▁P AR", + "▁PA R", + "▁ PAR", + "▁homeost asis", + "Wh o", + "W ho", + "▁n s", + "▁ ns", + "ch oose", + "cho ose", + "▁Class ification", + "完善 的", + "▁e ighth", + "▁eight h", + "香 菇", + "面积 为", + "▁M es", + "▁Me s", + "▁D rag", + "▁Dr ag", + "▁ Drag", + "▁Pl ugin", + "▁ Plugin", + "re a", + "r ea", + "不 具备", + "▁e ste", + "▁est e", + "▁es te", + "▁ este", + "tr m", + "t rm", + "▁C lay", + "▁Cl ay", + "▁c ancellation", + "▁cancel lation", + "▁cancell ation", + "\\' ;", + "\\ ';", + "未 在", + "nW illiam", + "nWill iam", + "n William", + "不小 心", + "不 小心", + "st orm", + "sto rm", + "stor m", + "▁cle ared", + "▁clear ed", + "RE MO", + "REM O", + "▁d ried", + "▁dr ied", + "▁dri ed", + "▁G ov", + "▁Go v", + "pl oys", + "ploy s", + "有关 的", + "▁c ref", + "▁cre f", + "▁cr ef", + "南 区", + "▁aud itory", + "▁audit ory", + "一 中", + "乘 积", + "的 真", + "▁ 起点网", + "he mas", + "hem as", + "hema s", + "h emas", + "sort ed", + "s orted", + "uit ary", + "uitar y", + "u itary", + "▁m yster", + "▁my ster", + "▁mys ter", + "▁myst er", + "vas cular", + "v ascular", + "▁d rum", + "▁dr um", + "▁t witter", + "▁tw itter", + "▁ twitter", + "Tr igger", + "之 心", + "off icial", + "▁ 多", + "誉 为", + "首 页", + "▁per pet", + "剪 辑", + "职业 教育", + "▁fix ture", + "▁ fixture", + "nm ain", + "n main", + "▁Athlet ic", + "▁perme ability", + "嘉 兴", + "市中 心", + "市 中心", + "针对 性", + "Mar t", + "Ma rt", + "M art", + "▁J ama", + "▁Jam a", + "▁Ja ma", + "▁end block", + "▁K el", + "▁Ke l", + "▁ Kel", + "zer bai", + "两 地", + "驾驶 员", + "专业 知识", + "走 过", + "ra tes", + "rate s", + "rat es", + "r ates", + "▁eigen values", + "▁eigenvalue s", + "岩 石", + "教 训", + "ym an", + "yma n", + "y man", + "im ming", + "imm ing", + "▁climb ing", + "▁clim bing", + "л о", + "阴 谋", + "▁con traction", + "▁contract ion", + "▁contr action", + "Im g", + "I mg", + "▁alt itude", + "做 题", + "nt ags", + "n tags", + "z m", + "▁com mod", + "▁comm od", + "▁ commod", + "▁add itive", + "> '", + "新 车", + "▁P late", + "▁Pl ate", + "▁Plat e", + "U i", + "的人 们", + "的 人们", + "评论 区", + "▁gam bling", + "▁к о", + "▁ ко", + "tal k", + "t alk", + "▁forgot ten", + "排 出", + "Tr y", + "T ry", + "为主 的", + "为 主的", + "▁Pro f", + "▁Pr of", + "grad le", + "); //", + ") ;//", + "t utorial", + "run s", + "ru ns", + "r uns", + "但 这", + "惩 罚", + "CO NT", + "CON T", + "C ONT", + "map per", + "m apper", + "▁w inds", + "▁win ds", + "▁wind s", + "▁f olding", + "▁fol ding", + "▁fold ing", + "高 位", + "▁c harm", + "▁ch arm", + "▁char m", + "▁cha rm", + "▁ charm", + "收 拾", + "▁cer amic", + "载 明", + "侦 查", + "▁heter ogeneity", + "▁W or", + "▁Wo r", + "▁F lex", + "▁Fl ex", + "▁Fle x", + "▁ Flex", + "▁ge omet", + "▁geo met", + "▁geom et", + "parse Int", + "▁ 女", + "在 案", + "怎么 说", + "▁sim plicity", + "▁simpl icity", + "▁inter cept", + "▁ intercept", + "甲状 腺", + "▁Par ish", + "▁Paris h", + "▁Pa rish", + "▁l ex", + "▁le x", + "▁ lex", + "自 在", + "算 式", + "▁P and", + "▁Pan d", + "▁Pa nd", + "▁s har", + "▁sh ar", + "▁sha r", + "▁fl avors", + "▁flav ors", + "▁flavor s", + "弯 曲", + "▁y a", + "▁ ya", + "▁organ ism", + "CA R", + "C AR", + "系统 中", + "il age", + "ila ge", + "决定 的", + "决 定的", + "可以 让", + "un da", + "und a", + "u nda", + "nV ideo", + "n Video", + "▁implement ations", + "▁implementation s", + "港 澳", + "零 食", + "老 家", + "Non Null", + "架 空", + "▁T heme", + "▁The me", + "▁Th eme", + "▁ Theme", + "▁seg mentation", + "▁segment ation", + "▁vol can", + "企业 在", + "内容 的", + "价 钱", + "执 恢", + "崩 溃", + "be y", + "b ey", + "▁legend ary", + "相 差", + "结 尾", + "t S", + "▁j ury", + "▁ju ry", + "▁jur y", + "我 相信", + "▁Marg aret", + "高 原", + "不 做", + "推 送", + "要求 被执行人", + "▁Toy ota", + "▁r esting", + "▁res ting", + "▁rest ing", + "B bb", + "了 多少", + "某某 与被告", + "某 某与被告", + "▁分 布", + "▁ 分布", + "半 导体", + "▁l awn", + "▁law n", + "▁la wn", + "唿 吸", + "肝 脏", + "▁n d", + "▁ nd", + "▁expl oit", + "▁explo it", + "▁sc hedules", + "▁schedul es", + "▁schedule s", + "外 贸", + "高度 重视", + "an as", + "ana s", + "a nas", + "min i", + "mi ni", + "m ini", + "▁ Δ", + "Do ne", + "Don e", + "D one", + "钢 管", + "▁sa lad", + "▁sal ad", + "不 安", + "几个 月", + "几 个月", + "sa me", + "sam e", + "s ame", + "▁L ip", + "▁Li p", + "Q R", + "▁accel erate", + "▁acceler ate", + "养 护", + "▁ax es", + "▁ axes", + "re ject", + "定 点", + "醒 来", + "to day", + "t oday", + "ct rl", + "ctr l", + "c trl", + "▁t ale", + "▁tal e", + "▁ta le", + "▁St orm", + "▁ Storm", + "小 小", + "ff ic", + "ffi c", + "仲裁 裁决", + "is set", + "iss et", + "isse t", + "一 堆", + "Un iversity", + "St d", + "S td", + "▁N BC", + "▁NB C", + "年 限", + "▁am big", + "▁amb ig", + "▁ ambig", + "悲 伤", + "证据 充分", + "▁color ful", + "有一 次", + "有 一次", + "inc ipal", + "ju d", + "j ud", + "我一 直", + "我 一直", + "▁ 交通", + "▁s pa", + "▁sp a", + "en sen", + "ens en", + "ense n", + "os lav", + "▁fin ishes", + "▁finish es", + "带 上", + "生产 任务", + "T X", + "译 者", + "北京 大学", + "过 得", + "▁A nc", + "▁An c", + "棉 花", + "se p", + "s ep", + "▁P arker", + "▁Par ker", + "▁Park er", + "▁grad uating", + "▁gradu ating", + "▁c uisine", + "沉 积", + "▁C amb", + "▁Cam b", + "▁Ca mb", + "你 去", + "▁\\ '\\", + "▁\\' \\", + "▁ \\'\\", + "ri ors", + "rior s", + "rio rs", + "r iors", + "揭 示", + "ma ven", + "m aven", + "执 照", + "yl ase", + "yla se", + "▁clean er", + "▁Pro cessing", + "▁Process ing", + "▁Proc essing", + "▁ Processing", + "k k", + "美 学", + "定 时", + "ST EM", + "STE M", + "S TEM", + "还是 有", + "还 是有", + "▁editor ial", + "▁edit orial", + "▁F E", + "▁ FE", + "am as", + "ama s", + "a mas", + "hy de", + "hyd e", + "网 民", + "▁St anford", + "▁Stan ford", + "十八 章", + "十 八章", + "▁k its", + "▁kit s", + "▁ki ts", + "key word", + "exp ensive", + "电 台", + "VI P", + "V IP", + "业务 的", + "选项中 挑", + "▁n aming", + "▁na ming", + "▁nam ing", + "▁ naming", + "ag ne", + "agn e", + "户籍 证明", + "洗 澡", + "ga in", + "g ain", + "司 令", + "▁har sh", + "nRe lated", + "nRel ated", + "n Related", + "▁antim icrobial", + "保 卫", + "▁Sw ift", + "▁ Swift", + "一 番", + "▁S B", + "▁ SB", + "Bl og", + "B log", + "Arg uments", + "Argument s", + "人 身", + "ll i", + "l li", + "urs ion", + "▁adoles cent", + "而 非", + "▁s udo", + "▁su do", + "▁ sudo", + "露 出", + "nS how", + "nSh ow", + "n Show", + "set Text", + "ke leton", + "kel eton", + "各样 的", + "各 样的", + "土 耳", + "▁w x", + "▁ wx", + "▁F oot", + "▁Foo t", + "▁Fo ot", + "En coding", + "Enc oding", + "室 外", + "ross o", + "ros so", + "pe er", + "p eer", + "re pr", + "rep r", + "化 市", + "起 的", + "奶 牛", + "nB r", + "n Br", + "高 品质", + "▁sw itches", + "▁switch es", + "▁swit ches", + "▁admin istrator", + "▁administr ator", + "▁B arry", + "▁Bar ry", + "▁Barr y", + "▁b etting", + "▁bet ting", + "前 者", + "太 太", + "as hing", + "ash ing", + "ashi ng", + "▁Mad ison", + "▁Ma dison", + "▁Commission er", + "▁disp ute", + "▁disput e", + "T G", + "uc hy", + "uch y", + "u chy", + "▁S outheast", + "▁South east", + "▁ 所", + "▁p rol", + "▁pro l", + "▁pr ol", + "片 的", + "ist ani", + "istan i", + "ista ni", + "ま す", + "am ins", + "amin s", + "ami ns", + "a mins", + "▁C rypt", + "▁Cry pt", + "▁ Crypt", + "▁J erry", + "▁Jer ry", + "古 城", + "氨 酸", + "直 流", + "▁S quad", + "▁Squ ad", + "▁lin ux", + "▁ linux", + "肥 胖", + "在上 海", + "在 上海", + "▁jud gment", + "▁judg ment", + "▁Equ ipment", + "▁end points", + "▁endpoint s", + "▁ endpoints", + "▁a neur", + "▁an eur", + "▁D NS", + "▁DN S", + "▁ DNS", + "▁E ston", + "▁Est on", + "▁Es ton", + "▁f inals", + "▁fin als", + "▁final s", + "▁fi nals", + "▁ finals", + "tu n", + "t un", + "qu ire", + "quir e", + "work ers", + "worker s", + "wor kers", + "▁compass ion", + "▁comp elling", + "ck e", + "c ke", + "高 科技", + "ustr alia", + "ustral ia", + "pic ker", + "pick er", + "p icker", + "结束 了", + "ac ies", + "aci es", + "st yled", + "style d", + "sty led", + "styl ed", + "▁L arry", + "▁Lar ry", + "乡村 振兴", + "▁Art ist", + "▁ Artist", + "▁grad uation", + "▁gradu ation", + "试 用", + "▁re activity", + "▁react ivity", + "最 长", + "结 石", + "ak y", + "a ky", + "▁} }: :", + "> ::", + "土耳 其", + "▁off ense", + "▁a trial", + "▁at rial", + "整 齐", + "em b", + "e mb", + "id ation", + "ida tion", + "沙 漠", + "▁p eri", + "▁per i", + "▁pe ri", + "▁v ibration", + "▁vibr ation", + "▁vib ration", + "分布 于", + "nNo table", + "nNot able", + "▁prom otional", + "▁promot ional", + "▁promotion al", + "django project", + "djang oproject", + "we bs", + "web s", + "▁in quiry", + "代表 团", + "semb les", + "sem bles", + "semble s", + "sembl es", + "脉 冲", + "酸 盐", + "▁S uz", + "▁Su z", + "富 含", + "sa y", + "s ay", + "最后 一个", + "最后一 个", + "Class es", + "C lasses", + "复 发", + "底 线", + "捐 赠", + "ist oric", + "istor ic", + "isto ric", + "▁M otion", + "▁Mot ion", + "▁Mo tion", + "▁ Motion", + "相 继", + "▁K ur", + "▁Ku r", + "非 要", + "c x", + "▁de emed", + "nPerson nel", + "的 任务", + "l v", + "据此 解答", + "▁P ri", + "▁Pr i", + "▁b enz", + "▁be nz", + "▁ben z", + "▁ benz", + "ort ium", + "▁B att", + "▁Ba tt", + "▁Bat t", + "下 车", + "只 好", + "▁har ass", + "ti e", + "t ie", + "发 扬", + "在 对", + "大 同", + "难 免", + "▁re tin", + "▁r etin", + "▁ret in", + "met h", + "me th", + "m eth", + "oph ila", + "ophil a", + "▁l ighter", + "▁light er", + "▁ lighter", + "黄 瓜", + "监督 管理", + "▁d ecode", + "▁de code", + "▁dec ode", + "▁ decode", + "形式 的", + "形 式的", + "nPub lished", + "n Published", + "从 严", + "信息 系统", + "▁W A", + "▁ WA", + "Back end", + "他 对", + "的 后", + "ns h", + "n sh", + "ti d", + "t id", + "un do", + "und o", + "u ndo", + "大 酒店", + "▁l ately", + "▁late ly", + "▁lat ely", + "隶属 于", + "隶 属于", + "▁mi R", + "少数 民族", + "st arter", + "start er", + "star ter", + "车 身", + "较 少", + "▁prov isions", + "▁provision s", + "面 膜", + "Im ages", + "Image s", + "一 事", + "An n", + "A nn", + "▁prote cts", + "▁prot ects", + "▁protect s", + "保 管", + "ou nge", + "oun ge", + "o unge", + "т и", + "原 油", + "ac in", + "aci n", + "a cin", + "ment ed", + "men ted", + "mente d", + "m ented", + "Re ducer", + "Red ucer", + "▁appro aching", + "▁approach ing", + "ol lo", + "oll o", + "▁b anner", + "▁ban ner", + "▁ banner", + "▁st rand", + "▁str and", + "▁ strand", + "兑 换", + "Ra y", + "R ay", + "DE LETE", + "磨 损", + "▁re ign", + "▁label ing", + "▁lab eling", + "ry s", + "r ys", + "▁H un", + "▁Hu n", + "ir ements", + "ire ments", + "irement s", + "一 首", + "机械 设备", + "▁h oped", + "▁hope d", + "▁hop ed", + "▁ho ped", + "” [", + "病 因", + "V T", + "冷 水", + "衔 接", + "关注 的", + "教育 教学", + "年 获", + "▁concent rate", + "▁concentr ate", + "▁act ed", + "▁ac ted", + "▁ acted", + "判决确定 之日起计算", + "MA N", + "M AN", + "side bar", + "造 价", + "▁M aj", + "▁Ma j", + "第一 步", + "第 一步", + "da n", + "d an", + "Rad ius", + "art ist", + "doctor al", + "▁system atically", + "▁systematic ally", + "▁p hon", + "▁ph on", + "▁ phon", + "分 级", + "吉 祥", + "四个 月", + "四 个月", + "代数 式", + "的 倍数", + "▁di ets", + "▁die ts", + "▁diet s", + "▁le isure", + "▁Furn iture", + "双 眼", + "无 期徒刑", + "▁Ap ply", + "▁App ly", + "▁Appl y", + "▁ Apply", + "▁controvers y", + "无 意", + "填 充", + "等 你", + "▁di agrams", + "▁diagram s", + "▁dia grams", + "可以 去", + "▁organ izing", + "incinn ati", + "风 流", + "▁, \\", + "▁ ,\\", + "nTrans port", + "n Transport", + "bl ind", + "▁Rob in", + "▁Ro bin", + "Te mp", + "Tem p", + "T emp", + "jack son", + "▁avoid ed", + "▁v iability", + "▁vi ability", + "▁trans forming", + "▁transform ing", + "▁Com ments", + "▁Comment s", + "▁Comm ents", + "▁ Comments", + "履行 生效法律文书确定的义务", + "履行生效法律文书 确定的义务", + "住 在", + "部分 的", + "部 分的", + "▁m M", + "▁L uke", + "▁Lu ke", + "▁Luk e", + "▁H omes", + "▁Home s", + "▁Hom es", + "▁Ho mes", + "Data Source", + "剖 析", + "go m", + "g om", + "▁R ust", + "▁Ru st", + "▁Rus t", + "▁spons or", + "原 件", + "▁p all", + "▁pal l", + "▁pa ll", + "患 儿", + "秋 天", + "tn ame", + "t name", + "▁def ending", + "▁defend ing", + "NA B", + "N AB", + "ph ant", + "pha nt", + "phan t", + "## #\\", + "### \\", + "# ##\\", + "EG IN", + "在法定 期限内", + "▁predict or", + "▁pred ictor", + "▁Christ ians", + "▁Christian s", + "▁Invest ment", + "不 尽", + "cm s", + "c ms", + "没 必要", + "给 孩子", + "我不 是", + "我 不是", + "isc iplinary", + "浓 郁", + "▁所 以", + "▁ 所以", + "▁e ngr", + "▁en gr", + "▁eng r", + "▁fun eral", + "▁J our", + "▁Jo ur", + "▁c ows", + "▁co ws", + "▁cow s", + "re ading", + "read ing", + "rea ding", + "▁Mich elle", + "▁Michel le", + "▁ge ographic", + "▁geo graphic", + "leuk in", + "企业 和", + "▁Ber keley", + "▁\\' {", + "▁ \\'{", + "鲜 花", + "的 味道", + "信 访", + "▁h ints", + "▁hint s", + "tn ew", + "t new", + "▁nut rient", + "▁nutr ient", + "读 取", + "▁Me et", + "▁ Meet", + "▁de notes", + "▁den otes", + "▁denote s", + "年 华", + "▁设 施", + "▁ 设施", + "▁par ental", + "▁parent al", + "▁paren tal", + "( <", + "大 方", + "发表于 起点网", + "▁incorpor ation", + "应 诉", + "薪 资", + "▁c ob", + "▁co b", + "▁ cob", + "▁a rena", + "▁are na", + "▁ar ena", + "▁aren a", + "车 牌", + "辞 典", + "的 支持", + "so ck", + "s ock", + "st ri", + "str i", + "s tri", + "▁jud g", + "▁ju dg", + "商 会", + "str ategy", + "u u", + "产 值", + "支 架", + "nTh ose", + "▁d ressing", + "▁dr essing", + "▁dress ing", + "召 唤", + "bi d", + "b id", + "cm p", + "c mp", + "分析 过程", + "▁un ity", + "▁unit y", + "▁uni ty", + "▁ unity", + "▁re med", + "▁r emed", + "▁rem ed", + "▁N ur", + "▁Nu r", + "▁Re comm", + "▁Rec omm", + "▁ Recomm", + "▁b race", + "▁br ace", + "▁bra ce", + "▁ brace", + "vi t", + "v it", + "iv ia", + "ivi a", + "i via", + "▁v isa", + "▁vis a", + "▁vi sa", + "ya ng", + "yan g", + "y ang", + "就 去", + "践 行", + "建设 和", + "▁im posed", + "▁imp osed", + "▁impose d", + "▁occup ation", + "▁ex clude", + "▁ exclude", + "亲 属", + "心中 的", + "心 中的", + "ar ette", + "are tte", + "aret te", + "▁ang ry", + "▁in trig", + "▁int rig", + "▁intr ig", + "▁Ben gal", + "▁Beng al", + "▁ 明", + "纠 正", + "▁cons uming", + "▁consum ing", + "▁ consuming", + "ro chemical", + "roc hemical", + "r ochemical", + "性 与", + "持 久", + "$( \\'#", + "$(\\' #", + "$ (\\'#", + "加 减", + "▁la undry", + ": ]", + "R G", + "但 由于", + "mu st", + "mus t", + "m ust", + "file Name", + "▁Comp uting", + "▁Comput ing", + "的 品牌", + "注 明", + "▁bow el", + "▁L ength", + "▁Le ngth", + "▁ Length", + "▁Ex ercise", + "信 赖", + "te cho", + "tech o", + "tec ho", + "t echo", + "oph osph", + "o phosph", + "tic k", + "ti ck", + "t ick", + "就 说", + "Con straint", + "▁traff icking", + "▁traffic king", + "落 在", + "pos ium", + "▁girl friend", + "这 套", + "AI N", + "A IN", + "▁\" {", + "▁ \"{", + "▁Expl orer", + "▁Explore r", + "▁ Explorer", + "金融 借款合同纠纷一案", + "▁phys iology", + "▁physi ology", + "▁pr iest", + "▁pri est", + "COL OR", + "▁c ortic", + "▁cor tic", + "▁cort ic", + "UT O", + "U TO", + "▁a wk", + "▁aw k", + "▁ awk", + "▁gran ul", + "Ca t", + "C at", + "本案 的", + "▁F IFA", + "▁FI FA", + "▁L uis", + "▁Lu is", + "il iates", + "ili ates", + "ilia tes", + "iliate s", + "Per iod", + "nd ecl", + "nde cl", + "ndec l", + "n decl", + "Na N", + "▁accept s", + "领导 小组", + "在这 种", + "在 这种", + "字 体", + "当 我", + "▁coord inated", + "▁coordinate d", + "▁g a", + "▁ ga", + "大概 率", + "大 概率", + "nf i", + "n fi", + "eb ra", + "e bra", + "▁neighbour hood", + "($ _", + "( $_", + "do es", + "d oes", + "有 利", + "饮 水", + "▁C ad", + "▁Ca d", + "▁Hel per", + "▁Help er", + "▁ Helper", + "恰 好", + "高 三", + "▁l umin", + "▁lum in", + "▁lu min", + "石 化", + "制 药", + "树 的", + "诉 前", + "▁arg ues", + "▁argue s", + "▁argu es", + "做 得", + "冲 洗", + "行 使", + "de hyde", + "▁r efined", + "▁ref ined", + "▁refin ed", + "▁refine d", + "▁nom ination", + "▁nomin ation", + "履行 债务", + "ac ious", + "aci ous", + "acio us", + "▁n iche", + "▁nic he", + "▁ni che", + "▁t ubes", + "▁tub es", + "▁tube s", + "▁tu bes", + "对 的", + "入住 时间", + "入住时 间", + "▁m ell", + "▁me ll", + "▁mel l", + "当 成", + "{{ {", + "{ {{", + "▁O NE", + "▁ON E", + "▁ ONE", + "▁a eros", + "▁aer os", + "uclide an", + "uclid ean", + "▁dem ocracy", + "▁democr acy", + "▁T IME", + "▁TI ME", + "▁ TIME", + "▁access ibility", + "书 的", + "古 人", + "向 右", + "离 职", + "en i", + "e ni", + "在 前", + "原 材料", + "▁F ri", + "▁Fr i", + "▁N ON", + "▁NO N", + "▁ NON", + "▁t ears", + "▁te ars", + "▁tea rs", + "▁tear s", + "山 的", + "菩 萨", + "新生 儿", + "ind ices", + "indi ces", + "▁w arming", + "▁war ming", + "▁warm ing", + "UP DATE", + "U PDATE", + "▁з а", + "▁ за", + "▁com mut", + "▁comm ut", + "nEx planation", + "很 小", + "雕 塑", + "民 俗", + "点 到", + "▁s urre", + "▁sur re", + "▁Ac cept", + "▁ Accept", + "悠 悠", + "答 题", + "el ong", + "elo ng", + "e long", + "▁Cl inic", + "▁Clin ic", + "农 历", + "oj o", + "o jo", + "一下 子", + "的 认识", + "自 家", + "可以 从轻处罚", + "可以从 轻处罚", + "宣传 部", + "防 晒", + "▁] ;", + "▁ ];", + "▁I gn", + "▁Ig n", + "▁ Ign", + "dot net", + "gu e", + "g ue", + "nC he", + "nCh e", + "n Che", + "▁作品 名称", + "▁n ortheast", + "▁north east", + "门 票", + "申请 撤回起诉", + "申请撤回 起诉", + "信 托", + "▁人物 经历", + "▁ball oon", + "sol ution", + "s olution", + "东南 亚", + "ne ath", + "nea th", + "▁phys ic", + "▁physi c", + "特 尔", + "▁B illy", + "▁Bill y", + "▁Bil ly", + "T i", + "▁j a", + "▁ ja", + "met er", + "me ter", + "m eter", + "毛 病", + "慰 问", + "▁B in", + "▁Bi n", + "▁ Bin", + "wr ight", + "w right", + "▁相关 条款", + "man ual", + "检 公诉", + "SE O", + "S EO", + "我国 的", + "我 国的", + "观察 组", + "经济 增长", + "▁prem ises", + "▁premise s", + "aa c", + "a ac", + "▁so fa", + "▁acc ent", + "▁ac cent", + "扣 划", + "▁c ocon", + "▁co con", + "▁coc on", + "清华 大学", + "on Change", + "o nChange", + "▁tr aded", + "▁trad ed", + "▁tra ded", + "▁trade d", + "合 一", + "▁g loss", + "▁gl oss", + "▁glo ss", + "▁ gloss", + "rec ords", + "record s", + "▁ 东", + "其中 有", + "其 中有", + "▁m ush", + "▁mus h", + "▁mu sh", + "▁s napshot", + "▁snap shot", + "▁ snapshot", + "▁com positions", + "▁compos itions", + "▁composition s", + "Se q", + "S eq", + "nSt ate", + "nSta te", + "nStat e", + "n State", + "▁t ricks", + "▁tr icks", + "▁tri cks", + "▁trick s", + "▁sem ester", + "当 局", + "▁Ev idence", + "▁kil ometers", + "▁kilomet ers", + "第五 十二条", + "第五十 二条", + "国际 化", + "▁bel oved", + "ST ATE", + "STAT E", + "STA TE", + "▁R S", + "▁ RS", + "举行 的", + "举 行的", + "▁conv icted", + "▁integr als", + "▁integral s", + "分 组", + "▁Wat son", + "瑞 典", + "ight ing", + "igh ting", + "▁lect ures", + "▁lecture s", + "▁ 四", + "▁v apor", + "▁va por", + "▁vap or", + "q i", + "昆 虫", + "媒 介", + "On ce", + "O nce", + "了解 一下", + "▁all ergic", + "▁allerg ic", + "▁out lets", + "▁outlet s", + "走 访", + "to pics", + "top ics", + "topic s", + "▁wa ist", + "夫 妇", + "就 连", + "nOr gan", + "n Organ", + "开 花", + "LA Y", + "L AY", + "Trans fer", + "In c", + "I nc", + "▁m aj", + "▁ma j", + "▁pr izes", + "▁prize s", + "▁pri zes", + "▁priz es", + "是 被", + "▁fil mm", + "▁film m", + "友 情", + "我们 需要", + "; (", + "决定 了", + "决 定了", + "他们 还", + "探讨 了", + "lic t", + "li ct", + "l ict", + "日 登记结婚", + "仍 有", + "向 东", + "▁L ions", + "▁Li ons", + "▁Lion s", + "命 中", + "▁cont rollers", + "▁control lers", + "▁controller s", + "▁ controllers", + "面 料", + "宪 法", + "▁J ulia", + "▁Jul ia", + "▁Ju lia", + "▁t i", + "▁ ti", + "▁f avorites", + "▁favor ites", + "▁favorite s", + "太 过", + "拒 不", + "本 周", + "▁h ed", + "▁he d", + "▁ hed", + "大 全", + "\\\\ \",", + "\\\\\" ,", + "og lob", + "o glob", + "▁al gebras", + "▁algebra s", + "▁ algebras", + "痕 迹", + "羊 肉", + "也可 能", + "也 可能", + "▁motor cycle", + "▁interview ed", + "走 路", + "nS ign", + "n Sign", + "▁Ch ron", + "▁ess ays", + "▁essay s", + "▁r amp", + "▁ra mp", + "▁ram p", + "ocyt osis", + "共 建", + "近 几年", + "it atively", + "itative ly", + "itat ively", + "er mark", + "erm ark", + "▁position ed", + "▁posit ioned", + "绝 大多数", + "▁time d", + "▁tim ed", + "▁ti med", + "▁ timed", + "fe ld", + "f eld", + "ra ham", + "rah am", + "每一 次", + "每 一次", + "d v", + "洗衣 机", + "▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁", + "▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁", + "▁▁▁ ▁▁▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁ ▁▁▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁ ▁▁▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁ ▁▁▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁", + "▁▁▁▁▁▁▁▁▁▁▁▁▁ ▁▁", + "▁ ▁▁▁▁▁▁▁▁▁▁▁▁▁▁", + "▁c ele", + "▁ce le", + "▁cel e", + "▁ cele", + "众所 周知", + "list ener", + "listen er", + "▁W HO", + "▁WH O", + "▁ WHO", + "▁apprec iation", + "▁G Hz", + "▁GH z", + "▁ GHz", + "▁trans duction", + "充分 利用", + "将 成为", + "▁Rob erts", + "▁Robert s", + "▁Rober ts", + "▁Emer itus", + "▁gr avitational", + "很 喜欢", + "▁E nh", + "▁En h", + "▁ Enh", + "▁R ather", + "▁Ra ther", + "▁Rat her", + "▁pur ely", + "▁pure ly", + "▁m ailing", + "▁mail ing", + "▁ma iling", + "开 封", + "必 定", + "▁Ch ain", + "▁Cha in", + "▁ Chain", + "成立 了", + "强烈 的", + "强 烈的", + "秋 风", + "▁obst acles", + "▁obstacle s", + "y c", + "奥 斯", + "▁ap pet", + "▁app et", + "▁appe t", + "▁% >", + "en gu", + "eng u", + "马来 西亚", + "▁Ti gers", + "▁Tig ers", + "▁Tiger s", + "大 海", + "清 代", + "ar ently", + "arent ly", + "dig ital", + "digit al", + "d igital", + "▁L uck", + "▁Luc k", + "▁Lu ck", + "op oietic", + "▁d ressed", + "▁dr essed", + "▁dress ed", + "老 大", + "打 卡", + "空 军", + "老 鼠", + "it ary", + "itar y", + "ita ry", + "▁hon our", + "▁ho nour", + "act erial", + "acter ial", + "acteria l", + "Ty p", + "T yp", + "总 书记", + "对该 犯", + "对 该犯", + "▁pract icing", + "fa r", + "f ar", + "oc ular", + "o cular", + "▁R ivers", + "▁River s", + "▁Ri vers", + "▁Riv ers", + "男 的", + "write rs", + "writ ers", + "writer s", + "man age", + "▁b ean", + "▁be an", + "▁ bean", + "fix ture", + "▁K irk", + "▁Kir k", + "▁Ki rk", + "▁sup plements", + "▁supplement s", + "▁suppl ements", + "nP S", + "n PS", + "el les", + "ell es", + "elle s", + "pr essed", + "press ed", + "pres sed", + "p ressed", + "年 第", + "▁acc essing", + "▁ac cessing", + "▁access ing", + "街 头", + "了 被执行人", + "▁P B", + "▁ PB", + "▁Democr at", + "< \\", + "卖 出", + "Com mands", + "Command s", + "Comm ands", + "nV ery", + "nVer y", + "n Very", + "▁fl owing", + "▁flo wing", + "▁flow ing", + "▁friend ship", + "▁friends hip", + "IP S", + "I PS", + "}} ^{", + "} }^{", + "▁r gb", + "▁ rgb", + "▁Bud dh", + "▁Budd h", + "研究生 院", + "to uch", + "t ouch", + "▁Ex tract", + "▁Extra ct", + "▁Extr act", + "▁ Extract", + "▁I celand", + "▁Ice land", + "时 长", + "论 证", + "CL ASS", + "CLA SS", + "CLAS S", + "▁init iate", + "▁initi ate", + "tu b", + "t ub", + "▁co operative", + "▁cooper ative", + "File Path", + "老 虎", + "给出 了", + "给 出了", + "▁Chel sea", + "▁HOLD ERS", + "▁fund ament", + "市 中", + "监 理", + "So und", + "S ound", + "本院 依法适用简易程序", + "本院依法 适用简易程序", + "ec om", + "eco m", + "e com", + "▁through put", + "▁ throughput", + "em ade", + "ema de", + "e made", + "gate way", + "g ateway", + "瓷 砖", + "fa ster", + "fast er", + "fas ter", + "f aster", + "▁hon ored", + "▁honor ed", + "▁Ex pected", + "▁Exp ected", + "▁Expect ed", + "▁ Expected", + "▁) :\\", + "▁ ):\\", + "硕士 学位", + "▁拉 丁", + "▁ 拉丁", + "az ole", + "azol e", + "azo le", + "ecl ipse", + "e clipse", + "科 室", + "一 律", + "想 说", + "AV A", + "A VA", + "医 科大学", + "可以 根据", + "乘 以", + "ig ating", + "iga ting", + "er get", + "erg et", + "差 点", + "贯 穿", + "K O", + "▁s pat", + "▁sp at", + "▁spa t", + "看 你", + "的比 例", + "的 比例", + "ced ure", + "▁F isher", + "▁Fish er", + "▁wh ites", + "▁white s", + "▁whit es", + "中 途", + "我也 是", + "我 也是", + "▁Not ice", + "▁ Notice", + "怪 物", + "▁St ay", + "▁Sta y", + "co verage", + "cover age", + "So uth", + "S outh", + "▁abs orb", + "▁absor b", + "ga mes", + "game s", + "gam es", + "g ames", + "Lo w", + "L ow", + "洋 葱", + "▁U ntil", + "▁Un til", + "▁ Until", + "▁Bern ard", + "▁advent ures", + "▁adventure s", + "叔 叔", + "报 表", + "es sa", + "ess a", + "农村 经济", + "Des ktop", + "大 米", + "du ino", + "区人民检察院 以", + "区 人民检察院以", + "▁V arious", + "▁Vari ous", + "▁Var ious", + "▁appropri ately", + "▁appropriate ly", + "生 殖", + "想 的", + "im m", + "i mm", + "re fs", + "ref s", + "▁R EST", + "▁RE ST", + "▁RES T", + "▁ REST", + "w i", + "▁P rep", + "▁Pr ep", + "▁Pre p", + "▁ Prep", + "▁G ithub", + "▁Git hub", + "▁ Github", + "▁P icture", + "▁Pic ture", + "▁ Picture", + "DateTime Field", + "nP aul", + "n Paul", + "不 来", + "人为 本", + "人 为本", + "▁R an", + "▁Ra n", + "▁athlet ic", + "价 款", + "已经 在", + "ph antom", + "phant om", + "phan tom", + "▁B aptist", + "▁i ds", + "▁id s", + "▁ ids", + "hand lers", + "handle rs", + "handler s", + "▁Reg ular", + "▁ Regular", + "▁Ex tra", + "▁Ext ra", + "▁Extr a", + "▁ Extra", + "M a", + "天 上", + "▁Equ ation", + "▁Eq uation", + "退 货", + "NU M", + "N UM", + "▁c af", + "▁ca f", + "管理 员", + "quant ity", + "已经 有", + "的 实现", + "▁Aust rian", + "▁Austria n", + "哪 种", + "所 求", + "用到 的", + "用 到的", + "view port", + "▁hyp oxia", + "▁hypox ia", + "▁guarant ees", + "▁guarantee s", + "ew ard", + "e ward", + "sign ature", + "▁P il", + "▁Pi l", + "还是 比较", + "还 是比较", + "ick ed", + "W P", + "▁ 冯", + "Line s", + "Lin es", + "Li nes", + "L ines", + "▁Agricult ure", + "我 最", + "缺 失", + "以色 列", + "xi t", + "x it", + "结 晶", + "副总 经理", + "副 总经理", + "▁st oring", + "▁sto ring", + "▁N M", + "▁ NM", + "Run ning", + "R unning", + "▁t x", + "▁ tx", + "▁\\\\ (\\\\", + "▁\\\\( \\\\", + "▁ \\\\(\\\\", + "海 岸", + "▁tr ainer", + "▁train er", + "▁tra iner", + "渲 染", + "文 案", + "这些 都是", + "uss els", + "他 用", + "ro be", + "rob e", + "r obe", + "ca d", + "c ad", + "再 见", + "▁b urg", + "▁bu rg", + "▁bur g", + "▁ burg", + "▁D ifferential", + "▁Different ial", + "▁sur prisingly", + "▁surprising ly", + "▁un precedented", + "Sm all", + "S mall", + "外 资", + "方法 和", + "方 法和", + "▁H arm", + "▁Har m", + "▁Ha rm", + "▁ Harm", + "▁ev olving", + "us ted", + "ust ed", + "u sted", + "▁P oints", + "▁Point s", + "▁Po ints", + "▁ Points", + "Si l", + "S il", + "▁qual ification", + "外 地", + "失 眠", + "▁Up dated", + "▁Update d", + "▁ Updated", + "上 映", + "NO DE", + "▁N ar", + "▁Na r", + "ac counts", + "account s", + "acco unts", + "▁draw ings", + "▁drawing s", + "] >", + "CO NF", + "CON F", + "的 艺术", + "执行 条件", + "% ~", + "%% %%", + "The n", + "Th en", + "T hen", + "st aff", + "sta ff", + "轮 回", + "uv ant", + "▁P lot", + "▁Pl ot", + "▁ Plot", + "ц и", + "nJ apanese", + "n Japanese", + "二个 月", + "二 个月", + "▁p ressed", + "▁pr essed", + "▁pres sed", + "▁press ed", + "▁ pressed", + "号 案", + "ven ile", + "督 导", + "注意 力", + "▁P olitical", + "▁Polit ical", + "▁spec imen", + "亚 马", + "的一 般", + "的 一般", + "表示 为", + "ij i", + "i ji", + "Fa st", + "F ast", + "▁b uses", + "▁bu ses", + "▁bus es", + "▁al loy", + "▁all oy", + "▁exam inations", + "▁examination s", + "▁refer ral", + "▁Hand le", + "▁ Handle", + "诊 疗", + "儿 女", + "▁Cons umer", + "▁ Consumer", + "▁ex citation", + "▁exc itation", + "▁excit ation", + "不 愿", + "SU V", + "S UV", + "ter min", + "term in", + "IS S", + "I SS", + "arr ass", + "arra ss", + "▁S urgery", + "零 点", + "▁med als", + "▁medal s", + "▁pro tests", + "▁prote sts", + "▁prot ests", + "▁protest s", + "脑 袋", + "el p", + "e lp", + "选项 错误", + "本院于 同", + "▁fibr oblasts", + "▁fibro blasts", + "▁fibroblast s", + "▁Hol iday", + "▁c oil", + "▁co il", + "▁l ungs", + "▁lung s", + "aut iful", + "科 员", + "ra mid", + "ram id", + "▁S chedule", + "▁Sc hedule", + "▁Sche dule", + "▁ Schedule", + "的 意见", + "▁tempor arily", + "nW atch", + "n Watch", + "积极 性", + "等 因素", + "on ucle", + "o nucle", + "▁Observ able", + "▁ Observable", + "nA v", + "n Av", + "▁d ots", + "▁do ts", + "▁dot s", + "▁ dots", + "条第一款 之规定", + "vis or", + "v isor", + "ul monary", + "▁proceed s", + "▁proc eeds", + "▁an notation", + "▁ann otation", + "▁annot ation", + "▁ annotation", + "七 八", + "▁G ate", + "▁Ga te", + "▁Gat e", + "▁ Gate", + "▁not ified", + "▁Comp etition", + "▁Compet ition", + "离 家", + "办公 厅", + "▁the ft", + "▁th eft", + "y u", + "事 先", + "简 化", + "▁p erc", + "▁per c", + "▁pe rc", + "定 向", + "▁ab err", + "▁c ores", + "▁co res", + "▁cor es", + "▁core s", + "▁ cores", + "▁T A", + "▁ TA", + "▁sy nerg", + "▁syn erg", + "篇 小说", + "▁ob sc", + "▁obs c", + "estab lish", + "ver ts", + "vert s", + "v erts", + "nS chool", + "nSch ool", + "n School", + "▁sound track", + "的 体积", + "的 理论", + "研究 方向", + "艰 苦", + "▁ √", + "id ding", + "idd ing", + "和 一个", + "▁Or lando", + "长 久", + "▁S olid", + "▁Sol id", + "▁ Solid", + "整 天", + "十九 章", + "十 九章", + "下 游", + "味 的", + "将 继续", + "pos ure", + "p osure", + "▁c andy", + "▁can dy", + "▁cand y", + "Des cribe", + "De scribe", + "Desc ribe", + "fr eq", + "fre q", + "f req", + "▁sp otted", + "▁spot ted", + "or um", + "o rum", + "▁H az", + "▁Ha z", + "des ktop", + "desk top", + "信用卡 中心", + "pr ising", + "pri sing", + "▁h ierarchy", + "▁hierarch y", + "射 线", + "ha ll", + "hal l", + "h all", + "共同 生活", + "iev able", + "分 明", + "▁direct ories", + "▁director ies", + "▁ directories", + "使用 了", + "使 用了", + "nM ichael", + "n Michael", + "▁over flow", + "▁ overflow", + "▁cloud s", + "▁world s", + "▁Tur ner", + "▁Turn er", + "▁G enerate", + "▁Gener ate", + "▁Gen erate", + "▁Gene rate", + "▁ Generate", + "bi b", + "b ib", + "很高 的", + "很 高的", + "的 用户", + "Count ry", + "Cou ntry", + "rie ved", + "riev ed", + "rieve d", + "r ieved", + "买 到", + "en ton", + "ent on", + "ento n", + "e nton", + "it ten", + "itt en", + "SU LT", + "SUL T", + "S ULT", + "▁p unch", + "▁pun ch", + "▁pu nch", + "▁en larg", + "▁Ac ademic", + "▁Academ ic", + "▁Acad emic", + "M g", + "▁S team", + "▁Ste am", + "高 低", + "处 在", + "get Value", + "可以 将", + "▁Cert ified", + "所得 税", + "▁x en", + "报告 财产", + "重要 参数", + "▁reflect ing", + "埃 及", + "OF F", + "O FF", + "检公诉 刑诉", + "im i", + "i mi", + "▁b arg", + "▁bar g", + "▁ba rg", + "▁H ack", + "▁Ha ck", + "▁corpor ations", + "▁corporation s", + "ok ia", + "oki a", + "}} \\\\)", + "}}\\\\ )", + "} }\\\\)", + "UT E", + "U TE", + "的可能 性", + "的 可能性", + "ick eter", + "icket er", + "▁Coll abor", + "辩护 人", + "Up dated", + "Update d", + "▁r m", + "▁ rm", + "▁min erals", + "▁mine rals", + "▁mineral s", + "为 本", + "测 评", + "筹 码", + "ce des", + "ced es", + "c edes", + "▁sw eat", + "▁swe at", + "尔 德", + "徐 州", + "▁en erget", + "▁energ et", + "溶 解", + "行 走", + "这 座", + "min e", + "mi ne", + "m ine", + "▁H ab", + "▁Ha b", + "正方 形的", + "正方形 的", + "lish es", + "lis hes", + "l ishes", + "▁in formal", + "▁inf ormal", + "▁inform al", + "夸 张", + "LA N", + "L AN", + "▁Ad obe", + "it on", + "ito n", + "i ton", + "▁Eag les", + "▁Eagle s", + "之 类", + "白 糖", + "▁S har", + "▁Sh ar", + "▁Sha r", + "org anic", + "organ ic", + "彰 显", + "▁f ires", + "▁fire s", + "▁fi res", + "▁fir es", + "▁ fires", + "涨 幅", + "风 暴", + "不 吃", + "t B", + "不良 反应", + "佛 山", + "▁J av", + "▁Ja v", + "▁ Jav", + "▁John ny", + "sh arp", + "sha rp", + "▁g rocery", + "了 的", + "也不 要", + "也 不要", + "nR ound", + "n Round", + "EN TS", + "ENT S", + "▁re signed", + "▁res igned", + "▁resign ed", + "不 该", + "ard less", + "交通 安全", + "▁ter rain", + "▁terr ain", + "悄 悄", + "an co", + "anc o", + "a nco", + "▁V iol", + "▁Vi ol", + "▁Advis ory", + "▁Advisor y", + "▁Broad way", + "Instance State", + "历 经", + "▁retriev al", + "▁p recipitation", + "▁precip itation", + "▁V ue", + "▁ Vue", + "nU nit", + "nUn it", + "n Unit", + "▁Re dist", + "▁Red ist", + "▁Redis t", + "Snap shot", + "S napshot", + "▁ess ence", + "▁cont amination", + "▁contamin ation", + "layout s", + "lay outs", + "ym al", + "yma l", + "y mal", + "▁lux urious", + "中共 中央", + "\\' ]:\\", + "\\'] :\\", + "▁ap plicant", + "▁applic ant", + "▁dec laration", + "▁declar ation", + "▁API s", + "▁AP Is", + "侵 略", + "原 唱", + "▁H LA", + "▁HL A", + "▁S etting", + "▁Set ting", + "▁Sett ing", + "▁ Setting", + "▁meth ylation", + "▁methyl ation", + "的 操作", + "ac onda", + "acon da", + "aco nda", + "a conda", + "er i", + "e ri", + "Gr ad", + "G rad", + "th and", + "than d", + "tha nd", + "t hand", + "▁L ooks", + "▁Lo oks", + "▁Look s", + "预 报", + "▁st ressed", + "▁str essed", + "▁stress ed", + "▁M AC", + "▁MA C", + "▁ MAC", + "科 幻", + "nL eg", + "nLe g", + "n Leg", + "服务 业", + "的前提 下", + "ADD RESS", + "ADDR ESS", + "M c", + "([ \"", + "( [\"", + "▁E rr", + "▁Er r", + "▁ Err", + "失 效", + "▁S z", + "▁i b", + "▁ ib", + "分之 一", + "分 之一", + "▁Spe aker", + "▁prompt ed", + "▁refer enced", + "▁reference d", + "py p", + "p yp", + "▁K os", + "▁Ko s", + "▁evalu ations", + "▁evaluation s", + "▁eval uations", + "ot tage", + "ott age", + "otta ge", + "▁n i", + "▁ ni", + "in kle", + "ink le", + "ve olar", + "Res earch", + "Re search", + "ow ns", + "own s", + "归案 后", + "归 案后", + "br ev", + "bre v", + "b rev", + "get Id", + "wi g", + "w ig", + "了一 次", + "了 一次", + "因与 被上诉人", + "因 与被上诉人", + "Pi n", + "P in", + "dist rict", + "di strict", + "▁un fold", + "▁unf old", + "▁Comp anies", + "PA GE", + "P AGE", + "▁anal yse", + "▁analy se", + "▁analys e", + "▁j umping", + "▁jump ing", + "灵 敏", + "为 进一步", + "一 脸", + "菊 花", + "幂 的", + "演 艺", + "▁V ec", + "▁Ve c", + "▁ Vec", + "▁pro ves", + "▁pr oves", + "▁prov es", + "▁prove s", + "文化 和", + "文 化和", + "微 微", + "▁K arl", + "▁Kar l", + "▁Ka rl", + "点的 距离", + "点 的距离", + "ap pers", + "app ers", + "appe rs", + "apper s", + "M ichael", + "nF our", + "n Four", + "未 作", + "聚 合", + "多 功能", + "快速 发展", + "St age", + "S tage", + "cre ator", + "creat or", + "▁re moves", + "▁rem oves", + "▁remove s", + "▁remov es", + "ex am", + "▁l icensing", + "▁lic ensing", + "清 醒", + "▁min isters", + "▁mini sters", + "▁minister s", + "hl ine", + "h line", + "▁ST AT", + "▁ STAT", + "▁form ulated", + "▁formula ted", + "▁formulate d", + "D G", + "▁n uts", + "▁nut s", + "▁nu ts", + "▁ nuts", + "先 天", + "南 山", + "La t", + "L at", + "主要 包括", + "▁D ental", + "▁Den tal", + "▁Dent al", + "▁foss il", + "é m", + "gin x", + "gi nx", + "g inx", + "预 付", + "be it", + "▁Ass ociated", + "▁Associ ated", + "▁Associate d", + "备 受", + "Fi nal", + "Fin al", + "F inal", + "▁model ed", + "▁mode led", + "阻 碍", + "第一百四十五 条之规定", + "第一百四十五条 之规定", + "▁comp artment", + "片 段", + "nr outer", + "n router", + "▁M az", + "▁Ma z", + "制造 有限公司", + "出 手", + "的 撤诉申请", + "▁en emies", + "▁ 石", + "面积 是", + "▁Mor oc", + "▁Mo roc", + "uck land", + "is tle", + "ist le", + "认真 遵守监规", + "认真遵守 监规", + "书 店", + "▁p est", + "▁pe st", + "▁pes t", + "▁reduction s", + "▁reduct ions", + "互 联", + "]( #", + "] (#", + "很多 时候", + "box es", + "▁ar tic", + "▁art ic", + "床 铺", + "▁C ha", + "▁Ch a", + "Wr it", + "W rit", + "con da", + "co nda", + "cond a", + "c onda", + "e i", + "▁B arr", + "▁Bar r", + "▁Ba rr", + "每个 月", + "每 个月", + "▁conduct ivity", + "月 起", + "De lay", + "Del ay", + "▁bl ade", + "▁ blade", + "▁Sy rian", + "▁Syria n", + "▁Syr ian", + "▁f ucking", + "▁fuck ing", + "▁epid emic", + "▁epidem ic", + "光 泽", + "▁L ion", + "▁Li on", + "全 文", + "导 数", + "调 理", + "钢 材", + "著作 权", + "经原告 多次", + "▁veget able", + "▁ 知", + "pack et", + "pac ket", + "p acket", + "▁chrom atin", + "▁chromat in", + "学 报", + "滴 滴", + "nTax a", + "市 人民政府", + "▁Res ume", + "Face book", + "F acebook", + "Gener ated", + "Gen erated", + "Generate d", + "Gene rated", + "G enerated", + "▁B eth", + "▁Be th", + "▁Bet h", + "▁Summ it", + "▁Sum mit", + "另 查明", + "若干 规定", + "▁B rowser", + "▁Brow ser", + "▁Browse r", + "▁ Browser", + "医 保", + "是 真", + "落 叶", + "OP Y", + "O PY", + "ain ted", + "aint ed", + "料 理", + "实用 的", + "实 用的", + "▁qu een", + "▁que en", + "▁Mur phy", + "质 数", + "▁p ec", + "▁pe c", + "▁ pec", + "结婚 登记", + "ot rans", + "otr ans", + "o trans", + "▁d resses", + "▁dr esses", + "▁dress es", + "▁( ),", + "▁() ,", + "▁ (),", + "base name", + "bas ename", + "} >", + "nC all", + "nCal l", + "n Call", + "}} \"", + "} }\"", + "很强 的", + "很 强的", + "▁em brace", + "▁emb race", + "▁embr ace", + "却 又", + "▁Un iverse", + "▁Univers e", + "▁Uni verse", + "nS ummary", + "n Summary", + "来到 了", + "来 到了", + "Pa ul", + "P aul", + "唤 醒", + "em atic", + "ema tic", + "emat ic", + "e matic", + "▁His panic", + "瑜 伽", + "博士 学位", + "ac re", + "acr e", + "a cre", + "暗 示", + "vi m", + "v im", + "信用 社", + "下列 情形", + "res pond", + "respon d", + "resp ond", + "▁t ribute", + "▁trib ute", + "▁tribut e", + "工程 建设", + "▁gl omer", + "▁glo mer", + "▁Par alym", + "▁reg imen", + "▁regime n", + "余 数", + "发 货", + "代 言", + "大 一", + "▁se min", + "▁sem in", + "▁semi n", + "▁ semin", + "斯 基", + "▁S ci", + "▁Sc i", + "▁ Sci", + "Fix ed", + "F ixed", + "减 速", + "仍 未", + "假 的", + "是 非", + "ef an", + "e fan", + "\\' ]);\\", + "\\'] );\\", + "\\']) ;\\", + "\\ ']);\\", + "▁bad ge", + "▁ badge", + "▁enc rypted", + "▁encrypt ed", + "▁ encrypted", + "Time s", + "Tim es", + "Ti mes", + "T imes", + "一体 的", + "一 体的", + "▁Cr ime", + "▁Crim e", + "氨基 酸", + "al ong", + "alo ng", + "alon g", + "a long", + "AT ER", + "ATE R", + "A TER", + "▁fer til", + "▁fert il", + "举办 的", + "举 办的", + "▁ad dict", + "▁add ict", + "技术 开发", + "星级 酒店", + "br it", + "b rit", + "▁reve aling", + "▁reveal ing", + "▁ch eer", + "▁che er", + "▁Y ahoo", + "tic ally", + "tical ly", + "t ically", + "播 种", + "nt here", + "nthe re", + "nth ere", + "n there", + "▁Pr incipal", + "▁Princ ipal", + "▁ Principal", + "▁Iss ues", + "▁Issue s", + "▁inn ate", + "的 出现", + "名 家", + "Ma sk", + "Mas k", + "M ask", + "▁R ules", + "▁Rule s", + "▁Ru les", + "▁ Rules", + "▁exp lor", + "▁expl or", + "▁explo r", + "▁flu ids", + "▁fluid s", + "▁div iding", + "▁divid ing", + "不仅仅 是", + "不 仅仅是", + "▁hypothes ized", + "▁hypothesize d", + "▁V ik", + "▁Vi k", + "▁am mon", + "▁an tit", + "▁ant it", + "▁anti t", + "▁join s", + "▁jo ins", + "农 作物", + "的 经营", + "▁c rust", + "▁cr ust", + "▁cru st", + "ynchron ous", + "造成 了", + "造 成了", + "IT LE", + "nF ollow", + "n Follow", + "▁Sign al", + "▁Sig nal", + "▁ Signal", + "美 股", + "民事 权利", + "nU nfortunately", + "VI EW", + "V IEW", + "等 领域", + "side d", + "sid ed", + "si ded", + "s ided", + "▁P arks", + "▁Par ks", + "▁Park s", + "ed ar", + "eda r", + "e dar", + "▁dif fers", + "▁differ s", + "▁diff ers", + "▁in sects", + "▁ins ects", + "▁insect s", + "川 区", + "▁Ke ith", + "▁cal ories", + "▁calor ies", + "转 速", + "劳动 合同", + "▁fix tures", + "▁fixture s", + "▁ fixtures", + "to s", + "t os", + "▁annoy ing", + "小 龙", + "▁Gu inea", + "余 篇", + "ndecl are", + "ndec lare", + "n declare", + "nC O", + "n CO", + "▁K l", + "▁i v", + "▁ iv", + "与原 告", + "与 原告", + "科学 发展", + "饱 满", + "Re dis", + "Red is", + "▁Mar vel", + "▁H ungarian", + "▁Hung arian", + "y x", + "实数 根", + "▁reg ex", + "▁ regex", + "摆 放", + "▁dors al", + "好 吗", + "am bers", + "amb ers", + "amber s", + "▁met allic", + "▁metal lic", + "▁metall ic", + "一 丝", + "中 档", + "]) ,\\", + "]), \\", + "] ),\\", + "▁Pre vention", + "▁Prevent ion", + "答 主", + "谈 恋爱", + "▁T ow", + "▁To w", + "▁S erv", + "▁Se rv", + "▁Ser v", + "▁ Serv", + "各 式", + "keep ing", + "kee ping", + "法定代表人 王", + "ic ulous", + "icul ous", + "ed nesday", + "三十 日内", + "三十日 内", + "三 十日内", + "▁ 规格", + "局 副局长", + "▁gr ams", + "▁gram s", + "▁gra ms", + "▁ grams", + "海南 省", + "海 南省", + "ur om", + "uro m", + "u rom", + "▁a li", + "▁al i", + "▁ ali", + "▁S park", + "▁Sp ark", + "▁Spa rk", + "▁Spar k", + "▁ Spark", + "▁美 国", + "▁ 美国", + "▁h ills", + "▁hill s", + "▁hil ls", + "it ives", + "itive s", + "iti ves", + "Comp any", + "/ ](", + "区 长", + "质 感", + "RG B", + "R GB", + "▁L G", + "▁ LG", + "M r", + "溪 县", + "cell ular", + "c ellular", + "后 勤", + "自己 在", + "好 人", + "新 年", + "iz en", + "ize n", + "i zen", + "种 族", + "}) \\\\", + "})\\ \\", + "} )\\\\", + "▁h over", + "▁ho ver", + "▁ hover", + "▁i di", + "▁id i", + "▁ idi", + "▁N umbers", + "▁Number s", + "▁Num bers", + "▁ Numbers", + "这些 人", + "st ad", + "sta d", + "意 图", + "集 群", + "▁s eq", + "▁se q", + "▁ seq", + "▁ul cer", + "▁Egypt ian", + "业 余", + "▁Y u", + "▁mult if", + "▁multi f", + "▁mul tif", + "名 校", + "短 短", + "nC al", + "n Cal", + "od ynamics", + "odynam ics", + "odynamic s", + "o dynamics", + "极 致", + "nA thlet", + "晶 体", + "申请执行人 可", + "最 强", + "的 根", + "en de", + "end e", + "e nde", + "做 人", + "▁M ol", + "▁Mo l", + "▁number ed", + "降 雨", + "▁D ry", + "▁Dr y", + "Fail ure", + "为了 让", + "AN GU", + "ANG U", + "▁O blast", + "▁Ob last", + "ph an", + "pha n", + "p han", + "fin ished", + "finish ed", + "国 企", + "的 综合", + "指 引", + "时光 网", + "▁North west", + "牌 子", + "这 不", + "判断 出", + "zo om", + "zoo m", + "z oom", + "▁un success", + "▁uns uccess", + "AC HE", + "ACH E", + "A CHE", + "g atsby", + "ber ries", + "▁bond ing", + "▁bon ding", + "▁disp ersion", + "▁dispers ion", + "▁men tor", + "▁ment or", + "p w", + ";\" >", + "; \">", + "do s", + "d os", + "等 情况", + "水 准", + "红 的", + "起 源", + "▁med ieval", + "▁medi eval", + "别 说", + "Local e", + "Loc ale", + "Lo cale", + "▁purs uing", + "自己 是", + "工商 银行", + "\\' :\\'", + "\\': \\'", + "\\':\\ '", + "自 律", + "Fr ont", + "▁S hell", + "▁Sh ell", + "▁She ll", + "▁Shel l", + "▁ Shell", + "▁R ice", + "▁Ric e", + "▁Ri ce", + "▁Cons ervation", + "▁Conserv ation", + "SE SS", + "SES S", + "S ESS", + "▁midfield er", + "' /", + "进入 了", + "进 入了", + "平方 厘米", + "re active", + "react ive", + "oc oc", + "oco c", + "o coc", + "▁ex pose", + "▁exp ose", + "跟 他", + "▁h r", + "▁ hr", + "总收入 的", + "总 收入的", + "SE CRE", + "SEC RE", + "▁cl oned", + "▁clone d", + "hi n", + "h in", + "撰 写", + "vo te", + "v ote", + "▁M OD", + "▁MO D", + "▁ MOD", + "il iation", + "ili ation", + "ilia tion", + "▁ 总", + "残 留", + "▁select ively", + "▁selective ly", + "市中级人民法院 于", + "▁fabric ated", + "变 速", + "笔 试", + "文化 遗产", + "▁M ining", + "▁Min ing", + "▁Mi ning", + "▁Mini ng", + "process ors", + "processor s", + "▁ne oplas", + "珠 海", + "甚至 是", + "▁t ert", + "▁te rt", + "▁ter t", + "drop down", + "▁Anal ytics", + "▁ Analytics", + "的最 新", + "的 最新", + "▁S afe", + "▁Saf e", + "▁Sa fe", + "▁ Safe", + "iv ated", + "iva ted", + "ivate d", + "▁estim ating", + "长 约", + "▁j ar", + "▁ja r", + "▁ jar", + "ic ol", + "ico l", + "i col", + "亮 度", + "原 价", + "▁N u", + "▁ Nu", + "▁G UI", + "▁GU I", + "▁ GUI", + "所 提供的", + "入 了", + "半 小时", + "▁E ither", + "也 为", + "含量 为", + "含 量为", + "固定 的", + "固 定的", + "he lm", + "hel m", + "h elm", + "▁D op", + "▁Do p", + "▁M ack", + "▁Mac k", + "▁Ma ck", + "▁V lad", + "人口 和计划生育局", + "轻 微", + "小额 贷款", + "熟练 掌握", + "▁Work shop", + "▁Works hop", + "号 召", + "河 区", + "▁Bath room", + "sl f", + "s lf", + "顶 尖", + "▁f ears", + "▁fe ars", + "▁fear s", + "▁Al fred", + "▁Alf red", + "▁ 文", + "的 经验", + "nF lora", + "nFl ora", + "MO N", + "M ON", + "▁P erry", + "▁Per ry", + "▁pharmac okin", + "graph ql", + "参 阅", + "Be l", + "B el", + "上述事实 有", + "▁Con sequently", + "▁L uther", + "▁Lu ther", + "gi e", + "g ie", + "所在 的", + ")\" ,\\", + ")\", \\", + ") \",\\", + "比 分", + "▁f reeze", + "▁fr eeze", + "▁free ze", + "▁ freeze", + "四 种", + "强 迫", + "check s", + "che cks", + "▁Star ting", + "▁Start ing", + "▁ Starting", + "晋 升", + "牛 逼", + "脚 本", + "承担 连带", + "es sel", + "ess el", + "esse l", + "▁st arter", + "▁start er", + "▁star ter", + "▁ starter", + "ra ge", + "rag e", + "r age", + "▁Grad uate", + "第一百 七十", + "第一百七 十", + "nL ove", + "nLo ve", + "n Love", + "▁m odal", + "▁mod al", + "▁mo dal", + "▁ modal", + "▁Con struct", + "▁Co nstruct", + "▁Const ruct", + "▁ Construct", + "二 氧化", + "机械 有限公司", + "▁Lo ading", + "▁Load ing", + "▁ Loading", + "st udio", + "stud io", + "▁S id", + "▁Si d", + "▁e rg", + "▁er g", + "▁ erg", + "otyp ing", + "和 好", + "坏 了", + "▁ant iv", + "▁anti v", + "▁loc ale", + "▁local e", + "▁lo cale", + "▁ locale", + "▁Vari able", + "▁Var iable", + "▁ Variable", + "小 火", + "布 鲁", + "多 学科", + "▁rec ursive", + "▁recurs ive", + "▁ recursive", + "▁T W", + "▁ TW", + "留学 生", + "留 学生", + "▁re vis", + "▁rev is", + "的 你", + "tf loat", + "t float", + "申请 强制执行", + "ci d", + "c id", + "▁em igr", + "▁g race", + "▁gr ace", + "▁grac e", + "▁gra ce", + "▁appe aling", + "▁appeal ing", + "]] [", + "] ][", + "▁cy to", + "▁cyt o", + "nL earn", + "nLe arn", + "n Learn", + "▁embry os", + "▁embryo s", + "▁anest hesia", + "出 色", + "vo r", + "v or", + "会 影响", + "nD ownload", + "n Download", + "▁cabin ets", + "▁cabinet s", + "▁comm ander", + "▁command er", + "▁comma nder", + "但 却", + "再 去", + "十三 章", + "十 三章", + "od al", + "oda l", + "o dal", + "予以 确认", + "nF ile", + "nFil e", + "n File", + "}$ $,", + "}$$ ,", + "} $$,", + "▁st amp", + "▁ stamp", + "宜 昌", + "▁reason ably", + "形态 特征", + "▁new born", + "心 思", + "▁e scal", + "▁es cal", + "▁esc al", + "▁G lo", + "▁Gl o", + "▁Cal endar", + "▁ Calendar", + "▁Rel ations", + "易 于", + "la re", + "lar e", + "l are", + "▁s ells", + "▁sell s", + "▁sel ls", + "失 误", + "▁epile psy", + "兔 子", + "沿 着", + "▁C rystal", + "底 数", + "{{ $", + "{ {$", + "上一 个", + "上 一个", + "教 会", + "ne al", + "nea l", + "n eal", + "▁R ender", + "▁Re nder", + "▁Ren der", + "▁ Render", + "▁点 击", + "▁ 点击", + "▁M ono", + "▁Mon o", + "▁Mo no", + "▁ Mono", + "ri en", + "rie n", + "r ien", + "▁Ar abic", + "▁Arab ic", + "▁brow sing", + "拿 下", + "let ters", + "letter s", + "lett ers", + "lette rs", + "▁t uning", + "▁tun ing", + "▁tu ning", + "▁trade mark", + "▁tradem ark", + "dn s", + "d ns", + "累 积", + "的真 实", + "的 真实", + "go ne", + "gon e", + "g one", + "Rule s", + "Ru les", + "R ules", + "▁Sl oven", + "▁Slo ven", + "书 城", + "着 我", + "mo t", + "m ot", + "ze l", + "z el", + "的 区别", + "老 实", + "▁st aging", + "▁ staging", + "▁te aches", + "▁teach es", + "▁tea ches", + "▁P reliminary", + "的 很", + "抄 袭", + "跨 境", + "低 碳", + "墨 西", + "够 了", + "带 给", + "早 晨", + "▁R odr", + "▁Ro dr", + "▁Rod r", + "▁sh ame", + "▁sha me", + "▁sham e", + "参 展", + "▁all ele", + "▁alle le", + "▁ 日", + "兵 团", + "了 许多", + "▁m arch", + "▁mar ch", + "▁V P", + "▁ VP", + "天 马", + "此 刻", + "▁C RE", + "▁CR E", + "▁ CRE", + "▁d ive", + "▁di ve", + "▁div e", + "结 核", + "bid den", + "b idden", + "Am eric", + "A meric", + "▁Lead ership", + "▁Leader ship", + "▁Leaders hip", + "橄 榄", + "▁B ir", + "▁Bi r", + "Sh ader", + "Sha der", + "▁Bay esian", + "▁Bayes ian", + "▁Jer usalem", + "requ irements", + "require ments", + "判决发生法律效力后 交付执行", + "罪犯 减刑", + "▁Leg end", + "牢 记", + "great er", + "gre ater", + "封 建", + "的 需要", + "之 子", + "▁merc hand", + "▁merch and", + "▁elabor ate", + "TO DO", + "T ODO", + "in ging", + "ing ing", + "▁Ad ding", + "▁Add ing", + "▁b rowsers", + "▁browser s", + "▁browse rs", + "▁ 姜", + "模 样", + "为一 体的", + "为一体 的", + "为 一体的", + "▁V illa", + "▁Vill a", + "▁Vi lla", + "▁Vil la", + "县人民法院 于", + "▁b asket", + "▁bas ket", + "笑 话", + "▁bankrupt cy", + "To uch", + "T ouch", + "▁Par kinson", + "▁Park inson", + "不 觉", + "小 吃", + "袖添香 网", + "▁B order", + "▁Bor der", + "▁ Border", + "▁earthqu ake", + "ill ery", + "ille ry", + "iller y", + "日提出 减刑建议书", + "日提出减刑建议 书", + "日 提出减刑建议书", + "的一 天", + "的 一天", + "▁H CV", + "▁HC V", + "的 计算", + "结婚 证", + "▁E ld", + "▁El d", + "ad oop", + "ado op", + "We ek", + "W eek", + "ros ion", + "r osion", + "▁sk learn", + "ob uf", + "o buf", + "▁T odd", + "▁To dd", + "全国 各地", + "cher ichia", + "央 行", + "不应 该", + "不 应该", + "被 迫", + "re fer", + "ref er", + "r efer", + "▁appoint ments", + "▁appointment s", + "▁i onic", + "▁ion ic", + "▁io nic", + "▁ ionic", + "的女 孩", + "的 女孩", + "op al", + "opa l", + "o pal", + "▁rec reational", + "▁recreation al", + "▁cocon ut", + "▁south west", + "▁cl oth", + "▁clot h", + "sw agger", + "ert ation", + "erta tion", + "▁different iated", + "▁differentiate d", + "IO S", + "I OS", + "▁S oul", + "▁So ul", + "▁Sou l", + "Class Name", + "依 职权", + "▁sh ades", + "▁sha des", + "▁shade s", + "▁Im perial", + "▁Imp erial", + "物 价", + "IP E", + "I PE", + "▁w ax", + "▁wa x", + "▁north west", + "▁W W", + "▁ WW", + "aut om", + "au tom", + "auto m", + "光 驱", + "cr o", + "c ro", + "esc ape", + "e scape", + "▁ad visor", + "▁adv isor", + "▁advis or", + "vir al", + "vi ral", + "v iral", + "è s", + "在 学校", + "使用 寿命", + "▁Part ial", + "▁ Partial", + "滑 动", + "首 选", + "钢 板", + "用人 单位", + "Or igin", + "▁dur ability", + "▁S ierra", + "nS en", + "nSe n", + "n Sen", + "光 谱", + "▁K umar", + "▁Ku mar", + "▁Kum ar", + "▁F R", + "▁ FR", + "我们 都", + "我 们都", + "▁po ems", + "▁poem s", + "▁c asting", + "▁cast ing", + "▁cas ting", + "▁ casting", + "▁c ourage", + "▁cour age", + "▁cou rage", + "tr es", + "tre s", + "t res", + "▁c ran", + "▁cr an", + "▁cra n", + "▁leg ally", + "▁legal ly", + "斜 率", + "致 富", + "▁vol leyball", + "克 拉", + "Im p", + "I mp", + "违法 行为", + "os ide", + "osi de", + "o side", + "▁G arc", + "▁Ga rc", + "▁Gar c", + "▁he aven", + "▁heav en", + "▁anal yst", + "▁analy st", + "▁analys t", + "雕 刻", + "改变 了", + "改 变了", + "Graph ics", + "额 度", + "▁ware house", + "t background", + "ip per", + "ipp er", + "▁Tr inity", + "▁Trin ity", + "▁strong est", + "半 岛", + "报 刊", + "▁D iet", + "▁Di et", + "▁Die t", + "▁cust ody", + "枸 杞", + "Di agn", + "UT C", + "U TC", + "运动 会", + "平 市", + "on do", + "ond o", + "o ndo", + "▁O liver", + "▁Ol iver", + "▁Olive r", + "}] \\", + "} ]\\", + "ograph s", + "ograp hs", + "o graphs", + "▁P enn", + "▁Pen n", + "▁Pe nn", + "▁S oph", + "▁So ph", + "mi l", + "m il", + "IN IT", + "▁E li", + "▁El i", + "T ensor", + "▁sem icon", + "▁semi con", + "▁semic on", + "▁W ine", + "▁Win e", + "▁Wi ne", + "五 百", + "排 骨", + "▁de alt", + "▁deal t", + "nAl umni", + "I p", + "od ef", + "ode f", + "o def", + "铸 造", + "军 区", + "▁F u", + "au kee", + "auk ee", + "end section", + "ends ection", + "nRe ception", + "上 次", + "管理 人员", + "▁del icate", + "维 度", + "的爱 情", + "的 爱情", + "的小 伙伴", + "的 小伙伴", + "ploy ees", + "ployee s", + "▁margin s", + "▁marg ins", + "任 命", + "多 万", + "▁explan ations", + "▁explanation s", + "国家 队", + "▁g ad", + "▁ga d", + "struct ured", + "structure d", + "全 家", + "Sm art", + "S mart", + "orac ic", + "ra is", + "r ais", + "▁l ane", + "▁la ne", + "▁lan e", + "▁ lane", + "▁ded ication", + "iot ensin", + "▁contr ary", + "的电 影", + "的 电影", + "自然 村", + "变 卖", + "or esis", + "ore sis", + "ores is", + "▁Build er", + "▁ Builder", + "e o", + "不 信", + "开 头", + "▁t oggle", + "▁togg le", + "▁ toggle", + "▁et iology", + "与 人", + "同 上", + "ok o", + "o ko", + "fol k", + "f olk", + "薄 膜", + "福州 市", + "福 州市", + "民 办", + "ak t", + "a kt", + "▁Ex pert", + "▁Exper t", + "▁Exp ert", + "中 新", + "这是 一道", + "这是一 道", + "这 是一道", + "▁v est", + "▁ve st", + "▁ves t", + "▁ vest", + "▁w ires", + "▁wire s", + "▁wi res", + "▁hy pers", + "▁hyp ers", + "▁hyper s", + "▁hype rs", + "诸 葛", + "▁A aron", + "nS imilar", + "nSim ilar", + "n Similar", + "I l", + "▁p c", + "▁ pc", + "成立 的", + "nC OPY", + "nCO PY", + "n COPY", + "▁T rip", + "▁Tr ip", + "▁Tri p", + "▁ Trip", + "高新技术 产业", + "▁Sur v", + "▁Su rv", + "▁prem iere", + "▁premier e", + "听 了", + "▁G ol", + "▁Go l", + "交通 肇事", + "kot lin", + "k otlin", + "工业 园区", + "工业园 区", + "▁I A", + "▁ IA", + "已 于", + "** :\\", + "**: \\", + "▁squ ee", + "▁b oring", + "▁bo ring", + "▁bor ing", + "▁myster ious", + "更 能", + "▁g ently", + "▁gent ly", + "▁well ness", + "▁tr ash", + "▁tra sh", + "的 政策", + "▁touch down", + "其 前", + "at z", + "a tz", + "▁anal ysts", + "▁analy sts", + "▁analys ts", + "▁analyst s", + "南 瓜", + "富 贵", + "抛 弃", + "机 组", + "牢 固", + "近 视", + "ge om", + "geo m", + "▁G rove", + "▁Gr ove", + "▁Gro ve", + "▁colon ial", + "台 阶", + "▁o ak", + "▁ oak", + "ly cer", + "▁H air", + "▁Ha ir", + "▁abs orbed", + "▁absor bed", + "▁absorb ed", + "▁adjust able", + "▁project ions", + "▁projection s", + "▁proj ections", + "▁g ates", + "▁gate s", + "▁ga tes", + "啊 啊", + "水 县", + "环境 中", + "屏幕 尺寸", + "▁M aps", + "▁Map s", + "▁Ma ps", + "▁ Maps", + "▁T reas", + "▁Tr eas", + "▁Tre as", + "▁Aff ero", + "宝 马", + "▁j oke", + "▁jo ke", + "▁re versible", + "▁revers ible", + "tf ont", + "t font", + "▁A verage", + "▁Ave rage", + "▁ Average", + "wo f", + "w of", + "破 解", + "化学 品", + "加强 对", + "▁re sin", + "▁res in", + "Be n", + "B en", + "by s", + "b ys", + "婚 纱", + "水 流", + "▁P av", + "▁Pa v", + "▁C AD", + "▁CA D", + "▁ CAD", + "am ente", + "ame nte", + "ament e", + "amen te", + "a mente", + "▁a ster", + "▁as ter", + "▁ast er", + "▁ aster", + "▁Cat hedral", + "共 赢", + "AL LY", + "ALL Y", + "▁young est", + "合 资", + "惊 艳", + "予以 支持", + "▁D ATA", + "▁DA TA", + "▁ DATA", + "us tration", + "ust ration", + "ustr ation", + "明 珠", + "运 费", + "▁{ :", + "▁ {:", + "▁dis closure", + "场 面", + "被 子", + "▁s ax", + "▁sa x", + "养老 保险", + "▁Del aware", + "网 格", + "▁f are", + "▁far e", + "▁fa re", + "▁ fare", + "▁ste ering", + "▁steer ing", + "am ents", + "ament s", + "amen ts", + "a ments", + "▁cart ilage", + "再 利用", + "in ters", + "int ers", + "inter s", + "i nters", + "指导 下", + "▁pers istence", + "▁persist ence", + "▁ persistence", + "领导 人", + "▁Sim plify", + "▁ Simplify", + "▁t ops", + "▁to ps", + "▁top s", + "▁ tops", + "▁an kle", + "水 面", + "脆 弱", + "音 响", + "▁Key words", + "▁h iking", + "▁hi king", + "▁remember ed", + "▁W orth", + "▁Wor th", + "迁 移", + "▁c arp", + "▁car p", + "▁ca rp", + "▁( #", + "▁ (#", + "有 两", + "也 需要", + "Al low", + "All ow", + "▁ob struction", + "▁obstruct ion", + "列 式", + "的全 部", + "的 全部", + "Trans port", + "概 括", + "ip art", + "ipa rt", + "i part", + "▁基本 参数", + "▁ 基本参数", + "▁view er", + "▁ viewer", + "▁Venezuel a", + "▁cl ones", + "▁clone s", + "▁A PP", + "▁AP P", + "▁ APP", + "ur istic", + "uris tic", + "par allel", + "paralle l", + "> [", + "ev e", + "e ve", + "多元 化", + "总 公司", + "▁g rep", + "▁gr ep", + "▁gre p", + "▁ grep", + "▁micro scopic", + "▁in equalities", + "合同 约定", + "量 子", + "不清 楚", + "不 清楚", + "公布 的", + "F amily", + "熬 夜", + "着 手", + "霉 素", + "▁pre operative", + "Add r", + "Ad dr", + "in th", + "int h", + "i nth", + "▁M ouse", + "▁Mo use", + "▁ Mouse", + "整 除", + "香 气", + "▁P ierre", + "▁Pier re", + "as kat", + "ask at", + "aska t", + "el em", + "ele m", + "e lem", + "新 媒体", + "yz ed", + "yze d", + "y zed", + "ns c", + "n sc", + "▁Pe ak", + "▁attend ees", + "\\\\( \\\\{", + "\\\\(\\\\ {", + "▁Id aho", + "▁p ipes", + "▁pi pes", + "▁pip es", + "▁pipe s", + "AN N", + "A NN", + "{} ,", + "{ },", + "墨西 哥", + "启 发", + "户籍 地", + "各项 工作", + "▁phosph olip", + "nC r", + "n Cr", + "▁ch rome", + "▁chrom e", + "▁chr ome", + "▁ chrome", + "▁Camp aign", + "M i", + "独 家", + "ha d", + "h ad", + "▁\\' \"", + "▁ \\'\"", + "上 限", + "描 绘", + "▁filter ed", + "▁ filtered", + "▁em br", + "▁emb r", + "▁ embr", + "til de", + "t ilde", + "双 人", + "做 成", + "▁T erry", + "▁Ter ry", + "▁Terr y", + "▁professional ly", + "▁profession ally", + "似 的", + "便 秘", + "ac ci", + "acc i", + "a cci", + "▁C MS", + "▁CM S", + "▁ CMS", + "▁n ão", + "之 战", + "米 饭", + "配 料", + "▁L imit", + "▁Lim it", + "▁Li mit", + "▁ Limit", + "▁occasion al", + "▁occas ional", + "陪 同", + "Su ite", + "S uite", + "▁construct s", + "no me", + "nom e", + "n ome", + "nB ar", + "n Bar", + "▁ap par", + "▁app ar", + "▁knock out", + "▁mod ulate", + "D X", + "接 入", + "税务 局", + "nPh il", + "n Phil", + "▁up set", + "▁ups et", + "事 后", + "转 动", + "br ook", + "bro ok", + "▁p ond", + "▁po nd", + "▁pon d", + "▁ pond", + "▁M ongo", + "▁Mon go", + "▁Mo ngo", + "▁Mong o", + "▁ Mongo", + "h b", + "那 你", + "tr o", + "t ro", + "ym e", + "y me", + "卖 家", + "▁L ik", + "▁Li k", + "大 纲", + "要 比", + "机 体", + "树 木", + "cm ake", + "c make", + "▁S tra", + "▁St ra", + "▁Str a", + "查 处", + "▁l oci", + "▁loc i", + "▁lo ci", + "▁r ides", + "▁ri des", + "▁ride s", + "▁rid es", + "▁ rides", + "已知 函数", + "▁L oss", + "▁Los s", + "▁Lo ss", + "▁ Loss", + "cast er", + "ca ster", + "cas ter", + "c aster", + "▁log istics", + "▁logistic s", + "但 其", + "我们 是", + "vo c", + "v oc", + "重要 作用", + "Cont in", + "Con tin", + "ou tline", + "out line", + "▁sex ually", + "▁sexual ly", + "▁co ated", + "▁coat ed", + "▁ coated", + "▁correspond ence", + "变 频", + "网 点", + "ET A", + "E TA", + "▁D ol", + "▁Do l", + "▁n oting", + "▁not ing", + "▁no ting", + "T x", + "要 去", + "▁ 经营", + "第五 节", + "os ion", + "osi on", + "/ <", + "st ere", + "ster e", + "ste re", + "ag rant", + "agr ant", + "agra nt", + "a grant", + "nCh apter", + "n Chapter", + "ke letal", + "kel etal", + "▁contin ually", + "▁continu ally", + "将 是", + "st reet", + "stre et", + "▁path ogenic", + "▁pathogen ic", + "▁V as", + "▁Va s", + "化 疗", + "Ho ok", + "H ook", + "▁str ips", + "▁stri ps", + "▁strip s", + "左右 的", + "▁learn ers", + "▁lear ners", + "▁learner s", + "▁A u", + "▁ Au", + "▁link age", + "雅 思", + "▁M ORE", + "▁MO RE", + "ge tString", + "get String", + "背后 的", + "背 后的", + "党 政", + "前 行", + "拥 抱", + "pol it", + "po lit", + "p olit", + "so und", + "s ound", + "▁anal ges", + "六 十", + "ar nings", + "arn ings", + "arning s", + "ey e", + "e ye", + "▁N YC", + "▁NY C", + "海 淀", + "座 椅", + "蚂 蚁", + "▁F T", + "▁ FT", + "党员 干部", + "nM ajor", + "n Major", + "直角 坐标", + "ir on", + "iro n", + "i ron", + "解决 方法", + "B G", + "л е", + "的 健康", + "▁M ans", + "▁Man s", + "▁Ma ns", + "▁s yst", + "▁sy st", + "▁sys t", + "▁surround ings", + "▁surrounding s", + "Lar ge", + "L arge", + "▁创作 年代", + "Output Stream", + "击 败", + "映 射", + "▁Rest aurant", + "▁sa lv", + "▁sal v", + "CRE ATE", + "dec oration", + "decor ation", + "发 掘", + "迷 茫", + "灾 难", + "回来 了", + "回 来了", + "hed uled", + "hedul ed", + "hedule d", + "电视 机", + "计 分", + "Mar ch", + "Marc h", + "M arch", + "Av ailable", + "往 事", + "切 线", + "nF orm", + "nFor m", + "n Form", + "▁de generation", + "▁deg eneration", + "班 的", + "▁H unt", + "▁Hu nt", + "▁Hun t", + "rib uting", + "ribut ing", + "宋 代", + "山 镇", + "ga p", + "g ap", + "tm argin", + "t margin", + "十九 大", + "▁Re form", + "▁Ref orm", + "▁s ake", + "▁sa ke", + "▁def ender", + "▁defe nder", + "▁defend er", + "拼 搏", + "De n", + "D en", + "SECRE T", + "SEC RET", + "▁ 夏", + "容 留", + "▁ 任", + "草 莓", + "het ics", + "hetic s", + "h etics", + "▁F inding", + "▁Fin ding", + "▁Find ing", + "▁sha ft", + "再 到", + "回 族", + "ver tex", + "vert ex", + "verte x", + "grad ient", + "▁step ped", + "▁ste pped", + "制造 商", + "▁sh ifting", + "▁shift ing", + "庄 村", + "RU N", + "R UN", + "▁b ail", + "▁ba il", + "ban ner", + "b anner", + "Serial izable", + "ec a", + "e ca", + "感 悟", + "▁t abs", + "▁tab s", + "▁ta bs", + "▁ tabs", + "form ula", + "merc ially", + "mercial ly", + "▁N AT", + "▁NA T", + "nGener al", + "nGen eral", + "n General", + "被执行人 刘", + "与 之", + "▁\\\\ :", + "▁ \\\\:", + "▁met aph", + "▁meta ph", + "不 顾", + "▁S kin", + "▁Sk in", + "▁Ski n", + "▁T een", + "▁Te en", + "▁tr unk", + "▁trans verse", + "因 本案", + "检 出", + "▁W AS", + "▁WA S", + "地 带", + "▁a lg", + "▁al g", + "▁ alg", + "▁c ush", + "▁cu sh", + "т ь", + "▁Cas ino", + "▁Cons ervative", + "▁Conserv ative", + "助 手", + "Tree Node", + "大 国", + "▁Re yn", + "▁Rey n", + "▁Buff alo", + "▁ 汉", + "图 标", + "希望 大家", + "uct ive", + "▁prevent ive", + "猜 测", + "无锡 市", + "pix el", + "p ixel", + "tres ult", + "t result", + "nt hey", + "nthe y", + "nth ey", + "n they", + "▁ 沈", + "▁tr icky", + "▁trick y", + "年 份", + "T ARGET", + "▁look up", + "▁ lookup", + "lo x", + "l ox", + "办公室 主任", + "g c", + "处 长", + "的 家", + "AW S", + "A WS", + "认识 到", + "▁p rone", + "▁pro ne", + "▁pr one", + "▁pron e", + "笑 着", + "▁Hol land", + "▁Holl and", + "▁ing redient", + "▁ingred ient", + "音 像", + "▁v erb", + "▁ve rb", + "▁ver b", + "▁ verb", + "all eng", + "alle ng", + "遵 义", + "\\\\ ,\\\\", + "\\\\, \\\\", + "▁con ductor", + "▁conduct or", + "几 率", + "的 消息", + "▁m ono", + "▁mon o", + "▁mo no", + "▁p anic", + "▁pan ic", + "▁pa nic", + "▁ panic", + "▁mon ument", + "举 例", + "年 出生", + "ch ip", + "chi p", + "c hip", + "▁Ind ians", + "▁India ns", + "▁Indian s", + "的 歌", + "以 人为本", + "il o", + "i lo", + "lat itude", + "▁vol untary", + "apeut ics", + "apeutic s", + "▁b itcoin", + "▁bit coin", + "▁ bitcoin", + "Ga l", + "G al", + "洗 涤", + "腹 泻", + "▁D as", + "▁Da s", + "还有 很多", + "还 有很多", + "▁d ummy", + "▁ dummy", + "▁G ardens", + "▁Gar dens", + "▁Garden s", + "▁Gard ens", + "如果 您", + "▁ 他", + "四 首", + "固 醇", + "ter ms", + "term s", + "▁Jos é", + "▁t ires", + "▁tire s", + "▁ti res", + "出 土", + "▁p å", + "▁land ed", + "▁lan ded", + "▁hist orian", + "▁histor ian", + "乾 坤", + "运算 法", + "运 算法", + "Link s", + "Lin ks", + "L inks", + "▁neut ron", + "▁neutr on", + "▁Ter ms", + "▁Term s", + "▁ Terms", + "我 爱", + "Cook ie", + "C ookie", + "▁com mits", + "▁comm its", + "▁commit s", + "▁ commits", + "at isf", + "ati sf", + "atis f", + "▁rab bits", + "▁rabbit s", + "▁business man", + "折 叠", + "合法 的", + "合 法的", + "zh ou", + "z hou", + "As sembly", + "▁tax i", + "▁ta xi", + "ju g", + "j ug", + "▁A K", + "▁ AK", + "▁Re ally", + "▁Real ly", + "的 概率", + "ry lic", + "ryl ic", + "r ylic", + "esc ope", + "e scope", + "sub process", + "机 动", + "▁G ift", + "▁Gi ft", + "平行 四边形", + "▁gr inding", + "▁grind ing", + "▁cl oset", + "▁clos et", + "▁close t", + "在 乎", + "is ton", + "ist on", + "isto n", + "i ston", + "▁Log ic", + "▁Lo gic", + "▁ Logic", + "还款 义务", + "个 位", + "个 百分", + "Ser ialize", + "Serial ize", + "S erialize", + "▁count less", + "▁Go nz", + "▁Gon z", + "▁techn ically", + "▁technical ly", + "nR obert", + "nRob ert", + "n Robert", + "日 月", + "nC ount", + "nCo unt", + "n Count", + "月 加入中国共产党", + "av o", + "a vo", + "or on", + "oro n", + "o ron", + "▁dis posal", + "▁disp osal", + "评 议", + "山 中", + "性 好", + "者 和", + "的 做法", + "▁dec ides", + "▁decide s", + "▁mer chant", + "▁merch ant", + "在 那", + "胎 儿", + "▁C AS", + "▁CA S", + "▁ CAS", + "假释 案件", + "广播 电视", + "与 管理", + "yel low", + "y ellow", + "de letion", + "delet ion", + "性 分析", + "减 为", + "PO INT", + "prov iders", + "provider s", + "provide rs", + "▁T at", + "▁Ta t", + "liter al", + "lit eral", + "lite ral", + "▁ro ller", + "▁roll er", + "▁ roller", + "是连载于 起点中文网", + "赵 某", + "满意 度", + "nPol ice", + "▁polym orphism", + "▁polymorph ism", + "App end", + "Ap pend", + "演 练", + "ga ry", + "gar y", + "g ary", + "elect ric", + "e lectric", + "要 知道", + ")} {\\\\", + ")}{ \\\\", + ") }{\\\\", + "cal endar", + "上 周", + "矩 形", + "▁Liter ature", + ")) {\\", + ") ){\\", + "ag ain", + "aga in", + "a gain", + "三 首", + "生 病", + "TRIBUT ING", + "▁s outheast", + "▁south east", + "▁perman ently", + "▁permanent ly", + "▁b ovine", + "▁bo vine", + "▁rel apse", + "▁gly cos", + "▁glyc os", + "t virtual", + "▁R ect", + "▁Re ct", + "▁Rec t", + "▁ Rect", + "▁M ason", + "▁Ma son", + "▁Mas on", + "Lo ve", + "L ove", + "低 调", + "Cl ean", + "C lean", + "▁micro scope", + "逍 遥", + "可 根据", + "老 子", + "af fe", + "aff e", + "▁H ousing", + "▁Ho using", + "▁Hou sing", + "AD E", + "A DE", + "ze ta", + "z eta", + "▁H ep", + "▁He p", + "一 号", + "▁S ymbol", + "▁Sym bol", + "▁ Symbol", + "▁an ime", + "▁anim e", + "▁Alex and", + "▁Alexa nd", + "走 上", + "供 水", + "亚马 逊", + "▁e merge", + "▁emer ge", + "▁emerg e", + "负 载", + "ta l", + "t al", + "▁T it", + "▁Ti t", + "▁split ting", + "▁spl itting", + "会计 师", + "▁A ims", + "▁Aim s", + "彩 虹", + "也 非常", + "▁de legate", + "▁deleg ate", + "▁ delegate", + "ha us", + "h aus", + "au c", + "a uc", + "灵 感", + "nL ocation", + "nLo cation", + "n Location", + "每 位", + "老 化", + "迷 你", + "制度 的", + "制 度的", + "▁hist ological", + "▁histologic al", + "▁t u", + "▁ tu", + "前面 的", + "前 面的", + "oph yll", + "百 合", + "() {", + "( ){", + "抢劫 罪", + "▁metast ases", + "а н", + "应 付", + "▁Que ue", + "▁ Queue", + "端 的", + "▁stiff ness", + "备 份", + "▁i Tunes", + "▁W es", + "▁We s", + "▁coal ition", + "村 镇", + "ak o", + "a ko", + "课堂 教学", + "一 股", + "▁vis ually", + "▁visual ly", + "’ \\", + "心 病", + "In cre", + "Inc re", + "Ex tra", + "Ext ra", + "设计 和", + "▁terror ist", + "asc ii", + "asci i", + "ph thal", + "长 寿", + "如何 在", + "如 何在", + "▁mal aria", + "应 由", + "做 饭", + "组织 实施", + "▁* **", + "▁** *", + "▁ ***", + "ist ries", + "istr ies", + "▁fluct uations", + "五 一", + "注 释", + "SP ACE", + "SPA CE", + "▁s print", + "▁sp rint", + "▁spr int", + "▁trans forms", + "▁transform s", + "▁transf orms", + "该 行", + "身 后", + "▁f el", + "▁fe l", + "动 机", + "湿 地", + "▁S nap", + "▁Sn ap", + "▁ Snap", + "▁p ian", + "▁pi an", + "nRe view", + "nRev iew", + "n Review", + "▁sulf ate", + "续 行", + "im ony", + "imon y", + "imo ny", + "c stdio", + "s uffix", + "▁card inal", + "▁cardi nal", + "Net Core", + "Ex ternal", + "Ext ernal", + "is en", + "ise n", + "i sen", + "▁line arly", + "▁linear ly", + "▁lin early", + "// /\\", + "/// \\", + "/ //\\", + "在 法律规定", + "仅 有", + "农 机", + "▁T F", + "▁ TF", + "per form", + "perf orm", + "▁b ishop", + "▁bi shop", + "▁bis hop", + "▁ bishop", + "▁lar vae", + "中 专", + "an to", + "ant o", + "a nto", + "▁K ash", + "▁Ka sh", + "▁Kas h", + "▁T hor", + "▁Th or", + "▁T aking", + "▁Ta king", + "▁Tak ing", + "▁c ausal", + "▁ca usal", + "▁caus al", + "▁War ner", + "▁C orporate", + "▁Corpor ate", + "▁Corp orate", + "加 法", + "act ional", + "action al", + "▁num eric", + "▁numer ic", + "▁nu meric", + "▁ numeric", + "帽 子", + "▁B MI", + "▁BM I", + "▁ BMI", + "主要 用于", + "▁ex changes", + "▁exchange s", + "犯 贩卖毒品罪", + "hy p", + "h yp", + "▁a xi", + "▁ax i", + "nd ocker", + "n docker", + "一 经", + "en ti", + "ent i", + "▁l over", + "▁love r", + "▁lo ver", + "▁ lover", + "▁trigger s", + "▁trig gers", + "x f", + "▁innov ations", + "▁innovation s", + "这段 话", + "pre pare", + "prep are", + "AL S", + "A LS", + "中山 市", + "中 山市", + "▁inter med", + "в о", + "▁free l", + "▁fre el", + "▁mot ors", + "▁motor s", + "▁compos ers", + "▁composer s", + "▁compose rs", + "的 视频", + "批 量", + "青海 省", + "布 拉", + "手 游", + "sp in", + "spi n", + "s pin", + "油 脂", + "熊 猫", + "我 感觉", + "为什么 会", + "nG old", + "nGo ld", + "n Gold", + "▁B orough", + "▁Bo rough", + "▁Bor ough", + "率 高", + "ul os", + "ulo s", + "u los", + "智能 手机", + "▁account ed", + "▁home owners", + "▁homeowner s", + "DA TE", + "DAT E", + "D ATE", + "Ne ed", + "N eed", + "▁L ost", + "▁Los t", + "▁Lo st", + "人 了", + "foot ball", + "f ootball", + "▁encour ages", + "▁encourage s", + "Al pha", + "▁L akes", + "▁La kes", + "▁Lake s", + "▁Lak es", + "▁veget ation", + "▁im plantation", + "▁implant ation", + "啥 的", + "▁r é", + "▁ ré", + "Spec ial", + "▁p ension", + "▁pens ion", + "▁imped ance", + "▁br acket", + "▁necess ity", + "本 市", + "▁F light", + "▁Fl ight", + "退 回", + "text area", + "▁ind igenous", + "▁Cont emporary", + "Path s", + "Pat hs", + "Pa ths", + "P aths", + "政策 的", + "▁com pressed", + "▁comp ressed", + "▁compr essed", + "▁compress ed", + "▁ compressed", + "▁construct ing", + "神 的", + "▁ )", + "而 后", + "Aut hent", + "Auth ent", + "▁nit ric", + "过 大", + "▁yield ed", + "aut hentication", + "authent ication", + "▁ đ", + "니 다", + "▁b asin", + "▁bas in", + "▁ba sin", + "▁de hydro", + "▁dehyd ro", + "] <", + "亲 密", + "执 政", + "演 示", + "▁b ub", + "▁bu b", + "▁sh ine", + "▁ shine", + "种植 业", + "▁ha em", + "▁t odo", + "▁to do", + "▁ todo", + "▁pot atoes", + "▁potato es", + "IN S", + "I NS", + "ag le", + "ag ulation", + "agu lation", + "agul ation", + "▁screen shot", + "▁screens hot", + "▁ screenshot", + "▁unem ployment", + "韭 菜", + "Sign al", + "Sig nal", + "▁purs uit", + "委 屈", + "}} $$", + "}}$ $", + "} }$$", + "在此 基础上", + "V s", + "诱 惑", + "▁P rivacy", + "▁Priv acy", + "▁Tr ading", + "▁Tra ding", + "▁Trad ing", + "▁Id entity", + "▁Ident ity", + "▁ Identity", + "cont ainers", + "container s", + "送 给", + "nT otal", + "nTo tal", + "n Total", + "▁asympt otic", + "研究 和", + "▁V IP", + "▁VI P", + "▁ VIP", + "▁with d", + "▁wit hd", + "nP rov", + "nPro v", + "nPr ov", + "n Prov", + "in h", + "i nh", + "平方 根", + "stud y", + "Xi v", + "X iv", + "pre hens", + "▁hum idity", + "▁humid ity", + "▁cost ume", + "▁Reg iment", + "pt ive", + "A Q", + "硬 度", + "▁inj ections", + "▁inject ions", + "▁injection s", + "有 余", + "着 急", + "cg i", + "c gi", + "lo s", + "l os", + "an dem", + "and em", + "ande m", + "争 夺", + "▁boy friend", + "鲜 明", + "研讨 会", + "pe ak", + "Log ging", + "▁Compar ison", + "▁ Comparison", + "清 明", + "li me", + "lim e", + "l ime", + "▁E ND", + "▁EN D", + "▁ END", + "的 处理", + "nN on", + "nNo n", + "n Non", + "▁install ations", + "▁installation s", + "ask ell", + "▁e nters", + "▁en ters", + "▁ent ers", + "▁enter s", + "乐 器", + "▁image ry", + "▁imag ery", + "▁cour tesy", + "室 友", + "隆 重", + "▁n ano", + "▁nan o", + "▁na no", + "▁ nano", + "和 方法", + "▁Spring er", + "▁Spr inger", + "Mo unt", + "M ount", + "一 处", + "na i", + "n ai", + "▁Nash ville", + "Cred entials", + "Credential s", + "欧 元", + "nCommun es", + "em ph", + "emp h", + "e mph", + "me ss", + "mes s", + "m ess", + "▁fin anc", + "ov an", + "ova n", + "o van", + "只是 一个", + "只是一 个", + "只 是一个", + "ac erb", + "ace rb", + "acer b", + "Un ique", + "十三 条之规定", + "十三条 之规定", + "十 三条之规定", + "▁S aints", + "▁Saint s", + "▁Sa ints", + "▁m ere", + "▁me re", + "▁mer e", + "▁ mere", + "横 向", + "▁DI Y", + "▁ DIY", + "华 南", + "▁tour naments", + "▁tournament s", + "了 对", + "尤 为", + "可以 看出", + "可以看 出", + "nc har", + "nch ar", + "n char", + "Ro und", + "R ound", + "er ala", + "era la", + "eral a", + "par ents", + "parent s", + "paren ts", + "实际 应用", + "sub str", + "模式 的", + "模 式的", + "▁A ber", + "▁Ab er", + "▁sat uration", + "FU N", + "F UN", + "fa s", + "f as", + "我 非常", + "nim age", + "n image", + "▁Vin cent", + "▁Vince nt", + "▁Vinc ent", + "▁F loat", + "▁Flo at", + "▁ Float", + "le ted", + "let ed", + "lete d", + "l eted", + "▁C arn", + "▁Car n", + "▁Ca rn", + "▁gran ite", + "早 日", + "过 高", + "▁Sym fony", + "▁ 吕", + "ps is", + "psi s", + "p sis", + "▁neighbor ing", + "▁neighb oring", + "▁( >", + "▁K ol", + "▁Ko l", + "规范 化", + "▁e mp", + "▁em p", + "▁ emp", + "▁Plan et", + "▁Plane t", + "▁F P", + "▁ FP", + "om ed", + "ome d", + "o med", + "档 次", + "盲 目", + "▁M end", + "▁Me nd", + "▁Men d", + "▁tra umatic", + "▁trauma tic", + "▁ traumatic", + "ic in", + "ici n", + "i cin", + "▁line up", + "sh ots", + "shot s", + "s hots", + "▁ar riving", + "▁arr iving", + "▁arriv ing", + "▁embed ding", + "▁ 田", + "我 省", + "震 荡", + "心血 管", + "心 血管", + "Al ex", + "Ale x", + "A lex", + "bo ro", + "bor o", + "b oro", + "▁I oT", + "▁Io T", + "▁ IoT", + "另 有", + "规 章", + "inner HTML", + "ar ial", + "ari al", + "aria l", + "a rial", + "特 斯拉", + "Com mit", + "Comm it", + "终 极", + "epend ence", + "▁Arch ives", + "▁Archive s", + "ant ics", + "antic s", + "anti cs", + "▁celebr ity", + "▁ 波", + "鞋 子", + "▁Par ad", + "▁Pa rad", + "▁Para d", + "中 场", + "锁 定", + "拉 开", + "随机 分为", + "est ine", + "▁mess aging", + "▁ messaging", + "断 裂", + "的 反", + "ched ule", + "che dule", + "c hedule", + "▁unw anted", + "▁non profit", + "▁framework s", + "▁frame works", + "▁hor izon", + "▁horiz on", + "▁ne uron", + "▁neuro n", + "▁neur on", + "柏 林", + "▁re marks", + "▁rem arks", + "▁remark s", + "▁ remarks", + "将 以", + "▁M ul", + "▁Mu l", + "ca ched", + "cache d", + "c ached", + "en ames", + "ename s", + "ena mes", + "e names", + "中国人民 银行同期", + "中国人民银行 同期", + "▁roll s", + "Init ialize", + "Initial ize", + "公 关", + "体 外", + "GP S", + "G PS", + "类似 于", + "▁U RI", + "▁UR I", + "▁ URI", + "In line", + "I nline", + "Control s", + "▁Sher iff", + "沃 尔", + "dir ected", + "direct ed", + "d irected", + "▁$ (\\\\", + "▁$( \\\\", + "驾驶 证", + "isec onds", + "i seconds", + "改 良", + "道路 交通事故", + "战斗 力", + "▁ 简体中文", + "▁T as", + "▁Ta s", + "▁pop ulated", + "▁populate d", + "▁popul ated", + "( %", + "bo ys", + "boy s", + "b oys", + "▁N HS", + "▁NH S", + "▁ago nist", + "▁agon ist", + "uss ia", + "mo ment", + "m oment", + "不 被", + "肠 胃", + "装 配", + "ha ck", + "h ack", + "▁F unctional", + "▁Function al", + "▁ Functional", + "▁c omics", + "▁com ics", + "▁comic s", + "▁average d", + "▁aver aged", + "奶 油", + "紫 色", + "冷 藏", + "(\" [", + "( \"[", + "直角 三角形", + "普 查", + "▁fl oral", + "▁flo ral", + "▁flora l", + "▁flor al", + "reg ation", + "par sed", + "parse d", + "pars ed", + "▁Pre mium", + "▁Prem ium", + "第五百一十九 条规定", + "第五百一十九条 规定", + "ag h", + "a gh", + "总 价", + "VID EO", + "V IDEO", + "ra form", + "raf orm", + "▁un treated", + "▁unt reated", + "▁set uptools", + "▁setup tools", + "多 为", + "RA Y", + "R AY", + "内心 的", + "内 心的", + "▁fabric ation", + "盒 子", + "经 鉴定", + "ling ton", + "l ington", + "Ans wer", + "A nswer", + "薪 酬", + "有意 思", + "有 意思", + "▁p ile", + "▁pi le", + "▁pil e", + "ut down", + "▁T rophy", + "▁Tro phy", + "ap ses", + "aps es", + "apse s", + "w aukee", + "团 委", + "程序 员", + "▁S MS", + "▁SM S", + "▁ SMS", + "▁pl umbing", + "▁W u", + "or ig", + "ori g", + "o rig", + "案件 适用法律", + "quir ies", + "▁Be auty", + "▁Beaut y", + "▁Bea uty", + "▁Beau ty", + "▁S HO", + "▁SH O", + "▁decor ative", + "第九 章", + "第 九章", + "▁r ip", + "▁ri p", + "▁ rip", + "▁N aval", + "▁Na val", + "▁Nav al", + "一 提", + "考 证", + "Cal endar", + "医疗 器械", + "▁C elebr", + "▁legit imate", + "东 营", + "第五百一十九 条之规定", + "第五百一十九条 之规定", + "▁problem atic", + "之 二", + "万 一", + "Ho r", + "H or", + "author ized", + "authorize d", + "挂 牌", + "AM S", + "A MS", + "Sa n", + "S an", + "▁mon ol", + "▁mo nol", + "▁mono l", + "▁accum ulated", + "▁accumulate d", + "▁elim inating", + "▁L ud", + "▁Lu d", + "Em bed", + "E mbed", + "gr unt", + "世 的", + "Ex ist", + "nS pan", + "nSp an", + "n Span", + "手 上", + "CA DE", + "CAD E", + "C ADE", + "∈ (", + "▁U TC", + "▁UT C", + "▁ UTC", + "所 能", + "并不 能", + "并 不能", + "ac ao", + "aca o", + "serial izer", + "serialize r", + "s erializer", + "设计 与", + "马 尔", + "都不 能", + "都 不能", + "竣 工", + "衰 老", + "言 语", + "gr o", + "g ro", + "组 数据", + "▁concer ts", + "▁conc erts", + "▁concert s", + "▁H F", + "▁ HF", + "新疆 维吾尔", + "▁res pected", + "▁respect ed", + "▁resp ected", + "光 荣", + "▁Ro gers", + "▁Rog ers", + "▁Roger s", + "▁A zerbai", + "大 豆", + "ob l", + "o bl", + "is se", + "iss e", + "CS F", + "C SF", + "nw ill", + "n will", + "un day", + "und ay", + "unda y", + "▁H g", + "▁ Hg", + "申请 恢复执行", + "P o", + "▁Map le", + "▁Ma ple", + "▁under neath", + "je st", + "j est", + "Ra nk", + "R ank", + "▁satisf actory", + "原审 被告人", + "原审被告 人", + "未 必", + "▁Di vis", + "▁Div is", + "tr ained", + "tra ined", + "train ed", + "▁similar ities", + "腹 腔", + "被执行人 陈", + "▁adjust ing", + "GP IO", + "G PIO", + "}} $$\\", + "}}$ $\\", + "}}$$ \\", + "} }$$\\", + "和 她", + "关注 我", + "▁Sc hw", + "▁Sch w", + "sl ot", + "s lot", + "▁M ario", + "▁Mar io", + "▁Ma rio", + "▁Mari o", + "min imum", + "▁b ears", + "▁be ars", + "▁bear s", + "coord inates", + "coordinate s", + "▁m ul", + "▁mu l", + "▁ mul", + "▁S equence", + "▁Sequ ence", + "▁ Sequence", + "nH ar", + "nHa r", + "n Har", + "▁F le", + "▁Fl e", + "这篇 文章", + "这 篇文章", + "▁b ile", + "▁bi le", + "▁bil e", + "▁k iss", + "▁ki ss", + "卫生 和计划生育局", + "上 演", + "zh ong", + "z hong", + "▁r ays", + "▁ra ys", + "▁ray s", + "▁ rays", + "▁ar ises", + "▁arise s", + "▁Fif th", + "▁sym bolic", + "▁symbol ic", + "特定 的", + "特 定的", + "▁down loading", + "▁download ing", + "的歌 曲", + "的 歌曲", + "采取 保全措施", + "m f", + "Ob server", + "Observ er", + "Obs erver", + "契 机", + "自然 资源", + "▁p alm", + "▁pal m", + "▁pa lm", + "▁Valent ine", + "是 无", + "推荐 了", + "▁Ben ef", + "bi c", + "b ic", + "▁sc ipy", + "▁sci py", + "▁s illy", + "▁sil ly", + "▁diss olved", + "让 大家", + "ta p", + "t ap", + "的 平均", + "ag greg", + "agg reg", + "伊 斯", + "▁clean up", + "▁ cleanup", + "cri ptions", + "cription s", + "cript ions", + "成 像", + "▁de bris", + "▁deb ris", + "喜 好", + "纯 收入", + "▁Pay ment", + "▁ Payment", + "U l", + "新一 代", + "新 一代", + "▁e long", + "▁el ong", + "▁ elong", + "▁fire place", + "▁fi replace", + "ific ent", + "ifi cent", + "ifice nt", + "日 后", + "的事 件", + "的 事件", + "▁f ool", + "▁fo ol", + "▁foo l", + "▁p ockets", + "▁pocket s", + "Syn tax", + "S yntax", + "▁A bu", + "▁Ab u", + "工作 经验", + "▁incorpor ates", + "▁incorporate s", + "▁index es", + "▁ indexes", + "不会 有", + "不 会有", + "os it", + "osi t", + "o sit", + "worth y", + "wort hy", + "wor thy", + "w orthy", + "康 熙", + "▁en rollment", + "▁enroll ment", + "汽 油", + "▁l ac", + "▁la c", + "可以 帮助", + "▁Ex pand", + "▁Exp and", + "▁ Expand", + "▁ 江", + "Can vas", + "pl aying", + "play ing", + "nRe member", + "nRem ember", + "n Remember", + "启 用", + "的 四", + "的 照片", + "▁Act ually", + "▁Actual ly", + "若 有", + "▁已 完结", + "▁craft ed", + "▁ crafted", + "▁Dis covery", + "▁Disc overy", + "▁Discover y", + "▁ Discovery", + "共 青", + "ex ist", + "▁O scar", + "▁Os car", + "南 宁", + "▁hon estly", + "▁honest ly", + "再 把", + "特 此", + "保证 金", + "与被 申请人", + "与 被申请人", + "mon ey", + "mo ney", + "m oney", + "▁P rove", + "▁Pro ve", + "▁Pr ove", + "▁Prov e", + "固定 资产", + "工作 会议", + "oprote ins", + "oprotein s", + "▁inf erior", + "▁infer ior", + "勇 于", + "<\\ \\", + "< \\\\", + "▁penet ration", + "▁penetr ation", + "▁sup ern", + "▁super n", + "nw hen", + "n when", + "▁ch ore", + "▁cho re", + "▁chor e", + "▁th rew", + "▁thr ew", + "▁O thers", + "▁Other s", + "患 有", + "▁h iding", + "▁hi ding", + "▁M ari", + "▁Mar i", + "▁Ma ri", + "▁K aren", + "▁Kar en", + "▁Ka ren", + "在 地", + "难 过", + "▁Answer s", + "▁Ans wers", + "疑 惑", + "nR ussian", + "n Russian", + "的人 群", + "的 人群", + "复 仇", + "Bo und", + "B ound", + "▁diff use", + "▁Pop ulation", + "锂 电池", + "当事人 有权", + "▁electro ly", + "▁electr oly", + "El ect", + "Ele ct", + "E lect", + "▁S ah", + "▁Sa h", + "▁ Sah", + "▁conjug ate", + "奖励 审批表", + "▁K er", + "▁Ke r", + "反映 了", + "北 海", + "▁Es cherichia", + "▁l ined", + "▁li ned", + "▁line d", + "▁lin ed", + "▁ lined", + "▁dec oration", + "▁decor ation", + "▁ decoration", + "蜘 蛛", + "fer s", + "fe rs", + "f ers", + "▁ 可", + "确 已破裂", + "▁human ity", + "▁imag inary", + "ij k", + "i jk", + "ios ity", + "i osity", + "ran ial", + "Requ ests", + "Request s", + "快 来", + "▁u buntu", + "▁ub untu", + "▁ ubuntu", + "▁intern ally", + "▁internal ly", + "也无 法", + "也 无法", + "创造 了", + "nR ivers", + "▁cyt otoxic", + "▁cytotox ic", + "▁cyto toxic", + "▁term ination", + "创建 了", + "▁disappe ared", + "▁disappear ed", + "▁P ra", + "▁Pr a", + "▁sample d", + "▁sam pled", + "微 量", + "起 床", + "ad j", + "a dj", + "的 依据", + "▁educ ate", + "▁method ologies", + "戏 曲", + "▁ 背景", + "Ma l", + "M al", + "所说 的", + "所 说的", + "完成 生产任务", + "流 域", + "is le", + "isl e", + "▁Hash Map", + "▁ HashMap", + "▁dent ist", + "武 侠", + "门 的", + "▁d efer", + "▁de fer", + "▁def er", + "▁defe r", + "▁ defer", + "at an", + "ata n", + "a tan", + "on ian", + "onia n", + "oni an", + "▁c aus", + "▁ca us", + "Sign ature", + "pi cs", + "pic s", + "p ics", + "▁T ensor", + "▁ Tensor", + "震 惊", + "矿 山", + "▁w rist", + "▁wr ist", + "的 理念", + "Link ed", + "▁b inds", + "▁bin ds", + "▁bind s", + "▁ut ter", + "▁ utter", + "麦克 风", + "外 表", + "Ex change", + "っ て", + "急 救", + "门 前", + "\\' >", + "方 言", + "▁Del ivery", + "▁ Delivery", + "有 意", + "已 在", + "衣 柜", + "OS T", + "O ST", + "▁M ob", + "▁Mo b", + "▁prohib ited", + "▁C itation", + "▁Cit ation", + "▁cre atures", + "▁creat ures", + "▁creature s", + "▁R OS", + "▁RO S", + "▁ ROS", + "am ino", + "amin o", + "ami no", + "▁D ynamics", + "▁Dynamic s", + "▁Dynam ics", + "google apis", + "至 此", + "pa ste", + "past e", + "pas te", + "p aste", + "▁ex otic", + "▁Th under", + "▁Thu nder", + "“ \\", + "▁G E", + "▁ GE", + "▁A MD", + "▁AM D", + "▁ AMD", + "▁V ista", + "▁Vis ta", + "▁Vi sta", + "▁comment ary", + "▁micro s", + "▁mic ros", + "j upiter", + "▁cert ificates", + "▁certificate s", + "半 天", + "▁per su", + "▁pers u", + "▁ 目", + "有一 点", + "有 一点", + "闺 蜜", + "▁Ne il", + "nc ol", + "nco l", + "n col", + "▁P or", + "▁Po r", + "▁fol ders", + "▁folder s", + "▁fold ers", + "▁ folders", + "过 分", + "en os", + "eno s", + "e nos", + "▁tr aces", + "▁tra ces", + "▁trace s", + "是 目前", + "演唱 会", + "x e", + "烧 烤", + "▁an tis", + "▁ant is", + "▁anti s", + "▁ antis", + "He x", + "H ex", + "▁c i", + "▁ ci", + "▁Med ium", + "▁ Medium", + "▁S lovak", + "stack exchange", + "勉 强", + "占 领", + "效力 的", + "效 力的", + "▁n orms", + "▁nor ms", + "▁norm s", + "loc ations", + "location s", + "l ocations", + "▁ 与", + "叶 子", + "▁s iblings", + "▁sibling s", + "▁c b", + "▁ cb", + "se ry", + "ser y", + "s ery", + "se nal", + "sen al", + "▁H orse", + "▁Hor se", + "aff ected", + "▁Sy nd", + "▁Syn d", + "▁al ien", + "▁ali en", + "▁n erves", + "▁nerve s", + "▁nerv es", + "▁Requ ired", + "▁ Required", + "▁fer tility", + "▁fert ility", + "▁fertil ity", + "▁I NT", + "▁IN T", + "▁ INT", + "▁Reg istration", + "▁ Registration", + "▁Not Implemented", + "只 为", + "笑 了", + "inv oke", + "本裁定书送达后 即发生法律效力", + "▁M ETHODS", + "日本 的", + "日 本的", + "▁{ }\"", + "▁{} \"", + "▁ {}\"", + "▁f org", + "▁for g", + "▁fo rg", + "nSh ould", + "n Should", + "▁s uffix", + "▁suff ix", + "▁ suffix", + "▁ep igen", + "之 作", + "呈现 出", + "行 审", + "静 电", + "▁N orman", + "▁Nor man", + "▁Norm an", + "转 身", + "▁L an", + "▁La n", + "yl ene", + "yle ne", + "不 负", + "每个 人的", + "每个人 的", + "每 个人的", + "▁C uba", + "▁Cub a", + "▁Cu ba", + "第二 届", + "nA ng", + "nAn g", + "n Ang", + "▁A SC", + "▁AS C", + "▁ ASC", + "▁R as", + "▁Ra s", + "也是 一个", + "也是一 个", + "也 是一个", + "乾 隆", + "根 廷", + "na sync", + "nas ync", + "n async", + "▁gal axy", + "▁put ative", + "头 市", + "▁S ax", + "▁Sa x", + "河 市", + "” ——", + "▁T ib", + "▁Ti b", + "th reads", + "thread s", + "▁ 推荐", + "▁un common", + "权 重", + "梦 幻", + "▁D one", + "▁Do ne", + "▁Don e", + "▁ Done", + "▁dynam ically", + "▁dynamic ally", + "▁dynamical ly", + "公 约", + "干 什么", + "ax ies", + "AR I", + "A RI", + "t reatment", + "▁imp acted", + "▁impact ed", + "阻 力", + "nm odel", + "nmod el", + "n model", + "向 法院", + "▁H PV", + "▁HP V", + "▁ HPV", + "reg istration", + "半 夜", + "atern ity", + "w g", + "ji ng", + "jin g", + "j ing", + "rec ipe", + "recip e", + "▁muc osal", + "▁mucosa l", + "▁week ends", + "▁weekend s", + "'] );\\", + "']) ;\\", + "' ]);\\", + "显 微", + "黄 某", + "家里 的", + "家 里的", + "▁Stand ards", + "▁Standard s", + "吉林 市", + "宜 宾", + "牛 仔", + "CL IENT", + "CLI ENT", + "▁c odec", + "▁co dec", + "▁code c", + "▁cod ec", + "▁ codec", + "即 是", + "nS hare", + "nSh are", + "n Share", + "▁El astic", + "▁ Elastic", + "▁hold ers", + "▁hol ders", + "▁holder s", + "▁ holders", + "窗 户", + "九 个月", + "as px", + "asp x", + "▁Ex am", + "nAl bums", + "能 认罪服法", + "▁R aman", + "▁Ram an", + "▁Ra man", + "▁as sembl", + "▁E specially", + "▁Es pecially", + "▁M ale", + "▁Mal e", + "▁Ma le", + "bul let", + "bull et", + "▁mut agen", + "▁tr aders", + "▁trad ers", + "▁tra ders", + "▁trade rs", + "▁trader s", + "▁pro ceedings", + "▁proceed ings", + "▁proceeding s", + "Ent ities", + "台州 市", + "台 州市", + "菲 律", + "▁Engine er", + "▁exp osures", + "▁exposure s", + "▁ 曾", + "▁l ounge", + "▁lo unge", + "▁lou nge", + "▁F rame", + "▁Fr ame", + "▁Fra me", + "▁ Frame", + "Sc reens", + "Screen s", + "S creens", + "▁Sc anner", + "▁Scan ner", + "▁ Scanner", + "SE RT", + "SER T", + "S ERT", + "com it", + "co mit", + "一 心", + "总数 的", + "总 数的", + "▁u ro", + "▁ur o", + "▁ uro", + "晚 会", + "法 兰", + "▁ch arming", + "▁char ming", + "▁charm ing", + "Jac k", + "J ack", + "基础 知识", + "ac tin", + "act in", + "he ets", + "heet s", + "hee ts", + "▁# ###", + "▁## ##", + "▁### #", + "▁ ####", + "时 常", + "吹 风机", + "\\' (", + "\\ '(", + "继续 执行", + "中心 支公司", + "▁aim ing", + "▁ai ming", + "[ @", + "之 美", + "抗 体", + "ela ide", + "▁adjust ments", + "▁adjustment s", + "质 的", + "开发 有限公司", + "上 游", + "合法 有效", + "tg et", + "t get", + "▁mean time", + "▁meant ime", + "р у", + "时 报", + "port al", + "por tal", + "p ortal", + "▁Dis cover", + "▁Disc over", + "▁conver ge", + "新疆维吾尔 自治区", + "终 究", + "US D", + "U SD", + "di gest", + "dig est", + "nM ilitary", + "nMil itary", + "担 忧", + "▁Deg ree", + "]] ,", + "] ],", + "请您 务必", + "▁Cabin et", + "▁Cab inet", + "警 惕", + "一带 一路", + "▁A irlines", + "▁Air lines", + "▁deb ugging", + "▁debug ging", + "Gu ard", + "▁F itz", + "▁Fit z", + "▁Fi tz", + "▁in expensive", + "典 礼", + "流行 的", + "流 行的", + "检 修", + "动力 学", + "动 力学", + "or ie", + "ori e", + "o rie", + "▁smooth ly", + "台 上", + "▁e ct", + "▁ec t", + "▁ ect", + "math op", + "mat hop", + "并 告诉我", + "不准 许", + "不 准许", + "在 道路上", + "IM AGE", + "I MAGE", + "省 份", + "▁T N", + "▁ TN", + "▁ar rives", + "▁arr ives", + "▁arriv es", + "▁arrive s", + "相 逢", + "rat ulations", + "▁I van", + "▁Iv an", + "▁ 卡", + "np ython", + "npy thon", + "n python", + "nS an", + "n San", + "▁歌曲 原唱", + "nWork s", + "n Works", + "im eters", + "ime ters", + "imet ers", + "imeter s", + "check out", + "é d", + "ub es", + "ube s", + "u bes", + "▁P layers", + "▁Pl ayers", + "▁Play ers", + "▁Player s", + "▁ Players", + "▁mechan istic", + "菲律 宾", + "营业 时间", + "选定 正确答案", + "ON T", + "O NT", + "os ex", + "ose x", + "o sex", + "AT T", + "A TT", + "▁\\ '_", + "▁\\' _", + "▁ \\'_", + "▁Muslim s", + "▁esc orts", + "▁escort s", + "ci te", + "cit e", + "c ite", + "▁Hil bert", + "▁P rest", + "▁Pr est", + "▁Pres t", + "▁Pre st", + "▁Eth iop", + "Argument Parser", + "分 化", + "AL T", + "A LT", + "SP E", + "S PE", + "Row s", + "Ro ws", + "R ows", + "影 子", + "清 热", + "都 非常", + "▁H amm", + "▁Ha mm", + "▁Ham m", + "路 的", + "View Controller", + "▁ 丁", + "僵 尸", + "选择题 时", + "▁C limate", + "▁Cl imate", + "P e", + "头 像", + "▁Cr usher", + "▁Crus her", + "▁pers ist", + "▁ 爱", + "ny our", + "nyou r", + "n your", + "Sy s", + "S ys", + "五 入", + "净 水", + "用 以", + "▁p uzz", + "▁pu zz", + "$( \\'", + "$ (\\'", + "comp uter", + "comput er", + "compute r", + "▁cle avage", + "▁radio therapy", + "▁radi otherapy", + "▁l ips", + "▁li ps", + "▁lip s", + "▁ lips", + "占总 收入的", + "占 总收入的", + "▁Al bum", + "▁Alb um", + "▁ Album", + "▁g ases", + "▁gas es", + "▁ga ses", + "▁c ope", + "▁co pe", + "▁cop e", + "oph one", + "ophon e", + "o phone", + "无 非", + "▁B ak", + "▁Ba k", + "▁O rd", + "▁Or d", + "▁ Ord", + "▁time line", + "▁tim eline", + "▁ timeline", + "W al", + "▁mitochond ria", + "票 房", + "an dro", + "and ro", + "andr o", + "发 音", + "副 校长", + "展示 了", + "▁t weets", + "▁tweet s", + "▁twe ets", + "▁smart phones", + "▁smartphone s", + "▁de priv", + "▁dep riv", + "▁ob struct", + "▁obst ruct", + "nP olitical", + "nPolit ical", + "xi v", + "x iv", + "▁c el", + "▁ce l", + "▁ cel", + "bo urg", + "bour g", + "▁N AME", + "▁NA ME", + "▁ NAME", + "sub string", + "substr ing", + "nn ew", + "n new", + "▁N OW", + "▁NO W", + "▁ NOW", + "mill ion", + "mil lion", + "m illion", + "▁l ifting", + "▁lif ting", + "▁lift ing", + "▁ lifting", + "忙 碌", + "nT IME", + "n TIME", + "并 做出", + "▁S haw", + "▁Sh aw", + "▁Sha w", + "出版社 出版", + "▁op ener", + "▁open er", + "some thing", + "s omething", + "踏 实", + "培训 机构", + "▁ ч", + "常 州", + "nR oman", + "n Roman", + "▁advis ory", + "▁advisor y", + "均 价", + "▁ca ution", + "▁caut ion", + "严 峻", + "▁F AQ", + "▁FA Q", + "un wrap", + "现 为", + "cs rf", + "劳动 报酬", + "居 家", + "信息 公开", + "con tr", + "cont r", + "co ntr", + "务 实", + "对方 的", + "对 方的", + "为 期", + "率 和", + "▁str ikes", + "▁stri kes", + "▁strike s", + "acchar ide", + "保 密", + "th umbnail", + "new command", + "nv ersion", + "n version", + "本院 在执行过程中", + "本院在 执行过程中", + "本院在执行 过程中", + "▁mer ging", + "▁merg ing", + "▁F ocus", + "▁Fo cus", + "▁ Focus", + "▁时间 复杂度", + "▁ 时间复杂度", + "▁emb arrass", + "▁con volution", + "▁conv olution", + "品 味", + "感 慨", + "面 团", + "担保 人", + "威 尔", + "落 的", + "▁Blu etooth", + "▁P ep", + "▁Pe p", + "▁t enant", + "▁te nant", + "▁ten ant", + "▁ tenant", + "ur ement", + "ure ment", + "un ar", + "una r", + "u nar", + "▁L apl", + "▁La pl", + "▁Lap l", + "圈 子", + "以下 备选答案", + "art ered", + "arter ed", + "arte red", + "▁acknowled ged", + "▁acknowledge d", + "▁d s", + "▁ ds", + "网络 营销", + "▁el even", + "▁elev en", + "▁ele ven", + "▁s aline", + "▁sa line", + "▁sal ine", + "不 通", + "想 知道", + "ary nge", + "aryng e", + "之 力", + "sel ling", + "sell ing", + "s elling", + "▁Direct ors", + "▁Director s", + "▁Dir ectors", + "nBe low", + "nBel ow", + "委托代理人 王", + "▁hon ors", + "▁honor s", + "dist ributed", + "楼 主", + "FE T", + "F ET", + "执行 通知", + "代理 书记员", + "▁wel coming", + "与 会", + "ci t", + "c it", + "我 当时", + "粗 糙", + "美 军", + "鉴 别", + "▁o ch", + "▁oc h", + "▁ och", + "▁C ache", + "▁Ca che", + "▁ Cache", + "磨 练", + "▁catal yst", + "精 美", + "颁 奖", + "▁Mathematic a", + "▁res ervation", + "▁reserv ation", + "▁L D", + "▁ LD", + "诈骗 罪", + "▁re ass", + "画 的", + "作出 了", + "作 出了", + "cu ador", + "▁N uclear", + "▁Nu clear", + "▁Nucle ar", + "▁bios ynthesis", + "怎么 做", + "▁corpor ation", + "▁M N", + "▁ MN", + "▁Ott awa", + "▁Ug anda", + "▁mell itus", + "▁S or", + "▁So r", + "▁s ung", + "▁su ng", + "▁sun g", + "操 控", + "十个 月", + "十 个月", + "▁C SV", + "▁CS V", + "▁ CSV", + "Gener ate", + "Gen erate", + "Gene rate", + "G enerate", + "▁di electric", + "▁die lectric", + "文件 的", + "文 件的", + "▁fix ation", + "▁surv iving", + "▁surviv ing", + "中 法", + "cu da", + "c uda", + "How ever", + "▁investig ates", + "▁investigate s", + "一直 以来", + "口 袋", + "▁\\\\ *", + "▁ \\\\*", + "isb ane", + "j k", + "用 力", + "nQu ote", + "n Quote", + "▁ch ess", + "▁che ss", + "▁mamm als", + "▁Pro vider", + "▁Prov ider", + "▁Provide r", + "▁ Provider", + "▁subsid iary", + "K C", + "▁D eal", + "▁De al", + "nE rror", + "nEr ror", + "n Error", + "▁N AD", + "▁NA D", + "▁Elect rical", + "▁Electric al", + "▁Po isson", + "才 可以", + "▁re write", + "▁ 村", + "使用 权", + "罪犯 李", + "RE EN", + "REE N", + "先进 单位", + "撤回上诉 处理", + "▁Hud son", + "▁answer ing", + "还 未", + "看 一下", + "市场 经济", + "nT om", + "nTo m", + "n Tom", + "这一 次", + "这 一次", + "神 器", + "mun d", + "mu nd", + "m und", + "nm ake", + "n make", + "▁f acebook", + "▁face book", + "▁ facebook", + "▁fil tration", + "▁lit igation", + ": {", + "IR ST", + "IRS T", + "bi ll", + "bil l", + "b ill", + "▁ch ap", + "▁cha p", + "de signed", + "des igned", + "design ed", + "h ospital", + "会 使", + "BS D", + "B SD", + "▁r upt", + "▁ru pt", + "▁ rupt", + "质 地", + "日被 逮捕", + "nH ome", + "nHom e", + "n Home", + "的 重", + ";\" >\\", + ";\"> \\", + "; \">\\", + "ri ce", + "ric e", + "r ice", + "车 上", + "▁G y", + "▁ Gy", + "▁correl ates", + "▁correlate s", + "]] ,\\", + "]], \\", + "] ],\\", + "am onds", + "amond s", + "amon ds", + "a monds", + "▁book ed", + "▁bo oked", + "▁he ap", + "▁ heap", + "▁van illa", + "▁util izes", + "▁utilize s", + "创 伤", + "回答 以下问题", + "▁mar ble", + "▁Wire less", + "晚 期", + "服务 平台", + "na ires", + "naire s", + "nai res", + "n aires", + "dist ribution", + "列 为", + "Fl ash", + "F lash", + "st airs", + "sta irs", + "的 正", + "粉 碎", + "ol t", + "o lt", + "Creat or", + "Cre ator", + "挺好 的", + "挺 好的", + "▁g host", + "▁gh ost", + "▁ ghost", + "▁Gener ator", + "▁Gen erator", + "▁ Generator", + "中学 生", + "中 学生", + "Up per", + "▁coll ector", + "▁collect or", + "▁colle ctor", + "▁ collector", + "▁cryptoc urrency", + "▁crypto currency", + "鲁 迅", + "Str ucture", + "Struct ure", + "▁R ah", + "▁Ra h", + "系 其", + "▁tim ber", + "▁ti mber", + "control s", + "contr ols", + "参演 电影", + "▁exp ans", + "Act or", + "Ac tor", + "A ctor", + "▁ не", + "er ek", + "ere k", + "e rek", + "文化 艺术", + "pi res", + "pir es", + "p ires", + "▁m igrate", + "▁migr ate", + "▁ migrate", + "▁In stitution", + "▁Inst itution", + "▁Instit ution", + "临沂 市", + "减少 了", + "减 少了", + "知名 度", + "▁N ear", + "▁Ne ar", + "▁y aml", + "▁ya ml", + "▁ yaml", + "▁pro to", + "▁pr oto", + "▁prot o", + "▁ proto", + "为 之", + "▁Ah med", + "▁com mercially", + "▁commercial ly", + "见 了", + "有 许多", + "▁C AR", + "▁CA R", + "▁ CAR", + "up pet", + "upp et", + "▁Mun ich", + "其中 一个", + "▁sub units", + "▁subunit s", + "Te r", + "T er", + "最 重要", + "▁ad dr", + "▁add r", + "▁ addr", + "id ency", + "ide ncy", + "iden cy", + "pr event", + "pre vent", + "prev ent", + "Ag g", + "A gg", + "▁dos age", + "出 演", + "nR ad", + "n Rad", + "▁n ep", + "▁ne p", + "就 来", + "林 木", + "▁bl ues", + "▁blue s", + "▁blu es", + "▁ex acerb", + "▁s pite", + "▁sp ite", + "▁refresh ing", + "▁refres hing", + "▁E ve", + "▁Ev e", + "PT ION", + "一元 二次方程", + "一 元二次方程", + "▁O ri", + "▁Or i", + "▁t in", + "▁ti n", + "▁ tin", + "▁ad vers", + "▁adv ers", + "互 助", + "火 爆", + "▁S PD", + "▁SP D", + "nPro blem", + "nProb lem", + "n Problem", + "▁Cam eron", + "▁Camero n", + "心 得", + "内存 容量", + "▁J ar", + "▁Ja r", + "▁ Jar", + "荣誉 称号", + "tb ool", + "t bool", + "量 化", + "▁S cre", + "▁Sc re", + "▁Scr e", + "umb ent", + "Project s", + "显着 性", + "具体 应用", + "▁se pt", + "▁sep t", + "com par", + "comp ar", + "两 名", + "▁v im", + "▁vi m", + "▁ vim", + "▁sh utdown", + "▁shut down", + "▁ shutdown", + "ñ a", + "end ent", + "ende nt", + "enden t", + "O s", + "的说 法", + "的 说法", + "▁J ak", + "▁Ja k", + "▁tr ades", + "▁trad es", + "▁tra des", + "▁trade s", + "nA mong", + "nAm ong", + "德 育", + "火 焰", + "▁aut ism", + "和 新", + "虚拟 机", + "▁Inter est", + "IL E", + "I LE", + "с я", + "▁Cam pus", + "▁Camp us", + "{ #", + "楼 梯", + "▁vac cin", + "▁vacc in", + "的一 生", + "的 一生", + "in as", + "ina s", + "i nas", + "执行 董事", + "▁back wards", + "▁backward s", + "` :", + "an yon", + "any on", + "鸡 肉", + "ig i", + "i gi", + "我也 不", + "我 也不", + "▁viol ations", + "▁violation s", + "区 政府", + "ik er", + "ike r", + "i ker", + "▁w orthy", + "▁wor thy", + "▁worth y", + "▁ worthy", + "st ub", + "s tub", + "小 康", + "un n", + "u nn", + "is cher", + "isc her", + "isch er", + "ische r", + "▁so ils", + "▁soil s", + "os ocial", + "o social", + "阴 道", + "▁some time", + "▁som etime", + "▁C incinnati", + "体 温", + "不同 于", + "▁c ents", + "▁cent s", + "▁ cents", + "Ob serv", + "Obs erv", + "O bserv", + "仍 在", + "▁meas urable", + "大 夫", + "▁x s", + "▁ xs", + "▁late nt", + "▁lat ent", + "因为 在", + "微信 公众号", + "犯罪 嫌疑人", + "▁def enders", + "▁defend ers", + "▁defender s", + "得 起", + "▁M IN", + "▁MI N", + "▁ MIN", + "R o", + "和 中", + "▁D emo", + "▁De mo", + "▁Dem o", + "▁ Demo", + "inst alled", + "install ed", + "半 个", + "He y", + "H ey", + "{( )", + "{ ()", + "arynge al", + "aryng eal", + "周 某", + "农民 工", + "▁S SL", + "▁SS L", + "▁ SSL", + "就不 能", + "就 不能", + "市场 营销", + "▁N ull", + "▁Nu ll", + "▁ Null", + "的家 庭", + "的 家庭", + "明 代", + "▁Det ection", + "▁ Detection", + "▁Optim ization", + "筹 备", + "好 不好", + "自来 水", + "Ch ina", + "in el", + "ine l", + "i nel", + "改革 的", + "本科 生", + "ar di", + "ard i", + "▁T err", + "▁Te rr", + "▁Ter r", + "但 被告", + "▁t anks", + "▁tank s", + "▁tan ks", + "▁Re pository", + "▁Rep ository", + "▁ Repository", + "从 不", + "唐 代", + "近 平", + "拥有 一", + "拥 有一", + "▁w ounds", + "▁wound s", + "z u", + "is che", + "isc he", + "isch e", + "i sche", + "十五 章", + "▁H onda", + "▁Hon da", + "▁Ho nda", + "▁Hond a", + "协议 书", + "所需 的", + "bar s", + "ba rs", + "b ars", + "加 盖", + "委托代理人 张", + "mu l", + "m ul", + "▁sk ew", + "▁ske w", + "port ion", + "por tion", + "p ortion", + "屁 股", + "▁di arr", + "▁dia rr", + "Met rics", + "Metric s", + "em ption", + "empt ion", + "emp tion", + "fail ure", + "商 用", + "ap a", + "a pa", + "管理 办法", + "因为 你", + "因 为你", + "pa id", + "p aid", + "对 被申请人", + "现有的 床铺", + "▁in tim", + "▁int im", + "小 鼠", + "强 劲", + "云 计算", + "FORM AT", + "FOR MAT", + "high light", + "ment ioned", + "▁b achelor", + "接 地", + "Rad io", + "▁f ifty", + "▁fif ty", + "▁fi fty", + "回 合", + "it é", + "~~ \\", + "~ ~\\", + "上 科大", + "主义 的", + "▁dr ift", + "▁dri ft", + "九 条", + "可能 的", + "了一 场", + "了 一场", + "▁B MW", + "▁BM W", + "T oggle", + "商 铺", + "为 维护", + "▁Ul tra", + "▁Ultr a", + "粒 子", + "nSp anish", + "nSpan ish", + "n Spanish", + "▁Co hen", + "▁Coh en", + "四 舍", + "发展 战略", + "▁bur ned", + "▁burn ed", + "遥 控", + "dt ype", + "d type", + "▁un ions", + "▁union s", + "▁uni ons", + "hi s", + "h is", + "铝 合金", + "▁V ic", + "▁Vi c", + "on aut", + "ona ut", + "}) );\\", + "})) ;\\", + "} ));\\", + "Fix ture", + "限 度", + "明白 了", + "明 白了", + "▁in spir", + "▁ins pir", + "▁insp ir", + "▁ampl ification", + "▁人 口", + "▁ 人口", + "ns ys", + "n sys", + "▁P ush", + "▁Pu sh", + "▁ Push", + "▁po ets", + "▁poet s", + "nTh ough", + "▁N either", + "▁Ne ither", + "ict ory", + "ictor y", + "▁touch es", + "▁tou ches", + "print StackTrace", + "欺 骗", + "fa t", + "f at", + "申请执行人 王", + "v h", + "项 规定", + "退房 时间", + "▁bad ly", + "起诉 人", + "壮 大", + "|} \\", + "| }\\", + "▁multi plied", + "包装 清单", + "sc ores", + "score s", + "s cores", + "▁mon etary", + "di agn", + "diag n", + "mult iple", + "multi ple", + "▁cos metic", + "▁cosm etic", + "支 球队", + "▁sculpt ure", + "多 余", + "是 小", + "被除 数", + "被 除数", + "▁Tr avis", + "▁Tra vis", + "▁Trav is", + "▁sil ence", + "举行 了", + "举 行了", + "到 最后", + "▁Columb us", + "还是 在", + "还 是在", + "CH AR", + "CHA R", + "▁br ut", + "▁bru t", + "世 人", + "▁sn ippet", + "▁ snippet", + "如果 在", + "ip ro", + "i pro", + "▁pre serving", + "▁pres erving", + "平 生", + "▁s s", + "▁ ss", + "system s", + "▁work space", + "▁works pace", + "▁ workspace", + "ere um", + "▁down loads", + "▁download s", + "▁ downloads", + "nat ional", + "nation al", + "n ational", + "▁contin uation", + "▁continu ation", + "就 这么", + "▁n os", + "▁no s", + "▁ nos", + "▁start ups", + "▁startup s", + "教 导", + "▁ 获奖", + "F ocus", + "眼 的", + "年 生", + "▁Sup ply", + "▁Prob ability", + "ca ts", + "cat s", + "c ats", + "▁devast ating", + "相反 数", + "▁do ub", + "▁dou b", + "本身 的", + "本 身的", + "说 起", + "▁a nis", + "▁an is", + "下 单", + "ig hb", + "igh b", + "▁Pat tern", + "▁ Pattern", + "▁propri etary", + "绑 定", + "▁di visible", + "▁div isible", + "▁p oker", + "▁po ker", + "▁cart oon", + "▁sp elling", + "▁spell ing", + "原 谅", + "VE LO", + "▁Command er", + "▁Comm ander", + "检 刑诉", + "▁Ed wards", + "▁Edward s", + "很 不", + "得 上", + "新 品", + "ycl er", + "ycle r", + "yc ler", + "y cler", + "cos ity", + "c osity", + "IN F", + "I NF", + "博览 会", + "sl ide", + "s lide", + "▁em ploys", + "▁employ s", + "日 制", + "▁N ancy", + "▁Na ncy", + "▁Nan cy", + "▁bin omial", + "▁t oxin", + "▁to xin", + "▁tox in", + "th ood", + "t hood", + "清 风", + "商品 的", + "商 品的", + "赢得 了", + "赢 得了", + "该怎么 办", + "该 怎么办", + "▁u gly", + "▁ug ly", + "就 想", + "ic us", + "i cus", + "其中 包括", + "▁m all", + "▁mal l", + "▁ma ll", + "▁ mall", + "吃 完", + "奈 何", + "进 修", + "med ian", + "media n", + "换 算", + "生 化", + "需求 的", + "阳县 人民法院", + "阳 县人民法院", + "和 浩特", + "影响 了", + "▁ge ographical", + "▁geographic al", + "▁inadequ ate", + "规 矩", + "除 尘", + "宫 颈", + "er sed", + "ers ed", + "▁d ear", + "▁de ar", + "▁th umb", + "▁ thumb", + "博 主", + "就 诊", + "na ble", + "nab le", + "n able", + "▁M ills", + "▁Mil ls", + "▁Mill s", + "▁Represent ative", + "告 别", + "▁B rid", + "▁Br id", + "▁Bri d", + "▁H arrison", + "▁Harr ison", + "▁Harris on", + "提 名", + "灿 烂", + "马 斯", + "▁T ang", + "▁Ta ng", + "▁Tan g", + "▁ser oton", + "▁T rial", + "▁Tr ial", + "▁Tri al", + "星 球", + "不 影响", + "is hi", + "ish i", + "i shi", + "get Message", + "海 报", + "pol ar", + "po lar", + "p olar", + "om ology", + "omo logy", + "o mology", + "家 常", + "wi k", + "w ik", + "▁cou sin", + "▁cous in", + "▁neuro deg", + "帐 号", + "▁c urved", + "▁cur ved", + "▁curve d", + "▁curv ed", + "矿 业", + "or ean", + "ore an", + "Ta ke", + "T ake", + "bu nd", + "b und", + "▁found ations", + "▁foundation s", + "▁br ass", + "▁bra ss", + "▁pot ato", + "太 高", + "nD irect", + "nDi rect", + "n Direct", + "肖 战", + "▁neighborhood s", + "外 壳", + "▁H ob", + "▁Ho b", + "党 中央", + "▁h eal", + "▁he al", + "math it", + "mat hit", + "▁re plies", + "▁rep lies", + "▁t am", + "▁ta m", + "第一百 条", + "cl ients", + "client s", + "cli ents", + "八 十", + "ri des", + "ride s", + "rid es", + "r ides", + "▁influ encing", + "把 这个", + "▁Gener ic", + "▁Gen eric", + "▁Gene ric", + "▁ Generic", + "▁S ingles", + "▁Sing les", + "▁Single s", + "bo at", + "奔 驰", + "Nor th", + "N orth", + "▁w ool", + "▁wo ol", + "▁c amping", + "▁camp ing", + "▁cam ping", + "句 子", + "▁e vac", + "▁ev ac", + "颁 发", + "保 鲜", + "量 为", + "一 顿", + "提 倡", + "c rypt", + "ib les", + "ible s", + "ibl es", + "i bles", + "iro pr", + "▁Wild life", + "ab we", + "▁d rought", + "▁dr ought", + "▁dro ught", + "最 快", + "这样 做", + "航 班", + "Ti p", + "T ip", + "un gen", + "ung en", + "unge n", + "num eric", + "nu meric", + "石 材", + "▁H ER", + "▁HE R", + "▁ HER", + "nW rite", + "nWrit e", + "n Write", + "▁broad ly", + "▁Oper ating", + "▁Opera ting", + "▁ Operating", + "图 的", + "富 裕", + "注意 到", + "▁k et", + "▁ke t", + "▁ ket", + "▁C lare", + "▁Cl are", + "▁Clar e", + "冻结 被申请人", + "▁sc attered", + "▁scatter ed", + "计算 出", + "计 算出", + "吴 某", + "术 前", + "HI V", + "H IV", + "opl us", + "o plus", + "▁tom ato", + "▁tomat o", + "de ployment", + "deploy ment", + "地 块", + "on c", + "o nc", + "au sal", + "aus al", + "a usal", + "▁soci eties", + "申请 的", + "▁d an", + "▁da n", + "▁ dan", + "▁stat istic", + "▁statist ic", + "方法 对", + "▁A uckland", + "▁R ES", + "▁RE S", + "▁ RES", + "em e", + "e me", + "装 箱", + "针 灸", + "ji n", + "j in", + "▁B urg", + "▁Bur g", + "▁Bu rg", + "今 晚", + "你 对", + "实 录", + "烤 箱", + "提供被执行人 其他", + "▁be ams", + "▁beam s", + "▁tr apped", + "▁tra pped", + "▁trap ped", + "▁I NC", + "▁IN C", + "▁ INC", + "fire base", + "决 议", + "▁B ac", + "▁Ba c", + "▁Ser bia", + "▁pro phyl", + "人 际", + "女 王", + "板 的", + "xp ath", + "x path", + "▁to pped", + "▁top ped", + "▁sub missions", + "▁submission s", + "和 生活", + "▁att rs", + "▁attr s", + "▁ attrs", + "蘑 菇", + "on n", + "o nn", + "▁St evens", + "▁Ste vens", + "▁Steve ns", + "▁Steven s", + "都 将", + "归还 借款", + "Ge ometry", + "Geo metry", + "枢 纽", + "下列 范围", + "工程 施工", + "▁Z hang", + "▁Zh ang", + "的 都是", + "中医 药学", + "中医药 学", + "▁re leg", + "▁rel eg", + "nKey words", + "启 示", + "▁cou pons", + "▁coupon s", + "▁coup ons", + "▁up grades", + "▁upgrade s", + "▁upgrad es", + "▁Freder ick", + "从 判决确定之日起计算", + "长 相", + "▁ 语种", + "▁t ut", + "▁tu t", + "sw ift", + "▁short est", + "ole rance", + "oler ance", + "▁st resses", + "▁str esses", + "▁stress es", + "▁m x", + "▁ mx", + "H Y", + "▁Saf ari", + "想 不到", + "主 营", + "ut ral", + "时 要", + "▁counter parts", + "▁counterpart s", + "HP P", + "H PP", + "bi o", + "b io", + "▁F lag", + "▁Fl ag", + "▁ Flag", + "禁 忌", + "例 患者", + "Te le", + "Tel e", + "T ele", + "Ap ril", + "Apr il", + "A pril", + "双 重", + "▁Pro tein", + "▁Prot ein", + "▁Prote in", + "TC P", + "T CP", + "意见 书", + "▁cl ue", + "▁B uilt", + "▁Bu ilt", + "▁ Built", + "杰 出", + "与中国 科学院", + "与 中国科学院", + "能够 在", + "▁g ateway", + "▁gate way", + "▁ gateway", + "右 键", + "Sy m", + "S ym", + "nW ant", + "n Want", + "▁sold ier", + "▁refuge es", + "▁refugee s", + "な い", + "bo ns", + "bon s", + "b ons", + "▁g ard", + "▁gar d", + "▁ga rd", + "▁ gard", + "硕士 研究生", + "▁tal ents", + "▁talent s", + "Co urse", + "C ourse", + "oper atively", + "operative ly", + "olic ies", + "▁L CD", + "▁LC D", + "▁ LCD", + "从来 没有", + "从来没 有", + "▁S ever", + "▁Se ver", + "▁Sev er", + "▁ Sever", + "不 已", + "Go ld", + "G old", + "▁ev olve", + "一 无", + "升 降", + "变 迁", + "着 你", + "▁rhe umat", + "ov y", + "o vy", + "▁V a", + "等 部门", + "研究 成果", + "NS String", + "中 断", + "ia tor", + "iat or", + "i ator", + "pl ots", + "plot s", + "E s", + "不 难", + "j b", + "RO P", + "R OP", + "Sa fe", + "S afe", + "▁conscious ness", + "▁manifest ations", + "▁manifestation s", + "比 利", + "▁G ill", + "▁Gi ll", + "▁Gil l", + "▁Cent ers", + "▁Center s", + "▁Ce nters", + "堵 塞", + "▁ 蔡", + "珍 贵", + "▁bo asts", + "银行股份有限公司 信用卡中心", + "▁championship s", + "▁champion ships", + "▁champions hips", + "卸 载", + "▁Thanks giving", + "吸引 了", + "广泛 的", + "辅导 员", + "内容 包括", + "发 改", + "nD ue", + "n Due", + "Fac ades", + "par agraph", + "para graph", + "ma rine", + "mar ine", + "m arine", + "▁sym pathetic", + "▁trans ported", + "▁transport ed", + "一 键", + "▁Im plementation", + "▁Implement ation", + "▁ Implementation", + "无 情", + "行 车", + "WE R", + "W ER", + "▁F F", + "▁ FF", + "▁Ul tr", + "os hop", + "osh op", + "o shop", + "to l", + "t ol", + "辨认 笔录", + "高等 学校", + "lu ent", + "l uent", + "un til", + "unt il", + "u ntil", + "MA TH", + "MAT H", + "M ATH", + "▁Con serv", + "▁Cons erv", + "▁bath rooms", + "▁bathroom s", + "▁D DR", + "▁DD R", + "▁ DDR", + "呕 吐", + "开始 游戏", + "▁incent ives", + "▁incentive s", + "▁sub scribers", + "▁subscrib ers", + "▁subscribe rs", + "▁subscriber s", + "录 像", + "预 售", + "的 理解", + "▁cr edited", + "▁credit ed", + "▁cred ited", + "▁ credited", + "篇 文章", + "声 器", + "▁t yped", + "▁type d", + "▁typ ed", + "▁ty ped", + "▁ typed", + "▁p raise", + "▁pr aise", + "▁pra ise", + "吉 他", + "城 堡", + "Un ity", + "Unit y", + "不过 是", + "nS everal", + "▁Reg istry", + "▁ Registry", + "平 分", + "en cv", + "enc v", + "不准许 撤诉", + "it ated", + "ita ted", + "itate d", + "itat ed", + "▁re duct", + "▁redu ct", + "▁red uct", + "▁h omology", + "▁hom ology", + "▁ho mology", + "▁homolog y", + "实 惠", + "▁T C", + "▁ TC", + "text ure", + "tex ture", + "买 家", + "pr ison", + "pri son", + "F n", + "EE S", + "E ES", + "心理 健康", + "ass isted", + "assis ted", + "▁ µ", + "二审 案件受理费", + "花 椒", + "inter cept", + "▁d yst", + "▁dys t", + "▁dy st", + "▁M uh", + "▁Mu h", + "▁co unted", + "▁count ed", + "▁T ea", + "▁Te a", + "▁Us ually", + "▁mon keys", + "▁monkey s", + "得不 到", + "得 不到", + "淄博 市", + "▁Br isbane", + "我 了", + "顶 端", + "领导 班子", + "▁Wood s", + "▁Wo ods", + "iv ative", + "市 面上", + "mi sc", + "mis c", + "m isc", + "CON TRIBUTING", + "解 方程", + "▁E ug", + "维 权", + "sc ient", + "sci ent", + "▁pre dec", + "▁pred ec", + "台 风", + "▁a mp", + "▁am p", + "▁ amp", + "mer ged", + "merge d", + "M X", + "公 社", + "口 的", + "▁sp iral", + "▁spir al", + "▁in appropriate", + "▁T ot", + "▁To t", + "read me", + "▁st air", + "▁Associ ates", + "▁Associate s", + "ia sm", + "ias m", + "i asm", + "成为 一个", + "成 为一个", + "▁Max imum", + "▁Maxim um", + "▁ Maximum", + "▁amy loid", + "▁B S", + "▁ BS", + "ang elog", + "ange log", + "angel og", + "▁Fr ances", + "▁France s", + "▁Franc es", + "▁un ified", + "▁Veter ans", + "▁ 晋江文学网", + "图 中", + "处理 的", + "▁{ },", + "▁{} ,", + "▁ {},", + "骨 头", + "特色 服务", + "▁Import Error", + "敬 业", + "▁D irection", + "▁Direct ion", + "▁Di rection", + "▁Dir ection", + "▁ Direction", + "▁special izes", + "▁specialize s", + "th umb", + "▁v olt", + "▁vol t", + "▁vo lt", + "法定代表人 张", + "切 片", + "逃 离", + "▁\" (", + "▁ \"(", + "▁p estic", + "▁pest ic", + "▁pes tic", + "字 数", + "前 三", + "▁styl ing", + "▁Health care", + "bi s", + "b is", + "st din", + "std in", + "主 场", + "▁c ues", + "▁cu es", + "▁cue s", + "C ursor", + "▁back yard", + "▁Par ameters", + "▁Parameter s", + "▁Param eters", + "▁ Parameters", + "ut m", + "u tm", + "hor izontal", + "书 证", + "nE X", + "n EX", + "▁G uild", + "▁Gu ild", + "for matter", + "form atter", + "format ter", + "▁' __", + "▁'_ _", + "pace s", + "pa ces", + "pac es", + "p aces", + "▁des erves", + "▁deserve s", + "▁disturb ance", + "剧 中", + ")) *", + ") )*", + "有两 种", + "有 两种", + "日 经", + "▁C BD", + "▁CB D", + "这些 问题", + "▁ass ure", + "▁M idd", + "▁Mi dd", + "▁Mid d", + "▁out patient", + "就 看", + "指 纹", + "an ya", + "any a", + "a nya", + "r é", + "▁s ug", + "▁su g", + "▁m ate", + "▁mat e", + "▁ma te", + "▁ mate", + "▁S askat", + "MMMM MMMM", + "要 做", + "ns e", + "n se", + "按月 利率", + "按 月利率", + "ac ional", + "acion al", + "aci onal", + "acio nal", + "▁ac knowledge", + "▁acknow ledge", + "▁acknowled ge", + "▁pract ically", + "▁practical ly", + "畅 销", + "Sr c", + "S rc", + "说 着", + "js x", + "j sx", + "IN CLUDE", + "执 着", + "排行 榜", + "co ol", + "c ool", + "iz ens", + "ize ns", + "izen s", + "i zens", + "▁ad ul", + "▁gall eries", + "▁ham mer", + "▁ hammer", + "▁def ective", + "▁defect ive", + "r p", + "火 山", + "ba z", + "b az", + "亲 爱的", + "▁p ear", + "▁pe ar", + "▁ pear", + "▁bundle s", + "▁bund les", + "▁sem inar", + "▁semi nar", + "▁semin ar", + "mark er", + "mar ker", + "m arker", + "▁rank ings", + "▁ranking s", + "Gu id", + "Gui d", + "G uid", + "价值 的财产", + "价值的 财产", + "是 将", + "些 什么", + "' $", + "诊 治", + "nC ustom", + "n Custom", + "▁form atted", + "▁format ted", + "▁ formatted", + "对 上述", + "at ics", + "atic s", + "ati cs", + "理想 的", + "理 想的", + "毁 灭", + "Car e", + "Ca re", + "C are", + "FF FF", + "ve ctors", + "vector s", + "v ectors", + "▁Work ers", + "▁Wor kers", + "▁Worker s", + "倒 数", + "ag i", + "a gi", + "找 房", + "会议 室", + "网站 的", + "网 站的", + "奖惩 审批表", + "在 审理过程中", + "网络 科技有限公司", + "现 将", + "理 智", + "手术 治疗", + "年 平均", + "ea sy", + "eas y", + "e asy", + "▁V ac", + "▁Va c", + "ipp ets", + "ippet s", + "于本判决 生效之日起十日内", + "于本判决生效之日起 十日内", + "▁ 潘", + "所 选", + "二 期", + "新 产品", + ";& #", + "; &#", + "▁L aunch", + "▁La unch", + "▁ Launch", + "不 胜", + "总 线", + "增值 税", + "▁Te acher", + "▁Tea cher", + "保 湿", + "Jun e", + "J une", + "▁st rom", + "▁str om", + "▁stro m", + "▁ strom", + "as tically", + "ast ically", + "astic ally", + "南宁 市", + "南 宁市", + "日常 生活中", + "日常生活 中", + "▁re mot", + "▁rem ot", + "硫 酸", + "第一 条", + "第 一条", + "▁A ur", + "▁Au r", + "应 有", + "ou x", + "o ux", + "国 科大", + "扬 子", + "no d", + "n od", + "cal e", + "ca le", + "c ale", + "▁f lies", + "▁fl ies", + "▁ flies", + "这三 个", + "这 三个", + "▁careg ivers", + "▁caregiver s", + "与 社会", + "▁in oc", + "▁i noc", + "nR ight", + "n Right", + "rodu ce", + "rod uce", + "▁ad ditions", + "▁add itions", + "▁addition s", + "▁co herent", + "▁coh erent", + "一 来", + "故 人", + "▁Im aging", + "发表于 晋江文学网", + "奢 侈", + "生 导师", + "知道 了", + "下 标", + "lo rd", + "lor d", + "l ord", + "nW in", + "n Win", + "▁w anna", + "▁Any one", + "聚 餐", + "▁s ine", + "▁sin e", + "▁si ne", + "执 导", + "膳 食", + "▁aut umn", + "▁polymorph isms", + "▁polymorphism s", + "匆 匆", + "我 爸", + "jd k", + "j dk", + "Sec onds", + "Second s", + "▁Pen insula", + "滋 味", + "▁ 重要参数", + "▁immunos up", + "▁immuno sup", + "志 强", + "ax es", + "ANGU AGE", + "▁Ad elaide", + "v b", + "邮 寄", + "玩 游戏", + "op or", + "opo r", + "o por", + "▁dr ill", + "▁dri ll", + "Con firm", + "Conf irm", + "▁bi cycle", + "▁bic ycle", + "▁Re covery", + "▁Rec overy", + "复 旦", + "CL O", + "C LO", + "中档 题", + "Mod ules", + "Module s", + "ivers al", + "iver sal", + "i versal", + "溶 剂", + "▁f ist", + "▁fi st", + "ho uses", + "house s", + "hou ses", + "h ouses", + "无人 机", + "ig on", + "igo n", + "i gon", + "Be gin", + "B egin", + "万 事", + "财产 调查", + "get Class", + "惊 讶", + "▁w ore", + "▁wor e", + "▁wo re", + "▁A ctor", + "▁Ac tor", + "▁Act or", + "▁ Actor", + "▁back ward", + "▁a ure", + "▁au re", + "▁aur e", + "▁ aure", + "▁st ems", + "▁ste ms", + "▁stem s", + "▁sp anning", + "▁span ning", + "发 型", + "▁New castle", + "方 差", + "明 细", + "Miss ing", + "M issing", + "极 具", + "海 峡", + "▁C YP", + "▁CY P", + "eff ects", + "effect s", + "▁album in", + "end um", + "▁be have", + "▁beh ave", + "▁behav e", + "▁d w", + "▁ dw", + "▁boot strap", + "▁ bootstrap", + "▁compet ence", + "▁compete nce", + "UR N", + "U RN", + "降 温", + "先进 个人", + "▁qu art", + "▁q uart", + "变 异", + "FA IL", + "FAI L", + "▁illustr ations", + "▁illustration s", + "nC ong", + "nCon g", + "nCo ng", + "n Cong", + "▁far mer", + "▁farm er", + "▁recruit ing", + "▁recru iting", + "时 针", + "至 关", + "con ditions", + "condition s", + "cond itions", + "溪 市", + "▁d rying", + "▁dr ying", + "▁dry ing", + "▁ 魏", + "躺 在", + "▁t heat", + "▁the at", + "▁th eat", + "nDes ign", + "nDe sign", + "n Design", + "▁tw isted", + "▁twist ed", + "区 内", + "很 强", + "▁J obs", + "▁Jo bs", + "▁Job s", + "▁ Jobs", + "▁酒店 地址", + "▁ver bal", + "▁verb al", + "▁de pressed", + "▁dep ressed", + "力 争", + "能力 强", + "能 力强", + "Dr ive", + "D rive", + "名 师", + "th em", + "the m", + "t hem", + "▁L loyd", + "▁dead ly", + "▁pat ience", + "et erm", + "eter m", + "ete rm", + "e term", + "开 辟", + "先 用", + "天 猫", + "ocarcin oma", + "tc olor", + "t color", + "从 前", + "此 事", + "首 个", + "现场 勘", + "个百分 点", + "▁W ILL", + "▁WI LL", + "but tons", + "button s", + "▁med itation", + "col on", + "co lon", + "og ical", + "ogi cal", + "▁S plit", + "▁Sp lit", + "▁Spl it", + "▁ Split", + "Re fresh", + "Ref resh", + "▁con dem", + "▁cond em", + "▁He ights", + "▁Height s", + "出 厂", + "演 变", + "也不 用", + "也 不用", + "us tion", + "ust ion", + "▁Ill egal", + "▁Il legal", + "▁ Illegal", + "ar am", + "ara m", + "a ram", + "酒店 提供", + "Get ter", + "G etter", + "▁Per th", + "▁Pert h", + "ah u", + "a hu", + "变 压器", + "所有 权", + "所 有权", + "第一百一 十八条", + "▁phy logen", + "常州 市", + "常 州市", + "二次 函数", + "▁D ennis", + "▁Den nis", + "公 立", + "▁advoc acy", + "▁oc clusion", + "▁tutorial s", + "▁tutor ials", + "▁ tutorials", + "Su n", + "S un", + "ko n", + "k on", + "实现 的", + "▁r itual", + "▁ri tual", + "imb abwe", + "▁Ex port", + "▁Exp ort", + "▁Expo rt", + "▁ Export", + "▁L inda", + "▁Lin da", + "▁Li nda", + "▁Lind a", + "▁predec ess", + "罪犯 王", + "▁sn ack", + "山 村", + "合法 性", + "ar is", + "ari s", + "a ris", + "▁ 前", + "校 友", + "fo n", + "f on", + "\\' }\\", + "\\'} \\", + "\\ '}\\", + "▁l ev", + "▁le v", + "▁ lev", + "中国 特色", + "▁Exper iment", + "h w", + "▁plastic ity", + "▁fund raising", + "▁fundra ising", + "bug s", + "bu gs", + "b ugs", + "nim pl", + "n impl", + "▁p ork", + "▁po rk", + "▁por k", + "▁ins ulation", + "ed o", + "e do", + "no k", + "n ok", + "必须 在", + "▁r hyth", + "式 子", + "gu id", + "gui d", + "g uid", + "Pre view", + "P review", + "号民事判决书 已发生法律效力", + "(\" <", + "( \"<", + "▁P F", + "▁ PF", + "nW est", + "nWe st", + "n West", + "ull ivan", + "教 科", + "La nd", + "L and", + "门 外", + "Cr oss", + "C ross", + "▁N intendo", + "di d", + "d id", + "en ery", + "ener y", + "ene ry", + "▁sm okers", + "▁smoke rs", + "▁smo kers", + "▁t asty", + "▁ta sty", + "▁tast y", + "帖 子", + "Do cs", + "Doc s", + "D ocs", + "um en", + "ume n", + "u men", + "可以 缺席判决", + "这几 个", + "这 几个", + "SES SION", + "SESS ION", + "到 你", + "一般 情况下", + "}) (", + "} )(", + "ud ed", + "ude d", + "u ded", + "ast ruct", + "astr uct", + "a struct", + "凸 显", + "录 制", + "▁Nigeria n", + "▁Niger ian", + "▁prolif er", + "▁prol ifer", + "不 给", + "团 购", + "▁a nx", + "▁an x", + "细胞 的", + "▁ 编剧", + "▁pl anted", + "▁plan ted", + "▁plant ed", + "▁E lection", + "▁El ection", + "▁Elect ion", + "▁Ele ction", + "▁ 古", + "AR M", + "A RM", + "ix on", + "os eph", + "ose ph", + "▁He avy", + "▁sal mon", + "▁D uration", + "▁Du ration", + "▁Dur ation", + "▁ Duration", + "is Required", + "残 酷", + "Ex pr", + "Exp r", + "ject ive", + "j ective", + "妇 科", + "▁test osterone", + "对被告 人", + "对 被告人", + "oice s", + "oi ces", + "o ices", + "▁be ats", + "▁beat s", + "例 外", + "▁on ion", + "号刑事 判决书", + "号刑事判决 书", + "号 刑事判决书", + "fall s", + "f alls", + "▁C oin", + "▁Co in", + "▁ Coin", + "▁av iation", + "音 箱", + "省 政府", + "▁T CP", + "▁TC P", + "▁ TCP", + "Document s", + "Doc uments", + "以前 的", + "以 前的", + "然后 在", + "然 后在", + "然后 用", + "等 内容", + "充 实", + "国 籍", + "Re ady", + "Read y", + "rec ogn", + "习 近平", + "儿童 和", + "一年 的", + "一 年的", + "▁N OTE", + "▁NOT E", + "▁NO TE", + "▁ NOTE", + "西 区", + "Num er", + "Nu mer", + "N umer", + "▁' ',\\", + "▁'' ,\\", + "▁'', \\", + "海 底", + "客 场", + "nH om", + "n Hom", + "▁mark ing", + "▁mar king", + "Bu l", + "B ul", + "要不 要", + "要 不要", + "▁vol atility", + "ve h", + "v eh", + "My SQL", + "▁Lib erty", + "▁Libert y", + "ti s", + "t is", + "▁N az", + "▁Na z", + "人民 日报", + "▁en caps", + "▁enc aps", + "修 养", + "▁f eeds", + "▁fe eds", + "▁feed s", + "▁fee ds", + "▁ feeds", + "Hel pers", + "Helper s", + "Help ers", + "寒 冷", + "值 班", + "颁 布", + "\"] [\"", + "\"][ \"", + "\" ][\"", + "id yl", + "idy l", + "▁餐馆 名称", + "学 业", + "的 吗", + "xs l", + "x sl", + "▁plan ar", + "DES CRIPTION", + "增 进", + "只要 你", + "▁cre ep", + "▁cr eep", + "压 迫", + "重 型", + "中 方", + "是一 本", + "是 一本", + "ENG TH", + "乒乓 球", + "▁presum ably", + "\\' <", + "这两 种", + "这 两种", + "▁H us", + "▁Hu s", + "ni o", + "n io", + "新闻 网", + "最多 容纳", + "▁E agle", + "▁Eag le", + "▁exec uting", + "▁execut ing", + "▁L PS", + "▁LP S", + "高质量 发展", + "▁p umps", + "▁pump s", + "PE T", + "P ET", + "干 事", + "▁select or", + "▁sel ector", + "▁ selector", + "思 念", + "S ocial", + "▁iter ations", + "▁iteration s", + "▁ iterations", + "op ard", + "opa rd", + "o pard", + "es pecially", + "e specially", + "M K", + "还不 如", + "还 不如", + "de ps", + "dep s", + "d eps", + "如果 不是", + "如果不 是", + "▁sim ulator", + "坚 实", + "契 约", + "long itude", + "月 下", + "说 他", + "▁ 植物", + "毫 克", + "难 忘", + "现已审查 终结", + "▁x range", + "▁c ascade", + "▁casc ade", + "▁stim ulating", + "▁stimul ating", + "} ⋅", + "朝阳 区", + "朝 阳区", + "▁S oon", + "▁So on", + "▁L inks", + "▁Lin ks", + "▁Link s", + "▁ Links", + "不予 受理", + "油 田", + "▁主要 成就", + "最重要的 是", + "最重要 的是", + "最 重要的是", + "▁car otid", + "二 元", + "▁con tour", + "▁cont our", + "▁under way", + "▁underw ay", + "选 中", + "中 型", + "当 做", + "海 水", + "可行 性", + "独 资", + "纪录 片", + "▁Re ports", + "▁Rep orts", + "▁Report s", + "▁prosp er", + "▁pros per", + "▁tensor flow", + "▁ tensorflow", + "废 物", + "▁health ier", + "▁ 伟", + "▁c p", + "▁ cp", + "▁sql alchemy", + "H K", + "不 懈", + "Ho m", + "H om", + "▁ch erry", + "▁cher ry", + "▁profit able", + "▁prof itable", + "习 俗", + "▁ 适宜", + "▁gr ave", + "▁gra ve", + "▁grav e", + "▁ grave", + "▁nicot ine", + "▁ 程", + "财政 部", + "身上 的", + "身 上的", + "▁A na", + "▁An a", + "▁L ok", + "▁Lo k", + "▁B T", + "▁ BT", + "Bo oks", + "Book s", + "B ooks", + "▁u nsure", + "▁uns ure", + "▁comp ares", + "▁compar es", + "▁compare s", + "▁Jeff erson", + "受 众", + "▁L aser", + "▁La ser", + "▁Las er", + "▁exec utable", + "▁execut able", + "▁ executable", + "▁B orn", + "▁Bo rn", + "▁Bor n", + "v r", + "在全 球", + "在 全球", + "ur bs", + "urb s", + "Call ed", + "Cal led", + "C alled", + "机 箱", + "过 往", + "gom ery", + "隔 壁", + "▁normal ize", + "▁ normalize", + "nL ook", + "nLo ok", + "n Look", + "▁orche str", + "▁orch estr", + "同意 终结本次执行程序", + "得 解", + "▁an atomy", + "成熟 的", + "成 熟的", + "ic ky", + "ick y", + "▁sp ouse", + "▁spo use", + "▁Sh ipping", + "▁Ship ping", + "▁Shi pping", + "▁vol atile", + "▁Birth day", + "周 一", + "才 华", + "水 位", + "PC I", + "P CI", + "▁ 房间", + "▁de pletion", + "▁dep letion", + "ou is", + "o uis", + "ell ows", + "ellow s", + "ello ws", + "▁t ouched", + "▁touch ed", + "▁tou ched", + "收 款", + "教 职工", + "bi es", + "bie s", + "b ies", + "cre dit", + "cr edit", + "cred it", + "c redit", + "又 会", + "挣 扎", + "敢 于", + "G s", + "co rd", + "cor d", + "c ord", + "et tes", + "ette s", + "ett es", + "e ttes", + "ua tor", + "u ator", + "平 民", + "▁S ustain", + "▁Sus tain", + "▁biom ass", + "▁bio mass", + "取 名", + "可以 是", + "▁sent enced", + "▁sentence d", + "的 法律", + "ra per", + "rap er", + "rape r", + "r aper", + "阴 影", + "第七 十八", + "Data set", + "Dat aset", + "比 为", + "\\\\ *", + "日被 刑事拘留", + "te chnology", + "techn ology", + "我 所", + "可用 于", + "可 用于", + "是 国内", + "▁rail road", + "▁G OP", + "▁GO P", + "EX PECT", + "EXP ECT", + "User Id", + "▁dens ities", + "格 尔", + "nat ural", + "n atural", + "Con stant", + "Const ant", + "▁th reading", + "▁thread ing", + "彩 礼", + "▁T EST", + "▁TE ST", + "▁ TEST", + "跳 舞", + "tp l", + "t pl", + "中国 经济", + "▁al loc", + "▁all oc", + "▁ alloc", + "▁Sal mon", + "流 感", + "ross over", + "rosso ver", + "▁c fg", + "▁cf g", + "▁ cfg", + "▁c ation", + "▁ca tion", + "▁cat ion", + "▁ cation", + "View ById", + "д и", + "faster xml", + "▁N as", + "▁Na s", + "的 白", + "奖 学金", + "管理 中心", + "▁comm emor", + "nUn incorporated", + "▁Guard ian", + "▁user Id", + "▁ userId", + "殖 民", + "▁C AP", + "▁CA P", + "▁ CAP", + "▁R eader", + "▁Re ader", + "▁Read er", + "▁ Reader", + "▁re actor", + "▁react or", + "自 古", + "▁Car eer", + "▁Care er", + "▁an atomical", + "▁anatomic al", + "国 道", + "而且 还", + "公诉机关指控 的", + "dir s", + "di rs", + "d irs", + "二 代", + "▁s tap", + "▁st ap", + "▁At hens", + "▁Ath ens", + "comfort able", + "nO ct", + "n Oct", + "ve rb", + "ver b", + "v erb", + "抗 菌", + "asp berry", + "清 朝", + "nT est", + "nTe st", + "n Test", + "▁h arness", + "▁har ness", + "偏 差", + "印 发", + "并 为", + "▁found ers", + "▁fo unders", + "▁founder s", + "▁understand s", + "▁d eline", + "▁de line", + "▁del ine", + "g overnment", + "▁N y", + "▁general ization", + "海 域", + "IG H", + "I GH", + "▁Cl uster", + "▁ Cluster", + "▁H our", + "▁Ho ur", + "▁Hou r", + "▁ Hour", + "第一百零 三", + "▁re sear", + "▁res ear", + "Mult iple", + "Multi ple", + "两 家", + "▁G am", + "▁Ga m", + "man ia", + "ma nia", + "mani a", + "m ania", + "准予 强制执行", + "采 样", + "session s", + "sess ions", + "s essions", + "▁Nurs ing", + "▁Nur sing", + "ni d", + "n id", + "oy a", + "o ya", + "▁m as", + "▁ma s", + "▁ mas", + "的 了", + "逃 避", + "的主 题", + "的 主题", + "的 症状", + "nS ur", + "n Sur", + "▁O ften", + "▁Of ten", + "▁dr unk", + "▁expl osion", + "▁explos ion", + "光 线", + "th reat", + "thr eat", + "▁seiz ures", + "▁seizure s", + "▁dep recated", + "▁deprec ated", + "▁ deprecated", + "▁re build", + "▁reb uild", + "一 副", + "限 期", + "▁b os", + "▁bo s", + "▁ bos", + "cer pt", + "▁Def ence", + "二〇一五年 十二月", + "胆 固醇", + "er ie", + "eri e", + "e rie", + "'' '", + "' ''", + "nB en", + "nBe n", + "n Ben", + "▁Paul o", + "▁Pa ulo", + "和 工作", + "▁collabor ate", + "人 之", + "要 使", + "np ro", + "npr o", + "n pro", + "暴 雨", + "▁r ope", + "▁ro pe", + "离婚 纠纷一案中", + "离婚纠纷一案 中", + "Sol ution", + "S olution", + "代 书", + "蒸 发", + "▁L is", + "▁Li s", + "户籍 所在地", + "ct uary", + "▁Br other", + "▁Bro ther", + "He r", + "H er", + "gan g", + "ga ng", + "g ang", + "iph one", + "i phone", + "ro gate", + "rog ate", + "▁fib rin", + "▁fibr in", + "世界 各地", + "不同 类型的", + "不 和", + "估 算", + "时时 彩", + "▁B yte", + "▁By te", + "▁ Byte", + "▁un used", + "▁unus ed", + "▁ unused", + ": <", + "冠 状", + "联系 方式", + "▁H illary", + "▁Hill ary", + "可以 把", + "影响 的", + "▁capt uring", + "▁dismiss ed", + "这 事", + "限 定", + "ig gs", + "igg s", + "▁pit uitary", + "下 辖", + "生产 经营", + "▁pharm acy", + "▁pharmac y", + "▁success ive", + "▁succ essive", + "抱 歉", + "电 线", + "麒 麟", + "批准 后", + "De ep", + "D eep", + "▁L ac", + "▁La c", + "▁ex tern", + "▁ext ern", + "▁ extern", + "▁mod ifying", + "▁modify ing", + "ı n", + "尺 度", + "督 查", + "自愿 认罪", + "捐 款", + "合 唱", + "▁ 型号", + "体现 在", + "体 现在", + "urs ors", + "ursor s", + "被 盗", + "日 依法", + "▁C ru", + "▁Cr u", + "一点 的", + "一 点的", + "fr am", + "fra m", + "f ram", + "ox ic", + "中国科学院 大学", + "anal ytics", + "analytic s", + "▁Develop er", + "▁ Developer", + "▁H V", + "▁ HV", + "▁Tes la", + "曲线 的", + "曲 线的", + "▁mon ster", + "菏 泽", + "▁aff iliates", + "▁affil iates", + "▁affiliate s", + "华 盛", + "任何 人", + "任 何人", + "特别 的", + "特 别的", + "▁in nings", + "▁inn ings", + "▁inning s", + "故 宫", + "▁s sh", + "▁ss h", + "▁ ssh", + "role um", + "万 的", + "获 利", + "衰 竭", + "LE T", + "L ET", + "▁S ak", + "▁Sa k", + "part ner", + "nDef unct", + "就 得", + "华 北", + "▁St atic", + "▁Stat ic", + "▁Sta tic", + "▁ Static", + "id as", + "ida s", + "i das", + "▁inaug ural", + "市 新", + "犹 如", + "▁s py", + "▁sp y", + "▁ spy", + "▁sen iors", + "▁senior s", + "派 遣", + "MO DEL", + "MODE L", + "MOD EL", + "▁w ast", + "▁was t", + "▁wa st", + "▁Ne ural", + "学 子", + "都会 有", + "都 会有", + "经 人介绍", + "▁ 青", + "该项 目", + "该 项目", + "ma cro", + "mac ro", + "产 的", + "nI d", + "n Id", + "amb oo", + "ambo o", + "hand ed", + "han ded", + "▁r ises", + "▁rise s", + "▁ris es", + "▁ri ses", + "▁se psis", + "▁sep sis", + "▁re alm", + "▁real m", + "▁lip ids", + "▁lipid s", + "粉 末", + "▁DO I", + "br ities", + "brit ies", + "▁spokes person", + "村 里", + "le sh", + "les h", + "l esh", + "▁mount ing", + "▁mo unting", + "面 子", + "npm js", + "sm ith", + "s mith", + "率 的", + "理论 和", + "中 和", + "就 医", + "▁Municip al", + "高 新", + "▁F it", + "▁Fi t", + "▁ Fit", + "fab ric", + "f abric", + "▁As set", + "▁Ass et", + "▁ Asset", + "博 弈", + "▁mod ulus", + "很 可能", + "的 职业", + "钢 结构", + "nD iv", + "nDi v", + "n Div", + "▁per imeter", + "▁peri meter", + "开 采", + "▁s per", + "▁sp er", + "▁spe r", + "堪 称", + "yz e", + "y ze", + "与 你", + "前 途", + "数 目", + "角 是", + "it as", + "ita s", + "i tas", + "▁fl ush", + "▁flu sh", + "▁ flush", + "应 为", + "行政 执法", + "▁cha os", + "▁Pro grams", + "▁Pr ograms", + "▁Program s", + "前列 腺", + "支付 令", + "ot ides", + "otide s", + "otid es", + "oti des", + "cc c", + "c cc", + "in j", + "i nj", + "nL ocal", + "nLo cal", + "n Local", + "▁P seud", + "▁recombin ation", + "▁M ong", + "▁Mon g", + "▁Mo ng", + "ered Reader", + "特 意", + "太多 的", + "太 多的", + "▁head ache", + "诉至 本院", + "食品 有限公司", + "▁mer ger", + "▁merge r", + "▁merg er", + "出 品", + "应 聘", + "时 有", + "▁V ideos", + "▁Video s", + "▁ap prove", + "▁app rove", + "▁appro ve", + "▁star red", + "名 额", + "如实供述自己的 罪行", + "底 下", + "▁f lap", + "▁fl ap", + "▁ 晋江文学城", + "植 株", + "os phere", + "osp here", + "osph ere", + "o sphere", + "vel ocity", + "的 神", + "é l", + "觉 醒", + "▁D ebug", + "▁De bug", + "▁Deb ug", + "▁ Debug", + "ā n", + "交通肇事 罪", + "▁al erts", + "▁alert s", + "▁py game", + "▁ pygame", + "nDem ographics", + "产业 化", + "uls ive", + "法定代表人 李", + "徐州 市", + "徐 州市", + "的对 象", + "的 对象", + "az or", + "azo r", + "▁v et", + "▁ve t", + "▁ vet", + "H uman", + "ens ure", + "e nsure", + "\\\\ \\\\\\", + "\\\\\\\\ \\", + "\\\\\\ \\\\", + "\\ \\\\\\\\", + "▁sn ake", + "▁Mot ors", + "▁Motor s", + "▁Moto rs", + "▁con greg", + "▁congr eg", + "▁cong reg", + "▁已 知", + "▁ 已知", + "he ads", + "head s", + "hea ds", + "磷 酸", + "▁rain fall", + "的 自", + "ée s", + "é es", + "的 文章", + "▁le pt", + "▁lo ader", + "▁load er", + "▁ loader", + "▁atheros clerosis", + "整 洁", + "il io", + "ili o", + "i lio", + "▁b oil", + "▁bo il", + "▁Latin o", + "▁Lat ino", + "us hi", + "ush i", + "u shi", + "in ski", + "ins ki", + "insk i", + "和 水", + "杀 死", + "▁Out door", + "真 理", + "色 素", + "停车 位", + "停 车位", + "▁en force", + "N L", + "as ta", + "ast a", + "a sta", + "ne ll", + "nel l", + "n ell", + "data s", + "da tas", + "dat as", + "d atas", + "交 点", + "BI T", + "B IT", + "▁Wi Fi", + "▁ WiFi", + "▁fab rics", + "▁fabric s", + "▁Phil lips", + "▁Phill ips", + "▁Phillip s", + "哪 儿", + "驳回 起诉", + "▁c arbox", + "▁car box", + "▁carb ox", + "▁bl essed", + "▁bless ed", + "▁fil med", + "▁film ed", + "好 用", + "就是 这样", + "就 是这样", + "▁Col ors", + "▁Color s", + "▁ Colors", + "nd efined", + "ndef ined", + "ndefine d", + "n defined", + "ib a", + "i ba", + "▁p ins", + "▁pi ns", + "▁pin s", + "▁ pins", + "▁renew ed", + "月 光", + "你 需要", + "马 路", + "他人 的", + "他 人的", + "共青 团", + "的 角色", + "共同 举办", + "▁Par ameter", + "▁Para meter", + "▁Param eter", + "▁ Parameter", + "▁F ro", + "▁Fr o", + "re load", + "rel oad", + "一审 被告", + "裁定 适用于", + "label ed", + "se l", + "s el", + "年 月", + "起 义", + "mod ern", + "mode rn", + "的 个数", + "▁sc ala", + "▁scal a", + "▁ scala", + "的重要 组成部分", + "Product s", + "Produ cts", + "an ni", + "ann i", + "h appy", + "▁l asted", + "▁last ed", + "▁la sted", + "▁las ted", + "▁ind ications", + "▁indic ations", + "▁indication s", + "▁access ory", + "▁debut ed", + "▁deb uted", + "▁observ ational", + "▁observation al", + ": '", + "议 员", + "▁M ik", + "▁Mi k", + "在 向", + "的 内", + "▁B utter", + "▁But ter", + "会 儿", + "ict ions", + "iction s", + "Ho use", + "H ouse", + "在 水", + "性 疾病", + "Lower Case", + "近 年", + "▁cr ashes", + "▁crash es", + "▁appar atus", + "但 如果", + "官方 网站", + "狭 窄", + "的 成功", + "a ção", + "G U", + "Sam e", + "Sa me", + "S ame", + "简 要", + "be e", + "b ee", + "的 语言", + "ig rate", + "igr ate", + "▁ 彭", + "有力 的", + "有 力的", + "的一 首", + "的 一首", + "Valid ate", + "▁hem oglobin", + "IF F", + "I FF", + "D J", + "河 县", + "M vc", + "ros ophila", + "oc ortic", + "▁Week ly", + "▁lymph ocyte", + "ut t", + "u tt", + "ac ier", + "aci er", + "流 转", + "龙 岩", + "任何 一个", + "▁p asta", + "▁past a", + "▁pa sta", + "▁pas ta", + "▁com orb", + "▁como rb", + "▁j umped", + "▁jump ed", + "任 教", + "行政 机关", + "▁p ound", + "▁po und", + "▁pou nd", + "▁ pound", + "会 产生", + "新中国 的", + "新 中国的", + "ter one", + "te rone", + "▁Cy ber", + "未作 答辩", + "coll apse", + "的 限制", + "le igh", + "lei gh", + "▁administr ators", + "▁administrator s", + "ou bt", + "nH ead", + "nHe ad", + "n Head", + "▁con strained", + "▁cons trained", + "▁constr ained", + "k afka", + "fin ish", + "ER C", + "E RC", + "ge v", + "g ev", + "销售 额", + "st own", + "sto wn", + "s town", + "缓刑考验 期限", + "am etric", + "amet ric", + "a metric", + "▁me dial", + "▁med ial", + "▁media l", + "▁medi al", + "冲 动", + "孵 化", + "杀 菌", + "ro e", + "r oe", + "高 尔夫", + "其实 就是", + "▁L atest", + "▁La test", + "▁Lat est", + "▁Late st", + "▁ Latest", + "▁in stitute", + "▁instit ute", + "▁ 董", + "\"] ;\\", + "\" ];\\", + "▁h alt", + "▁ha lt", + "▁hal t", + "▁ 形态特征", + "▁an tip", + "▁ant ip", + "▁anti p", + "▁antagon ists", + "▁antagonist s", + "er ness", + "ern ess", + "▁cyt oplasmic", + "▁cytoplasm ic", + "mo v", + "m ov", + "起 伏", + "▁R af", + "▁Ra f", + "co res", + "core s", + "cor es", + "c ores", + ") %", + "▁dis claimer", + "CA L", + "C AL", + "▁s clerosis", + "▁scler osis", + "re b", + "r eb", + "ei ght", + "e ight", + "mong odb", + "mongo db", + "亲 人", + "▁f ridge", + "▁fr idge", + "▁cr ushing", + "▁crush ing", + "科学 与", + "▁ur ged", + "▁urg ed", + "▁urge d", + "▁Phil osoph", + "▁anticip ate", + "nI ns", + "nIn s", + "n Ins", + "▁j est", + "▁je st", + "▁ jest", + "duct ory", + "ductor y", + "裁定适用于 下列范围", + "▁glut amate", + "第三 次", + "第 三次", + "Print f", + "▁p oses", + "▁pos es", + "▁po ses", + "▁pose s", + "▁ poses", + "▁per mutation", + "▁permut ation", + "▁perm utation", + "g m", + "华 侨", + "▁d iving", + "▁di ving", + "▁div ing", + "封 面", + "的 想法", + "▁broad band", + "▁ 内", + "oth ers", + "other s", + "othe rs", + "o thers", + "▁sent iment", + "▁& \\\\", + "▁&\\ \\", + "▁ &\\\\", + "请仔细 阅读", + "请 仔细阅读", + "▁m asks", + "▁mask s", + "▁mas ks", + "发行 的", + "发 行的", + "pa pers", + "paper s", + "p apers", + "▁d ialysis", + "▁dial ysis", + "▁exceed ed", + "▁Form ation", + "▁Format ion", + "迎来 了", + "迎 来了", + "▁S ara", + "▁Sar a", + "▁Sa ra", + "al gebra", + "alg ebra", + "▁neuro trans", + "▁neur otrans", + "▁neurot rans", + "cent ered", + "center ed", + "▁hierarch ical", + "建 有", + "泉 州", + "Fil l", + "Fi ll", + "F ill", + "▁matt ress", + "▁out reach", + "女性 的", + "女 性的", + "不好 意思", + "▁fib re", + "▁fibr e", + "▁fi bre", + "Text View", + "▁depos ited", + "▁deposit ed", + "Cam p", + "Ca mp", + "C amp", + "▁transcript s", + "▁tran scripts", + "光 辉", + "oint ers", + "oin ters", + "oi nters", + "ointer s", + "o inters", + "rot ation", + "r otation", + "Al ign", + "Ali gn", + "网 路", + "一共 有", + "一 共有", + "de leted", + "delete d", + "del eted", + "delet ed", + "▁c leans", + "▁cle ans", + "▁clean s", + "▁orig inated", + "▁origin ated", + "▁originate d", + "▁z h", + "▁ zh", + "PH ONE", + "od en", + "ode n", + "o den", + "的一 年", + "的 一年", + "▁hung ry", + "et ti", + "ett i", + "e tti", + "▁S AP", + "▁SA P", + "▁ SAP", + "技术 创新", + "Col umns", + "Column s", + "Colum ns", + "盯 着", + "辩 解", + "yl an", + "yla n", + "y lan", + "▁De pending", + "▁Dep ending", + "▁Depend ing", + "A Z", + "Co ver", + "Cov er", + "C over", + "▁strugg led", + "▁struggle d", + "丰 田", + "可 乐", + "的 处分", + "▁f ade", + "▁fa de", + "▁ fade", + "▁tri angular", + "▁triang ular", + "\"\" \\", + "\" \"\\", + "▁top ical", + "▁topic al", + "▁B uch", + "▁Bu ch", + "▁Buc h", + "ar ctic", + "arc tic", + "arct ic", + "本案 诉讼费用", + "本案诉讼费 用", + "▁en closed", + "▁prof iling", + "▁profil ing", + "▁S ans", + "▁San s", + "▁Sa ns", + "▁list eners", + "▁listen ers", + "▁listener s", + "▁sympt omatic", + "▁symptom atic", + "De r", + "D er", + "▁R d", + "目的 地", + "目 的地", + "▁T han", + "▁Th an", + "▁ Than", + "> •", + "名 牌", + "塑 胶", + "为我 们", + "为 我们", + "▁A Z", + "▁ AZ", + "大概 是", + "▁arch itects", + "▁architect s", + "白 了", + "的 实际", + "▁N ovel", + "▁No vel", + "▁Nov el", + "al though", + "alth ough", + "▁s ailing", + "▁sa iling", + "▁sail ing", + "▁nom inations", + "▁nomin ations", + "▁nomination s", + "▁o z", + "▁ oz", + "同 理", + "报 导", + "集中 在", + "共同 财产", + "社会 保险", + "nD raw", + "nDr aw", + "n Draw", + "具有 良好的", + "具 有良好的", + "▁inter leukin", + "营业 执照", + "▁ad op", + "Mat cher", + "Match er", + "M atcher", + "▁privile ge", + "nBl ack", + "n Black", + "im ports", + "import s", + "imp orts", + "▁re minded", + "▁remind ed", + "▁remin ded", + "油 画", + "第一 天", + "第 一天", + "▁par alle", + "▁paral le", + "▁ paralle", + "扣 留", + "▁l ol", + "▁lo l", + "▁ lol", + "▁Gi ants", + "▁Giant s", + "▁Gian ts", + "▁cardi omy", + "▁cardio my", + "▁in active", + "▁CON NECTION", + "jw t", + "j wt", + "▁ 性质", + "▁Ser ge", + "▁Serg e", + "t W", + "狐 狸", + "薄 弱", + "▁ 历史", + "收 回", + "时 节", + "▁W ells", + "▁Well s", + "▁Wel ls", + "层 层", + "确实 是", + "Ca st", + "Cas t", + "C ast", + "▁N ine", + "▁Ni ne", + "▁Nin e", + "▁double d", + "▁dou bled", + "▁doub led", + "工程 学院", + "▁taste s", + "▁tast es", + "lt imate", + "▁pul ses", + "▁pulse s", + "▁puls es", + "的 黑", + "GI S", + "G IS", + "Not es", + "No tes", + "Note s", + "N otes", + "ug oslav", + "▁multip lying", + "▁multiply ing", + "观 音", + "Ang le", + "phosph ate", + "刷 卡", + "/ ~", + "工 伤", + "在 国际", + "▁sh rub", + "▁shr ub", + "fe eding", + "feed ing", + "fee ding", + "▁ م", + "相 乘", + "od os", + "odo s", + "o dos", + "▁e co", + "▁ec o", + "▁ eco", + "ha gen", + "h agen", + "▁m ongoose", + "▁mongo ose", + "▁mong oose", + "▁ mongoose", + "▁guitar ist", + "▁inc ubation", + "▁incub ation", + "经历 过", + "还 请", + "un ders", + "und ers", + "under s", + "unde rs", + "▁Ang ular", + "体系 的", + "体 系的", + "▁s olver", + "▁sol ver", + "▁solve r", + "▁solv er", + "▁ solver", + "P b", + "S ensor", + "▁c ables", + "▁ca bles", + "▁cable s", + "▁cab les", + "▁t ribut", + "▁tri but", + "▁trib ut", + "马 鞍", + "Op s", + "O ps", + "▁ten ure", + "历 代", + "▁ 体重", + "ip ation", + "ipa tion", + "▁sw elling", + "] `", + "问 问", + "住所地 安徽省", + "的 红", + "▁loyal ty", + "▁我 们", + "▁ 我们", + "▁L OG", + "▁LO G", + "▁ LOG", + "ree ze", + "r eeze", + "▁S ongs", + "▁Son gs", + "▁Song s", + "ac l", + "a cl", + "▁gl ue", + "▁glu e", + "Mem bers", + "Member s", + "M embers", + "并 经", + "要 说", + "red dit", + "▁bal con", + "Com ments", + "Comment s", + "Comm ents", + "Se nt", + "Sen t", + "S ent", + "St rings", + "String s", + "Str ings", + "Pipe line", + "P ipeline", + "胰 岛", + "▁S HA", + "▁SH A", + "▁ SHA", + "结果 显示", + "只 想", + "nu p", + "n up", + "年 全国", + "判断 即可", + "我 将", + "NO S", + "N OS", + "▁rev enues", + "▁revenue s", + "▁reven ues", + "地 形", + "作为 一种", + "的那 个", + "的 那个", + "人均 纯收入", + "MPL ATE", + "堆 积", + "▁brand ing", + "▁interpol ation", + "st em", + "ste m", + "s tem", + "▁ а", + "查 控", + "▁A CC", + "▁AC C", + "▁ ACC", + "有所 不同", + "投 案", + "内容 为", + "女 方", + "先 求出", + "当然 是", + "朋友 的", + "C MAKE", + "br ains", + "bra ins", + "brain s", + "刻 意", + "又 在", + "孔 子", + "尸 体", + "明 日", + "ir teen", + "irt een", + "EA R", + "E AR", + "dr o", + "d ro", + "随 访", + "▁s ilk", + "▁sil k", + "治疗 后", + "有 大", + "z t", + "▁ σ", + "▁Ste phan", + "▁Step han", + "nEx pand", + "n Expand", + "Mo vie", + "M ovie", + "St ock", + "符合 减刑条件", + "符合减刑 条件", + "▁definit ive", + "▁defin itive", + "田 园", + "na ny", + "nan y", + "n any", + "▁en riched", + "▁enrich ed", + "▁m anga", + "▁man ga", + "▁mang a", + "▁ 黑", + "Au d", + "A ud", + "▁Phot os", + "▁Photo s", + "废 水", + "▁o cular", + "▁oc ular", + "▁ ocular", + "的事 项", + "的 事项", + "ar lier", + "arl ier", + "rot ate", + "▁Br exit", + "▁Bre xit", + "▁Th row", + "▁Thr ow", + "▁ Throw", + "▁conn ector", + "▁connect or", + "▁ connector", + "ch or", + "cho r", + "c hor", + "on na", + "onn a", + "Sh ift", + "S hift", + "nH ope", + "nHop e", + "▁web pack", + "▁ webpack", + "▁histor ically", + "▁historical ly", + "▁historic ally", + "游戏 大小", + "保 罗", + "市 的", + "本 期", + "气 味", + "sl ider", + "slide r", + "▁c amps", + "▁camp s", + "▁cam ps", + "min utes", + "minute s", + "▁sup plementation", + "▁supplement ation", + "入 职", + "}} \\", + "\\'> \\", + "\\ '>\\", + "▁r ape", + "▁ra pe", + "▁rap e", + "▁ rape", + "▁But ler", + "光 源", + "克 尔", + "▁Q U", + "▁ QU", + "am ba", + "amb a", + "osa ic", + "▁v ars", + "▁var s", + "▁va rs", + "▁ vars", + "S printf", + "的范围内 处分自己的", + "nCol lect", + "nColl ect", + "n Collect", + "单位 和", + "单 位和", + "唯 有", + "$ /", + "还 挺", + "Wr ap", + "W rap", + "▁de ce", + "▁dec e", + "▁fif teen", + "▁foot print", + "▁foo tprint", + "无 声", + "unc ture", + "unct ure", + "▁sl opes", + "▁slope s", + "ic ates", + "ica tes", + "icate s", + "▁catch ing", + "▁cat ching", + "K G", + "ryst all", + "rystal l", + "rys tall", + "MESS AGE", + "▁Res pon", + "▁ Respon", + "▁f ictional", + "▁fiction al", + "追 逐", + "风格 的", + "风 格的", + "os por", + "osp or", + "nEx per", + "n Exper", + "至 上", + "fa n", + "f an", + "gr av", + "gra v", + "g rav", + "请你 根据", + "mi le", + "mil e", + "m ile", + "刑事 责任", + "余 弦", + "▁pe aked", + "▁peak ed", + "re ported", + "rep orted", + "report ed", + "在 自己", + "▁C ord", + "▁Co rd", + "▁Cor d", + "▁b uzz", + "▁bu zz", + "▁C atalog", + "▁Catal og", + "▁ Catalog", + "oe lectric", + "oelect ric", + "o electric", + "▁sl ave", + "▁ slave", + "▁stat ue", + "▁pal ette", + "▁pa lette", + "▁pale tte", + "▁ palette", + "▁mark down", + "▁ markdown", + "▁manip ulate", + "hs pace", + "h space", + "▁rem inds", + "▁remind s", + "▁remin ds", + "叙 述", + "al ways", + "scrib ed", + "scri bed", + "scribe d", + "s cribed", + "▁dissemin ation", + "到 一个", + "met al", + "me tal", + "meta l", + "m etal", + "vs code", + "v scode", + "dis cord", + "disc ord", + "▁ 이", + "Do t", + "D ot", + "的 生命", + "of lu", + "o flu", + "▁d rone", + "▁dr one", + "▁dro ne", + "第十 六", + "第 十六", + "▁class ifier", + "▁Exper iments", + "▁Experiment s", + "碎 片", + "A H", + "▁s unny", + "▁sun ny", + "▁in vert", + "▁inv ert", + "勤 奋", + "水 费", + "▁exc retion", + "▁process ors", + "▁processor s", + "▁ processors", + "na d", + "n ad", + "支 气管", + "▁h ike", + "▁hi ke", + "热 搜", + "▁success or", + "什么 都", + "ble r", + "bl er", + "b ler", + "▁perform ers", + "▁perfor mers", + "▁performer s", + "st rand", + "str and", + "stra nd", + "▁m olar", + "▁mo lar", + "▁mol ar", + "str ftime", + "抬 头", + "警 示", + "▁L ucas", + "▁Luc as", + "▁Lu cas", + "▁ment oring", + "▁mentor ing", + "L B", + "常 住", + "▁K ill", + "▁Ki ll", + "▁Kil l", + "在 刑罚", + "的心 情", + "的 心情", + "▁an tic", + "▁ant ic", + "▁anti c", + "▁ antic", + "d g", + "▁sh ake", + "▁sha ke", + "▁ shake", + "iling ual", + "▁hospital ity", + "▁hospit ality", + "▁ 肖", + "国 人", + "主人 公", + "都 配有", + "正式 批准", + "Reg istration", + "以 太", + "有 好", + "锦 标", + "胜利 的", + "胜 利的", + "∞ )", + "清 算", + "nT our", + "nTo ur", + "n Tour", + "▁Nich olas", + "▁const itutional", + "▁constitution al", + "军 的", + "TR A", + "T RA", + "监 视", + "选择 一个", + "▁f eat", + "▁fe at", + "▁ feat", + "中心 的", + "中 心的", + "ufeff namespace", + "oe ing", + "▁p acks", + "▁pack s", + "▁pa cks", + "▁pac ks", + "inter pret", + "使 人", + "贴 近", + "犯罪 的", + "▁DE AL", + "sc atter", + "▁sur geons", + "▁surge ons", + "▁surgeon s", + "▁aug mented", + "▁augment ed", + "专业 化", + "▁R achel", + "▁Ra chel", + "▁Rac hel", + "▁Ro of", + "い る", + "▁cap illary", + "副 市长", + "▁L ub", + "▁Lu b", + "Calc ul", + "C alcul", + "履行 生效法律文书", + "▁Re solution", + "▁Res olution", + "▁ Resolution", + "▁parliament ary", + "何 必", + "比较 大", + "比 较大", + "▁Hop kins", + "无正当理由拒不到庭 的", + "ve re", + "ver e", + "v ere", + "▁Con test", + "▁Cont est", + "▁Co ntest", + "▁group ed", + "▁Init iative", + "入 户", + "木 质", + "风 采", + "第二 条", + "第 二条", + "技术 有限公司", + "▁Prov ide", + "求解 即可", + "▁ret ina", + "▁retin a", + "▁wh olesale", + "▁whole sale", + "▁wholes ale", + "Enum erable", + "▁v m", + "▁ vm", + "去 医院", + "附近 的", + "it ely", + "ite ly", + "nset up", + "n setup", + "▁P ATH", + "▁PA TH", + "▁PAT H", + "▁ PATH", + "▁sc ary", + "▁scar y", + "还有 就是", + "▁F ill", + "▁Fil l", + "▁Fi ll", + "▁ Fill", + "td efer", + "tdef er", + "t defer", + "▁grand father", + "抑郁 症", + "▁for ty", + "▁fort y", + "之日起 五日内", + "NE R", + "N ER", + "nO b", + "n Ob", + "▁mod alities", + "▁modal ities", + "色 谱", + "管 的", + "重 症", + "ic ers", + "ice rs", + "icer s", + "i cers", + "汇 聚", + "(\\' %", + "( \\'%", + "▁conf ined", + "▁con tested", + "▁cont ested", + "▁contest ed", + "▁estim ator", + "但被执行人 至今未履行", + "不 相", + "疑 似", + "wall et", + "wal let", + "abil istic", + "▁read ings", + "▁reading s", + "▁enzym atic", + "▁visual ize", + "IC A", + "I CA", + "▁T imer", + "▁Time r", + "▁Tim er", + "▁Ti mer", + "▁ Timer", + "▁hass le", + "nSh ort", + "n Short", + "transfer ase", + "还 算", + "▁def icient", + "▁ deficient", + "白 银", + "银行 账户", + "▁D istance", + "▁Dist ance", + "▁Di stance", + "▁ Distance", + "ch et", + "che t", + "c het", + "tic ket", + "tick et", + "t icket", + "▁Rail road", + "悠 久", + "月 息", + "自然 数", + "▁P lain", + "▁Pl ain", + "▁ Plain", + "▁K erala", + "▁Ker ala", + "word press", + "▁facilit ates", + "▁facilitate s", + "Pe n", + "P en", + "物业 公司", + "ic aid", + "ica id", + "っ た", + "换 成", + "▁Fl ask", + "▁disc rep", + "▁discre p", + "▁no where", + "▁now here", + "▁thr illed", + "▁thrill ed", + "翡 翠", + "静 静", + "一个 整数", + "▁D anny", + "▁Dan ny", + "的 本", + "衣 物", + "打印 机", + "▁i od", + "▁io d", + "▁ iod", + "传 送", + "贝壳 找房", + "▁NOT ICE", + "ä t", + "st ed", + "ste d", + "s ted", + "▁英 文", + "▁ 英文", + "▁cap tures", + "▁capt ures", + "▁capture s", + "关于 多学科", + "idel ity", + "关于多学科 知识的选择题", + "伯 特", + "▁tax p", + "▁ta xp", + "out heastern", + "outh eastern", + "outheast ern", + "li fy", + "lif y", + "l ify", + "▁P arts", + "▁Par ts", + "▁Part s", + "▁ Parts", + "流 体", + "您 需要", + "等 特点", + "▁j am", + "▁ja m", + "▁ jam", + "▁battle s", + "▁batt les", + "广 电", + "不合 格", + "不 合格", + "学生 在", + "ab lo", + "abl o", + "a blo", + "nA lex", + "nAl ex", + "n Alex", + "▁Har vey", + "Mod ified", + "▁vag inal", + "判处有期徒刑 一年", + "最高人民法院关于 执行", + "感 叹", + "行驶 至", + "▁d ispens", + "▁disp ens", + "▁quarter back", + "人们 对", + "▁M ental", + "▁Men tal", + "▁Ment al", + "当我 们", + "当 我们", + "▁b ats", + "▁bat s", + "▁ba ts", + "▁St ories", + "▁S hot", + "▁Sh ot", + "▁ Shot", + "█ █", + "cin e", + "ci ne", + "c ine", + "▁餐馆 简介", + "▁Trans action", + "▁ Transaction", + "▁illustr ates", + "▁illust rates", + "▁illustrate s", + "Foo ter", + "F ooter", + "nHon ours", + "会 是", + "▁D ot", + "▁Do t", + "▁ Dot", + "▁S ed", + "▁Se d", + "▁S pa", + "▁Sp a", + "▁G ABA", + "▁GA BA", + "▁ 卢", + "nA ir", + "n Air", + "ake spe", + "akes pe", + "▁ 再", + "古 今", + "折 磨", + "ex us", + "否 决", + "de al", + "dea l", + "d eal", + "nM al", + "nMa l", + "n Mal", + "解决 问题的", + "解决问题 的", + "穿 过", + "关系 式", + "可 作为", + "▁Ar ctic", + "▁Arc tic", + "和 的", + "编 著", + "延 期", + "▁d ire", + "▁di re", + "▁dir e", + "▁hist opath", + "eth ylene", + "ethyl ene", + "▁Develop ers", + "▁Developer s", + "{ $", + "nS em", + "nSe m", + "n Sem", + "▁h ay", + "▁ha y", + "▁ hay", + "np y", + "n py", + "▁L ed", + "▁Le d", + "▁ Led", + "以下 这道", + "▁prison ers", + "▁prisoner s", + "下面 这道选择题", + "▁ 或", + "bel ongs", + "▁De scribe", + "▁Des cribe", + "▁ Describe", + "预 告", + "部 部长", + "健康 发展", + "由 上海市", + "▁ 秦", + "保 暖", + "战 国", + "En ergy", + "E nergy", + "aa S", + "dev ices", + "device s", + "▁cor pus", + "▁ corpus", + "▁ab lation", + "▁stress ful", + "▁renov ation", + "\\\\ _{", + "\\\\_ {", + "▁her bs", + "▁herb s", + "▁met eor", + "▁Cal gary", + "滚 动", + "Dest roy", + "俗 称", + "三十 一日", + "三 十一日", + "▁Des ktop", + "▁Desk top", + "▁ Desktop", + "▁cor neal", + "▁corn eal", + "案件 的", + "案 件的", + "▁disturb ances", + "▁disturbance s", + "▁ è", + "Pa c", + "P ac", + "ung le", + "▁e val", + "▁ev al", + "▁ eval", + "▁C anyon", + "▁Can yon", + "▁cl icked", + "▁click ed", + "▁ clicked", + "eo n", + "e on", + "▁l int", + "▁li nt", + "▁lin t", + "▁ lint", + "▁neg lect", + "村民 小组", + "▁coord inator", + "▁R angers", + "▁Range rs", + "▁Ran gers", + "▁D ad", + "▁Da d", + "▁king dom", + "丙 烯", + "选 题", + "mo logy", + "mol ogy", + "m ology", + "沥 青", + "肾 脏", + "ou ted", + "out ed", + "oute d", + "o uted", + "路由 器", + "▁Interesting ly", + "▁Interest ingly", + "综合运用 多", + "Sur face", + "S urface", + "的 公", + "并从 给出的选项中", + "▁Program me", + "下 半", + "年 参加", + "▁p ier", + "▁pi er", + "▁pie r", + "▁premier ed", + "▁premiere d", + "}` );\\", + "} `);\\", + "▁ 网络", + "共同 建设", + "ct ype", + "c type", + "被执行人 有", + "管 委会", + "re new", + "ren ew", + "rene w", + "▁f ond", + "▁fo nd", + "Asp NetCore", + "yr o", + "y ro", + "(` ${", + "( `${", + "▁w ounded", + "▁wound ed", + "单 个", + "du plicate", + "d uplicate", + "清 爽", + "▁一 个", + "▁ 一个", + "ear th", + "e arth", + "au rus", + "aur us", + "a urus", + "熟悉 的", + "▁landscape s", + "▁landsc apes", + "nu rl", + "nur l", + "n url", + "附带 民事", + "ang ered", + "ange red", + "anger ed", + "VI S", + "V IS", + "是 需要", + "NO W", + "N OW", + "请你 仔细", + "ges terone", + "oc ene", + "t throw", + "N ational", + "良 心", + "自动 撤回上诉处理", + "专 著", + "ol is", + "oli s", + "o lis", + "** **\\", + "**** \\", + "*** *\\", + "* ***\\", + "▁内容 介绍", + "▁ 内容介绍", + "低 价", + "毒 素", + "▁URL s", + "▁s era", + "▁se ra", + "▁ser a", + "▁house d", + "▁hous ed", + "▁ho used", + "▁l ining", + "▁li ning", + "▁lin ing", + "▁ lining", + "北 美", + "行政 复议", + "▁Al ger", + "Per cent", + "产 妇", + "nIS BN", + "n ISBN", + "用 科学记数法", + "th ro", + "thr o", + "▁Pop ular", + "传 真", + "▁m emo", + "▁me mo", + "▁mem o", + "▁ memo", + "▁Pl ans", + "▁Plan s", + "酒店的 房型", + "man uel", + "ophys ical", + "o physical", + "陈某 某", + "陈 某某", + "了 就", + "将 近", + "▁ 表示", + "为一 体", + "为 一体", + "为您 提供", + "变化 的", + "变 化的", + "征 集", + "▁B anks", + "▁Bank s", + "▁Ban ks", + "樱 花", + "▁B og", + "▁Bo g", + "差异有 统计学意义", + "▁respons iveness", + "▁responsive ness", + "lic h", + "li ch", + "l ich", + "▁Type Error", + "▁ TypeError", + "不 禁", + "ou cher", + "ouch er", + "▁G D", + "▁ GD", + "▁w ages", + "▁wa ges", + "▁wage s", + "▁wag es", + "多 位", + "完全 平方", + "▁par al", + "▁para l", + "▁pa ral", + "制品 有限公司", + "▁Dop pler", + "▁' \\\\", + "▁'\\ \\", + "▁ '\\\\", + "▁c ass", + "▁ca ss", + "▁cas s", + "▁ cass", + "▁to uring", + "▁tour ing", + "▁tou ring", + "▁wrest ling", + "▁Hamilton ian", + "新 中国", + "获得 的", + "获 得的", + "▁cur r", + "▁cu rr", + "▁ curr", + "▁Croat ia", + "▁threat ening", + "▁threaten ing", + "▁ threatening", + "nSt ill", + "▁sacr ific", + "Wal l", + "W all", + "▁N it", + "▁Ni t", + "多 大", + "LC J", + "yl um", + "文化 传播", + "▁K arn", + "▁Kar n", + "▁Ka rn", + "▁b arn", + "▁bar n", + "▁ba rn", + "nH ouses", + "nHouse s", + "木 耳", + "▁ax ial", + "▁axi al", + "▁ axial", + "原 名", + "CL C", + "C LC", + "el ia", + "eli a", + "e lia", + "▁Vol unte", + "千 金", + "敏 捷", + "订 阅", + "ar u", + "a ru", + "今后 的", + "今 后的", + "终结 本案", + "bi shop", + "bis hop", + "bish op", + "b ishop", + "▁st eal", + "▁ste al", + "颈 椎", + "In clude", + "没 钱", + "▁f ost", + "▁fo st", + "▁ax ios", + "▁axi os", + "▁ axios", + "借 口", + "um ab", + "uma b", + "杀 了", + "▁K as", + "▁Ka s", + "逾期 利息", + "几个 选项", + "▁a erial", + "▁aer ial", + "▁pick le", + "▁pic kle", + "▁ pickle", + "Me n", + "M en", + "ph inx", + "phi nx", + "▁me tro", + "▁met ro", + "▁su perf", + "▁super f", + "{ →", + "п о", + "应 按", + ">) \\", + "> )\\", + "SI G", + "S IG", + "县 支行", + "因式 分解", + "▁C ells", + "▁Cell s", + "▁Cel ls", + "▁ Cells", + "▁has attr", + "▁G DP", + "▁GD P", + "▁ GDP", + "▁ab ort", + "▁ abort", + "波 兰", + "un gal", + "ung al", + "▁Em ily", + "镜 子", + "的 传统", + "的心 态", + "的 心态", + "ji ang", + "jian g", + "jia ng", + "j iang", + "▁ep och", + "▁ epoch", + "▁tact ics", + "nm e", + "n me", + "找 工作", + "Tr a", + "T ra", + "nB ase", + "nBas e", + "n Base", + "把 手", + "▁D ialog", + "▁Dial og", + "▁ Dialog", + "▁be ings", + "▁being s", + "签 下", + "色 泽", + "▁R EF", + "▁RE F", + "▁ REF", + "建设 项目", + "登记 信息", + "er ton", + "ert on", + "erto n", + "年经 教育部", + "▁ph rases", + "▁phrase s", + "▁de pressive", + "▁dep ressive", + "泉 水", + "离开 了", + "离 开了", + "br ed", + "bre d", + "b red", + "▁M oz", + "▁Mo z", + "▁sub space", + "▁subs pace", + "commun ications", + "communication s", + "▁author ization", + "▁ authorization", + "分钟 后", + "ID TH", + "▁c n", + "▁ cn", + "第十 一", + "第 十一", + "▁S ugar", + "▁Su gar", + "▁witness ed", + "FR ING", + "snap shot", + "s napshot", + "车 道", + "oth ic", + "额外 的", + "额 外的", + "In ternet", + "Inter net", + "im an", + "ima n", + "i man", + "road cast", + "右 手", + "▁c oping", + "▁co ping", + "▁cop ing", + "▁E ducational", + "▁Education al", + "▁Educ ational", + "同 心", + "Sl ot", + "S lot", + "REMO VED", + "▁Part ner", + "材料 有限公司", + "▁pra ised", + "▁praise d", + "因 被告", + "▁h ug", + "▁hu g", + "醉酒 驾驶机动车", + "置 业", + "ner gic", + "nerg ic", + "n ergic", + "▁transl ations", + "▁translation s", + "▁ translations", + "届 中国", + "nS tand", + "nSt and", + "nSta nd", + "n Stand", + "▁reward ing", + "▁retro spect", + "蓬 勃", + "新 农村", + "VID IA", + "cu be", + "cub e", + "c ube", + "▁sacr ifice", + "▁sacrific e", + "ern ate", + "中 奖", + "电 竞", + "PA CK", + "P ACK", + "端 正", + "的商 品", + "的 商品", + "▁k icked", + "▁kick ed", + "中 市", + "串 行", + "az er", + "aze r", + "a zer", + "▁ex cel", + "▁exc el", + "▁ excel", + "elastic search", + "了 点", + "不 建议", + "De velop", + "茅 台", + "]) ;", + "] );", + "Name d", + "Na med", + "N amed", + "▁craft s", + "▁cra fts", + "反 之", + "prec ision", + "p recision", + "▁work around", + "▁product ions", + "▁production s", + "前 辈", + "Fac e", + "Fa ce", + "F ace", + "Ph il", + "Phi l", + "▁home made", + "▁hom emade", + "▁medicine s", + "▁medic ines", + "Pa ne", + "Pan e", + "P ane", + "ur as", + "ura s", + "u ras", + "可 通过", + "群 岛", + "▁S old", + "▁So ld", + "▁Sol d", + "博 会", + "▁consult ants", + "▁consultant s", + "南昌 市", + "这个 城市", + "血 脂", + "▁v ault", + "▁va ult", + "▁ vault", + "系 的", + "Met ric", + "M etric", + "湾 区", + "time zone", + "在使用 现有的床铺", + "无 语", + "此 处", + "ID s", + "I Ds", + "▁房间 数量", + "▁S uit", + "▁Su it", + "no bject", + "nob ject", + "n object", + "Ma ss", + "Mas s", + "M ass", + "Ph ot", + "P hot", + "calc ul", + "c alcul", + "fl ower", + "flow er", + "flo wer", + "f lower", + "▁all iance", + "中国 大陆", + "mat ter", + "m atter", + "Fe atures", + "Feature s", + "▁a symmetric", + "▁as ymmetric", + "▁asym metric", + "▁asymmet ric", + "字 段", + "em ployee", + "▁tert iary", + "ag em", + "age m", + "a gem", + "▁ 雷", + "给 您", + "▁conv ince", + "▁convinc e", + "TR UE", + "▁Hind u", + "▁muc osa", + "蚌 埠", + "▁第 四十", + "▁ 第四十", + "▁S tein", + "▁St ein", + "▁Ste in", + "ñ o", + "▁ 超", + "▁l s", + "▁ ls", + "ua ng", + "uan g", + "u ang", + "man aged", + "manage d", + "▁Ar nold", + "能 被", + "该 院", + "▁e lic", + "▁el ic", + "▁ elic", + "▁v egan", + "▁ve gan", + "▁inter mitt", + "ote chnology", + "o technology", + "DA O", + "D AO", + "de ad", + "dea d", + "d ead", + "ro phys", + "roph ys", + "rophy s", + "r ophys", + "▁g p", + "▁ gp", + "有 帮助", + "al la", + "all a", + "a lla", + "ip ur", + "i pur", + "寻 常", + "就 此", + "愉 悦", + "ic ester", + "ice ster", + "ices ter", + "i cester", + "▁Ep isode", + "Data Frame", + "对角 线", + "给他 们", + "给 他们", + "▁d ice", + "▁di ce", + "▁dic e", + "ant ine", + "anti ne", + "ph rine", + "▁W inds", + "▁Win ds", + "▁Wind s", + "friend s", + "f riends", + "▁use fulness", + "▁useful ness", + "糯 米", + "间 隙", + "~\\ \\", + "~ \\\\", + "申请执行人 张", + "▁ τ", + "▁ 创建", + "▁s po", + "▁sp o", + "▁Qt Gui", + "▁ QtGui", + "卵 巢", + "重 重", + "▁D y", + "▁ Dy", + "双方 的", + "双 方的", + "▁Sh ore", + "第十 章", + "第 十章", + "▁sc ream", + "发 回", + "情况 的", + "程序 合法", + "▁P ars", + "▁Par s", + "▁Pa rs", + "▁ Pars", + "▁br ains", + "▁brain s", + "▁bra ins", + "▁ brains", + "▁Hop efully", + "▁Hope fully", + "re r", + "r er", + "▁j unk", + "▁ju nk", + "▁jun k", + "▁M atter", + "▁Mat ter", + "▁Matt er", + "▁where by", + "到底 是", + "查询 被执行人", + "nPer haps", + "习 性", + "渔 业", + "▁s ep", + "▁se p", + "▁ sep", + "▁ass isting", + "▁assist ing", + "剧 场", + "wi d", + "w id", + "▁F ALSE", + "▁ FALSE", + "ens itivity", + "ensit ivity", + "({ \\'", + "({\\ '", + "( {\\'", + "▁B iden", + "▁Bi den", + "▁Bid en", + "FRING EMENT", + "W ar", + "并 支付", + "ut ton", + "utt on", + "类 网络小说", + "▁pel vic", + "▁C atherine", + "政 权", + "▁文 件", + "▁ 文件", + "AS SERT", + "ASS ERT", + "nCom put", + "nComp ut", + "n Comput", + "深刻 的", + "的 平台", + "pa in", + "p ain", + "▁re plicate", + "▁replic ate", + "▁replica te", + "从选项中 选出你认为正确的答案", + "从选项中选出 你认为正确的答案", + "▁v om", + "▁vo m", + "不同意 离婚", + "合理 的解释", + "合理的 解释", + "照 射", + "Al so", + "故 本", + "tt es", + "tte s", + "t tes", + "▁m int", + "▁min t", + "▁mi nt", + "▁journal ism", + "修 行", + "千 古", + "需要 对", + "需 要对", + "as say", + "ass ay", + "assa y", + "▁c ouch", + "▁co uch", + "▁cou ch", + "CO RE", + "COR E", + "C ORE", + "▁Init ialize", + "▁Initial ize", + "▁ Initialize", + "宁 静", + "工业 园", + "质量 的", + "质 量的", + "▁low ering", + "▁lower ing", + "板 材", + "病 症", + "贵 阳", + "▁g room", + "▁gr oom", + "▁gro om", + "▁Chap el", + "▁Cha pel", + "exec ution", + "明 了", + "财务 管理", + "▁C ongo", + "▁Con go", + "▁Co ngo", + "▁Cong o", + "def icient", + "▁G ym", + "▁Gy m", + "现 行", + "▁n oble", + "▁no ble", + "▁nob le", + "▁li cence", + "▁lic ence", + "▁emphas ize", + "万 年", + "▁D ual", + "▁Du al", + "op ausal", + "opa usal", + "▁exhib itions", + "▁exhibit ions", + "▁exhibition s", + "总 共", + "回答 是", + "▁touch ing", + "▁tou ching", + "▁ 袁", + "tw idth", + "t width", + "ash ington", + "ashing ton", + "该 方法", + "▁AUTH ORS", + "功 耗", + "烟 草", + "gp u", + "g pu", + "五个 月", + "五 个月", + "邮政储蓄 银行股份有限公司", + "加 固", + "▁F emale", + "▁Fe male", + "▁Fem ale", + "stere otype", + "▁energ etic", + "▁energet ic", + "换 个", + "有效 率", + "有 效率", + "这才 是", + "这 才是", + "uss ions", + "ussion s", + "li ga", + "lig a", + "l iga", + "▁ab elian", + "end region", + "第一 名", + "第 一名", + "级别 的", + "级 别的", + "run ch", + "ru nch", + "r unch", + "州市 人民法院", + "州 市人民法院", + "物业服务 合同纠纷一案", + "二 战", + "却 不", + "被 誉为", + "Wal k", + "W alk", + "nw as", + "n was", + "▁M old", + "▁Mo ld", + "▁Mol d", + "▁dispar ities", + "夏 日", + "扫 码", + "▁Mer cedes", + "▁Merc edes", + "也 算", + "福 田", + "un ted", + "unt ed", + "unte d", + "▁tom atoes", + "▁tomat oes", + "▁tomato es", + "▁f ame", + "▁fam e", + "▁fa me", + "在 做", + "▁R anch", + "▁Ra nch", + "▁Ran ch", + "喜 悦", + "▁下 列", + "▁ 下列", + "发现 自己", + "hi ft", + "h ift", + "▁up s", + "▁u ps", + "▁ ups", + "第一百零 七条", + "▁E cuador", + "E U", + "nt e", + "n te", + "咨询 有限公司", + "准备 好", + "全 场", + "nd a", + "n da", + "并 进行", + "no pen", + "nop en", + "n open", + "DO WN", + "we ets", + "weet s", + "MOD ULE", + "oid es", + "oi des", + "o ides", + "▁sub urb", + "▁acc identally", + "▁accident ally", + "▁accidental ly", + "ic io", + "ici o", + "L G", + "发表 论文", + "梦 中", + "al ore", + "alo re", + "芒 果", + "leg iate", + "▁D rosophila", + "▁detect able", + "▁se lections", + "▁select ions", + "▁selection s", + "▁sel ections", + "居住 地", + "nCh rist", + "nChris t", + "n Christ", + "城 的", + "米 兰", + "▁p ag", + "▁pa g", + "▁ pag", + "tt ext", + "tte xt", + "t text", + "我 一", + "nN umber", + "n Number", + "▁theore ms", + "▁theorem s", + "▁theor ems", + "re nergic", + "ren ergic", + "_ %", + "mp h", + "m ph", + "▁xml ns", + "▁ xmlns", + "在 内", + "在 区间", + "扬 声器", + "▁y early", + "▁year ly", + "▁ye arly", + "▁cross es", + "株 洲", + "深 夜", + "▁re use", + "▁mention s", + "▁ment ions", + "忍 受", + "电影 作品", + "▁tight ly", + "▁tr acked", + "▁track ed", + "跨 国", + "结构 住房", + "▁Rh ode", + "▁Rho de", + "有多种 选择", + "gl ass", + "glas s", + "g lass", + "▁b utt", + "▁but t", + "▁bu tt", + "nM ount", + "n Mount", + "▁sett lements", + "▁settlement s", + "▁settle ments", + "d raft", + "uk ary", + "uka ry", + "DA Y", + "D AY", + "▁i c", + "▁ ic", + "an ton", + "ant on", + "anto n", + "a nton", + "ol v", + "o lv", + "的重 点", + "的 重点", + "处 方", + "长 途", + "nN eed", + "nNe ed", + "n Need", + "▁Reyn olds", + "▁Ch ef", + "▁Che f", + "万 千", + "un o", + "u no", + "Au gust", + "Aug ust", + "A ugust", + "▁ ’", + "▁us eless", + "▁use less", + "徘 徊", + "的 颜色", + "Un less", + "七 十", + "▁ap ples", + "▁app les", + "▁appl es", + "▁apple s", + "第一百四十 四条", + "第一百四十四 条", + "▁home page", + "▁hom epage", + "▁ homepage", + "能 为", + "ns ic", + "▁Fil ip", + "▁Fi lip", + "▁aure us", + "▁aur eus", + "▁pur ification", + "▁circum ference", + "具有 一定的", + "具有一定 的", + "具 有一定的", + "▁M ig", + "▁Mi g", + "▁m emor", + "▁me mor", + "▁mem or", + "▁memo r", + "▁Through out", + "缺 血", + "▁diagn ose", + "▁pass words", + "▁password s", + "▁con sequently", + "▁consequ ently", + "▁cl earing", + "▁cle aring", + "▁clear ing", + "工作 效率", + "▁In clude", + "▁ Include", + "▁cr icketer", + "▁cricket er", + "化 肥", + "许多 人", + "许 多人", + "Jul y", + "J uly", + "pop ulation", + "莫名 其", + "▁trans c", + "▁tra nsc", + "▁tran sc", + "万 余", + "就是 个", + "就 是个", + "法 执字第", + "▁beet le", + "▁bee tle", + "▁spec ifying", + "▁specify ing", + "▁T hom", + "▁Th om", + "List en", + "Li sten", + "ho ng", + "hon g", + "h ong", + "▁Sh ared", + "▁Share d", + "▁Sha red", + "▁Shar ed", + "▁ Shared", + "Dash board", + "D ashboard", + "▁should ers", + "▁shoulder s", + "▁Indust ries", + "结 点", + "和解 题", + "和 解题", + "医 护", + "ops ies", + "nPro fessional", + "之 星", + "店 的", + "推荐 过", + "la bs", + "lab s", + "l abs", + "nf ile", + "nfi le", + "nfil e", + "n file", + "Se gment", + "Seg ment", + "还有 一些", + "还 有一些", + "Re ply", + "Rep ly", + "跑 了", + "轴 上", + "服务 于", + "▁hy giene", + "总 投资", + "犯 抢劫罪", + "▁side w", + "▁sid ew", + "omon as", + "omo nas", + "▁C oron", + "▁Co ron", + "▁Cor on", + "be aring", + "bear ing", + "b earing", + "时 段", + "省 内", + "▁gl ory", + "▁glo ry", + "▁Com pare", + "▁Comp are", + "▁Compar e", + "▁ Compare", + "巨 头", + "换 了", + "ze g", + "z eg", + "关于 适用", + "▁k inda", + "▁kind a", + "▁kin da", + "▁ki nda", + "▁Palest inian", + "陆 军", + "▁m iddleware", + "▁middle ware", + "▁ middleware", + "留 意", + "▁travel ers", + "Z W", + "ce mia", + "c emia", + "▁electroph oresis", + "\" `", + "▁Aw esome", + "▁ Awesome", + "▁pe oples", + "▁people s", + "▁Se par", + "▁Sep ar", + "▁ Separ", + "长 远", + "在不 同", + "在 不同", + "的一 半", + "的 一半", + "▁Sab ha", + "世 上", + "▁定 义", + "▁ 定义", + "医生 的", + "医 生的", + "▁ter med", + "▁term ed", + "▁exp ired", + "▁expire d", + "望 着", + "本 法", + "nDist ribution", + "n Distribution", + "随 即", + "▁pol ls", + "▁poll s", + "▁rot ational", + "▁rotation al", + "A U", + "掌 控", + "维持 原判", + "ke t", + "k et", + "gr and", + "gra nd", + "gran d", + "g rand", + "而成 的", + "而 成的", + "▁re creation", + "▁rec reation", + "▁G host", + "▁Gh ost", + "Pr eferences", + "Pre ferences", + "Preference s", + "P references", + "七个 月", + "七 个月", + "催化 剂", + "ack ed", + "ff ield", + "ffi eld", + "f field", + "H V", + "it at", + "ita t", + "i tat", + "po ke", + "p oke", + "AT URE", + "良 性", + "重 心", + "▁Fil ms", + "▁Film s", + "错 的", + "▁flo oding", + "▁flood ing", + "▁resil ience", + "▁T ennis", + "▁Ten nis", + "▁sym met", + "▁autom obile", + "▁auto mobile", + "歌 舞", + "Circ le", + "C ircle", + "▁remote ly", + "▁remot ely", + "▁dist ortion", + "▁distort ion", + "刹 车", + "火 的", + "▁h et", + "▁he t", + "▁ het", + "ro mes", + "rom es", + "rome s", + "r omes", + "背 面", + "产业 的", + "产 业的", + "财政 局", + "es ta", + "est a", + "e sta", + "og rap", + "ogr ap", + "营 运", + "要 不", + "▁T urb", + "▁Tur b", + "▁Tu rb", + "▁Co vid", + "▁Cov id", + "GP T", + "G PT", + "ur an", + "ura n", + "u ran", + "阿里 巴巴", + "da ily", + "d aily", + "t D", + "顿 时", + "提升 了", + "顶 部", + "al ent", + "ale nt", + "号民事 裁定", + "细 分", + "W ater", + "的通 项公式", + "on acci", + "ona cci", + "▁p osed", + "▁pos ed", + "▁po sed", + "▁pose d", + "▁ posed", + "▁tr igon", + "▁tri gon", + "▁trig on", + "tt ar", + "t tar", + "focus ed", + "f ocused", + "akespe are", + "▁Bulg aria", + "aw i", + "a wi", + "nm ore", + "n more", + "仍 是", + "指 责", + "以来 的", + "以 来的", + "▁cock tail", + "nom bre", + "匿 名", + "全 日制", + "下 水", + "▁Su dan", + "▁Sud an", + "▁l uc", + "▁lu c", + "▁ luc", + "pen ding", + "pend ing", + "p ending", + "Args Constructor", + "下 图", + "up grade", + "川 县", + "fr ican", + "frica n", + "▁hyper bolic", + "唐山 市", + "唐 山市", + "ia ne", + "ian e", + "i ane", + "▁H elen", + "▁He len", + "▁Hel en", + "▁Create s", + "▁Creat es", + "▁Cre ates", + "nD ocument", + "n Document", + "▁出 场", + "▁ 出场", + "bo rg", + "bor g", + "b org", + "▁a us", + "▁au s", + "▁ aus", + "▁Gr ande", + "▁Grand e", + "▁Gra nde", + "▁Gran de", + "▁b other", + "▁both er", + "▁bo ther", + "▁bot her", + "▁capac itor", + "A w", + "xl s", + "x ls", + "我们 也", + "▁C hang", + "▁Ch ang", + "▁Cha ng", + "▁Chan g", + "▁br ake", + "▁bra ke", + "el lation", + "ell ation", + "ella tion", + "▁Altern atively", + "▁Alternative ly", + "来 回", + "dr y", + "d ry", + "▁T hr", + "▁Th r", + "las ses", + "lass es", + "▁les bian", + "▁sur prises", + "▁surpr ises", + "▁surprise s", + "全 校", + "对 她", + "hi m", + "h im", + "▁th roat", + "▁thro at", + "▁travel led", + "▁trav elled", + "we ak", + "B order", + "▁dynam ical", + "▁dynamic al", + "伴 有", + "名 誉", + "等多 个", + "等 多个", + "▁eff ector", + "▁effect or", + "推 销", + "wan g", + "wa ng", + "w ang", + "▁ 蒋", + "活 的", + "xr ef", + "x ref", + "▁st ellar", + "▁ stellar", + "我 这", + "肯定 会", + "▁R osen", + "▁Ro sen", + "▁Rose n", + "▁Ros en", + "nab out", + "n about", + "▁Mc Donald", + "▁McD onald", + "t P", + "▁ „", + "▁G ir", + "▁Gi r", + "▁oblig ations", + "▁obligation s", + "明 智", + "aa aa", + "aaa a", + "a aaa", + "▁D eb", + "▁De b", + "▁ Deb", + "暂无 财产可供执行", + "暂 无财产可供执行", + "投 保", + "追 加", + "记者 从", + "ocom plete", + "o complete", + "农 家", + "出 示", + "知 的", + "保证 了", + "没有 了", + "没 有了", + "▁B ash", + "▁Bas h", + "▁Ba sh", + "▁p ing", + "▁pi ng", + "▁pin g", + "▁ ping", + "E r", + "楼 层", + "风 湿", + "没 问题", + "酒店的房型 有多种选择", + "仙 人", + "光 纤", + "▁fl ame", + "▁inf initely", + "▁infinite ly", + "▁infinit ely", + "▁tweet ed", + "▁twe eted", + "卡 尔", + "摄影 师", + "▁S aw", + "▁Sa w", + "▁s por", + "▁sp or", + "▁spo r", + "技 艺", + "计 时", + "时间 长", + "的数 字", + "的 数字", + "▁B ench", + "▁Be nch", + "▁Ben ch", + "▁ Bench", + "他 和", + "我 心", + "茫 茫", + "▁政 治", + "▁ 政治", + "Re place", + "▁out look", + "IN FRINGEMENT", + "亚 太", + "礼 貌", + "▁L ak", + "▁La k", + "▁c iting", + "▁cit ing", + "▁ci ting", + "▁broad casting", + "▁broadcast ing", + "大 声", + "角 为", + "ic hes", + "ich es", + "iche s", + "i ches", + "高 频", + "安全 隐患", + "raw ler", + "rawl er", + "▁Val ues", + "▁Value s", + "▁ Values", + "▁mis under", + "t L", + "干 的", + "nIn stead", + "nInst ead", + "加 剧", + "▁ 打开", + "事 迹", + "建 平", + "t console", + "拼 命", + "ai du", + "aid u", + "▁T rend", + "▁Tr end", + "▁Tre nd", + "▁embry o", + "▁embr yo", + "独 具", + "随 身", + "▁P CI", + "▁PC I", + "▁ PCI", + "▁H tml", + "▁ Html", + "仙 侠", + "▁gal axies", + "▁hyd raulic", + "以 非法", + "▁b reach", + "▁br each", + "▁bre ach", + "alu able", + "▁M oving", + "▁Mo ving", + "▁M yst", + "▁My st", + "▁Mys t", + "▁midfield ers", + "▁midfielder s", + "▁wood s", + "▁wo ods", + "ther efore", + "there fore", + "土 家族", + "▁re forms", + "▁ref orms", + "▁reform s", + "▁Em ployee", + "▁Employ ee", + "▁ Employee", + "h c", + "无 缝", + "游 览", + "盐 水", + "mo z", + "m oz", + "的 决定", + "' ^", + "引起 了", + "引 起了", + "▁Excell ence", + "sub scription", + "搬 家", + "nE lect", + "nEl ect", + "n Elect", + "大 盘", + "放弃 了", + "▁haz ards", + "▁hazard s", + "ma re", + "mar e", + "m are", + "▁G MAT", + "▁GM AT", + "▁mir rors", + "▁mirror s", + "▁free zing", + ":: {", + ": :{", + "▁dis course", + "▁disc ourse", + "▁discour se", + "ad don", + "add on", + "▁s ellers", + "▁sell ers", + "▁seller s", + "▁sel lers", + "▁graph ene", + "▁grap hene", + "▁enthus iasm", + "▁enthusi asm", + "и с", + "关 卡", + "是 国家", + "为什么 不", + "▁sun light", + "奥 林", + "还 真", + "Id x", + "I dx", + "▁k a", + "▁ ka", + "的心 理", + "的 心理", + "▁re conc", + "▁rec onc", + "▁recon c", + "fa v", + "f av", + "的 音乐", + "▁W ing", + "▁Win g", + "▁Wi ng", + "▁ Wing", + "st a", + "s ta", + "Gi ven", + "Give n", + "G iven", + "第二百五十 七", + "▁rout inely", + "▁routine ly", + "Ch rome", + "问 道", + "A im", + "• \\", + "较 长", + "▁ski ing", + "生活 方式", + "nE val", + "nEv al", + "n Eval", + "end ants", + "endant s", + "先 将", + "ad ers", + "ade rs", + "ader s", + "a ders", + "▁a per", + "▁ap er", + "▁ aper", + "有 色", + "▁h aul", + "▁ha ul", + "▁ haul", + "▁ach ieves", + "▁achieve s", + "怀 念", + "阿 根廷", + "▁advoc ates", + "▁advocate s", + "▁med iating", + "▁media ting", + "▁medi ating", + "▁mix tures", + "▁mixture s", + "一 站", + "\\' %", + "为 目标", + "洛阳 市", + "洛 阳市", + "▁V ehicle", + "▁ Vehicle", + "取得 的", + "取 得的", + "的 网络", + "电子 邮件", + "▁[ ^", + "▁ [^", + "说的 是", + "说 的是", + "grow th", + "g rowth", + "com press", + "comp ress", + "▁Guide lines", + "▁Guid elines", + "弹 簧", + "题 型", + "▁macroph age", + "E q", + "企业 文化", + "TE GER", + "▁Le ave", + "▁ Leave", + "人 情", + "你 做出", + "ore tical", + "oretic al", + "▁mit igate", + "▁ 启动", + "rel ationship", + "relation ship", + "relations hip", + "▁Oak land", + "▁publish ers", + "▁publisher s", + "并 购", + "uff y", + "uf fy", + "▁The rm", + "▁Th erm", + "▁Ther m", + "▁ref use", + "program ming", + "▁hemat opoietic", + "见 解", + "车 位", + "IC T", + "I CT", + "▁n ost", + "▁no st", + "▁nos t", + "▁ nost", + "▁Ch arg", + "▁Char g", + "▁Cha rg", + "前 方", + "▁caps ule", + "▁cyto chrome", + "特 有的", + "运动 的", + "运 动的", + "▁prote ase", + "▁ 克", + "Ch oice", + "Cho ice", + "ur ry", + "▁B uffer", + "▁Buff er", + "▁ Buffer", + "ax ios", + "配 资", + "nS ort", + "nSo rt", + "n Sort", + "▁land mark", + "▁semin ars", + "▁seminar s", + "▁der ivation", + "▁deriv ation", + "ot er", + "ote r", + "o ter", + "予以 准许", + "Sup press", + "火 星", + "出具 了", + "添加 剂", + "的一 条", + "的 一条", + "J o", + "情 境", + ")/ /", + ") //", + "T s", + "的一 家", + "的 一家", + "Log ic", + "Lo gic", + "▁sanction s", + "▁voc abulary", + "作 词", + "螺 丝", + "陷 阱", + "▁Un ique", + "▁Uni que", + "▁ Unique", + "RO S", + "R OS", + "nD i", + "n Di", + "▁C red", + "▁Cr ed", + "▁Cre d", + "▁ Cred", + "▁H ook", + "▁Ho ok", + "▁ Hook", + "午 餐", + "如 上", + "愈 合", + "▁mat urity", + "nW ow", + "▁sk ull", + "▁sup ermark", + "▁super mark", + "三 观", + "请 从", + "有 兴趣", + "胡椒 粉", + "Word s", + "W ords", + "pw d", + "p wd", + "▁m ph", + "▁mp h", + "▁ mph", + "总 支", + "▁t au", + "▁ta u", + "▁ tau", + "▁cl icks", + "▁click s", + "▁cli cks", + "man if", + "ma nif", + "mani f", + "vers ation", + "涂 抹", + "邢 台", + "▁K ick", + "▁Ki ck", + "▁cr ush", + "▁cru sh", + "▁gu essing", + "▁guess ing", + "▁S UB", + "▁SU B", + "▁ SUB", + "▁S yl", + "▁Sy l", + "符合 法定", + "nS ection", + "nSe ction", + "nSec tion", + "n Section", + "▁fl avour", + "▁flav our", + "▁break through", + "▁cig arette", + "宣 讲", + "▁N ak", + "▁Na k", + "ed ish", + "edi sh", + "um ann", + "uman n", + "uma nn", + "u mann", + "亲 情", + "唱 片", + "▁A part", + "▁Ap art", + "▁aff air", + "▁af fair", + "却 依然", + "pt ides", + "ptide s", + "▁le thal", + "▁let hal", + "▁Contin ue", + "▁ Continue", + "花 序", + "即使 是", + "k v", + "就不 是", + "就 不是", + "阶段 的", + "阶 段的", + "▁b od", + "▁bo d", + "Event Args", + "▁Argent ine", + "高 山", + "▁sh rink", + "▁shr ink", + "昆明 市", + "nM ain", + "nMa in", + "n Main", + "▁T ampa", + "▁Tam pa", + "▁para site", + "▁paras ite", + "Bu y", + "B uy", + "DE P", + "D EP", + "ip ients", + "ipient s", + "▁hot test", + "▁ho ttest", + "▁stud ios", + "▁studio s", + "Java Script", + "有趣 的", + "ib us", + "ibu s", + "i bus", + "▁class ify", + "sw ick", + "s wick", + "▁b if", + "▁bi f", + "▁Pun jab", + "▁thromb osis", + "▁thrombo sis", + "反 击", + "有 何", + "发言 人", + "拿 起", + "ht ra", + "h tra", + "▁ass urance", + "{→ }{", + "富 士", + "紧 凑", + "TN F", + "T NF", + "一道 题", + "一 道题", + "的解 集", + "▁al together", + "▁alt ogether", + "散 发", + "无 忧", + "▁am ple", + "▁ampl e", + "▁amp le", + "▁ ample", + "可 使", + "行政 行为", + "max imum", + "牵 引", + "at ti", + "att i", + "a tti", + "分 许", + "Ps i", + "P si", + "▁L H", + "▁ LH", + "nD el", + "nDe l", + "n Del", + "出具 欠条", + "▁f led", + "▁fl ed", + "▁fle d", + "▁Object ive", + "▁Ob jective", + "得 的", + "不 舒服", + "▁K oh", + "▁Ko h", + "▁gr ains", + "▁grain s", + "▁gra ins", + "▁con verts", + "▁conver ts", + "▁convert s", + "▁conv erts", + "▁sn acks", + "▁snack s", + "▁Mil waukee", + "[ /", + "口 气", + "▁com pose", + "▁comp ose", + "▁compos e", + "▁ compose", + "▁m uscular", + "▁mus cular", + "▁musc ular", + "跑 到", + "lu c", + "l uc", + "全 集", + "名 片", + "有 必要", + "du plex", + "dup lex", + "d uplex", + "now led", + "Gate way", + "G ateway", + "中国人民 财产保险股份有限公司", + "好 转", + "*} \\", + "* }\\", + "公告 费", + "nj ust", + "n just", + "边 境", + "equ ation", + "eq uation", + "%\\ \\", + "% \\\\", + "par a", + "pa ra", + "p ara", + "人大 代表", + "经营 管理", + "not ice", + "▁co oler", + "▁cool er", + "山 药", + "手续 费", + "▁compet ent", + "▁compete nt", + "さ れ", + "隶 属", + "签订 了", + "ot opy", + "oto py", + "▁princ ip", + "▁mult imedia", + "▁multi media", + "▁multim edia", + "IN A", + "I NA", + "才能 够", + "才 能够", + "▁w ors", + "▁wor s", + "▁wo rs", + "pl ayers", + "play ers", + "player s", + "p layers", + "▁Phot ography", + "▁发 展", + "▁ 发展", + "▁| |\\", + "▁|| \\", + "FI LES", + "FILE S", + "FIL ES", + "▁L eeds", + "▁Le eds", + "▁Lee ds", + "▁} _{", + "▁ }_{", + "因为 他们", + "因为他 们", + "因 为他们", + "np art", + "n part", + "叙 事", + "nE p", + "n Ep", + "▁Z n", + "▁ Zn", + "又一 次", + "又 一次", + "nGo ogle", + "n Google", + "▁U ber", + "▁pro mo", + "▁pr omo", + "▁prom o", + "▁overl apping", + "▁overlap ping", + "▁ 军", + "商 丘", + "▁记 员", + "T w", + "尊 敬", + "就是 为了", + "就 是为了", + "Un ited", + "Unit ed", + "▁hydro ph", + "▁hyd roph", + "的 男人", + "▁G eo", + "▁Ge o", + "▁ Geo", + "▁p ause", + "▁pa use", + "▁ pause", + "▁phys i", + "▁phy si", + "ting ham", + "t ingham", + "▁Jer emy", + "畸 形", + "锦标 赛", + "▁C U", + "▁ CU", + "通知 后", + "▁air ports", + "▁airport s", + "▁con ting", + "▁cont ing", + "▁contin g", + "完 后", + "强制 法", + "iv ate", + "iva te", + "▁L odge", + "if ferences", + "iffer ences", + "ifference s", + "▁ 副", + "反 抗", + "二十 四", + "二 十四", + "▁Qu arter", + "▁Quart er", + "情 商", + "GU I", + "G UI", + "▁proport ions", + "▁proportion s", + "∞ ,", + "ur ling", + "url ing", + "press ure", + "▁par ametric", + "▁paramet ric", + "▁para metric", + "▁param etric", + "▁ parametric", + "战 队", + "缓 缓", + "▁a mph", + "▁am ph", + "▁amp h", + "int ellij", + "到 时候", + "▁environment ally", + "▁environmental ly", + "整 机", + "梦 见", + "▁) {\\", + "▁ ){\\", + "▁appl iance", + "却 在", + "用 作", + "Ha r", + "H ar", + "nT ext", + "nTe xt", + "n Text", + "Label s", + "Lab els", + "▁a irlines", + "▁air lines", + "▁airline s", + "os i", + "o si", + "pe nt", + "pen t", + "p ent", + "▁L iu", + "▁Li u", + "ear range", + "▁anal ogue", + "▁analog ue", + "西 门", + "▁s or", + "▁so r", + "那个 时候", + "一 头", + "ou g", + "o ug", + "ch oline", + "cho line", + "chol ine", + "有 种", + "▁x y", + "▁ xy", + "▁T yler", + "▁Ty ler", + "▁elect rophys", + "▁electro phys", + "▁electroph ys", + "▁electr ophys", + "▁ 电", + "表达 式", + "都 已经", + "▁P ont", + "▁Po nt", + "▁Pon t", + "▁d ign", + "▁di gn", + "▁dig n", + "CAS CADE", + "▁Again st", + "债权 人", + "Sp e", + "S pe", + "or te", + "ort e", + "ic one", + "icon e", + "ico ne", + "i cone", + "par s", + "pa rs", + "p ars", + "源 头", + "▁ac credited", + "▁accred ited", + "▁accr edited", + "征 服", + "抗 生素", + "▁E mma", + "▁Em ma", + "捕 捉", + "致 命", + "'\\ \\", + "' \\\\", + "商 学院", + "净 利润", + "到 手", + "与 应用", + "▁B ever", + "▁Be ver", + "抛物 线的", + "抛物线 的", + "da ting", + "dat ing", + "d ating", + "▁echo card", + "▁ech ocard", + "灭 火", + "▁prompt ly", + "Eval uation", + "ac i", + "a ci", + "▁con cludes", + "▁conclude s", + "I j", + "兴 业", + "▁L DL", + "▁LD L", + "▁ LDL", + "▁p orch", + "▁por ch", + "▁gly col", + "▁glyc ol", + "挣 钱", + "▁p ean", + "▁pe an", + "▁sl ug", + "▁ slug", + "mi ral", + "mir al", + "m iral", + "闪 光", + "▁H C", + "▁ HC", + "▁tr acker", + "▁track er", + "▁ tracker", + "▁L ines", + "▁Lin es", + "▁Line s", + "▁Li nes", + "▁ Lines", + "▁interfer on", + "▁interf eron", + "想要 的", + "▁I NF", + "▁IN F", + "▁ INF", + "▁t ib", + "▁ti b", + "出 院", + "▁line age", + "nI nf", + "nIn f", + "n Inf", + "▁d eer", + "▁de er", + "入 驻", + "▁C ream", + "▁Cre am", + "ograph ies", + "Trans lation", + "Transl ation", + "迄 今", + "um ed", + "ume d", + "u med", + ")) /((", + "))/ ((", + "))/( (", + ") )/((", + "笔 画", + "▁S pl", + "▁Sp l", + "▁ Spl", + "▁Cl osing", + "▁Clo sing", + "▁sea mless", + "▁seam less", + "▁M n", + "▁ Mn", + "其前 身为", + "▁Re dis", + "▁Red is", + "▁ Redis", + "▁adv ancing", + "▁Rel ationship", + "▁Relations hip", + "▁ Relationship", + "无 名", + "op ia", + "文 的", + "▁P roc", + "▁Pro c", + "▁Pr oc", + "▁ Proc", + "▁off shore", + "左 手", + "纸 张", + "私 信", + "违 背", + "ver sal", + "vers al", + "下 雨", + "▁Wh atever", + "▁What ever", + "诱 发", + "增 函数", + "乡 市", + "打 架", + "的 系统", + "考 上", + "屏 蔽", + "期 权", + "并按 照", + "并 按照", + "二〇一七年 十二月", + "二〇一七年十二 月", + "二〇一七年十 二月", + "ic als", + "ical s", + "ica ls", + "伴 侣", + "列 举", + "育 人", + "辩 论", + "新中国的 诞生", + "fil ling", + "fill ing", + "f illing", + "▁un comfortable", + "三 峡", + "跳 跃", + "▁I B", + "▁ IB", + "last ing", + "las ting", + "l asting", + "▁Jess ica", + "▁des ires", + "▁desire s", + "nS chedule", + "nSc hedule", + "n Schedule", + "▁C d", + "▁ Cd", + "幸运 的是", + "stan bul", + "▁predict s", + "▁comprom ised", + "▁compromise d", + "一 间", + "ge on", + "geo n", + "g eon", + "in sky", + "ins ky", + "insk y", + "▁ 进球", + "ul ose", + "ulo se", + "ulos e", + "u lose", + "好看 的", + "好 看的", + "▁P DE", + "▁PD E", + "may be", + "▁bal ancing", + "并 向", + "SE C", + "S EC", + "服务 等", + "min ster", + "mins ter", + "m inster", + "万 亩", + "路 边", + "Pix el", + "P ixel", + "正确答案 和", + "交通 大学", + "▁c him", + "▁ch im", + "▁chi m", + "La unch", + "L aunch", + "in vest", + "inv est", + "▁spec s", + "▁spe cs", + "▁ specs", + "▁tr aged", + "▁tra ged", + "操 纵", + "来 做", + "As sets", + "Ass ets", + "Asset s", + "Load ed", + "Lo aded", + "▁cor rosion", + "城乡 建设", + "执行 长", + "执 行长", + "即可 求解", + "nth anks", + "nthan ks", + "n thanks", + "▁cl ause", + "▁short age", + "▁M W", + "▁ MW", + "住 浙江省", + "▁unve iled", + "li ft", + "lif t", + "l ift", + "oc yst", + "o cyst", + "cri tical", + "c ritical", + "▁ves icles", + "▁vesicle s", + "叠 加", + "复 苏", + "准确 的", + "投资 人", + "金 牛", + "AA C", + "A AC", + "先生 的", + "先 生的", + "集 装箱", + "mid t", + "mi dt", + "Sp rite", + "S prite", + "▁Em peror", + "▁hemorrh age", + "zi g", + "z ig", + "慢慢 的", + "▁F ILE", + "▁FI LE", + "▁ FILE", + "铁 道", + "应予 支持", + "ch in", + "chi n", + "c hin", + "积极 参与", + "工业 出版社", + "▁attenu ated", + "▁atten uated", + "nFilm ography", + "新能源 汽车", + "roc ket", + "rock et", + "r ocket", + "▁strength ening", + "▁strengthen ing", + "▁Term inal", + "▁ Terminal", + "恰 当", + "选 育", + "ber y", + "be ry", + "b ery", + "gu ided", + "guide d", + "gui ded", + "guid ed", + "缓 冲", + "一 双", + "eg g", + "e gg", + "nPh ys", + "n Phys", + "co ords", + "coord s", + "▁C hester", + "▁Ch ester", + "▁Che ster", + "▁Chest er", + "▁Ches ter", + "亮 的", + "们 在", + "第三 项", + "第 三项", + "合作 关系", + "▁Aud ience", + "▁Audi ence", + "骨 骼", + "▁\" )", + "▁ \")", + "▁plan ets", + "▁plane ts", + "▁planet s", + "Fi t", + "F it", + "完全 可以", + "if rame", + "i frame", + "制 订", + "糟 糕", + "斯 的", + "樱 桃", + "▁conver gent", + "▁converge nt", + "分 层", + "余 年", + "▁K re", + "▁Kr e", + "ar ius", + "ari us", + "al tern", + "alt ern", + "alter n", + "投 注", + "音 效", + "▁M t", + "卫生 院", + "to LowerCase", + "食 欲", + "▁Al most", + "sa ss", + "s ass", + "▁I RS", + "▁IR S", + "▁ IRS", + "▁B ound", + "▁Bo und", + "▁Bou nd", + "▁ Bound", + "process ed", + "proc essed", + "DN S", + "D NS", + "Har d", + "Ha rd", + "H ard", + "ro cal", + "roc al", + "r ocal", + "起 重", + "che wan", + "La TeX", + "Op tim", + "Opt im", + "▁it al", + "▁i tal", + "▁ ital", + "▁re vel", + "▁reve l", + "▁rev el", + "ath ione", + "athi one", + "不 便", + "也 让", + "ek yll", + "cap acity", + "▁Engine ers", + "▁Engineer s", + "bo nd", + "bon d", + "b ond", + "▁R eed", + "▁Re ed", + "View Holder", + "和解题 的思路", + "spir acy", + "▁cere bell", + "印 章", + "发电 机", + "发 电机", + "我只 是", + "我 只是", + "}\\\\ ,", + "} \\\\,", + "琐事 发生", + "重要 的作用", + "重要的 作用", + "你 了", + "打 出", + "经验 的", + "维 亚", + "tr on", + "tro n", + "t ron", + "▁d ar", + "▁da r", + "▁ dar", + "▁f ut", + "▁fu t", + "水 肿", + "Sc i", + "S ci", + "Le ss", + "Les s", + "L ess", + "in tro", + "int ro", + "intr o", + "第一百零 八条", + "较 强", + "幸福 的", + "▁per cept", + "V ue", + "Fat al", + "Fa tal", + "F atal", + "最 爱", + "积极 的", + "title s", + "tit les", + "女人 的", + "女 人的", + "▁E EG", + "▁EE G", + "告知 申请执行人", + "全 天", + "▁co variance", + "▁covari ance", + "困 惑", + "aj i", + "a ji", + "身份 号码", + "act ly", + "д е", + "权 纠纷一案", + "本次执行程序 终结", + "伴随着 新中国的诞生", + "▁G az", + "▁Ga z", + "请给出 你的", + "▁ve loc", + "▁vel oc", + "必 不可", + "更 名为", + "By Name", + "go lang", + "g olang", + "▁magn esium", + "▁juris diction", + "▁jurisdict ion", + "检察 机关", + "▁inhib iting", + "▁inhibit ing", + "▁P interest", + "▁cont acting", + "▁contact ing", + "K L", + "j j", + "fl ight", + "f light", + "▁phot ographers", + "▁photograph ers", + "▁photographer s", + "导致 了", + "ac eous", + "ace ous", + "第一百五十四条第一款第 十一", + "第一百五十四条第一款 第十一", + "化 县", + "搬 运", + "美术 馆", + "某 与被告", + "▁Let ters", + "▁Letter s", + "▁magn ificent", + "充 值", + "奇 函数", + "▁Hug hes", + "▁Hugh es", + "▁Br ussels", + "该 款", + "av in", + "avi n", + "a vin", + "▁un cle", + "▁unc le", + "nA L", + "n AL", + "不 充分", + ">\" ,\"", + ">\", \"", + "> \",\"", + "▁l acks", + "▁la cks", + "▁lack s", + "▁lac ks", + "定 律", + "格 外", + "的 费用", + "呼 和浩特", + "▁Y ale", + "▁Ya le", + "步 入", + "信息 查询", + "te enth", + "tee nth", + "teen th", + "t eenth", + "▁No table", + "▁Not able", + "▁in ability", + "再次 提出", + "▁requ esting", + "▁request ing", + "▁m oll", + "▁mo ll", + "▁mol l", + "耐 用", + "▁je ans", + "反 驳", + "IF T", + "I FT", + "id em", + "ide m", + "i dem", + "联 保", + "▁Comp ute", + "▁Comput e", + "▁ Compute", + "▁ 静", + "▁m um", + "▁mu m", + "▁ 服务", + "▁P ete", + "▁Pet e", + "▁Pe te", + "▁met ropolitan", + "IT ION", + "▁T iger", + "▁Ti ger", + "▁Tig er", + "target s", + "tar gets", + "▁S event", + "▁Se vent", + "▁Seven t", + "▁Sev ent", + "主 打", + "BI N", + "B IN", + "▁function ally", + "▁functional ly", + "fr a", + "f ra", + "获 荣誉", + "▁D ict", + "▁Di ct", + "▁ Dict", + "▁S acr", + "▁Sa cr", + "▁Sac r", + "▁S oci", + "▁So ci", + "▁Soc i", + "▁Pos itive", + "▁ Positive", + "工 贸", + "▁] ,", + "▁ ],", + "完成 的", + "完 成的", + "和 使用", + "oc he", + "och e", + "o che", + "▁c AMP", + "十二 条之规定", + "十二条 之规定", + "▁P rec", + "▁Pr ec", + "▁Pre c", + "▁penal ties", + "经营 活动", + "▁t enth", + "▁te nth", + "▁ten th", + "▁tent h", + "▁f ungal", + "▁fun gal", + "▁fung al", + "▁under gone", + "▁undergo ne", + "Ma g", + "M ag", + "▁ 获取", + "奠定 了", + "奠 定了", + "▁he par", + "肝 炎", + "zh i", + "z hi", + "▁acid ic", + "il iar", + "ili ar", + "ilia r", + "Compar ison", + "inherit doc", + "交 际", + "▁is omorphism", + "▁K om", + "▁Ko m", + "▁Se bast", + "来 电", + "▁S hir", + "▁Sh ir", + "▁Shi r", + "▁micro M", + "于本判决生效后 十日内", + "v n", + "万 达", + "胸 部", + "pub lisher", + "publish er", + "'] ['", + "'][ '", + "' ]['", + "▁t ilt", + "▁til t", + "▁ti lt", + "View s", + "Vi ews", + "▁P ine", + "▁Pi ne", + "▁Pin e", + "te nant", + "ten ant", + "t enant", + "▁B ring", + "▁Br ing", + "▁Bri ng", + "▁s olic", + "▁so lic", + "▁sol ic", + "▁Four th", + "▁Public ations", + "▁Publication s", + "▁G and", + "▁Ga nd", + "▁Gan d", + "▁recycl ed", + "上 天", + "美 白", + "▁设施 与服务", + "开 本", + "▁h il", + "▁hi l", + "▁fem oral", + "多 层", + "不明 确", + "不 明确", + "▁exc use", + "com poser", + "comp oser", + "compose r", + "Function s", + "▁pol ygon", + "▁poly gon", + "▁polyg on", + "▁Azerbai jan", + "平台 上", + "平 台上", + "二〇一六年 十一月", + "二〇一六年十一 月", + "二〇一六年十 一月", + "和解题 过程", + "和 解题过程", + "原 数", + "实 证", + "board ing", + "bo arding", + "主要 从事", + "comp act", + "▁I ng", + "▁In g", + "▁ Ing", + "▁S ão", + "▁dis established", + "▁disestablish ed", + "自 卑", + "让 您", + "不 死", + ":: $", + ": :$", + "教育 厅", + "▁T ap", + "▁Ta p", + "▁ Tap", + "▁Fa ith", + "担保 有限公司", + "▁law makers", + "买 个", + "以 至于", + "Mb ps", + "M bps", + "岁 时", + "燃 油", + "pi e", + "p ie", + "▁M ull", + "▁Mu ll", + "▁Mul l", + "▁n oon", + "▁no on", + "▁ noon", + "▁stabil ization", + "▁stab ilization", + "▁L amb", + "▁La mb", + "▁Lam b", + "美 联", + "ns p", + "n sp", + "AB CD", + "ABC D", + "▁decor ating", + "nA sk", + "nAs k", + "n Ask", + "ver ting", + "vert ing", + "▁Princ eton", + "▁Prince ton", + "▁Pal mer", + "▁Palm er", + "你做出 选择的依据", + "▁Mark down", + "▁ Markdown", + "▁Stock holm", + "你做出选择的依据 和分析", + "稳 步", + "两 被告", + "Vis itor", + "Visit or", + "C ategories", + "N M", + "严 禁", + "gc d", + "g cd", + "L ENGTH", + "无 尽", + "▁C X", + "▁ CX", + "此外 请给出", + "▁n icht", + "▁nic ht", + "▁ni cht", + "▁St uart", + "▁survey ed", + "很 长", + "肺 癌", + "详 见", + "一对 一", + "▁iter ative", + "▁neut r", + "风 的", + "▁\" :", + "▁ \":", + "▁sp ike", + "▁sol ub", + "广东省 广州市", + "第一百一十九 条", + "第一百一 十九条", + "nDisc ography", + "帐 户", + "天 文", + "Pol y", + "Po ly", + "P oly", + "每个 客房", + "▁ERR OR", + "▁ ERROR", + "▁G overn", + "▁Go vern", + "▁Gover n", + "▁Gov ern", + "宏 伟", + "▁dimin ished", + "Q A", + "单 车", + "AI DS", + "A IDS", + "per ed", + "pe red", + "p ered", + "尔多 斯", + "tr acks", + "tra cks", + "track s", + "貌 似", + "an chor", + "anc hor", + "anch or", + "(\" ,", + "( \",", + "就不 要", + "就 不要", + "no p", + "n op", + "ib ling", + "ibli ng", + "ibl ing", + "i bling", + "▁ind ucing", + "▁indu cing", + "加 州", + "农民 收入", + "for est", + "fore st", + "fo rest", + "yl abel", + "yla bel", + "y label", + "▁VAL UES", + "% \"", + "▁ 武", + "(' #", + "gr pc", + "g rpc", + "过程 的", + "申请 再审", + "中国科学院 成立", + "ford shire", + "av ailability", + "▁C SF", + "▁CS F", + "▁ CSF", + "并给出 相应的", + "封 装", + "我 从", + "顺 德", + "▁bal lot", + "▁ball ot", + "▁E g", + "et heus", + "eth eus", + "ethe us", + "▁dam aging", + "▁qu arters", + "▁quarter s", + "▁quart ers", + "▁ quarters", + "浴 缸", + "陈 列", + "AC S", + "A CS", + "超过 了", + "超 过了", + "▁draft ed", + "▁print able", + "▁pri ntable", + "优 异", + "转 会", + "▁fac ilitating", + "▁facilit ating", + "毒 性", + "说不 定", + "说 不定", + "▁st ent", + "▁ste nt", + "前 两", + "四 级", + "nm od", + "n mod", + "四 方", + "沉 浸", + "nS E", + "n SE", + "漂亮 的", + "漂 亮的", + "▁neph ro", + "组 装", + "▁play offs", + "▁playoff s", + "N V", + "便 携", + "滑 雪", + "给 的", + "te c", + "t ec", + "▁Trad itional", + "lock ed", + "我 希望", + "身边 的", + "身 边的", + "W B", + "发现 的", + "每个客房 都配有", + "com pleted", + "comp leted", + "compl eted", + "complete d", + "as tery", + "ast ery", + "aster y", + "aste ry", + "▁graph ical", + "▁graphic al", + "瀑 布", + "是 自己", + "▁con duction", + "▁conduct ion", + "▁cond uction", + "锐 角", + "open hagen", + "▁Admin istrative", + "▁Administr ative", + "并 用", + "▁v a", + "▁ va", + "nd is", + "ndi s", + "n dis", + "其他 可供执行财产", + "违 纪", + "ha o", + "h ao", + "Da rk", + "Dar k", + "D ark", + "资本 主义", + "va c", + "v ac", + "ri ves", + "riv es", + "rive s", + "r ives", + "色 调", + "▁even ly", + "这篇 日志", + "{ `", + "海 尔", + "高 雄", + "长方 体", + "长方 体的", + "长方体 的", + "Col ors", + "Color s", + "▁green house", + "AR C", + "A RC", + "▁syst olic", + "冷 漠", + "数的 和", + "数 的和", + "▁E volution", + "▁Ev olution", + "▁private ly", + "▁priv ately", + "▁question naires", + "▁questionnaire s", + "清 晨", + "在 日本", + "件 的", + "由 来", + "Iss ue", + "▁( /", + "▁ (/", + "可以 向本院申请复议一次", + "▁terr itories", + "▁territ ories", + "AM D", + "A MD", + "华 中", + "算 了", + "鱼 类", + "▁D oug", + "▁Do ug", + "▁Dou g", + "患 病", + "\"] ,\"", + "\"], \"", + "\" ],\"", + "Be havior", + "交 汇", + "只 见", + "▁S ang", + "▁San g", + "▁Sa ng", + "▁ju venile", + "全 自动", + "主要 作品", + "▁benef ici", + "TH ON", + "▁Y oga", + "▁Yo ga", + "Sc hedule", + "S chedule", + "▁Am azing", + "水 上", + "▁W ag", + "▁Wa g", + "▁there after", + "▁sh aping", + "▁sha ping", + "oglob ulin", + "放 假", + "现 货", + "畅 通", + "比 喻", + "相 传", + "() ))", + "()) )", + "( )))", + "▁re mission", + "▁rem ission", + "面临 的", + "ps on", + "p son", + "供 热", + "制 裁", + "Pre vious", + "vers ible", + "手 感", + "▁s tro", + "▁st ro", + "▁str o", + "▁B undle", + "▁Bund le", + "▁ Bundle", + "▁P ossible", + "▁Poss ible", + "我 公司", + "oplas m", + "opl asm", + "▁H indi", + "▁Hi ndi", + "▁Hind i", + "社会 保障", + "人民 出版社", + "▁le agues", + "▁league s", + "up us", + "u pus", + "经济 社会发展", + "经济社会 发展", + "▁Ins ert", + "▁ Insert", + "万元 的", + "万 元的", + "ec on", + "eco n", + "e con", + "li te", + "lit e", + "l ite", + "▁be ads", + "▁bead s", + "▁bo tan", + "▁bot an", + "▁m ines", + "▁min es", + "▁mine s", + "▁mi nes", + "g allery", + "▁decor ations", + "▁decoration s", + "| $", + "国 立", + "美 景", + "营 收", + "吸引 力", + "吸 引力", + "is miss", + "ism iss", + "▁Re uters", + "▁ Reuters", + "Ho l", + "H ol", + "[] )", + "[ ])", + "tim ately", + "t imately", + "▁collabor ations", + "▁collaboration s", + "由上海市 人民政府", + "ancel lor", + "ancell or", + "西 游", + "他们还 推荐了", + "这篇日志 的人", + "推荐过 这篇日志的人", + "宿 迁", + "▁V PN", + "▁VP N", + "▁ VPN", + "素质 教育", + "ar ming", + "arm ing", + "▁conf irms", + "▁confirm s", + "鄂 尔多斯", + "▁pol yp", + "▁poly p", + "▁Pro ceedings", + "▁sand wich", + "▁sandw ich", + "原 生", + "气 势", + "高 消费", + "▁T itan", + "▁Ti tan", + "▁Tit an", + "▁Leban on", + "岁以下的儿童 在使用现有的床铺", + "▁ 있", + "教 你", + "比 值", + "▁expend iture", + "格 林", + "生 姜", + "▁输入 样例", + "▁ 输入样例", + "如 意", + "at ta", + "att a", + "LEV EL", + "ophil ic", + "▁F oster", + "▁Fo ster", + "Em ployee", + "脖 子", + "追 索", + "▁n ond", + "▁no nd", + "▁non d", + "att achment", + "attach ment", + "第二百六十二条第二款 之规定", + "自 豪", + "nThe ir", + "▁CLA IM", + "▁D ynam", + "▁Dy nam", + "▁refriger ator", + "家 伙", + "▁g lu", + "▁gl u", + "▁Commun ist", + "话 语", + "监狱 提出", + "sa les", + "sal es", + "sale s", + "s ales", + "依法 向被执行人", + "g d", + "× \\", + "寓 意", + "▁g ymn", + "▁gym n", + "▁gy mn", + "湘 潭", + "gu y", + "g uy", + "第六 十四", + "模型 的", + "模 型的", + "st re", + "str e", + "s tre", + "▁Ad vert", + "▁Adv ert", + "▁Mont gomery", + "▁T anz", + "▁Ta nz", + "▁Tan z", + "▁den oted", + "▁denote d", + "gr a", + "g ra", + "ac ry", + "acr y", + "och rom", + "o chrom", + "是 根据", + "}} }{", + "}}} {", + "} }}{", + "▁M ead", + "▁Me ad", + "um bled", + "umb led", + "umble d", + "第一 位", + "第 一位", + "du cers", + "duc ers", + "ducer s", + "年经教育部 正式批准", + "您 好", + "村 的", + "申 诉", + "▁t odd", + "▁to dd", + "▁拉丁 学名", + "一般 在", + "▁dis comfort", + "粘 贴", + "ch ars", + "char s", + "cha rs", + "▁e ditions", + "▁ed itions", + "▁edit ions", + "▁edition s", + "名 学生", + "▁che apest", + "▁cheap est", + "华 丽", + "喝 水", + "认定 的", + "认 定的", + "nJ ul", + "n Jul", + "▁text ures", + "▁texture s", + "▁tex tures", + "▁dend ritic", + "合作 的", + "合 作的", + "ad al", + "ada l", + "a dal", + "MET HO", + "M ETHO", + "▁uter ine", + "▁end oscopic", + "▁in activation", + "对 立", + "▁W S", + "▁ WS", + "re cv", + "rec v", + "▁s ang", + "▁sa ng", + "▁san g", + "oc ratic", + "ocr atic", + "Auto Field", + "祝 贺", + "疗 程", + "od ia", + "odi a", + "▁D aw", + "▁Da w", + "Requ ire", + "Re quire", + "ang ement", + "ange ment", + "#### ########", + "######## ####", + "###### ######", + "剧 烈", + "分布 式", + "▁X XX", + "▁XX X", + "▁ XXX", + "▁gl uten", + "▁glut en", + "▁glu ten", + "▁different iable", + "周 五", + "日 凌晨", + "}) \\\\)", + "})\\\\ )", + "} )\\\\)", + "主办 的", + "主 办的", + "▁Re spons", + "▁Res pons", + "▁Respon s", + "▁horm onal", + "▁key boards", + "▁keyboard s", + "完 工", + "组 和", + "un can", + "unc an", + "u ncan", + "▁Numer ical", + "▁cut aneous", + "▁ cutaneous", + "因为 它", + "▁wealth y", + "aw ks", + "awk s", + "an tes", + "ant es", + "ante s", + "▁输出 样例", + "▁ 输出样例", + "weight ed", + "▁mid night", + "▁ 等", + "第十 二", + "第 十二", + "Dep th", + "▁un incorporated", + "▁terror ism", + "o S", + "金 沙", + "di p", + "d ip", + "国内 的", + "国 内的", + "▁背景 设定", + "rad iol", + "radio l", + "▁counter part", + "▁psych osocial", + "▁psycho social", + "加入 了", + "加 入了", + "▁G or", + "▁Go r", + "瓶 颈", + "贵阳 市", + "贵 阳市", + "al ey", + "ale y", + "a ley", + "▁B ras", + "▁Br as", + "▁Bra s", + "▁her oes", + "▁hero es", + "▁constit utes", + "▁constitu tes", + "▁constitute s", + "BO OL", + "Li ter", + "Lite r", + "L iter", + "▁quant ification", + "合 力", + "更 强", + "正 版", + "AG ES", + "AGE S", + "义务 教育", + "▁sc aled", + "▁scale d", + "▁scal ed", + "▁ scaled", + "▁wond ered", + "▁wonder ed", + "▁cyt otoxicity", + "▁cytotox icity", + "▁cyto toxicity", + "▁cytotoxic ity", + "年 任", + "居 委会", + "▁Med icaid", + "▁Medic aid", + "改 成", + "^^ ^^", + "被执行人 未按", + "为 他", + "ent ric", + "▁A cid", + "▁Ac id", + "▁e ster", + "▁est er", + "▁es ter", + "▁este r", + "▁ ester", + "▁mi mic", + "▁mim ic", + "pr us", + "p rus", + "▁dem ocratic", + "▁democr atic", + "的一 致", + "的 一致", + "ko k", + "k ok", + "▁a te", + "▁at e", + "▁ ate", + "给出 解题", + "rid ges", + "ridge s", + "▁Scot ia", + "▁Nav igation", + "▁ Navigation", + "意 向", + "一般 都是", + "一般都 是", + "pr essive", + "press ive", + "p ressive", + "人力资源 和社会保障", + "▁con ve", + "▁conv e", + "▁Tour ism", + "Request Mapping", + "▁plan ting", + "▁plant ing", + "的 因素", + "湖北省 武汉市", + "▁sc andal", + "▁scan dal", + "潮 湿", + "me g", + "m eg", + "曹 操", + "Work s", + "о б", + "▁d ella", + "▁de lla", + "▁del la", + "▁dell a", + "sa le", + "sal e", + "s ale", + "五 星", + "av ar", + "ava r", + "a var", + "归还 原告", + "▁\" \")\\", + "▁\"\" )\\", + "▁\"\") \\", + "▁ \"\")\\", + "油 漆", + "医 务", + "搜 集", + "时 装", + "nEx amples", + "nExample s", + "n Examples", + "洗 手", + ">: \\\\(", + "> :\\\\(", + "aff eine", + "affe ine", + "与中国科学院 共同举办", + "落 户", + "做 不到", + "de mand", + "dem and", + "nst art", + "n start", + "桂 花", + "K ernel", + "甲 方", + "▁P b", + "▁ Pb", + "员工 的", + "]) :\\", + "]): \\", + "] ):\\", + "这样 才能", + "sc heduler", + "schedule r", + "小 子", + "自 制", + "nL og", + "nLo g", + "n Log", + "云中 书城", + "Alter Field", + "几 位", + "电 厂", + "一起 去", + "Ke ep", + "K eep", + "▁ex ogenous", + "数据 分析", + "▁c ough", + "▁co ugh", + "▁cou gh", + "us cular", + "usc ular", + "▁minim izing", + "▁Ind ependence", + "est ock", + "esto ck", + "e stock", + "▁wh isk", + "▁whis k", + "back ends", + "backend s", + "来 得", + "Cl aim", + "ring s", + "rin gs", + "r ings", + "▁G ent", + "▁Ge nt", + "▁Gen t", + "▁S wan", + "▁Sw an", + "▁Re ady", + "▁Read y", + "▁ Ready", + "▁im proper", + "▁impro per", + "▁s elenium", + "▁ selenium", + "第二百 三", + "ning s", + "nin gs", + "n ings", + "轻 伤", + "To r", + "T or", + "i Pad", + "for get", + "forge t", + "f orget", + "▁l adder", + "▁s ticks", + "▁st icks", + "▁stick s", + "十 位", + "迭 代", + "▁t ones", + "▁to nes", + "▁ton es", + "▁tone s", + "▁b logging", + "▁blog ging", + "四舍 五入", + "化 石", + "泰 山", + "质量 和", + "质 量和", + "Mus t", + "Mu st", + "M ust", + "stit ial", + "均 未", + "Ru b", + "R ub", + "比特 币", + "▁D ow", + "▁Do w", + "pass ed", + "pas sed", + "▁Bud get", + "▁con comit", + "es se", + "ess e", + "▁tr ump", + "社会 责任", + "先 算", + "递 归", + "中含 有", + "中 含有", + "中 兴", + "▁D ress", + "▁Dr ess", + "▁medi ators", + "▁mediator s", + "在 她", + "众 生", + "cy te", + "cyt e", + "c yte", + "进行了 调查", + "▁inn ocent", + "▁innoc ent", + "制 动", + "旅 程", + "Fl ex", + "F lex", + "oc cup", + "occ up", + "nSe ason", + "n Season", + "▁emb ark", + "▁adhes ive", + "▁supply ing", + "▁suppl ying", + "眼 球", + "安全 感", + "▁com plain", + "▁comp lain", + "▁compl ain", + "以 期", + "每个 人都", + "每个人 都", + "男 方", + "污水 处理", + "污 水处理", + "要求 离婚", + "看 不", + "现在 是", + "预订 取消", + "▁over expression", + "▁h obby", + "▁hob by", + "▁sw ift", + "▁ swift", + "▁In stant", + "▁Inst ant", + "▁ Instant", + "预付 政策", + ":\\ \\\\\\", + ":\\\\ \\\\", + ": \\\\\\\\", + "nIm age", + "n Image", + "▁m oles", + "▁mole s", + "▁mo les", + "▁mol es", + "的 可", + "ac ey", + "ace y", + "▁ к", + "▁ref ere", + "▁refer e", + "▁M agnetic", + "▁Mag netic", + "▁Magn etic", + "▁Magnet ic", + "届 时", + "OD Y", + "O DY", + "gr ass", + "gra ss", + "ind ust", + "im plicit", + "impl icit", + "▁spec ifies", + "▁ γ", + "开 朗", + "这是 我", + "这 是我", + "Assert ions", + "西 洋", + "Integr ation", + "▁adequ ately", + "▁adequate ly", + "个 大", + "税 率", + "in ston", + "ins ton", + "inst on", + "▁interfer e", + "▁interf ere", + "▁下 载", + "▁ 下载", + "lo dash", + "lod ash", + "另外 一个", + "易 懂", + "▁Eval uate", + "▁ Evaluate", + "▁dehydro genase", + "开 盘", + "请 参阅", + "al ia", + "ali a", + "a lia", + "▁In ventory", + "▁ Inventory", + "▁diss ertation", + "三 门", + "两 面", + "严 厉", + "全球 化", + "▁B ach", + "▁Ba ch", + "▁Bac h", + "yc in", + "y cin", + "Qu ick", + "笔记本 电脑", + "Ex pect", + "Exp ect", + "▁H aven", + "▁Ha ven", + "▁Have n", + "▁Hav en", + "▁illness es", + "▁asympt omatic", + "头 条", + "看 成", + "or de", + "ord e", + "东 县", + "▁ide ally", + "▁ideal ly", + "他 不", + "▁exc eeds", + "▁exceed s", + "延 安", + "In ner", + "re ports", + "rep orts", + "report s", + "项目 建设", + "▁U nits", + "▁Un its", + "▁Unit s", + "▁Uni ts", + "▁ Units", + "read line", + "▁prom otions", + "▁promot ions", + "▁promotion s", + "以后 的", + "以 后的", + "nR et", + "nRe t", + "n Ret", + "石家庄 市", + "▁show c", + "▁poly mers", + "▁polymer s", + "▁polym ers", + "听 过", + "▁i e", + "▁ ie", + "▁mamm ary", + "z d", + "室 的", + "捞 出", + "▁revolution ary", + "各种 各样的", + "AR G", + "A RG", + "\\' },\\", + "\\'} ,\\", + "\\ '},\\", + "photo s", + "phot os", + "LI BR", + "LIB R", + "om bie", + "omb ie", + "Tr acker", + "Track er", + "Dispatch er", + "} )", + ";< /", + "; ", + "\\\\\" >", + "ec al", + "eca l", + "e cal", + "g f", + "山 河", + "电 解", + "▁Y e", + "的 安装", + "类似 的", + "类 似的", + "La ng", + "L ang", + "VELO PM", + "▁phen otypic", + "管 教", + "▁s ie", + "▁si e", + "▁ 范", + "▁l av", + "▁la v", + "▁ lav", + "▁B ears", + "▁Be ars", + "▁Bear s", + "▁Bea rs", + "提起 行政诉讼", + "Oct ober", + "▁p x", + "▁ px", + "污染 物", + "▁s lim", + "▁sl im", + "▁histor ians", + "▁historian s", + "小 事", + "ru g", + "r ug", + "▁T D", + "▁ TD", + "el in", + "eli n", + "e lin", + "▁P ir", + "▁Pi r", + "▁H ein", + "▁He in", + "比较 高", + "比 较高", + "端 点", + "正方 体", + "被 申请执行人", + "求 值", + "阶 层", + "ie nte", + "ient e", + "ien te", + "i ente", + "on ne", + "onn e", + "变 态", + "帝 王", + "真 菌", + "ft p", + "f tp", + "ns td", + "nst d", + "n std", + "▁F irm", + "▁Fi rm", + "OUT PUT", + "▁l itter", + "▁lit ter", + "▁pass port", + "▁pas sport", + "▁ passport", + "北京 时间", + "final ly", + "fin ally", + "f inally", + "水 产", + "原 裁定", + "ic idal", + "ici dal", + "▁gu ards", + "▁guard s", + "lo o", + "l oo", + "in ventory", + "▁Monitor ing", + "预 备", + "▁R ams", + "▁Ram s", + "▁Ra ms", + "以下 有期徒刑", + "▁Territ ory", + "▁Terr itory", + "年 了", + "aque s", + "aq ues", + "aqu es", + "a ques", + "条 形", + "为 广大", + "表面 的", + "表 面的", + "造 就", + "▁e rupt", + "▁er upt", + "无 处", + "洁 净", + "te t", + "t et", + "▁be side", + "▁bes ide", + "▁Ap proved", + "▁Appro ved", + "R B", + "告知 书", + "▁Wy oming", + "str action", + "stract ion", + "stra ction", + "s traction", + "地 利", + "证 号", + "map sto", + "maps to", + "rand int", + "头 疼", + "CT V", + "C TV", + "Instance Of", + "守 法", + "寄 生", + "nM et", + "nMe t", + "n Met", + "计分 考核", + "▁pick up", + "不 一", + "出 轨", + "▁in voice", + "▁inv oice", + "▁ invoice", + "nB ur", + "n Bur", + "▁pre re", + "▁pr ere", + "anc ellation", + "ancel lation", + "ancell ation", + "上 手", + "▁C and", + "▁Can d", + "▁Ca nd", + "▁copy ing", + "▁cop ying", + "▁Av iation", + "▁Press ure", + "▁c her", + "▁ch er", + "▁che r", + "▁ cher", + "为 民", + "pa c", + "p ac", + "▁e u", + "▁ eu", + "开始 执行", + "▁C ork", + "▁Co rk", + "▁Cor k", + "tr acker", + "track er", + "▁irre ducible", + "效力 于", + "▁R ib", + "▁Ri b", + "value Of", + "data sets", + "dat asets", + "dataset s", + "datas ets", + "▁irr igation", + "背 叛", + "da s", + "d as", + "▁E B", + "▁ EB", + "旗下 的", + "旗 下的", + "降 临", + "该公司 员工", + "该 公司员工", + "上 半", + "的女 儿", + "的 女儿", + "好 玩", + "退 款", + "泉州 市", + "泉 州市", + "进入 到", + "布 尔", + "▁P ul", + "▁Pu l", + "▁B ryan", + "▁Br yan", + "▁Bry an", + "ort heastern", + "orth eastern", + "ortheast ern", + "he v", + "h ev", + "他们 是", + "▁ 功能", + "单调 递减", + "▁S hen", + "▁Sh en", + "▁She n", + "更重要 的是", + "更 重要的是", + "▁L ocated", + "▁Loc ated", + "▁im prison", + "万 家", + "▁st rap", + "▁str ap", + "▁ strap", + "又 一", + "发 烧", + "然后 把", + "专业 技术", + "景 色", + "课 时", + "▁con trace", + "▁cont race", + "▁contr ace", + "▁ab olished", + "三 项", + "丰 收", + "富 汗", + "ia bly", + "iab ly", + "i ably", + "AR CHAR", + "ARCH AR", + "\" [", + "翅 膀", + "pkg s", + "pk gs", + "中华人民共和国行政 强制法", + "背 光", + "上海 科技大学", + "▁Ad venture", + "▁Advent ure", + "共 鸣", + "▁Pl aza", + "▁Am ateur", + "▁prob able", + "严格 的", + "严 格的", + "li on", + "lio n", + "l ion", + "▁Orth odox", + "▁Measure ment", + "▁ Measurement", + "▁celebr ities", + "▁cele brities", + "▁Ass ume", + "▁stret ching", + "▁stretch ing", + "▁p ackets", + "▁pack ets", + "▁packet s", + "Bi n", + "B in", + "▁At tempt", + "▁Att empt", + "▁ Attempt", + "▁Not ification", + "▁ Notification", + "尽 力", + "着 他", + "▁L oop", + "▁Lo op", + "▁ Loop", + "▁Over view", + "▁ Overview", + "▁commun icating", + "▁communic ating", + "▁C av", + "▁Ca v", + "▁pol ype", + "▁poly pe", + "▁polyp e", + "os o", + "o so", + "新 西兰", + "re comm", + "rec omm", + "Bal ance", + "▁ 以", + "彼 得", + "大多数 人", + "▁C ritical", + "▁Crit ical", + "复 古", + "征 求", + "了下 来", + "了 下来", + "需要 在", + "需 要在", + "▁H od", + "▁Ho d", + "▁conc ise", + "等 财产", + "▁t ray", + "▁tr ay", + "▁tra y", + "With out", + "sup erv", + "super v", + "▁cul min", + "か ら", + "统计 局", + "an ca", + "anc a", + "美术 学院", + "▁inv oke", + "▁ invoke", + "▁dr illing", + "▁drill ing", + "就算 是", + "就 算是", + "PA RT", + "PAR T", + "P ART", + "副 秘书长", + "装 有", + "▁b aked", + "▁bake d", + "▁bak ed", + "▁l aying", + "▁la ying", + "▁lay ing", + "▁ter race", + "▁terr ace", + "▁recomm ends", + "▁recommend s", + "ans ible", + "ansi ble", + "▁roof ing", + "也 曾", + "恒 大", + "这首 歌", + "这 首歌", + "▁S ox", + "▁So x", + "ph rase", + "▁ar thro", + "▁arth ro", + "▁sp leen", + "▁spl een", + "▁acet ate", + "▁adv ancement", + "▁advance ment", + "Le arning", + "Learn ing", + "L earning", + "▁vit amins", + "▁vitamin s", + "▁therap ist", + "哪 家", + "商 量", + "ar ettes", + "are ttes", + "aret tes", + "arette s", + "cept ors", + "ceptor s", + "H a", + "红 枣", + "author ization", + "▁P OS", + "▁PO S", + "▁ POS", + "▁nec kl", + "▁neck l", + "▁eigen value", + "南 开", + "出色 的", + "出 色的", + "▁in def", + "▁i ndef", + "▁ind ef", + "则 有", + "nA D", + "n AD", + "▁m isc", + "▁mis c", + "▁mi sc", + "▁ misc", + "▁Z imbabwe", + "▁block ade", + "励 志", + "核 准", + "in voice", + "inv oice", + "▁plate lets", + "▁platelet s", + "杨某 某", + "杨 某某", + "ance ment", + "anc ement", + "▁ 陆", + "导 出", + "饰 品", + "▁Pr ague", + "▁Pra gue", + "▁immun odef", + "▁immuno def", + "▁di vergence", + "▁diver gence", + "ø r", + "车 子", + "RO W", + "R OW", + "▁V C", + "▁ VC", + "一次 方程", + "三角 函数", + "▁M issing", + "▁Miss ing", + "▁Mis sing", + "▁ Missing", + "▁epidem iology", + "毛 巾", + "▁lip oprotein", + "▁Design s", + "▁Oper ator", + "▁Op erator", + "▁Opera tor", + "▁ Operator", + "▁tre asure", + "▁treas ure", + "ograph ically", + "ographic ally", + "ographical ly", + "编 曲", + "ME S", + "M ES", + "兼 任", + "aw t", + "a wt", + "申请 书", + "进行 比较", + "▁A mer", + "▁Am er", + "并不 会", + "并 不会", + "▁B omb", + "▁Bo mb", + "▁Bom b", + "▁cr isp", + "▁cris p", + "阳市 中级人民法院", + "阳 市中级人民法院", + "早 点", + "\"} }", + "\" }}", + "▁a nnot", + "▁an not", + "▁ann ot", + "▁ annot", + "▁cl oses", + "▁clos es", + "▁close s", + "fa x", + "f ax", + "▁incons istent", + "履行 能力", + "第五 十三条", + "第五十 三条", + "ast olic", + "能 耗", + "年龄 的", + "了 呢", + "宽 松", + "di c", + "d ic", + "sol ve", + "s olve", + "▁discover ing", + "山 上", + "鼓 楼", + "det ect", + "二〇一六年 十二月", + "二〇一六年十二 月", + "二〇一六年十 二月", + "在那 里", + "在 那里", + "Sh ip", + "S hip", + "te lif", + "tel if", + "t elif", + "运 会", + "ne e", + "n ee", + "▁G PL", + "▁GP L", + "▁ GPL", + "Tw itter", + "T witter", + "E W", + "首 位", + "基本 信息", + "F oo", + "▁n urt", + "▁nur t", + "▁nu rt", + "▁ur ge", + "▁urg e", + "▁wor ries", + "快 餐", + "谈 到", + "Log o", + "Lo go", + "L ogo", + "is san", + "iss an", + "issa n", + "▁robust ness", + "im us", + "i mus", + "▁t ribe", + "▁tr ibe", + "▁tri be", + "▁trib e", + "▁nomin ee", + "▁nomine e", + "属于 自己的", + "▁l ending", + "▁len ding", + "▁lend ing", + "nO per", + "n Oper", + "符合法律规定 的", + "▁List Node", + "▁ ListNode", + "转 入", + "ud i", + "u di", + "IN PUT", + "▁R uth", + "▁Ru th", + "▁Rut h", + "海 滩", + "pm od", + "p mod", + "把自己 的", + "把 自己的", + "中 东", + "PL ICATION", + "必 将", + "站 的", + "il lar", + "ill ar", + "illa r", + "▁Graph ics", + "▁Graphic s", + "▁ Graphics", + "置 于", + "议 会", + "▁Jen kins", + "plic ative", + "▁ster oids", + "▁steroid s", + "TO R", + "T OR", + "ja y", + "j ay", + "绝 句", + "中国科学院 研究生院", + "环 比", + "▁Jul ie", + "▁Ju lie", + "▁ch ord", + "▁cho rd", + "▁chor d", + "▁phosph atase", + "▁phosphat ase", + "▁G mina", + "For ward", + "凭 什么", + "EN TER", + "ENT ER", + "tf unction", + "t function", + "RE AM", + "al ion", + "ali on", + "a lion", + "ot ent", + "ote nt", + "oten t", + "他 自己", + "ox in", + "o xin", + "▁r aid", + "▁ra id", + "归 属", + "钱 包", + "as sis", + "ass is", + "表 白", + "代表 作", + "om ycin", + "omy cin", + "diction ary", + "d ictionary", + "本题 的关键", + "▁b ride", + "▁br ide", + "▁brid e", + "▁g lands", + "▁gl ands", + "▁gland s", + "最高人民法院关于 审理", + "我 发现", + "▁Product ions", + "▁Production s", + "x z", + "▁O nInit", + "▁On Init", + "▁ OnInit", + "▁re solutions", + "▁res olutions", + "▁resolution s", + "再 现", + "▁你 的", + "▁ 你的", + "▁ve ins", + "▁vein s", + "▁kin ases", + "▁kinase s", + "▁h ooks", + "▁hook s", + "▁ho oks", + "▁ hooks", + "▁al lies", + "▁all ies", + "金 银", + "生产 力", + "▁r ug", + "▁ru g", + "▁ rug", + "恰 恰", + "有 能力", + "▁W inn", + "▁Win n", + "▁Wi nn", + "▁G ly", + "▁Gl y", + "▁ Gly", + "see ing", + ")_ {", + ") _{", + "sh i", + "s hi", + "id in", + "idi n", + "i din", + "▁b ending", + "▁ben ding", + "▁bend ing", + "▁al veolar", + "进 士", + "}) ^", + "} )^", + "en ry", + "▁Ad just", + "jo ur", + "j our", + "▁bright ness", + "▁question ed", + "▁quest ioned", + "| >", + "标志 着", + "\":\" \",\"", + "▁ret ire", + "显 现", + "semb ling", + "sem bling", + "sembl ing", + "▁_ \\", + "▁ _\\", + "使 之", + "烟 花", + "了一 份", + "了 一份", + "胰岛 素", + "▁Jeff rey", + "▁is omorphic", + "▁ 七", + "徐 某", + "红 尘", + "绽 放", + "▁p ant", + "▁pan t", + "▁pa nt", + "▁rad icals", + "▁radical s", + "▁South west", + "Serial ization", + "这 本", + "V el", + "▁cal ibr", + "pro blems", + "problem s", + "第三 个", + "第 三个", + "▁L eo", + "▁Le o", + "精 通", + "ov ic", + "ovi c", + "o vic", + "▁D ipl", + "▁Di pl", + "▁Dip l", + "ACC ESS", + "A CCESS", + "▁deal ers", + "▁dealer s", + "哺 乳", + "阿 富汗", + "min or", + "mi nor", + "▁int estine", + "▁form ations", + "▁format ions", + "▁formation s", + "▁ formations", + "技 法", + "白 发", + "是怎样 的", + "是 怎样的", + "App ly", + "Ap ply", + "us able", + "usa ble", + "学 长", + "— \\", + "红 柿", + "的可 能", + "的 可能", + "运动 队", + "to ut", + "t out", + "▁T win", + "▁Tw in", + "▁C ertain", + "▁Cert ain", + "▁Cer tain", + "MI C", + "M IC", + "Bi ll", + "B ill", + "▁n ap", + "▁na p", + "▁ nap", + "▁l asts", + "▁last s", + "▁la sts", + "▁las ts", + "▁web page", + "▁partner ed", + "克 隆", + "拌 匀", + "油 腻", + "GP U", + "G PU", + "nlog ger", + "n logger", + "创新 创业", + "ight house", + "igh thouse", + "ighth ouse", + "哭 了", + "▁l ub", + "▁lu b", + "▁y ii", + "▁ yii", + "抓获 经过", + "ca use", + "c ause", + "▁light ly", + "仅 为", + "▁per for", + "▁perf or", + "▁c ess", + "▁ce ss", + "▁ cess", + "▁C anon", + "▁Can on", + "▁Ca non", + "▁end ors", + "▁ endors", + "▁Invest ig", + "管理 者", + "经营 的", + "两 份", + "父母 的", + "▁end ocrine", + "▁ endocrine", + "年 夜", + "搬 迁", + "F un", + "▁Con tr", + "▁Cont r", + "▁Co ntr", + "国 学", + "▁n ails", + "▁na ils", + "▁nail s", + "▁initial ization", + "$ :", + "GN U", + "G NU", + "nPro perty", + "n Property", + "▁DEAL INGS", + "尾 巴", + "宣告 缓刑", + "▁hor iz", + "▁ho riz", + "问 答", + "Sch ool", + "S chool", + "Sing leton", + "Single ton", + "不 佳", + "壁 纸", + "外 来", + "acet yl", + "C urrency", + "及 照片", + "▁w it", + "▁wi t", + "▁ wit", + "ope nsource", + "open source", + "opens ource", + "应 注意", + "Al ias", + "Ali as", + "▁但 是", + "▁ 但是", + "▁Man it", + "▁Ma nit", + "▁th rive", + "▁thr ive", + "▁pathophys iology", + "星 辰", + "触 犯", + "华盛 顿", + "VELOPM ENT", + "合并 同类项", + "nin put", + "n input", + "油 烟", + "不 限", + "微 型", + "量 大", + "在 面对", + "▁推荐 菜", + "wa t", + "w at", + "短 视频", + "董事 会", + "Hy per", + "Hyp er", + "并 提出", + "av ia", + "avi a", + "a via", + "▁o un", + "▁ou n", + "▁ oun", + "▁e ukary", + "▁agon ists", + "▁agonist s", + "▁stand ings", + "▁standing s", + "殴 打", + "流动 性", + "民事权利 和", + "▁Com pl", + "▁Comp l", + "焦 作", + "老师 们", + "射 手", + "即可 解答", + "班 长", + "科 教", + "酸 奶", + "▁mel ting", + "▁melt ing", + "▁Roman ian", + "▁Rom anian", + "▁Romania n", + "ell ites", + "ellite s", + "elli tes", + "▁gu iding", + "▁guid ing", + "▁gui ding", + "维 尔", + "悬 挂", + "sim ilar", + "s imilar", + "▁traject ories", + "▁unsuccess ful", + "桌 子", + "访 谈", + "因 原告", + "开始 的", + "身份 信息", + "▁st airs", + "▁stair s", + "▁ stairs", + "在这 一", + "在 这一", + "Re pos", + "Rep os", + "Repo s", + "▁compl iant", + "▁imper ative", + "▁impe rative", + "IN SERT", + "INS ERT", + "位 移", + "嘴 巴", + "于 此", + "矿 物", + "太原 市", + "无 视", + "男人 的", + "男 人的", + "▁n at", + "▁na t", + "▁ nat", + "技术 咨询", + "四 海", + "家 务", + "报 销", + "▁W ide", + "▁Wi de", + "▁Wid e", + "▁Sh opping", + "▁Shop ping", + ")] )\\", + ") ])\\", + "aras htra", + "nS O", + "n SO", + "干 涉", + "▁scr ut", + "可以 考虑", + "后 记", + "魔 术", + "av ian", + "avi an", + "avia n", + "a vian", + "中 海", + "黄 昏", + "如果 想", + "▁酒店 星级", + "▁am end", + "▁amen d", + "List Item", + "做到 了", + "做 到了", + "的好 处", + "的 好处", + "er ent", + "ere nt", + "eren t", + "e rent", + "t R", + "用 车", + "re fn", + "ref n", + "运算 法则", + "运算法 则", + "Du ring", + "D uring", + "ot tle", + "ott le", + "o ttle", + "颠 覆", + "ch arts", + "char ts", + "chart s", + "▁Con cert", + "▁Conc ert", + "▁Concer t", + "编 织", + "数量 的", + "数 量的", + "To Props", + "机 能", + "这么 说", + "等 一系列", + "动 能", + "责令 其", + "不得 超过", + "▁Bu ndes", + "▁Bund es", + "▁Bun des", + "ja c", + "j ac", + "ku b", + "k ub", + "此题 主要", + "▁seroton in", + "▁п ро", + "▁t rio", + "▁tr io", + "▁tri o", + "▁Peters burg", + "的 程度", + "▁F em", + "▁Fe m", + "▁nic kel", + "▁nick el", + "ap proved", + "appro ved", + "中 南", + "▁R ails", + "▁Ra ils", + "▁Rail s", + "re marks", + "rem arks", + "remark s", + "▁std err", + "▁ stderr", + "游 玩", + "over view", + "nh e", + "n he", + "▁sh orts", + "▁short s", + "产 出", + "af a", + "a fa", + "nl ike", + "n like", + "▁h urd", + "▁hur d", + "▁hu rd", + "▁ 丹", + "擅 自", + "▁bi polar", + "▁bip olar", + "回 落", + "报 复", + "(\\' <", + "( \\'<", + "常务 委员会", + "▁ob serving", + "▁observ ing", + "▁obs erving", + "▁Dist ributed", + "r w", + "▁属 性", + "▁ 属性", + "的一 本", + "的 一本", + "▁Me chanical", + "▁Mechan ical", + "ie nto", + "ient o", + "ien to", + "i ento", + "Arch ive", + "Arc hive", + "▁s omatic", + "▁so matic", + "▁som atic", + "ub license", + "ublic ense", + "▁con formation", + "▁conform ation", + "▁ 崔", + "ro pic", + "rop ic", + "r opic", + "add itional", + "OR DER", + "ORD ER", + "▁p redis", + "▁pre dis", + "▁pred is", + "支 配", + "FI ELD", + "▁m ais", + "▁ma is", + "▁ne urom", + "▁neuro m", + "▁neur om", + "▁Pot ential", + "▁p orous", + "▁po rous", + "▁por ous", + "气 血", + "fe e", + "f ee", + "/\\ '\\", + "/\\' \\", + "/ \\'\\", + "▁C anal", + "▁Can al", + "▁Ca nal", + "nCom pet", + "nComp et", + "▁up ward", + "▁Brun swick", + "机动车交通事故责任 纠纷一案", + "普 陀", + "▁sh irts", + "▁shirt s", + "▁ shirts", + "反 转", + "省 钱", + "}} _{", + "} }_{", + "威 海", + "▁f lee", + "▁fl ee", + "▁fle e", + "▁lif ted", + "▁lift ed", + "▁low ered", + "▁lower ed", + "part ition", + "萎 缩", + "要 多", + "托 管", + "py pi", + "pyp i", + "告诉 记者", + "其前身为 中国科学院研究生院", + "毛 重", + "Ev en", + "E ven", + "书面 申请", + "▁v entric", + "▁vent ric", + "▁susp icious", + "S y", + "的 请求", + "▁sc affold", + "Kin g", + "Ki ng", + "K ing", + "Menu Item", + "▁Divis ión", + "▁sec urities", + "▁cylind rical", + "]; //", + "] ;//", + "▁It ems", + "▁Item s", + "▁ Items", + "该 书", + "SC s", + "S Cs", + "▁e en", + "▁ een", + "饮 酒", + "▁quant ified", + "▁Inter active", + "从 头", + "团 长", + "ul ae", + "ula e", + "▁b ee", + "▁be e", + "▁ bee", + "In g", + "I ng", + "▁M ED", + "▁ME D", + "▁ MED", + "▁b ored", + "▁bo red", + "▁bore d", + "▁bor ed", + "十二 条第一款", + "十二条 第一款", + "▁b illing", + "▁bill ing", + "▁bil ling", + "▁U T", + "▁ UT", + "不足 以", + "不 足以", + "se ven", + "sev en", + "s even", + "▁St ir", + "se o", + "s eo", + "▁pr ayers", + "▁pra yers", + "▁prayer s", + "▁pray ers", + "数 百", + "ow l", + "o wl", + "ast ore", + "a store", + "洪 水", + "百 花", + "▁rob otic", + "▁robot ic", + "Y I", + "侦 探", + "▁bl ah", + "▁liter al", + "▁lit eral", + "▁ literal", + "两 只", + "▁D b", + "▁ Db", + "ph is", + "phi s", + "p his", + "ain es", + "ai nes", + "aine s", + "a ines", + "三 亚", + "▁` \\", + "▁ `\\", + "▁chrom osomes", + "▁chromos omes", + "▁chromosome s", + "人 次", + "助 攻", + "▁P om", + "▁Po m", + "游 击", + "▁pro jective", + "▁project ive", + "▁proj ective", + "▁To pics", + "▁Top ics", + "▁Topic s", + "住所地 上海市", + "从 容", + "od or", + "odo r", + "o dor", + "▁pos ters", + "▁post ers", + "▁po sters", + "▁poster s", + ")) $", + ") )$", + "F our", + "十 堰", + "生 抽", + "在家 里", + "在 家里", + "af ood", + "a food", + "▁t its", + "▁tit s", + "▁ti ts", + "▁T ickets", + "▁Ticket s", + "▁O A", + "▁ OA", + "nS ch", + "nSc h", + "n Sch", + "▁index ed", + "既 往", + "流 入", + "学生 会", + "▁anomal ies", + "▁inter im", + "面临 着", + "▁Col oring", + "▁Color ing", + "▁we aken", + "▁weak en", + "受 人", + "最 喜欢", + "▁flow ering", + "▁flower ing", + "▁constitu encies", + "stim ulated", + "ha ul", + "h aul", + "以非法 占有", + "▁Pak istani", + "▁Pakistan i", + "▁Tem perature", + "▁ Temperature", + "▁facilit ated", + "▁facilitate d", + "▁E uclidean", + "▁Euclid ean", + "帮我 做", + "帮 我做", + "▁S ul", + "▁Su l", + "▁p oles", + "▁pol es", + "▁po les", + "▁pole s", + "▁pat ron", + "▁pa tron", + "第二百四十 四条", + "▁R GB", + "▁ RGB", + "▁habit ats", + "▁habitat s", + "无 烟", + "co b", + "c ob", + "学 到", + "▁中文 学名", + "▁Pl asma", + "▁Plas ma", + "制 剂", + "日本 人", + "日 本人", + "is tro", + "ist ro", + "istr o", + "ier archy", + "ierarch y", + "常 熟", + "多样 性", + "ad in", + "adi n", + "a din", + "▁S ensor", + "▁Sens or", + "▁ Sensor", + "▁micro grams", + "拉 伸", + "灰 尘", + "实用 性", + "相互 作用", + "▁s ublicense", + "▁sub license", + "是 把", + "▁Ven ice", + "▁Ve nice", + "▁Inter view", + "so f", + "s of", + "高 性能", + "nb ody", + "n body", + "▁good ness", + "医院 的", + "医 院的", + "VER Y", + "VE RY", + "V ERY", + "▁spons orship", + "▁sponsor ship", + "▁sponsors hip", + "▁O z", + "erc ises", + "ercise s", + "▁NON INFRINGEMENT", + "▁L ynn", + "▁Ly nn", + "▁Lyn n", + "▁Art icles", + "▁Article s", + "▁ Articles", + "▁enc ounters", + "▁encounter s", + "急 诊", + "鸿 蒙", + "ug a", + "u ga", + "▁C rew", + "▁Cr ew", + "▁Cre w", + "Observ able", + "河 道", + "代表 的", + "代 表的", + "vir us", + "vi rus", + "v irus", + "▁Ass ert", + "▁ Assert", + "吃 到", + "yd ia", + "T ITLE", + "▁attach ments", + "▁attachment s", + "▁ attachments", + "修 饰", + "抗 战", + "ka t", + "k at", + "at hi", + "ath i", + "a thi", + "蔓 延", + "黎 明", + "Ch unk", + "▁GO OD", + "冻结 被执行人", + "▁k otlin", + "▁ kotlin", + "进 的", + "▁Aut hentication", + "▁Authent ication", + "▁ Authentication", + "▁ 花", + "▁A id", + "杂 质", + "在本 案", + "在 本案", + "▁app rent", + "▁appre nt", + "检 疫", + "非常 高兴", + "非常高 兴", + "): \\\\(", + ") :\\\\(", + "▁aff ine", + "▁af fine", + "nR ichard", + "n Richard", + "重 审", + "]: \\\\(", + "] :\\\\(", + "nv ector", + "n vector", + "▁Integr ated", + "▁sc ared", + "▁scar ed", + "▁scare d", + "▁inv ented", + "▁invent ed", + "▁trans mitter", + "▁transmit ter", + "▁C G", + "▁ CG", + "sol id", + "s olid", + "可以 自收到", + "报告财产 令", + "或 有", + "管 家", + "nP rior", + "nPr ior", + "▁Muh ammad", + "▁file Name", + "▁ fileName", + "find er", + "fin der", + "fi nder", + "f inder", + "说 服", + "▁ON LY", + "▁ ONLY", + "▁java script", + "▁jav ascript", + "▁ javascript", + "▁carbohyd rate", + "宝 鸡", + "条 约", + "▁reg imens", + "▁regime ns", + "▁regimen s", + "▁be verage", + "▁ 香", + "▁ch ond", + "▁cho nd", + "tool tip", + "▁Lie utenant", + "丝 绸", + "主 干", + "会 所", + "其 所", + "提供 在线", + "nSpe aking", + "▁uncertain ties", + "决 字", + "影 院", + "um bs", + "umb s", + "St orm", + "▁C hev", + "▁Ch ev", + "▁Che v", + "定义 域", + "由题意 得", + "On Click", + "O nClick", + "▁ide als", + "▁idea ls", + "▁ideal s", + "▁qu icker", + "▁quick er", + "ER O", + "E RO", + "控制 的", + "控 制的", + "ch ard", + "char d", + "cha rd", + "c hard", + "er sen", + "ers en", + "mon go", + "mo ngo", + "mong o", + "m ongo", + "▁rational e", + "▁ration ale", + "后 又", + "PE S", + "P ES", + "Em itter", + "E mitter", + "▁生 长", + "▁ 生长", + "]] (/", + "] ](/", + "en to", + "ent o", + "e nto", + "we ed", + "w eed", + "名 叫", + "奥 迪", + "昌 县", + "内角 和", + "内 角和", + "▁angi ogenesis", + "二 分", + "she ets", + "sheet s", + "s heets", + "▁inter ven", + "le vard", + "lev ard", + "了 你", + "nR ef", + "nRe f", + "n Ref", + "▁B ert", + "▁Be rt", + "▁Ber t", + "▁crow ds", + "▁crowd s", + "领导 下", + "▁ana est", + "▁ve ntil", + "▁vent il", + "▁ven til", + "做 为", + "以非法占有 为目的", + "nComp anies", + "▁ 姚", + "裤 子", + "nM ass", + "nMa ss", + "n Mass", + "ns ome", + "nso me", + "n some", + "▁s plic", + "▁sp lic", + "▁spl ic", + "こ と", + "说 一下", + "平方 差", + "平 方差", + "等 功能", + "代理 检察员", + "▁b ou", + "▁bo u", + "行业 协会", + "ph alt", + "pha lt", + "phal t", + "▁R alph", + "col lections", + "collection s", + "coll ections", + "collect ions", + "系统 和", + "多 方", + "弱 势", + "▁这 个", + "▁ 这个", + "▁A sc", + "▁As c", + "▁ Asc", + "EV ENT", + "E VENT", + "▁incent ive", + "▁in version", + "▁i nversion", + "▁inv ersion", + "日 因", + "魔 龙", + "b w", + "课 外", + "yn a", + "y na", + "▁[^ ](/", + "nTh omas", + "n Thomas", + "RE C", + "R EC", + "br ight", + "b right", + "▁disag ree", + "> ﹣", + "▁ 现在", + "促进 了", + "促 进了", + "面积 公式", + "ne ver", + "n ever", + "▁gen otypes", + "▁genotype s", + "参 谋", + "头 皮", + "$( \"", + "$ (\"", + "ograph ed", + "ograp hed", + "▁over weight", + "▁overw eight", + "Bit map", + "▁all eles", + "▁alle les", + "▁allele s", + "分解 因式", + "▁Elect ronics", + "▁Electron ics", + "▁Electronic s", + "▁d ps", + "▁dp s", + "民营 企业", + "nP lay", + "nPl ay", + "n Play", + "▁W iki", + "▁Wi ki", + "▁Wik i", + "▁ Wiki", + "▁C ards", + "▁Car ds", + "▁Card s", + "▁ Cards", + "▁over lay", + "▁overl ay", + "▁ overlay", + "▁act ivating", + "▁activ ating", + "▁ad missions", + "▁admission s", + "▁adm issions", + "十 个", + "页 数", + "▁f ax", + "▁fa x", + "▁ fax", + "在刑罚 执行期间", + "相 声", + "nD O", + "n DO", + "婴 幼儿", + "ic ia", + "ici a", + "i cia", + "ag land", + "▁time zone", + "▁ timezone", + "▁Re tro", + "▁Ret ro", + "绑 架", + "和 企业", + "是 美国", + "EN CES", + "ENCE S", + "▁Subject s", + "| ^", + "临 近", + "癫痫 病", + "ant ib", + "anti b", + "文 体", + "▁r ider", + "▁ri der", + "▁ride r", + "▁rid er", + "很 明显", + "nt ers", + "nter s", + "nte rs", + "n ters", + "▁S uff", + "▁Su ff", + "▁out lines", + "▁outline s", + "实 效", + "au f", + "a uf", + "▁B rent", + "▁Br ent", + "▁Bre nt", + "▁Bren t", + "强 力", + "邪 恶", + "▁y r", + "▁ yr", + "▁d st", + "▁ds t", + "▁ dst", + "T uple", + "us tin", + "ust in", + "▁scal able", + "▁scala ble", + "▁Play Station", + "▁m ins", + "▁min s", + "▁mi ns", + "▁ mins", + "解题 的关键", + "复 试", + "就 可", + "赤峰 市", + "孙 子", + "ij a", + "i ja", + "▁Organ ic", + "▁Org anic", + "▁method ological", + "nb ecause", + "nbe cause", + "n because", + "nS elected", + "nSe lected", + "nSelect ed", + "n Selected", + "▁out dated", + "ad b", + "a db", + "急 需", + "▁gr ill", + "▁gri ll", + "酌情 从轻处罚", + "▁an onym", + "迷 失", + "nJ un", + "n Jun", + "未成年 人", + "未 成年人", + "偏 偏", + "的 非", + "总结 了", + ")< /", + ") ", + "se ys", + "sey s", + "发 力", + "vol umes", + "volume s", + "▁Sh adow", + "▁Sha dow", + "▁ Shadow", + "co tt", + "cot t", + "c ott", + "orph ism", + "▁test imony", + "▁testimon y", + "固 化", + "▁C lo", + "▁Cl o", + "本院 经审理", + "▁Ch ase", + "▁Cha se", + "Add Field", + "民 用", + "Ar c", + "A rc", + "it os", + "ito s", + "i tos", + "V B", + "膜 炎", + "的 国际", + "▁rib bon", + "filter ed", + "▁Aut omatic", + "▁Auto matic", + "▁Autom atic", + "▁val uation", + "▁valu ation", + "新一 轮", + "新 一轮", + "注册 资本", + "▁r apper", + "▁rap per", + "▁ rapper", + "▁b iography", + "▁bi ography", + "一 贯", + "同 情", + "评 委", + "过 关", + "创业 者", + "创 业者", + "并 结合", + "有意 义", + "有 意义", + "▁j umps", + "▁jump s", + "在法律规定 的范围内处分自己的", + "▁J ake", + "▁Ja ke", + "▁Jak e", + "▁hand lers", + "▁handle rs", + "▁handler s", + "▁ handlers", + "仙 女", + "各 省", + "救 灾", + "本 事", + "▁r outines", + "▁rout ines", + "▁routine s", + "脑 海", + "现 阶段", + "Cl ip", + "Cli p", + "C lip", + "▁Leg isl", + "二 楼", + "ic ulty", + "icult y", + "icul ty", + "▁Dur ham", + "环 绕", + "ov sk", + "my answer", + "达成 和解协议", + "▁P review", + "▁Pre view", + "▁ Preview", + "▁Saskat chewan", + "等 各种", + "重庆市 渝", + "受 案", + "而 我", + "草 案", + "▁D P", + "▁ DP", + "/\" ,\\", + "/\", \\", + "/ \",\\", + "as ured", + "asure d", + "asu red", + "▁Con duct", + "▁Cond uct", + "▁now adays", + "background Color", + "内 衣", + "ux e", + "u xe", + "银川 市", + "银 川市", + "up al", + "upa l", + "u pal", + "▁A ri", + "▁Ar i", + "▁Est ab", + "▁Es tab", + "cr edited", + "cred ited", + "credit ed", + "复 活", + "sl ash", + "s lash", + "▁Sup erv", + "▁Super v", + "▁helic opter", + "IC O", + "I CO", + "nP ass", + "n Pass", + "第三 十二条", + "▁s b", + "▁ sb", + "什么 样", + "▁Em pty", + "▁Emp ty", + "▁ Empty", + "▁ ü", + "景 象", + "水 和", + "装 扮", + "解 锁", + "▁T T", + "▁ TT", + "▁qu er", + "▁q uer", + "▁que r", + "▁ quer", + "上诉于 浙江省", + "低 头", + "的 面", + "畜牧 业", + "▁L il", + "▁Li l", + "▁p ore", + "▁po re", + "▁por e", + "b rowse", + "blank Input", + "人 说", + "解 压", + "no b", + "n ob", + "第一百 九", + "▁admin ister", + "驾 车", + "结构 和", + "▁dark ness", + "ar ker", + "ark er", + "▁ 场上位置", + "ENT IAL", + "▁m ening", + "▁me ning", + "▁men ing", + "in formatics", + "inform atics", + "template Url", + "▁A CE", + "▁AC E", + "▁ ACE", + "▁W er", + "▁We r", + "VI CES", + "VICE S", + "V ICES", + "\\\\ }\\\\)", + "\\\\} \\\\)", + "\\\\}\\\\ )", + "op tera", + "opt era", + "opter a", + "▁Mar cus", + "▁Marc us", + "举 个", + "贫 血", + "▁' ,", + "▁ ',", + "会 自动", + "工作 和", + "并 提供", + "发 声", + "▁Op portun", + "\" |", + "L U", + "发 还", + "sin x", + "si nx", + "s inx", + "系列 产品", + "▁m mol", + "▁mm ol", + "nAny one", + "▁ î", + "罚 字", + "葡萄 糖", + "▁T ip", + "▁Ti p", + "▁ Tip", + "down loads", + "download s", + "▁Design er", + "CH O", + "C HO", + "LA S", + "L AS", + "adjust ed", + "adj usted", + "天 线", + "的 投资", + "Pi ck", + "Pic k", + "P ick", + "▁W rest", + "▁Wr est", + "▁DI RECT", + "▁ DIRECT", + "▁play off", + "处处 长", + "处 处长", + "tp adding", + "t padding", + "本 刊", + "鸡 汤", + "nC c", + "IN CLUDING", + "源 码", + "目前 在", + "ver te", + "vert e", + "ca tion", + "cat ion", + "c ation", + "▁pat rol", + "片 区", + "人民 网", + "完全平方 公式", + "▁He aven", + "▁epidem iological", + "▁epidemiologic al", + "▁div ides", + "▁divid es", + "▁divide s", + "▁harass ment", + "▁real ization", + "▁s ag", + "▁sa g", + "▁Rev ival", + "十 里", + "查 阅", + "本科 学", + "本 科学", + "Cl ock", + "C lock", + "▁Cont ents", + "▁Content s", + "▁ Contents", + "▁tr action", + "▁tra ction", + "▁tract ion", + "▁ traction", + "公 摊", + "卡 拉", + "着 眼", + "t weet", + "mb alib", + "▁Check list", + "油 气", + "命名 为", + "命 名为", + "吸 血", + "视 线", + "▁& #", + "▁ &#", + "▁t uition", + "▁tu ition", + "\\' }", + "\\ '}", + "nSpec ies", + "巧 妙", + "租 车", + "Bt n", + "B tn", + "▁M G", + "▁ MG", + "那样 的", + "那 样的", + "wi ld", + "w ild", + "pro ducer", + "produ cer", + "prod ucer", + "解 剖", + "那 年", + "jo n", + "j on", + "月中 旬", + "▁合作 人物", + "稳 健", + "at em", + "ate m", + "a tem", + "Dec oder", + "Decode r", + "ur names", + "urn ames", + "urname s", + "▁B lake", + "▁Bl ake", + "第一 中级人民法院", + "带 的", + "tl s", + "t ls", + "更多 的是", + "更多的 是", + "▁c ite", + "▁cit e", + "▁ci te", + "▁ cite", + "nAthlet es", + "▁Sign ificant", + "▁ch ic", + "▁chi c", + "▁rel uct", + "财 保", + "总 决赛", + "拿出 来", + "拿 出来", + "教师 的", + "教 师的", + "就是 因为", + "就 是因为", + "▁Bed room", + "▁inev itable", + "▁rein forcement", + "▁reinforce ment", + "后 在", + "满 族", + "享有 的", + "享 有的", + "▁H ass", + "▁Ha ss", + "▁Has s", + "进行了 分析", + "▁E ther", + "▁Eth er", + "▁Et her", + "▁R apid", + "▁Ra pid", + "▁Rap id", + "▁saf egu", + "▁safe gu", + "国 资", + "▁H M", + "▁ HM", + "中西 医", + "中 西医", + "蒙古 族", + "▁b ooth", + "▁bo oth", + "▁boot h", + "馆 藏", + "血液 中", + "血 液中", + "nSpec ial", + "n Special", + "▁dess ert", + "nRec ently", + "nRecent ly", + "可 口", + "著 有", + "▁z b", + "▁ zb", + "A W", + "nM ale", + "nMal e", + "nMa le", + "▁gr asp", + "▁gra sp", + "不 支持", + "__ ':\\", + "▁t andem", + "▁tan dem", + "▁conform ational", + "▁conformation al", + "估 值", + "挤 压", + "流 的", + "以为 是", + "Add ed", + "Ad ded", + "▁upgrad ing", + "妥 善", + "RE ST", + "RES T", + "R EST", + "tool bar", + "天 花", + "自 称", + "—— “", + "An im", + "A nim", + "Inter faces", + "Interface s", + "品 类", + "首先 是", + "首 先是", + "▁Par ser", + "▁Parse r", + "▁Pars er", + "▁ Parser", + "▁he rein", + "▁her ein", + "▁here in", + "房 源", + "BE R", + "B ER", + "▁viol in", + "▁vi olin", + "▁ac ademy", + "▁academ y", + "填 词", + "麻 辣", + "推荐 的", + "同时 也是", + "同时也 是", + "▁cere bro", + "get Item", + "dep artment", + "▁defe ating", + "▁defeat ing", + "滤 波", + "龙 泉", + "了 这个", + "To do", + "T odo", + "▁trans former", + "▁transform er", + "▁ transformer", + "重 合", + "anti ago", + "▁pack aged", + "▁package d", + "IS C", + "I SC", + "▁设 置", + "▁ 设置", + "nEnter ing", + "nEnt ering", + "▁f p", + "▁ fp", + "') :\\", + "' ):\\", + "Ph ase", + "品 尝", + "承 接", + "em o", + "e mo", + "▁cre ature", + "▁creat ure", + "将 对", + "开 阔", + "or f", + "o rf", + "ат ь", + "а ть", + "▁S pin", + "▁Sp in", + "▁ Spin", + "▁o wing", + "▁ow ing", + "▁ owing", + "▁ten ants", + "▁tenant s", + "▁elig ibility", + "bi gg", + "big g", + "b igg", + "}\\\\ }\\\\)", + "}\\\\} \\\\)", + "} \\\\}\\\\)", + "▁civil ian", + "▁C openhagen", + "▁frustr ating", + "嘴 里", + "脾 胃", + "结合 起来", + "▁rub y", + "▁ru by", + "▁ ruby", + "Mark et", + "Mar ket", + "dom ains", + "domain s", + "mem brane", + "▁Im plement", + "▁Imp lement", + "物 管", + "// #", + "/ /#", + "rt ype", + "r type", + "▁Te achers", + "▁Teacher s", + "▁ver tically", + "▁vert ically", + "▁vertical ly", + "逐 年", + "链 表", + "nd ouble", + "ndo uble", + "n double", + "▁diagn oses", + "▁diagnose s", + "又不 是", + "又 不是", + "ag ra", + "agr a", + "a gra", + "▁F ol", + "▁Fo l", + "an mar", + "▁bo iler", + "▁boil er", + "ass istant", + "is is", + "isi s", + "i sis", + "▁c urt", + "▁cur t", + "▁cu rt", + "en erated", + "ener ated", + "ene rated", + "enerate d", + "牛 皮", + "小姐 姐", + "小 姐姐", + "银行 的", + "银 行的", + "▁l bs", + "▁lb s", + "制作 人", + "DU CT", + "D UCT", + "▁p ads", + "▁pa ds", + "▁pad s", + "▁r anch", + "▁ra nch", + "▁ran ch", + "▁in accur", + "会 造成", + "health y", + "了 她", + "涨 价", + "不 代表", + "▁d orm", + "▁do rm", + "▁st itch", + "眼 科", + "满意 的", + "满 意的", + "() ]\\", + "()] \\", + "( )]\\", + "▁s ab", + "▁sa b", + "绝 大部分", + "会 更", + "的 特征", + ")) **", + "))* *", + ") )**", + "▁\\ '$", + "▁\\' $", + "▁ \\'$", + "▁R ent", + "▁Re nt", + "▁Ren t", + "▁red ox", + "Script s", + "▁en crypt", + "▁enc rypt", + "▁ encrypt", + "短 板", + "af ety", + "afe ty", + "Bound s", + "B ounds", + "▁belong ed", + "每 件", + "▁R I", + "▁ RI", + "提起 的", + "提 起的", + "的一 大", + "的 一大", + "▁Mc L", + "有 下列情形", + "▁read able", + "▁ readable", + "极 度", + "li es", + "lie s", + "l ies", + "总部 位于", + "▁h ull", + "▁hu ll", + "▁War riors", + "▁Warrior s", + "▁U ltimate", + "速度 快", + "ber ger", + "berg er", + "▁Sp encer", + "▁pun ishment", + "地方 政府", + "S G", + "志 刚", + "梦 里", + "当年 的", + "当 年的", + "▁F ailed", + "▁Fa iled", + "▁Fail ed", + "▁ Failed", + "▁cycl ists", + "▁cyclist s", + "B a", + "申请 费", + "TA IN", + "T AIN", + "ig ion", + "igi on", + "ret ch", + "r etch", + "X L", + "** ,", + "* *,", + "提出 异议", + "pag ination", + "p agination", + "& \\\\", + "养老 金", + "▁C omics", + "▁Com ics", + "▁Comic s", + "白色 的", + "白 色的", + "in in", + "ini n", + "i nin", + "视 图", + "首 要", + "nR ob", + "n Rob", + "ar ange", + "ara nge", + "aran ge", + "a range", + "▁be aten", + "▁beat en", + "▁economic al", + "▁ec onomical", + "▁econom ical", + "▁design ation", + "改 装", + "无 毛", + "楼 下", + "绿 地", + "SE M", + "S EM", + "的 办法", + "▁Fac ility", + "▁Go ing", + "▁Jama ica", + "产 于", + "黄 花", + "Ma d", + "M ad", + "ri na", + "rin a", + "r ina", + "▁parent ing", + "▁paren ting", + "并 能", + "法官 助理", + "特别 是在", + "特别是 在", + "il lon", + "ill on", + "illo n", + "▁sup pressor", + "▁suppress or", + "在 小", + "河 口", + "Par s", + "Pa rs", + "P ars", + "▁re lying", + "▁rel ying", + "▁rely ing", + "误 区", + "Br e", + "B re", + "损 耗", + "课 后", + "吸 入", + "规 避", + "Ap ache", + "商 的", + "很 低", + "电 极", + "AP H", + "A PH", + "所以 我们", + "所以我 们", + "▁E F", + "▁ EF", + "产业 园", + "cur ve", + "请仔细 研究", + "▁correct ions", + "▁correction s", + "▁constitu ents", + "▁constituent s", + "这 只", + "▁t ended", + "▁ten ded", + "▁tend ed", + "楼 上", + "'] )", + "' ])", + "启 蒙", + "收 据", + "uate s", + "ua tes", + "u ates", + "▁Hy brid", + "国民 经济", + "▁Cor ner", + "▁Corn er", + "▁Mi rror", + "▁Mir ror", + "▁ Mirror", + "▁re fine", + "▁ref ine", + "▁refin e", + "物业 费", + "昨 晚", + "ma gic", + "mag ic", + "m agic", + "▁on ions", + "▁onion s", + "嫌 弃", + "▁n n", + "▁ nn", + "本文 从", + "今年 以来", + "今 年以来", + "▁Th ought", + "▁Though t", + "el sen", + "else n", + "els en", + "e lsen", + "vol ution", + "v olution", + "st ant", + "stan t", + "sta nt", + "▁critic ized", + "国 旗", + "▁Tr iple", + "▁Tri ple", + "▁Trip le", + "未发现 被执行人", + "未 发现被执行人", + "▁un fair", + "▁unf air", + "夺 冠", + "认真 的", + "认 真的", + "T U", + "和 不", + "榜 样", + "ag ul", + "agu l", + "重要 意义", + "hydro x", + "hyd rox", + "▁h ometown", + "▁home town", + "经典 的", + "巡 逻", + "朝 着", + "▁social ly", + "▁soc ially", + "▁soci ally", + "▁s aturated", + "▁sat urated", + "次 会议", + "▁Sk ills", + "▁Skill s", + "执行案件 立案", + "▁C annot", + "▁Can not", + "▁Ca nnot", + "▁Cann ot", + "▁ Cannot", + "▁verte br", + "▁ vertebr", + ")\\\\ ;", + ") \\\\;", + "▁N okia", + "▁Sh akespeare", + "专 卖", + "八 卦", + "OP EN", + "Add itional", + "▁hippocamp al", + "▁P retty", + "▁Pre tty", + "▁Pret ty", + "第二 中级人民法院", + "▁re paired", + "▁rep aired", + "▁repair ed", + "▁malign ancy", + "变 了", + "死 后", + ")} $\\", + ")}$ \\", + ") }$\\", + "拒不 履行", + "拒 不履行", + "▁G PIO", + "▁GP IO", + "▁ GPIO", + "▁Art ists", + "▁Artist s", + "▁hol istic", + "▁D in", + "▁Di n", + "▁NS String", + "▁ NSString", + "▁architect ures", + "▁architecture s", + "也 挺", + "应 变", + "黏 膜", + "ry l", + "r yl", + "压 制", + "大 面积", + "脑 血管", + "Us ed", + "Use d", + "U sed", + "bur se", + "b urse", + "▁gr aded", + "▁grad ed", + "▁grade d", + "▁gra ded", + "▁ graded", + "▁Psych ology", + "拓 宽", + "it r", + "i tr", + "yo n", + "y on", + "▁F ork", + "▁For k", + "▁Fo rk", + "▁thank ful", + "偏 向", + "ra ls", + "ral s", + "r als", + "▁B ros", + "▁Br os", + "▁Bro s", + "▁Nor folk", + "▁infil tr", + "▁head lines", + "▁headline s", + "▁ 学校", + "ell ery", + "eller y", + "elle ry", + "nAny way", + "▁Paralym pics", + "高 分", + "js p", + "j sp", + "SER VICE", + "▁Pot ter", + "生 机", + "▁ 详细", + "▁v oy", + "▁vo y", + "▁r ook", + "▁ro ok", + "▁rein forced", + "▁reinforce d", + "相 见", + "划 算", + "火 花", + "绍兴 市", + "om eric", + "ome ric", + "omer ic", + "o meric", + "▁s keleton", + "▁ske leton", + "赞 同", + "St ub", + "S tub", + "be nz", + "ben z", + "b enz", + "▁g uit", + "▁gu it", + "▁gui t", + "▁S urre", + "▁Sur re", + "▁recip rocal", + "▁reciproc al", + "▁g h", + "▁ gh", + "nb uild", + "n build", + "ob server", + "obs erver", + "observ er", + "if ty", + "ift y", + "i fty", + "un used", + "▁under water", + "▁underw ater", + "无 职业", + "fa ir", + "f air", + "严格 按照", + "▁adult hood", + "▁adul thood", + ", ’", + "回 了", + "轮 廓", + "Wi Fi", + "li ved", + "live d", + "l ived", + "video s", + "v ideos", + "▁purs ued", + "▁pursue d", + "▁alk aline", + "▁alkal ine", + "▁convenient ly", + "▁contrad iction", + "▁contradict ion", + "不 由", + "施 肥", + "吃 过", + "氯 化", + "an ie", + "ani e", + "a nie", + "▁Brand on", + "▁Bra ndon", + "有很大 的", + "有 很大的", + "▁acqu iring", + "北 市", + "迫 切", + "▁e du", + "▁ed u", + "▁ edu", + "▁Te ams", + "▁Team s", + "▁Tea ms", + "▁em bol", + "▁emb ol", + "▁Or igin", + "▁Ori gin", + "▁ Origin", + "淋 漓", + "如果 我们", + "如果我 们", + "min ded", + "mind ed", + "可以 使", + "适配 器", + "▁game play", + "▁ext inction", + "▁extinct ion", + "国 会", + "▁A DD", + "▁AD D", + "▁ ADD", + "▁he ater", + "▁heat er", + "en ia", + "eni a", + "e nia", + "ibli cal", + "ibl ical", + "▁mod ulo", + "▁im pulse", + "▁imp ulse", + "nf e", + "n fe", + "工程 的", + "▁Dis cord", + "▁Disc ord", + "传染 病", + "内 分泌", + "广泛 应用于", + "广泛应用 于", + "▁T opic", + "▁To pic", + "▁Top ic", + "▁ Topic", + "分 娩", + "nc l", + "n cl", + "nC RE", + "n CRE", + "▁m arry", + "▁mar ry", + "ope napi", + "open api", + "ne apolis", + "fun ded", + "fund ed", + "git commit", + "▁ ра", + "▁adj uvant", + "▁trans location", + "▁transl ocation", + "Fr iday", + "▁c akes", + "▁ca kes", + "▁cake s", + "▁ cakes", + "▁h elm", + "▁he lm", + "▁hel m", + "▁ helm", + "▁sq lite", + "▁sql ite", + "▁ sqlite", + "▁squ amous", + "ang led", + "angle d", + "▁Vlad imir", + "▁qual ifications", + "▁qualification s", + "量 和", + "ol an", + "ola n", + "o lan", + "▁Ap ps", + "▁App s", + "▁ Apps", + "南 非", + "▁ 浙江", + "入 党", + "听 见", + "等 信息", + "羽毛 球", + "war f", + "wa rf", + "w arf", + "Pro cessing", + "Process ing", + "Proc essing", + "台 词", + "不 低于", + "对我 们", + "对 我们", + "▁D ent", + "▁De nt", + "▁Den t", + "Fil ters", + "Filter s", + "监 区", + "土地 承包", + "城县 人民法院", + "城 县人民法院", + "#### ##\\", + "### ###\\", + "##### #\\", + "###### \\", + "▁Tra ffic", + "▁chrom osomal", + "▁chromos omal", + "▁R ush", + "▁Ru sh", + "▁Rus h", + "▁M illion", + "▁Mil lion", + "▁Mill ion", + "▁pre natal", + "杨 柳", + "▁ac claimed", + "高 一", + "从 一个", + "理论 上", + "的水 平", + "的 水平", + "un ing", + "uni ng", + "u ning", + "▁pre clinical", + "▁rent als", + "▁rental s", + "▁teen ager", + "▁teenage r", + "translation type", + "隐 形", + "▁} }/", + "▁}} /", + "▁R ica", + "▁Ric a", + "▁Ri ca", + "篇 章", + "除 去", + "▁ 玄幻", + "zh en", + "zhe n", + "z hen", + "▁k om", + "▁ko m", + "▁ kom", + "ycl ic", + "yc lic", + "▁fl ank", + "({ \"", + "( {\"", + "没 关系", + "da sh", + "das h", + "d ash", + "▁A ub", + "▁Au b", + "▁Manufact uring", + "参 会", + "nA ND", + "n AND", + "opt imal", + "optim al", + "▁fr eight", + "▁fre ight", + "▁optim izing", + "nT im", + "n Tim", + "locfile hash", + "open locfilehash", + "source gitcommit", + "▁Tun is", + "▁Tu nis", + "▁Gab riel", + "▁Gabri el", + "▁Des ert", + "▁Main tenance", + "出 差", + "有不 少", + "有 不少", + "▁di lig", + "▁dil ig", + "▁B rowse", + "▁Brow se", + "▁ Browse", + "▁immun ore", + "▁immuno re", + "Da m", + "D am", + "lic kr", + "lick r", + "▁Ba iley", + "展 出", + "bu k", + "b uk", + "▁P ump", + "▁Pu mp", + "▁b ang", + "▁ban g", + "▁ba ng", + "▁ bang", + "▁back pack", + "光 的", + "Hi t", + "H it", + "双 曲线", + "日报 道", + "日 报道", + "本 公司", + "▁c hor", + "▁ch or", + "▁cho r", + "▁ chor", + "pre tty", + "pret ty", + "p retty", + "▁kn ees", + "▁kne es", + "▁knee s", + "▁ve rsa", + "▁ver sa", + "▁vers a", + "nE arlier", + "TRIBUT ORS", + "nW eek", + "nWe ek", + "n Week", + "▁ang iography", + "▁angi ography", + "▁\" >", + "▁ \">", + "有 自己的", + "法律 依据", + "资格 考试", + "软件 开发", + "▁S heet", + "▁She et", + "▁ Sheet", + "▁fun gi", + "▁fung i", + "ver ages", + "verage s", + "▁det ectors", + "▁detect ors", + "▁detector s", + "欢 喜", + "潇 湘", + "he e", + "h ee", + "驾驶 的", + "自然科学 基金", + "谈 谈", + "非 凡", + "▁T LR", + "▁TL R", + "▁K iss", + "▁Ki ss", + "▁Pe arl", + "▁Pear l", + "ns tring", + "nst ring", + "nstr ing", + "n string", + "▁un safe", + "▁uns afe", + "▁ unsafe", + "cob acter", + "c obacter", + "▁Philipp ine", + "▁Philip pine", + "▁grand mother", + "疲 惫", + "这里 是", + "ig roup", + "igr oup", + "i group", + "施 行", + "越 是", + "不断 提升", + "▁ce il", + "▁ ceil", + "ot ives", + "otive s", + "oti ves", + "p q", + "引 人", + "ST ER", + "STE R", + "S TER", + "ta ils", + "tail s", + "t ails", + "ul iar", + "uli ar", + "ulia r", + "▁b itter", + "▁bit ter", + "▁Synd rome", + "统 战", + "▁S UV", + "▁SU V", + "▁ SUV", + "nt rans", + "ntr ans", + "n trans", + "▁Tom my", + "on uclear", + "onucle ar", + "下 行", + "多 月", + "收 纳", + "木 兰", + "]} \\", + "] }\\", + "▁H REF", + "▁HR EF", + "Look ing", + "Lo oking", + "L ooking", + "▁like wise", + "▁lik ewise", + "▁ 米", + "口 径", + "接 头", + "ze d", + "z ed", + "更 何况", + "▁E xc", + "▁Ex c", + "ic orn", + "ico rn", + "i corn", + "▁A void", + "▁Av oid", + "▁De von", + "▁Dev on", + "▁migr ants", + "▁migrant s", + "Dep artment", + "之日起五日内 向本院申请复议一次", + "听 着", + "奔 跑", + "崇 拜", + "RP C", + "R PC", + "▁M V", + "▁ MV", + "allenge s", + "alleng es", + "▁WAR NING", + "▁ WARNING", + "水 源", + "透 气", + "▁P am", + "▁Pa m", + "id os", + "ido s", + "i dos", + "▁he els", + "▁heel s", + "▁ heels", + "▁plas mid", + "▁plasm id", + "diff erent", + "d ifferent", + "综 述", + "形式 为", + "▁ident ifiers", + "▁identifier s", + "动 了", + "油 的", + "sp r", + "s pr", + "ca ss", + "cas s", + "c ass", + "na mon", + "nam on", + "n amon", + "au coma", + "auc oma", + "WAR NING", + "eval uate", + "evalu ate", + "ie g", + "i eg", + "▁V oc", + "▁Vo c", + "ip pers", + "ipp ers", + "ipper s", + "恐 龙", + "▁seiz ure", + "▁butter fly", + "▁cont inent", + "▁contin ent", + "Cert ificate", + "上 报", + "机 车", + "就 觉得", + "ne ls", + "nel s", + "n els", + "▁Sub mit", + "▁ Submit", + "▁diagn ostics", + "▁diagnostic s", + "▁ 贾", + "克 的", + "秦 皇", + "▁L T", + "▁ LT", + "生产 和", + "国际 贸易", + "你 这", + "/( (", + "/ ((", + "留下 了", + "留 下了", + "市场 需求", + "group Id", + "平 淡", + "up les", + "uple s", + "u ples", + "▁b ins", + "▁bi ns", + "▁bin s", + "▁ bins", + "▁c ath", + "▁ca th", + "▁cat h", + "▁sc rub", + "▁scr ub", + "单纯 的", + "band s", + "ban ds", + "b ands", + "▁M aced", + "▁Mac ed", + "▁Ma ced", + "改 正", + "植 入", + "▁demand ed", + "▁W end", + "▁We nd", + "▁Wen d", + "Util ity", + "U tility", + "▁inter change", + "Com b", + "Co mb", + "C omb", + "ON LINE", + "al amic", + "ala mic", + "alam ic", + "s elenium", + "▁hor rible", + "▁horr ible", + "好 听", + "经 纬", + "冲 刺", + "发达 国家", + "▁ch unks", + "▁chunk s", + "▁ chunks", + "res trial", + "rest rial", + "▁esc aped", + "▁escape d", + "▁escap ed", + "T alk", + "pt ime", + "p time", + "nW ater", + "n Water", + "▁T icket", + "▁ Ticket", + "▁D OM", + "▁DO M", + "▁ DOM", + "说 自己", + "nOk ay", + "台 式", + "建 构", + "▁内 容", + "▁ 内容", + "▁C ars", + "▁Car s", + "▁Ca rs", + "▁Man uel", + "▁Pre viously", + "▁Previous ly", + "尿 酸", + "LI N", + "L IN", + "▁c li", + "▁cl i", + "▁ cli", + "▁ang iotensin", + "血 样", + "at os", + "ato s", + "a tos", + "▁Ser bian", + "▁Serbia n", + "航 母", + "pe m", + "p em", + "确定 了", + "确 定了", + "▁N azi", + "▁Na zi", + "▁Naz i", + "erg arten", + "▁trans porter", + "▁transport er", + "细 心", + "Re ceived", + "Receive d", + "▁pres ently", + "▁present ly", + "▁amb assador", + "再 加", + "▁mac OS", + "▁f asting", + "▁fast ing", + "协 定", + "嵌入 式", + "▁a board", + "▁ab oard", + "Create Model", + "▁ 德", + "斯 塔", + "突出 的", + "突 出的", + "Can not", + "Ca nnot", + "C annot", + "▁ab brev", + "re leased", + "release d", + "▁C orrect", + "▁Cor rect", + "▁ Correct", + "▁Fail ure", + "▁ Failure", + "▁carcin omas", + "▁carcinoma s", + "▁w t", + "▁ wt", + "im its", + "imit s", + "imi ts", + "i mits", + "指 甲", + "MS G", + "M SG", + "快速 的", + "外出 务工", + "▁v archar", + "▁var char", + "函数的 单调性", + "▁Dec ision", + "▁citizens hip", + "▁citizen ship", + "IF Y", + "pi x", + "p ix", + "▁D D", + "▁ DD", + "整体 的", + "整 体的", + "要 从", + "nE ND", + "n END", + "pl astic", + "▁ward robe", + "过来 的", + "过 来的", + "sh all", + "sha ll", + "shal l", + "s hall", + "col our", + "申请执行人 可以", + "申请执行 人可以", + "申请执行人可 以", + "inst ances", + "instance s", + "Q S", + "之 情", + "商 是", + "将 被", + "▁C od", + "▁Co d", + "▁ Cod", + "管理 制度", + "▁congr at", + "▁cong rat", + "▁pre school", + "▁pres chool", + "gr ey", + "gre y", + "g rey", + "▁Re tail", + "▁Ret ail", + "达 人", + "监 委", + "▁l b", + "▁ lb", + "en na", + "enn a", + "▁flag ship", + "▁flags hip", + "▁c ategorized", + "▁categor ized", + "公 认", + "▁finger print", + "二 的", + "馒 头", + "or ange", + "ora nge", + "oran ge", + "o range", + "不等式 组", + "▁C ort", + "▁Co rt", + "▁Cor t", + "▁w and", + "▁wa nd", + "form erly", + "former ly", + "str icted", + "strict ed", + "nScott ish", + ")) ]\\", + ") )]\\", + "▁Z oo", + "▁Re id", + "抓 紧", + "su gg", + "s ugg", + "▁Cap itol", + "尊 严", + "滋 润", + "mi s", + "m is", + "之 以", + "反 比例", + "不断 发展", + "\\' $", + "\\ '$", + "▁commit tees", + "▁committee s", + "无正当理由 未到庭参加诉讼", + "▁perturb ation", + "往 前", + "▁我 的", + "▁ 我的", + "创新 的", + "创 新的", + "lif ting", + "lift ing", + "l ifting", + "A O", + "倡 议", + "av ir", + "avi r", + "a vir", + "▁tail or", + "part icip", + "▁mil estone", + "▁miles tone", + "▁mile stone", + "术 中", + "▁d uck", + "▁du ck", + "par ation", + "pa ration", + "para tion", + "▁hippocamp us", + "▁practition er", + "id ia", + "idi a", + "▁F UN", + "▁ FUN", + "insp ired", + "thand off", + "深 情", + "特 质", + "路 与", + "▁sle eve", + "集 的", + "}% \\", + "} %\\", + "id ian", + "idi an", + "idia n", + "▁fin ances", + "▁finance s", + "▁financ es", + "▁frustr ated", + "风 貌", + "▁confirm ing", + "包 围", + "建筑 材料", + "ro cyte", + "roc yte", + "r ocyte", + "▁Object s", + "▁ Objects", + "是 企业", + "ap ur", + "a pur", + "▁alumin ium", + "▁ret aining", + "▁retain ing", + "▁ 北", + "▁O C", + "▁ OC", + "是不 会", + "是 不会", + "Br idge", + "B ridge", + "▁d ownt", + "▁down t", + "▁dow nt", + "▁susp ects", + "▁suspect s", + "▁infil tration", + "▁infiltr ation", + "▁@ @", + "▁ @@", + "las thandoff", + "能 使", + "采访 时", + "建筑 工程有限公司", + "建筑工程 有限公司", + "与 否", + "右 脚", + "英文 名", + "英 文名", + "TR AN", + "TRA N", + "T RAN", + "to ire", + "ur ate", + "ura te", + "u rate", + "ect ing", + "ec ting", + "ectin g", + "nUp date", + "n Update", + "nPro duct", + "n Product", + "赡 养", + "▁w his", + "▁wh is", + "可能 有", + "可 能有", + "bal anced", + "balance d", + "▁res iding", + "▁resid ing", + "第二百六 十四条", + "▁pre term", + "▁pr eterm", + "▁pret erm", + "浓 缩", + "国际 机场", + "gev ity", + "sh aring", + "sha ring", + "▁indirect ly", + "世 家", + "红色 的", + "红 色的", + "Br anch", + "▁B il", + "▁Bi l", + "▁Ed die", + "▁Edd ie", + "▁spir its", + "▁spirit s", + "▁jud icial", + "有线 电视", + "is ers", + "ise rs", + "iser s", + "content locale", + "拍 的", + "ab ove", + "abo ve", + "中 性", + "ka l", + "k al", + "Look up", + "▁th ats", + "▁that s", + "▁re name", + "▁r ename", + "▁ rename", + "▁st icky", + "▁stick y", + "ect l", + "ec tl", + "e ctl", + "▁G uitar", + "▁Gu itar", + "▁D owntown", + "▁Down town", + "疑 难", + "省 略", + "▁differ ed", + "▁diff ered", + "▁E PA", + "▁EP A", + "的最小 值", + "的 最小值", + "被执行人 的", + "re name", + "ren ame", + "rena me", + "r ename", + "▁me tre", + "▁met re", + "▁S ocket", + "▁Soc ket", + "▁ Socket", + "▁warm th", + "De cember", + "Dec ember", + "课 本", + "PV C", + "P VC", + "美国 人", + "美 国人", + "ho rn", + "hor n", + "h orn", + "从小 到大", + "at aka", + "ata ka", + "▁Consider ing", + "穿 上", + "自己 去", + "余 名", + "大 局", + "cap ture", + "capt ure", + "Com merce", + "增 生", + "▁政治 面貌", + "RE SULT", + "RES ULT", + "导 游", + "CL E", + "C LE", + "▁w ars", + "▁war s", + "▁wa rs", + "▁Le icester", + "爱 人", + "or etic", + "ore tic", + "▁Br ooks", + "▁Bro oks", + "▁Brook s", + "▁gen res", + "▁ge nres", + "▁genre s", + "▁Sil icon", + "Ta x", + "T ax", + "交通 警察", + "▁qu iz", + "▁qui z", + "▁ quiz", + "交纳 诉讼费用", + "tel ling", + "t elling", + "▁Jul ian", + "▁Julia n", + "▁sulf ur", + "▁sul fur", + "案件受理费 减半收取", + "诸 如", + "生产 企业", + "爱 尔", + "珊 瑚", + "ur dy", + "urd y", + "ic hel", + "ich el", + "iche l", + "i chel", + "▁个人 简介", + "▁semicon ductor", + "yl ated", + "ylate d", + "yla ted", + "y lated", + "▁mal ware", + "▁integr ates", + "▁integrate s", + "wo n", + "w on", + "▁h ey", + "▁he y", + "▁ hey", + "▁b acks", + "▁back s", + "▁ba cks", + "▁bac ks", + "▁ backs", + "▁grad ients", + "▁gradient s", + "得 名", + "▁Al ert", + "▁Ale rt", + "▁ Alert", + "▁t ornado", + "▁torn ado", + "▁lat itude", + "▁ latitude", + "大 臣", + "就 用", + "秋 冬", + "fr ared", + "fra red", + "nc ategories", + "n categories", + "je r", + "j er", + "▁Ok ay", + "nL ater", + "nLa ter", + "▁col league", + "▁colle ague", + "茄 子", + "追 偿", + "期间 内", + "for cing", + "▁deal ership", + "▁dealer ship", + "▁dealers hip", + "张 力", + "二〇一七年 八月", + "二〇一七年八 月", + "▁sub type", + "▁subt ype", + "停 留", + "▁Y a", + "es ar", + "esa r", + "住房 公积金", + "Fi nder", + "Find er", + "Fin der", + "F inder", + "从 重", + "切 口", + "突 变", + "so lete", + "sole te", + "sol ete", + "jet brains", + "▁even tual", + "▁event ual", + "闻 名", + "开 玩笑", + "ov ić", + "ovi ć", + "ad ors", + "ado rs", + "ador s", + "▁H ood", + "▁Ho od", + "▁b loom", + "▁bl oom", + "▁blo om", + "▁spin ning", + "ena issance", + "e naissance", + "▁Con ditions", + "▁Cond itions", + "▁Condition s", + "PI D", + "P ID", + "▁sp rings", + "▁spring s", + "▁spr ings", + "职业技术 学院", + "pat ients", + "patient s", + "m igration", + "峰 会", + "bi l", + "b il", + "节 假日", + "▁c emetery", + "和 尚", + "he it", + "从业 人员", + "nC reated", + "nCreate d", + "n Created", + "▁hydroly sis", + "无 理", + "PI I", + "P II", + "游泳 池", + "游 泳池", + "▁B ib", + "▁Bi b", + "▁L ay", + "▁La y", + "▁a le", + "▁al e", + "▁ ale", + "Inv oke", + "get All", + "▁Le sson", + "▁Less on", + "▁Les son", + "为 真", + "▁He ath", + "▁Heat h", + "prevent Default", + "▁s z", + "▁ sz", + "队伍 建设", + "▁Tr uth", + "▁ Truth", + "▁nick name", + "▁ nickname", + "▁context ual", + "в и", + "民 航", + "远 方", + "精神 的", + "精 神的", + "▁pert aining", + "ll er", + "l ler", + "Reg ular", + "pur e", + "pu re", + "p ure", + "工程 项目", + "▁an gel", + "▁ang el", + "▁ angel", + "▁Integr al", + "债务 人", + "以下 内容", + "第一百零 一条", + "▁Linked In", + "全 长", + "▁b rom", + "▁br om", + "▁bro m", + "▁Any way", + "▁bi opsies", + "营养 价值", + "is odes", + "iso des", + "isode s", + "▁spec ialize", + "▁special ize", + "if a", + "i fa", + "Br and", + "B rand", + "履行 法律文书确定的义务", + "要求 其", + "name se", + "nam ese", + "names e", + "Jo urnal", + "J ournal", + "get User", + "▁Man aging", + "▁Manag ing", + "lo e", + "l oe", + "用户 提供", + "sp rite", + "spr ite", + "s prite", + "两 项", + "猴 子", + "ul la", + "ull a", + "u lla", + "▁p rey", + "▁pre y", + "▁pr ey", + "▁overlook ed", + "▁rep etitive", + "▁complet eness", + "▁complete ness", + "W W", + "日 讯", + "用 餐", + ")` \\", + ") `\\", + "▁s hy", + "▁sh y", + "▁guitar s", + "▁guit ars", + "IB LE", + "I BLE", + "就 必须", + "Reg ex", + "▁disc our", + "落 下", + "在我 的", + "在 我的", + "科技 成果", + "参考 书", + "▁R ip", + "▁Ri p", + "美 化", + "se at", + "sea t", + "s eat", + "▁C RC", + "▁CR C", + "▁ CRC", + "▁R ut", + "▁Ru t", + "悔罪 表现", + "im eric", + "ime ric", + "imer ic", + "i meric", + "nest js", + "er tools", + "ert ools", + "erto ols", + "▁H av", + "▁Ha v", + "Le ague", + "▁Pear son", + "▁Encycl opedia", + "越 野", + "外交 部", + "产品 类型", + "检验 报告", + "▁Ga rage", + "▁Gar age", + "▁reg istr", + "▁retrospective ly", + "▁retrospect ively", + "减刑 一年", + "over lay", + "text rm", + "tex trm", + "▁shock ed", + "都 比", + "ion i", + "io ni", + "i oni", + "的 评价", + "▁A nth", + "▁An th", + "▁Ant h", + "立即 开始执行", + "▁st ance", + "▁ stance", + "▁w ashed", + "▁was hed", + "▁wash ed", + "▁P ere", + "▁Per e", + "▁Pe re", + "(\\' ,", + "(\\ ',", + "( \\',", + "非常 重要", + "▁ant ique", + "▁anti que", + "▁antiqu e", + "in escence", + "ines cence", + "▁pract iced", + "▁practice d", + "er yl", + "ery l", + "e ryl", + "Al ignment", + "Align ment", + "▁res idency", + "▁resid ency", + "▁reside ncy", + "EN AB", + "E NAB", + "iv ier", + "ivi er", + "▁Ban ach", + "▁st reak", + "▁stre ak", + "▁She ffield", + "带 走", + "电 工", + "由被告 负担", + "Trans ition", + "法的 意义", + "法 的意义", + "le tes", + "let es", + "lete s", + "▁W ake", + "▁Wa ke", + "▁person alities", + "▁personal ities", + "正方 体的", + "正方体 的", + "▁re im", + "束 缚", + "for k", + "fo rk", + "f ork", + "ra nce", + "ran ce", + "r ance", + "▁co zy", + "License d", + "L icensed", + "nG allery", + "n Gallery", + "未 婚", + "nb r", + "n br", + "人 死亡", + "保护 区", + "erg us", + "me ans", + "mean s", + "▁wed dings", + "▁wedding s", + "▁ Á", + "▁ 适用", + "ni nline", + "nin line", + "n inline", + "▁direct ing", + "▁dir ecting", + "和大 家", + "和 大家", + "帅 哥", + "前几 天", + "前 几天", + "▁y og", + "▁yo g", + "sw ing", + "s wing", + "▁typ o", + "▁ty po", + "价值 人民币", + "资产 管理", + "▁R ein", + "▁Re in", + "▁en tre", + "▁ent re", + "▁entr e", + "ar ag", + "ara g", + "a rag", + "mon ton", + "mo nton", + "mont on", + "▁oste opor", + "▁osteo por", + "{ [", + "因 果", + "▁hospital ized", + "整个 人", + "整 个人", + "as an", + "asa n", + "a san", + "▁h ollow", + "▁hol low", + "工程 款", + "人均 价格", + "▁p ave", + "▁pa ve", + "▁pav e", + "▁Men tor", + "▁Ment or", + "▁C ONT", + "▁CO NT", + "▁CON T", + "▁ CONT", + "▁Se rum", + "▁Ser um", + "▁And rea", + "▁Andre a", + "▁Andr ea", + "争 论", + "庞大 的", + "庞 大的", + "▁preced ed", + "▁vic inity", + "▁S EM", + "▁SE M", + "▁ SEM", + "▁p unk", + "▁pun k", + "▁pu nk", + "▁ punk", + "em aker", + "ema ker", + "e maker", + "▁Gil bert", + "德 华", + "的 开发", + "[] []", + "[ ][]", + "To ast", + "▁c ate", + "▁ca te", + "▁cat e", + "ot oxin", + "oto xin", + "otox in", + "▁an notations", + "▁annotation s", + "▁annot ations", + "▁ annotations", + "Y L", + "▁sp ider", + "一 幅", + "悬 浮", + "千万 别", + "媒体 报道", + "▁la unches", + "▁launch es", + "▁form ulations", + "▁formulation s", + "杠 杆", + "纺织 品", + "nG ame", + "n Game", + "▁Bar onet", + "▁Baron et", + "▁ 行政区", + "nTax onomy", + "In ternational", + "Inter national", + "▁W I", + "▁ WI", + "av ier", + "avi er", + "初 次", + "酵 母", + "都不 知道", + "都 不知道", + "▁a dap", + "▁ad ap", + "▁re boot", + "▁reb oot", + "电 容", + "载 荷", + "▁Greg ory", + "谋 划", + "和国 际", + "和 国际", + "Sl ice", + "▁analog ous", + "▁contamin ated", + "均 在", + "▁hand made", + "天 真", + "▁b ore", + "▁bo re", + "▁bor e", + "ol utely", + "olute ly", + "▁Key board", + "▁ Keyboard", + "树 林", + "▁pilot s", + "▁pil ots", + "第一百三十三条之一 第一款", + "Im m", + "I mm", + "▁all ergy", + "▁allerg y", + "▁colon ies", + "实 名", + "农业 大学", + "药物 治疗", + "uc ing", + "u cing", + "F ollow", + "折 腾", + "Ni l", + "N il", + "▁k ay", + "▁ka y", + "nh elp", + "nhe lp", + "n help", + "SD L", + "S DL", + "▁SP DX", + "▁SPD X", + "▁H oney", + "▁Hon ey", + "▁Ho ney", + "▁Fant asy", + "工商 银行股份有限公司", + "工商银行 股份有限公司", + "re presentation", + "rep resentation", + "represent ation", + "an del", + "and el", + "ande l", + "a ndel", + "▁r ivals", + "▁ri vals", + "▁riv als", + "▁rival s", + "商 人", + "就 跟", + "▁答 案", + "▁ 答案", + "▁Pe dro", + "▁Ped ro", + "▁mal icious", + "▁adopt ing", + "▁adop ting", + "v l", + "而 生", + "▁cess ation", + "三 轮", + "主 页", + "第二百 二十", + "▁ed ema", + "▁S IM", + "▁SI M", + "▁ SIM", + "▁C han", + "▁Ch an", + "▁Cha n", + "▁ Chan", + "bi ased", + "bia sed", + "bias ed", + "nReturn s", + "n Returns", + "AS F", + "A SF", + "J ames", + "▁compet itor", + "▁competit or", + "▁discover ies", + "▁植物 界", + "need ed", + "nee ded", + "▁Cl one", + "▁Clo ne", + "▁ Clone", + "同 日", + "某某 于", + "某 某于", + "P riority", + "性 感", + "人体 的", + "人 体的", + "成长 的", + "成 长的", + "▁B lo", + "▁Bl o", + "Ent ries", + "ogen etic", + "ogene tic", + "oge netic", + "尘 埃", + "▁I nj", + "▁In j", + "▁y ang", + "▁ya ng", + "▁ yang", + "omy ces", + "list ing", + "lis ting", + "l isting", + "O U", + "举 动", + "con g", + "co ng", + "c ong", + "▁In ner", + "▁Inn er", + "▁ Inner", + "▁Sc ene", + "▁ Scene", + "mo tor", + "mot or", + "m otor", + "pur pose", + "p urpose", + "大 肠", + "的 分", + "sp ons", + "s pons", + "▁learn t", + "▁lear nt", + "▁e rosion", + "▁er osion", + "▁Har per", + "▁enthusi asts", + "▁enthusiast s", + "一 楼", + "总 有", + "ро в", + "р ов", + "在 进行", + "ir ie", + "iri e", + "i rie", + "▁cir rh", + "▁obst acle", + "▁aux iliary", + "▁Altern ative", + "▁Alter native", + "膀 胱", + "路 过", + "办理 减刑", + "▁mod ulated", + "▁modulate d", + "泄 露", + "▁at ten", + "▁att en", + "答 复", + "▁Te V", + "科学发展 观", + "▁aver aging", + ")$ $,", + ")$$ ,", + ") $$,", + "▁s ci", + "▁sc i", + "▁ sci", + "nE DIT", + "n EDIT", + "▁sa cred", + "▁sacr ed", + "▁sac red", + "ra ce", + "rac e", + "r ace", + "▁H yd", + "▁Hy d", + "▁s ensible", + "▁sens ible", + "oe lect", + "o elect", + "▁VE GF", + "▁ VEGF", + "▁ch ees", + "▁che es", + "▁J ump", + "▁Ju mp", + "移动 互联网", + "▁W ords", + "▁Word s", + "▁Wor ds", + "▁ Words", + "▁c oded", + "▁co ded", + "▁code d", + "▁cod ed", + "▁ coded", + "▁the med", + "▁th emed", + "▁them ed", + "▁theme d", + "▁ themed", + "▁weak ly", + "▁tr acing", + "▁tra cing", + "dr ug", + "d rug", + "▁B end", + "▁Be nd", + "▁Ben d", + "Number s", + "Num bers", + "N umbers", + "▁quarter ly", + "▁quart erly", + "▁prec ursors", + "▁precursor s", + "再 看", + "我 为", + "▁B ald", + "▁Bal d", + "▁Ba ld", + "sign ed", + "sig ned", + "s igned", + "▁In cludes", + "▁Include s", + "football er", + "外 套", + "度 数", + "廉 洁", + "box ed", + "as mine", + "asm ine", + "nBe ing", + "n Being", + "▁sh ells", + "▁shell s", + "▁shel ls", + "class ifiers", + "▁c ot", + "▁co t", + "▁ cot", + "▁dig estion", + "▁digest ion", + "▁rheumat oid", + "ut z", + "u tz", + "sl ack", + "▁Am endment", + "▁kilomet res", + "▁mental ly", + "▁ment ally", + "▁stand alone", + "▁ standalone", + "价 为", + "贴 吧", + "逆 转", + "▁C hip", + "▁Ch ip", + "▁Chi p", + "▁ Chip", + "▁dam n", + "▁da mn", + "Com pare", + "Comp are", + "Compar e", + "干 货", + "的值 是", + "Pat ch", + "P atch", + "▁a mel", + "▁am el", + "▁ amel", + "▁Tr uck", + "他 又", + "针对 性的", + "针对性 的", + "▁custom s", + "▁cust oms", + "▁K or", + "▁Ko r", + "▁le aks", + "▁leak s", + "提供在线 菜单", + "▁ 杰", + "还不 是", + "还 不是", + "师范 学院", + "▁cost umes", + "▁costume s", + "地 段", + "适合 自己的", + "▁Ret rieved", + "▁g estation", + "▁ge station", + "▁gest ation", + "满 分", + "▁Indones ian", + "▁Indonesia n", + "涂 层", + "as ide", + "asi de", + "a side", + "▁pen etr", + "▁penet r", + "▁hard wood", + "干 脆", + "中国 建设", + "▁step ping", + "▁ste pping", + "▁immun ological", + "▁immuno logical", + "▁immunologic al", + "也 得", + "发展 趋势", + "尚 有", + "榜 单", + "怎么 看", + "Http Client", + "大 蒜", + "视 听", + "▁ 穿越", + "List Node", + "▁in ception", + "▁ 梅", + "长度 为", + "长 度为", + "▁F leet", + "▁Fle et", + "▁e aten", + "▁eat en", + "双 床", + "▁Tri angle", + "▁ther apeutics", + "▁therapeutic s", + "是 基于", + "▁J ur", + "▁Ju r", + "▁Bul let", + "▁Bull et", + "我 才", + "▁R R", + "▁ RR", + "▁d ynasty", + "▁Fin dings", + "▁Find ings", + "▁Finding s", + "▁Mod eling", + "▁Model ing", + "▁Mode ling", + "▁Pan ama", + "▁Pa nama", + "星 空", + "要 以", + "拥有 的", + "拥 有的", + "阴 性", + "▁s olves", + "▁sol ves", + "▁solve s", + "▁solv es", + "卵 形", + "冠 心病", + "ar mac", + "arm ac", + "arma c", + "村 村民委员会", + "▁c yan", + "▁cy an", + "▁enrich ment", + "山 大", + "胶 原", + "▁特 点", + "▁ 特点", + "ar xiv", + "Build ing", + "非常 有", + "非 常有", + "是这样 的", + "是 这样的", + "进行 调查", + "▁te tra", + "▁tet ra", + "▁tetr a", + "平 整", + "▁内 置", + "▁ 内置", + "屋 顶", + "nr es", + "nre s", + "n res", + "▁H ip", + "▁Hi p", + "一审 法院", + "ow ing", + "o wing", + "▁sp ans", + "▁span s", + "▁spa ns", + "display Name", + "和 信息化", + "▁第 一", + "▁ 第一", + "哪 一个", + "▁teen age", + "Vari ables", + "Variable s", + "▁Ant arctic", + "▁t ed", + "▁te d", + "▁ ted", + "本案按 撤诉处理", + "▁sp ermat", + "▁sperm at", + "▁sper mat", + "出 货", + "明 清", + "以外 的", + "以 外的", + "▁r im", + "▁ri m", + "▁ rim", + "铜 陵", + "el len", + "ell en", + "elle n", + "▁sw immers", + "▁swim mers", + "▁swimmer s", + "▁ 飞", + "在 与", + "▁ 网站", + "新 材料", + "▁t ors", + "▁to rs", + "▁tor s", + "CH ANGE", + "▁d arker", + "▁dark er", + "▁dar ker", + "nG overnment", + "▁Contin uous", + "累 了", + "um ption", + "ump tion", + "压 抑", + "尚 书", + "新 世纪", + "um ph", + "ump h", + "u mph", + "▁o nCreate", + "▁on Create", + "▁ onCreate", + "雨 水", + "▁Comb ined", + "▁Combin ed", + "▁Combine d", + "一 并", + "的 运动", + "▁b end", + "▁be nd", + "▁ben d", + "▁int uition", + "去 皮", + "原告 要求被告", + "asset id", + "asse tid", + "▁label led", + "▁lab elled", + "▁ labelled", + "再 一次", + "▁Gr ass", + "▁Gra ss", + "逐 一", + "的 形成", + "olec ules", + "olecule s", + "再次提出 执行申请", + "iv ot", + "ivo t", + "▁S ue", + "▁Su e", + "oc hem", + "och em", + "oche m", + "o chem", + "K K", + "刘 海", + "会 很", + "一个 大", + "一 个大", + "还 记得", + "▁O re", + "▁Or e", + "ul tan", + "ult an", + "优惠 券", + "nT EST", + "n TEST", + "▁fa una", + "re start", + "rest art", + "Inter ceptor", + "一 所", + "吃 苦", + "呵 护", + "起 始", + "ri mp", + "rim p", + "r imp", + "nEn joy", + "▁Bar ack", + "▁Ba rack", + "▁所属 运动队", + "Per missions", + "Permission s", + "Perm issions", + "▁rid iculous", + "亚 军", + "▁um bre", + "▁umb re", + "报 请", + "▁M BA", + "▁MB A", + "▁ MBA", + "▁\\\\ |", + "▁ \\\\|", + "你会 发现", + "你 会发现", + "放 进", + "') ;", + "' );", + "▁Ben nett", + "诉前 财产保全", + "▁ox idase", + "▁oxid ase", + "▁Trans lation", + "▁Transl ation", + "▁ Translation", + "小孩 子", + "小 孩子", + "的 思考", + "▁T aken", + "▁Take n", + "▁Ta ken", + "▁Tak en", + "nb efore", + "nbe fore", + "n before", + ":\\ ',", + ":\\' ,", + ": \\',", + "RE QUI", + "▁Di abetes", + "安 康", + "▁) ;", + "▁ );", + "到 这里", + "az ar", + "aza r", + "▁t amb", + "▁ta mb", + "▁tam b", + "▁Es sex", + "▁Ess ex", + "城 中", + "处 女", + "chn ical", + "chnic al", + "coh olic", + "cohol ic", + "放 过", + "▁harm ony", + "▁harmon y", + "▁k an", + "▁ka n", + "▁ kan", + "▁C reating", + "▁Creat ing", + "▁Cre ating", + "▁ Creating", + "▁emphas ized", + "▁emphasize d", + "▁ 毛", + "to ps", + "top s", + "t ops", + "▁\" \"\"", + "▁\"\" \"", + "▁ \"\"\"", + "小型 轿车", + "▁c ombo", + "▁com bo", + "▁comb o", + "歌 声", + "的手 机", + "的 手机", + "om ore", + "omo re", + "o more", + "进一步 加强", + "ident ified", + "▁H CC", + "▁HC C", + "▁W AY", + "▁WA Y", + "▁ WAY", + "▁dis closed", + "▁disclose d", + "一 刻", + "稀 释", + "好 朋友", + "nt on", + "nto n", + "n ton", + "▁c uff", + "▁cu ff", + "▁vir ulence", + "的 第", + "酸 性", + "aj e", + "a je", + "只剩 下", + "只 剩下", + "相关 性", + "泄 漏", + "IV ES", + "IVE S", + "缅 甸", + "da p", + "d ap", + "▁ 这", + "▁de duct", + "▁ded uct", + "▁fol ded", + "▁fold ed", + "导 读", + "汽车 销售", + "▁g lam", + "▁gl am", + "ol ition", + "olit ion", + "oli tion", + "▁Con fed", + "▁Conf ed", + "Re lated", + "Rel ated", + "也 只是", + "ap est", + "ape st", + "apes t", + "▁D ame", + "▁Dam e", + "▁Da me", + "的 办学", + "西 红柿", + "ra pe", + "rap e", + "r ape", + "体制 改革", + ")\\ \\\\\\", + ")\\\\ \\\\", + ") \\\\\\\\", + "一 如", + "▁R N", + "▁ RN", + "梗 死", + "没 能", + "nAl tern", + "n Altern", + "nS ingles", + "nSing les", + "nSingle s", + "会 给", + "▁ Š", + "手 持", + "▁R i", + "一步 步", + "一 步步", + "▁h oly", + "▁hol y", + "▁ho ly", + "z k", + "就 更", + "减刑 后", + "应有 的", + "应 有的", + "Man ag", + "Ma nag", + "M anag", + "un ordered", + "append Child", + "发生 变化", + "▁threshold s", + "说 你", + "▁Sus sex", + "印 尼", + "矿 产", + "▁fire f", + "▁fi ref", + "▁fir ef", + "valid ators", + "validator s", + "▁G ates", + "▁Ga tes", + "▁Gate s", + "▁Gat es", + "▁E nsure", + "▁Ens ure", + "老 爷", + "展现 了", + "平方差 公式", + "▁teen agers", + "▁teenager s", + "▁teenage rs", + "涌 现", + "Mi r", + "M ir", + "pl ants", + "plant s", + "plan ts", + "jen kins", + "▁Re ason", + "▁ Reason", + "▁Un known", + "▁ Unknown", + "▁check list", + "可以 看", + "▁G RE", + "▁GR E", + "▁ GRE", + "▁mist aken", + "▁mistake n", + "▁cur iosity", + "al ex", + "ale x", + "a lex", + "教学 质量", + "▁th oracic", + "饼 干", + "▁dis cord", + "▁disc ord", + "▁ discord", + "带 宽", + "摇 滚", + "花 期", + "配 偶", + "可以 的", + "▁coh omology", + "ends with", + "W ay", + "ozyg ous", + "Url s", + "Ur ls", + "▁f res", + "▁fr es", + "▁fre s", + "▁Clark e", + "▁Clar ke", + "▁Crim inal", + "三日 内", + "三 日内", + "ov ol", + "ovo l", + "o vol", + "号 行政处罚决定", + "▁G ust", + "▁Gu st", + "▁his tone", + "▁hist one", + "▁hi stone", + "class List", + "▁count able", + "▁cou ntable", + "▁capac ities", + "经验 和", + "证明 了", + "证 明了", + "▁A RM", + "▁AR M", + "▁ ARM", + "▁mis leading", + "九 州", + "元 二次方程", + "▁G uang", + "▁Gu ang", + "做 完", + "爆 料", + "be ar", + "b ear", + "pa use", + "p ause", + "▁we bin", + "▁web in", + "▁L ibraries", + "▁e cc", + "▁ec c", + "▁ ecc", + "最喜欢 的", + "最 喜欢的", + "oubt edly", + "二〇一七年 十一月", + "二〇一七年十一 月", + "二〇一七年十 一月", + "名 录", + "▁Kn ights", + "▁Knight s", + "▁perfect ion", + "▁perf ection", + "散 步", + "举办 了", + "代理 权限", + "▁Ash ley", + "▁get Name", + "▁ge tName", + "▁ getName", + "▁tr ailing", + "▁tra iling", + "▁trail ing", + "外 伤", + "ec o", + "e co", + "▁K end", + "▁Ke nd", + "▁Ken d", + "▁Ch uck", + "▁fuel s", + "▁fu els", + "▁e Bay", + "▁super visor", + "▁superv isor", + "nB as", + "n Bas", + "▁e ine", + "▁ein e", + "▁ eine", + "给我 的", + "给 我的", + "▁EL ISA", + "▁ ELISA", + "ym metric", + "自 私", + "紫外 线", + "▁T ips", + "▁Ti ps", + "▁Tip s", + "武 昌", + "▁ 案", + "容积 率", + "ic ides", + "ici des", + "icide s", + "之 称", + "▁b s", + "▁ bs", + "▁b ark", + "▁bar k", + "▁ba rk", + "▁cr ashed", + "▁crash ed", + "普 洱", + "药 材", + "淮安 市", + "淮 安市", + "Day s", + "Da ys", + "D ays", + "▁anti viral", + "▁antiv iral", + "▁Cy prus", + "▁f ighters", + "▁fight ers", + "▁fighter s", + "▁iso forms", + "▁isoform s", + "St ory", + "愿 景", + "月 饼", + "▁a o", + "▁ ao", + "已 缴纳", + "▁n eo", + "▁ne o", + "▁ neo", + "List s", + "Li sts", + "L ists", + "ew idth", + "e width", + "皮 革", + "on er", + "one r", + "o ner", + "nS uper", + "nSup er", + "n Super", + "▁Ca uchy", + "▁gl ance", + "▁dev iations", + "▁deviation s", + "▁N D", + "▁ ND", + "od erm", + "ode rm", + "oder m", + "▁Kash mir", + "▁sec uring", + "▁inher itance", + "▁inherit ance", + "绝对 是", + "公诉机关 指控被告人", + "公诉机关指控 被告人", + "▁M ovies", + "▁Movie s", + "低 压", + "ne ar", + "nea r", + "n ear", + "依法 适用", + "▁adip ose", + "预 定", + "▁Polit ics", + "nOver all", + "▁In stance", + "▁Inst ance", + "▁ Instance", + "▁Prob ably", + "▁direct ive", + "▁dir ective", + "▁ directive", + "我 之前", + "is ma", + "ism a", + "▁comb ustion", + "判 别", + "增 殖", + "May be", + "▁Red dit", + "▁ev oked", + "▁c rossover", + "▁cross over", + "每 组", + "沙 滩", + "nM ax", + "nMa x", + "n Max", + "nM el", + "nMe l", + "n Mel", + "他 认为", + "▁f oil", + "▁fo il", + "▁foi l", + "▁p rod", + "▁pro d", + "▁pr od", + "▁ prod", + "▁es ophageal", + "▁esophag eal", + "▁ esophageal", + "黄 油", + "我 记得", + "▁ 译者", + "▁Requ irements", + "山 林", + "镇 江", + "air es", + "ai res", + "aire s", + "a ires", + "巨 人", + "而 定", + "▁b p", + "▁ bp", + "我 坚信", + "▁U ttar", + "▁Ut tar", + "传 导", + "原 著", + "直线 与", + "▁T EXT", + "▁TE XT", + "▁ TEXT", + "▁Re place", + "▁ Replace", + "▁inv ites", + "▁invite s", + "企 图", + "只 在", + "▁H ours", + "▁Ho urs", + "▁Hour s", + "▁Hou rs", + "▁ Hours", + "上海浦东 发展", + "▁Not tingham", + "直 达", + "乳腺 癌", + "也是 一种", + "也是一 种", + "也 是一种", + "病 原", + "▁k not", + "▁kn ot", + "▁check point", + "▁ checkpoint", + "龙 门", + "▁R EG", + "▁RE G", + "▁ REG", + "完全 没有", + "▁am endment", + "▁amend ment", + "▁c ong", + "▁con g", + "▁co ng", + "▁ cong", + "▁l oses", + "▁lo ses", + "▁lose s", + "▁los es", + "原 神", + "OT A", + "O TA", + "▁R B", + "▁ RB", + "if inals", + "ifi nals", + "i finals", + "▁An imation", + "▁ Animation", + "× (", + "前 缀", + "▁PR OC", + "▁PRO C", + "▁ PROC", + "▁V O", + "▁ VO", + "▁S ac", + "▁Sa c", + "Un able", + "U nable", + "sm ooth", + "源 市", + "窃 取", + "车 祸", + "IC U", + "I CU", + "▁attenu ation", + "▁atten uation", + "oo s", + "o os", + "▁H b", + "▁ Hb", + "每年 的", + "每 年的", + "环境 变量", + "irect ional", + "irection al", + "▁disc retion", + "▁discre tion", + "▁discret ion", + "▁ С", + "安 德", + "date r", + "da ter", + "dat er", + "d ater", + "; <", + "▁ 사", + "光 芒", + "▁ver se", + "▁vers e", + "▁ verse", + "▁Inf antry", + "▁Vari ables", + "▁Variable s", + "▁ Variables", + "手 套", + "挫 折", + "通 电", + "Go d", + "G od", + "▁O g", + "▁K ra", + "▁Kr a", + "osc ope", + "o scope", + "催 讨", + "转型 升级", + "▁op posing", + "H M", + "▁dep ths", + "▁depth s", + "Jo h", + "J oh", + "ts x", + "t sx", + "▁tw ins", + "▁twin s", + "▁firm ware", + "阻 塞", + "不予 执行", + "▁int ram", + "▁intr am", + "▁intra m", + "▁r ou", + "▁ro u", + "▁ rou", + "▁W ool", + "▁Wo ol", + "Ro ck", + "R ock", + "值得 一提", + "▁instruct ors", + "▁instructor s", + "王 爷", + "nF l", + "n Fl", + "▁l emma", + "▁le mma", + "分 校", + "开 办", + "测 绘", + "的 单", + "he lf", + "hel f", + "h elf", + "Pa per", + "P aper", + "▁C had", + "▁Ch ad", + "▁Cha d", + "▁N est", + "▁Ne st", + "nA nn", + "nAn n", + "n Ann", + "U buntu", + "prom ise", + "p romise", + "ko m", + "k om", + "al an", + "ala n", + "a lan", + "icular ly", + "icul arly", + "▁de af", + "▁glut athione", + "开 出", + "▁C ay", + "▁Ca y", + "▁Joh annes", + "▁Johann es", + "金融 借款合同纠纷一案中", + "金融借款合同纠纷一案 中", + "▁a min", + "▁am in", + "▁ amin", + "▁Har dy", + "▁Hard y", + "▁cl ues", + "▁clue s", + "▁sculpt ures", + "▁sculpture s", + "积 的", + "是 这样", + "yl inder", + "▁fil ming", + "▁film ing", + "▁F abric", + "▁Fab ric", + "▁Sec ure", + "▁ Secure", + "户 数", + "萨 克", + "ft s", + "f ts", + "print ed", + "终结本次执行程序 后", + "▁contin uum", + "▁continu um", + "遇到 的", + "遇 到的", + "陌生 人", + "▁} $\\", + "▁}$ \\", + "▁ }$\\", + "▁j Query", + "▁ jQuery", + "▁lum bar", + "ec c", + "e cc", + "cal ls", + "call s", + "c alls", + "外国 人", + "外 国人", + "▁B le", + "▁Bl e", + "爸爸 妈妈", + "▁ 她", + "追 溯", + "大力 发展", + "xl abel", + "x label", + "Nov ember", + "N ovember", + ")) **(", + "))* *(", + "))** (", + ") )**(", + "▁' ';\\", + "▁'' ;\\", + "▁as sass", + "▁ass ass", + "▁G ateway", + "▁Gate way", + "▁Gat eway", + "▁ Gateway", + "▁ 技术", + "▁mon ot", + "▁mo not", + "▁mono t", + "▁Star ted", + "▁Start ed", + "▁ Started", + "▁cre ators", + "▁creat ors", + "▁creator s", + "▁commut ative", + "孙 某", + "无 形", + "开启 了", + "cr op", + "cro p", + "c rop", + "不仅 可以", + "基准 利率", + "gu ild", + "gui ld", + "g uild", + "比 重", + "CUR RENT", + "bound ed", + "b ounded", + "▁Gener ally", + "▁General ly", + "▁del iber", + "▁delib er", + "▁inc umbent", + "天 内", + "([ [", + "( [[", + "和 文化", + "请求 依法", + "ag ged", + "agg ed", + "的 抗", + "不合 理", + "不 合理", + "▁A RT", + "▁AR T", + "▁ ART", + "▁fr ustration", + "▁frustr ation", + "▁sh eer", + "▁she er", + "▁fun ctor", + "▁func tor", + "▁funct or", + "试 着", + "▁o lf", + "▁ol f", + "▁ olf", + "奥林 匹", + "的事 业", + "的 事业", + "移动 电话", + "▁Max well", + "ion es", + "io nes", + "ione s", + "i ones", + "▁S age", + "▁Sa ge", + "▁Sag e", + "at is", + "ati s", + "a tis", + "nInst all", + "nIns tall", + "n Install", + "管辖 权的", + "管辖权 的", + "▁wr aps", + "▁wrap s", + "▁secret ed", + "▁fellow ship", + "▁fellows hip", + "▁ 奥", + "弹 出", + "开幕 式", + "是一 项", + "是 一项", + "dec lar", + "decl ar", + "▁in die", + "▁ind ie", + "▁ �", + "规 程", + "▁co hes", + "▁coh es", + "▁per former", + "▁perform er", + "▁perfor mer", + "走 廊", + "▁pi gment", + "▁pig ment", + "tt ype", + "tty pe", + "t type", + "▁apolog ize", + "津 贴", + "代表 着", + "et ype", + "ety pe", + "e type", + "假释案件 具体应用法律", + "assert False", + "~~~~~~~~ ~~~~~~~~", + "一 书", + "都比 较", + "都 比较", + "ce il", + "et ed", + "ete d", + "e ted", + "th ed", + "the d", + "t hed", + "▁P ilot", + "▁Pi lot", + "▁Pil ot", + "▁E nable", + "▁En able", + "▁ Enable", + "事 了", + "av iolet", + "▁Cin ema", + "成 份", + "▁R D", + "▁ RD", + "pr ec", + "pre c", + "p rec", + "▁happ ily", + "▁l enders", + "▁len ders", + "▁lender s", + "▁lend ers", + "平安 银行股份有限公司", + "晓 东", + "路 灯", + "购买 的", + "购 买的", + "nC or", + "nCo r", + "n Cor", + "Table s", + "Tab les", + "Ta bles", + "T ables", + "ograph ers", + "ographer s", + "▁cort isol", + "工业 区", + "▁S ounds", + "▁Sound s", + "▁us able", + "▁ usable", + "收益 率", + "现实 中", + "▁con ventions", + "▁convention s", + "gu est", + "gue st", + "▁Leon ard", + "详 解", + "▁sur fact", + "▁surf act", + "ri le", + "ril e", + "r ile", + "nC ome", + "nCom e", + "nCo me", + "n Come", + "五 花", + "MB A", + "M BA", + "保全 费", + "兰州 市", + "兰 州市", + "请 登录", + "▁\\' \\',", + "▁\\'\\' ,", + "▁\\'\\ ',", + "▁ \\'\\',", + "▁ad her", + "国家 标准", + "哮 喘", + "CN N", + "C NN", + "▁剧 情", + "▁ 剧情", + "▁ind ul", + "▁indu l", + "cl osing", + "el eration", + "ele ration", + "eler ation", + "陵 区", + "然后 就", + "然 后就", + "认定 事实清楚", + "认定事实 清楚", + "▁as semble", + "▁assembl e", + "▁desper ate", + "▁grand children", + "地 毯", + "▁S IG", + "▁SI G", + "▁ SIG", + "▁c av", + "▁ca v", + "found ed", + "f ounded", + "F U", + "h z", + "Pi pe", + "P ipe", + "am bia", + "amb ia", + "▁pl atinum", + "人 设", + "pr em", + "pre m", + "p rem", + "▁H ir", + "▁Hi r", + "变 种", + "换 货", + "Foo d", + "F ood", + "sk in", + "ski n", + "s kin", + "▁a ka", + "▁ak a", + "▁ aka", + "住 广东省", + "oc yan", + "一 二", + "致 敬", + "▁建 筑", + "▁ 建筑", + "和 支持", + "IM ARY", + "能 有", + "gc c", + "g cc", + "总 工会", + "▁N ike", + "▁Ni ke", + "▁Nik e", + "▁M ixed", + "▁Mix ed", + "▁Ident ification", + "▁ Identification", + "nCon tin", + "nCont in", + "n Contin", + "conn ections", + "connect ions", + "connection s", + "源 自", + "up e", + "u pe", + "了解 了", + "re ceived", + "receive d", + "Sup ported", + "Support ed", + "▁it erator", + "▁iter ator", + "▁ iterator", + "J un", + "两位 数", + "两 位数", + "▁re dd", + "▁r edd", + "▁red d", + "pr actice", + "pract ice", + "能 把", + "IS TS", + "IST S", + "I STS", + "▁c ens", + "▁ce ns", + "mo zilla", + "moz illa", + "m ozilla", + "想 做", + "铺 设", + "间 距", + "Da n", + "D an", + "只有 在", + "▁言情 小说", + "▁ 言情小说", + "条第一款 的规定", + "▁re viewer", + "▁review er", + "不 看", + "▁D art", + "▁Dar t", + "▁Da rt", + "▁t asting", + "▁tast ing", + "ar um", + "aru m", + "a rum", + "主任 医师", + "▁b iod", + "▁bi od", + "▁bio d", + "▁py lint", + "▁pyl int", + "▁account ability", + "澎 湃", + "钢 丝", + "▁c asp", + "▁ca sp", + "▁cas p", + "并按对方当事人 的人数", + "孢 子", + "局 的", + "本判决 生效后", + "本 判决生效后", + "火 腿", + "见 识", + "▁T P", + "▁ TP", + "▁s tab", + "▁st ab", + "属于 基础题", + "char set", + "chars et", + "长 征", + "▁N U", + "▁ NU", + "ha rt", + "har t", + "h art", + "▁Bi om", + "▁Bio m", + "ad emic", + "ade mic", + "adem ic", + "▁H amburg", + "▁Ham burg", + "▁art ifact", + "▁ artifact", + "▁hard core", + "官 兵", + "戒 指", + "以及 对", + "以 及对", + "nC onn", + "nCon n", + "nCo nn", + "n Conn", + "▁na ive", + "并无 不当", + "re try", + "ret ry", + "r etry", + "背 部", + "交通 便利", + "借款 期限", + "容留 他人", + "▁rec urring", + "精 湛", + "维 奇", + "▁m ont", + "▁mon t", + "▁mo nt", + "▁ mont", + "▁ 钟", + "抵 制", + "zz le", + "▁De tailed", + "▁Det ailed", + "▁Detail ed", + "深 厚", + "▁AD HD", + "▁P air", + "▁Pa ir", + "▁ Pair", + "olec ule", + "▁ex empt", + "砂 糖", + "没 那么", + "tf rac", + "t frac", + "▁over looking", + "▁overl ooking", + "▁overlook ing", + "万 像素", + "ex cel", + "exc el", + "ater ials", + "aterial s", + "▁S SH", + "▁SS H", + "▁ SSH", + "() ){\\", + "()) {\\", + "( )){\\", + "▁ex pr", + "▁exp r", + "▁ expr", + "▁S trip", + "▁St rip", + "▁Str ip", + "▁Stri p", + "▁ Strip", + "Dig ital", + "D igital", + "▁country side", + "NO NE", + "NON E", + "N ONE", + "▁Wh ats", + "▁What s", + "LD L", + "L DL", + "精彩 的", + "行政 村", + "中 日", + "ci a", + "c ia", + "▁L iv", + "▁Li v", + "▁sh ooter", + "▁shoot er", + "▁inter rupt", + "右 下", + "AM E", + "A ME", + "看不 见", + "看 不见", + "ye rs", + "yer s", + "y ers", + "▁Rob ot", + "▁Ro bot", + "▁ Robot", + "▁recover ing", + "▁ 把", + "你是 否", + "你 是否", + "tt i", + "t ti", + "nChar les", + "▁conv inc", + "nObject ive", + "nOb jective", + "▁ 关于", + "不成 立", + "不 成立", + "的网络 小说", + "的 网络小说", + "nout put", + "n output", + "▁tr ache", + "▁tra che", + "成 正", + "▁F est", + "▁Fe st", + "Check ed", + "▁arr hythm", + "将 该", + "▁F oo", + "▁Fo o", + "▁ Foo", + "ught y", + "ugh ty", + "本院 依职权", + "am ming", + "amm ing", + "金 龙", + "集 聚", + "wy n", + "w yn", + "▁}} \">\\", + "▁}}\" >\\", + "ut ility", + "util ity", + "u tility", + "▁cyt ometry", + "▁cyto metry", + "蛋 黄", + "最好 是", + "来 实现", + "▁l ime", + "▁li me", + "▁lim e", + "▁ lime", + "er nels", + "ern els", + "ernel s", + "op enia", + "ope nia", + "open ia", + "▁incre mental", + "▁increment al", + "ö n", + "爱 我", + "▁L emma", + "▁Le mma", + "▁Lem ma", + "▁tox ins", + "▁toxin s", + "办 案", + "jd bc", + "j dbc", + "er many", + "erm any", + "erman y", + "▁local host", + "▁ localhost", + "外 星", + "nH ot", + "n Hot", + "▁diss ociation", + "HO T", + "H OT", + "▁incon ven", + "{{ '", + "{ {'", + "寝 室", + "收 敛", + "艺术 的", + "before Each", + "▁Hend erson", + "▁share holders", + "▁shareholder s", + "▁socio economic", + "▁elect rochemical", + "▁electro chemical", + "▁electr ochemical", + "▁electroc hemical", + "用 自己的", + "重 度", + "▁电 源", + "▁ 电源", + "▁me rit", + "▁mer it", + "k B", + "反 诉", + "节 的", + "香 油", + "To ur", + "T our", + "所以 我很", + "所以我 很", + "▁reconstruct ed", + "香 水", + "方法 是", + "UI Kit", + "▁C MOS", + "▁CM OS", + "el ected", + "elect ed", + "e lected", + "▁ δ", + "对象 的", + "▁l ent", + "▁le nt", + "▁len t", + "▁moderate ly", + "▁moder ately", + "三 层", + "腰 椎", + "▁G S", + "▁ GS", + "医疗 保险", + "研究 表明", + "▁neg lected", + "▁neglect ed", + "革 新", + "中国特色 社会主义", + "并且 在", + "并 且在", + "Com pleted", + "Comp leted", + "Complete d", + "▁De pression", + "▁Dep ression", + "知 晓", + "外国 语", + "ti on", + "t ion", + "ys ql", + "y sql", + "证据 证明", + "▁never theless", + "ur nal", + "urn al", + "▁Hen ri", + "汇 集", + "苏 宁", + "麻 将", + "/** /*", + "nr un", + "n run", + "研究 人员", + "▁book mark", + "▁initial ized", + "▁initialize d", + "▁ initialized", + "G Y", + "LE FT", + "L EFT", + "▁dipl omatic", + "▁diplom atic", + "▁diploma tic", + "▁diplomat ic", + "干 了", + "潜 水", + "li s", + "l is", + "tr ade", + "tra de", + "trad e", + "▁c aut", + "▁ca ut", + "node js", + "▁ref urb", + "的 压力", + "R atio", + "fl are", + "f lare", + "工程 技术", + "职业 技能", + "▁小说 进度", + "▁ad here", + "▁adher e", + "▁Her bert", + "v w", + "晚 报", + "{} )", + "{ })", + "ub ation", + "uba tion", + "第二百四十 三条", + "▁malign ancies", + "手 臂", + "\"] )", + "\" ])", + "▁l iner", + "▁li ner", + "▁line r", + "▁lin er", + "▁ liner", + "OPT IONS", + "矿物 质", + "矿 物质", + "用 脚", + "(\" {", + "( \"{", + "sg i", + "s gi", + "ne very", + "never y", + "n every", + "▁t owers", + "▁to wers", + "▁tow ers", + "▁tower s", + "In ventory", + "耽 误", + "快乐 的", + "▁T um", + "▁Tu m", + "▁W R", + "▁ WR", + "市场 监管", + "nCh ris", + "n Chris", + "▁Bas ically", + "▁Basic ally", + "强 奸", + "抽 烟", + "山县 人民法院", + "山 县人民法院", + "▁zb MATH", + "uc a", + "u ca", + "▁其 五", + "er tz", + "ert z", + "▁Moroc co", + "PP T", + "P PT", + "届 人民代表大会", + "硅 胶", + "▁ 面积", + "▁c itation", + "▁cit ation", + "▁ citation", + "IT HOUT", + "ITH OUT", + "▁differ ing", + "▁diff ering", + "ah r", + "a hr", + "▁M HC", + "▁MH C", + "▁C able", + "▁Ca ble", + "▁Cab le", + "▁Wall ace", + "▁clear er", + "▁pro gesterone", + "职员 表", + "▁J in", + "▁Ji n", + "en sit", + "ens it", + "为 证", + "格 里", + "▁c age", + "▁ca ge", + "locfile id", + "▁Reg arding", + "一 举", + ")} }", + ") }}", + "gr an", + "gra n", + "g ran", + "镇 人民政府", + "▁A reas", + "▁Ar eas", + "▁Are as", + "▁Area s", + "群 里", + "肩 膀", + "申请执行人 亦", + "好 在", + "配 电", + "∴ \\\\", + "▁U UID", + "▁ UUID", + "▁bo xing", + "▁box ing", + "全 员", + "问 他", + "FI L", + "F IL", + "▁e osin", + "▁piv otal", + "▁pivot al", + "▁Conc rete", + "作 案", + "▁w eed", + "▁we ed", + "▁ weed", + "县人民检察院 以", + "县 人民检察院以", + "att ering", + "atter ing", + "结案 若干问题的意见", + "X C", + "▁hist ories", + "▁histor ies", + "▁hi stories", + "上 世纪", + "当地 的", + "当 地的", + "曾经 的", + "▁D ell", + "▁De ll", + "▁Del l", + "sc hemas", + "schema s", + "sch emas", + "sche mas", + "清 凉", + "金 水", + "台 区", + "▁f lew", + "▁fl ew", + "▁fle w", + "▁n y", + "▁ ny", + "等 症状", + "讨论 了", + "ts witch", + "t switch", + "▁Ch icken", + "▁Chic ken", + "▁H ait", + "▁Ha it", + "▁Ge netic", + "▁Gen etic", + "▁Gene tic", + "▁orche stra", + "▁orchestr a", + "ID D", + "I DD", + "说明 了", + "说 明了", + "▁Nut rition", + "更新 的", + "更 新的", + "▁主要 作品", + "▁ 主要作品", + "n assert", + "设 想", + "ae a", + "a ea", + "iy a", + "i ya", + "分析 师", + "全国 联保", + "现在 已经", + "▁餐馆 类型", + "▁fa ults", + "▁fault s", + "} <", + "带 你", + "胃 肠", + "农民 人均纯收入", + "▁Agricult ural", + "▁Agr icultural", + "矿 石", + "不正 确", + "不 正确", + "水平 和", + "水 平和", + "ys es", + "yse s", + "y ses", + "▁N athan", + "▁Na than", + "▁Nat han", + "▁Nath an", + "▁hazard ous", + "回 执", + "有 小", + "首 饰", + "预交 上诉案件受理费", + "▁с т", + "▁ ст", + "Ti ck", + "T ick", + "nE NV", + "n ENV", + "nN ever", + "nNe ver", + "n Never", + "re store", + "rest ore", + "▁Lou ise", + "▁Louis e", + "▁poll ut", + "ieve ment", + "iev ement", + "活 血", + "起 着", + "es ch", + "esc h", + "e sch", + "np lot", + "npl ot", + "n plot", + "▁ill eg", + "▁il leg", + "地 在", + "发展 规划", + "at ype", + "aty pe", + "a type", + "▁graft s", + "▁gra fts", + "Type d", + "Typ ed", + "Ty ped", + "T yped", + "▁Ur ugu", + "▁euro s", + "▁eu ros", + "▁F actors", + "▁Factor s", + "▁Fa ctors", + "▁Fact ors", + "共同 努力", + "ri ans", + "ria ns", + "rian s", + "r ians", + "yl ate", + "yla te", + "y late", + "▁K rish", + "▁Kr ish", + "▁Kris h", + "▁com posites", + "▁compos ites", + "▁composite s", + "与 我", + "增强 了", + "无 机", + "致 辞", + "AS P", + "A SP", + "二 进制", + "/\\ ',", + "/\\' ,", + "/ \\',", + "丰富 多彩", + "▁coh orts", + "▁cohort s", + "doc uments", + "document s", + "▁celebr ations", + "▁celebration s", + "▁re agents", + "▁reagent s", + "恶 化", + "还 行", + "aa a", + "a aa", + "增长 率", + "fe st", + "f est", + "ri dor", + "rid or", + "r idor", + "▁bl onde", + "▁blo nde", + "社 科", + "留下 的", + "留 下的", + "▁Out look", + "巴 士", + "教育 和", + "View er", + "nRe cent", + "nRec ent", + "n Recent", + "▁faith ful", + "▁summar ize", + "V o", + "▁ 수", + "不 完", + "勾 选", + "▁ 人均价格", + "nCh inese", + "n Chinese", + "帷 幕", + "nM art", + "nMar t", + "nMa rt", + "n Mart", + "ro ots", + "root s", + "organ isms", + "伪 造", + "向 阳", + "ee per", + "eep er", + "e eper", + "▁Y ugoslav", + "▁head line", + "妇 联", + "Role s", + "Ro les", + "R oles", + "nN ice", + "att ack", + "atta ck", + "file Path", + "▁Treas ury", + "▁real ised", + "▁realise d", + "▁Ro chester", + "▁Roc hester", + "▁det ailing", + "▁detail ing", + "▁ 老", + "又 被", + "字 的", + "自 考", + "▁multiple x", + "▁multi plex", + "▁multip lex", + "▁ 汪", + "一 说", + "议 题", + "青 云", + "Bo b", + "B ob", + "GM P", + "G MP", + "法定代表人 刘", + "▁c anine", + "▁can ine", + "▁ca nine", + "▁implant ed", + "▁impl anted", + "le ston", + "les ton", + "lest on", + "l eston", + "新 娘", + "▁ §", + "半径 为", + "建立 起", + "▁pol ish", + "▁po lish", + "Conn ected", + "Connect ed", + "党 风", + "反 向", + "ok emon", + "oke mon", + "▁Gen eva", + "▁Gene va", + "▁re called", + "▁rec alled", + "▁recall ed", + "少年 儿童", + "▁R ating", + "▁Ra ting", + "▁Rat ing", + "▁ Rating", + "冰 糖", + "/_ _", + "/ __", + "Ba g", + "B ag", + "审定 委员会", + "▁traged y", + "]$ $", + "] $$", + "但是 他", + "但 是他", + ")] ,", + ") ],", + "▁At las", + "▁Atl as", + "▁Ti bet", + "▁Tib et", + "落 到", + "雇 佣", + "▁N V", + "▁ NV", + "▁b ees", + "▁be es", + "▁bee s", + "专业 委员会", + "am iliar", + "amil iar", + "永 不", + "▁Wars aw", + "n metadata", + "▁rel iably", + "▁WH AT", + "pat terns", + "pattern s", + "p atterns", + "位 是", + "式 中", + "立即 发生法律效力", + "立 即发生法律效力", + "language s", + "l anguages", + "Trans former", + "Transform er", + "▁[ #", + "▁ [#", + "▁analy zes", + "▁analyz es", + "▁analyze s", + "▁mis match", + "▁mism atch", + "▁Sh ape", + "▁Sha pe", + "▁ Shape", + "▁space craft", + "▁spac ecraft", + "英 格兰", + "原告 主张", + "▁j ets", + "▁je ts", + "▁jet s", + "▁Pl astic", + "▁Plas tic", + "▁panc reas", + "乔 治", + "峡 谷", + "纸 质", + "▁aw ful", + "交 代", + "…… ”", + "▁ 楼盘", + "th ag", + "tha g", + "bol ds", + "bold s", + "b olds", + "nL ooks", + "nLook s", + "nLo oks", + "▁en cephal", + "▁ encephal", + "为 首", + "乐 团", + "遇 上", + "不能 成立", + "or man", + "orm an", + "nEval uate", + "n Evaluate", + "黄 山", + "是一 样的", + "是 一样的", + "nInt roduction", + "n Introduction", + "▁p are", + "▁par e", + "▁pa re", + "▁ pare", + "混 沌", + "lic an", + "li can", + "l ican", + "Wal let", + "Wall et", + "▁\\' \\',\\", + "▁\\'\\' ,\\", + "▁\\'\\ ',\\", + "▁\\'\\', \\", + "atern ion", + "▁CON TRIBUTORS", + "Code s", + "Co des", + "Cod es", + "C odes", + "▁And rews", + "▁Andrew s", + "▁Andre ws", + "▁Andr ews", + "▁Brad ley", + "▁repe ating", + "▁repeat ing", + "三 明", + "nT ur", + "n Tur", + "yn ec", + "y nec", + "▁unique ness", + "▁uniqu eness", + "劳动 关系", + "交纳 案件受理费", + "▁Exec ute", + "▁ Execute", + "▁renov ated", + "光 照", + "购 置", + "nP rim", + "nPr im", + "n Prim", + "▁H ide", + "▁Hi de", + "▁ Hide", + "▁special izing", + "▁aden ocarcinoma", + "im ento", + "ime nto", + "iment o", + "imen to", + "对 付", + "洛 克", + "▁ 史", + "互 通", + "探 险", + "比利 时", + "to ur", + "t our", + "▁k ills", + "▁kil ls", + "▁kill s", + "review ed", + "学 姐", + "▁B eer", + "▁Be er", + "▁Bee r", + "珠海 市", + "珠 海市", + "▁C ho", + "▁Ch o", + "▁ Cho", + "▁B one", + "▁Bo ne", + "▁Bon e", + "cri bing", + "crib ing", + "▁Mar athon", + "旺 盛", + "讽 刺", + "In vest", + "Inv est", + "▁In door", + "▁Ind oor", + "▁ П", + "潇 洒", + "▁[ …", + "▁C um", + "▁Cu m", + "an son", + "ans on", + "a nson", + "▁cl oning", + "▁m otions", + "▁mot ions", + "▁motion s", + "▁pres enter", + "▁present er", + "▁Partners hip", + "▁Partner ship", + "▁Indian apolis", + "是一 些", + "是 一些", + "nC am", + "n Cam", + "▁par ab", + "▁para b", + "▁pa rab", + "Ch ecker", + "Check er", + "不 肯", + "其 后", + "微量 元素", + "▁l obe", + "▁lo be", + "▁lob e", + "▁m aths", + "▁mat hs", + "▁math s", + "▁ma ths", + "构 筑", + "▁cand le", + "▁可 以", + "▁ 可以", + "nsup ported", + "n supported", + "点 是", + "还 想", + "▁c hol", + "▁ch ol", + "▁cho l", + "▁ chol", + "▁remark ably", + "目前 已", + "虽然 是", + "▁[ ])\\", + "▁[] )\\", + "▁[]) \\", + "▁ [])\\", + "▁o dor", + "▁od or", + "▁ odor", + ",$ $", + ", $$", + "Be r", + "B er", + "▁ex ponents", + "▁exponent s", + "手机 的", + "手 机的", + "▁U FC", + "▁b oom", + "▁bo om", + "end foreach", + "不 全", + "▁free style", + "▁fre estyle", + "大 发", + "桥 区", + "发生 后", + "▁T RA", + "▁TR A", + "▁ TRA", + "▁G ross", + "▁Gr oss", + "▁Gro ss", + "▁e last", + "▁el ast", + "一 门", + "大 叔", + "环境 和", + "介绍 一下", + "对其 进行", + "char At", + "打 游戏", + "房屋 租赁", + "搜 狐", + "的 证言", + "Key board", + "减 排", + "较 差", + "每天 都", + "or is", + "ori s", + "o ris", + "计算 能力", + "ms gs", + "msg s", + "▁C ock", + "▁Co ck", + "▁Coc k", + "不等式 的解", + "不等式的 解", + "▁s ourced", + "▁source d", + "▁sour ced", + "而 去", + "命题 的", + "学会 了", + "▁re ef", + "xf f", + "x ff", + "▁tum ours", + "▁tumour s", + "mb H", + "te k", + "t ek", + "图形 的", + "图 形的", + "▁col oured", + "▁colour ed", + "好 几", + "是一 所", + "是 一所", + "▁ac rylic", + "物业服务 合同纠纷一案中", + "物业服务合同纠纷一案 中", + "重 力", + "Pe ter", + "Pet er", + "P eter", + "▁tow el", + "▁mart ial", + "将 为", + "oy l", + "o yl", + "等 离子", + "▁S ett", + "▁Se tt", + "▁Set t", + "▁S andy", + "▁San dy", + "▁Sand y", + "强 国", + "海 燕", + "颈 部", + ")\\ '", + ") \\'", + "ac qu", + "di n", + "d in", + "nP urpose", + "▁Par allel", + "▁ Parallel", + "共 用", + "一种 是", + "不用 担心", + "▁c ares", + "▁car es", + "▁care s", + "▁ca res", + "▁B elt", + "▁Be lt", + "▁Bel t", + "▁overs ight", + "头 晕", + "清 香", + "纵 坐标", + "风景 区", + "风 景区", + "nS tat", + "nSt at", + "nSta t", + "n Stat", + "cult ural", + "c ultural", + "派 的", + "nint er", + "ni nter", + "nin ter", + "n inter", + "▁phot ons", + "▁photo ns", + "▁photon s", + "工商行政管理局 登记成立", + "Token s", + "Tok ens", + "Per formance", + "以 致", + "必须 是", + "im edia", + "i media", + "▁h atch", + "▁hat ch", + "▁St ress", + "▁Str ess", + "▁Stre ss", + "丝 毫", + "两 张", + "▁P orter", + "▁Port er", + "▁Por ter", + "师 大", + "ci ble", + "c ible", + "▁me nus", + "▁men us", + "▁menu s", + "▁differ entially", + "▁different ially", + "▁differential ly", + "提 及", + "▁成 语", + "▁ 成语", + "线 城市", + "▁Jo el", + "▁Joe l", + "▁I Enumerable", + "▁ IEnumerable", + "dev Dependencies", + "入 境", + "山 庄", + "▁Mar co", + "▁Marc o", + "oth ermal", + "other mal", + "otherm al", + "o thermal", + "号 执行", + "▁HE AD", + "▁ HEAD", + "Dan iel", + "D aniel", + "▁Manit oba", + "▁S ullivan", + "会 把", + "理 科", + "心理 咨询", + "法定代表人 陈", + "▁success es", + "▁succ esses", + "▁ 登场", + "项目 中", + "ull ah", + "ulla h", + "房 贷", + "虽 说", + "会 觉得", + "▁y outube", + "▁you tube", + "▁ youtube", + "NO N", + "N ON", + "▁Sim pson", + "▁normal ization", + "加 分", + "因 家庭", + "方式 的", + "方 式的", + "an tha", + "ant ha", + "anth a", + "nR eal", + "nRe al", + "n Real", + "▁H off", + "▁Ho ff", + "▁Ab bey", + "▁Abb ey", + "▁d olor", + "▁do lor", + "▁dol or", + "▁h edge", + "▁hed ge", + "Contract s", + "oc ellular", + "o cellular", + "▁c ouncill", + "▁counc ill", + "▁council l", + "nS ir", + "▁C AT", + "▁CA T", + "▁ CAT", + "▁famil ial", + "bold symbol", + "bolds ymbol", + "它 可以", + "▁北京 市", + "▁ 北京市", + "而来 的", + "而 来的", + "con straints", + "constraint s", + "▁Fellow ship", + "技术 与", + "炸 弹", + "不得 不说", + "不得不 说", + "中国 银行", + "com mercial", + "▁inter acts", + "▁interact s", + "一 到", + "马 云", + "ac id", + "aci d", + "a cid", + "晋 级", + "▁life long", + "▁lif elong", + "▁be verages", + "▁beverage s", + "安装 的", + "安 装的", + "am ines", + "amin es", + "amine s", + "ami nes", + "▁jud ged", + "▁judge d", + "▁judg ed", + "中 了", + "▁W hole", + "▁Wh ole", + "▁Who le", + "▁veloc ities", + "Boolean Field", + "吸 食", + "多 重", + "靠 着", + "这几 年", + "这 几年", + "▁N atal", + "▁Na tal", + "▁Nat al", + "▁M é", + "el ize", + "eli ze", + "总 建筑面积", + "nM ethod", + "n Method", + "▁alter ing", + "▁alt ering", + "▁un available", + "甜 甜", + "▁s yll", + "▁sy ll", + "党支部 书记", + "ophag y", + "▁W arning", + "▁War ning", + "▁ Warning", + "▁spread sheet", + "▁spreads heet", + "▁collect ively", + "▁collective ly", + "m w", + "很 是", + "nP an", + "n Pan", + "▁M ang", + "▁Man g", + "▁Ma ng", + "spec ified", + "na g", + "n ag", + "▁M ight", + "▁Mi ght", + "▁Mig ht", + "▁ ∼", + "尔 特", + "更 具", + "Fig ure", + "F igure", + "晚 餐", + "骗 子", + "中国 古代", + "aff le", + "st uff", + "▁balcon y", + "标 配", + "▁ 免费", + "泡 泡", + "看 他", + "中关村 在线", + "Sc heme", + "Sch eme", + "妥 协", + "转 到", + "未 约定", + "▁Sup erior", + "▁Super ior", + "▁Redist ributions", + "加 水", + "懒 得", + "比 你", + "ch ef", + "che f", + "▁sp aw", + "▁spa w", + "幼 稚", + "Set s", + "Se ts", + "S ets", + "▁s cent", + "▁sc ent", + "▁scen t", + "▁ins ured", + "海 绵", + "hr a", + "h ra", + "旗 人民法院", + "▁so vere", + "T a", + "人 有", + "贴 心", + "履行 了", + "履 行了", + "不是 一个", + "不 是一个", + "得 益", + "自 媒体", + "us an", + "usa n", + "u san", + "nM ath", + "nMat h", + "nMa th", + "n Math", + "▁B attery", + "▁Bat tery", + "▁Batt ery", + "Fa t", + "F at", + "▁P aint", + "▁Pa int", + "▁Pain t", + "▁ Paint", + "▁n ginx", + "▁ng inx", + "▁ nginx", + "▁bre athe", + "▁breath e", + "▁breat he", + "鱼 的", + "oa k", + "o ak", + "来到 了一", + "来到了 一", + "以上事实 有", + "ience d", + "ien ced", + "i enced", + "log ged", + "安 防", + "提 案", + "充分 的", + "充 分的", + "win gs", + "wing s", + "w ings", + "amp agne", + "tdef ault", + "t default", + "reg istered", + "register ed", + "存 活", + "艾 滋", + "万元 及利息", + "万 元及利息", + "▁Ac tual", + "▁Act ual", + "▁ Actual", + "▁cas inos", + "▁casino s", + "可以自收到 裁定书", + "▁witness es", + "栖 息", + "for mer", + "form er", + "Creat ion", + "Cre ation", + "C reation", + "▁ex posing", + "▁exp osing", + "▁Bulg arian", + "▁Bulgaria n", + "病 虫", + "uc umber", + "▁Ex pect", + "▁Exp ect", + "▁ Expect", + "z A", + "Se par", + "Sep ar", + "r g", + "再 遭", + "梯 形", + "长 辈", + "▁s ich", + "▁si ch", + "▁sul ph", + "劳动 人事", + "浦东 新区", + "▁d ancers", + "▁dance rs", + "▁dan cers", + "▁dancer s", + "▁wr apping", + "▁wrap ping", + "▁dis section", + "▁diss ection", + "▁dissect ion", + "世 代", + "增 收", + "红 利", + "Sm ith", + "S mith", + "刑 满", + "▁s ore", + "▁so re", + "▁sor e", + "y k", + "统一 的", + "统 一的", + "▁sil ica", + "▁E E", + "▁ EE", + "四条 的规定", + "四 条的规定", + "onom ical", + "onomic al", + "▁F requency", + "▁ Frequency", + "视 网", + "ma le", + "mal e", + "m ale", + "轨道 交通", + "▁catal ogue", + "▁catalog ue", + "汇 款", + "▁M LS", + "▁ML S", + "Ch apter", + "▁E instein", + "{ |", + "写 法", + "困难 的", + "困 难的", + "▁prem ise", + "▁I stanbul", + "▁immun ization", + "出 炉", + "每 当", + "这个 是", + "▁Kaz akh", + "▁th rust", + "▁thr ust", + "▁thru st", + "灯 具", + "加 之", + "平 滑", + "血 浆", + "▁cr ore", + "▁cro re", + "魔 兽", + "工作 日", + "ov sky", + "ovsk y", + "适 时", + "Qu ality", + "Qual ity", + "Q uality", + "▁Boot strap", + "▁ Bootstrap", + "Or g", + "O rg", + "有多 大", + "有 多大", + "▁le ap", + "q p", + "几年 来", + "几 年来", + "▁\\' *", + "▁m asters", + "▁master s", + "▁ma sters", + "▁mast ers", + "▁mas ters", + "▁logarith m", + "开 支", + "▁C raw", + "▁Cr aw", + "▁Cra w", + "ide press", + "↓ ↓", + "▁Ch erry", + "▁Cher ry", + "如果 要", + "护肤 品", + "管理 法", + "▁loc king", + "▁lock ing", + "▁ locking", + "掀 起", + "IE EE", + "I EEE", + "▁cyst ic", + "应 准予", + "▁call er", + "▁ca ller", + "▁cal ler", + "电 量", + "▁g inger", + "▁ging er", + "▁gin ger", + "▁cere mon", + "▁cer emon", + "▁negot iate", + "▁program med", + "▁programme d", + "源 县", + "准备 工作", + "尤其 是在", + "尤其是 在", + "sa ving", + "sav ing", + "s aving", + "▁St ats", + "▁Stat s", + "▁Sta ts", + "▁ Stats", + "▁superf icial", + "不利 于", + "不 利于", + "▁micro g", + "▁mic rog", + "所 用", + "▁p hi", + "▁ph i", + "▁ phi", + "▁W alt", + "▁Wal t", + "▁Wa lt", + "们 都", + "大 爷", + "犹 太", + "cy cles", + "cycle s", + "cycl es", + "c ycles", + "rient ation", + "▁class rooms", + "▁classroom s", + "▁d well", + "▁dw ell", + "Fa r", + "F ar", + "对 这个", + "red ients", + "redient s", + "▁c ognition", + "▁cogn ition", + "的 身份", + "am en", + "ame n", + "a men", + "主 教", + "之 余", + "总的 来说", + "经济 管理", + "\\\\ {\\\\", + "\\\\{ \\\\", + "ay ette", + "aye tte", + "fix tures", + "fixture s", + "at ha", + "ath a", + "a tha", + "u w", + "]$ \\", + "] $\\", + "ns im", + "n sim", + "▁l ute", + "▁lu te", + "▁port raits", + "▁por traits", + "▁portrait s", + "commun ication", + ",\\\\ ,", + ", \\\\,", + "nl ong", + "n long", + "油 菜", + "au de", + "aud e", + "a ude", + "y ahoo", + "二〇一七年 九月", + "二〇一七年九 月", + "▁Ed monton", + "▁Arg uments", + "▁Argument s", + "▁ Arguments", + "不 绝", + "SR C", + "S RC", + "国家和 地区", + "res sing", + "ress ing", + "r essing", + "▁re built", + "▁reb uilt", + "▁f initely", + "▁fin itely", + "▁finite ly", + "▁locom otives", + "▁locomotive s", + "切 入", + "那 位", + "▁D L", + "▁ DL", + "▁ 角色", + "是否 存在", + "tt est", + "ttes t", + "tte st", + "t test", + "le ader", + "lead er", + "lea der", + "l eader", + "incre ment", + "▁dis close", + "▁disc lose", + "哥 伦", + "秒 钟", + "微 商", + "打 着", + "sn ap", + "s nap", + "▁H ugh", + "▁Hu gh", + "▁Hug h", + "▁m usc", + "▁mus c", + "▁mu sc", + "▁sh iny", + "▁W aters", + "▁Water s", + "▁Wat ers", + "▁Wa ters", + "threat ening", + "▁willing ness", + "fu rt", + "fur t", + "f urt", + "Mon go", + "Mo ngo", + "M ongo", + "qu ito", + "quit o", + "▁Con structor", + "▁Construct or", + "▁ Constructor", + "▁character izing", + "uc he", + "uch e", + "u che", + "婚姻 关系", + "▁hom ologous", + "▁homolog ous", + "草 地", + "对 企业", + "横 坐标", + "▁pot ency", + "▁de central", + "▁dec entral", + "▁decent ral", + "▁research ing", + "▁resear ching", + "▁A br", + "▁Ab r", + "▁U TF", + "▁UT F", + "▁ UTF", + "▁U EFA", + "▁At omic", + "▁Atom ic", + "▁re side", + "▁res ide", + "▁resid e", + "▁back drop", + "▁ 云", + "▁re un", + "▁acc us", + "▁ac cus", + "▁in box", + "▁concomit ant", + "▁intermitt ent", + "▁if f", + "▁i ff", + "▁ iff", + "ra ises", + "raise s", + "rais es", + "▁E A", + "▁ EA", + "ench ymal", + "▁Al cohol", + "~ ~", + "叙 利亚", + "▁comp iling", + "往 后", + "ri cia", + "ric ia", + "r icia", + "不受申请执行 时效", + "nAdd itional", + "n Additional", + "local Storage", + "遗 忘", + "et z", + "e tz", + "▁山 东", + "▁ 山东", + "▁MAT LAB", + "▁lapar oscopic", + "审 慎", + "uth ors", + "uthor s", + "tex cept", + "t except", + "▁att ent", + "▁atten t", + "下 达", + "四 处", + "op p", + "o pp", + "受 不了", + "Fr ank", + "F rank", + "▁T ube", + "▁Tu be", + "▁Tub e", + "▁ Tube", + "yn aptic", + "yna ptic", + "▁Po well", + "▁Pow ell", + "font Size", + "▁applic ability", + "A u", + "盘 中", + "结 实", + "▁A BO", + "▁AB O", + "▁J unction", + "▁Jun ction", + "人 社", + "催 收", + "隐 瞒", + "直 升", + "▁f ried", + "▁fr ied", + "▁fri ed", + "▁ fried", + "是 想", + "齐 齐", + "UN K", + "U NK", + "ol ation", + "ola tion", + "o lation", + "▁Art ificial", + "▁Special ist", + "▁disp utes", + "▁disput es", + "▁dispute s", + "按 中国人民银行同期", + "口 水", + "打 个", + "大幅 度", + "大 幅度", + "▁mm Hg", + "▁bul bs", + "▁bulb s", + "upy text", + "图 纸", + "大 自然", + "未 答辩", + "▁val or", + "▁va lor", + "面 条", + "hu a", + "h ua", + "市场监督管理局 登记成立", + "▁cr acks", + "▁crack s", + "▁cra cks", + "回 购", + "城 南", + "Co s", + "C os", + "▁fort unate", + "干 活", + "fl o", + "f lo", + "的 个人", + "int endent", + "可 为", + "比 上", + "▁rest oring", + "▁restor ing", + "拇 指", + "东 亚", + "梅 西", + "窗 帘", + "DD R", + "D DR", + "▁ 选择", + "马拉 松", + "▁l ender", + "▁le nder", + "▁len der", + "▁lend er", + "▁explo ited", + "▁exploit ed", + "▁Ab raham", + "师 父", + "日 军", + "▁» \\", + "事实 与", + "降水 量", + "降 水量", + "▁L um", + "▁Lu m", + "am ycin", + "amy cin", + "▁N ames", + "▁Name s", + "▁Na mes", + "▁Nam es", + "▁ Names", + "Stat istics", + "▁install er", + "▁ installer", + "▁ э", + "强 者", + "▁z e", + "▁ ze", + "音乐 学院", + "yard s", + "yar ds", + "y ards", + "▁Som erset", + "亦 有", + "依法 予以", + "▁apopt otic", + "▁dis charged", + "▁discharge d", + "▁discharg ed", + "▁ ب", + "知道 的", + "知 道的", + "at su", + "ats u", + "常住 人口", + "▁ag rees", + "▁agre es", + "▁agree s", + "▁agr ees", + "▁M X", + "▁ MX", + "几十 年", + "几 十年", + "ick ness", + "发 文", + "奇 的", + "蓬 莱", + "下一 代", + "下 一代", + "作 他用", + "所 说", + "百度 地图", + "这 意味着", + "at terns", + "atter ns", + "附 相关法律条文", + "▁e psilon", + "▁eps ilon", + "▁ epsilon", + "▁Class ical", + "▁Classic al", + "再 将", + "和 应用", + "已 全部", + "计划 的", + "跟我 说", + "跟 我说", + "本院 立案", + "▁\\' \\';\\", + "▁\\'\\' ;\\", + "▁\\'\\ ';\\", + "▁fresh ly", + "之 意", + "安 定", + "谁 知", + "▁pill ow", + "▁pil low", + "k W", + "б о", + "ig ated", + "igate d", + "iga ted", + "▁m obil", + "▁mo bil", + "▁mob il", + "▁Method ist", + "J D", + "人 选", + "眼 部", + "雄 厚", + "le ys", + "ley s", + "▁R us", + "▁Ru s", + "存在 于", + "存 在于", + "正 能量", + "ar iat", + "ari at", + "aria t", + "建设 集团有限公司", + "▁emigr ants", + "nH int", + "nHi nt", + "n Hint", + "成 一", + "襄 阳", + "▁h yster", + "▁hy ster", + "▁s pheres", + "▁spher es", + "▁sphere s", + "▁sph eres", + "amazon aws", + "等 量", + "领 土", + "做 生意", + "历史 文化", + "end ering", + "ender ing", + "ende ring", + "▁Spec ies", + "Q C", + "伊斯 兰", + "▁O bs", + "▁Ob s", + "▁ Obs", + "Com plex", + "Comp lex", + "▁un ited", + "▁unit ed", + "▁uni ted", + "▁g rounded", + "▁gr ounded", + "▁ground ed", + "小说 阅读网", + "▁pitch er", + "▁pit cher", + "▁progen itor", + "▁rif le", + "▁help ers", + "▁hel pers", + "▁helper s", + "▁ helpers", + "▁well being", + "奥 会", + "DE L", + "D EL", + "nN A", + "n NA", + "▁Bel arus", + "b h", + "▁LI KE", + "▁M ate", + "▁Mat e", + "▁Ma te", + "▁ Mate", + "▁recogn ise", + "四 肢", + "湿 润", + "▁M ET", + "▁ME T", + "▁ MET", + "▁T ub", + "▁Tu b", + "▁bud gets", + "▁budget s", + "▁Bou levard", + "▁ 勇", + "vi ol", + "v iol", + "枪 支", + "注意 我", + "函数 的性质", + "函数的 性质", + "ho oting", + "hoot ing", + "h ooting", + "▁phil anth", + "供 销", + "身 的", + "ys e", + "y se", + "纳税 人", + "芯片 组", + "▁d ile", + "▁di le", + "▁dil e", + "▁re load", + "▁rel oad", + "▁ reload", + "▁poss esses", + "▁possess es", + "▁trans fusion", + "▁transf usion", + "金 币", + "第一 部", + "第 一部", + "in strument", + "骨 髓", + "回到 了", + "回 到了", + "▁C otton", + "▁Cot ton", + "▁F itness", + "▁Fit ness", + "▁sub stituted", + "▁substit uted", + "▁substitute d", + "降 解", + "Se n", + "S en", + "▁Im agine", + "▁des criptor", + "▁descript or", + "▁ descriptor", + "固 然", + "▁ 系统", + "生成 的", + "生 成的", + "▁D ifference", + "正 经", + "▁T eh", + "▁Te h", + "Mark er", + "Mar ker", + "M arker", + "pro fessional", + "食 谱", + "农业 生产", + "挽 回", + "▁El lis", + "▁Ell is", + "▁Elli s", + "▁no isy", + "终结 本次执行", + "前 置", + "受 体", + "玉 林", + "排 版", + "热 力", + "续行 查封", + "不错 的选择", + "不错的 选择", + "x p", + "分 之", + "后 代", + "航空 公司", + "瞄 准", + "选择 上述", + "党 工委", + "的一个 重要", + "▁man eu", + "SS H", + "S SH", + "也 表示", + "会 发生", + "nB ig", + "nBi g", + "n Big", + "it ian", + "iti an", + "▁S hift", + "▁Sh ift", + "▁Shi ft", + "▁ Shift", + "▁Invest igation", + "▁Investig ation", + "▁i le", + "▁il e", + "▁ ile", + "证明 被告", + "Re ason", + "nRe cord", + "nRec ord", + "n Record", + "刘 备", + "代表 性", + "▁circ adian", + "▁Mod ified", + "▁ Modified", + "▁risk y", + "▁ris ky", + "▁ri sky", + "▁v ascul", + "▁fore casts", + "▁forecast s", + "学 前", + "订 购", + "不要 太", + "什么 呢", + "hm ad", + "hma d", + "h mad", + "is to", + "ist o", + "i sto", + "not her", + "no ther", + "n other", + "▁Par ents", + "▁Parent s", + "▁oscill ations", + "▁oscillation s", + "坐 堂", + "武 林", + "户 居住", + "找 一个", + "▁blank et", + "▁condition ed", + "▁ conditioned", + "商 圈", + "驾驶 人", + "▁B IG", + "▁BI G", + "最大 限度", + "pack ed", + "p acked", + "绿 茶", + "▁F B", + "▁ FB", + "PI PE", + "P IPE", + "ar at", + "ara t", + "a rat", + "ans wers", + "answer s", + "▁un covered", + "▁unc overed", + "▁uncover ed", + "出 走", + "▁T ank", + "▁Ta nk", + "▁Tan k", + "tikz picture", + "▁recogn izing", + "他人 财物", + "▁Arch itect", + "私 吞", + "et les", + "Quant ity", + "▁Salv ador", + "▁activ ator", + "▁P olar", + "▁Pol ar", + "▁Po lar", + "▁Pro ps", + "▁Pr ops", + "▁Prop s", + "▁ Props", + "per fect", + "perf ect", + "▁ 分", + "国 库", + "画 画", + "过 点", + "特点 是", + "特 点是", + "我们 应该", + "bound s", + "b ounds", + "cont acts", + "contact s", + "▁Ex amination", + "▁Exam ination", + "江 阴", + "ap id", + "api d", + "a pid", + "购物 中心", + "▁predecess or", + "红 豆", + "Y ES", + "置 换", + "\"> [", + "\" >[", + "th ouse", + "t house", + "▁z oo", + "▁ zoo", + "ny ear", + "n year", + "OB JECT", + "O BJECT", + "▁ampl ifier", + "▁prote sters", + "▁prot esters", + "▁protest ers", + "公布 了", + "▁Ang els", + "▁Angel s", + "▁dr agon", + "▁drag on", + "▁ dragon", + "治疗 效果", + "▁discount ed", + "F G", + "海 口", + "▁s ham", + "▁sh am", + "▁sha m", + "借款 到期后", + "conn ector", + "connect or", + "救 治", + "作用 的", + "作 用的", + "▁A CL", + "▁AC L", + "▁result ant", + ">( )\\", + ">() \\", + "> ()\\", + "一个 不断", + "del ivery", + "▁branch ing", + "iv el", + "ive l", + "i vel", + "▁Se oul", + "ud os", + "udo s", + "u dos", + "git lab", + "qu arter", + "这种 方法", + "▁He brew", + "温 水", + "版 次", + "豆 浆", + "论述 了", + "论 述了", + "nG reen", + "nGr een", + "n Green", + "▁Ar senal", + "▁Un icode", + "▁Uni code", + "▁ Unicode", + "▁myel oid", + "á l", + "但其 实", + "但 其实", + "▁pe dag", + "▁ped ag", + "▁fr amed", + "▁frame d", + "▁fra med", + "CA M", + "C AM", + "第十 一章", + "第十一 章", + "第 十一章", + "▁Lo an", + "真 爱", + "op oly", + "opol y", + "opo ly", + "o poly", + "争 执", + "掉 的", + "玩家 们", + "▁C afe", + "▁Ca fe", + "▁Caf e", + "▁Int ent", + "▁ Intent", + "Ref lection", + "qr t", + "q rt", + "着 一个", + "▁W are", + "▁War e", + "▁Wa re", + "▁ Ware", + "▁sp ice", + "铃 声", + "le ave", + "lea ve", + "不 计", + "}} )", + "} })", + "im etry", + "ime try", + "imet ry", + "i metry", + "不 远", + "群众 的", + "个人 觉得", + "▁p ivot", + "▁piv ot", + "▁ab norm", + "纪念 馆", + "里面 有", + "nO ption", + "n Option", + "▁Com posite", + "▁ Composite", + "aj o", + "a jo", + "组织 和", + "Be ar", + "B ear", + "▁G lad", + "▁Gl ad", + "re solver", + "res olver", + "resolve r", + "fr uit", + "f ruit", + "▁j upytext", + "▁discontin ued", + "▁period ically", + "▁periodic ally", + "控制 在", + "已经 开始", + "x b", + "自 贡", + "误 会", + "go d", + "g od", + "P ull", + "ro ne", + "ron e", + "r one", + "▁A ires", + "▁Air es", + "▁minim ally", + "▁minimal ly", + "▁toler ated", + "▁tolerate d", + "你可 能", + "你 可能", + "同时 还", + "▁For ty", + "▁Fort y", + "▁S LE", + "▁SL E", + "▁s olv", + "▁so lv", + "▁sol v", + "粉 尘", + "▁p ts", + "▁pt s", + "▁ pts", + "Di m", + "D im", + "废弃 了", + "ac ycl", + "acy cl", + "a cycl", + "▁man date", + "▁mand ate", + "▁ma ndate", + "科 尔", + "▁Philosoph y", + "五 千", + "出 水", + "nA h", + "n Ah", + "So up", + "S oup", + "arch ives", + "archive s", + "进 食", + "适量 的", + "适 量的", + "ab ic", + "abi c", + "a bic", + "im aging", + "ima ging", + "imag ing", + "gi a", + "g ia", + "nI T", + "n IT", + "w elcome", + "▁tur key", + "▁con spiracy", + "▁reper toire", + "▁quant itatively", + "▁quantitative ly", + "点 和", + "vi v", + "v iv", + "Al though", + "天 子", + "培养 学生", + "▁nom inal", + "▁nomin al", + "求 助", + "▁$ \\", + "▁ $\\", + "▁) \\", + "▁ )\\", + "nf un", + "n fun", + "一审 判决", + "▁di pole", + "▁dip ole", + "者 在", + "▁D ed", + "▁De d", + "▁s ock", + "▁so ck", + "▁soc k", + "▁ sock", + "▁E mbed", + "▁Em bed", + "▁Emb ed", + "▁ Embed", + "▁tr illion", + "镇 政府", + "▁Min neapolis", + "学 问", + "伊 拉克", + "反映 给", + "和 质量", + "这样 的人", + "这样的 人", + "▁A udi", + "▁Aud i", + "▁Au di", + "▁B ent", + "▁Be nt", + "▁Ben t", + "弱 的", + "至 尊", + "▁gu inea", + "▁gui nea", + "▁BB Q", + "第二百零 七条", + "▁H eight", + "▁He ight", + "▁ Height", + "HEAD ER", + "挪 作他用", + "▁fact ories", + "▁factor ies", + "▁Rec ognition", + "▁Recogn ition", + "咽 喉", + "肥 料", + "去 括号", + "非 线性", + "im ize", + "imi ze", + "is chen", + "isc hen", + "isch en", + "ische n", + "叫 我", + "棱 长", + "我们 对", + "Hi nt", + "H int", + "一审 原告", + "decor ators", + "decorator s", + "▁其 它", + "▁ 其它", + "tr ight", + "tri ght", + "trig ht", + "t right", + "▁s enses", + "▁sens es", + "▁sense s", + "▁sen ses", + "co ordinate", + "coord inate", + "▁epid ermal", + "问 候", + "▁K O", + "▁ KO", + "ut ta", + "utt a", + "▁appet ite", + "▁ful filled", + "▁fulfill ed", + "▁fulfil led", + "回 避", + "到 案后", + "▁ 布", + "分 歧", + "火 力", + "点 燃", + "风 口", + "▁water proof", + "▁pro position", + "▁propos ition", + "▁prop osition", + "UC T", + "U CT", + "的最大 值", + "的 最大值", + "nD ear", + "nDe ar", + "n Dear", + "▁and rogen", + "not ifications", + "notification s", + "下 调", + "不 经", + "定 为", + "cr um", + "c rum", + "Pos ts", + "Post s", + "Po sts", + "}) ,", + "} ),", + "oy le", + "oyl e", + "o yle", + "▁W OR", + "▁WO R", + "▁ WOR", + "与 众", + "机 票", + "考 场", + "热水 器", + "目标 是", + "as ar", + "asa r", + "To Many", + "enti eth", + "▁c ipher", + "▁ci pher", + "▁ cipher", + "▁f ooter", + "▁foot er", + "▁fo oter", + "▁foo ter", + "▁ footer", + "▁period ontal", + "▁periodont al", + "Q P", + "九 章", + "睡 着", + "CM D", + "C MD", + "贸 市场", + "calc ulate", + "calcul ate", + "c alculate", + "针 织", + "ym pt", + "从重 处罚", + "leet code", + "四 面", + "大 片", + "起 草", + "怎么 会", + "▁re try", + "▁r etry", + "▁ret ry", + "▁ retry", + "▁t read", + "▁tr ead", + "▁tre ad", + "▁fresh man", + "▁Ob viously", + "▁un ilateral", + "W L", + "低 下", + "的 要", + "延长 赛", + "误 解", + "agr ang", + "agra ng", + "▁evalu ates", + "▁evaluate s", + "▁eval uates", + "▁dis establish", + "新 高", + "se v", + "s ev", + "▁H ang", + "▁Ha ng", + "▁Han g", + "▁su ites", + "▁suit es", + "▁suite s", + "政协 委员", + "本院 受理", + "▁b ishops", + "▁bi shops", + "▁bishop s", + "▁digest ive", + "苗 族", + "Pr im", + "P rim", + "co al", + "ic os", + "ico s", + "i cos", + "l ibraries", + "奥 特", + "ak k", + "a kk", + "于一体 的", + "于 一体的", + "以及 其他", + "以 及其他", + "▁l upus", + "▁lu pus", + "▁par ade", + "▁para de", + "▁parad e", + "该 卡", + "GE N", + "G EN", + "住址 同上", + "GRO UP", + "is ive", + "isi ve", + "▁Wor cester", + "读 物", + "▁Is le", + "庭 院", + "ne ur", + "n eur", + "追踪 报道", + "▁G ear", + "▁Ge ar", + "德 尔", + "田 间", + "网 吧", + "Ke l", + "K el", + "很不 错", + "很 不错", + "ar tan", + "art an", + "arta n", + "ighbor s", + "ighb ors", + "nCRE ATE", + "n CREATE", + "▁W IN", + "▁WI N", + "▁ WIN", + "Cent ral", + "C entral", + "▁Christian ity", + "搞 定", + "在他 的", + "在 他的", + "CK ET", + "es ses", + "ess es", + "esse s", + "二〇一六年 三月", + "海 区", + "▁r idge", + "▁rid ge", + "▁ ridge", + "exper iment", + "nU S", + "n US", + "▁F S", + "▁ FS", + "▁x i", + "▁ xi", + "▁In come", + "▁Inc ome", + "▁Reg ulation", + "▁human itarian", + "筷 子", + "认定 为", + "认 定为", + "an ck", + "anc k", + "比较 方便", + "国 强", + "星 光", + "极 坐标", + "▁Off er", + "▁Of fer", + "▁ Offer", + "认定事实 如下", + "讨论 版", + "vis ited", + "visit ed", + "▁Broad casting", + "测 验", + "驻 马", + "ien ne", + "i enne", + "▁ip sum", + "▁ips um", + "▁privile ged", + "▁privilege d", + "▁enthusi astic", + "▁enthusiast ic", + "▁reserv ations", + "▁reservation s", + "th el", + "the l", + "t hel", + "有限公司 负担", + "Screen shot", + "Screens hot", + "核 对", + "请 勿", + "以下 是", + "莆田 市", + "这 方面", + "nU SE", + "nUS E", + "n USE", + "nv al", + "n val", + "mar shal", + "一 两", + "▁F orms", + "▁For ms", + "▁Form s", + "▁ Forms", + "▁hom otopy", + "代表人 的人数提出副本", + "yu n", + "y un", + "安阳 市", + "安 阳市", + "ter a", + "te ra", + "t era", + "▁brand ed", + "▁ branded", + "Pres ident", + "廊 坊", + "▁k Da", + "▁t ee", + "▁te e", + "▁ tee", + "在 高", + "enn ium", + "▁el der", + "▁eld er", + "Serial ized", + "Serialize d", + "之 初", + "号 征收社会抚养费", + "▁educ ator", + "伤 亡", + "支 柱", + "est ones", + "estone s", + "esto nes", + "eston es", + "e stones", + "▁under taking", + "▁undert aking", + "▁pre treatment", + "▁pret reatment", + "野 外", + "IS P", + "I SP", + "nM ac", + "nMa c", + "n Mac", + "▁aqu atic", + "邮 票", + "全 网", + "历 年", + "战 的", + "烘 干", + "医学 会", + "医 学会", + "受害 者", + "▁ 营业时间", + "扭 曲", + "找 回", + "潜 能", + "▁l ace", + "▁la ce", + "▁lac e", + "▁人口 数量", + "▁ment ors", + "▁mentor s", + "▁Tanz ania", + "▁mut ually", + "▁mutual ly", + "多样 化", + "vo ice", + "v oice", + "▁C lif", + "▁Cl if", + "▁br ave", + "▁bra ve", + "偿还 借款本金", + "偿还借款 本金", + "▁bi ased", + "▁bias ed", + "▁ biased", + "▁parad ox", + "Im plementation", + "▁merc ury", + "ighbor hood", + "▁Comput ational", + "吃 吃", + "炒 作", + "西 侧", + "▁b ent", + "▁be nt", + "▁ben t", + "▁o val", + "▁ov al", + "▁ oval", + "店 里", + "绿 豆", + "IC H", + "I CH", + "也 开始", + "作品 的", + "作 品的", + "pop up", + "▁F act", + "▁Fac t", + "▁Fa ct", + "▁ Fact", + "▁Hol mes", + "▁Draw ing", + "▁ Drawing", + "▁Test Case", + "▁ TestCase", + "▁immigr ant", + "变 价", + "▁[ <", + "▁ [<", + "着名 的", + "着 名的", + "ln g", + "l ng", + "工商 户", + "工 商户", + "世界上 最", + "申请 仲裁", + "exper imental", + "experiment al", + "the mes", + "theme s", + "them es", + "t hemes", + "ch ief", + "chi ef", + "co urses", + "course s", + "c ourses", + "▁deterior ation", + "学生 们", + "co ck", + "coc k", + "c ock", + "nPro of", + "n Proof", + "▁E clipse", + "plant ation", + "▁In frastructure", + "▁ Infrastructure", + "卡 车", + "向 南", + "tb l", + "t bl", + "下面 是", + "▁T rek", + "▁Tr ek", + "▁Tre k", + "▁s word", + "▁sw ord", + "▁ret ard", + "▁ster eo", + "▁stere o", + "▁resign ation", + "其 一", + "有 不", + "/\" >", + "/ \">", + "方程 的解", + "方程的 解", + "get ting", + "g etting", + "精 益", + "▁C i", + "▁ Ci", + "▁M K", + "▁ MK", + "▁` @", + "履行 上述", + "▁c ada", + "▁ca da", + "▁cad a", + "Warning s", + "War nings", + "W arnings", + "包 子", + "小 伙", + "▁\" \")", + "▁\"\" )", + "科学 出版社", + "▁ 牛", + "这 片", + "▁f ights", + "▁fight s", + "▁pec uliar", + "▁under est", + "放 电", + "an j", + "a nj", + "入 围", + "放 开", + "万人 次", + "万 人次", + "▁synd romes", + "▁syndrome s", + "饮 品", + "▁H DL", + "▁HD L", + "▁ HDL", + "▁comput ations", + "▁computation s", + "秦皇 岛", + "而且 在", + "而 且在", + "ED IT", + "E DIT", + "]) {\\", + "] ){\\", + "ad ia", + "adi a", + "避 开", + "的 成本", + "还是 挺", + "er ville", + "erv ille", + "▁proud ly", + "▁Prov incial", + "替 补", + "▁ 最后", + "副 县长", + "▁B oss", + "▁Bo ss", + "▁Bos s", + "▁ Boss", + "▁ 神", + "▁non zero", + "和计划生育 委员会", + "up uncture", + "▁incorrect ly", + "辆 车", + "因为 是", + "▁G mbH", + "nE uropean", + "n European", + "▁ign oring", + "▁ignor ing", + "下 手", + "uck ed", + "USER NAME", + "е с", + "ta da", + "t ada", + "ti ny", + "tin y", + "t iny", + "▁N om", + "▁No m", + "▁ Nom", + "还有 什么", + "还 有什么", + "om eters", + "ome ters", + "omet ers", + "ometer s", + "元 为", + "西 祠", + "角 膜", + "ho n", + "h on", + "em ory", + "emor y", + "emo ry", + "二〇一七年 五月", + "年 会", + "纠 缠", + "呼吸 道", + "Mon ey", + "Mo ney", + "M oney", + "▁tub ular", + "▁co herence", + "的 政治", + "▁M aths", + "▁Mat hs", + "▁Math s", + "▁Ma ths", + "▁D ining", + "▁Di ning", + "▁Din ing", + "\\\\ \\\\\\\\\\\\", + "\\\\\\\\ \\\\\\\\", + "\\\\\\ \\\\\\\\\\", + "\\\\\\\\\\ \\\\\\", + "\\\\\\\\\\\\ \\\\", + "▁nurs ery", + "▁nur sery", + "▁nurse ry", + "▁allev iate", + "一 女", + "OR G", + "O RG", + "gs on", + "g son", + "情况 进行", + "▁sp ill", + "▁program mer", + "▁programme r", + "———————— ————————", + "中 之", + "抗 议", + "an di", + "and i", + "a ndi", + "camp aign", + "l j", + "磁 盘", + "▁in hal", + "▁inh al", + "▁hepar in", + "后 人", + "巴 拉", + "帮助 下", + "Av atar", + "▁her pes", + "▁S AT", + "▁SA T", + "▁ SAT", + "短 时间内", + "脚 下", + "O cc", + "双方 在", + "业主 收取", + "▁l iable", + "▁li able", + "▁lia ble", + "▁ liable", + "▁exped ition", + "侮 辱", + "MA IL", + "▁c pu", + "▁cp u", + "▁ cpu", + "▁l ou", + "▁lo u", + "非常高兴 能", + "▁S yntax", + "▁Syn tax", + "▁Synt ax", + "▁ Syntax", + "▁lon gevity", + "▁ Ö", + "事 的", + "和 人", + "盐城 市", + "盐 城市", + "nh as", + "n has", + "nP ower", + "nPo wer", + "n Power", + "▁Q atar", + "▁light ning", + "Af f", + "A ff", + "▁Anc ient", + "▁Chen nai", + "▁Vit amin", + "▁work load", + "FF ER", + "号案件 的执行", + "up dates", + "update s", + "▁Health y", + "ER ENCES", + "ERENCE S", + "▁proc urement", + "但 你", + "鉴 赏", + "两部 分", + "两 部分", + "▁numer ically", + "▁numerical ly", + "▁numeric ally", + "▁spec ulation", + "刻 画", + "陆 游", + "仅仅 是", + "op encv", + "open cv", + "▁For mer", + "▁Form er", + "▁Min imum", + "▁ Minimum", + "▁post gres", + "▁ postgres", + "向被执行人 发出执行通知书", + "实 木", + "食 管", + "▁s unset", + "▁su nset", + "▁sun set", + "▁文 学", + "▁ 文学", + "有时 间", + "有 时间", + "▁B av", + "▁Ba v", + "en burg", + "▁P atch", + "▁Pat ch", + "▁ Patch", + "dec imal", + "pat ibility", + "耐 药", + "Display Name", + "C y", + "各 主要", + "if ug", + "nk ind", + "n kind", + "▁P rote", + "▁Pro te", + "▁Pr ote", + "▁Prot e", + "represent ed", + "黑 的", + "门户 网站", + "▁n aval", + "▁nav al", + "▁na val", + "第十三 条第二款", + "第十三条 第二款", + "不断 累", + "▁Ap ollo", + "▁A SF", + "▁AS F", + "▁ ASF", + "▁turb ine", + "▁techn ician", + "住 建", + "招 待", + "退 赔", + "st ones", + "ston es", + "stone s", + "sto nes", + "▁C rist", + "▁Cr ist", + "▁K ubernetes", + "ol ith", + "olit h", + "oli th", + "un ts", + "unt s", + "ig hed", + "igh ed", + "ac iones", + "acion es", + "aci ones", + "acio nes", + "▁exceed ing", + "上 车", + "我的 经纪人", + "nTr ump", + "n Trump", + "▁M iles", + "▁Mil es", + "▁Mi les", + "▁Mile s", + "config s", + "conf igs", + "▁lingu istic", + "US ED", + "USE D", + "U SED", + "▁her bal", + "▁herb al", + "▁Ott oman", + "▁Otto man", + "produ cing", + "prod ucing", + "p roducing", + "隔 音", + "IM O", + "I MO", + "日 美股", + "pa irs", + "pair s", + "p airs", + "▁R aid", + "▁Ra id", + "我非常 感激", + "▁f erry", + "▁fer ry", + "▁ferr y", + "▁rupt ure", + "工业 化", + "应用 的", + "应 用的", + "chem ical", + "c hemical", + "棵 树", + "而 上", + "ll d", + "l ld", + "与 本案", + "ad ren", + "adr en", + "▁P erc", + "▁Per c", + "▁Pe rc", + "▁im pose", + "▁imp ose", + "define Property", + "对我 国", + "对 我国", + "man t", + "ma nt", + "m ant", + "这么 多年", + "这么多 年", + "as per", + "asp er", + "▁B elf", + "▁Be lf", + "▁Bel f", + "itc hens", + "itch ens", + "itchen s", + "▁M oment", + "▁Mo ment", + "▁Mom ent", + "▁C rit", + "▁Cr it", + "▁S ites", + "▁Site s", + "▁Si tes", + "▁Sit es", + "▁f rank", + "▁fr ank", + "▁fra nk", + "和 知识", + "状态 下", + "心 底", + "▁A E", + "▁ AE", + "违反 了", + "我们将 予以", + "▁L ynch", + "▁Ly nch", + "▁Lyn ch", + "T N", + "▁Jo an", + "▁av ail", + "▁Init ially", + "▁Initial ly", + "hi nt", + "hin t", + "h int", + "你 家", + "更 要", + "的 犯罪", + "Pr ep", + "Pre p", + "P rep", + "▁PT SD", + "二〇一七年 三月", + "二〇一七年三 月", + "nFootball ers", + "一 向", + "妨 碍", + "Cal c", + "Ca lc", + "C alc", + "▁cr uel", + "▁cru el", + "止 痛", + "的 案件", + "qu ez", + "que z", + "list dir", + "dim ension", + "d imension", + "调 制", + "igue z", + "igu ez", + "nRe lease", + "n Release", + "引发 的", + "引 发的", + "赢得 胜利的", + "▁Econ omy", + "▁Ec onomy", + "威 力", + "枝 花", + "是由 于", + "是 由于", + "的 控制", + "多边形 的", + "多 边形的", + "▁loc alities", + "▁local ities", + "▁neuro psych", + "浓 厚", + "读 了", + "研究 室", + "这部 分", + "这 部分", + "mo tion", + "mot ion", + "m otion", + "▁My anmar", + "▁respon ds", + "▁respond s", + "▁resp onds", + "PO R", + "P OR", + "防火 墙", + "Inf later", + "▁ 广州", + "得更 全面", + "Blue print", + "Oper ations", + "Operation s", + "酰 胺", + "Ba nd", + "Ban d", + "B and", + "人民 调解协议", + "人民调解 协议", + "▁Coal ition", + "▁waste water", + "▁wast ewater", + "责任 心", + "重组 案", + "The ta", + "Th eta", + "▁St efan", + "▁Ste fan", + "▁in flux", + "▁inf lux", + "▁influ x", + "▁infl ux", + "▁ret iring", + "▁Strateg ic", + "产 科", + "偶 函数", + "就 直接", + "缺席 审理", + "演唱 的歌曲", + "信 道", + "向 西", + "▁F ew", + "▁Fe w", + "明确的 被告", + "Lo ndon", + "L ondon", + "全 都", + "锅 里", + "专家 坐堂", + "南京 还有", + "an tage", + "ant age", + "anta ge", + "▁compens ate", + "▁P U", + "▁ PU", + "nB uy", + "n Buy", + "▁L abs", + "▁La bs", + "▁Lab s", + "所有的 位于", + "▁c ubes", + "▁cub es", + "▁cube s", + "▁cu bes", + "广东省 深圳市", + "prov ided", + "provide d", + "} '", + "先 说", + "吻 合", + "怀特 说", + "ip eg", + "ipe g", + "i peg", + "支出 色的", + "支 出色的", + "▁Sh arp", + "▁Sha rp", + "▁Shar p", + "▁ Sharp", + "nIm port", + "n Import", + "会 签下", + "nn ow", + "nno w", + "n now", + "▁B rief", + "▁Br ief", + "▁Bri ef", + "▁Hur ricane", + "五 行", + "嘲 讽", + "农业 农村", + "▁congress ional", + "图 表", + "巴 基", + "生产 劳动", + "十三 条规定", + "十三条 规定", + "▁mid st", + "▁mi dst", + "[ #", + "进 军", + "了一 批", + "了 一批", + "你 以为", + "Sp ot", + "S pot", + "yp ress", + "y press", + "号 行政", + "公摊 水费", + "延长赛 落败", + "证监会 否决", + "反映给 相关部门", + "把 她", + "白 玉", + "加深 天马", + "融券 筹码", + "实录 加西亚", + "重组案 再遭", + "▁R atio", + "▁Rat io", + "▁ Ratio", + "不断累 加深天马", + "日美股 专家坐堂", + "实录加西亚 延长赛落败", + "融券筹码 不断累加深天马", + "融券筹码不断累加深天马 重组案再遭", + "羊 毛", + "学术 论文", + "求 和", + "ln x", + "l nx", + "▁英 语", + "▁ 英语", + "in dy", + "ind y", + "与被告 王", + "pl atin", + "plat in", + "rs s", + "r ss", + "▁N Z", + "▁ NZ", + "不了 解", + "不 了解", + "▁D od", + "▁Do d", + "▁C lin", + "▁Cl in", + "▁D ale", + "▁Da le", + "▁Dal e", + "西祠 讨论版", + "支出色的 球队", + "▁Br east", + "▁Bre ast", + "我的经纪人 告诉我", + "万 能", + "推 介", + "特此 通知", + "签约 火箭", + "▁f ier", + "▁fi er", + "将自己 磨练", + "有几 支球队", + "bench mark", + "▁Cor rection", + "▁Correct ion", + "第一百五十四条 裁定适用于下列范围", + "il k", + "晚饭 团", + "月 获得", + "会签下 我", + "却被 物管", + "请求 判令", + "你的遭遇 吧", + "却依然 在向", + "扬子 晚饭团", + "明明 废弃了", + "一直在 关注我", + "却被物管 私吞", + "并将 你的遭遇", + "我坚信 有球队", + "我知道 有球队", + "所以我很 刻苦", + "而且 这个城市", + "怀特 非常高兴能", + "我现在 来到了一", + "说出 你的遭遇吧", + "赢得胜利的 球队", + "业主收取 公摊水费", + "我非常感激 这一切", + "租金 却被物管私吞", + "请登录 西祠讨论版", + "又有 多少小区的水景", + "将自己磨练 得更全面", + "我们将予以 追踪报道", + "我知道有球队 注意我", + "而且这个城市 也很好", + "我坚信有球队 会签下我", + "一个不断 赢得胜利的球队", + "南京还有 多少小区的水景", + "怀特非常高兴能 签约火箭", + "有几支球队 一直在关注我", + "却依然在向 业主收取公摊水费", + "又有多少小区的水景 挪作他用", + "并将你的遭遇 反映给相关部门", + "我现在来到了一 支出色的球队", + "南京还有多少小区的水景 明明废弃了", + "t G", + "会 谈", + "血 流", + "▁ 最大", + "▁T hing", + "▁Th ing", + "▁Thin g", + "▁mac ros", + "▁macro s", + "▁ macros", + "▁c ottage", + "▁cot tage", + "▁Buddh ist", + "▁Budd hist", + "▁Ch ocolate", + "b z", + "九 十", + "的 粉丝", + "nE qu", + "n Equ", + "▁b elly", + "▁bel ly", + "▁bell y", + "慎 重", + "氧 气", + "而 过", + "▁F ra", + "▁Fr a", + "ess ive", + "▁Rock y", + "▁Roc ky", + "cent ric", + "c entric", + "穿 刺", + "Li f", + "L if", + "sent ence", + "房 的", + "er mine", + "erm ine", + "nR ugby", + "▁Some one", + "▁hydroph obic", + "收 割", + "艰 辛", + "nJ im", + "n Jim", + "▁登场 作品", + "▁sc rews", + "▁scr ews", + "▁screw s", + "关节 炎", + "▁res istor", + "▁resist or", + "S a", + "收 盘", + "做出 的", + "做 出的", + "pi eces", + "piece s", + "pie ces", + "▁Res cue", + "▁s el", + "▁se l", + "▁ sel", + "▁P ag", + "▁Pa g", + "▁ Pag", + "C atalog", + "▁anal ogs", + "▁analog s", + "▁ana logs", + "是 人", + "不明 白", + "不 明白", + "也是 很", + "也 是很", + "激烈 的", + "激 烈的", + "搅拌 均匀", + "▁tool bar", + "▁ toolbar", + "▁Mah arashtra", + "No r", + "N or", + "ir ical", + "iri cal", + "i rical", + "im plementation", + "imple mentation", + "即可 求得", + "▁S ync", + "▁Sy nc", + "▁Syn c", + "▁ Sync", + "向 我", + "年 少", + "雪 花", + "ce ipt", + "к у", + "▁E cho", + "▁Ec ho", + "▁T YPE", + "▁ TYPE", + "▁s oda", + "▁so da", + "▁advert isement", + "▁advertis ement", + "▁advertise ment", + "pl ural", + "▁review ers", + "▁reviewer s", + "马 某", + "er es", + "ere s", + "e res", + "▁R oh", + "▁Ro h", + "▁pe el", + "▁inv aluable", + "▁pregn ancies", + "▁C ities", + "▁Cit ies", + "▁Ci ties", + "共 振", + "芜湖 市", + "设计 了", + "住 山东省", + "ball s", + "bal ls", + "b alls", + "nB ook", + "nBo ok", + "n Book", + "lan tic", + "l antic", + "▁valid ator", + "▁ validator", + "▁conv iction", + "T K", + "断 了", + "济 宁", + "联 手", + "请 用", + "IN ESS", + "INE SS", + "I NESS", + "nHome work", + "nHom ework", + "▁de leting", + "▁del eting", + "▁delet ing", + "分布 在", + "Spec ific", + "S pecific", + "▁Sym posium", + "if ax", + "ifa x", + "i fax", + "ind ividual", + "▁goal keeper", + "▁Legisl ature", + "整 顿", + "各自 的", + "iv ary", + "iva ry", + "ivar y", + "der ive", + "de rive", + "▁Abd ul", + "夫妻感情 破裂", + "原 型", + "CM S", + "C MS", + "▁S hin", + "▁Sh in", + "▁Shi n", + "▁kind ly", + "▁ion ization", + "该 局", + "▁dr ummer", + "▁drum mer", + "运 势", + "各 单位", + "▁l anes", + "▁la nes", + "▁lane s", + "▁lan es", + "搞 好", + "构 件", + "re views", + "review s", + "▁Pre pare", + "▁Prep are", + "▁ped estrian", + "▁pedest rian", + "祝 愿", + "过 期", + "ch ai", + "cha i", + "c hai", + "st ry", + "str y", + "s try", + "▁s ights", + "▁sight s", + "▁separ ating", + "率 达", + "父亲 的", + "市 值", + "更 适合", + "电动 机", + "电 动机", + "神秘 的", + "\\\\ ;\\\\", + "\\\\; \\\\", + "/ '", + "明 知", + "意识 形态", + "科技 股份有限公司", + "V GA", + "责任 的", + ">( \\", + "> (\\", + "专业 课", + "Access or", + "血 症", + "ie c", + "i ec", + "~~ ~", + "~ ~~", + "脂肪 酸", + "▁Na du", + "▁Nad u", + "ich let", + "▁determin istic", + "AN Y", + "A NY", + "ul ance", + "ula nce", + "▁Ch ess", + "▁Che ss", + "▁Ches s", + "▁ad mits", + "▁admit s", + "▁adm its", + "▁rac ism", + "等证据 予以证实", + "子 孙", + "▁f d", + "▁ fd", + "生前 为", + "▁re bounds", + "▁reb ounds", + "▁rebound s", + "▁post natal", + "▁P t", + "▁ Pt", + "心脏 病", + "tN ame", + "t Name", + "▁p eek", + "▁pe ek", + "▁ peek", + "nAdd itionally", + "nAdditional ly", + "执行 至", + "tr ad", + "tra d", + "t rad", + "一个 新的", + "学习 教育", + "▁sh owers", + "▁show ers", + "▁shower s", + "lim itations", + "limit ations", + "深 远", + "▁— —", + "▁ ——", + "▁n ont", + "▁no nt", + "▁non t", + "▁Pay Pal", + "▁p umping", + "▁pump ing", + "▁commod ity", + "▁repos itories", + "▁ repositories", + "▁transfer ring", + "▁transf erring", + "IN DEX", + "IND EX", + "nS ystem", + "n System", + "▁N ortheast", + "▁North east", + "略 有", + "创造 性", + "半个 月", + "半 个月", + "▁H err", + "▁He rr", + "▁Her r", + "▁diarr hea", + "和他 的", + "和 他的", + "▁re he", + "DATA BASE", + "D ATABASE", + "聘 请", + "J en", + "不知 不觉", + "▁f rog", + "▁fr og", + "▁fro g", + "▁ 中共党员", + "▁lim bs", + "▁limb s", + "主 线", + "nK now", + "nKn ow", + "n Know", + "制成 的", + "制 成的", + "Ver ify", + "rais al", + "日 开始", + "营养 成分", + "/ ,", + "今 生", + "是 怎样", + "▁Fr anç", + "▁weakness es", + "关系 到", + "ns age", + "▁build ers", + "▁builder s", + "▁ builders", + "减 弱", + "Ver s", + "V ers", + "con e", + "co ne", + "c one", + "e uclid", + "nS ocial", + "n Social", + "nPar ameters", + "n Parameters", + "场 馆", + "Th ursday", + "J ul", + "人 意", + "设 在", + "be ck", + "bec k", + "b eck", + "多 点", + "nF in", + "n Fin", + "▁O ral", + "▁Or al", + "▁List en", + "▁Li sten", + "▁Lis ten", + "▁ Listen", + "对被执行人 的财产", + "对 被执行人的财产", + "▁metabol ite", + "少 于", + "提到 的", + "提 到的", + "符合 下列", + "▁war mer", + "▁warm er", + "▁combin atorial", + "合 影", + "中止 或者", + "▁e lem", + "▁el em", + "▁ele m", + "▁ elem", + "▁consolid ation", + "▁C ec", + "▁Ce c", + "▁V II", + "▁VI I", + "er obic", + "ero bic", + "▁ex cluding", + "乘 车", + "这 三", + "▁a bd", + "▁ab d", + "什么 东西", + "net works", + "network s", + "▁inc lined", + "▁incl ined", + "▁coll apsed", + "▁collapse d", + "phys ics", + "▁ 尺寸", + "as type", + "ast ype", + "asty pe", + "re ceive", + "▁begin ner", + "▁beg inner", + "维持 原裁定", + "tt le", + "t tle", + "yn th", + "ynt h", + "y nth", + "▁A sync", + "▁As ync", + "▁ Async", + "direct ories", + "director ies", + "不 符", + "宽 容", + "ar ah", + "ara h", + "a rah", + "un ity", + "unit y", + "uni ty", + "an ions", + "ani ons", + "anion s", + "敬 老", + "压缩 机", + "nc heck", + "nch eck", + "nche ck", + "n check", + "▁行政区 类别", + "os exual", + "osex ual", + "o sexual", + "stud ents", + "student s", + "▁arg uing", + "▁argu ing", + "建 的", + "ak an", + "aka n", + "a kan", + "▁mod ality", + "▁modal ity", + "▁char itable", + "纵 向", + "整数 的", + "整 数的", + "治疗 的", + "br own", + "bro wn", + "b rown", + "▁c ouns", + "▁co uns", + "▁cou ns", + "▁prob abilistic", + "就 越", + "▁M U", + "▁ MU", + "因为 我们", + "因为我 们", + "因 为我们", + "▁T race", + "▁Tr ace", + "▁Tra ce", + "▁ Trace", + "▁sl eek", + "▁sle ek", + "▁car ved", + "▁refer endum", + "应 以", + "网 球", + "道 教", + "骚 扰", + "ME R", + "M ER", + "nDe ath", + "n Death", + "illi ams", + "illiam s", + "no l", + "n ol", + "▁R ED", + "▁RE D", + "▁ RED", + "▁g eo", + "▁ge o", + "▁ geo", + "▁aggreg ates", + "▁aggregate s", + "峰 值", + "▁V iv", + "▁Vi v", + "▁hel met", + "▁helm et", + "▁r esides", + "▁res ides", + "▁resid es", + "▁reside s", + "四边形 的", + "四 边形的", + "▁b ake", + "▁ba ke", + "▁bak e", + "▁gest ational", + "▁gestation al", + "花 瓣", + "评 级", + "SC I", + "S CI", + "▁G I", + "▁ GI", + "本质 上", + "罪犯 刘", + "St ates", + "State s", + "Stat es", + "O X", + "▁notice able", + "关键 字", + "ot ti", + "ott i", + "o tti", + "▁sc enery", + "▁scen ery", + "▁scene ry", + "con verter", + "convert er", + "▁separ ator", + "▁ separator", + "山 下", + "占用 的", + "占 用的", + "▁S ql", + "▁ Sql", + "二〇一七年 六月", + "二〇一七年六 月", + "▁Re verse", + "▁Rever se", + "▁ Reverse", + "▁transl ates", + "▁translate s", + "赞 助", + "系数 的", + "系 数的", + "▁est á", + "提交 的证据", + "提交的 证据", + "Cap ture", + "Capt ure", + "古老 的", + "古 老的", + "很好 地", + "an ey", + "ane y", + "a ney", + "stat istics", + "▁B od", + "▁Bo d", + "不只 是", + "不 只是", + "H N", + "gr owing", + "gro wing", + "grow ing", + "g rowing", + "▁murder ed", + "▁Louis ville", + "▁a fore", + "▁af ore", + "os us", + "o sus", + "▁V ern", + "▁Ver n", + "▁Ve rn", + "▁游戏 介绍", + "De code", + "Dec ode", + "D ecode", + "▁com ma", + "▁comm a", + "▁co mma", + "▁L S", + "▁ LS", + "▁F ul", + "▁Fu l", + "云 龙", + "风 波", + "教学 的", + "教 学的", + "但是 如果", + "▁avoid ance", + "▁ 松", + "沿 革", + "per f", + "pe rf", + "▁o vert", + "▁over t", + "▁ov ert", + "▁val ves", + "▁valve s", + "mong oose", + "mongo ose", + "m ongoose", + "ynt hetic", + "ynth etic", + "y nthetic", + "▁Squad ron", + "status Code", + "做 工", + "招 牌", + "▁D uncan", + "▁Dun can", + "▁Du ncan", + "erman ent", + "相 近", + "▁H L", + "▁ HL", + "ob ia", + "obi a", + "o bia", + "▁phot oc", + "▁photo c", + "曲 折", + "电 能", + "进 出", + "\"< <", + "\" <<", + "▁[ {", + "▁ [{", + "ment e", + "me nte", + "men te", + "m ente", + "是什么 意思", + "▁refr actory", + "写 着", + "模拟 器", + "sh irts", + "shirt s", + "回 车", + "民 宿", + "el ic", + "eli c", + "e lic", + "▁b ibli", + "▁bib li", + "▁L adies", + "▁La dies", + "▁Lad ies", + "▁P urchase", + "▁coll ateral", + "ou cester", + "ic ultural", + "icult ural", + "i cultural", + "i J", + "出 路", + "▁fem inine", + "▁femin ine", + "▁Consult ing", + "琉 璃", + "▁K lein", + "▁Kle in", + "▁Kl ein", + "unction al", + "unct ional", + "自 强", + "芹 菜", + "Pro b", + "Pr ob", + "P rob", + "▁a ls", + "▁al s", + "▁ als", + "nP rot", + "nPro t", + "nPr ot", + "n Prot", + "G erman", + "▁Com ponents", + "▁Component s", + "▁ Components", + "中 式", + "喷 雾", + "黄 石", + "ap o", + "a po", + "的问题 和", + "的 问题和", + "cou ld", + "c ould", + "ov ina", + "ovi na", + "玩 耍", + "▁p b", + "▁ pb", + "un al", + "una l", + "u nal", + "▁Gar cia", + "▁Garc ia", + "▁Le ather", + "▁re versal", + "▁revers al", + "▁rever sal", + "▁explor atory", + "▁O ber", + "▁Ob er", + "元 整", + "去 过", + "月 上", + "▁in herit", + "▁inher it", + "▁ inherit", + "争 霸", + "ol la", + "oll a", + "o lla", + "▁R ew", + "▁Re w", + "▁ Rew", + "▁Ethiop ia", + "评 测", + "大学 学历", + "数额 较大", + "▁st ove", + "▁sto ve", + "ath yroid", + "athy roid", + "▁render er", + "▁ renderer", + "▁( “", + "不论 是", + "▁b acon", + "▁ba con", + "▁bac on", + "公 因式", + "File Sync", + "▁a erobic", + "▁aer obic", + "▁kid neys", + "▁kidney s", + "离 散", + "▁R UN", + "▁ RUN", + "ME M", + "M EM", + "▁c f", + "▁ cf", + "文化 传媒", + "nF rank", + "nFr ank", + "n Frank", + "▁Re venue", + "▁Rev enue", + "▁dece ased", + "tR E", + "t RE", + "▁br och", + "▁bro ch", + "▁nav bar", + "▁ navbar", + "▁Os lo", + "▁commit ments", + "▁commitment s", + "淡 水", + "工作 时间", + "工作时 间", + "▁HV AC", + "▁Roman ized", + "▁synchron ization", + "相 较", + "c ategor", + "▁pic nic", + "exec utor", + "nDef inition", + "n Definition", + "▁deliver ies", + "一 子", + "第二 款", + "企 事业单位", + "建设 有限公司", + "▁D ashboard", + "▁Dash board", + "▁ Dashboard", + "▁exception ally", + "▁exceptional ly", + "$$ (", + "$ $(", + "ot ta", + "ott a", + "▁endorse d", + "▁endors ed", + "男 士", + "送 货", + "对人 体", + "对 人体", + "美联 储", + "▁bo iling", + "▁boil ing", + "w m", + "可 将", + "uk u", + "u ku", + "▁ar rows", + "▁arr ows", + "▁arrow s", + "▁weigh ing", + "▁Res istance", + "食 盐", + "接受 了", + "im ited", + "imit ed", + "imi ted", + "▁For ex", + "▁Fore x", + "▁Fo rex", + "An other", + "A nother", + "▁pyl ori", + "▁host name", + "▁ hostname", + "东 山", + "发 售", + "魔 鬼", + "▁B M", + "▁ BM", + "ar te", + "art e", + "带 入", + "V K", + "特 产", + "用 在", + "然后 将", + "然 后将", + "al li", + "all i", + "a lli", + "称 赞", + "▁P ray", + "▁Pr ay", + "▁Pra y", + "▁T hu", + "▁Th u", + "教育 培训", + "▁dis sect", + "▁diss ect", + "员 的", + "鲜 艳", + "那个 人", + "那 个人", + "公 用", + "lf loor", + "l floor", + "tc lass", + "t class", + "Rec ords", + "Record s", + "▁up side", + "▁ups ide", + "▁eng lish", + "▁ english", + "亩 产", + "ni ce", + "nic e", + "n ice", + "x d", + "谁 的", + "发展 到", + "发病 率", + "可行 的", + "可 行的", + "武 功", + "n install", + "余 款", + "都 想", + "keep ers", + "keeper s", + "kee pers", + "▁Mig uel", + "法定 代理人", + "▁qu ilt", + "▁q uilt", + "▁qui lt", + "▁quil t", + "}\" ,\\", + "}\", \\", + "} \",\\", + "成立 以来", + "LO CAL", + "LOC AL", + "▁Is aac", + "▁Isa ac", + "▁pull s", + "▁pul ls", + "▁just ified", + "DE VELOPMENT", + "se tt", + "set t", + "s ett", + "nu s", + "n us", + "it ee", + "ite e", + "i tee", + "▁F as", + "▁Fa s", + "Par ty", + "Part y", + "P arty", + "▁l amps", + "▁lam ps", + "▁lamp s", + "▁Hot els", + "▁Hotel s", + "八 章", + "私 立", + "co sx", + "cos x", + "c osx", + "name of", + "▁ext inct", + ">) <", + "> )<", + "厘米 的", + "厘 米的", + "有限 的", + "▁M ood", + "▁Mo od", + "▁w ells", + "▁well s", + "▁wel ls", + "ass adors", + "assador s", + "istor ical", + "istoric al", + "isto rical", + "裙 子", + "▁Q R", + "▁ QR", + "▁b ounce", + "▁bou nce", + "▁ir relevant", + "▁irre levant", + "▁( ~", + "Be nch", + "Ben ch", + "B ench", + "▁P rices", + "▁Pr ices", + "▁Price s", + "▁Pri ces", + "▁Improve ment", + "首 家", + "我爱 你", + "我 爱你", + "▁o mitted", + "▁om itted", + "▁omit ted", + "▁S eed", + "▁Se ed", + "▁See d", + "▁ Seed", + "西 山", + ">\\ '\\", + ">\\' \\", + "> \\'\\", + "── ──", + "申请 复议", + "这是 一种", + "这是一 种", + "这 是一种", + "pro ving", + "pr oving", + "prov ing", + "▁Admin istrator", + "▁Administr ator", + "供 货", + "闵 行", + "毛 主席", + "的 坐标", + "▁输出 格式", + "▁ 输出格式", + "三条 之规定", + "三 条之规定", + "fore ign", + "▁F iction", + "▁Fi ction", + "执 勤", + "洽 谈", + "鸡 精", + "do ng", + "don g", + "d ong", + "实践 活动", + "▁e rad", + "▁er ad", + "▁era d", + "power s", + "po wers", + "pow ers", + "p owers", + "ter ror", + "te rror", + "terr or", + "t error", + "start ing", + "star ting", + "▁sh uttle", + "▁shut tle", + "Some thing", + "S omething", + "▁down ward", + "▁neglig ible", + "▁permut ations", + "▁permutation s", + "惩 处", + "}$ )", + "} $)", + "▁p ens", + "▁pe ns", + "▁pen s", + "物流 有限公司", + "▁La place", + "▁Lapl ace", + "▁D imension", + "▁Dim ension", + "▁ Dimension", + "▁unfort unate", + "干 旱", + "prot obuf", + "proto buf", + "W IDTH", + "nCom mon", + "n Common", + "▁Bat man", + "▁br okers", + "▁bro kers", + "▁broke rs", + "▁broker s", + "征 字", + "\\\\ \\'", + "\\\\\\ '", + "\\ \\\\'", + "▁deleg ates", + "▁delegate s", + "▁rev isions", + "▁revision s", + "▁revis ions", + "传 授", + "坦 白", + "eg an", + "ega n", + "e gan", + "St eps", + "Step s", + "Ste ps", + "▁发行 日期", + "▁gluc ocortic", + "以 防", + "Fr e", + "F re", + "▁D ob", + "▁Do b", + "▁P RE", + "▁PR E", + "▁ PRE", + "▁Pro xy", + "▁Pr oxy", + "▁ Proxy", + "▁lub ric", + "右 上", + "穿 搭", + "本案 移送", + "▁输入 格式", + "▁ 输入格式", + "▁debut s", + "▁deb uts", + "▁Car roll", + "▁Carr oll", + "▁P urpose", + "▁Pur pose", + "▁activ ates", + "▁activate s", + "▁sem antics", + "▁semantic s", + "nT w", + "n Tw", + "如果 一个", + "成为 中国", + "成 为中国", + "▁the or", + "▁th eor", + "品 位", + "存 续", + "柔 毛", + "肉 质", + "这部 剧", + "▁W ear", + "▁We ar", + "▁past or", + "▁pa stor", + "▁pas tor", + "▁Bal ance", + "▁ Balance", + "▁exhib iting", + "▁exhibit ing", + "al sy", + "als y", + "▁crow ded", + "▁crowd ed", + "▁morph ine", + "▁medic inal", + "忽 悠", + "消 极", + "高 大", + "人才 的", + "▁Account ing", + "核 查", + "点 半", + "民事 执行中", + "nF igure", + "n Figure", + "▁group ing", + "▁cong estion", + "▁congest ion", + "▁ 动物", + "oc in", + "oci n", + "o cin", + "▁R enaissance", + "▁Re naissance", + "Pa n", + "P an", + "文明 的", + "文 明的", + "nM iss", + "nMi ss", + "n Miss", + "▁re tic", + "▁r etic", + "▁ret ic", + "en crypt", + "enc rypt", + "▁de prec", + "▁dep rec", + "城 关", + "bl ade", + "bla de", + "党 和", + "二氧化 碳", + "大学 英语", + "资本 市场", + "Pol ygon", + "Poly gon", + "et eenth", + "ete enth", + "e teenth", + "日向本院提出 申请", + "赶 到", + "节点 的", + "节 点的", + "▁U AE", + "▁mess y", + "▁mes sy", + "厨 师", + "同 仁", + "学院 的", + "学 院的", + "工商 局", + "软 硬件", + "安全 管理", + "▁immun oglobulin", + "单 品", + "ar de", + "ard e", + "▁he el", + "▁ heel", + "nAs ian", + "▁tribut ary", + "▁B US", + "▁BU S", + "nT ags", + "n Tags", + "▁d umb", + "▁du mb", + "自 诉", + "精神 和", + "个体 工商户", + "▁hour ly", + "Util ities", + "看 我", + "Co p", + "C op", + "就算 了", + "就 算了", + "金华 市", + "sk ill", + "ski ll", + "s kill", + "Pr essed", + "Press ed", + "Pres sed", + "P ressed", + "▁layer ed", + "▁lay ered", + "▁accum ulate", + "的 超", + "纠 错", + "nA nal", + "nAn al", + "n Anal", + "▁f lesh", + "▁fl esh", + "▁fle sh", + "▁Spe ech", + "主 料", + "ef e", + "e fe", + "h g", + "民 字第", + "▁deb ates", + "▁debate s", + "▁Insp ector", + "打 磨", + "元 减半收取", + "▁Mon ster", + "▁Mons ter", + "四 人", + "闹 钟", + "过滤 器", + "写 在", + "所有 人都", + "所有人 都", + "ITH UB", + "▁d ick", + "▁di ck", + "▁dic k", + "Fe bruary", + "▁enjoy ment", + "▁explos ive", + "碱 性", + "▁L iquid", + "▁en amel", + "▁E lements", + "▁El ements", + "▁Element s", + "▁Ele ments", + "▁ Elements", + "编 排", + "ER SION", + "ERS ION", + "▁L ecture", + "▁Lect ure", + "临 界", + "流 氓", + "可视 化", + "的 感情", + "▁Cop per", + "精 装", + "ly s", + "l ys", + "}/ {", + "} /{", + "Ho ur", + "H our", + "核酸 检测", + "▁D rew", + "▁Dr ew", + "nVis it", + "n Visit", + "值得一提 的是", + "后 被", + "日 趋", + "▁te ndon", + "▁ten don", + "▁tend on", + "Pres enter", + "Present er", + "An notations", + "Annotation s", + "大 腿", + "荔 枝", + "土地 上", + "土 地上", + "的 习惯", + "▁dep icted", + "▁depict ed", + "▁live stock", + "▁liv estock", + "▁Sacr amento", + "★ ★", + "平均 数", + "▁Bul ld", + "▁Bu lld", + "▁Bull d", + "▁Gu jar", + "inf ection", + "infect ion", + "合伙 人", + "▁micro tub", + "气 球", + "缓 期", + "▁X en", + "Dist ribution", + "义 词", + "字 号", + "拿 了", + "一切 都", + "大家 好", + "住 湖南省", + "▁E DIT", + "▁ED IT", + "▁ EDIT", + "Not hing", + "No thing", + "N othing", + "端 午", + "IL S", + "I LS", + "in ho", + "inh o", + "bl ogs", + "blog s", + "blo gs", + "b logs", + "ycl es", + "ycle s", + "yc les", + "y cles", + "O x", + "赶 快", + "文明 建设", + "it ches", + "itc hes", + "itch es", + "le vels", + "lev els", + "level s", + "im etric", + "imet ric", + "i metric", + "典 雅", + "采取 了", + "ep isode", + "▁prot agon", + "古 老", + "石 墨", + "使用 者", + "▁a po", + "▁ap o", + "▁ apo", + "▁B erry", + "▁Ber ry", + "▁ Berry", + "flat ten", + "▁list ened", + "▁listen ed", + "▁secure ly", + "理 学", + "离 合", + "紊 乱", + "顺 应", + "他 表示", + "可以 做", + "可 直接", + ")\" )\\", + ") \")\\", + "ed ic", + "edi c", + "e dic", + "▁M ON", + "▁MO N", + "▁ MON", + "▁v oter", + "▁vote r", + "▁vot er", + "▁vo ter", + "▁Import ant", + "▁re solving", + "▁res olving", + "兴 隆", + "Me an", + "M ean", + "▁A ST", + "▁AS T", + "▁ AST", + "F ALSE", + "布 斯", + "膝 盖", + "自 营", + "▁P izza", + "▁synchron ized", + "▁ 法", + "接 纳", + "▁} ;", + "▁ };", + "Be en", + "B een", + "▁r hs", + "▁rh s", + "共产 党员", + "共产党 员", + "develop ers", + "developer s", + "石 灰", + "以上 就是", + "步 步", + "这 才", + "tf inal", + "t final", + "第一百五十四条第一款第十一 项", + "底 蕴", + "林 果", + "▁West minster", + "埔 寨", + "nP hot", + "nPh ot", + "n Phot", + "▁M esh", + "▁Me sh", + "▁Mes h", + "▁ Mesh", + "▁Re set", + "▁Res et", + "▁ Reset", + "▁Ind igenous", + "江 北", + "知名 的", + "知 名的", + "▁S SD", + "▁SS D", + "cle aned", + "clean ed", + "字 节", + "美 德", + "W ave", + "sub section", + "一 言", + "敬 请", + "扣押 其", + "Hi de", + "H ide", + "il og", + "ilo g", + "i log", + "LE MENT", + "L EMENT", + "id able", + "ida ble", + "▁c ivic", + "▁ci vic", + "ococc al", + "ococ cal", + "制定 了", + "制 定了", + "短期 内", + "短 期内", + "▁Mu eller", + "楼 市", + "被 骗", + "on o", + "o no", + "la ct", + "l act", + "▁Y emen", + "▁Ye men", + "段 的", + "vi z", + "v iz", + "bol a", + "bo la", + "b ola", + "▁re places", + "▁replac es", + "▁replace s", + "Rob ert", + "Ro bert", + "R obert", + "▁Qu est", + "▁Que st", + "▁ Quest", + "▁Ca ucas", + "Start ing", + "Star ting", + "▁end urance", + "海 事", + "mod ify", + "▁se wing", + "▁sew ing", + "м о", + "突 击", + "罕 见", + "宝宝 的", + "本院 依照", + "硬盘 容量", + "▁Gu arant", + "▁billion s", + "▁bill ions", + "洗 浴", + "疏 松", + "政策 和", + "如果 你是", + "如果你 是", + "强制 措施", + "本 月", + "花 样", + "公元 前", + "nE st", + "n Est", + "坐 着", + "这个 词", + "▁连载 网站", + "▁Cl aire", + "▁Clair e", + "▁rem edy", + "▁remed y", + "▁Kenn eth", + "▁plot ting", + "▁re produced", + "▁rep roduced", + "▁reprodu ced", + "▁reproduce d", + "▁reproduc ed", + "解 说", + "▁( );\\", + "▁() ;\\", + "▁ ();\\", + "歷 史", + "白 头", + "防 汛", + "的人 来说", + "直 辖", + "▁M odi", + "▁Mod i", + "▁Mo di", + "Comp uter", + "Comput er", + "Compute r", + "▁ter minus", + "▁term inus", + "▁Con figure", + "▁Config ure", + "▁Conf igure", + "▁ Configure", + "▁ 根据", + "nP RO", + "n PRO", + "form ats", + "format s", + "R h", + "的 供述", + "▁advertis ements", + "▁advertisement s", + "▁advertise ments", + "▁m r", + "▁ mr", + "及 应用", + "nQ ue", + "nQu e", + "n Que", + "start up", + "PN G", + "P NG", + "dp i", + "d pi", + "nL and", + "nLa nd", + "n Land", + "▁P eer", + "▁Pe er", + "▁ Peer", + "set Timeout", + "王 的", + "▁p pm", + "▁pp m", + "▁ ppm", + "Oper ating", + "药 用", + "在 未来", + "▁frag ile", + "区 人民政府", + "or tical", + "ort ical", + "ortic al", + "é g", + "思想 的", + "思 想的", + "▁dis joint", + "两 端", + "▁I CT", + "▁IC T", + "▁ ICT", + "纪检 监察", + "▁e mitted", + "▁em itted", + "▁emit ted", + "umber land", + "影响 力的", + "影响力 的", + "nD utch", + "▁van ity", + "▁back bone", + "▁Typ ically", + "▁summ ation", + "能 看到", + "▁m appings", + "▁mapping s", + "▁ref lective", + "▁reflect ive", + "▁ 到", + "财产 刑", + "▁D ani", + "▁Dan i", + "▁Da ni", + "▁c och", + "▁co ch", + "▁coc h", + "合 击", + "cp y", + "c py", + "第二 种", + "▁h ats", + "▁ha ts", + "▁hat s", + "prob ably", + "碳 酸", + "保修 卡", + "ew ish", + "▁song writer", + "▁ songwriter", + "邂 逅", + "身份 证号", + "身份证 号", + "ask ets", + "asket s", + "te acher", + "▁mem oir", + "▁memo ir", + "▁writ ings", + "▁writing s", + "▁CH AR", + "▁ CHAR", + "cl osures", + "closure s", + "K M", + "▁A rr", + "▁Ar r", + "▁ Arr", + "▁r het", + "▁rh et", + "▁rhe t", + "▁ 艾", + "体 型", + "萃 取", + "骨 质", + "▁Dr ama", + "▁pan or", + "▁pa nor", + "▁repe ats", + "▁repeat s", + "▁secret ory", + "▁ant idepress", + "细 化", + "追 缴", + "▁N W", + "▁ NW", + "▁ 地点", + "par tum", + "part um", + "▁M eyer", + "▁Me yer", + "▁Mey er", + "但 对", + "收 支", + "nt z", + "n tz", + "解题 思路", + "想 必", + "BO T", + "B OT", + "}) )\\", + "})) \\", + "} ))\\", + "ci s", + "c is", + "Ga te", + "G ate", + "op hen", + "oph en", + "o phen", + "▁H ern", + "▁He rn", + "▁Her n", + "▁Ow ner", + "▁Own er", + "▁ Owner", + "▁al coholic", + "▁alcohol ic", + "▁ol factory", + "▁olf actory", + "▁orig inating", + "▁origin ating", + "* {", + "参数 的", + "参 数的", + "输入 法", + "ay ed", + "aye d", + "▁P hen", + "▁Ph en", + "父 子", + "Fun d", + "F und", + "信息 咨询", + "或 直接向", + "Ind icator", + "▁def ended", + "▁defend ed", + "▁elim inates", + "▁eliminate s", + "ind le", + "te ams", + "team s", + "ain less", + "▁imag ined", + "▁imagine d", + "▁play list", + "▁ playlist", + "▁char ities", + "▁clar ification", + "的 房屋", + "▁C oc", + "▁Co c", + "▁l oos", + "▁lo os", + "min ton", + "mi nton", + "m inton", + "▁gl aucoma", + "保 洁", + "al lic", + "all ic", + "alli c", + "▁Richard son", + "▁Richards on", + "嫉 妒", + "前 所未", + "收到 了", + "收 到了", + "日因 涉嫌", + "日 因涉嫌", + "▁ch ase", + "▁cha se", + "Th rough", + "▁cre amy", + "▁cream y", + "气 流", + "▁Iraq i", + "▁v illa", + "▁vill a", + "▁vi lla", + "利 害", + "▁gl imp", + "▁gli mp", + "劳 人", + "和 县", + "意义 上", + "新 民", + "难 的", + "st mt", + "stm t", + "倾 听", + "家 装", + "撞 击", + "重 叠", + "顺 畅", + "if fe", + "iff e", + "Sl ider", + "Slide r", + "▁co ached", + "▁coach ed", + "杀 害", + "▁analog ues", + "▁analogue s", + "亲 身", + "随 手", + "本次 活动", + "pl iers", + "plier s", + "p liers", + "▁l ively", + "▁li vely", + "▁live ly", + "▁liv ely", + "▁knock ed", + "▁di amonds", + "▁diamond s", + "▁dia monds", + "奴 隶", + "▁K aw", + "▁Ka w", + "▁F ergus", + "▁Ch ronic", + "▁Chron ic", + "$$ )", + "$ $)", + "▁/ \\", + "▁ /\\", + "为 导向", + "▁T ong", + "▁To ng", + "▁Ton g", + "nJ ournal", + "nJo urnal", + "n Journal", + "screen shot", + "screens hot", + "▁neutroph ils", + "▁neutrophil s", + "少 先", + "而 有", + "的新 型", + "的 新型", + "红楼 梦", + "舒适 的", + "en zie", + "enz ie", + "▁Act ions", + "▁Action s", + "▁ Actions", + "▁A SP", + "▁AS P", + "▁ ASP", + "咨询 医生", + "合同 的", + "柬 埔寨", + "▁b orough", + "▁bo rough", + "▁bor ough", + "▁ borough", + "看看 吧", + "ns pec", + "nsp ec", + "n spec", + "低 级", + "米 尔", + "京 剧", + "护 栏", + "AT IVE", + "and ez", + "ande z", + "▁c afe", + "▁ca fe", + "▁caf e", + "▁Am anda", + "▁glimp se", + "向 其", + "故 依照", + "▁O dd", + "▁Od d", + "▁[ {\\", + "▁[{ \\", + "不予 支持", + "bl ood", + "blo od", + "b lood", + "▁ch oir", + "▁cho ir", + "▁Bu enos", + "▁d ancer", + "▁dance r", + "▁dan cer", + "掌 声", + "概 论", + "防 盗", + "在 没有", + "}/ ${", + "} /${", + "二次根 式", + "Rot ation", + "R otation", + "▁mess enger", + "is te", + "ist e", + "i ste", + "▁s poon", + "▁sp oon", + "▁spo on", + "▁w reck", + "▁wr eck", + "▁wre ck", + "▁appe als", + "▁appeal s", + "▁begin ners", + "▁beginner s", + "的 努力", + "Sk ip", + "S kip", + "申请执行人 刘", + "▁immun o", + "▁imm uno", + "▁c affeine", + "▁chicken s", + "▁chick ens", + "▁stim ulates", + "▁stimul ates", + "▁stimulate s", + "溶 性", + "▁w ip", + "▁wi p", + "F riend", + "▁de pot", + "▁dep ot", + "▁d rawer", + "▁draw er", + "Acc ording", + "界 限", + "nO K", + "n OK", + "Squ are", + "S quare", + "enh anced", + "意 为", + "预 热", + "带领 下", + "日期 间", + "日 期间", + "round ed", + "r ounded", + "read lines", + "readline s", + "山 顶", + "T ur", + "▁ 音乐", + "每一 天", + "每 一天", + "▁Est onia", + "▁Eston ia", + "力 气", + "不 具有", + "Bl ob", + "B lob", + "▁m ould", + "南 充", + "坚 果", + "▁E k", + "多少 人", + "颁发 的", + "颁 发的", + "re member", + "rem ember", + "reme mber", + "▁predict able", + "火 热", + "的 工资", + "▁m ascul", + "▁masc ul", + "first Name", + "在我 看来", + "op ent", + "ope nt", + "open t", + "o pent", + "co ffee", + "c offee", + "▁c itations", + "▁cit ations", + "▁citation s", + "北 极", + "洛 杉", + "都 得", + "▁d d", + "▁ dd", + "但 还是", + "告诉 我们", + "告诉我 们", + "▁text ile", + "▁tex tile", + "岛 屿", + "痘 痘", + "▁L av", + "▁La v", + "▁S ig", + "▁Si g", + "▁ Sig", + "▁z ebra", + "▁ze bra", + "▁H ospit", + "▁sp ices", + "▁spice s", + "▁obstruct ive", + "不受申请执行时效 期间的限制", + "得 太", + "高 管", + "▁f rost", + "▁fr ost", + "▁fro st", + "▁F ortunately", + "▁Fort unately", + "状 元", + "不平 衡", + "不 平衡", + "绿化 率", + "▁Ph armac", + "▁Pharm ac", + "rib utable", + "ribut able", + "红 花", + "or en", + "ore n", + "o ren", + "▁ins ult", + "▁part itions", + "▁partition s", + "it zer", + "itz er", + "▁W ORK", + "▁WOR K", + "▁ WORK", + "ut i", + "u ti", + "▁Occ up", + "▁Oc cup", + "cover ed", + "cov ered", + "c overed", + "尼 克", + "山 脉", + "应 是", + "清 淡", + "▁N ET", + "▁NE T", + "▁ NET", + "nL ine", + "nLin e", + "n Line", + "▁has ht", + "▁hash t", + "design ated", + "▁dis asters", + "▁disaster s", + "了我 的", + "了 我的", + "▁gen ital", + "▁B JP", + "▁V il", + "▁Vi l", + "As sign", + "Ass ign", + "ir y", + "i ry", + "停留 在", + "停 留在", + "(' \\\\", + "( '\\\\", + "▁optim istic", + "我不 想", + "我 不想", + "fl ip", + "f lip", + "▁M orr", + "▁Mor r", + "▁Mo rr", + "▁p end", + "▁pe nd", + "▁pen d", + "▁ pend", + "nad min", + "n admin", + "▁U tility", + "▁Ut ility", + "▁Util ity", + "▁ Utility", + "声 誉", + "车 内", + "▁ 存储", + "▁d ull", + "▁du ll", + "▁f ing", + "▁fin g", + "▁fi ng", + "_ )", + "屏 障", + "往 上", + "高 产", + "二〇一六年 八月", + "私 营", + "IN AL", + "INA L", + "I NAL", + "▁S ki", + "▁Sk i", + "▁C lasses", + "▁Class es", + "▁ Classes", + "▁pol ling", + "▁poll ing", + "▁Disc rete", + "▁cancel ed", + "▁neutroph il", + "▁neutr ophil", + "# :", + "J R", + "▁ 圣", + "出版 时间", + "▁p olo", + "▁pol o", + "▁po lo", + "中国人民 解放军", + "国有 企业", + "▁Pers ian", + "▁wel ding", + "▁weld ing", + "谁 是", + "▁* ,", + "▁ *,", + "中的 一", + "中 的一", + "▁e yel", + "▁ey el", + "▁eye l", + "oul try", + "▁Bar nes", + "▁Barn es", + "▁bl ended", + "▁blend ed", + "orient ation", + "o rientation", + "调 剂", + "鼓 舞", + "精确 到", + "▁Americ as", + "▁America s", + "▁aper ture", + "▁ ε", + "房 东", + "让 它", + "信息 服务", + "▁ubiquit ous", + "和 建议", + "故本 案", + "故 本案", + "高效 的", + "意义 上的", + "意义上 的", + "成 形", + "PA T", + "P AT", + "因此 在", + "da emon", + "战 绩", + "▁G ender", + "▁Ge nder", + "▁Gen der", + "▁ Gender", + "▁Sloven ia", + "原 地", + "创新 型", + "创 新型", + "由 已知", + "hb ar", + "h bar", + "rf loor", + "r floor", + "▁Mem phis", + "▁att ained", + "▁attain ed", + "微波 炉", + ">' ,\\", + ">', \\", + "> ',\\", + "es ty", + "est y", + "e sty", + "▁R he", + "▁Rh e", + "▁A way", + "▁Aw ay", + "节 课", + "马 里", + "和 完善", + "nPart icip", + "n Particip", + "▁ob servers", + "▁observ ers", + "▁observe rs", + "▁observer s", + "ar b", + "a rb", + "你 现在", + "注射 液", + "▁N eo", + "▁Ne o", + "clean up", + "▁Can vas", + "▁ Canvas", + "▁Ex hibition", + "▁Exhib ition", + "▁hypert rophy", + "求 法", + "▁C ycle", + "▁Cy cle", + "▁Cycl e", + "▁ Cycle", + "▁op ted", + "▁opt ed", + "属于 中档题", + "▁mar sh", + "▁mars h", + "▁fore casting", + "▁forecast ing", + "主义 者", + "的 整体", + "nM ary", + "nMar y", + "nMa ry", + "n Mary", + "▁hard est", + "▁har dest", + "▁ecosystem s", + "▁eco systems", + "年 终", + "ra x", + "r ax", + "命令 行", + "▁D awn", + "▁Da wn", + "▁Daw n", + "\":[ ],\"", + "▁R outes", + "▁Ro utes", + "▁Route s", + "▁Rou tes", + "▁ Routes", + "浑 身", + "▁S au", + "▁Sa u", + "▁S we", + "▁Sw e", + "野生 动物", + "ce ans", + "cean s", + "cea ns", + "en sed", + "ens ed", + "ense d", + "划拨 被执行人", + "▁comm ence", + "差 分", + "▁о б", + "▁ об", + "不忘 初心", + "Man ifest", + "棕 色", + "双人 间", + "双 人间", + "CA SE", + "CAS E", + "C ASE", + "▁C ul", + "▁Cu l", + "▁v ow", + "▁vo w", + "▁c atar", + "▁ca tar", + "▁cat ar", + "str ained", + "stra ined", + "strain ed", + "s trained", + "repre neur", + "reprene ur", + "▁type name", + "▁typ ename", + "▁ typename", + "▁dis placed", + "agrang ian", + "nOr iginal", + "n Original", + "金 的", + "元素 的", + "元 素的", + "公安 部", + "包含 一个", + "▁El len", + "▁Ell en", + "▁gar ner", + "有效 期", + "▁c arn", + "▁car n", + "▁ca rn", + "▁aut oc", + "▁auto c", + "▁au toc", + "▁pr imer", + "▁prim er", + "▁prime r", + "▁pri mer", + "K g", + "几 句", + "▁Key Error", + "变 现", + "庞 大", + "给 被告", + "▁be ers", + "▁beer s", + "▁bee rs", + "▁de tox", + "▁det ox", + "▁String Builder", + "▁ StringBuilder", + "▁N SA", + "▁NS A", + "Mo tor", + "M otor", + "embed ded", + "pro portion", + "prop ortion", + "间 断", + "作出 裁定", + "本身 就是", + "血液 循环", + "exec utable", + "领先 的", + "ap ro", + "a pro", + "Ma gic", + "Mag ic", + "M agic", + "▁scan f", + "▁ scanf", + "▁lock smith", + "▁locks mith", + "▁register ing", + "j d", + "上 部", + "真 情", + "Sl eep", + "S leep", + "▁mult is", + "▁multi s", + "▁mul tis", + "▁cho pped", + "▁chop ped", + "号 称", + "il is", + "ili s", + "i lis", + "明显 高于", + "Liter al", + "Lite ral", + "arch itecture", + "▁ 下", + "不一 致", + "不 一致", + "ve ns", + "ven s", + "v ens", + "北 斗", + "婷 婷", + "con c", + "co nc", + "c onc", + "ax ial", + "ex ter", + "ext er", + "▁a udi", + "▁aud i", + "▁au di", + "▁ audi", + "▁Sh ield", + "▁Shi eld", + "用 书", + "ge ries", + "ger ies", + "g eries", + "▁High land", + "▁ В", + "交 集", + "Fi g", + "F ig", + "tu r", + "t ur", + "ross e", + "ros se", + "r osse", + "▁P ixel", + "▁Pix el", + "▁ Pixel", + "iropr actic", + "▁reprodu cible", + "▁repro ducible", + "▁reproduc ible", + "年 末", + "提 要", + "都是 有", + "都 是有", + "进一步 提高", + "▁long time", + "嘲 笑", + "纸 上", + "椭圆 的", + "椭 圆的", + "等 行业", + "Sh adow", + "Sha dow", + "▁collabor ated", + "▁collaborate d", + "la ne", + "lan e", + "l ane", + "ol one", + "olo ne", + "ri ages", + "ria ges", + "riage s", + "▁b logger", + "▁blog ger", + "uff iciency", + "或 缺", + "沿 线", + "需 在", + "PI N", + "P IN", + "▁C s", + "▁ Cs", + "流 产", + "一些 人", + "倾 城", + "▁O nc", + "▁On c", + "停车 服务", + "停 车服务", + "nAr gent", + "▁Mark ets", + "▁Market s", + "ra v", + "r av", + "抗 氧化", + "(\" \");\\", + "(\"\" );\\", + "▁hung er", + "▁hun ger", + "▁pos ture", + "▁post ure", + "▁P ipeline", + "▁Pipe line", + "▁Pip eline", + "▁ Pipeline", + "出 锅", + "友 人", + "▁S antiago", + "▁wheel chair", + "oy e", + "o ye", + "上 发表", + "不是 说", + "须 经", + "ys tone", + "yst one", + "y stone", + "▁comfort ably", + "典 范", + "晓 明", + "渊 博", + "Wi re", + "W ire", + "nTe am", + "n Team", + "▁ign or", + "▁ig nor", + "Pos itive", + "▁term inate", + "ve ls", + "vel s", + "v els", + "比较 好的", + "比较好 的", + "比 较好的", + "中西医 结合", + "▁Cl aim", + "▁ Claim", + "▁legisl ature", + "修 补", + "须 知", + "▁Bo at", + "▁Gl enn", + "▁Glen n", + "▁Gle nn", + "▁g rief", + "▁gr ief", + "▁gri ef", + "▁In strument", + "▁ Instrument", + "] ^", + "磁 场", + "结果 是", + "ct omy", + "▁n ause", + "▁na use", + "▁sur render", + "▁surre nder", + "▁delight ful", + "狠 狠", + "讲 的", + "▁S eq", + "▁Se q", + "▁ Seq", + "nDe aths", + "nDeath s", + "▁Corn wall", + "▁bl own", + "▁blow n", + "▁blo wn", + "con straint", + "上 个", + "天 数", + "率 领", + "▁dec lining", + "▁decl ining", + "IS BN", + "nStart ing", + "n Starting", + "等 价", + "▁t utor", + "▁tu tor", + "▁tut or", + "▁lig ament", + "也 无", + "flu or", + "▁Struct ural", + "现实 的", + "现 实的", + "▁经营 状态", + "pro files", + "profile s", + "prof iles", + "东 侧", + "帅 气", + "想起 来", + "想 起来", + "▁C UR", + "▁CU R", + "▁ CUR", + "京 都", + "mm m", + "m mm", + "抗 击", + "▁f ucked", + "▁fuck ed", + "nBe etles", + "符合法定 减刑条件", + "宽 敞", + "per l", + "pe rl", + "hor se", + "h orse", + "Data Type", + "▁ 戴", + "来 访", + "等 候", + "铅 笔", + "我 以为", + "▁Josh ua", + "▁Jos hua", + "▁M apping", + "▁Map ping", + "▁Ma pping", + "▁ Mapping", + "交 友", + "▁四 川", + "▁ 四川", + "▁P KC", + "▁PK C", + "▁C isco", + "/ `", + "开 局", + "血 栓", + "bi z", + "b iz", + "中的 一个", + "中的一 个", + "中 的一个", + "▁sp ends", + "▁spend s", + "postgres ql", + "凡 是", + "tu m", + "t um", + "▁R P", + "▁ RP", + "re ed", + "ree d", + "r eed", + "▁Les lie", + "▁wait ed", + "▁wa ited", + "▁Edit orial", + "▁Editor ial", + "温 室", + "了一 点", + "了 一点", + "科 科长", + "墙 壁", + "时 应", + "就在 于", + "就 在于", + "nL ive", + "n Live", + "▁D esk", + "▁De sk", + "▁Des k", + "bet ter", + "b etter", + "▁F usion", + "上 人", + "▁r c", + "▁ rc", + "▁Bo ost", + "▁ Boost", + "ge ttext", + "get text", + "▁pr incess", + "▁princ ess", + "▁prince ss", + "▁ 斯", + "卫 东", + "的 她", + "▁F ake", + "▁Fa ke", + "▁ Fake", + "▁Em irates", + "的车 辆", + "的 车辆", + "建筑 设计", + "nQ ual", + "nQu al", + "n Qual", + "填 报", + "尚 可", + "度 高", + "日被 告", + "日 被告", + "本裁定书送达后 立即执行", + "▁comprehens ion", + "北 上", + "的重 量", + "的 重量", + "转换 为", + "工程 设计", + "▁Sh ower", + "▁Show er", + "▁Hard ware", + "▁tit anium", + "ä n", + "▁\" #{", + "▁\"# {", + "不能 提供", + "▁P ara", + "▁Par a", + "▁Pa ra", + "Con figure", + "Config ure", + "Conf igure", + "▁attract ing", + "▁attr acting", + "▁per itoneal", + "围 棋", + "推 测", + "▁E y", + "col ored", + "color ed", + "m olecular", + "为国 家", + "为 国家", + "ce ral", + "cer al", + "c eral", + "▁ar gu", + "▁arg u", + "相关 法律规定", + "▁ro oted", + "▁root ed", + "高 水平", + "▁Sem inar", + "▁Semi nar", + "▁coat ings", + "▁coating s", + "快 要", + "杰 克", + "金 奖", + "ij n", + "计算 方法", + "izar re", + "红 酒", + "霸 王", + "quis ites", + "quisite s", + "位 居", + "le z", + "l ez", + "ia ni", + "ian i", + "i ani", + "▁CO PD", + "LOG GER", + "Dest ination", + "▁ann ouncing", + "▁announc ing", + "▁ 异", + "披 针", + "ik k", + "i kk", + "}` \\", + "} `\\", + "▁[ :", + "▁ [:", + "an an", + "ana n", + "a nan", + "▁re pay", + "▁rep ay", + "▁t ensions", + "▁tens ions", + "▁tension s", + "擦 拭", + "an tis", + "ant is", + "anti s", + "nf ind", + "nfi nd", + "n find", + "山 人", + "巴 克", + "项 的", + "Un ion", + "▁k icks", + "▁kick s", + "▁ki cks", + "时 会", + "根 源", + "生 生", + "ad vert", + "adv ert", + "lin king", + "link ing", + "l inking", + "▁rel ieve", + "▁re cession", + "▁rec ession", + "M H", + "末 端", + "必要 性", + "第一 种", + "第 一种", + "in ki", + "ink i", + "▁hom olog", + "存 的", + "et ches", + "etch es", + "etc hes", + "find One", + "nCh oose", + "n Choose", + "▁dial ect", + "▁dia lect", + "▁o phthal", + "▁Bang alore", + "格 拉", + "男孩 子", + "男 孩子", + "ir is", + "iri s", + "i ris", + "▁Food s", + "▁Foo ds", + "▁Fo ods", + "评 判", + "Tr ip", + "Tri p", + "T rip", + "▁C ake", + "▁Ca ke", + "▁G erald", + "▁Ger ald", + "lp atterns", + "l patterns", + "▁over load", + "▁overl oad", + "螺 纹", + "科研 成果", + "nRec ipients", + "得 意", + "村 内", + "特 区", + "成功 率", + "成 功率", + "▁p ulp", + "▁pul p", + "▁pu lp", + "Re ceiver", + "Receive r", + "▁p ointers", + "▁point ers", + "▁po inters", + "▁pointer s", + "往 返", + "网 盘", + "ies el", + "ie sel", + "ki nson", + "kin son", + "kins on", + "k inson", + "▁Cub an", + "▁Cu ban", + "▁Cuba n", + "号刑事 附带民事", + "▁mon ocytes", + "▁monocyte s", + "按 下", + "ah i", + "a hi", + "oor s", + "oo rs", + "o ors", + "食品 药品", + "▁g ing", + "▁gi ng", + "▁gin g", + "▁ ging", + "vol tage", + "台 中", + "了一 套", + "了 一套", + "um bia", + "umb ia", + "生 了", + "▁G ren", + "▁Gr en", + "▁Gre n", + "▁数据 范围", + "▁ 数据范围", + "▁pitch ed", + "▁pit ched", + "▁thought ful", + "主 频", + "朝 廷", + "▁M ist", + "▁Mi st", + "▁Mis t", + "Cl ause", + "局 域", + "Kn ow", + "K now", + "和我 们", + "和 我们", + "可以 申请", + "qual ified", + "就是 你", + "就 是你", + "ier re", + "海 棠", + "菠 萝", + "研究 对象", + "ch urch", + "▁col span", + "▁cols pan", + "▁ colspan", + "▁Karn ataka", + "[ _", + "E asy", + "as tom", + "ast om", + "plete ly", + "plet ely", + "prising ly", + "画 质", + "软 骨", + "我一 个", + "我 一个", + "▁F lying", + "▁Fl ying", + "▁Fly ing", + "▁com merce", + "▁ commerce", + "有 感", + "沙 拉", + "几分 钟", + "几 分钟", + "▁N issan", + "▁inter stitial", + "▁nan ot", + "▁na not", + "▁nano t", + "▁und oubtedly", + "上 千", + "偿 付", + "四 是", + "回 升", + "通 关", + "无 明显", + "▁hand ic", + "▁han dic", + "K Y", + "tr ait", + "tra it", + "t rait", + "prop Types", + "inter active", + "▁disappoint ing", + "的 性能", + "▁sp lash", + "▁spl ash", + "▁ splash", + "▁comorb id", + "▁spot light", + "tL ist", + "t List", + "中国 邮政储蓄银行股份有限公司", + "店 面", + "曾 用", + "ra ts", + "rat s", + "r ats", + "总 和", + "过 硬", + "(( (", + "( ((", + "mA h", + "m Ah", + "▁X ia", + "▁Xi a", + "▁D ong", + "▁Do ng", + "▁Don g", + "财产 的规定", + "财产的 规定", + "▁W riter", + "▁Writ er", + "▁Write r", + "▁Wr iter", + "▁ Writer", + "hedul ing", + "▁Bloom berg", + "扩 建", + "西 县", + "同 底数", + "▁Lux em", + "nMus ical", + "nMusic al", + "w c", + "风 俗", + "怎么 能", + "t continue", + "写 入", + "数 千", + "闪 烁", + "时间 是", + "洛杉 矶", + "er eg", + "ere g", + "e reg", + "col um", + "c olum", + "ce phal", + "cep hal", + "全 能", + "旗 帜", + "<> (", + "< >(", + "在同 一", + "在 同一", + "▁afore mentioned", + "喇 叭", + "录 用", + "惊 人", + "鉴定 意见", + "▁parent heses", + "王 世", + "支付 货款", + "nD ay", + "n Day", + "上诉 人的", + "上诉人 的", + "住所地 北京市", + "▁end for", + "in ternet", + "inter net", + "intern et", + "排 气", + "毛 孔", + "▁n b", + "▁ nb", + "▁с о", + "▁f lick", + "▁fl ick", + "初 恋", + "王者 荣耀", + "or ate", + "ora te", + "o rate", + "our met", + "势 头", + "cell ent", + "强制 性", + "▁I Ds", + "▁ID s", + "▁ IDs", + "▁out per", + "Int roduction", + "▁b b", + "▁ bb", + "在 里面", + "我不 会", + "我 不会", + "旅游 业", + "tox ic", + "t oxic", + "▁cortic oster", + "交 替", + "南 阳", + "点 缀", + "op o", + "o po", + "sl ow", + "s low", + "▁M uk", + "▁Mu k", + "Rob ot", + "Ro bot", + "ra mer", + "ram er", + "rame r", + "r amer", + "Mill is", + "Mil lis", + "蕴 含", + "大家 都知道", + "大家都 知道", + "▁cap ita", + "石 膏", + "nJ eff", + "n Jeff", + "▁K urt", + "▁Ku rt", + "▁Kur t", + "平 装", + "田 径", + "喜欢 你", + "▁susp icion", + "J A", + "不再 是", + "ol oad", + "olo ad", + "o load", + "▁C lock", + "▁Cl ock", + "▁Clo ck", + "▁ Clock", + "▁un des", + "▁u ndes", + "▁und es", + "▁br akes", + "▁bra kes", + "▁brake s", + "排 在", + "降 水", + "▁f ox", + "▁fo x", + "▁ fox", + "万 个", + "物 证", + "▁La uren", + "▁Laure n", + "▁Laur en", + "▁Me chanics", + "▁Mechan ics", + "N g", + "文 集", + "Bal l", + "Ba ll", + "B all", + "认真 学习", + "best os", + "bes tos", + "▁D ating", + "▁Dat ing", + "▁Da ting", + "arth ritis", + "脸 色", + "ndef ine", + "nde fine", + "n define", + "本 草", + "hu i", + "h ui", + "▁已 注销", + "AD MIN", + "▁Po etry", + "LC D", + "L CD", + "OV A", + "O VA", + "充电 器", + "充 电器", + "▁lot tery", + "丹 麦", + "五 官", + "利用 率", + "业内 人士", + "▁Put in", + "▁Pu tin", + "▁Arm strong", + "宝 藏", + "意识 的", + "Template s", + "Tem plates", + "▁veter inary", + "▁veterin ary", + "▁Observ atory", + "▁P Y", + "▁ PY", + "掌握 了", + "▁** [", + "产业 结构", + "▁am azed", + "▁st icking", + "▁stick ing", + "d ifference", + "· \\", + "为 己", + "医 用", + "ys on", + "y son", + "列出 方程", + "ok ine", + "okin e", + "oki ne", + "化 管理", + "▁ch alk", + "▁ chalk", + "▁en codes", + "▁enc odes", + "▁encode s", + "▁un predict", + "ST A", + "S TA", + "最 适合", + "it als", + "ital s", + "ita ls", + "cookie s", + "cook ies", + "文 具", + "执 民字第", + "ex act", + "or acle", + "ora cle", + "orac le", + "货 架", + "▁ap ical", + "▁api cal", + "▁re located", + "▁rel ocated", + "AB S", + "A BS", + "罪犯 改造", + "nu cle", + "n ucle", + "had oop", + "h adoop", + "理论 的", + "en ne", + "enn e", + "这部 电影", + "nA ccess", + "nAcc ess", + "nAc cess", + "n Access", + "▁un affected", + "单 片", + "但是 你", + "但 是你", + "▁T et", + "▁Te t", + "个人 信息", + "▁st aged", + "▁stage d", + "▁radio active", + "缘 分", + "nL aw", + "nLa w", + "n Law", + "市场 竞争", + "▁reg isters", + "▁register s", + "▁sat ellites", + "▁satellite s", + "í s", + "wa v", + "w av", + "se cts", + "sec ts", + "sect s", + "s ects", + "EX PORT", + "EXP ORT", + "▁on click", + "▁onc lick", + "外 婆", + "和 自己", + "▁I dea", + "▁Id ea", + "▁Ide a", + "igm oid", + "▁di aling", + "▁dial ing", + "▁dia ling", + "▁emotional ly", + "▁emotion ally", + "▁spont aneously", + "▁spontaneous ly", + "采 摘", + "进行 判断", + "▁公司 简介", + "▁trig lycer", + "▁Profess ion", + "▁Prof ession", + "但 她", + "光 大", + "厂 的", + "fess or", + "ot ions", + "otion s", + "oti ons", + "▁att acker", + "▁attack er", + "Ra ises", + "ch allenge", + "拨 打", + "输 了", + "这 首", + "想 办法", + "▁l abs", + "▁la bs", + "▁lab s", + "▁ labs", + "ap tops", + "apt ops", + "aptop s", + "in side", + "ins ide", + "▁c hill", + "▁ch ill", + "▁chi ll", + "RE N", + "R EN", + "年 以上", + "INST ALL", + "out ines", + "outine s", + "第七 十二条第一款", + "第七十二条 第一款", + "第一百四十五条 宣判前", + "▁ 后", + "es p", + "e sp", + "▁F erm", + "▁Fe rm", + "▁Fer m", + "动 词", + "新 款", + "月 球", + "cha ft", + "▁Sur rey", + "▁Surre y", + "▁Ad visor", + "▁Adv isor", + "▁Advis or", + "▁ Advisor", + "▁Re gression", + "▁Reg ression", + "▁sign alling", + "▁signal ling", + "刊 登", + "哔 哩", + "▁L HC", + "▁LH C", + "取消 预订", + "sand box", + "s andbox", + "保 姆", + "拼 接", + "玩 了", + "聆 听", + "▁dr yer", + "▁dry er", + "想 像", + "og on", + "ogo n", + "o gon", + "▁read me", + "▁ readme", + "▁ 洪", + "全 额", + "写字 楼", + "▁{ })", + "▁{} )", + "▁ {})", + "项目 管理", + "▁f reed", + "▁fr eed", + "▁free d", + "▁fre ed", + "▁Eth ics", + "太 湖", + "有 据", + "可以 参考", + "bec ca", + "b ecca", + "▁Em ployment", + "▁Employ ment", + "▁Sil va", + "Draw ing", + "▁a sleep", + "▁as leep", + "▁Fl owers", + "▁Flow ers", + "▁Flo wers", + "▁Flower s", + "▁aband on", + "▁hil arious", + "F K", + "广 义", + "的 的", + "要 加强", + "配置 文件", + "▁day time", + "▁Act ivities", + "▁Activ ities", + "游 乐", + "▁Ext ended", + "▁ Extended", + "nPublic ations", + "nPublication s", + "宜 兴", + "登 山", + "粤 语", + "ha z", + "h az", + "H idden", + "▁p arity", + "▁par ity", + "▁pari ty", + "▁pro active", + "nU K", + "n UK", + "和 研究", + "▁Leg acy", + "Sc heduler", + "Schedule r", + "喂 养", + "护 照", + "邮 电", + "基本 都是", + "▁exc ision", + "▁G ö", + "ac os", + "aco s", + "a cos", + "上诉 理由", + "撤诉 条件", + "▁ac ne", + "Ex amples", + "Example s", + "春 晚", + "予以 查封", + "Sci Net", + "早 年", + "设备 和", + "▁P Rs", + "▁PR s", + "ff ffff", + "fff fff", + "ffff ff", + "▁t ales", + "▁tal es", + "▁ta les", + "▁tale s", + "抉 择", + "招 募", + "肉 类", + "▁R onald", + "▁Ron ald", + "▁scholar ships", + "▁scholars hips", + "▁scholarship s", + "ML E", + "M LE", + "本院将 依法", + "判处有期徒刑 三年", + "不 惜", + "开 后", + "▁R id", + "▁Ri d", + "用户 体验", + "▁bur ns", + "▁burn s", + "▁di ode", + "Work flow", + "through put", + "并 由", + "房 租", + "螃 蟹", + "({ \\\\", + "({\\ \\", + "( {\\\\", + "de ck", + "dec k", + "d eck", + "▁g ri", + "▁gr i", + "ph erd", + "pher d", + "▁Ge off", + "▁Geo ff", + "▁s urnames", + "▁sur names", + "▁surname s", + "▁Out standing", + "▁bi ologically", + "▁biological ly", + "▁biologic ally", + "皮 质", + "预 后", + "城市 建设", + "金融 服务", + "▁re de", + "▁r ede", + "▁red e", + "ACT ION", + "A CTION", + "▁F lower", + "▁Fl ower", + "▁Flow er", + "▁Flo wer", + "▁sw allow", + "▁Ar med", + "▁Arm ed", + "▁Hand ler", + "▁Handle r", + "▁ Handler", + "▁exp ands", + "▁expand s", + "▁dom inance", + "m A", + "一 瓶", + "还 剩", + "▁H H", + "▁ HH", + "▁l amb", + "▁la mb", + "▁lam b", + "▁rel ied", + "▁ 盐", + "或 多", + "盛 宴", + "和 预先", + "▁v ivid", + "▁vi vid", + "▁Event ually", + "苯 丙", + "is tar", + "ist ar", + "ista r", + "i star", + "的 名", + "▁in h", + "▁i nh", + "▁ inh", + "▁O wen", + "▁Ow en", + "▁\\' \\')\\", + "▁\\'\\' )\\", + "▁\\'\\ ')\\", + "▁\\'\\') \\", + "迹 象", + "TI NG", + "T ING", + "▁prospective ly", + "▁prospect ively", + "四 次", + "J et", + "下来 了", + "下 来了", + "ar ance", + "ara nce", + "aran ce", + "a rance", + "ca sh", + "cas h", + "c ash", + "客户 提供", + "范围 内的", + "范围内 的", + "ro uting", + "rou ting", + "r outing", + "▁tumor igen", + "球 菌", + "ma k", + "m ak", + "知道 自己", + "组织 开展", + "▁str omal", + "▁strom al", + "▁stro mal", + "刀 具", + "▁适宜 环境", + "一 圈", + "▁/ \\\\", + "▁/\\ \\", + "▁ /\\\\", + "▁anomal y", + "▁micro phone", + "▁cult ivation", + "▁cultiv ation", + "买 车", + "▁L ots", + "▁Lo ts", + "▁Lot s", + "graph s", + "▁imm ense", + "▁n x", + "▁ nx", + "ad oc", + "ado c", + "a doc", + "arct ica", + "arctic a", + "con scious", + "gi s", + "g is", + "an din", + "and in", + "andi n", + "▁THE Y", + "▁TH EY", + "金 黄", + "IP O", + "I PO", + "J ax", + "实际 行动", + "联系 电话", + "▁se ized", + "▁seiz ed", + "▁play wright", + "HO W", + "H OW", + "如果 能", + "明确 了", + "的时候 就", + "nC ase", + "n Case", + "to Have", + "▁B ened", + "▁Be ned", + "▁Ben ed", + "▁o mega", + "▁om ega", + "▁ omega", + "▁endot helium", + "▁Sub scription", + "▁ Subscription", + "印 花", + "▁P eg", + "▁Pe g", + "▁stre pt", + "▁w ishing", + "▁wish ing", + "▁wis hing", + "不 打", + "本科 学历", + "本科学 历", + "tr ust", + "t rust", + "cess ing", + "ces sing", + "c essing", + "不同类型的 客房", + "▁at ypical", + "▁long itude", + "▁ longitude", + "▁path ologic", + "nm sg", + "nms g", + "n msg", + "um ped", + "ump ed", + "re ating", + "reat ing", + "rea ting", + "nSw edish", + "▁Card inals", + "▁Cardinal s", + "▁Cardi nals", + "但 又", + "向 来", + "刑事 案件", + "Ch ris", + "▁re plica", + "▁replic a", + "显微 镜", + "巴基 斯坦", + "song writer", + "机 和", + "nT O", + "n TO", + "医疗 费", + "▁ 卫生间", + "▁Brig ade", + "A z", + "巡 查", + "def initions", + "definition s", + "亲 近", + "非 物质", + "历 时", + "限 量", + "Mi x", + "M ix", + "Qu al", + "Q ual", + "的一 系列", + "的 一系列", + "▁puzzle s", + "▁puzz les", + "▁L ighting", + "▁Light ing", + "omorph isms", + "omorphism s", + "EM P", + "E MP", + "当事人 陈述", + "SE ARCH", + "▁t high", + "▁th igh", + "▁thi gh", + "余 姚", + "遗 迹", + "其 主要", + "▁O EM", + "an imate", + "ani mate", + "anim ate", + "cap ital", + "▁cul inary", + "▁pred icate", + "▁ predicate", + "可 信", + "IV ATE", + "ov anni", + "ovan ni", + "到 我", + "直 肠", + "是不 能", + "是 不能", + "▁A BS", + "▁AB S", + "▁ ABS", + "▁rel ational", + "▁relation al", + "将 有", + "细 则", + "长 生", + "▁p eg", + "▁pe g", + "▁ peg", + "ri tes", + "rit es", + "rite s", + "r ites", + "▁Ar duino", + "▁c urated", + "▁cur ated", + "▁cu rated", + "▁g esture", + "▁gest ure", + "mb ic", + "m bic", + "▁\" /\"", + "▁\"/ \"", + "▁ \"/\"", + "▁T ir", + "▁Ti r", + "▁Ill ustr", + "forget table", + "图 画", + "No v", + "N ov", + "在 工作", + "Adv anced", + "otox icity", + "otoxic ity", + "o toxicity", + "▁Custom ers", + "▁Customer s", + "▁ 山", + "向上 的", + "向 上的", + "▁Qu adr", + "▁Quad r", + "▁anx ious", + "李 白", + "为一 个", + "为 一个", + "▁a ws", + "▁aw s", + "▁ aws", + "ug gage", + "ugg age", + "内 饰", + "无 私", + "确 切", + "nh ere", + "nhe re", + "n here", + "uc ceed", + "ucc eed", + "▁pat ents", + "▁patent s", + "▁re sembles", + "▁resemble s", + "周长 是", + "周 长是", + "nM ike", + "nMi ke", + "n Mike", + "▁Er nest", + "▁Spot ify", + "▁lect urer", + "▁lecture r", + "I Q", + "中 队", + "双 语", + "有 你", + "▁A ce", + "▁Ac e", + "当地 时间", + "▁grat itude", + "植 树", + "Ma h", + "M ah", + "ri ad", + "ria d", + "r iad", + "付费 政策", + "▁ant ico", + "▁anti co", + "▁antic o", + "add Class", + "▁aneurys m", + "▁交通 信息", + "劳动人事 争议", + "▁osteopor osis", + "失 调", + "随 地", + "an ing", + "ani ng", + "a ning", + "▁New port", + "▁prost agland", + "七 个", + "同样 是", + "So ng", + "Son g", + "S ong", + "刑 一", + "穴 位", + "形势 下", + "附带 不同的", + "▁De signed", + "▁Des igned", + "▁Design ed", + "附带不同的 取消预订", + "不同类型的客房 附带不同的取消预订", + "假 命题", + "的不 是", + "的 不是", + "劣 势", + "悬 疑", + "桥 镇", + "▁de hyd", + "▁mult in", + "▁multi n", + "▁mul tin", + "和预先 付费政策", + "便 可", + "农 牧", + "对 任意", + "▁bl ades", + "▁blade s", + "▁dec orate", + "▁decor ate", + "口 岸", + "yr us", + "y rus", + "止 血", + "福 特", + "sh an", + "sha n", + "s han", + "ik u", + "i ku", + "力 资源", + "or tal", + "ort al", + "orta l", + "▁所 获荣誉", + "nBrazil ian", + "三 代", + "睡 前", + "AM I", + "A MI", + "`: \\", + "` :\\", + "视为 放弃", + "▁rac ist", + "▁adv iser", + "▁advis er", + "▁advise r", + "nArt icles", + "nArticle s", + "n Articles", + "为 宜", + "平 平", + "此 文", + "▁X I", + "nJ oh", + "nJo h", + "n Joh", + "de ath", + "dea th", + "信用卡 纠纷一案", + "造 纸", + "▁H els", + "▁He ls", + "▁Hel s", + "wit hin", + "with in", + "wi thin", + "可 求", + "过 错", + "▁C OR", + "▁CO R", + "▁ COR", + "▁contin ental", + "▁continent al", + "岁 了", + "等 职", + "▁A U", + "▁ AU", + "▁江 苏", + "▁ 江苏", + "公共 服务", + "nG ive", + "n Give", + "Null Or", + "相 伴", + "TE RN", + "TER N", + "T ERN", + "以上 资料", + "▁me nstr", + "▁men str", + "▁mens tr", + "j c", + "ie le", + "iel e", + "i ele", + "▁str iker", + "▁stri ker", + "▁strike r", + "▁ec centric", + "▁ecc entric", + "打 好", + "众多 的", + "众 多的", + "有所 帮助", + "▁m kdir", + "▁mk dir", + "▁ mkdir", + "j m", + "军 团", + "▁d ol", + "▁do l", + "建筑 装饰", + "ol vers", + "olve rs", + "olver s", + "olv ers", + "yt ical", + "ytic al", + "y tical", + "▁Com edy", + "▁Come dy", + "▁B I", + "▁ BI", + "▁d ic", + "▁di c", + "▁ dic", + "损害 赔偿", + "款 人民币", + "▁bon uses", + "▁bonus es", + "▁assert ion", + "轻 度", + "辩 证", + "▁I Q", + "▁ IQ", + "▁account able", + "pro x", + "pr ox", + "p rox", + "国 度", + "▁方 法", + "▁ 方法", + "的 保护", + "周围 景观", + "▁a met", + "▁am et", + "▁ amet", + "Man age", + "Manag e", + "▁cl amp", + "▁T utorial", + "set Attribute", + "而 行", + "赢 了", + "罪犯 陈", + "▁E CG", + "▁EC G", + "深 层", + "清 市", + "演 化", + "BO X", + "B OX", + "陌生 的", + "陌 生的", + "农业 人口", + "reg ions", + "region s", + "脱 水", + "腌 制", + "nB ooks", + "nBook s", + "nBo oks", + "n Books", + "▁moist ur", + "办公 楼", + "nd ev", + "nde v", + "n dev", + "pe ated", + "peat ed", + "成功 了", + "▁o le", + "▁ol e", + "▁ ole", + "▁s pp", + "▁sp p", + "▁ph yt", + "▁phy t", + "▁all ograft", + "> *", + "日 夜", + "获 胜", + "ra vel", + "rav el", + "r avel", + "▁\\ ')\\", + "▁\\' )\\", + "▁\\') \\", + "▁ \\')\\", + "▁c rap", + "▁cr ap", + "▁cra p", + "二〇一六年 五月", + "庄 园", + "暧 昧", + "am on", + "amo n", + "a mon", + "en in", + "eni n", + "e nin", + "ár io", + "á rio", + "▁dis like", + "▁compet it", + "上 岸", + "form atted", + "format ted", + "* *", + "一站 式", + "基督 教", + "扬州 市", + "扬 州市", + "qu arters", + "quarter s", + "▁para sites", + "▁paras ites", + "▁parasite s", + "▁ 强", + "配 上", + "的 战略", + "os yl", + "td ouble", + "t double", + "▁cl utter", + "下 巴", + "儒 家", + "抗 辩", + "方 块", + "临床 上", + "临 床上", + "AT ES", + "ATE S", + "A TES", + "math sf", + "re ceiver", + "receive r", + "▁s ynchronous", + "▁synchron ous", + "▁e sp", + "▁es p", + "▁ esp", + "游戏 加载", + "pace d", + "pa ced", + "pac ed", + "p aced", + "▁st amps", + "▁stamp s", + "▁observ able", + "听 听", + "纵横 中文网", + "met ics", + "metic s", + "m etics", + "▁J esse", + "▁Jes se", + "▁Jess e", + "▁L ogan", + "▁Log an", + "▁Lo gan", + "▁stead ily", + "各 组", + "几个 人", + "几 个人", + "▁I nto", + "▁In to", + "▁Int o", + "▁ Into", + "isc opal", + "isco pal", + "▁sub class", + "▁phosph orus", + "果 汁", + "枣 庄", + "限 额", + "马 桶", + "此题 考查了", + "此题考查 了", + "de legate", + "▁sle eves", + "▁sleeve s", + "加 了", + "的 动作", + "nV er", + "n Ver", + "改造 期间", + "ware s", + "war es", + "wa res", + "w ares", + "▁tr ainers", + "▁train ers", + "▁trainer s", + "▁hepat ocytes", + "草 坪", + "com pet", + "comp et", + "▁Gib son", + "是 单", + "极 值", + "在 今年", + "▁S ob", + "▁So b", + "br ush", + "al ignment", + "align ment", + "▁Armen ian", + "▁Armenia n", + "送达之日起 发生法律效力", + "供 暖", + "变 色", + "古 镇", + "yy yy", + "▁en dings", + "▁end ings", + "▁ending s", + "▁laugh ing", + "觉得 很", + "觉 得很", + "▁real izing", + "▁privile ges", + "▁privilege s", + "▁ 拉", + "住房 和", + "He ro", + "Her o", + "H ero", + "al amus", + "ala mus", + "alam us", + "▁he avier", + "▁heav ier", + "nAct ually", + "特 大", + "qu eries", + "que ries", + "quer ies", + "▁bubble s", + "▁bub bles", + "respon ses", + "response s", + "respons es", + "▁Domin ican", + "ph en", + "p hen", + "耕地 面积", + "耕 地面积", + "nuse r", + "nu ser", + "nus er", + "n user", + "was her", + "wash er", + "▁Har old", + "图 为", + "得 住", + "蔷 薇", + "}} ,\\", + "}}, \\", + "} },\\", + "但 它", + "什么 叫", + "接受 的", + "▁C OM", + "▁CO M", + "▁ COM", + "▁S ib", + "▁Si b", + "▁Z ip", + "▁ Zip", + "返还 借款", + "▁St rat", + "▁Str at", + "▁Stra t", + "▁s pins", + "▁sp ins", + "▁spin s", + "ounc ing", + "oun cing", + "▁tr agic", + "▁tra gic", + "▁illum ination", + "读 卡", + "vt k", + "v tk", + "聚合 物", + "聚 合物", + "Bl ocks", + "Block s", + "B locks", + "▁r ails", + "▁ra ils", + "▁rail s", + "▁ rails", + "珠 江", + "▁y e", + "▁ ye", + "▁cirrh osis", + "友 们", + "有 以下", + "ar rays", + "arr ays", + "array s", + "arra ys", + "取 向", + "流 星", + "nd b", + "n db", + "▁over ly", + "▁overl y", + "▁ov erly", + "text less", + "▁sup porter", + "▁support er", + "NO TE", + "NOT E", + "N OTE", + "按 年利率", + "Ind ia", + "▁I deal", + "▁Id eal", + "▁Ide al", + "▁Idea l", + "▁fil ament", + "▁di astolic", + "倾向 于", + "分数 线", + "nW eb", + "nWe b", + "n Web", + "期 盼", + "母 婴", + "自 习", + "角 和", + "▁cha pel", + "▁chap el", + "▁trunc ated", + "} %", + "ht aking", + "h taking", + "二〇一五年 六月", + "▁Cit izens", + "▁Citizen s", + "å r", + "元 钱", + "投 身", + "起 飞", + "打造 的", + "十一 个月", + "十 一个月", + "▁n asty", + "▁na sty", + "▁nas ty", + "rec ipes", + "recip es", + "recipe s", + "▁py ramid", + "▁pyram id", + "ag in", + "agi n", + "a gin", + "or el", + "ore l", + "o rel", + "乌鲁木齐 市", + "▁Inter mediate", + "四 位", + "批 次", + "证据 材料", + "分析 法", + "圆柱 的", + "id is", + "idi s", + "i dis", + "共 和", + "IE num", + "I Enum", + "text greater", + "J C", + "路 易", + "No m", + "N om", + "▁H ex", + "▁He x", + "▁ Hex", + "We ather", + "▁qu artz", + "▁quart z", + "▁front end", + "▁ frontend", + "▁sen ators", + "▁senator s", + "缺 口", + "列 方程", + "是一 场", + "是 一场", + "ch ester", + "ches ter", + "che ster", + "c hester", + "▁ker atin", + "▁kerat in", + "co ins", + "coin s", + "hu rst", + "h urst", + "的最佳 选择", + "考 量", + "酒后 驾驶", + "▁M int", + "▁Min t", + "▁Mi nt", + "前 任", + "综合 素质", + "B EGIN", + "Ag greg", + "Agg reg", + "▁sc enic", + "▁scen ic", + "▁craft sm", + "▁crafts m", + "真 假", + "的一 位", + "的 一位", + "奥林匹 克", + "▁p uls", + "▁pul s", + "▁pu ls", + "ar ying", + "ary ing", + "a rying", + "▁furn ish", + "▁depriv ation", + "售 出", + "hed ron", + "龙 岗", + "免费的 停车服务", + "accept able", + "▁in patient", + "回 路", + "ON Y", + "O NY", + "Wi l", + "W il", + "In sp", + "Ins p", + "I nsp", + "artifact Id", + "▁therap ists", + "▁therapist s", + "▁intrac ranial", + "▁C DC", + "▁CD C", + "▁ CDC", + "▁O SI", + "▁OS I", + "执行 和解协议", + "▁tack les", + "▁tackle s", + "▁co median", + "▁comed ian", + "▁drop down", + "▁ dropdown", + "▁freel ance", + "▁Al gorithms", + "▁Algorithm s", + "▁dis solution", + "▁diss olution", + "▁dr astically", + "▁C W", + "▁ CW", + "▁f lor", + "▁fl or", + "▁flo r", + "委员会 主任", + "ce lain", + "cel ain", + "▁ 孟", + "征 信", + "就能 够", + "就 能够", + "Bit s", + "Bi ts", + "B its", + "▁Bang kok", + "Det ection", + "▁… \\", + "▁ …\\", + "▁第 五十", + "▁ 第五十", + "▁Py Qt", + "▁b lob", + "▁bl ob", + "▁blo b", + "▁ blob", + "▁jer sey", + "▁at rophy", + "A ustralia", + "▁end angered", + "定 额", + "内部 的", + "内 部的", + "▁sa nit", + "▁san it", + "Americ a", + "nUn less", + "n Unless", + "▁Leg ion", + "▁inert ia", + "▁in vention", + "▁inv ention", + "▁invent ion", + "tp ar", + "t par", + "▁t xt", + "▁tx t", + "▁ txt", + "▁amel ior", + "à n", + "电影 节", + "澄 清", + "萨 尔", + "独 一无", + "key board", + "▁parse Int", + "▁ parseInt", + "不 息", + "菱 形", + "▁通 过", + "▁ 通过", + "▁R SA", + "▁RS A", + "▁Mal ta", + "▁Malt a", + "▁Sc roll", + "▁Scr oll", + "▁ Scroll", + "Typ ography", + "hem atically", + "hemat ically", + "hema tically", + "hematical ly", + "hematic ally", + "的 去", + "高 出", + "▁r ic", + "▁ri c", + "▁ ric", + "▁archae ological", + "收 治", + "而对 于", + "而 对于", + "AT IC", + "ili near", + "iline ar", + "ilin ear", + "i linear", + "▁Elect ro", + "ativ istic", + "不 平", + "un gs", + "ung s", + "▁E xit", + "▁Ex it", + "▁ Exit", + "▁with stand", + "í t", + "石 榴", + "▁c oral", + "▁co ral", + "▁cor al", + "▁j okes", + "▁jo kes", + "▁joke s", + "灌 注", + "os ta", + "ost a", + "o sta", + "相关 负责人", + "▁f ines", + "▁fin es", + "▁fine s", + "▁fi nes", + "身份证 复印件", + "▁B inding", + "▁Bin ding", + "▁Bind ing", + "▁ Binding", + "好好 的", + "好 好的", + "▁time less", + "▁tim eless", + "▁crim inals", + "▁criminal s", + "上 层", + "变 质", + "▁ 浴室", + "按 规定", + "Co in", + "C oin", + "\\' )}}", + "\\') }}", + "tensor flow", + "前 台", + "金额 为", + "金 额为", + "op ez", + "ope z", + "o pez", + "nCol lege", + "同 济", + "沙 特", + "▁J i", + "wi fe", + "w ife", + "▁K och", + "▁Ko ch", + "▁encompass es", + "惠 民", + "黑 人", + "ob o", + "o bo", + "同时 在", + "是否 能", + "▁D ogs", + "▁Do gs", + "▁Dog s", + "嘿 嘿", + "意识 和", + "is su", + "iss u", + "▁Cl osed", + "▁Close d", + "▁Clo sed", + "▁ Closed", + "了一 句", + "了 一句", + "调研 员", + "摇 头", + "ok i", + "o ki", + "▁t hi", + "▁th i", + "▁ thi", + "an ian", + "ani an", + "ania n", + "▁A tom", + "▁At om", + "▁ Atom", + "ten ham", + "mat plotlib", + "上 百", + "唐 朝", + "社会 学", + "al in", + "ali n", + "a lin", + "长期 以来", + "Ar row", + "Arr ow", + "有 管辖权的", + "des criptor", + "思 议", + "的 模式", + "Log s", + "Lo gs", + "L ogs", + "Byte Array", + "少 爷", + "真的 太", + "这种 人", + "驻马 店", + "▁se ptic", + "▁sept ic", + "▁sep tic", + "震 动", + "首 相", + "即便 是", + "即 便是", + "▁T roy", + "▁Tr oy", + "▁Tro y", + "Pro ducer", + "Prod ucer", + "Produ cer", + "▁str etched", + "▁stret ched", + "▁stretch ed", + "▁App arently", + "▁ag gression", + "▁aggress ion", + "插 座", + "沸 腾", + "装 潢", + "但我 们", + "但 我们", + "▁Ex cellent", + "▁Excell ent", + "有 三", + "穷 尽", + "op ping", + "opp ing", + "o pping", + "大 成", + "委 书记", + "vert ices", + "像 我", + "海 涛", + "ut ilities", + "util ities", + "为 正", + "卫 浴", + "的 再审申请", + "der abad", + "bb ox", + "b box", + "od on", + "odo n", + "o don", + "Re ceive", + "合 规", + "op tic", + "opt ic", + "o ptic", + "▁bo arding", + "▁board ing", + "▁ boarding", + "于 法", + "好 久", + "ес т", + "е ст", + "▁L ap", + "▁La p", + "▁reduct ase", + "nPolit icians", + "天 鹅", + "斯 顿", + "超声 波", + "▁M ile", + "▁Mil e", + "▁Mi le", + "ath lon", + "▁S ector", + "▁Se ctor", + "▁Sec tor", + "Dis abled", + "Disable d", + "▁elic ited", + "▁elicit ed", + "aphyl ococcus", + "与 时", + "沐 浴", + "▁ref inement", + "▁refin ement", + "▁refine ment", + "▁non etheless", + "▁none theless", + "六 大", + "指 点", + "car ousel", + "借 钱", + "截 面", + "尚欠 原告", + "尚 欠原告", + "▁E GFR", + "▁EGF R", + "▁EG FR", + "ol ding", + "old ing", + "▁reg imes", + "▁regime s", + "▁us ability", + "真的 有", + "真 的有", + "▁n ovo", + "▁no vo", + "▁nov o", + "▁mot ifs", + "▁motif s", + "▁Mus ical", + "▁Music al", + "不 改", + "恋 人", + "ould er", + "oul der", + "▁economic ally", + "▁econom ically", + "▁economical ly", + "脸 部", + "的 趋势", + "▁C rypto", + "▁Crypt o", + "▁Cry pto", + "▁ Crypto", + "沧 海", + "白 雪", + "制定 的", + "制 定的", + "▁C hin", + "▁Ch in", + "▁Chi n", + "List View", + "phys ical", + "再 算", + "异 味", + "水 性", + "Sa t", + "S at", + "▁T rou", + "▁Tr ou", + "▁Tro u", + "▁ag gress", + "▁in verted", + "▁invert ed", + "佩 服", + "而 知", + "指挥 部", + "▁R ig", + "▁Ri g", + "直接 利用", + "nAv ailable", + "n Available", + "精 髓", + "草 木", + "三位 数", + "三 位数", + "紧 接着", + "▁liqu ids", + "▁liquid s", + "Spec ification", + "Specific ation", + "想 了", + "请 注意", + "达 不到", + "Fa ll", + "F all", + "Pl ugins", + "Plugin s", + "有 异议", + "比亚 迪", + "▁H EL", + "▁HE L", + "Rel ative", + "es Module", + "produ ced", + "prod uced", + "p roduced", + "主要 由", + "ar ga", + "arg a", + "<> \\", + "< >\\", + "aw ays", + "awa ys", + "away s", + "a ways", + "nP rint", + "nPr int", + "n Print", + "………… …………", + "但 从", + "tg l", + "t gl", + "file r", + "fil er", + "fi ler", + "f iler", + "op rop", + "opro p", + "o prop", + "▁phylogen etic", + "理 化", + "▁Rec ruit", + "老 头", + "脱 颖", + "CP P", + "C PP", + "ca ke", + "c ake", + "的方程 为", + "的 方程为", + "ce mic", + "c emic", + "▁get Id", + "▁ getId", + "Bl ank", + "▁s her", + "▁sh er", + "▁she r", + "an other", + "ano ther", + "a nother", + "▁mind set", + "▁minds et", + "p v", + "Version UID", + "▁polar ized", + "华 山", + "坚 固", + "多 篇", + "富 豪", + "花 香", + "▁rod ent", + "▁rode nt", + "▁trigon ometric", + "P Q", + "w u", + "с и", + "fa de", + "f ade", + "二〇一七年 七月", + "二〇一七年七 月", + "当 他", + "折 射", + "ve rn", + "ver n", + "v ern", + "所 需要的", + "mi rror", + "mir ror", + "pl icate", + "plic ate", + "plica te", + "▁Merc ury", + "▁trans gender", + "八 大", + "时 而", + "man ship", + "mans hip", + "m anship", + "▁M onica", + "▁Mon ica", + "▁Mo nica", + "▁inv oked", + "▁invoke d", + "冷 的", + "昆 山", + "RE M", + "R EM", + "▁G el", + "▁Ge l", + "Be cause", + "B ecause", + "Ro uting", + "R outing", + "op lasty", + "oplas ty", + "opl asty", + "oplast y", + "o plasty", + "▁Trans it", + "[ ^", + "写 明", + "双方 约定", + "▁C ult", + "▁Cu lt", + "▁Cul t", + "▁url s", + "▁ur ls", + "▁ urls", + "rel ations", + "relation s", + "▁shop pers", + "▁sub marine", + "做 一些", + "▁B es", + "▁Be s", + "▁mult itude", + "原 先", + "器 和", + "张 国", + "曙 光", + "ec d", + "e cd", + "ени я", + "▁B ean", + "▁Be an", + "▁Bea n", + "▁ Bean", + "▁An imals", + "▁Animal s", + "等腰 三角形", + "▁short cut", + "▁Reg ardless", + "药 剂", + "▁D j", + "▁S essions", + "▁Session s", + "▁m orphism", + "▁morph ism", + "▁ 章", + "声 称", + "逃 脱", + "tic ks", + "ti cks", + "tick s", + "t icks", + "▁s alon", + "▁sa lon", + "▁sal on", + "▁al pine", + "▁ alpine", + "▁Robert son", + "▁Roberts on", + "ol lar", + "oll ar", + "olla r", + "腹 痛", + "飞 速", + "AD A", + "A DA", + "ens ors", + "ensor s", + "▁r enders", + "▁render s", + "▁rend ers", + "▁ann ouncements", + "▁announce ments", + "▁announcement s", + "▁announc ements", + "Re n", + "R en", + "事件 的", + "事 件的", + ")* *(", + ")** (", + ") **(", + "书面 答辩", + "▁p laus", + "▁pl aus", + "spe aking", + "定 居", + "开 着", + "杰 伦", + "必要 时", + "sign up", + "sig nup", + "▁aff irm", + "▁af firm", + "▁C ognitive", + "▁forth coming", + "▁phys iologic", + "▁physi ologic", + "An s", + "A ns", + "也会 有", + "也 会有", + "新华 网", + "▁A TM", + "▁AT M", + "▁ ATM", + "没有 约定", + "▁h ect", + "▁he ct", + "▁doctor al", + "▁ doctoral", + "▁dem olished", + "▁demo lished", + "不 离", + "直 立", + "名词 审定委员会", + "记 作", + "党 总支", + "让 更多", + "nIn vest", + "n Invest", + "m V", + "埃 尔", + "}\\\\) (", + "同 伴", + "露 天", + "多少 个", + "▁st urdy", + "什么 事", + "的 工具", + "▁L on", + "▁Lo n", + "生活 质量", + "▁p lag", + "▁pl ag", + "pe ptide", + "acc uracy", + "accur acy", + "禁 用", + "\"} )\\", + "\" })\\", + "▁jew ellery", + "▁neuro path", + "▁neur opath", + "审 阅", + "甲 乙", + "羽 绒", + "▁D T", + "▁ DT", + "nH appy", + "n Happy", + "▁M arin", + "▁Mar in", + "▁Ma rin", + "▁Mari n", + "萨 斯", + "pg f", + "p gf", + "gly ph", + "▁h umble", + "▁hum ble", + "Dec laration", + "}` ;\\", + "} `;\\", + "▁divid end", + "▁divide nd", + "人 造", + "巧 合", + "]) );\\", + "])) ;\\", + "] ));\\", + "▁P ret", + "▁Pr et", + "▁Pre t", + "▁职业 生涯", + "▁ 职业生涯", + "og enes", + "ogen es", + "ogene s", + "oge nes", + "o genes", + "adv anced", + "▁intern ship", + "▁intro ductory", + "▁Stephan ie", + "▁garden ing", + "▁gard ening", + "开 店", + "is Valid", + "▁ge ography", + "▁rein force", + "星 际", + "见 于", + "系列 的", + "▁ful filling", + "▁fulfill ing", + "▁fulfil ling", + "q r", + "城 管", + "▁mix er", + "▁cur tain", + "▁curt ain", + "▁op acity", + "▁ opacity", + "je e", + "j ee", + "▁C ry", + "▁Cr y", + "直接 影响", + "▁spectro scopic", + "龙 的", + "Ad visor", + "Adv isor", + "▁bes poke", + "▁grad ual", + "▁gradu al", + "回 调", + "大 三", + "春 日", + "nM ag", + "nMa g", + "n Mag", + "变得 更加", + "变得更 加", + "en cers", + "ence rs", + "enc ers", + "encer s", + "党 内", + "达 尔", + "你 喜欢", + "▁G reens", + "▁Green s", + "▁Gree ns", + "▁Gre ens", + "▁hack ers", + "▁hacker s", + "▁According ly", + "张 艺", + "hist oric", + "h istoric", + "▁v entral", + "▁vent ral", + "凋 亡", + "\"] [", + "\" ][", + "也都 是", + "也 都是", + "艺术 品", + "▁Mc D", + "可以 随时", + "ro let", + "rol et", + "role t", + "Pub lisher", + "Publish er", + "上 台", + "思 明", + "▁G U", + "▁ GU", + "la us", + "l aus", + "▁M UST", + "▁MU ST", + "限制 高消费", + "▁Ang ela", + "▁Angel a", + "天 台", + "干 警", + "朱 某", + "泌 尿", + "闪 电", + "▁Sl ack", + "▁pump kin", + "nDist rict", + "nDi strict", + "打 扫", + "浦 区", + "Bu g", + "B ug", + "np s", + "n ps", + "▁t d", + "▁ td", + "}) $$", + "})$ $", + "} )$$", + "A verage", + "▁co arse", + "nA gain", + "nAg ain", + "▁Wal mart", + "勘 探", + "环 氧", + "的 吧", + ">\" ;\\", + "> \";\\", + "▁sy rup", + "夫妻感情 确已破裂", + "▁mean ings", + "▁meaning s", + "▁philosoph ical", + "永 康", + "gi o", + "g io", + "说 白了", + "de vel", + "dev el", + "社会抚养费 征收", + "就是 把", + "就 是把", + "的 法定", + "tif f", + "ti ff", + "t iff", + "▁c urrencies", + "▁curr encies", + "老 了", + "谱 曲", + "sa p", + "s ap", + "农业 部", + "电影 院", + "电 影院", + "等 材料", + "▁g ait", + "▁ga it", + "▁Break fast", + "▁landsc aping", + "交 所", + "看 重", + "拖拉 机", + "柳州 市", + "柳 州市", + "▁Jour ney", + "▁inter preter", + "▁interpret er", + "量 身", + "▁注 意", + "▁ 注意", + "▁P ly", + "▁Pl y", + "目前 为止", + "▁a cre", + "▁ac re", + "▁ acre", + "▁ 参考资料", + "▁qu ark", + "▁ quark", + "▁happ ier", + "救 护", + "习惯 了", + "nD en", + "nDe n", + "n Den", + "▁Pro gressive", + "▁Progress ive", + "给付 义务", + "▁L ect", + "▁Le ct", + "▁opt ics", + "▁optic s", + "▁fest ive", + "▁aut onomy", + "▁fore most", + "▁G ospel", + "▁Gos pel", + "▁t rophy", + "▁tro phy", + "▁troph y", + "▁trop hy", + "▁harvest ed", + "▁ 美", + "与 他", + "已 达", + "ah ren", + "ahr en", + "▁bread th", + "O V", + "Mu s", + "M us", + "保持 着", + "ep id", + "e pid", + "▁chem ically", + "▁chemical ly", + "头 顶", + "快 三", + "县 国土资源局", + "▁Mod ules", + "▁Module s", + "▁ Modules", + "可以 为", + "可 以为", + "▁c rews", + "▁cre ws", + "▁cr ews", + "▁crew s", + "奇 特", + "请 选择", + "Dr ag", + "D rag", + "uc es", + "uce s", + "u ces", + "nowled g", + "th eight", + "the ight", + "t height", + "▁curt ains", + "▁curtain s", + "工 件", + "Be d", + "B ed", + "▁b c", + "▁ bc", + "统计 图", + "nL in", + "n Lin", + "▁d angers", + "▁danger s", + "▁dan gers", + "湖 人", + "在 学习", + "▁sand w", + "▁san dw", + "助 推", + "苗 木", + "以 提高", + "满足 了", + "Li ttle", + "L ittle", + "▁tem ples", + "▁temp les", + "▁temple s", + "后 会", + "▁E co", + "▁Ec o", + "__ ))\\", + "__) )\\", + "METHO D", + "M ETHOD", + "CC C", + "C CC", + "从而 使", + "现代 化的", + "现代化 的", + "▁Where as", + "飞 船", + "▁E lli", + "▁El li", + "▁Ell i", + "▁W alking", + "▁Wal king", + "▁Walk ing", + "十几 年", + "十 几年", + "女主 角", + "女 主角", + "me al", + "m eal", + "文物 保护", + "▁demonstr ations", + "▁demonstration s", + "▁ ф", + "契 合", + "▁P OL", + "▁PO L", + "▁歌曲 语言", + "▁C oming", + "▁Com ing", + "▁Co ming", + "▁Dav ies", + "▁fore nsic", + "现 今", + "脚 踏", + "与 方法", + "无 统计学意义", + "▁Sp ider", + "▁ Spider", + "het amine", + "▁Re ality", + "▁Real ity", + "▁isot ope", + "罚金 限", + "Fa ke", + "F ake", + "▁l ibr", + "▁li br", + "▁lib r", + "SP I", + "S PI", + "分子 量", + "nEnd emic", + "▁poison ing", + "▁organ izers", + "▁organize rs", + "▁organizer s", + "主 的", + "地 为", + "极 高", + "▁ban ana", + "不 复", + "纳 斯", + "▁pal ace", + "▁se afood", + "▁sea food", + "纹 理", + "并 同意", + "我看 到", + "我 看到", + "▁I CU", + "▁IC U", + "▁ ICU", + "et ting", + "ett ing", + "etti ng", + "▁Sign ature", + "▁ Signature", + "祖 先", + "钢 笔", + "Mer ge", + "▁w asted", + "▁was ted", + "▁waste d", + "▁wa sted", + "▁wast ed", + "▁de coding", + "▁dec oding", + "三 边", + "宫 廷", + "况 且", + "▁ 普通", + "积累 了", + "积 累了", + "ex tern", + "ext ern", + "exter n", + "nInter esting", + "的 呢", + "▁A W", + "▁ AW", + "▁A ck", + "▁Ac k", + "▁ Ack", + "▁F uel", + "▁Fu el", + "▁v egg", + "▁ve gg", + "veh icle", + "v ehicle", + "▁sk ating", + "▁mutagen esis", + "再次 申请", + "▁d atas", + "▁data s", + "▁dat as", + "▁da tas", + "▁ datas", + "install er", + "上 路", + "le ague", + "lea gue", + "▁lact ate", + "▁percent ages", + "▁percentage s", + "适用 的", + "适 用的", + "团 员", + "既 能", + "全村 有", + "▁neckl ace", + "▁spl icing", + "▁splic ing", + "下面 就", + "大 有", + "一生 的", + "一 生的", + "nS port", + "nSp ort", + "n Sport", + "na fter", + "n after", + "▁H erald", + "▁Her ald", + "で す", + "et i", + "e ti", + "ve e", + "v ee", + "券 商", + "的 量", + "香 菜", + "Rec ipe", + "▁V ince", + "▁Vin ce", + "▁Vi nce", + "▁Vinc e", + "民 进", + "ST E", + "S TE", + "nt ext", + "nte xt", + "n text", + "▁D eck", + "▁De ck", + "▁Dec k", + "Make r", + "Ma ker", + "M aker", + "▁w asting", + "▁was ting", + "▁wast ing", + "交 谈", + "家 家", + "用的 是", + "用 的是", + "ogen icity", + "ogenic ity", + "响 起", + "text it", + "tex tit", + "被执行人 应当", + "▁sen ator", + "▁im balance", + "v v", + "会议 上", + "诸葛 亮", + "nS al", + "n Sal", + "实施 方案", + "Ra ting", + "R ating", + "harm onic", + "▁mod ulating", + "分 院", + "(\" :", + "( \":", + "容留他人 吸毒", + "Int ended", + "▁fresh water", + "▁ 正", + "打 通", + "诊 所", + "更 喜欢", + "▁contract ed", + "▁contr acted", + "死 者", + "犯 非法", + "▁se ismic", + "▁Phot oshop", + "▁Photo shop", + "▁Photos hop", + "▁F c", + "在 整个", + "ur acy", + "ura cy", + "专业 合作社", + "▁Bright on", + "▁Brig hton", + "周 刊", + "序 号", + "这种 方式", + "▁Z oom", + "▁Zoo m", + "▁ Zoom", + "▁pos tal", + "▁post al", + "▁ 雪", + "不完 全", + "不 完全", + "他们 会", + "▁R EL", + "▁RE L", + "▁ REL", + "▁T ah", + "▁Ta h", + "第七 十九", + "ver gence", + "俊 杰", + "我 跟", + "种 的", + "纯 净", + "降 至", + "col span", + "cols pan", + "▁gen omes", + "▁genome s", + "▁c ounters", + "▁count ers", + "▁cou nters", + "▁counter s", + "轰 炸", + "ay e", + "a ye", + "Dis k", + "Di sk", + "D isk", + "he aded", + "head ed", + "hea ded", + "Equal To", + "nB etween", + "n Between", + "sh utdown", + "白 日", + "也是 非常", + "也 是非常", + "高等 院校", + "▁th ru", + "▁thr u", + "适 度", + "GR AM", + "G RAM", + "▁portray ed", + "书 名", + "排 斥", + "相 距", + "神 州", + "▁X L", + "▁ XL", + "第三 届", + "▁Qu ote", + "▁ Quote", + "▁wor rying", + "▁worry ing", + "献 血", + "下 部", + "庭 的", + "贫 穷", + "es i", + "e si", + "▁R FC", + "▁RF C", + "il let", + "ill et", + "ille t", + "和 非", + ") ,", + "不就 是", + "不 就是", + "据 介绍", + "La test", + "Lat est", + "L atest", + "engu in", + "▁e ther", + "▁et her", + "▁eth er", + "▁ ether", + "▁oscill ator", + "C X", + "上 饶", + "许 昌", + "amp ire", + "委托代理人 刘", + "▁Re vision", + "▁Rev ision", + "▁ Revision", + "时 被", + "if s", + "i fs", + "▁M IC", + "▁MI C", + "▁ MIC", + "or thy", + "ort hy", + "orth y", + "▁Re becca", + "▁Reb ecca", + "▁behavi ours", + "▁behaviour s", + "方向 的", + "好 不容易", + "H appy", + "nE con", + "n Econ", + "▁Eff ective", + "▁Effect ive", + "▁synthes ize", + "▁ synthesize", + "舍 不得", + "▁B atch", + "▁Bat ch", + "▁ Batch", + "get Time", + "re spect", + "res pect", + "resp ect", + "位上 的", + "位 上的", + "}{ {{", + "}{{ {", + "} {{{", + "▁dis cs", + "▁disc s", + "▁sup plemented", + "▁supplement ed", + "的 组织", + "▁a vec", + "▁av ec", + "▁Ass uming", + "热 心", + "通 路", + "物理 学", + "物 理学", + "DIR S", + "DI RS", + "D IRS", + "Def ined", + "Define d", + "D efined", + "▁neighbour ing", + "▁ 冰", + "比 是", + "有理 数的", + "有理数 的", + "▁P ros", + "▁Pro s", + "▁Pr os", + "▁med iator", + "▁media tor", + "▁medi ator", + "▁Wrest ling", + "▁ref lections", + "▁reflect ions", + "▁reflection s", + "打 野", + "火 影", + "主要 为", + "在 回答", + "我的 心", + "我 的心", + "nN one", + "nNo ne", + "nNon e", + "n None", + "▁glyc oprotein", + "十五 年", + "十 五年", + "回 馈", + "手中 的", + "手 中的", + "的 制作", + "Mon t", + "Mo nt", + "M ont", + "▁F eder", + "▁Fe der", + "▁Fed er", + "▁learn s", + "▁lear ns", + "▁cig arettes", + "▁cigarette s", + "心 力", + "ra ck", + "rac k", + "r ack", + "re ns", + "ren s", + "r ens", + "▁ 有限公司", + "Res pon", + "▁pr inters", + "▁print ers", + "▁pri nters", + "▁printer s", + "▁profess ors", + "▁professor s", + "哈 佛", + "指 望", + "Collect or", + "Coll ector", + "ri ka", + "rik a", + "r ika", + "ter bury", + "平 顶", + "得 不", + "PE C", + "P EC", + "Th an", + "T han", + "uc king", + "uck ing", + "▁rescue d", + "▁resc ued", + "切 断", + "▁a bc", + "▁ab c", + "▁ abc", + "en ues", + "enu es", + "enue s", + "▁R ide", + "▁Ri de", + "▁Rid e", + "▁Att ack", + "▁ Attack", + "波 特", + "▁f ör", + "co ded", + "code d", + "cod ed", + "c oded", + "▁Luc y", + "▁Lu cy", + "或 财产线索", + "orph ic", + "▁Mar ina", + "▁Ma rina", + "▁Mari na", + "▁Marin a", + "▁cho oses", + "▁choose s", + "▁in quiries", + "房 权证", + "贫困 户", + "nS il", + "n Sil", + "征 程", + "技术 在", + "cr ow", + "cro w", + "c row", + "ford able", + "▁terr ific", + "桃 园", + "▁ex on", + "▁sk ate", + "nO nline", + "nOn line", + "n Online", + "zeg ovina", + "▁pay roll", + "▁anim ations", + "▁animation s", + "年 到", + "▁( $\\\\", + "▁($ \\\\", + "Fr ench", + "Fre nch", + "F rench", + "CS V", + "C SV", + "SE QU", + "▁med iates", + "▁media tes", + "▁medi ates", + "▁mediate s", + "追 寻", + "nW E", + "n WE", + "▁E yes", + "▁Eye s", + "▁Ey es", + "日被 取保候审", + "eng lish", + "穿 梭", + "OP LE", + "nD aniel", + "nDan iel", + "n Daniel", + "▁shoot s", + "▁Fern ando", + "м а", + "军 训", + "ij ay", + "ija y", + "i jay", + "sl ides", + "slide s", + "CA A", + "C AA", + "▁S AR", + "▁SA R", + "▁ SAR", + "科研 项目", + "▁s cam", + "▁sc am", + "nR oyal", + "▁re const", + "▁recon st", + "▁re semble", + "▁asc ertain", + "▁c rystalline", + "▁crystal line", + "▁crystall ine", + "▁sub cutaneous", + "文 人", + "ary ng", + "是一 次", + "是 一次", + "na nt", + "nan t", + "n ant", + "文化 建设", + "nF ore", + "nFor e", + "n Fore", + "▁T rin", + "▁Tr in", + "▁Tri n", + "▁explo itation", + "▁exploit ation", + "吸 取", + "Bu d", + "B ud", + "天文 学", + "天 文学", + "暴力 枚举", + "ma ble", + "m able", + "另 案", + "部 级", + "全面 发展", + "▁Har bour", + "▁vulner abilities", + "完 备", + "回来 的", + "回 来的", + "真实 性", + "▁i Pod", + "▁r otor", + "▁ro tor", + "▁rot or", + "▁t icks", + "▁tick s", + "▁ti cks", + "▁ ticks", + "犯 交通肇事罪", + "▁ec ology", + "▁eco logy", + "百 里", + "而 这", + "AT S", + "A TS", + "关于 人民法院", + "▁en vision", + "▁env ision", + "朴 素", + "an de", + "and e", + "a nde", + "▁L iz", + "▁Li z", + "ou thern", + "outh ern", + "Mo r", + "M or", + "展览 会", + "长期 的", + "长 期的", + "Pac ific", + "▁con dom", + "▁cond om", + "▁condo m", + "▁int ends", + "▁intend s", + "名 列", + "vi vo", + "viv o", + "v ivo", + "▁umbre lla", + "尽 早", + "期满 后", + "解除 保全", + "'] ]],\\", + "做 大", + "批 复", + "算 术", + "▁Y ES", + "▁ YES", + "▁M oss", + "▁Mo ss", + "▁Mos s", + "桌 上", + "开心 的", + "开 心的", + "集团 的", + "集 团的", + "刑满 释放", + "投资 基金", + "生产 基地", + "He art", + "mix ed", + "m ixed", + "▁Fr aser", + "▁Fra ser", + "▁central ized", + "OnClick Listener", + "费 的", + "oz o", + "o zo", + "▁m asc", + "▁ma sc", + "▁mas c", + "nT able", + "n Table", + "▁br aces", + "▁bra ces", + "▁brace s", + "汇 编", + "read Line", + "▁eleg ance", + "搜 寻", + "生 孩子", + "中 对", + "尽 情", + "nI nc", + "nIn c", + "n Inc", + "▁dub bed", + "▁mathematic ian", + "结构 性", + "dr ag", + "d rag", + "▁sun shine", + "口 区", + "草 药", + "en ary", + "ena ry", + "▁rust ic", + "Creat ing", + "Cre ating", + "C reating", + "▁Winds or", + "b k", + "志 明", + "秉 持", + "教育 工作", + "ed iatric", + "中 使用", + "机构 和", + "at hy", + "ath y", + "a thy", + "ma int", + "main t", + "m aint", + "▁can opy", + "▁onc ology", + "松 弛", + "淮 南", + "It s", + "I ts", + "精神 病", + "▁制作 人", + "▁ 制作人", + "But tons", + "Button s", + "好 后", + "新 春", + "So l", + "S ol", + "投资 的", + "▁IS SN", + "第一 行包含", + "第一行 包含", + "rodu cing", + "rod ucing", + "外 围", + "抽 奖", + "ru ce", + "r uce", + "▁L ic", + "▁Li c", + "▁c osm", + "▁co sm", + "▁cos m", + "▁M akes", + "▁Make s", + "▁Ma kes", + "▁Mak es", + "Work ing", + "▁gen ius", + "▁rain bow", + "花 朵", + "▁Ar row", + "▁Arr ow", + "▁ Arrow", + "反应 的", + "反 应的", + "果 园", + "中新 网", + "社会 各界", + "▁st ains", + "▁stain s", + "he els", + "heel s", + "hee ls", + "id ual", + "▁c ols", + "▁col s", + "▁co ls", + "▁ cols", + "▁Ad ults", + "▁Adult s", + "▁c rying", + "▁cr ying", + "▁cry ing", + "▁Success ful", + "柔 性", + "毗 邻", + "最大 化", + "AAAA AAAA", + "▁ex quisite", + "伸 缩", + "迟 迟", + "郊 区", + "ai den", + "aid en", + "a iden", + "▁M ell", + "▁Me ll", + "▁Mel l", + "▁sh adows", + "▁shadow s", + "厂 长", + "阻 挡", + "▁r ushed", + "▁rush ed", + "▁worth while", + "的 材料", + "\\\\( {{", + "ar chy", + "arch y", + "arc hy", + "▁Ex po", + "▁Exp o", + "▁casp ase", + "Q T", + "… (", + "投 产", + "落 日", + "DE V", + "D EV", + "中 出现", + "并 取得", + "es are", + "esa re", + "esar e", + "▁C heap", + "▁Che ap", + "▁di vine", + "▁div ine", + "▁convinc ing", + "彝 族", + "水 土", + "领 军", + "▁K ab", + "▁Ka b", + "▁ Kab", + "信息 进行", + "认真 分析", + "▁Re serv", + "▁Res erv", + "▁G ur", + "▁Gu r", + "▁Cor nell", + "▁Corn ell", + "ени е", + "由 申请人", + "▁ch iral", + "▁chi ral", + "▁fore front", + "▁summar ized", + "▁summarize d", + "▁ 涛", + "哥 们", + "Me l", + "M el", + "il da", + "ild a", + "▁C arp", + "▁Car p", + "▁Ca rp", + "▁yield ing", + "▁Sec urities", + "r n", + "年 薪", + "领导 者", + "xi ng", + "xin g", + "x ing", + "▁Ster ling", + "s x", + "极 品", + "▁P ID", + "▁PI D", + "▁ PID", + "at ars", + "ata rs", + "atar s", + "Not ify", + "si zing", + "s izing", + "find All", + "use Effect", + "盆 地", + "ma d", + "m ad", + "▁ 接口", + "▁un anim", + "▁una nim", + "▁nit rate", + "▁st acked", + "▁stack ed", + "▁scholar ly", + "▁Sub mission", + "▁inter rupted", + "▁interrupt ed", + "始 于", + "影响 因素", + "pr inc", + "pri nc", + "▁U SER", + "▁US ER", + "▁USE R", + "▁ USER", + "Am azon", + "▁not ch", + "科学记数 法的", + "科学记数法 的", + "▁O ptical", + "▁Opt ical", + "▁Op tical", + "▁bout ique", + "店 内", + "集 资", + "ens ation", + "nE ducational", + "nEducation al", + "两 类", + "被 查封", + "nT urn", + "nTur n", + "n Turn", + "om nia", + "▁P ride", + "▁Pr ide", + "▁Pri de", + "▁Pro test", + "▁Prot est", + "▁Prote st", + "印 证", + "了 出来", + "安县 人民法院", + "安 县人民法院", + "▁str anger", + "▁strange r", + "▁strang er", + "趋 于", + "区域 内", + "润滑 油", + "un ix", + "uni x", + "u nix", + "来 往", + "挑战 性的", + "提供 一个", + "or ers", + "ore rs", + "orer s", + "Not Exist", + "区人民检察院 指控", + "▁question ing", + "奢 华", + "小 板", + "西 医", + "in stead", + "inst ead", + "▁index ing", + "▁ 加", + "万 辆", + "In M", + "I nM", + "ne o", + "n eo", + "Ch inese", + "val ence", + "form ations", + "formation s", + "format ions", + "▁trigger ing", + "__ )", + "_ _)", + "ap k", + "a pk", + "eg al", + "ega l", + "e gal", + "TY PES", + "TYPE S", + "▁Mal ay", + "▁Ma lay", + "▁g otta", + "▁got ta", + "运输 有限公司", + "▁F inite", + "▁Fin ite", + "Fin ished", + "Finish ed", + "▁import ing", + "▁ab straction", + "▁abs traction", + "▁abstract ion", + "应 试", + "的 山", + "博士 后", + "就会 有", + "就 会有", + "的事 物", + "的 事物", + "▁Gl obe", + "▁Glo be", + "▁Glob e", + "▁SE LECT", + "▁ SELECT", + "业 态", + "为 整数", + "市场 化", + "能有 效", + "能 有效", + "就是 这个", + "就 是这个", + "▁dom inate", + "▁Test ament", + "▁Cert ification", + "商 机", + "工 信", + "▁be lie", + "▁bel ie", + "整 车", + "晚 年", + "道 中", + "日 正式", + "与被告 张", + "政府 采购", + "酒店提供 免费", + "ba tis", + "bat is", + "b atis", + "separ ator", + "class ification", + "人 参", + "迪 士", + "只能 是", + "no ur", + "n our", + "▁bl ends", + "▁blend s", + "确认 人民调解协议", + "o L", + "保修 政策", + "▁sl ider", + "▁slide r", + "▁ slider", + "▁Up dates", + "▁Update s", + "▁ Updates", + "ap at", + "apa t", + "a pat", + "出席 会议", + "指派 代理检察员", + "按 自动撤回上诉处理", + "鸳 鸯", + "SN A", + "S NA", + "▁W r", + "▁ Wr", + "▁B ASE", + "▁BAS E", + "▁BA SE", + "▁ BASE", + "▁P oor", + "▁Po or", + "▁R econ", + "▁Re con", + "▁Rec on", + "▁Public ation", + "▁h one", + "▁hon e", + "▁ho ne", + "▁dig ging", + "▁ 伊", + "挂 在", + "▁U rl", + "▁Ur l", + "▁ Url", + "▁won ders", + "▁wond ers", + "▁wonder s", + "壮 族", + "大 庆", + "的 学校", + "▁H ull", + "▁Hu ll", + "Pr incipal", + "▁Viet namese", + "▁Vietnam ese", + "希 尔", + "▁V III", + "▁VI II", + "▁VII I", + "航 线", + "证明 材料", + "in ker", + "ink er", + "根据题意 得", + "nChild ren", + "n Children", + "▁junction s", + "▁Salmon ella", + "浓 浓", + "高 尚", + "▁P ig", + "▁Pi g", + "week ly", + "每 分钟", + "运行 的", + "运 行的", + "▁f auc", + "▁fa uc", + "▁Gl oucester", + "▁Sub sequently", + "立 功", + "怎么 了", + "▁s tip", + "▁st ip", + "丢 了", + "分 量", + "古 籍", + "换 届", + "的 回答", + "组 委会", + "PR OC", + "PRO C", + "nOver view", + "n Overview", + "_ \"", + "ql i", + "q li", + "你 应该", + "创建 于", + "创 建于", + "tl ocal", + "t local", + "▁am put", + "▁amp ut", + "other apeutic", + "字 幕", + "篮 板", + "ho lst", + "hol st", + "假 装", + "开 除", + "掩 盖", + "FR A", + "F RA", + "世界 大战", + "co ated", + "the ory", + "Hor izontal", + "▁text books", + "▁textbook s", + "二十 一", + "二 十一", + "ac ha", + "ach a", + "a cha", + "菠 菜", + "说 要", + "小时 的", + "小 时的", + "wo men", + "w omen", + "▁to ast", + "▁ toast", + "全 景", + "地 基", + "的老 师", + "的 老师", + "ib an", + "iba n", + "i ban", + "▁M PI", + "▁MP I", + "▁ MPI", + "▁anti tumor", + "▁antit umor", + "▁guid eline", + "▁guide line", + "▁co agulation", + ", [", + "K F", + "一直 到", + "一 直到", + "▁compl ained", + "▁complain ed", + "中 标", + "增大 而", + "总 觉得", + "淡淡 的", + "真的 好", + "真 的好", + "二审 上诉人", + "▁as sort", + "▁ass ort", + "烦 躁", + "Pro c", + "Pr oc", + "P roc", + "平方 千米", + "fr ontal", + "front al", + "公 有", + "细 细", + "莱 坞", + "正弦 定理", + "认罪 态度", + "graph ic", + "▁pean ut", + "▁cred ibility", + "预 言", + "▁S G", + "▁ SG", + "发挥 了", + "▁p es", + "▁pe s", + "▁ pes", + "us uario", + "二〇一六年 十一", + "二〇一六年十 一", + "nm anager", + "n manager", + "▁Spect rum", + "吃 什么", + "烟台 市", + "▁D il", + "▁Di l", + "▁He ather", + "▁Heat her", + "▁Heath er", + "填 补", + "ki ck", + "k ick", + "▁Coord inator", + "夺 得", + "德 镇", + "永 安", + "su s", + "s us", + "干 细胞", + "管理 与", + "▁{ })\\", + "▁{} )\\", + "▁{}) \\", + "▁ {})\\", + "as hire", + "ash ire", + "ashi re", + "a shire", + "al sa", + "als a", + "rx js", + "mu r", + "m ur", + "▁D EL", + "▁DE L", + "▁ DEL", + "▁R oth", + "▁Ro th", + "▁Rot h", + "▁sil icone", + "▁silicon e", + "▁minor ities", + "一般 为", + "▁al beit", + "Extract or", + "Extra ctor", + "冰 冰", + "港 区", + "基础 的", + "卫生 健康", + "as car", + "asc ar", + "a scar", + "▁G rab", + "▁Gr ab", + "▁Gra b", + "▁conc aten", + "▁elev ator", + "▁no except", + "枯 燥", + "ra el", + "r ael", + "几乎 没有", + "注销 信息", + "齐齐 哈尔", + "▁Trans l", + "▁Tra nsl", + "▁ Transl", + "▁in effective", + "上 调", + "不可 或缺", + "() ):\\", + "()) :\\", + "( )):\\", + "▁c lan", + "▁cl an", + ":: ~", + "人均 耕地", + "▁Aut hent", + "▁Auth ent", + "▁ Authent", + "Th reshold", + "▁aff ection", + "▁affect ion", + "念 头", + "瘦 肉", + "ba b", + "b ab", + "wa gen", + "w agen", + "▁Rol ling", + "▁Roll ing", + "安 利", + "抗 拒", + "J im", + "有理 数", + "克 里", + "页 无", + "在一 次", + "在 一次", + "Cl one", + "▁f ills", + "▁fil ls", + "▁fill s", + "▁ fills", + "西 装", + "TE M", + "T EM", + "将 面临", + "nW ORK", + "n WORK", + "▁an ne", + "▁ann e", + "▁ anne", + "▁ar Xiv", + "▁open ly", + "▁squ ash", + "第五百一十九 条", + "R X", + "t F", + "带 到", + "渐 进", + "空 的", + "第七 十三", + "▁go nad", + "▁gon ad", + "ch ecker", + "check er", + "▁rem inis", + "▁remin is", + "煤 气", + "实力 的", + "实 力的", + "▁p am", + "▁pa m", + "▁SPE CIAL", + "▁S elected", + "▁Se lected", + "▁Select ed", + "▁Sel ected", + "▁ Selected", + "最高人民法院关于 办理减刑", + "▁S ev", + "▁Se v", + "nTh ink", + "n Think", + "词条 注销信息", + "ut ation", + "uta tion", + "M n", + "都 觉得", + "工程 专业", + "els ius", + "t H", + "▁ 首", + "双 击", + "▁A ES", + "▁AE S", + "▁ AES", + "▁C AL", + "▁CA L", + "▁ CAL", + "▁L aur", + "▁La ur", + "▁n our", + "▁no ur", + "▁ nour", + "tr avel", + "tra vel", + "t ravel", + "教 务", + "也没 什么", + "也 没什么", + "▁le uc", + "应 及时", + "的 房子", + "▁ab sc", + "▁abs c", + "▁bl essing", + "▁bless ing", + "▁life span", + "▁lifes pan", + "x m", + "SD N", + "S DN", + "邯郸 市", + "▁H AS", + "▁HA S", + "考 前", + "▁D AY", + "▁DA Y", + "▁ DAY", + "这件事 情", + "这件 事情", + "这 件事情", + "OA uth", + "O Auth", + "▁ar sen", + "craft ed", + "▁program mers", + "▁programme rs", + "▁programmer s", + "每 种", + "管理 学", + "管 理学", + "不可 避免", + "▁rum ors", + "凝 胶", + "ar na", + "arn a", + "被执行人 名下", + "▁G aming", + "▁Ga ming", + "▁Gam ing", + "▁vine gar", + "nPres ident", + "n President", + "▁hist ogram", + "两个 数", + "两 个数", + "你就 是", + "你 就是", + "刑期 执行至", + "▁exp ire", + "▁Ch arter", + "▁Char ter", + "▁Chart er", + "▁hope ful", + "▁hop eful", + "八 个", + "的 合理", + "的 形象", + "▁Ig E", + "nar ray", + "n array", + "▁Ver ify", + "▁ Verify", + "▁al ters", + "▁alter s", + "▁alt ers", + "方 正", + "点 为", + "PC A", + "P CA", + "应该 如何", + "应 该如何", + "▁prom oters", + "▁promot ers", + "▁promote rs", + "▁promoter s", + "▁promo ters", + "看了 一", + "看 了一", + "▁B elle", + "▁Bel le", + "▁Bell e", + "▁post pon", + "▁evidence d", + "▁evid enced", + "v u", + "ar ton", + "art on", + "▁Man ila", + "▁creat inine", + "就 拿", + "在 世界", + "▁obsc ure", + "D V", + "一 曲", + "且 不", + "▁RNA s", + "▁RN As", + "▁ RNAs", + "mark ed", + "进 货", + "的 未来", + "数据 中心", + "病 房", + "轻 薄", + "ID I", + "I DI", + "Su ch", + "S uch", + "nl ibrary", + "n library", + "▁t etr", + "▁te tr", + "▁tet r", + "▁Nic ole", + "▁Ni cole", + "▁Nicol e", + "▁n otions", + "▁not ions", + "▁notion s", + "一 朝", + "基 建", + "好 感", + "玩家 的", + "玩 家的", + "gr own", + "gro wn", + "grow n", + "g rown", + "▁emphas izes", + "▁emphasize s", + "大 体", + "\"/ \"", + "\" /\"", + "/\" ,", + "/ \",", + "▁fem inist", + "▁femin ist", + "▁C yt", + "▁Cy t", + "公共 交通", + "Fr ance", + "F rance", + "▁Croat ian", + "▁Croatia n", + "▁encour agement", + "▁encourage ment", + "展 厅", + "装 机", + "林业 局", + "() );", + "()) ;", + "( ));", + "党建 工作", + "持 股", + "提 炼", + "是 世界", + "大部分 人", + "Gu ide", + "Gui de", + "Guid e", + "▁O Auth", + "▁OA uth", + "▁ OAuth", + "▁Sol omon", + "▁Solo mon", + "▁enc oder", + "▁encode r", + "▁ encoder", + "乖 乖", + "标 杆", + "留 守", + "预 案", + "ta dd", + "t add", + "Tr ait", + "Tra it", + "T rait", + "▁U nix", + "▁Un ix", + "▁Uni x", + "▁ Unix", + "▁H idden", + "▁ Hidden", + "▁Slovak ia", + "自 适应", + "将自己 的", + "将 自己的", + "▁产品 类型", + "▁ 产品类型", + "▁Sur ve", + "▁Surv e", + "▁T ables", + "▁Table s", + "▁Ta bles", + "▁Tab les", + "▁ Tables", + "▁genu inely", + "▁genuine ly", + "▁super conduct", + "一 见", + "圣 母", + "不少 人", + "如今 的", + "▁\" ,\"", + "▁\", \"", + "▁ \",\"", + "t rivial", + "▁mean while", + "二手 车", + "I iw", + "▁\" ,\\", + "▁\", \\", + "▁ \",\\", + "党风 廉政", + "▁King ston", + "▁Kings ton", + "▁seam lessly", + "▁seamless ly", + "用 工", + "迪士 尼", + "▁sh red", + "▁shr ed", + "linked in", + "以上资料 仅供参考", + "申请人 于", + "百度 小说", + "▁公司 性质", + "▁sn ail", + "▁per cutaneous", + "光 绪", + "能 用", + "那一 刻", + "那 一刻", + "▁l asers", + "▁laser s", + "▁las ers", + "金 陵", + "to ne", + "ton e", + "t one", + "具体情况 还请", + "▁d irectional", + "▁direct ional", + "▁direction al", + "化 了", + "复旦 大学", + "WIN DO", + "Start ed", + "Star ted", + "儿 科", + "班 车", + "ra r", + "r ar", + "元 左右", + "▁NA TO", + "▁NAT O", + "ú n", + "没 用", + "中国 国际", + "Game s", + "Ga mes", + "G ames", + "Pic ture", + "P icture", + "nPro ject", + "n Project", + "具体情况还请 咨询医生", + "▁ 薛", + "反 感", + "向 北", + "ca tal", + "cat al", + "c atal", + "ex ican", + "▁M arks", + "▁Mar ks", + "▁Mark s", + "▁V intage", + "▁Vin tage", + "▁am plified", + "▁ampl ified", + "▁paper work", + "第十 二章", + "第十二 章", + "第 十二章", + "▁or ch", + "▁ orch", + "nE mail", + "nEm ail", + "n Email", + "▁el bow", + "贷款 基准利率", + "爆 破", + "红 薯", + "do w", + "d ow", + "变速 箱", + "time d", + "tim ed", + "ti med", + "▁R osa", + "▁Ro sa", + "▁Ros a", + "conf idence", + "汉 堡", + "oh o", + "o ho", + "也是 有", + "也 是有", + "▁e rect", + "▁er ect", + "Source s", + "S ources", + "▁W idget", + "▁Wid get", + "▁ Widget", + "▁refr active", + "台 州", + "回 味", + "▁P ipe", + "▁Pi pe", + "▁Pip e", + "▁ Pipe", + "▁f ellows", + "▁fellow s", + "▁fell ows", + "Organ ization", + "▁U m", + "▁im perfect", + "▁imper fect", + "▁success ion", + "▁suc cession", + "▁succ ession", + "▁F o", + "南通 市", + "▁Se ems", + "▁See ms", + "▁dis ks", + "▁disk s", + "cult ure", + "c ulture", + "▁glomer ular", + "R J", + "讲 授", + "经常 会", + "ink les", + "inkle s", + "筛 查", + "谈 论", + "▁m ás", + "▁K ang", + "▁Ka ng", + "▁Kan g", + "▁n ore", + "▁no re", + "▁nor e", + "Over lay", + "▁all ocate", + "▁alloc ate", + "▁ allocate", + "access ible", + "Z n", + "票 价", + "ug h", + "u gh", + "Pro to", + "Pr oto", + "Prot o", + "▁ 汤", + "不 光", + "▁t ram", + "▁tr am", + "▁tra m", + "fr ag", + "fra g", + "f rag", + "▁Pol ynomial", + "▁pest icides", + "▁pestic ides", + "的风 格", + "的 风格", + "▁IP v", + "▁ IPv", + "▁L aws", + "▁La ws", + "▁Law s", + "▁li bert", + "▁lib ert", + "▁cre ations", + "▁creat ions", + "▁creation s", + "参与 者", + "对 学生", + "▁B ike", + "▁Bi ke", + "▁S ally", + "▁Sal ly", + "▁Dar win", + "▁R BI", + "▁RB I", + "ost ruct", + "o struct", + "▁Ang lican", + "文 库", + "离 去", + "的 良好", + "在自己 的", + "在 自己的", + "每一个 人", + "每一 个人", + "每 一个人", + "al most", + "alm ost", + "▁Ac ute", + "▁Per form", + "滋 事", + "et ur", + "e tur", + "▁A AA", + "▁AA A", + "▁ AAA", + "景点 的距离", + "景 点的距离", + "▁main land", + "三 家", + "新 房", + "离 谱", + "较 轻", + "对我 来说", + "对 我来说", + "build s", + "▁Me rit", + "▁Mer it", + "circ uit", + "tlog ger", + "t logger", + "vet ica", + "号行政处罚决定 书", + "号 行政处罚决定书", + "就 别", + "本 赛季", + "赵某 某", + "赵 某某", + "ve al", + "v eal", + "as one", + "ason e", + "▁Month ly", + "▁Parad ise", + "▁aff ective", + "▁affect ive", + "R x", + "复 读", + "评 比", + "▁Z ag", + "il ogy", + "ilo gy", + "ilog y", + "i logy", + "景点的距离 如下", + "安 宁", + "data b", + "da tab", + "dat ab", + "▁DE BUG", + "▁ DEBUG", + "拥有 移动电话", + "▁Alb any", + "▁Alban y", + "▁S olving", + "▁Sol ving", + "▁a verages", + "▁average s", + "▁aver ages", + "▁国 际", + "▁ 国际", + "多样 的", + "多 样的", + "▁Work er", + "▁Wor ker", + "▁ Worker", + "▁professional ism", + "K V", + "op ies", + "o pies", + "ot hesis", + "oth esis", + "othe sis", + "othes is", + "▁st ickers", + "▁stick ers", + "▁sticker s", + "草 本", + "链 条", + "St yled", + "Sty led", + "Style d", + "▁s andy", + "▁sand y", + "▁san dy", + "▁sp icy", + "▁psych o", + "▁psy cho", + "present ation", + "p resentation", + "之 谜", + "▁G W", + "▁ GW", + "中央 电视台", + "▁F ifty", + "▁Fif ty", + "▁Fi fty", + "撤回起诉 处理", + "▁Bos nia", + "war nings", + "warning s", + "warn ings", + "w arnings", + "▁lymph oid", + "▁Ann iversary", + "▁inter sections", + "▁intersection s", + "▁intersect ions", + "等 设施", + "商业 模式", + "▁dist ributor", + "▁distribut or", + "Par k", + "Pa rk", + "P ark", + "▁N acional", + "故本 院", + "故 本院", + "的比 较", + "的 比较", + "▁D um", + "▁Du m", + "▁was her", + "▁wash er", + "▁ washer", + "▁cha otic", + "▁not ices", + "▁notice s", + "红 星", + "个数 是", + "个 数是", + "▁H aus", + "▁Ha us", + "▁Ar rays", + "▁Array s", + "▁Arr ays", + "▁ Arrays", + "匈 牙", + "示范 区", + "▁C edar", + "▁Ce dar", + "on ge", + "ong e", + "o nge", + "▁it erate", + "▁iter ate", + "▁ iterate", + "▁fragment ation", + "▁frag mentation", + "办 的", + "大 棚", + "看 病", + "by ter", + "byte r", + "▁D iss", + "▁Dis s", + "▁Di ss", + "▁a orta", + "▁Sh annon", + "▁Shan non", + "▁up wards", + "▁upward s", + "▁ 付", + "知 己", + "ev o", + "e vo", + "ak ov", + "ako v", + "a kov", + "LIBR ARY", + "▁Prov idence", + "▁Provide nce", + "升 本", + "块 的", + "扭 转", + "爱情 的", + "爱 情的", + "nT own", + "nTo wn", + "▁H ugo", + "▁Hu go", + "▁Hug o", + "▁er ected", + "▁erect ed", + "▁the aters", + "▁theater s", + "▁theat ers", + "转 折", + "和 经济", + "LA ST", + "LAS T", + "L AST", + "ic ans", + "ica ns", + "ican s", + "im show", + "ims how", + "is file", + "isf ile", + "▁Any thing", + "不 放", + "树 叶", + "浪 潮", + "配 色", + "的 免费", + "这是 个", + "这 是个", + "ex ual", + "▁P f", + "▁S ic", + "▁Si c", + "这是 什么", + "这 是什么", + "▁U CLA", + "▁UC LA", + "dis miss", + "d ismiss", + "▁pian ist", + "▁transl ator", + "E I", + "▁S AS", + "▁SA S", + "和谐 社会", + "号民事 裁定书", + "号民事裁定 书", + "▁c runch", + "▁cr unch", + "▁cru nch", + "▁ crunch", + "▁destr uctive", + "分 段", + "来 袭", + "燕 子", + "qi ng", + "q ing", + "Diagn ostics", + "分 销", + "正常 使用", + "Cr edit", + "Cred it", + "Cre dit", + "C redit", + "fin ger", + "f inger", + "▁progress ively", + "▁progressive ly", + "是 她", + "车 管", + "防 爆", + "() }", + "( )}", + "的 版本", + "IF IC", + "IFI C", + "mg mt", + "▁where in", + "▁whe rein", + "declar ations", + "Br ien", + "B rien", + "▁ex piration", + "▁exp iration", + "严 密", + "各 行", + "蜜 蜂", + "ob y", + "o by", + "▁用 料", + "▁ 用料", + "▁G RO", + "▁GR O", + "▁ GRO", + "专业 领域", + "▁B har", + "▁Bh ar", + "你 所", + "后 发现", + "▁D im", + "▁Di m", + "▁ Dim", + "▁W ish", + "▁Wis h", + "▁Wi sh", + "▁su bs", + "▁sub s", + "if orms", + "iform s", + "i forms", + "▁ins isted", + "▁insist ed", + "▁cyt oplasm", + "▁def endant", + "▁defend ant", + "桃 源", + "欠 据", + "CO D", + "C OD", + "另一 半", + "另 一半", + "ce rol", + "cer ol", + "▁Jac ques", + "▁str ipped", + "▁stri pped", + "▁strip ped", + "适用 缓刑", + "ge nre", + "gen re", + "▁P are", + "▁Par e", + "▁Pa re", + "▁cor rupt", + "▁fibr illation", + "nU l", + "n Ul", + "申请执行人 陈", + "▁form ulate", + "▁formula te", + "▁head aches", + "▁headache s", + "▁% \\", + "▁ %\\", + "▁W on", + "▁Wo n", + "va ult", + "v ault", + "▁cut off", + "商务 部", + "nE xt", + "nEx t", + "n Ext", + "▁G an", + "▁Ga n", + "od ied", + "odi ed", + "o died", + "▁Ident ifier", + "▁ Identifier", + "▁carcin ogenesis", + "▁Nor dic", + "▁Nord ic", + "Eval uate", + "▁over time", + "▁overt ime", + "acchar ides", + "accharide s", + "全 社会", + "ro ts", + "rot s", + "r ots", + "的是 什么", + "的 是什么", + "由 被执行人", + "▁sub div", + "下 设", + "海 滨", + "▁Ch ern", + "▁Che rn", + "▁Cher n", + "nA frican", + "族自治 县人民法院", + "族自治县 人民法院", + "一定 能", + "双 十一", + "的 调查", + "ba ng", + "ban g", + "b ang", + "▁I sh", + "▁Is h", + "▁Day ton", + "▁Morris on", + "▁Morr ison", + "位 列", + "厅 长", + "打 得", + "sp ort", + "s port", + "▁B uzz", + "▁Bu zz", + "▁M ilk", + "▁Mil k", + "分 枝", + "恋 情", + "整 整", + "▁ 制片", + "国土 资", + "ti ght", + "t ight", + "▁N eck", + "▁Ne ck", + "▁Nec k", + "微信 小程序", + "表 的", + "在这 些", + "在 这些", + "▁A MS", + "▁AM S", + "▁ AMS", + "nc ategory", + "n category", + "▁pres erves", + "▁preserve s", + "污 泥", + "减 函数", + "披针 形", + "▁E PS", + "▁EP S", + "▁ EPS", + "re ceptor", + "▁phot ore", + "▁photo re", + "▁Car oline", + "▁Carol ine", + "硫 化", + "ed en", + "ede n", + "e den", + "个人 认为", + "in atal", + "ina tal", + "i natal", + "▁pe dest", + "▁ped est", + "温 岭", + "环 路", + "vo tes", + "vote s", + "v otes", + "▁sl owing", + "▁slow ing", + "傍 晚", + "大 风", + "常务 理事", + "▁refuge e", + "移 项", + "▁B G", + "▁ BG", + "黑色 的", + "黑 色的", + "fl ux", + "flu x", + "f lux", + "▁rep etition", + "十 首", + "总 计", + "▁H SV", + "▁HS V", + "nav igate", + "▁cush ion", + "预 处理", + ">\\ ',", + ">\\' ,", + "> \\',", + "ou ns", + "oun s", + "o uns", + "▁R abbit", + "▁Rab bit", + "▁ Rabbit", + "Mod ifier", + "▁cr ushed", + "▁crush ed", + "维 斯", + "而且 是", + "Me ss", + "M ess", + "▁an ion", + "▁ anion", + "报 到", + "col m", + "co lm", + "ed es", + "ede s", + "e des", + "ik an", + "ika n", + "i kan", + "提出 了一种", + "提出了 一种", + "it ably", + "ita bly", + "orb ent", + "▁Al lan", + "▁All an", + "▁im part", + "▁imp art", + "▁grab bed", + "▁fer mentation", + "提 琴", + "雷 锋", + "CO R", + "C OR", + "▁f right", + "▁fr ight", + "▁fri ght", + "挺 好", + "农户 数", + "农 户数", + "▁SV G", + "▁ SVG", + "cr umbs", + "crumb s", + "crum bs", + "▁sal aries", + "▁de duction", + "▁ded uction", + "▁deduct ion", + "▁construct ive", + "▁constr uctive", + "C d", + "时 分", + "ho ot", + "h oot", + "ial is", + "ia lis", + "i alis", + "▁u rea", + "▁ur ea", + "▁ure a", + "写 下", + "读 作", + "转 运", + "民主 党", + "NO WN", + "NOW N", + "oqu e", + "o que", + "arn ish", + "积极参加 政治", + "▁V isa", + "▁Vis a", + "▁Vi sa", + "nReg ular", + "n Regular", + "不 带", + "潜 艇", + "将 上述", + "道路 为", + "nV ir", + "n Vir", + "▁J ets", + "▁Je ts", + "▁Jet s", + "▁Elli ott", + "▁Trans mission", + "乔 木", + "现 身", + "侵犯 了", + "侵 犯了", + "he tical", + "het ical", + "hetic al", + "▁as phalt", + "甘 草", + "▁w s", + "▁ ws", + "的大 力", + "的 大力", + "nm ax", + "n max", + "被害 人的", + "被害人 的", + "nEx pl", + "n Expl", + "Qt Core", + "▁t unes", + "▁tun es", + "▁tune s", + "▁tu nes", + "▁Expl ore", + "▁authent icated", + "▁authentic ated", + "▁authenticate d", + "▁ authenticated", + "UM N", + "U MN", + "do u", + "d ou", + "克里 斯", + "克 里斯", + "旗舰 店", + "line ss", + "li ness", + "lin ess", + "lines s", + "l iness", + "▁pup py", + "QU AL", + "Q UAL", + "▁B uc", + "▁Bu c", + "can cer", + "c ancer", + "Default s", + "mut ation", + "m utation", + "留 给", + "诺 贝尔", + "in qu", + "um bers", + "umb ers", + "umber s", + "▁Lux ury", + "二〇一七年 十月", + "二〇一七年十 月", + "▁Car diff", + "▁Card iff", + "▁Cardi ff", + "▁Re creation", + "▁Rec reation", + "▁F i", + "▁ Fi", + "则 实数", + "▁hair st", + "▁ha irst", + "▁hairs t", + "▁releg ated", + "在 实际", + "ba gs", + "bag s", + "b ags", + "ov el", + "ove l", + "o vel", + "产品 重量", + "▁sur geries", + "▁surg eries", + "▁surge ries", + "е к", + "不 忍", + "幕 后", + "打 下", + "▁l end", + "▁le nd", + "▁len d", + "▁C odes", + "▁Co des", + "▁Code s", + "▁Cod es", + "▁ Codes", + "Re lation", + "Rel ation", + "踏 上", + "不要 再", + "较多 的", + "较 多的", + "nd el", + "nde l", + "n del", + "▁Brad ford", + "▁short ened", + "根本 没有", + "美国 总统", + "行政 拘留", + "▁impair ments", + "▁impairment s", + "Gi rl", + "G irl", + "▁T rav", + "▁Tr av", + "▁Tra v", + "▁w ont", + "▁won t", + "▁wo nt", + "管理 委员会", + "太 小", + "约 有", + "不少 于", + "不 少于", + "就 成了", + "这几 天", + "这 几天", + "越来 越大", + "越来越 大", + "品 德", + "拦 截", + "的 经历", + "ST OR", + "S TOR", + "He ading", + "Head ing", + "陈 代谢", + "Pr ime", + "Prim e", + "ns how", + "nsh ow", + "n show", + "家协会 会员", + "乙 方", + "挪 威", + "香 的", + "我这 个", + "我 这个", + "效果 好", + "特 异性", + "看 电影", + "▁tax a", + "▁ta xa", + "▁C ategories", + "▁ Categories", + "IB M", + "I BM", + "US H", + "U SH", + "wr ong", + "w rong", + "▁mac rom", + "▁macro m", + "残 忍", + "英 烈", + "Mi ss", + "M iss", + "▁| \\\\", + "▁|\\ \\", + "▁ |\\\\", + "▁or bits", + "▁orbit s", + "▁Nic olas", + "▁Nicol as", + "▁asym metry", + "▁asymmet ry", + "▁pro posing", + "▁propos ing", + "▁prop osing", + "d L", + "世 俗", + "侧 重", + "认识 的", + "ry an", + "r yan", + "所选 定的", + "你 我", + "计 画", + "▁о т", + "▁Ga uss", + "Min imum", + "▁r ookie", + "▁rook ie", + "▁When ever", + "w l", + "胚 胎", + "ki e", + "k ie", + "nu r", + "n ur", + "腹腔 镜", + "▁h rs", + "▁hr s", + "前 段时间", + "武 侯", + "nS l", + "n Sl", + "先 根据", + "App s", + "Ap ps", + "▁c ep", + "▁ce p", + "▁ cep", + "gu ides", + "guide s", + "gui des", + "guid es", + "▁ceiling s", + "▁ceil ings", + "▁even ings", + "▁evening s", + "w Y", + "南 宋", + "神 圣", + "跌 幅", + "躲 避", + "该村 到", + "页无 正文", + "nH and", + "nHa nd", + "n Hand", + "Are Equal", + "▁rad ians", + "▁radi ans", + "found ation", + "责任 感", + "朋友 聚餐", + "成 名", + "老 爸", + "事业 的", + "事 业的", + "ia de", + "iad e", + "i ade", + "ific ance", + "▁spatial ly", + "▁spat ially", + "厌 恶", + "cy st", + "c yst", + "ec hes", + "ech es", + "e ches", + "都有 自己的", + "都 有自己的", + "延 吉", + "鼠标 点击", + "▁d eng", + "▁de ng", + "▁den g", + "nA long", + "nAl ong", + "sur name", + "s urname", + "▁S print", + "▁Sp rint", + "▁Spr int", + "▁g astrop", + "▁gastr op", + "▁gastro p", + "▁gast rop", + "▁ 被", + "私 有", + "阳市 人民法院", + "阳 市人民法院", + "▁ac quis", + "▁acqu is", + "F requency", + "送 上", + "最后 一次", + "最后一 次", + "金融 危机", + "or nings", + "orn ings", + "▁Mar tha", + "▁Mart ha", + "▁sol ids", + "▁solid s", + "水 管", + "沧 桑", + "装 卸", + "辨 别", + "ab h", + "a bh", + "分割 线", + "ion a", + "io na", + "i ona", + "▁O le", + "▁Ol e", + "▁re pr", + "▁rep r", + "▁ repr", + "▁v ague", + "▁vag ue", + "▁va gue", + "▁ans ible", + "▁ ansible", + "发 芽", + "地 层", + "比 的", + "ot oxic", + "otox ic", + "o toxic", + "our ced", + "ource d", + "乌 拉", + "机 油", + "nc ia", + "n cia", + "▁G TP", + "▁GT P", + "tf ile", + "t file", + "▁Y outube", + "▁You tube", + "心 目", + "▁工作 分工", + "ph eres", + "phere s", + "pher es", + "▁d eter", + "▁de ter", + "▁det er", + "ns ystem", + "nsys tem", + "n system", + "万 亿", + "参与 了", + "洗 干净", + "▁A us", + "▁Au s", + "tc out", + "t cout", + "▁Valid ate", + "▁ Validate", + "城 里", + "ver ters", + "vert ers", + "verter s", + "verte rs", + "▁Out comes", + "▁Outcome s", + "个 赞", + "教 养", + "tr et", + "tre t", + "t ret", + "get Data", + "安 娜", + "法 语", + "研究 与", + "鲜明 的", + "鲜 明的", + "与被告 李", + "▁r ods", + "▁ro ds", + "▁rod s", + "eal ous", + "▁Rep roduce", + "▁s f", + "▁ sf", + "ol ey", + "ole y", + "o ley", + "无烟 客房", + "sp read", + "spr ead", + "s pread", + "▁O live", + "▁Ol ive", + "nVol ume", + "n Volume", + "▁sub urban", + "▁suburb an", + "▁rep utable", + "▁reput able", + "▁P ant", + "▁Pan t", + "▁Pa nt", + "in ative", + "i native", + "▁ 查看", + "不相 同", + "不 相同", + "▁O DE", + "▁OD E", + "如果 你的", + "如果你 的", + "pl ica", + "plic a", + "sur vey", + "▁sex uality", + "▁sexual ity", + "▁un forgettable", + "部 份", + "▁a a", + "▁ aa", + "▁k h", + "▁ kh", + "er mo", + "erm o", + "▁S paces", + "▁Sp aces", + "▁Space s", + "▁Spa ces", + "▁t oured", + "▁to ured", + "▁tour ed", + "▁tou red", + "b j", + "(\\\\ )", + "( \\\\)", + "▁) ,\\", + "▁), \\", + "▁ ),\\", + "创建 一个", + "S orry", + "▁Ang le", + "▁ Angle", + "摸 索", + "▁r uler", + "▁rule r", + "▁rul er", + "▁ru ler", + "不允许 携带宠物", + "出 错", + "最 简", + "芬 兰", + "ri zz", + "riz z", + "r izz", + "彻底 破裂", + "▁ 敏", + "切 尔", + "同 盟", + "th r", + "t hr", + "▁é t", + "▁ ét", + "读卡 器", + "▁m ens", + "▁me ns", + "▁men s", + "▁ mens", + "rab bit", + "r abbit", + "兴 建", + "周 六", + "an us", + "anu s", + "a nus", + "▁bi ome", + "▁biom e", + "▁bio me", + "通 往", + "卫生 部", + "▁Pr ison", + "▁Pri son", + "往 年", + "了一 张", + "了 一张", + "创新 能力", + "▁Fr agment", + "▁Fra gment", + "▁ Fragment", + "▁enlarg ed", + "nIn formation", + "n Information", + "▁Contin ental", + "▁conflic ting", + "▁conflict ing", + "双曲线 的", + "双 曲线的", + "年的 时间", + "年 的时间", + "Un its", + "Unit s", + "U nits", + "能够 认罪悔罪", + "石 英", + "▁M VP", + "▁MV P", + "元 或查封", + "▁C ann", + "▁Can n", + "▁Ca nn", + "Con struct", + "Co nstruct", + "Const ruct", + "Repos itories", + "个 个", + "植 被", + "Cu t", + "C ut", + "Pop up", + "ed ged", + "edge d", + "上诉于 山东省", + "建设 工程施工", + "建设工程 施工", + "▁out fits", + "▁outfit s", + "MS C", + "M SC", + "分析 与", + "已 完成", + "nE vents", + "nEven ts", + "nEvent s", + "nEv ents", + "n Events", + "ont ally", + "ontal ly", + "▁pal ate", + "▁pa late", + "▁tens ile", + "engine ering", + "nPop ulation", + "在 下", + "水 域", + "海 量", + "锦 绣", + "价格 的", + "价 格的", + "高度 的", + "高 度的", + "i ère", + "▁JO IN", + "互为 相反数", + "ou tfile", + "out file", + "▁ch rist", + "▁chr ist", + "晶 晶", + "▁其 六", + "后来 的", + "后 来的", + "▁B ottom", + "▁Bot tom", + "▁ Bottom", + "▁San tos", + "▁Sant os", + "个 子", + "nHe alth", + "n Health", + "▁extract ing", + "▁extr acting", + "▁extrac ting", + "果 树", + "构成 的", + "构 成的", + "▁P ie", + "▁Pi e", + "id ium", + "idi um", + "▁S tick", + "▁St ick", + "▁ru ins", + "▁ruin s", + "▁Stre pt", + "内 膜", + "本 章", + "▁` $", + "yn es", + "y nes", + "▁l an", + "▁la n", + "▁ lan", + "▁as tro", + "▁ast ro", + "▁astr o", + "▁ astro", + "张 文", + "\"> {", + "\" >{", + "is her", + "ish er", + "▁No tre", + "▁Not re", + ">{ {", + "> {{", + "▁t m", + "▁ tm", + "妈妈 的", + "nL ess", + "nLe ss", + "nLes s", + "n Less", + "▁fluor ide", + "▁con ceived", + "▁conce ived", + "▁Re placement", + "▁Replace ment", + "庆 典", + "开 荒", + "▁t k", + "▁ tk", + "▁C oul", + "▁Co ul", + "▁Cou l", + "admin istration", + ") ∵", + "学 了", + "风 电", + "▁up right", + "本裁定送达后 立即执行", + "女 装", + "师 兄", + "猎 人", + "la ke", + "l ake", + "▁J al", + "▁Ja l", + "琢 磨", + "表 皮", + "身 处", + "型 企业", + "带头 人", + "参加 会议", + "是什么 样的", + "是 什么样的", + "nW indows", + "n Windows", + "develop ed", + "devel oped", + "▁endomet rial", + "▁endometri al", + "▁ 钱", + "大 王", + "her oku", + "hero ku", + "▁红 袖添香网", + "▁ 红袖添香网", + "Res olved", + "Resolve d", + "▁Colon el", + "▁Ul timately", + "▁Ultimate ly", + "主 讲", + "年 由", + "Z oom", + "wan t", + "wa nt", + "w ant", + "▁A ds", + "▁Ad s", + "很大 程度上", + "Con nell", + "Conn ell", + "nNor wegian", + "_ ]", + "不 留", + "马 达", + "nN O", + "n NO", + "但对 于", + "但 对于", + "fe at", + "f eat", + "▁Bur ns", + "▁Burn s", + "▁Her zegovina", + "ue n", + "u en", + "▁X i", + "▁ Xi", + "和 学习", + "或者 代表人的人数提出副本", + "常态 化", + "采用 的", + "采 用的", + "▁Z ach", + "▁rece ivers", + "▁receive rs", + "▁receiver s", + "▁ 莫", + "出 不", + "山 川", + "称 呼", + "证人 证言", + "▁rec tal", + "▁rect al", + "▁adj unct", + "五 首", + "贯 通", + "报道 称", + "OD AY", + "O DAY", + "▁P AC", + "▁PA C", + "ode grad", + "▁Writ ers", + "▁Write rs", + "▁Writer s", + "▁exponential ly", + "▁exponent ially", + "▁immun otherapy", + "▁immuno therapy", + "宴 会", + "oi se", + "ois e", + "o ise", + "可以 作为", + "▁av atar", + "▁ avatar", + "▁harvest ing", + "网 贷", + "ji t", + "j it", + "电子 书", + "▁p om", + "▁po m", + "▁ pom", + "家 教", + "搞 得", + "爱 护", + "虐 待", + "▁N B", + "▁ NB", + "▁sal ts", + "▁salt s", + "▁stir ring", + "▁comp artments", + "▁compartment s", + "太 难", + "长 治", + "ak is", + "aki s", + "▁T CR", + "▁TC R", + "av ors", + "avor s", + "avo rs", + "仍 不", + "油 耗", + "重阳 节", + "懂 的", + "片 子", + "督 察", + "收费 是", + "政府 部门", + "Re uters", + "find all", + "集团 股份有限公司", + "▁in organic", + "▁struct urally", + "▁structural ly", + "番 禺", + "大家 一起", + "电动 汽车", + "on set", + "ons et", + "o nset", + "▁Trans ition", + "▁Transit ion", + "▁ Transition", + "东 盟", + "PC s", + "P Cs", + "关系 是", + "理性 的", + "理 性的", + "▁s log", + "▁sl og", + "LO N", + "L ON", + "at y", + "a ty", + "爱尔 兰", + "▁编辑 推荐", + "德 州", + "又一 个", + "又 一个", + "证据 的", + "▁A SD", + "▁AS D", + "synt hes", + "▁virt ue", + "▁antib acterial", + "nD ES", + "nDE S", + "n DES", + "▁Ap pend", + "▁App end", + "▁Appe nd", + "▁ Append", + "▁RE SULTS", + "▁Second ly", + ", %", + "二 项", + "日 出", + "牵 头", + "bl o", + "b lo", + "产品 在", + "体内 的", + "体 内的", + "可靠 的", + ")) ))\\", + "))) )\\", + ")))) \\", + ") )))\\", + "▁re stor", + "▁res tor", + "▁rest or", + "▁breath taking", + "▁breat htaking", + "两 句", + "之 事", + "他 能", + "秸 秆", + "▁a ld", + "▁al d", + "▁ ald", + "在卷 佐证", + "▁May o", + "▁Ma yo", + "▁ammon ia", + "ass ignment", + "assign ment", + "▁elastic ity", + "▁elast icity", + "Event Handler", + "名 胜", + "▁p urity", + "▁pur ity", + "▁re size", + "▁res ize", + "▁ resize", + "nCont ent", + "n Content", + "ingu ished", + "传 闻", + "re on", + "r eon", + "ron ym", + "r onym", + "ne sted", + "nes ted", + "nest ed", + "n ested", + "▁D ollar", + "▁Doll ar", + "▁Dol lar", + "▁ 丽", + "切 开", + "拖 延", + "多少 元", + "防腐 剂", + "▁v ibe", + "▁vi be", + "▁vib e", + "nSt eve", + "nSte ve", + "n Steve", + "也 对", + "至少 有", + "认定 书", + "ut ory", + "utor y", + "uto ry", + "nS ix", + "nf loat", + "n float", + "▁Mon roe", + "▁Sh arma", + "▁Shar ma", + "▁Java script", + "▁Jav ascript", + "球 形", + "直角坐标 系", + "br oken", + "bro ken", + "ver sed", + "vers ed", + "verse d", + "v ersed", + "▁st orms", + "▁storm s", + "▁season ed", + "▁seas oned", + "夜 里", + "马 力", + "oz a", + "o za", + "yu m", + "y um", + "一下 吧", + "▁b ure", + "▁bu re", + "▁bur e", + "Comp ile", + "▁tele scope", + "▁tel escope", + "▁telesc ope", + "冬 瓜", + "我 再", + "大学 毕业", + "▁R andy", + "▁Rand y", + "▁Ran dy", + "河 镇", + "然 的", + "▁micro array", + "托 福", + "nC H", + "n CH", + "▁ 填词", + "ec ko", + "eck o", + "ext ended", + "extend ed", + "▁Out side", + "▁accomplish ments", + "▁accomplishment s", + "tu int", + "t uint", + "▁idi opathic", + "长 效", + "▁ton nes", + "二〇一六年 九月", + "二〇一六年九 月", + "昌 平", + "有 啥", + "落 花", + "▁or ally", + "▁oral ly", + "本裁定 立即执行", + "▁con structions", + "▁construct ions", + "▁construction s", + "q c", + "心 事", + "然后 从", + "▁h av", + "▁ha v", + "▁ hav", + "输出 格式", + "▁\\' \\')", + "▁\\'\\' )", + "▁\\'\\ ')", + "教学 模式", + "▁P article", + "▁Part icle", + "▁ Particle", + "皱 纹", + "up o", + "u po", + "爱国 主义", + "或 不", + "▁run way", + "Cl inical", + "Service Provider", + "err no", + "act ice", + "actic e", + "▁De pot", + "▁Dep ot", + "▁wavelength s", + "▁interpret ations", + "▁interpretation s", + "便 民", + "奇 妙", + "改 制", + "患者 在", + "患 者在", + "▁le aked", + "▁leak ed", + "▁ancest ors", + "▁ancestor s", + "▁Serial izable", + "▁ Serializable", + "de en", + "d een", + "▁Order ed", + "▁Ord ered", + "▁ Ordered", + "R N", + "兵 器", + "eg o", + "e go", + "Icon s", + "I cons", + "ee nth", + "een th", + "e enth", + "tr unc", + "cert ificate", + "▁coord inating", + "胆 囊", + "可以 先", + "的 业务", + "计算 公式", + "▁n ome", + "▁no me", + "▁nom e", + "▁ nome", + "count y", + "cou nty", + "c ounty", + "▁S creens", + "▁Sc reens", + "▁Screen s", + "▁Scre ens", + "▁ Screens", + "渤 海", + "结 肠", + "对你 的", + "对 你的", + "海淀 区", + "▁brut al", + "▁bru tal", + "▁Top ology", + "气 泡", + "知 情", + "借款 人民币", + "借 款人民币", + "太 好", + "自 负", + "表现 的", + "体系 建设", + "R H", + "ul k", + "nCh ina", + "n China", + "nWork ing", + "n Working", + "▁en light", + "史 料", + "抗 诉", + "画 风", + "其次 是", + "ro gens", + "rogen s", + "rog ens", + "r ogens", + "Pen ding", + "P ending", + "▁hydro xy", + "▁hydrox y", + "▁ hydroxy", + "所 给", + "新 月", + "缤 纷", + "黑 客", + "第二 步", + "no op", + "n oop", + "▁mult il", + "▁multi l", + "▁mul til", + "▁lim estone", + "▁lime stone", + "▁coll ectors", + "▁collect ors", + "▁colle ctors", + "▁collector s", + "▁hem odynamic", + "▁hemod ynamic", + "▁ 谭", + "开 会", + ">( \"", + "> (\"", + "▁m c", + "▁ mc", + "大 辞典", + "es sing", + "ess ing", + "所选定的 客房", + "hold ing", + "hol ding", + "h olding", + "iat rics", + "iatric s", + "D Y", + "不可 思议", + "中国 社会", + "▁doubt s", + "▁doub ts", + "购 车", + "博士 生导师", + "nRad io", + "n Radio", + "nt able", + "n table", + "▁un expl", + "ri mental", + "rim ental", + "r imental", + "▁side bar", + "▁ sidebar", + "port folio", + "▁Malays ian", + "▁Malaysia n", + "耦 合", + "还 说", + "法律 允许", + "▁s tall", + "▁st all", + "nN atural", + "n Natural", + "▁ex pires", + "▁exp ires", + "▁expire s", + "▁ expires", + "ja m", + "j am", + "地 进行", + "教研 室", + "危害 程度", + "▁B udd", + "▁Bud d", + "▁Bu dd", + "▁re mix", + "▁rem ix", + "单 击", + "第六 节", + "网站 上", + "▁A er", + "▁viol ated", + "▁violate d", + "浮 云", + "▁F ischer", + "随 笔", + "▁C ir", + "▁Ci r", + "新闻 出版", + "ad apt", + "ada pt", + "▁S low", + "▁Sl ow", + "▁Slo w", + "▁ab used", + "▁abuse d", + "房 管", + "糊 涂", + "原审 判决", + "▁Char leston", + "▁Charles ton", + "▁Charl eston", + "▁fundamental ly", + "▁fundament ally", + "平 日", + "霸 道", + "有其 他", + "有 其他", + "sh aw", + "sha w", + "s haw", + "▁Sebast ian", + "▁overwhel med", + "▁polit ically", + "▁political ly", + "曾 因", + "淇 淋", + "较 快", + "ause s", + "au ses", + "aus es", + "a uses", + "pic kle", + "pick le", + "▁g ospel", + "▁Mid west", + "文 笔", + "od il", + "odi l", + "▁B ea", + "▁Be a", + "▁Dev ices", + "▁Device s", + "▁ Devices", + "在 社会", + "▁S yr", + "▁Sy r", + "▁b ib", + "▁bi b", + "▁ bib", + "二审 被上诉人", + "化工 有限公司", + "▁S amples", + "▁Sam ples", + "▁Sample s", + "▁ Samples", + "▁supposed ly", + "▁ و", + "▁ 👍", + "了 啊", + "孕 育", + "那 段", + "▁W P", + "▁ WP", + "都 无法", + "_ [", + "惠 州", + "▁S ap", + "▁Sa p", + "▁D evil", + "▁De vil", + "▁Dev il", + "COMM AND", + "二〇一六年 十二", + "二〇一六年十 二", + "Mi d", + "M id", + "好像 是", + "好 像是", + "服务 员", + "ur ai", + "ura i", + "农村 合作", + "sh ield", + "shi eld", + "▁g reens", + "▁green s", + "▁gre ens", + "招 收", + "▁I X", + "▁ IX", + "数据 范围", + "▁j upyter", + "▁ jupyter", + "▁super oxide", + "ü ck", + "▁文 章", + "▁ 文章", + "▁Frank furt", + "虚 构", + "▁人物 生平", + "▁S erie", + "▁Se rie", + "▁Ser ie", + "▁Con firm", + "▁Conf irm", + "▁ Confirm", + "▁intr icate", + "▁micro organisms", + "健 脾", + "惠 普", + "麻 痹", + "病人 的", + "病 人的", + "nS ET", + "nSE T", + "n SET", + "▁R OM", + "▁RO M", + "▁ ROM", + "B LOCK", + "▁furn ace", + "oper ators", + "operator s", + "▁Recomm end", + "▁H U", + "▁ HU", + "注意 的是", + "表现 在", + "表 现在", + "▁h ij", + "▁hi j", + "nd array", + "二〇一六年 六月", + "二〇一六年六 月", + "nCom plete", + "nComp lete", + "n Complete", + "▁Card inal", + "▁Cardi nal", + "▁sett ling", + "▁a h", + "▁ ah", + "世纪 的", + "功能 性", + "ut sche", + "uts che", + "utsch e", + "stack rel", + "▁half way", + "西 斯", + "▁I ntr", + "▁In tr", + "▁Int r", + "由于 被执行人", + "请求 判令被告", + "请求判令 被告", + "hard ware", + "▁c aching", + "▁ca ching", + "审 视", + "火 烧", + "}{ |", + "} {|", + "科学记数法的 表示", + "第一百七十 条第一款第", + "℃ \\", + "元 未", + "谁知 道", + "谁 知道", + "spect rum", + "▁com post", + "▁comp ost", + "▁compos t", + "▁celebr ates", + "▁celebrate s", + "▁lie utenant", + "nW H", + "n WH", + "▁b arr", + "▁bar r", + "▁ba rr", + "法律 的规定", + "法律的 规定", + "expand ed", + "一 碗", + "效 能", + "ja h", + "j ah", + "对他 们", + "对 他们", + "截至 目前", + "▁Go als", + "▁Goal s", + "▁Goa ls", + "▁mini ature", + "增 幅", + "族 的", + "皮 带", + "内容 和", + "攀 枝花", + "or get", + "org et", + "orge t", + "▁P iano", + "▁Pi ano", + "▁or phan", + "▁vac ant", + "▁va cant", + "▁mod erator", + "▁moder ator", + "出 任", + "投 递", + "胃 癌", + "重 伤", + "\"\" >\\", + "\"\"> \\", + "\" \">\\", + "为 空", + "与他 人", + "与 他人", + "理解 的", + "as sa", + "ass a", + "卫星 频道", + "文化 交流", + "pl ess", + "ple ss", + "ples s", + "p less", + "▁L yon", + "▁Ly on", + "J K", + "听 课", + "▁ 现代", + "余弦 定理", + "抗日 战争", + "▁p ills", + "▁pill s", + "▁pil ls", + "日 公开开庭审理了本案", + "三 份", + "目录 下", + "送达 地址", + "WR ITE", + "nD igital", + "n Digital", + "▁comm ute", + "▁commut e", + "上 图", + "之 大", + "总 队", + "ri tz", + "rit z", + "r itz", + "▁V ine", + "▁Vin e", + "▁Vi ne", + "▁D oors", + "▁Do ors", + "▁Door s", + "上 列", + "▁I U", + "▁ IU", + "st itu", + "stit u", + "建材 有限公司", + "ist ency", + "iste ncy", + "▁ 尹", + "学 好", + "重 来", + "Bu r", + "B ur", + "x FF", + "和 朋友", + "▁M eth", + "▁Me th", + "▁Met h", + "ed itary", + "edit ary", + "▁fib res", + "▁fibr es", + "▁fibre s", + "T c", + "京 津", + "累 累", + "▁E nv", + "▁En v", + "▁ Env", + "三个 方面", + "▁Go al", + "▁Goa l", + "▁ Goal", + "er text", + "ert ext", + "▁f used", + "▁fu sed", + "▁fuse d", + "▁fus ed", + "recogn ized", + "前 世", + "高 素质", + "tp ass", + "t pass", + "▁out rage", + "▁Pro ducer", + "▁Produ cer", + "▁ Producer", + "制 止", + "高 通", + "而言 之", + "而 言之", + "nper malink", + "n permalink", + "不 作", + "居 室", + "汉 服", + "▁M ats", + "▁Mat s", + "▁Ma ts", + "▁Ex plain", + "▁Expl ain", + "▁Exp lain", + "▁Pre dict", + "▁Pred ict", + "na bstract", + "nab stract", + "n abstract", + "连 环", + "医护 人员", + "▁D ana", + "▁Dan a", + "▁Da na", + "En code", + "Enc ode", + "E ncode", + "Pub lished", + "Publish ed", + "▁therm odynamic", + "▁ Å", + "摧 毁", + "收 音", + "盖 上", + "ad ores", + "ado res", + "ador es", + "第二百四十 二", + "▁file path", + "▁ filepath", + "▁imm ature", + "侵 蚀", + "专业 人士", + "▁wer den", + "sh ake", + "sha ke", + "▁G amma", + "▁Ga mma", + "▁Gam ma", + "▁ Gamma", + "▁for ex", + "▁fore x", + "▁fo rex", + "▁dec ays", + "▁decay s", + "▁ref res", + "▁refr es", + "▁Winn ipeg", + "立 志", + "宝贵 的", + "宝 贵的", + "由 上诉人", + "的主要 原因", + "▁c onda", + "▁con da", + "▁co nda", + "▁cond a", + "▁ conda", + "▁tr ibal", + "▁tri bal", + "▁trib al", + "小 巧", + "收 视", + "高 楼", + "▁tri bes", + "▁trib es", + "▁tribe s", + "▁argu ably", + "S dk", + "cy t", + "c yt", + "or no", + "orn o", + "▁D ro", + "▁Dr o", + "Code c", + "Co dec", + "Cod ec", + "C odec", + "二〇一七年 十一", + "二〇一七年十 一", + "▁Feed back", + "▁ Feedback", + "> ]", + "东 坡", + "向 社会", + "nn um", + "n num", + "▁an tif", + "▁ant if", + "▁anti f", + "▁cycl o", + "在服刑 期间的", + "在服刑期间 的", + "nS ample", + "nSam ple", + "n Sample", + "▁prosec utors", + "▁prosecutor s", + "一 辈", + "打 折", + "颜色 的", + "颜 色的", + "l iquid", + "您 所选定的客房", + "▁sal ivary", + "▁saliva ry", + "区 和", + "赛 道", + "mg r", + "m gr", + "▁H BO", + "▁HB O", + "▁intention ally", + "▁intentional ly", + "▁ 解", + "行 列", + "{{ \\", + "{ {\\", + "▁sk iers", + "▁ski ers", + "双 层", + "对 各", + "沉 迷", + "车 厢", + "国庆 节", + "教学 方法", + "▁B arb", + "▁Bar b", + "▁Ba rb", + "######## ######\\", + "############ ##\\", + "spec s", + "spe cs", + "▁progress ed", + "也 叫", + "何 以", + "护 航", + "立 项", + "▁k on", + "▁ko n", + "▁ kon", + "▁ 就", + "孤 单", + "CA N", + "C AN", + "也有 很多", + "也 有很多", + "All owed", + "Allow ed", + "▁an astom", + "复 查", + "小 人", + "报 案", + "▁k o", + "▁ ko", + "in is", + "ini s", + "i nis", + "nH as", + "nHa s", + "n Has", + "nN ov", + "nNo v", + "n Nov", + "之 所", + "唿 吁", + "赞 美", + "个体 户", + "ér ie", + "é rie", + "中心 主任", + "▁R ates", + "▁Ra tes", + "▁Rate s", + "▁Rat es", + "▁Sustain able", + "得 利", + "对 管辖权", + "nf ield", + "nfi eld", + "n field", + "生 子", + "建筑 安装", + "▁d osing", + "▁do sing", + "▁dos ing", + "▁Com prehensive", + "▁electro static", + "▁electr ostatic", + "坏 死", + "bu ck", + "b uck", + "am ics", + "ami cs", + "amic s", + "▁under lie", + "▁首 先", + "▁ 首先", + "参考 答案", + "cre st", + "cr est", + "c rest", + "▁S TEM", + "▁ST EM", + "▁STE M", + "▁ STEM", + "▁open ings", + "▁opening s", + "nTransport ation", + "定 性", + "为 实现", + "in ez", + "ine z", + "i nez", + "▁t aper", + "▁ta per", + "▁tap er", + "▁tape r", + "号民事判决书 的执行", + "摄像 机", + "▁sc anned", + "▁scan ned", + "▁civil ians", + "▁civilian s", + "敦 煌", + "Gl y", + "G ly", + "nd i", + "n di", + "国家 重点", + "享受 三包服务", + "罪犯 奖惩审批表", + "▁sub urbs", + "▁suburb s", + "cent ration", + "▁inter play", + "向 外", + "安 居", + "底 盘", + "极 了", + "是 完全", + "gr ep", + "gre p", + "g rep", + "symbol s", + "建设 工程有限公司", + "建设工程 有限公司", + "▁T L", + "▁ TL", + "审理 中", + "月下 旬", + "购买 了", + "购 买了", + "nK e", + "n Ke", + "于 一体", + "产品 和", + "的了 解", + "的 了解", + "pa st", + "pas t", + "p ast", + "▁G ST", + "▁GS T", + "国家 安全", + "am arin", + "ama rin", + "amar in", + "▁rec urs", + "▁deleg ation", + "款 的", + "f amilies", + "三 课", + "外 墙", + "正 值", + "章 程", + "BU T", + "B UT", + "▁n ig", + "▁ni g", + "il ers", + "ile rs", + "iler s", + "i lers", + "par en", + "pa ren", + "pare n", + "p aren", + "pre set", + "pres et", + "p reset", + "据此 解答即可", + "据此解答 即可", + "▁ce ased", + "▁cease d", + "▁cult urally", + "▁cultural ly", + "数 和", + "会 将", + "点 多", + "▁ 适量", + "▁K ot", + "▁Ko t", + "几个 方面", + "▁g ulp", + "▁gu lp", + "▁ gulp", + "▁squ eeze", + "▁squee ze", + "▁un aware", + "▁una ware", + "á r", + "nCon vert", + "n Convert", + "▁f athers", + "▁fa thers", + "▁father s", + "▁oscill ation", + "亦 可", + "池 塘", + "CL I", + "C LI", + "▁authent icate", + "▁authentic ate", + "▁ authenticate", + "六 合", + "称 作", + "▁ 命令", + "▁un pack", + "▁ unpack", + "进 阶", + "这对 于", + "这 对于", + "ti ps", + "tip s", + "t ips", + "▁{ $", + "▁ {$", + "▁P all", + "▁Pal l", + "▁Pa ll", + "▁M aker", + "▁Make r", + "▁Ma ker", + "▁Mak er", + "▁ Maker", + "减为 有期徒刑", + "非物质 文化遗产", + "▁ell ipse", + "CA LL", + "CAL L", + "C ALL", + "▁发行 时间", + "▁free zer", + "▁freeze r", + "▁ 侯", + "祖国 的", + "祖 国的", + "/{ {", + "/ {{", + "ic l", + "i cl", + ", “", + "构 思", + "禁 毒", + "GP L", + "G PL", + "神奇 的", + "神 奇的", + "规模 的", + "nPol ish", + "nPo lish", + "add resses", + "address es", + "addr esses", + "嘻 嘻", + "安装 在", + "▁c lash", + "▁cl ash", + "▁For bes", + "▁Hol dings", + "▁Hold ings", + "f k", + "▁ 带", + "布 朗", + "故 此", + "身 世", + "降 噪", + "也算 是", + "也 算是", + "区域 的", + "往往 是", + "的一 份", + "的 一份", + "__ ),", + "__) ,", + "t struct", + "▁m osaic", + "▁Fort une", + "好 运", + "RA M", + "R AM", + "▁B rom", + "▁Br om", + "▁Bro m", + "皇 宫", + "▁w orm", + "▁wor m", + "▁wo rm", + "▁ worm", + "▁Do ing", + "▁mot ivate", + "▁motiv ate", + "td b", + "t db", + "an za", + "anz a", + "nB ill", + "nBi ll", + "n Bill", + "sub title", + "▁ultr asonic", + "▁ultras onic", + "▁ultrason ic", + "死 去", + "证明 其", + "▁A post", + "▁Ap ost", + "fav icon", + "跟 进", + "召开 了", + "召 开了", + "▁c ondo", + "▁con do", + "▁co ndo", + "▁cond o", + "Commun ity", + "Comm unity", + "▁withdraw n", + "▁withd rawn", + "▁disadvant ages", + "▁disadvantage s", + "学 霸", + "推 迟", + "FT ER", + "F TER", + "工艺 美术", + "▁b reeze", + "▁br eeze", + "▁Sat ellite", + "高分 子", + "高 分子", + "ta ll", + "tal l", + "t all", + "生命 周期", + "资金 周转", + "St reet", + "▁Strateg ies", + "▁K ad", + "▁Ka d", + "ovol ta", + "▁Sc ala", + "▁mush rooms", + "▁mushroom s", + "国 安", + "距离 最近的", + "文化传播 有限公司", + "稀 土", + "不能 再", + "▁l ing", + "▁li ng", + "▁lin g", + "▁ ling", + "Part ial", + "▁Bud apest", + "积 水", + "等 优点", + "nS ep", + "nSe p", + "n Sep", + "▁c ogn", + "▁co gn", + "olph ins", + "olphin s", + "不 解", + "稳 固", + "还 被", + "会比 较", + "会 比较", + "作用 下", + "群体 的", + "群 体的", + "▁T yr", + "▁Ty r", + "▁k ar", + "▁ka r", + "▁ kar", + "▁ethnic ity", + "▁ethn icity", + "ant lr", + "▁team mates", + "▁teammate s", + "中 区", + "日 元", + "运 送", + "tr as", + "tra s", + "t ras", + "ér ic", + "é ric", + "▁S him", + "▁Sh im", + "▁Shi m", + "Cor rect", + "C orrect", + "▁Ident ify", + "公 差", + "寻 衅", + "为 原告", + "编号 为", + "编 号为", + "p ulse", + "▁pl ural", + "▁plur al", + "▁ plural", + "▁Christ ine", + "二手 房", + "优 缺点", + "依然 是", + "fu el", + "f uel", + "▁b ik", + "▁bi k", + "▁Ab ove", + "▁K atie", + "▁Kat ie", + "▁Ka tie", + "▁log os", + "▁lo gos", + "▁logo s", + "▁intermediate s", + "▁intermed iates", + "Sal es", + "Sa les", + "Sale s", + "S ales", + "▁D iana", + "▁Di ana", + "本裁定 立即开始执行", + "未 见", + "查 到", + "胰 腺", + "用 一个", + "▁aut ologous", + "▁K S", + "▁ KS", + "体育 馆", + "hl er", + "h ler", + "▁d iary", + "▁di ary", + "▁dia ry", + "it tings", + "itt ings", + "itting s", + "ord inate", + "题 文", + "ł aw", + "Min i", + "Mi ni", + "M ini", + "▁M ask", + "▁Ma sk", + "▁Mas k", + "▁ Mask", + "▁启动 方式", + "快 点", + "车 载", + "酷 睿", + "IF E", + "I FE", + "生活 费", + "** /\\", + "* */\\", + "oc cer", + "occ er", + "nf inal", + "nfi nal", + "n final", + "▁D erek", + "▁De rek", + "▁Der ek", + "扭 矩", + "行业 中", + "ma ch", + "mac h", + "m ach", + "nf ig", + "nfi g", + "n fig", + "你是 不是", + "你 是不是", + "这 批", + "▁i k", + "▁ ik", + "月 开始", + "▁prolifer ative", + "胡 同", + "($ {", + "( ${", + "这些 东西", + "之日起 十五日内", + "▁c atches", + "▁catch es", + "▁cat ches", + "w k", + "她 就", + "价格 为", + "ab us", + "a bus", + "ns erver", + "n server", + "nt arget", + "n target", + "Http Request", + "最美 的", + "最 美的", + "一直 没有", + "Par ts", + "Part s", + "P arts", + "之 年", + "án d", + "á nd", + "ra no", + "ran o", + "r ano", + "第六 十条", + "me aning", + "mean ing", + "凝 固", + "建 新", + "江 汉", + "尼 西亚", + "的 产生", + "重 金属", + "ac use", + "应准予 离婚", + "oli nergic", + "olin ergic", + "洗 碗", + "产品 有", + "日 消息", + ":: __", + "哥伦 比亚", + "清偿 责任", + "at hing", + "ath ing", + "athi ng", + "a thing", + "▁Dr ake", + "mo unted", + "mount ed", + "▁post doctoral", + "亲 手", + "无 双", + "bird s", + "bir ds", + "b irds", + "nH elp", + "nHe lp", + "nHel p", + "n Help", + "二〇一七年 九", + "W s", + "考 入", + "建议 你", + "Ro ll", + "R oll", + "▁f name", + "▁fn ame", + "▁ fname", + "▁br eeds", + "▁bre eds", + "▁breed s", + "氧化 物", + "nG en", + "nGe n", + "n Gen", + "消防 安全", + "▁temp file", + "短 缺", + "ス ト", + "等 我", + "香 烟", + "▁C VD", + "▁CV D", + "▁e rotic", + "▁er otic", + "nB esides", + "▁Bel fast", + "▁Belf ast", + "▁pl anner", + "▁plan ner", + "▁bench marks", + "▁benchmark s", + "▁ 凯", + "弥 漫", + "情 愿", + "拓 扑", + "纲 要", + "损害 国家", + "▁accommod ations", + "▁accommodation s", + "破 损", + "镀 锌", + "nN OTE", + "nNO TE", + "n NOTE", + "▁M usk", + "▁Mus k", + "▁Mu sk", + "有什么 区别", + "▁par cel", + "recip itation", + "椅 子", + "段 子", + "中文 版", + "只是 在", + "只 是在", + "set ter", + "sett er", + "s etter", + "nM unicip", + "身 子", + "如实供述 自己", + "nCom ment", + "n Comment", + "短 线", + "▁I b", + "amin ergic", + "ami nergic", + "▁per ceive", + "▁im plication", + "▁impl ication", + "▁dem ographics", + "▁demo graphics", + "▁demographic s", + "清 真", + "芳 草", + "pa s", + "p as", + "Fl at", + "F lat", + "▁s ir", + "▁si r", + "▁sh rimp", + "▁shr imp", + "区人民检察院 指派检察员", + "t N", + "治 病", + "Po t", + "P ot", + "全 过程", + "避免 了", + "▁j ur", + "▁ju r", + "EN TRY", + "ENT RY", + "▁M ant", + "▁Man t", + "▁Ma nt", + "Let ter", + "L etter", + "▁R IGHT", + "▁ RIGHT", + "rop olis", + "▁cin namon", + "▁P ediatric", + "▁Ped iatric", + "黄 豆", + "cu m", + "c um", + "宣判 后", + "输出 样例", + "▁L ank", + "▁La nk", + "▁Lan k", + "olk ata", + "so ever", + "nL ocated", + "red ient", + "exp ressing", + "express ing", + "expr essing", + "半 月", + "的本 质", + "的 本质", + "bul l", + "bu ll", + "b ull", + "▁re public", + "▁rep ublic", + "▁B ool", + "▁Bo ol", + "▁ Bool", + "▁L ives", + "▁Li ves", + "▁Live s", + "▁Liv es", + "二〇一四年 十二月", + "会 见", + "▁a bst", + "▁ab st", + "▁abs t", + "▁stap le", + "Read Only", + "奔 腾", + "清 澈", + "音 质", + "IV ER", + "IVE R", + "I VER", + "in en", + "ine n", + "i nen", + "▁E NV", + "▁EN V", + "▁ ENV", + "cons uming", + "consum ing", + "▁frag rance", + "▁fragr ance", + "了 下", + "BO DY", + "B ODY", + "▁g uild", + "▁gu ild", + "▁gui ld", + "▁ guild", + "杭州 市中级人民法院", + "杭州市 中级人民法院", + "杭 州市中级人民法院", + "社 群", + "淮南 市", + "淮 南市", + "▁V id", + "▁Vi d", + "▁fin ale", + "▁final e", + "▁decor ator", + "▁ decorator", + "▁capac itance", + "▁synerg istic", + "汤 匙", + "胡 某", + "▁ 专业", + "mo cha", + "m ocha", + "ob jective", + "object ive", + "obj ective", + "▁fact orial", + "▁factor ial", + "▁headqu artered", + "一件 事", + "一 件事", + "舞台 上", + "舞 台上", + "▁T ik", + "▁Ti k", + "nP age", + "n Page", + "nAp ple", + "nApp le", + "n Apple", + "▁s quir", + "▁squ ir", + "▁on wards", + "▁del imiter", + "▁Import antly", + "▁Important ly", + "Y X", + "人 品", + "德 拉", + "总 值", + "格 子", + "鸡 腿", + "으 로", + "发展 中", + "co urt", + "cou rt", + "c ourt", + "▁W ere", + "▁We re", + "▁Wer e", + "▁l ush", + "▁lu sh", + "Sc alar", + "▁cate chol", + "▁con ception", + "▁concept ion", + "▁conce ption", + "十 佳", + "忍 者", + "监 局", + "防 空", + "▁D N", + "▁ DN", + "ro tic", + "rot ic", + "r otic", + "DO MAIN", + "DOM AIN", + "可 控", + "fa ker", + "fake r", + "f aker", + "tr ail", + "tra il", + "t rail", + "Set ter", + "S etter", + "▁ST ART", + "▁STAR T", + "▁ START", + "▁cand les", + "▁candle s", + "▁as piration", + "▁aspir ation", + "▁asp iration", + "▁W T", + "▁ WT", + "完全 是", + "完 全是", + "th irds", + "third s", + "authent icated", + "authenticate d", + "▁ 非", + "格 斗", + "▁D ear", + "▁De ar", + "▁ Dear", + "Cl osed", + "Close d", + "igraph y", + "北 侧", + "▁j i", + "▁ ji", + "ht on", + "h ton", + "▁vir gin", + "下 厨房", + "▁occ upy", + "▁occup y", + "巴 尔", + "合格 的", + "合 格的", + "严重 影响", + "▁tr aps", + "▁tra ps", + "▁trap s", + "▁gr ading", + "▁grad ing", + "▁gra ding", + "▁enhance ments", + "▁enhancement s", + "新 版", + "昆 仑", + "健身 房", + "last Name", + "las tName", + "▁ultr aviolet", + "▁ 康", + "他 家", + "에 서", + "▁ 湖南", + "也应 该", + "也 应该", + "nEx press", + "n Express", + "各主要 景点的距离如下", + "先 端", + "喷 涂", + "平 和", + "日 渐", + "院 内", + "Hand lers", + "Handler s", + "Handle rs", + "ex plicit", + "expl icit", + "我有 一", + "我 有一", + "▁R SV", + "▁RS V", + "可以 减刑", + "开 端", + "便宜 的", + "Le arn", + "L earn", + "接 连", + "曼 联", + "猜 想", + "▁m k", + "▁ mk", + "▁( ((", + "▁(( (", + "▁ (((", + "▁上 海市", + "▁上海 市", + "▁ 上海市", + "▁C ave", + "▁Ca ve", + "▁Cav e", + "▁N amed", + "▁Name d", + "▁Na med", + "▁Nam ed", + "▁ Named", + "住所地 重庆市", + "dir ector", + "direct or", + "▁Ant arctica", + "▁Antarctic a", + "频 频", + "CX X", + "C XX", + "▁D w", + "第二 季", + "不同 的是", + "不同的 是", + "le vation", + "lev ation", + "▁ 约", + "吃 饱", + "大 笑", + "ke es", + "kee s", + "k ees", + "▁D uty", + "▁Du ty", + "in ement", + "ine ment", + "AP PLICATION", + "| :", + "▁в ы", + "▁H BV", + "▁HB V", + "▁oste o", + "▁ost eo", + "▁pe nis", + "▁pen is", + "Tool tip", + "▁ab rupt", + "Ver tical", + "Vert ical", + "▁congreg ation", + "▁cong regation", + "并 被", + "匈牙 利", + "英 特尔", + "}\\ ',", + "}\\' ,", + "} \\',", + "▁T LS", + "▁TL S", + "▁ TLS", + "▁a in", + "▁ai n", + "▁ ain", + "工程 机械", + "容留他人吸毒 罪", + "▁nucle ic", + "▁nuclei c", + "▁Patri ots", + "repos itories", + "苏 轼", + "ro x", + "r ox", + "不 怎么", + "没有 异议", + "没 有异议", + "输入 样例", + "被执行人 的财产", + "被执行人的 财产", + "nUn ivers", + "▁rot ated", + "▁rotate d", + "organ ized", + "亚 科", + "引 资", + "星 的", + "谎 言", + "并 根据", + "显卡 芯片", + "这段 时间", + "这 段时间", + "▁t ide", + "▁ti de", + "▁tid e", + "▁pol yg", + "▁poly g", + "AB STRACT", + "ABS TRACT", + "▁ 顾", + "也 比", + "底 座", + "还 需", + "rs a", + "r sa", + "HT TPS", + "HTTP S", + "▁Se xy", + "▁Sex y", + "nf irst", + "nfi rst", + "n first", + "▁sax ophone", + "▁calcul ates", + "▁calc ulates", + "▁calculate s", + "np ip", + "n pip", + "▁Mel issa", + ":] )\\", + ": ])\\", + "am bo", + "amb o", + "zi er", + "zie r", + "z ier", + "第六 十七", + "▁f use", + "▁fu se", + "▁fus e", + "the docs", + "thed ocs", + "二〇一五年 七月", + "▁fig uring", + "之 城", + "书 桌", + "大 到", + "署 名", + "进行 治疗", + "▁W ong", + "▁Won g", + "▁Wo ng", + "tex pect", + "t expect", + "▁en velop", + "▁up holst", + "▁Social ist", + "▁Soci alist", + "▁phot ographic", + "▁photo graphic", + "▁photograph ic", + "位 上", + "墙 体", + "红 梅", + "▁F K", + "▁ FK", + "min s", + "mi ns", + "m ins", + "ou til", + "out il", + "o util", + "nU nlike", + "nUn like", + "▁Mar ion", + "▁Mario n", + "▁Mari on", + ";; \\", + "; ;\\", + "Job s", + "Jo bs", + "J obs", + "▁V ia", + "▁Vi a", + "优秀 教师", + "▁un biased", + "素 描", + "遵 纪", + "el m", + "e lm", + "可能 在", + "可 能在", + "马某 某", + "马 某某", + "裁判 文书", + "pit ch", + "p itch", + "▁h ose", + "▁ho se", + "ov ered", + "ove red", + "over ed", + "▁s hark", + "▁sh ark", + "▁sha rk", + "▁shar k", + "▁java fx", + "▁Ev ening", + "▁Even ing", + "▁Eve ning", + "▁amb iguous", + "▁ambig uous", + "德 斯", + "CR P", + "C RP", + "▁的 值", + "▁ 的值", + "还 存在", + "始终 坚持", + "en ums", + "enu ms", + "enum s", + "e nums", + "▁Railway s", + "▁Rail ways", + "▁Luxem bourg", + "花 花", + "监督 检查", + "不知道 怎么", + "fe male", + "fem ale", + "f emale", + "pt iles", + "p tiles", + "act oring", + "actor ing", + "▁ 但", + "少 吃", + "王 小", + "的 在", + "容易 被", + "▁b ak", + "▁ba k", + "▁ bak", + "▁dis rupted", + "▁disrupt ed", + "呼 吁", + "通 辽", + "青 蛙", + "大理 石", + "据 统计", + "▁Ge V", + "▁P on", + "▁Po n", + "▁al ly", + "▁all y", + "▁ ally", + "▁soph omore", + "喜欢 吃", + "ep it", + "e pit", + "ri que", + "r ique", + "▁M ond", + "▁Mon d", + "▁Mo nd", + "nM odel", + "nMod el", + "n Model", + "í c", + "TR Y", + "T RY", + "▁ 联赛", + "在本 院", + "在 本院", + "配套 设施", + "了 大", + "人 来", + "的 金", + "SI M", + "S IM", + "中国 家", + "中 国家", + "La w", + "L aw", + "加油 站", + "ju mp", + "j ump", + "global s", + "glob als", + "拼音 是", + "标的 为", + "st ill", + "▁Al umin", + "▁B ru", + "▁Br u", + "nm essage", + "n message", + "符合法律规定的 撤诉条件", + "ste am", + "s team", + "增 减", + "结 节", + "风 力", + "ve z", + "v ez", + "line r", + "li ner", + "lin er", + "l iner", + "▁suff ers", + "▁suffer s", + "有 可供执行的财产", + "M u", + "无 辜", + "爱 豆", + "▁Can ad", + "▁Ca nad", + "▁vi gil", + "▁vig il", + "▁dipl om", + "▁det rimental", + "豪 门", + "本人 的", + "本 人的", + "▁S hi", + "▁Sh i", + "at tempt", + "att empt", + "投 机", + "雷 斯", + "的 观点", + "▁w ow", + "▁wo w", + "▁ wow", + "顺 着", + "ff t", + "f ft", + "▁ 运行", + "潍坊 市", + "帝国 主义", + "▁S kip", + "▁Sk ip", + "▁Ski p", + "▁ Skip", + "▁abd omen", + "水 池", + "流 出", + "▁IN FO", + "▁INF O", + "▁ INFO", + "pl anes", + "plan es", + "plane s", + "ri cing", + "ric ing", + "r icing", + "os opher", + "osoph er", + "oso pher", + "▁b ipart", + "▁bi part", + "▁bip art", + "填 空", + "近 来", + "de cl", + "dec l", + "d ecl", + "de ns", + "den s", + "d ens", + "▁\" <<", + "▁\"< <", + "▁ \"<<", + "▁O rt", + "▁Or t", + "▁in tox", + "▁int ox", + "▁into x", + "▁Rh odes", + "▁Rhode s", + "▁Rho des", + "▁res orts", + "▁resort s", + "▁migr ated", + "▁migrate d", + "遏 制", + "▁E pic", + "▁Ep ic", + "▁ru in", + "▁pup il", + "▁ret ains", + "▁retain s", + "▁D ifferences", + "▁Difference s", + "奇 艺", + "荷 花", + "ib i", + "i bi", + "He ap", + "▁un m", + "▁u nm", + "开展 经营活动", + "普 京", + "深 渊", + "自 理", + "]} ,", + "] },", + "两人 的", + "两 人的", + "Pe er", + "P eer", + "▁reson ant", + ") &", + "绝 不", + "谣 言", + "($ \"", + "( $\"", + "▁ 常", + "▁s v", + "▁ sv", + "({ },", + "( {},", + "ji an", + "jia n", + "j ian", + "To One", + "▁Cel tic", + "相应 价值的财产", + "▁mod ifier", + "▁ 辅料", + "养殖 业", + "eg ro", + "egr o", + "e gro", + "nF re", + "nFr e", + "n Fre", + "▁C IA", + "▁CI A", + "▁de bit", + "▁deb it", + "re porter", + "rep orter", + "report er", + "▁gas oline", + "sc i", + "s ci", + "sk a", + "s ka", + "▁G F", + "▁ GF", + "▁ 牺牲", + "幸福 感", + "教学 楼", + "看出 来", + "看 出来", + "国 债", + "的 头", + "管理 处", + "▁I on", + "▁Io n", + "▁H annah", + "▁Han nah", + "▁Hann ah", + "Vis ibility", + "r z", + "▁n M", + "▁ nM", + "向量 的", + "向 量的", + "▁S OL", + "▁SO L", + "▁ SOL", + "▁turb ulent", + "图 解", + "重要 性", + "大家 可以", + "▁c rest", + "▁cre st", + "▁cr est", + "▁ crest", + "▁B oeing", + "▁ag grav", + "▁p addle", + "▁padd le", + "▁V ARCHAR", + "▁comp utes", + "▁comput es", + "▁compute s", + "▁neighb ours", + "▁neighbour s", + "单 曲", + "J eff", + "ov ern", + "ove rn", + "over n", + "o vern", + "志愿服务 队", + "▁nause a", + "风 气", + "sub plot", + "▁Batt alion", + "in p", + "i np", + "▁s ph", + "▁sp h", + "Qu ote", + "▁n ood", + "▁no od", + "▁as sim", + "▁ass im", + "▁d imer", + "▁di mer", + "▁dim er", + "▁Th ermal", + "▁Ther mal", + "▁Therm al", + "SO L", + "S OL", + "gr af", + "gra f", + "g raf", + "国 华", + "抗 震", + "自己 也", + "Check s", + "Che cks", + "▁str okes", + "▁stroke s", + "▁stro kes", + "的 刑罚", + "都不 敢", + "都 不敢", + "ME TA", + "MET A", + "M ETA", + "▁B AL", + "▁BA L", + "▁P ione", + "▁Pi one", + "▁t roph", + "▁tr oph", + "▁tro ph", + "▁trop h", + "mock ito", + "▁get All", + "▁ getAll", + "微 创", + "无 为", + "情况 说明", + "nd one", + "ndo ne", + "ndon e", + "n done", + "ow itz", + "o witz", + "▁First ly", + "海 波", + "ub in", + "ubi n", + "u bin", + "▁o sm", + "▁os m", + "▁ osm", + "▁bl owing", + "▁blow ing", + "▁blo wing", + "▁R ational", + "▁Rat ional", + "▁Ratio nal", + "▁grand son", + "▁hard ness", + "condition al", + "cond itional", + "▁hemis phere", + "途 经", + "▁N N", + "▁ NN", + "▁t omb", + "▁to mb", + "▁tom b", + "党的 十九大", + "执行机关 提供的", + "是人 类", + "是 人类", + "办公室 副主任", + "▁manif estation", + "▁manifest ation", + "无 心", + "▁t b", + "▁ tb", + "nl ist", + "n list", + "▁L amp", + "▁La mp", + "▁Lam p", + "▁n arc", + "▁na rc", + "H s", + "因为 这个", + "▁St af", + "▁Sta f", + "Decor ator", + "▁Kazakh stan", + "查 证", + "▁h ob", + "▁ho b", + "PER TY", + "▁L ogo", + "▁Log o", + "▁Lo go", + "▁ Logo", + "it ures", + "iture s", + "itu res", + "i tures", + "▁m RNAs", + "▁mRNA s", + "照 样", + "私 募", + "产 阶级", + "这一 天", + "这 一天", + "专业 学习", + "完成 任务", + "West ern", + "W estern", + "dr ivers", + "driver s", + "driv ers", + "drive rs", + "d rivers", + "▁ant ire", + "▁anti re", + "▁SU MMARY", + "第一百四十五 条的规定", + "第一百四十五条 的规定", + "▁perturb ations", + "▁perturbation s", + "▁Writ ten", + "▁Wr itten", + "Com e", + "Co me", + "C ome", + "两个 整数", + "▁Ex ped", + "▁Exp ed", + "join ing", + "jo ining", + "经 庭审", + "▁cons ortium", + "▁Scholar ship", + "▁St aphylococcus", + "墙 上", + "▁ 版本", + "▁Per cent", + "▁Perc ent", + "▁ Percent", + "▁serv icing", + "▁neuro science", + "河 西", + "社 长", + "▁H I", + "▁ HI", + "选择 出", + "as aki", + "asa ki", + "▁anten nas", + "▁antenna s", + "J B", + "奠 定", + "打 动", + "法 医", + "th ought", + "though t", + "▁el dest", + "▁eld est", + "高级人民法院 于", + "名 气", + "英 镑", + "▁P SA", + "▁PS A", + "▁b amboo", + "nUp dated", + "nUpdate d", + "n Updated", + "人 称", + "水 泵", + "al ks", + "alk s", + "ta king", + "t aking", + "▁D odge", + "▁Dod ge", + "▁R efer", + "▁Re fer", + "▁Ref er", + "新冠肺炎 疫情", + "▁S urgical", + "▁disturb ing", + "之 夜", + "老 龄", + "淋巴 结", + "aw an", + "awa n", + "a wan", + "▁B om", + "▁Bo m", + "▁Ham mer", + "▁Hamm er", + "▁Pal estine", + "▁Palest ine", + "物 权", + "设置 了", + "\"# \">", + "\"#\" >", + "]{ \\\\", + "] {\\\\", + "▁game rs", + "▁gam ers", + "▁ga mers", + "▁seg regation", + "独有 的", + "独 有的", + "的 资金", + "重大 的", + "重 大的", + "国家 图书馆", + "ga ther", + "g ather", + "有下列情形 之一的", + "▁autom ate", + "▁auto mate", + "nInd ividual", + "无 缘", + "Lu c", + "L uc", + "学习 了", + "Al tern", + "Alter n", + "Alt ern", + "▁Pres idential", + "▁President ial", + "▁Mono Behaviour", + "才 行", + "nJ o", + "n Jo", + "满满 的", + "的 性格", + "▁文学 体裁", + "ess ential", + "专 心", + "▁c asc", + "▁ca sc", + "▁cas c", + "Tick et", + "T icket", + "▁S ultan", + "▁Sul tan", + "v x", + "两 周", + "改 性", + "▁ 周围景观", + "nSE LECT", + "n SELECT", + "打 字", + "鱼 肉", + "的 身体", + "可以 得到", + "▁Cl ara", + "▁Clar a", + "ategor ized", + "宜 春", + "淮 安", + "依法 可", + "故本 选项错误", + "▁terror ists", + "▁terrorist s", + "▁biod iversity", + "超 高", + "首 付", + "膝 关节", + "m RNA", + "gr ant", + "gra nt", + "gran t", + "g rant", + "▁n avy", + "▁nav y", + "▁na vy", + "UT ION", + "▁Her oes", + "▁Hero es", + "▁con versions", + "▁convers ions", + "▁conversion s", + "玲 珑", + "最 主要", + "▁Or ders", + "▁Order s", + "▁Ord ers", + "▁ Orders", + "▁bed ding", + "调 和", + "ba um", + "▁P owers", + "▁Power s", + "▁Po wers", + "▁Pow ers", + "双 色", + "不仅 能", + "Ni ck", + "N ick", + "农业 银行", + "ass ic", + "▁C atch", + "▁Cat ch", + "本院 予以采纳", + "本院予以 采纳", + "Tool bar", + "公开 发", + "公 开发", + "卖 的", + "固 态", + "▁ 没有", + "第一 届", + "nW ar", + "n War", + "▁t rab", + "▁tr ab", + "▁tra b", + "ar coma", + "arc oma", + "En h", + "E nh", + "最 开始", + "▁H olly", + "▁Hol ly", + "▁Holl y", + "ake dirs", + "aked irs", + "会 同", + "地 主", + "大 便", + "恩 施", + "车 展", + "国资 委", + "AR GS", + "ARG S", + "▁aw ake", + "▁awa ke", + "blog spot", + "blogs pot", + "江 上", + "特 约", + "鲜 美", + "因为 她", + "因 为她", + "$ ;", + "月 薪", + "To o", + "T oo", + "本来 就是", + "本来就 是", + "Component Model", + "莫名其 妙", + "le ast", + "lea st", + "l east", + "是怎么 回事", + "是 怎么回事", + "▁High ly", + "▁sk ipped", + "▁skip ped", + "▁ski pped", + "▁Member ship", + "▁Members hip", + "体 能", + "题 解", + "所以 要", + "se lective", + "select ive", + "sel ective", + "▁th irteen", + "イ ン", + "招 呼", + "el n", + "e ln", + "子 序列", + "中的 作用", + "中 的作用", + "生长 发育", + "th ttp", + "t http", + "nNot ice", + "n Notice", + "▁profit ability", + "先 是", + "基 亚", + "总 分", + "浮 动", + "爵 士", + "▁F uj", + "▁Fu j", + "▁O VER", + "▁ OVER", + "向本院 申请再审", + "向本院申请 再审", + "持 卡", + "科 级", + "但 没有", + "or ously", + "orous ly", + "分 隔", + "去 买", + "片 刻", + "家 企业", + "的 参数", + "ra nt", + "ran t", + "r ant", + "公告 送达", + "▁in doors", + "▁ind oors", + "▁indoor s", + "Sp l", + "S pl", + "你就 会", + "你 就会", + "健康 成长", + "的工作 人员", + "的 工作人员", + "pect ral", + "▁blog gers", + "▁blogger s", + "▁behaviour al", + "▁Measure ments", + "▁Measurement s", + "说 得", + "量 表", + "▁' %", + "的自 然", + "的 自然", + "还是 一", + "还 是一", + "▁t rek", + "▁tr ek", + "▁tre k", + "▁分布 范围", + "回顾 性分析", + "初 衷", + "孤 儿", + "葱 花", + "▁In tro", + "▁Int ro", + "▁Intr o", + "▁ch ars", + "▁char s", + "▁cha rs", + "▁ chars", + "IB ILITY", + "二 中", + "透 视", + "▁F D", + "▁ FD", + "忘记 了", + "▁I CC", + "▁IC C", + "▁ ICC", + "二〇一五年 八月", + "则 为", + "▁法 国", + "▁ 法国", + "▁L enn", + "▁Le nn", + "▁Len n", + "nWith out", + "n Without", + "▁w inding", + "▁win ding", + "▁wind ing", + "▁comp anions", + "▁companion s", + "▁P resentation", + "▁Present ation", + "域 为", + "领 悟", + "Case s", + "Ca ses", + "Cas es", + "C ases", + "sc alar", + "scal ar", + "scala r", + "▁gift ed", + "▁assembl ies", + "h k", + "到 家", + "北 宋", + "▁h p", + "▁ hp", + "▁so bre", + "▁Re duction", + "▁Red uction", + "火 了", + "寻衅 滋事", + "▁f airy", + "▁fa iry", + "▁fair y", + "ish able", + "isha ble", + "▁st arch", + "▁star ch", + "▁ut most", + "▁voc alist", + "▁vocal ist", + "天 长", + "是 老", + "ug o", + "u go", + "▁p tr", + "▁pt r", + "▁ ptr", + "▁sp reads", + "▁spread s", + "▁s outheastern", + "▁south eastern", + "▁southeast ern", + "专 人", + "药 师", + "青 青", + "ye t", + "y et", + "ad ay", + "ada y", + "a day", + "▁Sk ype", + "▁Sky pe", + "取决于 被执行人", + "国家 自然科学基金", + "▁Lithuan ia", + "温暖 的", + "方面 的知识", + "方面的 知识", + "Mar tin", + "Mart in", + "▁acquisition s", + "▁acquis itions", + "ч и", + "并 行", + "煮 熟", + "▁K w", + "只能 在", + "只 能在", + "x html", + "or sche", + "ors che", + "▁k icking", + "▁kick ing", + "▁Fergus on", + "▁research ed", + "▁resear ched", + "▁mathematic ians", + "▁mathematician s", + "抛 光", + "▁U ri", + "▁Ur i", + "▁ Uri", + "竞争 力的", + "竞争力 的", + "▁Ch arge", + "▁Char ge", + "▁Charg e", + "▁Pur ple", + "▁aug mentation", + "▁augment ation", + "苯丙 胺", + "▁W et", + "▁We t", + "R V", + "五 四", + "着 自己", + "CK ER", + "▁S emi", + "▁Se mi", + "▁Sem i", + "▁t oes", + "▁to es", + "▁toe s", + "ali ases", + "alias es", + "alia ses", + "▁syn onym", + "乱 世", + "RA W", + "R AW", + "▁C RM", + "▁CR M", + "▁ CRM", + "▁sub family", + "▁Jackson ville", + "三 元", + "承 揽", + "还 包括", + "Mi ke", + "M ike", + "违约 责任", + "tu ser", + "t user", + "Un icode", + "Over flow", + "丰 满", + "在 第", + "▁r ode", + "▁ro de", + "▁rod e", + "leg acy", + "▁g ravel", + "▁gr avel", + "▁grave l", + "▁gra vel", + "▁grav el", + "Package s", + "Pack ages", + "年 中", + "窗 外", + "到 案经过", + "▁Cur tis", + "▁Curt is", + "▁Pan thers", + "▁Const ants", + "▁Constant s", + "▁ Constants", + "▁altern atively", + "▁alternative ly", + "扫 地", + "准确 性", + "▁cos mic", + "▁cosm ic", + "▁f ading", + "▁fa ding", + "t display", + "▁es ophag", + "▁layout s", + "▁lay outs", + "▁ layouts", + "▁coll ects", + "▁collect s", + "▁colle cts", + "不 掉", + "科 的", + "Si n", + "S in", + "fi f", + "f if", + "债权 债务", + "▁PR OF", + "▁PRO F", + "▁Fun eral", + "▁vom iting", + "外 在", + "nO ld", + "n Old", + "np ost", + "n post", + "en zyme", + "enz yme", + "▁own ing", + "▁ow ning", + "主 权", + "传 入", + "轻 重", + "▁规格 参数", + "c andidate", + "▁adv isors", + "▁advis ors", + "▁advisor s", + "狂 欢", + "ed d", + "e dd", + "▁sl ack", + "▁ slack", + "会 说", + "供 需", + "吉 尔", + "期 为", + "构成 了", + "构 成了", + "ma gn", + "mag n", + "m agn", + "om eth", + "ome th", + "omet h", + "o meth", + "▁Bl air", + "Sub scriber", + "Subscribe r", + "▁ ω", + "国外 的", + "国 外的", + "fl ake", + "f lake", + "serial izers", + "serializer s", + "serialize rs", + "哈 利", + "白 马", + "}) )", + "} ))", + "▁ 配置", + "专科 学", + "专 科学", + "类 游戏", + "通过 网络", + "不 听", + "水 文", + "副 处长", + "网站 建设", + "▁T ail", + "▁Ta il", + "▁Tai l", + "被执行人 杨", + "nE vent", + "nEven t", + "nEv ent", + "n Event", + "变 身", + "高 空", + "仔细 地", + "告诉 他", + "概率 为", + "概 率为", + "爱的 人", + "爱 的人", + "由原告 承担", + "▁Ca sey", + "▁Cas ey", + "▁Case y", + "二〇一七年 四月", + "心 跳", + "这 名", + "TL S", + "T LS", + "in sk", + "ins k", + "▁da emon", + "▁ daemon", + "服务 商", + "▁D ew", + "▁De w", + "其行为已构成 危险驾驶罪", + "No rm", + "Nor m", + "N orm", + "▁* )\\", + "▁*) \\", + "▁ *)\\", + "bai du", + "b aidu", + "▁en umer", + "▁enum er", + "ex pressed", + "exp ressed", + "express ed", + "expr essed", + "pr imes", + "pri mes", + "prime s", + "prim es", + "pro per", + "pr oper", + "prop er", + "▁hom omorphism", + "街 上", + "在外 面", + "在 外面", + "▁P CA", + "▁PC A", + "▁ PCA", + "pl ets", + "ple ts", + "plet s", + "p lets", + "size s", + "si zes", + "s izes", + "▁R unner", + "▁Run ner", + "▁ Runner", + "▁Teh ran", + "ang ements", + "ange ments", + "angement s", + "ent ricular", + "entric ular", + "私 下", + "▁H PLC", + "▁HP LC", + "▁ HPLC", + "▁indic ative", + "收录 于", + "考试 的", + "as in", + "asi n", + "a sin", + "因本案 于", + "复合 材料", + "▁lept in", + "▁Hy derabad", + "名 著", + "辛 勤", + "ov i", + "o vi", + "▁N GO", + "▁NG O", + "修 真", + "St amp", + "la ravel", + "lar avel", + "▁meth ane", + "nWh ite", + "n White", + "▁S igma", + "▁Sig ma", + "▁ Sigma", + "▁Incre ased", + "▁Increase d", + "▁Appro ximately", + "@ \\", + "气 压", + "藏 在", + "专门 的", + "专 门的", + "▁S EE", + "▁SE E", + "经济 林果", + "上 前", + "升 温", + "变 焦", + "均 已", + "um ming", + "umm ing", + "▁f etus", + "▁fet us", + "▁hum id", + "▁hu mid", + "▁lock down", + "▁B iological", + "▁Bi ological", + "▁Bio logical", + "▁ground water", + "▁intent ional", + "▁intention al", + "元 和", + "对 人", + "课 文", + "Fl y", + "F ly", + "ro mb", + "rom b", + "r omb", + "感受 到了", + "感受到 了", + "感 受到了", + "▁incub ated", + "加 点", + "\"} ]", + "\" }]", + "▁e V", + "这么 大", + "▁Re new", + "▁Ren ew", + "ac ement", + "ace ment", + "bi ology", + "bio logy", + "b iology", + "▁b ibliography", + "▁bibli ography", + "▁film maker", + "▁filmm aker", + "莱 斯", + "司法 局", + "一个 数的", + "一个数 的", + "北京 赛车", + "质量 管理", + "副主任 医师", + "副 主任医师", + "▁h alls", + "▁hall s", + "▁hal ls", + "Comp ute", + "Comput e", + "res cent", + "r escent", + "File System", + "▁allerg ies", + "▁Incre asing", + "下 肢", + "但 凡", + "后 将", + "烘 焙", + "Su gg", + "S ugg", + "年 上半年", + "sequ ences", + "sequence s", + "过 头", + "bi as", + "bia s", + "b ias", + "在案 佐证", + "法律 援助", + "▁D uck", + "▁Du ck", + "▁Duc k", + "ac lass", + "acl ass", + "a class", + "▁Ken ny", + "▁Kenn y", + "项 链", + "▁{ }\\'", + "▁{}\\ '", + "▁{} \\'", + "▁ {}\\'", + "债权 的实现", + "\\' )),\\", + "\\') ),\\", + "\\')) ,\\", + "\\ ')),\\", + "养 猪", + "嘉 定", + "欧 冠", + "fr o", + "f ro", + "▁к а", + "▁ ка", + "com pressed", + "comp ressed", + "compress ed", + "▁ 号", + "他 妈", + "器 具", + "▁O D", + "▁ OD", + "动 不动", + "海 内外", + "第十 三条", + "第十三 条", + "第 十三条", + "BU FFER", + "▁Ad rian", + "▁Adri an", + "▁story telling", + "▁instruction al", + "▁instruct ional", + "偏 好", + "波 澜", + "炒 股", + ")} {(", + ")}{ (", + ") }{(", + "El se", + "▁wid gets", + "▁widget s", + "▁ widgets", + "▁myth ology", + "意 境", + "no h", + "n oh", + "ne eds", + "need s", + "nee ds", + "n eeds", + "▁Dise ases", + "▁Disease s", + "▁Rodr iguez", + "▁trans membrane", + "▁ г", + "—— —", + "— ——", + "一个 问题", + "▁hook ed", + "▁ho oked", + "▁Pod cast", + "▁manuscript s", + "十 余", + "她 也", + "阶 梯", + "/\\\\ /", + "/ \\\\/", + "▁D ON", + "▁DO N", + "▁Mar x", + "▁Ma rx", + "▁im mers", + "▁imm ers", + "▁ immers", + "▁reprodu c", + "▁repro duc", + "▁R aspberry", + "表 态", + "可 不是", + "\\' \"\\", + "\\'\" \\", + "ht ub", + "h tub", + "def er", + "de fer", + "d efer", + "▁N oise", + "▁No ise", + "W V", + "盘 点", + "]\" ,", + "] \",", + "zo n", + "z on", + "还不 够", + "还 不够", + "nR est", + "nRe st", + "nRes t", + "n Rest", + "▁EV EN", + "▁dign ity", + "▁Like wise", + "▁Lik ewise", + "▁high ways", + "▁highway s", + "当 晚", + "这 话", + "间 盘", + "ap per", + "app er", + "appe r", + "▁Br ady", + "▁Brad y", + "▁Bra dy", + "所 欠", + "RO L", + "R OL", + "中国 农业银行", + "中国农业 银行", + "▁mark up", + "▁ markup", + "Ex ceptions", + "Exception s", + "苦 难", + "wa ld", + "wal d", + "w ald", + "es tim", + "est im", + "e stim", + "加 拉", + "后 就", + "辨 识", + "遥 远", + "第九 十七条", + "ex posed", + "exp osed", + "par alle", + "pret tier", + "▁ ö", + "元 旦", + "较 短", + "CR C", + "C RC", + "rd f", + "r df", + "normal ized", + "normalize d", + "K a", + "异 能", + "面 具", + "的 元素", + "艺术 学院", + "UST OM", + "m igrate", + "▁un install", + "▁u ninstall", + "▁Arch bishop", + "▁Spring field", + "赞 赏", + "异议 人", + "的 广告", + "▁bal let", + "▁ball et", + "▁Eth ereum", + "file system", + "files ystem", + "▁negot iation", + "sp i", + "s pi", + "高中 生", + "高 中生", + "▁met am", + "▁meta m", + "▁Graph QL", + "▁mill iseconds", + "Cs s", + "C ss", + "脱颖 而出", + "av ings", + "aving s", + "avin gs", + "B etween", + "死 于", + "脱 发", + "在 接受", + "在 银行", + "▁ap ex", + "F N", + "您 选择", + "▁# ##\\", + "▁## #\\", + "▁### \\", + "▁ ###\\", + "as than", + "ast han", + "▁b loss", + "▁bl oss", + "▁blo ss", + "▁pat ri", + "▁pa tri", + "▁rod ents", + "▁rodent s", + "生 猪", + "▁V AT", + "▁VA T", + "ju ven", + "▁F ight", + "▁Fig ht", + "▁Fi ght", + "▁irre versible", + "▁z a", + "▁ za", + "动物 门", + "nL ead", + "nLe ad", + "n Lead", + "▁aut ophagy", + "七 星", + "体会 到", + "▁e lit", + "▁el it", + "会 比", + "溶 于", + "不了 的", + "不 了的", + "mi me", + "m ime", + "nS yn", + "n Syn", + "做的 事情", + "做的事 情", + "做 的事情", + "pat ched", + "patch ed", + "p atched", + "▁EX ISTS", + "▁cult ivated", + "▁cultiv ated", + "牢 牢", + "种 质", + "C tx", + "无线 电", + "艾滋 病", + "ad am", + "ada m", + "a dam", + "ee ds", + "eed s", + "e eds", + "▁t hy", + "▁th y", + "▁ thy", + "▁rock y", + "▁vict ories", + "巴 斯", + "油 价", + "ni p", + "n ip", + "求 实数", + "纤维 素", + "自动 驾驶", + "diff usion", + "像 个", + "IN C", + "I NC", + "`` \\", + "` `\\", + "▁W C", + "▁ WC", + "营业 部", + "in ky", + "ink y", + "质量 问题", + "monitor ing", + "nD ifferent", + "nDiff erent", + "n Different", + "▁re perfusion", + "▁reper fusion", + "▁ 特", + "不仅 要", + "的 函数", + "的 道路", + "▁bu rial", + "▁bur ial", + "打 死", + "漫 长", + "▁W WE", + "▁WW E", + "详细 介绍", + "▁S cout", + "▁Sc out", + "▁six teen", + "大 厂", + "拉 着", + "立 新", + "老 是", + "我们 一起", + "提出 减刑建议书", + "set Value", + "点 数", + "谴 责", + "韧 性", + "家长 们", + "▁F ear", + "▁Fe ar", + "Fin ish", + "movie s", + "mov ies", + "m ovies", + "▁a utor", + "▁aut or", + "▁auto r", + "▁au tor", + "trans parent", + "一 字", + "nU ser", + "nUse r", + "nUs er", + "n User", + "ycl ing", + "yc ling", + "可 笑", + "调 侃", + "万元 整", + "万 元整", + "亚 热带", + "二次根 式的", + "二次根式 的", + "ic iary", + "ici ary", + "icia ry", + "▁it ertools", + "▁iter tools", + "州 的", + "湖 泊", + "▁E q", + "▁ Eq", + "元 器件", + "▁M ales", + "▁Mal es", + "▁Ma les", + "▁Male s", + "宁 愿", + "读 题", + "▁i z", + "▁ iz", + "一般 人", + "洗衣 间", + "es so", + "ess o", + "mp eg", + "m peg", + "▁su prem", + "▁sup rem", + ") '", + "购 进", + "企业 发展", + "查控 系统", + "get Text", + "▁ad duct", + "▁add uct", + "连 连", + "都 为", + "nB i", + "n Bi", + "三十 年", + "三 十年", + ")\\\\ ,", + ") \\\\,", + "▁Sch midt", + "il las", + "ill as", + "illa s", + "▁C omic", + "▁Com ic", + "▁Co mic", + "Gener ation", + "Gen eration", + "Gene ration", + "G eneration", + "▁colon ization", + "入 场", + "向 法庭", + "nE ff", + "n Eff", + "纪委 书记", + "纪 委书记", + "ress or", + "J M", + "an dr", + "and r", + "▁G os", + "▁Go s", + "▁G ut", + "▁Gu t", + "政府 信息公开", + "In stant", + "Inst ant", + "▁Lanc aster", + "▁Lan caster", + "卡 的", + "开户 行", + "结果 的", + "ig ible", + "igi ble", + "▁F IRST", + "▁Vol ks", + "uit able", + "ui table", + "u itable", + "地 将", + "灾 区", + "▁注 解", + "nJ on", + "nJo n", + "n Jon", + "神经 网络", + "prov ide", + "▁re flux", + "▁ref lux", + "中 枢", + "保险 箱", + "几年 的", + "几 年的", + "▁Gram my", + "▁inter personal", + "无 事", + "▁Last ly", + "▁b izarre", + "▁Dis count", + "▁Disc ount", + "▁aster oid", + "塑 性", + "▁S olo", + "▁So lo", + "▁Sol o", + "ind say", + "inds ay", + "os lovak", + "med iately", + "mediate ly", + "▁merch ants", + "▁merchant s", + "get Attribute", + "孕 期", + "钻 研", + "劳人 仲", + "d aughter", + "▁dent istry", + "▁dentist ry", + "De ad", + "D ead", + "▁Y ii", + "▁Yi i", + "▁as ylum", + "▁r ugged", + "▁rug ged", + "nBase ball", + "▁prophyl axis", + "▁antioxid ants", + "▁antioxidant s", + "摄 氏", + "sr v", + "s rv", + "us b", + "u sb", + "nP al", + "n Pal", + "▁G ul", + "▁Gu l", + "分析 方法", + "如何 选择", + "ew are", + "e ware", + "▁P ale", + "▁Pal e", + "▁Pa le", + "▁g rac", + "▁gr ac", + "▁gra c", + "▁inf used", + "地 表", + "先后 在", + "先 后在", + "和 美国", + "▁re r", + "▁r er", + "▁ rer", + "因与 被申请人", + "因 与被申请人", + "▁a waiting", + "▁await ing", + "▁awa iting", + "▁sub traction", + "▁subtract ion", + "在地 上", + "在 地上", + "语言 的", + "▁Filip ino", + "▁det ached", + "▁advert ised", + "▁advertis ed", + "▁advertise d", + ", …", + "其 对", + "给 别人", + "in ia", + "ini a", + "i nia", + "▁B rick", + "▁Br ick", + "▁Bri ck", + "aur ants", + "aurant s", + "交叉 口", + "nM arch", + "nMar ch", + "n March", + "▁Rem oval", + "他 要", + "环 卫", + "采 暖", + "FL AG", + "du ty", + "d uty", + "▁$$ |", + "据 新华社", + "ch emy", + "che my", + "chem y", + "c hemy", + "tv alue", + "t value", + "br anches", + "branch es", + "▁l aptops", + "▁lap tops", + "▁laptop s", + ") ”", + "以 罪犯", + "相对 来说", + "struct ures", + "structure s", + "每 隔", + "穿 的", + "▁k b", + "▁ kb", + "内存 类型", + "土地 管理法", + "▁H ands", + "▁Hand s", + "▁Han ds", + "▁sc int", + "▁sci nt", + "▁un itary", + "▁unit ary", + "dis covery", + "disc overy", + "农 林", + "宣 言", + "人民 卫生", + "▁pro tons", + "▁prot ons", + "▁proton s", + "▁proto ns", + "▁hand ball", + "▁pat ented", + "▁patent ed", + "▁Lanc ashire", + "庄 镇", + "行 了", + "tu rl", + "tur l", + "t url", + "罪犯 奖励审批表", + "▁reim burse", + "根 的", + "ek t", + "e kt", + "▁O T", + "▁ OT", + "选择 性", + "研究 发现", + "▁R ocket", + "▁Rock et", + "▁Roc ket", + "坐落 在", + "坐 落在", + "这次 的", + "这 次的", + "ar ine", + "ari ne", + "arin e", + "a rine", + "游戏大小 为", + "▁out going", + "武 帝", + "co x", + "c ox", + "▁W arm", + "▁War m", + "▁Wa rm", + "▁H iggs", + "▁K erry", + "▁Ker ry", + "▁Kerr y", + "不值 得", + "不 值得", + "周围 的", + "▁L af", + "▁La f", + "iv atives", + "ivative s", + "▁Ch anging", + "▁Chang ing", + "▁Chan ging", + "广泛 应用", + "ol ics", + "olic s", + "oli cs", + "连载 的小说", + "连载的 小说", + "▁Ch arl", + "▁Char l", + "▁Cha rl", + "rodu ced", + "rod uced", + "roduce d", + "int ensity", + "软件 的", + "软 件的", + "▁M orph", + "▁Mor ph", + "▁W ow", + "▁Wo w", + "▁IS IS", + "▁inst inct", + "▁assort ment", + "oflu orescence", + "写 真", + "nS mall", + "n Small", + "▁F ixes", + "▁Fix es", + "on Create", + "o nCreate", + "奋 进", + "巴 萨", + "bn b", + "b nb", + "▁b ob", + "▁bo b", + "▁ bob", + "E t", + "受 贿", + "和 睦", + "肺 部", + "▁D ock", + "▁Do ck", + "▁Doc k", + "▁weigh s", + "nF unction", + "n Function", + "无 知", + "▁a y", + "▁ ay", + "br oker", + "bro ker", + "osp ice", + "▁rhythm s", + "▁rhyth ms", + "▁Organ isation", + "▁W nt", + "▁a ce", + "▁ac e", + "▁ ace", + "▁Kn ox", + "▁bul lying", + "▁bull ying", + "trans actions", + "transaction s", + "Co u", + "C ou", + "nWith in", + "play list", + "▁cycl ist", + "▁trade marks", + "▁tradem arks", + "▁trademark s", + "开 来", + "▁wave let", + "х о", + "洋 洋", + "Fl u", + "F lu", + "生效 的", + "还 提供", + "▁ 赛季", + "比赛 的", + "比 赛的", + "可以 分为", + "混合 运算", + "▁diver gent", + "归 去", + "日 光", + "▁ 口味", + "▁电 话", + "▁ 电话", + "in se", + "ins e", + "i nse", + "环境 污染", + "至关 重要", + "▁Gand hi", + "▁Ether net", + "{ <", + "再 多", + "MM P", + "M MP", + "教育 学院", + "教育学 院", + "▁my osin", + "▁str etches", + "▁stret ches", + "▁stretch es", + "天 道", + "夯 实", + "次 日", + "画 像", + "▁Z ur", + "为主题 的", + "cl air", + "委员会 副主任", + "中国 工商银行股份有限公司", + "在 某", + "用 具", + "只要 是", + "只 要是", + "视网 膜", + "act ually", + "actual ly", + "▁Re direct", + "▁Red irect", + "▁ Redirect", + "子 树", + "学 说", + "菜 肴", + "观 的", + "这 群", + "毕竟 是", + "har dt", + "hard t", + "is tem", + "ist em", + "iste m", + "i stem", + "由被告 住所地", + "G i", + "余 杭", + "AR E", + "A RE", + "▁Y un", + "▁Yu n", + "外观 设计", + "生活 习惯", + "明智 的选择", + "甲基 苯丙胺", + "▁th under", + "▁Ess ential", + "▁comp letes", + "▁complet es", + "▁complete s", + "适 中", + "一千 元", + "一 千元", + "rupt ing", + "rup ting", + "研发 的", + "研 发的", + "要 及时", + "其他 需要", + "▁re vert", + "▁reve rt", + "▁rev ert", + "▁rever t", + "Det ector", + "▁pri ests", + "▁priest s", + "活 塞", + "aj s", + "a js", + "▁I G", + "▁ IG", + "▁德 国", + "▁ 德国", + "▁re ck", + "▁r eck", + "▁rec k", + "▁ reck", + "REG IST", + "▁Cons ortium", + "▁approxim ations", + "▁approximation s", + "▁ 名", + "成 因", + "▁H K", + "▁ HK", + "立方 分米", + "il ian", + "ili an", + "ilia n", + "til es", + "ti les", + "tile s", + "t iles", + "▁fung us", + "▁mult iples", + "▁multiple s", + "▁multi ples", + "▁multip les", + "村 落", + "▁anti cancer", + "▁antic ancer", + "倒 霉", + "看 清", + "陵 县", + "▁b og", + "▁bo g", + "CA CHE", + "CAC HE", + "C ACHE", + "tc har", + "t char", + "▁im perial", + "▁imp erial", + "▁imper ial", + "▁impe rial", + "都 可", + "AD C", + "A DC", + "同学 的", + "同 学的", + "CE PT", + "▁S PI", + "▁SP I", + "▁ SPI", + "te sted", + "test ed", + "tes ted", + "t ested", + "▁Bo nus", + "▁Bon us", + "om erase", + "ome rase", + "omer ase", + "劳动人事争议 仲裁委员会", + "Authent icated", + "募 集", + "大 军", + "yl p", + "y lp", + "予以 采纳", + "▁p enn", + "▁pe nn", + "▁pen n", + "▁bomb s", + "▁bom bs", + "miss ible", + "界 定", + "BM I", + "B MI", + "切换 到", + "方程 的", + "简直 是", + "▁Bry ant", + "▁Bryan t", + "Image View", + "▁super market", + "▁supermark et", + "年 和", + "高 地", + "这样 可以", + "酒店 交通", + "▁S par", + "▁Sp ar", + "▁Spa r", + "▁Mon ten", + "▁Mont en", + "▁Monte n", + "▁ 那", + "学 分", + "构 图", + "祭 祀", + "是 全国", + "十三 条的规定", + "十三条 的规定", + "▁her editary", + "以 各主要景点的距离如下", + "踊 跃", + "▁动物 界", + "▁Cru ise", + "▁compl aining", + "▁complain ing", + "楼 房", + "上 大学", + "景 德镇", + "更 重要", + "▁bond ed", + "▁bon ded", + "▁land marks", + "▁landmark s", + "▁arbitr arily", + "▁breast feeding", + "能 效", + "el og", + "elo g", + "e log", + "▁Cl early", + "▁Cle arly", + "▁Clear ly", + "▁L agrangian", + "应 邀", + "新鲜 的", + "问题 进行分析", + "read able", + "▁Arm enia", + "▁Armen ia", + "▁Con verter", + "▁Convert er", + "▁ Converter", + "P t", + "魔 王", + "▁Sof ia", + "▁app arel", + "▁appar el", + "玉 环", + "理 赔", + "芝 士", + "血 小板", + "▁G iant", + "▁Gi ant", + "▁Gian t", + "▁it iner", + "Part ition", + "碳 水", + "首 尔", + "Var s", + "V ars", + "as ser", + "ass er", + "asse r", + "▁S che", + "▁Sc he", + "▁Sch e", + "▁T ier", + "▁Ti er", + "▁R ally", + "笼 罩", + "车 库", + "高级 工程师", + "搭 档", + "少年 的", + "少 年的", + "la sh", + "las h", + "l ash", + "▁G IS", + "▁GI S", + "▁ GIS", + "系统 地", + "▁Bur ton", + "南 侧", + "操作 的", + "操 作的", + "应予 终结", + "nH uman", + "n Human", + "ugin osa", + "▁bal ances", + "▁balance s", + "▁pall iative", + "sm s", + "s ms", + "▁B j", + "▁ 位置", + "情况 和", + "根本 上", + "ENG INE", + "▁Eug ene", + "研 磨", + "▁ 丛书", + "类 专业", + "in verse", + "▁respon ders", + "▁respond ers", + "出 游", + "海 边", + "酿 酒", + "里 克", + "▁W O", + "▁ WO", + "比较 有", + "的 疗效", + "oth erm", + "other m", + "othe rm", + "▁in sign", + "▁i nsign", + "▁ins ign", + "人 也", + "便 会", + "每 行", + "诸 暨", + "小 店", + "依法 应予准许", + "依法应予 准许", + "▁card io", + "▁cardi o", + "▁quiet ly", + "▁eukary otic", + "▁mention ing", + "路 店", + "等 方法", + "es que", + "▁we ighed", + "▁weigh ed", + "▁mit igation", + "▁collabor ating", + "中 铁", + "足 迹", + "▁h u", + "▁ hu", + "▁д о", + "▁ до", + "为 学生", + "南北 朝", + "▁S py", + "▁Sp y", + "▁ Spy", + "▁u mb", + "▁um b", + "▁ umb", + "都有 一个", + "都 有一个", + "back ed", + "b acked", + "▁K indle", + "▁Kind le", + "水 深", + "个月 的", + "个 月的", + "给予 了", + "详细 信息", + "▁Sch war", + "▁Schw ar", + "▁l uggage", + "Dim ension", + "D imension", + "▁as ynchronous", + "几 家", + "联 谊", + "韶 关", + "实际 的", + "触摸 屏", + "提供 参考", + "▁L und", + "▁Lu nd", + "律 诗", + "目标 的", + "目 标的", + "}^{ {", + "}^ {{", + "▁S can", + "▁Sc an", + "▁ Scan", + "纷纷 表示", + "th anks", + "than ks", + "▁Aur ora", + "con ference", + "▁inspiration al", + "▁inspir ational", + "入 院", + "▁C AM", + "▁CA M", + "▁ CAM", + "nUs age", + "n Usage", + "Wh ether", + "W hether", + "▁Re peat", + "▁Rep eat", + "▁re design", + "▁rede sign", + "▁Quant itative", + "多 半", + "qu il", + "re li", + "rel i", + "r eli", + "一个月 内", + "家用 电器", + "▁serv ant", + "Content Type", + "出 卖", + "孤 立", + "edu cation", + "educ ation", + "e ducation", + "两 会", + "灌 木", + "▁P our", + "▁Po ur", + "▁dec oder", + "▁decode r", + "▁ decoder", + "▁ex agger", + "▁mult iplier", + "▁multi plier", + "▁multip lier", + "代 号", + "铃 薯", + "办 主任", + "直播 间", + "▁п ри", + "Sc ience", + "Sci ence", + "▁Mil ton", + "▁Pet erson", + "▁Peter son", + "▁Peters on", + "▁sub scriber", + "▁subscrib er", + "▁subscribe r", + "守 门", + "柔 和", + "补 水", + "超 大", + "阐 释", + "有 很大", + "ca ps", + "cap s", + "c aps", + "al king", + "alk ing", + "cer ely", + "仇 恨", + "复 位", + "fp s", + "f ps", + "减轻 处罚", + "减 轻处罚", + "be low", + "bel ow", + "G ITHUB", + "投资 管理有限公司", + "投资管理 有限公司", + "就不 用", + "就 不用", + "▁E RA", + "▁ER A", + "▁ ERA", + "F a", + "岭 南", + "排 球", + "放 学", + "▁G lob", + "▁Gl ob", + "▁Glo b", + "▁An nie", + "▁Ann ie", + "▁m ills", + "▁mill s", + "▁mil ls", + "ic illin", + "▁Div ide", + "▁Divid e", + "▁ch ambers", + "▁chamber s", + "罚 息", + "▁V T", + "▁ VT", + "和 治疗", + "▁w ished", + "▁wish ed", + "▁wis hed", + "enc rypted", + "encrypt ed", + "▁Inf inity", + "云 端", + "它 能", + "ne z", + "n ez", + "消化 道", + "ta ng", + "tan g", + "t ang", + "ex ico", + "▁C alled", + "▁Cal led", + "▁Call ed", + "▁ Called", + "二〇一八年 五月", + "▁Dir ichlet", + "姓 氏", + "皮 的", + "园林 绿化", + "in ges", + "ing es", + "inge s", + "▁play back", + "▁Inter action", + "▁ Interaction", + "\\\\ '", + "\\ \\'", + "▁% %", + "▁ %%", + "机械 化", + "解决 的", + "取 暖", + "后 备", + "本 体", + "局域 网", + "eb ug", + "e bug", + "▁W rong", + "▁Wr ong", + "▁ Wrong", + "▁Bre aking", + "▁Break ing", + "▁pres idency", + "Y A", + "怀 抱", + "本 能", + "当然 了", + "的人 类", + "的 人类", + "▁se cular", + "▁sec ular", + "▁ter restrial", + "▁interpret ing", + "佣 金", + "佳 人", + "法 案", + "立方 厘米", + "▁turb ulence", + "交 界", + "资金 的", + "资 金的", + "▁H AL", + "▁HA L", + "▁ HAL", + "▁B ing", + "▁Bi ng", + "▁Bin g", + "▁spokes woman", + "巴 马", + "市 东", + "an yl", + "any l", + "ov ir", + "ovi r", + "o vir", + "文化 产业", + "▁Jan et", + "▁Jane t", + "▁Ja net", + "▁B anking", + "▁Bank ing", + "▁Ban king", + "Pred icate", + "不 需", + "出 借", + "后 端", + "知乎 上", + "di al", + "d ial", + "根据 自己的", + "un safe", + "uns afe", + "▁No bel", + "▁Nob el", + "▁te lev", + "▁tele v", + "▁tel ev", + "nut rition", + "大 唐", + "▁p ores", + "▁po res", + "▁por es", + "▁pore s", + "在服刑 改造期间", + "▁hist ologic", + "▁The oretical", + "后 方", + "情 趣", + "血 的", + "讯 息", + "▁c ared", + "▁car ed", + "▁care d", + "▁ca red", + "▁U L", + "▁ UL", + "过多 的", + "过 多的", + "TING S", + "T INGS", + "IN VALID", + "▁Com fort", + "▁Con versely", + "▁unpredict able", + "皇 上", + "OT S", + "O TS", + "▁第 六", + "▁ 第六", + "信息 安全", + "▁b olt", + "▁bo lt", + "▁bol t", + "▁ bolt", + "▁g raz", + "▁gr az", + "▁gra z", + "▁Old er", + "▁Ol der", + "上 缴", + "如 其", + "支持 下", + "▁t rop", + "▁tr op", + "▁tro p", + "it su", + "its u", + "▁R ag", + "▁Ra g", + "▁sub scriptions", + "▁subscription s", + "▁subs criptions", + "▁ subscriptions", + "某某 诉被告", + "nH y", + "n Hy", + "nn ode", + "nno de", + "n node", + "▁clin ician", + "▁clinic ian", + "▁sc rolling", + "▁scroll ing", + "▁def iciencies", + "固 件", + "ek a", + "e ka", + "在 过去", + "问题 了", + "ST IT", + "ol um", + "np eople", + "n people", + "▁Wag ner", + "▁f rench", + "▁fr ench", + "▁fre nch", + "pi ration", + "pir ation", + "p iration", + "▁Fried rich", + "▁comm enced", + "▁commence d", + "远 县", + "阵 营", + "TE X", + "T EX", + "领导 和", + "▁j wt", + "▁ jwt", + "刑 终字第", + "司法 解释", + "▁n ortheastern", + "▁north eastern", + "▁northeast ern", + "江 东", + "而 易", + "银 杏", + "▁E van", + "▁Ev an", + "▁Eva n", + "▁Rom ney", + "▁F amilies", + "气 动", + "飞 的", + "▁p ued", + "▁pu ed", + "▁arch ived", + "▁archive d", + "单 人", + "空 心", + "nr m", + "n rm", + "发表 了", + "▁L ah", + "▁La h", + "R ussian", + "TE MPLATE", + "▁th riving", + "▁thr iving", + "兑 现", + "废 话", + "网易 云", + "en vs", + "env s", + "for mal", + "form al", + "f ormal", + "ne utral", + "neut ral", + "▁ch assis", + "就 大", + "垃圾 分类", + "ur ses", + "urs es", + "urse s", + "gre SQL", + "▁theat rical", + "改 动", + "花 落", + "o qu", + "▁C DP", + "▁CD P", + "ave ry", + "av ery", + "aver y", + "a very", + "▁er yt", + "▁ery t", + "▁ex tras", + "▁ext ras", + "▁extra s", + "▁extr as", + "▁ extras", + "▁p endant", + "▁pend ant", + "▁para bola", + "▁parab ola", + "▁neuro pathy", + "▁neur opathy", + "▁neuropath y", + "与 研究", + "em os", + "emo s", + "e mos", + "本案 申请执行人", + "跑 道", + "FO UND", + "▁k nit", + "▁kn it", + "▁A ware", + "▁Aw are", + "▁ Aware", + "将 从", + "推 向", + "省 长", + "自 如", + "\\' ,$", + "\\', $", + "\\ ',$", + "up ta", + "upt a", + "bur st", + "bu rst", + "b urst", + "▁L ambda", + "▁Lamb da", + "▁ Lambda", + "今 朝", + "EC D", + "E CD", + "惯 用脚", + "\\", + "< />\\", + "高职 院校", + "Re cent", + "Rec ent", + "▁Bl ind", + "短 路", + "' >\\", + "[] >", + "[ ]>", + "管理 协会", + "▁h orr", + "▁hor r", + "▁ho rr", + "▁col itis", + "▁coli tis", + "享受 到", + "享 受到", + "总 人口", + "法律 责任", + "De ath", + "est ly", + "二〇一五年 九月", + "▁in versely", + "▁inverse ly", + "地 亚", + "外 接", + "安装 包", + "有的 是", + "有 的是", + "JA VA", + "J AVA", + "ny es", + "n yes", + "rgb a", + "rg ba", + "r gba", + "et ers", + "eter s", + "ete rs", + "e ters", + "▁P ing", + "▁Pi ng", + "▁Pin g", + "▁ Ping", + "nTh ird", + "n Third", + "nc reate", + "n create", + "other ap", + "othe rap", + "功 课", + "岁 以上", + "来 不及", + "inter op", + "▁solub ility", + "部 和", + "ES CO", + "所 提出的", + "的时间 内", + "的 时间内", + "▁tr aced", + "▁tra ced", + "▁trace d", + "▁proced ural", + "红 灯", + "本报 讯", + "输入 格式", + "事实与 理由", + "危险 化学品", + "Co ok", + "C ook", + "比 率", + "AP S", + "A PS", + "二 千元", + "▁P LC", + "▁PL C", + "▁ PLC", + "▁S DL", + "▁SD L", + "▁ SDL", + "un pack", + "▁p ollen", + "▁pol len", + "▁poll en", + "▁pollut ants", + "Tr im", + "Tri m", + "T rim", + "ding er", + "din ger", + "d inger", + "▁categor ical", + "nC ross", + "nCr oss", + "n Cross", + "▁D ylan", + "▁Dy lan", + "▁bre asts", + "▁breast s", + "▁sc heduler", + "▁schedul er", + "▁schedule r", + "▁ scheduler", + "乏 力", + "密 钥", + "还有 人", + "还 有人", + "hash Code", + "▁irre spective", + "▁irres pective", + "军 官", + "专业 从事", + "er ground", + "erg round", + "▁ele phant", + "respon ding", + "respond ing", + "ap plications", + "application s", + "监 听", + "▁ 广西", + "▁M TV", + "▁MT V", + "一点 都不", + "行业 发展", + "▁Cam ero", + "的人 口", + "的 人口", + "▁E NG", + "▁EN G", + "▁ ENG", + "▁J aw", + "▁Ja w", + "这个 东西", + "源 性", + "预 览", + "As t", + "A st", + "文 史", + "往 期", + "我 已", + "Em p", + "E mp", + "死亡 率", + "的 动力", + "jo hn", + "joh n", + "j ohn", + "▁I nk", + "▁In k", + "▁M ega", + "▁Me ga", + "▁Meg a", + "ia ries", + "iar ies", + "i aries", + "▁el icit", + "▁elic it", + "▁author ed", + "▁auth ored", + "▁mon uments", + "▁monument s", + "▁Ab original", + "诚 意", + "▁r os", + "▁ro s", + "▁ ros", + "怎么 可能", + "神经 系统", + "▁go at", + "umbn ails", + "umbnail s", + "▁bar rels", + "▁barrel s", + "▁barr els", + "迷 宫", + "da g", + "d ag", + "水 处理", + "▁install ment", + "ry n", + "r yn", + "▁S ach", + "▁Sa ch", + "▁Sac h", + "补 正", + "▁L M", + "▁ LM", + "一小 时", + "一 小时", + "在他 们", + "在 他们", + "▁* ***", + "▁** **", + "▁*** *", + "▁ ****", + "▁pharmacokin etic", + "也 称", + "子 叶", + "ia d", + "i ad", + "▁l ign", + "▁li gn", + "▁lig n", + "prov ince", + "▁b iliary", + "▁bil iary", + "修 仙", + "四 百", + "定 于", + "徒 弟", + "Mat e", + "Ma te", + "M ate", + "合同 签订", + "科学技术 出版社", + "优美 的", + "优 美的", + "机器 翻译", + "op rot", + "opro t", + "o prot", + "▁r ushing", + "▁rush ing", + "▁rem ovable", + "▁remov able", + "▁prosec ution", + "中 被", + "李 文", + "盛 大", + "▁ 意大利", + "故 诉至法院", + "▁V ander", + "▁Van der", + "▁Va nder", + "▁Vand er", + "Europe an", + "E uropean", + "▁ultr ason", + "▁ultra son", + "▁ultras on", + "伸 出", + "年 是", + "这 天", + "▁p k", + "▁ pk", + "最 合适的", + "但 未", + "声 道", + "并 获得", + "的 儿子", + "Con g", + "Co ng", + "C ong", + "保修 信息", + "▁class ics", + "▁classic s", + "取决于被执行人 是否有", + "▁confront ed", + "春 光", + "\\\\ (|", + "\\\\( |", + "▁Na Cl", + "▁ne oplastic", + "▁neoplas tic", + "▁neo plastic", + "大 妈", + "母 乳", + "肾 功能", + "▁what soever", + "单 机", + "{} \"", + "{ }\"", + "思想 和", + "nC zech", + "▁All ah", + "世 事", + "的最 后", + "的 最后", + "之 名", + "电 图", + "经 由", + "冰 淇淋", + "辖区 内", + "辖 区内", + "Ui nt", + "U int", + "nd an", + "nda n", + "n dan", + "ou nty", + "ount y", + "oun ty", + "ING TON", + "辛 辣", + "高 了", + "▁ 谱曲", + "阿里 云", + "IT EM", + "ITE M", + "I TEM", + "就会 出现", + "就 会出现", + "▁Report ing", + "自 尊", + "▁L ov", + "▁Lo v", + "依据 问题", + "▁S ources", + "▁Source s", + "▁ Sources", + "▁det ention", + "I U", + "洋 溢", + "爱 吃", + "驱 逐", + "公司 和", + "品牌 策划", + "申请 行政复议", + "▁micro n", + "▁mic ron", + "▁mi cron", + "▁sh ader", + "▁sha der", + "▁shade r", + "▁ shader", + "郭 某", + "Bo n", + "B on", + "I vy", + "ga m", + "g am", + "▁O UR", + "不会 出现", + "不 会出现", + "遵纪 守法", + "nEn ron", + "n Enron", + "▁Ant ib", + "▁Anti b", + "st reams", + "stream s", + "stre ams", + ") ×", + "挂 钩", + "此 案", + "要 将", + "有 这么", + "干部 职工", + "▁C ove", + "▁Co ve", + "▁Cov e", + "oxy gen", + "o xygen", + "cl icked", + "click ed", + "op ening", + "ope ning", + "open ing", + "▁Jane iro", + "病 菌", + "不在 乎", + "不 在乎", + "为 原料", + "Se qu", + "Seq u", + "S equ", + "▁I ND", + "▁IN D", + "▁ IND", + "▁refer rals", + "▁referral s", + "一 词", + "螺 栓", + "就像 是", + "就 像是", + "▁L az", + "▁La z", + "ra dor", + "rad or", + "r ador", + "}\" );\\", + "} \");\\", + "▁C ERN", + "▁CE RN", + "▁P ill", + "▁Pi ll", + "▁Pil l", + "▁bear ings", + "▁bearing s", + "课 件", + "▁F res", + "▁Fr es", + "▁Fre s", + "▁Re ply", + "▁Rep ly", + "▁ Reply", + "▁Bron ze", + "拆 卸", + "未 央", + "运 维", + "VA R", + "V AR", + "部 主任", + "gi st", + "gis t", + "g ist", + "ns ize", + "n size", + "Provider s", + "Prov iders", + "陪 你", + "体现 出", + "pl en", + "ple n", + "p len", + "▁` \\\\", + "▁`\\ \\", + "非常 重要的", + "非常重要 的", + "日提出 减刑建议", + "answer ed", + "函 授", + "囊 肿", + "导 管", + "巡 察", + "火 炬", + "Bi o", + "B io", + "的 合作", + "▁P AT", + "▁PA T", + "▁ PAT", + "血 量", + "在 香港", + "nDe velop", + "n Develop", + "▁Cow boys", + "▁Tim othy", + "▁air plane", + "▁Question naire", + "不 理", + "何 人", + "家 村", + "球 衣", + "奥 地利", + "or iasis", + "ori asis", + "oria sis", + "▁Sh aron", + "▁Sha ron", + "▁Shar on", + "▁Griff in", + "汗 水", + "骁 龙", + "▁c ue", + "▁cu e", + "▁ cue", + "De g", + "D eg", + "gu st", + "g ust", + "▁s lash", + "▁sl ash", + "▁ slash", + "▁Bulld ogs", + "ad renergic", + "adren ergic", + "会 场", + "很 棒", + "IF N", + "I FN", + "安庆 市", + "安 庆市", + "Mi me", + "M ime", + "Pod s", + "Po ds", + "P ods", + "代表 性的", + "代表性 的", + "nS ure", + "nSur e", + "▁Advent ures", + "▁Adventure s", + "H o", + "上 衣", + "口 红", + "线 和", + "支持 和", + "而这 些", + "而 这些", + "ag ascar", + "aga scar", + "▁Per l", + "▁Pe rl", + "▁dis proportion", + "烟 火", + "J ac", + "共同 体", + "▁p ots", + "▁pot s", + "▁po ts", + "公诉机关指控的 罪名成立", + "建立 在", + "联系 人", + "ri ven", + "riv en", + "rive n", + "r iven", + "H Z", + "et tle", + "ett le", + "e ttle", + "伪 装", + "肝 癌", + "重点 是", + "重 点是", + "ak in", + "aki n", + "a kin", + "原审 裁定", + "▁B ren", + "▁Br en", + "▁Bre n", + "▁sp awn", + "▁spa wn", + "▁spaw n", + "▁ spawn", + "▁spark ed", + "▁kind ness", + "一 想", + "舍 得", + "邻 近", + "给你 们", + "给 你们", + "▁I sn", + "▁Is n", + "▁Rel ative", + "▁ Relative", + "长 假", + "▁D U", + "▁ DU", + "的高 级", + "的 高级", + "蚌埠 市", + "an on", + "ano n", + "a non", + "▁g ra", + "▁gr a", + "▁ gra", + "占 了", + "可 比", + "逛 街", + "高 贵", + "nR O", + "n RO", + "动物 园", + "当选 为", + "试题 分析", + "越来 越好", + "越来越 好", + "▁Br uno", + "▁Brun o", + "▁Bru no", + "▁m apper", + "▁map per", + "▁ mapper", + "▁rot ations", + "▁rotation s", + "六 级", + "高 点", + "▁cl erk", + "▁cle rk", + "▁cler k", + "市人民法院 于", + "▁sp ells", + "▁spell s", + "bit ration", + "bi tration", + "bitr ation", + "群 的", + "预 示", + "太极 拳", + "HD MI", + "罪犯 考核", + "▁Hil ton", + "▁acceler ating", + "W O", + "做 梦", + "很 正常", + "ar ty", + "art y", + "nL ib", + "n Lib", + "▁sad ly", + "▁cont empl", + "▁Chev rolet", + "轴 的", + "分别 于", + "设置 为", + "TO OL", + "▁J iang", + "▁Ji ang", + "▁d read", + "▁dr ead", + "创业 板", + "▁tem po", + "▁temp o", + "就 该", + "这 笔", + "bar d", + "ba rd", + "b ard", + "on ate", + "ona te", + "ne ider", + "Num eric", + "Numer ic", + "Nu meric", + "仍 旧", + "在 场", + "▁s d", + "▁ sd", + "举个 例子", + "住 江苏省", + "Re ver", + "Rev er", + "R ever", + "▁Data set", + "▁Dat aset", + "▁ Dataset", + "lif ecycle", + "life cycle", + "▁shock ing", + "▁bel ieving", + "▁belie ving", + "校 正", + "箱 子", + "通 透", + "D jango", + "ei ther", + "e ither", + "ا ن", + "眼 界", + "碾 压", + "把 一个", + "▁fe min", + "▁fem in", + "▁gro ove", + "mat ching", + "match ing", + "cl amation", + "Com patible", + "Compat ible", + "何 种", + "提 议", + "\\' _", + "\\ '_", + "() }\\", + "()} \\", + "( )}\\", + "nd iv", + "ndi v", + "n div", + "C e", + "不会 再", + "会 引起", + "▁G aza", + "▁Ga za", + "▁Gaz a", + "对 申请执行人", + "育 儿", + "健康 教育", + "在 天", + "驻 地", + "高 某", + "za n", + "z an", + "因为 有", + "nA dv", + "nAd v", + "n Adv", + "▁mel ted", + "▁melt ed", + "曾 获", + "ab o", + "a bo", + "▁E du", + "▁Ed u", + "中央 空调", + "▁T ill", + "▁Ti ll", + "▁Til l", + "ok ines", + "okin es", + "okine s", + "oki nes", + "▁ax ons", + "▁axon s", + "fit ting", + "f itting", + "▁Hand book", + "▁dis connect", + "▁ disconnect", + "Document ation", + "上 为", + "包 包", + "无 不", + "竞 选", + "▁& \\", + "与 企业", + "ik it", + "iki t", + "i kit", + "re ward", + "rew ard", + "r eward", + "▁bud dy", + "▁map le", + "▁ma ple", + "转 弯", + "直升 机", + "政协 副主席", + "ord ion", + "Tem perature", + "I o", + "北 约", + "杀 伤", + "正 宗", + "nJ ud", + "Ro man", + "Rom an", + "R oman", + "und ai", + "unda i", + "▁l ion", + "▁li on", + "▁ lion", + "▁Man or", + "▁Ma nor", + "▁trace back", + "▁hyper plasia", + "▁Im plications", + "要 对", + "钝 角", + "第六 十四条", + "第六十四 条", + "SY STEM", + "SYS TEM", + "ex istent", + "exist ent", + "Ass ociation", + "▁Beautiful Soup", + "我 问", + "曲 目", + "织 物", + "▁B oh", + "▁Bo h", + ">\\ ',\\", + ">\\' ,\\", + ">\\', \\", + "> \\',\\", + "▁scal p", + "声 乐", + "绳 子", + "曾用 名", + "th ews", + "the ws", + "thew s", + "t hews", + "ulos keletal", + "耶 稣", + "不会 被", + "不 会被", + "执行 异议", + "rs trip", + "rst rip", + "r strip", + "▁C aval", + "▁Ca val", + "▁Cav al", + "▁ar mor", + "▁arm or", + "▁kn ots", + "▁knot s", + "▁stuff ed", + "出 境", + "as n", + "a sn", + "Wi ki", + "W iki", + "▁di aph", + "▁dia ph", + "▁e lective", + "▁elect ive", + "▁el ective", + "▁sh ipment", + "▁ship ment", + "Value Error", + "▁collabor ators", + "免 交", + "圈 的", + "▁E gg", + "▁Eg g", + "ri bly", + "rib ly", + "r ibly", + "准许 上诉人", + "byte rian", + "byter ian", + "他们 对", + "边长 为", + "边 长为", + "ut en", + "ute n", + "u ten", + "▁w ag", + "▁wa g", + "第七十九条 和", + "hou ette", + "▁Sm ooth", + "▁tr ader", + "▁trad er", + "▁tra der", + "▁trade r", + "▁state wide", + "中 段", + "打 到", + "财经 大学", + "igh bour", + "ighb our", + "th ermal", + "ther mal", + "nReg ards", + "▁Gujar at", + "od ds", + "odd s", + "▁r oses", + "▁ro ses", + "▁rose s", + "▁ros es", + "▁respect s", + "▁resp ects", + "Ti O", + "T iO", + "▁B eg", + "▁Be g", + "CM ake", + "C Make", + "oss ible", + "rec ursive", + "医 治", + "触 及", + "th or", + "t hor", + "SE CON", + "SEC ON", + "▁pl eas", + "▁ple as", + "▁plea s", + "▁bow ling", + "▁bowl ing", + "▁cock tails", + "▁cocktail s", + "▁Ach ievement", + "▁commission er", + "发现被执行人有 财产可供执行", + "Di e", + "D ie", + "等 活动", + "中国 企业", + "税务 总局", + "▁sc av", + "▁A hmad", + "▁Ah mad", + "▁fibr oblast", + "▁fibro blast", + "世界 里", + "ut an", + "uta n", + "u tan", + "▁M odal", + "▁Mod al", + "▁Mo dal", + "▁ Modal", + "二〇一六年 十月", + "二〇一六年十 月", + "find ViewById", + "不 自", + "在 被", + "红 十字", + "at ham", + "ath am", + "atha m", + "iaz ep", + "▁l one", + "▁lo ne", + "▁lon e", + "Res olve", + "Re solve", + "▁Phil lip", + "▁Phill ip", + "▁h acking", + "▁hack ing", + "▁electroly te", + "ancellation Token", + "一 扫", + "纯 属", + "ne gie", + "neg ie", + "▁Non linear", + "▁s mo", + "▁sm o", + "raw ling", + "rawl ing", + "in cluded", + "include d", + "▁entrepreneur ial", + "大 都", + "越 小", + "ato nin", + "aton in", + "ist ine", + "习近平 总书记", + "Get ting", + "G etting", + "é c", + "ó d", + "EO F", + "E OF", + "Le x", + "L ex", + "Cu be", + "C ube", + "ws gi", + "w sgi", + "▁R up", + "▁Ru p", + "向本院 提供被执行人", + "向本院提供 被执行人", + "▁Techn iques", + "▁Technique s", + "梦 境", + "考 评", + "牛仔 裤", + "▁R ough", + "▁Ro ugh", + "▁Rou gh", + "▁surf ing", + "▁tw entieth", + "同 名", + "▁M F", + "▁ MF", + "▁scrut iny", + "乌 兰", + "人 多", + "宾 客", + "弊 端", + "us ty", + "ust y", + "u sty", + "第一 部分", + "第一部 分", + "第 一部分", + "nMount ains", + "▁view point", + "李 小", + "皇 马", + "当前 的", + "当 前的", + "nP ay", + "n Pay", + "Cy cle", + "C ycle", + "▁h airy", + "▁hair y", + "▁ha iry", + "oblast s", + "obl asts", + "o blasts", + "▁har bor", + "▁harb or", + "e j", + "嘉 奖", + "如 期", + "蝙 蝠", + "▁ 俱乐部", + "所 产生的", + "dag ger", + "d agger", + "▁Can terbury", + "_ *", + "过 量", + "▁s late", + "▁sl ate", + "二〇一七年 六", + "本 领", + "ip v", + "i pv", + "条件 和", + "所 带来的", + "▁p eric", + "▁per ic", + "▁pe ric", + "▁peri c", + "▁Med ian", + "▁Media n", + "Im porter", + "Import er", + "Imp orter", + "ndef ault", + "nde fault", + "n default", + "men opausal", + "偏 见", + "赋 值", + "nG l", + "n Gl", + "审核 表", + "▁P ST", + "▁PS T", + "知识 渊博", + "▁E igen", + "TIME OUT", + "▁pul sed", + "▁pulse d", + "▁puls ed", + "nB asketball", + "▁acc idental", + "▁accident al", + "▁different iating", + "DU CTION", + "DUCT ION", + "经原告多次 催要", + "H U", + "乙 肝", + "分别 在", + "▁a wa", + "▁aw a", + "▁ awa", + "Th ink", + "Un til", + "U ntil", + "nI tem", + "nIt em", + "n Item", + "而 有所不同", + "附带 民事诉讼", + "附带民事 诉讼", + "tem poral", + "temp oral", + "t emporal", + "Inter action", + "▁ 风", + "车 轮", + "▁都市 言情", + "pr esso", + "press o", + "pres so", + "判决生效后 十日内", + "介 意", + "提供 的证据", + "提供的 证据", + "第一百四十 四条的规定", + "第一百四十四 条的规定", + "第一百四十四条 的规定", + "▁Cont ributors", + "一 枝", + "较小 的", + "较 小的", + "op py", + "opp y", + "▁G ian", + "▁Gi an", + "▁te amed", + "▁team ed", + "▁tea med", + "▁four teen", + "与 国际", + "\": [\\", + "\":[ \\", + "债权 依法", + "在 人民法院", + "批准 的项目", + "具有 挑战性的", + "该犯 在服刑期间", + "read thedocs", + "副 总", + "lish er", + "lis her", + "l isher", + "▁W ings", + "▁Win gs", + "▁Wing s", + "▁w ears", + "▁we ars", + "▁wear s", + "el iness", + "eline ss", + "elines s", + "eli ness", + "elin ess", + "e liness", + "▁tor rent", + "压 根", + "床 房", + "的 技能", + "英雄 联盟", + "▁per oxide", + "▁perox ide", + "▁ 蓝", + "花 纹", + "$) ,", + "$ ),", + "原来 是", + "很快 就", + "▁S CI", + "▁SC I", + "▁ SCI", + "ar ger", + "arg er", + "arge r", + "nH eat", + "nHe at", + "符合下列 条件", + "mat cher", + "match er", + "m atcher", + "▁F inals", + "▁Fin als", + "▁Final s", + "▁Fi nals", + "▁Luther an", + "get Property", + "下 场", + "宁 区", + "Ca s", + "C as", + "也许 是", + "的 种类", + "nY et", + "lic he", + "li che", + "lich e", + "l iche", + "▁m alt", + "▁mal t", + "▁ma lt", + "具备 执行条件", + "make dirs", + "m akedirs", + "▁Pr eston", + "▁Pres ton", + "▁Pre ston", + "▁Prest on", + "▁Sw imming", + "▁Ut ilities", + "▁Util ities", + "▁ Utilities", + "▁Active Record", + "▁hepat ocellular", + "军 民", + "押 金", + "cre ative", + "creat ive", + "▁Rain bow", + "tg z", + "t gz", + "惠州 市", + "惠 州市", + "io la", + "iol a", + "i ola", + "请 告诉我", + "骑 行", + "ae s", + "a es", + "也 希望", + "非常 适合", + "但 债权的实现", + "min imal", + "mini mal", + "▁Exec ution", + "▁ Execution", + "▁aer uginosa", + "周 日", + "投 降", + "盐 酸", + "支行 的", + "支 行的", + "的一 句话", + "的 一句话", + "ab bit", + "abb it", + "理论 与实践", + "理论与 实践", + "确定 的内容", + "确定的 内容", + "▁F etch", + "▁ Fetch", + "▁micro gl", + "▁microg l", + "▁test imon", + "穿 透", + "▁T G", + "▁ TG", + "nB ro", + "nBr o", + "n Bro", + "Sp ark", + "S park", + "Th omas", + "▁Tas mania", + "▁aberr ant", + "Pi c", + "P ic", + "▁ 化学", + "规章 制度", + "re cent", + "rec ent", + "▁attract s", + "▁attr acts", + "▁multi plicative", + "勘 察", + "FA I", + "F AI", + "三年 级", + "三 年级", + "借款 利息", + "▁my riad", + "cle rotic", + "cler otic", + "K I", + "pl ayed", + "play ed", + "平行 四边形的", + "平行四边形 的", + "ous ands", + "ousand s", + "▁S ister", + "▁Si ster", + "▁empir e", + "▁emp ire", + "▁tow els", + "▁towel s", + "AP E", + "A PE", + "ye l", + "y el", + "连云 港", + "▁c urb", + "▁cur b", + "▁cu rb", + ",\\\\ ,\\\\", + ",\\\\, \\\\", + ", \\\\,\\\\", + "nthe ir", + "n their", + "▁pr ism", + "▁pri sm", + "angan ese", + "▁aeros ol", + "▁Ply mouth", + "▁Invest igator", + "▁Investig ator", + "的 理想", + "▁t ant", + "▁ta nt", + "▁tan t", + "▁Gr ammar", + "▁Gram mar", + "▁adoles cence", + "只 剩", + "望 远", + "波 罗", + "对 身体", + "▁t achy", + "▁ta chy", + "▁neon ates", + "▁surfact ant", + "每 晚", + "in z", + "i nz", + "▁c ó", + "▁S ME", + "▁SM E", + "㈰㈰ ㈰㈰", + "怎么 回事", + "▁A mber", + "▁Am ber", + "▁Amb er", + "▁al gae", + "▁alg ae", + "▁ver dict", + "内 侧", + "奇 偶", + "收 条", + "灯 泡", + "ER A", + "E RA", + "局限 性", + "男主 角", + "男 主角", + "错过 了", + "错 过了", + "UE ST", + "UES T", + "U EST", + "ie ri", + "ier i", + "i eri", + "Mo tion", + "M otion", + "▁infer tility", + "K W", + "np l", + "n pl", + "也 只有", + "南 极", + "颇 有", + "太大 的", + "太 大的", + "ich ever", + "iche ver", + "requ ent", + "req uent", + "▁leuk ocyte", + "的女 性", + "的 女性", + "这样 的话", + "这样的 话", + "ou lli", + "oul li", + "金 石", + "R ich", + "▁P CB", + "▁PC B", + "▁ PCB", + "▁图书 信息", + "oca ust", + "▁pert inent", + "万 户", + "暑 期", + "nM or", + "n Mor", + "br ids", + "brid s", + "▁sc rat", + "▁scr at", + "nCon cept", + "n Concept", + "人 行", + "从 我", + "大 雨", + "▁B MP", + "▁BM P", + "▁ BMP", + "▁Ang lo", + "mu table", + "mut able", + "m utable", + "▁judgment s", + "▁judg ments", + "丛 林", + "瑕 疵", + "襄阳 市", + "襄 阳市", + "so up", + "s oup", + "▁P oker", + "▁Po ker", + "▁Pok er", + "有 明确的被告", + "▁f encing", + "▁fen cing", + "▁init iating", + "▁initi ating", + "▁In struction", + "▁ Instruction", + "上 行", + "有 其", + "▁b t", + "▁ bt", + "ca nt", + "can t", + "c ant", + "住 江西省", + "▁B oris", + "▁Bo ris", + "▁Bor is", + "com mits", + "comm its", + "commit s", + "▁str ipes", + "▁stri pes", + "▁strip es", + "▁stripe s", + "子 弟", + "揭 露", + "珍贵 的", + "珍 贵的", + "▁K nown", + "▁Kn own", + "▁Know n", + "▁ Known", + "percent age", + "r k", + "代 会", + "\"# \"", + "能力 与", + "WH ERE", + "W HERE", + "▁P iece", + "▁Pie ce", + "▁ Piece", + "▁Week end", + "mess aging", + "platform s", + "plat forms", + "▁med iation", + "▁media tion", + "▁medi ation", + "反 派", + "ecom ment", + "e comment", + "▁aut onomic", + "▁he uristic", + "▁heur istic", + "▁ 得", + "之 乡", + "奉 贤", + "振 华", + "提 现", + "橱 柜", + "▁Fr anz", + "▁Fra nz", + "▁Suff olk", + "▁syn apses", + "▁synapse s", + "乐 于", + "公 分", + "含量 的", + "含 量的", + "完毕 后", + "旅游 局", + "病虫 害", + "spe ech", + "延 缓", + "货 源", + "▁O B", + "▁ OB", + "个 国家", + "特别授权 代理", + "nArgent ine", + "▁manip ulated", + "▁manipulate d", + "拉 萨", + "的正 确", + "的 正确", + "▁F ruit", + "▁Fr uit", + "bel lion", + "bell ion", + "▁Tr acking", + "▁Track ing", + "▁ Tracking", + "▁Cart esian", + "兽 医", + "飞 翔", + ") ”", + "准备 了", + "就 比较", + "方向 键", + "▁a gar", + "▁ag ar", + "▁ agar", + "▁tr yp", + "▁try p", + "▁gr ind", + "▁gri nd", + "两 千", + "无 故", + "作家 协会", + "作 家协会", + "民事 行为", + "连云 港市", + "连云港 市", + "▁pers isted", + "▁persist ed", + "天 王", + "转 眼", + "▁* _", + "nS ave", + "n Save", + "▁Moh ammed", + "Com pletion", + "Comp letion", + "PS C", + "P SC", + "war t", + "wa rt", + "w art", + "▁se ated", + "▁sea ted", + "▁seat ed", + "lin space", + "▁L ANGUAGE", + "体 操", + "在 读", + "待 机", + "攻 关", + "样 板", + "一流 的", + "一 流的", + "就会 被", + "就 会被", + "饮用 水", + "饮 用水", + "▁c off", + "▁co ff", + "具有 重要的", + "技术 转让", + "▁Bur ke", + "▁Burk e", + "▁Mar cel", + "▁Marc el", + "对 所", + "掩 饰", + "缺 损", + "hd l", + "h dl", + "放射 性", + "有 任何", + "At om", + "A tom", + "行政 法规", + "▁B rett", + "▁Br ett", + "▁Bre tt", + "▁Bret t", + "▁st acks", + "▁stack s", + "▁am ended", + "▁amen ded", + "▁amend ed", + "无疑 是", + "长大 了", + "长 大了", + "AT EG", + "ATE G", + "re ls", + "rel s", + "r els", + "▁A DC", + "▁AD C", + "▁ ADC", + "的 绝对值", + "▁deb ts", + "▁debt s", + "使 者", + "年 产", + "us sed", + "uss ed", + "▁v ous", + "▁vo us", + "em atics", + "emat ics", + "ematic s", + "共 创", + "河 东", + "ан и", + "а ни", + "▁mark eted", + "▁market ed", + "王 一", + "精 盐", + "紧 迫", + "是一 条", + "是 一条", + "▁mit ral", + "; /", + "抗 原", + "逃 跑", + "和 相关", + "客房 时", + "清晰 的", + "个 村民小组", + "小数点 移动", + "▁cl iff", + "▁cli ff", + "网 课", + "▁原 创", + "▁ 原创", + "不明 显", + "不 明显", + "该 问题", + "销售 的", + "▁N urse", + "▁Nurs e", + "▁Nur se", + "nInt egr", + "n Integr", + "ts tring", + "t string", + "师 的", + "▁B ast", + "▁Bas t", + "▁Ba st", + "iz ards", + "izard s", + "izar ds", + "▁sc oop", + "▁av oids", + "▁avoid s", + "Class ifier", + "升 学", + "no c", + "n oc", + "▁T OP", + "▁TO P", + "▁ TOP", + "非法 占用的", + "elect ro", + "同 性", + "萧 萧", + "角 相等", + "AT ING", + "A TING", + "哭 泣", + "对 症", + "霸 气", + "自由 的", + "nM ont", + "nMon t", + "n Mont", + "end ars", + "endar s", + "enda rs", + "▁Ass istance", + "牛 排", + "▁A J", + "▁ AJ", + "万亿 元", + "万 亿元", + "容易 出现", + "ty ard", + "t yard", + "▁S OME", + "▁SO ME", + "▁D inner", + "▁Din ner", + "▁pop ulate", + "▁popul ate", + "▁deploy ing", + "▁ К", + "马 丁", + "就好 像", + "就 好像", + "深厚 的", + "深 厚的", + "▁p ou", + "▁po u", + "▁Jew el", + "▁split s", + "▁spl its", + "也 想", + "装 甲", + "IR A", + "I RA", + "今天 是", + "wan a", + "wa na", + "w ana", + "▁N il", + "▁Ni l", + "▁ Nil", + "tu mor", + "tum or", + "t umor", + "ut sch", + "uts ch", + "▁B less", + "▁Bl ess", + "▁Ble ss", + "▁S pons", + "▁Sp ons", + "▁invert ible", + "Suppress Warnings", + "保健 品", + "▁t riv", + "▁tr iv", + "▁tri v", + "▁c olum", + "▁col um", + "▁ colum", + "▁Kim ber", + "▁Ki mber", + "全 称", + "分 针", + "胳 膊", + "自 驾", + "透 析", + "AD DR", + "ADD R", + "A DDR", + "交通 管理", + "开奖 结果", + "nS uch", + "n Such", + "ro ads", + "road s", + "酒店交通 比较方便", + "Res olution", + "Re solution", + "ET S", + "E TS", + "▁D F", + "▁ DF", + "保定 市", + "▁G CC", + "▁GC C", + "学生 学习", + "ab ort", + "abor t", + "abo rt", + "orn ado", + "orna do", + "升 华", + "Gl u", + "G lu", + "同时 向", + "Hi st", + "His t", + "H ist", + "± \\", + "坎 坷", + "车 队", + "BR E", + "B RE", + "投资 或", + "▁g ems", + "▁ge ms", + "▁gem s", + "▁ gems", + "酒店 为您提供", + "ugg ling", + "协助 执行通知书", + "协助执行 通知书", + "整 式", + "客房 条款", + "前所未 有的", + "Trans l", + "Tra nsl", + "选择上述 客房时", + "▁sweep ing", + "Part icip", + "傻 子", + "ha y", + "h ay", + "pd b", + "p db", + "的 陈述", + "pi ns", + "pin s", + "p ins", + "igg ins", + "set attr", + "削 弱", + "川 普", + "DI Y", + "的 温度", + "▁Open ing", + "▁Op ening", + "▁rehe ars", + "hy a", + "h ya", + "准许 或者", + "▁Qu inn", + "▁neph ew", + "▁nep hew", + "▁catal ysts", + "▁catalyst s", + "▁cooper ate", + "▁logarith mic", + "▁logarithm ic", + "的条件 下", + "的 条件下", + "▁\\' /\\'", + "▁\\'/ \\'", + "▁web inar", + "▁webin ar", + "阅 览", + "▁g uilt", + "▁gu ilt", + "▁gui lt", + "请参阅 客房条款", + "nCh ristian", + "nChrist ian", + "n Christian", + "▁public ity", + "找 了", + "滥 用", + "我也 不知道", + "我也不 知道", + "我 也不知道", + "提起的 诉讼", + "你 来", + "佳 节", + "灯 火", + "老 妈", + "的 特殊", + "这么 做", + "马 铃薯", + "▁P hp", + "▁Ph p", + "▁ Php", + "两种 情况", + "质保 时间", + "an king", + "ank ing", + "arc tan", + "arct an", + "上诉于 河南省", + "元 宵", + "唐 诗", + "尽 头", + "承 德", + "▁r t", + "▁ rt", + "好用 的", + "好 用的", + "For t", + "F ort", + "保证 责任", + "着自己 的", + "着 自己的", + "st ash", + "sta sh", + "▁Hor izon", + "作 息", + "过 剩", + "om ew", + "ome w", + "▁r isen", + "▁rise n", + "▁ris en", + "▁ri sen", + "参 保", + "奶 酪", + "cess ion", + "c ession", + "Mark down", + "▁H B", + "▁ HB", + "为我 国", + "为 我国", + "的 实力", + "设备 及", + "BO SS", + "B OSS", + "土地 使用权", + "In puts", + "Input s", + "Log ged", + "▁Griff ith", + "附 有", + "旁边 的", + "旁 边的", + "节目 的", + "节 目的", + "毫无 疑问", + "货币 政策", + "nc ase", + "n case", + "▁S pread", + "▁Sp read", + "▁Spr ead", + "水 箱", + "ea s", + "e as", + "▁F CC", + "▁FC C", + "查询 回执", + "▁L ucky", + "▁Luc ky", + "▁Luck y", + "▁un bel", + "▁ph antom", + "▁ phantom", + "▁ear rings", + "免 去", + "广 元", + "水 温", + "珍 藏", + "战略 合作", + "无论 如何", + "表扬 奖励", + "av oid", + "avo id", + "a void", + "▁lon ely", + "▁lone ly", + "▁Tex ture", + "▁Text ure", + "▁ Texture", + "有管辖权的 人民法院", + "生态 系统", + "▁insp ections", + "▁inspection s", + "▁inspect ions", + "qu a", + "q ua", + "ab er", + "abe r", + "a ber", + "Qu est", + "Que st", + "▁fac ets", + "▁face ts", + "▁facet s", + "Re vision", + "Rev ision", + "▁elucid ated", + "▁elucidate d", + "酒店为您提供 免费的停车服务", + "虚 弱", + "非 负", + "仍然 是", + "市场 中", + "Cur ve", + "al ive", + "ali ve", + "a live", + "▁小说 阅读网", + "▁ 小说阅读网", + "的 逆", + "象 棋", + "趁 着", + "▁Luck ily", + "▁det ective", + "▁detect ive", + "♀ ♀", + "万 名", + "既 要", + "分析 这些", + "▁L ips", + "▁Li ps", + "▁Lip s", + "Se eder", + "See der", + "Seed er", + "os cale", + "osc ale", + "o scale", + "nC ritical", + "无 果", + "让你 的", + "让 你的", + "▁S cr", + "▁Sc r", + "▁L ists", + "▁List s", + "▁Li sts", + "▁Lis ts", + "▁ Lists", + "ns cript", + "nsc ript", + "n script", + "▁ch orus", + "▁cho rus", + "▁chor us", + "cit ation", + "c itation", + "nd ocument", + "n document", + "唯 独", + "小 三", + "WA Y", + "W AY", + "fi rm", + "f irm", + "▁pol arity", + "▁polar ity", + "▁att ributable", + "三 部", + "农 行", + "中 科院", + "有人 在", + "有 人在", + "CD MA", + "▁L EG", + "▁LE G", + "▁g rit", + "▁gr it", + "▁gri t", + "▁Urugu ay", + "▁pict ured", + "▁picture d", + "蒙 特", + "▁Craw ford", + "▁vers atility", + "▁versa tility", + "换 热", + "璀 璨", + "融 化", + "较 量", + "附 着", + "buk kit", + "nc olor", + "ncol or", + "nco lor", + "n color", + "fa ctors", + "factor s", + "fact ors", + "f actors", + "开 场", + "航 运", + "nu id", + "n uid", + "就是 这么", + "▁w oven", + "▁wo ven", + "▁Georg ian", + "▁Georgia n", + "充 要", + "抽 屉", + "▁l g", + "▁ lg", + "听说 过", + "听 说过", + "ha na", + "han a", + "h ana", + "ony ms", + "onym s", + "▁M err", + "▁Me rr", + "▁Mer r", + "T Z", + "走 来", + "CH E", + "C HE", + "这种 事情", + "这种事 情", + "ipher text", + "iph ertext", + "企 查", + "超 标", + "查 笔录", + "当庭 陈述", + "▁K ann", + "▁Ka nn", + "▁Kan n", + "ust ering", + "uster ing", + "▁favor ed", + "▁fav ored", + "▁after math", + "肿 胀", + "追 随", + "镇 痛", + "时 之前", + "生产 建设", + "科技 公司", + "▁Exper ts", + "▁Exp erts", + "▁Expert s", + "▁honor ary", + "麻 木", + "极高 的", + "极 高的", + "电子 有限公司", + "琵 琶", + "青 龙", + "发出 的", + "发 出的", + "is mo", + "ism o", + "▁S ew", + "▁Se w", + "▁g ods", + "▁go ds", + "▁god s", + "如下图 所示", + "▁re ver", + "▁r ever", + "▁reve r", + "▁rev er", + "inos aur", + "Rect angle", + "M U", + "t A", + "л у", + "美 团", + "SA T", + "S AT", + "理解 为", + "▁W inner", + "▁Win ner", + "▁Winn er", + "▁Cont ains", + "▁ Contains", + "tt f", + "t tf", + "ys c", + "y sc", + "▁ 广东", + "服务 和", + "ou sand", + "ous and", + "▁s tool", + "▁st ool", + "▁sto ol", + "ere bral", + "User Name", + "▁olig onucle", + "上 也", + "滤 镜", + "▁bow ls", + "▁bowl s", + "vent ure", + "ven ture", + "小 块", + "昼 夜", + "并将 其", + "并 将其", + "的 顺序", + "▁C BC", + "▁CB C", + "▁T uc", + "▁Tu c", + "规划 设计", + "▁H ann", + "▁Ha nn", + "▁Han n", + "Or ders", + "Order s", + "Ord ers", + "nC ities", + "▁Ex cept", + "▁mut ated", + "▁BUS INESS", + "▁mon sters", + "▁monster s", + "▁conduct ance", + "▁south western", + "▁southwest ern", + "云 霄", + "▁r ugs", + "▁ru gs", + "▁rug s", + "pa lette", + "pal ette", + "▁plate au", + "▁Neg ative", + "▁ Negative", + "确认人民调解协议 效力的", + "▁ κ", + "涨 停", + "协助 执行", + "并提出 了", + "并 提出了", + "nA ugust", + "nAug ust", + "n August", + "一 朵", + "点 了", + "po ons", + "poon s", + "p oons", + "ü n", + "天 河", + "本 国", + "▁C her", + "▁Ch er", + "▁Che r", + "Act ual", + "Ac tual", + "▁bin aries", + "一年 级", + "一 年级", + "方位 的", + "方 位的", + "第四 届", + "工作 报告", + "▁B irds", + "▁Bird s", + "▁Bir ds", + "N atural", + "/ [", + "时 髦", + "真 伪", + "ST REAM", + "▁code cs", + "▁codec s", + "▁det erg", + "▁deter g", + "小 花", + "民事 判决书", + "▁pre tend", + "▁pret end", + "oblast oma", + "o blastoma", + "▁nine teenth", + "▁nin eteenth", + "住 的", + "aw ai", + "awa i", + "▁Mat lab", + "▁transf ected", + "t q", + "少 林", + "烧 热", + "支持 的", + "去年 同期", + "get Elements", + "getElement s", + "是 与", + "该 项", + "支付 了", + "政府 和", + "组 组长", + "绵阳 市", + "绵 阳市", + "od ule", + "o dule", + "ood le", + "▁L ung", + "▁Lu ng", + "Im mutable", + "Imm utable", + "bread crumb", + "缝 隙", + "中国 传统", + "▁gl itter", + "大 明", + "og h", + "o gh", + "进行 计算", + "所 欲", + "处 三年", + "▁w ipe", + "▁wip e", + "▁wi pe", + "▁explo iting", + "▁exploit ing", + "▁instruct ed", + "以 南", + "作 弊", + "司 职", + "角 逐", + "人性 化", + "▁M LB", + "▁ML B", + ";\\\\ ;\\\\", + "; \\\\;\\\\", + "Max imum", + "requ ently", + "requent ly", + "就 和", + "点 在", + "nC entral", + "n Central", + "▁Camb odia", + "▁SER VICES", + "▁soci etal", + "扁 平", + "有 事", + "观 影", + "在一 些", + "在 一些", + "cs dn", + "nI NS", + "nIN S", + "n INS", + "▁E RP", + "▁ER P", + "▁ ERP", + "应当 承担", + "一定 要注意", + "一定要 注意", + "▁Re model", + "▁Rem odel", + "不 值", + "之 分", + "听 证", + "辜 负", + "Jo n", + "J on", + "是 属于", + "此次 活动", + "ol ate", + "ola te", + "o late", + "▁W aste", + "▁Was te", + "▁Wa ste", + "▁he mod", + "▁hem od", + "nCh ange", + "n Change", + "不起 来", + "不 起来", + "▁R ET", + "▁RE T", + "▁ RET", + "招商 引资", + "ist ors", + "istor s", + "isto rs", + "▁emerg encies", + "抽 查", + "没有 一个", + "没 有一个", + "▁S chr", + "▁Sc hr", + "▁Sch r", + "▁R overs", + "▁Ro vers", + "▁Rover s", + "亲 友", + "保 利", + "联 立", + "no se", + "nos e", + "n ose", + "▁Ig A", + "市场 份额", + "ra eli", + "rael i", + "其他需要 裁定", + "▁Hawai ian", + "▁Hawaii an", + "em m", + "e mm", + "撤回 执行申请", + "系 该", + "^{ *", + "新 时期", + "Ber ry", + "B erry", + "▁qu int", + "▁q uint", + "▁qui nt", + "▁quin t", + "nT aking", + "▁estab lishes", + "▁establish es", + "include graphics", + "防 线", + "成功 后", + "有 那么", + "nP rob", + "nPro b", + "nPr ob", + "n Prob", + "等腰 三角形的", + "等腰三角形 的", + "C riteria", + "▁Act ress", + "▁sol itary", + "中 也", + "松 原", + "nM s", + "n Ms", + "ig ar", + "iga r", + "i gar", + "除以 进率", + "▁E stim", + "▁Est im", + "▁Es tim", + "▁ Estim", + "▁t ails", + "▁tail s", + "▁ta ils", + "▁ tails", + "▁up loading", + "▁upload ing", + "乡 县", + "几 张", + "推 崇", + "油 炸", + "Ta p", + "T ap", + "▁H ib", + "▁Hi b", + "▁P VC", + "▁PV C", + "▁ PVC", + "▁h an", + "▁ha n", + "▁ han", + "▁H iro", + "▁Hi ro", + "▁Hir o", + "之间 的距离", + "之间的 距离", + "▁Rap ids", + "▁Rapid s", + "住房和 城乡建设", + "nArt icle", + "n Article", + "Boot strap", + "public ation", + "封 锁", + "比对 照", + "比 对照", + "nD an", + "n Dan", + "恶性 肿瘤", + "born s", + "bor ns", + "▁no qa", + "wrap ped", + "wr apped", + "▁custom ization", + "杏 仁", + "nS ong", + "nSo ng", + "n Song", + "▁Tr acy", + "▁Tra cy", + "▁se rine", + "▁ser ine", + "▁Free man", + "▁Fre eman", + "tra umatic", + "determ ined", + "▁plac ental", + "▁placenta l", + "泪 水", + "▁F IX", + "▁FI X", + "▁ FIX", + "▁U ns", + "▁Un s", + "▁ Uns", + "▁i ch", + "▁ic h", + "▁ ich", + "▁L omb", + "▁Lo mb", + "ns elect", + "nsel ect", + "nse lect", + "n select", + "▁Comp act", + "▁ Compact", + "▁ende avor", + "▁Throw able", + "▁ Throwable", + "暂 行", + "眼 看", + "骨 科", + "rn g", + "r ng", + "买 受人", + "化学 物质", + "fa ult", + "f ault", + "▁Ch rys", + "ent ropy", + "金 秋", + "上一 层", + "上 一层", + "nJ oe", + "nJo e", + "n Joe", + "默 契", + "家庭 成员", + "pir atory", + "▁reve nge", + "▁rev enge", + "▁reven ge", + "▁ventric le", + "好 坏", + "梧 桐", + "ud s", + "u ds", + "▁W o", + "弹 幕", + "ne ts", + "net s", + "n ets", + "管理 模式", + "▁C ases", + "▁Ca ses", + "▁Cas es", + "▁Case s", + "▁ Cases", + "ax el", + "▁h arb", + "▁har b", + "▁ha rb", + "get env", + "▁co ats", + "▁coat s", + "▁f laws", + "▁fl aws", + "▁flaw s", + "▁divor ced", + "▁divorce d", + "中 位数", + "中 发现", + "web socket", + "webs ocket", + "▁driv eway", + "▁drive way", + "▁time delta", + "▁timed elta", + "v k", + "继 而", + "▁I z", + "女生 的", + "女 生的", + "▁N eeds", + "▁Ne eds", + "▁Need s", + "orpor ate", + "orp orate", + "▁det ained", + "虾 仁", + "fa q", + "f aq", + "▁F en", + "▁Fe n", + "且 在", + "治 国", + "薄 荷", + "cr on", + "cro n", + "c ron", + "▁[ {\"", + "▁[{ \"", + "▁ [{\"", + "▁p ym", + "▁py m", + "ar ris", + "arr is", + "▁Car son", + "▁Cars on", + "▁percept ual", + "▁h apl", + "▁ha pl", + "▁hap l", + "▁veget arian", + "一 轮", + "要 好", + "in de", + "ind e", + "i nde", + "▁La gos", + "▁Lag os", + "▁p henyl", + "▁phen yl", + "▁ phenyl", + "M ERCHANTABILITY", + "▁y o", + "▁ yo", + "等 进行", + "nd ec", + "nde c", + "n dec", + "ta pe", + "tap e", + "t ape", + "▁sub division", + "▁subdiv ision", + "串 联", + "崇 尚", + "观 摩", + "的情 绪", + "的 情绪", + "nR oad", + "n Road", + "an ched", + "anc hed", + "anch ed", + "anche d", + "▁de graded", + "▁degrad ed", + "▁serial izers", + "▁serialize rs", + "▁serializer s", + "▁ serializers", + "校 验", + "累 犯", + "教育 出版社", + "Car thy", + "Cart hy", + "To List", + "▁Ep idem", + "▁Light ning", + "滋 养", + "镶 嵌", + "Mi l", + "M il", + "低 成本", + "要 坚持", + "▁ 社会", + "力量 的", + "力 量的", + "公共 卫生", + "gov uk", + "▁Mid lands", + "▁deliber ately", + "▁deliberate ly", + "脊 柱", + "首 创", + "该 系统", + "▁F ans", + "▁Fa ns", + "▁Fan s", + "低 保", + "先 予", + "▁i g", + "▁ ig", + "到 直线", + "直辖 市", + "nT er", + "nTe r", + "n Ter", + "bu cks", + "buck s", + "b ucks", + "ch dir", + "▁F olk", + "▁Fol k", + "▁id le", + "▁ idle", + "▁l inen", + "▁li nen", + "▁line n", + "▁lin en", + "▁Ber nie", + "▁Bern ie", + "▁M ozilla", + "▁Mo zilla", + "▁Moz illa", + "▁dev ised", + "▁re charge", + "卖 了", + "拉 动", + "接 线", + "效率 高", + "效 率高", + "Tr ump", + "▁kid n", + "▁ki dn", + "nPh oto", + "nPhot o", + "n Photo", + "▁t odos", + "▁to dos", + "▁todo s", + "光 华", + "陆 地", + "ba c", + "b ac", + "▁E vil", + "▁Ev il", + "р ы", + "道路 交通安全", + "▁boost ing", + "▁fall back", + "▁Illegal Argument", + "伸 手", + "初 学者", + "▁Inj ury", + "> @", + "屠 杀", + "流 泪", + "划分 为", + "划 分为", + "可 随时", + "的 科学", + "nK im", + "n Kim", + "不 必要的", + "对外 开放", + "Pad ding", + "P adding", + "▁P riority", + "▁Prior ity", + "▁ Priority", + "Cred ential", + "利 好", + "后 天", + "了他 的", + "了 他的", + "ri os", + "rio s", + "r ios", + "▁C af", + "▁Ca f", + "af fin", + "aff in", + "ogene ic", + "本次执行程序 中", + "▁intra operative", + "\" ^", + "光 彩", + "安 东", + "漫 步", + "di ms", + "dim s", + "d ims", + "▁p inch", + "▁pi nch", + "▁pin ch", + "arr ison", + "arris on", + "▁aut ore", + "▁auto re", + "▁autor e", + "▁Ver izon", + "一 刀", + "与 王", + "史 诗", + "使用 时", + "多年 前", + "多 年前", + "pro f", + "pr of", + "但是 对于", + "▁Em ploy", + "▁Emp loy", + "▁all oys", + "▁alloy s", + "▁Game Object", + "▁ GameObject", + "挥 发", + "舍 友", + "起 身", + "学 研究", + "▁M add", + "▁Mad d", + "▁Ma dd", + "th ings", + "thing s", + "thin gs", + "▁san ctuary", + "村 人", + "li o", + "l io", + "▁P ole", + "▁Pol e", + "▁Po le", + "SE rror", + "S Error", + "中 天", + "不太 好", + "不 太好", + "请 不要", + "▁L uk", + "▁Lu k", + "py torch", + "▁Pat ricia", + "▁Patri cia", + "德 的", + "甘 油", + "bl y", + "b ly", + "据 报道", + "issue comment", + "issu ecomment", + "侵 入", + "地 里", + "▁U R", + "▁ UR", + "▁这 里", + "▁ 这里", + "Le ad", + "L ead", + "▁山东 省", + "▁ 山东省", + "计数 单位", + "ı r", + "加 持", + "店 家", + "茂 名", + "▁n ip", + "▁ni p", + "▁ nip", + "tr end", + "tre nd", + "t rend", + "▁ 包装清单", + "委托代理人 陈", + "▁ing estion", + "高 高", + "ST D", + "S TD", + "经营 项目", + "amp oo", + "oph ilia", + "ophil ia", + "▁Laure nt", + "▁Lauren t", + "▁Laur ent", + "▁Surv ival", + "▁b iologic", + "▁bi ologic", + "▁bio logic", + "社 员", + "召开 的", + "召 开的", + "▁f err", + "▁fe rr", + "▁fer r", + "▁f unct", + "▁fun ct", + "▁func t", + "atem ala", + "Work space", + "Works pace", + "Serialized Name", + "绘 图", + "充足 的", + "各行 各", + "效果 图", + "th us", + "t hus", + "ur en", + "ure n", + "u ren", + "▁lumin osity", + "花 鸟", + "衰 退", + "学 专业", + "ur us", + "uru s", + "u rus", + "▁C hest", + "▁Ch est", + "▁Che st", + "▁Ches t", + "▁nost alg", + "unc iation", + "Rel ationship", + "Relation ship", + "单 单", + "复 工", + "结果 为", + "▁Wal sh", + "▁Mass age", + "▁welcome s", + "▁wel comes", + "▁请 你", + "▁ 请你", + "等 原因", + "转移 到", + "Tr ain", + "Tra in", + "T rain", + "in alg", + "inal g", + "ina lg", + "解决 的事项", + "解决的 事项", + "at ured", + "ature d", + "atur ed", + "atu red", + "▁de lib", + "▁del ib", + "▁bacter ium", + "▁South ampton", + "代 的", + "剑 桥", + "大 二", + "▁n h", + "▁ nh", + "ad ir", + "adi r", + "a dir", + "as pect", + "asp ect", + "a spect", + "ion ine", + "io nine", + "ioni ne", + "▁organ izer", + "▁organize r", + "克 制", + "无 证", + "胖 子", + "集 结", + "一家 人", + "一 家人", + "都 应该", + "年被 评为", + "年 被评为", + "▁C hop", + "▁Ch op", + "▁Cho p", + "odont ic", + "odon tic", + "▁negot iating", + "AD S", + "A DS", + "但他 们", + "但 他们", + "str uments", + "strument s", + "▁ 点", + "也 别", + "战 线", + "李 明", + "肛 门", + "鹦 鹉", + "▁( :", + "▁ (:", + "sol ver", + "solve r", + "s olver", + "' }", + "▁ 重", + "R ing", + "▁pip elines", + "▁pipeline s", + "▁pipe lines", + "暗 恋", + "ac cum", + "acc um", + "▁stabil ized", + "▁stabilize d", + "跟 她", + "▁E b", + "但 现在", + "证件 号码", + "罚金 人民币", + "▁Lib ert", + "▁Li bert", + "▁p ledge", + "▁pl edge", + "get Current", + "切 削", + "吃 喝", + "眼 底", + "你这 个", + "你 这个", + "ot en", + "ote n", + "o ten", + "▁n ach", + "▁na ch", + "▁a ston", + "▁as ton", + "▁ast on", + "▁ aston", + "▁swe pt", + "▁p oultry", + "▁Off icers", + "▁Office rs", + "▁Officer s", + "病 害", + "ci r", + "c ir", + "pol e", + "po le", + "p ole", + "▁taxp ayers", + "▁taxpayer s", + "不 曾", + "睫 毛", + "语 义", + "nR H", + "n RH", + "慢慢 地", + "爱 奇艺", + "中国 平安", + "er nal", + "ern al", + "ac tical", + "act ical", + "actic al", + "ο υ", + "用 什么", + "nS un", + "n Sun", + "et able", + "eta ble", + "e table", + "▁in ning", + "▁inn ing", + "▁p uppet", + "▁pup pet", + "▁ puppet", + "▁depict s", + "* >", + "▁Z h", + "看了 看", + "起诉 的", + "su lf", + "s ulf", + "▁novel ists", + "▁novelist s", + "U U", + "民 三", + "粉 色", + "PUB LIC", + "▁eff iciencies", + "娘 家", + "科 协", + "}) }{", + "} )}{", + "▁Ad miral", + "▁Ra iders", + "▁Raid ers", + "\" *", + "早 早", + "死 神", + "句话 说", + "句 话说", + "打开 了", + "打 开了", + "▁J upiter", + "Att achment", + "Attach ment", + "▁strat ified", + "中 立", + "省 会", + "矢 量", + "├ ──", + "▁ 排名", + "只要 有", + "只 要有", + "ri cks", + "ric ks", + "rick s", + "r icks", + "▁C ron", + "▁Cr on", + "▁Cro n", + "▁d ude", + "▁du de", + "▁Ha yes", + "▁Hay es", + "pop ular", + "▁ob solete", + "一 味", + "八 角", + "二〇一五年 十月", + "平安银行股份有限公司 上海", + "的 时刻", + "▁Z IP", + "违法 犯罪", + "no ver", + "nov er", + "n over", + "ol len", + "oll en", + "▁J ung", + "▁Jun g", + "▁Ju ng", + "nsh ould", + "n should", + "▁ins ane", + "▁disc ret", + "▁discre t", + "予以 减刑", + "ke ras", + "ker as", + "k eras", + "▁ST UD", + "▁six ty", + "▁gl orious", + "th emed", + "the med", + "theme d", + "them ed", + "▁F rost", + "▁Fr ost", + "▁Fro st", + "nF actor", + "nFac tor", + "n Factor", + "▁partner ing", + "长 是", + "pe z", + "p ez", + "▁R w", + "▁ 职称", + "Phys ics", + "▁mon astery", + "繁 琐", + "执行 措施", + "金属 材料", + "or bit", + "orb it", + "▁S isters", + "▁Si sters", + "▁Sister s", + "代 为", + "向 后", + "尼 奥", + "想 看", + "▁re sh", + "▁r esh", + "▁res h", + "▁ resh", + "iv ating", + "iva ting", + "▁Pat rol", + "▁iss uing", + "前 科", + "PR S", + "P RS", + "▁R if", + "▁Ri f", + "▁R iv", + "▁Ri v", + "▁m ug", + "▁mu g", + "函数 的图象", + "函数的 图象", + "存 入", + "请 假", + "雨 中", + "范围 的", + "▁ex h", + "nU pon", + "nUp on", + "遵守监规 纪律", + "K n", + "继承 人", + "▁c athe", + "▁ca the", + "▁cat he", + "▁cath e", + "nSup port", + "n Support", + "ind icator", + "揭 开", + "贵 人", + "ct s", + "c ts", + "ar ya", + "ary a", + "▁D und", + "▁Dun d", + "▁Du nd", + "▁b atches", + "▁batch es", + "▁bat ches", + "▁out flow", + "▁mos quito", + "▁mosquit o", + "▁cis platin", + "万 象", + "重 工", + "义乌 市", + "的 秘密", + "▁g rape", + "▁gr ape", + "▁grap e", + "▁gra pe", + "nLe ague", + "n League", + "Vel ocity", + "nWORK DIR", + "▁camp uses", + "▁campus es", + "IEnum erable", + "I Enumerable", + "和他 们", + "和 他们", + "的 父亲", + "皮肤 病", + "资源 和", + "邓 小平", + "▁D EF", + "▁DE F", + "▁ DEF", + "lect ive", + "l ective", + "▁ 宁", + "▁h h", + "▁ hh", + "极大 地", + "极 大地", + "por a", + "po ra", + "p ora", + "▁M ud", + "▁Mu d", + "Le ave", + "▁aest hetics", + "▁aesthetic s", + "▁endorse ment", + "▁endors ement", + "米 粉", + "创新 性", + "须经 批准的项目", + "安 保", + "EL S", + "E LS", + "ba m", + "b am", + "你没 有", + "你 没有", + "遇到 过", + "os est", + "ose st", + "oses t", + "▁h eme", + "▁he me", + "▁hem e", + "▁ heme", + "▁m uff", + "▁mu ff", + "se ctor", + "sec tor", + "sect or", + "s ector", + "Loc ator", + "▁ac uity", + "▁b ounding", + "▁bo unding", + "▁bound ing", + "cont ributors", + "contrib utors", + "contributor s", + "监狱 认为", + "nA pril", + "nAp ril", + "nApr il", + "n April", + "▁cost ing", + "▁cos ting", + "该 车", + "vi k", + "v ik", + "对 社会", + "科研 工作", + "tr ial", + "tri al", + "t rial", + "nC olor", + "nCol or", + "nCo lor", + "n Color", + "loc ated", + "l ocated", + "▁t urtle", + "▁tur tle", + "▁binding s", + "▁bin dings", + "▁bind ings", + "▁ bindings", + "con version", + "co nversion", + "conv ersion", + "▁ex changed", + "▁exchange d", + "橘 子", + "lo l", + "l ol", + "日 受理", + "▁_ (\"", + "▁ _(\"", + "▁Gu atemala", + "之 光", + "at oms", + "ato ms", + "atom s", + "同底数 幂的", + "▁C HECK", + "▁ CHECK", + "▁Q uart", + "▁Qu art", + "▁E arlier", + "▁Ear lier", + "▁Earl ier", + "▁el apsed", + "▁ elapsed", + "打 赢", + "骨 架", + "打破 了", + "打 破了", + "Card s", + "Car ds", + "C ards", + "千 瓦", + "药 店", + "阳 春", + "\\' {", + "Bo th", + "Bot h", + "B oth", + "▁R ao", + "▁Ra o", + "▁S ARS", + "▁SA RS", + "▁SAR S", + "▁as bestos", + "微信 号", + "微 信号", + "此题 考查", + "▁H ond", + "▁Hon d", + "▁Ho nd", + "▁mes enchymal", + "技术 推广", + "ce t", + "c et", + "把 这些", + "根据 不同", + "east ern", + "eas tern", + "e astern", + "▁l iking", + "▁li king", + "▁lik ing", + "nWrit ers", + "nWrite rs", + "iter items", + "▁mar itime", + "com pletion", + "comp letion", + "▁character ised", + "在 国家", + "ém on", + "é mon", + "我们 必须", + "pro be", + "pr obe", + "prob e", + "p robe", + "▁Met eor", + "到 场", + "藏 书", + "也 只能", + "bl ic", + "b lic", + "▁J UST", + "▁b aths", + "▁bath s", + "▁bat hs", + "▁ba ths", + "poly mer", + "p olymer", + "▁ste aling", + "▁steal ing", + "bo s", + "b os", + "不满 意", + "不 满意", + "eo us", + "e ous", + "ri nk", + "rin k", + "r ink", + "▁Mc N", + "▁g cd", + "▁ gcd", + "负责 同志", + "oc ado", + "oca do", + "二〇一七年 十二", + "二〇一七年十 二", + "▁sharp ly", + "▁shar ply", + "敏 锐", + "▁\" $(", + "▁\"$ (", + "明确 表示", + "是一家 集", + "OL DER", + "OLD ER", + "AT FORM", + "ep rint", + "e print", + "to Array", + "▁contract ing", + "▁contr acting", + "龙 华", + "]\" \\", + "] \"\\", + "▁b ac", + "▁ba c", + "▁ bac", + "nPl aying", + "nPlay ing", + "▁Win ners", + "▁Winn ers", + "▁Winner s", + "▁poly peptide", + "▁polype ptide", + "in di", + "ind i", + "i ndi", + "on ance", + "ona nce", + "Feed back", + "▁o ocytes", + "▁est radiol", + "经 商", + "Li te", + "L ite", + "UI nt", + "U Int", + "▁H OME", + "▁HO ME", + "▁ HOME", + "工 匠", + "从 这个", + "周 杰伦", + "ox el", + "▁h erm", + "▁he rm", + "▁her m", + "H W", + "kb d", + "k bd", + "▁W id", + "▁Wi d", + "不同 程度的", + "不同程度 的", + "▁Algebra ic", + "将 要", + "直 销", + "▁p erm", + "▁per m", + "▁pe rm", + "▁ perm", + "▁C heng", + "▁Ch eng", + "▁Che ng", + "▁Chen g", + "▁e ffic", + "▁eff ic", + "▁Ver tical", + "▁Vert ical", + "▁ Vertical", + "想 念", + "ki d", + "k id", + "百分 比", + "▁c mp", + "▁cm p", + "▁ cmp", + "感觉 自己", + "fol ios", + "folio s", + "杜 鹃", + "me et", + "▁Em my", + "▁S erve", + "▁Ser ve", + "▁Serv e", + "▁ Serve", + "Key word", + "▁ul cers", + "▁ulcer s", + "▁Maur ice", + "▁conn ective", + "▁connect ive", + "最初 的", + "还会 有", + "还 会有", + "em is", + "emi s", + "e mis", + "确诊 病例", + "nDe tails", + "nDet ails", + "n Details", + "▁dis connected", + "▁disconnect ed", + "专 为", + "冷 暖", + "地 去", + "通讯 员", + "}} }}", + "}}} }", + "} }}}", + "GR APH", + "en den", + "end en", + "ende n", + "▁H askell", + "á t", + "▁A ges", + "▁Ag es", + "▁Age s", + "nc ount", + "nco unt", + "n count", + "▁Car pet", + "▁Carp et", + "▁fire wall", + "contin uous", + "百 强", + "翻 身", + "喜欢 的人", + "喜欢的 人", + "▁H uff", + "▁Hu ff", + "▁生长 环境", + "▁sequ enced", + "▁sequence d", + "EX P", + "E XP", + "第一 家", + "第 一家", + "▁St yl", + "ed ited", + "edit ed", + "edi ted", + "▁in jective", + "▁inj ective", + "▁inject ive", + "▁ 概述", + "小 女孩", + "自我 的", + "自 我的", + "EM PL", + "EMP L", + "E MPL", + "▁z ur", + "▁zu r", + "AMP LE", + "A MPLE", + "plic ant", + "plica nt", + "▁Me asures", + "▁Measure s", + "▁Alexand ria", + "▁ Ł", + "他就 是", + "他 就是", + "上诉 请求", + "▁con tests", + "▁cont ests", + "▁contest s", + "整 套", + "ve lt", + "vel t", + "v elt", + "九 江", + "我 好", + "经 络", + "与时 俱", + "营业 额", + "透明 的", + "透 明的", + "un ov", + "uno v", + "u nov", + "▁[… ]\\", + "st ress", + "str ess", + "stre ss", + "▁learn er", + "▁lear ner", + "▁adapt ing", + "▁adap ting", + "▁dw elling", + "▁dwell ing", + "▁liqu idity", + "▁liquid ity", + "▁reminis cent", + "罗 拉", + "酸 钠", + "可谓 是", + "t ogether", + "▁bi ochemistry", + "多 糖", + "Tr uth", + "▁D ial", + "▁Di al", + "▁ Dial", + "np r", + "n pr", + "的 品质", + "ri be", + "rib e", + "r ibe", + "RE LEASE", + "pre ferred", + "prefer red", + "^ \\", + "yi i", + "y ii", + "有三 个", + "有 三个", + "的 含义", + "▁} $$", + "▁}$ $", + "▁ }$$", + "Vis it", + "Vi sit", + "▁O tto", + "▁Ott o", + "▁Ot to", + "▁comm itting", + "▁commit ting", + "对 数", + "秘 诀", + "移 除", + "随 心", + "变量 的", + "变 量的", + "▁P ip", + "▁Pi p", + "▁C ham", + "▁Ch am", + "▁Cha m", + "op ened", + "ope ned", + "open ed", + "▁ste ak", + "▁tr acer", + "▁tra cer", + "▁trace r", + "at ization", + "▁Mort gage", + "指数 幂", + "这些 年", + "值得 关注", + "▁d amping", + "▁dam ping", + "▁damp ing", + "▁Sub scribe", + "▁ Subscribe", + "▁ ∈", + "平行 的", + "平 行的", + "▁does nt", + "▁doesn t", + "准许或者 不准许撤诉", + "通 货", + "au dit", + "aud it", + "audi t", + "er mis", + "erm is", + "qu iet", + "本 田", + "Se x", + "S ex", + "音乐 会", + "问题 如下", + "ac ute", + "▁che fs", + "▁chef s", + "▁gr apes", + "▁grap es", + "▁gra pes", + "▁grape s", + "optim izer", + "optimize r", + "▁crypt ography", + "▁information al", + "▁inform ational", + "不 孕", + "处 级", + "富 强", + "抵 御", + "第二百零 五条", + "▁St ainless", + "银 耳", + "CR M", + "C RM", + "不 规则", + "染色 体", + "等 服务", + "第二 部分", + "▁l eng", + "▁le ng", + "▁len g", + "▁ü ber", + "▁po orer", + "▁poor er", + "Person al", + "Pers onal", + "P ersonal", + "▁induct ed", + "打 扰", + "SO D", + "S OD", + "ic her", + "ich er", + "iche r", + "i cher", + "▁fe ather", + "▁feat her", + "▁ro asted", + "▁roast ed", + "外 加", + "E uro", + "square d", + "squ ared", + "▁Arch ae", + "▁tors ion", + "IR S", + "I RS", + "▁м о", + "▁ мо", + "cl usters", + "clus ters", + "cluster s", + "▁mark eters", + "▁market ers", + "自 拍", + "正常 人", + "理解 和", + "相比 较", + "相 比较", + "▁F unc", + "▁Fun c", + "▁Fu nc", + "▁ Func", + "▁fund amentals", + "▁fundamental s", + "▁fundament als", + "缓 交", + "S vg", + "第十 八", + "第 十八", + "课程 的", + "an sen", + "ans en", + "tt ime", + "tti me", + "t time", + "en cycl", + "enc ycl", + "ency cl", + "ig uous", + "igu ous", + "▁R aven", + "▁Ra ven", + "▁Rav en", + "▁cit rus", + "呜 呜", + "le w", + "l ew", + "事物 的", + "事 物的", + "好吃 的", + "好 吃的", + "百分 百", + "这 辈子", + "▁B is", + "▁Bi s", + "对该 领域的", + "▁P irates", + "▁Pi rates", + "▁Pir ates", + "▁prep ares", + "▁prepar es", + "▁prepare s", + "▁pet roleum", + "国 情", + "彼 岸", + "我 真", + "este em", + "十二 五", + "▁dou bling", + "▁doub ling", + "均 需", + "关联 性", + "志愿 军", + "执行 款", + "面上 的", + "面 上的", + "▁J ill", + "▁Ji ll", + "末 日", + "十二 年", + "十 二年", + "sn ow", + "s now", + "▁v or", + "▁vo r", + "▁ vor", + "Abs olute", + "orge town", + "orget own", + "▁Hels inki", + "▁Autom ation", + "机 房", + "▁c hin", + "▁ch in", + "▁chi n", + "▁ chin", + "loc als", + "local s", + "▁wid ow", + "▁wi dow", + "▁med all", + "▁medal l", + "tre quire", + "t require", + "▁k itchens", + "▁kitchen s", + "从 左", + "也 一样", + "涵盖 了", + "通过 分析", + "Al bum", + "full Name", + "▁Benef its", + "tright arrow", + "t rightarrow", + "R W", + "缘 故", + "离家 出走", + "In struction", + "分 流", + "迷 惑", + "不 至于", + "出了 一", + "出 了一", + "拿到 了", + "拿 到了", + "), \\\\", + "),\\ \\", + ") ,\\\\", + "▁c oup", + "▁co up", + "▁cou p", + "▁Ag greg", + "▁ Aggreg", + "▁hash lib", + "▁expl orer", + "▁explore r", + "▁explo rer", + "▁explor er", + "▁ explorer", + "▁Individual s", + "千 载", + "汇 票", + "de sk", + "des k", + "d esk", + "管理 学院", + "管理学 院", + "▁in fl", + "▁i nfl", + "▁inf l", + "▁s lab", + "▁sl ab", + "leg ant", + "sp inal", + "spin al", + "spi nal", + "▁M iche", + "▁Mich e", + "▁Mi che", + "▁Mic he", + "▁scar ce", + "▁scarc e", + "▁trend y", + "我 县", + "CR R", + "C RR", + "活性 炭", + "的根 本", + "的 根本", + "不断 完善", + "Tr ade", + "Tra de", + "▁C ube", + "▁Cub e", + "▁Cu be", + "▁ Cube", + "▁J oined", + "▁Jo ined", + "▁Join ed", + "冻结 财产的规定", + "▁anal ogy", + "▁analog y", + "▁ana logy", + "det ection", + "detect ion", + "▁off enders", + "н у", + "降 到", + "也未 能", + "也 未能", + "月份 的", + "▁wh istle", + "▁whis tle", + "▁hist ology", + "▁resil ient", + "▁irrad iated", + "也 太", + "il ight", + "ili ght", + "i light", + "尖 锐", + "抗 疫", + "在上 诉", + "在 上诉", + "精美 的", + "精 美的", + "▁S NP", + "▁SN P", + "▁S UP", + "▁SU P", + "▁ SUP", + "▁o we", + "▁ow e", + "▁ owe", + "相关 规定", + "▁Pa so", + "▁Pas o", + "▁R ising", + "▁Ri sing", + "▁Ris ing", + "依法由 代理审判员", + "▁destroy ing", + "X A", + "万 科", + "公司 与", + "聊城 市", + "聊 城市", + "▁c left", + "▁cl eft", + "▁cle ft", + "in jection", + "inject ion", + "inj ection", + "io graphic", + "i ographic", + "▁exhaust ed", + "其他需要裁定 解决的事项", + "案件适用法律 若干问题的规定", + "悬 崖", + "自己 喜欢的", + "自己喜欢 的", + "▁Pl ants", + "▁Plan ts", + "▁Plant s", + "▁age ing", + "▁pap ill", + "ns ervices", + "n services", + "剂 的", + "重 磅", + "老师 和", + "▁A LS", + "▁AL S", + "▁ ALS", + "▁s to", + "▁st o", + "▁ sto", + "▁s vg", + "▁sv g", + "▁ svg", + "一条 直线", + "可以 实现", + "▁b rig", + "▁br ig", + "▁ke rat", + "▁ker at", + "事 发", + "年 均", + "点 上", + "电影 的", + "ud er", + "ude r", + "u der", + "Or acle", + "nG rand", + "nGr and", + "n Grand", + "选择 正确答案", + "▁exp resses", + "▁express es", + "▁expr esses", + "▁comment ing", + "▁constit uent", + "▁constitu ent", + "翻 转", + "▁南 京", + "▁ 南京", + "请 大家", + "这 都是", + "Access Token", + "nW ashington", + "▁discrim inate", + "® ,", + "▁Ac qu", + "▁Ad ds", + "▁Add s", + "▁de rives", + "▁der ives", + "▁deriv es", + "▁derive s", + "int roduction", + "intro duction", + "Request Handler", + "J J", + "借 用", + "势 必", + "um bo", + "umb o", + "是最 好的", + "是 最好的", + "De leted", + "Delete d", + "Del eted", + "timestamp s", + "为 她", + "住 户", + "尿 道", + "摩 尔", + "第三 条", + "第 三条", + "罪行 的", + "罪 行的", + "签字 确认", + "nL oad", + "nLo ad", + "n Load", + "▁根据 您的", + "▁ 根据您的", + "▁horizontal ly", + "▁horiz ontally", + "V L", + "且 仅", + "RE L", + "R EL", + "所 依据", + "▁F ur", + "▁Fu r", + "▁T iny", + "▁Ti ny", + "▁Tin y", + "pher ical", + "▁Un iform", + "▁Uni form", + "▁ Uniform", + "▁computer ized", + "怀 着", + "教科 书", + "▁G othic", + "▁plaus ible", + "大 树", + "在 收到", + "▁Chief s", + "▁Mon ter", + "▁Mont er", + "▁Mo nter", + "▁Monte r", + "▁Le aders", + "▁Lead ers", + "▁Leader s", + "▁str angers", + "▁strange rs", + "▁stranger s", + "▁strang ers", + "适用简易程序 公开开庭进行了审理", + "春 雨", + "成本 低", + "某的 证言", + "某 的证言", + "▁V ale", + "▁Val e", + "▁Va le", + "▁bar bec", + "在道路上 醉酒驾驶机动车", + "▁discrep ancy", + "传 销", + "翩 翩", + "聘 用", + "通常 是", + "tr aff", + "tra ff", + "▁E rik", + "▁Er ik", + "▁b ets", + "▁be ts", + "▁bet s", + "单 体", + "es k", + "e sk", + "▁重 庆", + "▁ 重庆", + "长 三角", + "▁A FC", + "▁AF C", + "▁P ert", + "▁Per t", + "▁Pe rt", + "▁M yers", + "▁My ers", + "▁Ku wait", + "▁Emb assy", + "新 旧", + "触 控", + "▁K Y", + "▁ KY", + "Gr eg", + "G reg", + "am oto", + "amo to", + "向本院 提供", + "▁con sect", + "▁cons ect", + "▁consec t", + "▁Diagn ostic", + "▁unf amiliar", + "gt k", + "g tk", + "Mut able", + "Mu table", + "M utable", + "▁C andid", + "▁Can did", + "▁Cand id", + "▁mar ital", + "▁re acted", + "▁react ed", + "Ka b", + "K ab", + "an sk", + "ans k", + "mo ving", + "mov ing", + "m oving", + "王 晓", + "母亲 的", + "表达 了", + "MAR K", + "M ARK", + "被 他", + "\"{ %", + "\" {%", + "与 直线", + "it in", + "iti n", + "i tin", + "▁maneu ver", + "▁ â", + "校 内", + "芳 香", + "故事 的", + "故 事的", + "is tas", + "ist as", + "ista s", + "ri val", + "riv al", + "r ival", + "ug uese", + "ugu ese", + "▁post partum", + "外 侧", + "理 所", + "cx x", + "c xx", + "漫长 的", + "漫 长的", + "ans om", + "▁Ag ents", + "▁Agent s", + "▁cr acking", + "▁crack ing", + "▁metaph or", + "浙江 大学", + "ot ropy", + "otrop y", + "otr opy", + "可 可", + "岳 阳", + "益 气", + "媒体 的", + "媒 体的", + "fa rm", + "far m", + "f arm", + "▁A gn", + "▁Ag n", + "▁L ily", + "▁Li ly", + "▁Lil y", + "parse rs", + "parser s", + "pars ers", + "河 水", + "▁D ee", + "▁De e", + "▁We bb", + "▁Web b", + "nS aint", + "nU ntil", + "nUn til", + "n Until", + "▁give away", + "再也 不", + "再 也不", + "ST AMP", + "STA MP", + "▁Green e", + "▁Gree ne", + "▁Gre ene", + "勋 章", + "代表 了", + "ik ed", + "ike d", + "▁s inc", + "▁sin c", + "▁si nc", + "Mock ito", + "riter ion", + "▁flav ours", + "▁flavour s", + "分 红", + "长 了", + "隔 热", + "opol ys", + "opoly s", + "opo lys", + "▁V irus", + "▁Vir us", + "▁Vi rus", + "block ing", + "b locking", + "由题意 可得", + "▁J D", + "▁ JD", + "AT IONAL", + "ATION AL", + "▁Gal ois", + "▁Di agram", + "一 出", + "上 古", + "上 都", + "之 妻", + "农 商", + "▁S uk", + "▁Su k", + "▁O mega", + "▁Om ega", + "▁ Omega", + "▁gal lon", + "▁gall on", + "对该领域的 了解", + "随 风", + "齐 鲁", + "有限 元", + "八条 之规定", + "八 条之规定", + "请仔细 阅读选项", + "请仔细阅读 选项", + "sc enario", + "您 对该领域的了解", + "▁dec lines", + "▁decl ines", + "▁decline s", + "这是一道 关于多学科知识的选择题", + "中 去", + "居 多", + "牌 照", + "x or", + "C rypt", + "B rowse", + "▁N orton", + "▁Nor ton", + "传 出", + "依 题意", + "oy er", + "oye r", + "o yer", + "vin e", + "vi ne", + "v ine", + "▁A FP", + "▁AF P", + "一如 既往", + "审慎 考虑", + "▁C airo", + "▁Ca iro", + "▁C ivic", + "▁Ci vic", + "In jection", + "Inject ion", + "停 在", + "现 存", + "▁用 法", + "▁ 用法", + "因 生活", + "nL es", + "nLe s", + "n Les", + "po on", + "p oon", + "▁B ax", + "▁Ba x", + "ut tle", + "utt le", + "u ttle", + "证据确实 充分", + "▁over write", + "▁overw rite", + "Ap plications", + "Application s", + "▁hypoth alamic", + "失 常", + "美 方", + "致 的", + "Au g", + "A ug", + "▁/ /\\", + "▁// \\", + "▁ //\\", + "nMod ern", + "▁For ums", + "▁Forum s", + "▁Fo rums", + "二〇一八年 八月", + "bound ary", + "p urchase", + "自 贸", + "le a", + "l ea", + "为 宗旨", + "▁c alf", + "▁ca lf", + "▁cal f", + "▁Rich ards", + "▁Richard s", + "/ …", + "Sp y", + "S py", + "ul ed", + "ule d", + "u led", + "都有 哪些", + "都 有哪些", + "是一道 选择题", + "是 一道选择题", + "▁anal yzer", + "▁analy zer", + "▁analyz er", + "▁analyze r", + "▁ analyzer", + "▁proceed ed", + "▁du plication", + "▁duplic ation", + "名 声", + "咫 尺", + "霹 雳", + "AL K", + "IT A", + "I TA", + "▁B rock", + "▁Br ock", + "▁Bro ck", + "Spring Boot", + "月 明", + "交汇 处", + "出席 了", + "▁e book", + "▁eb ook", + "▁select s", + "▁sel ects", + "白 石", + "▁k eras", + "▁ke ras", + "▁ker as", + "▁ keras", + "办理 结婚登记", + "act ivities", + "activ ities", + "▁ 燕", + "向 着", + "秀 丽", + "质 检", + "实 实在", + "ge ons", + "geo ns", + "geon s", + "▁pe dal", + "▁ped al", + "created At", + "▁Fe aturing", + "责 编", + "高 二", + "ho g", + "h og", + "微博 上", + "nres ult", + "n result", + "▁Bol ivia", + "▁Volunte er", + "▁sub scribed", + "▁subscrib ed", + "▁subscribe d", + "▁subs cribed", + "| <", + "▁ 🙂", + "服 药", + "ib m", + "i bm", + "м ен", + "听 起来", + "规划 和", + "▁C HO", + "▁CH O", + "▁ CHO", + "▁\\ ')", + "▁\\' )", + "▁ \\')", + "iss ued", + "issue d", + "issu ed", + "is ement", + "ise ment", + "▁H ansen", + "▁Han sen", + "▁Hans en", + "▁pat rons", + "▁patron s", + "王 文", + "肤 色", + "驾 驭", + "$ ^{", + "买了 一", + "买 了一", + "二十 五", + "二 十五", + "会 发现", + "or bed", + "orb ed", + "▁w ird", + "▁wi rd", + "▁pep pers", + "▁pepper s", + "▁number ing", + "你 得", + "进 驻", + "ES P", + "E SP", + "nE ast", + "n East", + "host ed", + "ho sted", + "pro ton", + "pr oton", + "prot on", + "proto n", + "▁S ympt", + "▁Sym pt", + "▁Sup plement", + "察 觉", + "接 力", + "日 均", + "▁A PC", + "▁AP C", + "▁D SL", + "▁DS L", + "大学 生的", + "大学生 的", + "大 学生的", + "请你仔细 读题", + "从选项中 选择出", + "▁sail ors", + "如上 是一道选择题", + "ivari able", + "ivar iable", + "i variable", + "le f", + "l ef", + "▁` [", + "并 确定", + "的路 程", + "的 路程", + "可以 达到", + "可 以达到", + "判处有期徒刑 六个月", + "MP I", + "M PI", + "由 本院", + "SI GN", + "SIG N", + "S IGN", + "贯彻 执行", + "▁Pl atinum", + "▁disp ersed", + "▁dispers ed", + "▁insp ector", + "▁inspect or", + "▁transplant ed", + "通 告", + "BA R", + "B AR", + "读者 的", + "读 者的", + "at ore", + "ator e", + "ato re", + "▁L atex", + "▁La tex", + "▁Lat ex", + "▁Late x", + "▁gl ial", + "▁gli al", + "▁m ongo", + "▁mon go", + "▁mo ngo", + "▁mong o", + "▁ mongo", + "具有 重要意义", + "为 社会", + "是指 在", + "▁O st", + "▁Os t", + "▁T ue", + "▁Tu e", + "▁M arl", + "▁Mar l", + "▁Ma rl", + "is Array", + "uc lease", + "ucle ase", + "▁H uawei", + "▁night mare", + "壁 画", + "桃 李", + "航 海", + "和 孩子", + "中心 小学", + "tl ist", + "t list", + "▁THE N", + "▁TH EN", + "▁pop up", + "▁ popup", + "▁tor ture", + "▁tort ure", + "part icles", + "particle s", + "p articles", + "▁fil enames", + "▁file names", + "▁filename s", + "▁waters hed", + "B W", + "免 除", + "嫁 给", + "窒 息", + "血 脉", + "re lu", + "rel u", + "▁T odo", + "▁To do", + "▁ Todo", + "▁w edge", + "▁wed ge", + "▁ wedge", + "内容 如下所示", + "民事执行中 查封", + "Read Line", + "▁brace let", + "ke a", + "k ea", + "▁H ew", + "▁He w", + "nw ork", + "n work", + "▁c ones", + "▁con es", + "▁co nes", + "▁cone s", + "▁st agger", + "▁North western", + "▁Northwest ern", + "他 有", + "日 到", + "▁G ig", + "▁Gi g", + "▁E den", + "▁Ed en", + "Is NullOr", + "Part icle", + "P article", + "H b", + "庄 严", + "政 党", + "青 梅", + "EU R", + "E UR", + "外面 的", + "外 面的", + "▁l ifts", + "▁li fts", + "▁lif ts", + "▁lift s", + "▁ana erobic", + "La zy", + "L azy", + "▁д ля", + "▁d warf", + "▁dw arf", + "let cher", + "ex ercise", + "▁come back", + "必 有", + "等 同", + "醒 了", + "中途 退", + "的女 子", + "的 女子", + "▁Equ ity", + "▁Eq uity", + "ress ions", + "ression s", + "r essions", + "▁Im proved", + "▁Improve d", + "▁vis ceral", + "一 连", + "免 税", + "冲 锋", + "妨 害", + "涡 轮", + "DA T", + "D AT", + "^* $", + "^ *$", + "想象 力", + "ac ian", + "aci an", + "acia n", + "▁Ad aptive", + "▁Ada ptive", + "▁Adapt ive", + "▁Pain ting", + "▁Paint ing", + "▁Pharm aceutical", + "永 生", + "二次 元", + "带 孩子", + "pl ug", + "▁N in", + "▁Ni n", + "tr uth", + "▁k ernels", + "▁kernel s", + "▁ker nels", + "he on", + "h eon", + "ens ory", + "ensor y", + "▁R iley", + "▁Ri ley", + "▁d rones", + "▁dr ones", + "▁dro nes", + "▁drone s", + "本次执行程序 应予终结", + "▁pancreat itis", + "eb a", + "e ba", + "yn ch", + "ync h", + "y nch", + "进行 研究", + "▁w itch", + "▁wit ch", + "▁ witch", + "Pl ayers", + "Player s", + "Play ers", + "P layers", + "bad ges", + "badge s", + "▁Cal if", + "▁Ca lif", + "▁condition er", + "就 让", + "身 旁", + "MC s", + "M Cs", + "俗 话说", + "me mo", + "mem o", + "m emo", + "nP rom", + "nPro m", + "nPr om", + "n Prom", + "经济 发展的", + "经济发展 的", + "▁cl utch", + "▁on board", + "或 在", + "看 向", + "ra j", + "r aj", + "好 莱坞", + "▁P II", + "▁PI I", + "▁ PII", + "nw ell", + "nwe ll", + "n well", + "tro viral", + "▁H ampton", + "▁Ham pton", + "▁Hamp ton", + "▁spec ials", + "▁special s", + "圣 经", + "太 后", + "幼 虫", + "数据 线", + "显示 出", + "\\\\ }$$", + "\\\\} $$", + "\\\\}$ $", + "fr eeze", + "free ze", + "f reeze", + "▁oxid ized", + "瘙 痒", + "追 回", + "飞行 员", + "▁} }{", + "▁}} {", + "▁ }}{", + "由 审判员", + "li ers", + "lier s", + "lie rs", + "l iers", + "族自治州 中级人民法院", + "哈 萨克", + "空气 中", + "▁web cam", + "▁dipl oma", + "▁diplom a", + "▁ 试", + "俄 国", + "的 组合", + "主要 内容", + "问卷 调查", + "pl asty", + "p lasty", + "▁Mer ge", + "▁Merg e", + "▁ Merge", + "enn ials", + "ennial s", + "▁det ects", + "▁detect s", + "劳务 合同纠纷一案", + "人 脸", + "so on", + "s oon", + "it ating", + "ita ting", + "itat ing", + "礼 拜", + "Mu r", + "M ur", + "就 够了", + "▁pr ince", + "▁princ e", + "▁pri nce", + "▁crit ique", + "监 制", + "做好 了", + "做 好了", + "▁ext rav", + "▁extra v", + "▁extr av", + "▁Re porter", + "▁Rep orter", + "▁Report er", + "▁ Reporter", + "▁contract ile", + "▁unexpected ly", + "鼻 炎", + "我们 有", + "▁d ei", + "▁de i", + "sc anner", + "scan ner", + "▁abs urd", + "▁ins erts", + "▁insert s", + "鸟 类", + "bul k", + "b ulk", + "▁S lot", + "▁Sl ot", + "▁Slo t", + "▁ Slot", + "▁h eur", + "▁he ur", + "可供 您选择", + "ou ched", + "ouch ed", + "sec rets", + "secret s", + "Pr eference", + "Pre ference", + "P reference", + "Compat Activity", + "红 茶", + "青 椒", + "▁{ %", + "▁ {%", + "中国 画", + "中 国画", + "是 这个", + "的 优点", + "st ay", + "sta y", + "荆 州", + "nU N", + "n UN", + "桂林 市", + "▁C ly", + "▁Cl y", + "▁F unk", + "▁Fun k", + "▁Fu nk", + "▁rad ios", + "▁radio s", + "▁radi os", + "▁tr actor", + "▁tra ctor", + "▁tract or", + "starts With", + "▁for bidden", + "香 料", + "医疗 卫生", + "然后 告诉我", + "请告诉我 您的选择", + "conf irmed", + "confirm ed", + "日向本院提出 财产保全", + "▁narr atives", + "▁narrative s", + "请仔细阅读 下面这道选择题", + "请 仔细阅读下面这道选择题", + "文 旅", + "中 全会", + "的 课程", + "某某 负担", + "某 某负担", + "▁Sal em", + "▁Sa lem", + "▁Sale m", + "▁st igma", + "▁phosphory lated", + "瓷 器", + "长 子", + "Sk y", + "S ky", + "高 精度", + "▁a ur", + "▁au r", + "▁ aur", + "▁l ord", + "▁lo rd", + "▁ lord", + "De ploy", + "Dep loy", + "card ia", + "古 装", + "备 战", + "武 警", + "金 字", + "▁号 码", + "▁ 号码", + "去年 的", + "去 年的", + "▁Tw elve", + "▁s prite", + "▁sp rite", + "▁spr ite", + "▁ sprite", + "中华人民共和国 土地管理法", + "追 捧", + "速度 和", + "速 度和", + "▁J ag", + "▁Ja g", + "Back up", + "▁Be tty", + "▁Bet ty", + "知识渊博 的人", + "▁Bal let", + "▁Ball et", + "等 诸多", + "组织 中", + "il in", + "ili n", + "i lin", + "更多 信息", + "注册 资金", + "▁he ir", + "▁p erv", + "▁per v", + "▁pe rv", + "▁pay day", + "园 艺", + "iz i", + "i zi", + "多万 元", + "多 万元", + "添加 了", + "添 加了", + "您认为 的", + "▁ 占地面积", + "人民卫生 出版社", + "▁anticip ation", + "▁antic ipation", + "N X", + "读 写", + "EP S", + "E PS", + "应 依法", + "Lo ss", + "L oss", + "继续 进行", + "AC TER", + "ACT ER", + "▁pl ur", + "▁L opez", + "▁Lo pez", + "re levant", + "▁hon esty", + "▁honest y", + "▁hone sty", + "▁individual ized", + "白 领", + "nK en", + "nKe n", + "n Ken", + "请用 您的", + "ar box", + "arb ox", + "▁M ens", + "▁Me ns", + "▁Men s", + "▁E qual", + "▁Equ al", + "▁Eq ual", + "▁ Equal", + "▁ 维", + "Ne ver", + "N ever", + "请您务必 注意", + "在回答 以下这道", + "问题和选项 的内容", + "▁work sheet", + "▁works heet", + "从选项中 选定正确答案", + "具有挑战性的 选择题时", + "▁ast rocytes", + "▁astr ocytes", + "请您务必注意 问题和选项的内容", + "CO PY", + "C OPY", + "pon ge", + "po nge", + "p onge", + "Sec ure", + "▁o zone", + "▁oz one", + "▁L ounge", + "▁Lou nge", + "▁Lo unge", + "%%%% %%%%", + "▁David son", + "▁in efficient", + "交 织", + "相比 于", + "醉酒 后", + "醉 酒后", + "▁B ali", + "▁Bal i", + "▁Ba li", + "bra him", + "工贸 有限公司", + "▁De bian", + "▁Deb ian", + "▁bat ting", + "▁batt ing", + "审慎考虑 您的选择", + "并告诉我 您认为的", + "请用您的 专业知识", + "nEvery one", + "▁work outs", + "▁workout s", + "▁summar izes", + "▁summarize s", + "以下备选答案 可供您选择", + "请用您的专业知识 回答以下问题", + "南阳 市", + "南 阳市", + "以下 命令", + "▁l aughter", + "▁laugh ter", + "▁imp ressions", + "▁impression s", + "▁impress ions", + "约 占", + "理由 正当", + "dor ff", + "dorf f", + "gu ess", + "gue ss", + "▁a vid", + "▁av id", + "▁ avid", + "▁Wes ley", + "current Time", + "混 淆", + "迷 人", + "▁X Y", + "▁ XY", + "开放 式", + "指出 了", + "指 出了", + "ox id", + "li kes", + "like s", + "lik es", + "l ikes", + "▁C hal", + "▁Ch al", + "▁Cha l", + "▁V ERY", + "▁VE RY", + "▁ VERY", + "▁f erm", + "▁fe rm", + "▁fer m", + "nAd min", + "n Admin", + "▁s arcoma", + "▁sar coma", + "▁sarc oma", + "▁advert ise", + "▁advertis e", + "长 短", + "领 略", + "灵敏 度", + "▁S eth", + "▁Se th", + "▁Set h", + "open ssl", + "opens sl", + "XXXX XXXX", + "ell aneous", + "季 后", + "解 散", + "▁L t", + "的一 段", + "的 一段", + "起诉 必须", + "请选择 你认为", + "found land", + "д у", + "不 归", + "此 地", + "专 升本", + "如果 你想", + "如果你 想", + "请选择你认为 合适的答案", + "人 权", + "丫 头", + "丽 莎", + "营 利", + "转 子", + "都 喜欢", + "森林 公园", + "▁J agu", + "▁Ja gu", + "▁Jag u", + "p uppet", + "| [", + "LE N", + "L EN", + "fl uent", + "flu ent", + "f luent", + "▁pione ering", + "▁pioneer ing", + "心 率", + "OT H", + "O TH", + "▁{ /", + "▁ {/", + "吸血 鬼", + "请 审查", + "近 距离", + "严格 执行", + "▁Thom son", + "astruct ural", + "a structural", + "▁file system", + "▁files ystem", + "▁ filesystem", + "▁cent imeters", + "准 时", + "坏 人", + "移 交", + "…… [", + "fin e", + "fi ne", + "f ine", + "▁h oc", + "▁ho c", + "▁ hoc", + "ne num", + "nen um", + "n enum", + "urt les", + "urtle s", + "实际应用 领域", + "▁r ented", + "▁rent ed", + "他 俩", + "录 入", + "面 目", + "co rs", + "cor s", + "c ors", + "▁B yz", + "▁By z", + "▁b lu", + "▁bl u", + "发展 方向", + "人民检察院 以", + "▁d oping", + "▁do ping", + "▁dop ing", + "▁pet rol", + "最高人民法院关于 执行案件立案", + "发 给", + "失 控", + "次 于", + "起 初", + "▁ 开发商", + "第十 三章", + "第十三 章", + "第 十三章", + "选择 是什么", + "▁F loyd", + "▁Flo yd", + "get Type", + "▁cr acked", + "▁crack ed", + "▁contr asting", + "▁contrast ing", + "参 见", + "博物 院", + "在 生活中", + "▁Joy ce", + "▁str aps", + "▁strap s", + "▁disadvant age", + "刷 牙", + "在 同", + "提取 物", + "nI ce", + "随着 我国", + "▁t idal", + "▁ti dal", + "▁tid al", + "Drop down", + "Ext ended", + "▁obs essed", + "▁Attribute Error", + "随 处", + "非常 好的", + "非常好 的", + "▁stabil ize", + "凌 云", + "环 形", + "竹 林", + "乐 意", + "Ow n", + "O wn", + "Draw er", + "D rawer", + "st ance", + "stan ce", + "sta nce", + "{{' }}(", + "▁ch eek", + "▁che ek", + "cont ained", + "▁sandwich es", + "▁sandw iches", + "他 将", + "口 中", + "引 言", + "水 务", + "MP a", + "M Pa", + "乘 进率", + "▁R ise", + "▁Ri se", + "▁Ris e", + "itor ium", + "ito rium", + "请审查 以下问题", + "▁el usive", + "▁ens ured", + "▁ensure d", + "▁St ability", + "作为一名 知识渊博的人", + "Ow nProperty", + "Own Property", + "南 岸", + "垫 付", + "烟 雾", + "智能 家居", + "an dan", + "and an", + "anda n", + "a ndan", + "ef fer", + "eff er", + "▁h ips", + "▁hip s", + "▁hi ps", + "▁ hips", + "On Init", + "O nInit", + "工业 和信息化", + "▁am azon", + "▁ amazon", + "人 流", + "eb o", + "e bo", + "▁A da", + "▁Ad a", + "▁S ham", + "▁Sh am", + "▁Sha m", + "Par allel", + "▁m ornings", + "▁mor nings", + "▁morning s", + "恐 慌", + "nA g", + "n Ag", + "▁c t", + "▁ ct", + "有一 条", + "有 一条", + "ce ls", + "cel s", + "c els", + "只是 为了", + "只 是为了", + "▁Al leg", + "▁All eg", + "▁Sc andin", + "▁Scan din", + "前 瞻", + "房 地", + "雨 后", + "tt o", + "t to", + "nH ol", + "n Hol", + "得到 结果", + "选项 涉及到", + "▁rad iographic", + "▁radio graphic", + "▁radi ographic", + "推 翻", + "人口 与", + "和 个人", + "ep pe", + "与 对照组", + "▁read iness", + "延 边", + "疤 痕", + "以下 的问题和", + "以下的 问题和", + "审阅 这道选择题", + "ter raform", + "以下的问题和 选项涉及到", + "并从给出的选项中 选定正确答案", + "交 响", + "▁p u", + "▁ pu", + "的最 高", + "的 最高", + "roll up", + "▁Fl uid", + "▁Flu id", + "math scr", + "▁S inger", + "▁Sing er", + "▁Sin ger", + "' _", + "▁ 廖", + "日 为", + "瓦 斯", + "跑 去", + "迷 信", + "特别 好", + "▁acc ents", + "▁ac cents", + "▁accent s", + "▁int imid", + "▁intim id", + "共 分", + "有 空", + "诅 咒", + "你不 能", + "你 不能", + "不良 影响", + "St rict", + "Str ict", + "▁centr ifug", + "▁digital ly", + "▁digit ally", + "征 地", + "飞 扬", + "在有 限", + "在 有限", + "▁G ap", + "▁Ga p", + "希望 通过", + "▁nom bre", + "▁ nombre", + "▁coinc ide", + "塔 尔", + "事业 发展", + "kr ainian", + "▁non invasive", + "切 的", + "d ream", + "▁head phones", + "▁re nin", + "▁r enin", + "Game Object", + "▁advert isers", + "▁advertis ers", + "▁advertise rs", + "国有 资产", + "▁ev angel", + "▁Mad agascar", + "▁authent icity", + "▁authentic ity", + "库 里", + "角 质", + "饭 后", + "at u", + "a tu", + "这 玩意", + "▁Ar ms", + "▁Arm s", + "▁S han", + "▁Sh an", + "▁Sha n", + "▁neuro logic", + "▁neur ologic", + "Error Message", + "So n", + "S on", + "吃 起来", + "植物 门", + "的 现状", + "sm tp", + "积极 开展", + "ass oci", + "asso ci", + "ment al", + "men tal", + "m ental", + "▁alk yl", + "▁b rides", + "▁br ides", + "▁brid es", + "▁bride s", + "▁sur plus", + "排 污", + "松 下", + "隐 蔽", + "li ps", + "lip s", + "l ips", + "▁just ification", + "出 众", + "液 化", + "nG O", + "n GO", + "圆的 半径", + "学生 的学习", + "学生的 学习", + "▁an nex", + "▁ann ex", + "▁anne x", + "▁ge ared", + "▁gear ed", + "z s", + "▁ 邹", + "几 分", + "鸡 翅", + "CI S", + "C IS", + "Un s", + "U ns", + "tg o", + "t go", + "问题 上", + "▁M ys", + "▁My s", + "推广 应用", + "oss ip", + "▁E duc", + "▁Ed uc", + "▁Edu c", + "▁Joh ann", + "it eration", + "ite ration", + "iter ation", + "w f", + "中 层", + "打 压", + "大大 的", + "大 大的", + "en ko", + "as InstanceOf", + "▁ ∠", + "tm ax", + "t max", + "▁M am", + "▁Ma m", + "▁CO DE", + "▁ CODE", + "▁t weak", + "▁twe ak", + "Sample s", + "Sam ples", + "S amples", + "in spect", + "ins pect", + "insp ect", + "▁Br owns", + "▁Brown s", + "▁Brow ns", + "▁fac ade", + "▁per ennial", + "▁un conscious", + "▁uncon scious", + "张 伟", + "民 意", + "它 本身", + "{} \\'", + "{}\\ '", + "{ }\\'", + "▁第 一章", + "▁第一 章", + "▁ 第一章", + ")^ {\\\\", + ")^{ \\\\", + ") ^{\\\\", + "stad t", + "sta dt", + "▁Recomm ended", + "▁Recommend ed", + "履 职", + "拓 片", + "活 在", + "S qu", + "Pro d", + "Pr od", + "P rod", + "▁A val", + "▁Av al", + "你 都", + "BL E", + "B LE", + "等式 的", + "等 式的", + "an gs", + "ang s", + "en et", + "ene t", + "e net", + "▁a vg", + "▁av g", + "▁ avg", + "印度 尼西亚", + "▁sim plex", + "▁simple x", + "▁simpl ex", + "调 配", + "最好 不要", + "▁M etric", + "▁Met ric", + "▁ Metric", + "▁Na ples", + "▁Nap les", + "▁disturb ed", + "▁touchdown s", + "远 处", + "雨 花", + "HD L", + "H DL", + "Ki n", + "K in", + "平均 每天", + "平均每 天", + "built in", + "▁reward ed", + "$: \\", + "$ :\\", + "的 记忆", + "的 诊断", + "▁L ey", + "▁Le y", + "▁Jen ny", + "▁Jenn y", + "其中 农业人口", + "▁un even", + "▁une ven", + "▁Pr event", + "▁Pre vent", + "▁nons ense", + "▁partition ing", + "▁Trans formation", + "▁Transform ation", + "不 买", + "留 住", + "▁CO NF", + "▁CON F", + "▁ CONF", + "▁e sta", + "▁est a", + "▁es ta", + "▁ esta", + "▁m ods", + "▁mod s", + "▁mo ds", + "▁ mods", + "▁C ardi", + "▁Car di", + "▁Card i", + "▁proceed ing", + "▁disappe arance", + "▁disappear ance", + "嘴 角", + "王 建", + "迎 合", + "so v", + "s ov", + "可以 进行", + "▁l ista", + "▁li sta", + "▁list a", + "▁ lista", + "海 贼", + "lb l", + "l bl", + "▁A rd", + "▁Ar d", + "城市 管理", + "是 错误的", + "越来 越高", + "越来越 高", + "且 申请执行人", + "▁or acle", + "▁ oracle", + "▁Act ivation", + "▁Activ ation", + "▁ Activation", + "下 山", + "人 居", + "穷 人", + "Ge orge", + "▁N oble", + "▁No ble", + "▁Nob le", + "▁H ollow", + "▁Hol low", + "▁Holl ow", + "▁retic ulum", + "白 斑", + "▁S ag", + "▁Sa g", + "他 把", + "啦 啦", + "木 马", + "案 款", + "试 管", + "驾 照", + "转换 成", + "转 换成", + "es us", + "e sus", + "struct uring", + "入 坑", + "演 义", + "的 类型", + "根据 原告", + "研究 报告", + "as uring", + "asu ring", + "Not Empty", + "▁migr aine", + "依法 须经批准的项目", + "| }", + "创造 出", + "病 患者", + "nc he", + "nch e", + "n che", + "▁E CM", + "▁EC M", + "ur ous", + "uro us", + "u rous", + "nu nder", + "nun der", + "n under", + "计算 器", + "中国 文化", + "通知 如下", + "fi ber", + "fib er", + "f iber", + "在 本次执行程序中", + "▁Ac counts", + "▁Account s", + "▁ Accounts", + "▁gang lion", + "▁Inter state", + "两 款", + "这 组", + "▁ 代表", + "依赖 于", + "▁Col our", + "▁Start up", + "▁ Startup", + "生效之日起 十日内", + "▁Chrom ium", + "inter action", + "围 观", + "得 罪", + "om od", + "omo d", + "o mod", + "▁H ers", + "▁He rs", + "▁Her s", + "if olia", + "dim ensions", + "dimension s", + "d imensions", + "sp awn", + "不 甘", + "汉 书", + "语 境", + "In B", + "I nB", + "了一 年", + "了 一年", + "小数 的", + "小 数的", + "▁i ris", + "▁ir is", + "▁ iris", + "▁游戏 平台", + "司法鉴定 中心", + "un credited", + "东 湖", + "玄 武", + "这一 步", + "这 一步", + "投资或 控股", + "申请 执行的", + "申请执行 的", + "ncon fig", + "nco nfig", + "n config", + "▁borrow ed", + "▁trust worthy", + "精 油", + "▁Gl acier", + "▁first ly", + "回 转", + "稿 件", + "切除 术", + "ar yl", + "ary l", + "a ryl", + "▁b uds", + "▁bu ds", + "▁bud s", + "您 的最佳选择", + "送达了 执行通知书", + "▁inter iors", + "▁interior s", + "他 没有", + "又 包含了", + "nal so", + "nals o", + "n also", + "▁s ucks", + "▁su cks", + "▁suc ks", + "▁suck s", + "自然人 投资或控股", + "工 况", + "nL ow", + "nLo w", + "n Low", + "cl ang", + "c lang", + "▁p ops", + "▁pop s", + "▁po ps", + "▁b ricks", + "▁br icks", + "▁brick s", + "▁dil ution", + "V i", + "с ь", + "一 章", + "粮 油", + "限 时", + "全 明星", + "成功 地", + "社会 组织", + "Sk ill", + "S kill", + "lox acin", + "▁inev itably", + "▁serial ized", + "▁serialize d", + "▁ serialized", + "小 微", + "水电 站", + "水 电站", + "之间 存在", + "▁L ands", + "▁Land s", + "▁Lan ds", + "▁Ro oms", + "▁Room s", + "▁T uple", + "▁Tu ple", + "▁ Tuple", + "▁Jac obs", + "▁Jacob s", + "▁gall ons", + "▁gallon s", + "▁warrant ed", + "话 剧", + "看不 懂", + "看 不懂", + "nC ity", + "n City", + "科学 研究院", + "科学研究 院", + "▁Gib bs", + "know ledge", + "低 端", + "▁L R", + "▁ LR", + "江门 市", + "江 门市", + "一次 函数", + "▁R oma", + "▁Ro ma", + "▁Rom a", + "▁qu ir", + "▁qui r", + "▁ quir", + "▁liqu or", + "eth asone", + "ver ified", + "▁gad gets", + "▁transl ating", + "戴 着", + "细 微", + "no id", + "n oid", + "▁C OX", + "▁CO X", + "既 包含了", + "▁L ing", + "▁Lin g", + "▁Li ng", + "▁ed its", + "▁edit s", + "par ametric", + "param etric", + "para metric", + "paramet ric", + "失 落", + "点 头", + "准确 地", + "要 根据", + "发布 会上", + "发布会 上", + "anch ez", + "anche z", + "▁Py thag", + "▁ev apor", + "▁evap or", + "▁Col eman", + "▁Cole man", + "▁pos itivity", + "▁posit ivity", + "隐 隐", + "再 进行", + "政策 根据", + "ex tras", + "ext ras", + "extra s", + "extr as", + "▁re plicated", + "▁replic ated", + "▁replicate d", + "▁replica ted", + "不 还", + "保 质", + "辨 证", + "▁ 调料", + "ia st", + "ias t", + "i ast", + "▁L ua", + "▁Lu a", + "行政 管理", + "请仔细 浏览", + "并给出 正确答案", + "古 巴", + "缠 绕", + "位数 是", + "位 数是", + "县委 常委", + "县 委常委", + "在面对 以下", + "请您 认真分析", + "▁Dec imal", + "▁ Decimal", + "并告诉我 您的选择", + "在面对以下 选择题时", + "▁econom ist", + "请仔细浏览 以下备选答案", + "请您认真分析 并给出正确答案", + "假 冒", + "全 班", + "来 院", + "金黄 色", + "金 黄色", + "主要 种植", + "住 上海市", + "fl ask", + "Rich ard", + "R ichard", + "▁Bever ly", + "install ation", + "Not ifications", + "Notification s", + "此 生", + "翼 翼", + "Co V", + "成交 量", + "▁S ta", + "▁St a", + "如何 使用", + "▁DO WN", + "▁ DOWN", + "▁T ested", + "▁Te sted", + "▁Test ed", + "▁Tes ted", + "Draw able", + "ovolta ic", + "渣 男", + "英 勇", + "物质 的", + "物 质的", + "Aw are", + "A ware", + "▁d uplex", + "▁du plex", + "▁ duplex", + "▁fire arms", + "▁firearm s", + "▁Land scape", + "▁disappoint ment", + "他 却", + "汲 取", + "bo b", + "b ob", + "▁N ec", + "▁Ne c", + "后 可", + "奢侈 品", + "▁e ps", + "▁ep s", + "▁ eps", + "不断 创新", + "▁Bl ank", + "▁ Blank", + "▁sm arter", + "▁smart er", + "劳务 费", + "▁B org", + "▁Bo rg", + "▁Bor g", + "▁Un iv", + "▁Uni v", + "per ing", + "pe ring", + "p ering", + "① ②", + "区 位", + "纯 洁", + "诗 集", + "AC A", + "A CA", + "wo rm", + "wor m", + "w orm", + "▁P Cs", + "▁PC s", + "▁ PCs", + "可以 裁定", + "▁c ysts", + "▁cy sts", + "▁cyst s", + "▁sp oil", + "▁spo il", + "点 亮", + "保持 了", + "Ij oi", + "ad an", + "ada n", + "a dan", + "ur ger", + "urg er", + "▁M are", + "▁Mar e", + "▁Ma re", + "法 民初字第", + "current ly", + "curr ently", + "▁custom izable", + "▁A UTO", + "▁AU TO", + "▁ AUTO", + "▁p lat", + "▁pl at", + "▁ plat", + "▁E VERY", + "▁EV ERY", + "房地产开发 有限责任公司", + "但债权的实现 取决于被执行人是否有", + "▁' _", + "▁ '_", + "就是 我", + "就 是我", + "并 表示", + "在校 学生", + "ot ron", + "otr on", + "o tron", + "ale igh", + "a leigh", + "▁con serve", + "▁cons erve", + "▁conserv e", + "▁over haul", + "parallel ed", + "paralle led", + "最 先", + "%) ;", + "% );", + "nF eb", + "nFe b", + "n Feb", + "使用 的是", + "使用的 是", + "使 用的是", + "▁m ega", + "▁me ga", + "▁meg a", + "▁ mega", + "nAnd rew", + "n Andrew", + "▁D reams", + "▁Dream s", + "あ る", + "盛 会", + "nK n", + "n Kn", + "不 方便", + "ob ox", + "obo x", + "o box", + "▁play ful", + "pre diction", + "pred iction", + "predict ion", + "▁duplic ates", + "▁duplicate s", + "之 声", + "京 城", + "插 图", + "Ac k", + "A ck", + "眼中 的", + "眼 中的", + "nA ust", + "nC amp", + "nCam p", + "n Camp", + "St able", + "S table", + "pro pag", + "prop ag", + "▁sh uffle", + "▁ shuffle", + "▁sm iling", + "▁res piration", + "▁respir ation", + "▁resp iration", + "▁un subscribe", + "上 进", + "很有 可能", + "很 有可能", + "我是 一个", + "我 是一个", + "isp ens", + "▁ful fil", + "号 牌", + "诗 文", + "_{ (", + "_ {(", + "▁L ig", + "▁Li g", + "企业 形象", + "执行 程序", + "▁s ued", + "▁su ed", + "▁sue d", + "生产建设 兵团", + "nG etting", + "nGet ting", + "n Getting", + "▁Hal ifax", + "中 进行", + "民事 责任", + "▁a uch", + "▁au ch", + "▁De mand", + "▁Dem and", + "▁Hash Set", + "▁ HashSet", + "包 厢", + "方式 和", + "看不 起", + "看 不起", + "▁Ne ut", + "▁bl ur", + "▁blu r", + "▁K ernel", + "▁Ker nel", + "▁ Kernel", + "▁ 要", + "手 足", + "跳 过", + "进 场", + "wh it", + "w hit", + "in tel", + "int el", + "著作权 集体", + "▁Ferr ari", + "▁there of", + "▁per inatal", + "▁peri natal", + "五 六", + "大 象", + "选 址", + "▁o ps", + "▁op s", + "▁ ops", + "nS imple", + "nSim ple", + "nSimpl e", + "n Simple", + "▁Min ecraft", + "▁Mine craft", + "< >", + "族 群", + "ym n", + "y mn", + "为 重点", + "动画 片", + "安装 了", + "现代 农业", + "▁P itch", + "▁Pit ch", + "▁pil gr", + "▁Ed mund", + "▁compre hend", + "可 由", + "小 哥", + "废 气", + "想 吃", + "扶 养", + "▁K um", + "▁Ku m", + "draw able", + "can onical", + "▁inc ision", + "科学记数法的表示 形式为", + "与 李", + "在 各", + "担 负", + "为主 料的", + "上面 这个问题", + "财 运", + "Jo e", + "J oe", + "g kin", + "若干 选项", + "主要 负责人", + "的其他 财产", + "▁polymer ization", + "宋 朝", + "巡 回", + "捆 绑", + "邮 局", + "os m", + "o sm", + "坚定 的", + "坚 定的", + "▁L AN", + "▁LA N", + "▁ LAN", + "开户 银行", + "职业 道德", + "he sus", + "hes us", + "h esus", + "pt ical", + "ptic al", + "p tical", + "sh ader", + "sha der", + "ter ase", + "te rase", + "tera se", + "t erase", + "▁A eros", + "▁Aer os", + "att ices", + "attice s", + "atti ces", + "ki p", + "k ip", + "一直 都是", + "然后 点击", + "计算机 网络", + "这是一道 需", + "分析这些 选项", + "综合运用多 方面", + "▁Par king", + "▁Park ing", + "▁pl otted", + "▁plot ted", + "▁br ighter", + "▁bright er", + "▁dipl omat", + "▁diplom at", + "▁diploma t", + "请仔细 分析这些选项", + "然后告诉我 您的最佳选择", + "这是一道需 综合运用多方面", + "th i", + "t hi", + "保持 在", + "SA TA", + "SAT A", + "S ATA", + "Da ily", + "D aily", + "内容 判断出", + "包含一个 问题和", + "内容判断出 您认为", + "以下内容 包含一个问题和", + "▁Pseud omonas", + "依据问题 内容判断出您认为", + "以下内容包含一个问题和 若干选项", + "前 夕", + "感 性", + "这 儿", + "El l", + "E ll", + "法律 的", + "魔法 师", + "魔 法师", + "or ax", + "ora x", + "o rax", + "▁A FL", + "▁AF L", + "▁A gu", + "▁Ag u", + "▁V oy", + "▁Vo y", + "fil ls", + "fill s", + "f ills", + "▁M aint", + "▁Main t", + "▁Ma int", + "▁Mai nt", + "short cuts", + "▁W ik", + "▁Wi k", + "UM ENT", + "U MENT", + "in itis", + "init is", + "ini tis", + "le ctic", + "lect ic", + "lec tic", + "▁Alex a", + "▁Ale xa", + "▁em pathy", + "▁emp athy", + "▁Est onian", + "▁Eston ian", + "▁Estonia n", + ", {", + "▁A ML", + "▁AM L", + "▁ AML", + "周边 配套", + "▁D ash", + "▁Da sh", + "▁Das h", + "▁ Dash", + "turn ed", + "tur ned", + "▁f b", + "▁ fb", + "erial izer", + "erialize r", + "▁re create", + "▁rec reate", + "毛 细", + "短 片", + "cs c", + "c sc", + "▁H utch", + "▁Chap man", + "▁None theless", + "▁Non etheless", + "县 的", + "拳 头", + "JD K", + "J DK", + "交流 与", + "这个 地图", + "▁H elm", + "▁He lm", + "▁Hel m", + "sp here", + "s phere", + "▁pres umed", + "▁presum ed", + "依 依", + "沙 龙", + "营 商", + "仍不 能", + "仍 不能", + "所用 的", + "所 用的", + "TE MP", + "TEM P", + "T EMP", + "▁AB OUT", + "▁ABO UT", + "ut ively", + "utive ly", + "uti vely", + "▁Bol lywood", + "▁Sett lement", + "▁document ing", + "▁fashion able", + "二 层", + "疏 散", + "的 还是", + "nA mb", + "nAm b", + "n Amb", + "oblast ic", + "obl astic", + "▁vacc inated", + "▁vaccin ated", + "烤 肉", + "热 衷", + "为他 们", + "为 他们", + "审判 庭", + "与被 上诉人", + "与 被上诉人", + "access or", + "▁Stand ing", + "▁Stan ding", + "▁compass ionate", + "▁compassion ate", + "机动车交通事故责任 纠纷一案中", + "机动车交通事故责任纠纷一案 中", + "无 言", + "猕 猴", + "着 作", + "得出 答案", + "龙头 企业", + "is dir", + "on ium", + "oni um", + "给定 的问题", + "给定的 问题", + "▁sup erc", + "▁super c", + "▁non atomic", + "▁ nonatomic", + "毛 衣", + "的 快", + "皮 下", + "IL Y", + "I LY", + "▁Qu ad", + "▁C ookie", + "▁Cook ie", + "▁ Cookie", + "▁climb ed", + "▁clim bed", + "▁cli mbed", + "领 会", + "tc tx", + "t ctx", + "nj obs", + "n jobs", + "eh icles", + "ehicle s", + "lar gest", + "large st", + "larg est", + "▁p aints", + "▁pain ts", + "▁paint s", + "▁pa ints", + "| _", + "超 额", + "在 国外", + "给定 问题", + "▁H undred", + "▁json ify", + "▁Ap artment", + "▁Apart ment", + "D y", + "东 市", + "孔 雀", + "无 毒", + "Pa g", + "P ag", + "ot to", + "ott o", + "o tto", + "这个 行业", + "sequ ent", + "seq uent", + "L y", + "嘴 唇", + "GR E", + "G RE", + "付出 的", + "付 出的", + "▁P lat", + "▁Pl at", + "现在 我会给你", + "依据 给定的问题", + "Api Model", + "仔细阅读 上面这个问题", + "现在我会给你 几个选项", + "请你根据 问题进行分析", + "从选项中选出 合适的答案", + "揭 晓", + "新 书", + "比 方", + "▁C omm", + "▁Com m", + "▁Co mm", + "▁ Comm", + "上面 这段话", + "▁the ology", + "Collect ors", + "Coll ectors", + "Collector s", + "nSimilar ly", + "attach ments", + "attachment s", + "▁cred ential", + "▁ φ", + "双 面", + "eu s", + "e us", + "ass uming", + "att erson", + "atter son", + "'} \\", + "' }\\", + "em ap", + "ema p", + "e map", + "mon ds", + "mond s", + "m onds", + "▁o bey", + "▁ob ey", + "DE VICE", + "DEV ICE", + "Ir eland", + "I reland", + "▁Fin ish", + "▁ Finish", + "▁PE OPLE", + "▁sal iva", + "▁Dragon s", + "▁Drag ons", + "已发生法律效力 的", + "▁ins ufficiency", + "与 传统", + "▁catar act", + "▁Dist inguished", + "N b", + "▁ 星", + "深 海", + "使用 方法", + "Version s", + "Vers ions", + "▁imm obil", + "依法适用 普通程序", + "操 场", + "有 声", + "一分 钟", + "一 分钟", + "至少 要", + "是否 可以", + "in ium", + "ini um", + "▁p leasing", + "▁ple asing", + "▁pleas ing", + "▁plea sing", + "▁assist ants", + "▁assistant s", + "二 三", + "奋 力", + "j Query", + "▁p ests", + "▁pe sts", + "▁pest s", + "▁pes ts", + "\\\\\": \\\\\"", + "▁depict ing", + "▁ 来", + "近 些", + "逃 生", + "fe ng", + "fen g", + "f eng", + "▁c aud", + "▁ca ud", + "opath ology", + "▁Rec ording", + "▁Record ing", + "▁Ge ographic", + "▁Geo graphic", + "▁interfer ing", + "▁interf ering", + "刻 录", + "ka s", + "k as", + "nA pr", + "nAp r", + "n Apr", + "▁D isk", + "▁Dis k", + "▁Di sk", + "▁ Disk", + "ic ators", + "icator s", + "superv ised", + "▁River side", + "▁Rivers ide", + "建 工", + "显存 容量", + "rem oved", + "remove d", + "▁Eff icient", + "波 长", + "科 创", + "红 颜", + "贮 藏", + "M ajor", + "▁m aze", + "▁ma ze", + "▁prosec utor", + "[] {", + "[ ]{", + "▁m oi", + "▁mo i", + "期限届满 前", + "nView s", + "n Views", + "esar ean", + "esare an", + "▁De ploy", + "▁Dep loy", + "▁ Deploy", + "poss ibly", + "亦 是", + "低 迷", + "写 道", + "加 尔", + "筹 划", + "▁ 创办", + "al ist", + "ali st", + "alis t", + "a list", + "▁D onna", + "▁Don na", + "hand led", + "handle d", + "▁sm oked", + "▁smoke d", + "▁gran ules", + "▁granul es", + "▁integr in", + "oo oo", + "Re try", + "Ret ry", + "R etry", + "▁N ath", + "▁Na th", + "▁Nat h", + "申请 执行费", + "申请执行 费", + "出具借条 一份", + "▁rev ival", + "▁t c", + "▁ tc", + "ngo ing", + "n going", + "▁Res idential", + "小 憩", + "都 用", + "第一 季", + "ix ir", + "Sc ott", + "S cott", + "▁trans itional", + "▁transition al", + "▁transit ional", + "九 天", + "欺 诈", + "账 单", + "这样 就", + "ro at", + "olph in", + "web app", + "▁Complex ity", + "▁inher ently", + "▁inherent ly", + "▁carbohyd rates", + "▁carbohydrate s", + "k V", + "校 外", + "牙 膏", + "配 角", + "决策 和", + "ca rs", + "car s", + "c ars", + "从而 达到", + "▁new com", + "▁general ize", + "二 胎", + "对 战", + "数的 定义", + "数 的定义", + "社区 矫正", + "*\\\\ *\\\\", + "res ume", + "sh util", + "shu til", + "▁HT TPS", + "▁HTTP S", + "▁ HTTPS", + "▁bl ending", + "▁blend ing", + "we d", + "w ed", + "以 达到", + "Sl ug", + "▁ac upuncture", + "生产 能力", + "▁V all", + "▁Val l", + "▁Va ll", + "▁Cal vin", + "▁hon ours", + "▁honour s", + "▁refer ee", + "▁refere e", + "▁t actical", + "▁tact ical", + "丽 江", + "变得 更", + "变 得更", + "在 现场", + "老 干部", + "Rub y", + "Ru by", + "新冠 病毒", + "car go", + "c argo", + "▁Gi ovanni", + "▁in compatible", + "up p", + "u pp", + "加 起来", + "时间 段", + "高级 的", + "高 级的", + "uc ci", + "ucc i", + "u cci", + "▁R ex", + "▁Re x", + "▁Y uk", + "▁Yu k", + "执行 到位", + "▁qu as", + "\\' ]))\\", + "\\'] ))\\", + "\\']) )\\", + "▁extra pol", + "▁extr apol", + "eval uation", + "evalu ation", + "太 守", + "慷 慨", + "▁R eb", + "▁Re b", + "▁ Reb", + "or set", + "ors et", + "orse t", + "▁P ond", + "▁Po nd", + "▁Pon d", + "▁Tre aty", + "▁Treat y", + "▁p ushes", + "▁push es", + "mun ition", + "▁Fib onacci", + "新 风", + "航空 航天", + "▁p lex", + "▁pl ex", + "▁ple x", + "▁ plex", + "吃 得", + "成 套", + "泥 土", + "号 房屋", + "an no", + "ann o", + "a nno", + "im ab", + "ima b", + "有的 时候", + "有 的时候", + "正是 因为", + "正 是因为", + "nV ari", + "n Vari", + "▁M ing", + "▁Min g", + "▁Mi ng", + "orph ous", + "oxy genase", + "oxygen ase", + "▁sol vents", + "▁solvent s", + "▁solv ents", + "▁Autom otive", + "总 能", + "cu s", + "c us", + "Le af", + "▁E GF", + "▁EG F", + "▁C trl", + "▁ Ctrl", + "▁Fr anco", + "▁Franc o", + "▁Fra nco", + "Phys ical", + "▁s ickness", + "▁sick ness", + "▁volcan ic", + "▁hyd ration", + "▁zebra fish", + "减 压", + "橡 皮", + "认 清", + "贴 合", + "ux t", + "u xt", + "但是 这", + "▁] ];", + "什么 都不", + "什么都 不", + "民终 字第", + "民 终字第", + "刑 二", + "售 卖", + "洗 脑", + "问 了", + "tt y", + "t ty", + "有效 性", + "▁E UR", + "▁EU R", + "▁ EUR", + "▁D ensity", + "▁aspir in", + "斑 点", + "也能 够", + "也 能够", + "奥斯 卡", + "▁b abe", + "▁bab e", + "▁ba be", + "Imp act", + "block quote", + "(\" @", + "( \"@", + "zo o", + "z oo", + "观众 的", + "▁职务 任免", + "受案 登记表", + "在一定 程度上", + "在 一定程度上", + "▁Bar rett", + "▁Barr ett", + "▁por cine", + "▁clar ified", + "洞 察", + "肉 眼", + "闭 幕", + "哪怕 是", + "▁sy nov", + "▁syn ov", + "请你 根据题意", + "请你根据 题意", + "st ories", + "sto ries", + "stor ies", + "▁giant s", + "▁gi ants", + "▁Ext reme", + "▁Extr eme", + "▁imm ersion", + "▁immers ion", + "皆 是", + "▁T in", + "▁Ti n", + "▁bl amed", + "▁blame d", + "▁C reation", + "▁Creat ion", + "▁Cre ation", + "▁ Creation", + "▁in ferred", + "▁infer red", + "nPublic ation", + "层面 的", + "层 面的", + "ge ns", + "gen s", + "g ens", + "分类 讨论", + "nd oes", + "ndo es", + "n does", + "t Assert", + "▁K olkata", + "nF acebook", + "n Facebook", + "周 三", + "贪 污", + "▁T I", + "▁ TI", + "bi ke", + "b ike", + "▁war fare", + "不 休", + "为 大", + "奖 章", + "小 球", + "fr m", + "f rm", + "层次 的", + "层 次的", + "消失 了", + "设置 的", + "▁f oi", + "▁fo i", + "▁T ours", + "▁To urs", + "▁Tour s", + "▁Tou rs", + "又包含了 选项", + "既包含了 问题", + "Us uario", + "上面这段话 既包含了问题", + "请你根据题意 选出正确的答案", + "书 本", + "喝 茶", + "患 上", + "枕 头", + "IZ E", + "I ZE", + "的 危险", + "▁\\' [", + "nt het", + "nthe t", + "nth et", + "▁Tr ials", + "▁Tri als", + "▁Trial s", + "▁bure auc", + "▁Input Stream", + "▁ InputStream", + "▁phot ographed", + "▁photograph ed", + "е й", + "▁ 紫", + "西 市", + "贯 注", + "▁A H", + "▁ AH", + "中文 名", + "中 文名", + "▁E rd", + "▁Er d", + "gluc ose", + "此题主要 考查了", + "▁hand some", + "▁hands ome", + "▁consult ations", + "▁consultation s", + "▁instant aneous", + "倍数 的", + "倍 数的", + "临床 资料", + "职业 学院", + "ail le", + "a ille", + "▁P itt", + "▁Pi tt", + "▁Pit t", + "▁sl avery", + "▁slave ry", + "李 世", + "漫 漫", + "ey ond", + "e yond", + "▁c hel", + "▁ch el", + "▁che l", + "▁ chel", + "格 斯", + "分子 的", + "分 子的", + "zb ek", + "Dir ective", + "Direct ive", + "▁grand parents", + "nF ire", + "n Fire", + "Ch oose", + "Cho ose", + "ham mer", + "▁e clipse", + "▁ecl ipse", + "▁ eclipse", + "some times", + "s ometimes", + "未发现 可供执行的财产", + "▁Univers ities", + "不 长", + "你说 的", + "你 说的", + "办理 了", + "在各 种", + "在 各种", + "没 见过", + "统计 分析", + "App ro", + "Ap pro", + "od end", + "ode nd", + "oden d", + "红 袖添香网", + "▁doctor ate", + "▁ampl itudes", + "▁amplit udes", + "▁amplitude s", + "上 司", + "的 差", + "表 征", + "CM V", + "C MV", + "功能 和", + "nc om", + "nco m", + "n com", + "▁S ys", + "▁Sy s", + "▁ Sys", + "▁a pk", + "▁ap k", + "▁ apk", + "▁H ess", + "▁He ss", + "li mate", + "lim ate", + "l imate", + "闪 耀", + "ur f", + "u rf", + "一口 气", + "一 口气", + "行业 内", + "行 业内", + "th in", + "thi n", + "t hin", + "▁T ul", + "▁Tu l", + "全方位 的", + "全 方位的", + "▁sl aves", + "▁slave s", + "▁ple aded", + "▁plea ded", + "▁che ating", + "▁cheat ing", + "Ass ignment", + "Assign ment", + "重 返", + "▁中国 大陆", + "▁ 中国大陆", + "▁emb assy", + "▁upper case", + "之 父", + "倒 闭", + "寺 庙", + "放 的", + "手机 上", + "手 机上", + "▁/ > < /", + "▁B old", + "▁Bo ld", + "▁Bol d", + "▁ Bold", + "系 夫妻关系", + "▁av enues", + "▁out ward", + "▁s ibling", + "▁si bling", + "▁novel ist", + "▁nov elist", + "▁par abolic", + "▁para bolic", + "▁parab olic", + ": )", + "一 脚", + "何 如", + "去 向", + "▁ 河南", + "阜 阳市", + "st ores", + "store s", + "sto res", + "stor es", + "多 是", + "漏 水", + "药 业", + "dy n", + "d yn", + "在 公司", + "▁T rees", + "▁Tr ees", + "▁Tre es", + "▁Tree s", + "小额贷款 有限公司", + "▁hist amine", + "黄 帝", + "ev t", + "e vt", + "ig ms", + "igm s", + "符合 减刑", + "▁F lip", + "▁Fl ip", + "▁Canadian s", + "▁Canad ians", + "体 长", + "_( \"", + "_ (\"", + "经过 了", + "经 过了", + "▁To night", + "▁Ton ight", + "▁consect etur", + "专 线", + "天 龙", + "空 腹", + "靠谱 的", + "▁S AM", + "▁SA M", + "pos ites", + "po sites", + "posite s", + "▁re bound", + "▁reb ound", + "z l", + "助 学", + "实 操", + "导 电", + "\"] :\\", + "\" ]:\\", + "nT or", + "nTo r", + "n Tor", + "的最小 值为", + "的最小值 为", + "▁Bened ict", + "▁colour ful", + "大 词典", + "▁tr out", + "▁tro ut", + "▁trou t", + "nSc ient", + "▁P okemon", + "▁Pok emon", + "coll ector", + "collect or", + "▁Behavior al", + "▁inv itations", + "▁invitation s", + "丸 子", + "兼 具", + "如 是", + "时 就", + "请 教", + "np er", + "n per", + "▁B id", + "▁Bi d", + "▁acc r", + "▁ac cr", + "ip lier", + "ipl ier", + "i plier", + "▁Found er", + "▁Fo under", + "▁Ex posure", + "▁Exp osure", + "▁dead lines", + "▁deadline s", + "▁judge ment", + "▁judg ement", + "▁experi mentation", + "▁experiment ation", + "以 求", + "有 心", + "JP G", + "J PG", + "Ob s", + "O bs", + "办 实事", + "▁log out", + "▁logo ut", + "▁ logout", + "▁showc asing", + "关 机", + "带 队", + "nc ode", + "nco de", + "n code", + "▁sm iles", + "▁smile s", + "set Level", + "公 章", + "周 四", + "胡 子", + "}$ {", + "} ${", + "ni st", + "nis t", + "n ist", + "单位 出具", + "没有 办法", + "犯罪 情节", + "▁M ick", + "▁Mi ck", + "▁Mic k", + "oph ore", + "sc opes", + "scope s", + "▁f acet", + "▁fac et", + "▁face t", + "▁fa cet", + "▁Br oken", + "▁Bro ken", + "内 脏", + "格 力", + "站 起来", + "▁g cc", + "▁ gcc", + "ar cer", + "arc er", + "Match ers", + "Matcher s", + "舒 缓", + "Hour s", + "Ho urs", + "H ours", + "ben ef", + "▁f lock", + "▁fl ock", + "▁flo ck", + "作出 明智的选择", + "less ness", + "belongs To", + "▁decentral ized", + "▁fert ilization", + "▁fertil ization", + "哈 希", + "民 申", + "文化 旅游", + "▁No ah", + "人力资源 管理", + "▁inf amous", + "▁qu otation", + "▁quot ation", + "▁quota tion", + "▁Collabor ation", + "再 也", + "喝 了", + "座 的", + "胜 负", + "诸 侯", + "▁L IB", + "▁LI B", + "▁ LIB", + "ew ood", + "e wood", + "ur eka", + "ure ka", + "▁com missions", + "▁comm issions", + "▁commission s", + "Be ta", + "B eta", + "}` ,\\", + "}`, \\", + "} `,\\", + "▁b unk", + "▁bu nk", + "▁{ }\",", + "▁{} \",", + "▁{}\" ,", + "高新技术 企业", + "path name", + "▁C ourses", + "▁Co urses", + "▁Cour ses", + "▁Course s", + "此 项", + "王 妃", + "ast ric", + "astr ic", + "中医药学 名词审定委员会", + "也 更", + "听 的", + "条 纹", + "餐 具", + "▁ST ATE", + "▁STAT E", + "▁ STATE", + "▁He arts", + "▁Heart s", + "▁Hear ts", + "▁Abs olute", + "▁ Absolute", + "著作权集体 管理协会", + "凶 手", + "天 平", + "计 较", + "▁и з", + "▁Dis patch", + "▁ Dispatch", + "▁Th inking", + "▁Think ing", + "▁Thin king", + "▁understand able", + "▁D G", + "▁ DG", + "▁k Hz", + "▁ kHz", + "re cht", + "rec ht", + "▁f ats", + "▁fa ts", + "▁fat s", + "ri ates", + "ria tes", + "riate s", + "r iates", + "人力资源和社会保障 局", + "海 盗", + "▁东 方", + "▁ 东方", + "深入 开展", + "al coh", + "alc oh", + "收费是 每人", + "ab bage", + "abb age", + "▁t rape", + "▁tr ape", + "▁tra pe", + "▁trap e", + "att ered", + "atter ed", + "▁And reas", + "▁Andre as", + "▁Andrea s", + "▁Andr eas", + "其他 财产可供执行", + "hib ernate", + "ounc ement", + "ounce ment", + "▁mon onuclear", + "求 是", + "而 对", + "ar med", + "arm ed", + "nF ound", + "n Found", + "请您 根据您的", + "verte br", + "nl anguage", + "n language", + "▁ 淋浴", + "可以 刷卡", + "判断 和知识", + "浏览 备选答案", + "▁CON FIG", + "▁CONF IG", + "▁ CONFIG", + "▁Bald win", + "▁pub lishes", + "▁publish es", + "▁sur rogate", + "判断和知识 回答以下问题", + "State ToProps", + "authent icate", + "读 本", + "▁St yles", + "▁Style s", + "▁Styl es", + "▁ Styles", + "▁res umed", + "▁resume d", + "workflow s", + "▁myocard ium", + "抗 癌", + "热 处理", + "ac ea", + "ace a", + "a cea", + "转为 普通程序", + "▁D iversity", + "▁Spec ification", + "▁Specific ation", + "▁ Specification", + "子 集", + "开 元", + "梯 度", + "竞 价", + "AD I", + "A DI", + "大 教堂", + "资格 证", + "▁cyst eine", + "prot ection", + "prote ction", + "各 家", + "宣 称", + "深 思", + "赛 场", + "毕业 的", + "毕 业的", + "Tr aining", + "Tra ining", + "Train ing", + "格 的", + "R pc", + "rel ax", + "年平均 气温", + "经济 的发展", + "经济的 发展", + "Hash Code", + "ing ement", + "inge ment", + "▁certain ty", + "怀 里", + "摆 在", + "裂 纹", + "pr efer", + "pre fer", + "pref er", + "p refer", + "▁sk ies", + "▁ski es", + "▁Le vels", + "▁Level s", + "▁Lev els", + "提出 的撤诉申请", + "提出的 撤诉申请", + "▁C alling", + "▁Cal ling", + "▁Call ing", + "▁pl aques", + "▁plaque s", + "▁Met adata", + "▁Meta data", + "▁ Metadata", + "痊 愈", + "风险 管理", + "er ated", + "era ted", + "erate d", + "e rated", + "▁nod ules", + "▁M essages", + "▁Message s", + "▁Mess ages", + "▁ Messages", + "Date Format", + "文 联", + "潜 伏", + "选 了", + "Lo rem", + "L orem", + "em oji", + "emo ji", + "le ter", + "let er", + "lete r", + "l eter", + "my batis", + "ost atin", + "ostat in", + "osta tin", + "▁occ urrences", + "▁occurrence s", + "dynamic s", + "dyn amics", + "dynam ics", + "d ynamics", + "A k", + "拍 了", + "ig t", + "i gt", + "▁r x", + "▁ rx", + "共同 的", + "▁S omal", + "▁So mal", + "▁Som al", + "▁We ber", + "▁Web er", + "▁adm ire", + "▁admir e", + "▁astr onaut", + "▁remember ing", + "恒 温", + "qu ist", + "quis t", + "▁c ans", + "▁can s", + "▁ca ns", + "▁s age", + "▁sa ge", + "▁sag e", + "遥 感", + "em i", + "e mi", + "FA CE", + "F ACE", + "am mers", + "amm ers", + "▁rough ness", + "▁re placements", + "▁replac ements", + "▁replacement s", + "▁replace ments", + "藏 着", + "▁W ei", + "▁We i", + "▁H oll", + "▁Hol l", + "▁Ho ll", + "Can ada", + "op ause", + "opa use", + "o pause", + "▁Alger ia", + "音像 著作权集体管理协会", + "的 电", + "自 发", + "言 之", + "通 胀", + "DO T", + "D OT", + "nF ort", + "nFor t", + "n Fort", + "▁al kal", + "▁alk al", + "▁neutr ino", + "▁lever aging", + "他 想", + "叹 息", + "并 就", + "救 济", + "药 房", + ")( \"", + ") (\"", + "创建 的", + "创 建的", + "▁H ole", + "▁Hol e", + "▁Ho le", + "▁v oor", + "▁vo or", + "ont ology", + "onto logy", + "▁B ET", + "▁BE T", + "el man", + "elm an", + "▁wh olly", + "▁C urrency", + "▁ Currency", + "Calcul ator", + "Calc ulator", + "又 将", + "越 秀", + "软 化", + "名下 位于", + "基础设施 建设", + "add Widget", + "Migration s", + "M igrations", + "成 龙", + "水 体", + "王 家", + "正 处于", + "▁co ils", + "▁coil s", + "▁a while", + "▁staff ing", + "▁legisl ators", + "S r", + "只 看", + "常 有", + "棋 子", + "站 立", + "聊 聊", + "作品 中", + "条形 码", + "那么 在", + "深入 推进", + "▁o mit", + "▁om it", + "▁is let", + "nEvery thing", + "n Everything", + "亲 和", + "近 百", + "音乐 的", + "▁gen omics", + "▁genomic s", + "▁î n", + "曾 多次", + "▁J ong", + "▁Jo ng", + "▁Jon g", + "▁\" \");\\", + "▁\"\" );\\", + "▁\"\") ;\\", + "▁un int", + "▁u nint", + "▁uni nt", + "▁c aries", + "▁car ies", + "▁ca ries", + "▁nucle otides", + "▁nucleotide s", + "三 农", + "nB ob", + "nBo b", + "n Bob", + "nJ une", + "nJun e", + "n June", + "▁And ré", + "▁Andr é", + "▁g reeting", + "▁gre eting", + "▁greet ing", + "惆 怅", + "惩 戒", + "文 凭", + "皇 冠", + "济宁 市", + "济 宁市", + "▁d are", + "▁da re", + "▁dar e", + "▁d yes", + "▁dy es", + "▁dye s", + "▁n ets", + "▁ne ts", + "▁net s", + "▁ nets", + "▁sm ells", + "▁smell s", + "▁str ipe", + "▁stri pe", + "▁strip e", + "▁ stripe", + "出 击", + "微 分", + "高中 的", + "高 中的", + "ip el", + "ipe l", + "i pel", + "▁S lim", + "▁Sl im", + "na ming", + "nam ing", + "n aming", + "▁Lore ntz", + "▁Loren tz", + "▁N G", + "▁ NG", + "▁P s", + "▁ Ps", + "不 包括", + "公里 的", + "公 里的", + "刷 题", + "拥 挤", + "木 瓜", + "** (", + "工作 时", + "nC le", + "nCl e", + "as List", + "▁Lib ya", + "Sup plier", + "▁re count", + "▁rec ount", + "▁correspond ent", + "两 车", + "出 让", + "答 疑", + "装 载", + "豌 豆", + "遗 失", + "WO R", + "W OR", + "人数 的", + "人 数的", + "re mark", + "rem ark", + "▁her oin", + "▁hero in", + "▁e ternal", + "▁et ernal", + "▁workflow s", + "▁ workflows", + "Does NotExist", + "▁volunte ering", + "▁volunteer ing", + "▁ 先", + "记 账", + "贴 士", + "的 几个", + "ot in", + "oti n", + "o tin", + "资格 证书", + "资格证 书", + "ro red", + "ror ed", + "r ored", + "▁L ars", + "▁La rs", + "▁Lar s", + "▁a top", + "▁at op", + "Sp here", + "S phere", + "ull ary", + "ulla ry", + "二〇一六年 六", + "K D", + "全 神", + "天 府", + "造 影", + "(\" \",", + "(\"\" ,", + "( \"\",", + "▁M IL", + "▁MI L", + "刑事 判决书", + "▁S hack", + "▁Sh ack", + "▁Sha ck", + "CONT ENT", + "nStat istics", + "n Statistics", + "冷 凝", + "出 汗", + "教 的", + "UN IT", + "▁T aj", + "▁Ta j", + "那么 这个", + "dec lare", + "declar e", + "decl are", + "not hing", + "no thing", + "n othing", + "Web Socket", + "王 牌", + "编 者", + "平均 每", + "依据 是什么", + "imp act", + "▁< %", + "▁ <%", + "▁P GA", + "▁PG A", + "▁p ods", + "▁po ds", + "▁pod s", + "通过本院 或直接向", + "▁sl aughter", + "▁prot otypes", + "▁prototype s", + "▁proto types", + "她 和", + "悉 尼", + "清 扫", + "私 家", + "远 古", + "hi d", + "h id", + "on io", + "oni o", + "o nio", + "违法 所得", + "am ble", + "amb le", + "ー ル", + "化 身", + "岛 上", + "▁ 言情", + "这 东西", + "环境 卫生", + "公诉机关 认为", + "▁Ch anged", + "▁Change d", + "▁Chang ed", + "▁Chan ged", + "▁ Changed", + "▁Coast al", + "▁Machine s", + "▁Mach ines", + "dep recated", + "nM icrosoft", + "nMicro soft", + "n Microsoft", + "有一 位", + "有 一位", + "▁T BI", + "▁TB I", + "未经 法庭", + "二〇一六年 四月", + "二〇一六年四 月", + "▁jud ging", + "▁judg ing", + "▁carbon ate", + "▁carb onate", + "和 控制", + "Pro du", + "Prod u", + "P rodu", + "▁T uring", + "▁Tur ing", + "▁Tu ring", + "▁ т", + "的手 段", + "的 手段", + "▁p rag", + "▁pr ag", + "▁pra g", + "▁un le", + "nAc cept", + "n Accept", + "▁inter rog", + "AU TO", + "A UTO", + "nP rove", + "nPro ve", + "nPr ove", + "nProv e", + "▁a rose", + "▁ar ose", + "依据 已经发生法律效力的", + "互 换", + "野 心", + "▁Not ch", + "▁f east", + "▁fe ast", + "▁feas t", + "▁re play", + "▁rep lay", + "▁Im migration", + "▁Imm igration", + "交 接", + "必 修", + "直 言", + "看 懂", + "操作 简单", + "nC oll", + "nCol l", + "nCo ll", + "n Coll", + "▁G ael", + "▁Ga el", + "▁Qu iz", + "▁Kn ock", + "▁epit opes", + "▁epitope s", + "庆 幸", + "日 历", + "稳 产", + "送 餐", + "ze k", + "z ek", + "的 收入", + "实习 律师", + "\\' })\\", + "\\'} )\\", + "▁* */\\", + "▁** /\\", + "▁ **/\\", + "▁Pow der", + "plus plus", + "用科学记数法 表示为", + "▁cat hedral", + "▁Runtime Error", + "则 在", + "朗 诵", + "Do g", + "D og", + "命运 的", + "拼 多多", + "nw ww", + "n www", + "ri tt", + "rit t", + "r itt", + "▁f us", + "▁fu s", + "市委 常委", + "市 委常委", + "▁c ron", + "▁cr on", + "▁cro n", + "▁ cron", + "▁d ell", + "▁de ll", + "▁del l", + "rystal line", + "rystall ine", + "▁cart ridge", + "▁adapt ations", + "▁adaptation s", + "编 纂", + "赶 上", + "QS tring", + "Q String", + "本院 审理过程中", + "本院审理 过程中", + "▁cerebell ar", + "▁leuk ocytes", + "▁leukocyte s", + "完 好", + "新 老", + "诺 基亚", + "ar bon", + "arb on", + "ri ved", + "riv ed", + "rive d", + "r ived", + "为终审 判决", + "▁Euro pa", + "▁Eur opa", + "妇 幼", + "消 炎", + "等 边", + "ul g", + "u lg", + "自然 灾害", + "pan das", + "pand as", + "▁c rawl", + "▁cra wl", + "▁Lat via", + "▁st arters", + "▁start ers", + "▁star ters", + "▁starter s", + "多 达", + "旅 途", + "BA D", + "B AD", + "ll vm", + "FAIL ED", + "FAI LED", + "Index ed", + "▁maxim izing", + "▁multi plicity", + "客 家", + "神 木", + "选 的", + "郑 某", + "nP e", + "n Pe", + "▁W ii", + "▁Wi i", + "oot ers", + "oo ters", + "ooter s", + "o oters", + "▁bi ases", + "▁bias es", + "▁fr aming", + "▁fra ming", + "卡 斯", + "日 程", + "是 好", + "读 完", + "nC ap", + "n Cap", + "上市 时间", + "nT owns", + "nTown s", + "roll ment", + "▁particip ates", + "▁participate s", + "警 务", + "遗 漏", + "小时 后", + "最早 的", + "等量 关系", + "nm kdir", + "n mkdir", + "Term inal", + "istr ator", + "给你 的", + "给 你的", + "as tings", + "ast ings", + "asting s", + "▁s immer", + "▁sim mer", + "▁treat y", + "▁tre aty", + "time line", + "tim eline", + "我 被", + "藏 族", + "远程 仓库", + "he avy", + "hea vy", + "li pid", + "lip id", + "▁Max im", + "▁Ma xim", + "▁re cap", + "▁rec ap", + "▁default dict", + "详 尽", + "跨 界", + "雪 山", + "op edic", + "ope dic", + "oped ic", + "▁C hall", + "▁Ch all", + "▁Cha ll", + "▁Chal l", + "nJan uary", + "n January", + "▁Creat or", + "▁Cre ator", + "▁ Creator", + "以 待", + "养 分", + "ve nv", + "ven v", + "v env", + "▁R im", + "▁Ri m", + "▁M arian", + "▁Mar ian", + "▁Ma rian", + "▁Maria n", + "▁Mari an", + "▁bott len", + "▁bottle n", + "号民事调解书 已经发生法律效力", + "ó s", + "游 离", + "ri ke", + "rik e", + "r ike", + "ad emy", + "ade my", + "adem y", + "▁DE LETE", + "▁ DELETE", + "▁inaccur ate", + "正 品", + "ny t", + "n yt", + "会 提供", + "安全 和", + "加快 推进", + "进行 调解", + "▁A SAP", + "▁AS AP", + "▁eleg ans", + "▁wear able", + "债权依法 受法律保护", + "号民事调解书 的本次执行程序", + "▁ 乔", + "乡村 人口", + "Qt Gui", + "▁Ch ic", + "▁Chi c", + "add ons", + "addon s", + "▁Al ter", + "▁Alt er", + "▁ Alter", + "▁sp rink", + "▁spr ink", + "▁card board", + "▁ident ifiable", + "▁ 邵", + "的 行业", + "教学 工作", + "▁NE WS", + "▁NEW S", + "▁m ating", + "▁mat ing", + "▁ma ting", + "assert Raises", + "CH A", + "C HA", + "PL A", + "P LA", + "ok s", + "o ks", + "技术 的发展", + "技术的 发展", + "▁S ense", + "▁Se nse", + "▁Sen se", + "▁Sens e", + "▁ Sense", + "Del ivery", + "▁toler ate", + "Object Name", + "▁dys plasia", + "以 保证", + "认证 的", + "充分 肯定", + "特色 产业", + "\\' \\',", + "\\'\\ ',", + "\\'\\' ,", + "io ids", + "ioid s", + "i oids", + "▁so uls", + "▁sou ls", + "▁soul s", + "cont inence", + "contin ence", + "光 阴", + "接触 到", + "管理 器", + "nm ay", + "n may", + "▁FP GA", + "▁ FPGA", + "▁l unar", + "▁lu nar", + "是在 法律允许", + "▁Chile an", + "▁Chi lean", + "sim ulation", + "以 北", + "底 的", + "涉 外", + "高 雅", + "HP V", + "H PV", + "GE NER", + "GEN ER", + "G ENER", + "▁sus pend", + "▁susp end", + "re stricted", + "▁l u", + "▁ lu", + "大家 对", + "nT rad", + "nTr ad", + "▁A viv", + "▁Av iv", + "▁ach ievable", + "er b", + "e rb", + "的 特性", + "的 经典", + "es tro", + "est ro", + "estr o", + "▁a roma", + "▁ar oma", + "▁arom a", + "▁aff iliation", + "▁affil iation", + "开 具", + "赔 付", + "阵 阵", + "▁o rn", + "▁or n", + "▁ orn", + "被执行人 无", + "▁Ven us", + "▁Ve nus", + "▁l odge", + "▁lod ge", + "现 申请执行人", + "▁Check s", + "▁Che cks", + "▁ Checks", + "▁repair ing", + "城 东", + "城镇 化", + "是无 法", + "是 无法", + "高 强度", + "数据 处理", + "B ritish", + "um etric", + "u metric", + "dispatch er", + "disp atcher", + "▁ 欧", + "说 一句", + "▁P IN", + "▁PI N", + "▁ PIN", + "▁Pharm acy", + "▁Pharmac y", + "中 含", + "繁 忙", + "有 特殊", + "耐 腐蚀", + "本院 查明", + "ot ation", + "ota tion", + "▁sub way", + "▁B iography", + "▁Bi ography", + "春 夏", + "体育 场", + "▁b apt", + "▁ba pt", + "ch ains", + "chain s", + "cha ins", + "chai ns", + "▁Jack ie", + "▁Jac kie", + "二 本", + "树 种", + "止 损", + "因数 的", + "因 数的", + "近似 数", + "希望 能够", + "希望能 够", + "考试 成绩", + "Car bon", + "C arbon", + "med ical", + "m edical", + "▁F ormal", + "▁For mal", + "▁Form al", + "▁Tr igon", + "▁Tri gon", + "两 根", + "小 华", + "铁 皮", + "WI TH", + "W ITH", + "ra il", + "r ail", + "品牌 形象", + "▁im pe", + "▁imp e", + "许可 中途退", + "land er", + "la nder", + "lan der", + "l ander", + "▁Br ass", + "▁Bra ss", + "▁Bras s", + "il iated", + "ili ated", + "ilia ted", + "iliate d", + "nSchool s", + "nSch ools", + "▁Colon ial", + "▁explo its", + "▁exploit s", + "H Q", + "▁A j", + "▁安 徽", + "▁ 安徽", + "社区 居民", + "em ann", + "ema nn", + "eman n", + "e mann", + "▁empir ically", + "▁empirical ly", + "O l", + "何 为", + "剪 切", + "安 稳", + "RN G", + "R NG", + "▁O c", + "属 植物", + "高 标准", + "可以 上诉", + "▁rad iol", + "▁radio l", + "▁radi ol", + "▁ radiol", + "Inter rupt", + "inst agram", + "▁rob otics", + "▁robot ics", + "▁robotic s", + "▁separ able", + "x u", + "绝 世", + "出现 问题", + "▁H ire", + "▁Hi re", + "▁Hir e", + "▁c rab", + "▁cr ab", + "▁cra b", + "如 发现被执行人", + "▁s andbox", + "▁sand box", + "▁ sandbox", + "不 时", + "宫 殿", + "给 药", + "这 与", + "一直 未", + "宜昌 市", + "走出 去", + "走 出去", + "la ws", + "law s", + "l aws", + "Gr and", + "G rand", + "▁congr uent", + "▁congru ent", + "z c", + "nB o", + "n Bo", + "abol ism", + "同 龄", + "炫 耀", + "播放 器", + "base Url", + "Number Of", + "▁Prime ra", + "▁Prim era", + "序 幕", + "ns l", + "n sl", + "▁P riv", + "▁Pr iv", + "▁Pri v", + "一定 程度上", + "一定程度 上", + "um ping", + "ump ing", + "县人民法院 作出的", + "▁meth anol", + "廉 价", + "此 书", + "ni mg", + "nim g", + "n img", + "进行 计算即可", + "进行计算 即可", + "它 会", + "室 温", + "杯 子", + "会展 中心", + "▁Mar itime", + "▁Mari time", + "▁news letters", + "▁newsletter s", + "依法 应", + "U uid", + "▁ted ious", + "▁ 六", + "三 方", + "借 到", + "国 画", + "小 狗", + "机 等", + "白 宫", + "预 留", + "ur m", + "u rm", + "人物 的", + "人 物的", + "结婚 了", + "设计 中", + "公共 场所", + "▁P OSS", + "▁PO SS", + "▁POS S", + "▁Ut ils", + "▁Util s", + "▁ Utils", + "▁ra iny", + "▁rain y", + "Con cept", + "▁c apped", + "▁cap ped", + "▁ca pped", + "▁por celain", + "Io T", + "I oT", + "九龙 坡", + "编辑 器", + "CL AI", + "CLA I", + "详细 内容", + "▁w izard", + "▁ wizard", + "sub mission", + "▁Advert ising", + "个 案", + "放 手", + "▁re location", + "▁rel ocation", + "性 情", + "金 星", + "治疗 前", + "np ath", + "n path", + "▁ з", + "五 彩", + "抬 起", + "腰 部", + "Le e", + "L ee", + "]] ;\\", + "] ];\\", + "id an", + "ida n", + "i dan", + "车牌 号为", + "PY THON", + "To Array", + "▁P ocket", + "▁wave form", + "类 比", + "繁 多", + "不能 用", + "不 能用", + "'} ,\\", + "' },\\", + "il ee", + "ile e", + "i lee", + "一步 一步", + "▁ext rac", + "▁extra c", + "▁extr ac", + "▁craft ing", + "▁phosphat idyl", + "▁ 干", + "编写 的", + "编 写的", + "ic eps", + "ice ps", + "big cup", + "nS hips", + "nSh ips", + "▁desper ately", + "▁desperate ly", + "倍 的", + "太 低", + "说 她", + "▁p lea", + "▁pl ea", + "▁ple a", + "▁T ales", + "▁Ta les", + "▁Tal es", + "▁Tale s", + "▁broad casts", + "▁broadcast s", + "> ×", + "王 府", + "双床 间", + "来 解决", + "要做 好", + "要 做好", + "nF ac", + "n Fac", + "▁P TH", + "▁PT H", + "▁s paced", + "▁sp aced", + "▁space d", + "▁spac ed", + "▁spa ced", + "▁th rone", + "▁thr one", + "▁thro ne", + "▁John ston", + "▁Johns ton", + "▁F OX", + "▁FO X", + "没有 那么", + "没 有那么", + "研究 领域", + "▁tip o", + "▁ti po", + "▁ tipo", + "ital ic", + "ita lic", + "ex pires", + "exp ires", + "▁yog urt", + "Sub scribe", + "▁do ctrine", + "▁ М", + "为 先", + "地 把", + "MI S", + "M IS", + "服务 质量", + "综合 考虑", + "pr ior", + "pri or", + "p rior", + "▁M oses", + "▁Mo ses", + "▁Mos es", + "▁c locks", + "▁cl ocks", + "▁clock s", + "▁s lated", + "▁sl ated", + "▁slate d", + "Prim itive", + "▁foot wear", + "▁mult ipro", + "▁multi pro", + "▁multip ro", + "▁mascul ine", + "布 莱", + "闲 置", + "消费 品", + "等 形式", + "az ol", + "azo l", + "▁P NG", + "▁PN G", + "▁ PNG", + "▁B read", + "▁Br ead", + "▁Bre ad", + "经人介绍 相识", + "违 章", + "逆 天", + "▁ 教师", + "对 这些", + "汕头 市", + "汕 头市", + "ank ton", + "▁sh util", + "▁shut il", + "▁ shutil", + "▁disc ern", + "▁Concept s", + "利 斯", + "即 成", + "奇 异", + "所 见", + "置 身", + "▁m oms", + "▁mom s", + "▁mo ms", + "nI rish", + "om ized", + "omi zed", + "▁ch arger", + "▁char ger", + "▁charg er", + "▁charge r", + "prob ability", + "▁distingu ishing", + "▁distinguish ing", + "有 待", + "ji e", + "j ie", + "参观 了", + "情人 节", + "▁G SM", + "▁GS M", + "▁ GSM", + "▁New man", + "▁Appe als", + "▁Appeal s", + "某某 到庭参加诉讼", + "▁ord ained", + "▁Arch itects", + "▁Architect s", + "▁Struct ures", + "▁Structure s", + "UG H", + "U GH", + "Op acity", + "▁Soph ie", + "▁park ed", + "▁Up grade", + "▁ Upgrade", + "▁Port folio", + "▁insert ing", + "攀 升", + "iO iJ", + "疫情防控 工作", + "Cl icked", + "Click ed", + "本判决 为终审判决", + "De ployment", + "Deploy ment", + "内 向", + "进 门", + "GA N", + "G AN", + "Ph p", + "P hp", + "传说 中的", + "▁w ifi", + "▁wi fi", + "▁ wifi", + "in arily", + "inar ily", + "▁Esc ort", + "▁Christ ie", + "▁Chris tie", + "_) \\", + "_ )\\", + "能 达到", + "▁D up", + "▁Du p", + "as ome", + "a some", + "▁b urger", + "▁bur ger", + "▁burg er", + "INST ANCE", + "厉害 的", + "nW ood", + "n Wood", + "▁C razy", + "▁Cr azy", + "▁Cra zy", + "▁Com mod", + "▁Comm od", + "commit tee", + "▁Con version", + "▁Co nversion", + "▁Conv ersion", + "▁ Conversion", + "ч а", + "华 尔", + "真 好", + "饥 饿", + "VE GF", + "ib ia", + "ibi a", + "i bia", + "▁cor ridor", + "Inject able", + "▁un paralleled", + "中 卫", + "譬 如", + "目的 观察", + "▁K err", + "▁Ke rr", + "▁Ker r", + "▁Ph osph", + "▁expect ancy", + "对 焦", + "有 各", + "甘 蔗", + "从来 不", + "自己 做", + "nK ing", + "n King", + "po und", + "p ound", + "ri ding", + "rid ing", + "r iding", + "▁expl ode", + "▁explo de", + "U F", + "凝 结", + "力 强", + "KT V", + "K TV", + "想象 的", + "没有 再", + "al ez", + "ale z", + "a lez", + "You ng", + "做题 的思路", + "▁Ar lington", + "吸 尘", + "ng r", + "n gr", + "反 过来", + "感觉 很", + "ère s", + "è res", + "▁de cks", + "▁dec ks", + "▁deck s", + "▁de vote", + "▁dev ote", + "▁Custom s", + "沙 坪", + "mi xin", + "mix in", + "m ixin", + "▁w oke", + "▁wo ke", + "分析和 依据", + "▁Ha iti", + "▁Hait i", + "通 气", + "EN U", + "E NU", + "▁h d", + "▁ hd", + "主干 道", + "他们 都", + "他 们都", + "关心 的", + "关 心的", + "创作 者", + "创 作者", + "nD er", + "nDe r", + "n Der", + "质量 控制", + "lo ver", + "lov er", + "love r", + "l over", + "▁res usc", + "并给出你的 解题", + "an aconda", + "ana conda", + "▁Land ing", + "▁Lan ding", + "从选项中选择出 合适的答案", + "并给出你的解题 分析和依据", + "拖 鞋", + "超 人", + ",, ,", + ", ,,", + "st or", + "sto r", + "s tor", + "到底 是什么", + "到底是 什么", + "▁na ughty", + "红 球", + "街 区", + "ho e", + "h oe", + "st y", + "s ty", + "优异 的", + "优 异的", + "宅 基地", + "▁fl own", + "▁flo wn", + "▁flow n", + "▁t reas", + "▁tr eas", + "▁tre as", + "s urgical", + "帮 他", + "战 机", + "无 偿", + "求 精", + "着 她", + "▁Con cer", + "▁Conc er", + "▁Fal con", + "▁show cases", + "▁showcase s", + "▁showc ases", + "以 赴", + "Min d", + "Mi nd", + "M ind", + "Bu ilt", + "B uilt", + "并做出 解释", + "▁sne ak", + "极 少", + "LP L", + "L PL", + "性能 和", + "nD ou", + "nDo u", + "缓刑 一年", + "▁F ors", + "▁For s", + "▁Fo rs", + "▁re hab", + "book ing", + "bo oking", + "b ooking", + "选出正确的答案 并做出解释", + "告 白", + "重 构", + "ID A", + "I DA", + "会 选择", + "的 直线", + "▁U SS", + "▁US S", + "数的 绝对值", + "数 的绝对值", + "ATP ase", + "上诉于 江苏省", + "▁cred ible", + "▁ credible", + "华 语", + "沉 重", + "ch y", + "c hy", + "马鞍 山市", + "pl ings", + "pling s", + "p lings", + "Tr acking", + "Track ing", + "▁Pract ices", + "▁Practice s", + "py l", + "p yl", + "of ib", + "o fib", + "Tr avel", + "Tra vel", + "T ravel", + "▁Be hind", + "位 和", + "议 论", + "on et", + "one t", + "o net", + "nF ish", + "申请执行人 亦未", + "申请执行人亦 未", + "Get Mapping", + "h q", + "▁ 韦", + "久 久", + "你 和", + "全 等", + "勤 劳", + "怪 的", + "点 心", + "才 开始", + "现场 照片", + "▁Di rac", + "▁Dir ac", + "▁b abel", + "▁bab el", + "▁ba bel", + "▁babe l", + "▁ babel", + "▁W izard", + "▁ Wizard", + "ku be", + "kub e", + "k ube", + "▁M OS", + "▁MO S", + "▁ MOS", + "融资 租赁", + "通俗 易懂", + "au ght", + "augh t", + "aug ht", + "a ught", + "Or Default", + "▁Raj asthan", + "▁propag anda", + "万 字", + "普 惠", + "这 在", + "自诉 人", + "▁pl eth", + "▁ple th", + "坚 硬", + "家 政", + "缺 氧", + "先天 性", + "否 命题", + "Form ula", + "▁rec ursion", + "▁recurs ion", + "▁territ orial", + "▁Revolution ary", + "动 人", + "悲 哀", + "武 士", + "状 的", + "要 先", + "为己 任", + "有 网友", + "CL AS", + "CLA S", + "C LAS", + "ph ony", + "phon y", + "▁Al ps", + "▁Alp s", + "Mar shal", + "▁Lanka n", + "▁Lan kan", + "▁Lank an", + "ung arian", + "正确答案和 做题的思路", + "不 加", + "寄 托", + "▁武 汉", + "▁ 武汉", + "理论 研究", + "gr aded", + "grad ed", + "grade d", + "gra ded", + "▁World wide", + "年获 得", + "年 获得", + "▁h ap", + "▁ha p", + "co eff", + "LO AT", + "也有 一些", + "也 有一些", + "▁C ran", + "▁Cr an", + "▁Cra n", + "▁RE AL", + "间 谍", + "▁' ',", + "▁'' ,", + "▁ '',", + "▁ma ize", + "申请 撤回上诉", + "申请撤回 上诉", + "f ashion", + "rec ipient", + "recip ient", + "▁abnormal ity", + "▁abnorm ality", + "W r", + "Z A", + "大会 上", + "大 会上", + "面对 面", + "面 对面", + "▁S KF", + "▁SK F", + "ber ra", + "er men", + "erm en", + "二〇一五年 三月", + "▁sing leton", + "▁single ton", + "▁ singleton", + "▁short ening", + "何 事", + "听 众", + "建 明", + "倍数 是", + "倍 数是", + "性 问题", + "此时 的", + "此 时的", + "uc us", + "u cus", + "也 请给出你的", + "▁ch asing", + "▁cha sing", + "解题过程 和分析思路", + "也请给出你的 解题过程和分析思路", + "fin ance", + "f inance", + "nL ittle", + "n Little", + "▁Princ iples", + "▁Principle s", + "▁contrad ict", + "▁ 即", + "个 好", + "病 学", + "为 契机", + "为了 避免", + "▁R are", + "▁Ra re", + "▁s addle", + "▁ber ries", + "▁ berries", + "▁em ailed", + "▁email ed", + "Logger Factory", + "本 是", + "建立 的", + "Op ts", + "Opt s", + "O pts", + "▁Y AML", + "L H", + "动 静", + "学生 对", + "的地 位", + "的 地位", + "▁T ac", + "▁Ta c", + "dec oder", + "decode r", + "▁Mongo DB", + "ML Element", + "MLE lement", + "getElements By", + "忙 着", + "自 此", + "▁OR DER", + "▁ ORDER", + "条第一款 规定", + "未经法庭 许可中途退", + "▁poly ester", + "一 侧", + "建 房", + "浓度 为", + "浓 度为", + "▁C oh", + "▁Co h", + "ly mph", + "lymp h", + "l ymph", + "HE IGHT", + "▁diss ip", + "serial ization", + "泰 安", + "实验 组", + "你也 可以", + "你 也可以", + "get Context", + "▁Em ployees", + "▁Employee s", + "▁Employ ees", + "捷 克", + "▁外 观", + "▁ 外观", + "收到 的", + "收 到的", + "第四 款", + "中国 当代", + "数据 传输", + "▁Q uint", + "▁Qu int", + "▁sp indle", + "▁Onc ology", + "▁da unting", + "请告诉我您的选择 和解题的思路", + "文 华", + "更 深", + "友好 的", + "友 好的", + ":\\\\ /\\\\/", + "▁fier ce", + "end ocrine", + "▁Whats App", + "▁ 温", + "他 与", + "/' ,", + "/ ',", + "SV G", + "详情 请", + "at ro", + "a tro", + "仪器 仪表", + "▁t urf", + "▁tur f", + "▁tu rf", + "▁f olds", + "▁fol ds", + "▁fold s", + "▁fa ulty", + "▁fault y", + "▁need les", + "▁needle s", + "▁special ised", + "丽 丽", + "斜 阳", + "昏 迷", + "了一 段", + "了 一段", + "永远 是", + "▁B un", + "▁Bu n", + "▁W ins", + "▁Win s", + "▁Wi ns", + "att rib", + "attr ib", + "roid ery", + "▁ 斌", + "一 等", + "中国 市场", + "▁Bur k", + "▁Bu rk", + "▁T ort", + "▁To rt", + "▁Tor t", + "必不可 少的", + "t client", + "佛 罗", + "心 想", + "感 官", + "甜 美", + "鄙 视", + "하 는", + "nw ho", + "n who", + "Dis able", + "▁Pre diction", + "▁Pred iction", + "▁Predict ion", + "UN C", + "U NC", + "ga e", + "g ae", + "▁R ings", + "▁Ring s", + "▁Aber deen", + "上 皮", + "关 门", + "签 收", + "需要 进行", + "▁L IVE", + "▁LI VE", + "ast rophic", + "op ulmonary", + "玉 兰", + "石 子", + "算 出", + "原则 上", + "▁mar vel", + "▁Lam bert", + "▁Lamb ert", + "▁rent ing", + "▁s ounded", + "▁sound ed", + "▁quadr ant", + "▁quad rant", + "▁fertil izer", + "城 建", + "很 差", + "科 夫", + "孙 悟空", + "▁R um", + "▁Ru m", + "主要作品 有", + "▁ex its", + "▁exit s", + "st ations", + "stat ions", + "station s", + "▁para graphs", + "▁paragraph s", + "▁un acceptable", + "并做出 分析", + "re ctomy", + "rect omy", + "r ectomy", + "▁Sk etch", + "▁amb ition", + "▁ambit ion", + "▁acetyl choline", + "初 三", + "快 手", + "mi um", + "m ium", + "具有 较强的", + "▁Pac kers", + "▁Pack ers", + "▁life cycle", + "▁lif ecycle", + "▁ lifecycle", + "选择正确答案 并做出分析", + "en ol", + "eno l", + "e nol", + "身边 的人", + "身边的 人", + "▁m our", + "▁mo ur", + "▁Pl ains", + "▁Plain s", + "▁host ile", + "▁clean ers", + "▁cleaner s", + "二 甲", + "工 农", + "握 手", + "特 邀", + "ni ts", + "nit s", + "n its", + "▁G lor", + "▁Gl or", + "▁Glo r", + "tp anic", + "t panic", + "▁beh aves", + "▁behav es", + "▁behave s", + "▁amb ulatory", + "第二百六十二条第二款 和", + "水 下", + ":$ {", + ": ${", + "F ox", + "zi e", + "z ie", + "迈 克尔", + "▁oste oc", + "▁osteo c", + "▁restrict ive", + "▁Trans actions", + "▁Transaction s", + "他 被", + "并给出 依据", + "▁con sp", + "▁co nsp", + "▁cons p", + "月 子", + "yn b", + "y nb", + "服务 费", + "服刑 期间", + "em erg", + "eme rg", + "nw indow", + "nwin dow", + "n window", + "▁remed ies", + "▁disc overs", + "▁discover s", + "并给出依据 和解题过程", + "军 工", + "慕 容", + "格 雷", + "优化 的", + "优 化的", + "$\\ ',", + "$ \\',", + "▁E at", + "at ched", + "atch ed", + "▁bomb ing", + "▁bom bing", + "▁strength ened", + "▁strengthen ed", + "▁U X", + "▁ UX", + "▁h airs", + "▁hair s", + "▁ha irs", + "▁reg ularity", + "▁regular ity", + "▁regul arity", + "h Y", + "登 高", + "站 着", + "说出 来", + "说 出来", + "build ers", + "builder s", + "▁menstr ual", + "▁dis posable", + "高 龄", + "加工 厂", + "加 工厂", + "ha ss", + "has s", + "h ass", + "he ws", + "hew s", + "h ews", + "给人 一种", + "▁Mar qu", + "▁In verse", + "▁ 제", + "不 移", + "昔 日", + "赃 物", + "我们 家", + "的水 果", + "的 水果", + "全神 贯注", + "技术 研究", + "ha ven", + "hav en", + "have n", + "h aven", + "▁P iet", + "▁Pi et", + "▁Pie t", + "▁T alent", + "▁Tal ent", + "▁Tale nt", + "▁Mon ument", + "▁f idelity", + "▁fire works", + "晓 得", + "表示 出", + "▁Is abel", + "▁Isa bel", + "▁Ver tex", + "▁Vert ex", + "▁ Vertex", + "nA uthors", + "nAuthor s", + "▁prosper ity", + "▁reproduc ibility", + "史 记", + "AR P", + "A RP", + "▁R L", + "▁ RL", + "时不 时", + "时 不时", + "Wi ld", + "Wil d", + "W ild", + "▁Pa stor", + "▁Pas tor", + "▁Past or", + "▁Val encia", + "▁Vale ncia", + "后 世", + "管理 层", + "▁I CE", + "▁IC E", + "▁ ICE", + "al ese", + "ale se", + "ales e", + "▁Ber ks", + "▁Pap ua", + "nS ingle", + "nSing le", + "n Single", + "▁iso form", + "此外请给出 你做出选择的依据和分析", + "一 堂", + "为 零", + "受 力", + "手 脚", + "地下 水", + "地 下水", + "▁A de", + "▁Ad e", + "▁L TE", + "▁LT E", + "▁ LTE", + "ch ang", + "chan g", + "cha ng", + "c hang", + "it emap", + "ite map", + "item ap", + "单位出具 的财产", + "武 夷", + "素 有", + "听取 了", + "ur eth", + "ure th", + "▁S ail", + "▁Sa il", + "▁p aren", + "▁par en", + "▁pa ren", + "▁pare n", + "▁ paren", + "synthes ize", + "▁Reg istered", + "▁Register ed", + "▁dist ributing", + "▁distribut ing", + "よ う", + "瘦 身", + "经 开", + "bud get", + "c sharp", + "oc ative", + "生物 科技有限公司", + "▁amend ments", + "▁amendment s", + "▁hypot hetical", + "相 望", + "pi g", + "p ig", + "提供 商", + "ym es", + "yme s", + "y mes", + "▁联赛 等级", + "▁sher iff", + "prom etheus", + "▁consult ancy", + "不 强", + "加 成", + "ok k", + "o kk", + "上诉 称", + "上 诉称", + "惊人 的", + "惊 人的", + "ba tim", + "bat im", + "ew orthy", + "e worthy", + "▁todd ler", + "耗 费", + "自 知", + "十一 条的规定", + "十一条 的规定", + "▁sh ocks", + "▁shock s", + "▁exert ed", + "▁dish washer", + "死 人", + "高 价", + "▁w k", + "▁ wk", + "nM er", + "nMe r", + "n Mer", + "▁E NA", + "▁EN A", + "nD epend", + "nDe pend", + "nDep end", + "n Depend", + "ot ically", + "otic ally", + "o tically", + "对 孩子", + "然后 我", + "▁w re", + "▁wr e", + "▁Com pet", + "▁Comp et", + "▁Yan kees", + "▁Re strict", + "▁Rest rict", + "▁ Restrict", + "▁ed itable", + "▁edit able", + "▁ editable", + "熟 知", + "瓶 子", + "动物 的", + "动 物的", + "的人 工", + "的 人工", + "社会 化", + "gr ow", + "gro w", + "g row", + "▁L al", + "▁La l", + "小伙伴 们", + "▁M aya", + "▁May a", + "▁Ma ya", + "nPl aces", + "nPlace s", + "▁m ansion", + "▁mans ion", + "拜 访", + "▁n ylon", + "▁ny lon", + "▁Estab lish", + "全 心", + "资本 家", + "▁gastro pod", + "▁gastrop od", + "▁instit utes", + "▁institute s", + "▁manip ulating", + "倒 了", + "急 剧", + "无 脑", + "里 亚", + "浓厚 的", + "浓 厚的", + "nMus icians", + "nMusic ians", + "草 堂", + "nP en", + "nPe n", + "n Pen", + "▁f als", + "▁fa ls", + "▁fal s", + "代表作品 有", + "▁Rob erto", + "▁Robert o", + "▁Rober to", + "▁new borns", + "▁newborn s", + "▁o nChange", + "▁on Change", + "▁ onChange", + "跳 出", + "ct ime", + "c time", + "▁C ats", + "▁Ca ts", + "▁Cat s", + "c ognitive", + "▁pend ulum", + "▁occup ancy", + "上 架", + "买 单", + "sv n", + "s vn", + "但不 能", + "但 不能", + "季后 赛", + "无法 送达", + "▁Ed gar", + "▁w ired", + "▁wire d", + "▁wi red", + "▁ wired", + "▁re tract", + "▁ide ology", + "▁eigen vectors", + "胶 带", + "解 密", + "项 为", + "▁ 球队", + "无 任何", + "聪明 的", + "聪 明的", + "▁ov ary", + "▁ovar y", + "▁F ighting", + "▁Fight ing", + "修 剪", + "小 鱼", + "尾 部", + "撒 上", + "渐 近", + "阻 燃", + "建设 中", + "管理 所", + "管 理所", + "ac io", + "aci o", + "Service Impl", + "▁REF ERENCES", + "吊 顶", + "CA C", + "C AC", + "▁t eas", + "▁te as", + "▁tea s", + "▁ap nea", + "▁mer its", + "▁merit s", + "Anal yzer", + "▁Cap acity", + "▁ Capacity", + "▁Maced onia", + "石 门", + "▁ 更新", + "单片 机", + "▁g rav", + "▁gr av", + "▁gra v", + "▁ grav", + "▁Ev angel", + "▁Evan gel", + "万 古", + "外 商", + "早 起", + "ON S", + "O NS", + "的人 文", + "的 人文", + "电池 类型", + "cm ath", + "c math", + "▁Ob server", + "▁Observ er", + "▁Obs erver", + "▁ Observer", + "▁hur ricane", + "▁integr able", + "▁multi player", + "▁multip layer", + "nL o", + "n Lo", + "▁青 春", + "▁ 青春", + "▁A cross", + "▁Ac ross", + "▁Aut umn", + "Get Value", + "▁specific s", + "林 区", + "st m", + "s tm", + "本 研究", + "表面 上", + "表 面上", + "也可能 是", + "也 可能是", + "▁K NOW", + "▁Cr isis", + "▁st akes", + "▁stake s", + "增 量", + "工 期", + "nt y", + "n ty", + "}> {", + "} >{", + "圣诞 节", + "的 特色", + "▁W ade", + "▁Wa de", + "解题 过程中的", + "解题过程 中的", + "▁follic ular", + "台 县", + "复 方", + "异 物", + "避 孕", + "人 可以", + "泰 州市", + "▁RO I", + "▁R ho", + "▁Rh o", + "京东 图书", + "▁inc urred", + "循 序", + "收 货", + "笑 脸", + "申请 撤回", + "in ence", + "ine nce", + "inen ce", + "▁con currently", + "▁concurrent ly", + "无 愧", + "脊 椎", + "跳 转", + "▁Y uan", + "▁Yu an", + "Rest Controller", + "N Z", + "▁ ре", + "恢复 正常", + "日向 原告", + "日 向原告", + "nIN SERT", + "nINS ERT", + "n INSERT", + "▁H erman", + "▁Her man", + "▁Herm an", + "Account s", + "Ac counts", + "▁Bron cos", + "▁Port able", + "▁Por table", + "五 代", + "是 没", + "点 火", + "鱿 鱼", + "ng x", + "base s", + "ba ses", + "bas es", + "b ases", + "nL ight", + "n Light", + "▁arc ade", + "▁outbreak s", + "大使 馆", + "FO NT", + "F ONT", + "▁M itt", + "▁Mi tt", + "▁Mit t", + "Ban ner", + "B anner", + "布 袋", + "发展 成为", + "▁W inston", + "▁Win ston", + "▁Wins ton", + "▁Ch ancellor", + "▁ge ological", + "▁geo logical", + "▁sub cellular", + "议 院", + "▁R H", + "▁ RH", + "的 各项", + "AP PS", + "APP S", + "Con v", + "Co nv", + "▁C opa", + "▁Co pa", + "▁Cop a", + "▁en chant", + "▁salv age", + "▁New foundland", + "偏 离", + "树 枝", + "El em", + "Ele m", + "E lem", + "me ns", + "men s", + "m ens", + "▁P GE", + "▁PG E", + "电子 信息", + "▁W ife", + "▁Wi fe", + "cat enin", + "▁ill usion", + "月 第", + "美 金", + "赃 款", + ">] (", + "> ](", + "▁T reg", + "▁Tr eg", + "▁Tre g", + "ple asant", + "▁pod casts", + "▁podcast s", + "解题过程中的 依据是什么", + "▁desc endants", + "性 及", + "特 地", + "UP S", + "U PS", + "是否 会", + "os se", + "oss e", + "ot opic", + "oto pic", + "o topic", + "▁H imal", + "▁Hi mal", + "▁Him al", + "▁Ap artments", + "▁Apart ments", + "▁Apartment s", + "ff i", + "f fi", + "og i", + "o gi", + "可 获得", + "的最 好", + "的 最好", + "了解 更多", + "Ab ility", + "▁Far mer", + "▁Farm er", + "▁Gard ner", + "德 惠", + "▁ 系列", + "十一 五", + "和 生产", + "罪犯 杨", + "▁G row", + "▁Gr ow", + "▁Gro w", + "▁$ ${\\\\", + "▁$$ {\\\\", + "▁$${ \\\\", + "stit uted", + "stitute d", + "stitu ted", + "separ ated", + "跟 上", + "骗 取", + "▁其 七", + "事业 部", + "win ner", + "w inner", + "▁Per forming", + "▁Perform ing", + "Pl ane", + "Plan e", + "P lane", + "▁N ano", + "▁Na no", + "▁Nan o", + "和分析 的过程", + "chrom ium", + "▁Trib une", + "▁permit ting", + "▁perm itting", + "特 许", + "讲 课", + "▁T ian", + "▁Ti an", + "▁D iane", + "▁Di ane", + "▁Re lay", + "▁Rel ay", + "nJ oseph", + "不 耐", + "尿 素", + "为 单位", + "表情 包", + "ab is", + "abi s", + "a bis", + "▁Gu ests", + "▁Guest s", + "▁tri umph", + "▁ 熊", + "女 排", + "龙 潭", + "住 天津市", + "▁F ully", + "▁Full y", + "▁Ful ly", + "Aw esome", + "▁Ad dition", + "▁Add ition", + "奖 品", + "U tf", + "的知识 和", + "的 知识和", + "部 副部长", + "▁K ard", + "▁Kar d", + "▁Ka rd", + "Att ach", + "▁Leg ends", + "▁Legend s", + "▁tang ible", + "▁comput ationally", + "▁computational ly", + "▁computation ally", + "书 包", + "芝 加", + "团队 的", + "团 队的", + "展现 出", + "doc k", + "do ck", + "d ock", + "▁hom ogen", + "互 利", + "床 垫", + "更 低", + "砂 浆", + "考 的", + "舰 队", + "不是 我", + "不 是我", + "深深 的", + "深 深的", + "he us", + "h eus", + "se ll", + "sel l", + "s ell", + "sp atial", + "▁cool ed", + "▁re juven", + "▁s erializer", + "▁serial izer", + "▁serialize r", + "▁ serializer", + "ッ ク", + "插 画", + "江 水", + "nF ive", + "n Five", + "▁ASC II", + "El astic", + "nV ersion", + "n Version", + "不 育", + "病 程", + "研究生 学历", + "prot ective", + "▁prof iciency", + "▁ 가", + "年 头", + "是 新", + "波 浪", + "ra k", + "r ak", + "是 两个", + "行政 区域", + "行政区 域", + "as poon", + "asp oon", + "▁F iber", + "▁Fib er", + "▁Fi ber", + "en stein", + "ens tein", + "▁De tail", + "▁Det ail", + "▁ Detail", + "▁econom ists", + "▁economist s", + "▁antire troviral", + "已 成", + "闭 合", + "▁V ote", + "▁Vo te", + "▁ Vote", + "▁us ize", + "▁u size", + "▁trouble d", + "▁trou bled", + "改 判", + "春 色", + "智 库", + "歉 意", + "保 字第", + "▁bu ys", + "▁buy s", + "Or d", + "O rd", + "开庭 传票", + "ai ser", + "ais er", + "aise r", + "a iser", + "▁Tr igger", + "▁ Trigger", + "▁de crypt", + "▁dec rypt", + "▁wild erness", + "K R", + "▁ Р", + "全 线", + "已 然", + "月 被", + "清 远", + "▁p aved", + "▁pa ved", + "▁pave d", + "▁pav ed", + "ot rophic", + "▁get User", + "▁ getUser", + "▁Count ies", + "▁smooth ing", + "▁smo othing", + "并告诉我您的选择 和分析的过程", + "纽 带", + "Ar m", + "A rm", + "中医 院", + "中 医院", + "MP LE", + "MPL E", + "全力 以赴", + "牢记 使命", + "w izard", + "▁Con cord", + "▁Conc ord", + "▁Me aning", + "▁Mean ing", + "▁air flow", + "▁cr aving", + "▁cra ving", + "▁flo oded", + "▁flood ed", + "▁book ings", + "▁booking s", + "▁careg iver", + "光 度", + "染 料", + "树 上", + "AS A", + "A SA", + "ta s", + "t as", + "和解 为由", + "ot ech", + "ote ch", + "o tech", + "▁ch ina", + "▁chi na", + "▁chin a", + "aff inity", + "affin ity", + "▁ceremon ies", + "▁ 左", + "眉 毛", + "北京 的", + "就有 了", + "就 有了", + "最快 的", + "最 快的", + "要 怎么", + "被执行人 黄", + "▁Bas il", + "▁Ba sil", + "▁P orsche", + "▁Por sche", + "▁Ex ercises", + "▁Exercise s", + "▁travel lers", + "▁trav ellers", + "其 为", + "▁开 始", + "▁ 开始", + "的 看法", + "并给出 合理的解释", + "▁string ent", + "▁motiv ational", + "▁motivation al", + "▁ 邱", + "▁E h", + "▁主 体", + "▁ 主体", + "这里 有", + "这 里有", + "赔偿 被害人", + "gen esis", + "gene sis", + "genes is", + "▁T ropical", + "业 者", + "对 前款", + "得益 于", + "看 电视", + "em ma", + "emm a", + "e mma", + "no nce", + "non ce", + "n once", + "▁B ooth", + "▁Bo oth", + "▁Boot h", + "▁Mal colm", + "并给出你的 解题过程", + "并给出你的解题 过程", + "▁coinc idence", + "▁coincide nce", + "秋 日", + "we re", + "wer e", + "w ere", + "▁j elly", + "▁U PDATE", + "▁UP DATE", + "▁ UPDATE", + "Cap acity", + "Ret ention", + "▁land lord", + "In strument", + "W G", + "节 水", + "已 交纳", + "谅解 书", + "EX EC", + "ve ster", + "ves ter", + "vest er", + "v ester", + "▁He rein", + "▁Here in", + "▁Her ein", + "▁spor adic", + "惯 性", + "打 入", + "信息 网", + "▁Commun ities", + "Pr ef", + "Pre f", + "P ref", + "可以 提高", + "可 以提高", + "▁op pose", + "▁sed iments", + "▁sediment s", + "刺 客", + "沉 降", + "▁ 综合", + "一 季度", + "▁v ib", + "▁vi b", + "中国 政府", + "但是 我们", + "但是我 们", + "但 是我们", + "nH ouse", + "n House", + "▁D riving", + "▁Dr iving", + "▁chlor ine", + "▁in ducible", + "▁indu cible", + "▁Ent repreneur", + "型 和", + "总 站", + "洞 庭", + "矿 区", + "造 林", + "iv ered", + "ive red", + "iver ed", + "▁A ging", + "▁Ag ing", + "im ester", + "ime ster", + "imes ter", + "次 要", + "茶 匙", + "另一 方", + "另 一方", + "投入 到", + "持卡 人", + "芝加 哥", + "]\\\\ )", + "] \\\\)", + "Un defined", + "U ndefined", + "▁sil encing", + "独 有", + "处理 好", + "老人 的", + "老 人的", + "▁arr ests", + "▁arrest s", + "▁bronch ial", + "▁prefer ably", + "然后告诉我您的最佳选择 和分析思路", + "ld ap", + "l dap", + "▁r all", + "▁ra ll", + "empt yset", + "empty set", + "Primary Key", + "▁Wh olesale", + "▁Whole sale", + "▁scal ability", + "▁ 包", + "赛 区", + "冻结 的", + "ir ds", + "ird s", + "▁iod ine", + "亿 万", + "成 败", + "*( (", + "* ((", + "▁广州 市", + "▁ 广州市", + "end ra", + "e ndra", + "▁Bo yd", + "▁Boy d", + "▁E scape", + "▁Esc ape", + "▁ed ible", + "▁cytos olic", + "白 血", + "都 属于", + "li sta", + "list a", + "lis ta", + "l ista", + "phen yl", + "p henyl", + "▁gran ular", + "▁granul ar", + "签 到", + "脱 硫", + "问 责", + "优良 的", + "对他 的", + "对 他的", + "in tern", + "int ern", + "inter n", + "pur ple", + "▁N exus", + "▁C astro", + "▁Cast ro", + "▁Cas tro", + "▁N early", + "▁Ne arly", + "▁Near ly", + "▁W elfare", + "▁Wel fare", + "nBas ically", + "▁imp acting", + "▁impact ing", + "▁n c", + "▁ nc", + "十分 钟", + "十 分钟", + "有 需要", + "▁int rav", + "▁intr av", + "▁intra v", + "诉 刑诉", + "二〇一七年 三", + "es cence", + "esc ence", + "▁Screen ing", + "▁Scre ening", + "林 场", + "比 拟", + "航 行", + "路 桥", + "AE S", + "A ES", + "努力 的", + "努 力的", + "这种 事", + "目前 正在", + "▁H uang", + "▁Hu ang", + "nS tring", + "nSt ring", + "nStr ing", + "n String", + "m z", + "大 卫", + "忠 实", + "颜 料", + "▁C MV", + "▁CM V", + "▁ CMV", + "▁Ex tr", + "▁Ext r", + "▁Q ing", + "trans lated", + "translate d", + "transl ated", + "Get Component", + "元 气", + "荷 载", + "▁F iji", + "▁Fi ji", + "▁We ak", + "ab ella", + "abel la", + "abe lla", + "il ical", + "ili cal", + "▁Re leased", + "▁Release d", + "effective ness", + "effect iveness", + "▁trans porters", + "▁transport ers", + "▁transporter s", + "k d", + "▁ 则", + "▼ \\", + "双 核", + "山 坡", + "洗 脸", + "读 懂", + "增长 的", + "增 长的", + "建筑 师", + "Pl ain", + "P lain", + "▁In dies", + "▁Ind ies", + "▁Ver non", + "▁Vern on", + "未经法庭许可中途退 庭的", + "转变 为", + "转 变为", + "▁A kt", + "▁Ak t", + "▁主要 参数", + "ex istence", + "exist ence", + "pres ident", + "SEQU ENTIAL", + "▁Ep iscopal", + "冷 酷", + "华 润", + "hh h", + "h hh", + "以 确保", + "和 安全", + "更 方便", + "的主 人", + "的 主人", + "▁se wer", + "▁sew er", + "▁Abb ott", + "▁P acket", + "▁Pac ket", + "▁Pack et", + "▁ Packet", + "▁bl ender", + "▁ble nder", + "▁blend er", + "本案 在审理过程中", + "曾 被", + "]< <", + "] <<", + "}` )\\", + "} `)\\", + "中国 移动", + "但是 现在", + "iv able", + "iva ble", + "▁Sat urn", + "▁Sa turn", + "regn ancy", + "rem aining", + "▁form ulae", + "▁formula e", + "为 凭", + "拷 贝", + "甚 么", + "Ga s", + "G as", + "时 免费", + "im eo", + "ime o", + "un dy", + "und y", + "▁s eper", + "▁se per", + "▁sep er", + "差异 无统计学意义", + "▁Tom orrow", + "亲 朋", + "到 此", + "定 金", + "不等 于", + "不 等于", + "睡 不着", + "密切 相关", + "es try", + "est ry", + "estr y", + "e stry", + "▁M ast", + "▁Ma st", + "▁Mas t", + "▁B ritt", + "▁Br itt", + "▁Brit t", + "▁Bri tt", + "▁st eer", + "▁ste er", + "▁phil osopher", + "▁philosoph er", + "@ {", + "凹 陷", + "▁B een", + "▁Be en", + "▁Bee n", + "▁ Been", + "▁T ODAY", + "▁TO DAY", + "▁key note", + "▁val ence", + "▁ valence", + "在 西", + "鹏 飞", + "▁H TC", + "▁HT C", + "制度 改革", + "▁ri bs", + "▁rib s", + "pec ific", + "tout put", + "t output", + "▁Wal let", + "▁Wall et", + "▁ Wallet", + "nWin ners", + "icul ously", + "iculous ly", + "起诉必须 符合下列条件", + "▁substit utions", + "▁substitution s", + "T y", + "并 茂", + "解 码", + "ct r", + "c tr", + "的 这个", + "ma xn", + "max n", + "▁F SH", + "▁FS H", + "▁副 标题", + "可能 导致", + "核心 价值观", + "▁Less ons", + "▁Lesson s", + "▁un happy", + "follow ing", + "f ollowing", + "其行为已构成 盗窃罪", + "▁stat utory", + "凄 凉", + "方 形", + "权 属", + "离 别", + "EE K", + "▁ 杭州", + "▁比 赛", + "▁ 比赛", + "综合 治理", + "设计 方案", + "ORM AL", + "Par cel", + "▁h olog", + "▁hol og", + "▁ho log", + "▁anti genic", + "▁antigen ic", + "花 草", + "还 很", + "ce p", + "c ep", + "▁} :", + "▁ }:", + "ge ms", + "gem s", + "g ems", + "一点 也不", + "分别 求出", + "你 选择的依据", + "aff olds", + "affold s", + "▁Pres byterian", + "对 口", + "山 楂", + "饭 菜", + "nM a", + "n Ma", + "▁r v", + "▁ rv", + "▁M ey", + "▁Me y", + "儿童 文学", + "共产 主义", + "第二 十五", + "第 二十五", + "交通警察 大队", + "仔细地 阅读选项", + "▁Str ength", + "▁Stre ngth", + "并给出 你选择的依据", + "▁ind ispens", + "请您务必 仔细地阅读选项", + "并给出你选择的依据 和分析思路", + "命 的", + "肯定 的", + "肯 定的", + "节目 中", + "要不 然", + "要 不然", + "▁p on", + "▁po n", + "▁ pon", + "Grad ient", + "八 字", + "小 幅", + "ne ck", + "nec k", + "n eck", + "rupt s", + "ru pts", + "rup ts", + "▁st din", + "▁std in", + "▁ stdin", + "▁task ed", + "scrib ers", + "scri bers", + "scribe rs", + "scriber s", + "▁Sp atial", + "▁prop ensity", + "▁apprent ices", + "作 法", + "(\" _", + "( \"_", + "充要 条件", + "冠军 联赛", + "st amp", + "sta mp", + "▁dist ributors", + "▁distribut ors", + "▁distributor s", + "▁ 血", + "al m", + "a lm", + "▁异 界", + "▁ 异界", + "没有 被", + "NN NN", + "▁spark ling", + "师 德", + "湖 州", + "自动 履行", + "▁br oth", + "▁bro th", + "▁sp elled", + "▁spell ed", + "内 径", + "和 李", + "宇 航", + "ст и", + "с ти", + "经济 学家", + "经济学 家", + "hy brid", + "ne rror", + "ner ror", + "n error", + "▁b ites", + "▁bi tes", + "▁bit es", + "▁bite s", + "sign als", + "signal s", + "sig nals", + "一 听", + "抗 美", + "推 拿", + "抵抗 力", + "▁M AG", + "▁MA G", + "▁ MAG", + "公司 员工", + "uv ian", + "u vian", + "▁In cluded", + "▁Include d", + "▁business people", + "一 角", + "封 印", + "os x", + "o sx", + "人们 在", + "人 们在", + "科技 的", + "等人 的", + "等 人的", + "故 对原告", + "▁W rap", + "▁Wr ap", + "▁ Wrap", + "进一步 提升", + "之 风", + "终 生", + "者 为", + "背 影", + "AN A", + "A NA", + "Crypt o", + "C rypto", + "▁reluct ant", + "IT T", + "I TT", + "gl m", + "g lm", + "预交 的", + "Vo id", + "V oid", + "place ments", + "plac ements", + "placement s", + "任 性", + "台 的", + "职能 部门", + "▁g aze", + "▁ga ze", + "▁gaz e", + "解决 的问题", + "解决的 问题", + "De term", + "Det erm", + "D eterm", + "lor ida", + "▁l acked", + "▁lack ed", + "▁sculpt or", + "▁furnish ings", + "ki l", + "k il", + "▁y y", + "▁ yy", + "在 什么", + "能量 的", + "能 量的", + "镇江 市", + "镇 江市", + "ab it", + "abi t", + "a bit", + "▁WH EN", + "▁parad ise", + "▁trans istor", + "▁wh itespace", + "▁white space", + "▁whites pace", + "海 参", + "着 实", + "额 为", + "高 明", + "▁C how", + "▁Ch ow", + "▁Cho w", + "▁Keep ing", + "地 貌", + "巨 星", + "雄 性", + "▁ 状态", + "出发 点", + "线上 的", + "线 上的", + "▁$ ${", + "▁$$ {", + "诗词 正文", + "▁B ACK", + "▁BA CK", + "▁ BACK", + "▁Str aight", + "▁Stra ight", + "pine phrine", + "▁Pr actical", + "▁Pract ical", + "long rightarrow", + "A J", + "亚 纲", + "小 品", + "曲 面", + "贵 宾", + "蓄 电池", + "SC HE", + "S CHE", + "TE RS", + "TER S", + "T ERS", + "otrop in", + "▁dent ists", + "▁dentist s", + "▁neoplas ms", + "七 夕", + "使 我", + "重 现", + "ar f", + "a rf", + "玩 手机", + "非常 大", + "nw in", + "n win", + "▁F ry", + "▁Fr y", + "Dam age", + "user Name", + "▁bio film", + "俱 全", + "则 会", + "温 差", + "耗 材", + "身 穿", + "阶段 性", + "▁S ind", + "▁Si nd", + "▁Sin d", + "环境保护 局", + "▁Co operative", + "▁Cooper ative", + "上 岗", + "友 善", + "▁S tern", + "▁St ern", + "▁Ste rn", + "▁Ster n", + "▁mos que", + "▁sample r", + "▁sam pler", + "author ize", + "set Content", + "▁lower case", + "▁before hand", + "get ter", + "g etter", + "nS ound", + "nSo und", + "n Sound", + "浙江省 杭州市", + "Upper Case", + "▁pneumonia e", + "▁pictures que", + "Re b", + "R eb", + "可 实现", + "文件 中", + "qu ark", + "qua rk", + "in variant", + "▁Aware ness", + "▁protagon ist", + "平面 内", + "▁p ys", + "▁py s", + "由原告 抚养", + "需要 注意的是", + "需要注意 的是", + "▁conf ocal", + "▁pass ages", + "▁passage s", + "专 员", + "也 成为", + "言 律诗", + "或者 未经法庭许可中途退庭的", + "出 栏", + "礼 包", + "位置 的", + "F old", + "▁St range", + "▁Str ange", + "▁Stra nge", + "▁De ployment", + "▁Deploy ment", + "▁ Deployment", + "▁government al", + "▁govern mental", + "可 予", + "已 将", + "老 区", + "被 我", + "J av", + "▁K ö", + ">\\ ';\\", + ">\\' ;\\", + "> \\';\\", + "第七 十二条", + "越来越多 的人", + "越来越多的 人", + "Pat ient", + "▁M agnet", + "▁Mag net", + "▁Magn et", + "▁tra ilers", + "▁trail ers", + "▁trailer s", + "▁exhaust ive", + "余 家", + "双 赢", + "太 仓", + "补 肾", + "过 着", + "in gen", + "ing en", + "inge n", + "re ements", + "ree ments", + "reement s", + "想 来", + "hu ang", + "hua ng", + "h uang", + "▁E arn", + "▁Ear n", + "ar ching", + "arch ing", + "arc hing", + "▁T error", + "▁Te rror", + "▁Ter ror", + "▁Terr or", + "bin dings", + "bind ings", + "binding s", + "▁Object ives", + "▁Objective s", + "想 买", + "方法 将", + "中小 学生", + "中小学 生", + "中 小学生", + "Al loc", + "All oc", + "ag net", + "agn et", + "agne t", + "iff any", + "▁P ablo", + "▁Pa blo", + "新疆 生产建设兵团", + "blue print", + "▁An onymous", + "▁un healthy", + "功 名", + "勾 股", + "的 发", + "是 日本", + "比较 适合", + "▁ur eth", + "▁ure th", + "▁ ureth", + "▁brew ery", + "安 检", + "肩 负", + "轻 型", + "截止 到", + "In to", + "Int o", + "I nto", + "▁hemod ialysis", + "用 料", + "组 分", + "家人 的", + "家 人的", + "让 别人", + "▁S ard", + "▁Sar d", + "▁Sa rd", + "履行债务 的能力", + "▁Bed ford", + "▁col onic", + "▁colon ic", + "▁rel iance", + "Function al", + "F unctional", + "Null Exception", + "es m", + "e sm", + "ia ge", + "i age", + "▁K ub", + "▁Ku b", + "▁R BC", + "▁RB C", + "青年 教师", + "le name", + "len ame", + "l ename", + "▁Os aka", + "▁educ ating", + "▁ 乌", + "在 建", + "心 头", + "IT ER", + "ITE R", + "I TER", + "▁s unk", + "▁su nk", + "▁sun k", + "▁J orge", + "▁st ride", + "▁str ide", + "▁stri de", + "忧 伤", + "提 拔", + "▁f f", + "▁ ff", + "垃圾 桶", + "不等式 的解集", + "不等式的解 集", + "▁cr ater", + "▁crate r", + "▁cra ter", + "▁Inter pret", + "接 送", + "的 情", + "中央 党校", + "但 实际上", + "▁Veg et", + "▁Ve get", + ", )", + "地 道", + "影 音", + "▁E ns", + "▁En s", + "UR CES", + "URCE S", + "co bra", + "cob ra", + "ie der", + "ied er", + "i eder", + "▁t idy", + "▁ti dy", + "▁tid y", + "alc ulus", + "alcul us", + "▁undergo es", + "滞 后", + "▁本 名", + "VE NT", + "V ENT", + "hi ts", + "hit s", + "h its", + "▁L OT", + "▁LO T", + "▁D eer", + "▁De er", + "▁Dee r", + "的免费 政策", + "lam ide", + "l amide", + "追索 劳动报酬", + "▁And hra", + "▁cardiomy opathy", + "痉 挛", + "ou ve", + "一项 住宿", + "▁W ays", + "▁Way s", + "▁Wa ys", + "for ces", + "force s", + "qu otes", + "quot es", + "quote s", + "quo tes", + "▁P omer", + "▁Po mer", + "▁Pom er", + "▁Rec ipe", + "▁ Recipe", + "你 最", + "品 格", + "对 新", + "世界 观", + "的 医疗", + "的 成长", + "的高 速", + "的 高速", + "▁For ever", + "▁Fore ver", + "▁pr imate", + "▁prim ate", + "▁pri mate", + "▁Ch ambers", + "▁Chamber s", + "▁Cham bers", + "▁reg iment", + "▁regime nt", + "▁regimen t", + "简 明", + "远 了", + "LO Y", + "▁S AY", + "▁SA Y", + "重点 项目", + "▁Pier ce", + "inter pol", + "▁f ountain", + "▁expat riates", + "▁expatriate s", + "书 房", + "卖 给", + "吃 亏", + "无 解", + "Co v", + "C ov", + "ya m", + "y am", + "木 地板", + "本案 系", + "正文 语种", + "▁bi fur", + "▁bif ur", + "▁sh ining", + "▁fair ness", + "一项住宿 的免费政策", + "▁section al", + "▁ sectional", + "享有的 债权依法受法律保护", + "三 类", + "二 字", + "工 科", + "牙 刷", + "]$ ,", + "] $,", + "▁ER K", + "▁j ug", + "▁ju g", + "▁ jug", + "▁o mn", + "▁om n", + "提供 被告", + "终结执行 后", + "ins ulin", + "fe atured", + "feature d", + "feat ured", + "卧 龙", + "双 边", + "菌 株", + "飞 跃", + "的 文字", + "sin k", + "si nk", + "s ink", + "em por", + "emp or", + "▁Be au", + "▁Bea u", + "▁S tim", + "▁St im", + "sh apes", + "shape s", + "sha pes", + "▁hurd les", + "▁Support ing", + "▁cart ridges", + "▁cartridge s", + "单位出具的财产 查询回执", + "拟 合", + "V an", + "不停 地", + "都能 够", + "都 能够", + "\": \"/", + "\":\" /", + "▁第 二章", + "▁第二 章", + "▁ 第二章", + "提请 减刑", + "▁T rap", + "▁Tr ap", + "▁Tra p", + "ur etic", + "ure tic", + "aut ical", + "au tical", + "▁in mates", + "▁juris dict", + "并给出相应的 解题过程", + "▁cardinal ity", + "▁commercial s", + "咖 喱", + "日 日", + "赵 丽", + "ig u", + "i gu", + "五千 元", + "五 千元", + "知名 品牌", + "ch nic", + "chn ic", + "nH enry", + "▁question able", + "侦 察", + "▁F TP", + "▁FT P", + "▁ FTP", + "▁p yt", + "▁py t", + "▁L OSS", + "▁LO SS", + "s phinx", + "▁p urse", + "▁pur se", + "▁purs e", + "art ifacts", + "artifact s", + "▁expans ive", + "N u", + "RA N", + "R AN", + "▁sugar s", + "▁sug ars", + "▁Adv ance", + "▁Mat thews", + "▁Matt hews", + "▁Matthew s", + "▁empower ment", + ">` \\", + "> `\\", + "结果 单", + "请求 撤销", + "▁SU CH", + "▁Dem onstr", + "▁Demo nstr", + "▁re usable", + "▁simpl ifies", + "恒 星", + "Ge ne", + "Gen e", + "G ene", + "ba by", + "bab y", + "b aby", + "▁A nk", + "▁An k", + "▁Ig M", + "▁B EST", + "▁BE ST", + "FAIL URE", + "被执行人应当 履行义务", + "▁Est imation", + "▁Estim ation", + "第二百五十七 条第一款第", + "后 因", + "志 勇", + "或 将", + "未 曾", + "进 村", + "造 假", + "▁A mp", + "▁Am p", + "▁neuro t", + "▁neur ot", + "▁ur ging", + "▁urg ing", + "comp uted", + "comput ed", + "compute d", + "▁end uring", + "▁entire ty", + "▁Ge ometric", + "▁Geo metric", + "at ie", + "ati e", + "a tie", + "▁S HE", + "▁SH E", + "一线 城市", + "一 线城市", + "▁Ax is", + "▁ Axis", + "▁T umor", + "▁Tu mor", + "▁Tum or", + "ncl ient", + "n client", + "▁Man age", + "▁Manag e", + "▁ Manage", + "▁extrem ity", + "▁associ ative", + "▁ 好", + "上 加", + "在 后", + "▁G IF", + "▁GI F", + "管理 体制", + "这个 数是", + "这个数 是", + "这 个数是", + "nInd ex", + "n Index", + "▁Middle s", + "▁Midd les", + "▁separ ates", + "▁separate s", + "▁ 施", + "演 习", + "青 菜", + "nl l", + "n ll", + "▁S erg", + "▁Se rg", + "▁Ser g", + "▁牺牲 情况", + "▁ps oriasis", + "String Builder", + "填 上", + "准备 的", + "爱上 了", + "爱 上了", + "St eve", + "Ste ve", + "om egal", + "ome gal", + "omega l", + "▁hyp oxic", + "▁hypox ic", + "▁Professional s", + "▁Profession als", + "朦 胧", + "画 出", + "订 立", + "早期 的", + "早 期的", + "▁I nfl", + "▁In fl", + "▁Inf l", + "▁r RNA", + "▁bo son", + "▁bos on", + "本院依法 受理", + "X M", + "f q", + "い た", + "飘 飘", + "儿子 的", + "儿 子的", + "▁U DP", + "市场 上的", + "市场上 的", + "Tr ust", + "T rust", + "▁An dr", + "▁And r", + "▁occup ies", + "nFurther more", + "▁confidential ity", + "国 军", + "在 手", + "篇 幅", + "苦 恼", + "▁` \"", + "im ple", + "impl e", + "imp le", + "▁HD MI", + "▁ HDMI", + "先进 工作者", + "▁Gr ill", + "▁ag ile", + "服饰 有限公司", + "▁NAS CAR", + "▁Sund ays", + "▁Sunday s", + "▁Sun days", + "又 叫", + "平 湖", + "有 道", + "计算 的", + "大大 提高", + "VER TI", + "▁o der", + "▁od er", + "▁ oder", + "sm outh", + "s mouth", + "▁Error s", + "▁Er rors", + "▁Err ors", + "▁ Errors", + "▁async io", + "下 发", + "乳 胶", + "可 调", + "放 映", + "立 式", + "的 房产", + "的 看着", + "Har m", + "Ha rm", + "H arm", + "▁L ad", + "▁La d", + "▁Ch ance", + "▁Cha nce", + "▁Chan ce", + "▁cont ral", + "▁contr al", + "▁Mart inez", + "▁Martin ez", + "Al e", + "A le", + "分式 的", + "分 式的", + "建设 银行", + "紧紧 围绕", + "PRO TO", + "▁K afka", + "▁ Kafka", + "▁geometric al", + "▁geomet rical", + "ш и", + "由 其", + "▁sp ikes", + "▁spike s", + "月 山", + "秒 杀", + "tt e", + "t te", + "完 之后", + "er en", + "ere n", + "e ren", + "▁B uk", + "▁Bu k", + "经营 理念", + "▁Moh ammad", + "▁elong ation", + "不 入", + "谁 说", + "已经 很", + "OL ED", + "O LED", + "iction aries", + "华 硕", + "矿 井", + "网 店", + "鲤 鱼", + "▁m v", + "▁ mv", + "co rp", + "cor p", + "c orp", + "故意 杀人", + "程序 设计", + "自我 介绍", + "▁flo ats", + "▁float s", + "▁un authorized", + "八 百", + "张 玉", + "意 料", + "nD ev", + "nDe v", + "n Dev", + "vir t", + "vi rt", + "v irt", + "相关 信息", + "▁laws uits", + "▁lawsuit s", + "▁ 博", + "容 忍", + "就 将", + "满 天", + "该 剧", + "黑 夜", + "SU S", + "S US", + "nf l", + "n fl", + "▁т о", + "▁ то", + "可能 需要", + "家庭 聚会", + "\\\\_ \\\\_", + "▁pop ped", + "▁po pped", + "nPr imary", + "nPrim ary", + "n Primary", + "▁graph ql", + "▁ graphql", + "▁viol ate", + "▁vi olate", + "▁serv ants", + "▁servant s", + "▁Dem ocracy", + "▁Democr acy", + "▁dis abling", + "▁vertebr ate", + "▁accred itation", + "▁ 艳", + "你 把", + "实 景", + "]] )", + "] ])", + "▁平 面", + "▁ 平面", + "Sh ot", + "S hot", + "ob le", + "obl e", + "o ble", + "at ase", + "ata se", + "atas e", + "man ufact", + "▁Under ground", + "▁Und erground", + "裂 片", + "Tab s", + "Ta bs", + "T abs", + "id ades", + "ida des", + "idad es", + "idade s", + "缩 写", + "▁P BS", + "▁PB S", + "集成 电路", + "IG ENCE", + "▁j ealous", + "▁Mc Carthy", + "k j", + "▁s sl", + "▁ss l", + "▁ ssl", + "ugg le", + "▁Y ard", + "▁Ya rd", + "床 头", + "晚 了", + "某 人", + "选 秀", + "城市 化", + "守门 员", + "过渡 期", + "go ods", + "good s", + "▁NE ED", + "Develop er", + "志 军", + "Fe b", + "F eb", + "描述 和", + "最佳 的", + "▁W en", + "▁We n", + "fa sta", + "fast a", + "fas ta", + "f asta", + "▁pool ed", + "th inking", + "think ing", + "thin king", + "▁hy brids", + "▁hybrid s", + "团 伙", + "手 下", + "杂 物", + "爱 与", + "无限 的", + "是 利用", + "分享 一下", + "olog ne", + "▁st ole", + "▁sto le", + "order By", + "▁sh aded", + "▁sha ded", + "▁shade d", + "▁sl owed", + "▁slow ed", + "▁amb ulance", + "他 从", + "实施 的", + "已 超过", + "所学 校", + "所 学校", + "竞争 优势", + "str ipe", + "strip e", + "stri pe", + "▁Sh ows", + "▁Show s", + "▁p oured", + "▁po ured", + "▁pour ed", + "▁pou red", + "▁Pra irie", + "▁go ats", + "▁goat s", + "▁novel ty", + "▁spectro meter", + "▁spectrom eter", + "▁ ا", + "日 式", + "甲 级", + "阿 克", + "的大 量", + "的 大量", + "ch unks", + "chunk s", + "nOr der", + "n Order", + "给出解题 步骤", + "压 实", + "年 鉴", + "你要 是", + "你 要是", + "地面 积", + "地 面积", + ";; ;;", + "▁K ane", + "▁Ka ne", + "▁Kan e", + "led ger", + "ledge r", + "▁lib erty", + "▁libert y", + "▁Yugoslav ia", + "未发现被执行人 有可供执行的财产", + "未发现被执行人有 可供执行的财产", + "未 发现被执行人有可供执行的财产", + "↓ \\", + "▁ 陶", + "节 气", + "质 押", + "仅 次于", + "Bear er", + "▁ 九", + "勃 勃", + "开 裂", + "交换 机", + "▁A SS", + "▁AS S", + "▁ ASS", + "▁R ack", + "▁Ra ck", + "▁Rac k", + "▁perox idase", + "效果 的", + "ab ine", + "abin e", + "abi ne", + "nb egin", + "nbe gin", + "n begin", + "nF ellows", + "▁leg ends", + "▁legend s", + "合 数", + "村 位于", + "重要 讲话", + "Dev ices", + "Device s", + "▁de ferred", + "▁defer red", + "▁withd rew", + "适应 性", + ":\" )\\", + ": \")\\", + "nTe ams", + "nTeam s", + "▁B east", + "▁Be ast", + "▁Bea st", + "ole rant", + "oler ant", + "pl ified", + "剪 刀", + "寿 司", + "且 原告", + "也 因此", + "分别 占", + "Si nk", + "Sin k", + "S ink", + "ec ed", + "e ced", + "▁C Ds", + "▁CD s", + "怎么说 呢", + "AR RAY", + "da vid", + "d avid", + "ject ed", + "j ected", + "get attr", + "▁sw immer", + "▁swim mer", + "Un ix", + "U nix", + "We bsite", + "Web site", + "▁r ation", + "▁rat ion", + "▁ra tion", + "▁ratio n", + "▁ ration", + "pre serve", + "pres erve", + "▁home owner", + "是 出于", + "▁ 吹风机", + "▁Does n", + "Data Set", + "us ement", + "use ment", + "交 于", + "茉 莉", + "nSt atus", + "nStat us", + "n Status", + "▁premium s", + "政 委", + "比 对", + "hi r", + "h ir", + "▁ 世界", + "离婚 后", + "离 婚后", + "jo rd", + "j ord", + "NAME SPACE", + "▁Dis order", + "▁illegal ly", + "▁illeg ally", + "Y C", + "风 尘", + "SU RE", + "S URE", + "et us", + "严重 后果", + "st alk", + "s talk", + "you ng", + "yo ung", + "▁Fel ix", + "▁down side", + "▁downs ide", + "▁graft ing", + "▁viol ating", + "没 过", + "▁V L", + "▁ VL", + "中 输入", + "就是 说", + "是一 座", + "是 一座", + "能做 到", + "能 做到", + "黑色 素", + "黑 色素", + "▁j og", + "▁jo g", + "投资 管理", + "▁har bour", + "▁harb our", + "▁prolif ic", + "▁prol ific", + "保 税", + "支付 的", + "Ma de", + "Mad e", + "M ade", + "nr oot", + "n root", + "vo cab", + "voc ab", + "▁ 柳", + "受 过", + "小 腿", + "成 才", + "手 写", + "攻 读", + "野 蛮", + "是 全球", + "第五 届", + "▁P IL", + "▁PI L", + "优惠 政策", + "调解 无效", + "▁P une", + "▁Pu ne", + "▁Pun e", + "▁t art", + "▁ta rt", + "▁tar t", + "nn umber", + "nnum ber", + "n number", + "▁Bal tic", + "▁Balt ic", + "一 模", + "只 用", + "战 神", + "马 蹄", + "的话 语", + "的 话语", + "cu lt", + "c ult", + "do rf", + "dor f", + "d orf", + "nc omp", + "ncom p", + "nco mp", + "n comp", + "▁ax on", + "▁ axon", + "▁} }>\\", + "▁}} >\\", + "二〇一八年 四月", + "▁qu arant", + "▁Car negie", + "产 区", + "山 谷", + "只 知道", + "nW as", + "▁p ari", + "▁par i", + "▁pa ri", + "▁t ally", + "▁tal ly", + "▁tall y", + "▁uter us", + "dis count", + "disc ount", + "sol utions", + "solution s", + "s olutions", + "▁car riage", + "▁command ed", + "▁test icular", + "做 强", + "出 新", + "同 桌", + "张 小", + "▁ 标准", + "如果 我", + "蓝色 的", + "蓝 色的", + "得出 结论", + "nFr iday", + "n Friday", + "y b", + "协 力", + "叛 逆", + "把 控", + "贮 存", + "马 的", + "驾 校", + "垂直 于", + "W ant", + "▁b ead", + "▁be ad", + "▁T issue", + "有限责任 公司于", + "有限责任公司 于", + "▁miss iles", + "▁missile s", + "大 白", + "捍 卫", + "教育 学", + "亿元 人民币", + "亿 元人民币", + "局 党组成员", + "fac ial", + "f acial", + "▁ant iqu", + "▁anti qu", + "> ;", + "低 音", + "求 证", + "ri to", + "rit o", + "r ito", + "缓期 二年", + "nR ural", + "▁em bro", + "▁emb ro", + "▁embr o", + "▁Off set", + "▁ Offset", + "▁Camero on", + "中 度", + "或 少", + "考 了", + "() ]", + "( )]", + "ra tic", + "rat ic", + "r atic", + "▁Sh aring", + "▁Sha ring", + "▁Shar ing", + "▁Power Shell", + "▁ 정", + "多年 生", + "多 年生", + "nf il", + "nfi l", + "n fil", + "附属 医院", + "▁d ams", + "▁dam s", + "▁da ms", + "at osis", + "ato sis", + "atos is", + "▁Base l", + "▁Bas el", + "▁Ba sel", + "▁ax onal", + "▁axon al", + "▁hyp ogly", + "▁ind uctive", + "▁induct ive", + "▁xen ograft", + "▁re structuring", + "事 事", + "兰 特", + "脉 络", + "re k", + "r ek", + "为 保证", + "泸州 市", + "泸 州市", + "这 四个", + "re in", + "rei n", + "r ein", + "内容 丰富", + "法 刑初字第", + "▁den ial", + "▁suit ability", + "上班 族", + "张家 界", + "拥有 了", + "拥 有了", + "rel lo", + "rell o", + "r ello", + "▁LED s", + "▁LE Ds", + "[ <", + "分配 律", + "生产 工艺", + "▁B ark", + "▁Bar k", + "▁Ba rk", + "时间 复杂度", + "▁Do ctrine", + "▁Sun shine", + "▁Rest oration", + "▁In structions", + "▁Instruction s", + "归 于", + "毛 发", + "WH O", + "W HO", + "的 季节", + "请 写出", + "人际 关系", + "▁Aud it", + "▁Au dit", + "▁Audi t", + "▁ Audit", + "▁gr ids", + "▁grid s", + "▁gri ds", + "▁sh out", + "▁Ne umann", + "itution al", + "▁assign ing", + "cobacter ium", + "倘 若", + "天 门", + "太 少", + "悄 然", + "海 峰", + "nc p", + "n cp", + "ua nt", + "uan t", + "u ant", + "yl ic", + "y lic", + "or gia", + "org ia", + "V ehicle", + "ier ship", + "iers hip", + "i ership", + "▁check box", + "▁ checkbox", + "▁sk etches", + "▁sketch es", + "▁school ing", + "测 算", + "相 册", + "记 为", + "\"\" >", + "\" \">", + "▁ 如何", + "在 台湾", + "ie ra", + "ier a", + "i era", + "两边 同时", + "本院 审查", + "de bian", + "deb ian", + "ow ards", + "o wards", + "农村经济 总收入", + "decor ator", + "▁S ynthesis", + "▁Synt hesis", + "▁exerc ising", + "▁c x", + "▁ cx", + "展开 了", + "展 开了", + "(\\' _", + "(\\ '_", + "( \\'_", + "提供 不出", + "英语 学习", + "▁c ellar", + "▁cell ar", + "▁cel lar", + "了 么", + "性质 的", + "性 质的", + "▁W an", + "▁Wa n", + "▁an ts", + "▁ant s", + "▁ ants", + "经常 居住地", + "上 万", + "年 期", + "每 条", + "▁Y o", + "ec ker", + "eck er", + "user Data", + "实 测", + "译 文", + ")\\ ',", + ")\\' ,", + ") \\',", + "▁[ \\\\", + "▁[\\ \\", + "▁ [\\\\", + "▁r pm", + "▁ rpm", + "plan et", + "plane t", + "to List", + "end ance", + "enda nce", + "二〇一八年 三月", + "▁ Č", + "元 宝", + "婚生 子", + "婚 生子", + "眼前 的", + "眼 前的", + "▁C CR", + "▁CC R", + "▁Aut onomous", + "▁work sheets", + "▁works heets", + "▁worksheet s", + "英 超", + "主办 方", + "gi ve", + "g ive", + "▁c ured", + "▁cur ed", + "▁cure d", + "▁cu red", + "夫妻 共同财产", + "nN othing", + "nNo thing", + "nNot hing", + "n Nothing", + "▁Http Client", + "▁ HttpClient", + "ocom patibility", + "o compatibility", + "N W", + "▁ 初", + "边 际", + "橄榄 油", + "▁B erm", + "▁Be rm", + "▁Ber m", + "lin alg", + "l inalg", + "▁fl ats", + "▁flat s", + "▁myel oma", + "▁ch olinergic", + "停 电", + "纯 正", + "针 刺", + "▁P aram", + "▁Par am", + "▁Pa ram", + "▁Para m", + "▁ Param", + "▁Pa scal", + "▁Pas cal", + "▁in variants", + "▁invari ants", + "▁invariant s", + "理 发", + "腹 黑", + "颇 为", + "任务 的", + "▁Hy undai", + "tassert Equals", + "t assertEquals", + "反 响", + "扇 形", + "汽车 的", + "汽 车的", + "In voice", + "Inv oice", + "debug ger", + "可选 择", + "可 选择", + "Ro ad", + "R oad", + "我们 知道", + "执行 法院", + "lor ds", + "lord s", + "l ords", + "培养 学生的", + "培养学生 的", + "指定 期限内", + "▁rhet oric", + "引 力", + "白 金", + "黄 冈", + "it he", + "ith e", + "i the", + "与时俱 进", + "▁st icker", + "▁stick er", + "} ÷", + "出 头", + "苦 瓜", + "边 上", + "年代 初", + "采用 的是", + "采用的 是", + "采 用的是", + "▁qu in", + "▁qui n", + "▁ quin", + "▁huge ly", + "▁hug ely", + "滋 补", + "相 撞", + "NL P", + "N LP", + "▁ 空调", + "发出 了", + "发 出了", + "我 怎么", + "nA ug", + "n Aug", + "▁T iO", + "▁Ti O", + "▁ TiO", + "专家 学者", + "emor rh", + "osa urs", + "▁use Effect", + "▁ useEffect", + "想 在", + "▁g y", + "▁ gy", + "最 容易", + "货物 运输", + "相等的 实数根", + "▁Pep per", + "▁th icker", + "▁thick er", + "pro vision", + "prov ision", + "▁Begin ning", + "申请执行人 向本院申请执行", + "不 小", + "视 察", + "第三百 零", + "▁Jud y", + "▁Ju dy", + "▁mel ody", + "im mers", + "immer s", + "imm ers", + "▁Publish ers", + "▁Publisher s", + "拳 击", + "管 线", + "赞 誉", + "▁ 城市", + "便利 店", + "▁poss essed", + "▁possess ed", + "和 无", + "密 的", + "ec an", + "eca n", + "e can", + "▁un do", + "▁u ndo", + "▁und o", + "▁ undo", + "▁V ERSION", + "▁ VERSION", + "▁good bye", + "援 朝", + "送 去", + "为 提高", + "▁T ou", + "▁To u", + "利害 关系", + "总有 效率", + "总 有效率", + "is cus", + "isc us", + "▁Myst ery", + "▁Mys tery", + "教 委", + "衣 橱", + "赞 扬", + "Com bo", + "Comb o", + "C ombo", + "▁Om aha", + "mult ipart", + "multi part", + "供 求", + "前 身", + "均 无", + "有 明显", + "比较 少", + "比 较少", + "验证 码", + "nu ts", + "nut s", + "n uts", + "tu ce", + "t uce", + "▁d ug", + "▁du g", + "▁CH ANGE", + "▁ CHANGE", + "▁aw aken", + "▁awake n", + "▁awa ken", + "▁s iding", + "▁si ding", + "▁sid ing", + "ur rection", + "urre ction", + "▁sub species", + "吃 药", + "征 税", + "最 受", + "▁Ad apt", + "▁Ada pt", + "民事行为 能力", + "▁Ale mbic", + "▁IN DIRECT", + "同时 对", + "但是 由于", + "但 是由于", + "nId ent", + "n Ident", + "▁k ings", + "▁kin gs", + "▁king s", + "▁in verter", + "▁invert er", + "▁Hunt ington", + "▁Hunting ton", + "* \"", + "岁 以下", + "试验 区", + "▁R PG", + "▁RP G", + "nS ervice", + "n Service", + "Def initions", + "Definition s", + "她 会", + "流 速", + "Te l", + "T el", + "or an", + "ora n", + "o ran", + "he mer", + "hem er", + "heme r", + "人口与 计划生育", + "▁mos quit", + "$ \"", + "之 歌", + "写 得", + "此 举", + "衡 水", + "进 水", + "全 覆盖", + "而 导致", + "um ers", + "ume rs", + "umer s", + "u mers", + "南县 人民法院", + "南 县人民法院", + "ryst als", + "rystal s", + "人 头", + "旧 的", + "破 了", + "中国 国家", + "为自己 的", + "为 自己的", + "Page r", + "Pa ger", + "Pag er", + "P ager", + "er din", + "erd in", + "priv acy", + "p rivacy", + "▁simpl ifying", + "▁simplify ing", + "景 气", + "甲 醇", + "EE P", + "E EP", + "湖州 市", + "湖 州市", + "生产 厂家", + "dr agon", + "drag on", + "▁m ater", + "▁mat er", + "▁ma ter", + "▁mate r", + "▁wh oles", + "▁who les", + "▁whole s", + "% ^", + "预 估", + "是否 是", + "wo lf", + "w olf", + "高级 教师", + "▁nan oc", + "▁na noc", + "▁nano c", + "▁over see", + "▁overs ee", + "▁overse e", + "大 展", + "an kar", + "ank ar", + "anka r", + "reg exp", + "regex p", + "▁AT LAS", + "nQu estions", + "nQuestion s", + "▁app raisal", + "▁kind ergarten", + "探 寻", + "极 易", + "格 栅", + "特 么", + "诗 句", + "BO OK", + "▁box er", + "nRe move", + "nRem ove", + "n Remove", + "▁bundle d", + "▁bund led", + "滚 滚", + "趋 向", + "MC A", + "M CA", + "vi an", + "via n", + "v ian", + "▁L ima", + "▁Lim a", + "▁Li ma", + "▁contest ants", + "卫 计", + "台 南", + "就 从", + "浸 润", + "腿 部", + "的 母亲", + "▁ч то", + "即可 开始游戏", + "▁bl inds", + "▁blind s", + "云 山", + "协 和", + "的 圆", + "vo n", + "v on", + "的商 业", + "的 商业", + "车 服务", + "非常 高", + "▁R PM", + "▁RP M", + "▁b ids", + "▁bi ds", + "▁bid s", + "il iate", + "ili ate", + "ilia te", + "▁b east", + "▁be ast", + "xim ation", + "x imation", + "nH istoric", + "Buff eredReader", + "之 久", + "一次 次", + "却 发现", + "商丘 市", + "▁H ed", + "▁He d", + "犯 诈骗罪", + "E arth", + "to ast", + "ud ing", + "udi ng", + "u ding", + "Dis covery", + "Disc overy", + "▁anne aling", + "何 某", + "先 前", + "▁< >", + "▁ <>", + "nG od", + "nGo d", + "n God", + "sa nd", + "san d", + "s and", + "tp ath", + "t path", + "▁ev ap", + "An chor", + "就 餐", + "雷 霆", + "*) \\", + "* )\\", + "ot i", + "o ti", + "为 指导", + "在 企业", + "证明 原", + "sl ots", + "slot s", + "nP rivate", + "nPr ivate", + "n Private", + "第七十八条 之规定", + "第七十八 条之规定", + "▁Prov ides", + "▁Provide s", + "▁Block chain", + "▁percent ile", + "和 为", + "灵 芝", + "魅 族", + "也有 人", + "也 有人", + "转化 成", + "转 化成", + "nDet ermine", + "v f", + "春 华", + "罐 头", + "在 现代", + "▁s dk", + "▁sd k", + "▁ sdk", + "▁v id", + "▁vi d", + "▁ vid", + "▁b iking", + "▁bi king", + "▁bik ing", + "等 号", + "闪 闪", + "SP A", + "S PA", + "的原 理", + "的 原理", + "过 一个", + "教学 改革", + "dis on", + "di son", + "d ison", + "▁M its", + "▁Mi ts", + "▁Mit s", + "▁act u", + "▁ac tu", + "并支付 利息", + "并 支付利息", + "轴对称 图形", + "cor pus", + "corp us", + "▁hydro chlor", + "重 温", + "本文 以", + "不同 程度", + "im uth", + "▁Raf ael", + "▁He ating", + "▁Heat ing", + "▁orbit als", + "▁orbital s", + "stand alone", + "▁intens ities", + "育 种", + "该 产品", + "那么 大", + "IN ET", + "INE T", + "I NET", + "ps in", + "psi n", + "p sin", + "Pa int", + "P aint", + "▁T weet", + "▁v oucher", + "YL E", + "Y LE", + "ex as", + "实实在 在", + "▁St uff", + "nInd eed", + "▁Tim ber", + "▁Ti mber", + "▁on site", + "▁Print ing", + "主 意", + "你 别", + "▁ 需要", + "工作 量", + "Cl ub", + "上述 证据", + "▁H awks", + "▁Haw ks", + "▁Mac ro", + "▁Ma cro", + "▁ Macro", + "▁Graph ic", + "▁eight een", + "申请执行人可 向本院申请恢复执行", + "当 了", + "不 重要", + "推动 了", + "推 动了", + "的情 感", + "的 情感", + "达成 的", + "达 成的", + "ab an", + "aba n", + "a ban", + "UR ITY", + "URI TY", + "▁Lo ans", + "▁Loan s", + "gr avity", + "grav ity", + "▁im print", + "▁imp rint", + "▁P recision", + "▁Prec ision", + "▁bi odegrad", + "▁Depend ency", + "▁ Dependency", + "天 安", + "应 收", + "Te n", + "T en", + "经 原告", + "ir en", + "ire n", + "i ren", + "临床 表现", + "Pop en", + "Po pen", + "P open", + "nP ain", + "▁c heat", + "▁ch eat", + "▁che at", + "aut ions", + "a utions", + "▁sl udge", + "▁must ard", + "▁Ori ental", + "▁elect rom", + "▁electro m", + "▁electr om", + "IP P", + "I PP", + "新 陈代谢", + "方法 采用", + "we eks", + "week s", + "w eeks", + "▁O man", + "▁Om an", + "▁dr ains", + "▁drain s", + "pro jection", + "project ion", + "proj ection", + "一 旁", + "所 含", + "生 源", + "退 化", + "不 接受", + "手机 号", + "的可 以", + "的 可以", + "ho ff", + "h off", + "▁ce ase", + "▁box ers", + "▁boxer s", + "▁b idding", + "▁bid ding", + "pot ential", + "减 退", + "靠 自己", + "Win d", + "Wi nd", + "W ind", + "al us", + "alu s", + "▁演员 表", + "TH ING", + "ét ico", + "▁R ear", + "▁Re ar", + "▁dir name", + "▁ dirname", + "Anal ytics", + "▁broad caster", + "▁broadcast er", + "灭 亡", + "让 其", + "yl a", + "y la", + "还有 个", + "还 有个", + "per g", + "pe rg", + "p erg", + "▁A lf", + "▁Al f", + "ite space", + "ites pace", + "二〇一四年 十一月", + "ym a", + "y ma", + "▁b isc", + "▁bi sc", + "▁bis c", + "▁t int", + "▁ti nt", + "▁tin t", + "▁ tint", + "▁S exual", + "▁Sex ual", + "iv y", + "i vy", + "多 领域", + "▁D ip", + "▁Di p", + "or ian", + "ori an", + "oria n", + "o rian", + "▁B alk", + "▁Bal k", + "▁s ind", + "▁sin d", + "▁si nd", + "Com bin", + "Comb in", + "ST ATIC", + "STAT IC", + "▁Pl aying", + "▁Play ing", + "▁Mar riage", + "▁imp lying", + "▁impl ying", + "▁imply ing", + "▁scream ing", + "Pers istence", + "保 费", + "升 值", + "晴 天", + "集 镇", + "与 环境", + "发明 专利", + "年轻 人的", + "年轻人 的", + "ou los", + "oul os", + "o ulos", + "▁re ps", + "▁r eps", + "▁rep s", + "xi n", + "x in", + "不 考虑", + "并处 没收", + "技术 研发", + "短篇 小说", + "短 篇小说", + "Pos ted", + "Post ed", + "Po sted", + "est ation", + "esta tion", + "e station", + "▁pl astics", + "▁plastic s", + "▁fil aments", + "▁filament s", + "▁postpon ed", + "▁sung lasses", + "学 堂", + "em u", + "e mu", + "的 画面", + "▁d it", + "▁di t", + "▁ dit", + "▁w olf", + "▁wo lf", + "▁ wolf", + "▁V ijay", + "▁Vi jay", + "江 河", + "虚 无", + "▁R ey", + "▁Re y", + "小心 翼翼", + "有 停车位", + "ba sis", + "bas is", + "b asis", + "Med ium", + "PACK AGE", + "增 效", + "魔 幻", + "使 学生", + "ak ar", + "aka r", + "a kar", + "nEx ec", + "n Exec", + "sh uffle", + "▁l inger", + "▁lin ger", + "▁ling er", + "▁ linger", + "案件受理费 人民币", + "DIRECT ORY", + "▁an atomic", + "在 京", + "该 笔", + "▁\" &", + "AN TS", + "ANT S", + "▁f ry", + "▁fr y", + "集体 经济", + "al pine", + "nH ouston", + "▁far ther", + "▁priorit ize", + "▁re pression", + "▁rep ression", + "▁repr ession", + "▁vibr ational", + "▁vibration al", + "▁eryth rocytes", + "▁erythrocyte s", + "致 癌", + "行 之", + "出不 穷", + "更加 的", + "死亡 的", + "or eal", + "ore al", + "o real", + "依法 可以从轻处罚", + "▁auto antib", + "红 线", + "jp a", + "j pa", + "dis s", + "di ss", + "d iss", + "ur ic", + "uri c", + "u ric", + "▁h ue", + "▁hu e", + "将 本案移送", + "data bases", + "dat abases", + "database s", + "datab ases", + "▁Leban ese", + "▁vac ancies", + "中国 队", + "新型 的", + "新 型的", + "yr in", + "y rin", + "基础 教育", + "▁mile age", + "▁String IO", + "Ident ification", + "发 觉", + "客 栈", + "票 务", + "▁G le", + "▁Gl e", + "▁L er", + "▁Le r", + "中国 电信", + "差不多 的", + "差不 多的", + "换 句话说", + "▁h eck", + "▁he ck", + "▁ heck", + "STR UCT", + "Pro duction", + "Product ion", + "Prod uction", + "Produ ction", + "P roduction", + "外 径", + "DF S", + "D FS", + "制造 的", + ")) ))", + "))) )", + ") )))", + "▁V ictory", + "▁Victor y", + "H G", + "偏 低", + "扩 充", + "派 对", + "go s", + "g os", + "▁N I", + "▁ NI", + "法律 顾问", + "随便 吃吃", + "二〇一六年 九", + "纪念 碑", + "if en", + "ife n", + "i fen", + "欢迎 大家", + "ator ics", + "ato rics", + "▁bar gain", + "▁barg ain", + "▁m acular", + "▁mac ular", + "▁ma cular", + "cor relation", + "▁over coming", + "exam ethasone", + "大 山", + "组 团", + "和 专业", + "年 北京", + "Ver y", + "V ery", + "▁M MA", + "▁MM A", + "Part ai", + "Inter op", + "▁Pro per", + "▁Pr oper", + "▁Prop er", + "▁Kn owing", + "▁Know ing", + "凡 事", + "并 可", + "身 亡", + "cc i", + "c ci", + "会让 你", + "会 让你", + "项目 部", + "Bo ost", + "EF ORE", + "▁H ank", + "▁Ha nk", + "▁Han k", + "中 选择一个", + "un ding", + "und ing", + "undi ng", + "op ically", + "opic ally", + "而 异", + "钻 井", + "你 已经", + "添加 到", + "▁a lot", + "▁al ot", + "▁pre jud", + "ist rative", + "istr ative", + "则 该", + "胜 任", + "永远 不会", + "▁f oci", + "▁foc i", + "▁fo ci", + "▁ 云中书城", + "▁人物 简介", + "▁Le one", + "▁Leon e", + "▁Leo ne", + "中国人民 大学", + "ed itable", + "edit able", + "edi table", + "▁Opt imal", + "▁Optim al", + "▁dil emma", + "▁dile mma", + "电子 科技有限公司", + "contract s", + "contr acts", + "▁Rad iation", + "执行情况 告知申请执行人", + "S u", + "姜 片", + "雷 电", + "\"\" ,", + "\" \",", + "▁ 修改", + "Sl ide", + "S lide", + "ir con", + "irc on", + "sp arse", + "s parse", + "▁fel ony", + "盗 版", + "到 哪里", + "我 曾经", + "农村 居民", + "ip zig", + "▁L oren", + "▁Lo ren", + "▁Lore n", + "▁Lor en", + "▁Gen esis", + "▁Gene sis", + "▁Ass ignment", + "▁Assign ment", + "▁ Assignment", + "三 期", + "代 办", + "新 乡", + "江 津", + "除 湿", + "和 创新", + "新建 的", + "新 建的", + "的好 坏", + "的 好坏", + "De ar", + "D ear", + "▁H MS", + "▁HM S", + "▁T AG", + "▁TA G", + "▁ TAG", + "▁ 处理器", + "ulf ide", + "▁Chron icle", + "▁Chronic le", + "保 值", + "得 过", + "误 导", + "n ée", + "预期 的", + "预 期的", + "经济 贸易", + "om ies", + "omi es", + "▁Al to", + "▁Alt o", + "▁P las", + "▁Pl as", + "Check box", + "▁ch ecker", + "▁check er", + "▁ checker", + "▁soy bean", + "▁aut osomal", + "伺 服", + "你 没", + "服 役", + "lo st", + "los t", + "l ost", + "不确定 性", + "检 诉刑诉", + "身心 健康", + "▁Cur ve", + "▁ Curve", + "▁Dev ils", + "▁Devil s", + "二〇一六年 七月", + "JSON Object", + "▁mat hematically", + "▁mathematical ly", + "▁mathematic ally", + "后 半", + "年 版", + "to ml", + "tom l", + "▁K od", + "▁Ko d", + "▁V on", + "▁Vo n", + "采取保全措施 后", + "▁cyl inders", + "▁cylinder s", + "▁cylind ers", + "▁th umbnail", + "▁ thumbnail", + "▁experiment ing", + "烟 雨", + "粉 的", + "镜 片", + "回家 的", + "回 家的", + "▁M ai", + "▁Ma i", + "▁s care", + "▁sc are", + "▁scar e", + "fill able", + "▁academ ia", + "本 校", + ")) }\\", + ") )}\\", + "ba th", + "bat h", + "b ath", + "▁M SN", + "▁MS N", + "▁S DS", + "▁SD S", + "nF ood", + "n Food", + "op han", + "oph an", + "o phan", + "▁T hin", + "▁Th in", + "▁W ick", + "▁Wi ck", + "住所地 福建省", + "▁cycl ase", + "制 服", + "是 原", + "汉 化", + "精 子", + "▁大 小", + "▁ 大小", + "np re", + "npr e", + "n pre", + "▁P ORT", + "▁PO RT", + "▁ PORT", + "人 去", + "但 因", + "号之 二", + "号 之二", + "我来 说", + "我 来说", + "un ner", + "unn er", + "▁Par ade", + "▁Parad e", + "▁Para de", + "▁Wall paper", + "▁contamin ants", + "乳 酸", + "王 俊", + "dd d", + "d dd", + "▁% )", + "▁ %)", + "到 医院", + "▁E va", + "▁Ev a", + "下列 说法", + "年 降水量", + "co dep", + "code p", + "cod ep", + "ip ynb", + "ipy nb", + "▁expend itures", + "▁expenditure s", + "▁ 沙", + "对 阵", + "汤 汁", + "up a", + "u pa", + "AT TR", + "ATT R", + "分式 方程", + "▁pe ac", + "▁商品 毛重", + "进行了 深入", + "Follow ing", + "F ollowing", + "▁ 次", + "交 办", + "Ch o", + "C ho", + "SA R", + "S AR", + "ies is", + "ie sis", + "i esis", + "▁sur pass", + "中 线", + "先 看", + "和 弦", + "而 无", + "公司 于", + "es to", + "est o", + "e sto", + "Mar gin", + "M argin", + "pat ches", + "patch es", + "p atches", + "sp inner", + "spin ner", + "▁f al", + "▁fa l", + "▁C lip", + "▁Cl ip", + "▁ Clip", + "▁emer ges", + "▁emerg es", + "▁emerge s", + "点 儿", + "▁对 于", + "▁ 对于", + "省 部级", + "nP ak", + "这个 游戏", + "cou pled", + "▁tar iffs", + "dis connect", + "▁Dis orders", + "▁Disorder s", + "▁prot ections", + "▁protect ions", + "▁protection s", + "他 了", + "日 落", + "活 化", + "保险 人", + "公里 处", + "各 领域", + "位置 关系", + "和 相应的", + "ne uro", + "neur o", + "▁N VIDIA", + "▁fist ula", + "▁decl aring", + "▁declar ing", + "分 別", + "获得 者", + "有效 数字", + "自己 喜欢", + "F OLDER", + "G allery", + "Re ading", + "Read ing", + "▁S andra", + "▁Sand ra", + "▁Sa ndra", + "> |", + "休 假", + "文 昌", + "波 斯", + "▁L U", + "▁ LU", + "周某 某", + "周 某某", + "在 生产", + "方向 盘", + "}\\\\ ;", + "} \\\\;", + "产品 设计", + "寻衅滋事 罪", + "eff icacy", + "改 建", + "渊 源", + "▁L anguages", + "▁Language s", + "当 归", + "放 宽", + "溪 镇", + ":' ,", + ": ',", + "创造 力", + "达成 了", + "达 成了", + "de struct", + "dest ruct", + "▁cell ulose", + "appro ximately", + "approx imately", + "是 集", + "焦作 市", + "予以 证明", + "公 报", + "升 起", + "几乎 是", + "co us", + "cou s", + "c ous", + "wa iting", + "wait ing", + "▁qu arry", + "sh ipping", + "ship ping", + "shi pping", + "▁L indsay", + "▁Lind say", + "▁annot ated", + "加 息", + "宣 扬", + "语 的", + "浓度 的", + "浓 度的", + ")( \\\\", + ") (\\\\", + "em br", + "emb r", + "sum m", + "su mm", + "s umm", + "get Key", + "▁TH REE", + "安 得", + "ha w", + "h aw", + "物业 类别", + "▁h erd", + "▁he rd", + "▁her d", + "Separ ator", + "nE lections", + "nEl ections", + "nElect ions", + "nElection s", + "▁inhal ation", + "二 轮", + "寒 假", + "打 法", + "断 面", + "▁F W", + "▁ FW", + "is in", + "isi n", + "i sin", + "nM uch", + "▁Un cle", + "▁Unc le", + "▁pair wise", + "▁D imensions", + "▁Dimension s", + "▁Dim ensions", + "▁correct ness", + "方 舟", + "来 个", + "j vm", + "从严 治", + "▁X ml", + "▁ Xml", + "自由 贸易", + "nP rem", + "nPre m", + "nPr em", + "n Prem", + "▁d ome", + "▁do me", + "▁dom e", + "▁b ucks", + "▁bu cks", + "▁buck s", + "▁ bucks", + "▁e jection", + "▁pre scriptions", + "▁pres criptions", + "▁prescription s", + "▁ 夜", + "充 斥", + "同 位", + "巴 彦", + "幸 好", + "我 与", + "胞 胎", + "也 已经", + "▁coc oa", + "第二百四十 条", + "IN TEGER", + "Ch ristian", + "Christ ian", + "▁gather ings", + "▁gathering s", + "▁config urable", + "体 贴", + "吞 噬", + "意外 的", + "意 外的", + "▁C KD", + "▁CK D", + "in form", + "inf orm", + "info rm", + "▁ord inal", + "入 睡", + "中国 人的", + "中国人 的", + "可能 会有", + "可能会 有", + "▁dis reg", + "▁favour ites", + "▁favourite s", + "推 断", + "秋 水", + "aa n", + "a an", + "这只 是", + "这 只是", + "▁Incre ase", + "发生法律效力 之日起", + "▁discrim inant", + "一 式", + "和 多", + "教育 活动", + "被告 辩称", + "达成 协议", + "ne tty", + "net ty", + "nett y", + "▁商品 产地", + "曾 是", + "黄 土", + "ст а", + "с та", + "▁W B", + "▁ WB", + "又 因为", + "家常 菜", + "IA LS", + "IAL S", + "I ALS", + "产品 尺寸", + "zi lla", + "z illa", + "kin ase", + "▁se als", + "▁sea ls", + "▁seal s", + "▁ref using", + "太 白", + "很 像", + "CO ME", + "COM E", + "C OME", + "{} )\\", + "{}) \\", + "{ })\\", + "▁contract ions", + "▁contr actions", + "▁contraction s", + "▁osteo arthritis", + "别 克", + "战 友", + "抚 顺", + "背 诵", + "在 经济", + "ob ac", + "oba c", + "o bac", + "od ers", + "ode rs", + "oder s", + "o ders", + "Vis ion", + "V ision", + "bus ter", + "bu ster", + "b uster", + "▁blood y", + "▁blo ody", + "▁pay able", + "▁hol omorphic", + "很 想", + "言 行", + "nH op", + "n Hop", + "▁B ic", + "▁Bi c", + "数据 进行", + "之 神", + "公 会", + "利 物", + "危险 的", + "W ould", + "nL ink", + "nLin k", + "n Link", + "▁ro ast", + "rect angle", + "▁tack ling", + "马 尾", + "的 研发", + "nM ap", + "nMa p", + "n Map", + "og er", + "oge r", + "o ger", + "征求 意见", + "ETHO D", + "ETH OD", + "ef ile", + "e file", + "▁s inks", + "▁sin ks", + "▁sink s", + "▁bet ray", + "report ing", + "▁reg enerative", + "架空 历史", + "▁l oft", + "▁lo ft", + "查封 被申请人", + "fol ders", + "fold ers", + "folder s", + "▁char coal", + "▁prim ates", + "▁pri mates", + "▁primate s", + "▁deline ate", + "丞 相", + "五 种", + "开 销", + "杂志 社", + "矿 泉水", + "▁con ced", + "▁conc ed", + "▁conce d", + "end points", + "endpoint s", + "▁Dis ability", + "▁north western", + "▁northwest ern", + "传 记", + "DI V", + "D IV", + "in ster", + "ins ter", + "inst er", + "join ed", + "jo ined", + "j oined", + "le ting", + "let ing", + "l eting", + "▁sem inal", + "▁semi nal", + "▁semin al", + "nN ovember", + "nNov ember", + "n November", + "IA N", + "I AN", + "▁B cl", + "二审 法院", + "社交 媒体", + "Port al", + "P ortal", + "rid den", + "r idden", + "▁post operatively", + "▁postoperative ly", + "一 发", + "入 库", + "家 有", + "你 必须", + "教学 班", + "for th", + "fort h", + "f orth", + "▁R over", + "▁Ro ver", + "▁c anon", + "▁can on", + "▁ca non", + "▁aut opsy", + "▁auto psy", + "功 底", + "歌 剧", + "就 一直", + "new line", + "▁St rike", + "▁Str ike", + "▁Stri ke", + "▁for matter", + "▁form atter", + "▁format ter", + "▁ formatter", + "▁implicit ly", + "▁Research ers", + "═ ═", + "热 议", + "不到 位", + "不 到位", + "▁g az", + "▁ga z", + "项目 经理", + "nJ uly", + "nJul y", + "n July", + "X B", + "决 战", + "扁 舟", + "Ha m", + "H am", + "P ur", + "▁D EC", + "▁DE C", + "此 页无正文", + "土木 结构住房", + "▁Unc ategorized", + "取 胜", + "阻 抗", + "高 专", + "iv i", + "i vi", + "征 决字", + "起源 于", + "起 源于", + "WE VER", + "Run With", + "Ru nWith", + "▁who ever", + "有 为", + "罪 恶", + "耐 火", + "的 约定", + "劳务 派遣", + "nH ard", + "nHar d", + "nHa rd", + "n Hard", + "▁w ards", + "▁war ds", + "▁ward s", + "▁ wards", + "▁Bol ton", + "不 许", + "过 长", + ")} ,", + ") },", + "▁R ican", + "▁Ric an", + "▁Rica n", + "▁Ri can", + "▁axi om", + "▁Bull etin", + "▁Bullet in", + "▁air borne", + "感 人", + "我 叫", + "设 法", + "麦 当", + "vi p", + "v ip", + "▁k i", + "▁ ki", + "建筑 的", + "▁r ud", + "▁ru d", + "mt ime", + "m time", + "▁M oor", + "▁Mo or", + "▁qu il", + "▁qui l", + "▁ quil", + "ur ator", + "ura tor", + "▁y ummy", + "▁yum my", + "nprint f", + "n printf", + "▁caut ious", + "乳 房", + "劳 工", + "率 是", + "or h", + "o rh", + "▁т а", + "▁ та", + "了一 大", + "了 一大", + "人与 人", + "人 与人", + "验证 了", + "建设 工作", + "user id", + "use rid", + "▁bel ts", + "▁belt s", + "判处 无期徒刑", + "▁Det ective", + "绿 灯", + "it u", + "i tu", + "▁s r", + "▁ sr", + "▁T il", + "▁Ti l", + "Jo nes", + "Jon es", + "J ones", + "ph oton", + "photo n", + "phot on", + "char ged", + "charge d", + "charg ed", + "▁Al umni", + "▁Liter ary", + "▁Hol ocaust", + "第二百五十三 条的规定", + "曾 于", + "难 怪", + "我们 来", + "营业 收入", + "营销 策划", + "de nse", + "den se", + "dens e", + "d ense", + "th ese", + "the se", + "▁d awn", + "▁da wn", + "犯盗窃罪 被", + "▁ 比", + "推 导", + "at ura", + "atur a", + "atu ra", + "▁St ores", + "▁Store s", + "▁fire arm", + "▁Elastic search", + "三 楼", + "内 阁", + "ao l", + "a ol", + "冷 空气", + "nm in", + "n min", + "好 自己的", + "▁li tre", + "▁lit re", + "▁mid point", + "克 罗", + "官 僚", + "了大 量", + "了 大量", + "}} {{\\\\", + "}}{ {\\\\", + "}}{{ \\\\", + "Con version", + "Co nversion", + "Conv ersion", + "▁neurom uscular", + "▁ 成", + "口 镇", + "]) :", + "] ):", + "十三 年", + "十 三年", + "投入 使用", + "▁H its", + "▁Hi ts", + "▁Hit s", + "▁p odium", + "▁pod ium", + "▁tumorigen esis", + "三 者", + "临 汾", + "墓 志", + "洗 发", + "爱 民", + "脊 髓", + "▁j ungle", + "▁Vik ings", + "sub scriptions", + "subscription s", + "н я", + "他 为", + "甜 品", + "空气 质量", + "vid ia", + "v idia", + "▁f aux", + "▁fa ux", + "▁parad igms", + "▁paradigm s", + "该犯 在服刑期间确有悔改表现", + "该犯在服刑期间 确有悔改表现", + "妖 怪", + "绵 阳", + "正规 的", + "DE SC", + "DES C", + "水利 水电", + "研究 机构", + "部分 地区", + "▁ass ayed", + "▁assay ed", + "▁qual ifier", + "中 说", + "流 向", + "祖 宗", + "通 的", + "和 一些", + "LOW ED", + "SE MENT", + "SEM ENT", + "S EMENT", + "in file", + "inf ile", + "i nfile", + "▁buff et", + "▁ge odes", + "▁geo des", + "▁v ortex", + "▁vor tex", + "▁un usually", + "▁unus ually", + "▁unusual ly", + "利 民", + "念 念", + "美 感", + "前缀 和", + "ik en", + "ike n", + "i ken", + "▁Ber gen", + "▁Berg en", + "▁ref uses", + "▁refuse s", + "▁call able", + "▁di ameters", + "▁diameter s", + "例 行", + "含 金", + "应 激", + "粪 便", + "静 止", + "层 出不穷", + "铁路 运输", + "LI MIT", + "L IMIT", + "sof Ivy", + "▁Ch arity", + "▁Char ity", + "▁Sup ported", + "▁Support ed", + "▁ Supported", + "▁par amount", + "▁para mount", + "▁param ount", + "赣州 市", + "赣 州市", + "im id", + "imi d", + "i mid", + "pr ay", + "p ray", + "▁E ra", + "▁Er a", + "▁p add", + "▁pa dd", + "▁pad d", + "▁主要 原料", + "▁Suz uki", + "▁hum our", + "Db Context", + "▁line back", + "▁st umbled", + "▁ambig uity", + "▁Volks wagen", + "F x", + "将 与", + "qt y", + "q ty", + "在其 中", + "在 其中", + "某 负担", + "的 营养", + "这两 年", + "这 两年", + "er ta", + "ert a", + "Gr ade", + "Grad e", + "nTH IS", + "yp ass", + "y pass", + "▁gli oma", + "▁h unter", + "▁hun ter", + "▁hunt er", + "▁hu nter", + "酿 造", + "阳 明", + "▁C TL", + "▁CT L", + "整个 过程", + "不准许撤诉 的", + "nh eader", + "nhe ader", + "n header", + "▁E uclid", + "▁dro plets", + "▁drop lets", + "憧 憬", + "演 的", + "工作 了", + "工 作了", + "方 方面", + "次日 起", + "次 日起", + "全面 提升", + "▁制片 地区", + "get cwd", + "如果 把", + "想到 的", + "想 到的", + "手术 后", + "手 术后", + "半个 小时", + "半 个小时", + "ode nal", + "oden al", + "▁gang lia", + "▁condem ned", + "▁external ly", + "▁extern ally", + "灭 绝", + "铁 丝", + "专卖 店", + "代理 商", + "的中 心", + "的 中心", + "语言 学", + "Be nz", + "Ben z", + "B enz", + "解析式 为", + "nM ATER", + "▁rich ness", + "▁valid ators", + "▁validator s", + "▁ validators", + "一 览", + "bb c", + "b bc", + "ji a", + "j ia", + "我就 不", + "我 就不", + "来 表示", + "第二 审", + "第 二审", + "al on", + "alo n", + "a lon", + "培训 学校", + "▁g riev", + "▁gr iev", + "▁gri ev", + "nSen ior", + "▁Lis bon", + "▁flo ods", + "▁flood s", + "▁m A", + "▁ mA", + "是什么 呢", + "是 什么呢", + "被 认为是", + "EL ISA", + "fr ica", + "ch anger", + "chan ger", + "change r", + "chang er", + "▁Far mers", + "▁Farm ers", + "▁Farmer s", + "就读 于", + "▁F IN", + "▁FI N", + "▁s ont", + "▁so nt", + "▁son t", + "url open", + "▁tool kit", + "▁ toolkit", + "te chnical", + "techn ical", + "o C", + "伙 同", + "王 玉", + "PR I", + "P RI", + "è me", + "▁H Q", + "▁ HQ", + "▁W itch", + "▁Wit ch", + "▁Al bums", + "▁Alb ums", + "▁Album s", + "▁retard ation", + "御 史", + "热 潮", + "时 需要", + "War e", + "W are", + "ac yl", + "acy l", + "et in", + "eti n", + "e tin", + "值得 注意的是", + "广东省 佛山市", + "乘 除", + "余 个", + "分 包", + "就 职", + ":\" \\", + ": \"\\", + "世界 各国", + "公司 总经理", + "已 减半收取", + "▁Control s", + "▁Contr ols", + "▁ Controls", + "▁prison er", + "▁constit utive", + "nCong ratulations", + "▁ 贺", + "佳 作", + "TI M", + "T IM", + "▁R AF", + "▁RA F", + "▁v ue", + "▁ vue", + "尤为 重要", + "fr ied", + "f ried", + "nDiv ide", + "▁In form", + "▁Inf orm", + "▁Info rm", + "▁re agent", + "切 记", + "轻 盈", + "法 测定", + "par d", + "pa rd", + "p ard", + "魔龙 令牌", + "▁B low", + "▁Bl ow", + "▁Blo w", + "▁m ixes", + "▁mix es", + "▁run off", + "▁st rives", + "▁str ives", + "▁stri ves", + "▁strive s", + "▁mod ulates", + "▁modulate s", + "▁rad iological", + "▁radio logical", + "▁radi ological", + "▁radiol ogical", + "极 管", + "相 符", + "UC N", + "U CN", + "的有 关", + "的 有关", + "nS oviet", + "▁Tre vor", + "▁Min isters", + "▁Minister s", + "▁Mini sters", + "▁aggreg ated", + "▁aggregate d", + "▁negot iated", + "▁negotiate d", + "多 情", + "而 今", + "表 决", + "DT D", + "D TD", + "HA N", + "H AN", + "一本 书", + "一 本书", + "在 诉讼", + "专科 学校", + "专科学 校", + "是一名 演员", + "uls ory", + "▁Al pine", + "▁Alp ine", + "▁Web ster", + "▁vac ancy", + "IP v", + "很 适合", + "冠状 动脉", + "ac ons", + "acon s", + "aco ns", + "a cons", + "▁O mar", + "▁Om ar", + "\\\\ \\\\\\\\", + "\\\\\\\\ \\\\", + "\\\\\\ \\\\\\", + "\\\\\\\\\\ \\", + "\\ \\\\\\\\\\", + "▁s ponge", + "▁sp onge", + "▁spo nge", + "▁Syr acuse", + "坏 事", + "杏 花", + "村 干部", + "第三 边", + "第 三边", + "▁c hr", + "▁ch r", + "▁ chr", + "爷爷 奶奶", + "相关 证据", + "▁m ong", + "▁mon g", + "▁mo ng", + "▁ mong", + "公 办", + "切 勿", + "Go t", + "G ot", + "ib u", + "i bu", + "▁K C", + "▁ KC", + "▁e h", + "▁ eh", + "工商 联", + "由此 可见", + "in ged", + "ing ed", + "inge d", + "st ret", + "str et", + "stre t", + "s tret", + "糖尿 病患者", + "糖尿病 患者", + "npro cess", + "n process", + "▁substit uting", + "漂 流", + "ar gc", + "arg c", + "no va", + "nov a", + "n ova", + "om bo", + "omb o", + "▁Ro land", + "▁Rol and", + "▁adv ising", + "▁advis ing", + "中国 银行股份有限公司", + "中国银行 股份有限公司", + "双 双", + "小 猫", + "拉 黑", + "福 德", + "挖掘 机", + "非常 多", + "ar aj", + "ara j", + "a raj", + "{\\\\ \"", + "{ \\\\\"", + "▁k ub", + "▁ kub", + "▁Sh ane", + "▁Sha ne", + "▁Shan e", + "小 林", + "我 以前", + "ap sing", + "aps ing", + "ret rieve", + "▁sh aking", + "▁sha king", + "▁throm bin", + "▁thromb in", + "▁Compar ative", + "K i", + "也 行", + "青 天", + "TE S", + "T ES", + "可以 有", + "持有 的", + "持 有的", + "nR en", + "nRe n", + "n Ren", + "Nav igator", + "▁pitch ing", + "▁pit ching", + "▁analges ia", + "抢 购", + "而 下", + "本 项目", + "系列 活动", + "Vo ice", + "V oice", + "▁C laus", + "▁Cl aus", + "二〇一六年 十", + "ic ating", + "ica ting", + "▁ar ranging", + "▁arr anging", + "▁arrang ing", + "S Z", + "状态 的", + "Mar y", + "Ma ry", + "M ary", + "ic ki", + "ick i", + "第十 四章", + "第十四 章", + "第 十四章", + "mor tem", + "mort em", + "▁hor ny", + "▁horn y", + "▁diaph rag", + "▁dis traction", + "▁di straction", + "▁distr action", + "州市中级人民法院 提出上诉", + "州 市中级人民法院提出上诉", + "焚 烧", + "▁V es", + "▁Ve s", + "下面 是一个", + "下面是 一个", + "index es", + "Inst ances", + "Instance s", + "▁Inter val", + "▁ Interval", + "▁microbi ota", + "az o", + "a zo", + "销售 等", + "▁Ro ots", + "▁Root s", + "▁am alg", + "▁a rche", + "▁ar che", + "▁arch e", + "▁arc he", + "▁w ives", + "▁wi ves", + "▁ wives", + "ны й", + "结果 与", + "裁决 书", + "fa tal", + "fat al", + "f atal", + "▁se aling", + "▁sea ling", + "▁seal ing", + "de scribed", + "des cribed", + "describe d", + "▁embrace d", + "▁embr aced", + "▁circuit ry", + "▁panor amic", + "▁Eng agement", + "两 三", + "你不 是", + "你 不是", + "▁M AR", + "▁MA R", + "▁ MAR", + "vd ots", + "v dots", + "▁draw ers", + "▁drawer s", + "▁toile ts", + "▁toilet s", + "二 号", + "对 决", + "铸 铁", + "][ :", + "] [:", + "sv c", + "s vc", + "区间 为", + "的一 样", + "的 一样", + "的数 是", + "的 数是", + "污染 防治", + "简直 就是", + "do ing", + "doi ng", + "▁h ype", + "▁hy pe", + "▁hyp e", + "▁congr u", + "▁cong ru", + "▁tra pez", + "▁trap ez", + "▁trape z", + "prepare d", + "prep ared", + "本案 诉讼费由被告承担", + "本案诉讼费 由被告承担", + "中 风", + "拟 定", + "捕 获", + "是 会", + "皮 书", + "福 音", + "荣 华", + "EA A", + "E AA", + "UN G", + "U NG", + "▁d m", + "▁ dm", + "加大 对", + "▁D ul", + "▁Du l", + "PA RAM", + "PAR AM", + "▁func tools", + "▁funct ools", + "拟 任", + "是 种", + "gr en", + "gre n", + "g ren", + "▁A IM", + "▁AI M", + "ml ess", + "m less", + "住所地 江苏省", + "▁h acker", + "▁hack er", + "Over view", + "▁for give", + "▁forg ive", + "▁veter in", + "▁reservoir s", + "▁civil ization", + "专 访", + "养 的", + "泊 尔", + "圆柱 形", + "随时 随地", + "厦门市 思明", + "nIn cre", + "nInc re", + "n Incre", + "上诉于 上海市", + "▁brief ing", + "▁div isors", + "▁divisor s", + "▁dis position", + "▁disp osition", + "と い", + "创 设", + "特 拉", + "泰安 市", + "泰 安市", + "▁V augh", + "▁Va ugh", + "▁threat en", + "▁sim ulating", + "一 汽", + "基 石", + "大 牌", + "食 疗", + "ous se", + "▁m ans", + "▁man s", + "▁ma ns", + "▁ mans", + "et ched", + "etch ed", + "etc hed", + "▁原 料", + "▁ 原料", + "皮肤 的", + "▁e go", + "▁eg o", + "▁ ego", + "行政 审批", + "▁G ain", + "▁Ga in", + "iz umab", + "▁py ram", + "▁pyr am", + "sam pling", + "▁sn ippets", + "▁snippet s", + "hom ogeneous", + "乳 化", + "保 研", + "减 灾", + "执 教", + "站 位", + "这 支", + "NA S", + "N AS", + "▁ST AR", + "▁ STAR", + "▁K athy", + "▁Kat hy", + "▁Ka thy", + "▁Kath y", + "二〇一四年 九月", + "▁Krish na", + "▁musc uloskeletal", + "抽 出", + "时 可", + "和 时间", + "nas ium", + "ge ometric", + "geo metric", + "geom etric", + "并 入", + "永 嘉", + "会议 由", + "长大 的", + "长 大的", + "▁B ri", + "▁Br i", + "市场 价格", + "▁Min eral", + "▁Mine ral", + "▁prom pts", + "▁prompt s", + "▁tr apping", + "▁tra pping", + "▁trap ping", + "∈ (", + "十堰 市", + "红 细胞", + "bi sh", + "bis h", + "b ish", + "pl acing", + "plac ing", + "GL IGENCE", + "▁Pok émon", + "▁plac enta", + "上 火", + "超 强", + "bl att", + "bla tt", + "gr ave", + "grav e", + "gra ve", + "np ass", + "n pass", + "▁B ind", + "▁Bi nd", + "▁Bin d", + "▁ Bind", + "劳动争议 纠纷一案", + "▁day light", + "▁announce s", + "▁announc es", + "▁wave guide", + "▁ ş", + "cd f", + "c df", + "▁N L", + "▁ NL", + "别 忘了", + "这个 小", + "这 个小", + "▁C omes", + "▁Com es", + "▁Co mes", + "▁Come s", + "▁B anner", + "▁Ban ner", + "▁ Banner", + "▁CON SEQUENTIAL", + "ö m", + "欧 式", + "▁Q A", + "▁ QA", + "工资 款", + "需 付费", + "nW il", + "n Wil", + "▁S atisf", + "▁Sat isf", + "▁out right", + "▁ou tright", + "こ の", + "不 正", + "克 林", + "老 天", + "输 液", + "Co A", + "占有 率", + "第一 行", + "第 一行", + "nV ue", + "n Vue", + "ap opt", + "apo pt", + "怎样的 体验", + "管辖权 异议", + "op ters", + "opt ers", + "opter s", + "expl orer", + "Request Body", + "排 泄", + "机 上", + "极 小", + "软 体", + "包括 了", + "等 产品", + "与 被害人", + "感情 基础", + "▁sw agger", + "▁ swagger", + "▁exec utor", + "▁execut or", + "▁ executor", + "千 人", + "换 乘", + "\"/ /", + "\" //", + "下辖 村", + "是用 来", + "是 用来", + "Mar c", + "Ma rc", + "M arc", + "or ce", + "形成 一个", + "形 成一个", + "Log out", + "Logo ut", + "河南省 郑州市", + "▁che mot", + "▁chem ot", + "▁chemo t", + "roll able", + "open stack", + "▁paras itic", + "张 晓", + "杜 甫", + "在 选择", + "ub icin", + "ubi cin", + "▁Re mix", + "▁Rem ix", + "▁cor ps", + "ens ible", + "tra ffic", + "traff ic", + "▁C lement", + "▁Cl ement", + "▁Cle ment", + "▁hect ares", + "ー ド", + "东 汉", + "坚 韧", + "第一项 至", + "mor ph", + "m orph", + "om otor", + "omo tor", + "o motor", + "▁R oose", + "▁Ro ose", + "tutorial s", + "Cal ifornia", + "祖 父", + "誓 言", + "风 筝", + "️ \\", + "ip ei", + "ipe i", + "苏州市 吴", + "w ould", + "被执行人 吴", + "li ttle", + "lit tle", + "l ittle", + "py game", + "▁prost hesis", + "▁investig ative", + "三 章", + "龙 山", + "可以 对", + "计算 在", + "▁g ol", + "▁go l", + "j q", + "▁ 段", + "影 人", + "ts c", + "t sc", + "也 存在", + "但不 是", + "但 不是", + "▁K ai", + "▁Ka i", + "怎样 才能", + "英语 教学", + "执行机关 认为", + "被执行人 暂无", + "pl itude", + "plit ude", + "exper ience", + "各 样", + "思 索", + "ic um", + "i cum", + "broad cast", + "b roadcast", + "▁pers ists", + "▁persist s", + "▁amb itions", + "▁ambit ions", + "▁ambition s", + "平 坦", + "来 宾", + "▁g ui", + "▁gu i", + "▁ gui", + "好好 学习", + "tag ged", + "t agged", + "▁Wend y", + "▁Wen dy", + "Non null", + "STIT UTE", + "▁ver ses", + "▁vers es", + "▁verse s", + "▁ verses", + "▁sing ularity", + "▁singular ity", + "l w", + "与 原", + "处 境", + "▁ är", + "敏感 性", + "敏 感性", + "完全 破裂", + "▁O ste", + "▁Os te", + "▁Ost e", + "▁re gain", + "▁reg ain", + "▁ubiquit in", + "正 月", + "▁w p", + "▁ wp", + "▁P ix", + "▁Pi x", + "▁ Pix", + "▁p si", + "▁ps i", + "▁ psi", + "县委 书记", + "县 委书记", + "▁Six ty", + "▁T ucker", + "▁Tuc ker", + "z f", + "▁ 建", + "▁ 闫", + "田 县", + "花 岗", + "装 入", + "对本 院", + "对 本院", + "的小 孩", + "的 小孩", + "Ni ght", + "N ight", + "▁c amel", + "▁ca mel", + "▁came l", + "▁cam el", + "▁ camel", + "ran ging", + "r anging", + "▁cr ashing", + "▁crash ing", + "▁des erved", + "▁deserve d", + "▁Insp ection", + "一 滴", + "六年 级", + "六 年级", + "man s", + "ma ns", + "m ans", + "▁G ad", + "▁Ga d", + "气候 变化", + "▁C andy", + "▁Can dy", + "▁Cand y", + "▁S PECT", + "▁SP ECT", + "▁SPE CT", + "cre ating", + "creat ing", + "c reating", + "▁buff ers", + "▁buffer s", + "▁buf fers", + "游 行", + "El e", + "E le", + "好 消息", + "汽车 站", + "汽 车站", + "▁H elic", + "▁He lic", + "▁Hel ic", + "▁Law yers", + "FORM ATION", + "FORMAT ION", + "ar ra", + "arr a", + "ta pp", + "tap p", + "t app", + "▁P PAR", + "▁PP AR", + "▁bl unt", + "▁blu nt", + "▁bur nt", + "▁burn t", + "utter ing", + "utt ering", + "宴 请", + "sb t", + "s bt", + "十一 年", + "十 一年", + "和 要求", + "适合 于", + "都 具有", + "Z ONE", + "oh an", + "oha n", + "o han", + "▁ph age", + "▁phag e", + "▁Willi e", + "▁Will ie", + "▁Wil lie", + "▁en anti", + "initial ized", + "initialize d", + "前 卫", + "无 色", + "Ba n", + "B an", + "崭 新的", + "胶原 蛋白", + "▁r age", + "▁ra ge", + "▁rag e", + "▁ rage", + "▁in noc", + "▁inn oc", + "LOC ATION", + "▁P atterns", + "▁Pat terns", + "▁Pattern s", + "▁ Patterns", + "▁crafts manship", + "▁craftsm anship", + "异 步", + "我是 个", + "我 是个", + "是 关于", + "进程 中", + "ON LY", + "R isk", + "fa ng", + "fan g", + "f ang", + "do ped", + "d oped", + "ub ert", + "ube rt", + "uber t", + "u bert", + "het ized", + "nMar tin", + "nMart in", + "n Martin", + "瓦 尔", + "福 彩", + "PC B", + "P CB", + "也是 在", + "也 是在", + "右下 角", + "这一 年", + "这 一年", + "og el", + "oge l", + "o gel", + "TAIN ER", + "le tion", + "let ion", + "▁Bul ls", + "▁Bull s", + "~ (", + "田 野", + "程 式", + "自然 而", + "自 然而", + "纪委 监委", + "pa ired", + "pair ed", + "p aired", + "▁eth yl", + "▁ ethyl", + "▁excit atory", + "赏 析", + "奥特 曼", + "__ (*", + "__( *", + "▁O WN", + "理论 知识", + "au nch", + "a unch", + "ie ren", + "ier en", + "iere n", + "i eren", + "▁R eds", + "▁Re ds", + "▁Red s", + "▁p osing", + "▁pos ing", + "▁po sing", + "▁ posing", + "之 于", + "抚 育", + "有关 系", + "有 关系", + "让自己 的", + "让 自己的", + "▁N arr", + "▁Na rr", + "▁Nar r", + "▁qu ota", + "▁quot a", + "▁quo ta", + "FUN CTION", + "▁Re action", + "▁React ion", + "▁multi center", + "▁multic enter", + "唯 物", + "村 级", + "▁ 函数", + "物体 的", + "物 体的", + "呼和浩特 市", + "ind rome", + "remove Class", + "创 刊", + "差 价", + "手 绘", + "nH E", + "n HE", + "ow o", + "o wo", + "之后 再", + "之 后再", + "el dom", + "eld om", + "▁am yg", + "▁amy g", + "vis iae", + "▁sh unt", + "依法 提起诉讼", + "nV ictor", + "n Victor", + "▁vegg ies", + "文化传媒 有限公司", + "出 名", + "处 以", + "家 住", + "异 侠", + "▁E lm", + "▁El m", + "ca kes", + "cake s", + "c akes", + "set Item", + "▁suc rose", + "▁favour able", + "克 莱", + "挂 靠", + "可以 被", + "西游 记", + "▁N em", + "▁Ne m", + "损伤 程度", + "▁Be am", + "▁Bea m", + "▁C ater", + "▁Ca ter", + "▁Cat er", + "▁Exped ition", + "▁expansion s", + "▁expans ions", + "▁ 吉", + "按 期", + "自 救", + "du p", + "d up", + "都 一样", + "▁U PS", + "▁UP S", + "▁ UPS", + "▁g ir", + "▁gi r", + "三大 阶段", + "第三项 裁定", + "▁Tor res", + "uit ively", + "uitive ly", + "u itively", + "▁kotlin x", + "mark eting", + "market ing", + "▁team mate", + "trad itional", + "永 定", + "盗 走", + "赋 能", + "de a", + "d ea", + "▁天 津", + "▁ 天津", + "海口 市", + "海 口市", + "nV an", + "n Van", + "ns tr", + "nst r", + "n str", + "该局 局长", + "该 局局长", + "▁g els", + "▁ge ls", + "▁gel s", + "par ing", + "pa ring", + "p aring", + "▁doc king", + "▁dock ing", + "In frastructure", + "▁Parliament ary", + "忧 郁", + "肾 病", + "这 将", + "连 结", + "▁ 显示", + "绿色 的", + "绿 色的", + "▁Zur ich", + "▁f iller", + "▁fil ler", + "▁fill er", + "▁fi ller", + "▁prev ailing", + "▁ 兰", + "幕 墙", + "老 挝", + "平板 电脑", + "▁W idth", + "▁Wid th", + "▁ Width", + "▁Bel grade", + "▁mel atonin", + "au i", + "a ui", + "不 公平", + "人员 在", + "卫生 所", + "iv os", + "ivo s", + "ur in", + "uri n", + "u rin", + "X gate", + "ip ient", + "▁D ixon", + "▁s tint", + "▁st int", + "▁Wh ilst", + "segment s", + "seg ments", + "▁batt ling", + "▁anest hetic", + "ç o", + "▁ 光", + "到 头", + "太 行", + "相 切", + "nA S", + "n AS", + "vey or", + "民间借贷 纠纷", + "Man aged", + "Manag ed", + "Manage d", + "▁Czech oslovak", + "财 税", + "长 发", + "▁f aint", + "▁fa int", + "▁ 答", + "ッ ト", + "丽 娜", + "名 城", + "换 装", + "最 值", + "烈 的", + "等 为", + "足 额", + "AT M", + "A TM", + "at as", + "ata s", + "a tas", + "ti po", + "tip o", + "▁Ar bor", + "IZ ATION", + "cast ers", + "ca sters", + "cas ters", + "caster s", + "c asters", + "▁car amel", + "Exper imental", + "蓝 光", + "入住 时", + "有用 的", + "有 用的", + "因为 没有", + "差不多 了", + "差不 多了", + "de cre", + "dec re", + "how to", + "▁S ell", + "▁Se ll", + "▁Sel l", + "ose cond", + "o second", + "▁l ocker", + "▁loc ker", + "▁lock er", + "科技 发展有限公司", + "玉 石", + "▁ 深圳", + "去看 看", + "去 看看", + "网友 们", + "网 友们", + "骨干 教师", + "▁F old", + "▁Fol d", + "▁Fo ld", + "▁ Fold", + "▁s eas", + "▁se as", + "▁sea s", + "▁F lood", + "▁Fl ood", + "▁Flo od", + "▁fl ames", + "▁flame s", + "X D", + "▁ 磊", + "因 病", + "艳 丽", + "na k", + "n ak", + "中 没有", + "引发 了", + "引 发了", + "滁 州市", + "De cl", + "Dec l", + "D ecl", + "im ap", + "ima p", + "i map", + "ast atin", + "asta tin", + "▁F ighter", + "▁Fight er", + "Fi ve", + "F ive", + "▁j an", + "▁ja n", + "▁ jan", + "ic ola", + "ico la", + "icol a", + "▁Whit ney", + "准 入", + "贬 值", + "的 客户", + "en as", + "ena s", + "e nas", + "wo rt", + "wor t", + "w ort", + "各个 方面", + "▁St roke", + "▁Str oke", + "nAltern atively", + "查 验", + "每 秒", + "气 场", + "疏 通", + "秋 色", + "失败 的", + "RO LL", + "ROL L", + "ed ay", + "eda y", + "e day", + "还会 提供", + "还 会提供", + "▁Ch ak", + "▁Cha k", + "▁l umen", + "▁lum en", + "▁lu men", + "in stant", + "inst ant", + "anal yzer", + "base line", + "bas eline", + "struct ural", + "等 单位", + "▁D ys", + "▁Dy s", + "公交 线路", + "限制 消费", + "Est im", + "Es tim", + "E stim", + "▁J eep", + "▁Je ep", + "el late", + "ell ate", + "ella te", + "▁rad ii", + "▁radi i", + "▁New ark", + "▁in continence", + "▁ İ", + "心 意", + "手 艺", + "Ke n", + "K en", + "就 只能", + "to os", + "too s", + "t oos", + "▁R az", + "▁Ra z", + "正确 判断", + "法律 后果", + "aut oload", + "auto load", + "combin ed", + "comb ined", + "combine d", + "▁don ating", + "Model Admin", + "▁geomet ries", + "▁deg enerative", + "农 夫", + "博 彩", + "故 居", + "本 的", + "al om", + "alo m", + "var n", + "va rn", + "v arn", + "▁b fs", + "▁ bfs", + "hen ko", + "h enko", + "at cher", + "atch er", + "▁Com bat", + "▁Comb at", + "▁voy age", + "亚 历", + "动 感", + "北 欧", + "销售 量", + "Bo ld", + "B old", + "pi nk", + "pin k", + "p ink", + "▁A CM", + "▁AC M", + "▁coch lear", + "nBe autiful", + "n Beautiful", + "▁Rel igious", + "户 名", + "祝 你", + "id f", + "i df", + "的 魅力", + "▁A MA", + "▁AM A", + "认定 被告人", + "Tag Name", + "▁Ref uge", + "▁Diff usion", + "▁enthus iast", + "▁enthusi ast", + "性 命", + "希望 你", + "都 必须", + "子叶 植物", + "▁L ens", + "▁Le ns", + "▁Len s", + "权纠纷一案 中", + "权 纠纷一案中", + "▁Em manuel", + "▁counc ils", + "▁council s", + "▁Bench mark", + "▁ Benchmark", + "▁empower ing", + "司 长", + "选 修", + "bi lt", + "bil t", + "b ilt", + "▁in i", + "▁i ni", + "▁ ini", + "▁r ash", + "▁ra sh", + "▁Th ames", + "Public Key", + "▁compens ated", + "▁compensate d", + "▁indispens able", + "各 县", + "补 办", + "反映 出", + "▁B arton", + "▁Bar ton", + "▁Bart on", + "▁Dam age", + "▁ Damage", + "▁broch ure", + "▁ 半", + "与 张", + "人 寿", + "本 组", + "相 色谱", + "al lo", + "all o", + "nF oot", + "▁L azy", + "▁La zy", + "▁Laz y", + "▁ Lazy", + "omat ous", + "▁str ands", + "▁strand s", + "▁A ircraft", + "▁Air craft", + "O rientation", + "▁electron ically", + "▁electronic ally", + "我 做", + "Ma s", + "M as", + "▁ 房价", + "ual a", + "ua la", + "u ala", + "S uffix", + "nr ight", + "n right", + "▁Cl aud", + "第一项至 第三项裁定", + "▁ 千", + "小 鸟", + "铁 矿", + "在 任何", + "▁C ot", + "▁Co t", + "▁E as", + "em poral", + "emp oral", + "empor al", + "▁com plemented", + "▁complement ed", + "了 然", + "发 泄", + "物 件", + "bf s", + "b fs", + "st k", + "s tk", + "vi ll", + "vil l", + "v ill", + "▁U ni", + "▁Un i", + "也是 如此", + "▁un to", + "▁u nto", + "▁unt o", + "▁p alsy", + "▁pal sy", + "▁tal lest", + "▁tall est", + "▁Rel igion", + "感 触", + "采 光", + "黄 芪", + "未知 数", + "求 函数", + "▁h urry", + "▁hur ry", + "▁tun nels", + "▁tunnel s", + "丽 萍", + "的 设备", + "gin ia", + "gi nia", + "g inia", + "▁b askets", + "▁basket s", + "▁master ing", + "▁mast ering", + "▁nav igating", + "自 幼", + "宿迁 市", + ")} $$", + ")}$ $", + ") }$$", + "重点 工作", + "er ring", + "err ing", + "es tring", + "est ring", + "estr ing", + "e string", + "▁ins ist", + "▁Un ified", + "▁En forcement", + "▁complex ities", + "安 吉", + "找 准", + "前 公示", + "实在 太", + "第一百 二十", + "▁en thal", + "▁ent hal", + "nP URPOSE", + "▁Comp iler", + "▁ Compiler", + "▁disc arded", + "▁discard ed", + "▁anis otropy", + "可 疑", + "的 优秀", + "he id", + "LOB AL", + "▁L emon", + "▁Le mon", + "▁Lem on", + "Sim ilar", + "S imilar", + "syn chron", + "s ynchron", + "▁c ranial", + "▁cran ial", + "▁de polar", + "▁dep olar", + "▁loose ly", + "▁loos ely", + "▁b iblical", + "▁bibli cal", + "▁minim ized", + "▁minimize d", + "▁symmetric al", + "▁symmet rical", + "Sw ift", + "▁a unt", + "▁au nt", + "M iddle", + "▁Sh ock", + "二〇一四年 七月", + "▁Reg ulatory", + "粘 膜", + "跨 度", + "pr incipal", + "princ ipal", + "一 文", + "pt o", + "p to", + "enc ils", + "encil s", + "ile vel", + "i level", + "condition ing", + "Re w", + "R ew", + "最强 的", + "最 强的", + "遥控 器", + "it en", + "ite n", + "i ten", + "任免 信息", + "ur face", + "urf ace", + "▁To ast", + "▁ Toast", + "步 兵", + "等 值", + "这 让", + "▁D ud", + "▁Du d", + "▁S CC", + "▁SC C", + "住 吉林省", + "nE asy", + "n Easy", + "向本院 起诉", + "▁d owns", + "▁down s", + "▁dow ns", + "▁k appa", + "▁ kappa", + "▁Pol bot", + "▁w ording", + "▁word ing", + "▁wor ding", + "▁Christ ina", + "▁Scient ist", + "▁Af fordable", + "▁accus ations", + "▁personal ised", + "坏 的", + "Sa y", + "S ay", + "所以 他", + "请 分析", + "an si", + "ans i", + "市委 书记", + "市 委书记", + "zhi hu", + "▁v ene", + "▁ve ne", + "▁ven e", + "cons ult", + "SET TINGS", + "opt imize", + "optim ize", + "▁trump et", + "▁spe eches", + "▁speech es", + "Serialize Field", + "▁prefer entially", + "独 生", + "在其 他", + "在 其他", + "at he", + "ath e", + "a the", + "经 相关部门", + "nPl ants", + "▁Par agu", + "▁Para gu", + "▁Tr ends", + "▁Trend s", + "▁Mess enger", + "▁sensit ization", + "榆 树", + "追 星", + "将 持续", + "试用 期", + "配备 了", + "▁C LE", + "▁CL E", + "▁ CLE", + "com ings", + "coming s", + "▁rob bery", + "▁inc arcer", + "nS omething", + "nSome thing", + "n Something", + "VERTI SEMENT", + "喷 射", + "山 羊", + "BR O", + "B RO", + "Et h", + "E th", + "XY Z", + "da d", + "d ad", + "无数 的", + "无 数的", + "▁m yc", + "▁my c", + "我们 已经", + "▁s oak", + "▁so ak", + "▁V inyl", + "▁Vin yl", + "▁Fire base", + "▁Colomb ian", + "▁Colombia n", + "▁anomal ous", + "声 卡", + "正 直", + "了一 起", + "了 一起", + "▁Al eks", + "▁Ale ks", + "▁PROF ITS", + "▁gr illed", + "▁grill ed", + "印 记", + "夫 子", + "沥 干", + "莱 芜", + "▁G V", + "▁ GV", + "at ican", + "atic an", + "ati can", + "Un iform", + "game Object", + "▁pre defined", + "▁pred efined", + "夺 取", + "小 众", + "果 蔬", + "▁用 量", + "▁ 用量", + "▁T WO", + "▁TW O", + "你知道 吗", + "an imal", + "ani mal", + "anim al", + "文物保护 单位", + "▁co work", + "▁cow ork", + "▁Ple asant", + "▁fore ground", + "▁bio informatics", + "滨 江", + "能 手", + "id l", + "i dl", + "和 精神", + "的 措施", + "Ad am", + "A dam", + "Gi ve", + "G ive", + "▁A NA", + "▁AN A", + "▁ ANA", + "基本 情况", + "ap iro", + "api ro", + "€ ™", + "三 五", + "中 超", + "别 离", + "核 定", + "孙某 某", + "孙 某某", + "工作 站", + "的 资源", + "▁D ag", + "▁Da g", + "本科 毕业", + "▁thr ill", + "积极参加 生产劳动", + "Com posite", + "上 新", + "杨 幂", + "流 派", + "突 起", + "nA w", + "n Aw", + "▁P up", + "▁Pu p", + "节能 减排", + "enron Xgate", + "▁bio availability", + "穿 戴", + "这道 题目", + "这道题 目", + "▁swe ater", + "▁sweat er", + "▁Speed way", + "▁jour neys", + "▁journey s", + "Mapping URL", + "▁transf ection", + "nB er", + "nBe r", + "n Ber", + "▁T emp", + "▁Te mp", + "▁Tem p", + "▁ Temp", + "em ails", + "email s", + "ema ils", + "e mails", + "web hook", + "▁url parse", + "▁addict ive", + "和 外", + "WN r", + "与 美国", + "罗马 尼亚", + "▁L ite", + "▁Li te", + "▁Lit e", + "▁ Lite", + "nCom mand", + "n Command", + "omet rics", + "ometric s", + "o metrics", + "nMult iply", + "▁pharmac ologic", + "而 未", + "莲 子", + "从来 没", + "利物 浦", + "nSt ay", + "nSta y", + "▁_ (\\'", + "▁ _(\\'", + "▁Jak arta", + "condition ed", + "▁ess entials", + "▁essential s", + "再 者", + "托 盘", + "民进 党", + "op ress", + "opre ss", + "o press", + "\"_ _", + "\" __", + "直接 把", + "创新 发展", + "进行 审查", + "▁In fect", + "▁Inf ect", + "nick name", + "▁irr itation", + "▁irrit ation", + "▁pres cribing", + "对前款 第一项至第三项裁定", + "▁firef ighters", + "后 宫", + "谁 来", + "发生 过", + "是 基础题", + "▁de riving", + "▁der iving", + "▁deriv ing", + "▁Vol leyball", + "▁Congress ional", + "周 二", + "芬 芳", + "长 兴", + "风 向", + "SY S", + "S YS", + "可以 不", + "的 建筑", + "le in", + "lei n", + "l ein", + "协商 解决", + "解 不等式", + "国家 税务总局", + "▁min ers", + "▁mine rs", + "▁mi ners", + "▁Alb ania", + "▁Alban ia", + "▁inter connected", + "а й", + "息 息", + "挤 出", + "仙侠 异侠", + "▁En semble", + "受 偿", + "▁в о", + "▁ во", + "▁发 布", + "▁ 发布", + "和 各种", + "的 氛围", + "社会 发展", + "At tempt", + "Att empt", + "c riteria", + "▁en closure", + "此 种", + "的 年龄", + "nQu ick", + "n Quick", + "▁THE ORY", + "▁UN ESCO", + "char acters", + "character s", + "▁delet ions", + "▁deletion s", + "source forge", + "▁advantage ous", + "无 忌", + "oh a", + "o ha", + "嘉兴 市", + "依法 应予", + "依法应 予", + "nM icro", + "nMi cro", + "n Micro", + "申请执行人 申请", + "▁aneurys ms", + "▁aneurysm s", + "▁verte bral", + "▁vertebr al", + "减 免", + "左 上", + "烟 气", + "rf c", + "r fc", + "的 日常", + "US IC", + "al ty", + "alt y", + "决定 如下", + "nt han", + "nth an", + "n than", + "▁Ka plan", + "▁Kap lan", + "▁par ench", + "▁pa rench", + "▁pare nch", + "▁paren ch", + "▁te aspoon", + "▁teas poon", + "▁ment orship", + "▁mentor ship", + "▁mentors hip", + "Z Y", + "你 又", + "削 减", + "奋 战", + "每 亩", + "理 会", + "wa p", + "w ap", + "他 已经", + "Ch ip", + "C hip", + "空气 净化", + "\\\\ }\\\\", + "\\\\} \\\\", + "现实 生活中", + "nYou ng", + "n Young", + "▁S table", + "▁St able", + "▁Sta ble", + "▁ Stable", + "▁ch icks", + "▁chick s", + "▁chi cks", + "▁chic ks", + "系其 真实意思表示", + "nRe public", + "nRep ublic", + "▁sk ipping", + "▁skip ping", + "▁ski pping", + "▁cour tyard", + "▁court yard", + "▁supplement ary", + "内 含", + ",) \\", + ", )\\", + "▁{ |", + "▁ {|", + "ce le", + "cel e", + "c ele", + "可以 获得", + "外形 尺寸", + "k p", + "多 地", + "手 腕", + "报 废", + "张艺 兴", + "这一 个", + "这 一个", + "食用 油", + "交易 中心", + "un set", + "uns et", + "u nset", + "▁玄幻 小说", + "信息 技术有限公司", + "信息技术 有限公司", + "sing leton", + "single ton", + "▁Ex isting", + "▁analges ic", + "▁ 辉", + "叶 柄", + "源 泉", + "整数 部分", + "▁c reek", + "▁cre ek", + "▁cr eek", + "▁ded uce", + "▁mir acle", + "▁smooth er", + "▁smo other", + "薄 的", + "与 现代", + "▁V alle", + "▁Val le", + "▁Vall e", + "▁axi oms", + "▁axiom s", + "▁major s", + "▁maj ors", + "Meta Data", + "tp osition", + "t position", + "▁compet encies", + "是 经", + "笑 声", + "红 了", + "W ood", + "ad eon", + "ade on", + "dr iving", + "driv ing", + "d riving", + "▁en forced", + "▁enforce d", + "▁fundra iser", + "松 动", + "病 灶", + "元 人民币", + "减刑 幅度", + "教育 资源", + "sc rap", + "scr ap", + "▁hel ix", + "▁G ather", + "▁Ga ther", + "▁Gat her", + "C raft", + "▁S NPs", + "▁SN Ps", + "▁SNP s", + "Res ize", + "Re size", + "▁d evil", + "▁de vil", + "▁dev il", + "▁Sen ators", + "▁Senator s", + "% (", + "示 威", + "▁ 经济", + "机场 等", + "ro ve", + "rov e", + "r ove", + "出租车 约", + "是不 可能", + "是 不可能", + "▁cor ro", + "并按照 对方当事人", + "High light", + "▁North ampton", + "▁benefici aries", + "滚 筒", + "慈溪 市", + "慈 溪市", + "▁R ental", + "▁Ren tal", + "▁Rent al", + "二〇一八年 一月", + "东 升", + "ee e", + "e ee", + "▁用 途", + "▁ 用途", + "本来 就", + "wo ff", + "wof f", + "w off", + "▁N MDA", + "▁NM DA", + "va tion", + "v ation", + "▁Rect angle", + "▁ Rectangle", + "▁allow ance", + "上 场", + "厚 重", + "的美 国", + "的 美国", + "Ba by", + "B aby", + "nI ss", + "nIs s", + "n Iss", + "in hib", + "inh ib", + "▁t ense", + "▁te nse", + "▁ten se", + "▁tens e", + "▁ 结", + "这 台", + "不合 适", + "不 合适", + "买 东西", + "出现 过", + "和 别人", + "的反 应", + "的 反应", + "重新 启动", + "▁Ro uge", + "▁Rou ge", + "anc elled", + "ancel led", + "ancell ed", + "▁Institute s", + "▁Instit utes", + "好 歹", + "增加 到", + "战斗 机", + "情侣 约会", + "▁Love ly", + "▁Lo vely", + "▁Lov ely", + "npro ject", + "n project", + "▁K atherine", + "臭 氧", + "的分 类", + "的 分类", + "▁mi RNA", + "▁miR NA", + "▁s pars", + "▁sp ars", + "▁spa rs", + "▁F ooter", + "▁Foot er", + "▁Foo ter", + "▁Fo oter", + "▁ Footer", + "▁random ised", + "堡 垒", + "无 常", + "是 天", + "短 篇", + "阳 泉", + "探测 器", + "深度 学习", + "▁T ate", + "▁Ta te", + "▁Tat e", + "BUT TON", + "Th rows", + "Throw s", + "▁st roll", + "▁str oll", + "▁stro ll", + "动 荡", + "宁 海", + "无 害", + "im ar", + "ima r", + "i mar", + "ne nv", + "nen v", + "n env", + "▁F uk", + "▁Fu k", + "与被告 刘", + "var ez", + "va rez", + "vare z", + "oly mer", + "ounc ill", + "ouncil l", + "不 求", + "后 排", + "MO S", + "M OS", + "▁I sa", + "▁Is a", + "ph ire", + "phi re", + "p hire", + "可能 是因为", + "可能是 因为", + "ther apy", + "▁migr ant", + "▁mi grant", + "▁progress es", + "杨 紫", + "病 历", + "落 幕", + "你 真的", + "催告 书", + "新品 种", + "新 品种", + "▁Trin idad", + "data source", + "datas ource", + "▁contral ateral", + "▁ ₹", + "两 层", + "卖 场", + "▁S NA", + "▁SN A", + "▁ SNA", + "gl oss", + "g loss", + "▁z eta", + "▁ze ta", + "▁ zeta", + "号执行 案件", + "号 执行案件", + "▁p print", + "▁pp rint", + "▁DIS CLAI", + "C W", + "借 此", + "成 活", + "ha re", + "har e", + "h are", + ")\\ ')\\", + ")\\' )\\", + ") \\')\\", + "bo wer", + "bow er", + "b ower", + "um ina", + "umin a", + "umi na", + "u mina", + "显着性 差异", + "给付 之日止", + "▁PRO JECT", + "▁ PROJECT", + "▁minim ization", + "不 须", + "居 士", + "浇 水", + "音 色", + "GI T", + "G IT", + "和 维护", + "▁t cp", + "▁tc p", + "▁ tcp", + "实践 经验", + "▁C asa", + "▁Ca sa", + "▁Cas a", + "▁小说 类型", + "▁up regulation", + "下 沉", + "烧 伤", + "▁f ir", + "▁fi r", + "从 根本上", + "tool kit", + "▁tra verse", + "▁ ½", + "urd ish", + "▁N icol", + "▁Nic ol", + "▁Ni col", + "▁a ided", + "▁aid ed", + "▁ai ded", + "▁com fy", + "▁sn ails", + "▁snail s", + "▁distr acted", + "编 委", + "SM S", + "S MS", + "可以 向", + "编辑 部", + "sb in", + "s bin", + "xl sx", + "xls x", + "▁Cor relation", + "但 有", + "末 世", + "汕 头", + "磁 性", + "袜 子", + "nL OG", + "n LOG", + "ced ures", + "cedure s", + "▁eff lux", + "▁s ounding", + "▁so unding", + "▁sound ing", + "▁accel erator", + "▁acceler ator", + "▁micro vascular", + "的 眼睛", + "大学 教授", + "▁tele com", + "▁tel ecom", + "▁aspir ations", + "▁aspiration s", + "▁ 乐", + "附 上", + "停 下来", + "▁s oo", + "▁so o", + "抗美 援朝", + "▁ad orn", + "nAss ume", + "第六十七条 第一款", + "第六十七 条第一款", + "▁Insp ired", + "▁vibr ations", + "▁vibration s", + "受 邀", + "多 变", + "逆 袭", + "好几 个", + "好 几个", + "sk ins", + "ski ns", + "skin s", + "s kins", + "▁Au burn", + "▁Aub urn", + "滤 芯", + "研 修", + "雇 主", + "ce a", + "c ea", + "双方 已", + "予以 冻结", + "然后 利用", + "ah ead", + "a head", + "ne lif", + "nel if", + "n elif", + "二〇一五年 四月", + "▁Min utes", + "▁ Minutes", + "最高人民法院关于审理 民间借贷", + "о р", + "一 试", + "燕 窝", + "跳 槽", + "La r", + "L ar", + "ja s", + "j as", + "立足 于", + "YW dl", + "▁f oul", + "▁fo ul", + "nAp ply", + "nApp ly", + "n Apply", + "在这种 情况下", + "在 这种情况下", + "▁ham let", + "▁not orious", + "体 征", + "的女 孩子", + "的女孩 子", + "的 女孩子", + "uit ies", + "ui ties", + "u ities", + "▁nit ro", + "▁ni tro", + "▁mechan ic", + "基 质", + "领 事", + "寄生 虫", + "培训 中心", + "工作 原理", + "承担 责任", + "▁g odd", + "▁go dd", + "▁god d", + "▁inf ancy", + "ASH INGTON", + "▁Elect oral", + "卫 国", + "在 南", + "并 把", + "相 约", + "IC C", + "I CC", + "不停 的", + "二年 级", + "二 年级", + "uc hs", + "uch s", + "债权 文书", + "学术 交流", + "D ummy", + "E arly", + "上 单调递增", + "▁p rose", + "▁pro se", + "▁pr ose", + "▁pros e", + "nC ategory", + "n Category", + "es ophageal", + "两 级", + "最 难", + "副 产品", + "的那 些", + "的 那些", + ")× (", + ") ×(", + "▁S eat", + "▁Se at", + "▁Sea t", + "▁wh ale", + "利 浦", + "we ep", + "w eep", + "re action", + "react ion", + "rea ction", + "▁ins pected", + "▁insp ected", + "▁inspect ed", + "▁am munition", + "安 抚", + "惬 意", + "cu b", + "c ub", + "▁B F", + "▁ BF", + "灵活 性", + "灵 活性", + "du it", + "d uit", + "实验 小学", + "虽然 没有", + "LOG IN", + "▁S oil", + "▁So il", + "▁l akh", + "▁la kh", + "lic ted", + "lict ed", + "l icted", + "▁g mail", + "▁ gmail", + "nNo vels", + "nNov els", + "Sim ulation", + "\") (", + "是 关键", + "pres ence", + "á g", + "永 乐", + "给 它", + "辱 骂", + "沙坪 坝", + "▁O bt", + "▁Ob t", + "▁Cl aude", + "▁Claud e", + "▁g ourmet", + "▁re union", + "▁reun ion", + "▁strateg ically", + "▁strategic ally", + "七八 糟", + "十三 五", + "十 三五", + "在 路上", + "▁b ei", + "▁be i", + "跨境 电商", + "Ne ill", + "▁m ang", + "▁man g", + "▁ma ng", + "▁m otto", + "▁mot to", + "▁mo tto", + "▁inconven ience", + "不 言", + "不 走", + "吓 得", + "非 遗", + "qt t", + "q tt", + "ip ay", + "ipa y", + "i pay", + "▁pres idents", + "▁president s", + "封 信", + "江 岸", + "降 落", + "百科 全书", + "nD iff", + "nDi ff", + "n Diff", + "剧 组", + "战 后", + "送 往", + "问 世", + "鲜 血", + "因此 而", + "责任 制", + "ánd ez", + "cri ptive", + "cript ive", + "▁Dipl oma", + "愚 蠢", + "滋 生", + "找到 一个", + "找 到一个", + "VI SED", + "VIS ED", + "wi ves", + "w ives", + "▁C aps", + "▁Ca ps", + "▁Cap s", + "nC hart", + "nCh art", + "nChar t", + "n Chart", + "二〇一七年 一月", + "家 境", + "降 压", + "做 单位", + "▁S kill", + "▁Sk ill", + "▁Ski ll", + "▁ Skill", + "▁A mount", + "▁Am ount", + "▁ Amount", + "▁prob ation", + "▁top ography", + "烧 开", + "超 时", + "威海 市", + "威 海市", + "ú mer", + "家庭 暴力", + "▁Veter inary", + "▁ 而", + "你 可", + "牙 龈", + "笑 笑", + "都 好", + "在 规定", + "方便 的", + "▁R is", + "▁Ri s", + "▁Mc Kin", + "▁McK in", + "▁high s", + "C ulture", + "▁cov alent", + "邑 县", + "顺 风", + "Pi x", + "P ix", + "是你 的", + "是 你的", + "▁L ob", + "▁Lo b", + "tl ine", + "t line", + "▁OP EN", + "▁ OPEN", + "nF iles", + "nFil es", + "nFile s", + "n Files", + "save fig", + "▁Math Jax", + "▁ammon ium", + "▁port folios", + "▁portfolio s", + "下 垂", + "地方 的", + "地 方的", + "奇怪 的", + "奇 怪的", + "di es", + "die s", + "d ies", + "▁I vy", + "▁Iv y", + "▁ Ivy", + "▁Y ak", + "▁Ya k", + "▁l ia", + "▁li a", + "▁ lia", + "存储 容量", + "▁p ane", + "▁pan e", + "▁pa ne", + "▁As sign", + "▁Ass ign", + "▁ Assign", + "▁cere visiae", + "线 圈", + "'] [", + "' ][", + "▁T ay", + "▁Ta y", + "具有 一定", + "具 有一定", + "分支 机构", + "本文 主要", + "data t", + "da tat", + "dat at", + "en tin", + "ent in", + "enti n", + "▁pred ators", + "▁prostagland in", + "现代 人", + "▁P EG", + "▁PE G", + "▁ PEG", + "m olecule", + "▁pl aster", + "▁plas ter", + "▁so othing", + "▁soo thing", + "▁conn ectors", + "▁connect ors", + "▁connector s", + "不受申请执行 期间的限制", + "设立 了", + "bol t", + "bo lt", + "b olt", + "▁g lm", + "▁gl m", + "▁ glm", + "▁f MRI", + "▁dis gu", + "nP ython", + "nPy thon", + "n Python", + "▁re make", + "▁rem ake", + "痴 呆", + "骗 局", + "所以 就", + "我们 现在", + "▁剧情 简介", + "▁mis use", + "▁con stituted", + "▁constit uted", + "▁constitu ted", + "▁constitute d", + "向 你", + "旺 季", + "对我 的", + "对 我的", + "精致 的", + "精 致的", + "▁E BV", + "▁EB V", + "销售 收入", + "AL LED", + "ALL ED", + "op hon", + "oph on", + "o phon", + "chan ics", + "Contin ue", + "▁central ly", + "▁centr ally", + "String Utils", + "在 全", + "她 还", + "远 东", + "下午 茶", + "两个 方面", + "Not ice", + "tra its", + "trait s", + "t raits", + "▁ro oft", + "▁roof t", + "▁shel ters", + "▁shelter s", + "▁consolid ated", + "X S", + "耳 边", + "该 片", + "se ss", + "ses s", + "s ess", + "▁Mar shal", + "▁Marsh al", + "▁Mars hal", + "▁ Marshal", + "▁c ations", + "▁cat ions", + "▁cation s", + "▁sign age", + "长 老", + "收音 机", + "甚至 连", + "▁C SR", + "▁CS R", + "▁I ps", + "om bies", + "omb ies", + "ombie s", + "▁El der", + "▁Eld er", + "eff iciency", + "挑 衅", + "牵 手", + "nE r", + "n Er", + "在 执行", + "直接 在", + "ric anes", + "ricane s", + "买 来", + "改 名", + "薪 水", + "CP A", + "C PA", + "ON D", + "O ND", + "也是 个", + "也 是个", + "帮助 你", + "近几年 来", + "近 几年来", + "▁B hat", + "▁Bh at", + "▁G odd", + "▁Go dd", + "▁God d", + "▁Sa cred", + "▁Sacr ed", + "▁Sac red", + "家 和", + "▁k r", + "▁ kr", + "你想 要", + "你 想要", + "nV al", + "n Val", + "▁第 三章", + "▁第三 章", + "▁ 第三章", + "教学 内容", + "ig non", + "ign on", + "被子 植物门", + "▁S alon", + "▁Sal on", + "▁Sa lon", + "Re ferences", + "Reference s", + "R eferences", + "东南 部", + "东 南部", + "巡视 员", + "很好 看", + "很 好看", + "go og", + "正常 运行", + "▁Can berra", + "▁retro fit", + "▁up stairs", + "▁Monten egro", + "gi d", + "g id", + "结果 和", + "▁创办 时间", + "ph ants", + "phant s", + "phan ts", + "▁voltage s", + "▁volt ages", + "▁Consult ant", + "存 货", + "心 仪", + "消 肿", + "▁F Y", + "下一 次", + "下 一次", + "\"\" )\\", + "\" \")\\", + "re ws", + "rew s", + "r ews", + "行业 标准", + "nG reek", + "nGr eek", + "▁F uzzy", + "本院依法 送达", + "湖南省 长沙市", + "▁nomin ees", + "▁nomine es", + "▁nominee s", + "▁physic ist", + "▁mob ilization", + "▁mobil ization", + "姨 妈", + "女 演员", + "不会 自动", + "不 会自动", + "系统 集成", + "买卖 合同纠纷", + "买卖合同 纠纷", + "priv ile", + "▁Con way", + "▁might y", + "nFe bruary", + "n February", + "交 错", + "壁 垒", + "既 不", + "端 子", + "活 下去", + "是我 们的", + "是我们 的", + "是 我们的", + "党史 学习教育", + "▁Recruit ment", + "▁Buff eredReader", + "▁ BufferedReader", + "丽 华", + "凯 旋", + "绿 水", + "▁sl iced", + "▁slic ed", + "▁slice d", + "第一百一十九 条第", + "第一百一十九条 第", + "▁vent ures", + "▁ven tures", + "▁venture s", + "h f", + "召 集", + "推 移", + "校 企", + "甄 嬛", + "轮 椅", + "工信 部", + "的 状况", + "ml in", + "m lin", + "lip sum", + "lips um", + "null ptr", + "▁DA MAGE", + "▁in dist", + "▁i ndist", + "▁ind ist", + "菩 提", + "ze w", + "z ew", + "▁K em", + "▁Ke m", + ")} $$\\", + ")}$ $\\", + ")}$$ \\", + ") }$$\\", + "mo ves", + "move s", + "mov es", + "m oves", + "kappa B", + "CON NECT", + "aggreg ate", + "▁house holder", + "▁household er", + "▁n ud", + "▁nu d", + "xml ns", + "仲裁 裁决书", + "仲裁裁决 书", + "nOct ober", + "n October", + "▁caps ules", + "▁capsule s", + "n protected", + "抓 手", + "王 永", + "缝 合", + "题 为", + "ox ia", + "o xia", + "▁M use", + "▁Mus e", + "▁Mu se", + "▁C rack", + "▁Cr ack", + "▁Cra ck", + "▁master piece", + "如 梦", + "还 应", + "ib al", + "iba l", + "i bal", + "公共 安全", + "PL ACE", + "PLA CE", + "act us", + "period ic", + "nStand ard", + "n Standard", + "▁Inf inite", + "enter prise", + "▁Prote stant", + "▁Protest ant", + "小 雨", + "工 夫", + "燕 麦", + "绒 毛", + "sa f", + "s af", + "价值 和", + "转 基因", + "sp am", + "▁d econ", + "▁de con", + "▁dec on", + "▁Min imal", + "▁Mini mal", + "▁Event Args", + "▁ EventArgs", + "▁ex pressive", + "▁exp ressive", + "▁express ive", + "▁expr essive", + "▁post menopausal", + "带 了", + "演 戏", + "Sal e", + "Sa le", + "S ale", + "▁Pl anck", + "▁Plan ck", + "Japan ese", + "J apanese", + "▁dis band", + "▁wood land", + "compl iance", + "▁Reserv oir", + "洗 礼", + "EO S", + "E OS", + "中文 系", + "规模 化", + "nint o", + "ni nto", + "nin to", + "n into", + "▁f req", + "▁fr eq", + "▁fre q", + "▁ freq", + "▁Ver de", + "▁Hit ler", + "▁Street s", + "▁Stre ets", + "▁visual s", + "pop ulations", + "population s", + "default Value", + "中国建设 银行股份有限公司", + "会 用", + "未 还", + "问 你", + "ee le", + "e ele", + "ge ar", + "g ear", + "▁M iy", + "▁Mi y", + "ac eted", + "ace ted", + "acet ed", + "ol ateral", + "olate ral", + "▁D ynasty", + "Throw able", + "放 了", + "更 需要", + "nd ra", + "tr ig", + "tri g", + "t rig", + "都是 一个", + "都是一 个", + "都 是一个", + "K afka", + "▁counsel ling", + "▁couns elling", + "伟 业", + "居 易", + "ch el", + "che l", + "c hel", + "证据 不足", + "nAd vert", + "nAdv ert", + "▁J ensen", + "▁Jen sen", + "▁calibr ated", + "曲 靖", + "近 乎", + "▁en listed", + "▁NE GLIGENCE", + "小 刚", + "小 号", + "满 脸", + "自 立", + "职业 学校", + "银行 贷款", + "▁B url", + "▁Bur l", + "▁Bu rl", + "sex ual", + "s exual", + "▁Act iv", + "二〇一四年 六月", + "comp iled", + "compile d", + "▁op ioids", + "▁opioid s", + "▁Document s", + "▁Doc uments", + "▁ Documents", + "白 细胞", + "负 事故", + "过了 一", + "过 了一", + "▁Tel ugu", + "▁f luent", + "▁fl uent", + "▁flu ent", + "▁ fluent", + "▁mush room", + "▁pr istine", + "▁Diagn osis", + "PO P", + "P OP", + "以及 在", + "di ag", + "疫情 期间", + "cc oli", + "▁App eal", + "▁Appe al", + "Pag ination", + "P agination", + "还会提供 一项住宿的免费政策", + "▁Re habilitation", + "执 保", + "母 校", + "TG F", + "T GF", + "um l", + "u ml", + "充分 不", + "现 如今", + "的事 儿", + "的 事儿", + "pe on", + "p eon", + "pr it", + "pri t", + "p rit", + "un def", + "und ef", + "unde f", + "u ndef", + "▁Red uce", + "▁M anning", + "▁Man ning", + "▁Mann ing", + "nMunicip alities", + "中 大", + "畜 禽", + "蜗 牛", + "题 干", + "发现 问题", + "▁Sh oes", + "▁Co verage", + "▁Cover age", + "▁Cove rage", + "▁ Coverage", + "K h", + "专 场", + "徒 步", + "我 先", + "cycl ic", + "c yclic", + "nSim ply", + "nSimpl y", + "▁cont ours", + "▁contour s", + "B t", + "仓 位", + "超 长", + "作者 的", + "作 者的", + "几年 前", + "几 年前", + "因数 是", + "因 数是", + "等 主编", + "顺利 的", + "顺 利的", + "▁T ox", + "▁To x", + "功 德", + "增 设", + "头 盔", + "地球 上", + "地铁 站", + "▁P sy", + "▁Ps y", + "严格 落实", + "存续 期间", + "金融 市场", + "▁T rying", + "▁Tr ying", + "▁Try ing", + "抛 开", + "VO L", + "V OL", + "信息 和", + "凝聚 力", + "pon t", + "po nt", + "p ont", + "洗浴 用品", + "▁Port o", + "▁Por to", + "▁ly ric", + "▁sc affolds", + "▁scaffold s", + "县人民检察院 指派检察员", + "( #", + "微 风", + "这 下", + "建筑 业", + "要不 是", + "要 不是", + "▁I TS", + "▁IT S", + "▁ ITS", + "司法 救助", + "更多 的人", + "更多的 人", + "▁文章 目录", + "▁cycl in", + "▁borrow ing", + "▁bor rowing", + "I r", + "双 子", + "一大 堆", + "妇 产科", + "玻璃 钢", + "EN SION", + "ENS ION", + "Un lock", + "▁d emos", + "▁de mos", + "▁dem os", + "▁demo s", + "期限 不得超过", + "press or", + "presso r", + "p ressor", + "道 上", + "п ис", + "Go al", + "Pol l", + "Po ll", + "P oll", + "un di", + "und i", + "u ndi", + "并提供 了", + "并 提供了", + "▁Col ony", + "▁Colon y", + "虽 有", + "▁n r", + "▁ nr", + "付出 了", + "付 出了", + "dis p", + "di sp", + "d isp", + "so lo", + "sol o", + "s olo", + "ion ate", + "iona te", + "i onate", + "it erate", + "ite rate", + "iter ate", + "ser ving", + "serv ing", + "s erving", + "▁Che ese", + "▁oun ces", + "▁ounce s", + "▁diss ipation", + "▁dissip ation", + "拥 堵", + "成本 的", + "成 本的", + "时间 里", + "}/ >\\", + "} />\\", + "特别 喜欢", + "ocr acy", + "▁We iss", + "▁Wei ss", + "Expl orer", + "几 度", + "重 置", + "ov á", + "uz i", + "u zi", + "vi l", + "v il", + "▁B TC", + "▁BT C", + "▁g ynec", + "▁gy nec", + "▁La ravel", + "▁Lar avel", + "▁chronic ally", + "▁chron ically", + "无 损", + "沼 气", + "调 入", + "__ ,\\", + "__, \\", + "个人 感觉", + "ag ging", + "agg ing", + "ys tick", + "yst ick", + "y stick", + "ro physics", + "rophys ics", + "▁Eff iciency", + "及其 它", + "及 其它", + "才会 有", + "才 会有", + "来说 是", + "来 说是", + "第二 批", + "nH el", + "nHe l", + "n Hel", + "▁I rr", + "▁Ir r", + "▁F alk", + "▁Fal k", + "ec olor", + "eco lor", + "e color", + "se ller", + "sel ler", + "sell er", + "s eller", + "▁Ni elsen", + "▁dist ort", + "▁dop aminergic", + "成 大", + "水 壶", + "干净 的", + "风险 的", + "的是 一个", + "的 是一个", + "MENT S", + "M ENTS", + "nend if", + "n endif", + "欧洲 冠军联赛", + "Up grade", + "▁per sec", + "▁pers ec", + "▁comprom ising", + "B H", + "反 面", + "正 向", + "缩 减", + "▁d z", + "▁ dz", + "意 想不到", + "al ach", + "ala ch", + "▁B are", + "▁Bar e", + "▁Ba re", + "▁sex es", + "▁Rel ief", + "▁turb ines", + "▁turbine s", + "较好 地", + "br oad", + "bro ad", + "b road", + "Def ine", + "De fine", + "▁comm unal", + "▁commun al", + "▁advance ments", + "▁advancement s", + "出 一", + "庄 子", + "新 安", + "脱 口", + "乡 政府", + "id le", + "idl e", + "nm ap", + "n map", + "知识 分子", + "饮食 习惯", + "▁S eal", + "▁Se al", + "▁Sea l", + "nA ward", + "nAw ard", + "▁f inely", + "▁fin ely", + "▁fine ly", + "▁onto logy", + "▁ont ology", + "▁ ontology", + "▁dermat itis", + "F H", + "ä ä", + "德 语", + "ü ss", + "能 满足", + "可能 就是", + "dy nam", + "dyn am", + "d ynam", + "▁D anger", + "▁Dan ger", + "▁He aders", + "▁Head ers", + "▁Header s", + "▁ Headers", + "▁She pherd", + "▁cer amics", + "▁ceramic s", + "▁mis conduct", + "▁miscon duct", + "之 门", + "估 价", + "所 占", + "深 造", + "稀 缺", + "购 销", + "辗 转", + "OM E", + "O ME", + "nR ock", + "n Rock", + "Att ack", + "nRes ult", + "n Result", + "▁sa usage", + "满 怀", + "qu iz", + "▁E MP", + "▁EM P", + "▁ EMP", + "Comp act", + "存 量", + "鲜 肉", + "▁m V", + "▁ mV", + "▁I BD", + "▁IB D", + "▁K ras", + "▁Kr as", + "▁Kra s", + "▁T rim", + "▁Tr im", + "▁Tri m", + "▁ Trim", + "▁ce phal", + "▁cep hal", + "▁ cephal", + "▁Al ready", + "▁Che shire", + "▁Ches hire", + "▁Life time", + "▁Lif etime", + "宜 居", + "那 份", + "最 准确", + "追究 其", + "·· ··", + "el ier", + "eli er", + "e lier", + "pass wd", + "并 列", + "是 该", + "锦 赛", + "在 设计", + "em as", + "ema s", + "e mas", + "迅速 发展", + "▁S aid", + "▁Sa id", + "▁All ied", + "▁W olver", + "▁Wol ver", + "▁short cuts", + "▁shortcut s", + "▁ shortcuts", + "▁Confed erate", + "字 样", + "民 辖", + "给 力", + "阴 凉", + "本文 对", + "▁'@ /", + "__ ___", + "____ _", + "___ __", + "_ ____", + "▁G mail", + "▁amp hib", + "▁amph ib", + "今 夜", + "鲜 活", + "▁F eld", + "▁Fe ld", + "▁Fel d", + "▁front ier", + "▁advis able", + "东 昌", + "停 产", + "红 米", + "造 谣", + ") ;", + "体系 和", + "最 关键", + "tb ody", + "t body", + "提供 了一个", + "提供了 一个", + "具备执行条件 时", + "▁de coded", + "▁dec oded", + "▁decode d", + "内 障", + "峨 眉", + "sh u", + "s hu", + ")* *\\", + ")** \\", + ") **\\", + "nE ver", + "nEv er", + "nc ould", + "n could", + "t ensive", + "▁prefer able", + "侵 袭", + "图 上", + "型 材", + "大 头", + "形 体", + "葱 姜", + "血 腥", + "UA L", + "U AL", + "▁H OW", + "▁HO W", + "▁ HOW", + "QU ERY", + "QUE RY", + "▁s pear", + "▁sp ear", + "▁spe ar", + "style Urls", + "号刑事附带民事 判决", + "▁diagn osing", + "大 招", + "小 黑", + "摄 取", + "纸 箱", + "非 得", + "$, \\", + "$ ,\\", + "▁P OP", + "▁PO P", + "▁ POP", + "▁S TD", + "▁ST D", + "▁ STD", + "▁Cl ients", + "▁Client s", + "▁ Clients", + "▁sl ipped", + "▁slip ped", + "▁elev ations", + "▁elevation s", + "监 事", + "酸 甜", + "支持 其", + "}) $\\", + "})$ \\", + "} )$\\", + "自首 情节", + "cos mos", + "▁p ouch", + "▁po uch", + "▁pou ch", + "▁Re agan", + "▁hyper gly", + "▁s ourcing", + "▁sour cing", + "伯 格", + "侵 占", + "根 治", + "遗 弃", + "▁P N", + "▁ PN", + "pro n", + "pr on", + "p ron", + "in fer", + "inf er", + "年龄 较大的", + "日 刑满释放", + "▁height ened", + "▁res idences", + "▁resid ences", + "▁residence s", + "反 省", + "液 的", + "物 语", + "', $", + "' ,$", + "▁ 办学", + "▁ 距离", + "审理 期间", + "积极 探索", + "▁Sh ak", + "▁Sha k", + "▁V inc", + "▁Vin c", + "▁Vi nc", + "的法定 条件", + "os ystem", + "o system", + "find ById", + "▁Enh anced", + "协助执行 单位出具的财产查询回执", + "变 大", + "多 一点", + "▁L ys", + "▁Ly s", + "▁H IGH", + "▁HI GH", + "▁a val", + "▁av al", + "▁ aval", + "时不 需付费", + "pixel s", + "pix els", + "p ixels", + "▁De nis", + "▁Den is", + "城市 人民法院", + "城 市人民法院", + "str ength", + "stre ngth", + "▁conc ave", + "▁un pleasant", + "▁supplement al", + "姥 姥", + "苍 穹", + "创业 的", + "创 业的", + "开封 市", + "点 个赞", + "狐 月山", + "nar gs", + "n args", + "Mon day", + "M onday", + "nG raph", + "nGr aph", + "n Graph", + "约 是", + "罗 汉", + "而 至", + "订 货", + "nB ox", + "nBo x", + "n Box", + "wit z", + "wi tz", + "w itz", + "或者 约定", + "ov able", + "ova ble", + "▁mer cy", + "▁merc y", + "▁man tle", + "▁mant le", + "▁text ured", + "▁texture d", + "几 人", + "地 势", + "智 利", + "穿 衣", + "愉快 的", + "愉 快的", + "的 表情", + "ee ze", + "make at", + "mak eat", + "id ental", + "ident al", + "iden tal", + "▁Cou pon", + "▁arsen ic", + "▁C riteria", + "▁Crit eria", + "▁ Criteria", + "▁int raper", + "▁intr aper", + "▁intra per", + "该 文", + "▁ 颜色", + "he ed", + "hee d", + "h eed", + "ook e", + "oo ke", + "o oke", + "家庭 教育", + "▁Le vi", + "▁Lev i", + "▁Ky oto", + "▁St okes", + "作为 被执行人的", + "▁dess erts", + "▁dessert s", + "▁renov ations", + "▁renovation s", + "大 意", + "昆山 市", + "昆 山市", + "骨质 疏松", + "oc ice", + "oci ce", + "▁qu ench", + "▁que nch", + "▁com posing", + "▁comp osing", + "▁compos ing", + "五 次", + "音 量", + "也不 想", + "也 不想", + "au ff", + "auf f", + "a uff", + "fr esh", + "fre sh", + "f resh", + "▁MA PK", + "▁MAP K", + "▁c ereal", + "▁cere al", + "▁cer eal", + "▁ce real", + "掉 落", + "深入 浅", + "受欢迎 的", + "ot helial", + "▁peri operative", + "G y", + "不 只", + "回 想", + "的 联系", + "一段 文字", + "总体 规划", + "▁L act", + "▁La ct", + "▁Lac t", + "▁Scient ists", + "▁Scientist s", + "预 装", + "最小 公", + "的 关注", + "问 一下", + "mq tt", + "m qtt", + "▁g ust", + "▁gu st", + "▁ gust", + "住 黑龙江省", + "▁Mon key", + "▁Z ambia", + "▁Zam bia", + "▁pr aying", + "▁pra ying", + "▁pray ing", + "nCh urches", + "▁Pro motion", + "▁Prom otion", + "一 再", + "学 区", + "的 商", + "▁C PR", + "▁CP R", + "▁A uction", + "▁Au ction", + "▁Wil helm", + "▁d ilation", + "▁di lation", + "▁dil ation", + "是连载于 晋江文学城", + "▁conjug ated", + "▁conjugate d", + "▁manif ested", + "▁manifest ed", + "▁interview ing", + "剥 削", + "县 域", + "见 习", + "▁E G", + "▁ EG", + "原 发性", + "▁ad mir", + "▁adm ir", + "blast oma", + "▁Har vest", + "▁conduct s", + "时 隔", + "Ka r", + "K ar", + "生动 的", + "生 动的", + "的 危害", + "的大 部分", + "的 大部分", + "▁Roose velt", + "光 环", + "多 岁", + "特 工", + "Ki m", + "K im", + "作品 集", + "▁H IS", + "▁HI S", + "满足 条件", + "nL ists", + "nList s", + "n Lists", + "med icine", + "▁Tr acker", + "▁Track er", + "▁ Tracker", + "▁mag nets", + "▁magn ets", + "▁magnet s", + "▁add itives", + "▁additive s", + "▁General ized", + "▁ А", + "可 与", + "解 脱", + "瑞 安市", + "英烈 网", + "▁A DP", + "▁AD P", + "chr ane", + "▁A ston", + "▁As ton", + "▁Ast on", + "▁M itch", + "▁Mit ch", + "▁St ark", + "▁Star k", + "▁Sta rk", + "经过 财产调查", + "est imate", + "estim ate", + "▁dis card", + "▁disc ard", + "X i", + "功 用", + "圣 人", + "FD A", + "F DA", + "和 学生", + "ec ca", + "ecc a", + "给定 一个", + "▁b ait", + "▁ba it", + "房地产 市场", + "re ally", + "real ly", + "nd epend", + "nde pend", + "n depend", + "▁L imits", + "▁Lim its", + "▁Li mits", + "▁Limit s", + "▁br illi", + "▁Arab ian", + "▁Arabia n", + "▁file Path", + "▁ filePath", + "z x", + "▁M H", + "▁ MH", + "▁来 源", + "▁ 来源", + ">\" >\\", + "> \">\\", + "ol ev", + "ole v", + "o lev", + "pe ek", + "p eek", + "▁s op", + "▁so p", + "▁Cand ida", + "▁Candid a", + "▁Pro cedure", + "▁Ge orgetown", + "▁George town", + "▁redund ancy", + "地 坪", + "外 貌", + "和 提高", + "这个 名字", + "国家 统计局", + "er mann", + "erm ann", + "erman n", + "▁bre wing", + "▁brew ing", + "nBuild ing", + "n Building", + "▁Norm ally", + "▁Normal ly", + "催 款", + "绝 佳", + "采 收", + "很 开心", + "es ton", + "est on", + "esto n", + "e ston", + "▁L unch", + "▁Lu nch", + "as signed", + "ass igned", + "assign ed", + "Co ordinate", + "Coord inate", + "所 学", + "更 像", + "碳水 化合物", + "WITH OUT", + "W ITHOUT", + "▁No body", + "▁Nob ody", + "▁asym met", + "で き", + "守 望", + "就 近", + "GT M", + "G TM", + "等多 项", + "等 多项", + "公司 拥有", + "可能 出现", + "▁cl osures", + "▁clos ures", + "▁closure s", + "▁ closures", + "台 币", + "大 涨", + "年 金", + "戒 毒", + "是一 门", + "是 一门", + "第一 期", + "第 一期", + "ch alk", + "nf ull", + "n full", + "sever ity", + "▁Tunis ia", + "` <", + "▁ 词", + "害 羞", + "院 的", + "ло в", + "л ов", + "udd le", + "▁E lim", + "▁El im", + "▁Eli m", + "▁s cler", + "▁sc ler", + "Co verage", + "Cover age", + "▁j ackets", + "▁jack ets", + "▁jacket s", + "▁Man agers", + "▁Manager s", + "▁Manag ers", + "▁Manage rs", + "撤 离", + "杂 草", + "也不 敢", + "也 不敢", + "营商 环境", + "the ir", + "▁vac u", + "▁va cu", + "采取保全措施后 三十日内", + "▁partic ulate", + "标 价", + "范 例", + "霉 菌", + "▁P é", + "优秀 奖", + "要 考虑", + "nS ay", + "n Say", + "国土 面积", + "▁Pen ny", + "▁Penn y", + "rom ycin", + "r omycin", + "▁p acing", + "▁pa cing", + "▁pac ing", + "▁w ikipedia", + "▁ wikipedia", + "天 成", + "纷 争", + "_) ;\\", + "_ );\\", + "劳动 模范", + "圆的 周长", + "十分 重要的", + "d ollar", + "▁B ella", + "▁Be lla", + "▁Bel la", + "▁Bell a", + "el apsed", + "▁super hero", + "救 命", + "无 须", + "荷 叶", + "天花 板", + "▁re visit", + "▁revis it", + "▁up regulated", + "扎 根", + "能 做", + "be g", + "b eg", + "为 确保", + "的 生长", + "开发 利用", + "nChe ers", + "ple ctic", + "p lectic", + "▁note books", + "▁noteb ooks", + "▁notebook s", + "刚 性", + "▁重 量", + "▁ 重量", + "Pi ng", + "Pin g", + "P ing", + "师资 力量", + "▁n icer", + "▁nice r", + "▁nic er", + "▁ni cer", + "▁B oulder", + "▁mon arch", + "trans pose", + "聚 氨", + "的 少年", + "es on", + "e son", + "▁U CI", + "▁UC I", + "企业 提供", + "各行各 业", + "▁w orms", + "▁wor ms", + "▁worm s", + "▁Air ways", + "l ı", + "干 啥", + "or io", + "ori o", + "o rio", + "nWeek ly", + "▁\\' \\'\\'\\", + "▁\\'\\'\\ '\\", + "▁\\'\\' \\'\\", + "▁ \\'\\'\\'\\", + "▁text ual", + "▁tex tual", + "▁follic les", + "▁follicle s", + "▁prere quisite", + "交 货", + "木 头", + "祈 祷", + "请 看", + "酱 香", + "▁R é", + "不 那么", + "出去 玩", + "刺激 性", + "当 一个", + "▁A th", + "▁At h", + "▁H IF", + "▁HI F", + "侵权 行为", + "▁Response s", + "▁Respon ses", + "▁Respons es", + "▁ ⟨", + "药 学", + "gr ab", + "gra b", + "g rab", + "临床 症状", + "浪费 时间", + "精益 求精", + "▁circ a", + "▁cir ca", + "▁HO WEVER", + "sc heduled", + "schedule d", + "▁F letcher", + "▁ 民", + "八 一", + "虹 桥", + "遵义 市", + "新开 传奇", + "▁roof s", + "▁cond ensation", + "▁condens ation", + "da la", + "dal a", + "d ala", + "的人 力资源", + "的 人力资源", + "▁M egan", + "▁Me gan", + "▁Meg an", + "▁Mega n", + "小 猪", + "毕 节", + "的 实施", + "▁H ou", + "▁Ho u", + "ci pher", + "c ipher", + "off line", + "不 问", + "射 频", + "打 球", + "跟 鞋", + "CD C", + "C DC", + "re ts", + "ret s", + "r ets", + "um py", + "ump y", + "决定 执行", + "第二 十九", + "nBl ue", + "n Blue", + "Al gebra", + "▁hel ium", + "▁ helium", + "▁car rots", + "▁Enter prises", + "▁Enterprise s", + "▁vari ational", + "▁variation al", + "▁成 都", + "▁ 成都", + "会 因为", + "在本 次", + "在 本次", + "▁BR CA", + "tfor each", + "t foreach", + "call backs", + "callback s", + "▁am orphous", + "是在法律允许 的范围内", + "中 是", + "地 审查", + "日用 品", + "日 用品", + "课堂 上", + "ogen y", + "oge ny", + "▁d eps", + "▁de ps", + "▁dep s", + "▁ deps", + "▁Franç ois", + "▁re opened", + "▁reopen ed", + "对 边", + "新 星", + "求 生", + "额 头", + "家 公司", + "欧洲 三大", + "年 参演电影", + "\\\\\", \\\\\"", + "▁bul lets", + "▁bull ets", + "▁bullet s", + "听 得", + "颠 倒", + "Pe d", + "P ed", + "与 实践", + "则 需要", + "心灵 的", + "Be ing", + "▁te nor", + "▁ten or", + "nR unning", + "nRun ning", + "n Running", + "▁manual s", + "Prop Types", + "▁voc ational", + "一 族", + "企 鹅", + "资源 共享", + "▁pen ny", + "▁penn y", + "▁Tele graph", + "▁all ogeneic", + "▁prost hetic", + "▁Opportun ity", + "一般 都", + "交警 大队", + "▁Qt Core", + "▁ QtCore", + "▁Tit ans", + "▁Titan s", + "send Message", + "▁commod ities", + "充 沛", + "丝绸 之路", + "二〇一七年 八", + "终结本案 的本次执行程序", + "▁cat astrophic", + "▁atheros clerotic", + "沿 途", + "版 纸", + "电 费", + "他 指出", + "Er ic", + "E ric", + "▁A CS", + "▁AC S", + "▁ ACS", + "▁O CT", + "▁OC T", + "适用 范围", + "oc ode", + "oco de", + "o code", + "ynth ia", + "▁Mur der", + "▁immun ologic", + "▁immuno logic", + "▁Condition ing", + "桂 园", + "盐 城", + "简 算", + "▁L é", + "he tti", + "het ti", + "h etti", + "en ches", + "enc hes", + "ench es", + "▁F erry", + "▁Fer ry", + "▁Ferr y", + "开 个", + "结 识", + "绞 痛", + "ny a", + "n ya", + "▁B K", + "▁ BK", + "都有 着", + "都 有着", + "ha bi", + "hab i", + "h abi", + "还款 期限", + "Art ist", + "▁mi RNAs", + "▁miRNA s", + "vari ants", + "variant s", + "律师事务所 实习律师", + "▁Un limited", + "确有悔改表现 的事实清楚", + "能 给", + "要 让", + "▁D SM", + "▁DS M", + "在一起 的", + "在一 起的", + "▁软件 名称", + "▁p itches", + "▁pitch es", + "▁pit ches", + "▁immers ive", + "rupted Exception", + "云 飞", + "大 宗", + "太 差", + "狠 抓", + "鸽 子", + "ca b", + "c ab", + "引导 学生", + "忘记 密码", + "▁g own", + "▁go wn", + "ming ton", + "m ington", + "▁p antry", + "▁pan try", + "▁pa ntry", + "▁pant ry", + "承担连带 清偿责任", + "▁recip roc", + "cloud flare", + "宝 典", + "[] )\\", + "[]) \\", + "[ ])\\", + "nN ews", + "nNew s", + "nNe ws", + "n News", + "▁Mc Cl", + "▁McC l", + "对该犯 减刑", + "的经营 理念", + "的 经营理念", + "▁ur eter", + "▁ure ter", + "nPro gram", + "nPr ogram", + "n Program", + "▁rev ital", + "MD A", + "M DA", + "cast s", + "ca sts", + "cas ts", + "c asts", + "Euro pe", + "E urope", + "▁h omic", + "▁hom ic", + "▁ho mic", + "anal ytic", + "▁Sh erman", + "▁Sher man", + "▁p opping", + "▁pop ping", + "▁po pping", + "▁Philipp e", + "▁Philip pe", + "同 月", + "石 狮", + "防 卫", + "的 宗旨", + "▁c ops", + "▁co ps", + "▁cop s", + "▁g zip", + "est ead", + "este ad", + "e stead", + "▁W ander", + "▁Wa nder", + "▁Wan der", + "▁Dom estic", + "出 动", + "呼 气", + "巴 勒", + "幽 灵", + "思 义", + "钱 了", + "mo on", + "m oon", + "en ity", + "eni ty", + "ip ine", + "i pine", + "▁Y aml", + "▁Yam l", + "▁Ya ml", + "ー ト", + "导 热", + "昨 夜", + "是 中", + "了一 位", + "了 一位", + "武汉 大学", + "ome ncl", + "omen cl", + "ife rous", + "ifer ous", + "▁bad ges", + "▁badge s", + "▁ badges", + "▁ple ural", + "▁sem igroup", + "▁semi group", + "与 前", + "修 身", + "都 快", + "门 面", + "op re", + "o pre", + "od ore", + "odo re", + "odor e", + "wa ves", + "wave s", + "wav es", + "w aves", + "▁Mic key", + "▁Mick ey", + "▁troubles hooting", + "一 趟", + "连续 的", + "▁Rec ogn", + "▁Tal iban", + "长 和", + ") ∵", + "▁w o", + "▁ wo", + "记忆 力", + "IFI ED", + "ag ara", + "aga ra", + "agar a", + "gh ost", + "g host", + "te xit", + "tex it", + "t exit", + "▁Quant ity", + "▁ Quantity", + "下 限", + "黄 岛", + "ер е", + "е ре", + "▁爱 情", + "▁ 爱情", + "绝对 的", + "绝 对的", + "突出 贡献", + "▁al ph", + "▁ alph", + "▁Ch lor", + "{ ,", + "了 其", + "%) \\", + "% )\\", + "联系 的", + "联 系的", + "ir an", + "ira n", + "i ran", + "可以 做到", + "可以做 到", + "og raf", + "ogr af", + "o graf", + "▁m ason", + "▁ma son", + "▁mas on", + "C i", + "三 江", + "常 温", + "弱 点", + "水 墨", + "而 为", + "与被告 陈", + "▁d ass", + "▁da ss", + "▁das s", + "▁d umps", + "▁dump s", + "▁ dumps", + "cred ible", + "▁see kers", + "▁seek ers", + "▁Process es", + "▁Proc esses", + "放 缓", + "LAB EL", + "ric ula", + "▁flux es", + ": *", + "介 于", + "每 到", + "表 层", + "▁第 七", + "▁ 第七", + "不仅 有", + "不 仅有", + "不好 看", + "不 好看", + "双方 均", + "正式 版", + "be lt", + "bel t", + "b elt", + "▁l aps", + "▁la ps", + "▁lap s", + "un geon", + "ung eon", + "unge on", + "(\\' /\\',", + "(\\'/ \\',", + "Mat ches", + "Match es", + "M atches", + "Start up", + "▁Dor othy", + "▁ign ition", + "л ю", + "未 有", + "顽 强", + "od us", + "▁M ESS", + "▁ME SS", + "▁ MESS", + "▁T akes", + "▁Take s", + "▁Ta kes", + "▁Tak es", + "申请 撤回对被告", + "申请撤回 对被告", + "令 我", + "省 心", + "▁O PT", + "▁OP T", + "▁ OPT", + "在执行 中", + "在 执行中", + "长期 从事", + "▁n mol", + "▁nm ol", + "▁s ess", + "▁se ss", + "▁ses s", + "▁ sess", + "▁ar ach", + "▁wh ats", + "▁what s", + "arr ants", + "arrant s", + "▁Att ention", + "[ ,", + "AD O", + "A DO", + "模式 下", + "cc cc", + "ccc c", + "c ccc", + "可以 有效", + "可以有 效", + "经相关部门 批准后", + "下 乡", + "佳 能", + "lo y", + "l oy", + "分子 式", + "台湾 的", + "对于 一个", + "nFe el", + "iss ors", + "▁Gr aves", + "▁Gra ves", + "▁St akes", + "▁Sta kes", + "▁li tres", + "▁lit res", + "▁litre s", + "▁contin gent", + "▁conting ent", + "▁micro structure", + "堕 落", + "▁ 湖北", + "开发 了", + "开 发了", + "日期 为", + "日 期为", + "▁F ee", + "▁Fe e", + "▁ Fee", + "乱 七八糟", + "有异议 的", + "▁IN ST", + "▁ INST", + "▁pl asm", + "▁plas m", + "▁orig inate", + "▁origin ate", + "▁dissemin ated", + "丁 香", + "之 争", + "▁o st", + "▁os t", + "▁ ost", + "以上 学历", + "文明 单位", + "pat rick", + "▁Bav aria", + "▁Co chrane", + "▁Oper ators", + "▁Operator s", + "▁Collabor ative", + "我 司", + "真 挚", + "mn t", + "m nt", + "即可 得解", + "环境 影响", + "D ream", + "▁英文 参考", + "▁pre frontal", + "一 新", + "谁 家", + "收费 标准", + "Con nor", + "Conn or", + "▁As sets", + "▁Ass ets", + "▁Asset s", + "▁ Assets", + "▁STR ICT", + "nSc ience", + "n Science", + "▁wr inkles", + "▁ 易", + "入 味", + "后 有", + "试 探", + "赢 家", + "那么 的", + "深入 了解", + "网络 游戏", + "该行 行长", + "Re verse", + "Rever se", + "▁pre fers", + "▁prefer s", + "▁ste rile", + "▁ster ile", + "▁vill ain", + "▁villa in", + "▁benef ited", + "▁benefit ed", + "▁forward ed", + "列 宁", + "纬 度", + "希望 对", + "时间 短", + "Mat t", + "Ma tt", + "M att", + "col e", + "co le", + "c ole", + "▁H ipp", + "▁Hi pp", + "▁Hip p", + "安市 人民法院", + "安 市人民法院", + "it ively", + "itive ly", + "iti vely", + "▁G iving", + "▁Gi ving", + "nDisc over", + "nDis cover", + "napi Version", + "▁illustr ator", + "x n", + "南 湖", + "▁用 户", + "▁ 用户", + "情况 及", + "ate urs", + "ateur s", + "▁c make", + "▁cm ake", + "▁ cmake", + "ath olic", + "▁Na pole", + "▁Nap ole", + "▁U nable", + "▁Un able", + "▁ Unable", + "▁PR IMARY", + "translation al", + "transl ational", + "个 点", + "优 酷", + "则 可", + "拼 图", + "玩 过", + "白 沙", + "pp t", + "p pt", + "去哪 里", + "去 哪里", + "法学 院", + "法 学院", + "经过 点", + "经 过点", + "(/ \\\\", + "( /\\\\", + "V ault", + "Sum mer", + "S ummer", + "spe aker", + "在服刑期间 的表现", + "在服刑期间的 表现", + "侍 郎", + "每 股", + "走 私", + "}` ,", + "} `,", + "是 正确的", + "▁voc ê", + "ling er", + "lin ger", + "l inger", + "nDe cember", + "nDec ember", + "n December", + "▁com pressor", + "▁comp ressor", + "▁compress or", + "д о", + "▁ 字", + "即 事", + "受 限", + "巨 额", + "得 失", + "蚊 子", + "bs d", + "b sd", + "oc ide", + "oci de", + "▁E lev", + "▁El ev", + "▁Ele v", + "▁Bi har", + "▁em oji", + "▁ emoji", + "com patibility", + "compat ibility", + "观 望", + "pu nk", + "p unk", + "有一 部分", + "有 一部分", + "▁Y acht", + "▁Ya cht", + "ce iving", + "▁Moh amed", + "▁suggest ive", + "供给 侧", + "受害 人", + "bar t", + "ba rt", + "b art", + "st yl", + "sty l", + "不是 什么", + "不 是什么", + "pag inate", + "▁aud ition", + "▁au dition", + "▁audit ion", + "▁audi tion", + "▁prol actin", + "▁ 葛", + "去 何", + "用 语", + "来得 及", + "的 衣服", + "pon d", + "po nd", + "p ond", + "目前 已经", + "目前已 经", + "▁Great est", + "▁Gre atest", + "▁med ically", + "▁medical ly", + "▁medic ally", + "变 性", + "无 能", + "笔 误", + "党组 副书记", + "▁Spec tro", + "▁Spect ro", + "▁pl anners", + "▁plan ners", + "▁planner s", + "▁t olerant", + "▁toler ant", + "不 败", + "多 用", + "有 情", + "要 走", + "▁w i", + "▁ wi", + "大多 数的", + "大多数 的", + "成为 一名", + "▁P LAY", + "▁PL AY", + "▁ PLAY", + "▁Well ness", + "▁Newton soft", + "▁ 会", + "地 对", + "说的 话", + "说 的话", + "ID EO", + "IDE O", + "都是 为了", + "都 是为了", + "▁L ocks", + "▁Lo cks", + "▁Lock s", + "▁Loc ks", + "PROC ESS", + "enum erate", + "Inv ocation", + "в е", + "开 播", + "认 购", + "的不 断", + "的 不断", + "被 授予", + "com be", + "comb e", + "nt hem", + "nthe m", + "nth em", + "n them", + "▁Pol yte", + "▁Poly te", + "▁width s", + "▁wid ths", + "▁gar ment", + "▁jurisdiction s", + "▁jurisdict ions", + "卡 牌", + "东营 市", + "▁g tk", + "▁gt k", + "▁ gtk", + "儿童 或者", + "▁s ailed", + "▁sa iled", + "▁sail ed", + "▁Bac illus", + "▁surg ically", + "▁surgical ly", + "酒店 还会提供一项住宿的免费政策", + "人 脉", + "无 用", + "玩 乐", + "重 回", + "▁| >", + "▁ |>", + "bo ts", + "bot s", + "b ots", + "li bc", + "lib c", + "▁A ster", + "▁As ter", + "▁Ast er", + "▁tele sc", + "▁tel esc", + "▁Circ ular", + "▁Cir cular", + "▁sett lers", + "▁settle rs", + "J ean", + "▁U AV", + "尽量 不要", + "ug hed", + "ugh ed", + "评审 委员会", + "FF FFFF", + "FFFF FF", + "in ians", + "ini ans", + "inian s", + "inia ns", + "▁R ocks", + "▁Rock s", + "▁Ro cks", + "▁Roc ks", + "或者 申请仲裁", + "Pr inter", + "Print er", + "ran king", + "rank ing", + "r anking", + "▁Dec laration", + "▁ Declaration", + "哎 呀", + "售 楼", + "案 情", + "步 枪", + "阳 镇", + "的 场景", + "ge nes", + "gen es", + "gene s", + "g enes", + "mi ght", + "m ight", + "进一步 完善", + "ost omy", + "▁r ounding", + "▁ro unding", + "▁round ing", + "nC itations", + "Con straints", + "Constraint s", + "学 风", + "树 下", + "pp m", + "p pm", + "发挥 着", + "系统 性", + "每 平方米", + "病毒 感染", + "nh tml", + "n html", + "sp ots", + "spot s", + "▁Bl vd", + "▁dis pose", + "▁disp ose", + "dir ective", + "direct ive", + "▁Work flow", + "▁ Workflow", + "▁rect angles", + "▁rectangle s", + "边 框", + "连 线", + "长 篇", + "摄氏 度", + "的 次数", + "“ \\\\(", + "率 分别为", + "含有 丰富的", + "nA part", + "nAp art", + "▁CL ASS", + "▁CLA SS", + "▁ CLASS", + "▁stair case", + "で は", + "一 动", + "开 方", + "银 色", + "而是 在", + "而 是在", + "hi ve", + "h ive", + "宣传 活动", + "工商 管理", + "裁定 驳回", + "Te chn", + "Tech n", + "▁LGBT Q", + "▁c aves", + "▁ca ves", + "▁cave s", + "▁cav es", + "▁IO Error", + "▁Water loo", + "R u", + "不 愧", + "卒 中", + "增 压", + "菜 鸟", + "Da r", + "D ar", + "义务 的", + "es ser", + "ess er", + "esse r", + "ur ved", + "▁gu essed", + "▁guess ed", + "▁ 简", + "之 恋", + "瘫 痪", + "E ye", + "与 客户", + "我 开始", + "▁/ ><", + "▁/> <", + "fa cts", + "fac ts", + "fact s", + "f acts", + "▁ca lor", + "▁cal or", + "German y", + "G ermany", + "▁estim ators", + "▁estimator s", + "万 方", + "SC A", + "S CA", + "监护 人", + "Ca sh", + "Cas h", + "C ash", + "OV ER", + "O VER", + "▁英 格兰", + "▁ 英格兰", + "ar eth", + "are th", + "aret h", + "▁im prov", + "▁impro v", + "▁imp rov", + "▁final ists", + "▁finalist s", + "▁upholst ery", + "刘 邦", + "nS U", + "n SU", + "▁或 者", + "▁ 或者", + "率达 到", + "率 达到", + "nA DD", + "nAD D", + "n ADD", + "▁plas min", + "▁plasm in", + "▁pro bing", + "▁prob ing", + "▁SEC URITY", + "▁f ittings", + "▁fit tings", + "▁fitting s", + "▁pen insula", + "A f", + "不 就", + "诡 异", + "高中 文化", + "高 中文化", + "cl ave", + "ng roup", + "ngr oup", + "n group", + "▁re bel", + "▁reb el", + "▁path ologies", + "对被执行人的财产 进行了调查", + "密 闭", + "敬 畏", + "红 糖", + "成立 后", + "本 决定", + "B irth", + "t config", + "ad aptive", + "ada ptive", + "adapt ive", + "▁du plicated", + "▁duplic ated", + "▁duplicate d", + "▁ 烤", + "山 海", + "王 志", + "造 船", + "ны х", + "上进 行", + "上 进行", + "ve nth", + "vent h", + "ven th", + "v enth", + "电源 适配器", + "ern ary", + "▁Schw artz", + "▁Schwar tz", + "▁imm ersed", + "▁immers ed", + "▁organ ise", + "第二百五十七条 第六", + "第二百五十七条第 六", + "亚 种", + "过 节", + "阻 滞", + "开展 的", + ")\\ '\\", + ")\\' \\", + ") \\'\\", + "▁] ;\\", + "▁]; \\", + "▁ ];\\", + "nS ide", + "n Side", + "▁P anc", + "▁Pan c", + "▁Pa nc", + "▁s lick", + "▁sl ick", + "▁slic k", + "ron ectin", + "▁Star bucks", + "▁ ℃", + "Si O", + "S iO", + "iz h", + "i zh", + "丰富 了", + "出版 物", + "ov is", + "ovi s", + "o vis", + "▁L TD", + "▁LT D", + "情况 属实", + "执行 一案", + "中医药 大学", + "乙醇 含量为", + "▁le asing", + "▁ leasing", + "气 和", + "黄 埔", + "牛皮 癣", + "ur llib", + "url lib", + "what wg", + "▁e iner", + "▁ein er", + "▁eine r", + "小说网 的一部", + "▁reb els", + "▁rebel s", + "List eners", + "Listener s", + "Listen ers", + "号 之", + "â te", + "▁ 返回", + "认识 了", + "nL ee", + "nLe e", + "n Lee", + "▁R MS", + "▁RM S", + "有 不同的", + "nJ ean", + "n Jean", + "web ui", + "让我们 一起", + "让 我们一起", + "oc using", + "ocus ing", + "par amet", + "param et", + "para met", + "nPolit ics", + "▁Col lective", + "▁Coll ective", + "▁Collect ive", + "▁wonder fully", + "▁wonderful ly", + "▁ 向", + "君 主", + "如 水", + "▁ 暖气", + "指导 和", + "▁s ue", + "▁su e", + "in fect", + "inf ect", + "▁Tur bo", + "▁Turb o", + "Trans late", + "Transl ate", + "▁Call back", + "▁ Callback", + "▁Front ier", + "▁arch ival", + "& :", + "电 镀", + "\"> &", + "\" >&", + "签署 了", + "rum s", + "ru ms", + "r ums", + "美国 政府", + "em ing", + "emi ng", + "e ming", + "ipher y", + "iph ery", + "▁G ENER", + "▁GE NER", + "▁ GENER", + "▁op aque", + "▁Ide ally", + "▁Ideal ly", + "▁soft ball", + "g w", + "想 把", + "胜 地", + "在你 的", + "在 你的", + "宜宾 市", + "▁T HERE", + "▁THE RE", + "▁TH ERE", + "第一百零 三条", + "第一百零三 条", + "bit coin", + "b itcoin", + "▁F older", + "▁Fol der", + "▁Fold er", + "▁ Folder", + "▁hash Code", + "▁ hashCode", + "但 仍", + "刘 晓", + "大 洋", + "大 类", + "水 浒", + "点 滴", + "id or", + "ido r", + "i dor", + "▁s pur", + "▁sp ur", + "年 出版的图书", + "可以在 判决书送达之日起十五日内", + "ow e", + "o we", + "收录 了", + "的 焦点", + "HP LC", + "H PLC", + "历史 悠久", + "学习 能力", + "现在 很多", + "现 在很多", + "ca mel", + "cam el", + "c amel", + "▁P ASS", + "▁PA SS", + "▁ PASS", + "An imal", + "Anim al", + "如 未按本判决", + "▁barbec ue", + "▁conv ection", + "▁conve ction", + "按 月", + "游 人", + "跳 绳", + "gi c", + "g ic", + "re i", + "r ei", + "要求 和", + "要 求和", + "▁L eh", + "▁Le h", + "▁M eh", + "▁Me h", + "nC omb", + "nCom b", + "nCo mb", + "n Comb", + "▁G one", + "▁Go ne", + "▁Gon e", + "▁sc orer", + "▁score r", + "nIn sects", + "nIns ects", + "▁pl edged", + "▁pledge d", + "▁In cluding", + "小 波", + "层 级", + "抢 夺", + "漳 州", + "在 当地", + "说到 底", + "说 到底", + "主体 责任", + "深入 研究", + "思想政治 教育", + "▁ur gency", + "▁urg ency", + "▁urge ncy", + "县人民检察院 指控", + "年龄较大的 儿童或者", + "▁abstract s", + "fe m", + "f em", + "双眼 皮", + "Sp in", + "S pin", + "▁E SR", + "▁ES R", + "ION AL", + "IO NAL", + "▁c log", + "▁cl og", + "ic kers", + "ick ers", + "icker s", + "na tion", + "nat ion", + "n ation", + "▁w ickets", + "▁William son", + "▁Williams on", + "流 年", + "陪 我", + "魔 力", + "in ders", + "ind ers", + "inder s", + "inde rs", + "la table", + "lat able", + "l atable", + "nThrough out", + "报 仇", + "yn n", + "y nn", + "不能 说", + "其实 我", + "担保 法", + "ist ema", + "iste ma", + "istem a", + "wide hat", + "▁Pav ilion", + "▁Mult ivariate", + "无 异", + "注 塑", + "背 负", + "но в", + "н ов", + "副 区长", + "▁HE LP", + "▁HEL P", + "nC orrect", + "nCor rect", + "n Correct", + "直 觉", + "稀 有", + "解 开", + "as u", + "a su", + "sh it", + "shi t", + "s hit", + "▁G oa", + "▁Go a", + "▁d al", + "▁da l", + "▁ dal", + "小朋友 们", + "小 朋友们", + "我们 的生活", + "我们的 生活", + "▁Shir ley", + "count ries", + "▁aspir ing", + "▁asp iring", + "▁aspirin g", + "▁ 기", + "按 揭", + "骆 驼", + "十八 大", + "十 八大", + "的 唯一", + "离 退休", + "能 求出", + "tc md", + "t cmd", + "▁Ter esa", + "▁di vert", + "▁div ert", + "▁diver t", + "▁dive rt", + "▁w ander", + "▁wa nder", + "▁wand er", + "record ed", + "▁utter ly", + "▁poss essing", + "▁possess ing", + "施 加", + "篆 刻", + "解 法", + "分数 的", + "分 数的", + "MA NA", + "MAN A", + "M ANA", + "l é", + "土 豪", + "看 点", + "都 对", + "魏 晋", + "Ap r", + "A pr", + "▁特 性", + "▁ 特性", + "ns ee", + "nse e", + "n see", + "Fatal f", + "Fat alf", + "pl anned", + "plan ned", + "yroid ism", + "nCon struction", + "▁rel ativistic", + "前 十", + "求 婚", + "深 耕", + "cr t", + "c rt", + "来 找出", + "的 网站", + "ig or", + "igo r", + "i gor", + "细致 分析", + "spons ored", + "▁dec isive", + "▁pro static", + "▁pr ostatic", + "▁prost atic", + "{ /", + "天 际", + "就 当", + "片 长", + "完全 不", + "主要 还是", + "bed room", + "▁e states", + "▁est ates", + "▁estate s", + "▁esta tes", + "▁mark ings", + "▁marking s", + "▁con verters", + "▁conver ters", + "▁convert ers", + "▁converter s", + "nDe velopment", + "nDevelop ment", + "n Development", + "▁share holder", + "MMMMMMMM MMMMMMMM", + "с е", + "山 寨", + "狙 击", + "解 出", + "赛 后", + "ON SE", + "ONS E", + "▁T us", + "▁Tu s", + "▁出版 日期", + "ill ian", + "illi an", + "nAl ways", + "▁Tun nel", + "▁di agon", + "▁dia gon", + "▁phospholip id", + "一 的", + "北 仑", + "柯 南", + "第三 步", + "车辆 的", + "另行 支付", + "潇湘 书院", + "▁G ore", + "▁Go re", + "▁Gor e", + "ta iled", + "tail ed", + "t ailed", + "▁s emic", + "▁se mic", + "▁sem ic", + "▁semi c", + "用 房", + "开放 的", + "开 放的", + "Be rn", + "Ber n", + "B ern", + "FA CT", + "F ACT", + "两个 人的", + "两个人 的", + "两 个人的", + "ma ils", + "mail s", + "m ails", + "nA rea", + "nAr ea", + "nAre a", + "n Area", + "▁dist orted", + "▁distort ed", + "天 山", + "漫 游", + "牧 场", + "\\\\ @", + "这里 面", + "这 里面", + "不仅 如此", + "赔偿 责任", + "▁B ret", + "▁Br et", + "▁Bre t", + "欧洲三大 杯", + "▁Lud wig", + "▁Mob ility", + "选项中挑选出 正确答案", + "confirm ation", + "生效法律文书 所确定的义务", + "Validation Error", + "盛 开", + "za p", + "z ap", + "英文 名称", + "英文名 称", + "▁B ard", + "▁Bar d", + "▁Ba rd", + "▁j ars", + "▁ja rs", + "▁jar s", + "ich igan", + "ichi gan", + "▁elect r", + "▁ele ctr", + "归 根", + "育 苗", + "▁N OR", + "▁NO R", + "回答 一个", + "▁t rypt", + "▁try pt", + "▁tryp t", + "Hash Set", + "ê n", + "乱 的", + "作 答", + "城 墙", + "藏 品", + "Le an", + "L ean", + "▁N GC", + "▁NG C", + "Sol id", + "S olid", + "al arm", + "ala rm", + "alar m", + "pro fits", + "profit s", + "prof its", + "vis itor", + "visit or", + "▁o ceans", + "▁ocean s", + "var iance", + "vari ance", + "Diff erent", + "D ifferent", + "▁im posing", + "▁imp osing", + "x r", + "一 战", + "大 跌", + "ab r", + "a br", + "工作 岗位", + "比较 容易", + "custom ers", + "customer s", + "一 目", + "变 小", + "撕 裂", + "淡 化", + "粘 度", + "用手 机", + "用 手机", + "MED IA", + "nF ield", + "n Field", + "▁cloud y", + "sat ellite", + "▁NS Object", + "▁Reg ulations", + "▁Regulation s", + "▁earthqu akes", + "▁earthquake s", + "内 裤", + "大 衣", + "实习 生", + "▁O rg", + "▁Or g", + "▁ Org", + "▁qu o", + "▁q uo", + "▁ quo", + "第六十四 条之规定", + "第六十四条 之规定", + "▁Port smouth", + "▁neglig ence", + "兴 旺", + "静 音", + "都不 一样", + "都 不一样", + "ST AND", + "STA ND", + "▁typ h", + "▁ty ph", + "Will iam", + "W illiam", + "▁polic ym", + "▁policy m", + "▁outper forms", + "▁refer encing", + "中 将", + "nP o", + "n Po", + "我只 能", + "我 只能", + "清楚 了", + "▁Machine ry", + "▁Mach inery", + "▁forward ing", + "▁P lane", + "▁Pl ane", + "▁Plan e", + "▁ Plane", + "▁w aking", + "▁wa king", + "最高 人民检察院", + "如 皋", + "宣传 片", + "要求 您", + "宏观 经济", + "▁W inc", + "▁Win c", + "▁Wi nc", + "al anine", + "ala nine", + "alan ine", + "interop Require", + "普 法", + "眩 晕", + "成员 国", + "Pr em", + "Pre m", + "P rem", + "WA RD", + "WAR D", + "W ARD", + "ny der", + "▁O aks", + "▁Oak s", + "合法的 借贷关系", + "▁Re ceived", + "▁ Received", + "▁ 别", + "▁M oto", + "▁Mot o", + "▁Mo to", + "▁ell ipt", + "▁Gold man", + "▁Riemann ian", + "B u", + "不 舍", + "系 原告", + "▁J EE", + "可以 看看", + "可以看 看", + "la sty", + "last y", + "las ty", + "l asty", + "▁a nthem", + "▁an them", + "▁ant hem", + "▁anth em", + "il itating", + "ilit ating", + "▁Byz antine", + "▁thr illing", + "▁thrill ing", + "▁fulfill ment", + "学 府", + "理 应", + "翻 新", + "Es s", + "E ss", + "` ${", + "▁b ru", + "▁br u", + "▁g in", + "▁gi n", + "▁ gin", + "sh ock", + "assert Is", + "▁Germ ans", + "▁German s", + "▁Ger mans", + "▁ancest or", + "▁over sized", + "▁overs ized", + "▁Lib eration", + "Sp ort", + "S port", + "id ered", + "ide red", + "ider ed", + "▁Hart ford", + "▁deliber ate", + "▁delib erate", + "▁retin opathy", + "▁pharmac ology", + "IDD LE", + "at ches", + "atch es", + "Re porter", + "Rep orter", + "Report er", + "▁gr azing", + "▁graz ing", + "▁gra zing", + "▁cav ities", + "▁b ilingual", + "塞 罗", + "极 佳", + "屏幕 比例", + "Qu een", + "Que en", + "▁fr inge", + "▁fri nge", + "Art icles", + "Article s", + "▁C elsius", + "可 有", + "城 北", + "的 现实", + "IT CH", + "ix OS", + "avor ites", + "avorite s", + "avo rites", + "▁carpet s", + "▁carp ets", + "nAss uming", + "外 媒", + "林 某", + "饭 圈", + ")÷ (", + ") ÷(", + "总体 来说", + "um bling", + "umb ling", + "▁rel ativity", + "中药 材", + "中 药材", + "底面 积", + "底 面积", + "判处 死刑", + "pos ter", + "post er", + "po ster", + "p oster", + "▁hur ts", + "▁hurt s", + "▁deep est", + "作为被执行人的 公民", + "士 顿", + "走 去", + "AA F", + "A AF", + "J ar", + "go to", + "got o", + "g oto", + "▁Z ion", + "▁pet als", + "交 房", + "动 摇", + "同 为", + "造 福", + "po m", + "p om", + "us o", + "u so", + "相较 于", + "部位 的", + "部 位的", + "nT ri", + "nTr i", + "n Tri", + "▁P DT", + "▁PD T", + "服务 机构", + "ta uto", + "tau to", + "t auto", + "▁c trl", + "▁ct rl", + "▁ ctrl", + "▁since re", + "▁sinc ere", + "ch angelog", + "change log", + "chang elog", + "nCal ifornia", + "n California", + "▁Power Point", + "▁evac uation", + "in structions", + "instruction s", + "伤 残", + "蟑 螂", + "Le s", + "L es", + "▁O M", + "▁ OM", + "的 增大而", + "▁p eas", + "▁pe as", + "nRe ally", + "nReal ly", + "nDe fault", + "nDef ault", + "n Default", + "Q M", + "帐 篷", + "西 汉", + "sc m", + "s cm", + "了我 们", + "了 我们", + "儿童 的", + "多 边形", + "宿 州市", + "思考 题", + "ies ta", + "ie sta", + "iest a", + "i esta", + "▁C one", + "▁Con e", + "▁Co ne", + "▁further more", + "▁un identified", + "异 世", + "弗 兰", + "袋 子", + "躺 着", + "af i", + "a fi", + "且仅 当", + "某一 个", + "某 一个", + "的 普通", + "▁br idal", + "▁brid al", + "▁contr asts", + "▁contrast s", + "▁ 玉", + "一 班", + "发 帖", + "湿 热", + "Z bl", + "sa v", + "s av", + "▁S part", + "▁Sp art", + "▁Spa rt", + "▁Spar t", + "▁t ester", + "▁te ster", + "▁test er", + "Mut ation", + "M utation", + "▁Carl isle", + "▁serv iced", + "▁service d", + "▁surviv or", + "▁coast line", + "▁Phys icians", + "▁Response Entity", + "J U", + "他 所", + "白 衣", + "nM il", + "nMi l", + "n Mil", + "ul sa", + "uls a", + "▁Con v", + "▁Co nv", + "▁ Conv", + "▁M ATH", + "▁MA TH", + "▁MAT H", + "▁ MATH", + "Up dates", + "Update s", + "▁p umped", + "▁pump ed", + "▁s eldom", + "▁sel dom", + "▁Col leges", + "▁College s", + "▁aeros pace", + "▁Author ization", + "▁ Authorization", + "中国平安 财产保险股份有限公司", + "▁ 生", + "舌 头", + "ho c", + "h oc", + "▁L B", + "▁ LB", + "▁ 查询", + "og ie", + "ogi e", + "o gie", + "▁S iem", + "▁Si em", + "▁Sie m", + "number Of", + "ns omething", + "nsome thing", + "n something", + "om position", + "omp osition", + "nAD VERTISEMENT", + "自由 基", + "那么 就", + "dam age", + "▁C urry", + "▁Cur ry", + "nS pring", + "nSp ring", + "n Spring", + "▁Dynam o", + "关 羽", + "启 迪", + "李 玉", + "还 给", + "三门 峡", + "应该 在", + "淮 北市", + ":: ::", + "pro te", + "pr ote", + "prot e", + "p rote", + "ts ize", + "t size", + "CLUD ED", + "CLUDE D", + "▁T rent", + "▁Tr ent", + "▁Tre nt", + "▁sc arc", + "▁scar c", + "▁en acted", + "ochemical ly", + "ochem ically", + "▁com plements", + "▁comp lements", + "▁compl ements", + "▁complement s", + "讨 好", + "参加 过", + "开发 和", + "P iece", + "Fr ames", + "Frame s", + "解 本题的关键", + "act ively", + "active ly", + "activ ely", + "ree tings", + "reet ings", + "reeting s", + "▁caus ative", + "▁un official", + "几 款", + "远 近", + "▁X u", + "发展 与", + "可有 效", + "可 有效", + "正 因为", + "聚 乙烯", + "里程 碑", + "需要 您", + "▁w ie", + "▁wi e", + "还有 一种", + "还 有一种", + "▁n oun", + "▁no un", + "中华 英烈网", + "ca nnot", + "can not", + "c annot", + "▁b link", + "▁bl ink", + "cl assic", + "class ic", + "sol ving", + "s olving", + "▁stream line", + "▁rearr angement", + "受 访", + "挽 救", + "被 困", + "送 的", + "▁d l", + "▁ dl", + "五花 肉", + "房产 证", + "▁F FT", + "▁FF T", + "服务 体系", + "nI ran", + "▁Le ading", + "▁Lead ing", + "▁mission ary", + "▁ 峰", + "▁ 龚", + "安 庆", + "那 只", + "主演 的", + "主 演的", + "以 满足", + "附加 费用", + "and ex", + "ande x", + "▁INC IDENT", + "▁teach ings", + "▁teaching s", + "多 说", + "酸 碱", + ": &#", + "▁Bay es", + "▁Ba yes", + "▁P ulse", + "▁Pul se", + "二〇一六年 一", + "▁Ab ility", + "▁ Ability", + "▁compar atively", + "▁comparative ly", + "本裁定送达后 立即发生法律效力", + "中 获得", + "冬 奥会", + "▁b or", + "▁bo r", + "▁ bor", + "很重要 的", + "很 重要的", + "▁tr iang", + "▁tri ang", + "▁Log istic", + "凭 着", + "献 给", + "盖 章", + "an ed", + "ane d", + "a ned", + "▁N PC", + "▁NP C", + "▁ NPC", + "突发 事件", + "find ing", + "fin ding", + "f inding", + "Hand ling", + "▁Brown ian", + "专 区", + "换 取", + "格 调", + "讲 堂", + "会 成为", + "银行 业", + "银 行业", + "ha rk", + "har k", + "h ark", + "je to", + "jet o", + "j eto", + "nP et", + "nPe t", + "n Pet", + "most ly", + "▁sym posium", + "召 回", + "学 和", + "ET F", + "E TF", + "nH a", + "n Ha", + "也不 好", + "也 不好", + "执行 官", + "民族 的", + "民 族的", + "es tag", + "est ag", + "esta g", + "▁ded uced", + "▁deduce d", + "▁un iforms", + "▁uniform s", + "▁uni forms", + "▁inhab ited", + "▁inhabit ed", + "▁migr ating", + "提 早", + "AR A", + "A RA", + "NP s", + "N Ps", + "▁H W", + "▁ HW", + "▁ 教育", + "小 姑娘", + "的心 灵", + "的 心灵", + "nR ay", + "n Ray", + "▁Q CD", + "四边形 是", + "期限为 一年", + "Sp orts", + "Sport s", + "S ports", + "sc enes", + "scene s", + "▁Cap ture", + "▁Capt ure", + "▁ Capture", + "▁ster ling", + "▁Alex andra", + "▁Alexand ra", + "▁Alexa ndra", + "▁lymph atic", + "活 得", + "▁u v", + "▁ uv", + "多么 的", + "nr eg", + "nre g", + "n reg", + "▁re sts", + "▁r ests", + "▁res ts", + "▁rest s", + "▁Z immer", + "根 基", + "波 形", + "IG F", + "I GF", + "▁k J", + "自己 对", + "var ying", + "va rying", + "v arying", + "▁liv elihood", + "▁arrhythm ias", + "▁trans cribed", + "▁tran scribed", + "▁Logger Factory", + "▁ LoggerFactory", + "指 着", + "相 减", + "迟 到", + "{% \\", + "{ %\\", + "ên cia", + "ê ncia", + "▁b run", + "▁br un", + "▁bru n", + "的一 元二次方程", + "的 一元二次方程", + "Pat terns", + "Pattern s", + "P atterns", + "▁Bundes liga", + "▁respect ful", + "▁sur jective", + "▁anis otropic", + "也 应", + "盛 行", + "功能 障碍", + "▁M esa", + "▁Me sa", + "▁Mes a", + "两 江", + "打 过", + "时 速", + "聊 城", + "读 研", + "的 斜率", + "Wh it", + "W hit", + "▁rel ieved", + "▁relieve d", + "▁n l", + "▁ nl", + "天 左右", + "大概 就是", + "▁M ice", + "▁Mi ce", + "▁Mic e", + "基层 党组织", + "▁mon os", + "▁mo nos", + "▁mono s", + "av orable", + "avor able", + "大 巴", + "拜 登", + "新 课", + "自 已", + "连 忙", + "金 凤", + "又 开始", + "履行 的", + "履 行的", + "猕猴 桃", + "为了 提高", + "ir cle", + "irc le", + "▁房价 信息", + "二〇一七年 十", + "unt arily", + "▁d uality", + "▁du ality", + "▁dual ity", + "▁mur ders", + "▁murder s", + "▁Emer ging", + "▁polym orphic", + "▁polymorph ic", + "因 地", + "多 做", + "na h", + "n ah", + "自然 是", + "起诉 状", + "(\\' [", + "▁e cl", + "▁ec l", + "▁ ecl", + "栽培 技术", + "▁p uff", + "▁pu ff", + "本院已 依法", + "▁m ural", + "▁mur al", + "▁mu ral", + "▁nov ice", + "IF ICATION", + "IFIC ATION", + "▁cond ensed", + "▁condens ed", + "相 依", + "这 门", + "公司 以", + "麦当 劳", + "▁K ob", + "▁Ko b", + "文化 程度", + "amps ia", + "▁ 心", + "午 后", + "迈 进", + "au k", + "a uk", + "cd c", + "c dc", + "战争 的", + "▁De als", + "▁Deal s", + "▁Es say", + "▁Ess ay", + "的 委托代理人", + "▁McC ain", + "▁X avier", + "▁gre ase", + "tres ponse", + "t response", + "▁effic acious", + "▁Depend encies", + "▁ Dependencies", + "特 级", + "遍 及", + "k Hz", + "上来 说", + "上 来说", + "提供 给", + "提 供给", + "es an", + "esa n", + "e san", + "先予 执行", + "ap ons", + "apon s", + "apo ns", + "a pons", + "nT ell", + "nTe ll", + "▁Jo ey", + "▁Joe y", + "tox icity", + "toxic ity", + "▁Clay ton", + "▁en quiry", + "诉讼费 由被告承担", + "▁optim ism", + "check point", + "▁water fall", + "把 关", + "ad c", + "a dc", + "▁\\\\ &", + "学习 成绩", + "▁Br oker", + "▁Bro ker", + "▁ Broker", + "▁p iston", + "▁pi ston", + "▁st amped", + "▁stamp ed", + "▁l igation", + "▁lig ation", + "▁Ch allenges", + "▁Challenge s", + "▁insight ful", + "痛 点", + "控制 和", + "植物 油", + "kl ass", + "k lass", + "ng OnInit", + "▁There sa", + "▁Ther esa", + "▁cr owned", + "▁crow ned", + "▁crown ed", + "▁fol iage", + "▁tr ending", + "▁trend ing", + "▁cluster ed", + "▁clust ered", + "▁m aternity", + "▁norm ative", + "▁summ aries", + "▁summar ies", + "▁Develop ing", + "团 圆", + "均 以", + "法 令", + "交易 的", + "大约 是", + "大 约是", + "ut tg", + "utt g", + "pa ble", + "p able", + "▁Go ods", + "▁Good s", + "认罪态度 较好", + "ject ory", + "▁An ders", + "▁And ers", + "抢 险", + "觉得 他", + "▁D LL", + "▁DL L", + "▁ DLL", + "监控 系统", + "发展和 改革", + "Br oker", + "Bro ker", + "▁k eeper", + "▁ke eper", + "▁keep er", + "▁ keeper", + "高新技术产业 开发区", + "▁anth ology", + "▁con formal", + "▁conf ormal", + "▁conform al", + "▁thromb ocyt", + "▁thrombo cyt", + "小 车", + "海 湾", + "鳞 片", + "▁X V", + "世纪 初", + "培养 基", + "宝鸡 市", + "耐 高温", + "\\' ];", + "\\'] ;", + "ji ra", + "j ira", + "▁a we", + "▁aw e", + "nC apt", + "nCap t", + "n Capt", + "pl ist", + "p list", + "▁D rum", + "▁Dr um", + "CR EMENT", + "CRE MENT", + "▁C anton", + "▁Can ton", + "▁Ca nton", + "▁Cant on", + "▁l umber", + "▁lum ber", + "▁lu mber", + "astrop ods", + "▁disp arity", + "▁dispar ity", + "j w", + "但 要", + "更 长", + "SU M", + "S UM", + "co c", + "c oc", + "做出 最佳", + "服从 管教", + "rem ely", + "reme ly", + "▁Open GL", + "▁p istol", + "op erated", + "ope rated", + "oper ated", + "▁IN TEGER", + "▁ INTEGER", + "▁ec lectic", + "▁short comings", + "多 发", + "Com m", + "Co mm", + "C omm", + "od ian", + "odi an", + "odia n", + "ma pped", + "map ped", + "m apped", + "appro val", + "erdin and", + "ン ト", + "可以 买", + "注册 表", + "CO VID", + "web driver", + "▁solid arity", + "い て", + "发 财", + "报 关", + "星 系", + "的 区域", + "医务 人员", + "滨海 新区", + "▁re acts", + "▁react s", + "▁sh ores", + "▁shore s", + "▁Re plies", + "▁Rep lies", + "▁show room", + "▁t hematic", + "▁the matic", + "▁th ematic", + "▁them atic", + "▁P atterson", + "也 纳", + "抗 压", + "红 木", + "du b", + "d ub", + "▁] ' ,", + "> ',", + "nn p", + "n np", + "(\\' :", + "(\\ ':", + "( \\':", + "▁M ae", + "▁Ma e", + "元为 基数", + "▁Caf é", + "对应的 选项", + "▁m illing", + "▁mill ing", + "▁mil ling", + "▁univers ally", + "▁universal ly", + "▁neutral izing", + "兴 国", + "再 有", + "定 罪", + "nE v", + "n Ev", + "第八 条", + "第 八条", + "▁C CD", + "▁CC D", + "claim s", + "▁g rating", + "▁gr ating", + "▁grat ing", + "▁gra ting", + "▁syn apse", + "▁hand held", + "▁poly ethylene", + "偏 高", + "转 行", + "PH A", + "P HA", + "OT AL", + "OTA L", + "▁De pt", + "▁Dep t", + "自然 保护区", + "重庆 时时彩", + "▁ch ords", + "▁chord s", + "▁chor ds", + "▁Cath olics", + "▁Catholic s", + "之 手", + "美 式", + "▁C Y", + "▁ CY", + "六 安市", + "方式 是", + "羽绒 服", + "▁L ean", + "▁Le an", + "▁ Lean", + "可以 向人民法院", + "可以向 人民法院", + "▁sem ifinals", + "▁semi finals", + "▁cert ifications", + "▁certification s", + "二 个", + "MO VE", + "印象 深刻", + "▁con qu", + "▁sup reme", + "▁suprem e", + "▁blind ness", + "之 首", + "正 气", + "迪 亚", + "ko t", + "k ot", + "判别 式", + "大小 的", + "大 小的", + "Se ason", + "▁Be aver", + "▁Bea ver", + "▁fe ared", + "▁fear ed", + "片 中", + "觉 悟", + "顺 手", + ")) ^", + ") )^", + "▁[ %", + "一起 吃", + "当天 的", + "当 天的", + "▁S TO", + "▁ST O", + "ic hen", + "ich en", + "iche n", + "i chen", + "▁s cars", + "▁sc ars", + "▁scar s", + "combin e", + "comb ine", + "▁As sess", + "▁Ass ess", + "▁Qu otes", + "▁Quote s", + "▁line ages", + "▁lineage s", + "▁data frame", + "▁rib osomal", + "上 过", + "嘉 善", + "暴 躁", + "警 报", + "的天 空", + "的 天空", + "的路 上", + "的 路上", + "▁d ow", + "▁do w", + "▁ dow", + "暂 不具备", + "nA ction", + "nAct ion", + "nAc tion", + "n Action", + "▁m otives", + "▁mot ives", + "▁motiv es", + "▁new line", + "▁ newline", + "▁strand ed", + "▁ stranded", + "▁mod ifiers", + "▁modifier s", + "Des erialize", + "De serialize", + "▁prom inence", + "▁promin ence", + "▁conf inement", + "三 世", + "下 周", + "害 虫", + "建 民", + "放 着", + "很高 兴", + "很 高兴", + "金字 塔", + "Know n", + "Kn own", + "K nown", + "▁T oll", + "▁To ll", + "▁Tol l", + "Vi ctor", + "V ictor", + "作出 正确判断", + "▁sh ooters", + "▁shoot ers", + "▁shooter s", + "▁Princ iple", + "▁Ext ensions", + "▁Extension s", + "▁ Extensions", + "洛 夫", + "与 文化", + "总价 中", + "pa ul", + "p aul", + "中心 对称", + "负面 影响", + "刑罚 执行机关", + "▁sn akes", + "▁snake s", + "Type Name", + "没有约定 或者约定", + "▁Gen etics", + "▁Genetic s", + "▁Green land", + "▁Network ing", + "▁Net working", + "▁un controlled", + "张 志", + "雾 霾", + "第六 届", + "HO LD", + "H OLD", + "▁F GF", + "所 确定的", + "▁bu oy", + "▁ju icy", + "▁manufact ures", + "▁manufacture s", + "H J", + "▁ 利", + "玩 转", + "轮 候", + "顶 着", + "FT P", + "F TP", + "▁M p", + "在 网络", + "望远 镜", + "不是 因为", + "不 是因为", + "▁F ounded", + "▁Found ed", + "▁Techn ique", + "东 城", + "充 当", + "带 回", + "德 基", + "捷 径", + "省 的", + "的 身影", + "聚氨 酯", + "让 用户", + "you t", + "yo ut", + "y out", + "▁D FT", + "▁DF T", + "您 将面临", + "文学 作品", + "检验 检疫", + "淋浴 设施", + "en sing", + "ens ing", + "ensin g", + "B K", + "三 生", + "不 乏", + "尽 责", + "大多 是", + "大 多是", + "an ye", + "any e", + "nB re", + "nBr e", + "n Bre", + "▁I OS", + "▁IO S", + "▁ IOS", + "详细 评估", + "两次 以上的", + "es cent", + "esc ent", + "in care", + "inc are", + "nS eeds", + "nSee ds", + "nSe eds", + "▁un beat", + "▁arg inine", + "沦 为", + "骑 兵", + "在 英国", + "葫芦 岛", + "am us", + "a mus", + "▁Z ar", + "▁n th", + "▁ nth", + "ig nty", + "ign ty", + "▁合作 关系", + "▁ 合作关系", + "▁mail box", + "▁Sup plier", + "▁ Supplier", + "epit helial", + "哈 密", + "憔 悴", + "熟 的", + "而 他", + "到 自己", + "未 提出", + "▁C ra", + "▁Cr a", + "不断 扩大", + "给你 一段", + "最佳 的答案", + "最佳的 答案", + "▁s ucking", + "▁suc king", + "▁suck ing", + "type param", + "▁stress ors", + "直接 用", + "br on", + "bro n", + "b ron", + "回答 一道", + "大家 都是", + "大家都 是", + "这个 事情", + "这方面 的", + "这 方面的", + "J apan", + "Term s", + "Ter ms", + "▁b red", + "▁br ed", + "▁bre d", + "▁ bred", + "▁C ancel", + "▁Can cel", + "▁ Cancel", + "平面 直角坐标系", + "机场等接 车服务", + "▁Daniel s", + "▁Dani els", + "c plusplus", + "▁depart ed", + "写 过", + "西 欧", + "尽 全力", + "▁S ey", + "▁Se y", + "这个 过程", + "Br own", + "Bro wn", + "B rown", + "nc all", + "n call", + "▁m age", + "▁mag e", + "▁ma ge", + "电动 自行车", + "▁ex poses", + "▁exp oses", + "▁expose s", + "▁Requ ests", + "▁Request s", + "▁ Requests", + "▁Tele gram", + "将 它", + "数 中", + "海 带", + "羟 基", + "陵 园", + "ev il", + "e vil", + "▁D UI", + "▁DU I", + "元的 事实", + "元 的事实", + "▁ge om", + "▁geo m", + "▁ geom", + "▁pro j", + "▁pr oj", + "▁ proj", + "需在 入住时", + "计算在 总价中", + "App Data", + "▁fauc et", + "附加费用 不会自动", + "需在入住时 另行支付", + "set ObjectName", + "附加费用不会自动 计算在总价中", + "▁ 郝", + "不 识", + "张 开", + "五年 级", + "五 年级", + "Ha lf", + "H alf", + "▁c ra", + "▁cr a", + "▁Re ich", + "▁t iger", + "▁ti ger", + "scal ajs", + "scala js", + "▁sk illet", + "▁skill et", + "▁High lands", + "▁Highland s", + "Rec yclerView", + "物业管理有限公司 撤回起诉", + "班 组", + "▁e b", + "▁ eb", + "三千 元", + "三 千元", + "这条 路", + "直线 距离", + "▁CU DA", + "RET URN", + "reg nant", + "regn ant", + "▁gen eal", + "▁gene al", + "▁ge neal", + "▁mast urb", + "nS aturday", + "n Saturday", + "re duction", + "red uction", + "redu ction", + "▁ 阳", + "内 镜", + "断 电", + "而 你", + "肉 牛", + "风 月", + "华尔 街", + "▁M Pa", + "▁MP a", + "▁ MPa", + "如果 真的", + "主要 是因为", + "主要是 因为", + "然后从 提供的", + "请您 细致分析", + "oint ment", + "▁AD VISED", + "您将面临 一个挑战", + "回答一道 复杂选择题", + "▁phot ovoltaic", + "在有限时间内 回答一道复杂选择题", + "人 会", + "夜 深", + "张 大", + "某某 在", + "某 某在", + "au re", + "aur e", + "a ure", + "act eria", + "acter ia", + "该 国", + "赛 中", + "敌人 的", + "敌 人的", + "发展 前景", + "歌曲 歌词", + "找出 您认为", + "请您 全神贯注", + "地审查 以下这道", + "Stud ents", + "Student s", + "▁bl ocker", + "▁block er", + "找出您认为 最佳的答案", + "涉及广泛 知识的选择题", + "▁correct ing", + "▁re directed", + "▁red irected", + "▁redirect ed", + "请您全神贯注 地审查以下这道", + "▁ 微", + "宝 塔", + "▁; )", + "专门 为", + "在 深圳", + "必须 有", + "是 现代", + "cr ate", + "c rate", + "nS end", + "nSe nd", + "nSen d", + "n Send", + "▁F lint", + "▁Fl int", + "▁St Object", + "公 尺", + "废 旧", + "活 了", + "% }\\", + "ea t", + "e at", + "上升 到", + "立方 根", + "请 思考", + "▁G at", + "▁Ga t", + "an ford", + "uous ly", + "u ously", + "▁n emat", + "▁ne mat", + "at ation", + "ata tion", + "童 装", + "面 面", + "▁B W", + "▁ BW", + "▁F ault", + "▁Fa ult", + "▁b ells", + "▁bel ls", + "▁bell s", + "▁sh ampoo", + "▁invent or", + "▁export ing", + "CC A", + "C CA", + "GF P", + "G FP", + "▁D X", + "▁ DX", + "可能 与", + "可 能与", + "el es", + "ele s", + "e les", + "hb ox", + "h box", + "▁K ah", + "▁Ka h", + "▁G nRH", + "不动产 登记", + "公司 董事长", + "证券 交易所", + "ger ald", + "g erald", + "▁conf igs", + "▁config s", + "▁ configs", + "人大常委会 副主任", + "巴 掌", + "货 品", + "也 并不", + "恨 不得", + "所以 你", + "▁I MO", + "▁IM O", + "▁ IMO", + "以下 有关", + "数学 模型", + "ec ode", + "eco de", + "e code", + "▁Hy de", + "▁Hyd e", + "▁T ale", + "▁Ta le", + "▁Tal e", + "▁dom est", + "▁dome st", + "ament als", + "amental s", + "▁Intellig ent", + "▁screen writer", + "之 差", + "照 亮", + "迫 使", + "bm p", + "b mp", + "上诉 费", + "流量 的", + "流 量的", + "\\\\ )”", + "\\\\) ”", + "ig ne", + "ign e", + "不可 替代", + "年 下半年", + "批发 市场", + "▁A jax", + "▁Aj ax", + "▁S ilk", + "▁Sil k", + "▁mis con", + "▁misc on", + "power shell", + "powers hell", + "LE SS", + "LES S", + "L ESS", + "ne ut", + "▁Ex hib", + "▁unem ployed", + "储 能", + "铭 记", + "快捷 键", + "简单 来说", + "这个 角色", + "▁Ge tty", + "▁Get ty", + "▁he ats", + "▁heat s", + "Can adian", + "▁S anchez", + "帮我做 一道选择题", + "nMore over", + "▁att aching", + "▁attach ing", + "一 回", + "按 压", + "接 管", + "整 容", + "筹 资", + "白 内障", + "ha ra", + "har a", + "h ara", + "nE nt", + "nEn t", + "n Ent", + "▁M our", + "▁Mo ur", + "▁Y osh", + "▁Yo sh", + "▁regular ization", + "▁Y i", + "权利 的", + "权 利的", + "tw ig", + "t wig", + "▁s uture", + "▁su ture", + "▁sut ure", + "信息的 若干规定", + "给出 正确的选项", + "Ga ussian", + "atur days", + "aturday s", + "▁foss ils", + "▁fossil s", + "▁spin ach", + "▁film makers", + "▁filmm akers", + "▁filmmaker s", + "仔细阅读 下面这道选择题", + "▁Access ories", + "振 荡", + "▁d ns", + "▁ dns", + "进行了 研究", + "ich lor", + "i chlor", + "rac ial", + "r acial", + "是一部 连载于", + "ident ally", + "idental ly", + "▁elect roc", + "▁electro c", + "▁electr oc", + "▁soc iology", + "▁soci ology", + "▁socio logy", + "▁abbrev iated", + "照 相", + "了解 的", + "▁D uc", + "▁Du c", + "不当 得利", + "as ton", + "ast on", + "a ston", + "▁b ots", + "▁bo ts", + "▁bot s", + "▁ bots", + "▁p yro", + "▁py ro", + "▁pyr o", + "▁in let", + "▁i nlet", + "▁un det", + "▁und et", + "请您 仔细阅读", + "▁cele ry", + "▁cel ery", + "占 总", + "记 事", + "wo r", + "w or", + "呈 批表", + "YY YY", + "▁人物 名称", + "ag ency", + "age ncy", + "agen cy", + "a gency", + "▁Mac OS", + "第一百四十 三条", + "▁road map", + "▁entr ants", + "您 需在入住时另行支付", + "▁de generate", + "▁deg enerate", + "▁re sembling", + "天 一", + "托 运", + "登 临", + "红 叶", + "谁 会", + "vr e", + "v re", + "分享 了", + "nM ad", + "nMa d", + "n Mad", + "到了 一个", + "到 了一个", + "我有 一道题", + "我有一 道题", + "▁in land", + "▁Sch neider", + "两 委", + "侥 幸", + "想 你", + "旭 东", + "热 电", + "闭 环", + "顾 虑", + "SA P", + "S AP", + "虽然 在", + "面积 约", + "受到 影响", + "▁B ates", + "▁Ba tes", + "▁Bat es", + "十一 条之规定", + "十一条 之规定", + "▁H acker", + "▁Hack er", + "▁CON CLUS", + "▁rhythm ic", + "▁rhyth mic", + "▁Conn ected", + "▁Connect ed", + "▁ Connected", + "最 深", + "洞 口", + "粗 暴", + "衣 裙", + "十八 年", + "十 八年", + "我 老公", + "Se ver", + "S ever", + "is ans", + "isa ns", + "isan s", + "▁El se", + "▁ Else", + "▁E rin", + "▁Er in", + "cl iffe", + "int osh", + "into sh", + "▁nut rit", + "▁nutr it", + "n content", + "▁re solver", + "▁res olver", + "▁resolve r", + "▁ resolver", + "相 位", + "石 桥", + "▁书 评", + "尤其 在", + "尤 其在", + "月上 旬", + "Sp ider", + "rat ive", + "r ative", + "及 早", + "各 异", + "晶 莹", + "退 伍", + "EF F", + "E FF", + "发现 有", + "发 现有", + "详细 介绍了", + "详细介绍 了", + "nSt eps", + "nStep s", + "nSte ps", + "n Steps", + "▁H eter", + "▁He ter", + "▁N ucle", + "▁Nu cle", + "▁W olfram", + "▁Wolf ram", + "▁Wol fram", + "▁compet ency", + "▁compete ncy", + "▁Fund amental", + "扑 克", + "am mu", + "amm u", + "结构 设计", + "nl ine", + "n line", + "▁C rus", + "▁Cr us", + "▁Cru s", + "二〇一七年 七", + "各种 信息进行", + "REQUI RE", + "Re member", + "Rem ember", + "▁stat ues", + "▁statue s", + "三 联", + "大庆 市", + "大 庆市", + "检察 官", + "的 感受", + "OP ER", + "O PER", + "▁I st", + "▁Is t", + "相关 专业", + "多领域 知识", + "▁Bud dy", + "▁Budd y", + "▁H older", + "▁Hol der", + "▁Hold er", + "▁ Holder", + "inf inity", + "▁Bre wing", + "▁Brew ing", + "an u", + "a nu", + "的 软件", + "Win g", + "Wi ng", + "W ing", + "▁v tk", + "▁ vtk", + "强 有力的", + "最 常见的", + "W omen", + "▁商品 编号", + "并在 选项中", + "进行 解答即可", + "ex porter", + "export er", + "exp orter", + "▁Re fresh", + "▁Ref resh", + "▁ Refresh", + "Percent age", + "报 记者", + "un de", + "und e", + "u nde", + "▁A ux", + "▁Au x", + "▁pitch ers", + "▁pitcher s", + "▁element al", + "▁ele mental", + "▁elem ental", + "▁m anganese", + "▁Compl iance", + "请你帮我 选出正确的选项", + "re newcommand", + "renew command", + "去 哪", + "泛 滥", + "(\" \"", + "( \"\"", + "J WT", + "但 随着", + "这种 东西", + "ng ood", + "ngo od", + "n good", + "综合运用 各种", + "Layout Inflater", + "不 失", + "入 伍", + "户 通", + "源 源", + "补 习", + ")) (", + ") )(", + "可怕 的", + "ha ir", + "hai r", + "h air", + "ls en", + "l sen", + "Lo uis", + "L ouis", + "Tor ch", + "T orch", + "dot env", + "mark up", + "最准确 的答案", + "▁sit com", + "二〇一五年 二月", + "▁Met rics", + "▁Metric s", + "▁ Metrics", + "per fusion", + "perf usion", + "一 米", + "兰 花", + "新 诗", + "普 拉", + "溯 源", + "虚 伪", + "▁` _", + "天然 的", + "天 然的", + "数据 和", + "子宫 内膜", + "Tra its", + "Trait s", + "T raits", + "▁M ature", + "▁Mat ure", + "▁Ma ture", + "▁d ermal", + "▁der mal", + "▁Haus dorff", + "▁call backs", + "▁callback s", + "▁ callbacks", + "剥 离", + "君 王", + "土 路", + "排 毒", + "复制 到", + "AN CH", + "FP GA", + "下面 是一道", + "下面是 一道", + "nAdd ed", + "nAd ded", + "n Added", + "▁c urry", + "▁cur ry", + "▁curr y", + "heart ed", + "ost atic", + "ostat ic", + "osta tic", + "o static", + "re eting", + "ree ting", + "reet ing", + "并在选项中 确定", + "涉及 多领域知识", + "Be autiful", + "▁pleth ora", + "▁st acking", + "▁stack ing", + "▁P ermanent", + "▁attack ers", + "▁attacker s", + "▁nanot ubes", + "下面是一道 复杂选择题", + "请仔细阅读 问题和选项", + "translation s", + "transl ations", + "▁Organ izations", + "▁Organization s", + "L u", + "水 印", + "法 宝", + "独 创", + "ot r", + "o tr", + "体育 运动", + "nl ast", + "n last", + "美术 出版社", + "ap ollo", + "apol lo", + "贷款利率 计算", + "▁sub merged", + "▁Buck ingham", + "劳 累", + "善 意", + "实 处", + "时 下", + "▁ 添加", + "li de", + "l ide", + "▁RF ID", + "wh atever", + "what ever", + "nL icensed", + "n Licensed", + "▁plant ation", + "▁ plantation", + "▁Austral ians", + "▁Australia ns", + "▁Australian s", + "▁ 齐", + "南 沙", + "多 于", + "纹 身", + "gi l", + "g il", + "出入 境", + "出 入境", + "▁G in", + "▁Gi n", + "OT HER", + "OTH ER", + "O THER", + "▁s erm", + "▁se rm", + "▁ser m", + "提出 撤诉申请", + "最合适的 选项", + "▁my elin", + "▁myel in", + "这道题目 是一道", + "信息 科技有限公司", + "Coll ision", + "▁App lying", + "▁Appl ying", + "▁Apply ing", + "▁un bounded", + "▁neuro imaging", + "VP N", + "V PN", + "在 广州", + "▁R ats", + "▁Ra ts", + "▁Rat s", + "▁fun nel", + "▁no ises", + "▁noise s", + "al gebras", + "algebra s", + "▁milit ants", + "第六十七条第三款 之规定", + "▁explan atory", + "主 食", + "滚 子", + "箭 头", + "逼 近", + "IN O", + "I NO", + "▁S OD", + "▁SO D", + "▁ SOD", + "广播 电台", + "首先 根据", + "首 先根据", + "▁f unk", + "▁fun k", + "▁fu nk", + "然后 会提供", + "▁s aint", + "▁sa int", + "并确定 您认为", + "接下来 这道题目是一道", + "▁Hyp othesis", + "请您仔细阅读 问题和选项", + "▁Per spective", + "▁Pers pective", + "并确定您认为 最准确的答案", + "买 方", + "棒 的", + "每 夜", + "肯 干", + "nC D", + "n CD", + "▁o ss", + "▁os s", + "▁ oss", + "建立 健全", + "液晶 电视", + "膳食 纤维", + "日 交付执行", + "▁Mar ía", + "第二百零 八条", + "给你一段 描述", + "请你根据 这段话", + "▁fl ipped", + "▁flip ped", + "然后会提供 几个选项", + "▁Log istics", + "▁Logistic s", + "从选项中选出 最合适的选项", + "执行通知 履行法律文书确定的义务", + "á c", + "三 相", + "国 营", + "烧 结", + "腾 飞", + "国家 对", + "特性 的", + "特 性的", + "JP EG", + "J PEG", + "▁t ad", + "▁ta d", + "Ser ve", + "Serv e", + "S erve", + "▁un inter", + "▁u ninter", + "▁unint er", + "▁uni nter", + "▁Friend ly", + "▁Count ries", + "迅 猛", + "▁ 删除", + "项和 为", + "项 和为", + "日起至 实际", + "▁gar ments", + "▁garment s", + "▁C andidates", + "▁Candid ates", + "▁Candida tes", + "▁Candidate s", + "和 王", + "安 阳", + "药 理", + "Am b", + "A mb", + "了一 家", + "了 一家", + "ee ks", + "eek s", + "e eks", + "的朋友 们", + "的 朋友们", + "仔细 的思考", + "二〇一五年 五月", + "t K", + "题 库", + "的新 闻", + "的 新闻", + "], [\"", + "],[ \"", + "▁P aw", + "▁Pa w", + "相比 之下", + "▁nan ow", + "▁na now", + "▁nano w", + "▁ins ider", + "▁inside r", + "ahren heit", + "nTh ursday", + "n Thursday", + "Every thing", + "参与 到", + "Di al", + "D ial", + "▁E TH", + "▁ET H", + "▁ ETH", + "nb ase", + "n base", + "请在 给定的", + "接下来 您需要", + "该问题 需要对", + "回答一个 选择题", + "继续执行 的条件", + "各种信息进行 详细评估", + "▁stream lined", + "▁streamline d", + "接下来您需要 回答一个选择题", + "请在给定的 选项中挑选出正确答案", + "该问题需要对 各种信息进行详细评估", + "改 版", + "硕 果", + "体育 局", + "有 原告", + "步行 街", + "视为 其", + "视 为其", + "大 户", + "的 规律", + "▁li ters", + "▁liter s", + "▁lit ers", + "▁under grad", + "trans former", + "transform er", + "▁friend ships", + "▁friends hips", + "▁friendship s", + "恩 怨", + "常见 病", + "nd at", + "nda t", + "n dat", + "▁D ish", + "▁Dis h", + "▁Di sh", + "▁F avorite", + "▁cerebro spinal", + "平 价", + "犯 了", + "笑 语", + "萧 条", + "重 塑", + "的高 端", + "的 高端", + "▁s ua", + "▁su a", + "}} }\\\\", + "}}} \\\\", + "} }}\\\\", + "▁a vian", + "▁av ian", + "▁ avian", + "▁e sters", + "▁est ers", + "▁es ters", + "▁este rs", + "▁ester s", + "▁ esters", + "▁INCIDENT AL", + "房 内", + "汉 代", + "▁i os", + "▁io s", + "▁ ios", + "在线 汉语", + "og rad", + "ogr ad", + "o grad", + "ip otent", + "▁sew age", + "▁C ycling", + "▁Cycl ing", + "American s", + "Americ ans", + "America ns", + "▁knock down", + "皇 子", + "阴 暗", + "雅 典", + "{} /", + "{ }/", + "Mut ex", + "Mu tex", + "▁M ali", + "▁Mal i", + "▁Ma li", + "▁Th ur", + "▁Thu r", + "▁C ause", + "▁Ca use", + "▁p aran", + "▁par an", + "▁para n", + "▁pa ran", + "两次以上的 影人", + "预测 问题的答案", + "Re strict", + "Rest rict", + "res istance", + "ostruct ures", + "o structures", + "▁imprison ed", + "▁ 图", + "展 区", + "越 发", + "经营 部", + "平方 米的", + "平方米 的", + "资产 阶级", + "资 产阶级", + "▁R ash", + "▁Ra sh", + "▁Ras h", + "并从 提供的", + "▁Sax ony", + "一段文字 描述和", + "请思考 以下有关", + "▁ap ology", + "▁apolog y", + "▁apo logy", + "下面是一个 选择题", + "▁under pin", + "仔细 预测问题的答案", + "备选答案 中选择一个", + "专业领域 知识的选择题", + "▁un ivariate", + "我会给你 一段文字描述和", + "▁mind fulness", + "备选答案中选择一个 正确的选项", + "我会给你一段文字描述和 对应的选项", + "请你 从选项中选出你认为正确的答案", + "万 分", + "乔 丹", + "住所 地在", + "住所地 在", + "额外的 床", + "麻烦 帮我做", + "con vex", + "conv ex", + "▁tw ists", + "▁twist s", + "麻烦帮我做 一道题", + "nin stance", + "n instance", + "▁wing span", + "▁wings pan", + "se tdefault", + "set default", + "从选项中 选出正确的选项", + "从选项中选出 正确的选项", + "▁imprison ment", + "储 藏", + "卑 微", + "护 卫", + "AB B", + "A BB", + "LT E", + "L TE", + "我不 能", + "我 不能", + "设立 的", + "man i", + "ma ni", + "m ani", + "工作 温度", + "▁K ell", + "▁Ke ll", + "▁Kel l", + "nSe ptember", + "n September", + "会 社", + "分 发", + "前 线", + "包 的", + "即 在", + "打 仗", + "▁g t", + "▁ gt", + "的解集 为", + "这个 地方", + "ick son", + "icks on", + "label led", + "lab elled", + "г и", + "▁ Ç", + "宽 的", + "手 柄", + "难 民", + "年代 的", + "年 代的", + "▁个 整数", + "张 额外的床", + "▁sw arm", + "委托代理人 杨", + "▁re sect", + "▁res ect", + "launch er", + "▁straw berry", + "也 从", + "产 学", + "我 却", + "玉 龙", + "ño s", + "ñ os", + "ot us", + "一个 好的", + "英雄 合击", + "▁go og", + "▁ goog", + "▁} ),\\", + "▁}) ,\\", + "▁ }),\\", + "申请再审 称", + "▁more over", + "说 来", + "iz u", + "i zu", + "jo h", + "j oh", + "承德 市", + "承 德市", + "on ga", + "ong a", + "▁[ ])", + "▁[] )", + "▁ [])", + "返还 原告", + "顾 名思义", + "▁K ris", + "▁Kr is", + "▁Cr ohn", + "▁Cro hn", + "▁Graph s", + "▁prior i", + "▁pri ori", + "▁Mod ular", + "▁un locked", + "▁unlock ed", + "▁合作 两次以上的影人", + "▁Character istics", + "▁ 하", + "也 知道", + "有效 果", + "有 效果", + "网游 之", + "▁m ars", + "▁mar s", + "▁ma rs", + "ikh ail", + "st ellar", + "▁S unset", + "▁Sun set", + "▁Su nset", + "▁fet uses", + "▁fetus es", + "▁locom otive", + "▁vol umetric", + "▁eryth rocyte", + "▁Manufact urers", + "nP y", + "n Py", + "输 卵管", + "ch arm", + "char m", + "cha rm", + "c harm", + "en ers", + "ener s", + "ene rs", + "e ners", + "▁ju ices", + "▁juice s", + "▁s olute", + "▁sol ute", + "Media Type", + "七日内 预交案件受理费", + "备 忘", + "多 米", + "科 比", + "([ ^", + "( [^", + "三轮 车", + "依次 为", + "加床 或", + "系数 为", + "系 数为", + "▁N CI", + "▁NC I", + "正在 进行", + "正 在进行", + "第十五 章", + "第 十五章", + "\\' )]\\", + "\\') ]\\", + "rel ude", + "relu de", + "▁St arter", + "▁Star ter", + "▁Start er", + "▁\\\\ \\\\\\\\\\\\", + "▁\\\\\\\\ \\\\\\\\", + "▁\\\\\\ \\\\\\\\\\", + "▁\\\\\\\\\\ \\\\\\", + "▁ \\\\\\\\\\\\\\\\", + "▁antidepress ant", + "上 官", + "人 道", + "特 权", + "玉 树", + "网 讯", + "赤 壁", + "Du e", + "D ue", + "多余 的", + "青春 期", + "IO US", + "一定 程度", + "新农村 建设", + "▁M aven", + "▁Ma ven", + "申请执行人 同意", + "▁blot ting", + "iter ations", + "iteration s", + "Http Response", + "▁transport ing", + "▁ 魔", + "与 被", + "冲 压", + "国 标", + "技 师", + "村 村", + "颇 具", + "Sl f", + "S lf", + "以及 几个", + "机械 工业", + "运用 扎实", + "▁H olt", + "▁Hol t", + "▁Ho lt", + "Ar thur", + "▁c utter", + "▁cut ter", + "▁wh ichever", + "▁which ever", + "延 时", + "男 篮", + "缓 和", + "az zo", + "azz o", + "当 且仅当", + "ig ins", + "igin s", + "igi ns", + "▁C orb", + "▁Co rb", + "▁Cor b", + "履行 生效法律文书所确定的义务", + "履行生效法律文书 所确定的义务", + "宛 如", + "月 末", + "背 着", + "DL L", + "D LL", + "人心 的", + "人 心的", + "人性 的", + "人 性的", + "▁N aked", + "▁Nak ed", + "▁test is", + "▁Gaz ette", + "▁model led", + "▁mod elled", + "全 军", + "动 向", + "改 写成", + "程序 的", + "RE SP", + "RES P", + "R ESP", + "▁f en", + "▁fe n", + "▁ fen", + "全体 员工", + "至少 需要", + "ge nome", + "gen ome", + "▁off ence", + "L j", + "庆 区", + "温 带", + "睡 了", + "铁 岭", + "根据 其", + "鉴定 书", + "▁K oz", + "▁Ko z", + "的真实 性", + "的 真实性", + "PS HOT", + "ui ser", + "uis er", + "u iser", + "▁T ina", + "▁Ti na", + "▁Tin a", + "▁se ab", + "▁sea b", + "DO CKER", + "▁L ever", + "▁Le ver", + "▁Lev er", + "所提出的 任何", + "As String", + "sym metric", + "s ymmetric", + "nM ur", + "n Mur", + "上诉 案件", + "均需 获得", + "并从 所给", + "▁W heat", + "▁Wh eat", + "这道题 需要您", + "ic ially", + "ici ally", + "icial ly", + "接下来的 选择题", + "FILE NAME", + "nDis play", + "n Display", + "以便 作出正确判断", + "并从所给 选项中挑", + "运用扎实 的知识和", + "▁Pack ages", + "▁Package s", + "▁ Packages", + "Pro jection", + "Project ion", + "请仔细研究 接下来的选择题", + "运用扎实的知识和 仔细的思考", + "并从所给选项中挑 选出正确的答案", + "久 之", + "容 貌", + "nL os", + "nLo s", + "▁E is", + "tM onday", + "t Monday", + "▁glyc oproteins", + "▁glycoprotein s", + "报 社", + "禁 烟", + "电脑 上", + "政法 大学", + "最 简单的", + "Join t", + "Jo int", + "J oint", + "乘法 分配律", + "书 香", + "冬 梅", + "锯 齿", + "fu r", + "f ur", + "▁$ <", + "我想 说", + "我 想说", + "起重 机", + "ni ca", + "nic a", + "n ica", + "▁P ras", + "▁Pr as", + "▁Pra s", + "酒店的 确认", + "ap unov", + "mac ros", + "macro s", + "加床或 婴儿床", + "的要求 均需获得", + "▁Base ment", + "▁Bas ement", + "▁both ered", + "▁bother ed", + "▁mach ining", + "\\\\)\\\\( {\\\\,\\\\", + "所提出的任何 加床或婴儿床", + "丽 娟", + "使 君", + "朝 天", + "co w", + "c ow", + "vi e", + "v ie", + "做的 事", + "做 的事", + "如下 文", + ") **", + "Sn ap", + "S nap", + "这种 问题", + "具有 较高的", + "spl ice", + "▁Di vine", + "▁Div ine", + "▁cr ises", + "▁cris es", + "人 中", + "<% @", + "R abbit", + "▁f avors", + "▁favor s", + "▁fav ors", + "▁str ang", + "pro grams", + "pr ograms", + "program s", + "▁Ge Force", + "▁Ph antom", + "otrans fer", + "o transfer", + "▁intra ocular", + "不 爽", + "两 部", + "屋 子", + "绪 论", + "遍 地", + "西 城区", + "可以 用来", + "可以用 来", + "是世界 上", + "是 世界上", + "▁US DA", + "▁USD A", + "月获得 表扬", + "ga lact", + "gal act", + "的要求均需获得 酒店的确认", + "欣 慰", + "辛 亥", + "可以 多", + "而 努力", + "Vo te", + "V ote", + "物品 清单", + "系统 工程", + "▁sal ads", + "▁salad s", + "集团 有限责任公司", + "View Group", + "Entity Framework", + "内 皮", + "牛 津", + "遮 挡", + "mp i", + "m pi", + "在 很多", + "我们 去", + "活力 的", + "活 力的", + "科尔 沁", + "\\\\ ([", + "\\\\( [", + "sl ope", + "▁all ied", + "▁Pione er", + "▁re calls", + "▁rec alls", + "▁recall s", + "eterm inate", + "圣 地", + "巢 湖", + "慈 溪", + "细 雨", + "迈 向", + "齐 聚", + "▁H aj", + "▁Ha j", + "互联网 金融", + "▁Rel ax", + "▁Bel ieve", + "▁agree ing", + "美 满", + "赣 州", + "走 着", + "▁V acc", + "▁Va cc", + "▁Vac c", + "▁Jul ius", + "▁G rowing", + "▁Gr owing", + "▁Gro wing", + "▁Grow ing", + "▁I brahim", + "▁cl auses", + "▁clause s", + "▁Fac ilities", + "宽 广", + "od r", + "o dr", + "▁K ul", + "▁Ku l", + "nr ead", + "nre ad", + "n read", + "▁软件 大小", + "Mi rror", + "Mir ror", + "▁m ates", + "▁mat es", + "▁ma tes", + "▁mate s", + "▁ mates", + "▁c types", + "▁ct ypes", + "博 大", + "开 挖", + "AR N", + "A RN", + "ía s", + "í as", + "▁k l", + "▁ kl", + "▁사 용", + "年前 的", + "年 前的", + "连载 的一部", + "连载的 一部", + "Prom pt", + "ol ogie", + "olog ie", + "olo gie", + "▁sc ram", + "▁scr am", + "Sc enario", + "▁en tails", + "▁ent ails", + "▁prophyl actic", + "敲 门", + "正 交", + "药 水", + "集 训", + "但因 为", + "但 因为", + "房屋 的", + "▁Me V", + "PAT CH", + "P ATCH", + "fil ms", + "film s", + "鄂尔多斯 市", + "Ill egal", + "Il legal", + "PRO PERTY", + "strand ed", + "ieve ments", + "iev ements", + "ievement s", + "serial ized", + "serialize d", + "PM I", + "P MI", + "拒绝 了", + "脑子 里", + "脑 子里", + "LO GO", + "LOG O", + "▁h ors", + "▁hor s", + "▁ho rs", + "▁eryth emat", + "▁eryt hemat", + "▁plan etary", + "▁planet ary", + "会 话", + "寿 光", + "知 网", + "不开 心", + "不 开心", + "战略 性", + "▁[ **", + "认为 自己", + "认 为自己", + "▁J PEG", + "▁ JPEG", + "▁ap pre", + "▁app re", + "▁d emon", + "▁de mon", + "▁dem on", + "▁demo n", + "▁t uples", + "▁tuple s", + "▁tu ples", + "▁conduct ors", + "▁conductor s", + "无 端", + "欣 喜", + "的美 好", + "的 美好", + "连载 的", + "▁War rior", + "▁dist utils", + "▁mal formations", + "奠 基", + "蠕 动", + "光驱 类型", + "Br ain", + "B rain", + "rank ed", + "ole cyst", + "olec yst", + "▁mor tar", + "▁mort ar", + "▁F utures", + "▁Future s", + "▁Fu tures", + "▁over arching", + "喜 庆", + "Cl i", + "C li", + "今天 就", + "an os", + "ano s", + "a nos", + "ts ys", + "t sys", + "迄今 为止", + "退役 军人", + "▁V and", + "▁Van d", + "▁Va nd", + "me eting", + "meet ing", + "▁ru ined", + "▁ruin ed", + "▁def enses", + "▁defense s", + "▁transc end", + "in struction", + "两 头", + "几 倍", + "勒 索", + "秦 淮", + "表 单", + "し ます", + "▁t ul", + "▁tu l", + "Render ing", + "R endering", + "房屋 买卖合同纠纷一案", + "身 在", + "人家 的", + "人 家的", + "▁p ng", + "▁ png", + "dir ty", + "d irty", + "代理权限 为", + "W izard", + "ent eric", + "enter ic", + "ente ric", + "▁M orton", + "▁Mor ton", + "▁Mort on", + "三 连", + "推 特", + "研 判", + "站 台", + "蚝 油", + "Co d", + "C od", + "FI X", + "F IX", + "ds l", + "d sl", + "▁电 子", + "▁ 电子", + "长时间 的", + "长 时间的", + "▁V era", + "▁Ver a", + "▁Ve ra", + "发展 中国家", + "发展中 国家", + "▁o auth", + "▁ oauth", + "▁St ones", + "▁Stone s", + "Ch annels", + "Channel s", + "Chan nels", + "▁em peror", + "乳 头", + "之后 就", + "之 后就", + "我心 里", + "我 心里", + "DE ST", + "DES T", + "D EST", + "Mon o", + "Mo no", + "M ono", + "▁( []", + "▁([ ]", + "▁ ([]", + "▁r av", + "▁ra v", + "▁ rav", + "将 进一步", + "▁d atos", + "▁dat os", + "▁da tos", + "▁po uring", + "▁pour ing", + "▁pou ring", + "amp hetamine", + "]* *", + "] **", + "▁A cad", + "▁Ac ad", + "▁b lew", + "▁bl ew", + "▁ble w", + "对其 从轻处罚", + "miss ive", + "▁Back up", + "▁ Backup", + "▁n esting", + "▁nest ing", + "嗓 子", + "某 于", + "SC R", + "S CR", + "▁l p", + "▁ lp", + "她们 的", + "她 们的", + "软 组织", + "LO NG", + "LON G", + "L ONG", + "理论 基础", + "Sp anish", + "Span ish", + "rest aurant", + "▁tre asures", + "▁treasure s", + "▁treas ures", + "▁mosquito es", + "▁mosquit oes", + "▁not eworthy", + "▁note worthy", + "▁ 严", + "八 九", + "毅 然", + "钟 情", + "': '", + "' :'", + "也很 难", + "也 很难", + "爱 企查", + "As ia", + "▁A Ch", + "▁AC h", + "▁N ina", + "▁Ni na", + "▁Nin a", + "▁o wed", + "▁ow ed", + "▁owe d", + "▁ owed", + "Ge nder", + "Gen der", + "G ender", + "Ne sted", + "N ested", + "nL ouis", + "nLo uis", + "n Louis", + "▁Bo tan", + "▁Bot an", + "▁R each", + "▁Re ach", + "▁Le ipzig", + "▁Vel ocity", + "▁ Velocity", + "▁ ②", + "方 剂", + "不相 信", + "不 相信", + "商业 街", + "地下 室", + "资料 来源", + "▁W eld", + "▁We ld", + "▁Wel d", + "由题意 可知", + "UR EMENT", + "URE MENT", + "quant um", + "in frared", + "短 发", + "耐 热", + "bi r", + "b ir", + "▁M ö", + "▁试 读", + "的单 位", + "的 单位", + "休闲 小憩", + "▁M eat", + "▁Me at", + "中 刑执字第", + "▁N inja", + "▁Nin ja", + "note book", + "▁prompt ing", + "▁in sensitive", + "▁ins ensitive", + "从 上", + "法 检测", + "特点 和", + "特 点和", + "的人 是", + "的 人是", + "看到 这个", + "这种 情况下", + "这种情况 下", + "▁Viol ence", + "▁tax ation", + "▁taxa tion", + "南 宫", + "娄 底", + "比 尔", + "灵 异", + "里 奥", + "执行 逮捕", + "ess ie", + "occup ied", + "▁Not Found", + "▁ NotFound", + "▁Numer ous", + "▁ground breaking", + "平 庸", + "林 的", + "江 海", + "点 开", + "球 星", + "RI C", + "R IC", + "be h", + "b eh", + "▁V ie", + "▁Vi e", + "行政 部门", + "▁M alt", + "▁Mal t", + "▁Ma lt", + "nAsk ed", + "nDep artment", + "n Department", + "▁prote olytic", + "▁approxim ated", + "▁approx imated", + "▁approximate d", + "更 佳", + "西 宁", + "aq u", + "a qu", + "▁C z", + "外星 人", + "工作 组", + "时间 去", + "但是 没有", + "但 是没有", + "在不同 的", + "在 不同的", + "显着 高于", + "服务 器的", + "服务器 的", + "这组 数据", + "这 组数据", + "tun signed", + "t unsigned", + "▁inter oper", + "t E", + "中 生", + "我 更", + "普 罗", + "涂 装", + "喜欢 上", + "aut y", + "au ty", + "a uty", + "mer e", + "me re", + "m ere", + "nD ave", + "nE ric", + "nEr ic", + "n Eric", + "▁th irst", + "▁thi rst", + "di methyl", + "dim ethyl", + "又 好", + "吃 掉", + "过 失", + "▁C p", + "Br on", + "Bro n", + "B ron", + "▁X in", + "▁Xi n", + "▁K ant", + "▁Ka nt", + "▁Kan t", + "如下文 所示", + "▁Anth rop", + "▁spect ators", + "乡 长", + "滑 坡", + "苍 茫", + "▁i ç", + "塑料 袋", + "定义 在", + "管理 等", + "nN et", + "nNe t", + "n Net", + "tr ees", + "tree s", + "tre es", + "t rees", + "▁caf é", + "▁V ault", + "▁Va ult", + "▁ Vault", + "▁r ains", + "▁ra ins", + "▁rain s", + "▁obl ique", + "▁Http Servlet", + "▁ HttpServlet", + "不 以", + "之 都", + "当下 的", + "当 下的", + "新 模式", + "循序 渐进", + "ne mail", + "nem ail", + "n email", + "Make file", + "check sum", + "checks um", + "ere quisites", + "▁ 健", + "下 颌", + "书 生", + "分析 仪", + "在 欧洲", + "委 党校", + "LIC K", + "LI CK", + "L ICK", + "▁I PO", + "▁IP O", + "▁ IPO", + "▁Z am", + "冻结 被告", + "积极 作用", + "nB rian", + "nBr ian", + "▁Ch oir", + "▁Cho ir", + "▁s ided", + "▁side d", + "▁si ded", + "▁sid ed", + "▁ sided", + "Object Id", + "Token izer", + "左 键", + "贪 婪", + "逆 向", + "▁ 医院", + "不住 了", + "不 住了", + "乐 山市", + "打 不过", + "▁V od", + "▁Vo d", + "▁p av", + "▁pa v", + "以为 自己", + "以 为自己", + "分析 步骤", + "等 农作物", + "▁s lit", + "▁sl it", + "做一个 选择题", + "pr inter", + "print er", + "pri nter", + "▁ 剑", + "上 当", + "伴 奏", + "抓 取", + "十九 年", + "十 九年", + "bys hev", + "ing les", + "ingle s", + "▁graph ite", + "▁clip board", + "▁emphas izing", + "≤ \\", + "岳 麓", + "木 工", + "CB A", + "C BA", + "收入 的", + "邢台 市", + "▁L or", + "▁Lo r", + "是单 选题", + "▁D ust", + "▁Du st", + "EMPL ARY", + "▁fe athers", + "▁feather s", + "à o", + "寄 存", + "布 料", + "悠 然", + "我 行", + "河 边", + "达 拉", + "不对 称", + "不 对称", + "体积 是", + "▁a gr", + "▁ag r", + "▁ agr", + "▁ID EA", + "▁IDE A", + "nL iter", + "n Liter", + "▁g ears", + "▁ge ars", + "▁gear s", + "▁H ouses", + "▁House s", + "▁Ho uses", + "▁Hou ses", + "▁trim med", + "▁stand point", + "揭 牌", + "fe lt", + "f elt", + "身体 素质", + "▁w hip", + "▁wh ip", + "ver ses", + "vers es", + "verse s", + "▁sh utter", + "▁shut ter", + "in tensive", + "int ensive", + "valid ated", + "validate d", + "▁w arrants", + "▁warrant s", + "▁def endants", + "▁defend ants", + "▁defendant s", + "为 谁", + "划 线", + "妈 咪", + "足 协", + "题 名", + "le i", + "l ei", + "sin A", + "si nA", + "▁$ {{\\\\", + "▁${ {\\\\", + "▁${{ \\\\", + "悔改表现 突出", + "pat ible", + "▁bass ist", + "▁ å", + "网易云 音乐", + "▁Vol vo", + "nM obile", + "n Mobile", + "▁免费 洗浴用品", + "ellig ence", + "elli gence", + "何 在", + "毅 力", + "畏 惧", + "总 承包", + "用 除法", + "的 局面", + "def s", + "de fs", + "ic om", + "ico m", + "i com", + "nO UT", + "n OUT", + "no st", + "nos t", + "n ost", + "nthe se", + "nth ese", + "n these", + "right s", + "r ights", + "▁Cl erk", + "▁Cle rk", + "nEx ercise", + "nSyn opsis", + "▁option ally", + "▁optional ly", + "▁sil houette", + "▁recomm ending", + "▁recommend ing", + "不 回", + "心 血", + "所 著", + "是 哪", + "神经 元", + "Ch ief", + "cent os", + "这道题 是单选题", + "请你 做一个选择题", + "请你 选出正确的选项", + "▁ship ments", + "▁shipment s", + "问题和选项 如下文所示", + "▁Ar ithmetic", + "悲 惨", + "找 寻", + "素 的", + "虚 空", + "pe p", + "p ep", + "ta nd", + "tan d", + "t and", + "uc kle", + "uck le", + "Des pite", + "all ocate", + "alloc ate", + "▁optim ally", + "▁optimal ly", + "▁ver ifying", + "▁verify ing", + "史 学", + "竹 马", + "件事 情", + "件 事情", + "的热 爱", + "的 热爱", + "\\' \",", + "\\'\" ,", + "or na", + "orn a", + "全面 推进", + "nW ait", + "n Wait", + "im ilar", + "imi lar", + "nM useum", + "▁disc iples", + "▁discipl es", + "▁dem olition", + "江 门", + "调 速", + "▁p its", + "▁pi ts", + "▁pit s", + "ex posure", + "exp osure", + "▁reimburse ment", + "天 蝎", + "扫 黑", + "遴 选", + "▁r ut", + "▁ru t", + "ns ign", + "n sign", + "这是一个 涉及", + "▁cass ette", + "了 很久", + "将 达到", + "ST AR", + "STA R", + "ac om", + "aco m", + "a com", + "建立 一个", + "艺术 设计", + "▁ves icle", + "▁POSS IBILITY", + "川 市", + "nA bs", + "nAb s", + "n Abs", + "就是 我们", + "就是我 们", + "就 是我们", + "▁cal endars", + "▁calendar s", + "▁butter flies", + "伤 寒", + "特 价", + "眉 头", + "骑 车", + "Es c", + "E sc", + "我都 会", + "我 都会", + "la in", + "l ain", + "分析 并从", + "yz ing", + "y zing", + "▁L aud", + "▁La ud", + "▁fant as", + "▁fan tas", + "user Info", + "▁loc ating", + "▁descript ors", + "▁descriptor s", + "▁progen itors", + "▁progenitor s", + "▁R X", + "▁ RX", + "赡养 费", + "Se nse", + "Sen se", + "S ense", + "故意杀人 罪", + "▁kn ives", + "bi ological", + "bio logical", + "b iological", + "▁Berks hire", + "▁conjug ates", + "▁conjugate s", + "▁incl ination", + "▁sub projects", + "▁subproject s", + "▁ 春", + "扰 乱", + "睁 开", + "虫 子", + "BM P", + "B MP", + "MA R", + "M AR", + "人员 和", + "文学 奖", + "管理 水平", + "as ers", + "ase rs", + "aser s", + "ron ics", + "ronic s", + "▁C Make", + "▁CM ake", + "▁ CMake", + "▁st ark", + "▁star k", + "▁Cor pus", + "▁Corp us", + "▁S odium", + "四 章", + "泰 兴", + "纤 细", + ":] ,", + ": ],", + "年 上海", + "示 意图", + "等 其他", + "结构 与", + "信息的 选择题", + "给定的 选项中", + "▁Tuc son", + "您需要 分析并从", + "▁Q String", + "▁ QString", + "请仔细研究 以下问题", + "综合运用各种 信息的选择题", + "您需要分析并从 给定的选项中", + "▁' $", + "▁ '$", + "与我 们", + "与 我们", + "UB LE", + "U BLE", + "▁b ye", + "▁by e", + "▁ bye", + "候选 答案", + "候 选答案", + "基本 参数", + "说法 错误", + "进一步 的", + "▁K hal", + "▁Kh al", + "▁Gab ri", + "▁toss ed", + "▁con gest", + "▁cong est", + "pr eferences", + "pre ferences", + "prefer ences", + "p references", + "▁cyber security", + "鸭 子", + "▁[ /", + "▁ [/", + "Pro of", + "nM aking", + "nMa king", + "n Making", + "set Data", + "▁gener osity", + "▁integr ative", + "▁H Y", + "▁ HY", + "压力 大", + "▁B am", + "▁Ba m", + "伟大 复兴", + "感兴趣 的", + "抽样 调查", + "▁bake ry", + "▁bak ery", + "nAl gebra", + "n Algebra", + "Type Error", + "▁Web Socket", + "▁ WebSocket", + "▁embr acing", + "物业管理 有限责任公司", + "▁counter example", + "苏 丹", + "Si g", + "S ig", + "[{ \"", + "[ {\"", + "▁名 称", + "▁ 名称", + "▁E MS", + "▁EM S", + "交通 工具", + "目前 没有", + "if era", + "ife ra", + "ifer a", + "of ten", + "oft en", + "o ften", + "下面 我会给你", + "的撤诉申请 符合法律规定", + "▁perox idation", + "匠 心", + "防 潮", + "GS M", + "G SM", + "只是 个", + "只 是个", + "的 方案", + "ur se", + "urs e", + "中山 大学", + "wh ole", + "who le", + "w hole", + "请你仔细 分析", + "ir ected", + "irect ed", + "▁Iceland ic", + "微 小", + "筹 集", + "▁ 最新", + "如果 想要", + "如果想 要", + "▁golf ers", + "▁gol fers", + "以及几个 候选答案", + "▁over dose", + "下面我会给你 一道题", + "然后 选出正确的选项", + "▁counsel or", + "▁mar riages", + "▁marriage s", + "打 发", + "贪 心", + "输 血", + "黑 板", + "Hy p", + "H yp", + "bl a", + "b la", + "rn e", + "r ne", + "可以 给", + "衢 州市", + "过来 了", + "过 来了", + "重生 之", + "St rip", + "Str ip", + "S trip", + "ul ton", + "ult on", + "ys sey", + "▁M ons", + "▁Mon s", + "▁Mo ns", + "▁m anic", + "▁man ic", + "▁ma nic", + "uttg art", + "▁comorbid ities", + "j r", + "农 资", + "断 层", + "▁U M", + "▁ UM", + "到 什么", + "目标 和", + "▁S UR", + "▁SU R", + "城市 规划", + "nM ade", + "nMa de", + "nMad e", + "n Made", + "▁Ram sey", + "▁Rams ey", + "▁you ths", + "▁youth s", + "▁valid ating", + "对 本", + "放 出", + "缔 造", + "mv c", + "m vc", + "的地 步", + "行为 规范", + "银行 同期", + "▁d ean", + "▁de an", + "▁pe dig", + "▁ped ig", + "▁ali ens", + "▁alien s", + "▁d ances", + "▁dance s", + "▁dan ces", + "信息查询 结果单", + "Neg ative", + "nun iform", + "n uniform", + "unning ham", + "unn ingham", + "▁Ware house", + "▁period ont", + "▁peri odont", + "▁ultrason ography", + "又 说", + "▁g ib", + "▁gi b", + "ub ern", + "ube rn", + "uber n", + "▁c ler", + "▁cl er", + "▁cle r", + "▁ cler", + "# ,", + "七 天", + "声 中", + "大 名", + "悲 观", + "与 世界", + "准 考证", + "gp io", + "▁W it", + "▁Wi t", + "th ick", + "thi ck", + "申请执行人 杨", + "违反 法律规定", + "real path", + "▁royal ty", + "▁kin ematic", + "栖 霞", + "疏 导", + "▁c z", + "▁ cz", + "基本 功", + "(\" {}", + "(\"{ }", + "▁L una", + "▁Lu na", + "▁thr ombo", + "▁throm bo", + "▁thromb o", + "text width", + "tex twidth", + "▁d isciplinary", + "▁disc iplinary", + "▁discipl inary", + "▁ disciplinary", + "仙 子", + "舅 舅", + "颤 抖", + "IC P", + "I CP", + "两 方面", + "还能 够", + "还 能够", + "▁w get", + "▁ch ili", + "▁chi li", + "oplas ma", + "opl asma", + "oplasm a", + "▁Se gment", + "▁Seg ment", + "▁ Segment", + "▁fin alist", + "▁final ist", + "九 九", + "固 有", + "李 子", + "症 的", + "变更 为", + "变 更为", + "赔偿 金", + "E con", + "▁L OL", + "▁LO L", + "▁U SC", + "▁US C", + "高职 高专", + "▁S lide", + "▁Sl ide", + "▁ Slide", + "▁t orus", + "▁to rus", + "▁tor us", + "▁Har ley", + "▁Willi s", + "▁Will is", + "▁Wil lis", + "ac oustic", + "▁emb roidery", + "北 辰", + "各 区", + "妆 容", + "截 然", + "$_ {", + "$ _{", + "委 常委", + "审查 核实", + "▁Cl iff", + "▁Clif f", + "扣划 被执行人", + "▁Buddh a", + "▁Budd ha", + "▁is lets", + "▁islet s", + "Enum erator", + "▁Record ings", + "▁Recording s", + "墓 地", + "官 司", + "霍 尔", + "▁E z", + "这两 天", + "这 两天", + "mu ted", + "mut ed", + "m uted", + "en dale", + "end ale", + "enda le", + "▁Re alty", + "▁Real ty", + "▁L isting", + "▁List ing", + "▁Lis ting", + "▁Man aged", + "▁Manag ed", + "▁Manage d", + "▁ Managed", + "不 讲", + "光 亮", + "大 观", + "日 产", + "杀 虫", + "Cr e", + "C re", + "equ e", + "eq ue", + "e que", + "um ba", + "umb a", + "▁un i", + "▁u ni", + "▁ uni", + "一定 要有", + "一定要 有", + "自由 恋爱", + "▁tr ilogy", + "▁tri logy", + "即 得", + "可 观", + "大 黄", + "轻 便", + "迎 春", + "ud p", + "u dp", + "▁ 第五章", + "从而 导致", + "从 而导致", + "▁s talk", + "▁st alk", + "▁ stalk", + "nc urrent", + "n current", + "▁All ison", + "▁dep ended", + "▁depend ed", + "▁catal ysis", + "▁under line", + "▁ underline", + "伊 始", + "和 张", + "白 白", + "CS I", + "C SI", + "HA L", + "H AL", + "也 同样", + "▁P UT", + "▁PU T", + "▁ PUT", + "▁d ia", + "▁di a", + "nK evin", + "nKe vin", + "▁Nic kel", + "▁Nick el", + "Docker file", + "▁visual ized", + "▁visualize d", + "l x", + "刀 片", + "青 花", + "调味 料", + "mod s", + "mo ds", + "m ods", + "为真 命题", + "质量 监督", + "▁si RNA", + "法定代表人 杨", + "▁war rior", + "水 区", + "肉 体", + "了 不起", + "永远 的", + "永 远的", + "Ch an", + "C han", + "nI ll", + "n Ill", + "优质 服务", + "▁W istar", + "▁Wis tar", + "▁Wi star", + "▁inv oices", + "▁invoice s", + "▁inter ruption", + "▁interrupt ion", + "略 微", + "租 用", + "än d", + "ä nd", + "▁B N", + "▁ BN", + "in tl", + "int l", + "▁P AN", + "▁PA N", + "两组 患者", + "工业 企业", + "最大限度 地", + "Cl ients", + "Client s", + "Cli ents", + "▁sum mers", + "▁summer s", + "▁summ ers", + "▁a merican", + "▁foster ing", + "▁fost ering", + "nG astropods", + "▁councill ors", + "养 育", + "差 额", + "心 痛", + "的热 点", + "的 热点", + "临床 应用", + "比较 简单", + "规划 教材", + "Save d", + "Sa ved", + "S aved", + "wire d", + "wi red", + "w ired", + "▁Cr ash", + "▁Cra sh", + "enn ifer", + "▁min ors", + "▁minor s", + "▁pill ars", + "▁Child hood", + "一 架", + "加 斯", + "待 定", + "意 气", + "中国 梦", + "热烈 的", + "热 烈的", + "▁c han", + "▁ch an", + "▁cha n", + "▁ chan", + "ud ding", + "udd ing", + "▁C oral", + "▁Co ral", + "▁Cor al", + "brand ed", + "v matrix", + "▁tax onomy", + "Measure ment", + "▁trans plants", + "▁transplant s", + "小 便", + "不过 在", + "为人 民", + "为 人民", + "▁F rem", + "▁Fr em", + "▁Fre m", + "es ture", + "est ure", + "▁is cha", + "Min utes", + "other wise", + "▁Le besgue", + "Australia n", + "A ustralian", + "oph aryngeal", + "trans formed", + "transform ed", + "▁ 商", + "制 宜", + "备 课", + "nM i", + "n Mi", + "教学 法", + "涉及 的", + "ar ie", + "ari e", + "a rie", + "水平的 提高", + "符合 条件的", + "▁cob alt", + "▁Ham mond", + "▁Hamm ond", + "▁Power ed", + "▁Pow ered", + "▁let tuce", + "▁plas mon", + "▁plasm on", + "▁safe guard", + "▁safegu ard", + "í k", + "八 首", + "ax on", + "ha el", + "h ael", + "\"] );\\", + "\"]) ;\\", + "\" ]);\\", + "▁g ast", + "▁gas t", + "▁ga st", + "olog na", + "▁D ancing", + "▁Dan cing", + "▁t opping", + "▁to pping", + "▁top ping", + "astructure s", + "astruct ures", + "a structures", + "亚 目", + "会 和", + "抗 病", + "缅 怀", + "英 才", + ">} \\", + "> }\\", + "单 职业", + "喜欢 看", + "数字 是", + "▁N eb", + "▁Ne b", + "Sp ect", + "Spec t", + "Spe ct", + "S pect", + "ur sed", + "urs ed", + "urse d", + "BIN ARY", + "cent ering", + "center ing", + "Linked List", + "墨 水", + "抒 情", + "省 道", + "股 指", + "Sa h", + "S ah", + "太大 了", + "太 大了", + "可以 利用", + "法律 关系", + "▁de nim", + "▁den im", + "▁ou nce", + "▁oun ce", + "▁ ounce", + "▁Vis itors", + "▁Visit ors", + "▁inoc ulated", + "▁macro scopic", + "吃 不", + "昂 贵", + "蒸 馏", + "NT s", + "N Ts", + "收入 来源", + "▁K ens", + "▁Ke ns", + "▁Ken s", + "作品 展", + "▁par athyroid", + "壮 观", + "散 户", + "沧 州", + "痛 风", + "书法 家", + "剩余 的", + "文化 教育", + "st rain", + "str ain", + "stra in", + "s train", + "ENAB LED", + "nTur kish", + "▁ball oons", + "▁balloon s", + "▁taxp ayer", + "遵守 法律法规及监规", + "▁dilig ence", + "归 案", + "朝 代", + "赫 尔", + "韵 味", + "竞争 中", + "▁E ur", + "Test er", + "Te ster", + "T ester", + "nP ress", + "nPre ss", + "nPr ess", + "nPres s", + "n Press", + "▁sk aters", + "▁skate rs", + "▁Com mands", + "▁Command s", + "▁Comm ands", + "▁ Commands", + "▁prof icient", + "文 革", + "耐 久", + "耗 时", + "阻 断", + "雄 蕊", + "碧 桂园", + ">\" )\\", + "> \")\\", + "▁L IN", + "▁LI N", + "▁ LIN", + "住 湖北省", + "看到 一个", + "看 到一个", + "▁N ass", + "▁Na ss", + "▁Nas s", + "ann ual", + "工作 领导小组", + "ilib ili", + "▁get away", + "▁electro card", + "▁electr ocard", + "▁electroc ard", + "警 官", + "可以 和", + "light er", + "l ighter", + "▁Bo xing", + "▁Box ing", + "▁r hesus", + "▁rh esus", + "▁rhe sus", + "▁Log ging", + "▁ Logging", + "声 声", + "ST S", + "S TS", + "原 标题", + "应 支付", + "▁H ak", + "▁Ha k", + "sl ave", + "共计 人民币", + "是不 一样的", + "是 不一样的", + "▁Card iac", + "▁Cardi ac", + "▁check sum", + "▁checks um", + "▁ checksum", + "▁chrom ium", + "▁ chromium", + "经相关部门批准后 方可开展经营活动", + "中 点", + "乙 酸", + "台 账", + "在 有", + "bs t", + "b st", + "▁т е", + "▁ те", + "No me", + "Nom e", + "N ome", + "▁E TF", + "▁ET F", + "▁ ETF", + "欢迎 所有", + "环境 优美", + "稳产 农田", + "并给出 解析", + "▁Tool kit", + "▁Sup erman", + "▁Super man", + "▁onc ogenic", + "▁re written", + "▁trans istors", + "▁transistor s", + "* $", + "M b", + "▁ 车", + "上 榜", + "武 陵", + "连 城", + "ary nx", + "▁F uck", + "▁Fu ck", + "▁P ied", + "▁Pi ed", + "▁Pie d", + "▁BU ILD", + "▁ BUILD", + "se tName", + "set Name", + "▁d umped", + "▁dump ed", + "▁gl owing", + "▁glo wing", + "▁glow ing", + "▁hum oral", + "▁humor al", + "toHave Been", + "▁com pressive", + "▁comp ressive", + "▁compr essive", + "▁compress ive", + "ä l", + "下 有", + "切 碎", + "钱 财", + "雪 梅", + "风 起", + "生活 和", + "_( \\'", + "_ (\\'", + "▁M VC", + "▁MV C", + "Mar ie", + "Ma rie", + "M arie", + "ER ENCE", + "▁Bo hem", + "▁Boh em", + "▁CA USED", + "▁epit ope", + "▁go odies", + "▁good ies", + "▁follic le", + "equ ivalent", + "equiv alent", + "▁C omposition", + "▁Com position", + "▁Comp osition", + "选出你认为正确的答案 并给出解析", + "S X", + "乐 曲", + "Fe e", + "F ee", + "是 负数", + "顺德 区", + "iv ar", + "iva r", + "i var", + "其他 国家", + "er eal", + "ere al", + "e real", + "engu ins", + "enguin s", + "ra ising", + "rais ing", + "▁course work", + "宝 妈", + "应 从", + "时 限", + "统 统", + "黄 酮", + "西北 部", + "西 北部", + "bm od", + "b mod", + "nB al", + "n Bal", + "▁A gr", + "▁Ag r", + "Mac ro", + "Ma cro", + "ag her", + "agh er", + "有限公司 与被告", + "▁special ties", + "又 无", + "朱 元", + "能 与", + "锦 江", + "的 计划", + "个人 观点", + "文明 城市", + "Order ed", + "Ord ered", + "▁Alber to", + "▁Alb erto", + "▁Albert o", + "▁Default s", + "▁ Defaults", + "▁piece wise", + "拨 款", + "版 块", + "只是 想", + "只 是想", + "pin ion", + "▁hal ves", + "犯 容留他人吸毒罪", + "▁bi ophysical", + "▁bio physical", + "后 才", + "国 泰", + "则 这个", + "OP PO", + "▁s ut", + "▁su t", + "谈话 笔录", + "▁r aster", + "▁ra ster", + "▁Gr avity", + "▁ex iting", + "▁exit ing", + "县 市", + "可 想", + "日 将", + "某 在", + "肥 皂", + "蜂 窝", + ")} (", + ") }(", + "社会 上", + "社 会上", + "财产 的", + "财 产的", + "es tr", + "est r", + "e str", + "▁E Ps", + "▁EP s", + "写出 你的", + "▁注意 事项", + "▁ 注意事项", + "Rot ate", + "opa edic", + "▁ch angelog", + "▁chang elog", + "▁change log", + "▁ changelog", + "▁pos itional", + "▁position al", + "▁posit ional", + "▁initial State", + "拖 动", + "hu n", + "h un", + "▁S v", + "}\" ;\\", + "} \";\\", + "应该 怎么", + "应 该怎么", + "nST ATIC", + "n STATIC", + "c w", + "某 天", + "及时 的", + "及 时的", + "都 十分", + "▁g an", + "▁ga n", + "▁ gan", + "二〇一六年 四", + "im iento", + "imi ento", + "▁rot ary", + "S aturday", + "aut omatic", + "auto matic", + "autom atic", + "挂 着", + "耕 耘", + "锻 造", + "ub i", + "u bi", + "з ов", + "▁ 纠错", + "的 培养", + "RO LE", + "ROL E", + "▁P LEASE", + "充分不 必要条件", + "▁In jection", + "▁Inject ion", + "▁Inj ection", + "▁ Injection", + "自 闭", + "诗 意", + "差异 化", + "系 主任", + "图文 并茂", + "▁Rub ber", + "▁Mich ele", + "▁Michel e", + "▁Miche le", + "▁den ying", + "▁deny ing", + "na issance", + "号征收社会抚养费 决定书", + "▁multi national", + "▁multin ational", + "▁function alities", + "▁functional ities", + "痛 经", + "yc h", + "y ch", + "自贡 市", + "▁r ho", + "▁rh o", + "▁ rho", + "no vel", + "nov el", + "n ovel", + "Ma king", + "M aking", + "li able", + "lia ble", + "l iable", + "▁inhal ed", + "▁inh aled", + "ne ighbors", + "▁Wild erness", + "▁suppress es", + "▁ 同", + "剖 宫", + "为 公司", + "待 今后", + "第四 次", + "第 四次", + "le on", + "l eon", + "▁C NC", + "▁CN C", + "ble rs", + "bl ers", + "bler s", + "b lers", + "▁h aha", + "▁ha ha", + "▁作品 原文", + "▁pol yt", + "▁poly t", + "安徽省 合肥市", + "▁bo oster", + "▁boost er", + "▁fascin ated", + "▁fasc inated", + "▁ Ω", + "思 绪", + "桥 头", + "芭 蕾", + "三个 人", + "三 个人", + "被 发现", + "▁P es", + "▁Pe s", + "▁s aga", + "▁sa ga", + "▁sag a", + "or ylation", + "ory lation", + "▁allerg en", + "▁re distribution", + "▁redist ribution", + "湛 江", + "补 给", + "▁r ag", + "▁ra g", + "▁ rag", + "lang s", + "lan gs", + "l angs", + "And rew", + "▁Cl air", + "▁ign ores", + "▁ignore s", + "▁ignor es", + "▁re factor", + "▁ref actor", + "▁ad versely", + "▁adverse ly", + "▁advers ely", + "▁end oscopy", + "▁ 集", + "跳 动", + "鹤 壁", + "你 分析", + "▁orient ations", + "▁orientation s", + "▁quant ization", + "有点 像", + "贵 金属", + "습 니다", + "▁C RP", + "▁CR P", + "▁ CRP", + "▁J ah", + "▁Ja h", + "▁A min", + "▁Am in", + "主张 的事实", + "ouch ers", + "oucher s", + "▁Harm ony", + "▁spe eding", + "▁speed ing", + "▁after ward", + "卫生 和计划生育委员会", + "是连载于起点中文网 的一部", + "第一百五十四条第一款第 五", + "第一百五十四条第一款 第五", + "前 几", + "生 怕", + "都 与", + "休闲 娱乐", + "Hy dro", + "H ydro", + "Wr ong", + "W rong", + "第八 十四条", + "▁pop ul", + "▁V ehicles", + "▁Vehicle s", + "▁ О", + "吞 吐", + "在 点" + ] + } +} \ No newline at end of file diff --git a/tokenizer_config.json b/tokenizer_config.json new file mode 100644 index 0000000000000000000000000000000000000000..1f46debaef91a9fa2ddbd4646878f27693b9404d --- /dev/null +++ b/tokenizer_config.json @@ -0,0 +1,52 @@ +{ + "add_bos_token": true, + "add_eos_token": false, + "add_prefix_space": null, + "added_tokens_decoder": { + "0": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "1": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "2": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + }, + "102": { + "content": "", + "lstrip": false, + "normalized": false, + "rstrip": false, + "single_word": false, + "special": true + } + }, + "bos_token": "", + "chat_template": "{% for message in messages %}{% if message['role'] == 'user' %}{{'<用户>' + message['content'].strip() + ''}}{% else %}{{message['content'].strip()}}{% endif %}{% endfor %}", + "clean_up_tokenization_spaces": false, + "eos_token": "", + "legacy": true, + "model_max_length": 1000000000000000019884624838656, + "pad_token": "", + "padding_side": "right", + "sp_model_kwargs": {}, + "spaces_between_special_tokens": false, + "tokenizer_class": "LlamaTokenizer", + "unk_token": "", + "use_default_system_prompt": false +} diff --git a/trainer_state.json b/trainer_state.json new file mode 100644 index 0000000000000000000000000000000000000000..83c56abba1e7af5bc414afcd236510f430ad60e1 --- /dev/null +++ b/trainer_state.json @@ -0,0 +1,159087 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 7.0, + "eval_steps": 500, + "global_step": 68166, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 0.0003082297338949964, + "grad_norm": 0.5791122913360596, + "learning_rate": 1.2325390304026295e-05, + "loss": 11.5149, + "step": 3 + }, + { + "epoch": 0.0006164594677899928, + "grad_norm": 1.7733268737792969, + "learning_rate": 2.465078060805259e-05, + "loss": 11.504, + "step": 6 + }, + { + "epoch": 0.0009246892016849893, + "grad_norm": 3.047468423843384, + "learning_rate": 3.697617091207888e-05, + "loss": 11.4391, + "step": 9 + }, + { + "epoch": 0.0012329189355799856, + "grad_norm": 3.346104621887207, + "learning_rate": 4.930156121610518e-05, + "loss": 11.2635, + "step": 12 + }, + { + "epoch": 0.001541148669474982, + "grad_norm": 3.2847304344177246, + "learning_rate": 6.162695152013147e-05, + "loss": 10.9864, + "step": 15 + }, + { + "epoch": 0.0018493784033699785, + "grad_norm": 3.2979729175567627, + "learning_rate": 7.395234182415776e-05, + "loss": 10.6487, + "step": 18 + }, + { + "epoch": 0.0021576081372649747, + "grad_norm": 3.445396661758423, + "learning_rate": 8.627773212818406e-05, + "loss": 10.2667, + "step": 21 + }, + { + "epoch": 0.0024658378711599712, + "grad_norm": 3.620011568069458, + "learning_rate": 9.860312243221036e-05, + "loss": 9.8679, + "step": 24 + }, + { + "epoch": 0.002774067605054968, + "grad_norm": 3.66719913482666, + "learning_rate": 0.00011092851273623665, + "loss": 9.4532, + "step": 27 + }, + { + "epoch": 0.003082297338949964, + "grad_norm": 3.709792375564575, + "learning_rate": 0.00012325390304026294, + "loss": 9.0393, + "step": 30 + }, + { + "epoch": 0.0033905270728449605, + "grad_norm": 3.5757813453674316, + "learning_rate": 0.00013557929334428925, + "loss": 8.6449, + "step": 33 + }, + { + "epoch": 0.003698756806739957, + "grad_norm": 3.200732707977295, + "learning_rate": 0.00014790468364831553, + "loss": 8.2932, + "step": 36 + }, + { + "epoch": 0.004006986540634953, + "grad_norm": 2.7463502883911133, + "learning_rate": 0.0001602300739523418, + "loss": 8.0151, + "step": 39 + }, + { + "epoch": 0.004315216274529949, + "grad_norm": 1.961776852607727, + "learning_rate": 0.00017255546425636812, + "loss": 7.7988, + "step": 42 + }, + { + "epoch": 0.004623446008424946, + "grad_norm": 1.5326848030090332, + "learning_rate": 0.0001848808545603944, + "loss": 7.6688, + "step": 45 + }, + { + "epoch": 0.0049316757423199424, + "grad_norm": 2.266148090362549, + "learning_rate": 0.00019720624486442071, + "loss": 7.6276, + "step": 48 + }, + { + "epoch": 0.005239905476214939, + "grad_norm": 2.563206672668457, + "learning_rate": 0.000209531635168447, + "loss": 7.5954, + "step": 51 + }, + { + "epoch": 0.005548135210109936, + "grad_norm": 1.9326294660568237, + "learning_rate": 0.0002218570254724733, + "loss": 7.5136, + "step": 54 + }, + { + "epoch": 0.005856364944004932, + "grad_norm": 1.0131096839904785, + "learning_rate": 0.0002341824157764996, + "loss": 7.4167, + "step": 57 + }, + { + "epoch": 0.006164594677899928, + "grad_norm": 1.1923354864120483, + "learning_rate": 0.00024650780608052587, + "loss": 7.3273, + "step": 60 + }, + { + "epoch": 0.006472824411794925, + "grad_norm": 1.2690105438232422, + "learning_rate": 0.00025883319638455215, + "loss": 7.2615, + "step": 63 + }, + { + "epoch": 0.006781054145689921, + "grad_norm": 0.8375588059425354, + "learning_rate": 0.0002711585866885785, + "loss": 7.2088, + "step": 66 + }, + { + "epoch": 0.007089283879584917, + "grad_norm": 0.719011127948761, + "learning_rate": 0.0002834839769926048, + "loss": 7.1474, + "step": 69 + }, + { + "epoch": 0.007397513613479914, + "grad_norm": 0.7095780372619629, + "learning_rate": 0.00029580936729663106, + "loss": 7.0923, + "step": 72 + }, + { + "epoch": 0.00770574334737491, + "grad_norm": 0.5094121098518372, + "learning_rate": 0.00030813475760065734, + "loss": 7.0406, + "step": 75 + }, + { + "epoch": 0.008013973081269906, + "grad_norm": 0.4085525572299957, + "learning_rate": 0.0003204601479046836, + "loss": 6.9586, + "step": 78 + }, + { + "epoch": 0.008322202815164903, + "grad_norm": 0.4122146666049957, + "learning_rate": 0.0003327855382087099, + "loss": 6.9295, + "step": 81 + }, + { + "epoch": 0.008630432549059899, + "grad_norm": 0.41669413447380066, + "learning_rate": 0.00034511092851273624, + "loss": 6.8629, + "step": 84 + }, + { + "epoch": 0.008938662282954896, + "grad_norm": 0.40379494428634644, + "learning_rate": 0.0003574363188167625, + "loss": 6.7987, + "step": 87 + }, + { + "epoch": 0.009246892016849893, + "grad_norm": 0.4202142059803009, + "learning_rate": 0.0003697617091207888, + "loss": 6.7779, + "step": 90 + }, + { + "epoch": 0.009555121750744888, + "grad_norm": 0.3880140781402588, + "learning_rate": 0.0003820870994248151, + "loss": 6.7204, + "step": 93 + }, + { + "epoch": 0.009863351484639885, + "grad_norm": 0.419883668422699, + "learning_rate": 0.00039441248972884143, + "loss": 6.6553, + "step": 96 + }, + { + "epoch": 0.010171581218534882, + "grad_norm": 0.4570387601852417, + "learning_rate": 0.0004067378800328677, + "loss": 6.5936, + "step": 99 + }, + { + "epoch": 0.010479810952429877, + "grad_norm": 0.5889524221420288, + "learning_rate": 0.000419063270336894, + "loss": 6.5271, + "step": 102 + }, + { + "epoch": 0.010788040686324874, + "grad_norm": 0.5578189492225647, + "learning_rate": 0.0004313886606409203, + "loss": 6.4701, + "step": 105 + }, + { + "epoch": 0.011096270420219871, + "grad_norm": 0.4710846245288849, + "learning_rate": 0.0004437140509449466, + "loss": 6.4254, + "step": 108 + }, + { + "epoch": 0.011404500154114866, + "grad_norm": 0.30558162927627563, + "learning_rate": 0.0004560394412489729, + "loss": 6.4217, + "step": 111 + }, + { + "epoch": 0.011712729888009863, + "grad_norm": 0.3634621500968933, + "learning_rate": 0.0004683648315529992, + "loss": 6.3422, + "step": 114 + }, + { + "epoch": 0.01202095962190486, + "grad_norm": 0.369437575340271, + "learning_rate": 0.00048069022185702546, + "loss": 6.303, + "step": 117 + }, + { + "epoch": 0.012329189355799856, + "grad_norm": 0.7418856024742126, + "learning_rate": 0.0004930156121610517, + "loss": 6.2535, + "step": 120 + }, + { + "epoch": 0.012637419089694853, + "grad_norm": 0.855678915977478, + "learning_rate": 0.000505341002465078, + "loss": 6.2037, + "step": 123 + }, + { + "epoch": 0.01294564882358985, + "grad_norm": 0.42414671182632446, + "learning_rate": 0.0005176663927691043, + "loss": 6.175, + "step": 126 + }, + { + "epoch": 0.013253878557484845, + "grad_norm": 0.44572392106056213, + "learning_rate": 0.0005299917830731307, + "loss": 6.1548, + "step": 129 + }, + { + "epoch": 0.013562108291379842, + "grad_norm": 0.24437515437602997, + "learning_rate": 0.000542317173377157, + "loss": 6.0967, + "step": 132 + }, + { + "epoch": 0.013870338025274839, + "grad_norm": 0.4750615954399109, + "learning_rate": 0.0005546425636811833, + "loss": 6.0776, + "step": 135 + }, + { + "epoch": 0.014178567759169834, + "grad_norm": 0.9504273533821106, + "learning_rate": 0.0005669679539852095, + "loss": 6.0471, + "step": 138 + }, + { + "epoch": 0.014486797493064831, + "grad_norm": 0.5452646613121033, + "learning_rate": 0.0005792933442892358, + "loss": 5.9987, + "step": 141 + }, + { + "epoch": 0.014795027226959828, + "grad_norm": 0.4314074218273163, + "learning_rate": 0.0005916187345932621, + "loss": 5.9874, + "step": 144 + }, + { + "epoch": 0.015103256960854823, + "grad_norm": 0.48243793845176697, + "learning_rate": 0.0006039441248972884, + "loss": 5.962, + "step": 147 + }, + { + "epoch": 0.01541148669474982, + "grad_norm": 0.7570855617523193, + "learning_rate": 0.0006162695152013147, + "loss": 5.921, + "step": 150 + }, + { + "epoch": 0.015719716428644816, + "grad_norm": 0.4731276333332062, + "learning_rate": 0.000628594905505341, + "loss": 5.9032, + "step": 153 + }, + { + "epoch": 0.016027946162539813, + "grad_norm": 0.3078465759754181, + "learning_rate": 0.0006409202958093672, + "loss": 5.8932, + "step": 156 + }, + { + "epoch": 0.01633617589643481, + "grad_norm": 0.3441495895385742, + "learning_rate": 0.0006532456861133935, + "loss": 5.8695, + "step": 159 + }, + { + "epoch": 0.016644405630329807, + "grad_norm": 0.43056854605674744, + "learning_rate": 0.0006655710764174198, + "loss": 5.8642, + "step": 162 + }, + { + "epoch": 0.016952635364224804, + "grad_norm": 1.3783445358276367, + "learning_rate": 0.0006778964667214461, + "loss": 5.845, + "step": 165 + }, + { + "epoch": 0.017260865098119797, + "grad_norm": 0.77984619140625, + "learning_rate": 0.0006902218570254725, + "loss": 5.8216, + "step": 168 + }, + { + "epoch": 0.017569094832014794, + "grad_norm": 0.2990098297595978, + "learning_rate": 0.0007025472473294988, + "loss": 5.7801, + "step": 171 + }, + { + "epoch": 0.01787732456590979, + "grad_norm": 0.29485219717025757, + "learning_rate": 0.000714872637633525, + "loss": 5.7757, + "step": 174 + }, + { + "epoch": 0.018185554299804788, + "grad_norm": 0.4363936483860016, + "learning_rate": 0.0007271980279375513, + "loss": 5.7598, + "step": 177 + }, + { + "epoch": 0.018493784033699785, + "grad_norm": 0.8902605175971985, + "learning_rate": 0.0007395234182415776, + "loss": 5.7719, + "step": 180 + }, + { + "epoch": 0.018802013767594782, + "grad_norm": 0.7133249044418335, + "learning_rate": 0.0007518488085456039, + "loss": 5.7568, + "step": 183 + }, + { + "epoch": 0.019110243501489776, + "grad_norm": 0.9105846881866455, + "learning_rate": 0.0007641741988496302, + "loss": 5.7191, + "step": 186 + }, + { + "epoch": 0.019418473235384773, + "grad_norm": 0.9680726528167725, + "learning_rate": 0.0007764995891536565, + "loss": 5.7077, + "step": 189 + }, + { + "epoch": 0.01972670296927977, + "grad_norm": 0.535446047782898, + "learning_rate": 0.0007888249794576829, + "loss": 5.6982, + "step": 192 + }, + { + "epoch": 0.020034932703174767, + "grad_norm": 0.7894541621208191, + "learning_rate": 0.0008011503697617091, + "loss": 5.668, + "step": 195 + }, + { + "epoch": 0.020343162437069764, + "grad_norm": 0.6975138187408447, + "learning_rate": 0.0008134757600657354, + "loss": 5.6432, + "step": 198 + }, + { + "epoch": 0.02065139217096476, + "grad_norm": 0.6306262016296387, + "learning_rate": 0.0008258011503697617, + "loss": 5.6647, + "step": 201 + }, + { + "epoch": 0.020959621904859754, + "grad_norm": 0.5615081787109375, + "learning_rate": 0.000838126540673788, + "loss": 5.6208, + "step": 204 + }, + { + "epoch": 0.02126785163875475, + "grad_norm": 0.6468993425369263, + "learning_rate": 0.0008504519309778143, + "loss": 5.6272, + "step": 207 + }, + { + "epoch": 0.02157608137264975, + "grad_norm": 0.8359414339065552, + "learning_rate": 0.0008627773212818406, + "loss": 5.6114, + "step": 210 + }, + { + "epoch": 0.021884311106544745, + "grad_norm": 0.8909689784049988, + "learning_rate": 0.0008751027115858668, + "loss": 5.5957, + "step": 213 + }, + { + "epoch": 0.022192540840439742, + "grad_norm": 0.39673465490341187, + "learning_rate": 0.0008874281018898932, + "loss": 5.568, + "step": 216 + }, + { + "epoch": 0.022500770574334736, + "grad_norm": 0.9037743806838989, + "learning_rate": 0.0008997534921939195, + "loss": 5.5746, + "step": 219 + }, + { + "epoch": 0.022809000308229733, + "grad_norm": 0.6929497122764587, + "learning_rate": 0.0009120788824979458, + "loss": 5.5482, + "step": 222 + }, + { + "epoch": 0.02311723004212473, + "grad_norm": 0.5773665308952332, + "learning_rate": 0.0009244042728019721, + "loss": 5.5389, + "step": 225 + }, + { + "epoch": 0.023425459776019727, + "grad_norm": 0.9532020092010498, + "learning_rate": 0.0009367296631059984, + "loss": 5.5369, + "step": 228 + }, + { + "epoch": 0.023733689509914724, + "grad_norm": 1.2347012758255005, + "learning_rate": 0.0009490550534100246, + "loss": 5.5251, + "step": 231 + }, + { + "epoch": 0.02404191924380972, + "grad_norm": 1.2062091827392578, + "learning_rate": 0.0009613804437140509, + "loss": 5.5042, + "step": 234 + }, + { + "epoch": 0.024350148977704714, + "grad_norm": 1.4920969009399414, + "learning_rate": 0.0009737058340180772, + "loss": 5.4851, + "step": 237 + }, + { + "epoch": 0.02465837871159971, + "grad_norm": 0.5619600415229797, + "learning_rate": 0.0009860312243221035, + "loss": 5.4889, + "step": 240 + }, + { + "epoch": 0.02496660844549471, + "grad_norm": 0.8607615828514099, + "learning_rate": 0.0009983566146261299, + "loss": 5.4747, + "step": 243 + }, + { + "epoch": 0.025274838179389705, + "grad_norm": 0.6228588223457336, + "learning_rate": 0.001010682004930156, + "loss": 5.4502, + "step": 246 + }, + { + "epoch": 0.025583067913284702, + "grad_norm": 1.1925005912780762, + "learning_rate": 0.0010230073952341824, + "loss": 5.4449, + "step": 249 + }, + { + "epoch": 0.0258912976471797, + "grad_norm": 0.7956414818763733, + "learning_rate": 0.0010353327855382086, + "loss": 5.4623, + "step": 252 + }, + { + "epoch": 0.026199527381074693, + "grad_norm": 0.654242992401123, + "learning_rate": 0.001047658175842235, + "loss": 5.4287, + "step": 255 + }, + { + "epoch": 0.02650775711496969, + "grad_norm": 0.592880368232727, + "learning_rate": 0.0010599835661462614, + "loss": 5.3891, + "step": 258 + }, + { + "epoch": 0.026815986848864687, + "grad_norm": 0.9015865921974182, + "learning_rate": 0.0010723089564502876, + "loss": 5.4127, + "step": 261 + }, + { + "epoch": 0.027124216582759684, + "grad_norm": 0.593488335609436, + "learning_rate": 0.001084634346754314, + "loss": 5.3887, + "step": 264 + }, + { + "epoch": 0.02743244631665468, + "grad_norm": 0.7008156180381775, + "learning_rate": 0.0010969597370583401, + "loss": 5.386, + "step": 267 + }, + { + "epoch": 0.027740676050549678, + "grad_norm": 0.32653194665908813, + "learning_rate": 0.0011092851273623665, + "loss": 5.3479, + "step": 270 + }, + { + "epoch": 0.02804890578444467, + "grad_norm": 0.551142692565918, + "learning_rate": 0.0011216105176663927, + "loss": 5.3613, + "step": 273 + }, + { + "epoch": 0.02835713551833967, + "grad_norm": 2.3521084785461426, + "learning_rate": 0.001133935907970419, + "loss": 5.3653, + "step": 276 + }, + { + "epoch": 0.028665365252234665, + "grad_norm": 1.3452407121658325, + "learning_rate": 0.0011462612982744455, + "loss": 5.3559, + "step": 279 + }, + { + "epoch": 0.028973594986129662, + "grad_norm": 1.0670260190963745, + "learning_rate": 0.0011585866885784717, + "loss": 5.3299, + "step": 282 + }, + { + "epoch": 0.02928182472002466, + "grad_norm": 0.7768902778625488, + "learning_rate": 0.001170912078882498, + "loss": 5.3346, + "step": 285 + }, + { + "epoch": 0.029590054453919656, + "grad_norm": 0.48641496896743774, + "learning_rate": 0.0011832374691865242, + "loss": 5.3178, + "step": 288 + }, + { + "epoch": 0.02989828418781465, + "grad_norm": 0.5284126400947571, + "learning_rate": 0.0011955628594905506, + "loss": 5.3061, + "step": 291 + }, + { + "epoch": 0.030206513921709647, + "grad_norm": 0.9099608659744263, + "learning_rate": 0.0012078882497945768, + "loss": 5.2764, + "step": 294 + }, + { + "epoch": 0.030514743655604644, + "grad_norm": 0.7352691888809204, + "learning_rate": 0.0012202136400986032, + "loss": 5.2853, + "step": 297 + }, + { + "epoch": 0.03082297338949964, + "grad_norm": 0.8361043334007263, + "learning_rate": 0.0012325390304026294, + "loss": 5.2838, + "step": 300 + }, + { + "epoch": 0.031131203123394638, + "grad_norm": 1.525067925453186, + "learning_rate": 0.0012448644207066558, + "loss": 5.2612, + "step": 303 + }, + { + "epoch": 0.03143943285728963, + "grad_norm": 0.6117688417434692, + "learning_rate": 0.001257189811010682, + "loss": 5.2488, + "step": 306 + }, + { + "epoch": 0.03174766259118463, + "grad_norm": 0.9976358413696289, + "learning_rate": 0.0012695152013147083, + "loss": 5.2327, + "step": 309 + }, + { + "epoch": 0.032055892325079625, + "grad_norm": 0.8152816891670227, + "learning_rate": 0.0012818405916187345, + "loss": 5.2095, + "step": 312 + }, + { + "epoch": 0.03236412205897462, + "grad_norm": 0.8640046715736389, + "learning_rate": 0.0012941659819227609, + "loss": 5.1932, + "step": 315 + }, + { + "epoch": 0.03267235179286962, + "grad_norm": 0.9461572170257568, + "learning_rate": 0.001306491372226787, + "loss": 5.1822, + "step": 318 + }, + { + "epoch": 0.03298058152676461, + "grad_norm": 0.7717807292938232, + "learning_rate": 0.0013188167625308134, + "loss": 5.183, + "step": 321 + }, + { + "epoch": 0.03328881126065961, + "grad_norm": 0.9057526588439941, + "learning_rate": 0.0013311421528348396, + "loss": 5.1686, + "step": 324 + }, + { + "epoch": 0.03359704099455461, + "grad_norm": 0.5352618098258972, + "learning_rate": 0.001343467543138866, + "loss": 5.1378, + "step": 327 + }, + { + "epoch": 0.03390527072844961, + "grad_norm": 1.2399810552597046, + "learning_rate": 0.0013557929334428922, + "loss": 5.1436, + "step": 330 + }, + { + "epoch": 0.0342135004623446, + "grad_norm": 0.6678963303565979, + "learning_rate": 0.0013681183237469186, + "loss": 5.1488, + "step": 333 + }, + { + "epoch": 0.034521730196239594, + "grad_norm": 0.6166791915893555, + "learning_rate": 0.001380443714050945, + "loss": 5.1239, + "step": 336 + }, + { + "epoch": 0.034829959930134595, + "grad_norm": 1.1305850744247437, + "learning_rate": 0.0013927691043549711, + "loss": 5.1145, + "step": 339 + }, + { + "epoch": 0.03513818966402959, + "grad_norm": 0.46510085463523865, + "learning_rate": 0.0014050944946589975, + "loss": 5.1041, + "step": 342 + }, + { + "epoch": 0.03544641939792459, + "grad_norm": 0.4835362136363983, + "learning_rate": 0.0014174198849630237, + "loss": 5.0699, + "step": 345 + }, + { + "epoch": 0.03575464913181958, + "grad_norm": 0.6595330238342285, + "learning_rate": 0.00142974527526705, + "loss": 5.0744, + "step": 348 + }, + { + "epoch": 0.036062878865714576, + "grad_norm": 0.7306437492370605, + "learning_rate": 0.0014420706655710763, + "loss": 5.0703, + "step": 351 + }, + { + "epoch": 0.036371108599609576, + "grad_norm": 0.5263068079948425, + "learning_rate": 0.0014543960558751027, + "loss": 5.0666, + "step": 354 + }, + { + "epoch": 0.03667933833350457, + "grad_norm": 0.5896726250648499, + "learning_rate": 0.001466721446179129, + "loss": 5.0326, + "step": 357 + }, + { + "epoch": 0.03698756806739957, + "grad_norm": 0.9357500672340393, + "learning_rate": 0.0014790468364831552, + "loss": 5.0363, + "step": 360 + }, + { + "epoch": 0.037295797801294564, + "grad_norm": 0.7629897594451904, + "learning_rate": 0.0014913722267871816, + "loss": 5.0304, + "step": 363 + }, + { + "epoch": 0.037604027535189564, + "grad_norm": 0.6347280144691467, + "learning_rate": 0.0015036976170912078, + "loss": 4.9962, + "step": 366 + }, + { + "epoch": 0.03791225726908456, + "grad_norm": 0.4810947775840759, + "learning_rate": 0.0015160230073952342, + "loss": 4.9856, + "step": 369 + }, + { + "epoch": 0.03822048700297955, + "grad_norm": 0.5907162427902222, + "learning_rate": 0.0015283483976992604, + "loss": 4.9712, + "step": 372 + }, + { + "epoch": 0.03852871673687455, + "grad_norm": 0.5781192183494568, + "learning_rate": 0.0015406737880032868, + "loss": 5.0078, + "step": 375 + }, + { + "epoch": 0.038836946470769546, + "grad_norm": 0.6017566323280334, + "learning_rate": 0.001552999178307313, + "loss": 4.9563, + "step": 378 + }, + { + "epoch": 0.039145176204664546, + "grad_norm": 1.208348035812378, + "learning_rate": 0.0015653245686113393, + "loss": 4.9696, + "step": 381 + }, + { + "epoch": 0.03945340593855954, + "grad_norm": 0.6113926768302917, + "learning_rate": 0.0015776499589153657, + "loss": 4.9461, + "step": 384 + }, + { + "epoch": 0.03976163567245453, + "grad_norm": 0.6794010996818542, + "learning_rate": 0.0015899753492193919, + "loss": 4.9668, + "step": 387 + }, + { + "epoch": 0.040069865406349534, + "grad_norm": 0.4383271038532257, + "learning_rate": 0.0016023007395234183, + "loss": 4.9283, + "step": 390 + }, + { + "epoch": 0.04037809514024453, + "grad_norm": 0.9564613699913025, + "learning_rate": 0.0016146261298274444, + "loss": 4.8814, + "step": 393 + }, + { + "epoch": 0.04068632487413953, + "grad_norm": 0.6730177402496338, + "learning_rate": 0.0016269515201314708, + "loss": 4.9158, + "step": 396 + }, + { + "epoch": 0.04099455460803452, + "grad_norm": 0.5306158661842346, + "learning_rate": 0.001639276910435497, + "loss": 4.904, + "step": 399 + }, + { + "epoch": 0.04130278434192952, + "grad_norm": 0.48708540201187134, + "learning_rate": 0.0016516023007395234, + "loss": 4.9002, + "step": 402 + }, + { + "epoch": 0.041611014075824515, + "grad_norm": 0.4917944371700287, + "learning_rate": 0.0016639276910435496, + "loss": 4.8913, + "step": 405 + }, + { + "epoch": 0.04191924380971951, + "grad_norm": 1.0929678678512573, + "learning_rate": 0.001676253081347576, + "loss": 4.8986, + "step": 408 + }, + { + "epoch": 0.04222747354361451, + "grad_norm": 0.5417898297309875, + "learning_rate": 0.0016885784716516024, + "loss": 4.8702, + "step": 411 + }, + { + "epoch": 0.0425357032775095, + "grad_norm": 1.1427472829818726, + "learning_rate": 0.0017009038619556285, + "loss": 4.8396, + "step": 414 + }, + { + "epoch": 0.0428439330114045, + "grad_norm": 0.8225170969963074, + "learning_rate": 0.001713229252259655, + "loss": 4.8439, + "step": 417 + }, + { + "epoch": 0.0431521627452995, + "grad_norm": 0.5638198256492615, + "learning_rate": 0.001725554642563681, + "loss": 4.8271, + "step": 420 + }, + { + "epoch": 0.04346039247919449, + "grad_norm": 0.3389821946620941, + "learning_rate": 0.0017378800328677075, + "loss": 4.8207, + "step": 423 + }, + { + "epoch": 0.04376862221308949, + "grad_norm": 0.38620057702064514, + "learning_rate": 0.0017502054231717337, + "loss": 4.8082, + "step": 426 + }, + { + "epoch": 0.044076851946984484, + "grad_norm": 1.1568442583084106, + "learning_rate": 0.00176253081347576, + "loss": 4.7946, + "step": 429 + }, + { + "epoch": 0.044385081680879485, + "grad_norm": 0.650175154209137, + "learning_rate": 0.0017748562037797865, + "loss": 4.7798, + "step": 432 + }, + { + "epoch": 0.04469331141477448, + "grad_norm": 0.5364396572113037, + "learning_rate": 0.0017871815940838126, + "loss": 4.7732, + "step": 435 + }, + { + "epoch": 0.04500154114866947, + "grad_norm": 0.7013806700706482, + "learning_rate": 0.001799506984387839, + "loss": 4.7733, + "step": 438 + }, + { + "epoch": 0.04530977088256447, + "grad_norm": 0.4559784233570099, + "learning_rate": 0.0018118323746918652, + "loss": 4.7789, + "step": 441 + }, + { + "epoch": 0.045618000616459466, + "grad_norm": 0.3456243872642517, + "learning_rate": 0.0018241577649958916, + "loss": 4.7456, + "step": 444 + }, + { + "epoch": 0.045926230350354466, + "grad_norm": 0.6245532631874084, + "learning_rate": 0.0018364831552999178, + "loss": 4.7408, + "step": 447 + }, + { + "epoch": 0.04623446008424946, + "grad_norm": 1.1933598518371582, + "learning_rate": 0.0018488085456039441, + "loss": 4.7728, + "step": 450 + }, + { + "epoch": 0.04654268981814446, + "grad_norm": 0.8743248581886292, + "learning_rate": 0.0018611339359079703, + "loss": 4.7595, + "step": 453 + }, + { + "epoch": 0.046850919552039454, + "grad_norm": 0.4980567693710327, + "learning_rate": 0.0018734593262119967, + "loss": 4.7222, + "step": 456 + }, + { + "epoch": 0.04715914928593445, + "grad_norm": 0.6380690932273865, + "learning_rate": 0.001885784716516023, + "loss": 4.7175, + "step": 459 + }, + { + "epoch": 0.04746737901982945, + "grad_norm": 0.3606894612312317, + "learning_rate": 0.0018981101068200493, + "loss": 4.7075, + "step": 462 + }, + { + "epoch": 0.04777560875372444, + "grad_norm": 0.5618919730186462, + "learning_rate": 0.0019104354971240757, + "loss": 4.6939, + "step": 465 + }, + { + "epoch": 0.04808383848761944, + "grad_norm": 0.639410138130188, + "learning_rate": 0.0019227608874281018, + "loss": 4.6748, + "step": 468 + }, + { + "epoch": 0.048392068221514435, + "grad_norm": 0.7849680185317993, + "learning_rate": 0.0019350862777321282, + "loss": 4.6895, + "step": 471 + }, + { + "epoch": 0.04870029795540943, + "grad_norm": 0.5419800877571106, + "learning_rate": 0.0019474116680361544, + "loss": 4.64, + "step": 474 + }, + { + "epoch": 0.04900852768930443, + "grad_norm": 0.40359726548194885, + "learning_rate": 0.001959737058340181, + "loss": 4.6564, + "step": 477 + }, + { + "epoch": 0.04931675742319942, + "grad_norm": 0.742076575756073, + "learning_rate": 0.001972062448644207, + "loss": 4.6434, + "step": 480 + }, + { + "epoch": 0.04962498715709442, + "grad_norm": 0.620801568031311, + "learning_rate": 0.0019843878389482336, + "loss": 4.6509, + "step": 483 + }, + { + "epoch": 0.04993321689098942, + "grad_norm": 0.5293563008308411, + "learning_rate": 0.0019967132292522598, + "loss": 4.6459, + "step": 486 + }, + { + "epoch": 0.05024144662488442, + "grad_norm": 0.7527710795402527, + "learning_rate": 0.002009038619556286, + "loss": 4.6557, + "step": 489 + }, + { + "epoch": 0.05054967635877941, + "grad_norm": 0.47365424036979675, + "learning_rate": 0.002021364009860312, + "loss": 4.6223, + "step": 492 + }, + { + "epoch": 0.050857906092674404, + "grad_norm": 0.5232967734336853, + "learning_rate": 0.0020336894001643387, + "loss": 4.6186, + "step": 495 + }, + { + "epoch": 0.051166135826569405, + "grad_norm": 0.40717506408691406, + "learning_rate": 0.002046014790468365, + "loss": 4.6125, + "step": 498 + }, + { + "epoch": 0.0514743655604644, + "grad_norm": 0.5403701066970825, + "learning_rate": 0.002058340180772391, + "loss": 4.6143, + "step": 501 + }, + { + "epoch": 0.0517825952943594, + "grad_norm": 0.7209203839302063, + "learning_rate": 0.0020706655710764172, + "loss": 4.5713, + "step": 504 + }, + { + "epoch": 0.05209082502825439, + "grad_norm": 0.6991008520126343, + "learning_rate": 0.002082990961380444, + "loss": 4.6044, + "step": 507 + }, + { + "epoch": 0.052399054762149386, + "grad_norm": 0.7478086352348328, + "learning_rate": 0.00209531635168447, + "loss": 4.5685, + "step": 510 + }, + { + "epoch": 0.052707284496044386, + "grad_norm": 0.5864932537078857, + "learning_rate": 0.002107641741988496, + "loss": 4.588, + "step": 513 + }, + { + "epoch": 0.05301551422993938, + "grad_norm": 0.44748950004577637, + "learning_rate": 0.002119967132292523, + "loss": 4.5823, + "step": 516 + }, + { + "epoch": 0.05332374396383438, + "grad_norm": 0.32787564396858215, + "learning_rate": 0.002132292522596549, + "loss": 4.5522, + "step": 519 + }, + { + "epoch": 0.053631973697729374, + "grad_norm": 0.30747687816619873, + "learning_rate": 0.002144617912900575, + "loss": 4.5429, + "step": 522 + }, + { + "epoch": 0.05394020343162437, + "grad_norm": 0.3548784554004669, + "learning_rate": 0.0021569433032046013, + "loss": 4.5207, + "step": 525 + }, + { + "epoch": 0.05424843316551937, + "grad_norm": 0.6617491841316223, + "learning_rate": 0.002169268693508628, + "loss": 4.5373, + "step": 528 + }, + { + "epoch": 0.05455666289941436, + "grad_norm": 0.9917429089546204, + "learning_rate": 0.002181594083812654, + "loss": 4.5504, + "step": 531 + }, + { + "epoch": 0.05486489263330936, + "grad_norm": 0.6506537795066833, + "learning_rate": 0.0021939194741166803, + "loss": 4.5385, + "step": 534 + }, + { + "epoch": 0.055173122367204355, + "grad_norm": 0.3738003075122833, + "learning_rate": 0.002206244864420707, + "loss": 4.5169, + "step": 537 + }, + { + "epoch": 0.055481352101099356, + "grad_norm": 0.3488200008869171, + "learning_rate": 0.002218570254724733, + "loss": 4.5119, + "step": 540 + }, + { + "epoch": 0.05578958183499435, + "grad_norm": 0.31217944622039795, + "learning_rate": 0.0022308956450287592, + "loss": 4.4796, + "step": 543 + }, + { + "epoch": 0.05609781156888934, + "grad_norm": 0.26770153641700745, + "learning_rate": 0.0022432210353327854, + "loss": 4.4699, + "step": 546 + }, + { + "epoch": 0.05640604130278434, + "grad_norm": 0.3656662702560425, + "learning_rate": 0.002255546425636812, + "loss": 4.4817, + "step": 549 + }, + { + "epoch": 0.05671427103667934, + "grad_norm": 0.5845988392829895, + "learning_rate": 0.002267871815940838, + "loss": 4.4525, + "step": 552 + }, + { + "epoch": 0.05702250077057434, + "grad_norm": 0.41006627678871155, + "learning_rate": 0.0022801972062448644, + "loss": 4.4649, + "step": 555 + }, + { + "epoch": 0.05733073050446933, + "grad_norm": 1.2013694047927856, + "learning_rate": 0.002292522596548891, + "loss": 4.4666, + "step": 558 + }, + { + "epoch": 0.057638960238364324, + "grad_norm": 0.6116489171981812, + "learning_rate": 0.002304847986852917, + "loss": 4.4853, + "step": 561 + }, + { + "epoch": 0.057947189972259325, + "grad_norm": 0.30115845799446106, + "learning_rate": 0.0023171733771569433, + "loss": 4.4409, + "step": 564 + }, + { + "epoch": 0.05825541970615432, + "grad_norm": 0.2863396108150482, + "learning_rate": 0.0023294987674609695, + "loss": 4.4358, + "step": 567 + }, + { + "epoch": 0.05856364944004932, + "grad_norm": 0.3191300928592682, + "learning_rate": 0.002341824157764996, + "loss": 4.454, + "step": 570 + }, + { + "epoch": 0.05887187917394431, + "grad_norm": 0.4280944764614105, + "learning_rate": 0.0023541495480690223, + "loss": 4.3943, + "step": 573 + }, + { + "epoch": 0.05918010890783931, + "grad_norm": 0.49310484528541565, + "learning_rate": 0.0023664749383730485, + "loss": 4.4097, + "step": 576 + }, + { + "epoch": 0.059488338641734306, + "grad_norm": 0.4923991858959198, + "learning_rate": 0.002378800328677075, + "loss": 4.4454, + "step": 579 + }, + { + "epoch": 0.0597965683756293, + "grad_norm": 0.5043625235557556, + "learning_rate": 0.0023911257189811012, + "loss": 4.3975, + "step": 582 + }, + { + "epoch": 0.0601047981095243, + "grad_norm": 0.5404270887374878, + "learning_rate": 0.0024034511092851274, + "loss": 4.3957, + "step": 585 + }, + { + "epoch": 0.060413027843419294, + "grad_norm": 0.9954332709312439, + "learning_rate": 0.0024157764995891536, + "loss": 4.3864, + "step": 588 + }, + { + "epoch": 0.060721257577314294, + "grad_norm": 0.3632584512233734, + "learning_rate": 0.00242810188989318, + "loss": 4.38, + "step": 591 + }, + { + "epoch": 0.06102948731120929, + "grad_norm": 0.2620343267917633, + "learning_rate": 0.0024404272801972064, + "loss": 4.3538, + "step": 594 + }, + { + "epoch": 0.06133771704510428, + "grad_norm": 0.25050923228263855, + "learning_rate": 0.0024527526705012325, + "loss": 4.351, + "step": 597 + }, + { + "epoch": 0.06164594677899928, + "grad_norm": 0.27279627323150635, + "learning_rate": 0.0024650780608052587, + "loss": 4.3335, + "step": 600 + }, + { + "epoch": 0.061954176512894275, + "grad_norm": 0.6038771271705627, + "learning_rate": 0.0024774034511092853, + "loss": 4.3409, + "step": 603 + }, + { + "epoch": 0.062262406246789276, + "grad_norm": 0.6948337554931641, + "learning_rate": 0.0024897288414133115, + "loss": 4.3555, + "step": 606 + }, + { + "epoch": 0.06257063598068427, + "grad_norm": 0.5086238980293274, + "learning_rate": 0.0025020542317173377, + "loss": 4.3491, + "step": 609 + }, + { + "epoch": 0.06287886571457926, + "grad_norm": 0.475999116897583, + "learning_rate": 0.002514379622021364, + "loss": 4.3412, + "step": 612 + }, + { + "epoch": 0.06318709544847426, + "grad_norm": 0.3968357741832733, + "learning_rate": 0.0025267050123253905, + "loss": 4.3139, + "step": 615 + }, + { + "epoch": 0.06349532518236926, + "grad_norm": 0.6681760549545288, + "learning_rate": 0.0025390304026294166, + "loss": 4.2999, + "step": 618 + }, + { + "epoch": 0.06380355491626426, + "grad_norm": 0.3453294634819031, + "learning_rate": 0.002551355792933443, + "loss": 4.2873, + "step": 621 + }, + { + "epoch": 0.06411178465015925, + "grad_norm": 0.3346744775772095, + "learning_rate": 0.002563681183237469, + "loss": 4.2868, + "step": 624 + }, + { + "epoch": 0.06442001438405424, + "grad_norm": 0.39689645171165466, + "learning_rate": 0.0025760065735414956, + "loss": 4.2846, + "step": 627 + }, + { + "epoch": 0.06472824411794924, + "grad_norm": 0.4017212688922882, + "learning_rate": 0.0025883319638455218, + "loss": 4.2625, + "step": 630 + }, + { + "epoch": 0.06503647385184425, + "grad_norm": 0.3414025902748108, + "learning_rate": 0.0026006573541495484, + "loss": 4.2657, + "step": 633 + }, + { + "epoch": 0.06534470358573924, + "grad_norm": 0.4091610312461853, + "learning_rate": 0.002612982744453574, + "loss": 4.2414, + "step": 636 + }, + { + "epoch": 0.06565293331963423, + "grad_norm": 0.3916926085948944, + "learning_rate": 0.0026253081347576007, + "loss": 4.1801, + "step": 639 + }, + { + "epoch": 0.06596116305352923, + "grad_norm": 1.0324465036392212, + "learning_rate": 0.002637633525061627, + "loss": 4.2162, + "step": 642 + }, + { + "epoch": 0.06626939278742423, + "grad_norm": 0.4595172107219696, + "learning_rate": 0.0026499589153656535, + "loss": 4.2352, + "step": 645 + }, + { + "epoch": 0.06657762252131923, + "grad_norm": 0.3215947151184082, + "learning_rate": 0.0026622843056696792, + "loss": 4.1865, + "step": 648 + }, + { + "epoch": 0.06688585225521422, + "grad_norm": 0.2739149034023285, + "learning_rate": 0.002674609695973706, + "loss": 4.1644, + "step": 651 + }, + { + "epoch": 0.06719408198910921, + "grad_norm": 0.250794917345047, + "learning_rate": 0.002686935086277732, + "loss": 4.1164, + "step": 654 + }, + { + "epoch": 0.06750231172300421, + "grad_norm": 0.38465654850006104, + "learning_rate": 0.0026992604765817586, + "loss": 4.0844, + "step": 657 + }, + { + "epoch": 0.06781054145689921, + "grad_norm": 0.5341691970825195, + "learning_rate": 0.0027115858668857844, + "loss": 4.1149, + "step": 660 + }, + { + "epoch": 0.06811877119079421, + "grad_norm": 0.3479110896587372, + "learning_rate": 0.002723911257189811, + "loss": 4.1186, + "step": 663 + }, + { + "epoch": 0.0684270009246892, + "grad_norm": 1.026038646697998, + "learning_rate": 0.002736236647493837, + "loss": 4.1293, + "step": 666 + }, + { + "epoch": 0.0687352306585842, + "grad_norm": 0.445689857006073, + "learning_rate": 0.0027485620377978638, + "loss": 4.1319, + "step": 669 + }, + { + "epoch": 0.06904346039247919, + "grad_norm": 0.3061058819293976, + "learning_rate": 0.00276088742810189, + "loss": 4.0338, + "step": 672 + }, + { + "epoch": 0.0693516901263742, + "grad_norm": 0.26792746782302856, + "learning_rate": 0.002773212818405916, + "loss": 4.0154, + "step": 675 + }, + { + "epoch": 0.06965991986026919, + "grad_norm": 0.2843894064426422, + "learning_rate": 0.0027855382087099423, + "loss": 4.0364, + "step": 678 + }, + { + "epoch": 0.06996814959416418, + "grad_norm": 0.3073459565639496, + "learning_rate": 0.002797863599013969, + "loss": 3.9836, + "step": 681 + }, + { + "epoch": 0.07027637932805918, + "grad_norm": 0.5893545746803284, + "learning_rate": 0.002810188989317995, + "loss": 4.0062, + "step": 684 + }, + { + "epoch": 0.07058460906195417, + "grad_norm": 0.5386547446250916, + "learning_rate": 0.0028225143796220217, + "loss": 4.0066, + "step": 687 + }, + { + "epoch": 0.07089283879584918, + "grad_norm": 0.7944250106811523, + "learning_rate": 0.0028348397699260474, + "loss": 3.9816, + "step": 690 + }, + { + "epoch": 0.07120106852974417, + "grad_norm": 0.32200196385383606, + "learning_rate": 0.002847165160230074, + "loss": 3.9551, + "step": 693 + }, + { + "epoch": 0.07150929826363916, + "grad_norm": 0.28814995288848877, + "learning_rate": 0.0028594905505341, + "loss": 3.912, + "step": 696 + }, + { + "epoch": 0.07181752799753416, + "grad_norm": 0.2727998197078705, + "learning_rate": 0.002871815940838127, + "loss": 3.9203, + "step": 699 + }, + { + "epoch": 0.07212575773142915, + "grad_norm": 0.2785607576370239, + "learning_rate": 0.0028841413311421525, + "loss": 3.8865, + "step": 702 + }, + { + "epoch": 0.07243398746532416, + "grad_norm": 0.4318368136882782, + "learning_rate": 0.002896466721446179, + "loss": 3.8364, + "step": 705 + }, + { + "epoch": 0.07274221719921915, + "grad_norm": 0.5888954997062683, + "learning_rate": 0.0029087921117502053, + "loss": 3.8772, + "step": 708 + }, + { + "epoch": 0.07305044693311415, + "grad_norm": 0.5866847634315491, + "learning_rate": 0.002921117502054232, + "loss": 3.9039, + "step": 711 + }, + { + "epoch": 0.07335867666700914, + "grad_norm": 0.40300968289375305, + "learning_rate": 0.002933442892358258, + "loss": 3.8332, + "step": 714 + }, + { + "epoch": 0.07366690640090415, + "grad_norm": 0.2894107401371002, + "learning_rate": 0.0029457682826622843, + "loss": 3.8533, + "step": 717 + }, + { + "epoch": 0.07397513613479914, + "grad_norm": 0.2637479901313782, + "learning_rate": 0.0029580936729663105, + "loss": 3.7962, + "step": 720 + }, + { + "epoch": 0.07428336586869413, + "grad_norm": 0.5004228353500366, + "learning_rate": 0.002970419063270337, + "loss": 3.7759, + "step": 723 + }, + { + "epoch": 0.07459159560258913, + "grad_norm": 0.30835986137390137, + "learning_rate": 0.0029827444535743632, + "loss": 3.7819, + "step": 726 + }, + { + "epoch": 0.07489982533648412, + "grad_norm": 0.5601911544799805, + "learning_rate": 0.00299506984387839, + "loss": 3.7716, + "step": 729 + }, + { + "epoch": 0.07520805507037913, + "grad_norm": 0.48242396116256714, + "learning_rate": 0.0030073952341824156, + "loss": 3.803, + "step": 732 + }, + { + "epoch": 0.07551628480427412, + "grad_norm": 0.355916827917099, + "learning_rate": 0.003019720624486442, + "loss": 3.7532, + "step": 735 + }, + { + "epoch": 0.07582451453816912, + "grad_norm": 0.4205069839954376, + "learning_rate": 0.0030320460147904684, + "loss": 3.7657, + "step": 738 + }, + { + "epoch": 0.07613274427206411, + "grad_norm": 0.35680562257766724, + "learning_rate": 0.003044371405094495, + "loss": 3.7348, + "step": 741 + }, + { + "epoch": 0.0764409740059591, + "grad_norm": 0.36372673511505127, + "learning_rate": 0.0030566967953985207, + "loss": 3.7569, + "step": 744 + }, + { + "epoch": 0.07674920373985411, + "grad_norm": 0.2887914776802063, + "learning_rate": 0.0030690221857025473, + "loss": 3.7704, + "step": 747 + }, + { + "epoch": 0.0770574334737491, + "grad_norm": 0.255290687084198, + "learning_rate": 0.0030813475760065735, + "loss": 3.7054, + "step": 750 + }, + { + "epoch": 0.0773656632076441, + "grad_norm": 0.2969897389411926, + "learning_rate": 0.0030936729663106, + "loss": 3.708, + "step": 753 + }, + { + "epoch": 0.07767389294153909, + "grad_norm": 0.491763710975647, + "learning_rate": 0.003105998356614626, + "loss": 3.7279, + "step": 756 + }, + { + "epoch": 0.07798212267543408, + "grad_norm": 0.6437285542488098, + "learning_rate": 0.0031183237469186525, + "loss": 3.7129, + "step": 759 + }, + { + "epoch": 0.07829035240932909, + "grad_norm": 0.3605806827545166, + "learning_rate": 0.0031306491372226786, + "loss": 3.6754, + "step": 762 + }, + { + "epoch": 0.07859858214322409, + "grad_norm": 0.26162126660346985, + "learning_rate": 0.0031429745275267052, + "loss": 3.6869, + "step": 765 + }, + { + "epoch": 0.07890681187711908, + "grad_norm": 0.3107220530509949, + "learning_rate": 0.0031552999178307314, + "loss": 3.6278, + "step": 768 + }, + { + "epoch": 0.07921504161101407, + "grad_norm": 0.30417200922966003, + "learning_rate": 0.0031676253081347576, + "loss": 3.6046, + "step": 771 + }, + { + "epoch": 0.07952327134490907, + "grad_norm": 0.5612326860427856, + "learning_rate": 0.0031799506984387838, + "loss": 3.6578, + "step": 774 + }, + { + "epoch": 0.07983150107880407, + "grad_norm": 0.6136355996131897, + "learning_rate": 0.0031922760887428104, + "loss": 3.6897, + "step": 777 + }, + { + "epoch": 0.08013973081269907, + "grad_norm": 0.4560060501098633, + "learning_rate": 0.0032046014790468366, + "loss": 3.6976, + "step": 780 + }, + { + "epoch": 0.08044796054659406, + "grad_norm": 0.23871034383773804, + "learning_rate": 0.003216926869350863, + "loss": 3.657, + "step": 783 + }, + { + "epoch": 0.08075619028048905, + "grad_norm": 0.17063000798225403, + "learning_rate": 0.003229252259654889, + "loss": 3.5905, + "step": 786 + }, + { + "epoch": 0.08106442001438405, + "grad_norm": 0.35351842641830444, + "learning_rate": 0.0032415776499589155, + "loss": 3.603, + "step": 789 + }, + { + "epoch": 0.08137264974827906, + "grad_norm": 0.340762197971344, + "learning_rate": 0.0032539030402629417, + "loss": 3.5978, + "step": 792 + }, + { + "epoch": 0.08168087948217405, + "grad_norm": 0.22542034089565277, + "learning_rate": 0.0032662284305669683, + "loss": 3.5821, + "step": 795 + }, + { + "epoch": 0.08198910921606904, + "grad_norm": 0.25130555033683777, + "learning_rate": 0.003278553820870994, + "loss": 3.5491, + "step": 798 + }, + { + "epoch": 0.08229733894996404, + "grad_norm": 0.5155714750289917, + "learning_rate": 0.0032908792111750206, + "loss": 3.5605, + "step": 801 + }, + { + "epoch": 0.08260556868385904, + "grad_norm": 0.3964254856109619, + "learning_rate": 0.003303204601479047, + "loss": 3.581, + "step": 804 + }, + { + "epoch": 0.08291379841775404, + "grad_norm": 0.27110666036605835, + "learning_rate": 0.0033155299917830734, + "loss": 3.5995, + "step": 807 + }, + { + "epoch": 0.08322202815164903, + "grad_norm": 0.38535767793655396, + "learning_rate": 0.003327855382087099, + "loss": 3.6029, + "step": 810 + }, + { + "epoch": 0.08353025788554402, + "grad_norm": 0.6176712512969971, + "learning_rate": 0.0033401807723911258, + "loss": 3.5694, + "step": 813 + }, + { + "epoch": 0.08383848761943902, + "grad_norm": 0.33828550577163696, + "learning_rate": 0.003352506162695152, + "loss": 3.5507, + "step": 816 + }, + { + "epoch": 0.08414671735333402, + "grad_norm": 0.2286808043718338, + "learning_rate": 0.0033648315529991786, + "loss": 3.5345, + "step": 819 + }, + { + "epoch": 0.08445494708722902, + "grad_norm": 0.30232542753219604, + "learning_rate": 0.0033771569433032047, + "loss": 3.5154, + "step": 822 + }, + { + "epoch": 0.08476317682112401, + "grad_norm": 0.31767842173576355, + "learning_rate": 0.0033894823336072313, + "loss": 3.5442, + "step": 825 + }, + { + "epoch": 0.085071406555019, + "grad_norm": 0.4275444746017456, + "learning_rate": 0.003401807723911257, + "loss": 3.5715, + "step": 828 + }, + { + "epoch": 0.085379636288914, + "grad_norm": 0.3426364064216614, + "learning_rate": 0.0034141331142152837, + "loss": 3.5224, + "step": 831 + }, + { + "epoch": 0.085687866022809, + "grad_norm": 0.33871403336524963, + "learning_rate": 0.00342645850451931, + "loss": 3.5119, + "step": 834 + }, + { + "epoch": 0.085996095756704, + "grad_norm": 0.2641143202781677, + "learning_rate": 0.0034387838948233365, + "loss": 3.5179, + "step": 837 + }, + { + "epoch": 0.086304325490599, + "grad_norm": 0.22955679893493652, + "learning_rate": 0.003451109285127362, + "loss": 3.4807, + "step": 840 + }, + { + "epoch": 0.08661255522449399, + "grad_norm": 0.3795819878578186, + "learning_rate": 0.003463434675431389, + "loss": 3.4916, + "step": 843 + }, + { + "epoch": 0.08692078495838898, + "grad_norm": 0.2942325174808502, + "learning_rate": 0.003475760065735415, + "loss": 3.4601, + "step": 846 + }, + { + "epoch": 0.08722901469228399, + "grad_norm": 0.49732574820518494, + "learning_rate": 0.0034880854560394416, + "loss": 3.5021, + "step": 849 + }, + { + "epoch": 0.08753724442617898, + "grad_norm": 0.4395911991596222, + "learning_rate": 0.0035004108463434673, + "loss": 3.4976, + "step": 852 + }, + { + "epoch": 0.08784547416007397, + "grad_norm": 0.24201816320419312, + "learning_rate": 0.003512736236647494, + "loss": 3.4648, + "step": 855 + }, + { + "epoch": 0.08815370389396897, + "grad_norm": 0.32818078994750977, + "learning_rate": 0.00352506162695152, + "loss": 3.4826, + "step": 858 + }, + { + "epoch": 0.08846193362786396, + "grad_norm": 0.4433400630950928, + "learning_rate": 0.0035373870172555467, + "loss": 3.4763, + "step": 861 + }, + { + "epoch": 0.08877016336175897, + "grad_norm": 0.2911035716533661, + "learning_rate": 0.003549712407559573, + "loss": 3.5024, + "step": 864 + }, + { + "epoch": 0.08907839309565396, + "grad_norm": 0.27419009804725647, + "learning_rate": 0.003562037797863599, + "loss": 3.4382, + "step": 867 + }, + { + "epoch": 0.08938662282954896, + "grad_norm": 0.2970244586467743, + "learning_rate": 0.0035743631881676253, + "loss": 3.4362, + "step": 870 + }, + { + "epoch": 0.08969485256344395, + "grad_norm": 0.34221401810646057, + "learning_rate": 0.003586688578471652, + "loss": 3.4469, + "step": 873 + }, + { + "epoch": 0.09000308229733894, + "grad_norm": 0.31807199120521545, + "learning_rate": 0.003599013968775678, + "loss": 3.3974, + "step": 876 + }, + { + "epoch": 0.09031131203123395, + "grad_norm": 0.31519362330436707, + "learning_rate": 0.0036113393590797046, + "loss": 3.4275, + "step": 879 + }, + { + "epoch": 0.09061954176512894, + "grad_norm": 0.5152423977851868, + "learning_rate": 0.0036236647493837304, + "loss": 3.4468, + "step": 882 + }, + { + "epoch": 0.09092777149902394, + "grad_norm": 0.32447418570518494, + "learning_rate": 0.003635990139687757, + "loss": 3.4505, + "step": 885 + }, + { + "epoch": 0.09123600123291893, + "grad_norm": 0.19884614646434784, + "learning_rate": 0.003648315529991783, + "loss": 3.4228, + "step": 888 + }, + { + "epoch": 0.09154423096681394, + "grad_norm": 0.2726935148239136, + "learning_rate": 0.0036606409202958098, + "loss": 3.3957, + "step": 891 + }, + { + "epoch": 0.09185246070070893, + "grad_norm": 0.29470425844192505, + "learning_rate": 0.0036729663105998355, + "loss": 3.3813, + "step": 894 + }, + { + "epoch": 0.09216069043460393, + "grad_norm": 0.27806392312049866, + "learning_rate": 0.003685291700903862, + "loss": 3.3871, + "step": 897 + }, + { + "epoch": 0.09246892016849892, + "grad_norm": 0.23773950338363647, + "learning_rate": 0.0036976170912078883, + "loss": 3.3941, + "step": 900 + }, + { + "epoch": 0.09277714990239391, + "grad_norm": 0.45804303884506226, + "learning_rate": 0.003709942481511915, + "loss": 3.3752, + "step": 903 + }, + { + "epoch": 0.09308537963628892, + "grad_norm": 0.45320865511894226, + "learning_rate": 0.0037222678718159406, + "loss": 3.4068, + "step": 906 + }, + { + "epoch": 0.09339360937018391, + "grad_norm": 0.277089387178421, + "learning_rate": 0.0037345932621199673, + "loss": 3.4052, + "step": 909 + }, + { + "epoch": 0.09370183910407891, + "grad_norm": 0.26548513770103455, + "learning_rate": 0.0037469186524239934, + "loss": 3.3753, + "step": 912 + }, + { + "epoch": 0.0940100688379739, + "grad_norm": 0.24219335615634918, + "learning_rate": 0.00375924404272802, + "loss": 3.3913, + "step": 915 + }, + { + "epoch": 0.0943182985718689, + "grad_norm": 0.2855617105960846, + "learning_rate": 0.003771569433032046, + "loss": 3.3636, + "step": 918 + }, + { + "epoch": 0.0946265283057639, + "grad_norm": 0.35244864225387573, + "learning_rate": 0.003783894823336073, + "loss": 3.3603, + "step": 921 + }, + { + "epoch": 0.0949347580396589, + "grad_norm": 0.3226896822452545, + "learning_rate": 0.0037962202136400986, + "loss": 3.3267, + "step": 924 + }, + { + "epoch": 0.09524298777355389, + "grad_norm": 0.279863178730011, + "learning_rate": 0.003808545603944125, + "loss": 3.3192, + "step": 927 + }, + { + "epoch": 0.09555121750744888, + "grad_norm": 0.35309404134750366, + "learning_rate": 0.0038208709942481513, + "loss": 3.2978, + "step": 930 + }, + { + "epoch": 0.09585944724134388, + "grad_norm": 0.2359645515680313, + "learning_rate": 0.003833196384552178, + "loss": 3.3627, + "step": 933 + }, + { + "epoch": 0.09616767697523888, + "grad_norm": 0.22583429515361786, + "learning_rate": 0.0038455217748562037, + "loss": 3.2669, + "step": 936 + }, + { + "epoch": 0.09647590670913388, + "grad_norm": 0.2914174199104309, + "learning_rate": 0.0038578471651602303, + "loss": 3.3238, + "step": 939 + }, + { + "epoch": 0.09678413644302887, + "grad_norm": 0.37748411297798157, + "learning_rate": 0.0038701725554642565, + "loss": 3.3232, + "step": 942 + }, + { + "epoch": 0.09709236617692386, + "grad_norm": 0.28686878085136414, + "learning_rate": 0.003882497945768283, + "loss": 3.3143, + "step": 945 + }, + { + "epoch": 0.09740059591081886, + "grad_norm": 0.22591544687747955, + "learning_rate": 0.003894823336072309, + "loss": 3.3285, + "step": 948 + }, + { + "epoch": 0.09770882564471386, + "grad_norm": 0.24365665018558502, + "learning_rate": 0.003907148726376336, + "loss": 3.2799, + "step": 951 + }, + { + "epoch": 0.09801705537860886, + "grad_norm": 0.3929263651371002, + "learning_rate": 0.003919474116680362, + "loss": 3.29, + "step": 954 + }, + { + "epoch": 0.09832528511250385, + "grad_norm": 0.20268237590789795, + "learning_rate": 0.003931799506984388, + "loss": 3.2412, + "step": 957 + }, + { + "epoch": 0.09863351484639885, + "grad_norm": 0.3333010673522949, + "learning_rate": 0.003944124897288414, + "loss": 3.2523, + "step": 960 + }, + { + "epoch": 0.09894174458029384, + "grad_norm": 0.32760193943977356, + "learning_rate": 0.0039564502875924406, + "loss": 3.2958, + "step": 963 + }, + { + "epoch": 0.09924997431418885, + "grad_norm": 0.27670565247535706, + "learning_rate": 0.003968775677896467, + "loss": 3.2683, + "step": 966 + }, + { + "epoch": 0.09955820404808384, + "grad_norm": 0.32110410928726196, + "learning_rate": 0.003981101068200493, + "loss": 3.2576, + "step": 969 + }, + { + "epoch": 0.09986643378197883, + "grad_norm": 0.43541696667671204, + "learning_rate": 0.0039934264585045195, + "loss": 3.2924, + "step": 972 + }, + { + "epoch": 0.10017466351587383, + "grad_norm": 0.3483084738254547, + "learning_rate": 0.004005751848808546, + "loss": 3.2936, + "step": 975 + }, + { + "epoch": 0.10048289324976883, + "grad_norm": 0.29586124420166016, + "learning_rate": 0.004018077239112572, + "loss": 3.2511, + "step": 978 + }, + { + "epoch": 0.10079112298366383, + "grad_norm": 0.21434040367603302, + "learning_rate": 0.0040304026294165985, + "loss": 3.242, + "step": 981 + }, + { + "epoch": 0.10109935271755882, + "grad_norm": 0.35204213857650757, + "learning_rate": 0.004042728019720624, + "loss": 3.2156, + "step": 984 + }, + { + "epoch": 0.10140758245145381, + "grad_norm": 0.25223758816719055, + "learning_rate": 0.004055053410024651, + "loss": 3.257, + "step": 987 + }, + { + "epoch": 0.10171581218534881, + "grad_norm": 0.2969653010368347, + "learning_rate": 0.004067378800328677, + "loss": 3.2576, + "step": 990 + }, + { + "epoch": 0.10202404191924382, + "grad_norm": 0.26683250069618225, + "learning_rate": 0.004079704190632704, + "loss": 3.1998, + "step": 993 + }, + { + "epoch": 0.10233227165313881, + "grad_norm": 0.26404044032096863, + "learning_rate": 0.00409202958093673, + "loss": 3.2303, + "step": 996 + }, + { + "epoch": 0.1026405013870338, + "grad_norm": 0.2442736029624939, + "learning_rate": 0.004104354971240756, + "loss": 3.2428, + "step": 999 + }, + { + "epoch": 0.1029487311209288, + "grad_norm": 0.2192964255809784, + "learning_rate": 0.004116680361544782, + "loss": 3.2661, + "step": 1002 + }, + { + "epoch": 0.10325696085482379, + "grad_norm": 0.21057608723640442, + "learning_rate": 0.004129005751848809, + "loss": 3.1995, + "step": 1005 + }, + { + "epoch": 0.1035651905887188, + "grad_norm": 0.3122745454311371, + "learning_rate": 0.0041413311421528345, + "loss": 3.2104, + "step": 1008 + }, + { + "epoch": 0.10387342032261379, + "grad_norm": 0.643337607383728, + "learning_rate": 0.004153656532456861, + "loss": 3.2196, + "step": 1011 + }, + { + "epoch": 0.10418165005650878, + "grad_norm": 0.265302449464798, + "learning_rate": 0.004165981922760888, + "loss": 3.2163, + "step": 1014 + }, + { + "epoch": 0.10448987979040378, + "grad_norm": 0.27250421047210693, + "learning_rate": 0.004178307313064914, + "loss": 3.1781, + "step": 1017 + }, + { + "epoch": 0.10479810952429877, + "grad_norm": 0.3951704800128937, + "learning_rate": 0.00419063270336894, + "loss": 3.2405, + "step": 1020 + }, + { + "epoch": 0.10510633925819378, + "grad_norm": 0.20837850868701935, + "learning_rate": 0.004202958093672967, + "loss": 3.2269, + "step": 1023 + }, + { + "epoch": 0.10541456899208877, + "grad_norm": 0.3887670338153839, + "learning_rate": 0.004215283483976992, + "loss": 3.219, + "step": 1026 + }, + { + "epoch": 0.10572279872598377, + "grad_norm": 0.18901754915714264, + "learning_rate": 0.004227608874281019, + "loss": 3.1759, + "step": 1029 + }, + { + "epoch": 0.10603102845987876, + "grad_norm": 0.3570176362991333, + "learning_rate": 0.004239934264585046, + "loss": 3.1544, + "step": 1032 + }, + { + "epoch": 0.10633925819377375, + "grad_norm": 0.2346538007259369, + "learning_rate": 0.004252259654889072, + "loss": 3.1834, + "step": 1035 + }, + { + "epoch": 0.10664748792766876, + "grad_norm": 0.1956055760383606, + "learning_rate": 0.004264585045193098, + "loss": 3.1597, + "step": 1038 + }, + { + "epoch": 0.10695571766156375, + "grad_norm": 0.19475719332695007, + "learning_rate": 0.0042769104354971246, + "loss": 3.1818, + "step": 1041 + }, + { + "epoch": 0.10726394739545875, + "grad_norm": 0.20991206169128418, + "learning_rate": 0.00428923582580115, + "loss": 3.148, + "step": 1044 + }, + { + "epoch": 0.10757217712935374, + "grad_norm": 0.45754027366638184, + "learning_rate": 0.004301561216105177, + "loss": 3.1838, + "step": 1047 + }, + { + "epoch": 0.10788040686324873, + "grad_norm": 0.2500004470348358, + "learning_rate": 0.004313886606409203, + "loss": 3.158, + "step": 1050 + }, + { + "epoch": 0.10818863659714374, + "grad_norm": 0.29174116253852844, + "learning_rate": 0.004326211996713229, + "loss": 3.1619, + "step": 1053 + }, + { + "epoch": 0.10849686633103874, + "grad_norm": 0.1642913520336151, + "learning_rate": 0.004338537387017256, + "loss": 3.1313, + "step": 1056 + }, + { + "epoch": 0.10880509606493373, + "grad_norm": 0.20638629794120789, + "learning_rate": 0.004350862777321282, + "loss": 3.1553, + "step": 1059 + }, + { + "epoch": 0.10911332579882872, + "grad_norm": 0.2534577548503876, + "learning_rate": 0.004363188167625308, + "loss": 3.146, + "step": 1062 + }, + { + "epoch": 0.10942155553272373, + "grad_norm": 0.3894107937812805, + "learning_rate": 0.004375513557929334, + "loss": 3.1702, + "step": 1065 + }, + { + "epoch": 0.10972978526661872, + "grad_norm": 0.18316411972045898, + "learning_rate": 0.0043878389482333606, + "loss": 3.1306, + "step": 1068 + }, + { + "epoch": 0.11003801500051372, + "grad_norm": 0.22901946306228638, + "learning_rate": 0.004400164338537387, + "loss": 3.1012, + "step": 1071 + }, + { + "epoch": 0.11034624473440871, + "grad_norm": 0.3013692796230316, + "learning_rate": 0.004412489728841414, + "loss": 3.1266, + "step": 1074 + }, + { + "epoch": 0.1106544744683037, + "grad_norm": 0.26568275690078735, + "learning_rate": 0.0044248151191454395, + "loss": 3.1161, + "step": 1077 + }, + { + "epoch": 0.11096270420219871, + "grad_norm": 0.23559318482875824, + "learning_rate": 0.004437140509449466, + "loss": 3.125, + "step": 1080 + }, + { + "epoch": 0.1112709339360937, + "grad_norm": 0.29804936051368713, + "learning_rate": 0.004449465899753492, + "loss": 3.1212, + "step": 1083 + }, + { + "epoch": 0.1115791636699887, + "grad_norm": 0.2965604066848755, + "learning_rate": 0.0044617912900575185, + "loss": 3.1435, + "step": 1086 + }, + { + "epoch": 0.11188739340388369, + "grad_norm": 0.22977206110954285, + "learning_rate": 0.004474116680361544, + "loss": 3.1355, + "step": 1089 + }, + { + "epoch": 0.11219562313777869, + "grad_norm": 0.2511363923549652, + "learning_rate": 0.004486442070665571, + "loss": 3.1041, + "step": 1092 + }, + { + "epoch": 0.11250385287167369, + "grad_norm": 0.13533104956150055, + "learning_rate": 0.004498767460969597, + "loss": 3.1006, + "step": 1095 + }, + { + "epoch": 0.11281208260556869, + "grad_norm": 0.1323193609714508, + "learning_rate": 0.004511092851273624, + "loss": 3.0623, + "step": 1098 + }, + { + "epoch": 0.11312031233946368, + "grad_norm": 0.24355067312717438, + "learning_rate": 0.00452341824157765, + "loss": 3.109, + "step": 1101 + }, + { + "epoch": 0.11342854207335867, + "grad_norm": 0.45989617705345154, + "learning_rate": 0.004535743631881676, + "loss": 3.1102, + "step": 1104 + }, + { + "epoch": 0.11373677180725367, + "grad_norm": 0.27389761805534363, + "learning_rate": 0.004548069022185702, + "loss": 3.1058, + "step": 1107 + }, + { + "epoch": 0.11404500154114867, + "grad_norm": 0.3120715320110321, + "learning_rate": 0.004560394412489729, + "loss": 3.0936, + "step": 1110 + }, + { + "epoch": 0.11435323127504367, + "grad_norm": 0.3641244173049927, + "learning_rate": 0.004572719802793755, + "loss": 3.0895, + "step": 1113 + }, + { + "epoch": 0.11466146100893866, + "grad_norm": 0.16439078748226166, + "learning_rate": 0.004585045193097782, + "loss": 3.0697, + "step": 1116 + }, + { + "epoch": 0.11496969074283366, + "grad_norm": 0.21766935288906097, + "learning_rate": 0.004597370583401808, + "loss": 3.0952, + "step": 1119 + }, + { + "epoch": 0.11527792047672865, + "grad_norm": 0.1682632714509964, + "learning_rate": 0.004609695973705834, + "loss": 3.0644, + "step": 1122 + }, + { + "epoch": 0.11558615021062366, + "grad_norm": 0.18391060829162598, + "learning_rate": 0.00462202136400986, + "loss": 3.0565, + "step": 1125 + }, + { + "epoch": 0.11589437994451865, + "grad_norm": 0.2503467798233032, + "learning_rate": 0.004634346754313887, + "loss": 3.0798, + "step": 1128 + }, + { + "epoch": 0.11620260967841364, + "grad_norm": 0.3139159083366394, + "learning_rate": 0.004646672144617912, + "loss": 3.0784, + "step": 1131 + }, + { + "epoch": 0.11651083941230864, + "grad_norm": 0.2205217182636261, + "learning_rate": 0.004658997534921939, + "loss": 3.0696, + "step": 1134 + }, + { + "epoch": 0.11681906914620364, + "grad_norm": 0.322355180978775, + "learning_rate": 0.004671322925225966, + "loss": 3.0811, + "step": 1137 + }, + { + "epoch": 0.11712729888009864, + "grad_norm": 0.27023863792419434, + "learning_rate": 0.004683648315529992, + "loss": 3.0955, + "step": 1140 + }, + { + "epoch": 0.11743552861399363, + "grad_norm": 0.2672137916088104, + "learning_rate": 0.004695973705834018, + "loss": 3.0584, + "step": 1143 + }, + { + "epoch": 0.11774375834788862, + "grad_norm": 0.271323561668396, + "learning_rate": 0.0047082990961380446, + "loss": 3.0483, + "step": 1146 + }, + { + "epoch": 0.11805198808178362, + "grad_norm": 0.1428508758544922, + "learning_rate": 0.00472062448644207, + "loss": 3.0661, + "step": 1149 + }, + { + "epoch": 0.11836021781567863, + "grad_norm": 0.29395970702171326, + "learning_rate": 0.004732949876746097, + "loss": 3.0391, + "step": 1152 + }, + { + "epoch": 0.11866844754957362, + "grad_norm": 0.22083403170108795, + "learning_rate": 0.0047452752670501235, + "loss": 3.0579, + "step": 1155 + }, + { + "epoch": 0.11897667728346861, + "grad_norm": 0.2015424370765686, + "learning_rate": 0.00475760065735415, + "loss": 3.0356, + "step": 1158 + }, + { + "epoch": 0.1192849070173636, + "grad_norm": 0.21997034549713135, + "learning_rate": 0.004769926047658176, + "loss": 3.0301, + "step": 1161 + }, + { + "epoch": 0.1195931367512586, + "grad_norm": 0.16206422448158264, + "learning_rate": 0.0047822514379622025, + "loss": 3.0407, + "step": 1164 + }, + { + "epoch": 0.11990136648515361, + "grad_norm": 0.22591377794742584, + "learning_rate": 0.004794576828266228, + "loss": 3.0414, + "step": 1167 + }, + { + "epoch": 0.1202095962190486, + "grad_norm": 0.2582632601261139, + "learning_rate": 0.004806902218570255, + "loss": 3.0148, + "step": 1170 + }, + { + "epoch": 0.1205178259529436, + "grad_norm": 0.273416131734848, + "learning_rate": 0.004819227608874281, + "loss": 3.0023, + "step": 1173 + }, + { + "epoch": 0.12082605568683859, + "grad_norm": 0.16373753547668457, + "learning_rate": 0.004831552999178307, + "loss": 3.0127, + "step": 1176 + }, + { + "epoch": 0.12113428542073358, + "grad_norm": 0.2623594105243683, + "learning_rate": 0.004843878389482334, + "loss": 3.0635, + "step": 1179 + }, + { + "epoch": 0.12144251515462859, + "grad_norm": 0.34809616208076477, + "learning_rate": 0.00485620377978636, + "loss": 3.0222, + "step": 1182 + }, + { + "epoch": 0.12175074488852358, + "grad_norm": 0.23841938376426697, + "learning_rate": 0.004868529170090386, + "loss": 3.019, + "step": 1185 + }, + { + "epoch": 0.12205897462241858, + "grad_norm": 0.2161986231803894, + "learning_rate": 0.004880854560394413, + "loss": 2.9934, + "step": 1188 + }, + { + "epoch": 0.12236720435631357, + "grad_norm": 0.2870507836341858, + "learning_rate": 0.0048931799506984385, + "loss": 3.0438, + "step": 1191 + }, + { + "epoch": 0.12267543409020856, + "grad_norm": 0.20796675980091095, + "learning_rate": 0.004905505341002465, + "loss": 2.9947, + "step": 1194 + }, + { + "epoch": 0.12298366382410357, + "grad_norm": 0.1762983798980713, + "learning_rate": 0.004917830731306492, + "loss": 2.9729, + "step": 1197 + }, + { + "epoch": 0.12329189355799856, + "grad_norm": 0.1240881159901619, + "learning_rate": 0.0049301561216105174, + "loss": 3.0149, + "step": 1200 + }, + { + "epoch": 0.12360012329189356, + "grad_norm": 0.16968263685703278, + "learning_rate": 0.004942481511914544, + "loss": 2.9944, + "step": 1203 + }, + { + "epoch": 0.12390835302578855, + "grad_norm": 0.1743592470884323, + "learning_rate": 0.004954806902218571, + "loss": 2.9947, + "step": 1206 + }, + { + "epoch": 0.12421658275968354, + "grad_norm": 0.29677319526672363, + "learning_rate": 0.004967132292522596, + "loss": 2.9922, + "step": 1209 + }, + { + "epoch": 0.12452481249357855, + "grad_norm": 0.273882657289505, + "learning_rate": 0.004979457682826623, + "loss": 2.9698, + "step": 1212 + }, + { + "epoch": 0.12483304222747355, + "grad_norm": 0.3060019910335541, + "learning_rate": 0.004991783073130649, + "loss": 2.9925, + "step": 1215 + }, + { + "epoch": 0.12514127196136854, + "grad_norm": 0.13856515288352966, + "learning_rate": 0.005004108463434675, + "loss": 3.0212, + "step": 1218 + }, + { + "epoch": 0.12544950169526353, + "grad_norm": 0.12940354645252228, + "learning_rate": 0.005016433853738702, + "loss": 2.9472, + "step": 1221 + }, + { + "epoch": 0.12575773142915853, + "grad_norm": 0.15493866801261902, + "learning_rate": 0.005028759244042728, + "loss": 2.9859, + "step": 1224 + }, + { + "epoch": 0.12606596116305352, + "grad_norm": 0.4994816184043884, + "learning_rate": 0.005041084634346754, + "loss": 2.949, + "step": 1227 + }, + { + "epoch": 0.1263741908969485, + "grad_norm": 0.37235137820243835, + "learning_rate": 0.005053410024650781, + "loss": 3.006, + "step": 1230 + }, + { + "epoch": 0.12668242063084353, + "grad_norm": 0.24599948525428772, + "learning_rate": 0.0050657354149548075, + "loss": 2.9954, + "step": 1233 + }, + { + "epoch": 0.12699065036473853, + "grad_norm": 0.1838703751564026, + "learning_rate": 0.005078060805258833, + "loss": 2.9886, + "step": 1236 + }, + { + "epoch": 0.12729888009863352, + "grad_norm": 0.19366377592086792, + "learning_rate": 0.005090386195562859, + "loss": 2.9715, + "step": 1239 + }, + { + "epoch": 0.12760710983252851, + "grad_norm": 0.11911759525537491, + "learning_rate": 0.005102711585866886, + "loss": 2.965, + "step": 1242 + }, + { + "epoch": 0.1279153395664235, + "grad_norm": 0.12456653267145157, + "learning_rate": 0.005115036976170912, + "loss": 2.9343, + "step": 1245 + }, + { + "epoch": 0.1282235693003185, + "grad_norm": 0.322380393743515, + "learning_rate": 0.005127362366474938, + "loss": 2.9604, + "step": 1248 + }, + { + "epoch": 0.1285317990342135, + "grad_norm": 0.40975773334503174, + "learning_rate": 0.005139687756778965, + "loss": 2.9386, + "step": 1251 + }, + { + "epoch": 0.1288400287681085, + "grad_norm": 0.2045045793056488, + "learning_rate": 0.005152013147082991, + "loss": 2.9459, + "step": 1254 + }, + { + "epoch": 0.12914825850200348, + "grad_norm": 0.20005717873573303, + "learning_rate": 0.005164338537387018, + "loss": 2.9631, + "step": 1257 + }, + { + "epoch": 0.12945648823589848, + "grad_norm": 0.18930204212665558, + "learning_rate": 0.0051766639276910435, + "loss": 2.9014, + "step": 1260 + }, + { + "epoch": 0.1297647179697935, + "grad_norm": 0.3180810213088989, + "learning_rate": 0.00518898931799507, + "loss": 2.9242, + "step": 1263 + }, + { + "epoch": 0.1300729477036885, + "grad_norm": 0.17843572795391083, + "learning_rate": 0.005201314708299097, + "loss": 2.9063, + "step": 1266 + }, + { + "epoch": 0.13038117743758348, + "grad_norm": 0.12591248750686646, + "learning_rate": 0.005213640098603123, + "loss": 2.9095, + "step": 1269 + }, + { + "epoch": 0.13068940717147848, + "grad_norm": 0.17976878583431244, + "learning_rate": 0.005225965488907148, + "loss": 2.928, + "step": 1272 + }, + { + "epoch": 0.13099763690537347, + "grad_norm": 0.16759532690048218, + "learning_rate": 0.005238290879211175, + "loss": 2.9202, + "step": 1275 + }, + { + "epoch": 0.13130586663926846, + "grad_norm": 0.27441859245300293, + "learning_rate": 0.0052506162695152014, + "loss": 2.9242, + "step": 1278 + }, + { + "epoch": 0.13161409637316346, + "grad_norm": 0.23654502630233765, + "learning_rate": 0.005262941659819228, + "loss": 2.9175, + "step": 1281 + }, + { + "epoch": 0.13192232610705845, + "grad_norm": 0.3399145007133484, + "learning_rate": 0.005275267050123254, + "loss": 2.9277, + "step": 1284 + }, + { + "epoch": 0.13223055584095345, + "grad_norm": 0.199320450425148, + "learning_rate": 0.00528759244042728, + "loss": 2.9184, + "step": 1287 + }, + { + "epoch": 0.13253878557484847, + "grad_norm": 0.16563403606414795, + "learning_rate": 0.005299917830731307, + "loss": 2.9166, + "step": 1290 + }, + { + "epoch": 0.13284701530874346, + "grad_norm": 0.18119758367538452, + "learning_rate": 0.005312243221035334, + "loss": 2.9239, + "step": 1293 + }, + { + "epoch": 0.13315524504263845, + "grad_norm": 0.1558375358581543, + "learning_rate": 0.0053245686113393585, + "loss": 2.9028, + "step": 1296 + }, + { + "epoch": 0.13346347477653345, + "grad_norm": 0.36665746569633484, + "learning_rate": 0.005336894001643385, + "loss": 2.9081, + "step": 1299 + }, + { + "epoch": 0.13377170451042844, + "grad_norm": 0.186012864112854, + "learning_rate": 0.005349219391947412, + "loss": 2.8836, + "step": 1302 + }, + { + "epoch": 0.13407993424432343, + "grad_norm": 0.14102259278297424, + "learning_rate": 0.005361544782251438, + "loss": 2.8906, + "step": 1305 + }, + { + "epoch": 0.13438816397821843, + "grad_norm": 0.12519022822380066, + "learning_rate": 0.005373870172555464, + "loss": 2.9148, + "step": 1308 + }, + { + "epoch": 0.13469639371211342, + "grad_norm": 0.14027029275894165, + "learning_rate": 0.005386195562859491, + "loss": 2.9108, + "step": 1311 + }, + { + "epoch": 0.13500462344600841, + "grad_norm": 0.2553085684776306, + "learning_rate": 0.005398520953163517, + "loss": 2.8837, + "step": 1314 + }, + { + "epoch": 0.1353128531799034, + "grad_norm": 0.2809675335884094, + "learning_rate": 0.005410846343467544, + "loss": 2.8795, + "step": 1317 + }, + { + "epoch": 0.13562108291379843, + "grad_norm": 0.19451378285884857, + "learning_rate": 0.005423171733771569, + "loss": 2.8648, + "step": 1320 + }, + { + "epoch": 0.13592931264769342, + "grad_norm": 0.22285006940364838, + "learning_rate": 0.005435497124075595, + "loss": 2.8994, + "step": 1323 + }, + { + "epoch": 0.13623754238158842, + "grad_norm": 0.14703693985939026, + "learning_rate": 0.005447822514379622, + "loss": 2.8984, + "step": 1326 + }, + { + "epoch": 0.1365457721154834, + "grad_norm": 0.23260341584682465, + "learning_rate": 0.005460147904683649, + "loss": 2.863, + "step": 1329 + }, + { + "epoch": 0.1368540018493784, + "grad_norm": 0.16448146104812622, + "learning_rate": 0.005472473294987674, + "loss": 2.8895, + "step": 1332 + }, + { + "epoch": 0.1371622315832734, + "grad_norm": 0.1994483470916748, + "learning_rate": 0.005484798685291701, + "loss": 2.9012, + "step": 1335 + }, + { + "epoch": 0.1374704613171684, + "grad_norm": 0.2786753177642822, + "learning_rate": 0.0054971240755957275, + "loss": 2.8753, + "step": 1338 + }, + { + "epoch": 0.13777869105106338, + "grad_norm": 0.13169367611408234, + "learning_rate": 0.005509449465899754, + "loss": 2.8567, + "step": 1341 + }, + { + "epoch": 0.13808692078495838, + "grad_norm": 0.21205192804336548, + "learning_rate": 0.00552177485620378, + "loss": 2.8523, + "step": 1344 + }, + { + "epoch": 0.1383951505188534, + "grad_norm": 0.3462331295013428, + "learning_rate": 0.0055341002465078065, + "loss": 2.881, + "step": 1347 + }, + { + "epoch": 0.1387033802527484, + "grad_norm": 0.26768332719802856, + "learning_rate": 0.005546425636811832, + "loss": 2.8803, + "step": 1350 + }, + { + "epoch": 0.1390116099866434, + "grad_norm": 0.22518084943294525, + "learning_rate": 0.005558751027115859, + "loss": 2.874, + "step": 1353 + }, + { + "epoch": 0.13931983972053838, + "grad_norm": 0.1767919361591339, + "learning_rate": 0.005571076417419885, + "loss": 2.8593, + "step": 1356 + }, + { + "epoch": 0.13962806945443337, + "grad_norm": 0.14405187964439392, + "learning_rate": 0.005583401807723911, + "loss": 2.8576, + "step": 1359 + }, + { + "epoch": 0.13993629918832837, + "grad_norm": 0.15364724397659302, + "learning_rate": 0.005595727198027938, + "loss": 2.856, + "step": 1362 + }, + { + "epoch": 0.14024452892222336, + "grad_norm": 0.26737314462661743, + "learning_rate": 0.005608052588331964, + "loss": 2.8225, + "step": 1365 + }, + { + "epoch": 0.14055275865611835, + "grad_norm": 0.14594382047653198, + "learning_rate": 0.00562037797863599, + "loss": 2.8397, + "step": 1368 + }, + { + "epoch": 0.14086098839001335, + "grad_norm": 0.1974790245294571, + "learning_rate": 0.005632703368940017, + "loss": 2.8294, + "step": 1371 + }, + { + "epoch": 0.14116921812390834, + "grad_norm": 0.12267682701349258, + "learning_rate": 0.005645028759244043, + "loss": 2.8543, + "step": 1374 + }, + { + "epoch": 0.14147744785780336, + "grad_norm": 0.14111129939556122, + "learning_rate": 0.00565735414954807, + "loss": 2.8181, + "step": 1377 + }, + { + "epoch": 0.14178567759169836, + "grad_norm": 0.1846015751361847, + "learning_rate": 0.005669679539852095, + "loss": 2.8272, + "step": 1380 + }, + { + "epoch": 0.14209390732559335, + "grad_norm": 0.26931676268577576, + "learning_rate": 0.0056820049301561214, + "loss": 2.8286, + "step": 1383 + }, + { + "epoch": 0.14240213705948834, + "grad_norm": 0.17969557642936707, + "learning_rate": 0.005694330320460148, + "loss": 2.8315, + "step": 1386 + }, + { + "epoch": 0.14271036679338334, + "grad_norm": 0.2056432068347931, + "learning_rate": 0.005706655710764175, + "loss": 2.835, + "step": 1389 + }, + { + "epoch": 0.14301859652727833, + "grad_norm": 0.29306477308273315, + "learning_rate": 0.0057189811010682, + "loss": 2.8294, + "step": 1392 + }, + { + "epoch": 0.14332682626117332, + "grad_norm": 0.1792561262845993, + "learning_rate": 0.005731306491372227, + "loss": 2.8321, + "step": 1395 + }, + { + "epoch": 0.14363505599506832, + "grad_norm": 0.11323501914739609, + "learning_rate": 0.005743631881676254, + "loss": 2.83, + "step": 1398 + }, + { + "epoch": 0.1439432857289633, + "grad_norm": 0.2804841101169586, + "learning_rate": 0.00575595727198028, + "loss": 2.8271, + "step": 1401 + }, + { + "epoch": 0.1442515154628583, + "grad_norm": 0.33056163787841797, + "learning_rate": 0.005768282662284305, + "loss": 2.7976, + "step": 1404 + }, + { + "epoch": 0.14455974519675333, + "grad_norm": 0.12834665179252625, + "learning_rate": 0.005780608052588332, + "loss": 2.8169, + "step": 1407 + }, + { + "epoch": 0.14486797493064832, + "grad_norm": 0.15917035937309265, + "learning_rate": 0.005792933442892358, + "loss": 2.8124, + "step": 1410 + }, + { + "epoch": 0.1451762046645433, + "grad_norm": 0.28015008568763733, + "learning_rate": 0.005805258833196385, + "loss": 2.8019, + "step": 1413 + }, + { + "epoch": 0.1454844343984383, + "grad_norm": 0.16829009354114532, + "learning_rate": 0.005817584223500411, + "loss": 2.8357, + "step": 1416 + }, + { + "epoch": 0.1457926641323333, + "grad_norm": 0.14804339408874512, + "learning_rate": 0.005829909613804437, + "loss": 2.8102, + "step": 1419 + }, + { + "epoch": 0.1461008938662283, + "grad_norm": 0.20360830426216125, + "learning_rate": 0.005842235004108464, + "loss": 2.8211, + "step": 1422 + }, + { + "epoch": 0.1464091236001233, + "grad_norm": 0.22152036428451538, + "learning_rate": 0.0058545603944124905, + "loss": 2.8103, + "step": 1425 + }, + { + "epoch": 0.14671735333401828, + "grad_norm": 0.20746375620365143, + "learning_rate": 0.005866885784716516, + "loss": 2.7994, + "step": 1428 + }, + { + "epoch": 0.14702558306791327, + "grad_norm": 0.16845661401748657, + "learning_rate": 0.005879211175020542, + "loss": 2.8286, + "step": 1431 + }, + { + "epoch": 0.1473338128018083, + "grad_norm": 0.1094370111823082, + "learning_rate": 0.005891536565324569, + "loss": 2.7888, + "step": 1434 + }, + { + "epoch": 0.1476420425357033, + "grad_norm": 0.14844520390033722, + "learning_rate": 0.005903861955628595, + "loss": 2.8035, + "step": 1437 + }, + { + "epoch": 0.14795027226959828, + "grad_norm": 0.12289691716432571, + "learning_rate": 0.005916187345932621, + "loss": 2.7852, + "step": 1440 + }, + { + "epoch": 0.14825850200349328, + "grad_norm": 0.1203322485089302, + "learning_rate": 0.0059285127362366475, + "loss": 2.8101, + "step": 1443 + }, + { + "epoch": 0.14856673173738827, + "grad_norm": 0.1871965080499649, + "learning_rate": 0.005940838126540674, + "loss": 2.7485, + "step": 1446 + }, + { + "epoch": 0.14887496147128326, + "grad_norm": 0.1567300707101822, + "learning_rate": 0.005953163516844701, + "loss": 2.8097, + "step": 1449 + }, + { + "epoch": 0.14918319120517826, + "grad_norm": 0.18046674132347107, + "learning_rate": 0.0059654889071487265, + "loss": 2.8118, + "step": 1452 + }, + { + "epoch": 0.14949142093907325, + "grad_norm": 0.23180244863033295, + "learning_rate": 0.005977814297452753, + "loss": 2.7836, + "step": 1455 + }, + { + "epoch": 0.14979965067296824, + "grad_norm": 0.2300175577402115, + "learning_rate": 0.00599013968775678, + "loss": 2.7675, + "step": 1458 + }, + { + "epoch": 0.15010788040686324, + "grad_norm": 0.11340396106243134, + "learning_rate": 0.006002465078060806, + "loss": 2.8012, + "step": 1461 + }, + { + "epoch": 0.15041611014075826, + "grad_norm": 0.10667074471712112, + "learning_rate": 0.006014790468364831, + "loss": 2.8154, + "step": 1464 + }, + { + "epoch": 0.15072433987465325, + "grad_norm": 0.10800652205944061, + "learning_rate": 0.006027115858668858, + "loss": 2.7646, + "step": 1467 + }, + { + "epoch": 0.15103256960854824, + "grad_norm": 0.2588643431663513, + "learning_rate": 0.006039441248972884, + "loss": 2.7912, + "step": 1470 + }, + { + "epoch": 0.15134079934244324, + "grad_norm": 0.32462435960769653, + "learning_rate": 0.006051766639276911, + "loss": 2.7666, + "step": 1473 + }, + { + "epoch": 0.15164902907633823, + "grad_norm": 0.23754975199699402, + "learning_rate": 0.006064092029580937, + "loss": 2.7694, + "step": 1476 + }, + { + "epoch": 0.15195725881023323, + "grad_norm": 0.14895015954971313, + "learning_rate": 0.006076417419884963, + "loss": 2.7678, + "step": 1479 + }, + { + "epoch": 0.15226548854412822, + "grad_norm": 0.3228299021720886, + "learning_rate": 0.00608874281018899, + "loss": 2.7786, + "step": 1482 + }, + { + "epoch": 0.1525737182780232, + "grad_norm": 0.15597562491893768, + "learning_rate": 0.006101068200493017, + "loss": 2.7967, + "step": 1485 + }, + { + "epoch": 0.1528819480119182, + "grad_norm": 0.09748488664627075, + "learning_rate": 0.0061133935907970414, + "loss": 2.7673, + "step": 1488 + }, + { + "epoch": 0.1531901777458132, + "grad_norm": 0.12523339688777924, + "learning_rate": 0.006125718981101068, + "loss": 2.7391, + "step": 1491 + }, + { + "epoch": 0.15349840747970822, + "grad_norm": 0.16529253125190735, + "learning_rate": 0.006138044371405095, + "loss": 2.7642, + "step": 1494 + }, + { + "epoch": 0.15380663721360321, + "grad_norm": 0.2083311527967453, + "learning_rate": 0.006150369761709121, + "loss": 2.764, + "step": 1497 + }, + { + "epoch": 0.1541148669474982, + "grad_norm": 0.13263079524040222, + "learning_rate": 0.006162695152013147, + "loss": 2.7828, + "step": 1500 + }, + { + "epoch": 0.1544230966813932, + "grad_norm": 0.1473417580127716, + "learning_rate": 0.006175020542317174, + "loss": 2.7574, + "step": 1503 + }, + { + "epoch": 0.1547313264152882, + "grad_norm": 0.22629734873771667, + "learning_rate": 0.0061873459326212, + "loss": 2.7792, + "step": 1506 + }, + { + "epoch": 0.1550395561491832, + "grad_norm": 0.21652548015117645, + "learning_rate": 0.006199671322925227, + "loss": 2.7785, + "step": 1509 + }, + { + "epoch": 0.15534778588307818, + "grad_norm": 0.1948641836643219, + "learning_rate": 0.006211996713229252, + "loss": 2.7969, + "step": 1512 + }, + { + "epoch": 0.15565601561697318, + "grad_norm": 0.13890105485916138, + "learning_rate": 0.006224322103533278, + "loss": 2.7856, + "step": 1515 + }, + { + "epoch": 0.15596424535086817, + "grad_norm": 0.09859870374202728, + "learning_rate": 0.006236647493837305, + "loss": 2.7523, + "step": 1518 + }, + { + "epoch": 0.1562724750847632, + "grad_norm": 0.10258977860212326, + "learning_rate": 0.0062489728841413315, + "loss": 2.7466, + "step": 1521 + }, + { + "epoch": 0.15658070481865818, + "grad_norm": 0.11476584523916245, + "learning_rate": 0.006261298274445357, + "loss": 2.7314, + "step": 1524 + }, + { + "epoch": 0.15688893455255318, + "grad_norm": 0.1920320987701416, + "learning_rate": 0.006273623664749384, + "loss": 2.7647, + "step": 1527 + }, + { + "epoch": 0.15719716428644817, + "grad_norm": 0.18576020002365112, + "learning_rate": 0.0062859490550534105, + "loss": 2.7632, + "step": 1530 + }, + { + "epoch": 0.15750539402034316, + "grad_norm": 0.128046452999115, + "learning_rate": 0.006298274445357437, + "loss": 2.7237, + "step": 1533 + }, + { + "epoch": 0.15781362375423816, + "grad_norm": 0.30617430806159973, + "learning_rate": 0.006310599835661463, + "loss": 2.7907, + "step": 1536 + }, + { + "epoch": 0.15812185348813315, + "grad_norm": 0.140928253531456, + "learning_rate": 0.0063229252259654894, + "loss": 2.7879, + "step": 1539 + }, + { + "epoch": 0.15843008322202815, + "grad_norm": 0.2537645399570465, + "learning_rate": 0.006335250616269515, + "loss": 2.7513, + "step": 1542 + }, + { + "epoch": 0.15873831295592314, + "grad_norm": 0.40944191813468933, + "learning_rate": 0.006347576006573542, + "loss": 2.7418, + "step": 1545 + }, + { + "epoch": 0.15904654268981813, + "grad_norm": 0.1284068077802658, + "learning_rate": 0.0063599013968775675, + "loss": 2.7235, + "step": 1548 + }, + { + "epoch": 0.15935477242371315, + "grad_norm": 0.08984164893627167, + "learning_rate": 0.006372226787181594, + "loss": 2.7414, + "step": 1551 + }, + { + "epoch": 0.15966300215760815, + "grad_norm": 0.13366155326366425, + "learning_rate": 0.006384552177485621, + "loss": 2.7456, + "step": 1554 + }, + { + "epoch": 0.15997123189150314, + "grad_norm": 0.1179983913898468, + "learning_rate": 0.006396877567789647, + "loss": 2.7313, + "step": 1557 + }, + { + "epoch": 0.16027946162539813, + "grad_norm": 0.15718503296375275, + "learning_rate": 0.006409202958093673, + "loss": 2.7315, + "step": 1560 + }, + { + "epoch": 0.16058769135929313, + "grad_norm": 0.14405110478401184, + "learning_rate": 0.0064215283483977, + "loss": 2.7275, + "step": 1563 + }, + { + "epoch": 0.16089592109318812, + "grad_norm": 0.13050544261932373, + "learning_rate": 0.006433853738701726, + "loss": 2.6935, + "step": 1566 + }, + { + "epoch": 0.16120415082708311, + "grad_norm": 0.2343079298734665, + "learning_rate": 0.006446179129005751, + "loss": 2.6932, + "step": 1569 + }, + { + "epoch": 0.1615123805609781, + "grad_norm": 0.2493698000907898, + "learning_rate": 0.006458504519309778, + "loss": 2.7414, + "step": 1572 + }, + { + "epoch": 0.1618206102948731, + "grad_norm": 0.17371931672096252, + "learning_rate": 0.006470829909613804, + "loss": 2.7522, + "step": 1575 + }, + { + "epoch": 0.1621288400287681, + "grad_norm": 0.16282691061496735, + "learning_rate": 0.006483155299917831, + "loss": 2.7659, + "step": 1578 + }, + { + "epoch": 0.16243706976266312, + "grad_norm": 0.12791027128696442, + "learning_rate": 0.006495480690221857, + "loss": 2.7077, + "step": 1581 + }, + { + "epoch": 0.1627452994965581, + "grad_norm": 0.09789251536130905, + "learning_rate": 0.006507806080525883, + "loss": 2.7041, + "step": 1584 + }, + { + "epoch": 0.1630535292304531, + "grad_norm": 0.10156393051147461, + "learning_rate": 0.00652013147082991, + "loss": 2.685, + "step": 1587 + }, + { + "epoch": 0.1633617589643481, + "grad_norm": 0.1974211484193802, + "learning_rate": 0.006532456861133937, + "loss": 2.7183, + "step": 1590 + }, + { + "epoch": 0.1636699886982431, + "grad_norm": 0.1420728713274002, + "learning_rate": 0.0065447822514379615, + "loss": 2.7095, + "step": 1593 + }, + { + "epoch": 0.16397821843213808, + "grad_norm": 0.3637617528438568, + "learning_rate": 0.006557107641741988, + "loss": 2.7578, + "step": 1596 + }, + { + "epoch": 0.16428644816603308, + "grad_norm": 0.09830935299396515, + "learning_rate": 0.006569433032046015, + "loss": 2.6937, + "step": 1599 + }, + { + "epoch": 0.16459467789992807, + "grad_norm": 0.15821218490600586, + "learning_rate": 0.006581758422350041, + "loss": 2.7031, + "step": 1602 + }, + { + "epoch": 0.16490290763382306, + "grad_norm": 0.17226357758045197, + "learning_rate": 0.006594083812654067, + "loss": 2.6702, + "step": 1605 + }, + { + "epoch": 0.16521113736771809, + "grad_norm": 0.21252015233039856, + "learning_rate": 0.006606409202958094, + "loss": 2.6893, + "step": 1608 + }, + { + "epoch": 0.16551936710161308, + "grad_norm": 0.11433108150959015, + "learning_rate": 0.00661873459326212, + "loss": 2.6852, + "step": 1611 + }, + { + "epoch": 0.16582759683550807, + "grad_norm": 0.15884144604206085, + "learning_rate": 0.006631059983566147, + "loss": 2.7164, + "step": 1614 + }, + { + "epoch": 0.16613582656940307, + "grad_norm": 0.1429038643836975, + "learning_rate": 0.006643385373870173, + "loss": 2.6976, + "step": 1617 + }, + { + "epoch": 0.16644405630329806, + "grad_norm": 0.09187953919172287, + "learning_rate": 0.006655710764174198, + "loss": 2.7134, + "step": 1620 + }, + { + "epoch": 0.16675228603719305, + "grad_norm": 0.13670755922794342, + "learning_rate": 0.006668036154478225, + "loss": 2.6951, + "step": 1623 + }, + { + "epoch": 0.16706051577108805, + "grad_norm": 0.17965632677078247, + "learning_rate": 0.0066803615447822515, + "loss": 2.6911, + "step": 1626 + }, + { + "epoch": 0.16736874550498304, + "grad_norm": 0.21141032874584198, + "learning_rate": 0.006692686935086277, + "loss": 2.67, + "step": 1629 + }, + { + "epoch": 0.16767697523887803, + "grad_norm": 0.30064719915390015, + "learning_rate": 0.006705012325390304, + "loss": 2.6837, + "step": 1632 + }, + { + "epoch": 0.16798520497277303, + "grad_norm": 0.11874115467071533, + "learning_rate": 0.0067173377156943305, + "loss": 2.6968, + "step": 1635 + }, + { + "epoch": 0.16829343470666805, + "grad_norm": 0.10265806317329407, + "learning_rate": 0.006729663105998357, + "loss": 2.6632, + "step": 1638 + }, + { + "epoch": 0.16860166444056304, + "grad_norm": 0.10916320979595184, + "learning_rate": 0.006741988496302383, + "loss": 2.6749, + "step": 1641 + }, + { + "epoch": 0.16890989417445804, + "grad_norm": 0.2549231946468353, + "learning_rate": 0.0067543138866064095, + "loss": 2.636, + "step": 1644 + }, + { + "epoch": 0.16921812390835303, + "grad_norm": 0.15071339905261993, + "learning_rate": 0.006766639276910436, + "loss": 2.6933, + "step": 1647 + }, + { + "epoch": 0.16952635364224802, + "grad_norm": 0.1088666021823883, + "learning_rate": 0.006778964667214463, + "loss": 2.6477, + "step": 1650 + }, + { + "epoch": 0.16983458337614302, + "grad_norm": 0.0984036773443222, + "learning_rate": 0.0067912900575184875, + "loss": 2.6801, + "step": 1653 + }, + { + "epoch": 0.170142813110038, + "grad_norm": 0.15402089059352875, + "learning_rate": 0.006803615447822514, + "loss": 2.6877, + "step": 1656 + }, + { + "epoch": 0.170451042843933, + "grad_norm": 0.1299775093793869, + "learning_rate": 0.006815940838126541, + "loss": 2.6717, + "step": 1659 + }, + { + "epoch": 0.170759272577828, + "grad_norm": 0.15615323185920715, + "learning_rate": 0.006828266228430567, + "loss": 2.6578, + "step": 1662 + }, + { + "epoch": 0.171067502311723, + "grad_norm": 0.122567318379879, + "learning_rate": 0.006840591618734593, + "loss": 2.6959, + "step": 1665 + }, + { + "epoch": 0.171375732045618, + "grad_norm": 0.1386043280363083, + "learning_rate": 0.00685291700903862, + "loss": 2.6491, + "step": 1668 + }, + { + "epoch": 0.171683961779513, + "grad_norm": 0.1900375783443451, + "learning_rate": 0.006865242399342646, + "loss": 2.6643, + "step": 1671 + }, + { + "epoch": 0.171992191513408, + "grad_norm": 0.1118064671754837, + "learning_rate": 0.006877567789646673, + "loss": 2.6496, + "step": 1674 + }, + { + "epoch": 0.172300421247303, + "grad_norm": 0.1593448519706726, + "learning_rate": 0.006889893179950698, + "loss": 2.6833, + "step": 1677 + }, + { + "epoch": 0.172608650981198, + "grad_norm": 0.17275281250476837, + "learning_rate": 0.006902218570254724, + "loss": 2.6909, + "step": 1680 + }, + { + "epoch": 0.17291688071509298, + "grad_norm": 0.13396479189395905, + "learning_rate": 0.006914543960558751, + "loss": 2.692, + "step": 1683 + }, + { + "epoch": 0.17322511044898797, + "grad_norm": 0.09812068939208984, + "learning_rate": 0.006926869350862778, + "loss": 2.6939, + "step": 1686 + }, + { + "epoch": 0.17353334018288297, + "grad_norm": 0.08181022852659225, + "learning_rate": 0.006939194741166803, + "loss": 2.6408, + "step": 1689 + }, + { + "epoch": 0.17384156991677796, + "grad_norm": 0.15573051571846008, + "learning_rate": 0.00695152013147083, + "loss": 2.6647, + "step": 1692 + }, + { + "epoch": 0.17414979965067298, + "grad_norm": 0.2834240198135376, + "learning_rate": 0.006963845521774857, + "loss": 2.6585, + "step": 1695 + }, + { + "epoch": 0.17445802938456798, + "grad_norm": 0.23794801533222198, + "learning_rate": 0.006976170912078883, + "loss": 2.6559, + "step": 1698 + }, + { + "epoch": 0.17476625911846297, + "grad_norm": 0.1332167536020279, + "learning_rate": 0.006988496302382908, + "loss": 2.6695, + "step": 1701 + }, + { + "epoch": 0.17507448885235796, + "grad_norm": 0.09555593878030777, + "learning_rate": 0.007000821692686935, + "loss": 2.6811, + "step": 1704 + }, + { + "epoch": 0.17538271858625296, + "grad_norm": 0.10987939685583115, + "learning_rate": 0.007013147082990961, + "loss": 2.6524, + "step": 1707 + }, + { + "epoch": 0.17569094832014795, + "grad_norm": 0.11458218097686768, + "learning_rate": 0.007025472473294988, + "loss": 2.6085, + "step": 1710 + }, + { + "epoch": 0.17599917805404294, + "grad_norm": 0.12646709382534027, + "learning_rate": 0.007037797863599014, + "loss": 2.6561, + "step": 1713 + }, + { + "epoch": 0.17630740778793794, + "grad_norm": 0.15338967740535736, + "learning_rate": 0.00705012325390304, + "loss": 2.6471, + "step": 1716 + }, + { + "epoch": 0.17661563752183293, + "grad_norm": 0.14660318195819855, + "learning_rate": 0.007062448644207067, + "loss": 2.6532, + "step": 1719 + }, + { + "epoch": 0.17692386725572792, + "grad_norm": 0.2730877995491028, + "learning_rate": 0.0070747740345110935, + "loss": 2.6565, + "step": 1722 + }, + { + "epoch": 0.17723209698962294, + "grad_norm": 0.26743727922439575, + "learning_rate": 0.007087099424815119, + "loss": 2.6707, + "step": 1725 + }, + { + "epoch": 0.17754032672351794, + "grad_norm": 0.13842618465423584, + "learning_rate": 0.007099424815119146, + "loss": 2.6652, + "step": 1728 + }, + { + "epoch": 0.17784855645741293, + "grad_norm": 0.15871621668338776, + "learning_rate": 0.0071117502054231715, + "loss": 2.6464, + "step": 1731 + }, + { + "epoch": 0.17815678619130793, + "grad_norm": 0.11526347696781158, + "learning_rate": 0.007124075595727198, + "loss": 2.662, + "step": 1734 + }, + { + "epoch": 0.17846501592520292, + "grad_norm": 0.21620534360408783, + "learning_rate": 0.007136400986031224, + "loss": 2.6603, + "step": 1737 + }, + { + "epoch": 0.1787732456590979, + "grad_norm": 0.0905444398522377, + "learning_rate": 0.0071487263763352505, + "loss": 2.6523, + "step": 1740 + }, + { + "epoch": 0.1790814753929929, + "grad_norm": 0.28233054280281067, + "learning_rate": 0.007161051766639277, + "loss": 2.6597, + "step": 1743 + }, + { + "epoch": 0.1793897051268879, + "grad_norm": 0.2363336831331253, + "learning_rate": 0.007173377156943304, + "loss": 2.6483, + "step": 1746 + }, + { + "epoch": 0.1796979348607829, + "grad_norm": 0.11012139916419983, + "learning_rate": 0.0071857025472473295, + "loss": 2.6513, + "step": 1749 + }, + { + "epoch": 0.1800061645946779, + "grad_norm": 0.09720948338508606, + "learning_rate": 0.007198027937551356, + "loss": 2.6511, + "step": 1752 + }, + { + "epoch": 0.1803143943285729, + "grad_norm": 0.13130852580070496, + "learning_rate": 0.007210353327855383, + "loss": 2.6509, + "step": 1755 + }, + { + "epoch": 0.1806226240624679, + "grad_norm": 0.14865098893642426, + "learning_rate": 0.007222678718159409, + "loss": 2.6253, + "step": 1758 + }, + { + "epoch": 0.1809308537963629, + "grad_norm": 0.20482710003852844, + "learning_rate": 0.007235004108463434, + "loss": 2.6312, + "step": 1761 + }, + { + "epoch": 0.1812390835302579, + "grad_norm": 0.12063097953796387, + "learning_rate": 0.007247329498767461, + "loss": 2.6007, + "step": 1764 + }, + { + "epoch": 0.18154731326415288, + "grad_norm": 0.23084934055805206, + "learning_rate": 0.007259654889071487, + "loss": 2.6129, + "step": 1767 + }, + { + "epoch": 0.18185554299804788, + "grad_norm": 0.10387217253446579, + "learning_rate": 0.007271980279375514, + "loss": 2.6309, + "step": 1770 + }, + { + "epoch": 0.18216377273194287, + "grad_norm": 0.14229682087898254, + "learning_rate": 0.00728430566967954, + "loss": 2.6074, + "step": 1773 + }, + { + "epoch": 0.18247200246583786, + "grad_norm": 0.12009115517139435, + "learning_rate": 0.007296631059983566, + "loss": 2.6407, + "step": 1776 + }, + { + "epoch": 0.18278023219973286, + "grad_norm": 0.15677185356616974, + "learning_rate": 0.007308956450287593, + "loss": 2.6268, + "step": 1779 + }, + { + "epoch": 0.18308846193362788, + "grad_norm": 0.13304303586483002, + "learning_rate": 0.0073212818405916195, + "loss": 2.6463, + "step": 1782 + }, + { + "epoch": 0.18339669166752287, + "grad_norm": 0.15444768965244293, + "learning_rate": 0.007333607230895644, + "loss": 2.6218, + "step": 1785 + }, + { + "epoch": 0.18370492140141786, + "grad_norm": 0.1738140732049942, + "learning_rate": 0.007345932621199671, + "loss": 2.6525, + "step": 1788 + }, + { + "epoch": 0.18401315113531286, + "grad_norm": 0.13087227940559387, + "learning_rate": 0.007358258011503698, + "loss": 2.6266, + "step": 1791 + }, + { + "epoch": 0.18432138086920785, + "grad_norm": 0.1026511862874031, + "learning_rate": 0.007370583401807724, + "loss": 2.6017, + "step": 1794 + }, + { + "epoch": 0.18462961060310285, + "grad_norm": 0.11183813214302063, + "learning_rate": 0.00738290879211175, + "loss": 2.5966, + "step": 1797 + }, + { + "epoch": 0.18493784033699784, + "grad_norm": 0.12239934504032135, + "learning_rate": 0.007395234182415777, + "loss": 2.6205, + "step": 1800 + }, + { + "epoch": 0.18524607007089283, + "grad_norm": 0.2630854845046997, + "learning_rate": 0.007407559572719803, + "loss": 2.609, + "step": 1803 + }, + { + "epoch": 0.18555429980478783, + "grad_norm": 0.24282613396644592, + "learning_rate": 0.00741988496302383, + "loss": 2.6405, + "step": 1806 + }, + { + "epoch": 0.18586252953868282, + "grad_norm": 0.2825084328651428, + "learning_rate": 0.007432210353327855, + "loss": 2.5933, + "step": 1809 + }, + { + "epoch": 0.18617075927257784, + "grad_norm": 0.26462721824645996, + "learning_rate": 0.007444535743631881, + "loss": 2.6021, + "step": 1812 + }, + { + "epoch": 0.18647898900647283, + "grad_norm": 0.11797992140054703, + "learning_rate": 0.007456861133935908, + "loss": 2.6246, + "step": 1815 + }, + { + "epoch": 0.18678721874036783, + "grad_norm": 0.14044708013534546, + "learning_rate": 0.0074691865242399345, + "loss": 2.6028, + "step": 1818 + }, + { + "epoch": 0.18709544847426282, + "grad_norm": 0.1374548226594925, + "learning_rate": 0.00748151191454396, + "loss": 2.6092, + "step": 1821 + }, + { + "epoch": 0.18740367820815781, + "grad_norm": 0.10084279626607895, + "learning_rate": 0.007493837304847987, + "loss": 2.6162, + "step": 1824 + }, + { + "epoch": 0.1877119079420528, + "grad_norm": 0.1052001565694809, + "learning_rate": 0.0075061626951520135, + "loss": 2.5742, + "step": 1827 + }, + { + "epoch": 0.1880201376759478, + "grad_norm": 0.11738535761833191, + "learning_rate": 0.00751848808545604, + "loss": 2.5715, + "step": 1830 + }, + { + "epoch": 0.1883283674098428, + "grad_norm": 0.10453224182128906, + "learning_rate": 0.007530813475760066, + "loss": 2.5896, + "step": 1833 + }, + { + "epoch": 0.1886365971437378, + "grad_norm": 0.10509374737739563, + "learning_rate": 0.007543138866064092, + "loss": 2.6047, + "step": 1836 + }, + { + "epoch": 0.18894482687763278, + "grad_norm": 0.11291799694299698, + "learning_rate": 0.007555464256368119, + "loss": 2.6062, + "step": 1839 + }, + { + "epoch": 0.1892530566115278, + "grad_norm": 0.11998583376407623, + "learning_rate": 0.007567789646672146, + "loss": 2.629, + "step": 1842 + }, + { + "epoch": 0.1895612863454228, + "grad_norm": 0.21776226162910461, + "learning_rate": 0.0075801150369761705, + "loss": 2.5847, + "step": 1845 + }, + { + "epoch": 0.1898695160793178, + "grad_norm": 0.210985466837883, + "learning_rate": 0.007592440427280197, + "loss": 2.5901, + "step": 1848 + }, + { + "epoch": 0.19017774581321278, + "grad_norm": 0.11799308657646179, + "learning_rate": 0.007604765817584224, + "loss": 2.5893, + "step": 1851 + }, + { + "epoch": 0.19048597554710778, + "grad_norm": 0.10019934922456741, + "learning_rate": 0.00761709120788825, + "loss": 2.6327, + "step": 1854 + }, + { + "epoch": 0.19079420528100277, + "grad_norm": 0.07964596897363663, + "learning_rate": 0.007629416598192276, + "loss": 2.5921, + "step": 1857 + }, + { + "epoch": 0.19110243501489776, + "grad_norm": 0.16393065452575684, + "learning_rate": 0.007641741988496303, + "loss": 2.5912, + "step": 1860 + }, + { + "epoch": 0.19141066474879276, + "grad_norm": 0.324639230966568, + "learning_rate": 0.007654067378800329, + "loss": 2.5998, + "step": 1863 + }, + { + "epoch": 0.19171889448268775, + "grad_norm": 0.14071421325206757, + "learning_rate": 0.007666392769104356, + "loss": 2.5803, + "step": 1866 + }, + { + "epoch": 0.19202712421658277, + "grad_norm": 0.20063026249408722, + "learning_rate": 0.007678718159408381, + "loss": 2.6019, + "step": 1869 + }, + { + "epoch": 0.19233535395047777, + "grad_norm": 0.11311519891023636, + "learning_rate": 0.007691043549712407, + "loss": 2.5645, + "step": 1872 + }, + { + "epoch": 0.19264358368437276, + "grad_norm": 0.08542342483997345, + "learning_rate": 0.007703368940016434, + "loss": 2.6122, + "step": 1875 + }, + { + "epoch": 0.19295181341826775, + "grad_norm": 0.08306868374347687, + "learning_rate": 0.007715694330320461, + "loss": 2.5859, + "step": 1878 + }, + { + "epoch": 0.19326004315216275, + "grad_norm": 0.11635984480381012, + "learning_rate": 0.007728019720624486, + "loss": 2.5855, + "step": 1881 + }, + { + "epoch": 0.19356827288605774, + "grad_norm": 0.08945252746343613, + "learning_rate": 0.007740345110928513, + "loss": 2.5509, + "step": 1884 + }, + { + "epoch": 0.19387650261995273, + "grad_norm": 0.19044962525367737, + "learning_rate": 0.0077526705012325395, + "loss": 2.559, + "step": 1887 + }, + { + "epoch": 0.19418473235384773, + "grad_norm": 0.1462780088186264, + "learning_rate": 0.007764995891536566, + "loss": 2.5749, + "step": 1890 + }, + { + "epoch": 0.19449296208774272, + "grad_norm": 0.15944691002368927, + "learning_rate": 0.007777321281840591, + "loss": 2.5801, + "step": 1893 + }, + { + "epoch": 0.19480119182163771, + "grad_norm": 0.10125305503606796, + "learning_rate": 0.007789646672144618, + "loss": 2.5821, + "step": 1896 + }, + { + "epoch": 0.19510942155553274, + "grad_norm": 0.17344938218593597, + "learning_rate": 0.007801972062448644, + "loss": 2.5905, + "step": 1899 + }, + { + "epoch": 0.19541765128942773, + "grad_norm": 0.16651591658592224, + "learning_rate": 0.007814297452752672, + "loss": 2.5668, + "step": 1902 + }, + { + "epoch": 0.19572588102332272, + "grad_norm": 0.17417702078819275, + "learning_rate": 0.007826622843056696, + "loss": 2.568, + "step": 1905 + }, + { + "epoch": 0.19603411075721772, + "grad_norm": 0.11182334274053574, + "learning_rate": 0.007838948233360723, + "loss": 2.5547, + "step": 1908 + }, + { + "epoch": 0.1963423404911127, + "grad_norm": 0.23256631195545197, + "learning_rate": 0.007851273623664749, + "loss": 2.5722, + "step": 1911 + }, + { + "epoch": 0.1966505702250077, + "grad_norm": 0.18180392682552338, + "learning_rate": 0.007863599013968776, + "loss": 2.558, + "step": 1914 + }, + { + "epoch": 0.1969587999589027, + "grad_norm": 0.12168890237808228, + "learning_rate": 0.007875924404272802, + "loss": 2.5977, + "step": 1917 + }, + { + "epoch": 0.1972670296927977, + "grad_norm": 0.11032187938690186, + "learning_rate": 0.007888249794576828, + "loss": 2.5846, + "step": 1920 + }, + { + "epoch": 0.19757525942669268, + "grad_norm": 0.0740116760134697, + "learning_rate": 0.007900575184880855, + "loss": 2.5824, + "step": 1923 + }, + { + "epoch": 0.19788348916058768, + "grad_norm": 0.05902474746108055, + "learning_rate": 0.007912900575184881, + "loss": 2.5497, + "step": 1926 + }, + { + "epoch": 0.1981917188944827, + "grad_norm": 0.09003309905529022, + "learning_rate": 0.007925225965488907, + "loss": 2.5523, + "step": 1929 + }, + { + "epoch": 0.1984999486283777, + "grad_norm": 0.4191035330295563, + "learning_rate": 0.007937551355792934, + "loss": 2.6223, + "step": 1932 + }, + { + "epoch": 0.1988081783622727, + "grad_norm": 0.17093214392662048, + "learning_rate": 0.00794987674609696, + "loss": 2.5647, + "step": 1935 + }, + { + "epoch": 0.19911640809616768, + "grad_norm": 0.0921127051115036, + "learning_rate": 0.007962202136400986, + "loss": 2.564, + "step": 1938 + }, + { + "epoch": 0.19942463783006267, + "grad_norm": 0.14204134047031403, + "learning_rate": 0.007974527526705012, + "loss": 2.5972, + "step": 1941 + }, + { + "epoch": 0.19973286756395767, + "grad_norm": 0.07556895911693573, + "learning_rate": 0.007986852917009039, + "loss": 2.5796, + "step": 1944 + }, + { + "epoch": 0.20004109729785266, + "grad_norm": 0.07290320843458176, + "learning_rate": 0.007999178307313065, + "loss": 2.5564, + "step": 1947 + }, + { + "epoch": 0.20034932703174765, + "grad_norm": 0.1624913364648819, + "learning_rate": 0.008011503697617092, + "loss": 2.5849, + "step": 1950 + }, + { + "epoch": 0.20065755676564265, + "grad_norm": 0.11839967221021652, + "learning_rate": 0.008023829087921118, + "loss": 2.5611, + "step": 1953 + }, + { + "epoch": 0.20096578649953767, + "grad_norm": 0.14280788600444794, + "learning_rate": 0.008036154478225144, + "loss": 2.5289, + "step": 1956 + }, + { + "epoch": 0.20127401623343266, + "grad_norm": 0.11515247821807861, + "learning_rate": 0.008048479868529171, + "loss": 2.5678, + "step": 1959 + }, + { + "epoch": 0.20158224596732766, + "grad_norm": 0.1147715225815773, + "learning_rate": 0.008060805258833197, + "loss": 2.5452, + "step": 1962 + }, + { + "epoch": 0.20189047570122265, + "grad_norm": 0.09767001122236252, + "learning_rate": 0.008073130649137223, + "loss": 2.6023, + "step": 1965 + }, + { + "epoch": 0.20219870543511764, + "grad_norm": 0.0866391509771347, + "learning_rate": 0.008085456039441248, + "loss": 2.5518, + "step": 1968 + }, + { + "epoch": 0.20250693516901264, + "grad_norm": 0.1610632985830307, + "learning_rate": 0.008097781429745276, + "loss": 2.5271, + "step": 1971 + }, + { + "epoch": 0.20281516490290763, + "grad_norm": 0.20238341391086578, + "learning_rate": 0.008110106820049302, + "loss": 2.5597, + "step": 1974 + }, + { + "epoch": 0.20312339463680262, + "grad_norm": 0.11807162314653397, + "learning_rate": 0.008122432210353327, + "loss": 2.5663, + "step": 1977 + }, + { + "epoch": 0.20343162437069762, + "grad_norm": 0.14654900133609772, + "learning_rate": 0.008134757600657355, + "loss": 2.5729, + "step": 1980 + }, + { + "epoch": 0.2037398541045926, + "grad_norm": 0.17804567515850067, + "learning_rate": 0.00814708299096138, + "loss": 2.5658, + "step": 1983 + }, + { + "epoch": 0.20404808383848763, + "grad_norm": 0.12376303225755692, + "learning_rate": 0.008159408381265408, + "loss": 2.5703, + "step": 1986 + }, + { + "epoch": 0.20435631357238263, + "grad_norm": 0.1248418316245079, + "learning_rate": 0.008171733771569432, + "loss": 2.5328, + "step": 1989 + }, + { + "epoch": 0.20466454330627762, + "grad_norm": 0.08159278333187103, + "learning_rate": 0.00818405916187346, + "loss": 2.5349, + "step": 1992 + }, + { + "epoch": 0.2049727730401726, + "grad_norm": 0.11184779554605484, + "learning_rate": 0.008196384552177485, + "loss": 2.5557, + "step": 1995 + }, + { + "epoch": 0.2052810027740676, + "grad_norm": 0.09568610787391663, + "learning_rate": 0.008208709942481513, + "loss": 2.5415, + "step": 1998 + }, + { + "epoch": 0.2055892325079626, + "grad_norm": 0.08708583563566208, + "learning_rate": 0.008221035332785539, + "loss": 2.5369, + "step": 2001 + }, + { + "epoch": 0.2058974622418576, + "grad_norm": 0.11849135160446167, + "learning_rate": 0.008233360723089564, + "loss": 2.5617, + "step": 2004 + }, + { + "epoch": 0.2062056919757526, + "grad_norm": 0.1407340168952942, + "learning_rate": 0.008245686113393592, + "loss": 2.5374, + "step": 2007 + }, + { + "epoch": 0.20651392170964758, + "grad_norm": 0.13198955357074738, + "learning_rate": 0.008258011503697617, + "loss": 2.57, + "step": 2010 + }, + { + "epoch": 0.20682215144354257, + "grad_norm": 0.12408044934272766, + "learning_rate": 0.008270336894001643, + "loss": 2.5344, + "step": 2013 + }, + { + "epoch": 0.2071303811774376, + "grad_norm": 0.149169921875, + "learning_rate": 0.008282662284305669, + "loss": 2.5357, + "step": 2016 + }, + { + "epoch": 0.2074386109113326, + "grad_norm": 0.10010293871164322, + "learning_rate": 0.008294987674609696, + "loss": 2.5166, + "step": 2019 + }, + { + "epoch": 0.20774684064522758, + "grad_norm": 0.17650344967842102, + "learning_rate": 0.008307313064913722, + "loss": 2.5664, + "step": 2022 + }, + { + "epoch": 0.20805507037912258, + "grad_norm": 0.09946206212043762, + "learning_rate": 0.008319638455217748, + "loss": 2.5378, + "step": 2025 + }, + { + "epoch": 0.20836330011301757, + "grad_norm": 0.07705225795507431, + "learning_rate": 0.008331963845521775, + "loss": 2.5088, + "step": 2028 + }, + { + "epoch": 0.20867152984691256, + "grad_norm": 0.18174925446510315, + "learning_rate": 0.008344289235825801, + "loss": 2.5264, + "step": 2031 + }, + { + "epoch": 0.20897975958080756, + "grad_norm": 0.14415894448757172, + "learning_rate": 0.008356614626129829, + "loss": 2.5549, + "step": 2034 + }, + { + "epoch": 0.20928798931470255, + "grad_norm": 0.17721933126449585, + "learning_rate": 0.008368940016433854, + "loss": 2.5476, + "step": 2037 + }, + { + "epoch": 0.20959621904859754, + "grad_norm": 0.1727544367313385, + "learning_rate": 0.00838126540673788, + "loss": 2.5809, + "step": 2040 + }, + { + "epoch": 0.20990444878249256, + "grad_norm": 0.20624054968357086, + "learning_rate": 0.008393590797041908, + "loss": 2.5256, + "step": 2043 + }, + { + "epoch": 0.21021267851638756, + "grad_norm": 0.08070924133062363, + "learning_rate": 0.008405916187345933, + "loss": 2.5537, + "step": 2046 + }, + { + "epoch": 0.21052090825028255, + "grad_norm": 0.07868220657110214, + "learning_rate": 0.008418241577649959, + "loss": 2.5266, + "step": 2049 + }, + { + "epoch": 0.21082913798417754, + "grad_norm": 0.19941876828670502, + "learning_rate": 0.008430566967953985, + "loss": 2.5344, + "step": 2052 + }, + { + "epoch": 0.21113736771807254, + "grad_norm": 0.08758697658777237, + "learning_rate": 0.008442892358258012, + "loss": 2.5409, + "step": 2055 + }, + { + "epoch": 0.21144559745196753, + "grad_norm": 0.11635969579219818, + "learning_rate": 0.008455217748562038, + "loss": 2.5497, + "step": 2058 + }, + { + "epoch": 0.21175382718586253, + "grad_norm": 0.16910326480865479, + "learning_rate": 0.008467543138866064, + "loss": 2.5509, + "step": 2061 + }, + { + "epoch": 0.21206205691975752, + "grad_norm": 0.14605827629566193, + "learning_rate": 0.008479868529170091, + "loss": 2.5589, + "step": 2064 + }, + { + "epoch": 0.2123702866536525, + "grad_norm": 0.18890123069286346, + "learning_rate": 0.008492193919474117, + "loss": 2.5454, + "step": 2067 + }, + { + "epoch": 0.2126785163875475, + "grad_norm": 0.09277717024087906, + "learning_rate": 0.008504519309778144, + "loss": 2.4984, + "step": 2070 + }, + { + "epoch": 0.21298674612144253, + "grad_norm": 0.07268327474594116, + "learning_rate": 0.008516844700082168, + "loss": 2.5323, + "step": 2073 + }, + { + "epoch": 0.21329497585533752, + "grad_norm": 0.0807403028011322, + "learning_rate": 0.008529170090386196, + "loss": 2.5083, + "step": 2076 + }, + { + "epoch": 0.21360320558923251, + "grad_norm": 0.12681947648525238, + "learning_rate": 0.008541495480690222, + "loss": 2.5386, + "step": 2079 + }, + { + "epoch": 0.2139114353231275, + "grad_norm": 0.25378334522247314, + "learning_rate": 0.008553820870994249, + "loss": 2.5188, + "step": 2082 + }, + { + "epoch": 0.2142196650570225, + "grad_norm": 0.15101733803749084, + "learning_rate": 0.008566146261298275, + "loss": 2.5457, + "step": 2085 + }, + { + "epoch": 0.2145278947909175, + "grad_norm": 0.17336703836917877, + "learning_rate": 0.0085784716516023, + "loss": 2.5206, + "step": 2088 + }, + { + "epoch": 0.2148361245248125, + "grad_norm": 0.07735245674848557, + "learning_rate": 0.008590797041906328, + "loss": 2.5297, + "step": 2091 + }, + { + "epoch": 0.21514435425870748, + "grad_norm": 0.15841136872768402, + "learning_rate": 0.008603122432210354, + "loss": 2.5086, + "step": 2094 + }, + { + "epoch": 0.21545258399260248, + "grad_norm": 0.15941859781742096, + "learning_rate": 0.00861544782251438, + "loss": 2.5316, + "step": 2097 + }, + { + "epoch": 0.21576081372649747, + "grad_norm": 0.13837756216526031, + "learning_rate": 0.008627773212818405, + "loss": 2.4818, + "step": 2100 + }, + { + "epoch": 0.2160690434603925, + "grad_norm": 0.14743675291538239, + "learning_rate": 0.008640098603122433, + "loss": 2.5351, + "step": 2103 + }, + { + "epoch": 0.21637727319428748, + "grad_norm": 0.15961112082004547, + "learning_rate": 0.008652423993426459, + "loss": 2.4916, + "step": 2106 + }, + { + "epoch": 0.21668550292818248, + "grad_norm": 0.16091223061084747, + "learning_rate": 0.008664749383730484, + "loss": 2.5026, + "step": 2109 + }, + { + "epoch": 0.21699373266207747, + "grad_norm": 0.1695915311574936, + "learning_rate": 0.008677074774034512, + "loss": 2.4994, + "step": 2112 + }, + { + "epoch": 0.21730196239597246, + "grad_norm": 0.1457175761461258, + "learning_rate": 0.008689400164338537, + "loss": 2.5225, + "step": 2115 + }, + { + "epoch": 0.21761019212986746, + "grad_norm": 0.0995342880487442, + "learning_rate": 0.008701725554642563, + "loss": 2.5373, + "step": 2118 + }, + { + "epoch": 0.21791842186376245, + "grad_norm": 0.11527393013238907, + "learning_rate": 0.00871405094494659, + "loss": 2.5207, + "step": 2121 + }, + { + "epoch": 0.21822665159765745, + "grad_norm": 0.07951527088880539, + "learning_rate": 0.008726376335250616, + "loss": 2.4868, + "step": 2124 + }, + { + "epoch": 0.21853488133155244, + "grad_norm": 0.11319970339536667, + "learning_rate": 0.008738701725554644, + "loss": 2.4965, + "step": 2127 + }, + { + "epoch": 0.21884311106544746, + "grad_norm": 0.14932893216609955, + "learning_rate": 0.008751027115858668, + "loss": 2.5164, + "step": 2130 + }, + { + "epoch": 0.21915134079934245, + "grad_norm": 0.1703396886587143, + "learning_rate": 0.008763352506162695, + "loss": 2.5175, + "step": 2133 + }, + { + "epoch": 0.21945957053323745, + "grad_norm": 0.2208787351846695, + "learning_rate": 0.008775677896466721, + "loss": 2.521, + "step": 2136 + }, + { + "epoch": 0.21976780026713244, + "grad_norm": 0.0884699895977974, + "learning_rate": 0.008788003286770749, + "loss": 2.5356, + "step": 2139 + }, + { + "epoch": 0.22007603000102743, + "grad_norm": 0.06739311665296555, + "learning_rate": 0.008800328677074774, + "loss": 2.5102, + "step": 2142 + }, + { + "epoch": 0.22038425973492243, + "grad_norm": 0.09653139859437943, + "learning_rate": 0.0088126540673788, + "loss": 2.5047, + "step": 2145 + }, + { + "epoch": 0.22069248946881742, + "grad_norm": 0.11972832679748535, + "learning_rate": 0.008824979457682828, + "loss": 2.5086, + "step": 2148 + }, + { + "epoch": 0.22100071920271241, + "grad_norm": 0.13725396990776062, + "learning_rate": 0.008837304847986853, + "loss": 2.5034, + "step": 2151 + }, + { + "epoch": 0.2213089489366074, + "grad_norm": 0.09293966740369797, + "learning_rate": 0.008849630238290879, + "loss": 2.5004, + "step": 2154 + }, + { + "epoch": 0.2216171786705024, + "grad_norm": 0.07625159621238708, + "learning_rate": 0.008861955628594905, + "loss": 2.508, + "step": 2157 + }, + { + "epoch": 0.22192540840439742, + "grad_norm": 0.08581928163766861, + "learning_rate": 0.008874281018898932, + "loss": 2.4973, + "step": 2160 + }, + { + "epoch": 0.22223363813829242, + "grad_norm": 0.12700457870960236, + "learning_rate": 0.008886606409202958, + "loss": 2.5174, + "step": 2163 + }, + { + "epoch": 0.2225418678721874, + "grad_norm": 0.17155064642429352, + "learning_rate": 0.008898931799506984, + "loss": 2.4969, + "step": 2166 + }, + { + "epoch": 0.2228500976060824, + "grad_norm": 0.13356278836727142, + "learning_rate": 0.008911257189811011, + "loss": 2.4876, + "step": 2169 + }, + { + "epoch": 0.2231583273399774, + "grad_norm": 0.07805536687374115, + "learning_rate": 0.008923582580115037, + "loss": 2.5151, + "step": 2172 + }, + { + "epoch": 0.2234665570738724, + "grad_norm": 0.10661714524030685, + "learning_rate": 0.008935907970419064, + "loss": 2.4607, + "step": 2175 + }, + { + "epoch": 0.22377478680776738, + "grad_norm": 0.15095242857933044, + "learning_rate": 0.008948233360723088, + "loss": 2.5358, + "step": 2178 + }, + { + "epoch": 0.22408301654166238, + "grad_norm": 0.11287077516317368, + "learning_rate": 0.008960558751027116, + "loss": 2.5289, + "step": 2181 + }, + { + "epoch": 0.22439124627555737, + "grad_norm": 0.16408318281173706, + "learning_rate": 0.008972884141331142, + "loss": 2.5256, + "step": 2184 + }, + { + "epoch": 0.22469947600945236, + "grad_norm": 0.1227622851729393, + "learning_rate": 0.008985209531635169, + "loss": 2.5091, + "step": 2187 + }, + { + "epoch": 0.22500770574334739, + "grad_norm": 0.06549924612045288, + "learning_rate": 0.008997534921939195, + "loss": 2.4908, + "step": 2190 + }, + { + "epoch": 0.22531593547724238, + "grad_norm": 0.09310626983642578, + "learning_rate": 0.00900986031224322, + "loss": 2.4903, + "step": 2193 + }, + { + "epoch": 0.22562416521113737, + "grad_norm": 0.12637357413768768, + "learning_rate": 0.009022185702547248, + "loss": 2.5089, + "step": 2196 + }, + { + "epoch": 0.22593239494503237, + "grad_norm": 0.1691301167011261, + "learning_rate": 0.009034511092851274, + "loss": 2.4984, + "step": 2199 + }, + { + "epoch": 0.22624062467892736, + "grad_norm": 0.18173068761825562, + "learning_rate": 0.0090468364831553, + "loss": 2.4552, + "step": 2202 + }, + { + "epoch": 0.22654885441282235, + "grad_norm": 0.19549600780010223, + "learning_rate": 0.009059161873459327, + "loss": 2.4642, + "step": 2205 + }, + { + "epoch": 0.22685708414671735, + "grad_norm": 0.09038446098566055, + "learning_rate": 0.009071487263763353, + "loss": 2.5017, + "step": 2208 + }, + { + "epoch": 0.22716531388061234, + "grad_norm": 0.07959726452827454, + "learning_rate": 0.009083812654067379, + "loss": 2.4934, + "step": 2211 + }, + { + "epoch": 0.22747354361450733, + "grad_norm": 0.07991699874401093, + "learning_rate": 0.009096138044371404, + "loss": 2.498, + "step": 2214 + }, + { + "epoch": 0.22778177334840236, + "grad_norm": 0.09022307395935059, + "learning_rate": 0.009108463434675432, + "loss": 2.4832, + "step": 2217 + }, + { + "epoch": 0.22809000308229735, + "grad_norm": 0.11399543285369873, + "learning_rate": 0.009120788824979457, + "loss": 2.4929, + "step": 2220 + }, + { + "epoch": 0.22839823281619234, + "grad_norm": 0.10349836200475693, + "learning_rate": 0.009133114215283485, + "loss": 2.4622, + "step": 2223 + }, + { + "epoch": 0.22870646255008734, + "grad_norm": 0.17096632719039917, + "learning_rate": 0.00914543960558751, + "loss": 2.5103, + "step": 2226 + }, + { + "epoch": 0.22901469228398233, + "grad_norm": 0.13803228735923767, + "learning_rate": 0.009157764995891536, + "loss": 2.5034, + "step": 2229 + }, + { + "epoch": 0.22932292201787732, + "grad_norm": 0.16332487761974335, + "learning_rate": 0.009170090386195564, + "loss": 2.5051, + "step": 2232 + }, + { + "epoch": 0.22963115175177232, + "grad_norm": 0.12147244811058044, + "learning_rate": 0.00918241577649959, + "loss": 2.4794, + "step": 2235 + }, + { + "epoch": 0.2299393814856673, + "grad_norm": 0.08943907916545868, + "learning_rate": 0.009194741166803615, + "loss": 2.5331, + "step": 2238 + }, + { + "epoch": 0.2302476112195623, + "grad_norm": 0.08069117367267609, + "learning_rate": 0.009207066557107641, + "loss": 2.4807, + "step": 2241 + }, + { + "epoch": 0.2305558409534573, + "grad_norm": 0.11125557869672775, + "learning_rate": 0.009219391947411669, + "loss": 2.4567, + "step": 2244 + }, + { + "epoch": 0.23086407068735232, + "grad_norm": 0.2825096547603607, + "learning_rate": 0.009231717337715694, + "loss": 2.5101, + "step": 2247 + }, + { + "epoch": 0.2311723004212473, + "grad_norm": 0.10534384101629257, + "learning_rate": 0.00924404272801972, + "loss": 2.5272, + "step": 2250 + }, + { + "epoch": 0.2314805301551423, + "grad_norm": 0.07159514725208282, + "learning_rate": 0.009256368118323748, + "loss": 2.4707, + "step": 2253 + }, + { + "epoch": 0.2317887598890373, + "grad_norm": 0.06435802578926086, + "learning_rate": 0.009268693508627773, + "loss": 2.4788, + "step": 2256 + }, + { + "epoch": 0.2320969896229323, + "grad_norm": 0.09402693063020706, + "learning_rate": 0.0092810188989318, + "loss": 2.4639, + "step": 2259 + }, + { + "epoch": 0.2324052193568273, + "grad_norm": 0.18836408853530884, + "learning_rate": 0.009293344289235825, + "loss": 2.4747, + "step": 2262 + }, + { + "epoch": 0.23271344909072228, + "grad_norm": 0.09705471992492676, + "learning_rate": 0.009305669679539852, + "loss": 2.5041, + "step": 2265 + }, + { + "epoch": 0.23302167882461727, + "grad_norm": 0.09185091406106949, + "learning_rate": 0.009317995069843878, + "loss": 2.4625, + "step": 2268 + }, + { + "epoch": 0.23332990855851227, + "grad_norm": 0.0848812386393547, + "learning_rate": 0.009330320460147905, + "loss": 2.4876, + "step": 2271 + }, + { + "epoch": 0.2336381382924073, + "grad_norm": 0.07989475131034851, + "learning_rate": 0.009342645850451931, + "loss": 2.4697, + "step": 2274 + }, + { + "epoch": 0.23394636802630228, + "grad_norm": 0.09660454094409943, + "learning_rate": 0.009354971240755957, + "loss": 2.4917, + "step": 2277 + }, + { + "epoch": 0.23425459776019728, + "grad_norm": 0.09550273418426514, + "learning_rate": 0.009367296631059984, + "loss": 2.4806, + "step": 2280 + }, + { + "epoch": 0.23456282749409227, + "grad_norm": 0.16650651395320892, + "learning_rate": 0.00937962202136401, + "loss": 2.4424, + "step": 2283 + }, + { + "epoch": 0.23487105722798726, + "grad_norm": 0.1455817073583603, + "learning_rate": 0.009391947411668036, + "loss": 2.4907, + "step": 2286 + }, + { + "epoch": 0.23517928696188226, + "grad_norm": 0.075865738093853, + "learning_rate": 0.009404272801972062, + "loss": 2.5004, + "step": 2289 + }, + { + "epoch": 0.23548751669577725, + "grad_norm": 0.188491553068161, + "learning_rate": 0.009416598192276089, + "loss": 2.5111, + "step": 2292 + }, + { + "epoch": 0.23579574642967224, + "grad_norm": 0.07567702233791351, + "learning_rate": 0.009428923582580115, + "loss": 2.4966, + "step": 2295 + }, + { + "epoch": 0.23610397616356724, + "grad_norm": 0.0682358667254448, + "learning_rate": 0.00944124897288414, + "loss": 2.4781, + "step": 2298 + }, + { + "epoch": 0.23641220589746223, + "grad_norm": 0.173895925283432, + "learning_rate": 0.009453574363188168, + "loss": 2.4471, + "step": 2301 + }, + { + "epoch": 0.23672043563135725, + "grad_norm": 0.15088587999343872, + "learning_rate": 0.009465899753492194, + "loss": 2.4783, + "step": 2304 + }, + { + "epoch": 0.23702866536525224, + "grad_norm": 0.09947361797094345, + "learning_rate": 0.009478225143796221, + "loss": 2.4757, + "step": 2307 + }, + { + "epoch": 0.23733689509914724, + "grad_norm": 0.0709480568766594, + "learning_rate": 0.009490550534100247, + "loss": 2.4617, + "step": 2310 + }, + { + "epoch": 0.23764512483304223, + "grad_norm": 0.11335324496030807, + "learning_rate": 0.009502875924404273, + "loss": 2.4506, + "step": 2313 + }, + { + "epoch": 0.23795335456693723, + "grad_norm": 0.10329569876194, + "learning_rate": 0.0095152013147083, + "loss": 2.4444, + "step": 2316 + }, + { + "epoch": 0.23826158430083222, + "grad_norm": 0.18935157358646393, + "learning_rate": 0.009527526705012326, + "loss": 2.4739, + "step": 2319 + }, + { + "epoch": 0.2385698140347272, + "grad_norm": 0.10977230221033096, + "learning_rate": 0.009539852095316352, + "loss": 2.4849, + "step": 2322 + }, + { + "epoch": 0.2388780437686222, + "grad_norm": 0.1623351126909256, + "learning_rate": 0.009552177485620377, + "loss": 2.4856, + "step": 2325 + }, + { + "epoch": 0.2391862735025172, + "grad_norm": 0.12067209929227829, + "learning_rate": 0.009564502875924405, + "loss": 2.427, + "step": 2328 + }, + { + "epoch": 0.2394945032364122, + "grad_norm": 0.12578649818897247, + "learning_rate": 0.00957682826622843, + "loss": 2.4719, + "step": 2331 + }, + { + "epoch": 0.23980273297030721, + "grad_norm": 0.09442924708127975, + "learning_rate": 0.009589153656532456, + "loss": 2.475, + "step": 2334 + }, + { + "epoch": 0.2401109627042022, + "grad_norm": 0.06693053990602493, + "learning_rate": 0.009601479046836484, + "loss": 2.4949, + "step": 2337 + }, + { + "epoch": 0.2404191924380972, + "grad_norm": 0.09371168911457062, + "learning_rate": 0.00961380443714051, + "loss": 2.4611, + "step": 2340 + }, + { + "epoch": 0.2407274221719922, + "grad_norm": 0.11009377986192703, + "learning_rate": 0.009626129827444537, + "loss": 2.4998, + "step": 2343 + }, + { + "epoch": 0.2410356519058872, + "grad_norm": 0.08789053559303284, + "learning_rate": 0.009638455217748561, + "loss": 2.4891, + "step": 2346 + }, + { + "epoch": 0.24134388163978218, + "grad_norm": 0.2513992488384247, + "learning_rate": 0.009650780608052589, + "loss": 2.4613, + "step": 2349 + }, + { + "epoch": 0.24165211137367718, + "grad_norm": 0.09223336726427078, + "learning_rate": 0.009663105998356614, + "loss": 2.4874, + "step": 2352 + }, + { + "epoch": 0.24196034110757217, + "grad_norm": 0.08941586315631866, + "learning_rate": 0.009675431388660642, + "loss": 2.4777, + "step": 2355 + }, + { + "epoch": 0.24226857084146716, + "grad_norm": 0.09664765000343323, + "learning_rate": 0.009687756778964668, + "loss": 2.4728, + "step": 2358 + }, + { + "epoch": 0.24257680057536218, + "grad_norm": 0.08079587668180466, + "learning_rate": 0.009700082169268693, + "loss": 2.4621, + "step": 2361 + }, + { + "epoch": 0.24288503030925718, + "grad_norm": 0.07663597911596298, + "learning_rate": 0.00971240755957272, + "loss": 2.487, + "step": 2364 + }, + { + "epoch": 0.24319326004315217, + "grad_norm": 0.07564109563827515, + "learning_rate": 0.009724732949876747, + "loss": 2.4123, + "step": 2367 + }, + { + "epoch": 0.24350148977704716, + "grad_norm": 0.1025756299495697, + "learning_rate": 0.009737058340180772, + "loss": 2.4669, + "step": 2370 + }, + { + "epoch": 0.24380971951094216, + "grad_norm": 0.1370251476764679, + "learning_rate": 0.009749383730484798, + "loss": 2.4664, + "step": 2373 + }, + { + "epoch": 0.24411794924483715, + "grad_norm": 0.11926325410604477, + "learning_rate": 0.009761709120788825, + "loss": 2.4483, + "step": 2376 + }, + { + "epoch": 0.24442617897873214, + "grad_norm": 0.16847510635852814, + "learning_rate": 0.009774034511092851, + "loss": 2.4421, + "step": 2379 + }, + { + "epoch": 0.24473440871262714, + "grad_norm": 0.14343461394309998, + "learning_rate": 0.009786359901396877, + "loss": 2.452, + "step": 2382 + }, + { + "epoch": 0.24504263844652213, + "grad_norm": 0.0658588707447052, + "learning_rate": 0.009798685291700904, + "loss": 2.4717, + "step": 2385 + }, + { + "epoch": 0.24535086818041713, + "grad_norm": 0.09394209086894989, + "learning_rate": 0.00981101068200493, + "loss": 2.4467, + "step": 2388 + }, + { + "epoch": 0.24565909791431215, + "grad_norm": 0.0717134177684784, + "learning_rate": 0.009823336072308958, + "loss": 2.4505, + "step": 2391 + }, + { + "epoch": 0.24596732764820714, + "grad_norm": 0.07518400996923447, + "learning_rate": 0.009835661462612983, + "loss": 2.431, + "step": 2394 + }, + { + "epoch": 0.24627555738210213, + "grad_norm": 0.10242413729429245, + "learning_rate": 0.00984798685291701, + "loss": 2.451, + "step": 2397 + }, + { + "epoch": 0.24658378711599713, + "grad_norm": 0.11668457090854645, + "learning_rate": 0.009860312243221035, + "loss": 2.4574, + "step": 2400 + }, + { + "epoch": 0.24689201684989212, + "grad_norm": 0.1074887290596962, + "learning_rate": 0.009872637633525062, + "loss": 2.4688, + "step": 2403 + }, + { + "epoch": 0.24720024658378711, + "grad_norm": 0.143118217587471, + "learning_rate": 0.009884963023829088, + "loss": 2.4614, + "step": 2406 + }, + { + "epoch": 0.2475084763176821, + "grad_norm": 0.08865509182214737, + "learning_rate": 0.009897288414133114, + "loss": 2.4768, + "step": 2409 + }, + { + "epoch": 0.2478167060515771, + "grad_norm": 0.10735021531581879, + "learning_rate": 0.009909613804437141, + "loss": 2.457, + "step": 2412 + }, + { + "epoch": 0.2481249357854721, + "grad_norm": 0.11766096949577332, + "learning_rate": 0.009921939194741167, + "loss": 2.4661, + "step": 2415 + }, + { + "epoch": 0.2484331655193671, + "grad_norm": 0.11476657539606094, + "learning_rate": 0.009934264585045193, + "loss": 2.4488, + "step": 2418 + }, + { + "epoch": 0.2487413952532621, + "grad_norm": 0.05828983336687088, + "learning_rate": 0.00994658997534922, + "loss": 2.4167, + "step": 2421 + }, + { + "epoch": 0.2490496249871571, + "grad_norm": 0.05311143398284912, + "learning_rate": 0.009958915365653246, + "loss": 2.451, + "step": 2424 + }, + { + "epoch": 0.2493578547210521, + "grad_norm": 0.14447921514511108, + "learning_rate": 0.009971240755957273, + "loss": 2.4448, + "step": 2427 + }, + { + "epoch": 0.2496660844549471, + "grad_norm": 0.178679421544075, + "learning_rate": 0.009983566146261297, + "loss": 2.4577, + "step": 2430 + }, + { + "epoch": 0.24997431418884208, + "grad_norm": 0.18707922101020813, + "learning_rate": 0.009995891536565325, + "loss": 2.4544, + "step": 2433 + }, + { + "epoch": 0.2502825439227371, + "grad_norm": 0.11012792587280273, + "learning_rate": 0.01, + "loss": 2.4636, + "step": 2436 + }, + { + "epoch": 0.25059077365663207, + "grad_norm": 0.1133418157696724, + "learning_rate": 0.01, + "loss": 2.4694, + "step": 2439 + }, + { + "epoch": 0.25089900339052706, + "grad_norm": 0.09263787418603897, + "learning_rate": 0.01, + "loss": 2.4174, + "step": 2442 + }, + { + "epoch": 0.25120723312442206, + "grad_norm": 0.07637537270784378, + "learning_rate": 0.01, + "loss": 2.4546, + "step": 2445 + }, + { + "epoch": 0.25151546285831705, + "grad_norm": 0.05083318054676056, + "learning_rate": 0.01, + "loss": 2.4517, + "step": 2448 + }, + { + "epoch": 0.25182369259221205, + "grad_norm": 0.11429949849843979, + "learning_rate": 0.01, + "loss": 2.3998, + "step": 2451 + }, + { + "epoch": 0.25213192232610704, + "grad_norm": 0.0740060955286026, + "learning_rate": 0.01, + "loss": 2.4572, + "step": 2454 + }, + { + "epoch": 0.25244015206000203, + "grad_norm": 0.23151956498622894, + "learning_rate": 0.01, + "loss": 2.4507, + "step": 2457 + }, + { + "epoch": 0.252748381793897, + "grad_norm": 0.09557089954614639, + "learning_rate": 0.01, + "loss": 2.438, + "step": 2460 + }, + { + "epoch": 0.2530566115277921, + "grad_norm": 0.06453042477369308, + "learning_rate": 0.01, + "loss": 2.4444, + "step": 2463 + }, + { + "epoch": 0.25336484126168707, + "grad_norm": 0.06805883347988129, + "learning_rate": 0.01, + "loss": 2.4333, + "step": 2466 + }, + { + "epoch": 0.25367307099558206, + "grad_norm": 0.12063002586364746, + "learning_rate": 0.01, + "loss": 2.4349, + "step": 2469 + }, + { + "epoch": 0.25398130072947706, + "grad_norm": 0.12683679163455963, + "learning_rate": 0.01, + "loss": 2.4615, + "step": 2472 + }, + { + "epoch": 0.25428953046337205, + "grad_norm": 0.19388514757156372, + "learning_rate": 0.01, + "loss": 2.4251, + "step": 2475 + }, + { + "epoch": 0.25459776019726704, + "grad_norm": 0.15118692815303802, + "learning_rate": 0.01, + "loss": 2.4493, + "step": 2478 + }, + { + "epoch": 0.25490598993116204, + "grad_norm": 0.0716528594493866, + "learning_rate": 0.01, + "loss": 2.4177, + "step": 2481 + }, + { + "epoch": 0.25521421966505703, + "grad_norm": 0.06410454958677292, + "learning_rate": 0.01, + "loss": 2.4472, + "step": 2484 + }, + { + "epoch": 0.255522449398952, + "grad_norm": 0.0613977424800396, + "learning_rate": 0.01, + "loss": 2.4374, + "step": 2487 + }, + { + "epoch": 0.255830679132847, + "grad_norm": 0.18522503972053528, + "learning_rate": 0.01, + "loss": 2.4237, + "step": 2490 + }, + { + "epoch": 0.256138908866742, + "grad_norm": 0.10789433866739273, + "learning_rate": 0.01, + "loss": 2.4035, + "step": 2493 + }, + { + "epoch": 0.256447138600637, + "grad_norm": 0.17734338343143463, + "learning_rate": 0.01, + "loss": 2.4809, + "step": 2496 + }, + { + "epoch": 0.256755368334532, + "grad_norm": 0.09952409565448761, + "learning_rate": 0.01, + "loss": 2.4586, + "step": 2499 + }, + { + "epoch": 0.257063598068427, + "grad_norm": 0.15578734874725342, + "learning_rate": 0.01, + "loss": 2.4451, + "step": 2502 + }, + { + "epoch": 0.257371827802322, + "grad_norm": 0.11684698611497879, + "learning_rate": 0.01, + "loss": 2.4422, + "step": 2505 + }, + { + "epoch": 0.257680057536217, + "grad_norm": 0.06539366394281387, + "learning_rate": 0.01, + "loss": 2.4369, + "step": 2508 + }, + { + "epoch": 0.25798828727011197, + "grad_norm": 0.15363268554210663, + "learning_rate": 0.01, + "loss": 2.4307, + "step": 2511 + }, + { + "epoch": 0.25829651700400696, + "grad_norm": 0.07657501846551895, + "learning_rate": 0.01, + "loss": 2.4287, + "step": 2514 + }, + { + "epoch": 0.25860474673790196, + "grad_norm": 0.11238528788089752, + "learning_rate": 0.01, + "loss": 2.415, + "step": 2517 + }, + { + "epoch": 0.25891297647179695, + "grad_norm": 0.08362044394016266, + "learning_rate": 0.01, + "loss": 2.4603, + "step": 2520 + }, + { + "epoch": 0.259221206205692, + "grad_norm": 0.07373514771461487, + "learning_rate": 0.01, + "loss": 2.3937, + "step": 2523 + }, + { + "epoch": 0.259529435939587, + "grad_norm": 0.062842458486557, + "learning_rate": 0.01, + "loss": 2.4096, + "step": 2526 + }, + { + "epoch": 0.259837665673482, + "grad_norm": 0.12551096081733704, + "learning_rate": 0.01, + "loss": 2.4379, + "step": 2529 + }, + { + "epoch": 0.260145895407377, + "grad_norm": 0.06409156322479248, + "learning_rate": 0.01, + "loss": 2.4212, + "step": 2532 + }, + { + "epoch": 0.260454125141272, + "grad_norm": 0.10057753324508667, + "learning_rate": 0.01, + "loss": 2.4349, + "step": 2535 + }, + { + "epoch": 0.26076235487516697, + "grad_norm": 0.1575561910867691, + "learning_rate": 0.01, + "loss": 2.44, + "step": 2538 + }, + { + "epoch": 0.26107058460906196, + "grad_norm": 0.25684165954589844, + "learning_rate": 0.01, + "loss": 2.4308, + "step": 2541 + }, + { + "epoch": 0.26137881434295696, + "grad_norm": 0.07472192496061325, + "learning_rate": 0.01, + "loss": 2.4065, + "step": 2544 + }, + { + "epoch": 0.26168704407685195, + "grad_norm": 0.060896482318639755, + "learning_rate": 0.01, + "loss": 2.4347, + "step": 2547 + }, + { + "epoch": 0.26199527381074694, + "grad_norm": 0.12883131206035614, + "learning_rate": 0.01, + "loss": 2.42, + "step": 2550 + }, + { + "epoch": 0.26230350354464194, + "grad_norm": 0.10772990435361862, + "learning_rate": 0.01, + "loss": 2.3982, + "step": 2553 + }, + { + "epoch": 0.26261173327853693, + "grad_norm": 0.20955395698547363, + "learning_rate": 0.01, + "loss": 2.4204, + "step": 2556 + }, + { + "epoch": 0.2629199630124319, + "grad_norm": 0.08120223879814148, + "learning_rate": 0.01, + "loss": 2.4192, + "step": 2559 + }, + { + "epoch": 0.2632281927463269, + "grad_norm": 0.059099119156599045, + "learning_rate": 0.01, + "loss": 2.4252, + "step": 2562 + }, + { + "epoch": 0.2635364224802219, + "grad_norm": 0.08729352802038193, + "learning_rate": 0.01, + "loss": 2.4227, + "step": 2565 + }, + { + "epoch": 0.2638446522141169, + "grad_norm": 0.1920178234577179, + "learning_rate": 0.01, + "loss": 2.4017, + "step": 2568 + }, + { + "epoch": 0.2641528819480119, + "grad_norm": 0.15997105836868286, + "learning_rate": 0.01, + "loss": 2.444, + "step": 2571 + }, + { + "epoch": 0.2644611116819069, + "grad_norm": 0.12249890714883804, + "learning_rate": 0.01, + "loss": 2.3957, + "step": 2574 + }, + { + "epoch": 0.2647693414158019, + "grad_norm": 0.05974414199590683, + "learning_rate": 0.01, + "loss": 2.421, + "step": 2577 + }, + { + "epoch": 0.26507757114969693, + "grad_norm": 0.13711535930633545, + "learning_rate": 0.01, + "loss": 2.4234, + "step": 2580 + }, + { + "epoch": 0.2653858008835919, + "grad_norm": 0.15437988936901093, + "learning_rate": 0.01, + "loss": 2.4216, + "step": 2583 + }, + { + "epoch": 0.2656940306174869, + "grad_norm": 0.10766157507896423, + "learning_rate": 0.01, + "loss": 2.4086, + "step": 2586 + }, + { + "epoch": 0.2660022603513819, + "grad_norm": 0.0736764669418335, + "learning_rate": 0.01, + "loss": 2.4227, + "step": 2589 + }, + { + "epoch": 0.2663104900852769, + "grad_norm": 0.06279190629720688, + "learning_rate": 0.01, + "loss": 2.4371, + "step": 2592 + }, + { + "epoch": 0.2666187198191719, + "grad_norm": 0.11150863766670227, + "learning_rate": 0.01, + "loss": 2.3941, + "step": 2595 + }, + { + "epoch": 0.2669269495530669, + "grad_norm": 0.1527506411075592, + "learning_rate": 0.01, + "loss": 2.4287, + "step": 2598 + }, + { + "epoch": 0.2672351792869619, + "grad_norm": 0.13321219384670258, + "learning_rate": 0.01, + "loss": 2.3995, + "step": 2601 + }, + { + "epoch": 0.2675434090208569, + "grad_norm": 0.1157502606511116, + "learning_rate": 0.01, + "loss": 2.4284, + "step": 2604 + }, + { + "epoch": 0.2678516387547519, + "grad_norm": 0.10027257353067398, + "learning_rate": 0.01, + "loss": 2.3877, + "step": 2607 + }, + { + "epoch": 0.26815986848864687, + "grad_norm": 0.10909545421600342, + "learning_rate": 0.01, + "loss": 2.4134, + "step": 2610 + }, + { + "epoch": 0.26846809822254186, + "grad_norm": 0.09810952842235565, + "learning_rate": 0.01, + "loss": 2.4231, + "step": 2613 + }, + { + "epoch": 0.26877632795643686, + "grad_norm": 0.06906435638666153, + "learning_rate": 0.01, + "loss": 2.3989, + "step": 2616 + }, + { + "epoch": 0.26908455769033185, + "grad_norm": 0.10627961158752441, + "learning_rate": 0.01, + "loss": 2.4333, + "step": 2619 + }, + { + "epoch": 0.26939278742422684, + "grad_norm": 0.10462147742509842, + "learning_rate": 0.01, + "loss": 2.394, + "step": 2622 + }, + { + "epoch": 0.26970101715812184, + "grad_norm": 0.10885953158140182, + "learning_rate": 0.01, + "loss": 2.4172, + "step": 2625 + }, + { + "epoch": 0.27000924689201683, + "grad_norm": 0.0981958881020546, + "learning_rate": 0.01, + "loss": 2.4112, + "step": 2628 + }, + { + "epoch": 0.2703174766259118, + "grad_norm": 0.14177650213241577, + "learning_rate": 0.01, + "loss": 2.3748, + "step": 2631 + }, + { + "epoch": 0.2706257063598068, + "grad_norm": 0.06374615430831909, + "learning_rate": 0.01, + "loss": 2.4054, + "step": 2634 + }, + { + "epoch": 0.27093393609370187, + "grad_norm": 0.23363849520683289, + "learning_rate": 0.01, + "loss": 2.4194, + "step": 2637 + }, + { + "epoch": 0.27124216582759686, + "grad_norm": 0.10294153541326523, + "learning_rate": 0.01, + "loss": 2.384, + "step": 2640 + }, + { + "epoch": 0.27155039556149185, + "grad_norm": 0.17200984060764313, + "learning_rate": 0.01, + "loss": 2.4122, + "step": 2643 + }, + { + "epoch": 0.27185862529538685, + "grad_norm": 0.06513970345258713, + "learning_rate": 0.01, + "loss": 2.4152, + "step": 2646 + }, + { + "epoch": 0.27216685502928184, + "grad_norm": 0.08533628284931183, + "learning_rate": 0.01, + "loss": 2.4508, + "step": 2649 + }, + { + "epoch": 0.27247508476317683, + "grad_norm": 0.07299966365098953, + "learning_rate": 0.01, + "loss": 2.4091, + "step": 2652 + }, + { + "epoch": 0.2727833144970718, + "grad_norm": 0.06617329269647598, + "learning_rate": 0.01, + "loss": 2.4, + "step": 2655 + }, + { + "epoch": 0.2730915442309668, + "grad_norm": 0.07062381505966187, + "learning_rate": 0.01, + "loss": 2.4002, + "step": 2658 + }, + { + "epoch": 0.2733997739648618, + "grad_norm": 0.11162712424993515, + "learning_rate": 0.01, + "loss": 2.386, + "step": 2661 + }, + { + "epoch": 0.2737080036987568, + "grad_norm": 0.07827174663543701, + "learning_rate": 0.01, + "loss": 2.4111, + "step": 2664 + }, + { + "epoch": 0.2740162334326518, + "grad_norm": 0.07248109579086304, + "learning_rate": 0.01, + "loss": 2.3968, + "step": 2667 + }, + { + "epoch": 0.2743244631665468, + "grad_norm": 0.1251075118780136, + "learning_rate": 0.01, + "loss": 2.4216, + "step": 2670 + }, + { + "epoch": 0.2746326929004418, + "grad_norm": 0.1280512660741806, + "learning_rate": 0.01, + "loss": 2.4233, + "step": 2673 + }, + { + "epoch": 0.2749409226343368, + "grad_norm": 0.06290891766548157, + "learning_rate": 0.01, + "loss": 2.412, + "step": 2676 + }, + { + "epoch": 0.2752491523682318, + "grad_norm": 0.09324091672897339, + "learning_rate": 0.01, + "loss": 2.4025, + "step": 2679 + }, + { + "epoch": 0.27555738210212677, + "grad_norm": 0.06253890693187714, + "learning_rate": 0.01, + "loss": 2.4197, + "step": 2682 + }, + { + "epoch": 0.27586561183602176, + "grad_norm": 0.10279545187950134, + "learning_rate": 0.01, + "loss": 2.4099, + "step": 2685 + }, + { + "epoch": 0.27617384156991676, + "grad_norm": 0.07942310720682144, + "learning_rate": 0.01, + "loss": 2.4052, + "step": 2688 + }, + { + "epoch": 0.27648207130381175, + "grad_norm": 0.10373161733150482, + "learning_rate": 0.01, + "loss": 2.3899, + "step": 2691 + }, + { + "epoch": 0.2767903010377068, + "grad_norm": 0.312575101852417, + "learning_rate": 0.01, + "loss": 2.4243, + "step": 2694 + }, + { + "epoch": 0.2770985307716018, + "grad_norm": 0.07417728751897812, + "learning_rate": 0.01, + "loss": 2.3604, + "step": 2697 + }, + { + "epoch": 0.2774067605054968, + "grad_norm": 0.09007294476032257, + "learning_rate": 0.01, + "loss": 2.3863, + "step": 2700 + }, + { + "epoch": 0.2777149902393918, + "grad_norm": 0.10452757775783539, + "learning_rate": 0.01, + "loss": 2.41, + "step": 2703 + }, + { + "epoch": 0.2780232199732868, + "grad_norm": 0.09276364743709564, + "learning_rate": 0.01, + "loss": 2.3878, + "step": 2706 + }, + { + "epoch": 0.27833144970718177, + "grad_norm": 0.08949960023164749, + "learning_rate": 0.01, + "loss": 2.3823, + "step": 2709 + }, + { + "epoch": 0.27863967944107676, + "grad_norm": 0.0589129813015461, + "learning_rate": 0.01, + "loss": 2.401, + "step": 2712 + }, + { + "epoch": 0.27894790917497175, + "grad_norm": 0.08298425376415253, + "learning_rate": 0.01, + "loss": 2.4, + "step": 2715 + }, + { + "epoch": 0.27925613890886675, + "grad_norm": 0.07719019800424576, + "learning_rate": 0.01, + "loss": 2.3726, + "step": 2718 + }, + { + "epoch": 0.27956436864276174, + "grad_norm": 0.09369128197431564, + "learning_rate": 0.01, + "loss": 2.3893, + "step": 2721 + }, + { + "epoch": 0.27987259837665673, + "grad_norm": 0.11461931467056274, + "learning_rate": 0.01, + "loss": 2.4017, + "step": 2724 + }, + { + "epoch": 0.2801808281105517, + "grad_norm": 0.050078991800546646, + "learning_rate": 0.01, + "loss": 2.3852, + "step": 2727 + }, + { + "epoch": 0.2804890578444467, + "grad_norm": 0.08188966661691666, + "learning_rate": 0.01, + "loss": 2.3469, + "step": 2730 + }, + { + "epoch": 0.2807972875783417, + "grad_norm": 0.0805756077170372, + "learning_rate": 0.01, + "loss": 2.3632, + "step": 2733 + }, + { + "epoch": 0.2811055173122367, + "grad_norm": 0.07377249747514725, + "learning_rate": 0.01, + "loss": 2.3852, + "step": 2736 + }, + { + "epoch": 0.2814137470461317, + "grad_norm": 0.17040085792541504, + "learning_rate": 0.01, + "loss": 2.3904, + "step": 2739 + }, + { + "epoch": 0.2817219767800267, + "grad_norm": 0.1419583261013031, + "learning_rate": 0.01, + "loss": 2.3735, + "step": 2742 + }, + { + "epoch": 0.2820302065139217, + "grad_norm": 0.13182134926319122, + "learning_rate": 0.01, + "loss": 2.3904, + "step": 2745 + }, + { + "epoch": 0.2823384362478167, + "grad_norm": 0.1058223620057106, + "learning_rate": 0.01, + "loss": 2.3922, + "step": 2748 + }, + { + "epoch": 0.2826466659817117, + "grad_norm": 0.08037062734365463, + "learning_rate": 0.01, + "loss": 2.3692, + "step": 2751 + }, + { + "epoch": 0.2829548957156067, + "grad_norm": 0.10247037559747696, + "learning_rate": 0.01, + "loss": 2.3712, + "step": 2754 + }, + { + "epoch": 0.2832631254495017, + "grad_norm": 0.09925279021263123, + "learning_rate": 0.01, + "loss": 2.3632, + "step": 2757 + }, + { + "epoch": 0.2835713551833967, + "grad_norm": 0.05111562833189964, + "learning_rate": 0.01, + "loss": 2.3622, + "step": 2760 + }, + { + "epoch": 0.2838795849172917, + "grad_norm": 0.060480840504169464, + "learning_rate": 0.01, + "loss": 2.3592, + "step": 2763 + }, + { + "epoch": 0.2841878146511867, + "grad_norm": 0.13488496840000153, + "learning_rate": 0.01, + "loss": 2.3822, + "step": 2766 + }, + { + "epoch": 0.2844960443850817, + "grad_norm": 0.08369171619415283, + "learning_rate": 0.01, + "loss": 2.3922, + "step": 2769 + }, + { + "epoch": 0.2848042741189767, + "grad_norm": 0.19474861025810242, + "learning_rate": 0.01, + "loss": 2.387, + "step": 2772 + }, + { + "epoch": 0.2851125038528717, + "grad_norm": 0.17801512777805328, + "learning_rate": 0.01, + "loss": 2.3745, + "step": 2775 + }, + { + "epoch": 0.2854207335867667, + "grad_norm": 0.0658038854598999, + "learning_rate": 0.01, + "loss": 2.3857, + "step": 2778 + }, + { + "epoch": 0.28572896332066167, + "grad_norm": 0.0510118305683136, + "learning_rate": 0.01, + "loss": 2.3735, + "step": 2781 + }, + { + "epoch": 0.28603719305455666, + "grad_norm": 0.0649714320898056, + "learning_rate": 0.01, + "loss": 2.4002, + "step": 2784 + }, + { + "epoch": 0.28634542278845165, + "grad_norm": 0.11462211608886719, + "learning_rate": 0.01, + "loss": 2.3642, + "step": 2787 + }, + { + "epoch": 0.28665365252234665, + "grad_norm": 0.0745900496840477, + "learning_rate": 0.01, + "loss": 2.4058, + "step": 2790 + }, + { + "epoch": 0.28696188225624164, + "grad_norm": 0.2475040704011917, + "learning_rate": 0.01, + "loss": 2.3778, + "step": 2793 + }, + { + "epoch": 0.28727011199013663, + "grad_norm": 0.08792129158973694, + "learning_rate": 0.01, + "loss": 2.3932, + "step": 2796 + }, + { + "epoch": 0.2875783417240316, + "grad_norm": 0.04952983185648918, + "learning_rate": 0.01, + "loss": 2.3631, + "step": 2799 + }, + { + "epoch": 0.2878865714579266, + "grad_norm": 0.053665559738874435, + "learning_rate": 0.01, + "loss": 2.3673, + "step": 2802 + }, + { + "epoch": 0.2881948011918216, + "grad_norm": 0.0579262301325798, + "learning_rate": 0.01, + "loss": 2.3234, + "step": 2805 + }, + { + "epoch": 0.2885030309257166, + "grad_norm": 0.13837358355522156, + "learning_rate": 0.01, + "loss": 2.3854, + "step": 2808 + }, + { + "epoch": 0.28881126065961166, + "grad_norm": 0.09924750030040741, + "learning_rate": 0.01, + "loss": 2.3819, + "step": 2811 + }, + { + "epoch": 0.28911949039350665, + "grad_norm": 0.14742402732372284, + "learning_rate": 0.01, + "loss": 2.3853, + "step": 2814 + }, + { + "epoch": 0.28942772012740164, + "grad_norm": 0.11731177568435669, + "learning_rate": 0.01, + "loss": 2.4082, + "step": 2817 + }, + { + "epoch": 0.28973594986129664, + "grad_norm": 0.16812686622142792, + "learning_rate": 0.01, + "loss": 2.3855, + "step": 2820 + }, + { + "epoch": 0.29004417959519163, + "grad_norm": 0.06864415854215622, + "learning_rate": 0.01, + "loss": 2.3911, + "step": 2823 + }, + { + "epoch": 0.2903524093290866, + "grad_norm": 0.050597239285707474, + "learning_rate": 0.01, + "loss": 2.3627, + "step": 2826 + }, + { + "epoch": 0.2906606390629816, + "grad_norm": 0.06927742809057236, + "learning_rate": 0.01, + "loss": 2.3653, + "step": 2829 + }, + { + "epoch": 0.2909688687968766, + "grad_norm": 0.049216922372579575, + "learning_rate": 0.01, + "loss": 2.3527, + "step": 2832 + }, + { + "epoch": 0.2912770985307716, + "grad_norm": 0.06790090352296829, + "learning_rate": 0.01, + "loss": 2.4087, + "step": 2835 + }, + { + "epoch": 0.2915853282646666, + "grad_norm": 0.14112398028373718, + "learning_rate": 0.01, + "loss": 2.3777, + "step": 2838 + }, + { + "epoch": 0.2918935579985616, + "grad_norm": 0.07459170371294022, + "learning_rate": 0.01, + "loss": 2.3776, + "step": 2841 + }, + { + "epoch": 0.2922017877324566, + "grad_norm": 0.05480146035552025, + "learning_rate": 0.01, + "loss": 2.3831, + "step": 2844 + }, + { + "epoch": 0.2925100174663516, + "grad_norm": 0.11372058093547821, + "learning_rate": 0.01, + "loss": 2.3667, + "step": 2847 + }, + { + "epoch": 0.2928182472002466, + "grad_norm": 0.05589181184768677, + "learning_rate": 0.01, + "loss": 2.3744, + "step": 2850 + }, + { + "epoch": 0.29312647693414157, + "grad_norm": 0.10505107790231705, + "learning_rate": 0.01, + "loss": 2.3461, + "step": 2853 + }, + { + "epoch": 0.29343470666803656, + "grad_norm": 0.06241190806031227, + "learning_rate": 0.01, + "loss": 2.3616, + "step": 2856 + }, + { + "epoch": 0.29374293640193155, + "grad_norm": 0.2687353193759918, + "learning_rate": 0.01, + "loss": 2.3728, + "step": 2859 + }, + { + "epoch": 0.29405116613582655, + "grad_norm": 0.13569511473178864, + "learning_rate": 0.01, + "loss": 2.3758, + "step": 2862 + }, + { + "epoch": 0.29435939586972154, + "grad_norm": 0.08852502703666687, + "learning_rate": 0.01, + "loss": 2.3805, + "step": 2865 + }, + { + "epoch": 0.2946676256036166, + "grad_norm": 0.0690246969461441, + "learning_rate": 0.01, + "loss": 2.3694, + "step": 2868 + }, + { + "epoch": 0.2949758553375116, + "grad_norm": 0.13508114218711853, + "learning_rate": 0.01, + "loss": 2.3626, + "step": 2871 + }, + { + "epoch": 0.2952840850714066, + "grad_norm": 0.06574945896863937, + "learning_rate": 0.01, + "loss": 2.3661, + "step": 2874 + }, + { + "epoch": 0.29559231480530157, + "grad_norm": 0.08492054790258408, + "learning_rate": 0.01, + "loss": 2.3737, + "step": 2877 + }, + { + "epoch": 0.29590054453919656, + "grad_norm": 0.11930177360773087, + "learning_rate": 0.01, + "loss": 2.3684, + "step": 2880 + }, + { + "epoch": 0.29620877427309156, + "grad_norm": 0.06913982331752777, + "learning_rate": 0.01, + "loss": 2.3597, + "step": 2883 + }, + { + "epoch": 0.29651700400698655, + "grad_norm": 0.1508978009223938, + "learning_rate": 0.01, + "loss": 2.3807, + "step": 2886 + }, + { + "epoch": 0.29682523374088154, + "grad_norm": 0.059416841715574265, + "learning_rate": 0.01, + "loss": 2.3672, + "step": 2889 + }, + { + "epoch": 0.29713346347477654, + "grad_norm": 0.07864934206008911, + "learning_rate": 0.01, + "loss": 2.3542, + "step": 2892 + }, + { + "epoch": 0.29744169320867153, + "grad_norm": 0.15172207355499268, + "learning_rate": 0.01, + "loss": 2.3816, + "step": 2895 + }, + { + "epoch": 0.2977499229425665, + "grad_norm": 0.08946362882852554, + "learning_rate": 0.01, + "loss": 2.3854, + "step": 2898 + }, + { + "epoch": 0.2980581526764615, + "grad_norm": 0.06231836602091789, + "learning_rate": 0.01, + "loss": 2.3803, + "step": 2901 + }, + { + "epoch": 0.2983663824103565, + "grad_norm": 0.06673764437437057, + "learning_rate": 0.01, + "loss": 2.3506, + "step": 2904 + }, + { + "epoch": 0.2986746121442515, + "grad_norm": 0.11514609307050705, + "learning_rate": 0.01, + "loss": 2.3345, + "step": 2907 + }, + { + "epoch": 0.2989828418781465, + "grad_norm": 0.05702753737568855, + "learning_rate": 0.01, + "loss": 2.353, + "step": 2910 + }, + { + "epoch": 0.2992910716120415, + "grad_norm": 0.09202984720468521, + "learning_rate": 0.01, + "loss": 2.3978, + "step": 2913 + }, + { + "epoch": 0.2995993013459365, + "grad_norm": 0.09088042378425598, + "learning_rate": 0.01, + "loss": 2.3508, + "step": 2916 + }, + { + "epoch": 0.2999075310798315, + "grad_norm": 0.09106214344501495, + "learning_rate": 0.01, + "loss": 2.3695, + "step": 2919 + }, + { + "epoch": 0.3002157608137265, + "grad_norm": 0.12793834507465363, + "learning_rate": 0.01, + "loss": 2.3585, + "step": 2922 + }, + { + "epoch": 0.30052399054762147, + "grad_norm": 0.16437458992004395, + "learning_rate": 0.01, + "loss": 2.3708, + "step": 2925 + }, + { + "epoch": 0.3008322202815165, + "grad_norm": 0.10168170928955078, + "learning_rate": 0.01, + "loss": 2.3839, + "step": 2928 + }, + { + "epoch": 0.3011404500154115, + "grad_norm": 0.12716282904148102, + "learning_rate": 0.01, + "loss": 2.3653, + "step": 2931 + }, + { + "epoch": 0.3014486797493065, + "grad_norm": 0.05094976723194122, + "learning_rate": 0.01, + "loss": 2.3315, + "step": 2934 + }, + { + "epoch": 0.3017569094832015, + "grad_norm": 0.11750750988721848, + "learning_rate": 0.01, + "loss": 2.3544, + "step": 2937 + }, + { + "epoch": 0.3020651392170965, + "grad_norm": 0.0688977912068367, + "learning_rate": 0.01, + "loss": 2.3485, + "step": 2940 + }, + { + "epoch": 0.3023733689509915, + "grad_norm": 0.09537909924983978, + "learning_rate": 0.01, + "loss": 2.3357, + "step": 2943 + }, + { + "epoch": 0.3026815986848865, + "grad_norm": 0.15028056502342224, + "learning_rate": 0.01, + "loss": 2.3029, + "step": 2946 + }, + { + "epoch": 0.30298982841878147, + "grad_norm": 0.2069140523672104, + "learning_rate": 0.01, + "loss": 2.3658, + "step": 2949 + }, + { + "epoch": 0.30329805815267646, + "grad_norm": 0.04774792492389679, + "learning_rate": 0.01, + "loss": 2.3488, + "step": 2952 + }, + { + "epoch": 0.30360628788657146, + "grad_norm": 0.04033259302377701, + "learning_rate": 0.01, + "loss": 2.3536, + "step": 2955 + }, + { + "epoch": 0.30391451762046645, + "grad_norm": 0.04587483033537865, + "learning_rate": 0.01, + "loss": 2.3377, + "step": 2958 + }, + { + "epoch": 0.30422274735436144, + "grad_norm": 0.08392881602048874, + "learning_rate": 0.01, + "loss": 2.3323, + "step": 2961 + }, + { + "epoch": 0.30453097708825644, + "grad_norm": 0.16665025055408478, + "learning_rate": 0.01, + "loss": 2.3763, + "step": 2964 + }, + { + "epoch": 0.30483920682215143, + "grad_norm": 0.19268077611923218, + "learning_rate": 0.01, + "loss": 2.3545, + "step": 2967 + }, + { + "epoch": 0.3051474365560464, + "grad_norm": 0.14428319036960602, + "learning_rate": 0.01, + "loss": 2.3481, + "step": 2970 + }, + { + "epoch": 0.3054556662899414, + "grad_norm": 0.08958342671394348, + "learning_rate": 0.01, + "loss": 2.3704, + "step": 2973 + }, + { + "epoch": 0.3057638960238364, + "grad_norm": 0.06964152306318283, + "learning_rate": 0.01, + "loss": 2.3649, + "step": 2976 + }, + { + "epoch": 0.3060721257577314, + "grad_norm": 0.1336866170167923, + "learning_rate": 0.01, + "loss": 2.3426, + "step": 2979 + }, + { + "epoch": 0.3063803554916264, + "grad_norm": 0.06913724541664124, + "learning_rate": 0.01, + "loss": 2.363, + "step": 2982 + }, + { + "epoch": 0.30668858522552145, + "grad_norm": 0.0705854743719101, + "learning_rate": 0.01, + "loss": 2.327, + "step": 2985 + }, + { + "epoch": 0.30699681495941644, + "grad_norm": 0.06596222519874573, + "learning_rate": 0.01, + "loss": 2.3669, + "step": 2988 + }, + { + "epoch": 0.30730504469331144, + "grad_norm": 0.12716993689537048, + "learning_rate": 0.01, + "loss": 2.3395, + "step": 2991 + }, + { + "epoch": 0.30761327442720643, + "grad_norm": 0.09933049976825714, + "learning_rate": 0.01, + "loss": 2.3532, + "step": 2994 + }, + { + "epoch": 0.3079215041611014, + "grad_norm": 0.19280697405338287, + "learning_rate": 0.01, + "loss": 2.3513, + "step": 2997 + }, + { + "epoch": 0.3082297338949964, + "grad_norm": 0.08448618650436401, + "learning_rate": 0.01, + "loss": 2.3828, + "step": 3000 + }, + { + "epoch": 0.3085379636288914, + "grad_norm": 0.14882349967956543, + "learning_rate": 0.01, + "loss": 2.3398, + "step": 3003 + }, + { + "epoch": 0.3088461933627864, + "grad_norm": 0.08360068500041962, + "learning_rate": 0.01, + "loss": 2.3414, + "step": 3006 + }, + { + "epoch": 0.3091544230966814, + "grad_norm": 0.1378074288368225, + "learning_rate": 0.01, + "loss": 2.3461, + "step": 3009 + }, + { + "epoch": 0.3094626528305764, + "grad_norm": 0.13160692155361176, + "learning_rate": 0.01, + "loss": 2.3517, + "step": 3012 + }, + { + "epoch": 0.3097708825644714, + "grad_norm": 0.0702040046453476, + "learning_rate": 0.01, + "loss": 2.3524, + "step": 3015 + }, + { + "epoch": 0.3100791122983664, + "grad_norm": 0.06959223002195358, + "learning_rate": 0.01, + "loss": 2.3398, + "step": 3018 + }, + { + "epoch": 0.31038734203226137, + "grad_norm": 0.10830830782651901, + "learning_rate": 0.01, + "loss": 2.3437, + "step": 3021 + }, + { + "epoch": 0.31069557176615636, + "grad_norm": 0.09298605471849442, + "learning_rate": 0.01, + "loss": 2.3473, + "step": 3024 + }, + { + "epoch": 0.31100380150005136, + "grad_norm": 0.06620427966117859, + "learning_rate": 0.01, + "loss": 2.3341, + "step": 3027 + }, + { + "epoch": 0.31131203123394635, + "grad_norm": 0.21722812950611115, + "learning_rate": 0.01, + "loss": 2.3281, + "step": 3030 + }, + { + "epoch": 0.31162026096784134, + "grad_norm": 0.1475544422864914, + "learning_rate": 0.01, + "loss": 2.3383, + "step": 3033 + }, + { + "epoch": 0.31192849070173634, + "grad_norm": 0.13449987769126892, + "learning_rate": 0.01, + "loss": 2.314, + "step": 3036 + }, + { + "epoch": 0.31223672043563133, + "grad_norm": 0.06219559907913208, + "learning_rate": 0.01, + "loss": 2.3526, + "step": 3039 + }, + { + "epoch": 0.3125449501695264, + "grad_norm": 0.05337538942694664, + "learning_rate": 0.01, + "loss": 2.3386, + "step": 3042 + }, + { + "epoch": 0.3128531799034214, + "grad_norm": 0.11457488685846329, + "learning_rate": 0.01, + "loss": 2.3261, + "step": 3045 + }, + { + "epoch": 0.31316140963731637, + "grad_norm": 0.23809069395065308, + "learning_rate": 0.01, + "loss": 2.3411, + "step": 3048 + }, + { + "epoch": 0.31346963937121136, + "grad_norm": 0.11100046336650848, + "learning_rate": 0.01, + "loss": 2.3269, + "step": 3051 + }, + { + "epoch": 0.31377786910510636, + "grad_norm": 0.05229029804468155, + "learning_rate": 0.01, + "loss": 2.3339, + "step": 3054 + }, + { + "epoch": 0.31408609883900135, + "grad_norm": 0.05956039950251579, + "learning_rate": 0.01, + "loss": 2.3566, + "step": 3057 + }, + { + "epoch": 0.31439432857289634, + "grad_norm": 0.13084881007671356, + "learning_rate": 0.01, + "loss": 2.332, + "step": 3060 + }, + { + "epoch": 0.31470255830679134, + "grad_norm": 0.13889305293560028, + "learning_rate": 0.01, + "loss": 2.3118, + "step": 3063 + }, + { + "epoch": 0.31501078804068633, + "grad_norm": 0.10443049669265747, + "learning_rate": 0.01, + "loss": 2.3246, + "step": 3066 + }, + { + "epoch": 0.3153190177745813, + "grad_norm": 0.04321267828345299, + "learning_rate": 0.01, + "loss": 2.3353, + "step": 3069 + }, + { + "epoch": 0.3156272475084763, + "grad_norm": 0.046873319894075394, + "learning_rate": 0.01, + "loss": 2.3144, + "step": 3072 + }, + { + "epoch": 0.3159354772423713, + "grad_norm": 0.06548158824443817, + "learning_rate": 0.01, + "loss": 2.3285, + "step": 3075 + }, + { + "epoch": 0.3162437069762663, + "grad_norm": 0.19105824828147888, + "learning_rate": 0.01, + "loss": 2.349, + "step": 3078 + }, + { + "epoch": 0.3165519367101613, + "grad_norm": 0.14477142691612244, + "learning_rate": 0.01, + "loss": 2.3074, + "step": 3081 + }, + { + "epoch": 0.3168601664440563, + "grad_norm": 0.08536936342716217, + "learning_rate": 0.01, + "loss": 2.3462, + "step": 3084 + }, + { + "epoch": 0.3171683961779513, + "grad_norm": 0.0595535933971405, + "learning_rate": 0.01, + "loss": 2.3522, + "step": 3087 + }, + { + "epoch": 0.3174766259118463, + "grad_norm": 0.058548733592033386, + "learning_rate": 0.01, + "loss": 2.3314, + "step": 3090 + }, + { + "epoch": 0.31778485564574127, + "grad_norm": 0.04651311784982681, + "learning_rate": 0.01, + "loss": 2.3058, + "step": 3093 + }, + { + "epoch": 0.31809308537963626, + "grad_norm": 0.0516805462539196, + "learning_rate": 0.01, + "loss": 2.3243, + "step": 3096 + }, + { + "epoch": 0.31840131511353126, + "grad_norm": 0.16851970553398132, + "learning_rate": 0.01, + "loss": 2.3315, + "step": 3099 + }, + { + "epoch": 0.3187095448474263, + "grad_norm": 0.08350600302219391, + "learning_rate": 0.01, + "loss": 2.315, + "step": 3102 + }, + { + "epoch": 0.3190177745813213, + "grad_norm": 0.08899964392185211, + "learning_rate": 0.01, + "loss": 2.3218, + "step": 3105 + }, + { + "epoch": 0.3193260043152163, + "grad_norm": 0.2424800843000412, + "learning_rate": 0.01, + "loss": 2.3207, + "step": 3108 + }, + { + "epoch": 0.3196342340491113, + "grad_norm": 0.213782399892807, + "learning_rate": 0.01, + "loss": 2.3728, + "step": 3111 + }, + { + "epoch": 0.3199424637830063, + "grad_norm": 0.15629780292510986, + "learning_rate": 0.01, + "loss": 2.3453, + "step": 3114 + }, + { + "epoch": 0.3202506935169013, + "grad_norm": 0.06920924782752991, + "learning_rate": 0.01, + "loss": 2.3111, + "step": 3117 + }, + { + "epoch": 0.32055892325079627, + "grad_norm": 0.04514181613922119, + "learning_rate": 0.01, + "loss": 2.33, + "step": 3120 + }, + { + "epoch": 0.32086715298469126, + "grad_norm": 0.05500979721546173, + "learning_rate": 0.01, + "loss": 2.3078, + "step": 3123 + }, + { + "epoch": 0.32117538271858626, + "grad_norm": 0.09148071706295013, + "learning_rate": 0.01, + "loss": 2.3457, + "step": 3126 + }, + { + "epoch": 0.32148361245248125, + "grad_norm": 0.10582035779953003, + "learning_rate": 0.01, + "loss": 2.3114, + "step": 3129 + }, + { + "epoch": 0.32179184218637624, + "grad_norm": 0.1557345986366272, + "learning_rate": 0.01, + "loss": 2.3334, + "step": 3132 + }, + { + "epoch": 0.32210007192027124, + "grad_norm": 0.11304829269647598, + "learning_rate": 0.01, + "loss": 2.2797, + "step": 3135 + }, + { + "epoch": 0.32240830165416623, + "grad_norm": 0.08236223459243774, + "learning_rate": 0.01, + "loss": 2.3357, + "step": 3138 + }, + { + "epoch": 0.3227165313880612, + "grad_norm": 0.09718946367502213, + "learning_rate": 0.01, + "loss": 2.3096, + "step": 3141 + }, + { + "epoch": 0.3230247611219562, + "grad_norm": 0.07455772161483765, + "learning_rate": 0.01, + "loss": 2.3127, + "step": 3144 + }, + { + "epoch": 0.3233329908558512, + "grad_norm": 0.0556890033185482, + "learning_rate": 0.01, + "loss": 2.3088, + "step": 3147 + }, + { + "epoch": 0.3236412205897462, + "grad_norm": 0.07595494389533997, + "learning_rate": 0.01, + "loss": 2.3159, + "step": 3150 + }, + { + "epoch": 0.3239494503236412, + "grad_norm": 0.07064896821975708, + "learning_rate": 0.01, + "loss": 2.3336, + "step": 3153 + }, + { + "epoch": 0.3242576800575362, + "grad_norm": 0.06646276265382767, + "learning_rate": 0.01, + "loss": 2.324, + "step": 3156 + }, + { + "epoch": 0.32456590979143124, + "grad_norm": 0.08837945014238358, + "learning_rate": 0.01, + "loss": 2.3191, + "step": 3159 + }, + { + "epoch": 0.32487413952532623, + "grad_norm": 0.13228796422481537, + "learning_rate": 0.01, + "loss": 2.3231, + "step": 3162 + }, + { + "epoch": 0.3251823692592212, + "grad_norm": 0.1080455407500267, + "learning_rate": 0.01, + "loss": 2.3341, + "step": 3165 + }, + { + "epoch": 0.3254905989931162, + "grad_norm": 0.1073957234621048, + "learning_rate": 0.01, + "loss": 2.3237, + "step": 3168 + }, + { + "epoch": 0.3257988287270112, + "grad_norm": 0.12472347915172577, + "learning_rate": 0.01, + "loss": 2.3315, + "step": 3171 + }, + { + "epoch": 0.3261070584609062, + "grad_norm": 0.09123571217060089, + "learning_rate": 0.01, + "loss": 2.3588, + "step": 3174 + }, + { + "epoch": 0.3264152881948012, + "grad_norm": 0.07830306142568588, + "learning_rate": 0.01, + "loss": 2.3273, + "step": 3177 + }, + { + "epoch": 0.3267235179286962, + "grad_norm": 0.11552650481462479, + "learning_rate": 0.01, + "loss": 2.3407, + "step": 3180 + }, + { + "epoch": 0.3270317476625912, + "grad_norm": 0.13251489400863647, + "learning_rate": 0.01, + "loss": 2.3241, + "step": 3183 + }, + { + "epoch": 0.3273399773964862, + "grad_norm": 0.12775808572769165, + "learning_rate": 0.01, + "loss": 2.331, + "step": 3186 + }, + { + "epoch": 0.3276482071303812, + "grad_norm": 0.12069859355688095, + "learning_rate": 0.01, + "loss": 2.3486, + "step": 3189 + }, + { + "epoch": 0.32795643686427617, + "grad_norm": 0.059109434485435486, + "learning_rate": 0.01, + "loss": 2.2969, + "step": 3192 + }, + { + "epoch": 0.32826466659817116, + "grad_norm": 0.12731850147247314, + "learning_rate": 0.01, + "loss": 2.3269, + "step": 3195 + }, + { + "epoch": 0.32857289633206616, + "grad_norm": 0.15247757732868195, + "learning_rate": 0.01, + "loss": 2.3312, + "step": 3198 + }, + { + "epoch": 0.32888112606596115, + "grad_norm": 0.128463476896286, + "learning_rate": 0.01, + "loss": 2.3275, + "step": 3201 + }, + { + "epoch": 0.32918935579985614, + "grad_norm": 0.09406638145446777, + "learning_rate": 0.01, + "loss": 2.3205, + "step": 3204 + }, + { + "epoch": 0.32949758553375114, + "grad_norm": 0.10524141043424606, + "learning_rate": 0.01, + "loss": 2.3423, + "step": 3207 + }, + { + "epoch": 0.32980581526764613, + "grad_norm": 0.11357913911342621, + "learning_rate": 0.01, + "loss": 2.3071, + "step": 3210 + }, + { + "epoch": 0.3301140450015411, + "grad_norm": 0.06979521363973618, + "learning_rate": 0.01, + "loss": 2.3319, + "step": 3213 + }, + { + "epoch": 0.33042227473543617, + "grad_norm": 0.07000034302473068, + "learning_rate": 0.01, + "loss": 2.3523, + "step": 3216 + }, + { + "epoch": 0.33073050446933117, + "grad_norm": 0.07495003193616867, + "learning_rate": 0.01, + "loss": 2.305, + "step": 3219 + }, + { + "epoch": 0.33103873420322616, + "grad_norm": 0.07131810486316681, + "learning_rate": 0.01, + "loss": 2.2896, + "step": 3222 + }, + { + "epoch": 0.33134696393712115, + "grad_norm": 0.051389019936323166, + "learning_rate": 0.01, + "loss": 2.2974, + "step": 3225 + }, + { + "epoch": 0.33165519367101615, + "grad_norm": 0.05159701779484749, + "learning_rate": 0.01, + "loss": 2.3344, + "step": 3228 + }, + { + "epoch": 0.33196342340491114, + "grad_norm": 0.07632975280284882, + "learning_rate": 0.01, + "loss": 2.3091, + "step": 3231 + }, + { + "epoch": 0.33227165313880613, + "grad_norm": 0.08053800463676453, + "learning_rate": 0.01, + "loss": 2.298, + "step": 3234 + }, + { + "epoch": 0.3325798828727011, + "grad_norm": 0.1371622234582901, + "learning_rate": 0.01, + "loss": 2.3095, + "step": 3237 + }, + { + "epoch": 0.3328881126065961, + "grad_norm": 0.11367069184780121, + "learning_rate": 0.01, + "loss": 2.3212, + "step": 3240 + }, + { + "epoch": 0.3331963423404911, + "grad_norm": 0.13252900540828705, + "learning_rate": 0.01, + "loss": 2.3238, + "step": 3243 + }, + { + "epoch": 0.3335045720743861, + "grad_norm": 0.15517258644104004, + "learning_rate": 0.01, + "loss": 2.3263, + "step": 3246 + }, + { + "epoch": 0.3338128018082811, + "grad_norm": 0.14029370248317719, + "learning_rate": 0.01, + "loss": 2.3457, + "step": 3249 + }, + { + "epoch": 0.3341210315421761, + "grad_norm": 0.105759397149086, + "learning_rate": 0.01, + "loss": 2.3008, + "step": 3252 + }, + { + "epoch": 0.3344292612760711, + "grad_norm": 0.04762979596853256, + "learning_rate": 0.01, + "loss": 2.3306, + "step": 3255 + }, + { + "epoch": 0.3347374910099661, + "grad_norm": 0.12065446376800537, + "learning_rate": 0.01, + "loss": 2.2904, + "step": 3258 + }, + { + "epoch": 0.3350457207438611, + "grad_norm": 0.08886688947677612, + "learning_rate": 0.01, + "loss": 2.3243, + "step": 3261 + }, + { + "epoch": 0.33535395047775607, + "grad_norm": 0.08021339774131775, + "learning_rate": 0.01, + "loss": 2.3313, + "step": 3264 + }, + { + "epoch": 0.33566218021165106, + "grad_norm": 0.04490290582180023, + "learning_rate": 0.01, + "loss": 2.2888, + "step": 3267 + }, + { + "epoch": 0.33597040994554606, + "grad_norm": 0.061480812728405, + "learning_rate": 0.01, + "loss": 2.2898, + "step": 3270 + }, + { + "epoch": 0.33627863967944105, + "grad_norm": 0.04230419546365738, + "learning_rate": 0.01, + "loss": 2.3062, + "step": 3273 + }, + { + "epoch": 0.3365868694133361, + "grad_norm": 0.12344948202371597, + "learning_rate": 0.01, + "loss": 2.3105, + "step": 3276 + }, + { + "epoch": 0.3368950991472311, + "grad_norm": 0.13087160885334015, + "learning_rate": 0.01, + "loss": 2.3388, + "step": 3279 + }, + { + "epoch": 0.3372033288811261, + "grad_norm": 0.06671308726072311, + "learning_rate": 0.01, + "loss": 2.3062, + "step": 3282 + }, + { + "epoch": 0.3375115586150211, + "grad_norm": 0.055828843265771866, + "learning_rate": 0.01, + "loss": 2.3227, + "step": 3285 + }, + { + "epoch": 0.3378197883489161, + "grad_norm": 0.07760481536388397, + "learning_rate": 0.01, + "loss": 2.307, + "step": 3288 + }, + { + "epoch": 0.33812801808281107, + "grad_norm": 0.08074722439050674, + "learning_rate": 0.01, + "loss": 2.3363, + "step": 3291 + }, + { + "epoch": 0.33843624781670606, + "grad_norm": 0.046514566987752914, + "learning_rate": 0.01, + "loss": 2.3152, + "step": 3294 + }, + { + "epoch": 0.33874447755060105, + "grad_norm": 0.15358585119247437, + "learning_rate": 0.01, + "loss": 2.3114, + "step": 3297 + }, + { + "epoch": 0.33905270728449605, + "grad_norm": 0.09048300981521606, + "learning_rate": 0.01, + "loss": 2.3218, + "step": 3300 + }, + { + "epoch": 0.33936093701839104, + "grad_norm": 0.08199465274810791, + "learning_rate": 0.01, + "loss": 2.3133, + "step": 3303 + }, + { + "epoch": 0.33966916675228603, + "grad_norm": 0.13738159835338593, + "learning_rate": 0.01, + "loss": 2.3108, + "step": 3306 + }, + { + "epoch": 0.339977396486181, + "grad_norm": 0.11493804305791855, + "learning_rate": 0.01, + "loss": 2.2996, + "step": 3309 + }, + { + "epoch": 0.340285626220076, + "grad_norm": 0.06872740387916565, + "learning_rate": 0.01, + "loss": 2.306, + "step": 3312 + }, + { + "epoch": 0.340593855953971, + "grad_norm": 0.055139992386102676, + "learning_rate": 0.01, + "loss": 2.3129, + "step": 3315 + }, + { + "epoch": 0.340902085687866, + "grad_norm": 0.16477546095848083, + "learning_rate": 0.01, + "loss": 2.3138, + "step": 3318 + }, + { + "epoch": 0.341210315421761, + "grad_norm": 0.06387230008840561, + "learning_rate": 0.01, + "loss": 2.3025, + "step": 3321 + }, + { + "epoch": 0.341518545155656, + "grad_norm": 0.1657593995332718, + "learning_rate": 0.01, + "loss": 2.3255, + "step": 3324 + }, + { + "epoch": 0.341826774889551, + "grad_norm": 0.08980764448642731, + "learning_rate": 0.01, + "loss": 2.3024, + "step": 3327 + }, + { + "epoch": 0.342135004623446, + "grad_norm": 0.05479981005191803, + "learning_rate": 0.01, + "loss": 2.2955, + "step": 3330 + }, + { + "epoch": 0.34244323435734103, + "grad_norm": 0.05986113101243973, + "learning_rate": 0.01, + "loss": 2.3078, + "step": 3333 + }, + { + "epoch": 0.342751464091236, + "grad_norm": 0.1339874267578125, + "learning_rate": 0.01, + "loss": 2.2974, + "step": 3336 + }, + { + "epoch": 0.343059693825131, + "grad_norm": 0.11250229179859161, + "learning_rate": 0.01, + "loss": 2.3162, + "step": 3339 + }, + { + "epoch": 0.343367923559026, + "grad_norm": 0.12179972976446152, + "learning_rate": 0.01, + "loss": 2.2746, + "step": 3342 + }, + { + "epoch": 0.343676153292921, + "grad_norm": 0.10306143760681152, + "learning_rate": 0.01, + "loss": 2.3008, + "step": 3345 + }, + { + "epoch": 0.343984383026816, + "grad_norm": 0.08372616767883301, + "learning_rate": 0.01, + "loss": 2.2962, + "step": 3348 + }, + { + "epoch": 0.344292612760711, + "grad_norm": 0.05286876857280731, + "learning_rate": 0.01, + "loss": 2.3067, + "step": 3351 + }, + { + "epoch": 0.344600842494606, + "grad_norm": 0.06248036026954651, + "learning_rate": 0.01, + "loss": 2.3432, + "step": 3354 + }, + { + "epoch": 0.344909072228501, + "grad_norm": 0.1287723332643509, + "learning_rate": 0.01, + "loss": 2.3064, + "step": 3357 + }, + { + "epoch": 0.345217301962396, + "grad_norm": 0.08843682706356049, + "learning_rate": 0.01, + "loss": 2.3059, + "step": 3360 + }, + { + "epoch": 0.34552553169629097, + "grad_norm": 0.07060680538415909, + "learning_rate": 0.01, + "loss": 2.2627, + "step": 3363 + }, + { + "epoch": 0.34583376143018596, + "grad_norm": 0.10443838685750961, + "learning_rate": 0.01, + "loss": 2.2876, + "step": 3366 + }, + { + "epoch": 0.34614199116408095, + "grad_norm": 0.06748315691947937, + "learning_rate": 0.01, + "loss": 2.3182, + "step": 3369 + }, + { + "epoch": 0.34645022089797595, + "grad_norm": 0.06599223613739014, + "learning_rate": 0.01, + "loss": 2.2997, + "step": 3372 + }, + { + "epoch": 0.34675845063187094, + "grad_norm": 0.08530016988515854, + "learning_rate": 0.01, + "loss": 2.2959, + "step": 3375 + }, + { + "epoch": 0.34706668036576593, + "grad_norm": 0.10694181174039841, + "learning_rate": 0.01, + "loss": 2.3248, + "step": 3378 + }, + { + "epoch": 0.3473749100996609, + "grad_norm": 0.06598237156867981, + "learning_rate": 0.01, + "loss": 2.2837, + "step": 3381 + }, + { + "epoch": 0.3476831398335559, + "grad_norm": 0.0782204419374466, + "learning_rate": 0.01, + "loss": 2.2926, + "step": 3384 + }, + { + "epoch": 0.3479913695674509, + "grad_norm": 0.09585436433553696, + "learning_rate": 0.01, + "loss": 2.2984, + "step": 3387 + }, + { + "epoch": 0.34829959930134596, + "grad_norm": 0.061477720737457275, + "learning_rate": 0.01, + "loss": 2.2693, + "step": 3390 + }, + { + "epoch": 0.34860782903524096, + "grad_norm": 0.104725681245327, + "learning_rate": 0.01, + "loss": 2.2887, + "step": 3393 + }, + { + "epoch": 0.34891605876913595, + "grad_norm": 0.12205322831869125, + "learning_rate": 0.01, + "loss": 2.3052, + "step": 3396 + }, + { + "epoch": 0.34922428850303094, + "grad_norm": 0.16279913485050201, + "learning_rate": 0.01, + "loss": 2.2771, + "step": 3399 + }, + { + "epoch": 0.34953251823692594, + "grad_norm": 0.059565551578998566, + "learning_rate": 0.01, + "loss": 2.3027, + "step": 3402 + }, + { + "epoch": 0.34984074797082093, + "grad_norm": 0.06318376958370209, + "learning_rate": 0.01, + "loss": 2.3131, + "step": 3405 + }, + { + "epoch": 0.3501489777047159, + "grad_norm": 0.05476443096995354, + "learning_rate": 0.01, + "loss": 2.2953, + "step": 3408 + }, + { + "epoch": 0.3504572074386109, + "grad_norm": 0.07989142090082169, + "learning_rate": 0.01, + "loss": 2.31, + "step": 3411 + }, + { + "epoch": 0.3507654371725059, + "grad_norm": 0.15566086769104004, + "learning_rate": 0.01, + "loss": 2.2839, + "step": 3414 + }, + { + "epoch": 0.3510736669064009, + "grad_norm": 0.060441337525844574, + "learning_rate": 0.01, + "loss": 2.2952, + "step": 3417 + }, + { + "epoch": 0.3513818966402959, + "grad_norm": 0.06277213245630264, + "learning_rate": 0.01, + "loss": 2.32, + "step": 3420 + }, + { + "epoch": 0.3516901263741909, + "grad_norm": 0.04959907755255699, + "learning_rate": 0.01, + "loss": 2.3116, + "step": 3423 + }, + { + "epoch": 0.3519983561080859, + "grad_norm": 0.06766139715909958, + "learning_rate": 0.01, + "loss": 2.3201, + "step": 3426 + }, + { + "epoch": 0.3523065858419809, + "grad_norm": 0.053323931992053986, + "learning_rate": 0.01, + "loss": 2.3271, + "step": 3429 + }, + { + "epoch": 0.3526148155758759, + "grad_norm": 0.06396596878767014, + "learning_rate": 0.01, + "loss": 2.2929, + "step": 3432 + }, + { + "epoch": 0.35292304530977087, + "grad_norm": 0.07360636442899704, + "learning_rate": 0.01, + "loss": 2.2918, + "step": 3435 + }, + { + "epoch": 0.35323127504366586, + "grad_norm": 0.10262563079595566, + "learning_rate": 0.01, + "loss": 2.2871, + "step": 3438 + }, + { + "epoch": 0.35353950477756085, + "grad_norm": 0.09783780574798584, + "learning_rate": 0.01, + "loss": 2.3229, + "step": 3441 + }, + { + "epoch": 0.35384773451145585, + "grad_norm": 0.08542583137750626, + "learning_rate": 0.01, + "loss": 2.2887, + "step": 3444 + }, + { + "epoch": 0.35415596424535084, + "grad_norm": 0.11864805966615677, + "learning_rate": 0.01, + "loss": 2.2848, + "step": 3447 + }, + { + "epoch": 0.3544641939792459, + "grad_norm": 0.10997387021780014, + "learning_rate": 0.01, + "loss": 2.2897, + "step": 3450 + }, + { + "epoch": 0.3547724237131409, + "grad_norm": 0.10915081202983856, + "learning_rate": 0.01, + "loss": 2.3114, + "step": 3453 + }, + { + "epoch": 0.3550806534470359, + "grad_norm": 0.15109725296497345, + "learning_rate": 0.01, + "loss": 2.2933, + "step": 3456 + }, + { + "epoch": 0.35538888318093087, + "grad_norm": 0.04911811649799347, + "learning_rate": 0.01, + "loss": 2.3035, + "step": 3459 + }, + { + "epoch": 0.35569711291482586, + "grad_norm": 0.12352598458528519, + "learning_rate": 0.01, + "loss": 2.2897, + "step": 3462 + }, + { + "epoch": 0.35600534264872086, + "grad_norm": 0.10834213346242905, + "learning_rate": 0.01, + "loss": 2.2879, + "step": 3465 + }, + { + "epoch": 0.35631357238261585, + "grad_norm": 0.10665787756443024, + "learning_rate": 0.01, + "loss": 2.2614, + "step": 3468 + }, + { + "epoch": 0.35662180211651084, + "grad_norm": 0.0898185670375824, + "learning_rate": 0.01, + "loss": 2.2943, + "step": 3471 + }, + { + "epoch": 0.35693003185040584, + "grad_norm": 0.07015782594680786, + "learning_rate": 0.01, + "loss": 2.298, + "step": 3474 + }, + { + "epoch": 0.35723826158430083, + "grad_norm": 0.1292288452386856, + "learning_rate": 0.01, + "loss": 2.3122, + "step": 3477 + }, + { + "epoch": 0.3575464913181958, + "grad_norm": 0.09300121665000916, + "learning_rate": 0.01, + "loss": 2.2769, + "step": 3480 + }, + { + "epoch": 0.3578547210520908, + "grad_norm": 0.0449809767305851, + "learning_rate": 0.01, + "loss": 2.2564, + "step": 3483 + }, + { + "epoch": 0.3581629507859858, + "grad_norm": 0.051362160593271255, + "learning_rate": 0.01, + "loss": 2.2739, + "step": 3486 + }, + { + "epoch": 0.3584711805198808, + "grad_norm": 0.12473469972610474, + "learning_rate": 0.01, + "loss": 2.2844, + "step": 3489 + }, + { + "epoch": 0.3587794102537758, + "grad_norm": 0.0925057902932167, + "learning_rate": 0.01, + "loss": 2.2618, + "step": 3492 + }, + { + "epoch": 0.3590876399876708, + "grad_norm": 0.1026608943939209, + "learning_rate": 0.01, + "loss": 2.2814, + "step": 3495 + }, + { + "epoch": 0.3593958697215658, + "grad_norm": 0.0995681881904602, + "learning_rate": 0.01, + "loss": 2.2861, + "step": 3498 + }, + { + "epoch": 0.3597040994554608, + "grad_norm": 0.06513385474681854, + "learning_rate": 0.01, + "loss": 2.2827, + "step": 3501 + }, + { + "epoch": 0.3600123291893558, + "grad_norm": 0.06724824756383896, + "learning_rate": 0.01, + "loss": 2.2799, + "step": 3504 + }, + { + "epoch": 0.3603205589232508, + "grad_norm": 0.06367610394954681, + "learning_rate": 0.01, + "loss": 2.2846, + "step": 3507 + }, + { + "epoch": 0.3606287886571458, + "grad_norm": 0.07489916682243347, + "learning_rate": 0.01, + "loss": 2.2816, + "step": 3510 + }, + { + "epoch": 0.3609370183910408, + "grad_norm": 0.11221667379140854, + "learning_rate": 0.01, + "loss": 2.2869, + "step": 3513 + }, + { + "epoch": 0.3612452481249358, + "grad_norm": 0.09854032099246979, + "learning_rate": 0.01, + "loss": 2.2646, + "step": 3516 + }, + { + "epoch": 0.3615534778588308, + "grad_norm": 0.09218656271696091, + "learning_rate": 0.01, + "loss": 2.2844, + "step": 3519 + }, + { + "epoch": 0.3618617075927258, + "grad_norm": 0.1531379073858261, + "learning_rate": 0.01, + "loss": 2.279, + "step": 3522 + }, + { + "epoch": 0.3621699373266208, + "grad_norm": 0.07070820778608322, + "learning_rate": 0.01, + "loss": 2.2747, + "step": 3525 + }, + { + "epoch": 0.3624781670605158, + "grad_norm": 0.1057102233171463, + "learning_rate": 0.01, + "loss": 2.275, + "step": 3528 + }, + { + "epoch": 0.36278639679441077, + "grad_norm": 0.049471016973257065, + "learning_rate": 0.01, + "loss": 2.3013, + "step": 3531 + }, + { + "epoch": 0.36309462652830576, + "grad_norm": 0.08196526020765305, + "learning_rate": 0.01, + "loss": 2.2571, + "step": 3534 + }, + { + "epoch": 0.36340285626220076, + "grad_norm": 0.09507983922958374, + "learning_rate": 0.01, + "loss": 2.3196, + "step": 3537 + }, + { + "epoch": 0.36371108599609575, + "grad_norm": 0.089228555560112, + "learning_rate": 0.01, + "loss": 2.2539, + "step": 3540 + }, + { + "epoch": 0.36401931572999074, + "grad_norm": 0.0866270586848259, + "learning_rate": 0.01, + "loss": 2.284, + "step": 3543 + }, + { + "epoch": 0.36432754546388574, + "grad_norm": 0.13805072009563446, + "learning_rate": 0.01, + "loss": 2.2723, + "step": 3546 + }, + { + "epoch": 0.36463577519778073, + "grad_norm": 0.09308724105358124, + "learning_rate": 0.01, + "loss": 2.2969, + "step": 3549 + }, + { + "epoch": 0.3649440049316757, + "grad_norm": 0.07004178315401077, + "learning_rate": 0.01, + "loss": 2.2959, + "step": 3552 + }, + { + "epoch": 0.3652522346655707, + "grad_norm": 0.09345975518226624, + "learning_rate": 0.01, + "loss": 2.2656, + "step": 3555 + }, + { + "epoch": 0.3655604643994657, + "grad_norm": 0.07694482058286667, + "learning_rate": 0.01, + "loss": 2.2921, + "step": 3558 + }, + { + "epoch": 0.3658686941333607, + "grad_norm": 0.05591150000691414, + "learning_rate": 0.01, + "loss": 2.2869, + "step": 3561 + }, + { + "epoch": 0.36617692386725575, + "grad_norm": 0.06863993406295776, + "learning_rate": 0.01, + "loss": 2.2897, + "step": 3564 + }, + { + "epoch": 0.36648515360115075, + "grad_norm": 0.06258527934551239, + "learning_rate": 0.01, + "loss": 2.2994, + "step": 3567 + }, + { + "epoch": 0.36679338333504574, + "grad_norm": 0.1049329936504364, + "learning_rate": 0.01, + "loss": 2.2794, + "step": 3570 + }, + { + "epoch": 0.36710161306894074, + "grad_norm": 0.1229025200009346, + "learning_rate": 0.01, + "loss": 2.2949, + "step": 3573 + }, + { + "epoch": 0.36740984280283573, + "grad_norm": 0.13274389505386353, + "learning_rate": 0.01, + "loss": 2.2791, + "step": 3576 + }, + { + "epoch": 0.3677180725367307, + "grad_norm": 0.09388844668865204, + "learning_rate": 0.01, + "loss": 2.3067, + "step": 3579 + }, + { + "epoch": 0.3680263022706257, + "grad_norm": 0.05375714227557182, + "learning_rate": 0.01, + "loss": 2.2946, + "step": 3582 + }, + { + "epoch": 0.3683345320045207, + "grad_norm": 0.059105634689331055, + "learning_rate": 0.01, + "loss": 2.2821, + "step": 3585 + }, + { + "epoch": 0.3686427617384157, + "grad_norm": 0.055578552186489105, + "learning_rate": 0.01, + "loss": 2.2694, + "step": 3588 + }, + { + "epoch": 0.3689509914723107, + "grad_norm": 0.08778764307498932, + "learning_rate": 0.01, + "loss": 2.2712, + "step": 3591 + }, + { + "epoch": 0.3692592212062057, + "grad_norm": 0.1044803187251091, + "learning_rate": 0.01, + "loss": 2.2797, + "step": 3594 + }, + { + "epoch": 0.3695674509401007, + "grad_norm": 0.15398399531841278, + "learning_rate": 0.01, + "loss": 2.3042, + "step": 3597 + }, + { + "epoch": 0.3698756806739957, + "grad_norm": 0.11562564969062805, + "learning_rate": 0.01, + "loss": 2.2609, + "step": 3600 + }, + { + "epoch": 0.37018391040789067, + "grad_norm": 0.060630831867456436, + "learning_rate": 0.01, + "loss": 2.2663, + "step": 3603 + }, + { + "epoch": 0.37049214014178566, + "grad_norm": 0.0576477013528347, + "learning_rate": 0.01, + "loss": 2.2974, + "step": 3606 + }, + { + "epoch": 0.37080036987568066, + "grad_norm": 0.059915438294410706, + "learning_rate": 0.01, + "loss": 2.3031, + "step": 3609 + }, + { + "epoch": 0.37110859960957565, + "grad_norm": 0.10807155817747116, + "learning_rate": 0.01, + "loss": 2.2739, + "step": 3612 + }, + { + "epoch": 0.37141682934347064, + "grad_norm": 0.09196165949106216, + "learning_rate": 0.01, + "loss": 2.3054, + "step": 3615 + }, + { + "epoch": 0.37172505907736564, + "grad_norm": 0.07379795610904694, + "learning_rate": 0.01, + "loss": 2.2805, + "step": 3618 + }, + { + "epoch": 0.3720332888112607, + "grad_norm": 0.06034912168979645, + "learning_rate": 0.01, + "loss": 2.2549, + "step": 3621 + }, + { + "epoch": 0.3723415185451557, + "grad_norm": 0.13983361423015594, + "learning_rate": 0.01, + "loss": 2.269, + "step": 3624 + }, + { + "epoch": 0.3726497482790507, + "grad_norm": 0.11592069268226624, + "learning_rate": 0.01, + "loss": 2.2903, + "step": 3627 + }, + { + "epoch": 0.37295797801294567, + "grad_norm": 0.15428505837917328, + "learning_rate": 0.01, + "loss": 2.2918, + "step": 3630 + }, + { + "epoch": 0.37326620774684066, + "grad_norm": 0.19936774671077728, + "learning_rate": 0.01, + "loss": 2.2782, + "step": 3633 + }, + { + "epoch": 0.37357443748073565, + "grad_norm": 0.15364627540111542, + "learning_rate": 0.01, + "loss": 2.2736, + "step": 3636 + }, + { + "epoch": 0.37388266721463065, + "grad_norm": 0.047554273158311844, + "learning_rate": 0.01, + "loss": 2.3172, + "step": 3639 + }, + { + "epoch": 0.37419089694852564, + "grad_norm": 0.0555570051074028, + "learning_rate": 0.01, + "loss": 2.2731, + "step": 3642 + }, + { + "epoch": 0.37449912668242064, + "grad_norm": 0.052204012870788574, + "learning_rate": 0.01, + "loss": 2.281, + "step": 3645 + }, + { + "epoch": 0.37480735641631563, + "grad_norm": 0.09206510335206985, + "learning_rate": 0.01, + "loss": 2.2639, + "step": 3648 + }, + { + "epoch": 0.3751155861502106, + "grad_norm": 0.1199311912059784, + "learning_rate": 0.01, + "loss": 2.2873, + "step": 3651 + }, + { + "epoch": 0.3754238158841056, + "grad_norm": 0.08949270099401474, + "learning_rate": 0.01, + "loss": 2.2668, + "step": 3654 + }, + { + "epoch": 0.3757320456180006, + "grad_norm": 0.08521883934736252, + "learning_rate": 0.01, + "loss": 2.247, + "step": 3657 + }, + { + "epoch": 0.3760402753518956, + "grad_norm": 0.07689694315195084, + "learning_rate": 0.01, + "loss": 2.2904, + "step": 3660 + }, + { + "epoch": 0.3763485050857906, + "grad_norm": 0.08761987835168839, + "learning_rate": 0.01, + "loss": 2.2761, + "step": 3663 + }, + { + "epoch": 0.3766567348196856, + "grad_norm": 0.056420013308525085, + "learning_rate": 0.01, + "loss": 2.259, + "step": 3666 + }, + { + "epoch": 0.3769649645535806, + "grad_norm": 0.06192856654524803, + "learning_rate": 0.01, + "loss": 2.2294, + "step": 3669 + }, + { + "epoch": 0.3772731942874756, + "grad_norm": 0.1021333709359169, + "learning_rate": 0.01, + "loss": 2.2649, + "step": 3672 + }, + { + "epoch": 0.37758142402137057, + "grad_norm": 0.10071670264005661, + "learning_rate": 0.01, + "loss": 2.2584, + "step": 3675 + }, + { + "epoch": 0.37788965375526556, + "grad_norm": 0.05968625843524933, + "learning_rate": 0.01, + "loss": 2.2699, + "step": 3678 + }, + { + "epoch": 0.3781978834891606, + "grad_norm": 0.07489661872386932, + "learning_rate": 0.01, + "loss": 2.2663, + "step": 3681 + }, + { + "epoch": 0.3785061132230556, + "grad_norm": 0.07880943268537521, + "learning_rate": 0.01, + "loss": 2.2709, + "step": 3684 + }, + { + "epoch": 0.3788143429569506, + "grad_norm": 0.055632054805755615, + "learning_rate": 0.01, + "loss": 2.272, + "step": 3687 + }, + { + "epoch": 0.3791225726908456, + "grad_norm": 0.05365302786231041, + "learning_rate": 0.01, + "loss": 2.2268, + "step": 3690 + }, + { + "epoch": 0.3794308024247406, + "grad_norm": 0.0802481397986412, + "learning_rate": 0.01, + "loss": 2.2631, + "step": 3693 + }, + { + "epoch": 0.3797390321586356, + "grad_norm": 0.1312764585018158, + "learning_rate": 0.01, + "loss": 2.2985, + "step": 3696 + }, + { + "epoch": 0.3800472618925306, + "grad_norm": 0.14543971419334412, + "learning_rate": 0.01, + "loss": 2.25, + "step": 3699 + }, + { + "epoch": 0.38035549162642557, + "grad_norm": 0.05727002024650574, + "learning_rate": 0.01, + "loss": 2.2556, + "step": 3702 + }, + { + "epoch": 0.38066372136032056, + "grad_norm": 0.07309607416391373, + "learning_rate": 0.01, + "loss": 2.2574, + "step": 3705 + }, + { + "epoch": 0.38097195109421556, + "grad_norm": 0.03849095106124878, + "learning_rate": 0.01, + "loss": 2.2501, + "step": 3708 + }, + { + "epoch": 0.38128018082811055, + "grad_norm": 0.0623021237552166, + "learning_rate": 0.01, + "loss": 2.2672, + "step": 3711 + }, + { + "epoch": 0.38158841056200554, + "grad_norm": 0.08916610479354858, + "learning_rate": 0.01, + "loss": 2.2683, + "step": 3714 + }, + { + "epoch": 0.38189664029590054, + "grad_norm": 0.08126388490200043, + "learning_rate": 0.01, + "loss": 2.2574, + "step": 3717 + }, + { + "epoch": 0.38220487002979553, + "grad_norm": 0.07121114432811737, + "learning_rate": 0.01, + "loss": 2.2358, + "step": 3720 + }, + { + "epoch": 0.3825130997636905, + "grad_norm": 0.07406505942344666, + "learning_rate": 0.01, + "loss": 2.2736, + "step": 3723 + }, + { + "epoch": 0.3828213294975855, + "grad_norm": 0.13355331122875214, + "learning_rate": 0.01, + "loss": 2.2685, + "step": 3726 + }, + { + "epoch": 0.3831295592314805, + "grad_norm": 0.05672430619597435, + "learning_rate": 0.01, + "loss": 2.2913, + "step": 3729 + }, + { + "epoch": 0.3834377889653755, + "grad_norm": 0.047647468745708466, + "learning_rate": 0.01, + "loss": 2.2533, + "step": 3732 + }, + { + "epoch": 0.3837460186992705, + "grad_norm": 0.059008341282606125, + "learning_rate": 0.01, + "loss": 2.2867, + "step": 3735 + }, + { + "epoch": 0.38405424843316555, + "grad_norm": 0.06551840156316757, + "learning_rate": 0.01, + "loss": 2.2742, + "step": 3738 + }, + { + "epoch": 0.38436247816706054, + "grad_norm": 0.08781883865594864, + "learning_rate": 0.01, + "loss": 2.2427, + "step": 3741 + }, + { + "epoch": 0.38467070790095553, + "grad_norm": 0.06808102875947952, + "learning_rate": 0.01, + "loss": 2.2493, + "step": 3744 + }, + { + "epoch": 0.3849789376348505, + "grad_norm": 0.06570697575807571, + "learning_rate": 0.01, + "loss": 2.2445, + "step": 3747 + }, + { + "epoch": 0.3852871673687455, + "grad_norm": 0.08742080628871918, + "learning_rate": 0.01, + "loss": 2.2576, + "step": 3750 + }, + { + "epoch": 0.3855953971026405, + "grad_norm": 0.1518019735813141, + "learning_rate": 0.01, + "loss": 2.2819, + "step": 3753 + }, + { + "epoch": 0.3859036268365355, + "grad_norm": 0.10349754244089127, + "learning_rate": 0.01, + "loss": 2.2465, + "step": 3756 + }, + { + "epoch": 0.3862118565704305, + "grad_norm": 0.06008581072092056, + "learning_rate": 0.01, + "loss": 2.2817, + "step": 3759 + }, + { + "epoch": 0.3865200863043255, + "grad_norm": 0.0450257770717144, + "learning_rate": 0.01, + "loss": 2.2585, + "step": 3762 + }, + { + "epoch": 0.3868283160382205, + "grad_norm": 0.04145176708698273, + "learning_rate": 0.01, + "loss": 2.2634, + "step": 3765 + }, + { + "epoch": 0.3871365457721155, + "grad_norm": 0.17084141075611115, + "learning_rate": 0.01, + "loss": 2.2355, + "step": 3768 + }, + { + "epoch": 0.3874447755060105, + "grad_norm": 0.06679602712392807, + "learning_rate": 0.01, + "loss": 2.2737, + "step": 3771 + }, + { + "epoch": 0.38775300523990547, + "grad_norm": 0.05363382026553154, + "learning_rate": 0.01, + "loss": 2.244, + "step": 3774 + }, + { + "epoch": 0.38806123497380046, + "grad_norm": 0.05722133815288544, + "learning_rate": 0.01, + "loss": 2.2515, + "step": 3777 + }, + { + "epoch": 0.38836946470769546, + "grad_norm": 0.06288215517997742, + "learning_rate": 0.01, + "loss": 2.2625, + "step": 3780 + }, + { + "epoch": 0.38867769444159045, + "grad_norm": 0.05087801814079285, + "learning_rate": 0.01, + "loss": 2.2883, + "step": 3783 + }, + { + "epoch": 0.38898592417548544, + "grad_norm": 0.08160998672246933, + "learning_rate": 0.01, + "loss": 2.2462, + "step": 3786 + }, + { + "epoch": 0.38929415390938044, + "grad_norm": 0.22291240096092224, + "learning_rate": 0.01, + "loss": 2.2613, + "step": 3789 + }, + { + "epoch": 0.38960238364327543, + "grad_norm": 0.11482773721218109, + "learning_rate": 0.01, + "loss": 2.2633, + "step": 3792 + }, + { + "epoch": 0.3899106133771705, + "grad_norm": 0.056299589574337006, + "learning_rate": 0.01, + "loss": 2.2896, + "step": 3795 + }, + { + "epoch": 0.39021884311106547, + "grad_norm": 0.04524017125368118, + "learning_rate": 0.01, + "loss": 2.2543, + "step": 3798 + }, + { + "epoch": 0.39052707284496047, + "grad_norm": 0.0903107225894928, + "learning_rate": 0.01, + "loss": 2.2801, + "step": 3801 + }, + { + "epoch": 0.39083530257885546, + "grad_norm": 0.0645504966378212, + "learning_rate": 0.01, + "loss": 2.2628, + "step": 3804 + }, + { + "epoch": 0.39114353231275045, + "grad_norm": 0.06752094626426697, + "learning_rate": 0.01, + "loss": 2.2732, + "step": 3807 + }, + { + "epoch": 0.39145176204664545, + "grad_norm": 0.04459339380264282, + "learning_rate": 0.01, + "loss": 2.2601, + "step": 3810 + }, + { + "epoch": 0.39175999178054044, + "grad_norm": 0.07300913333892822, + "learning_rate": 0.01, + "loss": 2.2437, + "step": 3813 + }, + { + "epoch": 0.39206822151443543, + "grad_norm": 0.16804097592830658, + "learning_rate": 0.01, + "loss": 2.26, + "step": 3816 + }, + { + "epoch": 0.3923764512483304, + "grad_norm": 0.10682248324155807, + "learning_rate": 0.01, + "loss": 2.2764, + "step": 3819 + }, + { + "epoch": 0.3926846809822254, + "grad_norm": 0.046895258128643036, + "learning_rate": 0.01, + "loss": 2.2654, + "step": 3822 + }, + { + "epoch": 0.3929929107161204, + "grad_norm": 0.05799179524183273, + "learning_rate": 0.01, + "loss": 2.2254, + "step": 3825 + }, + { + "epoch": 0.3933011404500154, + "grad_norm": 0.0474528968334198, + "learning_rate": 0.01, + "loss": 2.2604, + "step": 3828 + }, + { + "epoch": 0.3936093701839104, + "grad_norm": 0.1437537968158722, + "learning_rate": 0.01, + "loss": 2.2532, + "step": 3831 + }, + { + "epoch": 0.3939175999178054, + "grad_norm": 0.06202014535665512, + "learning_rate": 0.01, + "loss": 2.2486, + "step": 3834 + }, + { + "epoch": 0.3942258296517004, + "grad_norm": 0.09379147738218307, + "learning_rate": 0.01, + "loss": 2.2602, + "step": 3837 + }, + { + "epoch": 0.3945340593855954, + "grad_norm": 0.07898830622434616, + "learning_rate": 0.01, + "loss": 2.2605, + "step": 3840 + }, + { + "epoch": 0.3948422891194904, + "grad_norm": 0.10186600685119629, + "learning_rate": 0.01, + "loss": 2.2807, + "step": 3843 + }, + { + "epoch": 0.39515051885338537, + "grad_norm": 0.08611535280942917, + "learning_rate": 0.01, + "loss": 2.2571, + "step": 3846 + }, + { + "epoch": 0.39545874858728036, + "grad_norm": 0.10435480624437332, + "learning_rate": 0.01, + "loss": 2.2721, + "step": 3849 + }, + { + "epoch": 0.39576697832117536, + "grad_norm": 0.11543019860982895, + "learning_rate": 0.01, + "loss": 2.2598, + "step": 3852 + }, + { + "epoch": 0.3960752080550704, + "grad_norm": 0.11996404081583023, + "learning_rate": 0.01, + "loss": 2.2536, + "step": 3855 + }, + { + "epoch": 0.3963834377889654, + "grad_norm": 0.05615765228867531, + "learning_rate": 0.01, + "loss": 2.2637, + "step": 3858 + }, + { + "epoch": 0.3966916675228604, + "grad_norm": 0.06568838655948639, + "learning_rate": 0.01, + "loss": 2.2756, + "step": 3861 + }, + { + "epoch": 0.3969998972567554, + "grad_norm": 0.07747132331132889, + "learning_rate": 0.01, + "loss": 2.2816, + "step": 3864 + }, + { + "epoch": 0.3973081269906504, + "grad_norm": 0.057373497635126114, + "learning_rate": 0.01, + "loss": 2.255, + "step": 3867 + }, + { + "epoch": 0.3976163567245454, + "grad_norm": 0.11501277983188629, + "learning_rate": 0.01, + "loss": 2.2494, + "step": 3870 + }, + { + "epoch": 0.39792458645844037, + "grad_norm": 0.07761958241462708, + "learning_rate": 0.01, + "loss": 2.2459, + "step": 3873 + }, + { + "epoch": 0.39823281619233536, + "grad_norm": 0.06263428926467896, + "learning_rate": 0.01, + "loss": 2.2649, + "step": 3876 + }, + { + "epoch": 0.39854104592623035, + "grad_norm": 0.04552373290061951, + "learning_rate": 0.01, + "loss": 2.2578, + "step": 3879 + }, + { + "epoch": 0.39884927566012535, + "grad_norm": 0.0631655901670456, + "learning_rate": 0.01, + "loss": 2.2648, + "step": 3882 + }, + { + "epoch": 0.39915750539402034, + "grad_norm": 0.06519417464733124, + "learning_rate": 0.01, + "loss": 2.2438, + "step": 3885 + }, + { + "epoch": 0.39946573512791533, + "grad_norm": 0.10446424037218094, + "learning_rate": 0.01, + "loss": 2.2815, + "step": 3888 + }, + { + "epoch": 0.3997739648618103, + "grad_norm": 0.07533372938632965, + "learning_rate": 0.01, + "loss": 2.272, + "step": 3891 + }, + { + "epoch": 0.4000821945957053, + "grad_norm": 0.05748215690255165, + "learning_rate": 0.01, + "loss": 2.2971, + "step": 3894 + }, + { + "epoch": 0.4003904243296003, + "grad_norm": 0.051343973726034164, + "learning_rate": 0.01, + "loss": 2.2316, + "step": 3897 + }, + { + "epoch": 0.4006986540634953, + "grad_norm": 0.04799075797200203, + "learning_rate": 0.01, + "loss": 2.2333, + "step": 3900 + }, + { + "epoch": 0.4010068837973903, + "grad_norm": 0.12885436415672302, + "learning_rate": 0.01, + "loss": 2.247, + "step": 3903 + }, + { + "epoch": 0.4013151135312853, + "grad_norm": 0.07175249606370926, + "learning_rate": 0.01, + "loss": 2.2407, + "step": 3906 + }, + { + "epoch": 0.4016233432651803, + "grad_norm": 0.10784266144037247, + "learning_rate": 0.01, + "loss": 2.2458, + "step": 3909 + }, + { + "epoch": 0.40193157299907534, + "grad_norm": 0.08646712452173233, + "learning_rate": 0.01, + "loss": 2.2571, + "step": 3912 + }, + { + "epoch": 0.40223980273297033, + "grad_norm": 0.05365338176488876, + "learning_rate": 0.01, + "loss": 2.2585, + "step": 3915 + }, + { + "epoch": 0.4025480324668653, + "grad_norm": 0.07037780433893204, + "learning_rate": 0.01, + "loss": 2.2277, + "step": 3918 + }, + { + "epoch": 0.4028562622007603, + "grad_norm": 0.040290024131536484, + "learning_rate": 0.01, + "loss": 2.2508, + "step": 3921 + }, + { + "epoch": 0.4031644919346553, + "grad_norm": 0.050338853150606155, + "learning_rate": 0.01, + "loss": 2.2356, + "step": 3924 + }, + { + "epoch": 0.4034727216685503, + "grad_norm": 0.1420246660709381, + "learning_rate": 0.01, + "loss": 2.2531, + "step": 3927 + }, + { + "epoch": 0.4037809514024453, + "grad_norm": 0.07432923465967178, + "learning_rate": 0.01, + "loss": 2.2766, + "step": 3930 + }, + { + "epoch": 0.4040891811363403, + "grad_norm": 0.04954257979989052, + "learning_rate": 0.01, + "loss": 2.2825, + "step": 3933 + }, + { + "epoch": 0.4043974108702353, + "grad_norm": 0.05988876149058342, + "learning_rate": 0.01, + "loss": 2.2342, + "step": 3936 + }, + { + "epoch": 0.4047056406041303, + "grad_norm": 0.09800540655851364, + "learning_rate": 0.01, + "loss": 2.2268, + "step": 3939 + }, + { + "epoch": 0.4050138703380253, + "grad_norm": 0.09171874821186066, + "learning_rate": 0.01, + "loss": 2.2648, + "step": 3942 + }, + { + "epoch": 0.40532210007192027, + "grad_norm": 0.07430606335401535, + "learning_rate": 0.01, + "loss": 2.2523, + "step": 3945 + }, + { + "epoch": 0.40563032980581526, + "grad_norm": 0.043649185448884964, + "learning_rate": 0.01, + "loss": 2.2303, + "step": 3948 + }, + { + "epoch": 0.40593855953971025, + "grad_norm": 0.04120480641722679, + "learning_rate": 0.01, + "loss": 2.2299, + "step": 3951 + }, + { + "epoch": 0.40624678927360525, + "grad_norm": 0.0692945346236229, + "learning_rate": 0.01, + "loss": 2.2466, + "step": 3954 + }, + { + "epoch": 0.40655501900750024, + "grad_norm": 0.08884318917989731, + "learning_rate": 0.01, + "loss": 2.2802, + "step": 3957 + }, + { + "epoch": 0.40686324874139523, + "grad_norm": 0.05542384088039398, + "learning_rate": 0.01, + "loss": 2.2303, + "step": 3960 + }, + { + "epoch": 0.4071714784752902, + "grad_norm": 0.08013599365949631, + "learning_rate": 0.01, + "loss": 2.2361, + "step": 3963 + }, + { + "epoch": 0.4074797082091852, + "grad_norm": 0.15963242948055267, + "learning_rate": 0.01, + "loss": 2.2608, + "step": 3966 + }, + { + "epoch": 0.40778793794308027, + "grad_norm": 0.05428241938352585, + "learning_rate": 0.01, + "loss": 2.2415, + "step": 3969 + }, + { + "epoch": 0.40809616767697526, + "grad_norm": 0.09297880530357361, + "learning_rate": 0.01, + "loss": 2.2804, + "step": 3972 + }, + { + "epoch": 0.40840439741087026, + "grad_norm": 0.11259882897138596, + "learning_rate": 0.01, + "loss": 2.2562, + "step": 3975 + }, + { + "epoch": 0.40871262714476525, + "grad_norm": 0.0546397790312767, + "learning_rate": 0.01, + "loss": 2.2423, + "step": 3978 + }, + { + "epoch": 0.40902085687866024, + "grad_norm": 0.13870957493782043, + "learning_rate": 0.01, + "loss": 2.2431, + "step": 3981 + }, + { + "epoch": 0.40932908661255524, + "grad_norm": 0.05527504161000252, + "learning_rate": 0.01, + "loss": 2.2649, + "step": 3984 + }, + { + "epoch": 0.40963731634645023, + "grad_norm": 0.08060980588197708, + "learning_rate": 0.01, + "loss": 2.2708, + "step": 3987 + }, + { + "epoch": 0.4099455460803452, + "grad_norm": 0.05611690506339073, + "learning_rate": 0.01, + "loss": 2.2683, + "step": 3990 + }, + { + "epoch": 0.4102537758142402, + "grad_norm": 0.08760816603899002, + "learning_rate": 0.01, + "loss": 2.2392, + "step": 3993 + }, + { + "epoch": 0.4105620055481352, + "grad_norm": 0.07327746599912643, + "learning_rate": 0.01, + "loss": 2.2587, + "step": 3996 + }, + { + "epoch": 0.4108702352820302, + "grad_norm": 0.05924748629331589, + "learning_rate": 0.01, + "loss": 2.2435, + "step": 3999 + }, + { + "epoch": 0.4111784650159252, + "grad_norm": 0.08269370347261429, + "learning_rate": 0.01, + "loss": 2.2365, + "step": 4002 + }, + { + "epoch": 0.4114866947498202, + "grad_norm": 0.06834371387958527, + "learning_rate": 0.01, + "loss": 2.2579, + "step": 4005 + }, + { + "epoch": 0.4117949244837152, + "grad_norm": 0.06737885624170303, + "learning_rate": 0.01, + "loss": 2.2585, + "step": 4008 + }, + { + "epoch": 0.4121031542176102, + "grad_norm": 0.0919148176908493, + "learning_rate": 0.01, + "loss": 2.2524, + "step": 4011 + }, + { + "epoch": 0.4124113839515052, + "grad_norm": 0.0744348093867302, + "learning_rate": 0.01, + "loss": 2.2328, + "step": 4014 + }, + { + "epoch": 0.41271961368540017, + "grad_norm": 0.08952994644641876, + "learning_rate": 0.01, + "loss": 2.2556, + "step": 4017 + }, + { + "epoch": 0.41302784341929516, + "grad_norm": 0.054230738431215286, + "learning_rate": 0.01, + "loss": 2.2559, + "step": 4020 + }, + { + "epoch": 0.41333607315319015, + "grad_norm": 0.11185753345489502, + "learning_rate": 0.01, + "loss": 2.2599, + "step": 4023 + }, + { + "epoch": 0.41364430288708515, + "grad_norm": 0.11211541295051575, + "learning_rate": 0.01, + "loss": 2.2456, + "step": 4026 + }, + { + "epoch": 0.4139525326209802, + "grad_norm": 0.08211257308721542, + "learning_rate": 0.01, + "loss": 2.2636, + "step": 4029 + }, + { + "epoch": 0.4142607623548752, + "grad_norm": 0.07233046740293503, + "learning_rate": 0.01, + "loss": 2.2148, + "step": 4032 + }, + { + "epoch": 0.4145689920887702, + "grad_norm": 0.1062379851937294, + "learning_rate": 0.01, + "loss": 2.2382, + "step": 4035 + }, + { + "epoch": 0.4148772218226652, + "grad_norm": 0.07079877704381943, + "learning_rate": 0.01, + "loss": 2.2462, + "step": 4038 + }, + { + "epoch": 0.41518545155656017, + "grad_norm": 0.04237307608127594, + "learning_rate": 0.01, + "loss": 2.2523, + "step": 4041 + }, + { + "epoch": 0.41549368129045516, + "grad_norm": 0.12513239681720734, + "learning_rate": 0.01, + "loss": 2.2614, + "step": 4044 + }, + { + "epoch": 0.41580191102435016, + "grad_norm": 0.07134360820055008, + "learning_rate": 0.01, + "loss": 2.2533, + "step": 4047 + }, + { + "epoch": 0.41611014075824515, + "grad_norm": 0.07371515780687332, + "learning_rate": 0.01, + "loss": 2.2333, + "step": 4050 + }, + { + "epoch": 0.41641837049214014, + "grad_norm": 0.05744464695453644, + "learning_rate": 0.01, + "loss": 2.2292, + "step": 4053 + }, + { + "epoch": 0.41672660022603514, + "grad_norm": 0.0790088102221489, + "learning_rate": 0.01, + "loss": 2.2217, + "step": 4056 + }, + { + "epoch": 0.41703482995993013, + "grad_norm": 0.12540112435817719, + "learning_rate": 0.01, + "loss": 2.2367, + "step": 4059 + }, + { + "epoch": 0.4173430596938251, + "grad_norm": 0.06895852833986282, + "learning_rate": 0.01, + "loss": 2.2354, + "step": 4062 + }, + { + "epoch": 0.4176512894277201, + "grad_norm": 0.09068478643894196, + "learning_rate": 0.01, + "loss": 2.2605, + "step": 4065 + }, + { + "epoch": 0.4179595191616151, + "grad_norm": 0.051881443709135056, + "learning_rate": 0.01, + "loss": 2.2501, + "step": 4068 + }, + { + "epoch": 0.4182677488955101, + "grad_norm": 0.20433951914310455, + "learning_rate": 0.01, + "loss": 2.2582, + "step": 4071 + }, + { + "epoch": 0.4185759786294051, + "grad_norm": 0.08301309496164322, + "learning_rate": 0.01, + "loss": 2.2424, + "step": 4074 + }, + { + "epoch": 0.4188842083633001, + "grad_norm": 0.07062964886426926, + "learning_rate": 0.01, + "loss": 2.2345, + "step": 4077 + }, + { + "epoch": 0.4191924380971951, + "grad_norm": 0.09770773351192474, + "learning_rate": 0.01, + "loss": 2.264, + "step": 4080 + }, + { + "epoch": 0.4195006678310901, + "grad_norm": 0.0847458690404892, + "learning_rate": 0.01, + "loss": 2.2329, + "step": 4083 + }, + { + "epoch": 0.41980889756498513, + "grad_norm": 0.06491915881633759, + "learning_rate": 0.01, + "loss": 2.2174, + "step": 4086 + }, + { + "epoch": 0.4201171272988801, + "grad_norm": 0.11355047672986984, + "learning_rate": 0.01, + "loss": 2.2653, + "step": 4089 + }, + { + "epoch": 0.4204253570327751, + "grad_norm": 0.10509520024061203, + "learning_rate": 0.01, + "loss": 2.2435, + "step": 4092 + }, + { + "epoch": 0.4207335867666701, + "grad_norm": 0.07456620037555695, + "learning_rate": 0.01, + "loss": 2.2348, + "step": 4095 + }, + { + "epoch": 0.4210418165005651, + "grad_norm": 0.07531027495861053, + "learning_rate": 0.01, + "loss": 2.2524, + "step": 4098 + }, + { + "epoch": 0.4213500462344601, + "grad_norm": 0.06129564717411995, + "learning_rate": 0.01, + "loss": 2.2577, + "step": 4101 + }, + { + "epoch": 0.4216582759683551, + "grad_norm": 0.03984616696834564, + "learning_rate": 0.01, + "loss": 2.2354, + "step": 4104 + }, + { + "epoch": 0.4219665057022501, + "grad_norm": 0.1273418813943863, + "learning_rate": 0.01, + "loss": 2.2478, + "step": 4107 + }, + { + "epoch": 0.4222747354361451, + "grad_norm": 0.08859774470329285, + "learning_rate": 0.01, + "loss": 2.2504, + "step": 4110 + }, + { + "epoch": 0.42258296517004007, + "grad_norm": 0.10512147098779678, + "learning_rate": 0.01, + "loss": 2.2435, + "step": 4113 + }, + { + "epoch": 0.42289119490393506, + "grad_norm": 0.11181578040122986, + "learning_rate": 0.01, + "loss": 2.2396, + "step": 4116 + }, + { + "epoch": 0.42319942463783006, + "grad_norm": 0.07474307715892792, + "learning_rate": 0.01, + "loss": 2.2518, + "step": 4119 + }, + { + "epoch": 0.42350765437172505, + "grad_norm": 0.07233690470457077, + "learning_rate": 0.01, + "loss": 2.2283, + "step": 4122 + }, + { + "epoch": 0.42381588410562004, + "grad_norm": 0.06051602587103844, + "learning_rate": 0.01, + "loss": 2.2429, + "step": 4125 + }, + { + "epoch": 0.42412411383951504, + "grad_norm": 0.0492120198905468, + "learning_rate": 0.01, + "loss": 2.2312, + "step": 4128 + }, + { + "epoch": 0.42443234357341003, + "grad_norm": 0.07249493151903152, + "learning_rate": 0.01, + "loss": 2.244, + "step": 4131 + }, + { + "epoch": 0.424740573307305, + "grad_norm": 0.0993468165397644, + "learning_rate": 0.01, + "loss": 2.2441, + "step": 4134 + }, + { + "epoch": 0.4250488030412, + "grad_norm": 0.07051920145750046, + "learning_rate": 0.01, + "loss": 2.2188, + "step": 4137 + }, + { + "epoch": 0.425357032775095, + "grad_norm": 0.08267249912023544, + "learning_rate": 0.01, + "loss": 2.2472, + "step": 4140 + }, + { + "epoch": 0.42566526250899006, + "grad_norm": 0.1307336390018463, + "learning_rate": 0.01, + "loss": 2.2359, + "step": 4143 + }, + { + "epoch": 0.42597349224288505, + "grad_norm": 0.09383214265108109, + "learning_rate": 0.01, + "loss": 2.2519, + "step": 4146 + }, + { + "epoch": 0.42628172197678005, + "grad_norm": 0.08928582817316055, + "learning_rate": 0.01, + "loss": 2.2322, + "step": 4149 + }, + { + "epoch": 0.42658995171067504, + "grad_norm": 0.10554556548595428, + "learning_rate": 0.01, + "loss": 2.2219, + "step": 4152 + }, + { + "epoch": 0.42689818144457004, + "grad_norm": 0.06501816213130951, + "learning_rate": 0.01, + "loss": 2.2351, + "step": 4155 + }, + { + "epoch": 0.42720641117846503, + "grad_norm": 0.10736589878797531, + "learning_rate": 0.01, + "loss": 2.2327, + "step": 4158 + }, + { + "epoch": 0.42751464091236, + "grad_norm": 0.11834681034088135, + "learning_rate": 0.01, + "loss": 2.2617, + "step": 4161 + }, + { + "epoch": 0.427822870646255, + "grad_norm": 0.07011161744594574, + "learning_rate": 0.01, + "loss": 2.2218, + "step": 4164 + }, + { + "epoch": 0.42813110038015, + "grad_norm": 0.0653071179986, + "learning_rate": 0.01, + "loss": 2.2115, + "step": 4167 + }, + { + "epoch": 0.428439330114045, + "grad_norm": 0.057517893612384796, + "learning_rate": 0.01, + "loss": 2.2533, + "step": 4170 + }, + { + "epoch": 0.42874755984794, + "grad_norm": 0.060261376202106476, + "learning_rate": 0.01, + "loss": 2.2199, + "step": 4173 + }, + { + "epoch": 0.429055789581835, + "grad_norm": 0.12384762614965439, + "learning_rate": 0.01, + "loss": 2.2124, + "step": 4176 + }, + { + "epoch": 0.42936401931573, + "grad_norm": 0.06436473876237869, + "learning_rate": 0.01, + "loss": 2.2558, + "step": 4179 + }, + { + "epoch": 0.429672249049625, + "grad_norm": 0.049704987555742264, + "learning_rate": 0.01, + "loss": 2.2434, + "step": 4182 + }, + { + "epoch": 0.42998047878351997, + "grad_norm": 0.0809103325009346, + "learning_rate": 0.01, + "loss": 2.2461, + "step": 4185 + }, + { + "epoch": 0.43028870851741496, + "grad_norm": 0.04888701066374779, + "learning_rate": 0.01, + "loss": 2.2342, + "step": 4188 + }, + { + "epoch": 0.43059693825130996, + "grad_norm": 0.04951067641377449, + "learning_rate": 0.01, + "loss": 2.2292, + "step": 4191 + }, + { + "epoch": 0.43090516798520495, + "grad_norm": 0.13740333914756775, + "learning_rate": 0.01, + "loss": 2.2243, + "step": 4194 + }, + { + "epoch": 0.43121339771909994, + "grad_norm": 0.09912848472595215, + "learning_rate": 0.01, + "loss": 2.2065, + "step": 4197 + }, + { + "epoch": 0.43152162745299494, + "grad_norm": 0.1031954362988472, + "learning_rate": 0.01, + "loss": 2.2247, + "step": 4200 + }, + { + "epoch": 0.43182985718689, + "grad_norm": 0.04378229379653931, + "learning_rate": 0.01, + "loss": 2.2485, + "step": 4203 + }, + { + "epoch": 0.432138086920785, + "grad_norm": 0.05430865287780762, + "learning_rate": 0.01, + "loss": 2.2178, + "step": 4206 + }, + { + "epoch": 0.43244631665468, + "grad_norm": 0.05675321817398071, + "learning_rate": 0.01, + "loss": 2.2568, + "step": 4209 + }, + { + "epoch": 0.43275454638857497, + "grad_norm": 0.07637004554271698, + "learning_rate": 0.01, + "loss": 2.2567, + "step": 4212 + }, + { + "epoch": 0.43306277612246996, + "grad_norm": 0.06263475120067596, + "learning_rate": 0.01, + "loss": 2.2597, + "step": 4215 + }, + { + "epoch": 0.43337100585636495, + "grad_norm": 0.09689760208129883, + "learning_rate": 0.01, + "loss": 2.2376, + "step": 4218 + }, + { + "epoch": 0.43367923559025995, + "grad_norm": 0.13923399150371552, + "learning_rate": 0.01, + "loss": 2.2394, + "step": 4221 + }, + { + "epoch": 0.43398746532415494, + "grad_norm": 0.0607299767434597, + "learning_rate": 0.01, + "loss": 2.2366, + "step": 4224 + }, + { + "epoch": 0.43429569505804994, + "grad_norm": 0.05221550166606903, + "learning_rate": 0.01, + "loss": 2.2587, + "step": 4227 + }, + { + "epoch": 0.43460392479194493, + "grad_norm": 0.05556831881403923, + "learning_rate": 0.01, + "loss": 2.2422, + "step": 4230 + }, + { + "epoch": 0.4349121545258399, + "grad_norm": 0.0843261182308197, + "learning_rate": 0.01, + "loss": 2.2399, + "step": 4233 + }, + { + "epoch": 0.4352203842597349, + "grad_norm": 0.08864692598581314, + "learning_rate": 0.01, + "loss": 2.2155, + "step": 4236 + }, + { + "epoch": 0.4355286139936299, + "grad_norm": 0.11530198156833649, + "learning_rate": 0.01, + "loss": 2.2612, + "step": 4239 + }, + { + "epoch": 0.4358368437275249, + "grad_norm": 0.11549337208271027, + "learning_rate": 0.01, + "loss": 2.2233, + "step": 4242 + }, + { + "epoch": 0.4361450734614199, + "grad_norm": 0.11105350404977798, + "learning_rate": 0.01, + "loss": 2.2426, + "step": 4245 + }, + { + "epoch": 0.4364533031953149, + "grad_norm": 0.1190980076789856, + "learning_rate": 0.01, + "loss": 2.2353, + "step": 4248 + }, + { + "epoch": 0.4367615329292099, + "grad_norm": 0.08560021221637726, + "learning_rate": 0.01, + "loss": 2.2542, + "step": 4251 + }, + { + "epoch": 0.4370697626631049, + "grad_norm": 0.05514337494969368, + "learning_rate": 0.01, + "loss": 2.2171, + "step": 4254 + }, + { + "epoch": 0.43737799239699987, + "grad_norm": 0.06764981150627136, + "learning_rate": 0.01, + "loss": 2.2363, + "step": 4257 + }, + { + "epoch": 0.4376862221308949, + "grad_norm": 0.04801105335354805, + "learning_rate": 0.01, + "loss": 2.2352, + "step": 4260 + }, + { + "epoch": 0.4379944518647899, + "grad_norm": 0.04782482981681824, + "learning_rate": 0.01, + "loss": 2.2458, + "step": 4263 + }, + { + "epoch": 0.4383026815986849, + "grad_norm": 0.12880820035934448, + "learning_rate": 0.01, + "loss": 2.2384, + "step": 4266 + }, + { + "epoch": 0.4386109113325799, + "grad_norm": 0.06714754551649094, + "learning_rate": 0.01, + "loss": 2.2214, + "step": 4269 + }, + { + "epoch": 0.4389191410664749, + "grad_norm": 0.08878037333488464, + "learning_rate": 0.01, + "loss": 2.2597, + "step": 4272 + }, + { + "epoch": 0.4392273708003699, + "grad_norm": 0.051335882395505905, + "learning_rate": 0.01, + "loss": 2.2065, + "step": 4275 + }, + { + "epoch": 0.4395356005342649, + "grad_norm": 0.058174654841423035, + "learning_rate": 0.01, + "loss": 2.246, + "step": 4278 + }, + { + "epoch": 0.4398438302681599, + "grad_norm": 0.053695593029260635, + "learning_rate": 0.01, + "loss": 2.2406, + "step": 4281 + }, + { + "epoch": 0.44015206000205487, + "grad_norm": 0.07685926556587219, + "learning_rate": 0.01, + "loss": 2.2212, + "step": 4284 + }, + { + "epoch": 0.44046028973594986, + "grad_norm": 0.13495223224163055, + "learning_rate": 0.01, + "loss": 2.2486, + "step": 4287 + }, + { + "epoch": 0.44076851946984485, + "grad_norm": 0.0707453116774559, + "learning_rate": 0.01, + "loss": 2.247, + "step": 4290 + }, + { + "epoch": 0.44107674920373985, + "grad_norm": 0.04909240081906319, + "learning_rate": 0.01, + "loss": 2.2528, + "step": 4293 + }, + { + "epoch": 0.44138497893763484, + "grad_norm": 0.06148238107562065, + "learning_rate": 0.01, + "loss": 2.2462, + "step": 4296 + }, + { + "epoch": 0.44169320867152984, + "grad_norm": 0.07306285202503204, + "learning_rate": 0.01, + "loss": 2.199, + "step": 4299 + }, + { + "epoch": 0.44200143840542483, + "grad_norm": 0.12965865433216095, + "learning_rate": 0.01, + "loss": 2.2156, + "step": 4302 + }, + { + "epoch": 0.4423096681393198, + "grad_norm": 0.059606775641441345, + "learning_rate": 0.01, + "loss": 2.2209, + "step": 4305 + }, + { + "epoch": 0.4426178978732148, + "grad_norm": 0.06866457313299179, + "learning_rate": 0.01, + "loss": 2.2508, + "step": 4308 + }, + { + "epoch": 0.4429261276071098, + "grad_norm": 0.08940677344799042, + "learning_rate": 0.01, + "loss": 2.2244, + "step": 4311 + }, + { + "epoch": 0.4432343573410048, + "grad_norm": 0.10428988933563232, + "learning_rate": 0.01, + "loss": 2.2106, + "step": 4314 + }, + { + "epoch": 0.44354258707489985, + "grad_norm": 0.1565064787864685, + "learning_rate": 0.01, + "loss": 2.2745, + "step": 4317 + }, + { + "epoch": 0.44385081680879485, + "grad_norm": 0.11433500796556473, + "learning_rate": 0.01, + "loss": 2.2655, + "step": 4320 + }, + { + "epoch": 0.44415904654268984, + "grad_norm": 0.07315809279680252, + "learning_rate": 0.01, + "loss": 2.2523, + "step": 4323 + }, + { + "epoch": 0.44446727627658483, + "grad_norm": 0.048583708703517914, + "learning_rate": 0.01, + "loss": 2.2345, + "step": 4326 + }, + { + "epoch": 0.4447755060104798, + "grad_norm": 0.03422848507761955, + "learning_rate": 0.01, + "loss": 2.1883, + "step": 4329 + }, + { + "epoch": 0.4450837357443748, + "grad_norm": 0.05057518929243088, + "learning_rate": 0.01, + "loss": 2.2288, + "step": 4332 + }, + { + "epoch": 0.4453919654782698, + "grad_norm": 0.10407044738531113, + "learning_rate": 0.01, + "loss": 2.1974, + "step": 4335 + }, + { + "epoch": 0.4457001952121648, + "grad_norm": 0.06545260548591614, + "learning_rate": 0.01, + "loss": 2.2121, + "step": 4338 + }, + { + "epoch": 0.4460084249460598, + "grad_norm": 0.09442485123872757, + "learning_rate": 0.01, + "loss": 2.2145, + "step": 4341 + }, + { + "epoch": 0.4463166546799548, + "grad_norm": 0.11353209614753723, + "learning_rate": 0.01, + "loss": 2.227, + "step": 4344 + }, + { + "epoch": 0.4466248844138498, + "grad_norm": 0.11243279278278351, + "learning_rate": 0.01, + "loss": 2.242, + "step": 4347 + }, + { + "epoch": 0.4469331141477448, + "grad_norm": 0.14264856278896332, + "learning_rate": 0.01, + "loss": 2.2405, + "step": 4350 + }, + { + "epoch": 0.4472413438816398, + "grad_norm": 0.048186566680669785, + "learning_rate": 0.01, + "loss": 2.1921, + "step": 4353 + }, + { + "epoch": 0.44754957361553477, + "grad_norm": 0.0693448930978775, + "learning_rate": 0.01, + "loss": 2.2404, + "step": 4356 + }, + { + "epoch": 0.44785780334942976, + "grad_norm": 0.04426461458206177, + "learning_rate": 0.01, + "loss": 2.2114, + "step": 4359 + }, + { + "epoch": 0.44816603308332476, + "grad_norm": 0.06392990797758102, + "learning_rate": 0.01, + "loss": 2.224, + "step": 4362 + }, + { + "epoch": 0.44847426281721975, + "grad_norm": 0.16224262118339539, + "learning_rate": 0.01, + "loss": 2.261, + "step": 4365 + }, + { + "epoch": 0.44878249255111474, + "grad_norm": 0.06382444500923157, + "learning_rate": 0.01, + "loss": 2.2067, + "step": 4368 + }, + { + "epoch": 0.44909072228500974, + "grad_norm": 0.09267281740903854, + "learning_rate": 0.01, + "loss": 2.2403, + "step": 4371 + }, + { + "epoch": 0.44939895201890473, + "grad_norm": 0.09785914421081543, + "learning_rate": 0.01, + "loss": 2.2276, + "step": 4374 + }, + { + "epoch": 0.4497071817527998, + "grad_norm": 0.06673259288072586, + "learning_rate": 0.01, + "loss": 2.214, + "step": 4377 + }, + { + "epoch": 0.45001541148669477, + "grad_norm": 0.05463524907827377, + "learning_rate": 0.01, + "loss": 2.2048, + "step": 4380 + }, + { + "epoch": 0.45032364122058977, + "grad_norm": 0.05466567724943161, + "learning_rate": 0.01, + "loss": 2.2062, + "step": 4383 + }, + { + "epoch": 0.45063187095448476, + "grad_norm": 0.07413290441036224, + "learning_rate": 0.01, + "loss": 2.2178, + "step": 4386 + }, + { + "epoch": 0.45094010068837975, + "grad_norm": 0.06564678996801376, + "learning_rate": 0.01, + "loss": 2.2304, + "step": 4389 + }, + { + "epoch": 0.45124833042227475, + "grad_norm": 0.12468644231557846, + "learning_rate": 0.01, + "loss": 2.2301, + "step": 4392 + }, + { + "epoch": 0.45155656015616974, + "grad_norm": 0.06898069381713867, + "learning_rate": 0.01, + "loss": 2.2255, + "step": 4395 + }, + { + "epoch": 0.45186478989006473, + "grad_norm": 0.13579058647155762, + "learning_rate": 0.01, + "loss": 2.2021, + "step": 4398 + }, + { + "epoch": 0.4521730196239597, + "grad_norm": 0.07980421930551529, + "learning_rate": 0.01, + "loss": 2.2598, + "step": 4401 + }, + { + "epoch": 0.4524812493578547, + "grad_norm": 0.07771994173526764, + "learning_rate": 0.01, + "loss": 2.2166, + "step": 4404 + }, + { + "epoch": 0.4527894790917497, + "grad_norm": 0.08967602998018265, + "learning_rate": 0.01, + "loss": 2.2095, + "step": 4407 + }, + { + "epoch": 0.4530977088256447, + "grad_norm": 0.10909977555274963, + "learning_rate": 0.01, + "loss": 2.2064, + "step": 4410 + }, + { + "epoch": 0.4534059385595397, + "grad_norm": 0.11167363077402115, + "learning_rate": 0.01, + "loss": 2.2021, + "step": 4413 + }, + { + "epoch": 0.4537141682934347, + "grad_norm": 0.10310694575309753, + "learning_rate": 0.01, + "loss": 2.2582, + "step": 4416 + }, + { + "epoch": 0.4540223980273297, + "grad_norm": 0.06411474943161011, + "learning_rate": 0.01, + "loss": 2.2203, + "step": 4419 + }, + { + "epoch": 0.4543306277612247, + "grad_norm": 0.11141805350780487, + "learning_rate": 0.01, + "loss": 2.2163, + "step": 4422 + }, + { + "epoch": 0.4546388574951197, + "grad_norm": 0.09054200351238251, + "learning_rate": 0.01, + "loss": 2.2054, + "step": 4425 + }, + { + "epoch": 0.45494708722901467, + "grad_norm": 0.06952405720949173, + "learning_rate": 0.01, + "loss": 2.2488, + "step": 4428 + }, + { + "epoch": 0.45525531696290966, + "grad_norm": 0.08597440272569656, + "learning_rate": 0.01, + "loss": 2.2044, + "step": 4431 + }, + { + "epoch": 0.4555635466968047, + "grad_norm": 0.06718187034130096, + "learning_rate": 0.01, + "loss": 2.2419, + "step": 4434 + }, + { + "epoch": 0.4558717764306997, + "grad_norm": 0.0558515265583992, + "learning_rate": 0.01, + "loss": 2.2102, + "step": 4437 + }, + { + "epoch": 0.4561800061645947, + "grad_norm": 0.0560682937502861, + "learning_rate": 0.01, + "loss": 2.2324, + "step": 4440 + }, + { + "epoch": 0.4564882358984897, + "grad_norm": 0.058881547302007675, + "learning_rate": 0.01, + "loss": 2.1966, + "step": 4443 + }, + { + "epoch": 0.4567964656323847, + "grad_norm": 0.07034582644701004, + "learning_rate": 0.01, + "loss": 2.2021, + "step": 4446 + }, + { + "epoch": 0.4571046953662797, + "grad_norm": 0.09703799337148666, + "learning_rate": 0.01, + "loss": 2.21, + "step": 4449 + }, + { + "epoch": 0.45741292510017467, + "grad_norm": 0.06268820911645889, + "learning_rate": 0.01, + "loss": 2.2237, + "step": 4452 + }, + { + "epoch": 0.45772115483406967, + "grad_norm": 0.123359814286232, + "learning_rate": 0.01, + "loss": 2.2063, + "step": 4455 + }, + { + "epoch": 0.45802938456796466, + "grad_norm": 0.0536644384264946, + "learning_rate": 0.01, + "loss": 2.2002, + "step": 4458 + }, + { + "epoch": 0.45833761430185965, + "grad_norm": 0.0957527682185173, + "learning_rate": 0.01, + "loss": 2.2484, + "step": 4461 + }, + { + "epoch": 0.45864584403575465, + "grad_norm": 0.12607458233833313, + "learning_rate": 0.01, + "loss": 2.2241, + "step": 4464 + }, + { + "epoch": 0.45895407376964964, + "grad_norm": 0.07415255159139633, + "learning_rate": 0.01, + "loss": 2.2083, + "step": 4467 + }, + { + "epoch": 0.45926230350354463, + "grad_norm": 0.10248073190450668, + "learning_rate": 0.01, + "loss": 2.2253, + "step": 4470 + }, + { + "epoch": 0.4595705332374396, + "grad_norm": 0.05264243111014366, + "learning_rate": 0.01, + "loss": 2.2166, + "step": 4473 + }, + { + "epoch": 0.4598787629713346, + "grad_norm": 0.0557783767580986, + "learning_rate": 0.01, + "loss": 2.2213, + "step": 4476 + }, + { + "epoch": 0.4601869927052296, + "grad_norm": 0.06835830211639404, + "learning_rate": 0.01, + "loss": 2.2255, + "step": 4479 + }, + { + "epoch": 0.4604952224391246, + "grad_norm": 0.12045460939407349, + "learning_rate": 0.01, + "loss": 2.2331, + "step": 4482 + }, + { + "epoch": 0.4608034521730196, + "grad_norm": 0.11495090276002884, + "learning_rate": 0.01, + "loss": 2.2191, + "step": 4485 + }, + { + "epoch": 0.4611116819069146, + "grad_norm": 0.07859046757221222, + "learning_rate": 0.01, + "loss": 2.2282, + "step": 4488 + }, + { + "epoch": 0.46141991164080964, + "grad_norm": 0.03789819777011871, + "learning_rate": 0.01, + "loss": 2.2188, + "step": 4491 + }, + { + "epoch": 0.46172814137470464, + "grad_norm": 0.03617655113339424, + "learning_rate": 0.01, + "loss": 2.2496, + "step": 4494 + }, + { + "epoch": 0.46203637110859963, + "grad_norm": 0.06894705444574356, + "learning_rate": 0.01, + "loss": 2.2007, + "step": 4497 + }, + { + "epoch": 0.4623446008424946, + "grad_norm": 0.1143706887960434, + "learning_rate": 0.01, + "loss": 2.2247, + "step": 4500 + }, + { + "epoch": 0.4626528305763896, + "grad_norm": 0.10069230943918228, + "learning_rate": 0.01, + "loss": 2.2114, + "step": 4503 + }, + { + "epoch": 0.4629610603102846, + "grad_norm": 0.10068007558584213, + "learning_rate": 0.01, + "loss": 2.2438, + "step": 4506 + }, + { + "epoch": 0.4632692900441796, + "grad_norm": 0.05319290608167648, + "learning_rate": 0.01, + "loss": 2.2422, + "step": 4509 + }, + { + "epoch": 0.4635775197780746, + "grad_norm": 0.06933122128248215, + "learning_rate": 0.01, + "loss": 2.2059, + "step": 4512 + }, + { + "epoch": 0.4638857495119696, + "grad_norm": 0.11921056360006332, + "learning_rate": 0.01, + "loss": 2.2137, + "step": 4515 + }, + { + "epoch": 0.4641939792458646, + "grad_norm": 0.06092121824622154, + "learning_rate": 0.01, + "loss": 2.1941, + "step": 4518 + }, + { + "epoch": 0.4645022089797596, + "grad_norm": 0.06017937511205673, + "learning_rate": 0.01, + "loss": 2.2539, + "step": 4521 + }, + { + "epoch": 0.4648104387136546, + "grad_norm": 0.05721915140748024, + "learning_rate": 0.01, + "loss": 2.2348, + "step": 4524 + }, + { + "epoch": 0.46511866844754957, + "grad_norm": 0.07706714421510696, + "learning_rate": 0.01, + "loss": 2.2169, + "step": 4527 + }, + { + "epoch": 0.46542689818144456, + "grad_norm": 0.07279779762029648, + "learning_rate": 0.01, + "loss": 2.2163, + "step": 4530 + }, + { + "epoch": 0.46573512791533955, + "grad_norm": 0.06781268864870071, + "learning_rate": 0.01, + "loss": 2.1682, + "step": 4533 + }, + { + "epoch": 0.46604335764923455, + "grad_norm": 0.0807657316327095, + "learning_rate": 0.01, + "loss": 2.2123, + "step": 4536 + }, + { + "epoch": 0.46635158738312954, + "grad_norm": 0.06467099487781525, + "learning_rate": 0.01, + "loss": 2.2152, + "step": 4539 + }, + { + "epoch": 0.46665981711702453, + "grad_norm": 0.10680168867111206, + "learning_rate": 0.01, + "loss": 2.2062, + "step": 4542 + }, + { + "epoch": 0.4669680468509195, + "grad_norm": 0.11668167263269424, + "learning_rate": 0.01, + "loss": 2.206, + "step": 4545 + }, + { + "epoch": 0.4672762765848146, + "grad_norm": 0.06468226760625839, + "learning_rate": 0.01, + "loss": 2.2011, + "step": 4548 + }, + { + "epoch": 0.46758450631870957, + "grad_norm": 0.07668601721525192, + "learning_rate": 0.01, + "loss": 2.2128, + "step": 4551 + }, + { + "epoch": 0.46789273605260456, + "grad_norm": 0.05631673336029053, + "learning_rate": 0.01, + "loss": 2.1812, + "step": 4554 + }, + { + "epoch": 0.46820096578649956, + "grad_norm": 0.12898530066013336, + "learning_rate": 0.01, + "loss": 2.2312, + "step": 4557 + }, + { + "epoch": 0.46850919552039455, + "grad_norm": 0.07105603069067001, + "learning_rate": 0.01, + "loss": 2.1949, + "step": 4560 + }, + { + "epoch": 0.46881742525428954, + "grad_norm": 0.07172367721796036, + "learning_rate": 0.01, + "loss": 2.2509, + "step": 4563 + }, + { + "epoch": 0.46912565498818454, + "grad_norm": 0.1219574511051178, + "learning_rate": 0.01, + "loss": 2.2147, + "step": 4566 + }, + { + "epoch": 0.46943388472207953, + "grad_norm": 0.05777307227253914, + "learning_rate": 0.01, + "loss": 2.2071, + "step": 4569 + }, + { + "epoch": 0.4697421144559745, + "grad_norm": 0.12805253267288208, + "learning_rate": 0.01, + "loss": 2.2166, + "step": 4572 + }, + { + "epoch": 0.4700503441898695, + "grad_norm": 0.11360877752304077, + "learning_rate": 0.01, + "loss": 2.1827, + "step": 4575 + }, + { + "epoch": 0.4703585739237645, + "grad_norm": 0.07203348726034164, + "learning_rate": 0.01, + "loss": 2.2378, + "step": 4578 + }, + { + "epoch": 0.4706668036576595, + "grad_norm": 0.05645303055644035, + "learning_rate": 0.01, + "loss": 2.2044, + "step": 4581 + }, + { + "epoch": 0.4709750333915545, + "grad_norm": 0.06103040650486946, + "learning_rate": 0.01, + "loss": 2.2302, + "step": 4584 + }, + { + "epoch": 0.4712832631254495, + "grad_norm": 0.0621771402657032, + "learning_rate": 0.01, + "loss": 2.2147, + "step": 4587 + }, + { + "epoch": 0.4715914928593445, + "grad_norm": 0.08458666503429413, + "learning_rate": 0.01, + "loss": 2.1781, + "step": 4590 + }, + { + "epoch": 0.4718997225932395, + "grad_norm": 0.092729851603508, + "learning_rate": 0.01, + "loss": 2.2326, + "step": 4593 + }, + { + "epoch": 0.4722079523271345, + "grad_norm": 0.09255766123533249, + "learning_rate": 0.01, + "loss": 2.2082, + "step": 4596 + }, + { + "epoch": 0.47251618206102947, + "grad_norm": 0.11929985135793686, + "learning_rate": 0.01, + "loss": 2.2064, + "step": 4599 + }, + { + "epoch": 0.47282441179492446, + "grad_norm": 0.12234004586935043, + "learning_rate": 0.01, + "loss": 2.1513, + "step": 4602 + }, + { + "epoch": 0.47313264152881945, + "grad_norm": 0.07648742944002151, + "learning_rate": 0.01, + "loss": 2.2376, + "step": 4605 + }, + { + "epoch": 0.4734408712627145, + "grad_norm": 0.05717691034078598, + "learning_rate": 0.01, + "loss": 2.231, + "step": 4608 + }, + { + "epoch": 0.4737491009966095, + "grad_norm": 0.048224568367004395, + "learning_rate": 0.01, + "loss": 2.2126, + "step": 4611 + }, + { + "epoch": 0.4740573307305045, + "grad_norm": 0.07530826330184937, + "learning_rate": 0.01, + "loss": 2.2155, + "step": 4614 + }, + { + "epoch": 0.4743655604643995, + "grad_norm": 0.08617862313985825, + "learning_rate": 0.01, + "loss": 2.2286, + "step": 4617 + }, + { + "epoch": 0.4746737901982945, + "grad_norm": 0.10041820257902145, + "learning_rate": 0.01, + "loss": 2.1917, + "step": 4620 + }, + { + "epoch": 0.47498201993218947, + "grad_norm": 0.04470205307006836, + "learning_rate": 0.01, + "loss": 2.2188, + "step": 4623 + }, + { + "epoch": 0.47529024966608446, + "grad_norm": 0.060269374400377274, + "learning_rate": 0.01, + "loss": 2.2267, + "step": 4626 + }, + { + "epoch": 0.47559847939997946, + "grad_norm": 0.06320520490407944, + "learning_rate": 0.01, + "loss": 2.2054, + "step": 4629 + }, + { + "epoch": 0.47590670913387445, + "grad_norm": 0.05642838776111603, + "learning_rate": 0.01, + "loss": 2.2062, + "step": 4632 + }, + { + "epoch": 0.47621493886776944, + "grad_norm": 0.064301997423172, + "learning_rate": 0.01, + "loss": 2.2296, + "step": 4635 + }, + { + "epoch": 0.47652316860166444, + "grad_norm": 0.07448214292526245, + "learning_rate": 0.01, + "loss": 2.197, + "step": 4638 + }, + { + "epoch": 0.47683139833555943, + "grad_norm": 0.08586326986551285, + "learning_rate": 0.01, + "loss": 2.1743, + "step": 4641 + }, + { + "epoch": 0.4771396280694544, + "grad_norm": 0.13179326057434082, + "learning_rate": 0.01, + "loss": 2.2299, + "step": 4644 + }, + { + "epoch": 0.4774478578033494, + "grad_norm": 0.1163720041513443, + "learning_rate": 0.01, + "loss": 2.2089, + "step": 4647 + }, + { + "epoch": 0.4777560875372444, + "grad_norm": 0.04846031963825226, + "learning_rate": 0.01, + "loss": 2.1564, + "step": 4650 + }, + { + "epoch": 0.4780643172711394, + "grad_norm": 0.13724131882190704, + "learning_rate": 0.01, + "loss": 2.2078, + "step": 4653 + }, + { + "epoch": 0.4783725470050344, + "grad_norm": 0.062840536236763, + "learning_rate": 0.01, + "loss": 2.2252, + "step": 4656 + }, + { + "epoch": 0.4786807767389294, + "grad_norm": 0.06721820682287216, + "learning_rate": 0.01, + "loss": 2.1781, + "step": 4659 + }, + { + "epoch": 0.4789890064728244, + "grad_norm": 0.09086044877767563, + "learning_rate": 0.01, + "loss": 2.2179, + "step": 4662 + }, + { + "epoch": 0.47929723620671943, + "grad_norm": 0.07732655107975006, + "learning_rate": 0.01, + "loss": 2.2334, + "step": 4665 + }, + { + "epoch": 0.47960546594061443, + "grad_norm": 0.04763714596629143, + "learning_rate": 0.01, + "loss": 2.2262, + "step": 4668 + }, + { + "epoch": 0.4799136956745094, + "grad_norm": 0.09649144858121872, + "learning_rate": 0.01, + "loss": 2.2141, + "step": 4671 + }, + { + "epoch": 0.4802219254084044, + "grad_norm": 0.05458167567849159, + "learning_rate": 0.01, + "loss": 2.1967, + "step": 4674 + }, + { + "epoch": 0.4805301551422994, + "grad_norm": 0.08577650040388107, + "learning_rate": 0.01, + "loss": 2.2183, + "step": 4677 + }, + { + "epoch": 0.4808383848761944, + "grad_norm": 0.0733698159456253, + "learning_rate": 0.01, + "loss": 2.2185, + "step": 4680 + }, + { + "epoch": 0.4811466146100894, + "grad_norm": 0.06648692488670349, + "learning_rate": 0.01, + "loss": 2.1904, + "step": 4683 + }, + { + "epoch": 0.4814548443439844, + "grad_norm": 0.08376996219158173, + "learning_rate": 0.01, + "loss": 2.2097, + "step": 4686 + }, + { + "epoch": 0.4817630740778794, + "grad_norm": 0.05270134285092354, + "learning_rate": 0.01, + "loss": 2.2304, + "step": 4689 + }, + { + "epoch": 0.4820713038117744, + "grad_norm": 0.05531509965658188, + "learning_rate": 0.01, + "loss": 2.2039, + "step": 4692 + }, + { + "epoch": 0.48237953354566937, + "grad_norm": 0.05848492309451103, + "learning_rate": 0.01, + "loss": 2.2113, + "step": 4695 + }, + { + "epoch": 0.48268776327956436, + "grad_norm": 0.06692120432853699, + "learning_rate": 0.01, + "loss": 2.1972, + "step": 4698 + }, + { + "epoch": 0.48299599301345936, + "grad_norm": 0.07243851572275162, + "learning_rate": 0.01, + "loss": 2.223, + "step": 4701 + }, + { + "epoch": 0.48330422274735435, + "grad_norm": 0.06565523892641068, + "learning_rate": 0.01, + "loss": 2.1913, + "step": 4704 + }, + { + "epoch": 0.48361245248124934, + "grad_norm": 0.04595122113823891, + "learning_rate": 0.01, + "loss": 2.1782, + "step": 4707 + }, + { + "epoch": 0.48392068221514434, + "grad_norm": 0.06658844649791718, + "learning_rate": 0.01, + "loss": 2.224, + "step": 4710 + }, + { + "epoch": 0.48422891194903933, + "grad_norm": 0.0807071253657341, + "learning_rate": 0.01, + "loss": 2.217, + "step": 4713 + }, + { + "epoch": 0.4845371416829343, + "grad_norm": 0.0562782846391201, + "learning_rate": 0.01, + "loss": 2.2033, + "step": 4716 + }, + { + "epoch": 0.4848453714168293, + "grad_norm": 0.07851718366146088, + "learning_rate": 0.01, + "loss": 2.1847, + "step": 4719 + }, + { + "epoch": 0.48515360115072437, + "grad_norm": 0.07649900764226913, + "learning_rate": 0.01, + "loss": 2.2222, + "step": 4722 + }, + { + "epoch": 0.48546183088461936, + "grad_norm": 0.07279150187969208, + "learning_rate": 0.01, + "loss": 2.1951, + "step": 4725 + }, + { + "epoch": 0.48577006061851435, + "grad_norm": 0.053628645837306976, + "learning_rate": 0.01, + "loss": 2.1681, + "step": 4728 + }, + { + "epoch": 0.48607829035240935, + "grad_norm": 0.09401357173919678, + "learning_rate": 0.01, + "loss": 2.1943, + "step": 4731 + }, + { + "epoch": 0.48638652008630434, + "grad_norm": 0.1156088337302208, + "learning_rate": 0.01, + "loss": 2.2317, + "step": 4734 + }, + { + "epoch": 0.48669474982019933, + "grad_norm": 0.12672138214111328, + "learning_rate": 0.01, + "loss": 2.2085, + "step": 4737 + }, + { + "epoch": 0.48700297955409433, + "grad_norm": 0.06799574196338654, + "learning_rate": 0.01, + "loss": 2.2161, + "step": 4740 + }, + { + "epoch": 0.4873112092879893, + "grad_norm": 0.06479325145483017, + "learning_rate": 0.01, + "loss": 2.1663, + "step": 4743 + }, + { + "epoch": 0.4876194390218843, + "grad_norm": 0.09143824130296707, + "learning_rate": 0.01, + "loss": 2.2193, + "step": 4746 + }, + { + "epoch": 0.4879276687557793, + "grad_norm": 0.09262688457965851, + "learning_rate": 0.01, + "loss": 2.218, + "step": 4749 + }, + { + "epoch": 0.4882358984896743, + "grad_norm": 0.11519678682088852, + "learning_rate": 0.01, + "loss": 2.1937, + "step": 4752 + }, + { + "epoch": 0.4885441282235693, + "grad_norm": 0.07646415382623672, + "learning_rate": 0.01, + "loss": 2.2133, + "step": 4755 + }, + { + "epoch": 0.4888523579574643, + "grad_norm": 0.08090809732675552, + "learning_rate": 0.01, + "loss": 2.193, + "step": 4758 + }, + { + "epoch": 0.4891605876913593, + "grad_norm": 0.08812209218740463, + "learning_rate": 0.01, + "loss": 2.2215, + "step": 4761 + }, + { + "epoch": 0.4894688174252543, + "grad_norm": 0.14427846670150757, + "learning_rate": 0.01, + "loss": 2.2115, + "step": 4764 + }, + { + "epoch": 0.48977704715914927, + "grad_norm": 0.08065719902515411, + "learning_rate": 0.01, + "loss": 2.1861, + "step": 4767 + }, + { + "epoch": 0.49008527689304426, + "grad_norm": 0.04888691008090973, + "learning_rate": 0.01, + "loss": 2.1911, + "step": 4770 + }, + { + "epoch": 0.49039350662693926, + "grad_norm": 0.04742259159684181, + "learning_rate": 0.01, + "loss": 2.2152, + "step": 4773 + }, + { + "epoch": 0.49070173636083425, + "grad_norm": 0.061714138835668564, + "learning_rate": 0.01, + "loss": 2.2009, + "step": 4776 + }, + { + "epoch": 0.49100996609472924, + "grad_norm": 0.07582443952560425, + "learning_rate": 0.01, + "loss": 2.2189, + "step": 4779 + }, + { + "epoch": 0.4913181958286243, + "grad_norm": 0.1390780359506607, + "learning_rate": 0.01, + "loss": 2.211, + "step": 4782 + }, + { + "epoch": 0.4916264255625193, + "grad_norm": 0.03784565255045891, + "learning_rate": 0.01, + "loss": 2.2011, + "step": 4785 + }, + { + "epoch": 0.4919346552964143, + "grad_norm": 0.07413594424724579, + "learning_rate": 0.01, + "loss": 2.2103, + "step": 4788 + }, + { + "epoch": 0.4922428850303093, + "grad_norm": 0.09402404725551605, + "learning_rate": 0.01, + "loss": 2.1912, + "step": 4791 + }, + { + "epoch": 0.49255111476420427, + "grad_norm": 0.0717400312423706, + "learning_rate": 0.01, + "loss": 2.1868, + "step": 4794 + }, + { + "epoch": 0.49285934449809926, + "grad_norm": 0.05179424583911896, + "learning_rate": 0.01, + "loss": 2.2298, + "step": 4797 + }, + { + "epoch": 0.49316757423199425, + "grad_norm": 0.12123433500528336, + "learning_rate": 0.01, + "loss": 2.2005, + "step": 4800 + }, + { + "epoch": 0.49347580396588925, + "grad_norm": 0.04941033944487572, + "learning_rate": 0.01, + "loss": 2.2113, + "step": 4803 + }, + { + "epoch": 0.49378403369978424, + "grad_norm": 0.10987304151058197, + "learning_rate": 0.01, + "loss": 2.209, + "step": 4806 + }, + { + "epoch": 0.49409226343367924, + "grad_norm": 0.09235193580389023, + "learning_rate": 0.01, + "loss": 2.1967, + "step": 4809 + }, + { + "epoch": 0.49440049316757423, + "grad_norm": 0.057354703545570374, + "learning_rate": 0.01, + "loss": 2.219, + "step": 4812 + }, + { + "epoch": 0.4947087229014692, + "grad_norm": 0.04692654311656952, + "learning_rate": 0.01, + "loss": 2.173, + "step": 4815 + }, + { + "epoch": 0.4950169526353642, + "grad_norm": 0.09447453171014786, + "learning_rate": 0.01, + "loss": 2.1806, + "step": 4818 + }, + { + "epoch": 0.4953251823692592, + "grad_norm": 0.09967079013586044, + "learning_rate": 0.01, + "loss": 2.1809, + "step": 4821 + }, + { + "epoch": 0.4956334121031542, + "grad_norm": 0.06462189555168152, + "learning_rate": 0.01, + "loss": 2.1922, + "step": 4824 + }, + { + "epoch": 0.4959416418370492, + "grad_norm": 0.038030870258808136, + "learning_rate": 0.01, + "loss": 2.2239, + "step": 4827 + }, + { + "epoch": 0.4962498715709442, + "grad_norm": 0.06828872114419937, + "learning_rate": 0.01, + "loss": 2.1881, + "step": 4830 + }, + { + "epoch": 0.4965581013048392, + "grad_norm": 0.10087070614099503, + "learning_rate": 0.01, + "loss": 2.22, + "step": 4833 + }, + { + "epoch": 0.4968663310387342, + "grad_norm": 0.07630455493927002, + "learning_rate": 0.01, + "loss": 2.188, + "step": 4836 + }, + { + "epoch": 0.4971745607726292, + "grad_norm": 0.05040668696165085, + "learning_rate": 0.01, + "loss": 2.2012, + "step": 4839 + }, + { + "epoch": 0.4974827905065242, + "grad_norm": 0.05160282924771309, + "learning_rate": 0.01, + "loss": 2.2119, + "step": 4842 + }, + { + "epoch": 0.4977910202404192, + "grad_norm": 0.04949258640408516, + "learning_rate": 0.01, + "loss": 2.1959, + "step": 4845 + }, + { + "epoch": 0.4980992499743142, + "grad_norm": 0.07766029983758926, + "learning_rate": 0.01, + "loss": 2.1896, + "step": 4848 + }, + { + "epoch": 0.4984074797082092, + "grad_norm": 0.06274580955505371, + "learning_rate": 0.01, + "loss": 2.2014, + "step": 4851 + }, + { + "epoch": 0.4987157094421042, + "grad_norm": 0.1071280762553215, + "learning_rate": 0.01, + "loss": 2.2045, + "step": 4854 + }, + { + "epoch": 0.4990239391759992, + "grad_norm": 0.10645020008087158, + "learning_rate": 0.01, + "loss": 2.1895, + "step": 4857 + }, + { + "epoch": 0.4993321689098942, + "grad_norm": 0.1151091679930687, + "learning_rate": 0.01, + "loss": 2.1954, + "step": 4860 + }, + { + "epoch": 0.4996403986437892, + "grad_norm": 0.09699530899524689, + "learning_rate": 0.01, + "loss": 2.1833, + "step": 4863 + }, + { + "epoch": 0.49994862837768417, + "grad_norm": 0.06568959355354309, + "learning_rate": 0.01, + "loss": 2.1862, + "step": 4866 + }, + { + "epoch": 0.5002568581115792, + "grad_norm": 0.0421447716653347, + "learning_rate": 0.01, + "loss": 2.1819, + "step": 4869 + }, + { + "epoch": 0.5005650878454742, + "grad_norm": 0.04529868811368942, + "learning_rate": 0.01, + "loss": 2.1852, + "step": 4872 + }, + { + "epoch": 0.5008733175793691, + "grad_norm": 0.059541650116443634, + "learning_rate": 0.01, + "loss": 2.1955, + "step": 4875 + }, + { + "epoch": 0.5011815473132641, + "grad_norm": 0.061823770403862, + "learning_rate": 0.01, + "loss": 2.2039, + "step": 4878 + }, + { + "epoch": 0.5014897770471591, + "grad_norm": 0.05892050638794899, + "learning_rate": 0.01, + "loss": 2.178, + "step": 4881 + }, + { + "epoch": 0.5017980067810541, + "grad_norm": 0.04842402786016464, + "learning_rate": 0.01, + "loss": 2.1948, + "step": 4884 + }, + { + "epoch": 0.5021062365149491, + "grad_norm": 0.05962050333619118, + "learning_rate": 0.01, + "loss": 2.1932, + "step": 4887 + }, + { + "epoch": 0.5024144662488441, + "grad_norm": 0.056295089423656464, + "learning_rate": 0.01, + "loss": 2.1757, + "step": 4890 + }, + { + "epoch": 0.5027226959827391, + "grad_norm": 0.07448049634695053, + "learning_rate": 0.01, + "loss": 2.2181, + "step": 4893 + }, + { + "epoch": 0.5030309257166341, + "grad_norm": 0.07998815923929214, + "learning_rate": 0.01, + "loss": 2.1714, + "step": 4896 + }, + { + "epoch": 0.5033391554505291, + "grad_norm": 0.08058517426252365, + "learning_rate": 0.01, + "loss": 2.2131, + "step": 4899 + }, + { + "epoch": 0.5036473851844241, + "grad_norm": 0.07899410277605057, + "learning_rate": 0.01, + "loss": 2.1727, + "step": 4902 + }, + { + "epoch": 0.5039556149183191, + "grad_norm": 0.05830831080675125, + "learning_rate": 0.01, + "loss": 2.176, + "step": 4905 + }, + { + "epoch": 0.5042638446522141, + "grad_norm": 0.05831579118967056, + "learning_rate": 0.01, + "loss": 2.1754, + "step": 4908 + }, + { + "epoch": 0.5045720743861091, + "grad_norm": 0.052614904940128326, + "learning_rate": 0.01, + "loss": 2.1935, + "step": 4911 + }, + { + "epoch": 0.5048803041200041, + "grad_norm": 0.0830332413315773, + "learning_rate": 0.01, + "loss": 2.2274, + "step": 4914 + }, + { + "epoch": 0.5051885338538991, + "grad_norm": 0.1138230562210083, + "learning_rate": 0.01, + "loss": 2.1976, + "step": 4917 + }, + { + "epoch": 0.505496763587794, + "grad_norm": 0.07024016976356506, + "learning_rate": 0.01, + "loss": 2.1969, + "step": 4920 + }, + { + "epoch": 0.505804993321689, + "grad_norm": 0.07235170155763626, + "learning_rate": 0.01, + "loss": 2.2163, + "step": 4923 + }, + { + "epoch": 0.5061132230555841, + "grad_norm": 0.06894835084676743, + "learning_rate": 0.01, + "loss": 2.2232, + "step": 4926 + }, + { + "epoch": 0.5064214527894791, + "grad_norm": 0.0825890600681305, + "learning_rate": 0.01, + "loss": 2.1896, + "step": 4929 + }, + { + "epoch": 0.5067296825233741, + "grad_norm": 0.05901159718632698, + "learning_rate": 0.01, + "loss": 2.1988, + "step": 4932 + }, + { + "epoch": 0.5070379122572691, + "grad_norm": 0.048157334327697754, + "learning_rate": 0.01, + "loss": 2.1904, + "step": 4935 + }, + { + "epoch": 0.5073461419911641, + "grad_norm": 0.10036749392747879, + "learning_rate": 0.01, + "loss": 2.1977, + "step": 4938 + }, + { + "epoch": 0.5076543717250591, + "grad_norm": 0.10984963923692703, + "learning_rate": 0.01, + "loss": 2.1957, + "step": 4941 + }, + { + "epoch": 0.5079626014589541, + "grad_norm": 0.09587367624044418, + "learning_rate": 0.01, + "loss": 2.2, + "step": 4944 + }, + { + "epoch": 0.5082708311928491, + "grad_norm": 0.06347552686929703, + "learning_rate": 0.01, + "loss": 2.1918, + "step": 4947 + }, + { + "epoch": 0.5085790609267441, + "grad_norm": 0.0658629834651947, + "learning_rate": 0.01, + "loss": 2.1945, + "step": 4950 + }, + { + "epoch": 0.5088872906606391, + "grad_norm": 0.045971643179655075, + "learning_rate": 0.01, + "loss": 2.2114, + "step": 4953 + }, + { + "epoch": 0.5091955203945341, + "grad_norm": 0.04058291018009186, + "learning_rate": 0.01, + "loss": 2.2066, + "step": 4956 + }, + { + "epoch": 0.5095037501284291, + "grad_norm": 0.052851296961307526, + "learning_rate": 0.01, + "loss": 2.1884, + "step": 4959 + }, + { + "epoch": 0.5098119798623241, + "grad_norm": 0.033158350735902786, + "learning_rate": 0.01, + "loss": 2.2078, + "step": 4962 + }, + { + "epoch": 0.5101202095962191, + "grad_norm": 0.05409036949276924, + "learning_rate": 0.01, + "loss": 2.181, + "step": 4965 + }, + { + "epoch": 0.5104284393301141, + "grad_norm": 0.0731736570596695, + "learning_rate": 0.01, + "loss": 2.1825, + "step": 4968 + }, + { + "epoch": 0.510736669064009, + "grad_norm": 0.05854470282793045, + "learning_rate": 0.01, + "loss": 2.2119, + "step": 4971 + }, + { + "epoch": 0.511044898797904, + "grad_norm": 0.05071520060300827, + "learning_rate": 0.01, + "loss": 2.1886, + "step": 4974 + }, + { + "epoch": 0.511353128531799, + "grad_norm": 0.060792725533246994, + "learning_rate": 0.01, + "loss": 2.2066, + "step": 4977 + }, + { + "epoch": 0.511661358265694, + "grad_norm": 0.0910191684961319, + "learning_rate": 0.01, + "loss": 2.209, + "step": 4980 + }, + { + "epoch": 0.511969587999589, + "grad_norm": 0.12366749346256256, + "learning_rate": 0.01, + "loss": 2.2263, + "step": 4983 + }, + { + "epoch": 0.512277817733484, + "grad_norm": 0.11254429817199707, + "learning_rate": 0.01, + "loss": 2.175, + "step": 4986 + }, + { + "epoch": 0.512586047467379, + "grad_norm": 0.11091643571853638, + "learning_rate": 0.01, + "loss": 2.2046, + "step": 4989 + }, + { + "epoch": 0.512894277201274, + "grad_norm": 0.045611754059791565, + "learning_rate": 0.01, + "loss": 2.1861, + "step": 4992 + }, + { + "epoch": 0.513202506935169, + "grad_norm": 0.09836157411336899, + "learning_rate": 0.01, + "loss": 2.1931, + "step": 4995 + }, + { + "epoch": 0.513510736669064, + "grad_norm": 0.11932815611362457, + "learning_rate": 0.01, + "loss": 2.2087, + "step": 4998 + }, + { + "epoch": 0.513818966402959, + "grad_norm": 0.10955359041690826, + "learning_rate": 0.01, + "loss": 2.19, + "step": 5001 + }, + { + "epoch": 0.514127196136854, + "grad_norm": 0.09804633259773254, + "learning_rate": 0.01, + "loss": 2.1572, + "step": 5004 + }, + { + "epoch": 0.514435425870749, + "grad_norm": 0.04835839942097664, + "learning_rate": 0.01, + "loss": 2.2115, + "step": 5007 + }, + { + "epoch": 0.514743655604644, + "grad_norm": 0.04645110294222832, + "learning_rate": 0.01, + "loss": 2.2012, + "step": 5010 + }, + { + "epoch": 0.515051885338539, + "grad_norm": 0.05947386845946312, + "learning_rate": 0.01, + "loss": 2.2039, + "step": 5013 + }, + { + "epoch": 0.515360115072434, + "grad_norm": 0.05693971738219261, + "learning_rate": 0.01, + "loss": 2.1733, + "step": 5016 + }, + { + "epoch": 0.515668344806329, + "grad_norm": 0.0724320039153099, + "learning_rate": 0.01, + "loss": 2.1944, + "step": 5019 + }, + { + "epoch": 0.5159765745402239, + "grad_norm": 0.06627337634563446, + "learning_rate": 0.01, + "loss": 2.1932, + "step": 5022 + }, + { + "epoch": 0.5162848042741189, + "grad_norm": 0.10879958420991898, + "learning_rate": 0.01, + "loss": 2.2024, + "step": 5025 + }, + { + "epoch": 0.5165930340080139, + "grad_norm": 0.12266898900270462, + "learning_rate": 0.01, + "loss": 2.1938, + "step": 5028 + }, + { + "epoch": 0.5169012637419089, + "grad_norm": 0.06240540370345116, + "learning_rate": 0.01, + "loss": 2.18, + "step": 5031 + }, + { + "epoch": 0.5172094934758039, + "grad_norm": 0.05043266713619232, + "learning_rate": 0.01, + "loss": 2.1936, + "step": 5034 + }, + { + "epoch": 0.5175177232096989, + "grad_norm": 0.052652738988399506, + "learning_rate": 0.01, + "loss": 2.1631, + "step": 5037 + }, + { + "epoch": 0.5178259529435939, + "grad_norm": 0.04598904401063919, + "learning_rate": 0.01, + "loss": 2.2067, + "step": 5040 + }, + { + "epoch": 0.518134182677489, + "grad_norm": 0.07040087133646011, + "learning_rate": 0.01, + "loss": 2.1737, + "step": 5043 + }, + { + "epoch": 0.518442412411384, + "grad_norm": 0.04827702417969704, + "learning_rate": 0.01, + "loss": 2.2128, + "step": 5046 + }, + { + "epoch": 0.518750642145279, + "grad_norm": 0.09803622215986252, + "learning_rate": 0.01, + "loss": 2.1851, + "step": 5049 + }, + { + "epoch": 0.519058871879174, + "grad_norm": 0.1019926443696022, + "learning_rate": 0.01, + "loss": 2.181, + "step": 5052 + }, + { + "epoch": 0.519367101613069, + "grad_norm": 0.08847504109144211, + "learning_rate": 0.01, + "loss": 2.1874, + "step": 5055 + }, + { + "epoch": 0.519675331346964, + "grad_norm": 0.06151921674609184, + "learning_rate": 0.01, + "loss": 2.1785, + "step": 5058 + }, + { + "epoch": 0.519983561080859, + "grad_norm": 0.04823022335767746, + "learning_rate": 0.01, + "loss": 2.1662, + "step": 5061 + }, + { + "epoch": 0.520291790814754, + "grad_norm": 0.12454935908317566, + "learning_rate": 0.01, + "loss": 2.1864, + "step": 5064 + }, + { + "epoch": 0.520600020548649, + "grad_norm": 0.0716002956032753, + "learning_rate": 0.01, + "loss": 2.1866, + "step": 5067 + }, + { + "epoch": 0.520908250282544, + "grad_norm": 0.055079616606235504, + "learning_rate": 0.01, + "loss": 2.2137, + "step": 5070 + }, + { + "epoch": 0.5212164800164389, + "grad_norm": 0.05969909206032753, + "learning_rate": 0.01, + "loss": 2.1972, + "step": 5073 + }, + { + "epoch": 0.5215247097503339, + "grad_norm": 0.07373122125864029, + "learning_rate": 0.01, + "loss": 2.2312, + "step": 5076 + }, + { + "epoch": 0.5218329394842289, + "grad_norm": 0.1899929642677307, + "learning_rate": 0.01, + "loss": 2.2141, + "step": 5079 + }, + { + "epoch": 0.5221411692181239, + "grad_norm": 0.05221979692578316, + "learning_rate": 0.01, + "loss": 2.1899, + "step": 5082 + }, + { + "epoch": 0.5224493989520189, + "grad_norm": 0.04537337273359299, + "learning_rate": 0.01, + "loss": 2.1571, + "step": 5085 + }, + { + "epoch": 0.5227576286859139, + "grad_norm": 0.05490431934595108, + "learning_rate": 0.01, + "loss": 2.1705, + "step": 5088 + }, + { + "epoch": 0.5230658584198089, + "grad_norm": 0.03813198208808899, + "learning_rate": 0.01, + "loss": 2.1773, + "step": 5091 + }, + { + "epoch": 0.5233740881537039, + "grad_norm": 0.045411352068185806, + "learning_rate": 0.01, + "loss": 2.2065, + "step": 5094 + }, + { + "epoch": 0.5236823178875989, + "grad_norm": 0.05433456227183342, + "learning_rate": 0.01, + "loss": 2.1901, + "step": 5097 + }, + { + "epoch": 0.5239905476214939, + "grad_norm": 0.10771681368350983, + "learning_rate": 0.01, + "loss": 2.171, + "step": 5100 + }, + { + "epoch": 0.5242987773553889, + "grad_norm": 0.06446761637926102, + "learning_rate": 0.01, + "loss": 2.2033, + "step": 5103 + }, + { + "epoch": 0.5246070070892839, + "grad_norm": 0.06428392231464386, + "learning_rate": 0.01, + "loss": 2.1877, + "step": 5106 + }, + { + "epoch": 0.5249152368231789, + "grad_norm": 0.0525304451584816, + "learning_rate": 0.01, + "loss": 2.206, + "step": 5109 + }, + { + "epoch": 0.5252234665570739, + "grad_norm": 0.07332491129636765, + "learning_rate": 0.01, + "loss": 2.1992, + "step": 5112 + }, + { + "epoch": 0.5255316962909689, + "grad_norm": 0.1738174557685852, + "learning_rate": 0.01, + "loss": 2.176, + "step": 5115 + }, + { + "epoch": 0.5258399260248638, + "grad_norm": 0.08102334290742874, + "learning_rate": 0.01, + "loss": 2.2067, + "step": 5118 + }, + { + "epoch": 0.5261481557587588, + "grad_norm": 0.06945500522851944, + "learning_rate": 0.01, + "loss": 2.206, + "step": 5121 + }, + { + "epoch": 0.5264563854926538, + "grad_norm": 0.07017000019550323, + "learning_rate": 0.01, + "loss": 2.2002, + "step": 5124 + }, + { + "epoch": 0.5267646152265488, + "grad_norm": 0.03883346915245056, + "learning_rate": 0.01, + "loss": 2.1608, + "step": 5127 + }, + { + "epoch": 0.5270728449604438, + "grad_norm": 0.050974566489458084, + "learning_rate": 0.01, + "loss": 2.1973, + "step": 5130 + }, + { + "epoch": 0.5273810746943388, + "grad_norm": 0.0665312334895134, + "learning_rate": 0.01, + "loss": 2.2064, + "step": 5133 + }, + { + "epoch": 0.5276893044282338, + "grad_norm": 0.03946761414408684, + "learning_rate": 0.01, + "loss": 2.1794, + "step": 5136 + }, + { + "epoch": 0.5279975341621288, + "grad_norm": 0.046160902827978134, + "learning_rate": 0.01, + "loss": 2.1919, + "step": 5139 + }, + { + "epoch": 0.5283057638960238, + "grad_norm": 0.046186063438653946, + "learning_rate": 0.01, + "loss": 2.1687, + "step": 5142 + }, + { + "epoch": 0.5286139936299188, + "grad_norm": 0.07073774188756943, + "learning_rate": 0.01, + "loss": 2.2154, + "step": 5145 + }, + { + "epoch": 0.5289222233638138, + "grad_norm": 0.08319617807865143, + "learning_rate": 0.01, + "loss": 2.2104, + "step": 5148 + }, + { + "epoch": 0.5292304530977088, + "grad_norm": 0.08551453799009323, + "learning_rate": 0.01, + "loss": 2.1743, + "step": 5151 + }, + { + "epoch": 0.5295386828316038, + "grad_norm": 0.06613323837518692, + "learning_rate": 0.01, + "loss": 2.1774, + "step": 5154 + }, + { + "epoch": 0.5298469125654989, + "grad_norm": 0.0601351298391819, + "learning_rate": 0.01, + "loss": 2.1831, + "step": 5157 + }, + { + "epoch": 0.5301551422993939, + "grad_norm": 0.04963411018252373, + "learning_rate": 0.01, + "loss": 2.1915, + "step": 5160 + }, + { + "epoch": 0.5304633720332889, + "grad_norm": 0.06755329668521881, + "learning_rate": 0.01, + "loss": 2.163, + "step": 5163 + }, + { + "epoch": 0.5307716017671839, + "grad_norm": 0.04755258187651634, + "learning_rate": 0.01, + "loss": 2.1518, + "step": 5166 + }, + { + "epoch": 0.5310798315010788, + "grad_norm": 0.15916316211223602, + "learning_rate": 0.01, + "loss": 2.1835, + "step": 5169 + }, + { + "epoch": 0.5313880612349738, + "grad_norm": 0.0807122215628624, + "learning_rate": 0.01, + "loss": 2.2193, + "step": 5172 + }, + { + "epoch": 0.5316962909688688, + "grad_norm": 0.05207689106464386, + "learning_rate": 0.01, + "loss": 2.1754, + "step": 5175 + }, + { + "epoch": 0.5320045207027638, + "grad_norm": 0.045082803815603256, + "learning_rate": 0.01, + "loss": 2.1525, + "step": 5178 + }, + { + "epoch": 0.5323127504366588, + "grad_norm": 0.07747700810432434, + "learning_rate": 0.01, + "loss": 2.1438, + "step": 5181 + }, + { + "epoch": 0.5326209801705538, + "grad_norm": 0.13366450369358063, + "learning_rate": 0.01, + "loss": 2.1904, + "step": 5184 + }, + { + "epoch": 0.5329292099044488, + "grad_norm": 0.06902889162302017, + "learning_rate": 0.01, + "loss": 2.1786, + "step": 5187 + }, + { + "epoch": 0.5332374396383438, + "grad_norm": 0.04604712501168251, + "learning_rate": 0.01, + "loss": 2.1848, + "step": 5190 + }, + { + "epoch": 0.5335456693722388, + "grad_norm": 0.08803047984838486, + "learning_rate": 0.01, + "loss": 2.1798, + "step": 5193 + }, + { + "epoch": 0.5338538991061338, + "grad_norm": 0.08366485685110092, + "learning_rate": 0.01, + "loss": 2.2008, + "step": 5196 + }, + { + "epoch": 0.5341621288400288, + "grad_norm": 0.06176333501935005, + "learning_rate": 0.01, + "loss": 2.1722, + "step": 5199 + }, + { + "epoch": 0.5344703585739238, + "grad_norm": 0.0837249681353569, + "learning_rate": 0.01, + "loss": 2.1783, + "step": 5202 + }, + { + "epoch": 0.5347785883078188, + "grad_norm": 0.1322035938501358, + "learning_rate": 0.01, + "loss": 2.1948, + "step": 5205 + }, + { + "epoch": 0.5350868180417138, + "grad_norm": 0.11094444990158081, + "learning_rate": 0.01, + "loss": 2.1937, + "step": 5208 + }, + { + "epoch": 0.5353950477756088, + "grad_norm": 0.05182232707738876, + "learning_rate": 0.01, + "loss": 2.1945, + "step": 5211 + }, + { + "epoch": 0.5357032775095038, + "grad_norm": 0.08261944353580475, + "learning_rate": 0.01, + "loss": 2.1855, + "step": 5214 + }, + { + "epoch": 0.5360115072433987, + "grad_norm": 0.11097295582294464, + "learning_rate": 0.01, + "loss": 2.1902, + "step": 5217 + }, + { + "epoch": 0.5363197369772937, + "grad_norm": 0.05825675278902054, + "learning_rate": 0.01, + "loss": 2.1984, + "step": 5220 + }, + { + "epoch": 0.5366279667111887, + "grad_norm": 0.11612821370363235, + "learning_rate": 0.01, + "loss": 2.1679, + "step": 5223 + }, + { + "epoch": 0.5369361964450837, + "grad_norm": 0.09120064228773117, + "learning_rate": 0.01, + "loss": 2.1586, + "step": 5226 + }, + { + "epoch": 0.5372444261789787, + "grad_norm": 0.055181995034217834, + "learning_rate": 0.01, + "loss": 2.2169, + "step": 5229 + }, + { + "epoch": 0.5375526559128737, + "grad_norm": 0.055780068039894104, + "learning_rate": 0.01, + "loss": 2.1748, + "step": 5232 + }, + { + "epoch": 0.5378608856467687, + "grad_norm": 0.06303024291992188, + "learning_rate": 0.01, + "loss": 2.1782, + "step": 5235 + }, + { + "epoch": 0.5381691153806637, + "grad_norm": 0.10456321388483047, + "learning_rate": 0.01, + "loss": 2.1975, + "step": 5238 + }, + { + "epoch": 0.5384773451145587, + "grad_norm": 0.054177962243556976, + "learning_rate": 0.01, + "loss": 2.1641, + "step": 5241 + }, + { + "epoch": 0.5387855748484537, + "grad_norm": 0.06265738606452942, + "learning_rate": 0.01, + "loss": 2.183, + "step": 5244 + }, + { + "epoch": 0.5390938045823487, + "grad_norm": 0.13720418512821198, + "learning_rate": 0.01, + "loss": 2.1698, + "step": 5247 + }, + { + "epoch": 0.5394020343162437, + "grad_norm": 0.04917861148715019, + "learning_rate": 0.01, + "loss": 2.1692, + "step": 5250 + }, + { + "epoch": 0.5397102640501387, + "grad_norm": 0.04919945448637009, + "learning_rate": 0.01, + "loss": 2.1652, + "step": 5253 + }, + { + "epoch": 0.5400184937840337, + "grad_norm": 0.06462734192609787, + "learning_rate": 0.01, + "loss": 2.1987, + "step": 5256 + }, + { + "epoch": 0.5403267235179287, + "grad_norm": 0.05275480076670647, + "learning_rate": 0.01, + "loss": 2.1955, + "step": 5259 + }, + { + "epoch": 0.5406349532518236, + "grad_norm": 0.12235717475414276, + "learning_rate": 0.01, + "loss": 2.1937, + "step": 5262 + }, + { + "epoch": 0.5409431829857186, + "grad_norm": 0.05300014466047287, + "learning_rate": 0.01, + "loss": 2.1589, + "step": 5265 + }, + { + "epoch": 0.5412514127196136, + "grad_norm": 0.0429493710398674, + "learning_rate": 0.01, + "loss": 2.1618, + "step": 5268 + }, + { + "epoch": 0.5415596424535086, + "grad_norm": 0.07041259855031967, + "learning_rate": 0.01, + "loss": 2.1661, + "step": 5271 + }, + { + "epoch": 0.5418678721874037, + "grad_norm": 0.05304478853940964, + "learning_rate": 0.01, + "loss": 2.183, + "step": 5274 + }, + { + "epoch": 0.5421761019212987, + "grad_norm": 0.12009457498788834, + "learning_rate": 0.01, + "loss": 2.1862, + "step": 5277 + }, + { + "epoch": 0.5424843316551937, + "grad_norm": 0.11629784107208252, + "learning_rate": 0.01, + "loss": 2.1897, + "step": 5280 + }, + { + "epoch": 0.5427925613890887, + "grad_norm": 0.07305426150560379, + "learning_rate": 0.01, + "loss": 2.1832, + "step": 5283 + }, + { + "epoch": 0.5431007911229837, + "grad_norm": 0.0855623185634613, + "learning_rate": 0.01, + "loss": 2.1884, + "step": 5286 + }, + { + "epoch": 0.5434090208568787, + "grad_norm": 0.04178578779101372, + "learning_rate": 0.01, + "loss": 2.1872, + "step": 5289 + }, + { + "epoch": 0.5437172505907737, + "grad_norm": 0.05382310971617699, + "learning_rate": 0.01, + "loss": 2.1901, + "step": 5292 + }, + { + "epoch": 0.5440254803246687, + "grad_norm": 0.10682760924100876, + "learning_rate": 0.01, + "loss": 2.1957, + "step": 5295 + }, + { + "epoch": 0.5443337100585637, + "grad_norm": 0.15037471055984497, + "learning_rate": 0.01, + "loss": 2.2085, + "step": 5298 + }, + { + "epoch": 0.5446419397924587, + "grad_norm": 0.08333491533994675, + "learning_rate": 0.01, + "loss": 2.1964, + "step": 5301 + }, + { + "epoch": 0.5449501695263537, + "grad_norm": 0.08964785933494568, + "learning_rate": 0.01, + "loss": 2.1613, + "step": 5304 + }, + { + "epoch": 0.5452583992602487, + "grad_norm": 0.06194687634706497, + "learning_rate": 0.01, + "loss": 2.1711, + "step": 5307 + }, + { + "epoch": 0.5455666289941437, + "grad_norm": 0.047254305332899094, + "learning_rate": 0.01, + "loss": 2.1956, + "step": 5310 + }, + { + "epoch": 0.5458748587280386, + "grad_norm": 0.052926719188690186, + "learning_rate": 0.01, + "loss": 2.1767, + "step": 5313 + }, + { + "epoch": 0.5461830884619336, + "grad_norm": 0.08765383809804916, + "learning_rate": 0.01, + "loss": 2.1782, + "step": 5316 + }, + { + "epoch": 0.5464913181958286, + "grad_norm": 0.0749160572886467, + "learning_rate": 0.01, + "loss": 2.1875, + "step": 5319 + }, + { + "epoch": 0.5467995479297236, + "grad_norm": 0.09781020879745483, + "learning_rate": 0.01, + "loss": 2.1748, + "step": 5322 + }, + { + "epoch": 0.5471077776636186, + "grad_norm": 0.04605260491371155, + "learning_rate": 0.01, + "loss": 2.145, + "step": 5325 + }, + { + "epoch": 0.5474160073975136, + "grad_norm": 0.13507331907749176, + "learning_rate": 0.01, + "loss": 2.1769, + "step": 5328 + }, + { + "epoch": 0.5477242371314086, + "grad_norm": 0.05028709024190903, + "learning_rate": 0.01, + "loss": 2.1925, + "step": 5331 + }, + { + "epoch": 0.5480324668653036, + "grad_norm": 0.08754327893257141, + "learning_rate": 0.01, + "loss": 2.159, + "step": 5334 + }, + { + "epoch": 0.5483406965991986, + "grad_norm": 0.10449190437793732, + "learning_rate": 0.01, + "loss": 2.1898, + "step": 5337 + }, + { + "epoch": 0.5486489263330936, + "grad_norm": 0.10263057053089142, + "learning_rate": 0.01, + "loss": 2.1776, + "step": 5340 + }, + { + "epoch": 0.5489571560669886, + "grad_norm": 0.0547097772359848, + "learning_rate": 0.01, + "loss": 2.1941, + "step": 5343 + }, + { + "epoch": 0.5492653858008836, + "grad_norm": 0.06682941317558289, + "learning_rate": 0.01, + "loss": 2.1901, + "step": 5346 + }, + { + "epoch": 0.5495736155347786, + "grad_norm": 0.06421027332544327, + "learning_rate": 0.01, + "loss": 2.1981, + "step": 5349 + }, + { + "epoch": 0.5498818452686736, + "grad_norm": 0.041218411177396774, + "learning_rate": 0.01, + "loss": 2.1844, + "step": 5352 + }, + { + "epoch": 0.5501900750025686, + "grad_norm": 0.042902372777462006, + "learning_rate": 0.01, + "loss": 2.1981, + "step": 5355 + }, + { + "epoch": 0.5504983047364636, + "grad_norm": 0.05338321253657341, + "learning_rate": 0.01, + "loss": 2.168, + "step": 5358 + }, + { + "epoch": 0.5508065344703585, + "grad_norm": 0.06692427396774292, + "learning_rate": 0.01, + "loss": 2.1891, + "step": 5361 + }, + { + "epoch": 0.5511147642042535, + "grad_norm": 0.07927200943231583, + "learning_rate": 0.01, + "loss": 2.1853, + "step": 5364 + }, + { + "epoch": 0.5514229939381485, + "grad_norm": 0.05655739828944206, + "learning_rate": 0.01, + "loss": 2.1838, + "step": 5367 + }, + { + "epoch": 0.5517312236720435, + "grad_norm": 0.04488144442439079, + "learning_rate": 0.01, + "loss": 2.1754, + "step": 5370 + }, + { + "epoch": 0.5520394534059385, + "grad_norm": 0.09253795444965363, + "learning_rate": 0.01, + "loss": 2.1742, + "step": 5373 + }, + { + "epoch": 0.5523476831398335, + "grad_norm": 0.07396019250154495, + "learning_rate": 0.01, + "loss": 2.1582, + "step": 5376 + }, + { + "epoch": 0.5526559128737285, + "grad_norm": 0.053663600236177444, + "learning_rate": 0.01, + "loss": 2.1508, + "step": 5379 + }, + { + "epoch": 0.5529641426076235, + "grad_norm": 0.062076181173324585, + "learning_rate": 0.01, + "loss": 2.1772, + "step": 5382 + }, + { + "epoch": 0.5532723723415185, + "grad_norm": 0.08481581509113312, + "learning_rate": 0.01, + "loss": 2.1836, + "step": 5385 + }, + { + "epoch": 0.5535806020754136, + "grad_norm": 0.08981155604124069, + "learning_rate": 0.01, + "loss": 2.204, + "step": 5388 + }, + { + "epoch": 0.5538888318093086, + "grad_norm": 0.10067261755466461, + "learning_rate": 0.01, + "loss": 2.1527, + "step": 5391 + }, + { + "epoch": 0.5541970615432036, + "grad_norm": 0.06231047958135605, + "learning_rate": 0.01, + "loss": 2.194, + "step": 5394 + }, + { + "epoch": 0.5545052912770986, + "grad_norm": 0.049111973494291306, + "learning_rate": 0.01, + "loss": 2.1889, + "step": 5397 + }, + { + "epoch": 0.5548135210109936, + "grad_norm": 0.06446948647499084, + "learning_rate": 0.01, + "loss": 2.2103, + "step": 5400 + }, + { + "epoch": 0.5551217507448886, + "grad_norm": 0.051946625113487244, + "learning_rate": 0.01, + "loss": 2.1977, + "step": 5403 + }, + { + "epoch": 0.5554299804787836, + "grad_norm": 0.1369265466928482, + "learning_rate": 0.01, + "loss": 2.1771, + "step": 5406 + }, + { + "epoch": 0.5557382102126786, + "grad_norm": 0.08489779382944107, + "learning_rate": 0.01, + "loss": 2.1782, + "step": 5409 + }, + { + "epoch": 0.5560464399465735, + "grad_norm": 0.10673670470714569, + "learning_rate": 0.01, + "loss": 2.173, + "step": 5412 + }, + { + "epoch": 0.5563546696804685, + "grad_norm": 0.055250637233257294, + "learning_rate": 0.01, + "loss": 2.1539, + "step": 5415 + }, + { + "epoch": 0.5566628994143635, + "grad_norm": 0.05136672407388687, + "learning_rate": 0.01, + "loss": 2.2035, + "step": 5418 + }, + { + "epoch": 0.5569711291482585, + "grad_norm": 0.040590591728687286, + "learning_rate": 0.01, + "loss": 2.1778, + "step": 5421 + }, + { + "epoch": 0.5572793588821535, + "grad_norm": 0.048333633691072464, + "learning_rate": 0.01, + "loss": 2.191, + "step": 5424 + }, + { + "epoch": 0.5575875886160485, + "grad_norm": 0.0582728311419487, + "learning_rate": 0.01, + "loss": 2.1734, + "step": 5427 + }, + { + "epoch": 0.5578958183499435, + "grad_norm": 0.05272262915968895, + "learning_rate": 0.01, + "loss": 2.1714, + "step": 5430 + }, + { + "epoch": 0.5582040480838385, + "grad_norm": 0.08472342789173126, + "learning_rate": 0.01, + "loss": 2.1624, + "step": 5433 + }, + { + "epoch": 0.5585122778177335, + "grad_norm": 0.10869960486888885, + "learning_rate": 0.01, + "loss": 2.164, + "step": 5436 + }, + { + "epoch": 0.5588205075516285, + "grad_norm": 0.0569114163517952, + "learning_rate": 0.01, + "loss": 2.1933, + "step": 5439 + }, + { + "epoch": 0.5591287372855235, + "grad_norm": 0.14485467970371246, + "learning_rate": 0.01, + "loss": 2.1779, + "step": 5442 + }, + { + "epoch": 0.5594369670194185, + "grad_norm": 0.08184878528118134, + "learning_rate": 0.01, + "loss": 2.1779, + "step": 5445 + }, + { + "epoch": 0.5597451967533135, + "grad_norm": 0.06575775146484375, + "learning_rate": 0.01, + "loss": 2.136, + "step": 5448 + }, + { + "epoch": 0.5600534264872085, + "grad_norm": 0.08628299832344055, + "learning_rate": 0.01, + "loss": 2.1696, + "step": 5451 + }, + { + "epoch": 0.5603616562211035, + "grad_norm": 0.06078352406620979, + "learning_rate": 0.01, + "loss": 2.1865, + "step": 5454 + }, + { + "epoch": 0.5606698859549984, + "grad_norm": 0.05207353085279465, + "learning_rate": 0.01, + "loss": 2.167, + "step": 5457 + }, + { + "epoch": 0.5609781156888934, + "grad_norm": 0.059535857290029526, + "learning_rate": 0.01, + "loss": 2.1977, + "step": 5460 + }, + { + "epoch": 0.5612863454227884, + "grad_norm": 0.05342729389667511, + "learning_rate": 0.01, + "loss": 2.1823, + "step": 5463 + }, + { + "epoch": 0.5615945751566834, + "grad_norm": 0.04207632318139076, + "learning_rate": 0.01, + "loss": 2.1849, + "step": 5466 + }, + { + "epoch": 0.5619028048905784, + "grad_norm": 0.1334255486726761, + "learning_rate": 0.01, + "loss": 2.1886, + "step": 5469 + }, + { + "epoch": 0.5622110346244734, + "grad_norm": 0.06532323360443115, + "learning_rate": 0.01, + "loss": 2.1979, + "step": 5472 + }, + { + "epoch": 0.5625192643583684, + "grad_norm": 0.0793483555316925, + "learning_rate": 0.01, + "loss": 2.188, + "step": 5475 + }, + { + "epoch": 0.5628274940922634, + "grad_norm": 0.04637480154633522, + "learning_rate": 0.01, + "loss": 2.1562, + "step": 5478 + }, + { + "epoch": 0.5631357238261584, + "grad_norm": 0.0482000894844532, + "learning_rate": 0.01, + "loss": 2.1587, + "step": 5481 + }, + { + "epoch": 0.5634439535600534, + "grad_norm": 0.06253401190042496, + "learning_rate": 0.01, + "loss": 2.1978, + "step": 5484 + }, + { + "epoch": 0.5637521832939484, + "grad_norm": 0.15622715651988983, + "learning_rate": 0.01, + "loss": 2.171, + "step": 5487 + }, + { + "epoch": 0.5640604130278434, + "grad_norm": 0.10941077768802643, + "learning_rate": 0.01, + "loss": 2.1952, + "step": 5490 + }, + { + "epoch": 0.5643686427617384, + "grad_norm": 0.08030713349580765, + "learning_rate": 0.01, + "loss": 2.1948, + "step": 5493 + }, + { + "epoch": 0.5646768724956334, + "grad_norm": 0.13679014146327972, + "learning_rate": 0.01, + "loss": 2.1767, + "step": 5496 + }, + { + "epoch": 0.5649851022295284, + "grad_norm": 0.04662426933646202, + "learning_rate": 0.01, + "loss": 2.1926, + "step": 5499 + }, + { + "epoch": 0.5652933319634234, + "grad_norm": 0.05347858741879463, + "learning_rate": 0.01, + "loss": 2.1825, + "step": 5502 + }, + { + "epoch": 0.5656015616973185, + "grad_norm": 0.06205238029360771, + "learning_rate": 0.01, + "loss": 2.1537, + "step": 5505 + }, + { + "epoch": 0.5659097914312134, + "grad_norm": 0.05525955557823181, + "learning_rate": 0.01, + "loss": 2.1802, + "step": 5508 + }, + { + "epoch": 0.5662180211651084, + "grad_norm": 0.055693045258522034, + "learning_rate": 0.01, + "loss": 2.1727, + "step": 5511 + }, + { + "epoch": 0.5665262508990034, + "grad_norm": 0.051134396344423294, + "learning_rate": 0.01, + "loss": 2.1695, + "step": 5514 + }, + { + "epoch": 0.5668344806328984, + "grad_norm": 0.05469521880149841, + "learning_rate": 0.01, + "loss": 2.1664, + "step": 5517 + }, + { + "epoch": 0.5671427103667934, + "grad_norm": 0.039416272193193436, + "learning_rate": 0.01, + "loss": 2.1708, + "step": 5520 + }, + { + "epoch": 0.5674509401006884, + "grad_norm": 0.10661659389734268, + "learning_rate": 0.01, + "loss": 2.1753, + "step": 5523 + }, + { + "epoch": 0.5677591698345834, + "grad_norm": 0.07567829638719559, + "learning_rate": 0.01, + "loss": 2.1733, + "step": 5526 + }, + { + "epoch": 0.5680673995684784, + "grad_norm": 0.06030309572815895, + "learning_rate": 0.01, + "loss": 2.1795, + "step": 5529 + }, + { + "epoch": 0.5683756293023734, + "grad_norm": 0.07429811358451843, + "learning_rate": 0.01, + "loss": 2.1936, + "step": 5532 + }, + { + "epoch": 0.5686838590362684, + "grad_norm": 0.08618849515914917, + "learning_rate": 0.01, + "loss": 2.2009, + "step": 5535 + }, + { + "epoch": 0.5689920887701634, + "grad_norm": 0.04969833791255951, + "learning_rate": 0.01, + "loss": 2.1711, + "step": 5538 + }, + { + "epoch": 0.5693003185040584, + "grad_norm": 0.11154712736606598, + "learning_rate": 0.01, + "loss": 2.1802, + "step": 5541 + }, + { + "epoch": 0.5696085482379534, + "grad_norm": 0.07754155993461609, + "learning_rate": 0.01, + "loss": 2.164, + "step": 5544 + }, + { + "epoch": 0.5699167779718484, + "grad_norm": 0.04600273445248604, + "learning_rate": 0.01, + "loss": 2.1918, + "step": 5547 + }, + { + "epoch": 0.5702250077057434, + "grad_norm": 0.06788063049316406, + "learning_rate": 0.01, + "loss": 2.1477, + "step": 5550 + }, + { + "epoch": 0.5705332374396384, + "grad_norm": 0.11349419504404068, + "learning_rate": 0.01, + "loss": 2.1603, + "step": 5553 + }, + { + "epoch": 0.5708414671735333, + "grad_norm": 0.11178430914878845, + "learning_rate": 0.01, + "loss": 2.1439, + "step": 5556 + }, + { + "epoch": 0.5711496969074283, + "grad_norm": 0.050257500261068344, + "learning_rate": 0.01, + "loss": 2.1851, + "step": 5559 + }, + { + "epoch": 0.5714579266413233, + "grad_norm": 0.08327756822109222, + "learning_rate": 0.01, + "loss": 2.158, + "step": 5562 + }, + { + "epoch": 0.5717661563752183, + "grad_norm": 0.06866388767957687, + "learning_rate": 0.01, + "loss": 2.1584, + "step": 5565 + }, + { + "epoch": 0.5720743861091133, + "grad_norm": 0.1139674037694931, + "learning_rate": 0.01, + "loss": 2.1897, + "step": 5568 + }, + { + "epoch": 0.5723826158430083, + "grad_norm": 0.07029612362384796, + "learning_rate": 0.01, + "loss": 2.1723, + "step": 5571 + }, + { + "epoch": 0.5726908455769033, + "grad_norm": 0.10171212255954742, + "learning_rate": 0.01, + "loss": 2.1788, + "step": 5574 + }, + { + "epoch": 0.5729990753107983, + "grad_norm": 0.11364202946424484, + "learning_rate": 0.01, + "loss": 2.1659, + "step": 5577 + }, + { + "epoch": 0.5733073050446933, + "grad_norm": 0.08066857606172562, + "learning_rate": 0.01, + "loss": 2.1902, + "step": 5580 + }, + { + "epoch": 0.5736155347785883, + "grad_norm": 0.09207342565059662, + "learning_rate": 0.01, + "loss": 2.1519, + "step": 5583 + }, + { + "epoch": 0.5739237645124833, + "grad_norm": 0.06945987790822983, + "learning_rate": 0.01, + "loss": 2.1677, + "step": 5586 + }, + { + "epoch": 0.5742319942463783, + "grad_norm": 0.05137445777654648, + "learning_rate": 0.01, + "loss": 2.1686, + "step": 5589 + }, + { + "epoch": 0.5745402239802733, + "grad_norm": 0.10192268341779709, + "learning_rate": 0.01, + "loss": 2.1758, + "step": 5592 + }, + { + "epoch": 0.5748484537141683, + "grad_norm": 0.056787896901369095, + "learning_rate": 0.01, + "loss": 2.1642, + "step": 5595 + }, + { + "epoch": 0.5751566834480633, + "grad_norm": 0.07727455347776413, + "learning_rate": 0.01, + "loss": 2.1662, + "step": 5598 + }, + { + "epoch": 0.5754649131819582, + "grad_norm": 0.1311456710100174, + "learning_rate": 0.01, + "loss": 2.1713, + "step": 5601 + }, + { + "epoch": 0.5757731429158532, + "grad_norm": 0.1014258936047554, + "learning_rate": 0.01, + "loss": 2.1751, + "step": 5604 + }, + { + "epoch": 0.5760813726497482, + "grad_norm": 0.06325560063123703, + "learning_rate": 0.01, + "loss": 2.1757, + "step": 5607 + }, + { + "epoch": 0.5763896023836432, + "grad_norm": 0.07262448221445084, + "learning_rate": 0.01, + "loss": 2.1575, + "step": 5610 + }, + { + "epoch": 0.5766978321175382, + "grad_norm": 0.07160039991140366, + "learning_rate": 0.01, + "loss": 2.1706, + "step": 5613 + }, + { + "epoch": 0.5770060618514332, + "grad_norm": 0.050024017691612244, + "learning_rate": 0.01, + "loss": 2.1811, + "step": 5616 + }, + { + "epoch": 0.5773142915853282, + "grad_norm": 0.09685138612985611, + "learning_rate": 0.01, + "loss": 2.1549, + "step": 5619 + }, + { + "epoch": 0.5776225213192233, + "grad_norm": 0.058329988270998, + "learning_rate": 0.01, + "loss": 2.1813, + "step": 5622 + }, + { + "epoch": 0.5779307510531183, + "grad_norm": 0.06637705117464066, + "learning_rate": 0.01, + "loss": 2.1717, + "step": 5625 + }, + { + "epoch": 0.5782389807870133, + "grad_norm": 0.0906175896525383, + "learning_rate": 0.01, + "loss": 2.1677, + "step": 5628 + }, + { + "epoch": 0.5785472105209083, + "grad_norm": 0.06751519441604614, + "learning_rate": 0.01, + "loss": 2.1584, + "step": 5631 + }, + { + "epoch": 0.5788554402548033, + "grad_norm": 0.04437318444252014, + "learning_rate": 0.01, + "loss": 2.2013, + "step": 5634 + }, + { + "epoch": 0.5791636699886983, + "grad_norm": 0.04365368187427521, + "learning_rate": 0.01, + "loss": 2.1746, + "step": 5637 + }, + { + "epoch": 0.5794718997225933, + "grad_norm": 0.04844829812645912, + "learning_rate": 0.01, + "loss": 2.1818, + "step": 5640 + }, + { + "epoch": 0.5797801294564883, + "grad_norm": 0.04154437035322189, + "learning_rate": 0.01, + "loss": 2.1536, + "step": 5643 + }, + { + "epoch": 0.5800883591903833, + "grad_norm": 0.07691098004579544, + "learning_rate": 0.01, + "loss": 2.1883, + "step": 5646 + }, + { + "epoch": 0.5803965889242783, + "grad_norm": 0.07065980136394501, + "learning_rate": 0.01, + "loss": 2.154, + "step": 5649 + }, + { + "epoch": 0.5807048186581732, + "grad_norm": 0.1051129475235939, + "learning_rate": 0.01, + "loss": 2.1447, + "step": 5652 + }, + { + "epoch": 0.5810130483920682, + "grad_norm": 0.10921964794397354, + "learning_rate": 0.01, + "loss": 2.1777, + "step": 5655 + }, + { + "epoch": 0.5813212781259632, + "grad_norm": 0.1120898649096489, + "learning_rate": 0.01, + "loss": 2.1617, + "step": 5658 + }, + { + "epoch": 0.5816295078598582, + "grad_norm": 0.09593590348958969, + "learning_rate": 0.01, + "loss": 2.1457, + "step": 5661 + }, + { + "epoch": 0.5819377375937532, + "grad_norm": 0.054108936339616776, + "learning_rate": 0.01, + "loss": 2.1793, + "step": 5664 + }, + { + "epoch": 0.5822459673276482, + "grad_norm": 0.07890141755342484, + "learning_rate": 0.01, + "loss": 2.1676, + "step": 5667 + }, + { + "epoch": 0.5825541970615432, + "grad_norm": 0.07864063233137131, + "learning_rate": 0.01, + "loss": 2.1766, + "step": 5670 + }, + { + "epoch": 0.5828624267954382, + "grad_norm": 0.08160068094730377, + "learning_rate": 0.01, + "loss": 2.166, + "step": 5673 + }, + { + "epoch": 0.5831706565293332, + "grad_norm": 0.08126121759414673, + "learning_rate": 0.01, + "loss": 2.1691, + "step": 5676 + }, + { + "epoch": 0.5834788862632282, + "grad_norm": 0.05922897160053253, + "learning_rate": 0.01, + "loss": 2.1854, + "step": 5679 + }, + { + "epoch": 0.5837871159971232, + "grad_norm": 0.1024496778845787, + "learning_rate": 0.01, + "loss": 2.1818, + "step": 5682 + }, + { + "epoch": 0.5840953457310182, + "grad_norm": 0.08880037069320679, + "learning_rate": 0.01, + "loss": 2.2054, + "step": 5685 + }, + { + "epoch": 0.5844035754649132, + "grad_norm": 0.04404953494668007, + "learning_rate": 0.01, + "loss": 2.1524, + "step": 5688 + }, + { + "epoch": 0.5847118051988082, + "grad_norm": 0.05817687511444092, + "learning_rate": 0.01, + "loss": 2.1813, + "step": 5691 + }, + { + "epoch": 0.5850200349327032, + "grad_norm": 0.047581762075424194, + "learning_rate": 0.01, + "loss": 2.1545, + "step": 5694 + }, + { + "epoch": 0.5853282646665982, + "grad_norm": 0.11034911125898361, + "learning_rate": 0.01, + "loss": 2.1803, + "step": 5697 + }, + { + "epoch": 0.5856364944004931, + "grad_norm": 0.05118945613503456, + "learning_rate": 0.01, + "loss": 2.1314, + "step": 5700 + }, + { + "epoch": 0.5859447241343881, + "grad_norm": 0.048316795378923416, + "learning_rate": 0.01, + "loss": 2.1711, + "step": 5703 + }, + { + "epoch": 0.5862529538682831, + "grad_norm": 0.12578584253787994, + "learning_rate": 0.01, + "loss": 2.1636, + "step": 5706 + }, + { + "epoch": 0.5865611836021781, + "grad_norm": 0.06594375520944595, + "learning_rate": 0.01, + "loss": 2.1977, + "step": 5709 + }, + { + "epoch": 0.5868694133360731, + "grad_norm": 0.060622964054346085, + "learning_rate": 0.01, + "loss": 2.1408, + "step": 5712 + }, + { + "epoch": 0.5871776430699681, + "grad_norm": 0.10055366903543472, + "learning_rate": 0.01, + "loss": 2.1999, + "step": 5715 + }, + { + "epoch": 0.5874858728038631, + "grad_norm": 0.10235504060983658, + "learning_rate": 0.01, + "loss": 2.1337, + "step": 5718 + }, + { + "epoch": 0.5877941025377581, + "grad_norm": 0.07707791030406952, + "learning_rate": 0.01, + "loss": 2.1387, + "step": 5721 + }, + { + "epoch": 0.5881023322716531, + "grad_norm": 0.05508594587445259, + "learning_rate": 0.01, + "loss": 2.1494, + "step": 5724 + }, + { + "epoch": 0.5884105620055481, + "grad_norm": 0.06580860912799835, + "learning_rate": 0.01, + "loss": 2.1598, + "step": 5727 + }, + { + "epoch": 0.5887187917394431, + "grad_norm": 0.07102775573730469, + "learning_rate": 0.01, + "loss": 2.1618, + "step": 5730 + }, + { + "epoch": 0.5890270214733381, + "grad_norm": 0.06750554591417313, + "learning_rate": 0.01, + "loss": 2.1782, + "step": 5733 + }, + { + "epoch": 0.5893352512072332, + "grad_norm": 0.07100195437669754, + "learning_rate": 0.01, + "loss": 2.1456, + "step": 5736 + }, + { + "epoch": 0.5896434809411282, + "grad_norm": 0.10585575550794601, + "learning_rate": 0.01, + "loss": 2.1751, + "step": 5739 + }, + { + "epoch": 0.5899517106750232, + "grad_norm": 0.055082373321056366, + "learning_rate": 0.01, + "loss": 2.1808, + "step": 5742 + }, + { + "epoch": 0.5902599404089182, + "grad_norm": 0.06285014003515244, + "learning_rate": 0.01, + "loss": 2.1588, + "step": 5745 + }, + { + "epoch": 0.5905681701428132, + "grad_norm": 0.13328112661838531, + "learning_rate": 0.01, + "loss": 2.177, + "step": 5748 + }, + { + "epoch": 0.5908763998767081, + "grad_norm": 0.08568006008863449, + "learning_rate": 0.01, + "loss": 2.1559, + "step": 5751 + }, + { + "epoch": 0.5911846296106031, + "grad_norm": 0.07850711792707443, + "learning_rate": 0.01, + "loss": 2.2047, + "step": 5754 + }, + { + "epoch": 0.5914928593444981, + "grad_norm": 0.07706760615110397, + "learning_rate": 0.01, + "loss": 2.1602, + "step": 5757 + }, + { + "epoch": 0.5918010890783931, + "grad_norm": 0.07512292265892029, + "learning_rate": 0.01, + "loss": 2.1871, + "step": 5760 + }, + { + "epoch": 0.5921093188122881, + "grad_norm": 0.059620197862386703, + "learning_rate": 0.01, + "loss": 2.1484, + "step": 5763 + }, + { + "epoch": 0.5924175485461831, + "grad_norm": 0.04021789878606796, + "learning_rate": 0.01, + "loss": 2.1651, + "step": 5766 + }, + { + "epoch": 0.5927257782800781, + "grad_norm": 0.050683967769145966, + "learning_rate": 0.01, + "loss": 2.1693, + "step": 5769 + }, + { + "epoch": 0.5930340080139731, + "grad_norm": 0.07091210782527924, + "learning_rate": 0.01, + "loss": 2.1851, + "step": 5772 + }, + { + "epoch": 0.5933422377478681, + "grad_norm": 0.09877889603376389, + "learning_rate": 0.01, + "loss": 2.1642, + "step": 5775 + }, + { + "epoch": 0.5936504674817631, + "grad_norm": 0.08692251145839691, + "learning_rate": 0.01, + "loss": 2.1755, + "step": 5778 + }, + { + "epoch": 0.5939586972156581, + "grad_norm": 0.06255677342414856, + "learning_rate": 0.01, + "loss": 2.1634, + "step": 5781 + }, + { + "epoch": 0.5942669269495531, + "grad_norm": 0.05615478754043579, + "learning_rate": 0.01, + "loss": 2.1909, + "step": 5784 + }, + { + "epoch": 0.5945751566834481, + "grad_norm": 0.04576956480741501, + "learning_rate": 0.01, + "loss": 2.1519, + "step": 5787 + }, + { + "epoch": 0.5948833864173431, + "grad_norm": 0.044911667704582214, + "learning_rate": 0.01, + "loss": 2.1697, + "step": 5790 + }, + { + "epoch": 0.5951916161512381, + "grad_norm": 0.07787128537893295, + "learning_rate": 0.01, + "loss": 2.1611, + "step": 5793 + }, + { + "epoch": 0.595499845885133, + "grad_norm": 0.06199866533279419, + "learning_rate": 0.01, + "loss": 2.1576, + "step": 5796 + }, + { + "epoch": 0.595808075619028, + "grad_norm": 0.07048948854207993, + "learning_rate": 0.01, + "loss": 2.1721, + "step": 5799 + }, + { + "epoch": 0.596116305352923, + "grad_norm": 0.1173306256532669, + "learning_rate": 0.01, + "loss": 2.1573, + "step": 5802 + }, + { + "epoch": 0.596424535086818, + "grad_norm": 0.06866045296192169, + "learning_rate": 0.01, + "loss": 2.1606, + "step": 5805 + }, + { + "epoch": 0.596732764820713, + "grad_norm": 0.06821485608816147, + "learning_rate": 0.01, + "loss": 2.1842, + "step": 5808 + }, + { + "epoch": 0.597040994554608, + "grad_norm": 0.09566816687583923, + "learning_rate": 0.01, + "loss": 2.1569, + "step": 5811 + }, + { + "epoch": 0.597349224288503, + "grad_norm": 0.1130233108997345, + "learning_rate": 0.01, + "loss": 2.1649, + "step": 5814 + }, + { + "epoch": 0.597657454022398, + "grad_norm": 0.07310149073600769, + "learning_rate": 0.01, + "loss": 2.1798, + "step": 5817 + }, + { + "epoch": 0.597965683756293, + "grad_norm": 0.04523763060569763, + "learning_rate": 0.01, + "loss": 2.1515, + "step": 5820 + }, + { + "epoch": 0.598273913490188, + "grad_norm": 0.05843660235404968, + "learning_rate": 0.01, + "loss": 2.1403, + "step": 5823 + }, + { + "epoch": 0.598582143224083, + "grad_norm": 0.03981595113873482, + "learning_rate": 0.01, + "loss": 2.1598, + "step": 5826 + }, + { + "epoch": 0.598890372957978, + "grad_norm": 0.057108644396066666, + "learning_rate": 0.01, + "loss": 2.1619, + "step": 5829 + }, + { + "epoch": 0.599198602691873, + "grad_norm": 0.12298591434955597, + "learning_rate": 0.01, + "loss": 2.125, + "step": 5832 + }, + { + "epoch": 0.599506832425768, + "grad_norm": 0.06120186299085617, + "learning_rate": 0.01, + "loss": 2.181, + "step": 5835 + }, + { + "epoch": 0.599815062159663, + "grad_norm": 0.05780164897441864, + "learning_rate": 0.01, + "loss": 2.1555, + "step": 5838 + }, + { + "epoch": 0.600123291893558, + "grad_norm": 0.0962534248828888, + "learning_rate": 0.01, + "loss": 2.1626, + "step": 5841 + }, + { + "epoch": 0.600431521627453, + "grad_norm": 0.07417720556259155, + "learning_rate": 0.01, + "loss": 2.1996, + "step": 5844 + }, + { + "epoch": 0.6007397513613479, + "grad_norm": 0.08221522718667984, + "learning_rate": 0.01, + "loss": 2.1562, + "step": 5847 + }, + { + "epoch": 0.6010479810952429, + "grad_norm": 0.11511900275945663, + "learning_rate": 0.01, + "loss": 2.196, + "step": 5850 + }, + { + "epoch": 0.601356210829138, + "grad_norm": 0.1331305354833603, + "learning_rate": 0.01, + "loss": 2.1649, + "step": 5853 + }, + { + "epoch": 0.601664440563033, + "grad_norm": 0.07239941507577896, + "learning_rate": 0.01, + "loss": 2.1695, + "step": 5856 + }, + { + "epoch": 0.601972670296928, + "grad_norm": 0.05865192040801048, + "learning_rate": 0.01, + "loss": 2.1808, + "step": 5859 + }, + { + "epoch": 0.602280900030823, + "grad_norm": 0.047268107533454895, + "learning_rate": 0.01, + "loss": 2.176, + "step": 5862 + }, + { + "epoch": 0.602589129764718, + "grad_norm": 0.046770863234996796, + "learning_rate": 0.01, + "loss": 2.1689, + "step": 5865 + }, + { + "epoch": 0.602897359498613, + "grad_norm": 0.04817832633852959, + "learning_rate": 0.01, + "loss": 2.1566, + "step": 5868 + }, + { + "epoch": 0.603205589232508, + "grad_norm": 0.05692889541387558, + "learning_rate": 0.01, + "loss": 2.1564, + "step": 5871 + }, + { + "epoch": 0.603513818966403, + "grad_norm": 0.056694116443395615, + "learning_rate": 0.01, + "loss": 2.1591, + "step": 5874 + }, + { + "epoch": 0.603822048700298, + "grad_norm": 0.08296339213848114, + "learning_rate": 0.01, + "loss": 2.1695, + "step": 5877 + }, + { + "epoch": 0.604130278434193, + "grad_norm": 0.0934629738330841, + "learning_rate": 0.01, + "loss": 2.1472, + "step": 5880 + }, + { + "epoch": 0.604438508168088, + "grad_norm": 0.10192359238862991, + "learning_rate": 0.01, + "loss": 2.1441, + "step": 5883 + }, + { + "epoch": 0.604746737901983, + "grad_norm": 0.04818946123123169, + "learning_rate": 0.01, + "loss": 2.1747, + "step": 5886 + }, + { + "epoch": 0.605054967635878, + "grad_norm": 0.10131523758172989, + "learning_rate": 0.01, + "loss": 2.1546, + "step": 5889 + }, + { + "epoch": 0.605363197369773, + "grad_norm": 0.07115977257490158, + "learning_rate": 0.01, + "loss": 2.1597, + "step": 5892 + }, + { + "epoch": 0.605671427103668, + "grad_norm": 0.03929082304239273, + "learning_rate": 0.01, + "loss": 2.171, + "step": 5895 + }, + { + "epoch": 0.6059796568375629, + "grad_norm": 0.04109720513224602, + "learning_rate": 0.01, + "loss": 2.134, + "step": 5898 + }, + { + "epoch": 0.6062878865714579, + "grad_norm": 0.05026080831885338, + "learning_rate": 0.01, + "loss": 2.1491, + "step": 5901 + }, + { + "epoch": 0.6065961163053529, + "grad_norm": 0.08281126618385315, + "learning_rate": 0.01, + "loss": 2.1732, + "step": 5904 + }, + { + "epoch": 0.6069043460392479, + "grad_norm": 0.04994012042880058, + "learning_rate": 0.01, + "loss": 2.1664, + "step": 5907 + }, + { + "epoch": 0.6072125757731429, + "grad_norm": 0.06299131363630295, + "learning_rate": 0.01, + "loss": 2.1669, + "step": 5910 + }, + { + "epoch": 0.6075208055070379, + "grad_norm": 0.059428080916404724, + "learning_rate": 0.01, + "loss": 2.1731, + "step": 5913 + }, + { + "epoch": 0.6078290352409329, + "grad_norm": 0.07036252319812775, + "learning_rate": 0.01, + "loss": 2.1787, + "step": 5916 + }, + { + "epoch": 0.6081372649748279, + "grad_norm": 0.04721888527274132, + "learning_rate": 0.01, + "loss": 2.1531, + "step": 5919 + }, + { + "epoch": 0.6084454947087229, + "grad_norm": 0.06953759491443634, + "learning_rate": 0.01, + "loss": 2.1573, + "step": 5922 + }, + { + "epoch": 0.6087537244426179, + "grad_norm": 0.11679168790578842, + "learning_rate": 0.01, + "loss": 2.155, + "step": 5925 + }, + { + "epoch": 0.6090619541765129, + "grad_norm": 0.09196575731039047, + "learning_rate": 0.01, + "loss": 2.1574, + "step": 5928 + }, + { + "epoch": 0.6093701839104079, + "grad_norm": 0.05219469591975212, + "learning_rate": 0.01, + "loss": 2.1605, + "step": 5931 + }, + { + "epoch": 0.6096784136443029, + "grad_norm": 0.09352759271860123, + "learning_rate": 0.01, + "loss": 2.1456, + "step": 5934 + }, + { + "epoch": 0.6099866433781979, + "grad_norm": 0.07393237948417664, + "learning_rate": 0.01, + "loss": 2.1611, + "step": 5937 + }, + { + "epoch": 0.6102948731120929, + "grad_norm": 0.06727741658687592, + "learning_rate": 0.01, + "loss": 2.1599, + "step": 5940 + }, + { + "epoch": 0.6106031028459878, + "grad_norm": 0.09024669975042343, + "learning_rate": 0.01, + "loss": 2.1621, + "step": 5943 + }, + { + "epoch": 0.6109113325798828, + "grad_norm": 0.04514656960964203, + "learning_rate": 0.01, + "loss": 2.1809, + "step": 5946 + }, + { + "epoch": 0.6112195623137778, + "grad_norm": 0.04011565446853638, + "learning_rate": 0.01, + "loss": 2.1715, + "step": 5949 + }, + { + "epoch": 0.6115277920476728, + "grad_norm": 0.04640655592083931, + "learning_rate": 0.01, + "loss": 2.15, + "step": 5952 + }, + { + "epoch": 0.6118360217815678, + "grad_norm": 0.0471080057322979, + "learning_rate": 0.01, + "loss": 2.1805, + "step": 5955 + }, + { + "epoch": 0.6121442515154628, + "grad_norm": 0.17398513853549957, + "learning_rate": 0.01, + "loss": 2.1497, + "step": 5958 + }, + { + "epoch": 0.6124524812493578, + "grad_norm": 0.06299551576375961, + "learning_rate": 0.01, + "loss": 2.1387, + "step": 5961 + }, + { + "epoch": 0.6127607109832528, + "grad_norm": 0.07517322897911072, + "learning_rate": 0.01, + "loss": 2.1348, + "step": 5964 + }, + { + "epoch": 0.6130689407171478, + "grad_norm": 0.050515878945589066, + "learning_rate": 0.01, + "loss": 2.1725, + "step": 5967 + }, + { + "epoch": 0.6133771704510429, + "grad_norm": 0.04682675376534462, + "learning_rate": 0.01, + "loss": 2.1759, + "step": 5970 + }, + { + "epoch": 0.6136854001849379, + "grad_norm": 0.05297816917300224, + "learning_rate": 0.01, + "loss": 2.1491, + "step": 5973 + }, + { + "epoch": 0.6139936299188329, + "grad_norm": 0.07467235624790192, + "learning_rate": 0.01, + "loss": 2.1556, + "step": 5976 + }, + { + "epoch": 0.6143018596527279, + "grad_norm": 0.06621374934911728, + "learning_rate": 0.01, + "loss": 2.1498, + "step": 5979 + }, + { + "epoch": 0.6146100893866229, + "grad_norm": 0.0538405105471611, + "learning_rate": 0.01, + "loss": 2.1694, + "step": 5982 + }, + { + "epoch": 0.6149183191205179, + "grad_norm": 0.09891212731599808, + "learning_rate": 0.01, + "loss": 2.1598, + "step": 5985 + }, + { + "epoch": 0.6152265488544129, + "grad_norm": 0.042064208537340164, + "learning_rate": 0.01, + "loss": 2.1375, + "step": 5988 + }, + { + "epoch": 0.6155347785883079, + "grad_norm": 0.06750064343214035, + "learning_rate": 0.01, + "loss": 2.1371, + "step": 5991 + }, + { + "epoch": 0.6158430083222028, + "grad_norm": 0.0626809298992157, + "learning_rate": 0.01, + "loss": 2.1455, + "step": 5994 + }, + { + "epoch": 0.6161512380560978, + "grad_norm": 0.04291335120797157, + "learning_rate": 0.01, + "loss": 2.1397, + "step": 5997 + }, + { + "epoch": 0.6164594677899928, + "grad_norm": 0.05945251137018204, + "learning_rate": 0.01, + "loss": 2.1346, + "step": 6000 + }, + { + "epoch": 0.6167676975238878, + "grad_norm": 0.15699933469295502, + "learning_rate": 0.01, + "loss": 2.1384, + "step": 6003 + }, + { + "epoch": 0.6170759272577828, + "grad_norm": 0.06863987445831299, + "learning_rate": 0.01, + "loss": 2.1401, + "step": 6006 + }, + { + "epoch": 0.6173841569916778, + "grad_norm": 0.04850529506802559, + "learning_rate": 0.01, + "loss": 2.1637, + "step": 6009 + }, + { + "epoch": 0.6176923867255728, + "grad_norm": 0.05660491809248924, + "learning_rate": 0.01, + "loss": 2.1721, + "step": 6012 + }, + { + "epoch": 0.6180006164594678, + "grad_norm": 0.050568364560604095, + "learning_rate": 0.01, + "loss": 2.1676, + "step": 6015 + }, + { + "epoch": 0.6183088461933628, + "grad_norm": 0.060765717178583145, + "learning_rate": 0.01, + "loss": 2.127, + "step": 6018 + }, + { + "epoch": 0.6186170759272578, + "grad_norm": 0.0731448233127594, + "learning_rate": 0.01, + "loss": 2.1531, + "step": 6021 + }, + { + "epoch": 0.6189253056611528, + "grad_norm": 0.055431608110666275, + "learning_rate": 0.01, + "loss": 2.1662, + "step": 6024 + }, + { + "epoch": 0.6192335353950478, + "grad_norm": 0.05376220867037773, + "learning_rate": 0.01, + "loss": 2.1465, + "step": 6027 + }, + { + "epoch": 0.6195417651289428, + "grad_norm": 0.09729186445474625, + "learning_rate": 0.01, + "loss": 2.161, + "step": 6030 + }, + { + "epoch": 0.6198499948628378, + "grad_norm": 0.08046093583106995, + "learning_rate": 0.01, + "loss": 2.1435, + "step": 6033 + }, + { + "epoch": 0.6201582245967328, + "grad_norm": 0.09514495730400085, + "learning_rate": 0.01, + "loss": 2.1511, + "step": 6036 + }, + { + "epoch": 0.6204664543306277, + "grad_norm": 0.056993287056684494, + "learning_rate": 0.01, + "loss": 2.1439, + "step": 6039 + }, + { + "epoch": 0.6207746840645227, + "grad_norm": 0.06429582834243774, + "learning_rate": 0.01, + "loss": 2.1393, + "step": 6042 + }, + { + "epoch": 0.6210829137984177, + "grad_norm": 0.1299380660057068, + "learning_rate": 0.01, + "loss": 2.1831, + "step": 6045 + }, + { + "epoch": 0.6213911435323127, + "grad_norm": 0.13815906643867493, + "learning_rate": 0.01, + "loss": 2.1645, + "step": 6048 + }, + { + "epoch": 0.6216993732662077, + "grad_norm": 0.056314874440431595, + "learning_rate": 0.01, + "loss": 2.1417, + "step": 6051 + }, + { + "epoch": 0.6220076030001027, + "grad_norm": 0.06146218627691269, + "learning_rate": 0.01, + "loss": 2.1418, + "step": 6054 + }, + { + "epoch": 0.6223158327339977, + "grad_norm": 0.062167149037122726, + "learning_rate": 0.01, + "loss": 2.1778, + "step": 6057 + }, + { + "epoch": 0.6226240624678927, + "grad_norm": 0.059581879526376724, + "learning_rate": 0.01, + "loss": 2.1725, + "step": 6060 + }, + { + "epoch": 0.6229322922017877, + "grad_norm": 0.044389910995960236, + "learning_rate": 0.01, + "loss": 2.1553, + "step": 6063 + }, + { + "epoch": 0.6232405219356827, + "grad_norm": 0.036525238305330276, + "learning_rate": 0.01, + "loss": 2.1545, + "step": 6066 + }, + { + "epoch": 0.6235487516695777, + "grad_norm": 0.0995573177933693, + "learning_rate": 0.01, + "loss": 2.1566, + "step": 6069 + }, + { + "epoch": 0.6238569814034727, + "grad_norm": 0.10412520170211792, + "learning_rate": 0.01, + "loss": 2.1525, + "step": 6072 + }, + { + "epoch": 0.6241652111373677, + "grad_norm": 0.10417335480451584, + "learning_rate": 0.01, + "loss": 2.1535, + "step": 6075 + }, + { + "epoch": 0.6244734408712627, + "grad_norm": 0.09024351090192795, + "learning_rate": 0.01, + "loss": 2.1551, + "step": 6078 + }, + { + "epoch": 0.6247816706051577, + "grad_norm": 0.04889573156833649, + "learning_rate": 0.01, + "loss": 2.1549, + "step": 6081 + }, + { + "epoch": 0.6250899003390528, + "grad_norm": 0.05154373124241829, + "learning_rate": 0.01, + "loss": 2.1461, + "step": 6084 + }, + { + "epoch": 0.6253981300729478, + "grad_norm": 0.04337237402796745, + "learning_rate": 0.01, + "loss": 2.1733, + "step": 6087 + }, + { + "epoch": 0.6257063598068427, + "grad_norm": 0.06173473224043846, + "learning_rate": 0.01, + "loss": 2.1657, + "step": 6090 + }, + { + "epoch": 0.6260145895407377, + "grad_norm": 0.06174352392554283, + "learning_rate": 0.01, + "loss": 2.1528, + "step": 6093 + }, + { + "epoch": 0.6263228192746327, + "grad_norm": 0.07301110029220581, + "learning_rate": 0.01, + "loss": 2.1489, + "step": 6096 + }, + { + "epoch": 0.6266310490085277, + "grad_norm": 0.04265190288424492, + "learning_rate": 0.01, + "loss": 2.1624, + "step": 6099 + }, + { + "epoch": 0.6269392787424227, + "grad_norm": 0.056723251938819885, + "learning_rate": 0.01, + "loss": 2.1624, + "step": 6102 + }, + { + "epoch": 0.6272475084763177, + "grad_norm": 0.06809309124946594, + "learning_rate": 0.01, + "loss": 2.1525, + "step": 6105 + }, + { + "epoch": 0.6275557382102127, + "grad_norm": 0.06820474565029144, + "learning_rate": 0.01, + "loss": 2.1472, + "step": 6108 + }, + { + "epoch": 0.6278639679441077, + "grad_norm": 0.05961904302239418, + "learning_rate": 0.01, + "loss": 2.1561, + "step": 6111 + }, + { + "epoch": 0.6281721976780027, + "grad_norm": 0.04617665335536003, + "learning_rate": 0.01, + "loss": 2.1475, + "step": 6114 + }, + { + "epoch": 0.6284804274118977, + "grad_norm": 0.040670618414878845, + "learning_rate": 0.01, + "loss": 2.153, + "step": 6117 + }, + { + "epoch": 0.6287886571457927, + "grad_norm": 0.09909021109342575, + "learning_rate": 0.01, + "loss": 2.141, + "step": 6120 + }, + { + "epoch": 0.6290968868796877, + "grad_norm": 0.04966261237859726, + "learning_rate": 0.01, + "loss": 2.1264, + "step": 6123 + }, + { + "epoch": 0.6294051166135827, + "grad_norm": 0.0570046491920948, + "learning_rate": 0.01, + "loss": 2.1572, + "step": 6126 + }, + { + "epoch": 0.6297133463474777, + "grad_norm": 0.10374405980110168, + "learning_rate": 0.01, + "loss": 2.149, + "step": 6129 + }, + { + "epoch": 0.6300215760813727, + "grad_norm": 0.061325542628765106, + "learning_rate": 0.01, + "loss": 2.1521, + "step": 6132 + }, + { + "epoch": 0.6303298058152677, + "grad_norm": 0.16151310503482819, + "learning_rate": 0.01, + "loss": 2.1825, + "step": 6135 + }, + { + "epoch": 0.6306380355491626, + "grad_norm": 0.0921199768781662, + "learning_rate": 0.01, + "loss": 2.1773, + "step": 6138 + }, + { + "epoch": 0.6309462652830576, + "grad_norm": 0.05603238567709923, + "learning_rate": 0.01, + "loss": 2.1452, + "step": 6141 + }, + { + "epoch": 0.6312544950169526, + "grad_norm": 0.12173126637935638, + "learning_rate": 0.01, + "loss": 2.1713, + "step": 6144 + }, + { + "epoch": 0.6315627247508476, + "grad_norm": 0.04609265923500061, + "learning_rate": 0.01, + "loss": 2.1518, + "step": 6147 + }, + { + "epoch": 0.6318709544847426, + "grad_norm": 0.06445127725601196, + "learning_rate": 0.01, + "loss": 2.162, + "step": 6150 + }, + { + "epoch": 0.6321791842186376, + "grad_norm": 0.05396106466650963, + "learning_rate": 0.01, + "loss": 2.1248, + "step": 6153 + }, + { + "epoch": 0.6324874139525326, + "grad_norm": 0.06955734640359879, + "learning_rate": 0.01, + "loss": 2.1497, + "step": 6156 + }, + { + "epoch": 0.6327956436864276, + "grad_norm": 0.04371445253491402, + "learning_rate": 0.01, + "loss": 2.1167, + "step": 6159 + }, + { + "epoch": 0.6331038734203226, + "grad_norm": 0.07146921008825302, + "learning_rate": 0.01, + "loss": 2.1633, + "step": 6162 + }, + { + "epoch": 0.6334121031542176, + "grad_norm": 0.08056561648845673, + "learning_rate": 0.01, + "loss": 2.1506, + "step": 6165 + }, + { + "epoch": 0.6337203328881126, + "grad_norm": 0.08875605463981628, + "learning_rate": 0.01, + "loss": 2.1834, + "step": 6168 + }, + { + "epoch": 0.6340285626220076, + "grad_norm": 0.05090434104204178, + "learning_rate": 0.01, + "loss": 2.1514, + "step": 6171 + }, + { + "epoch": 0.6343367923559026, + "grad_norm": 0.11710961163043976, + "learning_rate": 0.01, + "loss": 2.1589, + "step": 6174 + }, + { + "epoch": 0.6346450220897976, + "grad_norm": 0.04704523831605911, + "learning_rate": 0.01, + "loss": 2.1469, + "step": 6177 + }, + { + "epoch": 0.6349532518236926, + "grad_norm": 0.045143596827983856, + "learning_rate": 0.01, + "loss": 2.1311, + "step": 6180 + }, + { + "epoch": 0.6352614815575875, + "grad_norm": 0.04246919974684715, + "learning_rate": 0.01, + "loss": 2.1481, + "step": 6183 + }, + { + "epoch": 0.6355697112914825, + "grad_norm": 0.04303867742419243, + "learning_rate": 0.01, + "loss": 2.1557, + "step": 6186 + }, + { + "epoch": 0.6358779410253775, + "grad_norm": 0.17376503348350525, + "learning_rate": 0.01, + "loss": 2.1616, + "step": 6189 + }, + { + "epoch": 0.6361861707592725, + "grad_norm": 0.11983154714107513, + "learning_rate": 0.01, + "loss": 2.1569, + "step": 6192 + }, + { + "epoch": 0.6364944004931675, + "grad_norm": 0.0443497858941555, + "learning_rate": 0.01, + "loss": 2.1454, + "step": 6195 + }, + { + "epoch": 0.6368026302270625, + "grad_norm": 0.04241250827908516, + "learning_rate": 0.01, + "loss": 2.1409, + "step": 6198 + }, + { + "epoch": 0.6371108599609576, + "grad_norm": 0.07058902829885483, + "learning_rate": 0.01, + "loss": 2.1246, + "step": 6201 + }, + { + "epoch": 0.6374190896948526, + "grad_norm": 0.060852985829114914, + "learning_rate": 0.01, + "loss": 2.1512, + "step": 6204 + }, + { + "epoch": 0.6377273194287476, + "grad_norm": 0.058703117072582245, + "learning_rate": 0.01, + "loss": 2.1114, + "step": 6207 + }, + { + "epoch": 0.6380355491626426, + "grad_norm": 0.08501632511615753, + "learning_rate": 0.01, + "loss": 2.1818, + "step": 6210 + }, + { + "epoch": 0.6383437788965376, + "grad_norm": 0.07715412974357605, + "learning_rate": 0.01, + "loss": 2.1661, + "step": 6213 + }, + { + "epoch": 0.6386520086304326, + "grad_norm": 0.06822165101766586, + "learning_rate": 0.01, + "loss": 2.1652, + "step": 6216 + }, + { + "epoch": 0.6389602383643276, + "grad_norm": 0.048459213227033615, + "learning_rate": 0.01, + "loss": 2.1311, + "step": 6219 + }, + { + "epoch": 0.6392684680982226, + "grad_norm": 0.08208850026130676, + "learning_rate": 0.01, + "loss": 2.1316, + "step": 6222 + }, + { + "epoch": 0.6395766978321176, + "grad_norm": 0.06399821490049362, + "learning_rate": 0.01, + "loss": 2.1354, + "step": 6225 + }, + { + "epoch": 0.6398849275660126, + "grad_norm": 0.12036826461553574, + "learning_rate": 0.01, + "loss": 2.1509, + "step": 6228 + }, + { + "epoch": 0.6401931572999076, + "grad_norm": 0.08180755376815796, + "learning_rate": 0.01, + "loss": 2.1571, + "step": 6231 + }, + { + "epoch": 0.6405013870338025, + "grad_norm": 0.053771521896123886, + "learning_rate": 0.01, + "loss": 2.1485, + "step": 6234 + }, + { + "epoch": 0.6408096167676975, + "grad_norm": 0.042291607707738876, + "learning_rate": 0.01, + "loss": 2.1606, + "step": 6237 + }, + { + "epoch": 0.6411178465015925, + "grad_norm": 0.044655315577983856, + "learning_rate": 0.01, + "loss": 2.1592, + "step": 6240 + }, + { + "epoch": 0.6414260762354875, + "grad_norm": 0.07763859629631042, + "learning_rate": 0.01, + "loss": 2.1543, + "step": 6243 + }, + { + "epoch": 0.6417343059693825, + "grad_norm": 0.055368274450302124, + "learning_rate": 0.01, + "loss": 2.1643, + "step": 6246 + }, + { + "epoch": 0.6420425357032775, + "grad_norm": 0.047774944454431534, + "learning_rate": 0.01, + "loss": 2.1542, + "step": 6249 + }, + { + "epoch": 0.6423507654371725, + "grad_norm": 0.06478223204612732, + "learning_rate": 0.01, + "loss": 2.1501, + "step": 6252 + }, + { + "epoch": 0.6426589951710675, + "grad_norm": 0.03782160207629204, + "learning_rate": 0.01, + "loss": 2.1455, + "step": 6255 + }, + { + "epoch": 0.6429672249049625, + "grad_norm": 0.11297930777072906, + "learning_rate": 0.01, + "loss": 2.1667, + "step": 6258 + }, + { + "epoch": 0.6432754546388575, + "grad_norm": 0.09408997744321823, + "learning_rate": 0.01, + "loss": 2.146, + "step": 6261 + }, + { + "epoch": 0.6435836843727525, + "grad_norm": 0.06677352637052536, + "learning_rate": 0.01, + "loss": 2.1723, + "step": 6264 + }, + { + "epoch": 0.6438919141066475, + "grad_norm": 0.08687873184680939, + "learning_rate": 0.01, + "loss": 2.1517, + "step": 6267 + }, + { + "epoch": 0.6442001438405425, + "grad_norm": 0.06850516051054001, + "learning_rate": 0.01, + "loss": 2.148, + "step": 6270 + }, + { + "epoch": 0.6445083735744375, + "grad_norm": 0.07705084979534149, + "learning_rate": 0.01, + "loss": 2.1567, + "step": 6273 + }, + { + "epoch": 0.6448166033083325, + "grad_norm": 0.1622423529624939, + "learning_rate": 0.01, + "loss": 2.1676, + "step": 6276 + }, + { + "epoch": 0.6451248330422275, + "grad_norm": 0.11197759211063385, + "learning_rate": 0.01, + "loss": 2.1376, + "step": 6279 + }, + { + "epoch": 0.6454330627761224, + "grad_norm": 0.06562814861536026, + "learning_rate": 0.01, + "loss": 2.1652, + "step": 6282 + }, + { + "epoch": 0.6457412925100174, + "grad_norm": 0.0867902860045433, + "learning_rate": 0.01, + "loss": 2.1733, + "step": 6285 + }, + { + "epoch": 0.6460495222439124, + "grad_norm": 0.08153738081455231, + "learning_rate": 0.01, + "loss": 2.1442, + "step": 6288 + }, + { + "epoch": 0.6463577519778074, + "grad_norm": 0.09800709784030914, + "learning_rate": 0.01, + "loss": 2.1262, + "step": 6291 + }, + { + "epoch": 0.6466659817117024, + "grad_norm": 0.07728230953216553, + "learning_rate": 0.01, + "loss": 2.139, + "step": 6294 + }, + { + "epoch": 0.6469742114455974, + "grad_norm": 0.09658671170473099, + "learning_rate": 0.01, + "loss": 2.1421, + "step": 6297 + }, + { + "epoch": 0.6472824411794924, + "grad_norm": 0.0448787659406662, + "learning_rate": 0.01, + "loss": 2.1415, + "step": 6300 + }, + { + "epoch": 0.6475906709133874, + "grad_norm": 0.03848707675933838, + "learning_rate": 0.01, + "loss": 2.1209, + "step": 6303 + }, + { + "epoch": 0.6478989006472824, + "grad_norm": 0.07465004920959473, + "learning_rate": 0.01, + "loss": 2.1395, + "step": 6306 + }, + { + "epoch": 0.6482071303811774, + "grad_norm": 0.060424912720918655, + "learning_rate": 0.01, + "loss": 2.1806, + "step": 6309 + }, + { + "epoch": 0.6485153601150724, + "grad_norm": 0.05204974114894867, + "learning_rate": 0.01, + "loss": 2.1287, + "step": 6312 + }, + { + "epoch": 0.6488235898489675, + "grad_norm": 0.06045055389404297, + "learning_rate": 0.01, + "loss": 2.1727, + "step": 6315 + }, + { + "epoch": 0.6491318195828625, + "grad_norm": 0.04978582262992859, + "learning_rate": 0.01, + "loss": 2.1264, + "step": 6318 + }, + { + "epoch": 0.6494400493167575, + "grad_norm": 0.08131048828363419, + "learning_rate": 0.01, + "loss": 2.137, + "step": 6321 + }, + { + "epoch": 0.6497482790506525, + "grad_norm": 0.09749994426965714, + "learning_rate": 0.01, + "loss": 2.1557, + "step": 6324 + }, + { + "epoch": 0.6500565087845475, + "grad_norm": 0.06079535186290741, + "learning_rate": 0.01, + "loss": 2.1432, + "step": 6327 + }, + { + "epoch": 0.6503647385184425, + "grad_norm": 0.08241060376167297, + "learning_rate": 0.01, + "loss": 2.1551, + "step": 6330 + }, + { + "epoch": 0.6506729682523374, + "grad_norm": 0.12339378148317337, + "learning_rate": 0.01, + "loss": 2.1216, + "step": 6333 + }, + { + "epoch": 0.6509811979862324, + "grad_norm": 0.0660511702299118, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 6336 + }, + { + "epoch": 0.6512894277201274, + "grad_norm": 0.06279938668012619, + "learning_rate": 0.01, + "loss": 2.1778, + "step": 6339 + }, + { + "epoch": 0.6515976574540224, + "grad_norm": 0.068712018430233, + "learning_rate": 0.01, + "loss": 2.1348, + "step": 6342 + }, + { + "epoch": 0.6519058871879174, + "grad_norm": 0.05808734893798828, + "learning_rate": 0.01, + "loss": 2.135, + "step": 6345 + }, + { + "epoch": 0.6522141169218124, + "grad_norm": 0.044942643493413925, + "learning_rate": 0.01, + "loss": 2.1613, + "step": 6348 + }, + { + "epoch": 0.6525223466557074, + "grad_norm": 0.11666214466094971, + "learning_rate": 0.01, + "loss": 2.1399, + "step": 6351 + }, + { + "epoch": 0.6528305763896024, + "grad_norm": 0.06776747852563858, + "learning_rate": 0.01, + "loss": 2.1369, + "step": 6354 + }, + { + "epoch": 0.6531388061234974, + "grad_norm": 0.10171874612569809, + "learning_rate": 0.01, + "loss": 2.1273, + "step": 6357 + }, + { + "epoch": 0.6534470358573924, + "grad_norm": 0.04611232131719589, + "learning_rate": 0.01, + "loss": 2.1482, + "step": 6360 + }, + { + "epoch": 0.6537552655912874, + "grad_norm": 0.042139992117881775, + "learning_rate": 0.01, + "loss": 2.1235, + "step": 6363 + }, + { + "epoch": 0.6540634953251824, + "grad_norm": 0.057816632091999054, + "learning_rate": 0.01, + "loss": 2.1449, + "step": 6366 + }, + { + "epoch": 0.6543717250590774, + "grad_norm": 0.11400949209928513, + "learning_rate": 0.01, + "loss": 2.1566, + "step": 6369 + }, + { + "epoch": 0.6546799547929724, + "grad_norm": 0.07320736348628998, + "learning_rate": 0.01, + "loss": 2.1682, + "step": 6372 + }, + { + "epoch": 0.6549881845268674, + "grad_norm": 0.07262291014194489, + "learning_rate": 0.01, + "loss": 2.1514, + "step": 6375 + }, + { + "epoch": 0.6552964142607623, + "grad_norm": 0.05559679865837097, + "learning_rate": 0.01, + "loss": 2.1347, + "step": 6378 + }, + { + "epoch": 0.6556046439946573, + "grad_norm": 0.049424149096012115, + "learning_rate": 0.01, + "loss": 2.1423, + "step": 6381 + }, + { + "epoch": 0.6559128737285523, + "grad_norm": 0.05457301065325737, + "learning_rate": 0.01, + "loss": 2.1425, + "step": 6384 + }, + { + "epoch": 0.6562211034624473, + "grad_norm": 0.058564141392707825, + "learning_rate": 0.01, + "loss": 2.1158, + "step": 6387 + }, + { + "epoch": 0.6565293331963423, + "grad_norm": 0.10944786667823792, + "learning_rate": 0.01, + "loss": 2.146, + "step": 6390 + }, + { + "epoch": 0.6568375629302373, + "grad_norm": 0.07760695368051529, + "learning_rate": 0.01, + "loss": 2.176, + "step": 6393 + }, + { + "epoch": 0.6571457926641323, + "grad_norm": 0.07621042430400848, + "learning_rate": 0.01, + "loss": 2.1779, + "step": 6396 + }, + { + "epoch": 0.6574540223980273, + "grad_norm": 0.09723789244890213, + "learning_rate": 0.01, + "loss": 2.1455, + "step": 6399 + }, + { + "epoch": 0.6577622521319223, + "grad_norm": 0.05648832768201828, + "learning_rate": 0.01, + "loss": 2.154, + "step": 6402 + }, + { + "epoch": 0.6580704818658173, + "grad_norm": 0.04370080679655075, + "learning_rate": 0.01, + "loss": 2.1374, + "step": 6405 + }, + { + "epoch": 0.6583787115997123, + "grad_norm": 0.03729141131043434, + "learning_rate": 0.01, + "loss": 2.1275, + "step": 6408 + }, + { + "epoch": 0.6586869413336073, + "grad_norm": 0.055584125220775604, + "learning_rate": 0.01, + "loss": 2.1442, + "step": 6411 + }, + { + "epoch": 0.6589951710675023, + "grad_norm": 0.07981918007135391, + "learning_rate": 0.01, + "loss": 2.1618, + "step": 6414 + }, + { + "epoch": 0.6593034008013973, + "grad_norm": 0.09241674095392227, + "learning_rate": 0.01, + "loss": 2.1519, + "step": 6417 + }, + { + "epoch": 0.6596116305352923, + "grad_norm": 0.10454630106687546, + "learning_rate": 0.01, + "loss": 2.1309, + "step": 6420 + }, + { + "epoch": 0.6599198602691873, + "grad_norm": 0.08674053847789764, + "learning_rate": 0.01, + "loss": 2.1617, + "step": 6423 + }, + { + "epoch": 0.6602280900030822, + "grad_norm": 0.06003529578447342, + "learning_rate": 0.01, + "loss": 2.1475, + "step": 6426 + }, + { + "epoch": 0.6605363197369772, + "grad_norm": 0.07370956987142563, + "learning_rate": 0.01, + "loss": 2.1466, + "step": 6429 + }, + { + "epoch": 0.6608445494708723, + "grad_norm": 0.05090004578232765, + "learning_rate": 0.01, + "loss": 2.1506, + "step": 6432 + }, + { + "epoch": 0.6611527792047673, + "grad_norm": 0.06062362715601921, + "learning_rate": 0.01, + "loss": 2.1601, + "step": 6435 + }, + { + "epoch": 0.6614610089386623, + "grad_norm": 0.05484107881784439, + "learning_rate": 0.01, + "loss": 2.1452, + "step": 6438 + }, + { + "epoch": 0.6617692386725573, + "grad_norm": 0.1367156058549881, + "learning_rate": 0.01, + "loss": 2.1586, + "step": 6441 + }, + { + "epoch": 0.6620774684064523, + "grad_norm": 0.05140338093042374, + "learning_rate": 0.01, + "loss": 2.1463, + "step": 6444 + }, + { + "epoch": 0.6623856981403473, + "grad_norm": 0.09168683737516403, + "learning_rate": 0.01, + "loss": 2.1467, + "step": 6447 + }, + { + "epoch": 0.6626939278742423, + "grad_norm": 0.04098822921514511, + "learning_rate": 0.01, + "loss": 2.1648, + "step": 6450 + }, + { + "epoch": 0.6630021576081373, + "grad_norm": 0.049763478338718414, + "learning_rate": 0.01, + "loss": 2.1289, + "step": 6453 + }, + { + "epoch": 0.6633103873420323, + "grad_norm": 0.060069404542446136, + "learning_rate": 0.01, + "loss": 2.1467, + "step": 6456 + }, + { + "epoch": 0.6636186170759273, + "grad_norm": 0.06611450761556625, + "learning_rate": 0.01, + "loss": 2.1599, + "step": 6459 + }, + { + "epoch": 0.6639268468098223, + "grad_norm": 0.04955270141363144, + "learning_rate": 0.01, + "loss": 2.136, + "step": 6462 + }, + { + "epoch": 0.6642350765437173, + "grad_norm": 0.04004522040486336, + "learning_rate": 0.01, + "loss": 2.1457, + "step": 6465 + }, + { + "epoch": 0.6645433062776123, + "grad_norm": 0.06539756804704666, + "learning_rate": 0.01, + "loss": 2.1458, + "step": 6468 + }, + { + "epoch": 0.6648515360115073, + "grad_norm": 0.10684728622436523, + "learning_rate": 0.01, + "loss": 2.1279, + "step": 6471 + }, + { + "epoch": 0.6651597657454023, + "grad_norm": 0.09936464577913284, + "learning_rate": 0.01, + "loss": 2.1767, + "step": 6474 + }, + { + "epoch": 0.6654679954792972, + "grad_norm": 0.04908827692270279, + "learning_rate": 0.01, + "loss": 2.1259, + "step": 6477 + }, + { + "epoch": 0.6657762252131922, + "grad_norm": 0.048053622245788574, + "learning_rate": 0.01, + "loss": 2.1718, + "step": 6480 + }, + { + "epoch": 0.6660844549470872, + "grad_norm": 0.05524458363652229, + "learning_rate": 0.01, + "loss": 2.1673, + "step": 6483 + }, + { + "epoch": 0.6663926846809822, + "grad_norm": 0.05107030272483826, + "learning_rate": 0.01, + "loss": 2.13, + "step": 6486 + }, + { + "epoch": 0.6667009144148772, + "grad_norm": 0.12472579628229141, + "learning_rate": 0.01, + "loss": 2.149, + "step": 6489 + }, + { + "epoch": 0.6670091441487722, + "grad_norm": 0.05257454514503479, + "learning_rate": 0.01, + "loss": 2.1343, + "step": 6492 + }, + { + "epoch": 0.6673173738826672, + "grad_norm": 0.05986837297677994, + "learning_rate": 0.01, + "loss": 2.1265, + "step": 6495 + }, + { + "epoch": 0.6676256036165622, + "grad_norm": 0.08322940021753311, + "learning_rate": 0.01, + "loss": 2.1317, + "step": 6498 + }, + { + "epoch": 0.6679338333504572, + "grad_norm": 0.0466473363339901, + "learning_rate": 0.01, + "loss": 2.1235, + "step": 6501 + }, + { + "epoch": 0.6682420630843522, + "grad_norm": 0.05092160776257515, + "learning_rate": 0.01, + "loss": 2.1672, + "step": 6504 + }, + { + "epoch": 0.6685502928182472, + "grad_norm": 0.08392294496297836, + "learning_rate": 0.01, + "loss": 2.1473, + "step": 6507 + }, + { + "epoch": 0.6688585225521422, + "grad_norm": 0.042165517807006836, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 6510 + }, + { + "epoch": 0.6691667522860372, + "grad_norm": 0.06214481219649315, + "learning_rate": 0.01, + "loss": 2.138, + "step": 6513 + }, + { + "epoch": 0.6694749820199322, + "grad_norm": 0.06087846681475639, + "learning_rate": 0.01, + "loss": 2.15, + "step": 6516 + }, + { + "epoch": 0.6697832117538272, + "grad_norm": 0.047256652265787125, + "learning_rate": 0.01, + "loss": 2.1433, + "step": 6519 + }, + { + "epoch": 0.6700914414877222, + "grad_norm": 0.10626421123743057, + "learning_rate": 0.01, + "loss": 2.156, + "step": 6522 + }, + { + "epoch": 0.6703996712216171, + "grad_norm": 0.09426552802324295, + "learning_rate": 0.01, + "loss": 2.1472, + "step": 6525 + }, + { + "epoch": 0.6707079009555121, + "grad_norm": 0.0632442831993103, + "learning_rate": 0.01, + "loss": 2.1536, + "step": 6528 + }, + { + "epoch": 0.6710161306894071, + "grad_norm": 0.07149971276521683, + "learning_rate": 0.01, + "loss": 2.1694, + "step": 6531 + }, + { + "epoch": 0.6713243604233021, + "grad_norm": 0.04060966521501541, + "learning_rate": 0.01, + "loss": 2.164, + "step": 6534 + }, + { + "epoch": 0.6716325901571971, + "grad_norm": 0.20043891668319702, + "learning_rate": 0.01, + "loss": 2.125, + "step": 6537 + }, + { + "epoch": 0.6719408198910921, + "grad_norm": 0.06755783408880234, + "learning_rate": 0.01, + "loss": 2.15, + "step": 6540 + }, + { + "epoch": 0.6722490496249871, + "grad_norm": 0.0509268082678318, + "learning_rate": 0.01, + "loss": 2.1405, + "step": 6543 + }, + { + "epoch": 0.6725572793588821, + "grad_norm": 0.04033916816115379, + "learning_rate": 0.01, + "loss": 2.136, + "step": 6546 + }, + { + "epoch": 0.6728655090927772, + "grad_norm": 0.04707946255803108, + "learning_rate": 0.01, + "loss": 2.1514, + "step": 6549 + }, + { + "epoch": 0.6731737388266722, + "grad_norm": 0.04360898956656456, + "learning_rate": 0.01, + "loss": 2.1518, + "step": 6552 + }, + { + "epoch": 0.6734819685605672, + "grad_norm": 0.11959343403577805, + "learning_rate": 0.01, + "loss": 2.1377, + "step": 6555 + }, + { + "epoch": 0.6737901982944622, + "grad_norm": 0.06620760262012482, + "learning_rate": 0.01, + "loss": 2.1419, + "step": 6558 + }, + { + "epoch": 0.6740984280283572, + "grad_norm": 0.056747015565633774, + "learning_rate": 0.01, + "loss": 2.138, + "step": 6561 + }, + { + "epoch": 0.6744066577622522, + "grad_norm": 0.05230560526251793, + "learning_rate": 0.01, + "loss": 2.1335, + "step": 6564 + }, + { + "epoch": 0.6747148874961472, + "grad_norm": 0.0526299811899662, + "learning_rate": 0.01, + "loss": 2.131, + "step": 6567 + }, + { + "epoch": 0.6750231172300422, + "grad_norm": 0.15683774650096893, + "learning_rate": 0.01, + "loss": 2.1167, + "step": 6570 + }, + { + "epoch": 0.6753313469639372, + "grad_norm": 0.10133557766675949, + "learning_rate": 0.01, + "loss": 2.1219, + "step": 6573 + }, + { + "epoch": 0.6756395766978321, + "grad_norm": 0.06826774775981903, + "learning_rate": 0.01, + "loss": 2.1416, + "step": 6576 + }, + { + "epoch": 0.6759478064317271, + "grad_norm": 0.046236682683229446, + "learning_rate": 0.01, + "loss": 2.1704, + "step": 6579 + }, + { + "epoch": 0.6762560361656221, + "grad_norm": 0.07654762268066406, + "learning_rate": 0.01, + "loss": 2.1411, + "step": 6582 + }, + { + "epoch": 0.6765642658995171, + "grad_norm": 0.07760706543922424, + "learning_rate": 0.01, + "loss": 2.168, + "step": 6585 + }, + { + "epoch": 0.6768724956334121, + "grad_norm": 0.04213540256023407, + "learning_rate": 0.01, + "loss": 2.1899, + "step": 6588 + }, + { + "epoch": 0.6771807253673071, + "grad_norm": 0.0517420619726181, + "learning_rate": 0.01, + "loss": 2.1561, + "step": 6591 + }, + { + "epoch": 0.6774889551012021, + "grad_norm": 0.04073292762041092, + "learning_rate": 0.01, + "loss": 2.1475, + "step": 6594 + }, + { + "epoch": 0.6777971848350971, + "grad_norm": 0.11223835498094559, + "learning_rate": 0.01, + "loss": 2.1102, + "step": 6597 + }, + { + "epoch": 0.6781054145689921, + "grad_norm": 0.08094224333763123, + "learning_rate": 0.01, + "loss": 2.1537, + "step": 6600 + }, + { + "epoch": 0.6784136443028871, + "grad_norm": 0.036313675343990326, + "learning_rate": 0.01, + "loss": 2.1471, + "step": 6603 + }, + { + "epoch": 0.6787218740367821, + "grad_norm": 0.09553749114274979, + "learning_rate": 0.01, + "loss": 2.1445, + "step": 6606 + }, + { + "epoch": 0.6790301037706771, + "grad_norm": 0.07334265112876892, + "learning_rate": 0.01, + "loss": 2.1594, + "step": 6609 + }, + { + "epoch": 0.6793383335045721, + "grad_norm": 0.12031051516532898, + "learning_rate": 0.01, + "loss": 2.1321, + "step": 6612 + }, + { + "epoch": 0.6796465632384671, + "grad_norm": 0.08834968507289886, + "learning_rate": 0.01, + "loss": 2.1474, + "step": 6615 + }, + { + "epoch": 0.679954792972362, + "grad_norm": 0.05016850307583809, + "learning_rate": 0.01, + "loss": 2.1582, + "step": 6618 + }, + { + "epoch": 0.680263022706257, + "grad_norm": 0.039213377982378006, + "learning_rate": 0.01, + "loss": 2.1461, + "step": 6621 + }, + { + "epoch": 0.680571252440152, + "grad_norm": 0.035611145198345184, + "learning_rate": 0.01, + "loss": 2.137, + "step": 6624 + }, + { + "epoch": 0.680879482174047, + "grad_norm": 0.09345167875289917, + "learning_rate": 0.01, + "loss": 2.1357, + "step": 6627 + }, + { + "epoch": 0.681187711907942, + "grad_norm": 0.04311450198292732, + "learning_rate": 0.01, + "loss": 2.1413, + "step": 6630 + }, + { + "epoch": 0.681495941641837, + "grad_norm": 0.040315765887498856, + "learning_rate": 0.01, + "loss": 2.1091, + "step": 6633 + }, + { + "epoch": 0.681804171375732, + "grad_norm": 0.11044291406869888, + "learning_rate": 0.01, + "loss": 2.1392, + "step": 6636 + }, + { + "epoch": 0.682112401109627, + "grad_norm": 0.1288553774356842, + "learning_rate": 0.01, + "loss": 2.1129, + "step": 6639 + }, + { + "epoch": 0.682420630843522, + "grad_norm": 0.0698169469833374, + "learning_rate": 0.01, + "loss": 2.137, + "step": 6642 + }, + { + "epoch": 0.682728860577417, + "grad_norm": 0.037890784442424774, + "learning_rate": 0.01, + "loss": 2.1195, + "step": 6645 + }, + { + "epoch": 0.683037090311312, + "grad_norm": 0.07425201684236526, + "learning_rate": 0.01, + "loss": 2.1194, + "step": 6648 + }, + { + "epoch": 0.683345320045207, + "grad_norm": 0.058168716728687286, + "learning_rate": 0.01, + "loss": 2.1371, + "step": 6651 + }, + { + "epoch": 0.683653549779102, + "grad_norm": 0.05515358969569206, + "learning_rate": 0.01, + "loss": 2.137, + "step": 6654 + }, + { + "epoch": 0.683961779512997, + "grad_norm": 0.0501445047557354, + "learning_rate": 0.01, + "loss": 2.1539, + "step": 6657 + }, + { + "epoch": 0.684270009246892, + "grad_norm": 0.06167145445942879, + "learning_rate": 0.01, + "loss": 2.1413, + "step": 6660 + }, + { + "epoch": 0.6845782389807871, + "grad_norm": 0.0841723158955574, + "learning_rate": 0.01, + "loss": 2.1194, + "step": 6663 + }, + { + "epoch": 0.6848864687146821, + "grad_norm": 0.06027607619762421, + "learning_rate": 0.01, + "loss": 2.158, + "step": 6666 + }, + { + "epoch": 0.685194698448577, + "grad_norm": 0.1187741607427597, + "learning_rate": 0.01, + "loss": 2.1651, + "step": 6669 + }, + { + "epoch": 0.685502928182472, + "grad_norm": 0.10789939761161804, + "learning_rate": 0.01, + "loss": 2.1465, + "step": 6672 + }, + { + "epoch": 0.685811157916367, + "grad_norm": 0.06254967302083969, + "learning_rate": 0.01, + "loss": 2.1639, + "step": 6675 + }, + { + "epoch": 0.686119387650262, + "grad_norm": 0.04242802783846855, + "learning_rate": 0.01, + "loss": 2.1563, + "step": 6678 + }, + { + "epoch": 0.686427617384157, + "grad_norm": 0.03538980334997177, + "learning_rate": 0.01, + "loss": 2.1373, + "step": 6681 + }, + { + "epoch": 0.686735847118052, + "grad_norm": 0.04609490931034088, + "learning_rate": 0.01, + "loss": 2.1345, + "step": 6684 + }, + { + "epoch": 0.687044076851947, + "grad_norm": 0.1298975795507431, + "learning_rate": 0.01, + "loss": 2.1446, + "step": 6687 + }, + { + "epoch": 0.687352306585842, + "grad_norm": 0.10049281269311905, + "learning_rate": 0.01, + "loss": 2.1432, + "step": 6690 + }, + { + "epoch": 0.687660536319737, + "grad_norm": 0.05908266827464104, + "learning_rate": 0.01, + "loss": 2.1288, + "step": 6693 + }, + { + "epoch": 0.687968766053632, + "grad_norm": 0.0546141043305397, + "learning_rate": 0.01, + "loss": 2.1086, + "step": 6696 + }, + { + "epoch": 0.688276995787527, + "grad_norm": 0.04135862737894058, + "learning_rate": 0.01, + "loss": 2.1187, + "step": 6699 + }, + { + "epoch": 0.688585225521422, + "grad_norm": 0.03824761137366295, + "learning_rate": 0.01, + "loss": 2.1162, + "step": 6702 + }, + { + "epoch": 0.688893455255317, + "grad_norm": 0.041454900056123734, + "learning_rate": 0.01, + "loss": 2.1304, + "step": 6705 + }, + { + "epoch": 0.689201684989212, + "grad_norm": 0.08948934823274612, + "learning_rate": 0.01, + "loss": 2.1538, + "step": 6708 + }, + { + "epoch": 0.689509914723107, + "grad_norm": 0.07379783689975739, + "learning_rate": 0.01, + "loss": 2.145, + "step": 6711 + }, + { + "epoch": 0.689818144457002, + "grad_norm": 0.0833912044763565, + "learning_rate": 0.01, + "loss": 2.1218, + "step": 6714 + }, + { + "epoch": 0.690126374190897, + "grad_norm": 0.05899098515510559, + "learning_rate": 0.01, + "loss": 2.1516, + "step": 6717 + }, + { + "epoch": 0.690434603924792, + "grad_norm": 0.06462058424949646, + "learning_rate": 0.01, + "loss": 2.1496, + "step": 6720 + }, + { + "epoch": 0.6907428336586869, + "grad_norm": 0.04040443152189255, + "learning_rate": 0.01, + "loss": 2.1311, + "step": 6723 + }, + { + "epoch": 0.6910510633925819, + "grad_norm": 0.05336814373731613, + "learning_rate": 0.01, + "loss": 2.1227, + "step": 6726 + }, + { + "epoch": 0.6913592931264769, + "grad_norm": 0.05057406798005104, + "learning_rate": 0.01, + "loss": 2.1281, + "step": 6729 + }, + { + "epoch": 0.6916675228603719, + "grad_norm": 0.08063513040542603, + "learning_rate": 0.01, + "loss": 2.1318, + "step": 6732 + }, + { + "epoch": 0.6919757525942669, + "grad_norm": 0.08304840326309204, + "learning_rate": 0.01, + "loss": 2.1179, + "step": 6735 + }, + { + "epoch": 0.6922839823281619, + "grad_norm": 0.04266434162855148, + "learning_rate": 0.01, + "loss": 2.1447, + "step": 6738 + }, + { + "epoch": 0.6925922120620569, + "grad_norm": 0.07502007484436035, + "learning_rate": 0.01, + "loss": 2.1173, + "step": 6741 + }, + { + "epoch": 0.6929004417959519, + "grad_norm": 0.10870220512151718, + "learning_rate": 0.01, + "loss": 2.1555, + "step": 6744 + }, + { + "epoch": 0.6932086715298469, + "grad_norm": 0.15824924409389496, + "learning_rate": 0.01, + "loss": 2.1668, + "step": 6747 + }, + { + "epoch": 0.6935169012637419, + "grad_norm": 0.06319935619831085, + "learning_rate": 0.01, + "loss": 2.1788, + "step": 6750 + }, + { + "epoch": 0.6938251309976369, + "grad_norm": 0.06392507255077362, + "learning_rate": 0.01, + "loss": 2.1398, + "step": 6753 + }, + { + "epoch": 0.6941333607315319, + "grad_norm": 0.044481996446847916, + "learning_rate": 0.01, + "loss": 2.147, + "step": 6756 + }, + { + "epoch": 0.6944415904654269, + "grad_norm": 0.09093592315912247, + "learning_rate": 0.01, + "loss": 2.1399, + "step": 6759 + }, + { + "epoch": 0.6947498201993219, + "grad_norm": 0.09249415248632431, + "learning_rate": 0.01, + "loss": 2.1274, + "step": 6762 + }, + { + "epoch": 0.6950580499332168, + "grad_norm": 0.06134162098169327, + "learning_rate": 0.01, + "loss": 2.142, + "step": 6765 + }, + { + "epoch": 0.6953662796671118, + "grad_norm": 0.048883359879255295, + "learning_rate": 0.01, + "loss": 2.1357, + "step": 6768 + }, + { + "epoch": 0.6956745094010068, + "grad_norm": 0.04553356394171715, + "learning_rate": 0.01, + "loss": 2.132, + "step": 6771 + }, + { + "epoch": 0.6959827391349018, + "grad_norm": 0.10365505516529083, + "learning_rate": 0.01, + "loss": 2.1568, + "step": 6774 + }, + { + "epoch": 0.6962909688687968, + "grad_norm": 0.07474958896636963, + "learning_rate": 0.01, + "loss": 2.1209, + "step": 6777 + }, + { + "epoch": 0.6965991986026919, + "grad_norm": 0.11140461266040802, + "learning_rate": 0.01, + "loss": 2.1585, + "step": 6780 + }, + { + "epoch": 0.6969074283365869, + "grad_norm": 0.0529690645635128, + "learning_rate": 0.01, + "loss": 2.1228, + "step": 6783 + }, + { + "epoch": 0.6972156580704819, + "grad_norm": 0.06484264135360718, + "learning_rate": 0.01, + "loss": 2.117, + "step": 6786 + }, + { + "epoch": 0.6975238878043769, + "grad_norm": 0.0467400886118412, + "learning_rate": 0.01, + "loss": 2.1367, + "step": 6789 + }, + { + "epoch": 0.6978321175382719, + "grad_norm": 0.09690822660923004, + "learning_rate": 0.01, + "loss": 2.1275, + "step": 6792 + }, + { + "epoch": 0.6981403472721669, + "grad_norm": 0.053299982100725174, + "learning_rate": 0.01, + "loss": 2.1557, + "step": 6795 + }, + { + "epoch": 0.6984485770060619, + "grad_norm": 0.08451724797487259, + "learning_rate": 0.01, + "loss": 2.1235, + "step": 6798 + }, + { + "epoch": 0.6987568067399569, + "grad_norm": 0.11180119216442108, + "learning_rate": 0.01, + "loss": 2.1389, + "step": 6801 + }, + { + "epoch": 0.6990650364738519, + "grad_norm": 0.04366112872958183, + "learning_rate": 0.01, + "loss": 2.1345, + "step": 6804 + }, + { + "epoch": 0.6993732662077469, + "grad_norm": 0.057021014392375946, + "learning_rate": 0.01, + "loss": 2.145, + "step": 6807 + }, + { + "epoch": 0.6996814959416419, + "grad_norm": 0.050035975873470306, + "learning_rate": 0.01, + "loss": 2.1245, + "step": 6810 + }, + { + "epoch": 0.6999897256755369, + "grad_norm": 0.16434957087039948, + "learning_rate": 0.01, + "loss": 2.099, + "step": 6813 + }, + { + "epoch": 0.7002979554094318, + "grad_norm": 0.0473979152739048, + "learning_rate": 0.01, + "loss": 2.124, + "step": 6816 + }, + { + "epoch": 0.7006061851433268, + "grad_norm": 0.06207640469074249, + "learning_rate": 0.01, + "loss": 2.1528, + "step": 6819 + }, + { + "epoch": 0.7009144148772218, + "grad_norm": 0.09829109162092209, + "learning_rate": 0.01, + "loss": 2.1359, + "step": 6822 + }, + { + "epoch": 0.7012226446111168, + "grad_norm": 0.0563257597386837, + "learning_rate": 0.01, + "loss": 2.1639, + "step": 6825 + }, + { + "epoch": 0.7015308743450118, + "grad_norm": 0.12371699512004852, + "learning_rate": 0.01, + "loss": 2.1479, + "step": 6828 + }, + { + "epoch": 0.7018391040789068, + "grad_norm": 0.07342347502708435, + "learning_rate": 0.01, + "loss": 2.1786, + "step": 6831 + }, + { + "epoch": 0.7021473338128018, + "grad_norm": 0.05420146882534027, + "learning_rate": 0.01, + "loss": 2.1261, + "step": 6834 + }, + { + "epoch": 0.7024555635466968, + "grad_norm": 0.04500873014330864, + "learning_rate": 0.01, + "loss": 2.1356, + "step": 6837 + }, + { + "epoch": 0.7027637932805918, + "grad_norm": 0.10648415237665176, + "learning_rate": 0.01, + "loss": 2.1205, + "step": 6840 + }, + { + "epoch": 0.7030720230144868, + "grad_norm": 0.05089351162314415, + "learning_rate": 0.01, + "loss": 2.1403, + "step": 6843 + }, + { + "epoch": 0.7033802527483818, + "grad_norm": 0.10011807084083557, + "learning_rate": 0.01, + "loss": 2.1508, + "step": 6846 + }, + { + "epoch": 0.7036884824822768, + "grad_norm": 0.06787194311618805, + "learning_rate": 0.01, + "loss": 2.1391, + "step": 6849 + }, + { + "epoch": 0.7039967122161718, + "grad_norm": 0.08248817175626755, + "learning_rate": 0.01, + "loss": 2.1782, + "step": 6852 + }, + { + "epoch": 0.7043049419500668, + "grad_norm": 0.04949905723333359, + "learning_rate": 0.01, + "loss": 2.1401, + "step": 6855 + }, + { + "epoch": 0.7046131716839618, + "grad_norm": 0.043910931795835495, + "learning_rate": 0.01, + "loss": 2.108, + "step": 6858 + }, + { + "epoch": 0.7049214014178568, + "grad_norm": 0.05133078247308731, + "learning_rate": 0.01, + "loss": 2.1088, + "step": 6861 + }, + { + "epoch": 0.7052296311517517, + "grad_norm": 0.11582443863153458, + "learning_rate": 0.01, + "loss": 2.1301, + "step": 6864 + }, + { + "epoch": 0.7055378608856467, + "grad_norm": 0.04287354275584221, + "learning_rate": 0.01, + "loss": 2.124, + "step": 6867 + }, + { + "epoch": 0.7058460906195417, + "grad_norm": 0.09393726289272308, + "learning_rate": 0.01, + "loss": 2.1326, + "step": 6870 + }, + { + "epoch": 0.7061543203534367, + "grad_norm": 0.1286250203847885, + "learning_rate": 0.01, + "loss": 2.1292, + "step": 6873 + }, + { + "epoch": 0.7064625500873317, + "grad_norm": 0.14816388487815857, + "learning_rate": 0.01, + "loss": 2.1439, + "step": 6876 + }, + { + "epoch": 0.7067707798212267, + "grad_norm": 0.062444012612104416, + "learning_rate": 0.01, + "loss": 2.1421, + "step": 6879 + }, + { + "epoch": 0.7070790095551217, + "grad_norm": 0.053750455379486084, + "learning_rate": 0.01, + "loss": 2.1185, + "step": 6882 + }, + { + "epoch": 0.7073872392890167, + "grad_norm": 0.051356710493564606, + "learning_rate": 0.01, + "loss": 2.1298, + "step": 6885 + }, + { + "epoch": 0.7076954690229117, + "grad_norm": 0.061504025012254715, + "learning_rate": 0.01, + "loss": 2.1132, + "step": 6888 + }, + { + "epoch": 0.7080036987568067, + "grad_norm": 0.056496761739254, + "learning_rate": 0.01, + "loss": 2.1019, + "step": 6891 + }, + { + "epoch": 0.7083119284907017, + "grad_norm": 0.048710647970438004, + "learning_rate": 0.01, + "loss": 2.126, + "step": 6894 + }, + { + "epoch": 0.7086201582245968, + "grad_norm": 0.06260757148265839, + "learning_rate": 0.01, + "loss": 2.1534, + "step": 6897 + }, + { + "epoch": 0.7089283879584918, + "grad_norm": 0.06622278690338135, + "learning_rate": 0.01, + "loss": 2.1247, + "step": 6900 + }, + { + "epoch": 0.7092366176923868, + "grad_norm": 0.0810452550649643, + "learning_rate": 0.01, + "loss": 2.1336, + "step": 6903 + }, + { + "epoch": 0.7095448474262818, + "grad_norm": 0.04692875221371651, + "learning_rate": 0.01, + "loss": 2.1096, + "step": 6906 + }, + { + "epoch": 0.7098530771601768, + "grad_norm": 0.04757360368967056, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 6909 + }, + { + "epoch": 0.7101613068940718, + "grad_norm": 0.05597659945487976, + "learning_rate": 0.01, + "loss": 2.1425, + "step": 6912 + }, + { + "epoch": 0.7104695366279667, + "grad_norm": 0.051605843007564545, + "learning_rate": 0.01, + "loss": 2.1118, + "step": 6915 + }, + { + "epoch": 0.7107777663618617, + "grad_norm": 0.06179991737008095, + "learning_rate": 0.01, + "loss": 2.1362, + "step": 6918 + }, + { + "epoch": 0.7110859960957567, + "grad_norm": 0.05455191805958748, + "learning_rate": 0.01, + "loss": 2.1279, + "step": 6921 + }, + { + "epoch": 0.7113942258296517, + "grad_norm": 0.11560655385255814, + "learning_rate": 0.01, + "loss": 2.1316, + "step": 6924 + }, + { + "epoch": 0.7117024555635467, + "grad_norm": 0.12203246355056763, + "learning_rate": 0.01, + "loss": 2.1173, + "step": 6927 + }, + { + "epoch": 0.7120106852974417, + "grad_norm": 0.07024069130420685, + "learning_rate": 0.01, + "loss": 2.1395, + "step": 6930 + }, + { + "epoch": 0.7123189150313367, + "grad_norm": 0.04773107171058655, + "learning_rate": 0.01, + "loss": 2.1455, + "step": 6933 + }, + { + "epoch": 0.7126271447652317, + "grad_norm": 0.06106821820139885, + "learning_rate": 0.01, + "loss": 2.1352, + "step": 6936 + }, + { + "epoch": 0.7129353744991267, + "grad_norm": 0.11438222974538803, + "learning_rate": 0.01, + "loss": 2.149, + "step": 6939 + }, + { + "epoch": 0.7132436042330217, + "grad_norm": 0.07224932312965393, + "learning_rate": 0.01, + "loss": 2.1234, + "step": 6942 + }, + { + "epoch": 0.7135518339669167, + "grad_norm": 0.06790932267904282, + "learning_rate": 0.01, + "loss": 2.1222, + "step": 6945 + }, + { + "epoch": 0.7138600637008117, + "grad_norm": 0.12322958558797836, + "learning_rate": 0.01, + "loss": 2.106, + "step": 6948 + }, + { + "epoch": 0.7141682934347067, + "grad_norm": 0.07186157256364822, + "learning_rate": 0.01, + "loss": 2.1365, + "step": 6951 + }, + { + "epoch": 0.7144765231686017, + "grad_norm": 0.05366130173206329, + "learning_rate": 0.01, + "loss": 2.1264, + "step": 6954 + }, + { + "epoch": 0.7147847529024967, + "grad_norm": 0.06682512164115906, + "learning_rate": 0.01, + "loss": 2.1163, + "step": 6957 + }, + { + "epoch": 0.7150929826363916, + "grad_norm": 0.04629479721188545, + "learning_rate": 0.01, + "loss": 2.126, + "step": 6960 + }, + { + "epoch": 0.7154012123702866, + "grad_norm": 0.053164754062891006, + "learning_rate": 0.01, + "loss": 2.1262, + "step": 6963 + }, + { + "epoch": 0.7157094421041816, + "grad_norm": 0.08918699622154236, + "learning_rate": 0.01, + "loss": 2.157, + "step": 6966 + }, + { + "epoch": 0.7160176718380766, + "grad_norm": 0.06226164847612381, + "learning_rate": 0.01, + "loss": 2.1391, + "step": 6969 + }, + { + "epoch": 0.7163259015719716, + "grad_norm": 0.08120178431272507, + "learning_rate": 0.01, + "loss": 2.1118, + "step": 6972 + }, + { + "epoch": 0.7166341313058666, + "grad_norm": 0.06390135735273361, + "learning_rate": 0.01, + "loss": 2.1302, + "step": 6975 + }, + { + "epoch": 0.7169423610397616, + "grad_norm": 0.039068643003702164, + "learning_rate": 0.01, + "loss": 2.1304, + "step": 6978 + }, + { + "epoch": 0.7172505907736566, + "grad_norm": 0.05006824806332588, + "learning_rate": 0.01, + "loss": 2.1352, + "step": 6981 + }, + { + "epoch": 0.7175588205075516, + "grad_norm": 0.03946538642048836, + "learning_rate": 0.01, + "loss": 2.1513, + "step": 6984 + }, + { + "epoch": 0.7178670502414466, + "grad_norm": 0.05072702839970589, + "learning_rate": 0.01, + "loss": 2.1298, + "step": 6987 + }, + { + "epoch": 0.7181752799753416, + "grad_norm": 0.06457548588514328, + "learning_rate": 0.01, + "loss": 2.1276, + "step": 6990 + }, + { + "epoch": 0.7184835097092366, + "grad_norm": 0.05759236589074135, + "learning_rate": 0.01, + "loss": 2.1198, + "step": 6993 + }, + { + "epoch": 0.7187917394431316, + "grad_norm": 0.1151571124792099, + "learning_rate": 0.01, + "loss": 2.1217, + "step": 6996 + }, + { + "epoch": 0.7190999691770266, + "grad_norm": 0.04867241531610489, + "learning_rate": 0.01, + "loss": 2.1343, + "step": 6999 + }, + { + "epoch": 0.7194081989109216, + "grad_norm": 0.074817955493927, + "learning_rate": 0.01, + "loss": 2.1474, + "step": 7002 + }, + { + "epoch": 0.7197164286448166, + "grad_norm": 0.04749060794711113, + "learning_rate": 0.01, + "loss": 2.1403, + "step": 7005 + }, + { + "epoch": 0.7200246583787115, + "grad_norm": 0.04965493455529213, + "learning_rate": 0.01, + "loss": 2.142, + "step": 7008 + }, + { + "epoch": 0.7203328881126067, + "grad_norm": 0.044914234429597855, + "learning_rate": 0.01, + "loss": 2.1397, + "step": 7011 + }, + { + "epoch": 0.7206411178465016, + "grad_norm": 0.06727777421474457, + "learning_rate": 0.01, + "loss": 2.1443, + "step": 7014 + }, + { + "epoch": 0.7209493475803966, + "grad_norm": 0.10670837014913559, + "learning_rate": 0.01, + "loss": 2.1316, + "step": 7017 + }, + { + "epoch": 0.7212575773142916, + "grad_norm": 0.05047740787267685, + "learning_rate": 0.01, + "loss": 2.1268, + "step": 7020 + }, + { + "epoch": 0.7215658070481866, + "grad_norm": 0.055116791278123856, + "learning_rate": 0.01, + "loss": 2.1194, + "step": 7023 + }, + { + "epoch": 0.7218740367820816, + "grad_norm": 0.04873311519622803, + "learning_rate": 0.01, + "loss": 2.1122, + "step": 7026 + }, + { + "epoch": 0.7221822665159766, + "grad_norm": 0.0893159881234169, + "learning_rate": 0.01, + "loss": 2.1413, + "step": 7029 + }, + { + "epoch": 0.7224904962498716, + "grad_norm": 0.07278893142938614, + "learning_rate": 0.01, + "loss": 2.1394, + "step": 7032 + }, + { + "epoch": 0.7227987259837666, + "grad_norm": 0.09431196749210358, + "learning_rate": 0.01, + "loss": 2.1489, + "step": 7035 + }, + { + "epoch": 0.7231069557176616, + "grad_norm": 0.03588537499308586, + "learning_rate": 0.01, + "loss": 2.1585, + "step": 7038 + }, + { + "epoch": 0.7234151854515566, + "grad_norm": 0.044003136456012726, + "learning_rate": 0.01, + "loss": 2.1442, + "step": 7041 + }, + { + "epoch": 0.7237234151854516, + "grad_norm": 0.10805044323205948, + "learning_rate": 0.01, + "loss": 2.127, + "step": 7044 + }, + { + "epoch": 0.7240316449193466, + "grad_norm": 0.06328746676445007, + "learning_rate": 0.01, + "loss": 2.1166, + "step": 7047 + }, + { + "epoch": 0.7243398746532416, + "grad_norm": 0.08782347291707993, + "learning_rate": 0.01, + "loss": 2.1474, + "step": 7050 + }, + { + "epoch": 0.7246481043871366, + "grad_norm": 0.06585227698087692, + "learning_rate": 0.01, + "loss": 2.1228, + "step": 7053 + }, + { + "epoch": 0.7249563341210316, + "grad_norm": 0.06324558705091476, + "learning_rate": 0.01, + "loss": 2.1313, + "step": 7056 + }, + { + "epoch": 0.7252645638549265, + "grad_norm": 0.057287219911813736, + "learning_rate": 0.01, + "loss": 2.1241, + "step": 7059 + }, + { + "epoch": 0.7255727935888215, + "grad_norm": 0.07684747129678726, + "learning_rate": 0.01, + "loss": 2.1299, + "step": 7062 + }, + { + "epoch": 0.7258810233227165, + "grad_norm": 0.10347555577754974, + "learning_rate": 0.01, + "loss": 2.12, + "step": 7065 + }, + { + "epoch": 0.7261892530566115, + "grad_norm": 0.06019530072808266, + "learning_rate": 0.01, + "loss": 2.138, + "step": 7068 + }, + { + "epoch": 0.7264974827905065, + "grad_norm": 0.04816723242402077, + "learning_rate": 0.01, + "loss": 2.1161, + "step": 7071 + }, + { + "epoch": 0.7268057125244015, + "grad_norm": 0.05839864909648895, + "learning_rate": 0.01, + "loss": 2.136, + "step": 7074 + }, + { + "epoch": 0.7271139422582965, + "grad_norm": 0.061795271933078766, + "learning_rate": 0.01, + "loss": 2.1315, + "step": 7077 + }, + { + "epoch": 0.7274221719921915, + "grad_norm": 0.05736471712589264, + "learning_rate": 0.01, + "loss": 2.1403, + "step": 7080 + }, + { + "epoch": 0.7277304017260865, + "grad_norm": 0.059238459914922714, + "learning_rate": 0.01, + "loss": 2.1101, + "step": 7083 + }, + { + "epoch": 0.7280386314599815, + "grad_norm": 0.10844148695468903, + "learning_rate": 0.01, + "loss": 2.1454, + "step": 7086 + }, + { + "epoch": 0.7283468611938765, + "grad_norm": 0.047568898648023605, + "learning_rate": 0.01, + "loss": 2.1183, + "step": 7089 + }, + { + "epoch": 0.7286550909277715, + "grad_norm": 0.05178900063037872, + "learning_rate": 0.01, + "loss": 2.1346, + "step": 7092 + }, + { + "epoch": 0.7289633206616665, + "grad_norm": 0.04113532230257988, + "learning_rate": 0.01, + "loss": 2.0915, + "step": 7095 + }, + { + "epoch": 0.7292715503955615, + "grad_norm": 0.10488615930080414, + "learning_rate": 0.01, + "loss": 2.1239, + "step": 7098 + }, + { + "epoch": 0.7295797801294565, + "grad_norm": 0.13013161718845367, + "learning_rate": 0.01, + "loss": 2.1251, + "step": 7101 + }, + { + "epoch": 0.7298880098633515, + "grad_norm": 0.10956915467977524, + "learning_rate": 0.01, + "loss": 2.1113, + "step": 7104 + }, + { + "epoch": 0.7301962395972464, + "grad_norm": 0.06996689736843109, + "learning_rate": 0.01, + "loss": 2.118, + "step": 7107 + }, + { + "epoch": 0.7305044693311414, + "grad_norm": 0.07773365080356598, + "learning_rate": 0.01, + "loss": 2.1144, + "step": 7110 + }, + { + "epoch": 0.7308126990650364, + "grad_norm": 0.06922838091850281, + "learning_rate": 0.01, + "loss": 2.1148, + "step": 7113 + }, + { + "epoch": 0.7311209287989314, + "grad_norm": 0.08941454440355301, + "learning_rate": 0.01, + "loss": 2.1493, + "step": 7116 + }, + { + "epoch": 0.7314291585328264, + "grad_norm": 0.04264171048998833, + "learning_rate": 0.01, + "loss": 2.136, + "step": 7119 + }, + { + "epoch": 0.7317373882667214, + "grad_norm": 0.04473461955785751, + "learning_rate": 0.01, + "loss": 2.1294, + "step": 7122 + }, + { + "epoch": 0.7320456180006164, + "grad_norm": 0.0396125465631485, + "learning_rate": 0.01, + "loss": 2.1439, + "step": 7125 + }, + { + "epoch": 0.7323538477345115, + "grad_norm": 0.04613679647445679, + "learning_rate": 0.01, + "loss": 2.1503, + "step": 7128 + }, + { + "epoch": 0.7326620774684065, + "grad_norm": 0.04897918924689293, + "learning_rate": 0.01, + "loss": 2.1214, + "step": 7131 + }, + { + "epoch": 0.7329703072023015, + "grad_norm": 0.05057375133037567, + "learning_rate": 0.01, + "loss": 2.1112, + "step": 7134 + }, + { + "epoch": 0.7332785369361965, + "grad_norm": 0.05711055174469948, + "learning_rate": 0.01, + "loss": 2.102, + "step": 7137 + }, + { + "epoch": 0.7335867666700915, + "grad_norm": 0.08658434450626373, + "learning_rate": 0.01, + "loss": 2.1574, + "step": 7140 + }, + { + "epoch": 0.7338949964039865, + "grad_norm": 0.07044188678264618, + "learning_rate": 0.01, + "loss": 2.1037, + "step": 7143 + }, + { + "epoch": 0.7342032261378815, + "grad_norm": 0.03941315785050392, + "learning_rate": 0.01, + "loss": 2.1369, + "step": 7146 + }, + { + "epoch": 0.7345114558717765, + "grad_norm": 0.04527783393859863, + "learning_rate": 0.01, + "loss": 2.1212, + "step": 7149 + }, + { + "epoch": 0.7348196856056715, + "grad_norm": 0.07909847050905228, + "learning_rate": 0.01, + "loss": 2.1316, + "step": 7152 + }, + { + "epoch": 0.7351279153395665, + "grad_norm": 0.12793006002902985, + "learning_rate": 0.01, + "loss": 2.1254, + "step": 7155 + }, + { + "epoch": 0.7354361450734614, + "grad_norm": 0.0639350563287735, + "learning_rate": 0.01, + "loss": 2.1319, + "step": 7158 + }, + { + "epoch": 0.7357443748073564, + "grad_norm": 0.0342305451631546, + "learning_rate": 0.01, + "loss": 2.1386, + "step": 7161 + }, + { + "epoch": 0.7360526045412514, + "grad_norm": 0.049001939594745636, + "learning_rate": 0.01, + "loss": 2.1485, + "step": 7164 + }, + { + "epoch": 0.7363608342751464, + "grad_norm": 0.047717638313770294, + "learning_rate": 0.01, + "loss": 2.1368, + "step": 7167 + }, + { + "epoch": 0.7366690640090414, + "grad_norm": 0.04402822256088257, + "learning_rate": 0.01, + "loss": 2.1162, + "step": 7170 + }, + { + "epoch": 0.7369772937429364, + "grad_norm": 0.06922505795955658, + "learning_rate": 0.01, + "loss": 2.1279, + "step": 7173 + }, + { + "epoch": 0.7372855234768314, + "grad_norm": 0.06231709569692612, + "learning_rate": 0.01, + "loss": 2.0946, + "step": 7176 + }, + { + "epoch": 0.7375937532107264, + "grad_norm": 0.11480400711297989, + "learning_rate": 0.01, + "loss": 2.146, + "step": 7179 + }, + { + "epoch": 0.7379019829446214, + "grad_norm": 0.05144179239869118, + "learning_rate": 0.01, + "loss": 2.1128, + "step": 7182 + }, + { + "epoch": 0.7382102126785164, + "grad_norm": 0.05130591616034508, + "learning_rate": 0.01, + "loss": 2.0964, + "step": 7185 + }, + { + "epoch": 0.7385184424124114, + "grad_norm": 0.0549122579395771, + "learning_rate": 0.01, + "loss": 2.165, + "step": 7188 + }, + { + "epoch": 0.7388266721463064, + "grad_norm": 0.1378844678401947, + "learning_rate": 0.01, + "loss": 2.1367, + "step": 7191 + }, + { + "epoch": 0.7391349018802014, + "grad_norm": 0.06231486052274704, + "learning_rate": 0.01, + "loss": 2.1341, + "step": 7194 + }, + { + "epoch": 0.7394431316140964, + "grad_norm": 0.10189559310674667, + "learning_rate": 0.01, + "loss": 2.1161, + "step": 7197 + }, + { + "epoch": 0.7397513613479914, + "grad_norm": 0.053364284336566925, + "learning_rate": 0.01, + "loss": 2.1043, + "step": 7200 + }, + { + "epoch": 0.7400595910818863, + "grad_norm": 0.046057943254709244, + "learning_rate": 0.01, + "loss": 2.1011, + "step": 7203 + }, + { + "epoch": 0.7403678208157813, + "grad_norm": 0.04084615036845207, + "learning_rate": 0.01, + "loss": 2.1253, + "step": 7206 + }, + { + "epoch": 0.7406760505496763, + "grad_norm": 0.04594961181282997, + "learning_rate": 0.01, + "loss": 2.1228, + "step": 7209 + }, + { + "epoch": 0.7409842802835713, + "grad_norm": 0.06608622521162033, + "learning_rate": 0.01, + "loss": 2.1188, + "step": 7212 + }, + { + "epoch": 0.7412925100174663, + "grad_norm": 0.125398188829422, + "learning_rate": 0.01, + "loss": 2.1057, + "step": 7215 + }, + { + "epoch": 0.7416007397513613, + "grad_norm": 0.08068963885307312, + "learning_rate": 0.01, + "loss": 2.0947, + "step": 7218 + }, + { + "epoch": 0.7419089694852563, + "grad_norm": 0.07993921637535095, + "learning_rate": 0.01, + "loss": 2.1214, + "step": 7221 + }, + { + "epoch": 0.7422171992191513, + "grad_norm": 0.04969675466418266, + "learning_rate": 0.01, + "loss": 2.1099, + "step": 7224 + }, + { + "epoch": 0.7425254289530463, + "grad_norm": 0.054677605628967285, + "learning_rate": 0.01, + "loss": 2.1229, + "step": 7227 + }, + { + "epoch": 0.7428336586869413, + "grad_norm": 0.04562999680638313, + "learning_rate": 0.01, + "loss": 2.1409, + "step": 7230 + }, + { + "epoch": 0.7431418884208363, + "grad_norm": 0.07618910074234009, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 7233 + }, + { + "epoch": 0.7434501181547313, + "grad_norm": 0.14368098974227905, + "learning_rate": 0.01, + "loss": 2.1348, + "step": 7236 + }, + { + "epoch": 0.7437583478886263, + "grad_norm": 0.05517590045928955, + "learning_rate": 0.01, + "loss": 2.116, + "step": 7239 + }, + { + "epoch": 0.7440665776225214, + "grad_norm": 0.17316390573978424, + "learning_rate": 0.01, + "loss": 2.1363, + "step": 7242 + }, + { + "epoch": 0.7443748073564164, + "grad_norm": 0.15268415212631226, + "learning_rate": 0.01, + "loss": 2.1033, + "step": 7245 + }, + { + "epoch": 0.7446830370903114, + "grad_norm": 0.06212317943572998, + "learning_rate": 0.01, + "loss": 2.0971, + "step": 7248 + }, + { + "epoch": 0.7449912668242064, + "grad_norm": 0.04282272607088089, + "learning_rate": 0.01, + "loss": 2.1434, + "step": 7251 + }, + { + "epoch": 0.7452994965581013, + "grad_norm": 0.04305952787399292, + "learning_rate": 0.01, + "loss": 2.1406, + "step": 7254 + }, + { + "epoch": 0.7456077262919963, + "grad_norm": 0.048668697476387024, + "learning_rate": 0.01, + "loss": 2.1303, + "step": 7257 + }, + { + "epoch": 0.7459159560258913, + "grad_norm": 0.05524542182683945, + "learning_rate": 0.01, + "loss": 2.1331, + "step": 7260 + }, + { + "epoch": 0.7462241857597863, + "grad_norm": 0.0438026525080204, + "learning_rate": 0.01, + "loss": 2.109, + "step": 7263 + }, + { + "epoch": 0.7465324154936813, + "grad_norm": 0.08154566586017609, + "learning_rate": 0.01, + "loss": 2.1053, + "step": 7266 + }, + { + "epoch": 0.7468406452275763, + "grad_norm": 0.11754357814788818, + "learning_rate": 0.01, + "loss": 2.1298, + "step": 7269 + }, + { + "epoch": 0.7471488749614713, + "grad_norm": 0.06593465805053711, + "learning_rate": 0.01, + "loss": 2.1323, + "step": 7272 + }, + { + "epoch": 0.7474571046953663, + "grad_norm": 0.08065393567085266, + "learning_rate": 0.01, + "loss": 2.1297, + "step": 7275 + }, + { + "epoch": 0.7477653344292613, + "grad_norm": 0.10624121129512787, + "learning_rate": 0.01, + "loss": 2.1175, + "step": 7278 + }, + { + "epoch": 0.7480735641631563, + "grad_norm": 0.06357972323894501, + "learning_rate": 0.01, + "loss": 2.164, + "step": 7281 + }, + { + "epoch": 0.7483817938970513, + "grad_norm": 0.03753754869103432, + "learning_rate": 0.01, + "loss": 2.1519, + "step": 7284 + }, + { + "epoch": 0.7486900236309463, + "grad_norm": 0.04756931588053703, + "learning_rate": 0.01, + "loss": 2.0901, + "step": 7287 + }, + { + "epoch": 0.7489982533648413, + "grad_norm": 0.0494108609855175, + "learning_rate": 0.01, + "loss": 2.1474, + "step": 7290 + }, + { + "epoch": 0.7493064830987363, + "grad_norm": 0.063727006316185, + "learning_rate": 0.01, + "loss": 2.1425, + "step": 7293 + }, + { + "epoch": 0.7496147128326313, + "grad_norm": 0.06327082961797714, + "learning_rate": 0.01, + "loss": 2.1346, + "step": 7296 + }, + { + "epoch": 0.7499229425665263, + "grad_norm": 0.10383486747741699, + "learning_rate": 0.01, + "loss": 2.1245, + "step": 7299 + }, + { + "epoch": 0.7502311723004212, + "grad_norm": 0.10473886877298355, + "learning_rate": 0.01, + "loss": 2.1302, + "step": 7302 + }, + { + "epoch": 0.7505394020343162, + "grad_norm": 0.04905236139893532, + "learning_rate": 0.01, + "loss": 2.119, + "step": 7305 + }, + { + "epoch": 0.7508476317682112, + "grad_norm": 0.04571664705872536, + "learning_rate": 0.01, + "loss": 2.1505, + "step": 7308 + }, + { + "epoch": 0.7511558615021062, + "grad_norm": 0.06305412203073502, + "learning_rate": 0.01, + "loss": 2.1389, + "step": 7311 + }, + { + "epoch": 0.7514640912360012, + "grad_norm": 0.05825283005833626, + "learning_rate": 0.01, + "loss": 2.1361, + "step": 7314 + }, + { + "epoch": 0.7517723209698962, + "grad_norm": 0.059476301074028015, + "learning_rate": 0.01, + "loss": 2.1191, + "step": 7317 + }, + { + "epoch": 0.7520805507037912, + "grad_norm": 0.042396873235702515, + "learning_rate": 0.01, + "loss": 2.1309, + "step": 7320 + }, + { + "epoch": 0.7523887804376862, + "grad_norm": 0.04611228406429291, + "learning_rate": 0.01, + "loss": 2.1438, + "step": 7323 + }, + { + "epoch": 0.7526970101715812, + "grad_norm": 0.09147686511278152, + "learning_rate": 0.01, + "loss": 2.1288, + "step": 7326 + }, + { + "epoch": 0.7530052399054762, + "grad_norm": 0.08085332810878754, + "learning_rate": 0.01, + "loss": 2.1427, + "step": 7329 + }, + { + "epoch": 0.7533134696393712, + "grad_norm": 0.03873496130108833, + "learning_rate": 0.01, + "loss": 2.1257, + "step": 7332 + }, + { + "epoch": 0.7536216993732662, + "grad_norm": 0.05457824096083641, + "learning_rate": 0.01, + "loss": 2.1373, + "step": 7335 + }, + { + "epoch": 0.7539299291071612, + "grad_norm": 0.049249522387981415, + "learning_rate": 0.01, + "loss": 2.1185, + "step": 7338 + }, + { + "epoch": 0.7542381588410562, + "grad_norm": 0.07082841545343399, + "learning_rate": 0.01, + "loss": 2.1157, + "step": 7341 + }, + { + "epoch": 0.7545463885749512, + "grad_norm": 0.046108178794384, + "learning_rate": 0.01, + "loss": 2.1238, + "step": 7344 + }, + { + "epoch": 0.7548546183088461, + "grad_norm": 0.05572620406746864, + "learning_rate": 0.01, + "loss": 2.1445, + "step": 7347 + }, + { + "epoch": 0.7551628480427411, + "grad_norm": 0.1091703474521637, + "learning_rate": 0.01, + "loss": 2.1281, + "step": 7350 + }, + { + "epoch": 0.7554710777766361, + "grad_norm": 0.09372757375240326, + "learning_rate": 0.01, + "loss": 2.1231, + "step": 7353 + }, + { + "epoch": 0.7557793075105311, + "grad_norm": 0.0482059009373188, + "learning_rate": 0.01, + "loss": 2.1003, + "step": 7356 + }, + { + "epoch": 0.7560875372444262, + "grad_norm": 0.041941821575164795, + "learning_rate": 0.01, + "loss": 2.1382, + "step": 7359 + }, + { + "epoch": 0.7563957669783212, + "grad_norm": 0.07122782617807388, + "learning_rate": 0.01, + "loss": 2.1419, + "step": 7362 + }, + { + "epoch": 0.7567039967122162, + "grad_norm": 0.06854265183210373, + "learning_rate": 0.01, + "loss": 2.1328, + "step": 7365 + }, + { + "epoch": 0.7570122264461112, + "grad_norm": 0.10073423385620117, + "learning_rate": 0.01, + "loss": 2.1322, + "step": 7368 + }, + { + "epoch": 0.7573204561800062, + "grad_norm": 0.038869407027959824, + "learning_rate": 0.01, + "loss": 2.1273, + "step": 7371 + }, + { + "epoch": 0.7576286859139012, + "grad_norm": 0.09483812749385834, + "learning_rate": 0.01, + "loss": 2.1465, + "step": 7374 + }, + { + "epoch": 0.7579369156477962, + "grad_norm": 0.07226487994194031, + "learning_rate": 0.01, + "loss": 2.1386, + "step": 7377 + }, + { + "epoch": 0.7582451453816912, + "grad_norm": 0.05041668191552162, + "learning_rate": 0.01, + "loss": 2.1249, + "step": 7380 + }, + { + "epoch": 0.7585533751155862, + "grad_norm": 0.03839525580406189, + "learning_rate": 0.01, + "loss": 2.1125, + "step": 7383 + }, + { + "epoch": 0.7588616048494812, + "grad_norm": 0.047746479511260986, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 7386 + }, + { + "epoch": 0.7591698345833762, + "grad_norm": 0.05524810031056404, + "learning_rate": 0.01, + "loss": 2.166, + "step": 7389 + }, + { + "epoch": 0.7594780643172712, + "grad_norm": 0.050045181065797806, + "learning_rate": 0.01, + "loss": 2.1411, + "step": 7392 + }, + { + "epoch": 0.7597862940511662, + "grad_norm": 0.09187906980514526, + "learning_rate": 0.01, + "loss": 2.13, + "step": 7395 + }, + { + "epoch": 0.7600945237850611, + "grad_norm": 0.15085643529891968, + "learning_rate": 0.01, + "loss": 2.1198, + "step": 7398 + }, + { + "epoch": 0.7604027535189561, + "grad_norm": 0.05295104160904884, + "learning_rate": 0.01, + "loss": 2.1067, + "step": 7401 + }, + { + "epoch": 0.7607109832528511, + "grad_norm": 0.03696104511618614, + "learning_rate": 0.01, + "loss": 2.1159, + "step": 7404 + }, + { + "epoch": 0.7610192129867461, + "grad_norm": 0.04209265485405922, + "learning_rate": 0.01, + "loss": 2.1243, + "step": 7407 + }, + { + "epoch": 0.7613274427206411, + "grad_norm": 0.056943077594041824, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 7410 + }, + { + "epoch": 0.7616356724545361, + "grad_norm": 0.12749402225017548, + "learning_rate": 0.01, + "loss": 2.1087, + "step": 7413 + }, + { + "epoch": 0.7619439021884311, + "grad_norm": 0.09119253605604172, + "learning_rate": 0.01, + "loss": 2.1252, + "step": 7416 + }, + { + "epoch": 0.7622521319223261, + "grad_norm": 0.04251190647482872, + "learning_rate": 0.01, + "loss": 2.1384, + "step": 7419 + }, + { + "epoch": 0.7625603616562211, + "grad_norm": 0.04010685533285141, + "learning_rate": 0.01, + "loss": 2.1449, + "step": 7422 + }, + { + "epoch": 0.7628685913901161, + "grad_norm": 0.05524475499987602, + "learning_rate": 0.01, + "loss": 2.0841, + "step": 7425 + }, + { + "epoch": 0.7631768211240111, + "grad_norm": 0.10250036418437958, + "learning_rate": 0.01, + "loss": 2.0827, + "step": 7428 + }, + { + "epoch": 0.7634850508579061, + "grad_norm": 0.0748668685555458, + "learning_rate": 0.01, + "loss": 2.128, + "step": 7431 + }, + { + "epoch": 0.7637932805918011, + "grad_norm": 0.08616036176681519, + "learning_rate": 0.01, + "loss": 2.1087, + "step": 7434 + }, + { + "epoch": 0.7641015103256961, + "grad_norm": 0.09491308033466339, + "learning_rate": 0.01, + "loss": 2.1247, + "step": 7437 + }, + { + "epoch": 0.7644097400595911, + "grad_norm": 0.08575759083032608, + "learning_rate": 0.01, + "loss": 2.1419, + "step": 7440 + }, + { + "epoch": 0.764717969793486, + "grad_norm": 0.04314613714814186, + "learning_rate": 0.01, + "loss": 2.1462, + "step": 7443 + }, + { + "epoch": 0.765026199527381, + "grad_norm": 0.035719119012355804, + "learning_rate": 0.01, + "loss": 2.1337, + "step": 7446 + }, + { + "epoch": 0.765334429261276, + "grad_norm": 0.04597650095820427, + "learning_rate": 0.01, + "loss": 2.1258, + "step": 7449 + }, + { + "epoch": 0.765642658995171, + "grad_norm": 0.10039210319519043, + "learning_rate": 0.01, + "loss": 2.1238, + "step": 7452 + }, + { + "epoch": 0.765950888729066, + "grad_norm": 0.07157409191131592, + "learning_rate": 0.01, + "loss": 2.1349, + "step": 7455 + }, + { + "epoch": 0.766259118462961, + "grad_norm": 0.09058292210102081, + "learning_rate": 0.01, + "loss": 2.1232, + "step": 7458 + }, + { + "epoch": 0.766567348196856, + "grad_norm": 0.06009940057992935, + "learning_rate": 0.01, + "loss": 2.1386, + "step": 7461 + }, + { + "epoch": 0.766875577930751, + "grad_norm": 0.1165439561009407, + "learning_rate": 0.01, + "loss": 2.1293, + "step": 7464 + }, + { + "epoch": 0.767183807664646, + "grad_norm": 0.06138407811522484, + "learning_rate": 0.01, + "loss": 2.1066, + "step": 7467 + }, + { + "epoch": 0.767492037398541, + "grad_norm": 0.06058945506811142, + "learning_rate": 0.01, + "loss": 2.1044, + "step": 7470 + }, + { + "epoch": 0.767800267132436, + "grad_norm": 0.06741827726364136, + "learning_rate": 0.01, + "loss": 2.1191, + "step": 7473 + }, + { + "epoch": 0.7681084968663311, + "grad_norm": 0.047926925122737885, + "learning_rate": 0.01, + "loss": 2.1333, + "step": 7476 + }, + { + "epoch": 0.7684167266002261, + "grad_norm": 0.06450969725847244, + "learning_rate": 0.01, + "loss": 2.1061, + "step": 7479 + }, + { + "epoch": 0.7687249563341211, + "grad_norm": 0.11133641749620438, + "learning_rate": 0.01, + "loss": 2.1129, + "step": 7482 + }, + { + "epoch": 0.7690331860680161, + "grad_norm": 0.049795158207416534, + "learning_rate": 0.01, + "loss": 2.136, + "step": 7485 + }, + { + "epoch": 0.7693414158019111, + "grad_norm": 0.06083859130740166, + "learning_rate": 0.01, + "loss": 2.1459, + "step": 7488 + }, + { + "epoch": 0.7696496455358061, + "grad_norm": 0.04686833918094635, + "learning_rate": 0.01, + "loss": 2.1073, + "step": 7491 + }, + { + "epoch": 0.769957875269701, + "grad_norm": 0.05475611612200737, + "learning_rate": 0.01, + "loss": 2.1167, + "step": 7494 + }, + { + "epoch": 0.770266105003596, + "grad_norm": 0.04683786630630493, + "learning_rate": 0.01, + "loss": 2.1491, + "step": 7497 + }, + { + "epoch": 0.770574334737491, + "grad_norm": 0.10841275751590729, + "learning_rate": 0.01, + "loss": 2.0967, + "step": 7500 + }, + { + "epoch": 0.770882564471386, + "grad_norm": 0.09716581553220749, + "learning_rate": 0.01, + "loss": 2.1133, + "step": 7503 + }, + { + "epoch": 0.771190794205281, + "grad_norm": 0.04913085699081421, + "learning_rate": 0.01, + "loss": 2.1401, + "step": 7506 + }, + { + "epoch": 0.771499023939176, + "grad_norm": 0.04710682854056358, + "learning_rate": 0.01, + "loss": 2.109, + "step": 7509 + }, + { + "epoch": 0.771807253673071, + "grad_norm": 0.054945673793554306, + "learning_rate": 0.01, + "loss": 2.1169, + "step": 7512 + }, + { + "epoch": 0.772115483406966, + "grad_norm": 0.04265155643224716, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 7515 + }, + { + "epoch": 0.772423713140861, + "grad_norm": 0.03544042259454727, + "learning_rate": 0.01, + "loss": 2.1172, + "step": 7518 + }, + { + "epoch": 0.772731942874756, + "grad_norm": 0.05048484355211258, + "learning_rate": 0.01, + "loss": 2.1015, + "step": 7521 + }, + { + "epoch": 0.773040172608651, + "grad_norm": 0.14160272479057312, + "learning_rate": 0.01, + "loss": 2.1475, + "step": 7524 + }, + { + "epoch": 0.773348402342546, + "grad_norm": 0.08693049848079681, + "learning_rate": 0.01, + "loss": 2.1266, + "step": 7527 + }, + { + "epoch": 0.773656632076441, + "grad_norm": 0.06437800824642181, + "learning_rate": 0.01, + "loss": 2.1273, + "step": 7530 + }, + { + "epoch": 0.773964861810336, + "grad_norm": 0.04450656846165657, + "learning_rate": 0.01, + "loss": 2.1192, + "step": 7533 + }, + { + "epoch": 0.774273091544231, + "grad_norm": 0.05369933694601059, + "learning_rate": 0.01, + "loss": 2.1264, + "step": 7536 + }, + { + "epoch": 0.774581321278126, + "grad_norm": 0.04080953076481819, + "learning_rate": 0.01, + "loss": 2.1319, + "step": 7539 + }, + { + "epoch": 0.774889551012021, + "grad_norm": 0.03433745354413986, + "learning_rate": 0.01, + "loss": 2.1024, + "step": 7542 + }, + { + "epoch": 0.7751977807459159, + "grad_norm": 0.1574896275997162, + "learning_rate": 0.01, + "loss": 2.1182, + "step": 7545 + }, + { + "epoch": 0.7755060104798109, + "grad_norm": 0.1207810789346695, + "learning_rate": 0.01, + "loss": 2.1052, + "step": 7548 + }, + { + "epoch": 0.7758142402137059, + "grad_norm": 0.07270894944667816, + "learning_rate": 0.01, + "loss": 2.1331, + "step": 7551 + }, + { + "epoch": 0.7761224699476009, + "grad_norm": 0.07062831521034241, + "learning_rate": 0.01, + "loss": 2.099, + "step": 7554 + }, + { + "epoch": 0.7764306996814959, + "grad_norm": 0.04142964631319046, + "learning_rate": 0.01, + "loss": 2.1192, + "step": 7557 + }, + { + "epoch": 0.7767389294153909, + "grad_norm": 0.04645151272416115, + "learning_rate": 0.01, + "loss": 2.1117, + "step": 7560 + }, + { + "epoch": 0.7770471591492859, + "grad_norm": 0.046251073479652405, + "learning_rate": 0.01, + "loss": 2.1399, + "step": 7563 + }, + { + "epoch": 0.7773553888831809, + "grad_norm": 0.07185769826173782, + "learning_rate": 0.01, + "loss": 2.1261, + "step": 7566 + }, + { + "epoch": 0.7776636186170759, + "grad_norm": 0.045216575264930725, + "learning_rate": 0.01, + "loss": 2.1302, + "step": 7569 + }, + { + "epoch": 0.7779718483509709, + "grad_norm": 0.04923580586910248, + "learning_rate": 0.01, + "loss": 2.1482, + "step": 7572 + }, + { + "epoch": 0.7782800780848659, + "grad_norm": 0.06434139609336853, + "learning_rate": 0.01, + "loss": 2.1325, + "step": 7575 + }, + { + "epoch": 0.7785883078187609, + "grad_norm": 0.11186740547418594, + "learning_rate": 0.01, + "loss": 2.1168, + "step": 7578 + }, + { + "epoch": 0.7788965375526559, + "grad_norm": 0.06694278120994568, + "learning_rate": 0.01, + "loss": 2.15, + "step": 7581 + }, + { + "epoch": 0.7792047672865509, + "grad_norm": 0.05431769788265228, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 7584 + }, + { + "epoch": 0.7795129970204459, + "grad_norm": 0.05853963643312454, + "learning_rate": 0.01, + "loss": 2.1145, + "step": 7587 + }, + { + "epoch": 0.779821226754341, + "grad_norm": 0.04059399664402008, + "learning_rate": 0.01, + "loss": 2.1373, + "step": 7590 + }, + { + "epoch": 0.780129456488236, + "grad_norm": 0.06444236636161804, + "learning_rate": 0.01, + "loss": 2.1167, + "step": 7593 + }, + { + "epoch": 0.7804376862221309, + "grad_norm": 0.09885245561599731, + "learning_rate": 0.01, + "loss": 2.1146, + "step": 7596 + }, + { + "epoch": 0.7807459159560259, + "grad_norm": 0.08536794036626816, + "learning_rate": 0.01, + "loss": 2.1282, + "step": 7599 + }, + { + "epoch": 0.7810541456899209, + "grad_norm": 0.04299011081457138, + "learning_rate": 0.01, + "loss": 2.103, + "step": 7602 + }, + { + "epoch": 0.7813623754238159, + "grad_norm": 0.060757700353860855, + "learning_rate": 0.01, + "loss": 2.0923, + "step": 7605 + }, + { + "epoch": 0.7816706051577109, + "grad_norm": 0.037401244044303894, + "learning_rate": 0.01, + "loss": 2.1343, + "step": 7608 + }, + { + "epoch": 0.7819788348916059, + "grad_norm": 0.12264932692050934, + "learning_rate": 0.01, + "loss": 2.1193, + "step": 7611 + }, + { + "epoch": 0.7822870646255009, + "grad_norm": 0.052691470831632614, + "learning_rate": 0.01, + "loss": 2.1097, + "step": 7614 + }, + { + "epoch": 0.7825952943593959, + "grad_norm": 0.05509025603532791, + "learning_rate": 0.01, + "loss": 2.1208, + "step": 7617 + }, + { + "epoch": 0.7829035240932909, + "grad_norm": 0.10352631658315659, + "learning_rate": 0.01, + "loss": 2.1277, + "step": 7620 + }, + { + "epoch": 0.7832117538271859, + "grad_norm": 0.05865751951932907, + "learning_rate": 0.01, + "loss": 2.138, + "step": 7623 + }, + { + "epoch": 0.7835199835610809, + "grad_norm": 0.09445837885141373, + "learning_rate": 0.01, + "loss": 2.1131, + "step": 7626 + }, + { + "epoch": 0.7838282132949759, + "grad_norm": 0.11066542565822601, + "learning_rate": 0.01, + "loss": 2.1315, + "step": 7629 + }, + { + "epoch": 0.7841364430288709, + "grad_norm": 0.05489170923829079, + "learning_rate": 0.01, + "loss": 2.1264, + "step": 7632 + }, + { + "epoch": 0.7844446727627659, + "grad_norm": 0.06804061681032181, + "learning_rate": 0.01, + "loss": 2.1491, + "step": 7635 + }, + { + "epoch": 0.7847529024966609, + "grad_norm": 0.07411237061023712, + "learning_rate": 0.01, + "loss": 2.126, + "step": 7638 + }, + { + "epoch": 0.7850611322305558, + "grad_norm": 0.050356972962617874, + "learning_rate": 0.01, + "loss": 2.1237, + "step": 7641 + }, + { + "epoch": 0.7853693619644508, + "grad_norm": 0.06125912442803383, + "learning_rate": 0.01, + "loss": 2.1328, + "step": 7644 + }, + { + "epoch": 0.7856775916983458, + "grad_norm": 0.05983618274331093, + "learning_rate": 0.01, + "loss": 2.1152, + "step": 7647 + }, + { + "epoch": 0.7859858214322408, + "grad_norm": 0.04065684601664543, + "learning_rate": 0.01, + "loss": 2.1213, + "step": 7650 + }, + { + "epoch": 0.7862940511661358, + "grad_norm": 0.05535745993256569, + "learning_rate": 0.01, + "loss": 2.1106, + "step": 7653 + }, + { + "epoch": 0.7866022809000308, + "grad_norm": 0.09727519005537033, + "learning_rate": 0.01, + "loss": 2.1202, + "step": 7656 + }, + { + "epoch": 0.7869105106339258, + "grad_norm": 0.07764584571123123, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 7659 + }, + { + "epoch": 0.7872187403678208, + "grad_norm": 0.04933121055364609, + "learning_rate": 0.01, + "loss": 2.1217, + "step": 7662 + }, + { + "epoch": 0.7875269701017158, + "grad_norm": 0.12199501693248749, + "learning_rate": 0.01, + "loss": 2.1412, + "step": 7665 + }, + { + "epoch": 0.7878351998356108, + "grad_norm": 0.14431309700012207, + "learning_rate": 0.01, + "loss": 2.1249, + "step": 7668 + }, + { + "epoch": 0.7881434295695058, + "grad_norm": 0.07583998888731003, + "learning_rate": 0.01, + "loss": 2.139, + "step": 7671 + }, + { + "epoch": 0.7884516593034008, + "grad_norm": 0.10426465421915054, + "learning_rate": 0.01, + "loss": 2.1053, + "step": 7674 + }, + { + "epoch": 0.7887598890372958, + "grad_norm": 0.06411170959472656, + "learning_rate": 0.01, + "loss": 2.1105, + "step": 7677 + }, + { + "epoch": 0.7890681187711908, + "grad_norm": 0.07436025142669678, + "learning_rate": 0.01, + "loss": 2.1301, + "step": 7680 + }, + { + "epoch": 0.7893763485050858, + "grad_norm": 0.10409426689147949, + "learning_rate": 0.01, + "loss": 2.1319, + "step": 7683 + }, + { + "epoch": 0.7896845782389807, + "grad_norm": 0.05232664570212364, + "learning_rate": 0.01, + "loss": 2.1458, + "step": 7686 + }, + { + "epoch": 0.7899928079728757, + "grad_norm": 0.06705309450626373, + "learning_rate": 0.01, + "loss": 2.1231, + "step": 7689 + }, + { + "epoch": 0.7903010377067707, + "grad_norm": 0.04422546550631523, + "learning_rate": 0.01, + "loss": 2.0836, + "step": 7692 + }, + { + "epoch": 0.7906092674406657, + "grad_norm": 0.04316714033484459, + "learning_rate": 0.01, + "loss": 2.1117, + "step": 7695 + }, + { + "epoch": 0.7909174971745607, + "grad_norm": 0.058282140642404556, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 7698 + }, + { + "epoch": 0.7912257269084557, + "grad_norm": 0.07676571607589722, + "learning_rate": 0.01, + "loss": 2.1402, + "step": 7701 + }, + { + "epoch": 0.7915339566423507, + "grad_norm": 0.07258665561676025, + "learning_rate": 0.01, + "loss": 2.1458, + "step": 7704 + }, + { + "epoch": 0.7918421863762458, + "grad_norm": 0.04850257560610771, + "learning_rate": 0.01, + "loss": 2.0886, + "step": 7707 + }, + { + "epoch": 0.7921504161101408, + "grad_norm": 0.05658482015132904, + "learning_rate": 0.01, + "loss": 2.1174, + "step": 7710 + }, + { + "epoch": 0.7924586458440358, + "grad_norm": 0.06475166231393814, + "learning_rate": 0.01, + "loss": 2.0995, + "step": 7713 + }, + { + "epoch": 0.7927668755779308, + "grad_norm": 0.10428962856531143, + "learning_rate": 0.01, + "loss": 2.109, + "step": 7716 + }, + { + "epoch": 0.7930751053118258, + "grad_norm": 0.04227283224463463, + "learning_rate": 0.01, + "loss": 2.1124, + "step": 7719 + }, + { + "epoch": 0.7933833350457208, + "grad_norm": 0.0594823881983757, + "learning_rate": 0.01, + "loss": 2.0944, + "step": 7722 + }, + { + "epoch": 0.7936915647796158, + "grad_norm": 0.08695527911186218, + "learning_rate": 0.01, + "loss": 2.1077, + "step": 7725 + }, + { + "epoch": 0.7939997945135108, + "grad_norm": 0.06003952398896217, + "learning_rate": 0.01, + "loss": 2.088, + "step": 7728 + }, + { + "epoch": 0.7943080242474058, + "grad_norm": 0.058509476482868195, + "learning_rate": 0.01, + "loss": 2.1471, + "step": 7731 + }, + { + "epoch": 0.7946162539813008, + "grad_norm": 0.048057131469249725, + "learning_rate": 0.01, + "loss": 2.1252, + "step": 7734 + }, + { + "epoch": 0.7949244837151958, + "grad_norm": 0.11144626140594482, + "learning_rate": 0.01, + "loss": 2.1209, + "step": 7737 + }, + { + "epoch": 0.7952327134490907, + "grad_norm": 0.041008081287145615, + "learning_rate": 0.01, + "loss": 2.1139, + "step": 7740 + }, + { + "epoch": 0.7955409431829857, + "grad_norm": 0.04088988155126572, + "learning_rate": 0.01, + "loss": 2.0927, + "step": 7743 + }, + { + "epoch": 0.7958491729168807, + "grad_norm": 0.1495555192232132, + "learning_rate": 0.01, + "loss": 2.0977, + "step": 7746 + }, + { + "epoch": 0.7961574026507757, + "grad_norm": 0.042645204812288284, + "learning_rate": 0.01, + "loss": 2.1021, + "step": 7749 + }, + { + "epoch": 0.7964656323846707, + "grad_norm": 0.04671596363186836, + "learning_rate": 0.01, + "loss": 2.1015, + "step": 7752 + }, + { + "epoch": 0.7967738621185657, + "grad_norm": 0.07249152660369873, + "learning_rate": 0.01, + "loss": 2.1278, + "step": 7755 + }, + { + "epoch": 0.7970820918524607, + "grad_norm": 0.05848756060004234, + "learning_rate": 0.01, + "loss": 2.1168, + "step": 7758 + }, + { + "epoch": 0.7973903215863557, + "grad_norm": 0.05428781732916832, + "learning_rate": 0.01, + "loss": 2.1228, + "step": 7761 + }, + { + "epoch": 0.7976985513202507, + "grad_norm": 0.04751111939549446, + "learning_rate": 0.01, + "loss": 2.1178, + "step": 7764 + }, + { + "epoch": 0.7980067810541457, + "grad_norm": 0.08653240650892258, + "learning_rate": 0.01, + "loss": 2.1081, + "step": 7767 + }, + { + "epoch": 0.7983150107880407, + "grad_norm": 0.04038892313838005, + "learning_rate": 0.01, + "loss": 2.1028, + "step": 7770 + }, + { + "epoch": 0.7986232405219357, + "grad_norm": 0.05703849345445633, + "learning_rate": 0.01, + "loss": 2.1249, + "step": 7773 + }, + { + "epoch": 0.7989314702558307, + "grad_norm": 0.06425055861473083, + "learning_rate": 0.01, + "loss": 2.1291, + "step": 7776 + }, + { + "epoch": 0.7992396999897257, + "grad_norm": 0.05537475273013115, + "learning_rate": 0.01, + "loss": 2.1122, + "step": 7779 + }, + { + "epoch": 0.7995479297236207, + "grad_norm": 0.05172963812947273, + "learning_rate": 0.01, + "loss": 2.1218, + "step": 7782 + }, + { + "epoch": 0.7998561594575156, + "grad_norm": 0.05907023698091507, + "learning_rate": 0.01, + "loss": 2.1041, + "step": 7785 + }, + { + "epoch": 0.8001643891914106, + "grad_norm": 0.10618621110916138, + "learning_rate": 0.01, + "loss": 2.1266, + "step": 7788 + }, + { + "epoch": 0.8004726189253056, + "grad_norm": 0.06189849600195885, + "learning_rate": 0.01, + "loss": 2.1327, + "step": 7791 + }, + { + "epoch": 0.8007808486592006, + "grad_norm": 0.10624901950359344, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 7794 + }, + { + "epoch": 0.8010890783930956, + "grad_norm": 0.04061825945973396, + "learning_rate": 0.01, + "loss": 2.0859, + "step": 7797 + }, + { + "epoch": 0.8013973081269906, + "grad_norm": 0.04402461647987366, + "learning_rate": 0.01, + "loss": 2.1303, + "step": 7800 + }, + { + "epoch": 0.8017055378608856, + "grad_norm": 0.05029004439711571, + "learning_rate": 0.01, + "loss": 2.1224, + "step": 7803 + }, + { + "epoch": 0.8020137675947806, + "grad_norm": 0.055786702781915665, + "learning_rate": 0.01, + "loss": 2.1296, + "step": 7806 + }, + { + "epoch": 0.8023219973286756, + "grad_norm": 0.11740477383136749, + "learning_rate": 0.01, + "loss": 2.1222, + "step": 7809 + }, + { + "epoch": 0.8026302270625706, + "grad_norm": 0.10261218994855881, + "learning_rate": 0.01, + "loss": 2.1405, + "step": 7812 + }, + { + "epoch": 0.8029384567964656, + "grad_norm": 0.05233708769083023, + "learning_rate": 0.01, + "loss": 2.1118, + "step": 7815 + }, + { + "epoch": 0.8032466865303606, + "grad_norm": 0.04390858858823776, + "learning_rate": 0.01, + "loss": 2.1299, + "step": 7818 + }, + { + "epoch": 0.8035549162642556, + "grad_norm": 0.05893026292324066, + "learning_rate": 0.01, + "loss": 2.1184, + "step": 7821 + }, + { + "epoch": 0.8038631459981507, + "grad_norm": 0.06398338079452515, + "learning_rate": 0.01, + "loss": 2.1057, + "step": 7824 + }, + { + "epoch": 0.8041713757320457, + "grad_norm": 0.07129772752523422, + "learning_rate": 0.01, + "loss": 2.1056, + "step": 7827 + }, + { + "epoch": 0.8044796054659407, + "grad_norm": 0.07481534779071808, + "learning_rate": 0.01, + "loss": 2.1272, + "step": 7830 + }, + { + "epoch": 0.8047878351998357, + "grad_norm": 0.049200594425201416, + "learning_rate": 0.01, + "loss": 2.0942, + "step": 7833 + }, + { + "epoch": 0.8050960649337306, + "grad_norm": 0.05124384164810181, + "learning_rate": 0.01, + "loss": 2.0859, + "step": 7836 + }, + { + "epoch": 0.8054042946676256, + "grad_norm": 0.07997792959213257, + "learning_rate": 0.01, + "loss": 2.1412, + "step": 7839 + }, + { + "epoch": 0.8057125244015206, + "grad_norm": 0.12280064076185226, + "learning_rate": 0.01, + "loss": 2.0826, + "step": 7842 + }, + { + "epoch": 0.8060207541354156, + "grad_norm": 0.05292202904820442, + "learning_rate": 0.01, + "loss": 2.0965, + "step": 7845 + }, + { + "epoch": 0.8063289838693106, + "grad_norm": 0.04903187230229378, + "learning_rate": 0.01, + "loss": 2.0911, + "step": 7848 + }, + { + "epoch": 0.8066372136032056, + "grad_norm": 0.06882268935441971, + "learning_rate": 0.01, + "loss": 2.108, + "step": 7851 + }, + { + "epoch": 0.8069454433371006, + "grad_norm": 0.06937083601951599, + "learning_rate": 0.01, + "loss": 2.1234, + "step": 7854 + }, + { + "epoch": 0.8072536730709956, + "grad_norm": 0.10075647383928299, + "learning_rate": 0.01, + "loss": 2.0983, + "step": 7857 + }, + { + "epoch": 0.8075619028048906, + "grad_norm": 0.07185733318328857, + "learning_rate": 0.01, + "loss": 2.0998, + "step": 7860 + }, + { + "epoch": 0.8078701325387856, + "grad_norm": 0.07266184687614441, + "learning_rate": 0.01, + "loss": 2.1056, + "step": 7863 + }, + { + "epoch": 0.8081783622726806, + "grad_norm": 0.05049808695912361, + "learning_rate": 0.01, + "loss": 2.1126, + "step": 7866 + }, + { + "epoch": 0.8084865920065756, + "grad_norm": 0.07260838896036148, + "learning_rate": 0.01, + "loss": 2.1311, + "step": 7869 + }, + { + "epoch": 0.8087948217404706, + "grad_norm": 0.0659325122833252, + "learning_rate": 0.01, + "loss": 2.1317, + "step": 7872 + }, + { + "epoch": 0.8091030514743656, + "grad_norm": 0.056960709393024445, + "learning_rate": 0.01, + "loss": 2.0988, + "step": 7875 + }, + { + "epoch": 0.8094112812082606, + "grad_norm": 0.1266620010137558, + "learning_rate": 0.01, + "loss": 2.1274, + "step": 7878 + }, + { + "epoch": 0.8097195109421556, + "grad_norm": 0.05951874330639839, + "learning_rate": 0.01, + "loss": 2.1342, + "step": 7881 + }, + { + "epoch": 0.8100277406760505, + "grad_norm": 0.06081915274262428, + "learning_rate": 0.01, + "loss": 2.1036, + "step": 7884 + }, + { + "epoch": 0.8103359704099455, + "grad_norm": 0.07136547565460205, + "learning_rate": 0.01, + "loss": 2.1067, + "step": 7887 + }, + { + "epoch": 0.8106442001438405, + "grad_norm": 0.08835722506046295, + "learning_rate": 0.01, + "loss": 2.1123, + "step": 7890 + }, + { + "epoch": 0.8109524298777355, + "grad_norm": 0.04469553008675575, + "learning_rate": 0.01, + "loss": 2.1117, + "step": 7893 + }, + { + "epoch": 0.8112606596116305, + "grad_norm": 0.042171087116003036, + "learning_rate": 0.01, + "loss": 2.0875, + "step": 7896 + }, + { + "epoch": 0.8115688893455255, + "grad_norm": 0.0847015529870987, + "learning_rate": 0.01, + "loss": 2.0998, + "step": 7899 + }, + { + "epoch": 0.8118771190794205, + "grad_norm": 0.09157509356737137, + "learning_rate": 0.01, + "loss": 2.121, + "step": 7902 + }, + { + "epoch": 0.8121853488133155, + "grad_norm": 0.06001126766204834, + "learning_rate": 0.01, + "loss": 2.1441, + "step": 7905 + }, + { + "epoch": 0.8124935785472105, + "grad_norm": 0.03552449122071266, + "learning_rate": 0.01, + "loss": 2.1371, + "step": 7908 + }, + { + "epoch": 0.8128018082811055, + "grad_norm": 0.034304428845644, + "learning_rate": 0.01, + "loss": 2.1066, + "step": 7911 + }, + { + "epoch": 0.8131100380150005, + "grad_norm": 0.04897907376289368, + "learning_rate": 0.01, + "loss": 2.1054, + "step": 7914 + }, + { + "epoch": 0.8134182677488955, + "grad_norm": 0.06674344837665558, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 7917 + }, + { + "epoch": 0.8137264974827905, + "grad_norm": 0.06437379866838455, + "learning_rate": 0.01, + "loss": 2.1189, + "step": 7920 + }, + { + "epoch": 0.8140347272166855, + "grad_norm": 0.06402087956666946, + "learning_rate": 0.01, + "loss": 2.1111, + "step": 7923 + }, + { + "epoch": 0.8143429569505805, + "grad_norm": 0.11063557863235474, + "learning_rate": 0.01, + "loss": 2.1131, + "step": 7926 + }, + { + "epoch": 0.8146511866844754, + "grad_norm": 0.10625256597995758, + "learning_rate": 0.01, + "loss": 2.113, + "step": 7929 + }, + { + "epoch": 0.8149594164183704, + "grad_norm": 0.0682268813252449, + "learning_rate": 0.01, + "loss": 2.0929, + "step": 7932 + }, + { + "epoch": 0.8152676461522654, + "grad_norm": 0.08721883594989777, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 7935 + }, + { + "epoch": 0.8155758758861605, + "grad_norm": 0.07372716814279556, + "learning_rate": 0.01, + "loss": 2.1173, + "step": 7938 + }, + { + "epoch": 0.8158841056200555, + "grad_norm": 0.049299102276563644, + "learning_rate": 0.01, + "loss": 2.1172, + "step": 7941 + }, + { + "epoch": 0.8161923353539505, + "grad_norm": 0.06552339345216751, + "learning_rate": 0.01, + "loss": 2.1035, + "step": 7944 + }, + { + "epoch": 0.8165005650878455, + "grad_norm": 0.08362871408462524, + "learning_rate": 0.01, + "loss": 2.0942, + "step": 7947 + }, + { + "epoch": 0.8168087948217405, + "grad_norm": 0.07610680162906647, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 7950 + }, + { + "epoch": 0.8171170245556355, + "grad_norm": 0.058830149471759796, + "learning_rate": 0.01, + "loss": 2.121, + "step": 7953 + }, + { + "epoch": 0.8174252542895305, + "grad_norm": 0.10281010717153549, + "learning_rate": 0.01, + "loss": 2.1084, + "step": 7956 + }, + { + "epoch": 0.8177334840234255, + "grad_norm": 0.04509102553129196, + "learning_rate": 0.01, + "loss": 2.0917, + "step": 7959 + }, + { + "epoch": 0.8180417137573205, + "grad_norm": 0.034059979021549225, + "learning_rate": 0.01, + "loss": 2.1286, + "step": 7962 + }, + { + "epoch": 0.8183499434912155, + "grad_norm": 0.09370562434196472, + "learning_rate": 0.01, + "loss": 2.1298, + "step": 7965 + }, + { + "epoch": 0.8186581732251105, + "grad_norm": 0.09386254847049713, + "learning_rate": 0.01, + "loss": 2.1018, + "step": 7968 + }, + { + "epoch": 0.8189664029590055, + "grad_norm": 0.1801362931728363, + "learning_rate": 0.01, + "loss": 2.1125, + "step": 7971 + }, + { + "epoch": 0.8192746326929005, + "grad_norm": 0.12590090930461884, + "learning_rate": 0.01, + "loss": 2.1145, + "step": 7974 + }, + { + "epoch": 0.8195828624267955, + "grad_norm": 0.09913074970245361, + "learning_rate": 0.01, + "loss": 2.1049, + "step": 7977 + }, + { + "epoch": 0.8198910921606904, + "grad_norm": 0.05249069631099701, + "learning_rate": 0.01, + "loss": 2.1348, + "step": 7980 + }, + { + "epoch": 0.8201993218945854, + "grad_norm": 0.05334639549255371, + "learning_rate": 0.01, + "loss": 2.0952, + "step": 7983 + }, + { + "epoch": 0.8205075516284804, + "grad_norm": 0.03963373601436615, + "learning_rate": 0.01, + "loss": 2.1133, + "step": 7986 + }, + { + "epoch": 0.8208157813623754, + "grad_norm": 0.03334924206137657, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 7989 + }, + { + "epoch": 0.8211240110962704, + "grad_norm": 0.0628419816493988, + "learning_rate": 0.01, + "loss": 2.1298, + "step": 7992 + }, + { + "epoch": 0.8214322408301654, + "grad_norm": 0.07143758237361908, + "learning_rate": 0.01, + "loss": 2.0891, + "step": 7995 + }, + { + "epoch": 0.8217404705640604, + "grad_norm": 0.06662650406360626, + "learning_rate": 0.01, + "loss": 2.0976, + "step": 7998 + }, + { + "epoch": 0.8220487002979554, + "grad_norm": 0.10575726628303528, + "learning_rate": 0.01, + "loss": 2.0946, + "step": 8001 + }, + { + "epoch": 0.8223569300318504, + "grad_norm": 0.056455157697200775, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 8004 + }, + { + "epoch": 0.8226651597657454, + "grad_norm": 0.10326797515153885, + "learning_rate": 0.01, + "loss": 2.0823, + "step": 8007 + }, + { + "epoch": 0.8229733894996404, + "grad_norm": 0.08464314043521881, + "learning_rate": 0.01, + "loss": 2.1274, + "step": 8010 + }, + { + "epoch": 0.8232816192335354, + "grad_norm": 0.052144117653369904, + "learning_rate": 0.01, + "loss": 2.0952, + "step": 8013 + }, + { + "epoch": 0.8235898489674304, + "grad_norm": 0.05464213341474533, + "learning_rate": 0.01, + "loss": 2.1117, + "step": 8016 + }, + { + "epoch": 0.8238980787013254, + "grad_norm": 0.06700276583433151, + "learning_rate": 0.01, + "loss": 2.1289, + "step": 8019 + }, + { + "epoch": 0.8242063084352204, + "grad_norm": 0.05322539806365967, + "learning_rate": 0.01, + "loss": 2.1346, + "step": 8022 + }, + { + "epoch": 0.8245145381691154, + "grad_norm": 0.040953267365694046, + "learning_rate": 0.01, + "loss": 2.1035, + "step": 8025 + }, + { + "epoch": 0.8248227679030103, + "grad_norm": 0.043644580990076065, + "learning_rate": 0.01, + "loss": 2.1238, + "step": 8028 + }, + { + "epoch": 0.8251309976369053, + "grad_norm": 0.060951683670282364, + "learning_rate": 0.01, + "loss": 2.1169, + "step": 8031 + }, + { + "epoch": 0.8254392273708003, + "grad_norm": 0.11269400268793106, + "learning_rate": 0.01, + "loss": 2.1184, + "step": 8034 + }, + { + "epoch": 0.8257474571046953, + "grad_norm": 0.05554080754518509, + "learning_rate": 0.01, + "loss": 2.112, + "step": 8037 + }, + { + "epoch": 0.8260556868385903, + "grad_norm": 0.08155755698680878, + "learning_rate": 0.01, + "loss": 2.096, + "step": 8040 + }, + { + "epoch": 0.8263639165724853, + "grad_norm": 0.0661015510559082, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 8043 + }, + { + "epoch": 0.8266721463063803, + "grad_norm": 0.06186169385910034, + "learning_rate": 0.01, + "loss": 2.1225, + "step": 8046 + }, + { + "epoch": 0.8269803760402753, + "grad_norm": 0.06658541411161423, + "learning_rate": 0.01, + "loss": 2.1189, + "step": 8049 + }, + { + "epoch": 0.8272886057741703, + "grad_norm": 0.09120085090398788, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 8052 + }, + { + "epoch": 0.8275968355080654, + "grad_norm": 0.059662993997335434, + "learning_rate": 0.01, + "loss": 2.1257, + "step": 8055 + }, + { + "epoch": 0.8279050652419604, + "grad_norm": 0.08305416256189346, + "learning_rate": 0.01, + "loss": 2.1108, + "step": 8058 + }, + { + "epoch": 0.8282132949758554, + "grad_norm": 0.047110967338085175, + "learning_rate": 0.01, + "loss": 2.0786, + "step": 8061 + }, + { + "epoch": 0.8285215247097504, + "grad_norm": 0.042120445519685745, + "learning_rate": 0.01, + "loss": 2.1081, + "step": 8064 + }, + { + "epoch": 0.8288297544436454, + "grad_norm": 0.04596862941980362, + "learning_rate": 0.01, + "loss": 2.1025, + "step": 8067 + }, + { + "epoch": 0.8291379841775404, + "grad_norm": 0.055216096341609955, + "learning_rate": 0.01, + "loss": 2.1416, + "step": 8070 + }, + { + "epoch": 0.8294462139114354, + "grad_norm": 0.05959683656692505, + "learning_rate": 0.01, + "loss": 2.0832, + "step": 8073 + }, + { + "epoch": 0.8297544436453304, + "grad_norm": 0.045481909066438675, + "learning_rate": 0.01, + "loss": 2.1391, + "step": 8076 + }, + { + "epoch": 0.8300626733792253, + "grad_norm": 0.049282100051641464, + "learning_rate": 0.01, + "loss": 2.1227, + "step": 8079 + }, + { + "epoch": 0.8303709031131203, + "grad_norm": 0.058084890246391296, + "learning_rate": 0.01, + "loss": 2.1211, + "step": 8082 + }, + { + "epoch": 0.8306791328470153, + "grad_norm": 0.11113768070936203, + "learning_rate": 0.01, + "loss": 2.132, + "step": 8085 + }, + { + "epoch": 0.8309873625809103, + "grad_norm": 0.07015852630138397, + "learning_rate": 0.01, + "loss": 2.0988, + "step": 8088 + }, + { + "epoch": 0.8312955923148053, + "grad_norm": 0.09509722143411636, + "learning_rate": 0.01, + "loss": 2.1064, + "step": 8091 + }, + { + "epoch": 0.8316038220487003, + "grad_norm": 0.03616593778133392, + "learning_rate": 0.01, + "loss": 2.1078, + "step": 8094 + }, + { + "epoch": 0.8319120517825953, + "grad_norm": 0.0486396960914135, + "learning_rate": 0.01, + "loss": 2.1279, + "step": 8097 + }, + { + "epoch": 0.8322202815164903, + "grad_norm": 0.050647489726543427, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 8100 + }, + { + "epoch": 0.8325285112503853, + "grad_norm": 0.08125802874565125, + "learning_rate": 0.01, + "loss": 2.1099, + "step": 8103 + }, + { + "epoch": 0.8328367409842803, + "grad_norm": 0.08078313618898392, + "learning_rate": 0.01, + "loss": 2.1162, + "step": 8106 + }, + { + "epoch": 0.8331449707181753, + "grad_norm": 0.06157573312520981, + "learning_rate": 0.01, + "loss": 2.1288, + "step": 8109 + }, + { + "epoch": 0.8334532004520703, + "grad_norm": 0.057771824300289154, + "learning_rate": 0.01, + "loss": 2.1136, + "step": 8112 + }, + { + "epoch": 0.8337614301859653, + "grad_norm": 0.06634260714054108, + "learning_rate": 0.01, + "loss": 2.1029, + "step": 8115 + }, + { + "epoch": 0.8340696599198603, + "grad_norm": 0.12186034023761749, + "learning_rate": 0.01, + "loss": 2.1236, + "step": 8118 + }, + { + "epoch": 0.8343778896537553, + "grad_norm": 0.03940106928348541, + "learning_rate": 0.01, + "loss": 2.1169, + "step": 8121 + }, + { + "epoch": 0.8346861193876502, + "grad_norm": 0.06003478914499283, + "learning_rate": 0.01, + "loss": 2.1108, + "step": 8124 + }, + { + "epoch": 0.8349943491215452, + "grad_norm": 0.04963524639606476, + "learning_rate": 0.01, + "loss": 2.0893, + "step": 8127 + }, + { + "epoch": 0.8353025788554402, + "grad_norm": 0.04543556645512581, + "learning_rate": 0.01, + "loss": 2.1062, + "step": 8130 + }, + { + "epoch": 0.8356108085893352, + "grad_norm": 0.05210501328110695, + "learning_rate": 0.01, + "loss": 2.1065, + "step": 8133 + }, + { + "epoch": 0.8359190383232302, + "grad_norm": 0.10866094380617142, + "learning_rate": 0.01, + "loss": 2.1154, + "step": 8136 + }, + { + "epoch": 0.8362272680571252, + "grad_norm": 0.07595928758382797, + "learning_rate": 0.01, + "loss": 2.1079, + "step": 8139 + }, + { + "epoch": 0.8365354977910202, + "grad_norm": 0.04948664829134941, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 8142 + }, + { + "epoch": 0.8368437275249152, + "grad_norm": 0.11719872057437897, + "learning_rate": 0.01, + "loss": 2.1106, + "step": 8145 + }, + { + "epoch": 0.8371519572588102, + "grad_norm": 0.04469067603349686, + "learning_rate": 0.01, + "loss": 2.1145, + "step": 8148 + }, + { + "epoch": 0.8374601869927052, + "grad_norm": 0.038385387510061264, + "learning_rate": 0.01, + "loss": 2.0933, + "step": 8151 + }, + { + "epoch": 0.8377684167266002, + "grad_norm": 0.04040665924549103, + "learning_rate": 0.01, + "loss": 2.1119, + "step": 8154 + }, + { + "epoch": 0.8380766464604952, + "grad_norm": 0.042900413274765015, + "learning_rate": 0.01, + "loss": 2.1053, + "step": 8157 + }, + { + "epoch": 0.8383848761943902, + "grad_norm": 0.06709393113851547, + "learning_rate": 0.01, + "loss": 2.0858, + "step": 8160 + }, + { + "epoch": 0.8386931059282852, + "grad_norm": 0.08388926833868027, + "learning_rate": 0.01, + "loss": 2.1287, + "step": 8163 + }, + { + "epoch": 0.8390013356621802, + "grad_norm": 0.0701015368103981, + "learning_rate": 0.01, + "loss": 2.0965, + "step": 8166 + }, + { + "epoch": 0.8393095653960753, + "grad_norm": 0.0841115415096283, + "learning_rate": 0.01, + "loss": 2.1136, + "step": 8169 + }, + { + "epoch": 0.8396177951299703, + "grad_norm": 0.08542285114526749, + "learning_rate": 0.01, + "loss": 2.1166, + "step": 8172 + }, + { + "epoch": 0.8399260248638653, + "grad_norm": 0.046626705676317215, + "learning_rate": 0.01, + "loss": 2.1318, + "step": 8175 + }, + { + "epoch": 0.8402342545977602, + "grad_norm": 0.08752947300672531, + "learning_rate": 0.01, + "loss": 2.0873, + "step": 8178 + }, + { + "epoch": 0.8405424843316552, + "grad_norm": 0.04728331416845322, + "learning_rate": 0.01, + "loss": 2.0951, + "step": 8181 + }, + { + "epoch": 0.8408507140655502, + "grad_norm": 0.04881293699145317, + "learning_rate": 0.01, + "loss": 2.1011, + "step": 8184 + }, + { + "epoch": 0.8411589437994452, + "grad_norm": 0.049758728593587875, + "learning_rate": 0.01, + "loss": 2.1206, + "step": 8187 + }, + { + "epoch": 0.8414671735333402, + "grad_norm": 0.037589117884635925, + "learning_rate": 0.01, + "loss": 2.085, + "step": 8190 + }, + { + "epoch": 0.8417754032672352, + "grad_norm": 0.11785265803337097, + "learning_rate": 0.01, + "loss": 2.1195, + "step": 8193 + }, + { + "epoch": 0.8420836330011302, + "grad_norm": 0.09815037995576859, + "learning_rate": 0.01, + "loss": 2.065, + "step": 8196 + }, + { + "epoch": 0.8423918627350252, + "grad_norm": 0.07950727641582489, + "learning_rate": 0.01, + "loss": 2.1081, + "step": 8199 + }, + { + "epoch": 0.8427000924689202, + "grad_norm": 0.04057254642248154, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 8202 + }, + { + "epoch": 0.8430083222028152, + "grad_norm": 0.07260222733020782, + "learning_rate": 0.01, + "loss": 2.1018, + "step": 8205 + }, + { + "epoch": 0.8433165519367102, + "grad_norm": 0.057693734765052795, + "learning_rate": 0.01, + "loss": 2.112, + "step": 8208 + }, + { + "epoch": 0.8436247816706052, + "grad_norm": 0.039680637419223785, + "learning_rate": 0.01, + "loss": 2.0974, + "step": 8211 + }, + { + "epoch": 0.8439330114045002, + "grad_norm": 0.07584577798843384, + "learning_rate": 0.01, + "loss": 2.129, + "step": 8214 + }, + { + "epoch": 0.8442412411383952, + "grad_norm": 0.044016819447278976, + "learning_rate": 0.01, + "loss": 2.1139, + "step": 8217 + }, + { + "epoch": 0.8445494708722902, + "grad_norm": 0.04449582099914551, + "learning_rate": 0.01, + "loss": 2.1085, + "step": 8220 + }, + { + "epoch": 0.8448577006061851, + "grad_norm": 0.044676005840301514, + "learning_rate": 0.01, + "loss": 2.1081, + "step": 8223 + }, + { + "epoch": 0.8451659303400801, + "grad_norm": 0.04926025867462158, + "learning_rate": 0.01, + "loss": 2.1187, + "step": 8226 + }, + { + "epoch": 0.8454741600739751, + "grad_norm": 0.10964366793632507, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 8229 + }, + { + "epoch": 0.8457823898078701, + "grad_norm": 0.09405852109193802, + "learning_rate": 0.01, + "loss": 2.1117, + "step": 8232 + }, + { + "epoch": 0.8460906195417651, + "grad_norm": 0.09241268038749695, + "learning_rate": 0.01, + "loss": 2.1225, + "step": 8235 + }, + { + "epoch": 0.8463988492756601, + "grad_norm": 0.05887102335691452, + "learning_rate": 0.01, + "loss": 2.0944, + "step": 8238 + }, + { + "epoch": 0.8467070790095551, + "grad_norm": 0.13513131439685822, + "learning_rate": 0.01, + "loss": 2.1217, + "step": 8241 + }, + { + "epoch": 0.8470153087434501, + "grad_norm": 0.06370443850755692, + "learning_rate": 0.01, + "loss": 2.121, + "step": 8244 + }, + { + "epoch": 0.8473235384773451, + "grad_norm": 0.0426030196249485, + "learning_rate": 0.01, + "loss": 2.0937, + "step": 8247 + }, + { + "epoch": 0.8476317682112401, + "grad_norm": 0.049412764608860016, + "learning_rate": 0.01, + "loss": 2.108, + "step": 8250 + }, + { + "epoch": 0.8479399979451351, + "grad_norm": 0.061407607048749924, + "learning_rate": 0.01, + "loss": 2.1009, + "step": 8253 + }, + { + "epoch": 0.8482482276790301, + "grad_norm": 0.12416908144950867, + "learning_rate": 0.01, + "loss": 2.0819, + "step": 8256 + }, + { + "epoch": 0.8485564574129251, + "grad_norm": 0.05728744715452194, + "learning_rate": 0.01, + "loss": 2.1132, + "step": 8259 + }, + { + "epoch": 0.8488646871468201, + "grad_norm": 0.06724981963634491, + "learning_rate": 0.01, + "loss": 2.0932, + "step": 8262 + }, + { + "epoch": 0.8491729168807151, + "grad_norm": 0.055260930210351944, + "learning_rate": 0.01, + "loss": 2.0933, + "step": 8265 + }, + { + "epoch": 0.84948114661461, + "grad_norm": 0.04230106249451637, + "learning_rate": 0.01, + "loss": 2.1135, + "step": 8268 + }, + { + "epoch": 0.849789376348505, + "grad_norm": 0.04593104496598244, + "learning_rate": 0.01, + "loss": 2.1091, + "step": 8271 + }, + { + "epoch": 0.8500976060824, + "grad_norm": 0.09625285863876343, + "learning_rate": 0.01, + "loss": 2.0946, + "step": 8274 + }, + { + "epoch": 0.850405835816295, + "grad_norm": 0.04556501284241676, + "learning_rate": 0.01, + "loss": 2.0975, + "step": 8277 + }, + { + "epoch": 0.85071406555019, + "grad_norm": 0.09413543343544006, + "learning_rate": 0.01, + "loss": 2.0863, + "step": 8280 + }, + { + "epoch": 0.851022295284085, + "grad_norm": 0.08400101214647293, + "learning_rate": 0.01, + "loss": 2.1045, + "step": 8283 + }, + { + "epoch": 0.8513305250179801, + "grad_norm": 0.06278138607740402, + "learning_rate": 0.01, + "loss": 2.116, + "step": 8286 + }, + { + "epoch": 0.8516387547518751, + "grad_norm": 0.04442959651350975, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 8289 + }, + { + "epoch": 0.8519469844857701, + "grad_norm": 0.045807912945747375, + "learning_rate": 0.01, + "loss": 2.0823, + "step": 8292 + }, + { + "epoch": 0.8522552142196651, + "grad_norm": 0.0426551029086113, + "learning_rate": 0.01, + "loss": 2.1109, + "step": 8295 + }, + { + "epoch": 0.8525634439535601, + "grad_norm": 0.12200357019901276, + "learning_rate": 0.01, + "loss": 2.1146, + "step": 8298 + }, + { + "epoch": 0.8528716736874551, + "grad_norm": 0.04152747616171837, + "learning_rate": 0.01, + "loss": 2.1204, + "step": 8301 + }, + { + "epoch": 0.8531799034213501, + "grad_norm": 0.08464021235704422, + "learning_rate": 0.01, + "loss": 2.085, + "step": 8304 + }, + { + "epoch": 0.8534881331552451, + "grad_norm": 0.050391390919685364, + "learning_rate": 0.01, + "loss": 2.0957, + "step": 8307 + }, + { + "epoch": 0.8537963628891401, + "grad_norm": 0.08581732958555222, + "learning_rate": 0.01, + "loss": 2.1015, + "step": 8310 + }, + { + "epoch": 0.8541045926230351, + "grad_norm": 0.10992308706045151, + "learning_rate": 0.01, + "loss": 2.0939, + "step": 8313 + }, + { + "epoch": 0.8544128223569301, + "grad_norm": 0.053225912153720856, + "learning_rate": 0.01, + "loss": 2.1106, + "step": 8316 + }, + { + "epoch": 0.854721052090825, + "grad_norm": 0.06759096682071686, + "learning_rate": 0.01, + "loss": 2.1035, + "step": 8319 + }, + { + "epoch": 0.85502928182472, + "grad_norm": 0.058069922029972076, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 8322 + }, + { + "epoch": 0.855337511558615, + "grad_norm": 0.0657680481672287, + "learning_rate": 0.01, + "loss": 2.0918, + "step": 8325 + }, + { + "epoch": 0.85564574129251, + "grad_norm": 0.1428556591272354, + "learning_rate": 0.01, + "loss": 2.0895, + "step": 8328 + }, + { + "epoch": 0.855953971026405, + "grad_norm": 0.10311869531869888, + "learning_rate": 0.01, + "loss": 2.1041, + "step": 8331 + }, + { + "epoch": 0.8562622007603, + "grad_norm": 0.12024179100990295, + "learning_rate": 0.01, + "loss": 2.1179, + "step": 8334 + }, + { + "epoch": 0.856570430494195, + "grad_norm": 0.08294446766376495, + "learning_rate": 0.01, + "loss": 2.1042, + "step": 8337 + }, + { + "epoch": 0.85687866022809, + "grad_norm": 0.05203935503959656, + "learning_rate": 0.01, + "loss": 2.1275, + "step": 8340 + }, + { + "epoch": 0.857186889961985, + "grad_norm": 0.061564356088638306, + "learning_rate": 0.01, + "loss": 2.0951, + "step": 8343 + }, + { + "epoch": 0.85749511969588, + "grad_norm": 0.043616339564323425, + "learning_rate": 0.01, + "loss": 2.1082, + "step": 8346 + }, + { + "epoch": 0.857803349429775, + "grad_norm": 0.0885004997253418, + "learning_rate": 0.01, + "loss": 2.1071, + "step": 8349 + }, + { + "epoch": 0.85811157916367, + "grad_norm": 0.06275481730699539, + "learning_rate": 0.01, + "loss": 2.137, + "step": 8352 + }, + { + "epoch": 0.858419808897565, + "grad_norm": 0.054776523262262344, + "learning_rate": 0.01, + "loss": 2.1117, + "step": 8355 + }, + { + "epoch": 0.85872803863146, + "grad_norm": 0.07782801240682602, + "learning_rate": 0.01, + "loss": 2.0822, + "step": 8358 + }, + { + "epoch": 0.859036268365355, + "grad_norm": 0.12301263958215714, + "learning_rate": 0.01, + "loss": 2.1126, + "step": 8361 + }, + { + "epoch": 0.85934449809925, + "grad_norm": 0.07181745767593384, + "learning_rate": 0.01, + "loss": 2.1359, + "step": 8364 + }, + { + "epoch": 0.859652727833145, + "grad_norm": 0.07232604175806046, + "learning_rate": 0.01, + "loss": 2.0849, + "step": 8367 + }, + { + "epoch": 0.8599609575670399, + "grad_norm": 0.06810937821865082, + "learning_rate": 0.01, + "loss": 2.1088, + "step": 8370 + }, + { + "epoch": 0.8602691873009349, + "grad_norm": 0.048163384199142456, + "learning_rate": 0.01, + "loss": 2.1173, + "step": 8373 + }, + { + "epoch": 0.8605774170348299, + "grad_norm": 0.05688156560063362, + "learning_rate": 0.01, + "loss": 2.114, + "step": 8376 + }, + { + "epoch": 0.8608856467687249, + "grad_norm": 0.065540611743927, + "learning_rate": 0.01, + "loss": 2.0989, + "step": 8379 + }, + { + "epoch": 0.8611938765026199, + "grad_norm": 0.09561596065759659, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 8382 + }, + { + "epoch": 0.8615021062365149, + "grad_norm": 0.06719313561916351, + "learning_rate": 0.01, + "loss": 2.0928, + "step": 8385 + }, + { + "epoch": 0.8618103359704099, + "grad_norm": 0.05895761027932167, + "learning_rate": 0.01, + "loss": 2.1037, + "step": 8388 + }, + { + "epoch": 0.8621185657043049, + "grad_norm": 0.09232669323682785, + "learning_rate": 0.01, + "loss": 2.1272, + "step": 8391 + }, + { + "epoch": 0.8624267954381999, + "grad_norm": 0.06715840846300125, + "learning_rate": 0.01, + "loss": 2.072, + "step": 8394 + }, + { + "epoch": 0.8627350251720949, + "grad_norm": 0.04794420674443245, + "learning_rate": 0.01, + "loss": 2.1087, + "step": 8397 + }, + { + "epoch": 0.8630432549059899, + "grad_norm": 0.037383124232292175, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 8400 + }, + { + "epoch": 0.863351484639885, + "grad_norm": 0.05601905286312103, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 8403 + }, + { + "epoch": 0.86365971437378, + "grad_norm": 0.0839313194155693, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 8406 + }, + { + "epoch": 0.863967944107675, + "grad_norm": 0.07600929588079453, + "learning_rate": 0.01, + "loss": 2.1143, + "step": 8409 + }, + { + "epoch": 0.86427617384157, + "grad_norm": 0.06851659715175629, + "learning_rate": 0.01, + "loss": 2.0921, + "step": 8412 + }, + { + "epoch": 0.864584403575465, + "grad_norm": 0.05021858587861061, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 8415 + }, + { + "epoch": 0.86489263330936, + "grad_norm": 0.04881426692008972, + "learning_rate": 0.01, + "loss": 2.1047, + "step": 8418 + }, + { + "epoch": 0.8652008630432549, + "grad_norm": 0.04262546822428703, + "learning_rate": 0.01, + "loss": 2.0852, + "step": 8421 + }, + { + "epoch": 0.8655090927771499, + "grad_norm": 0.050467535853385925, + "learning_rate": 0.01, + "loss": 2.1045, + "step": 8424 + }, + { + "epoch": 0.8658173225110449, + "grad_norm": 0.0725008100271225, + "learning_rate": 0.01, + "loss": 2.077, + "step": 8427 + }, + { + "epoch": 0.8661255522449399, + "grad_norm": 0.07234456390142441, + "learning_rate": 0.01, + "loss": 2.13, + "step": 8430 + }, + { + "epoch": 0.8664337819788349, + "grad_norm": 0.060751501470804214, + "learning_rate": 0.01, + "loss": 2.0948, + "step": 8433 + }, + { + "epoch": 0.8667420117127299, + "grad_norm": 0.058911584317684174, + "learning_rate": 0.01, + "loss": 2.0908, + "step": 8436 + }, + { + "epoch": 0.8670502414466249, + "grad_norm": 0.08380532264709473, + "learning_rate": 0.01, + "loss": 2.1438, + "step": 8439 + }, + { + "epoch": 0.8673584711805199, + "grad_norm": 0.058240536600351334, + "learning_rate": 0.01, + "loss": 2.1384, + "step": 8442 + }, + { + "epoch": 0.8676667009144149, + "grad_norm": 0.0422792062163353, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 8445 + }, + { + "epoch": 0.8679749306483099, + "grad_norm": 0.07096652686595917, + "learning_rate": 0.01, + "loss": 2.1195, + "step": 8448 + }, + { + "epoch": 0.8682831603822049, + "grad_norm": 0.13370642066001892, + "learning_rate": 0.01, + "loss": 2.1367, + "step": 8451 + }, + { + "epoch": 0.8685913901160999, + "grad_norm": 0.0597628615796566, + "learning_rate": 0.01, + "loss": 2.087, + "step": 8454 + }, + { + "epoch": 0.8688996198499949, + "grad_norm": 0.039561979472637177, + "learning_rate": 0.01, + "loss": 2.112, + "step": 8457 + }, + { + "epoch": 0.8692078495838899, + "grad_norm": 0.04080485925078392, + "learning_rate": 0.01, + "loss": 2.1024, + "step": 8460 + }, + { + "epoch": 0.8695160793177849, + "grad_norm": 0.05293022468686104, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 8463 + }, + { + "epoch": 0.8698243090516798, + "grad_norm": 0.06960830092430115, + "learning_rate": 0.01, + "loss": 2.1255, + "step": 8466 + }, + { + "epoch": 0.8701325387855748, + "grad_norm": 0.09768849611282349, + "learning_rate": 0.01, + "loss": 2.1217, + "step": 8469 + }, + { + "epoch": 0.8704407685194698, + "grad_norm": 0.11970885097980499, + "learning_rate": 0.01, + "loss": 2.0932, + "step": 8472 + }, + { + "epoch": 0.8707489982533648, + "grad_norm": 0.12014521658420563, + "learning_rate": 0.01, + "loss": 2.1009, + "step": 8475 + }, + { + "epoch": 0.8710572279872598, + "grad_norm": 0.04288540408015251, + "learning_rate": 0.01, + "loss": 2.1111, + "step": 8478 + }, + { + "epoch": 0.8713654577211548, + "grad_norm": 0.033004507422447205, + "learning_rate": 0.01, + "loss": 2.1029, + "step": 8481 + }, + { + "epoch": 0.8716736874550498, + "grad_norm": 0.03685779869556427, + "learning_rate": 0.01, + "loss": 2.1077, + "step": 8484 + }, + { + "epoch": 0.8719819171889448, + "grad_norm": 0.06450948119163513, + "learning_rate": 0.01, + "loss": 2.102, + "step": 8487 + }, + { + "epoch": 0.8722901469228398, + "grad_norm": 0.04806706681847572, + "learning_rate": 0.01, + "loss": 2.1056, + "step": 8490 + }, + { + "epoch": 0.8725983766567348, + "grad_norm": 0.05847964435815811, + "learning_rate": 0.01, + "loss": 2.095, + "step": 8493 + }, + { + "epoch": 0.8729066063906298, + "grad_norm": 0.11569567024707794, + "learning_rate": 0.01, + "loss": 2.1058, + "step": 8496 + }, + { + "epoch": 0.8732148361245248, + "grad_norm": 0.04440119490027428, + "learning_rate": 0.01, + "loss": 2.1127, + "step": 8499 + }, + { + "epoch": 0.8735230658584198, + "grad_norm": 0.13856938481330872, + "learning_rate": 0.01, + "loss": 2.1072, + "step": 8502 + }, + { + "epoch": 0.8738312955923148, + "grad_norm": 0.06448937207460403, + "learning_rate": 0.01, + "loss": 2.0813, + "step": 8505 + }, + { + "epoch": 0.8741395253262098, + "grad_norm": 0.05872811749577522, + "learning_rate": 0.01, + "loss": 2.1227, + "step": 8508 + }, + { + "epoch": 0.8744477550601047, + "grad_norm": 0.06387540698051453, + "learning_rate": 0.01, + "loss": 2.099, + "step": 8511 + }, + { + "epoch": 0.8747559847939997, + "grad_norm": 0.044399481266736984, + "learning_rate": 0.01, + "loss": 2.0989, + "step": 8514 + }, + { + "epoch": 0.8750642145278948, + "grad_norm": 0.118850938975811, + "learning_rate": 0.01, + "loss": 2.1261, + "step": 8517 + }, + { + "epoch": 0.8753724442617898, + "grad_norm": 0.05479248985648155, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 8520 + }, + { + "epoch": 0.8756806739956848, + "grad_norm": 0.06442543119192123, + "learning_rate": 0.01, + "loss": 2.0844, + "step": 8523 + }, + { + "epoch": 0.8759889037295798, + "grad_norm": 0.054294027388095856, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 8526 + }, + { + "epoch": 0.8762971334634748, + "grad_norm": 0.04776893928647041, + "learning_rate": 0.01, + "loss": 2.1056, + "step": 8529 + }, + { + "epoch": 0.8766053631973698, + "grad_norm": 0.06740310043096542, + "learning_rate": 0.01, + "loss": 2.0956, + "step": 8532 + }, + { + "epoch": 0.8769135929312648, + "grad_norm": 0.048034511506557465, + "learning_rate": 0.01, + "loss": 2.1223, + "step": 8535 + }, + { + "epoch": 0.8772218226651598, + "grad_norm": 0.05819391459226608, + "learning_rate": 0.01, + "loss": 2.1133, + "step": 8538 + }, + { + "epoch": 0.8775300523990548, + "grad_norm": 0.06093437224626541, + "learning_rate": 0.01, + "loss": 2.0889, + "step": 8541 + }, + { + "epoch": 0.8778382821329498, + "grad_norm": 0.04628787562251091, + "learning_rate": 0.01, + "loss": 2.1202, + "step": 8544 + }, + { + "epoch": 0.8781465118668448, + "grad_norm": 0.0903085321187973, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 8547 + }, + { + "epoch": 0.8784547416007398, + "grad_norm": 0.06924945116043091, + "learning_rate": 0.01, + "loss": 2.1004, + "step": 8550 + }, + { + "epoch": 0.8787629713346348, + "grad_norm": 0.04104374721646309, + "learning_rate": 0.01, + "loss": 2.0954, + "step": 8553 + }, + { + "epoch": 0.8790712010685298, + "grad_norm": 0.11671441793441772, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 8556 + }, + { + "epoch": 0.8793794308024248, + "grad_norm": 0.10247964411973953, + "learning_rate": 0.01, + "loss": 2.0861, + "step": 8559 + }, + { + "epoch": 0.8796876605363197, + "grad_norm": 0.03979288041591644, + "learning_rate": 0.01, + "loss": 2.1307, + "step": 8562 + }, + { + "epoch": 0.8799958902702147, + "grad_norm": 0.0406351312994957, + "learning_rate": 0.01, + "loss": 2.0868, + "step": 8565 + }, + { + "epoch": 0.8803041200041097, + "grad_norm": 0.04127006232738495, + "learning_rate": 0.01, + "loss": 2.0899, + "step": 8568 + }, + { + "epoch": 0.8806123497380047, + "grad_norm": 0.04559047520160675, + "learning_rate": 0.01, + "loss": 2.1071, + "step": 8571 + }, + { + "epoch": 0.8809205794718997, + "grad_norm": 0.12507610023021698, + "learning_rate": 0.01, + "loss": 2.0944, + "step": 8574 + }, + { + "epoch": 0.8812288092057947, + "grad_norm": 0.042683400213718414, + "learning_rate": 0.01, + "loss": 2.078, + "step": 8577 + }, + { + "epoch": 0.8815370389396897, + "grad_norm": 0.04022818058729172, + "learning_rate": 0.01, + "loss": 2.0797, + "step": 8580 + }, + { + "epoch": 0.8818452686735847, + "grad_norm": 0.0382862351834774, + "learning_rate": 0.01, + "loss": 2.0859, + "step": 8583 + }, + { + "epoch": 0.8821534984074797, + "grad_norm": 0.05260771885514259, + "learning_rate": 0.01, + "loss": 2.0832, + "step": 8586 + }, + { + "epoch": 0.8824617281413747, + "grad_norm": 0.05381648615002632, + "learning_rate": 0.01, + "loss": 2.1211, + "step": 8589 + }, + { + "epoch": 0.8827699578752697, + "grad_norm": 0.055818814784288406, + "learning_rate": 0.01, + "loss": 2.1108, + "step": 8592 + }, + { + "epoch": 0.8830781876091647, + "grad_norm": 0.16680215299129486, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 8595 + }, + { + "epoch": 0.8833864173430597, + "grad_norm": 0.10034742951393127, + "learning_rate": 0.01, + "loss": 2.1187, + "step": 8598 + }, + { + "epoch": 0.8836946470769547, + "grad_norm": 0.0827341303229332, + "learning_rate": 0.01, + "loss": 2.1112, + "step": 8601 + }, + { + "epoch": 0.8840028768108497, + "grad_norm": 0.07657956331968307, + "learning_rate": 0.01, + "loss": 2.0711, + "step": 8604 + }, + { + "epoch": 0.8843111065447447, + "grad_norm": 0.036220960319042206, + "learning_rate": 0.01, + "loss": 2.1097, + "step": 8607 + }, + { + "epoch": 0.8846193362786396, + "grad_norm": 0.04672658443450928, + "learning_rate": 0.01, + "loss": 2.1099, + "step": 8610 + }, + { + "epoch": 0.8849275660125346, + "grad_norm": 0.04827800393104553, + "learning_rate": 0.01, + "loss": 2.1081, + "step": 8613 + }, + { + "epoch": 0.8852357957464296, + "grad_norm": 0.04962724447250366, + "learning_rate": 0.01, + "loss": 2.0895, + "step": 8616 + }, + { + "epoch": 0.8855440254803246, + "grad_norm": 0.03474809601902962, + "learning_rate": 0.01, + "loss": 2.0942, + "step": 8619 + }, + { + "epoch": 0.8858522552142196, + "grad_norm": 0.07395246624946594, + "learning_rate": 0.01, + "loss": 2.1145, + "step": 8622 + }, + { + "epoch": 0.8861604849481146, + "grad_norm": 0.09853484481573105, + "learning_rate": 0.01, + "loss": 2.0991, + "step": 8625 + }, + { + "epoch": 0.8864687146820096, + "grad_norm": 0.11892013251781464, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 8628 + }, + { + "epoch": 0.8867769444159046, + "grad_norm": 0.12780621647834778, + "learning_rate": 0.01, + "loss": 2.1154, + "step": 8631 + }, + { + "epoch": 0.8870851741497997, + "grad_norm": 0.04470033943653107, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 8634 + }, + { + "epoch": 0.8873934038836947, + "grad_norm": 0.054323747754096985, + "learning_rate": 0.01, + "loss": 2.0952, + "step": 8637 + }, + { + "epoch": 0.8877016336175897, + "grad_norm": 0.08175788819789886, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 8640 + }, + { + "epoch": 0.8880098633514847, + "grad_norm": 0.07456079125404358, + "learning_rate": 0.01, + "loss": 2.141, + "step": 8643 + }, + { + "epoch": 0.8883180930853797, + "grad_norm": 0.055910736322402954, + "learning_rate": 0.01, + "loss": 2.1102, + "step": 8646 + }, + { + "epoch": 0.8886263228192747, + "grad_norm": 0.05231192335486412, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 8649 + }, + { + "epoch": 0.8889345525531697, + "grad_norm": 0.05306578800082207, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 8652 + }, + { + "epoch": 0.8892427822870647, + "grad_norm": 0.05569072067737579, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 8655 + }, + { + "epoch": 0.8895510120209597, + "grad_norm": 0.050971515476703644, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 8658 + }, + { + "epoch": 0.8898592417548546, + "grad_norm": 0.061436936259269714, + "learning_rate": 0.01, + "loss": 2.1167, + "step": 8661 + }, + { + "epoch": 0.8901674714887496, + "grad_norm": 0.04307536780834198, + "learning_rate": 0.01, + "loss": 2.0972, + "step": 8664 + }, + { + "epoch": 0.8904757012226446, + "grad_norm": 0.1459832638502121, + "learning_rate": 0.01, + "loss": 2.1306, + "step": 8667 + }, + { + "epoch": 0.8907839309565396, + "grad_norm": 0.05527958646416664, + "learning_rate": 0.01, + "loss": 2.0974, + "step": 8670 + }, + { + "epoch": 0.8910921606904346, + "grad_norm": 0.1319393813610077, + "learning_rate": 0.01, + "loss": 2.1259, + "step": 8673 + }, + { + "epoch": 0.8914003904243296, + "grad_norm": 0.06124665215611458, + "learning_rate": 0.01, + "loss": 2.0997, + "step": 8676 + }, + { + "epoch": 0.8917086201582246, + "grad_norm": 0.08667455613613129, + "learning_rate": 0.01, + "loss": 2.0941, + "step": 8679 + }, + { + "epoch": 0.8920168498921196, + "grad_norm": 0.06631213426589966, + "learning_rate": 0.01, + "loss": 2.1196, + "step": 8682 + }, + { + "epoch": 0.8923250796260146, + "grad_norm": 0.060188647359609604, + "learning_rate": 0.01, + "loss": 2.0971, + "step": 8685 + }, + { + "epoch": 0.8926333093599096, + "grad_norm": 0.039312943816185, + "learning_rate": 0.01, + "loss": 2.1119, + "step": 8688 + }, + { + "epoch": 0.8929415390938046, + "grad_norm": 0.03959662839770317, + "learning_rate": 0.01, + "loss": 2.0897, + "step": 8691 + }, + { + "epoch": 0.8932497688276996, + "grad_norm": 0.09711046516895294, + "learning_rate": 0.01, + "loss": 2.1133, + "step": 8694 + }, + { + "epoch": 0.8935579985615946, + "grad_norm": 0.07965920865535736, + "learning_rate": 0.01, + "loss": 2.0635, + "step": 8697 + }, + { + "epoch": 0.8938662282954896, + "grad_norm": 0.08770687133073807, + "learning_rate": 0.01, + "loss": 2.0885, + "step": 8700 + }, + { + "epoch": 0.8941744580293846, + "grad_norm": 0.04591045528650284, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 8703 + }, + { + "epoch": 0.8944826877632795, + "grad_norm": 0.09602218866348267, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 8706 + }, + { + "epoch": 0.8947909174971745, + "grad_norm": 0.09482742100954056, + "learning_rate": 0.01, + "loss": 2.0966, + "step": 8709 + }, + { + "epoch": 0.8950991472310695, + "grad_norm": 0.03937089815735817, + "learning_rate": 0.01, + "loss": 2.1043, + "step": 8712 + }, + { + "epoch": 0.8954073769649645, + "grad_norm": 0.056832704693078995, + "learning_rate": 0.01, + "loss": 2.1165, + "step": 8715 + }, + { + "epoch": 0.8957156066988595, + "grad_norm": 0.06370353698730469, + "learning_rate": 0.01, + "loss": 2.1144, + "step": 8718 + }, + { + "epoch": 0.8960238364327545, + "grad_norm": 0.06752549856901169, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 8721 + }, + { + "epoch": 0.8963320661666495, + "grad_norm": 0.13301892578601837, + "learning_rate": 0.01, + "loss": 2.11, + "step": 8724 + }, + { + "epoch": 0.8966402959005445, + "grad_norm": 0.05210836976766586, + "learning_rate": 0.01, + "loss": 2.0925, + "step": 8727 + }, + { + "epoch": 0.8969485256344395, + "grad_norm": 0.03570270165801048, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 8730 + }, + { + "epoch": 0.8972567553683345, + "grad_norm": 0.05898820236325264, + "learning_rate": 0.01, + "loss": 2.0786, + "step": 8733 + }, + { + "epoch": 0.8975649851022295, + "grad_norm": 0.05087563395500183, + "learning_rate": 0.01, + "loss": 2.1071, + "step": 8736 + }, + { + "epoch": 0.8978732148361245, + "grad_norm": 0.09473355114459991, + "learning_rate": 0.01, + "loss": 2.103, + "step": 8739 + }, + { + "epoch": 0.8981814445700195, + "grad_norm": 0.09793075919151306, + "learning_rate": 0.01, + "loss": 2.0972, + "step": 8742 + }, + { + "epoch": 0.8984896743039145, + "grad_norm": 0.05115204304456711, + "learning_rate": 0.01, + "loss": 2.0979, + "step": 8745 + }, + { + "epoch": 0.8987979040378095, + "grad_norm": 0.057413987815380096, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 8748 + }, + { + "epoch": 0.8991061337717046, + "grad_norm": 0.04136224836111069, + "learning_rate": 0.01, + "loss": 2.1269, + "step": 8751 + }, + { + "epoch": 0.8994143635055996, + "grad_norm": 0.06866753846406937, + "learning_rate": 0.01, + "loss": 2.1092, + "step": 8754 + }, + { + "epoch": 0.8997225932394946, + "grad_norm": 0.0757627934217453, + "learning_rate": 0.01, + "loss": 2.0933, + "step": 8757 + }, + { + "epoch": 0.9000308229733895, + "grad_norm": 0.08082983642816544, + "learning_rate": 0.01, + "loss": 2.1124, + "step": 8760 + }, + { + "epoch": 0.9003390527072845, + "grad_norm": 0.046828944236040115, + "learning_rate": 0.01, + "loss": 2.0978, + "step": 8763 + }, + { + "epoch": 0.9006472824411795, + "grad_norm": 0.11039458215236664, + "learning_rate": 0.01, + "loss": 2.0989, + "step": 8766 + }, + { + "epoch": 0.9009555121750745, + "grad_norm": 0.048537638038396835, + "learning_rate": 0.01, + "loss": 2.0946, + "step": 8769 + }, + { + "epoch": 0.9012637419089695, + "grad_norm": 0.06700310111045837, + "learning_rate": 0.01, + "loss": 2.1184, + "step": 8772 + }, + { + "epoch": 0.9015719716428645, + "grad_norm": 0.044369909912347794, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 8775 + }, + { + "epoch": 0.9018802013767595, + "grad_norm": 0.041071876883506775, + "learning_rate": 0.01, + "loss": 2.0774, + "step": 8778 + }, + { + "epoch": 0.9021884311106545, + "grad_norm": 0.04735315591096878, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 8781 + }, + { + "epoch": 0.9024966608445495, + "grad_norm": 0.11621284484863281, + "learning_rate": 0.01, + "loss": 2.0766, + "step": 8784 + }, + { + "epoch": 0.9028048905784445, + "grad_norm": 0.11453153938055038, + "learning_rate": 0.01, + "loss": 2.0866, + "step": 8787 + }, + { + "epoch": 0.9031131203123395, + "grad_norm": 0.057418763637542725, + "learning_rate": 0.01, + "loss": 2.081, + "step": 8790 + }, + { + "epoch": 0.9034213500462345, + "grad_norm": 0.041579000651836395, + "learning_rate": 0.01, + "loss": 2.1154, + "step": 8793 + }, + { + "epoch": 0.9037295797801295, + "grad_norm": 0.045673951506614685, + "learning_rate": 0.01, + "loss": 2.1241, + "step": 8796 + }, + { + "epoch": 0.9040378095140245, + "grad_norm": 0.05963718518614769, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 8799 + }, + { + "epoch": 0.9043460392479195, + "grad_norm": 0.04776541888713837, + "learning_rate": 0.01, + "loss": 2.1138, + "step": 8802 + }, + { + "epoch": 0.9046542689818144, + "grad_norm": 0.09103482216596603, + "learning_rate": 0.01, + "loss": 2.1192, + "step": 8805 + }, + { + "epoch": 0.9049624987157094, + "grad_norm": 0.09218809008598328, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 8808 + }, + { + "epoch": 0.9052707284496044, + "grad_norm": 0.10253725945949554, + "learning_rate": 0.01, + "loss": 2.1189, + "step": 8811 + }, + { + "epoch": 0.9055789581834994, + "grad_norm": 0.09638465940952301, + "learning_rate": 0.01, + "loss": 2.1008, + "step": 8814 + }, + { + "epoch": 0.9058871879173944, + "grad_norm": 0.0947449579834938, + "learning_rate": 0.01, + "loss": 2.1222, + "step": 8817 + }, + { + "epoch": 0.9061954176512894, + "grad_norm": 0.04588090255856514, + "learning_rate": 0.01, + "loss": 2.1198, + "step": 8820 + }, + { + "epoch": 0.9065036473851844, + "grad_norm": 0.05041109770536423, + "learning_rate": 0.01, + "loss": 2.0843, + "step": 8823 + }, + { + "epoch": 0.9068118771190794, + "grad_norm": 0.038898076862096786, + "learning_rate": 0.01, + "loss": 2.125, + "step": 8826 + }, + { + "epoch": 0.9071201068529744, + "grad_norm": 0.03356321156024933, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 8829 + }, + { + "epoch": 0.9074283365868694, + "grad_norm": 0.04668448120355606, + "learning_rate": 0.01, + "loss": 2.1071, + "step": 8832 + }, + { + "epoch": 0.9077365663207644, + "grad_norm": 0.051277391612529755, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 8835 + }, + { + "epoch": 0.9080447960546594, + "grad_norm": 0.049883171916007996, + "learning_rate": 0.01, + "loss": 2.1111, + "step": 8838 + }, + { + "epoch": 0.9083530257885544, + "grad_norm": 0.04149313643574715, + "learning_rate": 0.01, + "loss": 2.0991, + "step": 8841 + }, + { + "epoch": 0.9086612555224494, + "grad_norm": 0.09206261485815048, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 8844 + }, + { + "epoch": 0.9089694852563444, + "grad_norm": 0.1830751895904541, + "learning_rate": 0.01, + "loss": 2.1093, + "step": 8847 + }, + { + "epoch": 0.9092777149902393, + "grad_norm": 0.0757865458726883, + "learning_rate": 0.01, + "loss": 2.115, + "step": 8850 + }, + { + "epoch": 0.9095859447241343, + "grad_norm": 0.06030673533678055, + "learning_rate": 0.01, + "loss": 2.0874, + "step": 8853 + }, + { + "epoch": 0.9098941744580293, + "grad_norm": 0.03440079465508461, + "learning_rate": 0.01, + "loss": 2.0997, + "step": 8856 + }, + { + "epoch": 0.9102024041919243, + "grad_norm": 0.040004558861255646, + "learning_rate": 0.01, + "loss": 2.0767, + "step": 8859 + }, + { + "epoch": 0.9105106339258193, + "grad_norm": 0.033261023461818695, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 8862 + }, + { + "epoch": 0.9108188636597144, + "grad_norm": 0.04814066365361214, + "learning_rate": 0.01, + "loss": 2.0868, + "step": 8865 + }, + { + "epoch": 0.9111270933936094, + "grad_norm": 0.04939806088805199, + "learning_rate": 0.01, + "loss": 2.0944, + "step": 8868 + }, + { + "epoch": 0.9114353231275044, + "grad_norm": 0.05242007225751877, + "learning_rate": 0.01, + "loss": 2.1035, + "step": 8871 + }, + { + "epoch": 0.9117435528613994, + "grad_norm": 0.04576495289802551, + "learning_rate": 0.01, + "loss": 2.0881, + "step": 8874 + }, + { + "epoch": 0.9120517825952944, + "grad_norm": 0.0369776152074337, + "learning_rate": 0.01, + "loss": 2.1017, + "step": 8877 + }, + { + "epoch": 0.9123600123291894, + "grad_norm": 0.08296829462051392, + "learning_rate": 0.01, + "loss": 2.1199, + "step": 8880 + }, + { + "epoch": 0.9126682420630844, + "grad_norm": 0.07186676561832428, + "learning_rate": 0.01, + "loss": 2.0906, + "step": 8883 + }, + { + "epoch": 0.9129764717969794, + "grad_norm": 0.06849399209022522, + "learning_rate": 0.01, + "loss": 2.0944, + "step": 8886 + }, + { + "epoch": 0.9132847015308744, + "grad_norm": 0.1285102367401123, + "learning_rate": 0.01, + "loss": 2.0959, + "step": 8889 + }, + { + "epoch": 0.9135929312647694, + "grad_norm": 0.045700203627347946, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 8892 + }, + { + "epoch": 0.9139011609986644, + "grad_norm": 0.04561945050954819, + "learning_rate": 0.01, + "loss": 2.1126, + "step": 8895 + }, + { + "epoch": 0.9142093907325594, + "grad_norm": 0.0417817123234272, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 8898 + }, + { + "epoch": 0.9145176204664544, + "grad_norm": 0.07923369109630585, + "learning_rate": 0.01, + "loss": 2.1059, + "step": 8901 + }, + { + "epoch": 0.9148258502003493, + "grad_norm": 0.052836060523986816, + "learning_rate": 0.01, + "loss": 2.1089, + "step": 8904 + }, + { + "epoch": 0.9151340799342443, + "grad_norm": 0.04591790586709976, + "learning_rate": 0.01, + "loss": 2.1007, + "step": 8907 + }, + { + "epoch": 0.9154423096681393, + "grad_norm": 0.09871240705251694, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 8910 + }, + { + "epoch": 0.9157505394020343, + "grad_norm": 0.044554613530635834, + "learning_rate": 0.01, + "loss": 2.0956, + "step": 8913 + }, + { + "epoch": 0.9160587691359293, + "grad_norm": 0.10009585320949554, + "learning_rate": 0.01, + "loss": 2.0838, + "step": 8916 + }, + { + "epoch": 0.9163669988698243, + "grad_norm": 0.07252159714698792, + "learning_rate": 0.01, + "loss": 2.0973, + "step": 8919 + }, + { + "epoch": 0.9166752286037193, + "grad_norm": 0.09162852168083191, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 8922 + }, + { + "epoch": 0.9169834583376143, + "grad_norm": 0.06149733439087868, + "learning_rate": 0.01, + "loss": 2.1377, + "step": 8925 + }, + { + "epoch": 0.9172916880715093, + "grad_norm": 0.09315814077854156, + "learning_rate": 0.01, + "loss": 2.0901, + "step": 8928 + }, + { + "epoch": 0.9175999178054043, + "grad_norm": 0.056877728551626205, + "learning_rate": 0.01, + "loss": 2.0934, + "step": 8931 + }, + { + "epoch": 0.9179081475392993, + "grad_norm": 0.0976705476641655, + "learning_rate": 0.01, + "loss": 2.0791, + "step": 8934 + }, + { + "epoch": 0.9182163772731943, + "grad_norm": 0.0493176206946373, + "learning_rate": 0.01, + "loss": 2.0937, + "step": 8937 + }, + { + "epoch": 0.9185246070070893, + "grad_norm": 0.06268187612295151, + "learning_rate": 0.01, + "loss": 2.1053, + "step": 8940 + }, + { + "epoch": 0.9188328367409843, + "grad_norm": 0.049251820892095566, + "learning_rate": 0.01, + "loss": 2.1104, + "step": 8943 + }, + { + "epoch": 0.9191410664748793, + "grad_norm": 0.05342431366443634, + "learning_rate": 0.01, + "loss": 2.1005, + "step": 8946 + }, + { + "epoch": 0.9194492962087742, + "grad_norm": 0.036090634763240814, + "learning_rate": 0.01, + "loss": 2.0815, + "step": 8949 + }, + { + "epoch": 0.9197575259426692, + "grad_norm": 0.0320359505712986, + "learning_rate": 0.01, + "loss": 2.0704, + "step": 8952 + }, + { + "epoch": 0.9200657556765642, + "grad_norm": 0.03514352813363075, + "learning_rate": 0.01, + "loss": 2.1046, + "step": 8955 + }, + { + "epoch": 0.9203739854104592, + "grad_norm": 0.06132291629910469, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 8958 + }, + { + "epoch": 0.9206822151443542, + "grad_norm": 0.07312822341918945, + "learning_rate": 0.01, + "loss": 2.1079, + "step": 8961 + }, + { + "epoch": 0.9209904448782492, + "grad_norm": 0.09670150279998779, + "learning_rate": 0.01, + "loss": 2.1195, + "step": 8964 + }, + { + "epoch": 0.9212986746121442, + "grad_norm": 0.1106385663151741, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 8967 + }, + { + "epoch": 0.9216069043460392, + "grad_norm": 0.05964332073926926, + "learning_rate": 0.01, + "loss": 2.1108, + "step": 8970 + }, + { + "epoch": 0.9219151340799342, + "grad_norm": 0.05584556236863136, + "learning_rate": 0.01, + "loss": 2.1274, + "step": 8973 + }, + { + "epoch": 0.9222233638138292, + "grad_norm": 0.04485652595758438, + "learning_rate": 0.01, + "loss": 2.0627, + "step": 8976 + }, + { + "epoch": 0.9225315935477242, + "grad_norm": 0.07286686450242996, + "learning_rate": 0.01, + "loss": 2.1087, + "step": 8979 + }, + { + "epoch": 0.9228398232816193, + "grad_norm": 0.10815869271755219, + "learning_rate": 0.01, + "loss": 2.1057, + "step": 8982 + }, + { + "epoch": 0.9231480530155143, + "grad_norm": 0.1037832722067833, + "learning_rate": 0.01, + "loss": 2.0836, + "step": 8985 + }, + { + "epoch": 0.9234562827494093, + "grad_norm": 0.08297618478536606, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 8988 + }, + { + "epoch": 0.9237645124833043, + "grad_norm": 0.04203306511044502, + "learning_rate": 0.01, + "loss": 2.1112, + "step": 8991 + }, + { + "epoch": 0.9240727422171993, + "grad_norm": 0.06641580909490585, + "learning_rate": 0.01, + "loss": 2.1004, + "step": 8994 + }, + { + "epoch": 0.9243809719510943, + "grad_norm": 0.04921744763851166, + "learning_rate": 0.01, + "loss": 2.1116, + "step": 8997 + }, + { + "epoch": 0.9246892016849892, + "grad_norm": 0.03472235053777695, + "learning_rate": 0.01, + "loss": 2.0777, + "step": 9000 + }, + { + "epoch": 0.9249974314188842, + "grad_norm": 0.03650922700762749, + "learning_rate": 0.01, + "loss": 2.0802, + "step": 9003 + }, + { + "epoch": 0.9253056611527792, + "grad_norm": 0.04657342657446861, + "learning_rate": 0.01, + "loss": 2.0773, + "step": 9006 + }, + { + "epoch": 0.9256138908866742, + "grad_norm": 0.05943501368165016, + "learning_rate": 0.01, + "loss": 2.0753, + "step": 9009 + }, + { + "epoch": 0.9259221206205692, + "grad_norm": 0.04763554409146309, + "learning_rate": 0.01, + "loss": 2.0959, + "step": 9012 + }, + { + "epoch": 0.9262303503544642, + "grad_norm": 0.1267511248588562, + "learning_rate": 0.01, + "loss": 2.0971, + "step": 9015 + }, + { + "epoch": 0.9265385800883592, + "grad_norm": 0.055529460310935974, + "learning_rate": 0.01, + "loss": 2.1327, + "step": 9018 + }, + { + "epoch": 0.9268468098222542, + "grad_norm": 0.15508927404880524, + "learning_rate": 0.01, + "loss": 2.0947, + "step": 9021 + }, + { + "epoch": 0.9271550395561492, + "grad_norm": 0.0593777671456337, + "learning_rate": 0.01, + "loss": 2.1171, + "step": 9024 + }, + { + "epoch": 0.9274632692900442, + "grad_norm": 0.08907107263803482, + "learning_rate": 0.01, + "loss": 2.093, + "step": 9027 + }, + { + "epoch": 0.9277714990239392, + "grad_norm": 0.07041808217763901, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 9030 + }, + { + "epoch": 0.9280797287578342, + "grad_norm": 0.03434208780527115, + "learning_rate": 0.01, + "loss": 2.0928, + "step": 9033 + }, + { + "epoch": 0.9283879584917292, + "grad_norm": 0.07591548562049866, + "learning_rate": 0.01, + "loss": 2.0857, + "step": 9036 + }, + { + "epoch": 0.9286961882256242, + "grad_norm": 0.08999443799257278, + "learning_rate": 0.01, + "loss": 2.0984, + "step": 9039 + }, + { + "epoch": 0.9290044179595192, + "grad_norm": 0.11046464741230011, + "learning_rate": 0.01, + "loss": 2.1009, + "step": 9042 + }, + { + "epoch": 0.9293126476934142, + "grad_norm": 0.08271370083093643, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 9045 + }, + { + "epoch": 0.9296208774273091, + "grad_norm": 0.046337299048900604, + "learning_rate": 0.01, + "loss": 2.0826, + "step": 9048 + }, + { + "epoch": 0.9299291071612041, + "grad_norm": 0.037284769117832184, + "learning_rate": 0.01, + "loss": 2.1015, + "step": 9051 + }, + { + "epoch": 0.9302373368950991, + "grad_norm": 0.04956496134400368, + "learning_rate": 0.01, + "loss": 2.1036, + "step": 9054 + }, + { + "epoch": 0.9305455666289941, + "grad_norm": 0.12329571694135666, + "learning_rate": 0.01, + "loss": 2.0917, + "step": 9057 + }, + { + "epoch": 0.9308537963628891, + "grad_norm": 0.06971380859613419, + "learning_rate": 0.01, + "loss": 2.114, + "step": 9060 + }, + { + "epoch": 0.9311620260967841, + "grad_norm": 0.06084508076310158, + "learning_rate": 0.01, + "loss": 2.1122, + "step": 9063 + }, + { + "epoch": 0.9314702558306791, + "grad_norm": 0.049602411687374115, + "learning_rate": 0.01, + "loss": 2.1268, + "step": 9066 + }, + { + "epoch": 0.9317784855645741, + "grad_norm": 0.05200349539518356, + "learning_rate": 0.01, + "loss": 2.0979, + "step": 9069 + }, + { + "epoch": 0.9320867152984691, + "grad_norm": 0.05793909728527069, + "learning_rate": 0.01, + "loss": 2.096, + "step": 9072 + }, + { + "epoch": 0.9323949450323641, + "grad_norm": 0.10819883644580841, + "learning_rate": 0.01, + "loss": 2.1096, + "step": 9075 + }, + { + "epoch": 0.9327031747662591, + "grad_norm": 0.07809442281723022, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 9078 + }, + { + "epoch": 0.9330114045001541, + "grad_norm": 0.09595733880996704, + "learning_rate": 0.01, + "loss": 2.0769, + "step": 9081 + }, + { + "epoch": 0.9333196342340491, + "grad_norm": 0.11658616364002228, + "learning_rate": 0.01, + "loss": 2.0945, + "step": 9084 + }, + { + "epoch": 0.9336278639679441, + "grad_norm": 0.07642678171396255, + "learning_rate": 0.01, + "loss": 2.0811, + "step": 9087 + }, + { + "epoch": 0.933936093701839, + "grad_norm": 0.03174865245819092, + "learning_rate": 0.01, + "loss": 2.1017, + "step": 9090 + }, + { + "epoch": 0.934244323435734, + "grad_norm": 0.05137626454234123, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 9093 + }, + { + "epoch": 0.9345525531696292, + "grad_norm": 0.05306951329112053, + "learning_rate": 0.01, + "loss": 2.1163, + "step": 9096 + }, + { + "epoch": 0.9348607829035241, + "grad_norm": 0.0716642439365387, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 9099 + }, + { + "epoch": 0.9351690126374191, + "grad_norm": 0.10328514873981476, + "learning_rate": 0.01, + "loss": 2.0789, + "step": 9102 + }, + { + "epoch": 0.9354772423713141, + "grad_norm": 0.04914560168981552, + "learning_rate": 0.01, + "loss": 2.0963, + "step": 9105 + }, + { + "epoch": 0.9357854721052091, + "grad_norm": 0.04810576140880585, + "learning_rate": 0.01, + "loss": 2.1119, + "step": 9108 + }, + { + "epoch": 0.9360937018391041, + "grad_norm": 0.05689787119626999, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 9111 + }, + { + "epoch": 0.9364019315729991, + "grad_norm": 0.06455382704734802, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 9114 + }, + { + "epoch": 0.9367101613068941, + "grad_norm": 0.044911760836839676, + "learning_rate": 0.01, + "loss": 2.0967, + "step": 9117 + }, + { + "epoch": 0.9370183910407891, + "grad_norm": 0.06244887784123421, + "learning_rate": 0.01, + "loss": 2.0921, + "step": 9120 + }, + { + "epoch": 0.9373266207746841, + "grad_norm": 0.052621614187955856, + "learning_rate": 0.01, + "loss": 2.1296, + "step": 9123 + }, + { + "epoch": 0.9376348505085791, + "grad_norm": 0.05098232626914978, + "learning_rate": 0.01, + "loss": 2.0807, + "step": 9126 + }, + { + "epoch": 0.9379430802424741, + "grad_norm": 0.058582011610269547, + "learning_rate": 0.01, + "loss": 2.0973, + "step": 9129 + }, + { + "epoch": 0.9382513099763691, + "grad_norm": 0.10984500497579575, + "learning_rate": 0.01, + "loss": 2.0789, + "step": 9132 + }, + { + "epoch": 0.9385595397102641, + "grad_norm": 0.045173123478889465, + "learning_rate": 0.01, + "loss": 2.0937, + "step": 9135 + }, + { + "epoch": 0.9388677694441591, + "grad_norm": 0.06749478727579117, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 9138 + }, + { + "epoch": 0.939175999178054, + "grad_norm": 0.06236808001995087, + "learning_rate": 0.01, + "loss": 2.1099, + "step": 9141 + }, + { + "epoch": 0.939484228911949, + "grad_norm": 0.06205837428569794, + "learning_rate": 0.01, + "loss": 2.0893, + "step": 9144 + }, + { + "epoch": 0.939792458645844, + "grad_norm": 0.0742972195148468, + "learning_rate": 0.01, + "loss": 2.1034, + "step": 9147 + }, + { + "epoch": 0.940100688379739, + "grad_norm": 0.06998419016599655, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 9150 + }, + { + "epoch": 0.940408918113634, + "grad_norm": 0.04214362055063248, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 9153 + }, + { + "epoch": 0.940717147847529, + "grad_norm": 0.055913276970386505, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 9156 + }, + { + "epoch": 0.941025377581424, + "grad_norm": 0.0941486805677414, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 9159 + }, + { + "epoch": 0.941333607315319, + "grad_norm": 0.05609782040119171, + "learning_rate": 0.01, + "loss": 2.096, + "step": 9162 + }, + { + "epoch": 0.941641837049214, + "grad_norm": 0.05714662745594978, + "learning_rate": 0.01, + "loss": 2.0939, + "step": 9165 + }, + { + "epoch": 0.941950066783109, + "grad_norm": 0.05364496633410454, + "learning_rate": 0.01, + "loss": 2.0838, + "step": 9168 + }, + { + "epoch": 0.942258296517004, + "grad_norm": 0.050090350210666656, + "learning_rate": 0.01, + "loss": 2.087, + "step": 9171 + }, + { + "epoch": 0.942566526250899, + "grad_norm": 0.07287559658288956, + "learning_rate": 0.01, + "loss": 2.098, + "step": 9174 + }, + { + "epoch": 0.942874755984794, + "grad_norm": 0.04061901941895485, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 9177 + }, + { + "epoch": 0.943182985718689, + "grad_norm": 0.10750306397676468, + "learning_rate": 0.01, + "loss": 2.1105, + "step": 9180 + }, + { + "epoch": 0.943491215452584, + "grad_norm": 0.10353365540504456, + "learning_rate": 0.01, + "loss": 2.0712, + "step": 9183 + }, + { + "epoch": 0.943799445186479, + "grad_norm": 0.07502592355012894, + "learning_rate": 0.01, + "loss": 2.1115, + "step": 9186 + }, + { + "epoch": 0.944107674920374, + "grad_norm": 0.046962104737758636, + "learning_rate": 0.01, + "loss": 2.0937, + "step": 9189 + }, + { + "epoch": 0.944415904654269, + "grad_norm": 0.05084332078695297, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 9192 + }, + { + "epoch": 0.9447241343881639, + "grad_norm": 0.0458371527493, + "learning_rate": 0.01, + "loss": 2.0967, + "step": 9195 + }, + { + "epoch": 0.9450323641220589, + "grad_norm": 0.040458545088768005, + "learning_rate": 0.01, + "loss": 2.0949, + "step": 9198 + }, + { + "epoch": 0.9453405938559539, + "grad_norm": 0.046158358454704285, + "learning_rate": 0.01, + "loss": 2.0912, + "step": 9201 + }, + { + "epoch": 0.9456488235898489, + "grad_norm": 0.10080043226480484, + "learning_rate": 0.01, + "loss": 2.1, + "step": 9204 + }, + { + "epoch": 0.9459570533237439, + "grad_norm": 0.07679333537817001, + "learning_rate": 0.01, + "loss": 2.1013, + "step": 9207 + }, + { + "epoch": 0.9462652830576389, + "grad_norm": 0.07189175486564636, + "learning_rate": 0.01, + "loss": 2.1008, + "step": 9210 + }, + { + "epoch": 0.946573512791534, + "grad_norm": 0.07828579097986221, + "learning_rate": 0.01, + "loss": 2.1063, + "step": 9213 + }, + { + "epoch": 0.946881742525429, + "grad_norm": 0.07649674266576767, + "learning_rate": 0.01, + "loss": 2.1146, + "step": 9216 + }, + { + "epoch": 0.947189972259324, + "grad_norm": 0.06558651477098465, + "learning_rate": 0.01, + "loss": 2.0705, + "step": 9219 + }, + { + "epoch": 0.947498201993219, + "grad_norm": 0.03276702016592026, + "learning_rate": 0.01, + "loss": 2.1065, + "step": 9222 + }, + { + "epoch": 0.947806431727114, + "grad_norm": 0.03779645636677742, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 9225 + }, + { + "epoch": 0.948114661461009, + "grad_norm": 0.048466913402080536, + "learning_rate": 0.01, + "loss": 2.1037, + "step": 9228 + }, + { + "epoch": 0.948422891194904, + "grad_norm": 0.04391203075647354, + "learning_rate": 0.01, + "loss": 2.0722, + "step": 9231 + }, + { + "epoch": 0.948731120928799, + "grad_norm": 0.11353743076324463, + "learning_rate": 0.01, + "loss": 2.113, + "step": 9234 + }, + { + "epoch": 0.949039350662694, + "grad_norm": 0.045930709689855576, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 9237 + }, + { + "epoch": 0.949347580396589, + "grad_norm": 0.06440164893865585, + "learning_rate": 0.01, + "loss": 2.0786, + "step": 9240 + }, + { + "epoch": 0.949655810130484, + "grad_norm": 0.08666238933801651, + "learning_rate": 0.01, + "loss": 2.1049, + "step": 9243 + }, + { + "epoch": 0.9499640398643789, + "grad_norm": 0.11012524366378784, + "learning_rate": 0.01, + "loss": 2.1018, + "step": 9246 + }, + { + "epoch": 0.9502722695982739, + "grad_norm": 0.047307875007390976, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 9249 + }, + { + "epoch": 0.9505804993321689, + "grad_norm": 0.04565277695655823, + "learning_rate": 0.01, + "loss": 2.1174, + "step": 9252 + }, + { + "epoch": 0.9508887290660639, + "grad_norm": 0.03389623388648033, + "learning_rate": 0.01, + "loss": 2.0896, + "step": 9255 + }, + { + "epoch": 0.9511969587999589, + "grad_norm": 0.04582008346915245, + "learning_rate": 0.01, + "loss": 2.0888, + "step": 9258 + }, + { + "epoch": 0.9515051885338539, + "grad_norm": 0.07722247391939163, + "learning_rate": 0.01, + "loss": 2.0843, + "step": 9261 + }, + { + "epoch": 0.9518134182677489, + "grad_norm": 0.03505149856209755, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 9264 + }, + { + "epoch": 0.9521216480016439, + "grad_norm": 0.08010539412498474, + "learning_rate": 0.01, + "loss": 2.1249, + "step": 9267 + }, + { + "epoch": 0.9524298777355389, + "grad_norm": 0.0723007321357727, + "learning_rate": 0.01, + "loss": 2.0951, + "step": 9270 + }, + { + "epoch": 0.9527381074694339, + "grad_norm": 0.05629736930131912, + "learning_rate": 0.01, + "loss": 2.0948, + "step": 9273 + }, + { + "epoch": 0.9530463372033289, + "grad_norm": 0.05514506623148918, + "learning_rate": 0.01, + "loss": 2.1214, + "step": 9276 + }, + { + "epoch": 0.9533545669372239, + "grad_norm": 0.1107834130525589, + "learning_rate": 0.01, + "loss": 2.0876, + "step": 9279 + }, + { + "epoch": 0.9536627966711189, + "grad_norm": 0.046309590339660645, + "learning_rate": 0.01, + "loss": 2.0669, + "step": 9282 + }, + { + "epoch": 0.9539710264050139, + "grad_norm": 0.06956466287374496, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 9285 + }, + { + "epoch": 0.9542792561389088, + "grad_norm": 0.086011603474617, + "learning_rate": 0.01, + "loss": 2.0896, + "step": 9288 + }, + { + "epoch": 0.9545874858728038, + "grad_norm": 0.04768074303865433, + "learning_rate": 0.01, + "loss": 2.0923, + "step": 9291 + }, + { + "epoch": 0.9548957156066988, + "grad_norm": 0.0958017110824585, + "learning_rate": 0.01, + "loss": 2.1134, + "step": 9294 + }, + { + "epoch": 0.9552039453405938, + "grad_norm": 0.06098558008670807, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 9297 + }, + { + "epoch": 0.9555121750744888, + "grad_norm": 0.05258086323738098, + "learning_rate": 0.01, + "loss": 2.0998, + "step": 9300 + }, + { + "epoch": 0.9558204048083838, + "grad_norm": 0.06664231419563293, + "learning_rate": 0.01, + "loss": 2.1215, + "step": 9303 + }, + { + "epoch": 0.9561286345422788, + "grad_norm": 0.05491488054394722, + "learning_rate": 0.01, + "loss": 2.0837, + "step": 9306 + }, + { + "epoch": 0.9564368642761738, + "grad_norm": 0.0436725877225399, + "learning_rate": 0.01, + "loss": 2.1268, + "step": 9309 + }, + { + "epoch": 0.9567450940100688, + "grad_norm": 0.08737560361623764, + "learning_rate": 0.01, + "loss": 2.0901, + "step": 9312 + }, + { + "epoch": 0.9570533237439638, + "grad_norm": 0.08130110800266266, + "learning_rate": 0.01, + "loss": 2.0766, + "step": 9315 + }, + { + "epoch": 0.9573615534778588, + "grad_norm": 0.07826768606901169, + "learning_rate": 0.01, + "loss": 2.0836, + "step": 9318 + }, + { + "epoch": 0.9576697832117538, + "grad_norm": 0.09330857545137405, + "learning_rate": 0.01, + "loss": 2.0794, + "step": 9321 + }, + { + "epoch": 0.9579780129456488, + "grad_norm": 0.03914652019739151, + "learning_rate": 0.01, + "loss": 2.102, + "step": 9324 + }, + { + "epoch": 0.9582862426795438, + "grad_norm": 0.03853154182434082, + "learning_rate": 0.01, + "loss": 2.0915, + "step": 9327 + }, + { + "epoch": 0.9585944724134389, + "grad_norm": 0.07349935919046402, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 9330 + }, + { + "epoch": 0.9589027021473339, + "grad_norm": 0.1473885178565979, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 9333 + }, + { + "epoch": 0.9592109318812289, + "grad_norm": 0.11091527342796326, + "learning_rate": 0.01, + "loss": 2.0934, + "step": 9336 + }, + { + "epoch": 0.9595191616151239, + "grad_norm": 0.0400085523724556, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 9339 + }, + { + "epoch": 0.9598273913490188, + "grad_norm": 0.05025499314069748, + "learning_rate": 0.01, + "loss": 2.0845, + "step": 9342 + }, + { + "epoch": 0.9601356210829138, + "grad_norm": 0.03745681792497635, + "learning_rate": 0.01, + "loss": 2.1006, + "step": 9345 + }, + { + "epoch": 0.9604438508168088, + "grad_norm": 0.05147318169474602, + "learning_rate": 0.01, + "loss": 2.0912, + "step": 9348 + }, + { + "epoch": 0.9607520805507038, + "grad_norm": 0.06338364630937576, + "learning_rate": 0.01, + "loss": 2.1169, + "step": 9351 + }, + { + "epoch": 0.9610603102845988, + "grad_norm": 0.09458258748054504, + "learning_rate": 0.01, + "loss": 2.1005, + "step": 9354 + }, + { + "epoch": 0.9613685400184938, + "grad_norm": 0.09883291274309158, + "learning_rate": 0.01, + "loss": 2.0934, + "step": 9357 + }, + { + "epoch": 0.9616767697523888, + "grad_norm": 0.048908524215221405, + "learning_rate": 0.01, + "loss": 2.0863, + "step": 9360 + }, + { + "epoch": 0.9619849994862838, + "grad_norm": 0.11762084811925888, + "learning_rate": 0.01, + "loss": 2.1182, + "step": 9363 + }, + { + "epoch": 0.9622932292201788, + "grad_norm": 0.0835133045911789, + "learning_rate": 0.01, + "loss": 2.0728, + "step": 9366 + }, + { + "epoch": 0.9626014589540738, + "grad_norm": 0.0580466203391552, + "learning_rate": 0.01, + "loss": 2.0756, + "step": 9369 + }, + { + "epoch": 0.9629096886879688, + "grad_norm": 0.051043394953012466, + "learning_rate": 0.01, + "loss": 2.0936, + "step": 9372 + }, + { + "epoch": 0.9632179184218638, + "grad_norm": 0.1081843450665474, + "learning_rate": 0.01, + "loss": 2.107, + "step": 9375 + }, + { + "epoch": 0.9635261481557588, + "grad_norm": 0.04656577482819557, + "learning_rate": 0.01, + "loss": 2.1084, + "step": 9378 + }, + { + "epoch": 0.9638343778896538, + "grad_norm": 0.03988798335194588, + "learning_rate": 0.01, + "loss": 2.1015, + "step": 9381 + }, + { + "epoch": 0.9641426076235488, + "grad_norm": 0.07686126232147217, + "learning_rate": 0.01, + "loss": 2.1417, + "step": 9384 + }, + { + "epoch": 0.9644508373574437, + "grad_norm": 0.057407401502132416, + "learning_rate": 0.01, + "loss": 2.1191, + "step": 9387 + }, + { + "epoch": 0.9647590670913387, + "grad_norm": 0.0947386845946312, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 9390 + }, + { + "epoch": 0.9650672968252337, + "grad_norm": 0.05064699798822403, + "learning_rate": 0.01, + "loss": 2.1001, + "step": 9393 + }, + { + "epoch": 0.9653755265591287, + "grad_norm": 0.04948986694216728, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 9396 + }, + { + "epoch": 0.9656837562930237, + "grad_norm": 0.10736438632011414, + "learning_rate": 0.01, + "loss": 2.0939, + "step": 9399 + }, + { + "epoch": 0.9659919860269187, + "grad_norm": 0.039317477494478226, + "learning_rate": 0.01, + "loss": 2.1077, + "step": 9402 + }, + { + "epoch": 0.9663002157608137, + "grad_norm": 0.06933067739009857, + "learning_rate": 0.01, + "loss": 2.1056, + "step": 9405 + }, + { + "epoch": 0.9666084454947087, + "grad_norm": 0.03649623692035675, + "learning_rate": 0.01, + "loss": 2.0838, + "step": 9408 + }, + { + "epoch": 0.9669166752286037, + "grad_norm": 0.09309684485197067, + "learning_rate": 0.01, + "loss": 2.0913, + "step": 9411 + }, + { + "epoch": 0.9672249049624987, + "grad_norm": 0.11532922834157944, + "learning_rate": 0.01, + "loss": 2.1127, + "step": 9414 + }, + { + "epoch": 0.9675331346963937, + "grad_norm": 0.053582970052957535, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 9417 + }, + { + "epoch": 0.9678413644302887, + "grad_norm": 0.07581201195716858, + "learning_rate": 0.01, + "loss": 2.1148, + "step": 9420 + }, + { + "epoch": 0.9681495941641837, + "grad_norm": 0.051002178341150284, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 9423 + }, + { + "epoch": 0.9684578238980787, + "grad_norm": 0.06385383754968643, + "learning_rate": 0.01, + "loss": 2.0826, + "step": 9426 + }, + { + "epoch": 0.9687660536319737, + "grad_norm": 0.10576994717121124, + "learning_rate": 0.01, + "loss": 2.0768, + "step": 9429 + }, + { + "epoch": 0.9690742833658686, + "grad_norm": 0.054983410984277725, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 9432 + }, + { + "epoch": 0.9693825130997636, + "grad_norm": 0.09159716218709946, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 9435 + }, + { + "epoch": 0.9696907428336586, + "grad_norm": 0.07718406617641449, + "learning_rate": 0.01, + "loss": 2.1132, + "step": 9438 + }, + { + "epoch": 0.9699989725675536, + "grad_norm": 0.0788009986281395, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 9441 + }, + { + "epoch": 0.9703072023014487, + "grad_norm": 0.040717653930187225, + "learning_rate": 0.01, + "loss": 2.084, + "step": 9444 + }, + { + "epoch": 0.9706154320353437, + "grad_norm": 0.09677381813526154, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 9447 + }, + { + "epoch": 0.9709236617692387, + "grad_norm": 0.0706525593996048, + "learning_rate": 0.01, + "loss": 2.0647, + "step": 9450 + }, + { + "epoch": 0.9712318915031337, + "grad_norm": 0.04624510183930397, + "learning_rate": 0.01, + "loss": 2.0818, + "step": 9453 + }, + { + "epoch": 0.9715401212370287, + "grad_norm": 0.04585500434041023, + "learning_rate": 0.01, + "loss": 2.0927, + "step": 9456 + }, + { + "epoch": 0.9718483509709237, + "grad_norm": 0.03468145430088043, + "learning_rate": 0.01, + "loss": 2.0759, + "step": 9459 + }, + { + "epoch": 0.9721565807048187, + "grad_norm": 0.06956649571657181, + "learning_rate": 0.01, + "loss": 2.092, + "step": 9462 + }, + { + "epoch": 0.9724648104387137, + "grad_norm": 0.04509080946445465, + "learning_rate": 0.01, + "loss": 2.1095, + "step": 9465 + }, + { + "epoch": 0.9727730401726087, + "grad_norm": 0.09959586709737778, + "learning_rate": 0.01, + "loss": 2.0921, + "step": 9468 + }, + { + "epoch": 0.9730812699065037, + "grad_norm": 0.08427727967500687, + "learning_rate": 0.01, + "loss": 2.1031, + "step": 9471 + }, + { + "epoch": 0.9733894996403987, + "grad_norm": 0.14798741042613983, + "learning_rate": 0.01, + "loss": 2.091, + "step": 9474 + }, + { + "epoch": 0.9736977293742937, + "grad_norm": 0.057735662907361984, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 9477 + }, + { + "epoch": 0.9740059591081887, + "grad_norm": 0.04484837129712105, + "learning_rate": 0.01, + "loss": 2.1015, + "step": 9480 + }, + { + "epoch": 0.9743141888420837, + "grad_norm": 0.04166285693645477, + "learning_rate": 0.01, + "loss": 2.1021, + "step": 9483 + }, + { + "epoch": 0.9746224185759786, + "grad_norm": 0.05640358105301857, + "learning_rate": 0.01, + "loss": 2.0925, + "step": 9486 + }, + { + "epoch": 0.9749306483098736, + "grad_norm": 0.040314216166734695, + "learning_rate": 0.01, + "loss": 2.0797, + "step": 9489 + }, + { + "epoch": 0.9752388780437686, + "grad_norm": 0.04522860422730446, + "learning_rate": 0.01, + "loss": 2.0935, + "step": 9492 + }, + { + "epoch": 0.9755471077776636, + "grad_norm": 0.03492886200547218, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 9495 + }, + { + "epoch": 0.9758553375115586, + "grad_norm": 0.03252703323960304, + "learning_rate": 0.01, + "loss": 2.125, + "step": 9498 + }, + { + "epoch": 0.9761635672454536, + "grad_norm": 0.04002056270837784, + "learning_rate": 0.01, + "loss": 2.0651, + "step": 9501 + }, + { + "epoch": 0.9764717969793486, + "grad_norm": 0.07364718616008759, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 9504 + }, + { + "epoch": 0.9767800267132436, + "grad_norm": 0.05577448755502701, + "learning_rate": 0.01, + "loss": 2.0726, + "step": 9507 + }, + { + "epoch": 0.9770882564471386, + "grad_norm": 0.13259132206439972, + "learning_rate": 0.01, + "loss": 2.1075, + "step": 9510 + }, + { + "epoch": 0.9773964861810336, + "grad_norm": 0.06911557912826538, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 9513 + }, + { + "epoch": 0.9777047159149286, + "grad_norm": 0.10592345148324966, + "learning_rate": 0.01, + "loss": 2.0982, + "step": 9516 + }, + { + "epoch": 0.9780129456488236, + "grad_norm": 0.05682144686579704, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 9519 + }, + { + "epoch": 0.9783211753827186, + "grad_norm": 0.07456633448600769, + "learning_rate": 0.01, + "loss": 2.0983, + "step": 9522 + }, + { + "epoch": 0.9786294051166136, + "grad_norm": 0.062031425535678864, + "learning_rate": 0.01, + "loss": 2.1163, + "step": 9525 + }, + { + "epoch": 0.9789376348505086, + "grad_norm": 0.0570233091711998, + "learning_rate": 0.01, + "loss": 2.1046, + "step": 9528 + }, + { + "epoch": 0.9792458645844035, + "grad_norm": 0.04668619483709335, + "learning_rate": 0.01, + "loss": 2.081, + "step": 9531 + }, + { + "epoch": 0.9795540943182985, + "grad_norm": 0.04718153178691864, + "learning_rate": 0.01, + "loss": 2.0678, + "step": 9534 + }, + { + "epoch": 0.9798623240521935, + "grad_norm": 0.054066251963377, + "learning_rate": 0.01, + "loss": 2.0911, + "step": 9537 + }, + { + "epoch": 0.9801705537860885, + "grad_norm": 0.1274210512638092, + "learning_rate": 0.01, + "loss": 2.097, + "step": 9540 + }, + { + "epoch": 0.9804787835199835, + "grad_norm": 0.07543773949146271, + "learning_rate": 0.01, + "loss": 2.0824, + "step": 9543 + }, + { + "epoch": 0.9807870132538785, + "grad_norm": 0.07845018804073334, + "learning_rate": 0.01, + "loss": 2.0749, + "step": 9546 + }, + { + "epoch": 0.9810952429877735, + "grad_norm": 0.08444254100322723, + "learning_rate": 0.01, + "loss": 2.1019, + "step": 9549 + }, + { + "epoch": 0.9814034727216685, + "grad_norm": 0.07719142735004425, + "learning_rate": 0.01, + "loss": 2.0811, + "step": 9552 + }, + { + "epoch": 0.9817117024555635, + "grad_norm": 0.05624673515558243, + "learning_rate": 0.01, + "loss": 2.0752, + "step": 9555 + }, + { + "epoch": 0.9820199321894585, + "grad_norm": 0.0419309176504612, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 9558 + }, + { + "epoch": 0.9823281619233536, + "grad_norm": 0.0343257375061512, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 9561 + }, + { + "epoch": 0.9826363916572486, + "grad_norm": 0.059452395886182785, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 9564 + }, + { + "epoch": 0.9829446213911436, + "grad_norm": 0.09073518216609955, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 9567 + }, + { + "epoch": 0.9832528511250386, + "grad_norm": 0.10660509765148163, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 9570 + }, + { + "epoch": 0.9835610808589336, + "grad_norm": 0.04380667209625244, + "learning_rate": 0.01, + "loss": 2.0992, + "step": 9573 + }, + { + "epoch": 0.9838693105928286, + "grad_norm": 0.06383811682462692, + "learning_rate": 0.01, + "loss": 2.0722, + "step": 9576 + }, + { + "epoch": 0.9841775403267236, + "grad_norm": 0.07926032692193985, + "learning_rate": 0.01, + "loss": 2.0571, + "step": 9579 + }, + { + "epoch": 0.9844857700606185, + "grad_norm": 0.05310386046767235, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 9582 + }, + { + "epoch": 0.9847939997945135, + "grad_norm": 0.03591843321919441, + "learning_rate": 0.01, + "loss": 2.0757, + "step": 9585 + }, + { + "epoch": 0.9851022295284085, + "grad_norm": 0.04773431271314621, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 9588 + }, + { + "epoch": 0.9854104592623035, + "grad_norm": 0.04679710045456886, + "learning_rate": 0.01, + "loss": 2.0771, + "step": 9591 + }, + { + "epoch": 0.9857186889961985, + "grad_norm": 0.05671774223446846, + "learning_rate": 0.01, + "loss": 2.1106, + "step": 9594 + }, + { + "epoch": 0.9860269187300935, + "grad_norm": 0.049488577991724014, + "learning_rate": 0.01, + "loss": 2.0695, + "step": 9597 + }, + { + "epoch": 0.9863351484639885, + "grad_norm": 0.04207129031419754, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 9600 + }, + { + "epoch": 0.9866433781978835, + "grad_norm": 0.10019747167825699, + "learning_rate": 0.01, + "loss": 2.073, + "step": 9603 + }, + { + "epoch": 0.9869516079317785, + "grad_norm": 0.051381729543209076, + "learning_rate": 0.01, + "loss": 2.0626, + "step": 9606 + }, + { + "epoch": 0.9872598376656735, + "grad_norm": 0.13477744162082672, + "learning_rate": 0.01, + "loss": 2.1098, + "step": 9609 + }, + { + "epoch": 0.9875680673995685, + "grad_norm": 0.09002148360013962, + "learning_rate": 0.01, + "loss": 2.0927, + "step": 9612 + }, + { + "epoch": 0.9878762971334635, + "grad_norm": 0.05230112001299858, + "learning_rate": 0.01, + "loss": 2.0902, + "step": 9615 + }, + { + "epoch": 0.9881845268673585, + "grad_norm": 0.0639885738492012, + "learning_rate": 0.01, + "loss": 2.1179, + "step": 9618 + }, + { + "epoch": 0.9884927566012535, + "grad_norm": 0.0553070530295372, + "learning_rate": 0.01, + "loss": 2.0923, + "step": 9621 + }, + { + "epoch": 0.9888009863351485, + "grad_norm": 0.04541468620300293, + "learning_rate": 0.01, + "loss": 2.0965, + "step": 9624 + }, + { + "epoch": 0.9891092160690435, + "grad_norm": 0.08656930178403854, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 9627 + }, + { + "epoch": 0.9894174458029384, + "grad_norm": 0.04954921826720238, + "learning_rate": 0.01, + "loss": 2.0759, + "step": 9630 + }, + { + "epoch": 0.9897256755368334, + "grad_norm": 0.07971720397472382, + "learning_rate": 0.01, + "loss": 2.0837, + "step": 9633 + }, + { + "epoch": 0.9900339052707284, + "grad_norm": 0.12388944625854492, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 9636 + }, + { + "epoch": 0.9903421350046234, + "grad_norm": 0.040693242102861404, + "learning_rate": 0.01, + "loss": 2.0806, + "step": 9639 + }, + { + "epoch": 0.9906503647385184, + "grad_norm": 0.032711997628211975, + "learning_rate": 0.01, + "loss": 2.0925, + "step": 9642 + }, + { + "epoch": 0.9909585944724134, + "grad_norm": 0.04089382663369179, + "learning_rate": 0.01, + "loss": 2.0841, + "step": 9645 + }, + { + "epoch": 0.9912668242063084, + "grad_norm": 0.05480481684207916, + "learning_rate": 0.01, + "loss": 2.0769, + "step": 9648 + }, + { + "epoch": 0.9915750539402034, + "grad_norm": 0.04627472907304764, + "learning_rate": 0.01, + "loss": 2.094, + "step": 9651 + }, + { + "epoch": 0.9918832836740984, + "grad_norm": 0.0517272874712944, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 9654 + }, + { + "epoch": 0.9921915134079934, + "grad_norm": 0.051012761890888214, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 9657 + }, + { + "epoch": 0.9924997431418884, + "grad_norm": 0.08666348457336426, + "learning_rate": 0.01, + "loss": 2.0875, + "step": 9660 + }, + { + "epoch": 0.9928079728757834, + "grad_norm": 0.0972173810005188, + "learning_rate": 0.01, + "loss": 2.0995, + "step": 9663 + }, + { + "epoch": 0.9931162026096784, + "grad_norm": 0.0765865370631218, + "learning_rate": 0.01, + "loss": 2.0729, + "step": 9666 + }, + { + "epoch": 0.9934244323435734, + "grad_norm": 0.04532674700021744, + "learning_rate": 0.01, + "loss": 2.0656, + "step": 9669 + }, + { + "epoch": 0.9937326620774684, + "grad_norm": 0.08642619848251343, + "learning_rate": 0.01, + "loss": 2.1036, + "step": 9672 + }, + { + "epoch": 0.9940408918113633, + "grad_norm": 0.04758689925074577, + "learning_rate": 0.01, + "loss": 2.0683, + "step": 9675 + }, + { + "epoch": 0.9943491215452585, + "grad_norm": 0.07701463252305984, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 9678 + }, + { + "epoch": 0.9946573512791534, + "grad_norm": 0.05999990925192833, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 9681 + }, + { + "epoch": 0.9949655810130484, + "grad_norm": 0.08793257176876068, + "learning_rate": 0.01, + "loss": 2.0689, + "step": 9684 + }, + { + "epoch": 0.9952738107469434, + "grad_norm": 0.06139199063181877, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 9687 + }, + { + "epoch": 0.9955820404808384, + "grad_norm": 0.09202239662408829, + "learning_rate": 0.01, + "loss": 2.0837, + "step": 9690 + }, + { + "epoch": 0.9958902702147334, + "grad_norm": 0.09284163266420364, + "learning_rate": 0.01, + "loss": 2.107, + "step": 9693 + }, + { + "epoch": 0.9961984999486284, + "grad_norm": 0.08113729953765869, + "learning_rate": 0.01, + "loss": 2.076, + "step": 9696 + }, + { + "epoch": 0.9965067296825234, + "grad_norm": 0.10663104802370071, + "learning_rate": 0.01, + "loss": 2.0973, + "step": 9699 + }, + { + "epoch": 0.9968149594164184, + "grad_norm": 0.11791951954364777, + "learning_rate": 0.01, + "loss": 2.0885, + "step": 9702 + }, + { + "epoch": 0.9971231891503134, + "grad_norm": 0.09039194136857986, + "learning_rate": 0.01, + "loss": 2.0957, + "step": 9705 + }, + { + "epoch": 0.9974314188842084, + "grad_norm": 0.08142858743667603, + "learning_rate": 0.01, + "loss": 2.0721, + "step": 9708 + }, + { + "epoch": 0.9977396486181034, + "grad_norm": 0.07347192615270615, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 9711 + }, + { + "epoch": 0.9980478783519984, + "grad_norm": 0.04449746012687683, + "learning_rate": 0.01, + "loss": 2.0728, + "step": 9714 + }, + { + "epoch": 0.9983561080858934, + "grad_norm": 0.040178634226322174, + "learning_rate": 0.01, + "loss": 2.0773, + "step": 9717 + }, + { + "epoch": 0.9986643378197884, + "grad_norm": 0.0577414333820343, + "learning_rate": 0.01, + "loss": 2.0854, + "step": 9720 + }, + { + "epoch": 0.9989725675536834, + "grad_norm": 0.07444582879543304, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 9723 + }, + { + "epoch": 0.9992807972875783, + "grad_norm": 0.10387948155403137, + "learning_rate": 0.01, + "loss": 2.0698, + "step": 9726 + }, + { + "epoch": 0.9995890270214733, + "grad_norm": 0.11066528409719467, + "learning_rate": 0.01, + "loss": 2.1035, + "step": 9729 + }, + { + "epoch": 0.9998972567553683, + "grad_norm": 0.06454616039991379, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 9732 + }, + { + "epoch": 0.9990763546798029, + "grad_norm": 0.048325520008802414, + "learning_rate": 0.01, + "loss": 2.1225, + "step": 9735 + }, + { + "epoch": 0.999384236453202, + "grad_norm": 0.03542228788137436, + "learning_rate": 0.01, + "loss": 2.1024, + "step": 9738 + }, + { + "epoch": 0.999692118226601, + "grad_norm": 0.042020559310913086, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 9741 + }, + { + "epoch": 1.0, + "grad_norm": 0.04916913062334061, + "learning_rate": 0.01, + "loss": 2.1244, + "step": 9744 + }, + { + "epoch": 1.000307881773399, + "grad_norm": 0.08905553072690964, + "learning_rate": 0.01, + "loss": 2.0867, + "step": 9747 + }, + { + "epoch": 1.000615763546798, + "grad_norm": 0.07140953093767166, + "learning_rate": 0.01, + "loss": 2.0863, + "step": 9750 + }, + { + "epoch": 1.000923645320197, + "grad_norm": 0.05284767597913742, + "learning_rate": 0.01, + "loss": 2.1131, + "step": 9753 + }, + { + "epoch": 1.001231527093596, + "grad_norm": 0.1293289214372635, + "learning_rate": 0.01, + "loss": 2.1036, + "step": 9756 + }, + { + "epoch": 1.001539408866995, + "grad_norm": 0.06052086502313614, + "learning_rate": 0.01, + "loss": 2.1189, + "step": 9759 + }, + { + "epoch": 1.0018472906403941, + "grad_norm": 0.07361391931772232, + "learning_rate": 0.01, + "loss": 2.0962, + "step": 9762 + }, + { + "epoch": 1.0021551724137931, + "grad_norm": 0.06513562798500061, + "learning_rate": 0.01, + "loss": 2.129, + "step": 9765 + }, + { + "epoch": 1.0024630541871922, + "grad_norm": 0.036649156361818314, + "learning_rate": 0.01, + "loss": 2.0964, + "step": 9768 + }, + { + "epoch": 1.0027709359605912, + "grad_norm": 0.05371764674782753, + "learning_rate": 0.01, + "loss": 2.0976, + "step": 9771 + }, + { + "epoch": 1.0030788177339902, + "grad_norm": 0.06316730380058289, + "learning_rate": 0.01, + "loss": 2.097, + "step": 9774 + }, + { + "epoch": 1.0033866995073892, + "grad_norm": 0.03097986802458763, + "learning_rate": 0.01, + "loss": 2.1128, + "step": 9777 + }, + { + "epoch": 1.0036945812807883, + "grad_norm": 0.046021945774555206, + "learning_rate": 0.01, + "loss": 2.1296, + "step": 9780 + }, + { + "epoch": 1.0040024630541873, + "grad_norm": 0.06580191850662231, + "learning_rate": 0.01, + "loss": 2.1106, + "step": 9783 + }, + { + "epoch": 1.0043103448275863, + "grad_norm": 0.054073531180620193, + "learning_rate": 0.01, + "loss": 2.0986, + "step": 9786 + }, + { + "epoch": 1.0046182266009853, + "grad_norm": 0.10088641196489334, + "learning_rate": 0.01, + "loss": 2.1301, + "step": 9789 + }, + { + "epoch": 1.0049261083743843, + "grad_norm": 0.03944807127118111, + "learning_rate": 0.01, + "loss": 2.1337, + "step": 9792 + }, + { + "epoch": 1.0052339901477831, + "grad_norm": 0.07183028757572174, + "learning_rate": 0.01, + "loss": 2.1272, + "step": 9795 + }, + { + "epoch": 1.0055418719211822, + "grad_norm": 0.13821956515312195, + "learning_rate": 0.01, + "loss": 2.1016, + "step": 9798 + }, + { + "epoch": 1.0058497536945812, + "grad_norm": 0.14031893014907837, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 9801 + }, + { + "epoch": 1.0061576354679802, + "grad_norm": 0.06494525820016861, + "learning_rate": 0.01, + "loss": 2.128, + "step": 9804 + }, + { + "epoch": 1.0064655172413792, + "grad_norm": 0.05946667864918709, + "learning_rate": 0.01, + "loss": 2.1335, + "step": 9807 + }, + { + "epoch": 1.0067733990147782, + "grad_norm": 0.05583272874355316, + "learning_rate": 0.01, + "loss": 2.1186, + "step": 9810 + }, + { + "epoch": 1.0070812807881773, + "grad_norm": 0.06858284026384354, + "learning_rate": 0.01, + "loss": 2.1207, + "step": 9813 + }, + { + "epoch": 1.0073891625615763, + "grad_norm": 0.05864641070365906, + "learning_rate": 0.01, + "loss": 2.0869, + "step": 9816 + }, + { + "epoch": 1.0076970443349753, + "grad_norm": 0.043661102652549744, + "learning_rate": 0.01, + "loss": 2.1067, + "step": 9819 + }, + { + "epoch": 1.0080049261083743, + "grad_norm": 0.07878375053405762, + "learning_rate": 0.01, + "loss": 2.1149, + "step": 9822 + }, + { + "epoch": 1.0083128078817734, + "grad_norm": 0.04246210679411888, + "learning_rate": 0.01, + "loss": 2.1241, + "step": 9825 + }, + { + "epoch": 1.0086206896551724, + "grad_norm": 0.06508597731590271, + "learning_rate": 0.01, + "loss": 2.1232, + "step": 9828 + }, + { + "epoch": 1.0089285714285714, + "grad_norm": 0.07472758740186691, + "learning_rate": 0.01, + "loss": 2.0893, + "step": 9831 + }, + { + "epoch": 1.0092364532019704, + "grad_norm": 0.13144147396087646, + "learning_rate": 0.01, + "loss": 2.1194, + "step": 9834 + }, + { + "epoch": 1.0095443349753694, + "grad_norm": 0.08961367607116699, + "learning_rate": 0.01, + "loss": 2.1215, + "step": 9837 + }, + { + "epoch": 1.0098522167487685, + "grad_norm": 0.053439076989889145, + "learning_rate": 0.01, + "loss": 2.1173, + "step": 9840 + }, + { + "epoch": 1.0101600985221675, + "grad_norm": 0.03234443441033363, + "learning_rate": 0.01, + "loss": 2.104, + "step": 9843 + }, + { + "epoch": 1.0104679802955665, + "grad_norm": 0.07516933977603912, + "learning_rate": 0.01, + "loss": 2.1186, + "step": 9846 + }, + { + "epoch": 1.0107758620689655, + "grad_norm": 0.12221794575452805, + "learning_rate": 0.01, + "loss": 2.0934, + "step": 9849 + }, + { + "epoch": 1.0110837438423645, + "grad_norm": 0.08198120445013046, + "learning_rate": 0.01, + "loss": 2.1495, + "step": 9852 + }, + { + "epoch": 1.0113916256157636, + "grad_norm": 0.058380696922540665, + "learning_rate": 0.01, + "loss": 2.1234, + "step": 9855 + }, + { + "epoch": 1.0116995073891626, + "grad_norm": 0.04831172525882721, + "learning_rate": 0.01, + "loss": 2.0977, + "step": 9858 + }, + { + "epoch": 1.0120073891625616, + "grad_norm": 0.045920804142951965, + "learning_rate": 0.01, + "loss": 2.0842, + "step": 9861 + }, + { + "epoch": 1.0123152709359606, + "grad_norm": 0.12969541549682617, + "learning_rate": 0.01, + "loss": 2.1005, + "step": 9864 + }, + { + "epoch": 1.0126231527093597, + "grad_norm": 0.09659627079963684, + "learning_rate": 0.01, + "loss": 2.1126, + "step": 9867 + }, + { + "epoch": 1.0129310344827587, + "grad_norm": 0.033160608261823654, + "learning_rate": 0.01, + "loss": 2.1244, + "step": 9870 + }, + { + "epoch": 1.0132389162561577, + "grad_norm": 0.03523699939250946, + "learning_rate": 0.01, + "loss": 2.1009, + "step": 9873 + }, + { + "epoch": 1.0135467980295567, + "grad_norm": 0.04670235142111778, + "learning_rate": 0.01, + "loss": 2.1107, + "step": 9876 + }, + { + "epoch": 1.0138546798029557, + "grad_norm": 0.05278048664331436, + "learning_rate": 0.01, + "loss": 2.133, + "step": 9879 + }, + { + "epoch": 1.0141625615763548, + "grad_norm": 0.1409105509519577, + "learning_rate": 0.01, + "loss": 2.105, + "step": 9882 + }, + { + "epoch": 1.0144704433497538, + "grad_norm": 0.08208174258470535, + "learning_rate": 0.01, + "loss": 2.1202, + "step": 9885 + }, + { + "epoch": 1.0147783251231528, + "grad_norm": 0.052980221807956696, + "learning_rate": 0.01, + "loss": 2.1108, + "step": 9888 + }, + { + "epoch": 1.0150862068965518, + "grad_norm": 0.03402642160654068, + "learning_rate": 0.01, + "loss": 2.1058, + "step": 9891 + }, + { + "epoch": 1.0153940886699508, + "grad_norm": 0.05165582895278931, + "learning_rate": 0.01, + "loss": 2.0962, + "step": 9894 + }, + { + "epoch": 1.0157019704433496, + "grad_norm": 0.0488906130194664, + "learning_rate": 0.01, + "loss": 2.1157, + "step": 9897 + }, + { + "epoch": 1.0160098522167487, + "grad_norm": 0.06578544527292252, + "learning_rate": 0.01, + "loss": 2.0783, + "step": 9900 + }, + { + "epoch": 1.0163177339901477, + "grad_norm": 0.05930023267865181, + "learning_rate": 0.01, + "loss": 2.115, + "step": 9903 + }, + { + "epoch": 1.0166256157635467, + "grad_norm": 0.07461842894554138, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 9906 + }, + { + "epoch": 1.0169334975369457, + "grad_norm": 0.04523751139640808, + "learning_rate": 0.01, + "loss": 2.1062, + "step": 9909 + }, + { + "epoch": 1.0172413793103448, + "grad_norm": 0.05342249572277069, + "learning_rate": 0.01, + "loss": 2.1127, + "step": 9912 + }, + { + "epoch": 1.0175492610837438, + "grad_norm": 0.040748368948698044, + "learning_rate": 0.01, + "loss": 2.0893, + "step": 9915 + }, + { + "epoch": 1.0178571428571428, + "grad_norm": 0.03435824438929558, + "learning_rate": 0.01, + "loss": 2.1151, + "step": 9918 + }, + { + "epoch": 1.0181650246305418, + "grad_norm": 0.04769265651702881, + "learning_rate": 0.01, + "loss": 2.0984, + "step": 9921 + }, + { + "epoch": 1.0184729064039408, + "grad_norm": 0.07814217358827591, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 9924 + }, + { + "epoch": 1.0187807881773399, + "grad_norm": 0.12953363358974457, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 9927 + }, + { + "epoch": 1.0190886699507389, + "grad_norm": 0.11376773566007614, + "learning_rate": 0.01, + "loss": 2.0989, + "step": 9930 + }, + { + "epoch": 1.019396551724138, + "grad_norm": 0.05323106423020363, + "learning_rate": 0.01, + "loss": 2.1135, + "step": 9933 + }, + { + "epoch": 1.019704433497537, + "grad_norm": 0.07705114781856537, + "learning_rate": 0.01, + "loss": 2.1046, + "step": 9936 + }, + { + "epoch": 1.020012315270936, + "grad_norm": 0.05934451147913933, + "learning_rate": 0.01, + "loss": 2.1207, + "step": 9939 + }, + { + "epoch": 1.020320197044335, + "grad_norm": 0.10474961996078491, + "learning_rate": 0.01, + "loss": 2.1134, + "step": 9942 + }, + { + "epoch": 1.020628078817734, + "grad_norm": 0.05283385515213013, + "learning_rate": 0.01, + "loss": 2.1085, + "step": 9945 + }, + { + "epoch": 1.020935960591133, + "grad_norm": 0.043369196355342865, + "learning_rate": 0.01, + "loss": 2.1265, + "step": 9948 + }, + { + "epoch": 1.021243842364532, + "grad_norm": 0.0366055853664875, + "learning_rate": 0.01, + "loss": 2.1214, + "step": 9951 + }, + { + "epoch": 1.021551724137931, + "grad_norm": 0.06200672313570976, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 9954 + }, + { + "epoch": 1.02185960591133, + "grad_norm": 0.06652572005987167, + "learning_rate": 0.01, + "loss": 2.1139, + "step": 9957 + }, + { + "epoch": 1.022167487684729, + "grad_norm": 0.04040740057826042, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 9960 + }, + { + "epoch": 1.0224753694581281, + "grad_norm": 0.049162358045578, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 9963 + }, + { + "epoch": 1.0227832512315271, + "grad_norm": 0.05465700104832649, + "learning_rate": 0.01, + "loss": 2.1109, + "step": 9966 + }, + { + "epoch": 1.0230911330049262, + "grad_norm": 0.0575067512691021, + "learning_rate": 0.01, + "loss": 2.0956, + "step": 9969 + }, + { + "epoch": 1.0233990147783252, + "grad_norm": 0.14622198045253754, + "learning_rate": 0.01, + "loss": 2.1031, + "step": 9972 + }, + { + "epoch": 1.0237068965517242, + "grad_norm": 0.04765618219971657, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 9975 + }, + { + "epoch": 1.0240147783251232, + "grad_norm": 0.04039911553263664, + "learning_rate": 0.01, + "loss": 2.0933, + "step": 9978 + }, + { + "epoch": 1.0243226600985222, + "grad_norm": 0.06009029969573021, + "learning_rate": 0.01, + "loss": 2.115, + "step": 9981 + }, + { + "epoch": 1.0246305418719213, + "grad_norm": 0.06187298893928528, + "learning_rate": 0.01, + "loss": 2.079, + "step": 9984 + }, + { + "epoch": 1.0249384236453203, + "grad_norm": 0.05368026718497276, + "learning_rate": 0.01, + "loss": 2.0875, + "step": 9987 + }, + { + "epoch": 1.0252463054187193, + "grad_norm": 0.051921263337135315, + "learning_rate": 0.01, + "loss": 2.1243, + "step": 9990 + }, + { + "epoch": 1.0255541871921183, + "grad_norm": 0.09820009768009186, + "learning_rate": 0.01, + "loss": 2.0983, + "step": 9993 + }, + { + "epoch": 1.0258620689655173, + "grad_norm": 0.10601375997066498, + "learning_rate": 0.01, + "loss": 2.1288, + "step": 9996 + }, + { + "epoch": 1.0261699507389161, + "grad_norm": 0.05488260090351105, + "learning_rate": 0.01, + "loss": 2.1033, + "step": 9999 + }, + { + "epoch": 1.0264778325123152, + "grad_norm": 0.07482553273439407, + "learning_rate": 0.01, + "loss": 2.1181, + "step": 10002 + }, + { + "epoch": 1.0267857142857142, + "grad_norm": 0.044733475893735886, + "learning_rate": 0.01, + "loss": 2.1237, + "step": 10005 + }, + { + "epoch": 1.0270935960591132, + "grad_norm": 0.04775967076420784, + "learning_rate": 0.01, + "loss": 2.1288, + "step": 10008 + }, + { + "epoch": 1.0274014778325122, + "grad_norm": 0.05972621962428093, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 10011 + }, + { + "epoch": 1.0277093596059113, + "grad_norm": 0.12219330668449402, + "learning_rate": 0.01, + "loss": 2.1034, + "step": 10014 + }, + { + "epoch": 1.0280172413793103, + "grad_norm": 0.05171920731663704, + "learning_rate": 0.01, + "loss": 2.0925, + "step": 10017 + }, + { + "epoch": 1.0283251231527093, + "grad_norm": 0.04166760668158531, + "learning_rate": 0.01, + "loss": 2.0928, + "step": 10020 + }, + { + "epoch": 1.0286330049261083, + "grad_norm": 0.05231022089719772, + "learning_rate": 0.01, + "loss": 2.0945, + "step": 10023 + }, + { + "epoch": 1.0289408866995073, + "grad_norm": 0.1091604232788086, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 10026 + }, + { + "epoch": 1.0292487684729064, + "grad_norm": 0.07104350626468658, + "learning_rate": 0.01, + "loss": 2.1125, + "step": 10029 + }, + { + "epoch": 1.0295566502463054, + "grad_norm": 0.0466371588408947, + "learning_rate": 0.01, + "loss": 2.0973, + "step": 10032 + }, + { + "epoch": 1.0298645320197044, + "grad_norm": 0.05548730120062828, + "learning_rate": 0.01, + "loss": 2.0846, + "step": 10035 + }, + { + "epoch": 1.0301724137931034, + "grad_norm": 0.06483764201402664, + "learning_rate": 0.01, + "loss": 2.105, + "step": 10038 + }, + { + "epoch": 1.0304802955665024, + "grad_norm": 0.05243910476565361, + "learning_rate": 0.01, + "loss": 2.1011, + "step": 10041 + }, + { + "epoch": 1.0307881773399015, + "grad_norm": 0.09996815025806427, + "learning_rate": 0.01, + "loss": 2.1389, + "step": 10044 + }, + { + "epoch": 1.0310960591133005, + "grad_norm": 0.04864559695124626, + "learning_rate": 0.01, + "loss": 2.1069, + "step": 10047 + }, + { + "epoch": 1.0314039408866995, + "grad_norm": 0.14447607100009918, + "learning_rate": 0.01, + "loss": 2.1075, + "step": 10050 + }, + { + "epoch": 1.0317118226600985, + "grad_norm": 0.050261352211236954, + "learning_rate": 0.01, + "loss": 2.1147, + "step": 10053 + }, + { + "epoch": 1.0320197044334976, + "grad_norm": 0.07719244807958603, + "learning_rate": 0.01, + "loss": 2.1061, + "step": 10056 + }, + { + "epoch": 1.0323275862068966, + "grad_norm": 0.10620381683111191, + "learning_rate": 0.01, + "loss": 2.1129, + "step": 10059 + }, + { + "epoch": 1.0326354679802956, + "grad_norm": 0.05358508229255676, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 10062 + }, + { + "epoch": 1.0329433497536946, + "grad_norm": 0.04341145232319832, + "learning_rate": 0.01, + "loss": 2.1046, + "step": 10065 + }, + { + "epoch": 1.0332512315270936, + "grad_norm": 0.04785105213522911, + "learning_rate": 0.01, + "loss": 2.0804, + "step": 10068 + }, + { + "epoch": 1.0335591133004927, + "grad_norm": 0.04886849224567413, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 10071 + }, + { + "epoch": 1.0338669950738917, + "grad_norm": 0.03917735815048218, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 10074 + }, + { + "epoch": 1.0341748768472907, + "grad_norm": 0.10696244239807129, + "learning_rate": 0.01, + "loss": 2.085, + "step": 10077 + }, + { + "epoch": 1.0344827586206897, + "grad_norm": 0.14525163173675537, + "learning_rate": 0.01, + "loss": 2.1246, + "step": 10080 + }, + { + "epoch": 1.0347906403940887, + "grad_norm": 0.06464140862226486, + "learning_rate": 0.01, + "loss": 2.1088, + "step": 10083 + }, + { + "epoch": 1.0350985221674878, + "grad_norm": 0.055628299713134766, + "learning_rate": 0.01, + "loss": 2.1013, + "step": 10086 + }, + { + "epoch": 1.0354064039408868, + "grad_norm": 0.0457589291036129, + "learning_rate": 0.01, + "loss": 2.118, + "step": 10089 + }, + { + "epoch": 1.0357142857142858, + "grad_norm": 0.07108809798955917, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 10092 + }, + { + "epoch": 1.0360221674876848, + "grad_norm": 0.07304032146930695, + "learning_rate": 0.01, + "loss": 2.1632, + "step": 10095 + }, + { + "epoch": 1.0363300492610836, + "grad_norm": 0.04778844490647316, + "learning_rate": 0.01, + "loss": 2.1076, + "step": 10098 + }, + { + "epoch": 1.0366379310344827, + "grad_norm": 0.0444946251809597, + "learning_rate": 0.01, + "loss": 2.1092, + "step": 10101 + }, + { + "epoch": 1.0369458128078817, + "grad_norm": 0.03863450884819031, + "learning_rate": 0.01, + "loss": 2.0973, + "step": 10104 + }, + { + "epoch": 1.0372536945812807, + "grad_norm": 0.11049003899097443, + "learning_rate": 0.01, + "loss": 2.1069, + "step": 10107 + }, + { + "epoch": 1.0375615763546797, + "grad_norm": 0.055413637310266495, + "learning_rate": 0.01, + "loss": 2.0935, + "step": 10110 + }, + { + "epoch": 1.0378694581280787, + "grad_norm": 0.1212301105260849, + "learning_rate": 0.01, + "loss": 2.1033, + "step": 10113 + }, + { + "epoch": 1.0381773399014778, + "grad_norm": 0.06444283574819565, + "learning_rate": 0.01, + "loss": 2.0821, + "step": 10116 + }, + { + "epoch": 1.0384852216748768, + "grad_norm": 0.048522353172302246, + "learning_rate": 0.01, + "loss": 2.1129, + "step": 10119 + }, + { + "epoch": 1.0387931034482758, + "grad_norm": 0.03755674138665199, + "learning_rate": 0.01, + "loss": 2.0773, + "step": 10122 + }, + { + "epoch": 1.0391009852216748, + "grad_norm": 0.03873259574174881, + "learning_rate": 0.01, + "loss": 2.0877, + "step": 10125 + }, + { + "epoch": 1.0394088669950738, + "grad_norm": 0.062387898564338684, + "learning_rate": 0.01, + "loss": 2.1119, + "step": 10128 + }, + { + "epoch": 1.0397167487684729, + "grad_norm": 0.037559203803539276, + "learning_rate": 0.01, + "loss": 2.1165, + "step": 10131 + }, + { + "epoch": 1.0400246305418719, + "grad_norm": 0.0703917145729065, + "learning_rate": 0.01, + "loss": 2.0877, + "step": 10134 + }, + { + "epoch": 1.040332512315271, + "grad_norm": 0.05063795670866966, + "learning_rate": 0.01, + "loss": 2.1282, + "step": 10137 + }, + { + "epoch": 1.04064039408867, + "grad_norm": 0.08476493507623672, + "learning_rate": 0.01, + "loss": 2.1217, + "step": 10140 + }, + { + "epoch": 1.040948275862069, + "grad_norm": 0.09482383728027344, + "learning_rate": 0.01, + "loss": 2.1002, + "step": 10143 + }, + { + "epoch": 1.041256157635468, + "grad_norm": 0.1094396710395813, + "learning_rate": 0.01, + "loss": 2.1138, + "step": 10146 + }, + { + "epoch": 1.041564039408867, + "grad_norm": 0.17252720892429352, + "learning_rate": 0.01, + "loss": 2.1079, + "step": 10149 + }, + { + "epoch": 1.041871921182266, + "grad_norm": 0.11076754331588745, + "learning_rate": 0.01, + "loss": 2.1198, + "step": 10152 + }, + { + "epoch": 1.042179802955665, + "grad_norm": 0.06879215687513351, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 10155 + }, + { + "epoch": 1.042487684729064, + "grad_norm": 0.07402212172746658, + "learning_rate": 0.01, + "loss": 2.0869, + "step": 10158 + }, + { + "epoch": 1.042795566502463, + "grad_norm": 0.04562051594257355, + "learning_rate": 0.01, + "loss": 2.1139, + "step": 10161 + }, + { + "epoch": 1.043103448275862, + "grad_norm": 0.04578396677970886, + "learning_rate": 0.01, + "loss": 2.0974, + "step": 10164 + }, + { + "epoch": 1.0434113300492611, + "grad_norm": 0.051678020507097244, + "learning_rate": 0.01, + "loss": 2.0995, + "step": 10167 + }, + { + "epoch": 1.0437192118226601, + "grad_norm": 0.03445015102624893, + "learning_rate": 0.01, + "loss": 2.106, + "step": 10170 + }, + { + "epoch": 1.0440270935960592, + "grad_norm": 0.03868851810693741, + "learning_rate": 0.01, + "loss": 2.0732, + "step": 10173 + }, + { + "epoch": 1.0443349753694582, + "grad_norm": 0.058904558420181274, + "learning_rate": 0.01, + "loss": 2.085, + "step": 10176 + }, + { + "epoch": 1.0446428571428572, + "grad_norm": 0.10729484260082245, + "learning_rate": 0.01, + "loss": 2.0909, + "step": 10179 + }, + { + "epoch": 1.0449507389162562, + "grad_norm": 0.10037554055452347, + "learning_rate": 0.01, + "loss": 2.0945, + "step": 10182 + }, + { + "epoch": 1.0452586206896552, + "grad_norm": 0.07336730509996414, + "learning_rate": 0.01, + "loss": 2.0885, + "step": 10185 + }, + { + "epoch": 1.0455665024630543, + "grad_norm": 0.11717227101325989, + "learning_rate": 0.01, + "loss": 2.1019, + "step": 10188 + }, + { + "epoch": 1.0458743842364533, + "grad_norm": 0.06263696402311325, + "learning_rate": 0.01, + "loss": 2.1113, + "step": 10191 + }, + { + "epoch": 1.0461822660098523, + "grad_norm": 0.07939436286687851, + "learning_rate": 0.01, + "loss": 2.0803, + "step": 10194 + }, + { + "epoch": 1.0464901477832513, + "grad_norm": 0.05761004984378815, + "learning_rate": 0.01, + "loss": 2.1155, + "step": 10197 + }, + { + "epoch": 1.0467980295566504, + "grad_norm": 0.04293765127658844, + "learning_rate": 0.01, + "loss": 2.0944, + "step": 10200 + }, + { + "epoch": 1.0471059113300492, + "grad_norm": 0.04638001322746277, + "learning_rate": 0.01, + "loss": 2.113, + "step": 10203 + }, + { + "epoch": 1.0474137931034482, + "grad_norm": 0.047882046550512314, + "learning_rate": 0.01, + "loss": 2.0733, + "step": 10206 + }, + { + "epoch": 1.0477216748768472, + "grad_norm": 0.07461071759462357, + "learning_rate": 0.01, + "loss": 2.107, + "step": 10209 + }, + { + "epoch": 1.0480295566502462, + "grad_norm": 0.10987289249897003, + "learning_rate": 0.01, + "loss": 2.105, + "step": 10212 + }, + { + "epoch": 1.0483374384236452, + "grad_norm": 0.04183235019445419, + "learning_rate": 0.01, + "loss": 2.0953, + "step": 10215 + }, + { + "epoch": 1.0486453201970443, + "grad_norm": 0.049700990319252014, + "learning_rate": 0.01, + "loss": 2.1067, + "step": 10218 + }, + { + "epoch": 1.0489532019704433, + "grad_norm": 0.08448828011751175, + "learning_rate": 0.01, + "loss": 2.1113, + "step": 10221 + }, + { + "epoch": 1.0492610837438423, + "grad_norm": 0.05486508831381798, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 10224 + }, + { + "epoch": 1.0495689655172413, + "grad_norm": 0.057925377041101456, + "learning_rate": 0.01, + "loss": 2.127, + "step": 10227 + }, + { + "epoch": 1.0498768472906403, + "grad_norm": 0.05322302505373955, + "learning_rate": 0.01, + "loss": 2.0861, + "step": 10230 + }, + { + "epoch": 1.0501847290640394, + "grad_norm": 0.046823181211948395, + "learning_rate": 0.01, + "loss": 2.089, + "step": 10233 + }, + { + "epoch": 1.0504926108374384, + "grad_norm": 0.05037027224898338, + "learning_rate": 0.01, + "loss": 2.0841, + "step": 10236 + }, + { + "epoch": 1.0508004926108374, + "grad_norm": 0.05172303318977356, + "learning_rate": 0.01, + "loss": 2.105, + "step": 10239 + }, + { + "epoch": 1.0511083743842364, + "grad_norm": 0.07993052154779434, + "learning_rate": 0.01, + "loss": 2.1097, + "step": 10242 + }, + { + "epoch": 1.0514162561576355, + "grad_norm": 0.039322953671216965, + "learning_rate": 0.01, + "loss": 2.0951, + "step": 10245 + }, + { + "epoch": 1.0517241379310345, + "grad_norm": 0.05829343572258949, + "learning_rate": 0.01, + "loss": 2.1257, + "step": 10248 + }, + { + "epoch": 1.0520320197044335, + "grad_norm": 0.12303601950407028, + "learning_rate": 0.01, + "loss": 2.1143, + "step": 10251 + }, + { + "epoch": 1.0523399014778325, + "grad_norm": 0.07176418602466583, + "learning_rate": 0.01, + "loss": 2.1297, + "step": 10254 + }, + { + "epoch": 1.0526477832512315, + "grad_norm": 0.05229344964027405, + "learning_rate": 0.01, + "loss": 2.0934, + "step": 10257 + }, + { + "epoch": 1.0529556650246306, + "grad_norm": 0.041665658354759216, + "learning_rate": 0.01, + "loss": 2.116, + "step": 10260 + }, + { + "epoch": 1.0532635467980296, + "grad_norm": 0.04542261362075806, + "learning_rate": 0.01, + "loss": 2.1277, + "step": 10263 + }, + { + "epoch": 1.0535714285714286, + "grad_norm": 0.0501495897769928, + "learning_rate": 0.01, + "loss": 2.0911, + "step": 10266 + }, + { + "epoch": 1.0538793103448276, + "grad_norm": 0.06474924832582474, + "learning_rate": 0.01, + "loss": 2.1254, + "step": 10269 + }, + { + "epoch": 1.0541871921182266, + "grad_norm": 0.0736108273267746, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 10272 + }, + { + "epoch": 1.0544950738916257, + "grad_norm": 0.07487022131681442, + "learning_rate": 0.01, + "loss": 2.113, + "step": 10275 + }, + { + "epoch": 1.0548029556650247, + "grad_norm": 0.04876410961151123, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 10278 + }, + { + "epoch": 1.0551108374384237, + "grad_norm": 0.056595779955387115, + "learning_rate": 0.01, + "loss": 2.0864, + "step": 10281 + }, + { + "epoch": 1.0554187192118227, + "grad_norm": 0.06958241015672684, + "learning_rate": 0.01, + "loss": 2.1, + "step": 10284 + }, + { + "epoch": 1.0557266009852218, + "grad_norm": 0.08811846375465393, + "learning_rate": 0.01, + "loss": 2.1021, + "step": 10287 + }, + { + "epoch": 1.0560344827586208, + "grad_norm": 0.061557747423648834, + "learning_rate": 0.01, + "loss": 2.1063, + "step": 10290 + }, + { + "epoch": 1.0563423645320198, + "grad_norm": 0.07043389976024628, + "learning_rate": 0.01, + "loss": 2.106, + "step": 10293 + }, + { + "epoch": 1.0566502463054188, + "grad_norm": 0.0916379988193512, + "learning_rate": 0.01, + "loss": 2.0851, + "step": 10296 + }, + { + "epoch": 1.0569581280788178, + "grad_norm": 0.050577979534864426, + "learning_rate": 0.01, + "loss": 2.0966, + "step": 10299 + }, + { + "epoch": 1.0572660098522166, + "grad_norm": 0.06576110422611237, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 10302 + }, + { + "epoch": 1.0575738916256157, + "grad_norm": 0.09315023571252823, + "learning_rate": 0.01, + "loss": 2.1341, + "step": 10305 + }, + { + "epoch": 1.0578817733990147, + "grad_norm": 0.0649820864200592, + "learning_rate": 0.01, + "loss": 2.1064, + "step": 10308 + }, + { + "epoch": 1.0581896551724137, + "grad_norm": 0.07930494844913483, + "learning_rate": 0.01, + "loss": 2.107, + "step": 10311 + }, + { + "epoch": 1.0584975369458127, + "grad_norm": 0.09142257273197174, + "learning_rate": 0.01, + "loss": 2.1162, + "step": 10314 + }, + { + "epoch": 1.0588054187192117, + "grad_norm": 0.05011974647641182, + "learning_rate": 0.01, + "loss": 2.0686, + "step": 10317 + }, + { + "epoch": 1.0591133004926108, + "grad_norm": 0.1002635508775711, + "learning_rate": 0.01, + "loss": 2.138, + "step": 10320 + }, + { + "epoch": 1.0594211822660098, + "grad_norm": 0.07570278644561768, + "learning_rate": 0.01, + "loss": 2.0693, + "step": 10323 + }, + { + "epoch": 1.0597290640394088, + "grad_norm": 0.05086719989776611, + "learning_rate": 0.01, + "loss": 2.0991, + "step": 10326 + }, + { + "epoch": 1.0600369458128078, + "grad_norm": 0.03596855327486992, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 10329 + }, + { + "epoch": 1.0603448275862069, + "grad_norm": 0.05059434473514557, + "learning_rate": 0.01, + "loss": 2.1, + "step": 10332 + }, + { + "epoch": 1.0606527093596059, + "grad_norm": 0.058818116784095764, + "learning_rate": 0.01, + "loss": 2.0855, + "step": 10335 + }, + { + "epoch": 1.060960591133005, + "grad_norm": 0.14139403402805328, + "learning_rate": 0.01, + "loss": 2.0755, + "step": 10338 + }, + { + "epoch": 1.061268472906404, + "grad_norm": 0.12123113870620728, + "learning_rate": 0.01, + "loss": 2.0896, + "step": 10341 + }, + { + "epoch": 1.061576354679803, + "grad_norm": 0.04767270013689995, + "learning_rate": 0.01, + "loss": 2.11, + "step": 10344 + }, + { + "epoch": 1.061884236453202, + "grad_norm": 0.03506815433502197, + "learning_rate": 0.01, + "loss": 2.0953, + "step": 10347 + }, + { + "epoch": 1.062192118226601, + "grad_norm": 0.08807789534330368, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 10350 + }, + { + "epoch": 1.0625, + "grad_norm": 0.1130862608551979, + "learning_rate": 0.01, + "loss": 2.0888, + "step": 10353 + }, + { + "epoch": 1.062807881773399, + "grad_norm": 0.05720696598291397, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 10356 + }, + { + "epoch": 1.063115763546798, + "grad_norm": 0.057933416217565536, + "learning_rate": 0.01, + "loss": 2.1138, + "step": 10359 + }, + { + "epoch": 1.063423645320197, + "grad_norm": 0.056713253259658813, + "learning_rate": 0.01, + "loss": 2.0965, + "step": 10362 + }, + { + "epoch": 1.063731527093596, + "grad_norm": 0.05062280595302582, + "learning_rate": 0.01, + "loss": 2.1058, + "step": 10365 + }, + { + "epoch": 1.064039408866995, + "grad_norm": 0.03439073637127876, + "learning_rate": 0.01, + "loss": 2.0945, + "step": 10368 + }, + { + "epoch": 1.0643472906403941, + "grad_norm": 0.10244173556566238, + "learning_rate": 0.01, + "loss": 2.0916, + "step": 10371 + }, + { + "epoch": 1.0646551724137931, + "grad_norm": 0.04706069454550743, + "learning_rate": 0.01, + "loss": 2.103, + "step": 10374 + }, + { + "epoch": 1.0649630541871922, + "grad_norm": 0.11580058932304382, + "learning_rate": 0.01, + "loss": 2.0995, + "step": 10377 + }, + { + "epoch": 1.0652709359605912, + "grad_norm": 0.044736508280038834, + "learning_rate": 0.01, + "loss": 2.0906, + "step": 10380 + }, + { + "epoch": 1.0655788177339902, + "grad_norm": 0.08990567922592163, + "learning_rate": 0.01, + "loss": 2.1197, + "step": 10383 + }, + { + "epoch": 1.0658866995073892, + "grad_norm": 0.06923419237136841, + "learning_rate": 0.01, + "loss": 2.0997, + "step": 10386 + }, + { + "epoch": 1.0661945812807883, + "grad_norm": 0.059495240449905396, + "learning_rate": 0.01, + "loss": 2.1106, + "step": 10389 + }, + { + "epoch": 1.0665024630541873, + "grad_norm": 0.07906550914049149, + "learning_rate": 0.01, + "loss": 2.1196, + "step": 10392 + }, + { + "epoch": 1.0668103448275863, + "grad_norm": 0.08792297542095184, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 10395 + }, + { + "epoch": 1.0671182266009853, + "grad_norm": 0.06077072396874428, + "learning_rate": 0.01, + "loss": 2.088, + "step": 10398 + }, + { + "epoch": 1.0674261083743843, + "grad_norm": 0.03865751996636391, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 10401 + }, + { + "epoch": 1.0677339901477834, + "grad_norm": 0.03158612549304962, + "learning_rate": 0.01, + "loss": 2.0861, + "step": 10404 + }, + { + "epoch": 1.0680418719211822, + "grad_norm": 0.03455328568816185, + "learning_rate": 0.01, + "loss": 2.0819, + "step": 10407 + }, + { + "epoch": 1.0683497536945812, + "grad_norm": 0.062100328505039215, + "learning_rate": 0.01, + "loss": 2.0967, + "step": 10410 + }, + { + "epoch": 1.0686576354679802, + "grad_norm": 0.10934283584356308, + "learning_rate": 0.01, + "loss": 2.1135, + "step": 10413 + }, + { + "epoch": 1.0689655172413792, + "grad_norm": 0.07184179127216339, + "learning_rate": 0.01, + "loss": 2.0949, + "step": 10416 + }, + { + "epoch": 1.0692733990147782, + "grad_norm": 0.06610151380300522, + "learning_rate": 0.01, + "loss": 2.1001, + "step": 10419 + }, + { + "epoch": 1.0695812807881773, + "grad_norm": 0.06064629554748535, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 10422 + }, + { + "epoch": 1.0698891625615763, + "grad_norm": 0.0531432181596756, + "learning_rate": 0.01, + "loss": 2.1105, + "step": 10425 + }, + { + "epoch": 1.0701970443349753, + "grad_norm": 0.056448470801115036, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 10428 + }, + { + "epoch": 1.0705049261083743, + "grad_norm": 0.03736816346645355, + "learning_rate": 0.01, + "loss": 2.1243, + "step": 10431 + }, + { + "epoch": 1.0708128078817734, + "grad_norm": 0.12693117558956146, + "learning_rate": 0.01, + "loss": 2.1156, + "step": 10434 + }, + { + "epoch": 1.0711206896551724, + "grad_norm": 0.0428193174302578, + "learning_rate": 0.01, + "loss": 2.1025, + "step": 10437 + }, + { + "epoch": 1.0714285714285714, + "grad_norm": 0.0464596189558506, + "learning_rate": 0.01, + "loss": 2.1067, + "step": 10440 + }, + { + "epoch": 1.0717364532019704, + "grad_norm": 0.07535267621278763, + "learning_rate": 0.01, + "loss": 2.0785, + "step": 10443 + }, + { + "epoch": 1.0720443349753694, + "grad_norm": 0.0537327378988266, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 10446 + }, + { + "epoch": 1.0723522167487685, + "grad_norm": 0.03783145919442177, + "learning_rate": 0.01, + "loss": 2.0921, + "step": 10449 + }, + { + "epoch": 1.0726600985221675, + "grad_norm": 0.052689142525196075, + "learning_rate": 0.01, + "loss": 2.116, + "step": 10452 + }, + { + "epoch": 1.0729679802955665, + "grad_norm": 0.1437288373708725, + "learning_rate": 0.01, + "loss": 2.071, + "step": 10455 + }, + { + "epoch": 1.0732758620689655, + "grad_norm": 0.07633062452077866, + "learning_rate": 0.01, + "loss": 2.088, + "step": 10458 + }, + { + "epoch": 1.0735837438423645, + "grad_norm": 0.061189718544483185, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 10461 + }, + { + "epoch": 1.0738916256157636, + "grad_norm": 0.06256800144910812, + "learning_rate": 0.01, + "loss": 2.1056, + "step": 10464 + }, + { + "epoch": 1.0741995073891626, + "grad_norm": 0.0745188519358635, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 10467 + }, + { + "epoch": 1.0745073891625616, + "grad_norm": 0.0663486197590828, + "learning_rate": 0.01, + "loss": 2.0704, + "step": 10470 + }, + { + "epoch": 1.0748152709359606, + "grad_norm": 0.05472427234053612, + "learning_rate": 0.01, + "loss": 2.082, + "step": 10473 + }, + { + "epoch": 1.0751231527093597, + "grad_norm": 0.10171230137348175, + "learning_rate": 0.01, + "loss": 2.1135, + "step": 10476 + }, + { + "epoch": 1.0754310344827587, + "grad_norm": 0.05689026787877083, + "learning_rate": 0.01, + "loss": 2.0748, + "step": 10479 + }, + { + "epoch": 1.0757389162561577, + "grad_norm": 0.0593440905213356, + "learning_rate": 0.01, + "loss": 2.0922, + "step": 10482 + }, + { + "epoch": 1.0760467980295567, + "grad_norm": 0.07408995181322098, + "learning_rate": 0.01, + "loss": 2.0781, + "step": 10485 + }, + { + "epoch": 1.0763546798029557, + "grad_norm": 0.05688070133328438, + "learning_rate": 0.01, + "loss": 2.1085, + "step": 10488 + }, + { + "epoch": 1.0766625615763548, + "grad_norm": 0.05378828942775726, + "learning_rate": 0.01, + "loss": 2.1084, + "step": 10491 + }, + { + "epoch": 1.0769704433497538, + "grad_norm": 0.057735592126846313, + "learning_rate": 0.01, + "loss": 2.1023, + "step": 10494 + }, + { + "epoch": 1.0772783251231528, + "grad_norm": 0.0586666576564312, + "learning_rate": 0.01, + "loss": 2.1003, + "step": 10497 + }, + { + "epoch": 1.0775862068965518, + "grad_norm": 0.12087473273277283, + "learning_rate": 0.01, + "loss": 2.0974, + "step": 10500 + }, + { + "epoch": 1.0778940886699506, + "grad_norm": 0.07307861000299454, + "learning_rate": 0.01, + "loss": 2.0913, + "step": 10503 + }, + { + "epoch": 1.0782019704433496, + "grad_norm": 0.06621012091636658, + "learning_rate": 0.01, + "loss": 2.1173, + "step": 10506 + }, + { + "epoch": 1.0785098522167487, + "grad_norm": 0.0647876039147377, + "learning_rate": 0.01, + "loss": 2.1006, + "step": 10509 + }, + { + "epoch": 1.0788177339901477, + "grad_norm": 0.06163914501667023, + "learning_rate": 0.01, + "loss": 2.0892, + "step": 10512 + }, + { + "epoch": 1.0791256157635467, + "grad_norm": 0.04312353581190109, + "learning_rate": 0.01, + "loss": 2.0901, + "step": 10515 + }, + { + "epoch": 1.0794334975369457, + "grad_norm": 0.0760812908411026, + "learning_rate": 0.01, + "loss": 2.0995, + "step": 10518 + }, + { + "epoch": 1.0797413793103448, + "grad_norm": 0.0802140161395073, + "learning_rate": 0.01, + "loss": 2.0905, + "step": 10521 + }, + { + "epoch": 1.0800492610837438, + "grad_norm": 0.09008529782295227, + "learning_rate": 0.01, + "loss": 2.08, + "step": 10524 + }, + { + "epoch": 1.0803571428571428, + "grad_norm": 0.07469696551561356, + "learning_rate": 0.01, + "loss": 2.0725, + "step": 10527 + }, + { + "epoch": 1.0806650246305418, + "grad_norm": 0.08821582794189453, + "learning_rate": 0.01, + "loss": 2.1086, + "step": 10530 + }, + { + "epoch": 1.0809729064039408, + "grad_norm": 0.04690997302532196, + "learning_rate": 0.01, + "loss": 2.1095, + "step": 10533 + }, + { + "epoch": 1.0812807881773399, + "grad_norm": 0.04316158965229988, + "learning_rate": 0.01, + "loss": 2.0818, + "step": 10536 + }, + { + "epoch": 1.0815886699507389, + "grad_norm": 0.06996279209852219, + "learning_rate": 0.01, + "loss": 2.0993, + "step": 10539 + }, + { + "epoch": 1.081896551724138, + "grad_norm": 0.10073279589414597, + "learning_rate": 0.01, + "loss": 2.112, + "step": 10542 + }, + { + "epoch": 1.082204433497537, + "grad_norm": 0.0448322668671608, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 10545 + }, + { + "epoch": 1.082512315270936, + "grad_norm": 0.11411638557910919, + "learning_rate": 0.01, + "loss": 2.1082, + "step": 10548 + }, + { + "epoch": 1.082820197044335, + "grad_norm": 0.10779088735580444, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 10551 + }, + { + "epoch": 1.083128078817734, + "grad_norm": 0.041448626667261124, + "learning_rate": 0.01, + "loss": 2.1041, + "step": 10554 + }, + { + "epoch": 1.083435960591133, + "grad_norm": 0.07522560656070709, + "learning_rate": 0.01, + "loss": 2.0794, + "step": 10557 + }, + { + "epoch": 1.083743842364532, + "grad_norm": 0.048221901059150696, + "learning_rate": 0.01, + "loss": 2.0936, + "step": 10560 + }, + { + "epoch": 1.084051724137931, + "grad_norm": 0.05512038618326187, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 10563 + }, + { + "epoch": 1.08435960591133, + "grad_norm": 0.07599300891160965, + "learning_rate": 0.01, + "loss": 2.1246, + "step": 10566 + }, + { + "epoch": 1.084667487684729, + "grad_norm": 0.06631644070148468, + "learning_rate": 0.01, + "loss": 2.0861, + "step": 10569 + }, + { + "epoch": 1.0849753694581281, + "grad_norm": 0.04972488060593605, + "learning_rate": 0.01, + "loss": 2.11, + "step": 10572 + }, + { + "epoch": 1.0852832512315271, + "grad_norm": 0.08250217139720917, + "learning_rate": 0.01, + "loss": 2.1142, + "step": 10575 + }, + { + "epoch": 1.0855911330049262, + "grad_norm": 0.09104974567890167, + "learning_rate": 0.01, + "loss": 2.0822, + "step": 10578 + }, + { + "epoch": 1.0858990147783252, + "grad_norm": 0.057310063391923904, + "learning_rate": 0.01, + "loss": 2.0819, + "step": 10581 + }, + { + "epoch": 1.0862068965517242, + "grad_norm": 0.08102291077375412, + "learning_rate": 0.01, + "loss": 2.0931, + "step": 10584 + }, + { + "epoch": 1.0865147783251232, + "grad_norm": 0.045641325414180756, + "learning_rate": 0.01, + "loss": 2.1096, + "step": 10587 + }, + { + "epoch": 1.0868226600985222, + "grad_norm": 0.05350523442029953, + "learning_rate": 0.01, + "loss": 2.1151, + "step": 10590 + }, + { + "epoch": 1.0871305418719213, + "grad_norm": 0.045734379440546036, + "learning_rate": 0.01, + "loss": 2.1043, + "step": 10593 + }, + { + "epoch": 1.0874384236453203, + "grad_norm": 0.044645924121141434, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 10596 + }, + { + "epoch": 1.0877463054187193, + "grad_norm": 0.046704743057489395, + "learning_rate": 0.01, + "loss": 2.0823, + "step": 10599 + }, + { + "epoch": 1.0880541871921183, + "grad_norm": 0.09600807726383209, + "learning_rate": 0.01, + "loss": 2.09, + "step": 10602 + }, + { + "epoch": 1.0883620689655173, + "grad_norm": 0.062323443591594696, + "learning_rate": 0.01, + "loss": 2.091, + "step": 10605 + }, + { + "epoch": 1.0886699507389164, + "grad_norm": 0.08459887653589249, + "learning_rate": 0.01, + "loss": 2.094, + "step": 10608 + }, + { + "epoch": 1.0889778325123152, + "grad_norm": 0.0621943362057209, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 10611 + }, + { + "epoch": 1.0892857142857142, + "grad_norm": 0.10963741689920425, + "learning_rate": 0.01, + "loss": 2.0769, + "step": 10614 + }, + { + "epoch": 1.0895935960591132, + "grad_norm": 0.07325689494609833, + "learning_rate": 0.01, + "loss": 2.0905, + "step": 10617 + }, + { + "epoch": 1.0899014778325122, + "grad_norm": 0.08307964354753494, + "learning_rate": 0.01, + "loss": 2.0977, + "step": 10620 + }, + { + "epoch": 1.0902093596059113, + "grad_norm": 0.18072094023227692, + "learning_rate": 0.01, + "loss": 2.1096, + "step": 10623 + }, + { + "epoch": 1.0905172413793103, + "grad_norm": 0.10427471250295639, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 10626 + }, + { + "epoch": 1.0908251231527093, + "grad_norm": 0.0732191875576973, + "learning_rate": 0.01, + "loss": 2.1031, + "step": 10629 + }, + { + "epoch": 1.0911330049261083, + "grad_norm": 0.03703717514872551, + "learning_rate": 0.01, + "loss": 2.0734, + "step": 10632 + }, + { + "epoch": 1.0914408866995073, + "grad_norm": 0.04907006770372391, + "learning_rate": 0.01, + "loss": 2.096, + "step": 10635 + }, + { + "epoch": 1.0917487684729064, + "grad_norm": 0.04126304015517235, + "learning_rate": 0.01, + "loss": 2.0824, + "step": 10638 + }, + { + "epoch": 1.0920566502463054, + "grad_norm": 0.04017401486635208, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 10641 + }, + { + "epoch": 1.0923645320197044, + "grad_norm": 0.036132264882326126, + "learning_rate": 0.01, + "loss": 2.0792, + "step": 10644 + }, + { + "epoch": 1.0926724137931034, + "grad_norm": 0.06275150179862976, + "learning_rate": 0.01, + "loss": 2.1172, + "step": 10647 + }, + { + "epoch": 1.0929802955665024, + "grad_norm": 0.08319203555583954, + "learning_rate": 0.01, + "loss": 2.0868, + "step": 10650 + }, + { + "epoch": 1.0932881773399015, + "grad_norm": 0.08663000166416168, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 10653 + }, + { + "epoch": 1.0935960591133005, + "grad_norm": 0.10765951871871948, + "learning_rate": 0.01, + "loss": 2.0891, + "step": 10656 + }, + { + "epoch": 1.0939039408866995, + "grad_norm": 0.035412587225437164, + "learning_rate": 0.01, + "loss": 2.0912, + "step": 10659 + }, + { + "epoch": 1.0942118226600985, + "grad_norm": 0.051735054701566696, + "learning_rate": 0.01, + "loss": 2.0986, + "step": 10662 + }, + { + "epoch": 1.0945197044334976, + "grad_norm": 0.04320614039897919, + "learning_rate": 0.01, + "loss": 2.0912, + "step": 10665 + }, + { + "epoch": 1.0948275862068966, + "grad_norm": 0.03285462409257889, + "learning_rate": 0.01, + "loss": 2.0957, + "step": 10668 + }, + { + "epoch": 1.0951354679802956, + "grad_norm": 0.05172726511955261, + "learning_rate": 0.01, + "loss": 2.0706, + "step": 10671 + }, + { + "epoch": 1.0954433497536946, + "grad_norm": 0.04941645637154579, + "learning_rate": 0.01, + "loss": 2.1018, + "step": 10674 + }, + { + "epoch": 1.0957512315270936, + "grad_norm": 0.04746576398611069, + "learning_rate": 0.01, + "loss": 2.1002, + "step": 10677 + }, + { + "epoch": 1.0960591133004927, + "grad_norm": 0.10900839418172836, + "learning_rate": 0.01, + "loss": 2.1188, + "step": 10680 + }, + { + "epoch": 1.0963669950738917, + "grad_norm": 0.06924229860305786, + "learning_rate": 0.01, + "loss": 2.097, + "step": 10683 + }, + { + "epoch": 1.0966748768472907, + "grad_norm": 0.11047599464654922, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 10686 + }, + { + "epoch": 1.0969827586206897, + "grad_norm": 0.10662158578634262, + "learning_rate": 0.01, + "loss": 2.078, + "step": 10689 + }, + { + "epoch": 1.0972906403940887, + "grad_norm": 0.07408568263053894, + "learning_rate": 0.01, + "loss": 2.0918, + "step": 10692 + }, + { + "epoch": 1.0975985221674878, + "grad_norm": 0.0471009686589241, + "learning_rate": 0.01, + "loss": 2.1248, + "step": 10695 + }, + { + "epoch": 1.0979064039408868, + "grad_norm": 0.049591194838285446, + "learning_rate": 0.01, + "loss": 2.082, + "step": 10698 + }, + { + "epoch": 1.0982142857142858, + "grad_norm": 0.0919683426618576, + "learning_rate": 0.01, + "loss": 2.1229, + "step": 10701 + }, + { + "epoch": 1.0985221674876848, + "grad_norm": 0.05292963236570358, + "learning_rate": 0.01, + "loss": 2.1097, + "step": 10704 + }, + { + "epoch": 1.0988300492610836, + "grad_norm": 0.053880974650382996, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 10707 + }, + { + "epoch": 1.0991379310344827, + "grad_norm": 0.05608196556568146, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 10710 + }, + { + "epoch": 1.0994458128078817, + "grad_norm": 0.06456641852855682, + "learning_rate": 0.01, + "loss": 2.1148, + "step": 10713 + }, + { + "epoch": 1.0997536945812807, + "grad_norm": 0.08165917545557022, + "learning_rate": 0.01, + "loss": 2.1199, + "step": 10716 + }, + { + "epoch": 1.1000615763546797, + "grad_norm": 0.0773044228553772, + "learning_rate": 0.01, + "loss": 2.0972, + "step": 10719 + }, + { + "epoch": 1.1003694581280787, + "grad_norm": 0.07669848203659058, + "learning_rate": 0.01, + "loss": 2.101, + "step": 10722 + }, + { + "epoch": 1.1006773399014778, + "grad_norm": 0.0773942843079567, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 10725 + }, + { + "epoch": 1.1009852216748768, + "grad_norm": 0.06698640435934067, + "learning_rate": 0.01, + "loss": 2.1189, + "step": 10728 + }, + { + "epoch": 1.1012931034482758, + "grad_norm": 0.098200224339962, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 10731 + }, + { + "epoch": 1.1016009852216748, + "grad_norm": 0.06676481664180756, + "learning_rate": 0.01, + "loss": 2.097, + "step": 10734 + }, + { + "epoch": 1.1019088669950738, + "grad_norm": 0.03925321251153946, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 10737 + }, + { + "epoch": 1.1022167487684729, + "grad_norm": 0.08387935161590576, + "learning_rate": 0.01, + "loss": 2.1069, + "step": 10740 + }, + { + "epoch": 1.1025246305418719, + "grad_norm": 0.06382130831480026, + "learning_rate": 0.01, + "loss": 2.091, + "step": 10743 + }, + { + "epoch": 1.102832512315271, + "grad_norm": 0.04457903653383255, + "learning_rate": 0.01, + "loss": 2.074, + "step": 10746 + }, + { + "epoch": 1.10314039408867, + "grad_norm": 0.057858239859342575, + "learning_rate": 0.01, + "loss": 2.1021, + "step": 10749 + }, + { + "epoch": 1.103448275862069, + "grad_norm": 0.055992983281612396, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 10752 + }, + { + "epoch": 1.103756157635468, + "grad_norm": 0.10200835764408112, + "learning_rate": 0.01, + "loss": 2.0948, + "step": 10755 + }, + { + "epoch": 1.104064039408867, + "grad_norm": 0.11163626611232758, + "learning_rate": 0.01, + "loss": 2.0963, + "step": 10758 + }, + { + "epoch": 1.104371921182266, + "grad_norm": 0.11462046951055527, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 10761 + }, + { + "epoch": 1.104679802955665, + "grad_norm": 0.08823121339082718, + "learning_rate": 0.01, + "loss": 2.1136, + "step": 10764 + }, + { + "epoch": 1.104987684729064, + "grad_norm": 0.08843538910150528, + "learning_rate": 0.01, + "loss": 2.0767, + "step": 10767 + }, + { + "epoch": 1.105295566502463, + "grad_norm": 0.05961614102125168, + "learning_rate": 0.01, + "loss": 2.1067, + "step": 10770 + }, + { + "epoch": 1.105603448275862, + "grad_norm": 0.08095360547304153, + "learning_rate": 0.01, + "loss": 2.066, + "step": 10773 + }, + { + "epoch": 1.1059113300492611, + "grad_norm": 0.08094312995672226, + "learning_rate": 0.01, + "loss": 2.0849, + "step": 10776 + }, + { + "epoch": 1.1062192118226601, + "grad_norm": 0.05718453973531723, + "learning_rate": 0.01, + "loss": 2.1097, + "step": 10779 + }, + { + "epoch": 1.1065270935960592, + "grad_norm": 0.0537499338388443, + "learning_rate": 0.01, + "loss": 2.082, + "step": 10782 + }, + { + "epoch": 1.1068349753694582, + "grad_norm": 0.06437748670578003, + "learning_rate": 0.01, + "loss": 2.0982, + "step": 10785 + }, + { + "epoch": 1.1071428571428572, + "grad_norm": 0.03420199081301689, + "learning_rate": 0.01, + "loss": 2.0919, + "step": 10788 + }, + { + "epoch": 1.1074507389162562, + "grad_norm": 0.049510665237903595, + "learning_rate": 0.01, + "loss": 2.0777, + "step": 10791 + }, + { + "epoch": 1.1077586206896552, + "grad_norm": 0.044145356863737106, + "learning_rate": 0.01, + "loss": 2.0994, + "step": 10794 + }, + { + "epoch": 1.1080665024630543, + "grad_norm": 0.0494622103869915, + "learning_rate": 0.01, + "loss": 2.103, + "step": 10797 + }, + { + "epoch": 1.1083743842364533, + "grad_norm": 0.039029188454151154, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 10800 + }, + { + "epoch": 1.1086822660098523, + "grad_norm": 0.05786842480301857, + "learning_rate": 0.01, + "loss": 2.0767, + "step": 10803 + }, + { + "epoch": 1.1089901477832513, + "grad_norm": 0.07576561719179153, + "learning_rate": 0.01, + "loss": 2.1078, + "step": 10806 + }, + { + "epoch": 1.1092980295566504, + "grad_norm": 0.084762342274189, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 10809 + }, + { + "epoch": 1.1096059113300494, + "grad_norm": 0.05042179673910141, + "learning_rate": 0.01, + "loss": 2.0742, + "step": 10812 + }, + { + "epoch": 1.1099137931034482, + "grad_norm": 0.07194402068853378, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 10815 + }, + { + "epoch": 1.1102216748768472, + "grad_norm": 0.13966146111488342, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 10818 + }, + { + "epoch": 1.1105295566502462, + "grad_norm": 0.060582250356674194, + "learning_rate": 0.01, + "loss": 2.1039, + "step": 10821 + }, + { + "epoch": 1.1108374384236452, + "grad_norm": 0.03663609176874161, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 10824 + }, + { + "epoch": 1.1111453201970443, + "grad_norm": 0.09468091279268265, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 10827 + }, + { + "epoch": 1.1114532019704433, + "grad_norm": 0.07199615240097046, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 10830 + }, + { + "epoch": 1.1117610837438423, + "grad_norm": 0.06624965369701385, + "learning_rate": 0.01, + "loss": 2.1286, + "step": 10833 + }, + { + "epoch": 1.1120689655172413, + "grad_norm": 0.0414128340780735, + "learning_rate": 0.01, + "loss": 2.0922, + "step": 10836 + }, + { + "epoch": 1.1123768472906403, + "grad_norm": 0.06416642665863037, + "learning_rate": 0.01, + "loss": 2.0908, + "step": 10839 + }, + { + "epoch": 1.1126847290640394, + "grad_norm": 0.05309692397713661, + "learning_rate": 0.01, + "loss": 2.117, + "step": 10842 + }, + { + "epoch": 1.1129926108374384, + "grad_norm": 0.04576392099261284, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 10845 + }, + { + "epoch": 1.1133004926108374, + "grad_norm": 0.0887250304222107, + "learning_rate": 0.01, + "loss": 2.0815, + "step": 10848 + }, + { + "epoch": 1.1136083743842364, + "grad_norm": 0.061223480850458145, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 10851 + }, + { + "epoch": 1.1139162561576355, + "grad_norm": 0.12983545660972595, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 10854 + }, + { + "epoch": 1.1142241379310345, + "grad_norm": 0.09382637590169907, + "learning_rate": 0.01, + "loss": 2.0838, + "step": 10857 + }, + { + "epoch": 1.1145320197044335, + "grad_norm": 0.04275491461157799, + "learning_rate": 0.01, + "loss": 2.0905, + "step": 10860 + }, + { + "epoch": 1.1148399014778325, + "grad_norm": 0.044315680861473083, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 10863 + }, + { + "epoch": 1.1151477832512315, + "grad_norm": 0.05177663639187813, + "learning_rate": 0.01, + "loss": 2.0985, + "step": 10866 + }, + { + "epoch": 1.1154556650246306, + "grad_norm": 0.08161107450723648, + "learning_rate": 0.01, + "loss": 2.105, + "step": 10869 + }, + { + "epoch": 1.1157635467980296, + "grad_norm": 0.08273576200008392, + "learning_rate": 0.01, + "loss": 2.0991, + "step": 10872 + }, + { + "epoch": 1.1160714285714286, + "grad_norm": 0.04973771795630455, + "learning_rate": 0.01, + "loss": 2.0849, + "step": 10875 + }, + { + "epoch": 1.1163793103448276, + "grad_norm": 0.036696773022413254, + "learning_rate": 0.01, + "loss": 2.0651, + "step": 10878 + }, + { + "epoch": 1.1166871921182266, + "grad_norm": 0.03647401183843613, + "learning_rate": 0.01, + "loss": 2.0772, + "step": 10881 + }, + { + "epoch": 1.1169950738916257, + "grad_norm": 0.03360895812511444, + "learning_rate": 0.01, + "loss": 2.0952, + "step": 10884 + }, + { + "epoch": 1.1173029556650247, + "grad_norm": 0.037918057292699814, + "learning_rate": 0.01, + "loss": 2.0776, + "step": 10887 + }, + { + "epoch": 1.1176108374384237, + "grad_norm": 0.10544890910387039, + "learning_rate": 0.01, + "loss": 2.1079, + "step": 10890 + }, + { + "epoch": 1.1179187192118227, + "grad_norm": 0.15091745555400848, + "learning_rate": 0.01, + "loss": 2.1231, + "step": 10893 + }, + { + "epoch": 1.1182266009852218, + "grad_norm": 0.07386527210474014, + "learning_rate": 0.01, + "loss": 2.0922, + "step": 10896 + }, + { + "epoch": 1.1185344827586208, + "grad_norm": 0.04889804869890213, + "learning_rate": 0.01, + "loss": 2.1016, + "step": 10899 + }, + { + "epoch": 1.1188423645320198, + "grad_norm": 0.04805940017104149, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 10902 + }, + { + "epoch": 1.1191502463054188, + "grad_norm": 0.040073320269584656, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 10905 + }, + { + "epoch": 1.1194581280788178, + "grad_norm": 0.046124961227178574, + "learning_rate": 0.01, + "loss": 2.0891, + "step": 10908 + }, + { + "epoch": 1.1197660098522166, + "grad_norm": 0.04982076957821846, + "learning_rate": 0.01, + "loss": 2.0595, + "step": 10911 + }, + { + "epoch": 1.1200738916256157, + "grad_norm": 0.036569107323884964, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 10914 + }, + { + "epoch": 1.1203817733990147, + "grad_norm": 0.033519893884658813, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 10917 + }, + { + "epoch": 1.1206896551724137, + "grad_norm": 0.0513744130730629, + "learning_rate": 0.01, + "loss": 2.1119, + "step": 10920 + }, + { + "epoch": 1.1209975369458127, + "grad_norm": 0.08677095174789429, + "learning_rate": 0.01, + "loss": 2.0791, + "step": 10923 + }, + { + "epoch": 1.1213054187192117, + "grad_norm": 0.1263512223958969, + "learning_rate": 0.01, + "loss": 2.0912, + "step": 10926 + }, + { + "epoch": 1.1216133004926108, + "grad_norm": 0.0737731009721756, + "learning_rate": 0.01, + "loss": 2.1193, + "step": 10929 + }, + { + "epoch": 1.1219211822660098, + "grad_norm": 0.045122213661670685, + "learning_rate": 0.01, + "loss": 2.1029, + "step": 10932 + }, + { + "epoch": 1.1222290640394088, + "grad_norm": 0.04616571217775345, + "learning_rate": 0.01, + "loss": 2.062, + "step": 10935 + }, + { + "epoch": 1.1225369458128078, + "grad_norm": 0.03985420614480972, + "learning_rate": 0.01, + "loss": 2.0868, + "step": 10938 + }, + { + "epoch": 1.1228448275862069, + "grad_norm": 0.11042526364326477, + "learning_rate": 0.01, + "loss": 2.1057, + "step": 10941 + }, + { + "epoch": 1.1231527093596059, + "grad_norm": 0.08071359992027283, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 10944 + }, + { + "epoch": 1.123460591133005, + "grad_norm": 0.049534909427165985, + "learning_rate": 0.01, + "loss": 2.1055, + "step": 10947 + }, + { + "epoch": 1.123768472906404, + "grad_norm": 0.08341135829687119, + "learning_rate": 0.01, + "loss": 2.0948, + "step": 10950 + }, + { + "epoch": 1.124076354679803, + "grad_norm": 0.03842156007885933, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 10953 + }, + { + "epoch": 1.124384236453202, + "grad_norm": 0.04978267103433609, + "learning_rate": 0.01, + "loss": 2.0927, + "step": 10956 + }, + { + "epoch": 1.124692118226601, + "grad_norm": 0.04545191302895546, + "learning_rate": 0.01, + "loss": 2.0847, + "step": 10959 + }, + { + "epoch": 1.125, + "grad_norm": 0.10103368014097214, + "learning_rate": 0.01, + "loss": 2.105, + "step": 10962 + }, + { + "epoch": 1.125307881773399, + "grad_norm": 0.05956938862800598, + "learning_rate": 0.01, + "loss": 2.1043, + "step": 10965 + }, + { + "epoch": 1.125615763546798, + "grad_norm": 0.048797741532325745, + "learning_rate": 0.01, + "loss": 2.1044, + "step": 10968 + }, + { + "epoch": 1.125923645320197, + "grad_norm": 0.041901495307683945, + "learning_rate": 0.01, + "loss": 2.0847, + "step": 10971 + }, + { + "epoch": 1.126231527093596, + "grad_norm": 0.14950989186763763, + "learning_rate": 0.01, + "loss": 2.0919, + "step": 10974 + }, + { + "epoch": 1.126539408866995, + "grad_norm": 0.049760669469833374, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 10977 + }, + { + "epoch": 1.1268472906403941, + "grad_norm": 0.07016187906265259, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 10980 + }, + { + "epoch": 1.1271551724137931, + "grad_norm": 0.057528458535671234, + "learning_rate": 0.01, + "loss": 2.0759, + "step": 10983 + }, + { + "epoch": 1.1274630541871922, + "grad_norm": 0.06690733879804611, + "learning_rate": 0.01, + "loss": 2.102, + "step": 10986 + }, + { + "epoch": 1.1277709359605912, + "grad_norm": 0.05225450173020363, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 10989 + }, + { + "epoch": 1.1280788177339902, + "grad_norm": 0.048363544046878815, + "learning_rate": 0.01, + "loss": 2.0634, + "step": 10992 + }, + { + "epoch": 1.1283866995073892, + "grad_norm": 0.05356382206082344, + "learning_rate": 0.01, + "loss": 2.1003, + "step": 10995 + }, + { + "epoch": 1.1286945812807883, + "grad_norm": 0.06921149045228958, + "learning_rate": 0.01, + "loss": 2.0934, + "step": 10998 + }, + { + "epoch": 1.1290024630541873, + "grad_norm": 0.04210525006055832, + "learning_rate": 0.01, + "loss": 2.096, + "step": 11001 + }, + { + "epoch": 1.1293103448275863, + "grad_norm": 0.11790584027767181, + "learning_rate": 0.01, + "loss": 2.0746, + "step": 11004 + }, + { + "epoch": 1.1296182266009853, + "grad_norm": 0.08045307546854019, + "learning_rate": 0.01, + "loss": 2.0929, + "step": 11007 + }, + { + "epoch": 1.1299261083743843, + "grad_norm": 0.10474243015050888, + "learning_rate": 0.01, + "loss": 2.1418, + "step": 11010 + }, + { + "epoch": 1.1302339901477834, + "grad_norm": 0.06073759123682976, + "learning_rate": 0.01, + "loss": 2.1089, + "step": 11013 + }, + { + "epoch": 1.1305418719211824, + "grad_norm": 0.057685475796461105, + "learning_rate": 0.01, + "loss": 2.0959, + "step": 11016 + }, + { + "epoch": 1.1308497536945814, + "grad_norm": 0.04218476638197899, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 11019 + }, + { + "epoch": 1.1311576354679802, + "grad_norm": 0.04814853519201279, + "learning_rate": 0.01, + "loss": 2.1134, + "step": 11022 + }, + { + "epoch": 1.1314655172413792, + "grad_norm": 0.1344536989927292, + "learning_rate": 0.01, + "loss": 2.1121, + "step": 11025 + }, + { + "epoch": 1.1317733990147782, + "grad_norm": 0.057088855654001236, + "learning_rate": 0.01, + "loss": 2.0978, + "step": 11028 + }, + { + "epoch": 1.1320812807881773, + "grad_norm": 0.04567364603281021, + "learning_rate": 0.01, + "loss": 2.0837, + "step": 11031 + }, + { + "epoch": 1.1323891625615763, + "grad_norm": 0.07506916671991348, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 11034 + }, + { + "epoch": 1.1326970443349753, + "grad_norm": 0.05837171897292137, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 11037 + }, + { + "epoch": 1.1330049261083743, + "grad_norm": 0.0457015223801136, + "learning_rate": 0.01, + "loss": 2.101, + "step": 11040 + }, + { + "epoch": 1.1333128078817734, + "grad_norm": 0.061310991644859314, + "learning_rate": 0.01, + "loss": 2.1128, + "step": 11043 + }, + { + "epoch": 1.1336206896551724, + "grad_norm": 0.05517786741256714, + "learning_rate": 0.01, + "loss": 2.0844, + "step": 11046 + }, + { + "epoch": 1.1339285714285714, + "grad_norm": 0.07835637778043747, + "learning_rate": 0.01, + "loss": 2.0996, + "step": 11049 + }, + { + "epoch": 1.1342364532019704, + "grad_norm": 0.05821641907095909, + "learning_rate": 0.01, + "loss": 2.1074, + "step": 11052 + }, + { + "epoch": 1.1345443349753694, + "grad_norm": 0.04394884407520294, + "learning_rate": 0.01, + "loss": 2.0799, + "step": 11055 + }, + { + "epoch": 1.1348522167487685, + "grad_norm": 0.05148720741271973, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 11058 + }, + { + "epoch": 1.1351600985221675, + "grad_norm": 0.05766841769218445, + "learning_rate": 0.01, + "loss": 2.0973, + "step": 11061 + }, + { + "epoch": 1.1354679802955665, + "grad_norm": 0.09894710779190063, + "learning_rate": 0.01, + "loss": 2.0831, + "step": 11064 + }, + { + "epoch": 1.1357758620689655, + "grad_norm": 0.11916875094175339, + "learning_rate": 0.01, + "loss": 2.1044, + "step": 11067 + }, + { + "epoch": 1.1360837438423645, + "grad_norm": 0.03926829248666763, + "learning_rate": 0.01, + "loss": 2.0866, + "step": 11070 + }, + { + "epoch": 1.1363916256157636, + "grad_norm": 0.05105220153927803, + "learning_rate": 0.01, + "loss": 2.0911, + "step": 11073 + }, + { + "epoch": 1.1366995073891626, + "grad_norm": 0.04516123607754707, + "learning_rate": 0.01, + "loss": 2.0693, + "step": 11076 + }, + { + "epoch": 1.1370073891625616, + "grad_norm": 0.046173594892024994, + "learning_rate": 0.01, + "loss": 2.092, + "step": 11079 + }, + { + "epoch": 1.1373152709359606, + "grad_norm": 0.05173357576131821, + "learning_rate": 0.01, + "loss": 2.1007, + "step": 11082 + }, + { + "epoch": 1.1376231527093597, + "grad_norm": 0.06486919522285461, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 11085 + }, + { + "epoch": 1.1379310344827587, + "grad_norm": 0.09763675928115845, + "learning_rate": 0.01, + "loss": 2.0942, + "step": 11088 + }, + { + "epoch": 1.1382389162561577, + "grad_norm": 0.1281820833683014, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 11091 + }, + { + "epoch": 1.1385467980295567, + "grad_norm": 0.05734977498650551, + "learning_rate": 0.01, + "loss": 2.0891, + "step": 11094 + }, + { + "epoch": 1.1388546798029557, + "grad_norm": 0.06809762120246887, + "learning_rate": 0.01, + "loss": 2.0855, + "step": 11097 + }, + { + "epoch": 1.1391625615763548, + "grad_norm": 0.05105281621217728, + "learning_rate": 0.01, + "loss": 2.0975, + "step": 11100 + }, + { + "epoch": 1.1394704433497538, + "grad_norm": 0.07381090521812439, + "learning_rate": 0.01, + "loss": 2.0762, + "step": 11103 + }, + { + "epoch": 1.1397783251231528, + "grad_norm": 0.050722070038318634, + "learning_rate": 0.01, + "loss": 2.0778, + "step": 11106 + }, + { + "epoch": 1.1400862068965516, + "grad_norm": 0.03850618377327919, + "learning_rate": 0.01, + "loss": 2.0626, + "step": 11109 + }, + { + "epoch": 1.1403940886699506, + "grad_norm": 0.08264841884374619, + "learning_rate": 0.01, + "loss": 2.1258, + "step": 11112 + }, + { + "epoch": 1.1407019704433496, + "grad_norm": 0.06493505835533142, + "learning_rate": 0.01, + "loss": 2.0961, + "step": 11115 + }, + { + "epoch": 1.1410098522167487, + "grad_norm": 0.06895186007022858, + "learning_rate": 0.01, + "loss": 2.1207, + "step": 11118 + }, + { + "epoch": 1.1413177339901477, + "grad_norm": 0.042232003062963486, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 11121 + }, + { + "epoch": 1.1416256157635467, + "grad_norm": 0.10296539217233658, + "learning_rate": 0.01, + "loss": 2.1126, + "step": 11124 + }, + { + "epoch": 1.1419334975369457, + "grad_norm": 0.043095991015434265, + "learning_rate": 0.01, + "loss": 2.0928, + "step": 11127 + }, + { + "epoch": 1.1422413793103448, + "grad_norm": 0.046020470559597015, + "learning_rate": 0.01, + "loss": 2.092, + "step": 11130 + }, + { + "epoch": 1.1425492610837438, + "grad_norm": 0.04754204675555229, + "learning_rate": 0.01, + "loss": 2.126, + "step": 11133 + }, + { + "epoch": 1.1428571428571428, + "grad_norm": 0.03732014447450638, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 11136 + }, + { + "epoch": 1.1431650246305418, + "grad_norm": 0.039080169051885605, + "learning_rate": 0.01, + "loss": 2.0877, + "step": 11139 + }, + { + "epoch": 1.1434729064039408, + "grad_norm": 0.04575611278414726, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 11142 + }, + { + "epoch": 1.1437807881773399, + "grad_norm": 0.11764515191316605, + "learning_rate": 0.01, + "loss": 2.0964, + "step": 11145 + }, + { + "epoch": 1.1440886699507389, + "grad_norm": 0.10087098181247711, + "learning_rate": 0.01, + "loss": 2.069, + "step": 11148 + }, + { + "epoch": 1.144396551724138, + "grad_norm": 0.05462269112467766, + "learning_rate": 0.01, + "loss": 2.0902, + "step": 11151 + }, + { + "epoch": 1.144704433497537, + "grad_norm": 0.06296168267726898, + "learning_rate": 0.01, + "loss": 2.1257, + "step": 11154 + }, + { + "epoch": 1.145012315270936, + "grad_norm": 0.041026949882507324, + "learning_rate": 0.01, + "loss": 2.0672, + "step": 11157 + }, + { + "epoch": 1.145320197044335, + "grad_norm": 0.05761269852519035, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 11160 + }, + { + "epoch": 1.145628078817734, + "grad_norm": 0.12491103261709213, + "learning_rate": 0.01, + "loss": 2.0681, + "step": 11163 + }, + { + "epoch": 1.145935960591133, + "grad_norm": 0.09269531071186066, + "learning_rate": 0.01, + "loss": 2.0618, + "step": 11166 + }, + { + "epoch": 1.146243842364532, + "grad_norm": 0.05623659864068031, + "learning_rate": 0.01, + "loss": 2.0861, + "step": 11169 + }, + { + "epoch": 1.146551724137931, + "grad_norm": 0.04075248911976814, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 11172 + }, + { + "epoch": 1.14685960591133, + "grad_norm": 0.04557061940431595, + "learning_rate": 0.01, + "loss": 2.0876, + "step": 11175 + }, + { + "epoch": 1.147167487684729, + "grad_norm": 0.05686535686254501, + "learning_rate": 0.01, + "loss": 2.0746, + "step": 11178 + }, + { + "epoch": 1.1474753694581281, + "grad_norm": 0.04164785146713257, + "learning_rate": 0.01, + "loss": 2.0684, + "step": 11181 + }, + { + "epoch": 1.1477832512315271, + "grad_norm": 0.05453825742006302, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 11184 + }, + { + "epoch": 1.1480911330049262, + "grad_norm": 0.15215769410133362, + "learning_rate": 0.01, + "loss": 2.0806, + "step": 11187 + }, + { + "epoch": 1.1483990147783252, + "grad_norm": 0.14634385704994202, + "learning_rate": 0.01, + "loss": 2.11, + "step": 11190 + }, + { + "epoch": 1.1487068965517242, + "grad_norm": 0.06655893474817276, + "learning_rate": 0.01, + "loss": 2.0953, + "step": 11193 + }, + { + "epoch": 1.1490147783251232, + "grad_norm": 0.07074826955795288, + "learning_rate": 0.01, + "loss": 2.0984, + "step": 11196 + }, + { + "epoch": 1.1493226600985222, + "grad_norm": 0.044581200927495956, + "learning_rate": 0.01, + "loss": 2.0816, + "step": 11199 + }, + { + "epoch": 1.1496305418719213, + "grad_norm": 0.06769565492868423, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 11202 + }, + { + "epoch": 1.1499384236453203, + "grad_norm": 0.11437363177537918, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 11205 + }, + { + "epoch": 1.1502463054187193, + "grad_norm": 0.040699586272239685, + "learning_rate": 0.01, + "loss": 2.1028, + "step": 11208 + }, + { + "epoch": 1.1505541871921183, + "grad_norm": 0.06996385753154755, + "learning_rate": 0.01, + "loss": 2.0755, + "step": 11211 + }, + { + "epoch": 1.1508620689655173, + "grad_norm": 0.04621044918894768, + "learning_rate": 0.01, + "loss": 2.11, + "step": 11214 + }, + { + "epoch": 1.1511699507389164, + "grad_norm": 0.07714984565973282, + "learning_rate": 0.01, + "loss": 2.1008, + "step": 11217 + }, + { + "epoch": 1.1514778325123154, + "grad_norm": 0.11194620281457901, + "learning_rate": 0.01, + "loss": 2.093, + "step": 11220 + }, + { + "epoch": 1.1517857142857142, + "grad_norm": 0.08710391074419022, + "learning_rate": 0.01, + "loss": 2.1017, + "step": 11223 + }, + { + "epoch": 1.1520935960591132, + "grad_norm": 0.06653989106416702, + "learning_rate": 0.01, + "loss": 2.1084, + "step": 11226 + }, + { + "epoch": 1.1524014778325122, + "grad_norm": 0.056591540575027466, + "learning_rate": 0.01, + "loss": 2.107, + "step": 11229 + }, + { + "epoch": 1.1527093596059113, + "grad_norm": 0.056475669145584106, + "learning_rate": 0.01, + "loss": 2.0774, + "step": 11232 + }, + { + "epoch": 1.1530172413793103, + "grad_norm": 0.08408259600400925, + "learning_rate": 0.01, + "loss": 2.1193, + "step": 11235 + }, + { + "epoch": 1.1533251231527093, + "grad_norm": 0.06853178143501282, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 11238 + }, + { + "epoch": 1.1536330049261083, + "grad_norm": 0.11699818074703217, + "learning_rate": 0.01, + "loss": 2.0932, + "step": 11241 + }, + { + "epoch": 1.1539408866995073, + "grad_norm": 0.06365542113780975, + "learning_rate": 0.01, + "loss": 2.079, + "step": 11244 + }, + { + "epoch": 1.1542487684729064, + "grad_norm": 0.040505316108465195, + "learning_rate": 0.01, + "loss": 2.0688, + "step": 11247 + }, + { + "epoch": 1.1545566502463054, + "grad_norm": 0.06958888471126556, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 11250 + }, + { + "epoch": 1.1548645320197044, + "grad_norm": 0.08968232572078705, + "learning_rate": 0.01, + "loss": 2.064, + "step": 11253 + }, + { + "epoch": 1.1551724137931034, + "grad_norm": 0.05143412947654724, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 11256 + }, + { + "epoch": 1.1554802955665024, + "grad_norm": 0.1219927966594696, + "learning_rate": 0.01, + "loss": 2.1038, + "step": 11259 + }, + { + "epoch": 1.1557881773399015, + "grad_norm": 0.11974184960126877, + "learning_rate": 0.01, + "loss": 2.1099, + "step": 11262 + }, + { + "epoch": 1.1560960591133005, + "grad_norm": 0.09557066112756729, + "learning_rate": 0.01, + "loss": 2.0976, + "step": 11265 + }, + { + "epoch": 1.1564039408866995, + "grad_norm": 0.10169565677642822, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 11268 + }, + { + "epoch": 1.1567118226600985, + "grad_norm": 0.0586596317589283, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 11271 + }, + { + "epoch": 1.1570197044334976, + "grad_norm": 0.0423048697412014, + "learning_rate": 0.01, + "loss": 2.1084, + "step": 11274 + }, + { + "epoch": 1.1573275862068966, + "grad_norm": 0.07394707947969437, + "learning_rate": 0.01, + "loss": 2.0802, + "step": 11277 + }, + { + "epoch": 1.1576354679802956, + "grad_norm": 0.05507487431168556, + "learning_rate": 0.01, + "loss": 2.0777, + "step": 11280 + }, + { + "epoch": 1.1579433497536946, + "grad_norm": 0.03251083940267563, + "learning_rate": 0.01, + "loss": 2.1128, + "step": 11283 + }, + { + "epoch": 1.1582512315270936, + "grad_norm": 0.04480468109250069, + "learning_rate": 0.01, + "loss": 2.1162, + "step": 11286 + }, + { + "epoch": 1.1585591133004927, + "grad_norm": 0.08275749534368515, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 11289 + }, + { + "epoch": 1.1588669950738917, + "grad_norm": 0.08199379593133926, + "learning_rate": 0.01, + "loss": 2.1006, + "step": 11292 + }, + { + "epoch": 1.1591748768472907, + "grad_norm": 0.1015235111117363, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 11295 + }, + { + "epoch": 1.1594827586206897, + "grad_norm": 0.08872919529676437, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 11298 + }, + { + "epoch": 1.1597906403940887, + "grad_norm": 0.04640579596161842, + "learning_rate": 0.01, + "loss": 2.09, + "step": 11301 + }, + { + "epoch": 1.1600985221674878, + "grad_norm": 0.044142261147499084, + "learning_rate": 0.01, + "loss": 2.115, + "step": 11304 + }, + { + "epoch": 1.1604064039408868, + "grad_norm": 0.1030762568116188, + "learning_rate": 0.01, + "loss": 2.1358, + "step": 11307 + }, + { + "epoch": 1.1607142857142858, + "grad_norm": 0.06712359189987183, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 11310 + }, + { + "epoch": 1.1610221674876846, + "grad_norm": 0.05579240992665291, + "learning_rate": 0.01, + "loss": 2.0915, + "step": 11313 + }, + { + "epoch": 1.1613300492610836, + "grad_norm": 0.04237228259444237, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 11316 + }, + { + "epoch": 1.1616379310344827, + "grad_norm": 0.08990642428398132, + "learning_rate": 0.01, + "loss": 2.0753, + "step": 11319 + }, + { + "epoch": 1.1619458128078817, + "grad_norm": 0.09788185358047485, + "learning_rate": 0.01, + "loss": 2.0907, + "step": 11322 + }, + { + "epoch": 1.1622536945812807, + "grad_norm": 0.07207074761390686, + "learning_rate": 0.01, + "loss": 2.0858, + "step": 11325 + }, + { + "epoch": 1.1625615763546797, + "grad_norm": 0.07704904675483704, + "learning_rate": 0.01, + "loss": 2.0938, + "step": 11328 + }, + { + "epoch": 1.1628694581280787, + "grad_norm": 0.07003269344568253, + "learning_rate": 0.01, + "loss": 2.1031, + "step": 11331 + }, + { + "epoch": 1.1631773399014778, + "grad_norm": 0.05584646388888359, + "learning_rate": 0.01, + "loss": 2.0852, + "step": 11334 + }, + { + "epoch": 1.1634852216748768, + "grad_norm": 0.10223853588104248, + "learning_rate": 0.01, + "loss": 2.072, + "step": 11337 + }, + { + "epoch": 1.1637931034482758, + "grad_norm": 0.13336369395256042, + "learning_rate": 0.01, + "loss": 2.0902, + "step": 11340 + }, + { + "epoch": 1.1641009852216748, + "grad_norm": 0.04471458122134209, + "learning_rate": 0.01, + "loss": 2.0884, + "step": 11343 + }, + { + "epoch": 1.1644088669950738, + "grad_norm": 0.04342315346002579, + "learning_rate": 0.01, + "loss": 2.0885, + "step": 11346 + }, + { + "epoch": 1.1647167487684729, + "grad_norm": 0.05172869563102722, + "learning_rate": 0.01, + "loss": 2.069, + "step": 11349 + }, + { + "epoch": 1.1650246305418719, + "grad_norm": 0.04304314777255058, + "learning_rate": 0.01, + "loss": 2.0915, + "step": 11352 + }, + { + "epoch": 1.165332512315271, + "grad_norm": 0.14592792093753815, + "learning_rate": 0.01, + "loss": 2.0841, + "step": 11355 + }, + { + "epoch": 1.16564039408867, + "grad_norm": 0.05238402634859085, + "learning_rate": 0.01, + "loss": 2.0772, + "step": 11358 + }, + { + "epoch": 1.165948275862069, + "grad_norm": 0.04800669103860855, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 11361 + }, + { + "epoch": 1.166256157635468, + "grad_norm": 0.06648313999176025, + "learning_rate": 0.01, + "loss": 2.0956, + "step": 11364 + }, + { + "epoch": 1.166564039408867, + "grad_norm": 0.03402326628565788, + "learning_rate": 0.01, + "loss": 2.0847, + "step": 11367 + }, + { + "epoch": 1.166871921182266, + "grad_norm": 0.05076766759157181, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 11370 + }, + { + "epoch": 1.167179802955665, + "grad_norm": 0.07221470773220062, + "learning_rate": 0.01, + "loss": 2.0778, + "step": 11373 + }, + { + "epoch": 1.167487684729064, + "grad_norm": 0.04556736722588539, + "learning_rate": 0.01, + "loss": 2.0957, + "step": 11376 + }, + { + "epoch": 1.167795566502463, + "grad_norm": 0.03702834993600845, + "learning_rate": 0.01, + "loss": 2.0843, + "step": 11379 + }, + { + "epoch": 1.168103448275862, + "grad_norm": 0.046527571976184845, + "learning_rate": 0.01, + "loss": 2.084, + "step": 11382 + }, + { + "epoch": 1.1684113300492611, + "grad_norm": 0.09520363062620163, + "learning_rate": 0.01, + "loss": 2.0924, + "step": 11385 + }, + { + "epoch": 1.1687192118226601, + "grad_norm": 0.12759263813495636, + "learning_rate": 0.01, + "loss": 2.1265, + "step": 11388 + }, + { + "epoch": 1.1690270935960592, + "grad_norm": 0.03981192037463188, + "learning_rate": 0.01, + "loss": 2.076, + "step": 11391 + }, + { + "epoch": 1.1693349753694582, + "grad_norm": 0.04739897698163986, + "learning_rate": 0.01, + "loss": 2.1013, + "step": 11394 + }, + { + "epoch": 1.1696428571428572, + "grad_norm": 0.04937390610575676, + "learning_rate": 0.01, + "loss": 2.0832, + "step": 11397 + }, + { + "epoch": 1.1699507389162562, + "grad_norm": 0.07097122073173523, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 11400 + }, + { + "epoch": 1.1702586206896552, + "grad_norm": 0.07773783802986145, + "learning_rate": 0.01, + "loss": 2.1215, + "step": 11403 + }, + { + "epoch": 1.1705665024630543, + "grad_norm": 0.04591994732618332, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 11406 + }, + { + "epoch": 1.1708743842364533, + "grad_norm": 0.08724237233400345, + "learning_rate": 0.01, + "loss": 2.0817, + "step": 11409 + }, + { + "epoch": 1.1711822660098523, + "grad_norm": 0.06528041511774063, + "learning_rate": 0.01, + "loss": 2.0962, + "step": 11412 + }, + { + "epoch": 1.1714901477832513, + "grad_norm": 0.0660424679517746, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 11415 + }, + { + "epoch": 1.1717980295566504, + "grad_norm": 0.08304266631603241, + "learning_rate": 0.01, + "loss": 2.0912, + "step": 11418 + }, + { + "epoch": 1.1721059113300494, + "grad_norm": 0.05073266103863716, + "learning_rate": 0.01, + "loss": 2.0747, + "step": 11421 + }, + { + "epoch": 1.1724137931034484, + "grad_norm": 0.07305736094713211, + "learning_rate": 0.01, + "loss": 2.0852, + "step": 11424 + }, + { + "epoch": 1.1727216748768472, + "grad_norm": 0.09365279227495193, + "learning_rate": 0.01, + "loss": 2.0883, + "step": 11427 + }, + { + "epoch": 1.1730295566502462, + "grad_norm": 0.12279067188501358, + "learning_rate": 0.01, + "loss": 2.0999, + "step": 11430 + }, + { + "epoch": 1.1733374384236452, + "grad_norm": 0.0589769072830677, + "learning_rate": 0.01, + "loss": 2.0948, + "step": 11433 + }, + { + "epoch": 1.1736453201970443, + "grad_norm": 0.06621567159891129, + "learning_rate": 0.01, + "loss": 2.0823, + "step": 11436 + }, + { + "epoch": 1.1739532019704433, + "grad_norm": 0.051341816782951355, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 11439 + }, + { + "epoch": 1.1742610837438423, + "grad_norm": 0.06027314066886902, + "learning_rate": 0.01, + "loss": 2.0798, + "step": 11442 + }, + { + "epoch": 1.1745689655172413, + "grad_norm": 0.10131573677062988, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 11445 + }, + { + "epoch": 1.1748768472906403, + "grad_norm": 0.08082377910614014, + "learning_rate": 0.01, + "loss": 2.0949, + "step": 11448 + }, + { + "epoch": 1.1751847290640394, + "grad_norm": 0.07095243781805038, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 11451 + }, + { + "epoch": 1.1754926108374384, + "grad_norm": 0.07132910192012787, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 11454 + }, + { + "epoch": 1.1758004926108374, + "grad_norm": 0.10488838702440262, + "learning_rate": 0.01, + "loss": 2.0639, + "step": 11457 + }, + { + "epoch": 1.1761083743842364, + "grad_norm": 0.12755680084228516, + "learning_rate": 0.01, + "loss": 2.0989, + "step": 11460 + }, + { + "epoch": 1.1764162561576355, + "grad_norm": 0.12174911797046661, + "learning_rate": 0.01, + "loss": 2.1026, + "step": 11463 + }, + { + "epoch": 1.1767241379310345, + "grad_norm": 0.07873964309692383, + "learning_rate": 0.01, + "loss": 2.0908, + "step": 11466 + }, + { + "epoch": 1.1770320197044335, + "grad_norm": 0.04275409132242203, + "learning_rate": 0.01, + "loss": 2.0899, + "step": 11469 + }, + { + "epoch": 1.1773399014778325, + "grad_norm": 0.046134103089571, + "learning_rate": 0.01, + "loss": 2.1064, + "step": 11472 + }, + { + "epoch": 1.1776477832512315, + "grad_norm": 0.07631804049015045, + "learning_rate": 0.01, + "loss": 2.0811, + "step": 11475 + }, + { + "epoch": 1.1779556650246306, + "grad_norm": 0.04843062162399292, + "learning_rate": 0.01, + "loss": 2.1078, + "step": 11478 + }, + { + "epoch": 1.1782635467980296, + "grad_norm": 0.04664747416973114, + "learning_rate": 0.01, + "loss": 2.0807, + "step": 11481 + }, + { + "epoch": 1.1785714285714286, + "grad_norm": 0.042328983545303345, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 11484 + }, + { + "epoch": 1.1788793103448276, + "grad_norm": 0.04443054646253586, + "learning_rate": 0.01, + "loss": 2.092, + "step": 11487 + }, + { + "epoch": 1.1791871921182266, + "grad_norm": 0.03439139202237129, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 11490 + }, + { + "epoch": 1.1794950738916257, + "grad_norm": 0.1651001274585724, + "learning_rate": 0.01, + "loss": 2.1068, + "step": 11493 + }, + { + "epoch": 1.1798029556650247, + "grad_norm": 0.04535198211669922, + "learning_rate": 0.01, + "loss": 2.0951, + "step": 11496 + }, + { + "epoch": 1.1801108374384237, + "grad_norm": 0.04346736520528793, + "learning_rate": 0.01, + "loss": 2.1032, + "step": 11499 + }, + { + "epoch": 1.1804187192118227, + "grad_norm": 0.08131600171327591, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 11502 + }, + { + "epoch": 1.1807266009852218, + "grad_norm": 0.0638989582657814, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 11505 + }, + { + "epoch": 1.1810344827586208, + "grad_norm": 0.06305757910013199, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 11508 + }, + { + "epoch": 1.1813423645320198, + "grad_norm": 0.048068735748529434, + "learning_rate": 0.01, + "loss": 2.0803, + "step": 11511 + }, + { + "epoch": 1.1816502463054186, + "grad_norm": 0.1859566867351532, + "learning_rate": 0.01, + "loss": 2.1206, + "step": 11514 + }, + { + "epoch": 1.1819581280788176, + "grad_norm": 0.13449640572071075, + "learning_rate": 0.01, + "loss": 2.1047, + "step": 11517 + }, + { + "epoch": 1.1822660098522166, + "grad_norm": 0.09624927490949631, + "learning_rate": 0.01, + "loss": 2.1338, + "step": 11520 + }, + { + "epoch": 1.1825738916256157, + "grad_norm": 0.04823729023337364, + "learning_rate": 0.01, + "loss": 2.1485, + "step": 11523 + }, + { + "epoch": 1.1828817733990147, + "grad_norm": 0.04005538672208786, + "learning_rate": 0.01, + "loss": 2.1062, + "step": 11526 + }, + { + "epoch": 1.1831896551724137, + "grad_norm": 0.035647980868816376, + "learning_rate": 0.01, + "loss": 2.1002, + "step": 11529 + }, + { + "epoch": 1.1834975369458127, + "grad_norm": 0.03485687077045441, + "learning_rate": 0.01, + "loss": 2.085, + "step": 11532 + }, + { + "epoch": 1.1838054187192117, + "grad_norm": 0.03271855041384697, + "learning_rate": 0.01, + "loss": 2.1083, + "step": 11535 + }, + { + "epoch": 1.1841133004926108, + "grad_norm": 0.14434824883937836, + "learning_rate": 0.01, + "loss": 2.0917, + "step": 11538 + }, + { + "epoch": 1.1844211822660098, + "grad_norm": 0.16373054683208466, + "learning_rate": 0.01, + "loss": 2.0889, + "step": 11541 + }, + { + "epoch": 1.1847290640394088, + "grad_norm": 0.1128426045179367, + "learning_rate": 0.01, + "loss": 2.0605, + "step": 11544 + }, + { + "epoch": 1.1850369458128078, + "grad_norm": 0.03807492554187775, + "learning_rate": 0.01, + "loss": 2.0792, + "step": 11547 + }, + { + "epoch": 1.1853448275862069, + "grad_norm": 0.0678490698337555, + "learning_rate": 0.01, + "loss": 2.072, + "step": 11550 + }, + { + "epoch": 1.1856527093596059, + "grad_norm": 0.04688851907849312, + "learning_rate": 0.01, + "loss": 2.0648, + "step": 11553 + }, + { + "epoch": 1.185960591133005, + "grad_norm": 0.03682132810354233, + "learning_rate": 0.01, + "loss": 2.096, + "step": 11556 + }, + { + "epoch": 1.186268472906404, + "grad_norm": 0.0797944962978363, + "learning_rate": 0.01, + "loss": 2.0632, + "step": 11559 + }, + { + "epoch": 1.186576354679803, + "grad_norm": 0.09593506157398224, + "learning_rate": 0.01, + "loss": 2.0923, + "step": 11562 + }, + { + "epoch": 1.186884236453202, + "grad_norm": 0.10455387830734253, + "learning_rate": 0.01, + "loss": 2.0927, + "step": 11565 + }, + { + "epoch": 1.187192118226601, + "grad_norm": 0.05642642080783844, + "learning_rate": 0.01, + "loss": 2.0688, + "step": 11568 + }, + { + "epoch": 1.1875, + "grad_norm": 0.09467128664255142, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 11571 + }, + { + "epoch": 1.187807881773399, + "grad_norm": 0.061598166823387146, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 11574 + }, + { + "epoch": 1.188115763546798, + "grad_norm": 0.0875246673822403, + "learning_rate": 0.01, + "loss": 2.0753, + "step": 11577 + }, + { + "epoch": 1.188423645320197, + "grad_norm": 0.05889583006501198, + "learning_rate": 0.01, + "loss": 2.0705, + "step": 11580 + }, + { + "epoch": 1.188731527093596, + "grad_norm": 0.0796559602022171, + "learning_rate": 0.01, + "loss": 2.0939, + "step": 11583 + }, + { + "epoch": 1.189039408866995, + "grad_norm": 0.04127117991447449, + "learning_rate": 0.01, + "loss": 2.0905, + "step": 11586 + }, + { + "epoch": 1.1893472906403941, + "grad_norm": 0.06161842495203018, + "learning_rate": 0.01, + "loss": 2.0954, + "step": 11589 + }, + { + "epoch": 1.1896551724137931, + "grad_norm": 0.05344879627227783, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 11592 + }, + { + "epoch": 1.1899630541871922, + "grad_norm": 0.03660701587796211, + "learning_rate": 0.01, + "loss": 2.0748, + "step": 11595 + }, + { + "epoch": 1.1902709359605912, + "grad_norm": 0.04792351648211479, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 11598 + }, + { + "epoch": 1.1905788177339902, + "grad_norm": 0.04336618259549141, + "learning_rate": 0.01, + "loss": 2.1017, + "step": 11601 + }, + { + "epoch": 1.1908866995073892, + "grad_norm": 0.0654226765036583, + "learning_rate": 0.01, + "loss": 2.0922, + "step": 11604 + }, + { + "epoch": 1.1911945812807883, + "grad_norm": 0.08879897743463516, + "learning_rate": 0.01, + "loss": 2.0842, + "step": 11607 + }, + { + "epoch": 1.1915024630541873, + "grad_norm": 0.15568268299102783, + "learning_rate": 0.01, + "loss": 2.0947, + "step": 11610 + }, + { + "epoch": 1.1918103448275863, + "grad_norm": 0.11712448298931122, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 11613 + }, + { + "epoch": 1.1921182266009853, + "grad_norm": 0.04966702312231064, + "learning_rate": 0.01, + "loss": 2.1093, + "step": 11616 + }, + { + "epoch": 1.1924261083743843, + "grad_norm": 0.04304838925600052, + "learning_rate": 0.01, + "loss": 2.0828, + "step": 11619 + }, + { + "epoch": 1.1927339901477834, + "grad_norm": 0.04981999844312668, + "learning_rate": 0.01, + "loss": 2.0964, + "step": 11622 + }, + { + "epoch": 1.1930418719211824, + "grad_norm": 0.045383159071207047, + "learning_rate": 0.01, + "loss": 2.0967, + "step": 11625 + }, + { + "epoch": 1.1933497536945814, + "grad_norm": 0.0348484069108963, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 11628 + }, + { + "epoch": 1.1936576354679802, + "grad_norm": 0.04802081733942032, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 11631 + }, + { + "epoch": 1.1939655172413792, + "grad_norm": 0.0615711510181427, + "learning_rate": 0.01, + "loss": 2.1153, + "step": 11634 + }, + { + "epoch": 1.1942733990147782, + "grad_norm": 0.15608100593090057, + "learning_rate": 0.01, + "loss": 2.0753, + "step": 11637 + }, + { + "epoch": 1.1945812807881773, + "grad_norm": 0.10449741780757904, + "learning_rate": 0.01, + "loss": 2.1083, + "step": 11640 + }, + { + "epoch": 1.1948891625615763, + "grad_norm": 0.062145963311195374, + "learning_rate": 0.01, + "loss": 2.1104, + "step": 11643 + }, + { + "epoch": 1.1951970443349753, + "grad_norm": 0.04744469001889229, + "learning_rate": 0.01, + "loss": 2.0742, + "step": 11646 + }, + { + "epoch": 1.1955049261083743, + "grad_norm": 0.036814477294683456, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 11649 + }, + { + "epoch": 1.1958128078817734, + "grad_norm": 0.037870246917009354, + "learning_rate": 0.01, + "loss": 2.0906, + "step": 11652 + }, + { + "epoch": 1.1961206896551724, + "grad_norm": 0.17372412979602814, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 11655 + }, + { + "epoch": 1.1964285714285714, + "grad_norm": 0.04681265726685524, + "learning_rate": 0.01, + "loss": 2.1029, + "step": 11658 + }, + { + "epoch": 1.1967364532019704, + "grad_norm": 0.058284103870391846, + "learning_rate": 0.01, + "loss": 2.0829, + "step": 11661 + }, + { + "epoch": 1.1970443349753694, + "grad_norm": 0.07531574368476868, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 11664 + }, + { + "epoch": 1.1973522167487685, + "grad_norm": 0.053437430411577225, + "learning_rate": 0.01, + "loss": 2.0726, + "step": 11667 + }, + { + "epoch": 1.1976600985221675, + "grad_norm": 0.047438427805900574, + "learning_rate": 0.01, + "loss": 2.107, + "step": 11670 + }, + { + "epoch": 1.1979679802955665, + "grad_norm": 0.04474404826760292, + "learning_rate": 0.01, + "loss": 2.08, + "step": 11673 + }, + { + "epoch": 1.1982758620689655, + "grad_norm": 0.15452256798744202, + "learning_rate": 0.01, + "loss": 2.0788, + "step": 11676 + }, + { + "epoch": 1.1985837438423645, + "grad_norm": 0.05446213111281395, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 11679 + }, + { + "epoch": 1.1988916256157636, + "grad_norm": 0.059178926050662994, + "learning_rate": 0.01, + "loss": 2.0867, + "step": 11682 + }, + { + "epoch": 1.1991995073891626, + "grad_norm": 0.05807918682694435, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 11685 + }, + { + "epoch": 1.1995073891625616, + "grad_norm": 0.046843890100717545, + "learning_rate": 0.01, + "loss": 2.0729, + "step": 11688 + }, + { + "epoch": 1.1998152709359606, + "grad_norm": 0.042494870722293854, + "learning_rate": 0.01, + "loss": 2.079, + "step": 11691 + }, + { + "epoch": 1.2001231527093597, + "grad_norm": 0.04506772756576538, + "learning_rate": 0.01, + "loss": 2.0862, + "step": 11694 + }, + { + "epoch": 1.2004310344827587, + "grad_norm": 0.04237942770123482, + "learning_rate": 0.01, + "loss": 2.0712, + "step": 11697 + }, + { + "epoch": 1.2007389162561577, + "grad_norm": 0.03488307446241379, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 11700 + }, + { + "epoch": 1.2010467980295567, + "grad_norm": 0.03693482652306557, + "learning_rate": 0.01, + "loss": 2.045, + "step": 11703 + }, + { + "epoch": 1.2013546798029557, + "grad_norm": 0.10410935431718826, + "learning_rate": 0.01, + "loss": 2.0884, + "step": 11706 + }, + { + "epoch": 1.2016625615763548, + "grad_norm": 0.11816459894180298, + "learning_rate": 0.01, + "loss": 2.0687, + "step": 11709 + }, + { + "epoch": 1.2019704433497538, + "grad_norm": 0.06567800790071487, + "learning_rate": 0.01, + "loss": 2.063, + "step": 11712 + }, + { + "epoch": 1.2022783251231528, + "grad_norm": 0.06639432907104492, + "learning_rate": 0.01, + "loss": 2.078, + "step": 11715 + }, + { + "epoch": 1.2025862068965516, + "grad_norm": 0.05059380456805229, + "learning_rate": 0.01, + "loss": 2.1163, + "step": 11718 + }, + { + "epoch": 1.2028940886699506, + "grad_norm": 0.04076917842030525, + "learning_rate": 0.01, + "loss": 2.0784, + "step": 11721 + }, + { + "epoch": 1.2032019704433496, + "grad_norm": 0.05994633212685585, + "learning_rate": 0.01, + "loss": 2.0819, + "step": 11724 + }, + { + "epoch": 1.2035098522167487, + "grad_norm": 0.05682201310992241, + "learning_rate": 0.01, + "loss": 2.0625, + "step": 11727 + }, + { + "epoch": 1.2038177339901477, + "grad_norm": 0.05393010750412941, + "learning_rate": 0.01, + "loss": 2.072, + "step": 11730 + }, + { + "epoch": 1.2041256157635467, + "grad_norm": 0.04697128012776375, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 11733 + }, + { + "epoch": 1.2044334975369457, + "grad_norm": 0.04945002868771553, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 11736 + }, + { + "epoch": 1.2047413793103448, + "grad_norm": 0.06519649177789688, + "learning_rate": 0.01, + "loss": 2.0873, + "step": 11739 + }, + { + "epoch": 1.2050492610837438, + "grad_norm": 0.1188720241189003, + "learning_rate": 0.01, + "loss": 2.0967, + "step": 11742 + }, + { + "epoch": 1.2053571428571428, + "grad_norm": 0.1045864149928093, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 11745 + }, + { + "epoch": 1.2056650246305418, + "grad_norm": 0.04561993479728699, + "learning_rate": 0.01, + "loss": 2.0872, + "step": 11748 + }, + { + "epoch": 1.2059729064039408, + "grad_norm": 0.04972228407859802, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 11751 + }, + { + "epoch": 1.2062807881773399, + "grad_norm": 0.05342618376016617, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 11754 + }, + { + "epoch": 1.2065886699507389, + "grad_norm": 0.05637587606906891, + "learning_rate": 0.01, + "loss": 2.0836, + "step": 11757 + }, + { + "epoch": 1.206896551724138, + "grad_norm": 0.11595457047224045, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 11760 + }, + { + "epoch": 1.207204433497537, + "grad_norm": 0.11803465336561203, + "learning_rate": 0.01, + "loss": 2.0741, + "step": 11763 + }, + { + "epoch": 1.207512315270936, + "grad_norm": 0.045427508652210236, + "learning_rate": 0.01, + "loss": 2.0721, + "step": 11766 + }, + { + "epoch": 1.207820197044335, + "grad_norm": 0.0365883894264698, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 11769 + }, + { + "epoch": 1.208128078817734, + "grad_norm": 0.03729262575507164, + "learning_rate": 0.01, + "loss": 2.087, + "step": 11772 + }, + { + "epoch": 1.208435960591133, + "grad_norm": 0.05842882767319679, + "learning_rate": 0.01, + "loss": 2.0762, + "step": 11775 + }, + { + "epoch": 1.208743842364532, + "grad_norm": 0.07687997072935104, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 11778 + }, + { + "epoch": 1.209051724137931, + "grad_norm": 0.06832735985517502, + "learning_rate": 0.01, + "loss": 2.0974, + "step": 11781 + }, + { + "epoch": 1.20935960591133, + "grad_norm": 0.10200455039739609, + "learning_rate": 0.01, + "loss": 2.0866, + "step": 11784 + }, + { + "epoch": 1.209667487684729, + "grad_norm": 0.10769661515951157, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 11787 + }, + { + "epoch": 1.2099753694581281, + "grad_norm": 0.12233126908540726, + "learning_rate": 0.01, + "loss": 2.0911, + "step": 11790 + }, + { + "epoch": 1.2102832512315271, + "grad_norm": 0.046646762639284134, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 11793 + }, + { + "epoch": 1.2105911330049262, + "grad_norm": 0.030627859756350517, + "learning_rate": 0.01, + "loss": 2.0805, + "step": 11796 + }, + { + "epoch": 1.2108990147783252, + "grad_norm": 0.03977693244814873, + "learning_rate": 0.01, + "loss": 2.0465, + "step": 11799 + }, + { + "epoch": 1.2112068965517242, + "grad_norm": 0.06213162839412689, + "learning_rate": 0.01, + "loss": 2.1123, + "step": 11802 + }, + { + "epoch": 1.2115147783251232, + "grad_norm": 0.04708317294716835, + "learning_rate": 0.01, + "loss": 2.1315, + "step": 11805 + }, + { + "epoch": 1.2118226600985222, + "grad_norm": 0.10807790607213974, + "learning_rate": 0.01, + "loss": 2.0825, + "step": 11808 + }, + { + "epoch": 1.2121305418719213, + "grad_norm": 0.08579280972480774, + "learning_rate": 0.01, + "loss": 2.1366, + "step": 11811 + }, + { + "epoch": 1.2124384236453203, + "grad_norm": 0.05783751606941223, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 11814 + }, + { + "epoch": 1.2127463054187193, + "grad_norm": 0.04836808145046234, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 11817 + }, + { + "epoch": 1.2130541871921183, + "grad_norm": 0.04026191681623459, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 11820 + }, + { + "epoch": 1.2133620689655173, + "grad_norm": 0.03309273347258568, + "learning_rate": 0.01, + "loss": 2.08, + "step": 11823 + }, + { + "epoch": 1.2136699507389164, + "grad_norm": 0.10611164569854736, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 11826 + }, + { + "epoch": 1.2139778325123154, + "grad_norm": 0.0817422866821289, + "learning_rate": 0.01, + "loss": 2.069, + "step": 11829 + }, + { + "epoch": 1.2142857142857142, + "grad_norm": 0.05528125911951065, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 11832 + }, + { + "epoch": 1.2145935960591132, + "grad_norm": 0.05016999691724777, + "learning_rate": 0.01, + "loss": 2.0794, + "step": 11835 + }, + { + "epoch": 1.2149014778325122, + "grad_norm": 0.06376414746046066, + "learning_rate": 0.01, + "loss": 2.1097, + "step": 11838 + }, + { + "epoch": 1.2152093596059113, + "grad_norm": 0.06668904423713684, + "learning_rate": 0.01, + "loss": 2.0745, + "step": 11841 + }, + { + "epoch": 1.2155172413793103, + "grad_norm": 0.046260587871074677, + "learning_rate": 0.01, + "loss": 2.0711, + "step": 11844 + }, + { + "epoch": 1.2158251231527093, + "grad_norm": 0.039374321699142456, + "learning_rate": 0.01, + "loss": 2.087, + "step": 11847 + }, + { + "epoch": 1.2161330049261083, + "grad_norm": 0.10993562638759613, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 11850 + }, + { + "epoch": 1.2164408866995073, + "grad_norm": 0.03676668182015419, + "learning_rate": 0.01, + "loss": 2.0717, + "step": 11853 + }, + { + "epoch": 1.2167487684729064, + "grad_norm": 0.10777715593576431, + "learning_rate": 0.01, + "loss": 2.1016, + "step": 11856 + }, + { + "epoch": 1.2170566502463054, + "grad_norm": 0.07948705554008484, + "learning_rate": 0.01, + "loss": 2.083, + "step": 11859 + }, + { + "epoch": 1.2173645320197044, + "grad_norm": 0.11646637320518494, + "learning_rate": 0.01, + "loss": 2.0552, + "step": 11862 + }, + { + "epoch": 1.2176724137931034, + "grad_norm": 0.07525186985731125, + "learning_rate": 0.01, + "loss": 2.0877, + "step": 11865 + }, + { + "epoch": 1.2179802955665024, + "grad_norm": 0.048124101012945175, + "learning_rate": 0.01, + "loss": 2.0652, + "step": 11868 + }, + { + "epoch": 1.2182881773399015, + "grad_norm": 0.04603361710906029, + "learning_rate": 0.01, + "loss": 2.0922, + "step": 11871 + }, + { + "epoch": 1.2185960591133005, + "grad_norm": 0.07067687064409256, + "learning_rate": 0.01, + "loss": 2.0946, + "step": 11874 + }, + { + "epoch": 1.2189039408866995, + "grad_norm": 0.0959327220916748, + "learning_rate": 0.01, + "loss": 2.096, + "step": 11877 + }, + { + "epoch": 1.2192118226600985, + "grad_norm": 0.08565320819616318, + "learning_rate": 0.01, + "loss": 2.09, + "step": 11880 + }, + { + "epoch": 1.2195197044334976, + "grad_norm": 0.06728377193212509, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 11883 + }, + { + "epoch": 1.2198275862068966, + "grad_norm": 0.03809618949890137, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 11886 + }, + { + "epoch": 1.2201354679802956, + "grad_norm": 0.049925826489925385, + "learning_rate": 0.01, + "loss": 2.0625, + "step": 11889 + }, + { + "epoch": 1.2204433497536946, + "grad_norm": 0.05949478596448898, + "learning_rate": 0.01, + "loss": 2.0687, + "step": 11892 + }, + { + "epoch": 1.2207512315270936, + "grad_norm": 0.08161807060241699, + "learning_rate": 0.01, + "loss": 2.0789, + "step": 11895 + }, + { + "epoch": 1.2210591133004927, + "grad_norm": 0.05829952284693718, + "learning_rate": 0.01, + "loss": 2.0846, + "step": 11898 + }, + { + "epoch": 1.2213669950738917, + "grad_norm": 0.05801619216799736, + "learning_rate": 0.01, + "loss": 2.1014, + "step": 11901 + }, + { + "epoch": 1.2216748768472907, + "grad_norm": 0.04123099148273468, + "learning_rate": 0.01, + "loss": 2.0867, + "step": 11904 + }, + { + "epoch": 1.2219827586206897, + "grad_norm": 0.05088057741522789, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 11907 + }, + { + "epoch": 1.2222906403940887, + "grad_norm": 0.07357197254896164, + "learning_rate": 0.01, + "loss": 2.1023, + "step": 11910 + }, + { + "epoch": 1.2225985221674878, + "grad_norm": 0.060078103095293045, + "learning_rate": 0.01, + "loss": 2.0784, + "step": 11913 + }, + { + "epoch": 1.2229064039408868, + "grad_norm": 0.12629617750644684, + "learning_rate": 0.01, + "loss": 2.0767, + "step": 11916 + }, + { + "epoch": 1.2232142857142858, + "grad_norm": 0.07202067971229553, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 11919 + }, + { + "epoch": 1.2235221674876846, + "grad_norm": 0.06407934427261353, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 11922 + }, + { + "epoch": 1.2238300492610836, + "grad_norm": 0.053789231926202774, + "learning_rate": 0.01, + "loss": 2.092, + "step": 11925 + }, + { + "epoch": 1.2241379310344827, + "grad_norm": 0.04130502790212631, + "learning_rate": 0.01, + "loss": 2.051, + "step": 11928 + }, + { + "epoch": 1.2244458128078817, + "grad_norm": 0.05235166475176811, + "learning_rate": 0.01, + "loss": 2.0829, + "step": 11931 + }, + { + "epoch": 1.2247536945812807, + "grad_norm": 0.04508119449019432, + "learning_rate": 0.01, + "loss": 2.0857, + "step": 11934 + }, + { + "epoch": 1.2250615763546797, + "grad_norm": 0.03570512309670448, + "learning_rate": 0.01, + "loss": 2.0734, + "step": 11937 + }, + { + "epoch": 1.2253694581280787, + "grad_norm": 0.04690218344330788, + "learning_rate": 0.01, + "loss": 2.0988, + "step": 11940 + }, + { + "epoch": 1.2256773399014778, + "grad_norm": 0.10231764614582062, + "learning_rate": 0.01, + "loss": 2.0716, + "step": 11943 + }, + { + "epoch": 1.2259852216748768, + "grad_norm": 0.05221893638372421, + "learning_rate": 0.01, + "loss": 2.0693, + "step": 11946 + }, + { + "epoch": 1.2262931034482758, + "grad_norm": 0.0647406056523323, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 11949 + }, + { + "epoch": 1.2266009852216748, + "grad_norm": 0.06388009339570999, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 11952 + }, + { + "epoch": 1.2269088669950738, + "grad_norm": 0.06904192268848419, + "learning_rate": 0.01, + "loss": 2.0917, + "step": 11955 + }, + { + "epoch": 1.2272167487684729, + "grad_norm": 0.08780385553836823, + "learning_rate": 0.01, + "loss": 2.0881, + "step": 11958 + }, + { + "epoch": 1.2275246305418719, + "grad_norm": 0.037958092987537384, + "learning_rate": 0.01, + "loss": 2.0813, + "step": 11961 + }, + { + "epoch": 1.227832512315271, + "grad_norm": 0.04035305231809616, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 11964 + }, + { + "epoch": 1.22814039408867, + "grad_norm": 0.056451354175806046, + "learning_rate": 0.01, + "loss": 2.0653, + "step": 11967 + }, + { + "epoch": 1.228448275862069, + "grad_norm": 0.06248374283313751, + "learning_rate": 0.01, + "loss": 2.0794, + "step": 11970 + }, + { + "epoch": 1.228756157635468, + "grad_norm": 0.05662978067994118, + "learning_rate": 0.01, + "loss": 2.0873, + "step": 11973 + }, + { + "epoch": 1.229064039408867, + "grad_norm": 0.06416438519954681, + "learning_rate": 0.01, + "loss": 2.0933, + "step": 11976 + }, + { + "epoch": 1.229371921182266, + "grad_norm": 0.04529969021677971, + "learning_rate": 0.01, + "loss": 2.0892, + "step": 11979 + }, + { + "epoch": 1.229679802955665, + "grad_norm": 0.03636370226740837, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 11982 + }, + { + "epoch": 1.229987684729064, + "grad_norm": 0.03992651402950287, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 11985 + }, + { + "epoch": 1.230295566502463, + "grad_norm": 0.19436125457286835, + "learning_rate": 0.01, + "loss": 2.0779, + "step": 11988 + }, + { + "epoch": 1.230603448275862, + "grad_norm": 0.15459048748016357, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 11991 + }, + { + "epoch": 1.2309113300492611, + "grad_norm": 0.11131371557712555, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 11994 + }, + { + "epoch": 1.2312192118226601, + "grad_norm": 0.06876586377620697, + "learning_rate": 0.01, + "loss": 2.1081, + "step": 11997 + }, + { + "epoch": 1.2315270935960592, + "grad_norm": 0.03379599004983902, + "learning_rate": 0.01, + "loss": 2.0977, + "step": 12000 + }, + { + "epoch": 1.2318349753694582, + "grad_norm": 0.06905510276556015, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 12003 + }, + { + "epoch": 1.2321428571428572, + "grad_norm": 0.05859539657831192, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 12006 + }, + { + "epoch": 1.2324507389162562, + "grad_norm": 0.1200842559337616, + "learning_rate": 0.01, + "loss": 2.1045, + "step": 12009 + }, + { + "epoch": 1.2327586206896552, + "grad_norm": 0.09969060868024826, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 12012 + }, + { + "epoch": 1.2330665024630543, + "grad_norm": 0.08915867656469345, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 12015 + }, + { + "epoch": 1.2333743842364533, + "grad_norm": 0.10951671004295349, + "learning_rate": 0.01, + "loss": 2.1007, + "step": 12018 + }, + { + "epoch": 1.2336822660098523, + "grad_norm": 0.15262556076049805, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 12021 + }, + { + "epoch": 1.2339901477832513, + "grad_norm": 0.05622226372361183, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 12024 + }, + { + "epoch": 1.2342980295566504, + "grad_norm": 0.05918841436505318, + "learning_rate": 0.01, + "loss": 2.0911, + "step": 12027 + }, + { + "epoch": 1.2346059113300494, + "grad_norm": 0.04867622256278992, + "learning_rate": 0.01, + "loss": 2.0872, + "step": 12030 + }, + { + "epoch": 1.2349137931034484, + "grad_norm": 0.04389597848057747, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 12033 + }, + { + "epoch": 1.2352216748768472, + "grad_norm": 0.1209108904004097, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 12036 + }, + { + "epoch": 1.2355295566502462, + "grad_norm": 0.08446931838989258, + "learning_rate": 0.01, + "loss": 2.0744, + "step": 12039 + }, + { + "epoch": 1.2358374384236452, + "grad_norm": 0.07141686230897903, + "learning_rate": 0.01, + "loss": 2.1099, + "step": 12042 + }, + { + "epoch": 1.2361453201970443, + "grad_norm": 0.1216801181435585, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 12045 + }, + { + "epoch": 1.2364532019704433, + "grad_norm": 0.10539086163043976, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 12048 + }, + { + "epoch": 1.2367610837438423, + "grad_norm": 0.09336747229099274, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 12051 + }, + { + "epoch": 1.2370689655172413, + "grad_norm": 0.091059610247612, + "learning_rate": 0.01, + "loss": 2.057, + "step": 12054 + }, + { + "epoch": 1.2373768472906403, + "grad_norm": 0.08291159570217133, + "learning_rate": 0.01, + "loss": 2.1039, + "step": 12057 + }, + { + "epoch": 1.2376847290640394, + "grad_norm": 0.07626821845769882, + "learning_rate": 0.01, + "loss": 2.0784, + "step": 12060 + }, + { + "epoch": 1.2379926108374384, + "grad_norm": 0.05197496339678764, + "learning_rate": 0.01, + "loss": 2.0968, + "step": 12063 + }, + { + "epoch": 1.2383004926108374, + "grad_norm": 0.061275266110897064, + "learning_rate": 0.01, + "loss": 2.095, + "step": 12066 + }, + { + "epoch": 1.2386083743842364, + "grad_norm": 0.04282483085989952, + "learning_rate": 0.01, + "loss": 2.083, + "step": 12069 + }, + { + "epoch": 1.2389162561576355, + "grad_norm": 0.037066422402858734, + "learning_rate": 0.01, + "loss": 2.0653, + "step": 12072 + }, + { + "epoch": 1.2392241379310345, + "grad_norm": 0.0467105396091938, + "learning_rate": 0.01, + "loss": 2.0913, + "step": 12075 + }, + { + "epoch": 1.2395320197044335, + "grad_norm": 0.053995974361896515, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 12078 + }, + { + "epoch": 1.2398399014778325, + "grad_norm": 0.08583737164735794, + "learning_rate": 0.01, + "loss": 2.089, + "step": 12081 + }, + { + "epoch": 1.2401477832512315, + "grad_norm": 0.07264076173305511, + "learning_rate": 0.01, + "loss": 2.07, + "step": 12084 + }, + { + "epoch": 1.2404556650246306, + "grad_norm": 0.062001802027225494, + "learning_rate": 0.01, + "loss": 2.0969, + "step": 12087 + }, + { + "epoch": 1.2407635467980296, + "grad_norm": 0.05311381444334984, + "learning_rate": 0.01, + "loss": 2.0833, + "step": 12090 + }, + { + "epoch": 1.2410714285714286, + "grad_norm": 0.04272656887769699, + "learning_rate": 0.01, + "loss": 2.0883, + "step": 12093 + }, + { + "epoch": 1.2413793103448276, + "grad_norm": 0.10696172714233398, + "learning_rate": 0.01, + "loss": 2.0925, + "step": 12096 + }, + { + "epoch": 1.2416871921182266, + "grad_norm": 0.08625493943691254, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 12099 + }, + { + "epoch": 1.2419950738916257, + "grad_norm": 0.06818173080682755, + "learning_rate": 0.01, + "loss": 2.0943, + "step": 12102 + }, + { + "epoch": 1.2423029556650247, + "grad_norm": 0.050731681287288666, + "learning_rate": 0.01, + "loss": 2.0802, + "step": 12105 + }, + { + "epoch": 1.2426108374384237, + "grad_norm": 0.08426883816719055, + "learning_rate": 0.01, + "loss": 2.0825, + "step": 12108 + }, + { + "epoch": 1.2429187192118227, + "grad_norm": 0.09432832151651382, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 12111 + }, + { + "epoch": 1.2432266009852218, + "grad_norm": 0.06951441615819931, + "learning_rate": 0.01, + "loss": 2.0951, + "step": 12114 + }, + { + "epoch": 1.2435344827586208, + "grad_norm": 0.06427393108606339, + "learning_rate": 0.01, + "loss": 2.0706, + "step": 12117 + }, + { + "epoch": 1.2438423645320198, + "grad_norm": 0.03967609629034996, + "learning_rate": 0.01, + "loss": 2.0897, + "step": 12120 + }, + { + "epoch": 1.2441502463054186, + "grad_norm": 0.036665160208940506, + "learning_rate": 0.01, + "loss": 2.0791, + "step": 12123 + }, + { + "epoch": 1.2444581280788176, + "grad_norm": 0.072290800511837, + "learning_rate": 0.01, + "loss": 2.0889, + "step": 12126 + }, + { + "epoch": 1.2447660098522166, + "grad_norm": 0.07136868685483932, + "learning_rate": 0.01, + "loss": 2.0688, + "step": 12129 + }, + { + "epoch": 1.2450738916256157, + "grad_norm": 0.15400493144989014, + "learning_rate": 0.01, + "loss": 2.0821, + "step": 12132 + }, + { + "epoch": 1.2453817733990147, + "grad_norm": 0.07114578038454056, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 12135 + }, + { + "epoch": 1.2456896551724137, + "grad_norm": 0.043961767107248306, + "learning_rate": 0.01, + "loss": 2.0877, + "step": 12138 + }, + { + "epoch": 1.2459975369458127, + "grad_norm": 0.056267060339450836, + "learning_rate": 0.01, + "loss": 2.0688, + "step": 12141 + }, + { + "epoch": 1.2463054187192117, + "grad_norm": 0.035889722406864166, + "learning_rate": 0.01, + "loss": 2.0783, + "step": 12144 + }, + { + "epoch": 1.2466133004926108, + "grad_norm": 0.1781640499830246, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 12147 + }, + { + "epoch": 1.2469211822660098, + "grad_norm": 0.0891503393650055, + "learning_rate": 0.01, + "loss": 2.0957, + "step": 12150 + }, + { + "epoch": 1.2472290640394088, + "grad_norm": 0.047431472688913345, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 12153 + }, + { + "epoch": 1.2475369458128078, + "grad_norm": 0.04693286865949631, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 12156 + }, + { + "epoch": 1.2478448275862069, + "grad_norm": 0.0382777564227581, + "learning_rate": 0.01, + "loss": 2.0851, + "step": 12159 + }, + { + "epoch": 1.2481527093596059, + "grad_norm": 0.04085429012775421, + "learning_rate": 0.01, + "loss": 2.0846, + "step": 12162 + }, + { + "epoch": 1.248460591133005, + "grad_norm": 0.05329781025648117, + "learning_rate": 0.01, + "loss": 2.0732, + "step": 12165 + }, + { + "epoch": 1.248768472906404, + "grad_norm": 0.06961992383003235, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 12168 + }, + { + "epoch": 1.249076354679803, + "grad_norm": 0.05290938913822174, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 12171 + }, + { + "epoch": 1.249384236453202, + "grad_norm": 0.1247674971818924, + "learning_rate": 0.01, + "loss": 2.0679, + "step": 12174 + }, + { + "epoch": 1.249692118226601, + "grad_norm": 0.04983863607048988, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 12177 + }, + { + "epoch": 1.25, + "grad_norm": 0.08552074432373047, + "learning_rate": 0.01, + "loss": 2.1084, + "step": 12180 + }, + { + "epoch": 1.250307881773399, + "grad_norm": 0.1376069337129593, + "learning_rate": 0.01, + "loss": 2.0997, + "step": 12183 + }, + { + "epoch": 1.250615763546798, + "grad_norm": 0.07097752392292023, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 12186 + }, + { + "epoch": 1.250923645320197, + "grad_norm": 0.03953644260764122, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 12189 + }, + { + "epoch": 1.251231527093596, + "grad_norm": 0.04611526057124138, + "learning_rate": 0.01, + "loss": 2.0717, + "step": 12192 + }, + { + "epoch": 1.251539408866995, + "grad_norm": 0.07573895156383514, + "learning_rate": 0.01, + "loss": 2.0785, + "step": 12195 + }, + { + "epoch": 1.2518472906403941, + "grad_norm": 0.07144660502672195, + "learning_rate": 0.01, + "loss": 2.0815, + "step": 12198 + }, + { + "epoch": 1.2521551724137931, + "grad_norm": 0.05297645181417465, + "learning_rate": 0.01, + "loss": 2.093, + "step": 12201 + }, + { + "epoch": 1.2524630541871922, + "grad_norm": 0.044887710362672806, + "learning_rate": 0.01, + "loss": 2.0752, + "step": 12204 + }, + { + "epoch": 1.2527709359605912, + "grad_norm": 0.04305564984679222, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 12207 + }, + { + "epoch": 1.2530788177339902, + "grad_norm": 0.057785287499427795, + "learning_rate": 0.01, + "loss": 2.094, + "step": 12210 + }, + { + "epoch": 1.2533866995073892, + "grad_norm": 0.04404570534825325, + "learning_rate": 0.01, + "loss": 2.1037, + "step": 12213 + }, + { + "epoch": 1.2536945812807883, + "grad_norm": 0.055468104779720306, + "learning_rate": 0.01, + "loss": 2.0851, + "step": 12216 + }, + { + "epoch": 1.2540024630541873, + "grad_norm": 0.17121906578540802, + "learning_rate": 0.01, + "loss": 2.081, + "step": 12219 + }, + { + "epoch": 1.2543103448275863, + "grad_norm": 0.09411416202783585, + "learning_rate": 0.01, + "loss": 2.0974, + "step": 12222 + }, + { + "epoch": 1.2546182266009853, + "grad_norm": 0.07855021953582764, + "learning_rate": 0.01, + "loss": 2.0733, + "step": 12225 + }, + { + "epoch": 1.2549261083743843, + "grad_norm": 0.052616432309150696, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 12228 + }, + { + "epoch": 1.2552339901477834, + "grad_norm": 0.047992121428251266, + "learning_rate": 0.01, + "loss": 2.0918, + "step": 12231 + }, + { + "epoch": 1.2555418719211824, + "grad_norm": 0.04336715489625931, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 12234 + }, + { + "epoch": 1.2558497536945814, + "grad_norm": 0.03128316253423691, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 12237 + }, + { + "epoch": 1.2561576354679804, + "grad_norm": 0.06315557658672333, + "learning_rate": 0.01, + "loss": 2.0918, + "step": 12240 + }, + { + "epoch": 1.2564655172413794, + "grad_norm": 0.0528687946498394, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 12243 + }, + { + "epoch": 1.2567733990147782, + "grad_norm": 0.17166706919670105, + "learning_rate": 0.01, + "loss": 2.068, + "step": 12246 + }, + { + "epoch": 1.2570812807881773, + "grad_norm": 0.11394128203392029, + "learning_rate": 0.01, + "loss": 2.1179, + "step": 12249 + }, + { + "epoch": 1.2573891625615763, + "grad_norm": 0.08554805815219879, + "learning_rate": 0.01, + "loss": 2.0857, + "step": 12252 + }, + { + "epoch": 1.2576970443349753, + "grad_norm": 0.05203767865896225, + "learning_rate": 0.01, + "loss": 2.0975, + "step": 12255 + }, + { + "epoch": 1.2580049261083743, + "grad_norm": 0.06072428077459335, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 12258 + }, + { + "epoch": 1.2583128078817734, + "grad_norm": 0.044136617332696915, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 12261 + }, + { + "epoch": 1.2586206896551724, + "grad_norm": 0.038774993270635605, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 12264 + }, + { + "epoch": 1.2589285714285714, + "grad_norm": 0.03669529780745506, + "learning_rate": 0.01, + "loss": 2.0949, + "step": 12267 + }, + { + "epoch": 1.2592364532019704, + "grad_norm": 0.050722066313028336, + "learning_rate": 0.01, + "loss": 2.0772, + "step": 12270 + }, + { + "epoch": 1.2595443349753694, + "grad_norm": 0.12684300541877747, + "learning_rate": 0.01, + "loss": 2.0814, + "step": 12273 + }, + { + "epoch": 1.2598522167487685, + "grad_norm": 0.07431039214134216, + "learning_rate": 0.01, + "loss": 2.1001, + "step": 12276 + }, + { + "epoch": 1.2601600985221675, + "grad_norm": 0.07050034403800964, + "learning_rate": 0.01, + "loss": 2.0507, + "step": 12279 + }, + { + "epoch": 1.2604679802955665, + "grad_norm": 0.0553620308637619, + "learning_rate": 0.01, + "loss": 2.0757, + "step": 12282 + }, + { + "epoch": 1.2607758620689655, + "grad_norm": 0.10946903377771378, + "learning_rate": 0.01, + "loss": 2.0659, + "step": 12285 + }, + { + "epoch": 1.2610837438423645, + "grad_norm": 0.06346802413463593, + "learning_rate": 0.01, + "loss": 2.0871, + "step": 12288 + }, + { + "epoch": 1.2613916256157636, + "grad_norm": 0.09386668354272842, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 12291 + }, + { + "epoch": 1.2616995073891626, + "grad_norm": 0.05672946944832802, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 12294 + }, + { + "epoch": 1.2620073891625616, + "grad_norm": 0.1079539805650711, + "learning_rate": 0.01, + "loss": 2.0851, + "step": 12297 + }, + { + "epoch": 1.2623152709359606, + "grad_norm": 0.043078985065221786, + "learning_rate": 0.01, + "loss": 2.0846, + "step": 12300 + }, + { + "epoch": 1.2626231527093597, + "grad_norm": 0.043098706752061844, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 12303 + }, + { + "epoch": 1.2629310344827587, + "grad_norm": 0.04908977448940277, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 12306 + }, + { + "epoch": 1.2632389162561577, + "grad_norm": 0.09897246211767197, + "learning_rate": 0.01, + "loss": 2.0899, + "step": 12309 + }, + { + "epoch": 1.2635467980295567, + "grad_norm": 0.0861278846859932, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 12312 + }, + { + "epoch": 1.2638546798029557, + "grad_norm": 0.06973280757665634, + "learning_rate": 0.01, + "loss": 2.0598, + "step": 12315 + }, + { + "epoch": 1.2641625615763548, + "grad_norm": 0.048658501356840134, + "learning_rate": 0.01, + "loss": 2.0838, + "step": 12318 + }, + { + "epoch": 1.2644704433497536, + "grad_norm": 0.05053295940160751, + "learning_rate": 0.01, + "loss": 2.0665, + "step": 12321 + }, + { + "epoch": 1.2647783251231526, + "grad_norm": 0.0536380410194397, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 12324 + }, + { + "epoch": 1.2650862068965516, + "grad_norm": 0.13452892005443573, + "learning_rate": 0.01, + "loss": 2.0928, + "step": 12327 + }, + { + "epoch": 1.2653940886699506, + "grad_norm": 0.056635159999132156, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 12330 + }, + { + "epoch": 1.2657019704433496, + "grad_norm": 0.09460306912660599, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 12333 + }, + { + "epoch": 1.2660098522167487, + "grad_norm": 0.09019794315099716, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 12336 + }, + { + "epoch": 1.2663177339901477, + "grad_norm": 0.04020017758011818, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 12339 + }, + { + "epoch": 1.2666256157635467, + "grad_norm": 0.05063892900943756, + "learning_rate": 0.01, + "loss": 2.0846, + "step": 12342 + }, + { + "epoch": 1.2669334975369457, + "grad_norm": 0.06472054123878479, + "learning_rate": 0.01, + "loss": 2.0884, + "step": 12345 + }, + { + "epoch": 1.2672413793103448, + "grad_norm": 0.0523315854370594, + "learning_rate": 0.01, + "loss": 2.0756, + "step": 12348 + }, + { + "epoch": 1.2675492610837438, + "grad_norm": 0.040240950882434845, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 12351 + }, + { + "epoch": 1.2678571428571428, + "grad_norm": 0.061988551169633865, + "learning_rate": 0.01, + "loss": 2.0899, + "step": 12354 + }, + { + "epoch": 1.2681650246305418, + "grad_norm": 0.03831657022237778, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 12357 + }, + { + "epoch": 1.2684729064039408, + "grad_norm": 0.105617955327034, + "learning_rate": 0.01, + "loss": 2.0553, + "step": 12360 + }, + { + "epoch": 1.2687807881773399, + "grad_norm": 0.09372366219758987, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 12363 + }, + { + "epoch": 1.2690886699507389, + "grad_norm": 0.10305638611316681, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 12366 + }, + { + "epoch": 1.269396551724138, + "grad_norm": 0.07187418639659882, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 12369 + }, + { + "epoch": 1.269704433497537, + "grad_norm": 0.03744306415319443, + "learning_rate": 0.01, + "loss": 2.0771, + "step": 12372 + }, + { + "epoch": 1.270012315270936, + "grad_norm": 0.03059488907456398, + "learning_rate": 0.01, + "loss": 2.067, + "step": 12375 + }, + { + "epoch": 1.270320197044335, + "grad_norm": 0.09767211973667145, + "learning_rate": 0.01, + "loss": 2.0889, + "step": 12378 + }, + { + "epoch": 1.270628078817734, + "grad_norm": 0.05093003436923027, + "learning_rate": 0.01, + "loss": 2.0852, + "step": 12381 + }, + { + "epoch": 1.270935960591133, + "grad_norm": 0.04648155719041824, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 12384 + }, + { + "epoch": 1.271243842364532, + "grad_norm": 0.04745417460799217, + "learning_rate": 0.01, + "loss": 2.0888, + "step": 12387 + }, + { + "epoch": 1.271551724137931, + "grad_norm": 0.05171092227101326, + "learning_rate": 0.01, + "loss": 2.075, + "step": 12390 + }, + { + "epoch": 1.27185960591133, + "grad_norm": 0.05051850154995918, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 12393 + }, + { + "epoch": 1.272167487684729, + "grad_norm": 0.06048591807484627, + "learning_rate": 0.01, + "loss": 2.1025, + "step": 12396 + }, + { + "epoch": 1.2724753694581281, + "grad_norm": 0.09673628211021423, + "learning_rate": 0.01, + "loss": 2.0866, + "step": 12399 + }, + { + "epoch": 1.2727832512315271, + "grad_norm": 0.11826295405626297, + "learning_rate": 0.01, + "loss": 2.0757, + "step": 12402 + }, + { + "epoch": 1.2730911330049262, + "grad_norm": 0.06271769106388092, + "learning_rate": 0.01, + "loss": 2.0797, + "step": 12405 + }, + { + "epoch": 1.2733990147783252, + "grad_norm": 0.0463738851249218, + "learning_rate": 0.01, + "loss": 2.054, + "step": 12408 + }, + { + "epoch": 1.2737068965517242, + "grad_norm": 0.035649579018354416, + "learning_rate": 0.01, + "loss": 2.0747, + "step": 12411 + }, + { + "epoch": 1.2740147783251232, + "grad_norm": 0.08586122840642929, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 12414 + }, + { + "epoch": 1.2743226600985222, + "grad_norm": 0.08538860082626343, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 12417 + }, + { + "epoch": 1.2746305418719213, + "grad_norm": 0.05974709242582321, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 12420 + }, + { + "epoch": 1.2749384236453203, + "grad_norm": 0.057023100554943085, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 12423 + }, + { + "epoch": 1.2752463054187193, + "grad_norm": 0.062105972319841385, + "learning_rate": 0.01, + "loss": 2.0946, + "step": 12426 + }, + { + "epoch": 1.2755541871921183, + "grad_norm": 0.048221688717603683, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 12429 + }, + { + "epoch": 1.2758620689655173, + "grad_norm": 0.04440610110759735, + "learning_rate": 0.01, + "loss": 2.0852, + "step": 12432 + }, + { + "epoch": 1.2761699507389164, + "grad_norm": 0.06074054539203644, + "learning_rate": 0.01, + "loss": 2.0667, + "step": 12435 + }, + { + "epoch": 1.2764778325123154, + "grad_norm": 0.09477720409631729, + "learning_rate": 0.01, + "loss": 2.0815, + "step": 12438 + }, + { + "epoch": 1.2767857142857144, + "grad_norm": 0.08470610529184341, + "learning_rate": 0.01, + "loss": 2.1023, + "step": 12441 + }, + { + "epoch": 1.2770935960591134, + "grad_norm": 0.09079881012439728, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 12444 + }, + { + "epoch": 1.2774014778325122, + "grad_norm": 0.06132930517196655, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 12447 + }, + { + "epoch": 1.2777093596059113, + "grad_norm": 0.04702606052160263, + "learning_rate": 0.01, + "loss": 2.1051, + "step": 12450 + }, + { + "epoch": 1.2780172413793103, + "grad_norm": 0.06621818989515305, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 12453 + }, + { + "epoch": 1.2783251231527093, + "grad_norm": 0.047375794500112534, + "learning_rate": 0.01, + "loss": 2.0982, + "step": 12456 + }, + { + "epoch": 1.2786330049261083, + "grad_norm": 0.03766035661101341, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 12459 + }, + { + "epoch": 1.2789408866995073, + "grad_norm": 0.10769324004650116, + "learning_rate": 0.01, + "loss": 2.0848, + "step": 12462 + }, + { + "epoch": 1.2792487684729064, + "grad_norm": 0.06848851591348648, + "learning_rate": 0.01, + "loss": 2.0664, + "step": 12465 + }, + { + "epoch": 1.2795566502463054, + "grad_norm": 0.09864836931228638, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 12468 + }, + { + "epoch": 1.2798645320197044, + "grad_norm": 0.04042387008666992, + "learning_rate": 0.01, + "loss": 2.0672, + "step": 12471 + }, + { + "epoch": 1.2801724137931034, + "grad_norm": 0.09212526679039001, + "learning_rate": 0.01, + "loss": 2.0789, + "step": 12474 + }, + { + "epoch": 1.2804802955665024, + "grad_norm": 0.08713985234498978, + "learning_rate": 0.01, + "loss": 2.0765, + "step": 12477 + }, + { + "epoch": 1.2807881773399015, + "grad_norm": 0.04133505001664162, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 12480 + }, + { + "epoch": 1.2810960591133005, + "grad_norm": 0.07466418296098709, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 12483 + }, + { + "epoch": 1.2814039408866995, + "grad_norm": 0.08685484528541565, + "learning_rate": 0.01, + "loss": 2.0689, + "step": 12486 + }, + { + "epoch": 1.2817118226600985, + "grad_norm": 0.13300663232803345, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 12489 + }, + { + "epoch": 1.2820197044334976, + "grad_norm": 0.1024186760187149, + "learning_rate": 0.01, + "loss": 2.0763, + "step": 12492 + }, + { + "epoch": 1.2823275862068966, + "grad_norm": 0.05908042937517166, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 12495 + }, + { + "epoch": 1.2826354679802956, + "grad_norm": 0.03715427219867706, + "learning_rate": 0.01, + "loss": 2.0925, + "step": 12498 + }, + { + "epoch": 1.2829433497536946, + "grad_norm": 0.05033004283905029, + "learning_rate": 0.01, + "loss": 2.0875, + "step": 12501 + }, + { + "epoch": 1.2832512315270936, + "grad_norm": 0.04851456359028816, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 12504 + }, + { + "epoch": 1.2835591133004927, + "grad_norm": 0.08153282105922699, + "learning_rate": 0.01, + "loss": 2.0828, + "step": 12507 + }, + { + "epoch": 1.2838669950738917, + "grad_norm": 0.07549238950014114, + "learning_rate": 0.01, + "loss": 2.0681, + "step": 12510 + }, + { + "epoch": 1.2841748768472907, + "grad_norm": 0.08571973443031311, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 12513 + }, + { + "epoch": 1.2844827586206897, + "grad_norm": 0.1036754697561264, + "learning_rate": 0.01, + "loss": 2.0712, + "step": 12516 + }, + { + "epoch": 1.2847906403940887, + "grad_norm": 0.04329349100589752, + "learning_rate": 0.01, + "loss": 2.0711, + "step": 12519 + }, + { + "epoch": 1.2850985221674878, + "grad_norm": 0.03718428686261177, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 12522 + }, + { + "epoch": 1.2854064039408866, + "grad_norm": 0.07977878302335739, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 12525 + }, + { + "epoch": 1.2857142857142856, + "grad_norm": 0.11540202796459198, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 12528 + }, + { + "epoch": 1.2860221674876846, + "grad_norm": 0.07631656527519226, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 12531 + }, + { + "epoch": 1.2863300492610836, + "grad_norm": 0.051738426089286804, + "learning_rate": 0.01, + "loss": 2.0862, + "step": 12534 + }, + { + "epoch": 1.2866379310344827, + "grad_norm": 0.05070396512746811, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 12537 + }, + { + "epoch": 1.2869458128078817, + "grad_norm": 0.039027947932481766, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 12540 + }, + { + "epoch": 1.2872536945812807, + "grad_norm": 0.052646003663539886, + "learning_rate": 0.01, + "loss": 2.0745, + "step": 12543 + }, + { + "epoch": 1.2875615763546797, + "grad_norm": 0.06035429984331131, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 12546 + }, + { + "epoch": 1.2878694581280787, + "grad_norm": 0.0818098783493042, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 12549 + }, + { + "epoch": 1.2881773399014778, + "grad_norm": 0.030897030606865883, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 12552 + }, + { + "epoch": 1.2884852216748768, + "grad_norm": 0.042795561254024506, + "learning_rate": 0.01, + "loss": 2.0673, + "step": 12555 + }, + { + "epoch": 1.2887931034482758, + "grad_norm": 0.11560031026601791, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 12558 + }, + { + "epoch": 1.2891009852216748, + "grad_norm": 0.03919963166117668, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 12561 + }, + { + "epoch": 1.2894088669950738, + "grad_norm": 0.03816407918930054, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 12564 + }, + { + "epoch": 1.2897167487684729, + "grad_norm": 0.04641805216670036, + "learning_rate": 0.01, + "loss": 2.0779, + "step": 12567 + }, + { + "epoch": 1.2900246305418719, + "grad_norm": 0.16832102835178375, + "learning_rate": 0.01, + "loss": 2.0658, + "step": 12570 + }, + { + "epoch": 1.290332512315271, + "grad_norm": 0.06651032716035843, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 12573 + }, + { + "epoch": 1.29064039408867, + "grad_norm": 0.05333925411105156, + "learning_rate": 0.01, + "loss": 2.0842, + "step": 12576 + }, + { + "epoch": 1.290948275862069, + "grad_norm": 0.03173685073852539, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 12579 + }, + { + "epoch": 1.291256157635468, + "grad_norm": 0.0836583599448204, + "learning_rate": 0.01, + "loss": 2.0605, + "step": 12582 + }, + { + "epoch": 1.291564039408867, + "grad_norm": 0.09913724660873413, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 12585 + }, + { + "epoch": 1.291871921182266, + "grad_norm": 0.04268624261021614, + "learning_rate": 0.01, + "loss": 2.1027, + "step": 12588 + }, + { + "epoch": 1.292179802955665, + "grad_norm": 0.03744608163833618, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 12591 + }, + { + "epoch": 1.292487684729064, + "grad_norm": 0.11833969503641129, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 12594 + }, + { + "epoch": 1.292795566502463, + "grad_norm": 0.11814229190349579, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 12597 + }, + { + "epoch": 1.293103448275862, + "grad_norm": 0.04583375155925751, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 12600 + }, + { + "epoch": 1.2934113300492611, + "grad_norm": 0.11559072881937027, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 12603 + }, + { + "epoch": 1.2937192118226601, + "grad_norm": 0.050608474761247635, + "learning_rate": 0.01, + "loss": 2.0879, + "step": 12606 + }, + { + "epoch": 1.2940270935960592, + "grad_norm": 0.04284593090415001, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 12609 + }, + { + "epoch": 1.2943349753694582, + "grad_norm": 0.042168114334344864, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 12612 + }, + { + "epoch": 1.2946428571428572, + "grad_norm": 0.06251826882362366, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 12615 + }, + { + "epoch": 1.2949507389162562, + "grad_norm": 0.11159554868936539, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 12618 + }, + { + "epoch": 1.2952586206896552, + "grad_norm": 0.0715017095208168, + "learning_rate": 0.01, + "loss": 2.0844, + "step": 12621 + }, + { + "epoch": 1.2955665024630543, + "grad_norm": 0.12078917771577835, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 12624 + }, + { + "epoch": 1.2958743842364533, + "grad_norm": 0.11613093316555023, + "learning_rate": 0.01, + "loss": 2.0753, + "step": 12627 + }, + { + "epoch": 1.2961822660098523, + "grad_norm": 0.053543299436569214, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 12630 + }, + { + "epoch": 1.2964901477832513, + "grad_norm": 0.05464399605989456, + "learning_rate": 0.01, + "loss": 2.0845, + "step": 12633 + }, + { + "epoch": 1.2967980295566504, + "grad_norm": 0.0487944521009922, + "learning_rate": 0.01, + "loss": 2.0859, + "step": 12636 + }, + { + "epoch": 1.2971059113300494, + "grad_norm": 0.05266605690121651, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 12639 + }, + { + "epoch": 1.2974137931034484, + "grad_norm": 0.07863074541091919, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 12642 + }, + { + "epoch": 1.2977216748768474, + "grad_norm": 0.05371072143316269, + "learning_rate": 0.01, + "loss": 2.1016, + "step": 12645 + }, + { + "epoch": 1.2980295566502464, + "grad_norm": 0.05592924728989601, + "learning_rate": 0.01, + "loss": 2.0832, + "step": 12648 + }, + { + "epoch": 1.2983374384236452, + "grad_norm": 0.0675397738814354, + "learning_rate": 0.01, + "loss": 2.0784, + "step": 12651 + }, + { + "epoch": 1.2986453201970443, + "grad_norm": 0.04399113729596138, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 12654 + }, + { + "epoch": 1.2989532019704433, + "grad_norm": 0.04609301686286926, + "learning_rate": 0.01, + "loss": 2.0683, + "step": 12657 + }, + { + "epoch": 1.2992610837438423, + "grad_norm": 0.05637912079691887, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 12660 + }, + { + "epoch": 1.2995689655172413, + "grad_norm": 0.1115126758813858, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 12663 + }, + { + "epoch": 1.2998768472906403, + "grad_norm": 0.07762522250413895, + "learning_rate": 0.01, + "loss": 2.0853, + "step": 12666 + }, + { + "epoch": 1.3001847290640394, + "grad_norm": 0.06717406958341599, + "learning_rate": 0.01, + "loss": 2.0881, + "step": 12669 + }, + { + "epoch": 1.3004926108374384, + "grad_norm": 0.0727803036570549, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 12672 + }, + { + "epoch": 1.3008004926108374, + "grad_norm": 0.06588024646043777, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 12675 + }, + { + "epoch": 1.3011083743842364, + "grad_norm": 0.09718842804431915, + "learning_rate": 0.01, + "loss": 2.0793, + "step": 12678 + }, + { + "epoch": 1.3014162561576355, + "grad_norm": 0.05804411321878433, + "learning_rate": 0.01, + "loss": 2.0825, + "step": 12681 + }, + { + "epoch": 1.3017241379310345, + "grad_norm": 0.07549803704023361, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 12684 + }, + { + "epoch": 1.3020320197044335, + "grad_norm": 0.04496621713042259, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 12687 + }, + { + "epoch": 1.3023399014778325, + "grad_norm": 0.1283668428659439, + "learning_rate": 0.01, + "loss": 2.0639, + "step": 12690 + }, + { + "epoch": 1.3026477832512315, + "grad_norm": 0.1276516169309616, + "learning_rate": 0.01, + "loss": 2.062, + "step": 12693 + }, + { + "epoch": 1.3029556650246306, + "grad_norm": 0.12865981459617615, + "learning_rate": 0.01, + "loss": 2.0697, + "step": 12696 + }, + { + "epoch": 1.3032635467980296, + "grad_norm": 0.05869213864207268, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 12699 + }, + { + "epoch": 1.3035714285714286, + "grad_norm": 0.042082637548446655, + "learning_rate": 0.01, + "loss": 2.0847, + "step": 12702 + }, + { + "epoch": 1.3038793103448276, + "grad_norm": 0.11474558711051941, + "learning_rate": 0.01, + "loss": 2.0767, + "step": 12705 + }, + { + "epoch": 1.3041871921182266, + "grad_norm": 0.12426330894231796, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 12708 + }, + { + "epoch": 1.3044950738916257, + "grad_norm": 0.06731969118118286, + "learning_rate": 0.01, + "loss": 2.064, + "step": 12711 + }, + { + "epoch": 1.3048029556650247, + "grad_norm": 0.049505047500133514, + "learning_rate": 0.01, + "loss": 2.0848, + "step": 12714 + }, + { + "epoch": 1.3051108374384237, + "grad_norm": 0.04460617154836655, + "learning_rate": 0.01, + "loss": 2.0958, + "step": 12717 + }, + { + "epoch": 1.3054187192118227, + "grad_norm": 0.05461740121245384, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 12720 + }, + { + "epoch": 1.3057266009852218, + "grad_norm": 0.04074997082352638, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 12723 + }, + { + "epoch": 1.3060344827586206, + "grad_norm": 0.04925557225942612, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 12726 + }, + { + "epoch": 1.3063423645320196, + "grad_norm": 0.06570678949356079, + "learning_rate": 0.01, + "loss": 2.0703, + "step": 12729 + }, + { + "epoch": 1.3066502463054186, + "grad_norm": 0.076143778860569, + "learning_rate": 0.01, + "loss": 2.0639, + "step": 12732 + }, + { + "epoch": 1.3069581280788176, + "grad_norm": 0.06691130995750427, + "learning_rate": 0.01, + "loss": 2.0858, + "step": 12735 + }, + { + "epoch": 1.3072660098522166, + "grad_norm": 0.06733332574367523, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 12738 + }, + { + "epoch": 1.3075738916256157, + "grad_norm": 0.08008868247270584, + "learning_rate": 0.01, + "loss": 2.085, + "step": 12741 + }, + { + "epoch": 1.3078817733990147, + "grad_norm": 0.10713468492031097, + "learning_rate": 0.01, + "loss": 2.0642, + "step": 12744 + }, + { + "epoch": 1.3081896551724137, + "grad_norm": 0.101436547935009, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 12747 + }, + { + "epoch": 1.3084975369458127, + "grad_norm": 0.0552450455725193, + "learning_rate": 0.01, + "loss": 2.0553, + "step": 12750 + }, + { + "epoch": 1.3088054187192117, + "grad_norm": 0.08755996823310852, + "learning_rate": 0.01, + "loss": 2.0564, + "step": 12753 + }, + { + "epoch": 1.3091133004926108, + "grad_norm": 0.03980748727917671, + "learning_rate": 0.01, + "loss": 2.084, + "step": 12756 + }, + { + "epoch": 1.3094211822660098, + "grad_norm": 0.0971774309873581, + "learning_rate": 0.01, + "loss": 2.0858, + "step": 12759 + }, + { + "epoch": 1.3097290640394088, + "grad_norm": 0.05845404043793678, + "learning_rate": 0.01, + "loss": 2.0792, + "step": 12762 + }, + { + "epoch": 1.3100369458128078, + "grad_norm": 0.08498022705316544, + "learning_rate": 0.01, + "loss": 2.0932, + "step": 12765 + }, + { + "epoch": 1.3103448275862069, + "grad_norm": 0.05135398730635643, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 12768 + }, + { + "epoch": 1.3106527093596059, + "grad_norm": 0.048872511833906174, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 12771 + }, + { + "epoch": 1.310960591133005, + "grad_norm": 0.0529983788728714, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 12774 + }, + { + "epoch": 1.311268472906404, + "grad_norm": 0.03580658137798309, + "learning_rate": 0.01, + "loss": 2.0741, + "step": 12777 + }, + { + "epoch": 1.311576354679803, + "grad_norm": 0.03904234617948532, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 12780 + }, + { + "epoch": 1.311884236453202, + "grad_norm": 0.04073551669716835, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 12783 + }, + { + "epoch": 1.312192118226601, + "grad_norm": 0.058973487466573715, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 12786 + }, + { + "epoch": 1.3125, + "grad_norm": 0.05673586577177048, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 12789 + }, + { + "epoch": 1.312807881773399, + "grad_norm": 0.13680770993232727, + "learning_rate": 0.01, + "loss": 2.0673, + "step": 12792 + }, + { + "epoch": 1.313115763546798, + "grad_norm": 0.0454241968691349, + "learning_rate": 0.01, + "loss": 2.0766, + "step": 12795 + }, + { + "epoch": 1.313423645320197, + "grad_norm": 0.04074293375015259, + "learning_rate": 0.01, + "loss": 2.0593, + "step": 12798 + }, + { + "epoch": 1.313731527093596, + "grad_norm": 0.04174893721938133, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 12801 + }, + { + "epoch": 1.314039408866995, + "grad_norm": 0.06716062128543854, + "learning_rate": 0.01, + "loss": 2.0642, + "step": 12804 + }, + { + "epoch": 1.3143472906403941, + "grad_norm": 0.09866861253976822, + "learning_rate": 0.01, + "loss": 2.0889, + "step": 12807 + }, + { + "epoch": 1.3146551724137931, + "grad_norm": 0.13097235560417175, + "learning_rate": 0.01, + "loss": 2.0744, + "step": 12810 + }, + { + "epoch": 1.3149630541871922, + "grad_norm": 0.07859724014997482, + "learning_rate": 0.01, + "loss": 2.0899, + "step": 12813 + }, + { + "epoch": 1.3152709359605912, + "grad_norm": 0.06141912192106247, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 12816 + }, + { + "epoch": 1.3155788177339902, + "grad_norm": 0.05112985149025917, + "learning_rate": 0.01, + "loss": 2.0658, + "step": 12819 + }, + { + "epoch": 1.3158866995073892, + "grad_norm": 0.03482404351234436, + "learning_rate": 0.01, + "loss": 2.0802, + "step": 12822 + }, + { + "epoch": 1.3161945812807883, + "grad_norm": 0.05562854930758476, + "learning_rate": 0.01, + "loss": 2.0659, + "step": 12825 + }, + { + "epoch": 1.3165024630541873, + "grad_norm": 0.04841645434498787, + "learning_rate": 0.01, + "loss": 2.058, + "step": 12828 + }, + { + "epoch": 1.3168103448275863, + "grad_norm": 0.0756571963429451, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 12831 + }, + { + "epoch": 1.3171182266009853, + "grad_norm": 0.09575197845697403, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 12834 + }, + { + "epoch": 1.3174261083743843, + "grad_norm": 0.07003197073936462, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 12837 + }, + { + "epoch": 1.3177339901477834, + "grad_norm": 0.12592460215091705, + "learning_rate": 0.01, + "loss": 2.051, + "step": 12840 + }, + { + "epoch": 1.3180418719211824, + "grad_norm": 0.07086621969938278, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 12843 + }, + { + "epoch": 1.3183497536945814, + "grad_norm": 0.07367062568664551, + "learning_rate": 0.01, + "loss": 2.0759, + "step": 12846 + }, + { + "epoch": 1.3186576354679804, + "grad_norm": 0.06731852889060974, + "learning_rate": 0.01, + "loss": 2.077, + "step": 12849 + }, + { + "epoch": 1.3189655172413794, + "grad_norm": 0.07499510049819946, + "learning_rate": 0.01, + "loss": 2.072, + "step": 12852 + }, + { + "epoch": 1.3192733990147782, + "grad_norm": 0.07604499906301498, + "learning_rate": 0.01, + "loss": 2.0717, + "step": 12855 + }, + { + "epoch": 1.3195812807881773, + "grad_norm": 0.0770401731133461, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 12858 + }, + { + "epoch": 1.3198891625615763, + "grad_norm": 0.06753168255090714, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 12861 + }, + { + "epoch": 1.3201970443349753, + "grad_norm": 0.14175836741924286, + "learning_rate": 0.01, + "loss": 2.0811, + "step": 12864 + }, + { + "epoch": 1.3205049261083743, + "grad_norm": 0.04258207604289055, + "learning_rate": 0.01, + "loss": 2.0831, + "step": 12867 + }, + { + "epoch": 1.3208128078817734, + "grad_norm": 0.03372815623879433, + "learning_rate": 0.01, + "loss": 2.0827, + "step": 12870 + }, + { + "epoch": 1.3211206896551724, + "grad_norm": 0.040649689733982086, + "learning_rate": 0.01, + "loss": 2.067, + "step": 12873 + }, + { + "epoch": 1.3214285714285714, + "grad_norm": 0.060684412717819214, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 12876 + }, + { + "epoch": 1.3217364532019704, + "grad_norm": 0.036452196538448334, + "learning_rate": 0.01, + "loss": 2.0726, + "step": 12879 + }, + { + "epoch": 1.3220443349753694, + "grad_norm": 0.09457682818174362, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 12882 + }, + { + "epoch": 1.3223522167487685, + "grad_norm": 0.049776870757341385, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 12885 + }, + { + "epoch": 1.3226600985221675, + "grad_norm": 0.05794042348861694, + "learning_rate": 0.01, + "loss": 2.0781, + "step": 12888 + }, + { + "epoch": 1.3229679802955665, + "grad_norm": 0.052100833505392075, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 12891 + }, + { + "epoch": 1.3232758620689655, + "grad_norm": 0.06558441370725632, + "learning_rate": 0.01, + "loss": 2.076, + "step": 12894 + }, + { + "epoch": 1.3235837438423645, + "grad_norm": 0.1107778549194336, + "learning_rate": 0.01, + "loss": 2.0859, + "step": 12897 + }, + { + "epoch": 1.3238916256157636, + "grad_norm": 0.052982959896326065, + "learning_rate": 0.01, + "loss": 2.0749, + "step": 12900 + }, + { + "epoch": 1.3241995073891626, + "grad_norm": 0.0976911410689354, + "learning_rate": 0.01, + "loss": 2.067, + "step": 12903 + }, + { + "epoch": 1.3245073891625616, + "grad_norm": 0.05620484799146652, + "learning_rate": 0.01, + "loss": 2.0892, + "step": 12906 + }, + { + "epoch": 1.3248152709359606, + "grad_norm": 0.12753431499004364, + "learning_rate": 0.01, + "loss": 2.073, + "step": 12909 + }, + { + "epoch": 1.3251231527093597, + "grad_norm": 0.14311249554157257, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 12912 + }, + { + "epoch": 1.3254310344827587, + "grad_norm": 0.049242276698350906, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 12915 + }, + { + "epoch": 1.3257389162561577, + "grad_norm": 0.07875422388315201, + "learning_rate": 0.01, + "loss": 2.0889, + "step": 12918 + }, + { + "epoch": 1.3260467980295567, + "grad_norm": 0.036451369524002075, + "learning_rate": 0.01, + "loss": 2.0634, + "step": 12921 + }, + { + "epoch": 1.3263546798029557, + "grad_norm": 0.03659353405237198, + "learning_rate": 0.01, + "loss": 2.0725, + "step": 12924 + }, + { + "epoch": 1.3266625615763548, + "grad_norm": 0.049371130764484406, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 12927 + }, + { + "epoch": 1.3269704433497536, + "grad_norm": 0.05998126044869423, + "learning_rate": 0.01, + "loss": 2.0894, + "step": 12930 + }, + { + "epoch": 1.3272783251231526, + "grad_norm": 0.08878383040428162, + "learning_rate": 0.01, + "loss": 2.0627, + "step": 12933 + }, + { + "epoch": 1.3275862068965516, + "grad_norm": 0.059183619916439056, + "learning_rate": 0.01, + "loss": 2.0829, + "step": 12936 + }, + { + "epoch": 1.3278940886699506, + "grad_norm": 0.05783310905098915, + "learning_rate": 0.01, + "loss": 2.0972, + "step": 12939 + }, + { + "epoch": 1.3282019704433496, + "grad_norm": 0.07206647843122482, + "learning_rate": 0.01, + "loss": 2.0667, + "step": 12942 + }, + { + "epoch": 1.3285098522167487, + "grad_norm": 0.07303550839424133, + "learning_rate": 0.01, + "loss": 2.0745, + "step": 12945 + }, + { + "epoch": 1.3288177339901477, + "grad_norm": 0.04319525510072708, + "learning_rate": 0.01, + "loss": 2.0673, + "step": 12948 + }, + { + "epoch": 1.3291256157635467, + "grad_norm": 0.044222913682460785, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 12951 + }, + { + "epoch": 1.3294334975369457, + "grad_norm": 0.08791283518075943, + "learning_rate": 0.01, + "loss": 2.0841, + "step": 12954 + }, + { + "epoch": 1.3297413793103448, + "grad_norm": 0.05172525718808174, + "learning_rate": 0.01, + "loss": 2.0828, + "step": 12957 + }, + { + "epoch": 1.3300492610837438, + "grad_norm": 0.053524646908044815, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 12960 + }, + { + "epoch": 1.3303571428571428, + "grad_norm": 0.03858666867017746, + "learning_rate": 0.01, + "loss": 2.1045, + "step": 12963 + }, + { + "epoch": 1.3306650246305418, + "grad_norm": 0.037037089467048645, + "learning_rate": 0.01, + "loss": 2.0742, + "step": 12966 + }, + { + "epoch": 1.3309729064039408, + "grad_norm": 0.04609520733356476, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 12969 + }, + { + "epoch": 1.3312807881773399, + "grad_norm": 0.03773853927850723, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 12972 + }, + { + "epoch": 1.3315886699507389, + "grad_norm": 0.040222879499197006, + "learning_rate": 0.01, + "loss": 2.073, + "step": 12975 + }, + { + "epoch": 1.331896551724138, + "grad_norm": 0.11522398144006729, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 12978 + }, + { + "epoch": 1.332204433497537, + "grad_norm": 0.0496886670589447, + "learning_rate": 0.01, + "loss": 2.0873, + "step": 12981 + }, + { + "epoch": 1.332512315270936, + "grad_norm": 0.0955866202712059, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 12984 + }, + { + "epoch": 1.332820197044335, + "grad_norm": 0.06260306388139725, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 12987 + }, + { + "epoch": 1.333128078817734, + "grad_norm": 0.049784719944000244, + "learning_rate": 0.01, + "loss": 2.0807, + "step": 12990 + }, + { + "epoch": 1.333435960591133, + "grad_norm": 0.04571852833032608, + "learning_rate": 0.01, + "loss": 2.0648, + "step": 12993 + }, + { + "epoch": 1.333743842364532, + "grad_norm": 0.11032246053218842, + "learning_rate": 0.01, + "loss": 2.0777, + "step": 12996 + }, + { + "epoch": 1.334051724137931, + "grad_norm": 0.04030182585120201, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 12999 + }, + { + "epoch": 1.33435960591133, + "grad_norm": 0.06681946665048599, + "learning_rate": 0.01, + "loss": 2.051, + "step": 13002 + }, + { + "epoch": 1.334667487684729, + "grad_norm": 0.04532696306705475, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 13005 + }, + { + "epoch": 1.3349753694581281, + "grad_norm": 0.03890594094991684, + "learning_rate": 0.01, + "loss": 2.0792, + "step": 13008 + }, + { + "epoch": 1.3352832512315271, + "grad_norm": 0.08290864527225494, + "learning_rate": 0.01, + "loss": 2.0903, + "step": 13011 + }, + { + "epoch": 1.3355911330049262, + "grad_norm": 0.09402919560670853, + "learning_rate": 0.01, + "loss": 2.0678, + "step": 13014 + }, + { + "epoch": 1.3358990147783252, + "grad_norm": 0.06945643573999405, + "learning_rate": 0.01, + "loss": 2.0823, + "step": 13017 + }, + { + "epoch": 1.3362068965517242, + "grad_norm": 0.0540471225976944, + "learning_rate": 0.01, + "loss": 2.0705, + "step": 13020 + }, + { + "epoch": 1.3365147783251232, + "grad_norm": 0.04104168713092804, + "learning_rate": 0.01, + "loss": 2.0808, + "step": 13023 + }, + { + "epoch": 1.3368226600985222, + "grad_norm": 0.04578167945146561, + "learning_rate": 0.01, + "loss": 2.0821, + "step": 13026 + }, + { + "epoch": 1.3371305418719213, + "grad_norm": 0.07289981096982956, + "learning_rate": 0.01, + "loss": 2.0686, + "step": 13029 + }, + { + "epoch": 1.3374384236453203, + "grad_norm": 0.09114310890436172, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 13032 + }, + { + "epoch": 1.3377463054187193, + "grad_norm": 0.06305088102817535, + "learning_rate": 0.01, + "loss": 2.0593, + "step": 13035 + }, + { + "epoch": 1.3380541871921183, + "grad_norm": 0.06495746225118637, + "learning_rate": 0.01, + "loss": 2.0728, + "step": 13038 + }, + { + "epoch": 1.3383620689655173, + "grad_norm": 0.05586539953947067, + "learning_rate": 0.01, + "loss": 2.0747, + "step": 13041 + }, + { + "epoch": 1.3386699507389164, + "grad_norm": 0.04566524177789688, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 13044 + }, + { + "epoch": 1.3389778325123154, + "grad_norm": 0.060839373618364334, + "learning_rate": 0.01, + "loss": 2.0717, + "step": 13047 + }, + { + "epoch": 1.3392857142857144, + "grad_norm": 0.11224903166294098, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 13050 + }, + { + "epoch": 1.3395935960591134, + "grad_norm": 0.09223728626966476, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 13053 + }, + { + "epoch": 1.3399014778325122, + "grad_norm": 0.0413731187582016, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 13056 + }, + { + "epoch": 1.3402093596059113, + "grad_norm": 0.050937358289957047, + "learning_rate": 0.01, + "loss": 2.0774, + "step": 13059 + }, + { + "epoch": 1.3405172413793103, + "grad_norm": 0.0407971516251564, + "learning_rate": 0.01, + "loss": 2.0766, + "step": 13062 + }, + { + "epoch": 1.3408251231527093, + "grad_norm": 0.0623883455991745, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 13065 + }, + { + "epoch": 1.3411330049261083, + "grad_norm": 0.09325427561998367, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 13068 + }, + { + "epoch": 1.3414408866995073, + "grad_norm": 0.06965765357017517, + "learning_rate": 0.01, + "loss": 2.0653, + "step": 13071 + }, + { + "epoch": 1.3417487684729064, + "grad_norm": 0.12671297788619995, + "learning_rate": 0.01, + "loss": 2.1028, + "step": 13074 + }, + { + "epoch": 1.3420566502463054, + "grad_norm": 0.04154878482222557, + "learning_rate": 0.01, + "loss": 2.0783, + "step": 13077 + }, + { + "epoch": 1.3423645320197044, + "grad_norm": 0.04698561131954193, + "learning_rate": 0.01, + "loss": 2.0799, + "step": 13080 + }, + { + "epoch": 1.3426724137931034, + "grad_norm": 0.031127501279115677, + "learning_rate": 0.01, + "loss": 2.0756, + "step": 13083 + }, + { + "epoch": 1.3429802955665024, + "grad_norm": 0.05258537083864212, + "learning_rate": 0.01, + "loss": 2.0821, + "step": 13086 + }, + { + "epoch": 1.3432881773399015, + "grad_norm": 0.06848637759685516, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 13089 + }, + { + "epoch": 1.3435960591133005, + "grad_norm": 0.07738485932350159, + "learning_rate": 0.01, + "loss": 2.0674, + "step": 13092 + }, + { + "epoch": 1.3439039408866995, + "grad_norm": 0.09635680168867111, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 13095 + }, + { + "epoch": 1.3442118226600985, + "grad_norm": 0.04388611391186714, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 13098 + }, + { + "epoch": 1.3445197044334976, + "grad_norm": 0.0776490792632103, + "learning_rate": 0.01, + "loss": 2.0753, + "step": 13101 + }, + { + "epoch": 1.3448275862068966, + "grad_norm": 0.11331035196781158, + "learning_rate": 0.01, + "loss": 2.053, + "step": 13104 + }, + { + "epoch": 1.3451354679802956, + "grad_norm": 0.04267279431223869, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 13107 + }, + { + "epoch": 1.3454433497536946, + "grad_norm": 0.05454112961888313, + "learning_rate": 0.01, + "loss": 2.0711, + "step": 13110 + }, + { + "epoch": 1.3457512315270936, + "grad_norm": 0.07470305263996124, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 13113 + }, + { + "epoch": 1.3460591133004927, + "grad_norm": 0.057337477803230286, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 13116 + }, + { + "epoch": 1.3463669950738917, + "grad_norm": 0.09155120700597763, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 13119 + }, + { + "epoch": 1.3466748768472907, + "grad_norm": 0.09644894301891327, + "learning_rate": 0.01, + "loss": 2.0905, + "step": 13122 + }, + { + "epoch": 1.3469827586206897, + "grad_norm": 0.0579628124833107, + "learning_rate": 0.01, + "loss": 2.0834, + "step": 13125 + }, + { + "epoch": 1.3472906403940887, + "grad_norm": 0.09968624264001846, + "learning_rate": 0.01, + "loss": 2.0797, + "step": 13128 + }, + { + "epoch": 1.3475985221674878, + "grad_norm": 0.04834052175283432, + "learning_rate": 0.01, + "loss": 2.0552, + "step": 13131 + }, + { + "epoch": 1.3479064039408866, + "grad_norm": 0.05561887100338936, + "learning_rate": 0.01, + "loss": 2.0564, + "step": 13134 + }, + { + "epoch": 1.3482142857142856, + "grad_norm": 0.14990638196468353, + "learning_rate": 0.01, + "loss": 2.0738, + "step": 13137 + }, + { + "epoch": 1.3485221674876846, + "grad_norm": 0.07530777156352997, + "learning_rate": 0.01, + "loss": 2.0765, + "step": 13140 + }, + { + "epoch": 1.3488300492610836, + "grad_norm": 0.09080106765031815, + "learning_rate": 0.01, + "loss": 2.083, + "step": 13143 + }, + { + "epoch": 1.3491379310344827, + "grad_norm": 0.042014699429273605, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 13146 + }, + { + "epoch": 1.3494458128078817, + "grad_norm": 0.08905219286680222, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 13149 + }, + { + "epoch": 1.3497536945812807, + "grad_norm": 0.1093059629201889, + "learning_rate": 0.01, + "loss": 2.102, + "step": 13152 + }, + { + "epoch": 1.3500615763546797, + "grad_norm": 0.09834617376327515, + "learning_rate": 0.01, + "loss": 2.0601, + "step": 13155 + }, + { + "epoch": 1.3503694581280787, + "grad_norm": 0.0754542201757431, + "learning_rate": 0.01, + "loss": 2.103, + "step": 13158 + }, + { + "epoch": 1.3506773399014778, + "grad_norm": 0.09639342129230499, + "learning_rate": 0.01, + "loss": 2.0743, + "step": 13161 + }, + { + "epoch": 1.3509852216748768, + "grad_norm": 0.05084405094385147, + "learning_rate": 0.01, + "loss": 2.0898, + "step": 13164 + }, + { + "epoch": 1.3512931034482758, + "grad_norm": 0.04796381667256355, + "learning_rate": 0.01, + "loss": 2.0788, + "step": 13167 + }, + { + "epoch": 1.3516009852216748, + "grad_norm": 0.05373486131429672, + "learning_rate": 0.01, + "loss": 2.0632, + "step": 13170 + }, + { + "epoch": 1.3519088669950738, + "grad_norm": 0.05145580321550369, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 13173 + }, + { + "epoch": 1.3522167487684729, + "grad_norm": 0.03861214593052864, + "learning_rate": 0.01, + "loss": 2.0678, + "step": 13176 + }, + { + "epoch": 1.3525246305418719, + "grad_norm": 0.04394346475601196, + "learning_rate": 0.01, + "loss": 2.0601, + "step": 13179 + }, + { + "epoch": 1.352832512315271, + "grad_norm": 0.08851804584264755, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 13182 + }, + { + "epoch": 1.35314039408867, + "grad_norm": 0.059799451380968094, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 13185 + }, + { + "epoch": 1.353448275862069, + "grad_norm": 0.13764169812202454, + "learning_rate": 0.01, + "loss": 2.1001, + "step": 13188 + }, + { + "epoch": 1.353756157635468, + "grad_norm": 0.05652278661727905, + "learning_rate": 0.01, + "loss": 2.0771, + "step": 13191 + }, + { + "epoch": 1.354064039408867, + "grad_norm": 0.04755775257945061, + "learning_rate": 0.01, + "loss": 2.0467, + "step": 13194 + }, + { + "epoch": 1.354371921182266, + "grad_norm": 0.058131635189056396, + "learning_rate": 0.01, + "loss": 2.0884, + "step": 13197 + }, + { + "epoch": 1.354679802955665, + "grad_norm": 0.041266053915023804, + "learning_rate": 0.01, + "loss": 2.0684, + "step": 13200 + }, + { + "epoch": 1.354987684729064, + "grad_norm": 0.034990034997463226, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 13203 + }, + { + "epoch": 1.355295566502463, + "grad_norm": 0.13107064366340637, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 13206 + }, + { + "epoch": 1.355603448275862, + "grad_norm": 0.05397200584411621, + "learning_rate": 0.01, + "loss": 2.0953, + "step": 13209 + }, + { + "epoch": 1.3559113300492611, + "grad_norm": 0.04137737303972244, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 13212 + }, + { + "epoch": 1.3562192118226601, + "grad_norm": 0.05001407861709595, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 13215 + }, + { + "epoch": 1.3565270935960592, + "grad_norm": 0.10387953370809555, + "learning_rate": 0.01, + "loss": 2.0818, + "step": 13218 + }, + { + "epoch": 1.3568349753694582, + "grad_norm": 0.052998363971710205, + "learning_rate": 0.01, + "loss": 2.0711, + "step": 13221 + }, + { + "epoch": 1.3571428571428572, + "grad_norm": 0.06805765628814697, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 13224 + }, + { + "epoch": 1.3574507389162562, + "grad_norm": 0.06597940623760223, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 13227 + }, + { + "epoch": 1.3577586206896552, + "grad_norm": 0.10083628445863724, + "learning_rate": 0.01, + "loss": 2.086, + "step": 13230 + }, + { + "epoch": 1.3580665024630543, + "grad_norm": 0.05467986315488815, + "learning_rate": 0.01, + "loss": 2.072, + "step": 13233 + }, + { + "epoch": 1.3583743842364533, + "grad_norm": 0.08951261639595032, + "learning_rate": 0.01, + "loss": 2.1256, + "step": 13236 + }, + { + "epoch": 1.3586822660098523, + "grad_norm": 0.052532244473695755, + "learning_rate": 0.01, + "loss": 2.0555, + "step": 13239 + }, + { + "epoch": 1.3589901477832513, + "grad_norm": 0.038159146904945374, + "learning_rate": 0.01, + "loss": 2.062, + "step": 13242 + }, + { + "epoch": 1.3592980295566504, + "grad_norm": 0.09895820915699005, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 13245 + }, + { + "epoch": 1.3596059113300494, + "grad_norm": 0.07522387057542801, + "learning_rate": 0.01, + "loss": 2.0634, + "step": 13248 + }, + { + "epoch": 1.3599137931034484, + "grad_norm": 0.04762687534093857, + "learning_rate": 0.01, + "loss": 2.0848, + "step": 13251 + }, + { + "epoch": 1.3602216748768474, + "grad_norm": 0.0716032013297081, + "learning_rate": 0.01, + "loss": 2.0783, + "step": 13254 + }, + { + "epoch": 1.3605295566502464, + "grad_norm": 0.08518968522548676, + "learning_rate": 0.01, + "loss": 2.0818, + "step": 13257 + }, + { + "epoch": 1.3608374384236452, + "grad_norm": 0.06927520781755447, + "learning_rate": 0.01, + "loss": 2.0728, + "step": 13260 + }, + { + "epoch": 1.3611453201970443, + "grad_norm": 0.10368376970291138, + "learning_rate": 0.01, + "loss": 2.0419, + "step": 13263 + }, + { + "epoch": 1.3614532019704433, + "grad_norm": 0.04249117895960808, + "learning_rate": 0.01, + "loss": 2.0695, + "step": 13266 + }, + { + "epoch": 1.3617610837438423, + "grad_norm": 0.06504488736391068, + "learning_rate": 0.01, + "loss": 2.0658, + "step": 13269 + }, + { + "epoch": 1.3620689655172413, + "grad_norm": 0.03990466147661209, + "learning_rate": 0.01, + "loss": 2.0796, + "step": 13272 + }, + { + "epoch": 1.3623768472906403, + "grad_norm": 0.042559072375297546, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 13275 + }, + { + "epoch": 1.3626847290640394, + "grad_norm": 0.046650230884552, + "learning_rate": 0.01, + "loss": 2.0756, + "step": 13278 + }, + { + "epoch": 1.3629926108374384, + "grad_norm": 0.08641167730093002, + "learning_rate": 0.01, + "loss": 2.0638, + "step": 13281 + }, + { + "epoch": 1.3633004926108374, + "grad_norm": 0.11438708007335663, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 13284 + }, + { + "epoch": 1.3636083743842364, + "grad_norm": 0.05360870808362961, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 13287 + }, + { + "epoch": 1.3639162561576355, + "grad_norm": 0.07226021587848663, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 13290 + }, + { + "epoch": 1.3642241379310345, + "grad_norm": 0.04532739892601967, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 13293 + }, + { + "epoch": 1.3645320197044335, + "grad_norm": 0.06119906157255173, + "learning_rate": 0.01, + "loss": 2.0507, + "step": 13296 + }, + { + "epoch": 1.3648399014778325, + "grad_norm": 0.05576052516698837, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 13299 + }, + { + "epoch": 1.3651477832512315, + "grad_norm": 0.038748834282159805, + "learning_rate": 0.01, + "loss": 2.0632, + "step": 13302 + }, + { + "epoch": 1.3654556650246306, + "grad_norm": 0.09733711183071136, + "learning_rate": 0.01, + "loss": 2.0733, + "step": 13305 + }, + { + "epoch": 1.3657635467980296, + "grad_norm": 0.043375931680202484, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 13308 + }, + { + "epoch": 1.3660714285714286, + "grad_norm": 0.11930018663406372, + "learning_rate": 0.01, + "loss": 2.0931, + "step": 13311 + }, + { + "epoch": 1.3663793103448276, + "grad_norm": 0.06754540652036667, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 13314 + }, + { + "epoch": 1.3666871921182266, + "grad_norm": 0.07226148992776871, + "learning_rate": 0.01, + "loss": 2.0786, + "step": 13317 + }, + { + "epoch": 1.3669950738916257, + "grad_norm": 0.08159705251455307, + "learning_rate": 0.01, + "loss": 2.0594, + "step": 13320 + }, + { + "epoch": 1.3673029556650247, + "grad_norm": 0.044994477182626724, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 13323 + }, + { + "epoch": 1.3676108374384237, + "grad_norm": 0.05308050662279129, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 13326 + }, + { + "epoch": 1.3679187192118227, + "grad_norm": 0.09141236543655396, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 13329 + }, + { + "epoch": 1.3682266009852218, + "grad_norm": 0.040702883154153824, + "learning_rate": 0.01, + "loss": 2.0497, + "step": 13332 + }, + { + "epoch": 1.3685344827586206, + "grad_norm": 0.06111524999141693, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 13335 + }, + { + "epoch": 1.3688423645320196, + "grad_norm": 0.10802275687456131, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 13338 + }, + { + "epoch": 1.3691502463054186, + "grad_norm": 0.09049344807863235, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 13341 + }, + { + "epoch": 1.3694581280788176, + "grad_norm": 0.055894456803798676, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 13344 + }, + { + "epoch": 1.3697660098522166, + "grad_norm": 0.054729919880628586, + "learning_rate": 0.01, + "loss": 2.0674, + "step": 13347 + }, + { + "epoch": 1.3700738916256157, + "grad_norm": 0.05745011568069458, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 13350 + }, + { + "epoch": 1.3703817733990147, + "grad_norm": 0.06573651731014252, + "learning_rate": 0.01, + "loss": 2.0493, + "step": 13353 + }, + { + "epoch": 1.3706896551724137, + "grad_norm": 0.20495210587978363, + "learning_rate": 0.01, + "loss": 2.0798, + "step": 13356 + }, + { + "epoch": 1.3709975369458127, + "grad_norm": 0.10678639262914658, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 13359 + }, + { + "epoch": 1.3713054187192117, + "grad_norm": 0.10948281735181808, + "learning_rate": 0.01, + "loss": 2.087, + "step": 13362 + }, + { + "epoch": 1.3716133004926108, + "grad_norm": 0.07788719981908798, + "learning_rate": 0.01, + "loss": 2.0745, + "step": 13365 + }, + { + "epoch": 1.3719211822660098, + "grad_norm": 0.04947768524289131, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 13368 + }, + { + "epoch": 1.3722290640394088, + "grad_norm": 0.04789843037724495, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 13371 + }, + { + "epoch": 1.3725369458128078, + "grad_norm": 0.05217898637056351, + "learning_rate": 0.01, + "loss": 2.058, + "step": 13374 + }, + { + "epoch": 1.3728448275862069, + "grad_norm": 0.04018987715244293, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 13377 + }, + { + "epoch": 1.3731527093596059, + "grad_norm": 0.035446904599666595, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 13380 + }, + { + "epoch": 1.373460591133005, + "grad_norm": 0.038600854575634, + "learning_rate": 0.01, + "loss": 2.0865, + "step": 13383 + }, + { + "epoch": 1.373768472906404, + "grad_norm": 0.055341143161058426, + "learning_rate": 0.01, + "loss": 2.0591, + "step": 13386 + }, + { + "epoch": 1.374076354679803, + "grad_norm": 0.11673317849636078, + "learning_rate": 0.01, + "loss": 2.0897, + "step": 13389 + }, + { + "epoch": 1.374384236453202, + "grad_norm": 0.06797752529382706, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 13392 + }, + { + "epoch": 1.374692118226601, + "grad_norm": 0.041885413229465485, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 13395 + }, + { + "epoch": 1.375, + "grad_norm": 0.07391481846570969, + "learning_rate": 0.01, + "loss": 2.067, + "step": 13398 + }, + { + "epoch": 1.375307881773399, + "grad_norm": 0.07959283888339996, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 13401 + }, + { + "epoch": 1.375615763546798, + "grad_norm": 0.09504754096269608, + "learning_rate": 0.01, + "loss": 2.0841, + "step": 13404 + }, + { + "epoch": 1.375923645320197, + "grad_norm": 0.08874071389436722, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 13407 + }, + { + "epoch": 1.376231527093596, + "grad_norm": 0.05350710079073906, + "learning_rate": 0.01, + "loss": 2.0763, + "step": 13410 + }, + { + "epoch": 1.376539408866995, + "grad_norm": 0.06738609820604324, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 13413 + }, + { + "epoch": 1.3768472906403941, + "grad_norm": 0.04335073009133339, + "learning_rate": 0.01, + "loss": 2.0601, + "step": 13416 + }, + { + "epoch": 1.3771551724137931, + "grad_norm": 0.056045398116111755, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 13419 + }, + { + "epoch": 1.3774630541871922, + "grad_norm": 0.06593155860900879, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 13422 + }, + { + "epoch": 1.3777709359605912, + "grad_norm": 0.08942624181509018, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 13425 + }, + { + "epoch": 1.3780788177339902, + "grad_norm": 0.10098058730363846, + "learning_rate": 0.01, + "loss": 2.064, + "step": 13428 + }, + { + "epoch": 1.3783866995073892, + "grad_norm": 0.04804680123925209, + "learning_rate": 0.01, + "loss": 2.0684, + "step": 13431 + }, + { + "epoch": 1.3786945812807883, + "grad_norm": 0.08567364513874054, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 13434 + }, + { + "epoch": 1.3790024630541873, + "grad_norm": 0.06027091667056084, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 13437 + }, + { + "epoch": 1.3793103448275863, + "grad_norm": 0.08809462189674377, + "learning_rate": 0.01, + "loss": 2.0862, + "step": 13440 + }, + { + "epoch": 1.3796182266009853, + "grad_norm": 0.053466469049453735, + "learning_rate": 0.01, + "loss": 2.0497, + "step": 13443 + }, + { + "epoch": 1.3799261083743843, + "grad_norm": 0.033619511872529984, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 13446 + }, + { + "epoch": 1.3802339901477834, + "grad_norm": 0.04768878221511841, + "learning_rate": 0.01, + "loss": 2.054, + "step": 13449 + }, + { + "epoch": 1.3805418719211824, + "grad_norm": 0.07854757457971573, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 13452 + }, + { + "epoch": 1.3808497536945814, + "grad_norm": 0.05409559607505798, + "learning_rate": 0.01, + "loss": 2.082, + "step": 13455 + }, + { + "epoch": 1.3811576354679804, + "grad_norm": 0.057855118066072464, + "learning_rate": 0.01, + "loss": 2.0814, + "step": 13458 + }, + { + "epoch": 1.3814655172413794, + "grad_norm": 0.047502126544713974, + "learning_rate": 0.01, + "loss": 2.0955, + "step": 13461 + }, + { + "epoch": 1.3817733990147782, + "grad_norm": 0.040939487516880035, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 13464 + }, + { + "epoch": 1.3820812807881773, + "grad_norm": 0.1307850480079651, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 13467 + }, + { + "epoch": 1.3823891625615763, + "grad_norm": 0.04386845603585243, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 13470 + }, + { + "epoch": 1.3826970443349753, + "grad_norm": 0.08174968510866165, + "learning_rate": 0.01, + "loss": 2.0544, + "step": 13473 + }, + { + "epoch": 1.3830049261083743, + "grad_norm": 0.1113237589597702, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 13476 + }, + { + "epoch": 1.3833128078817734, + "grad_norm": 0.06756308674812317, + "learning_rate": 0.01, + "loss": 2.0813, + "step": 13479 + }, + { + "epoch": 1.3836206896551724, + "grad_norm": 0.05931835621595383, + "learning_rate": 0.01, + "loss": 2.0544, + "step": 13482 + }, + { + "epoch": 1.3839285714285714, + "grad_norm": 0.043539129197597504, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 13485 + }, + { + "epoch": 1.3842364532019704, + "grad_norm": 0.0510721355676651, + "learning_rate": 0.01, + "loss": 2.075, + "step": 13488 + }, + { + "epoch": 1.3845443349753694, + "grad_norm": 0.10811501741409302, + "learning_rate": 0.01, + "loss": 2.0626, + "step": 13491 + }, + { + "epoch": 1.3848522167487685, + "grad_norm": 0.08322811871767044, + "learning_rate": 0.01, + "loss": 2.0882, + "step": 13494 + }, + { + "epoch": 1.3851600985221675, + "grad_norm": 0.05101979896426201, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 13497 + }, + { + "epoch": 1.3854679802955665, + "grad_norm": 0.036535851657390594, + "learning_rate": 0.01, + "loss": 2.0791, + "step": 13500 + }, + { + "epoch": 1.3857758620689655, + "grad_norm": 0.05161239951848984, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 13503 + }, + { + "epoch": 1.3860837438423645, + "grad_norm": 0.06677153706550598, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 13506 + }, + { + "epoch": 1.3863916256157636, + "grad_norm": 0.04239841178059578, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 13509 + }, + { + "epoch": 1.3866995073891626, + "grad_norm": 0.04252205416560173, + "learning_rate": 0.01, + "loss": 2.0875, + "step": 13512 + }, + { + "epoch": 1.3870073891625616, + "grad_norm": 0.10147176682949066, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 13515 + }, + { + "epoch": 1.3873152709359606, + "grad_norm": 0.046371154487133026, + "learning_rate": 0.01, + "loss": 2.0784, + "step": 13518 + }, + { + "epoch": 1.3876231527093597, + "grad_norm": 0.0997064933180809, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 13521 + }, + { + "epoch": 1.3879310344827587, + "grad_norm": 0.05733582749962807, + "learning_rate": 0.01, + "loss": 2.0742, + "step": 13524 + }, + { + "epoch": 1.3882389162561577, + "grad_norm": 0.05061260983347893, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 13527 + }, + { + "epoch": 1.3885467980295567, + "grad_norm": 0.04336051642894745, + "learning_rate": 0.01, + "loss": 2.0846, + "step": 13530 + }, + { + "epoch": 1.3888546798029557, + "grad_norm": 0.04115337133407593, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 13533 + }, + { + "epoch": 1.3891625615763548, + "grad_norm": 0.04914069175720215, + "learning_rate": 0.01, + "loss": 2.0815, + "step": 13536 + }, + { + "epoch": 1.3894704433497536, + "grad_norm": 0.0677042305469513, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 13539 + }, + { + "epoch": 1.3897783251231526, + "grad_norm": 0.04985208064317703, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 13542 + }, + { + "epoch": 1.3900862068965516, + "grad_norm": 0.08042199164628983, + "learning_rate": 0.01, + "loss": 2.0828, + "step": 13545 + }, + { + "epoch": 1.3903940886699506, + "grad_norm": 0.03648814186453819, + "learning_rate": 0.01, + "loss": 2.0669, + "step": 13548 + }, + { + "epoch": 1.3907019704433496, + "grad_norm": 0.03645399957895279, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 13551 + }, + { + "epoch": 1.3910098522167487, + "grad_norm": 0.04866683483123779, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 13554 + }, + { + "epoch": 1.3913177339901477, + "grad_norm": 0.07728299498558044, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 13557 + }, + { + "epoch": 1.3916256157635467, + "grad_norm": 0.12097810208797455, + "learning_rate": 0.01, + "loss": 2.0935, + "step": 13560 + }, + { + "epoch": 1.3919334975369457, + "grad_norm": 0.12485776096582413, + "learning_rate": 0.01, + "loss": 2.0712, + "step": 13563 + }, + { + "epoch": 1.3922413793103448, + "grad_norm": 0.053524475544691086, + "learning_rate": 0.01, + "loss": 2.0595, + "step": 13566 + }, + { + "epoch": 1.3925492610837438, + "grad_norm": 0.04277713969349861, + "learning_rate": 0.01, + "loss": 2.0791, + "step": 13569 + }, + { + "epoch": 1.3928571428571428, + "grad_norm": 0.09847384691238403, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 13572 + }, + { + "epoch": 1.3931650246305418, + "grad_norm": 0.03410463035106659, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 13575 + }, + { + "epoch": 1.3934729064039408, + "grad_norm": 0.10606678575277328, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 13578 + }, + { + "epoch": 1.3937807881773399, + "grad_norm": 0.06554549187421799, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 13581 + }, + { + "epoch": 1.3940886699507389, + "grad_norm": 0.07487329095602036, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 13584 + }, + { + "epoch": 1.394396551724138, + "grad_norm": 0.07526996731758118, + "learning_rate": 0.01, + "loss": 2.0733, + "step": 13587 + }, + { + "epoch": 1.394704433497537, + "grad_norm": 0.0581665076315403, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 13590 + }, + { + "epoch": 1.395012315270936, + "grad_norm": 0.057513732463121414, + "learning_rate": 0.01, + "loss": 2.087, + "step": 13593 + }, + { + "epoch": 1.395320197044335, + "grad_norm": 0.037192508578300476, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 13596 + }, + { + "epoch": 1.395628078817734, + "grad_norm": 0.0965125560760498, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 13599 + }, + { + "epoch": 1.395935960591133, + "grad_norm": 0.04594407603144646, + "learning_rate": 0.01, + "loss": 2.067, + "step": 13602 + }, + { + "epoch": 1.396243842364532, + "grad_norm": 0.08442319929599762, + "learning_rate": 0.01, + "loss": 2.0627, + "step": 13605 + }, + { + "epoch": 1.396551724137931, + "grad_norm": 0.08673713356256485, + "learning_rate": 0.01, + "loss": 2.054, + "step": 13608 + }, + { + "epoch": 1.39685960591133, + "grad_norm": 0.07299968600273132, + "learning_rate": 0.01, + "loss": 2.0672, + "step": 13611 + }, + { + "epoch": 1.397167487684729, + "grad_norm": 0.052630744874477386, + "learning_rate": 0.01, + "loss": 2.079, + "step": 13614 + }, + { + "epoch": 1.3974753694581281, + "grad_norm": 0.0626215934753418, + "learning_rate": 0.01, + "loss": 2.0732, + "step": 13617 + }, + { + "epoch": 1.3977832512315271, + "grad_norm": 0.0866907387971878, + "learning_rate": 0.01, + "loss": 2.0743, + "step": 13620 + }, + { + "epoch": 1.3980911330049262, + "grad_norm": 0.05650071054697037, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 13623 + }, + { + "epoch": 1.3983990147783252, + "grad_norm": 0.07526635378599167, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 13626 + }, + { + "epoch": 1.3987068965517242, + "grad_norm": 0.07472112774848938, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 13629 + }, + { + "epoch": 1.3990147783251232, + "grad_norm": 0.07251216471195221, + "learning_rate": 0.01, + "loss": 2.086, + "step": 13632 + }, + { + "epoch": 1.3993226600985222, + "grad_norm": 0.08701921999454498, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 13635 + }, + { + "epoch": 1.3996305418719213, + "grad_norm": 0.033323436975479126, + "learning_rate": 0.01, + "loss": 2.0716, + "step": 13638 + }, + { + "epoch": 1.3999384236453203, + "grad_norm": 0.04960713908076286, + "learning_rate": 0.01, + "loss": 2.0557, + "step": 13641 + }, + { + "epoch": 1.4002463054187193, + "grad_norm": 0.1418198049068451, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 13644 + }, + { + "epoch": 1.4005541871921183, + "grad_norm": 0.06056910380721092, + "learning_rate": 0.01, + "loss": 2.0825, + "step": 13647 + }, + { + "epoch": 1.4008620689655173, + "grad_norm": 0.062474992126226425, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 13650 + }, + { + "epoch": 1.4011699507389164, + "grad_norm": 0.05380658805370331, + "learning_rate": 0.01, + "loss": 2.0644, + "step": 13653 + }, + { + "epoch": 1.4014778325123154, + "grad_norm": 0.046230513602495193, + "learning_rate": 0.01, + "loss": 2.062, + "step": 13656 + }, + { + "epoch": 1.4017857142857144, + "grad_norm": 0.05238807573914528, + "learning_rate": 0.01, + "loss": 2.0976, + "step": 13659 + }, + { + "epoch": 1.4020935960591134, + "grad_norm": 0.045423392206430435, + "learning_rate": 0.01, + "loss": 2.0729, + "step": 13662 + }, + { + "epoch": 1.4024014778325122, + "grad_norm": 0.1077577993273735, + "learning_rate": 0.01, + "loss": 2.0481, + "step": 13665 + }, + { + "epoch": 1.4027093596059113, + "grad_norm": 0.04370421916246414, + "learning_rate": 0.01, + "loss": 2.0634, + "step": 13668 + }, + { + "epoch": 1.4030172413793103, + "grad_norm": 0.061496302485466, + "learning_rate": 0.01, + "loss": 2.0449, + "step": 13671 + }, + { + "epoch": 1.4033251231527093, + "grad_norm": 0.048742834478616714, + "learning_rate": 0.01, + "loss": 2.0683, + "step": 13674 + }, + { + "epoch": 1.4036330049261083, + "grad_norm": 0.14942513406276703, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 13677 + }, + { + "epoch": 1.4039408866995073, + "grad_norm": 0.04235846549272537, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 13680 + }, + { + "epoch": 1.4042487684729064, + "grad_norm": 0.05509978160262108, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 13683 + }, + { + "epoch": 1.4045566502463054, + "grad_norm": 0.09692233055830002, + "learning_rate": 0.01, + "loss": 2.0703, + "step": 13686 + }, + { + "epoch": 1.4048645320197044, + "grad_norm": 0.11141908913850784, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 13689 + }, + { + "epoch": 1.4051724137931034, + "grad_norm": 0.06601562350988388, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 13692 + }, + { + "epoch": 1.4054802955665024, + "grad_norm": 0.04997260868549347, + "learning_rate": 0.01, + "loss": 2.056, + "step": 13695 + }, + { + "epoch": 1.4057881773399015, + "grad_norm": 0.07198163866996765, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 13698 + }, + { + "epoch": 1.4060960591133005, + "grad_norm": 0.03802650794386864, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 13701 + }, + { + "epoch": 1.4064039408866995, + "grad_norm": 0.06259030848741531, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 13704 + }, + { + "epoch": 1.4067118226600985, + "grad_norm": 0.09554235637187958, + "learning_rate": 0.01, + "loss": 2.0476, + "step": 13707 + }, + { + "epoch": 1.4070197044334976, + "grad_norm": 0.056935038417577744, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 13710 + }, + { + "epoch": 1.4073275862068966, + "grad_norm": 0.11038411408662796, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 13713 + }, + { + "epoch": 1.4076354679802956, + "grad_norm": 0.05257488042116165, + "learning_rate": 0.01, + "loss": 2.09, + "step": 13716 + }, + { + "epoch": 1.4079433497536946, + "grad_norm": 0.0573866032063961, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 13719 + }, + { + "epoch": 1.4082512315270936, + "grad_norm": 0.04933631047606468, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 13722 + }, + { + "epoch": 1.4085591133004927, + "grad_norm": 0.05909980088472366, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 13725 + }, + { + "epoch": 1.4088669950738917, + "grad_norm": 0.09598751366138458, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 13728 + }, + { + "epoch": 1.4091748768472907, + "grad_norm": 0.05608231574296951, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 13731 + }, + { + "epoch": 1.4094827586206897, + "grad_norm": 0.08262834697961807, + "learning_rate": 0.01, + "loss": 2.0661, + "step": 13734 + }, + { + "epoch": 1.4097906403940887, + "grad_norm": 0.041144959628582, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 13737 + }, + { + "epoch": 1.4100985221674878, + "grad_norm": 0.03748650476336479, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 13740 + }, + { + "epoch": 1.4104064039408866, + "grad_norm": 0.04054822400212288, + "learning_rate": 0.01, + "loss": 2.0564, + "step": 13743 + }, + { + "epoch": 1.4107142857142856, + "grad_norm": 0.07961263507604599, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 13746 + }, + { + "epoch": 1.4110221674876846, + "grad_norm": 0.049971841275691986, + "learning_rate": 0.01, + "loss": 2.033, + "step": 13749 + }, + { + "epoch": 1.4113300492610836, + "grad_norm": 0.040059734135866165, + "learning_rate": 0.01, + "loss": 2.0791, + "step": 13752 + }, + { + "epoch": 1.4116379310344827, + "grad_norm": 0.0400179885327816, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 13755 + }, + { + "epoch": 1.4119458128078817, + "grad_norm": 0.04587862268090248, + "learning_rate": 0.01, + "loss": 2.0572, + "step": 13758 + }, + { + "epoch": 1.4122536945812807, + "grad_norm": 0.08982817828655243, + "learning_rate": 0.01, + "loss": 2.0864, + "step": 13761 + }, + { + "epoch": 1.4125615763546797, + "grad_norm": 0.05488836392760277, + "learning_rate": 0.01, + "loss": 2.0529, + "step": 13764 + }, + { + "epoch": 1.4128694581280787, + "grad_norm": 0.06559593975543976, + "learning_rate": 0.01, + "loss": 2.0564, + "step": 13767 + }, + { + "epoch": 1.4131773399014778, + "grad_norm": 0.10647718608379364, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 13770 + }, + { + "epoch": 1.4134852216748768, + "grad_norm": 0.05944173410534859, + "learning_rate": 0.01, + "loss": 2.053, + "step": 13773 + }, + { + "epoch": 1.4137931034482758, + "grad_norm": 0.05548718199133873, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 13776 + }, + { + "epoch": 1.4141009852216748, + "grad_norm": 0.0694265142083168, + "learning_rate": 0.01, + "loss": 2.0647, + "step": 13779 + }, + { + "epoch": 1.4144088669950738, + "grad_norm": 0.10526683181524277, + "learning_rate": 0.01, + "loss": 2.0768, + "step": 13782 + }, + { + "epoch": 1.4147167487684729, + "grad_norm": 0.08820123970508575, + "learning_rate": 0.01, + "loss": 2.0693, + "step": 13785 + }, + { + "epoch": 1.4150246305418719, + "grad_norm": 0.04513731971383095, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 13788 + }, + { + "epoch": 1.415332512315271, + "grad_norm": 0.05737076327204704, + "learning_rate": 0.01, + "loss": 2.0698, + "step": 13791 + }, + { + "epoch": 1.41564039408867, + "grad_norm": 0.0431799478828907, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 13794 + }, + { + "epoch": 1.415948275862069, + "grad_norm": 0.09012471139431, + "learning_rate": 0.01, + "loss": 2.0634, + "step": 13797 + }, + { + "epoch": 1.416256157635468, + "grad_norm": 0.05895904824137688, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 13800 + }, + { + "epoch": 1.416564039408867, + "grad_norm": 0.1610986888408661, + "learning_rate": 0.01, + "loss": 2.0743, + "step": 13803 + }, + { + "epoch": 1.416871921182266, + "grad_norm": 0.07852904498577118, + "learning_rate": 0.01, + "loss": 2.064, + "step": 13806 + }, + { + "epoch": 1.417179802955665, + "grad_norm": 0.06620481610298157, + "learning_rate": 0.01, + "loss": 2.0688, + "step": 13809 + }, + { + "epoch": 1.417487684729064, + "grad_norm": 0.033222537487745285, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 13812 + }, + { + "epoch": 1.417795566502463, + "grad_norm": 0.02942623570561409, + "learning_rate": 0.01, + "loss": 2.0654, + "step": 13815 + }, + { + "epoch": 1.418103448275862, + "grad_norm": 0.03543059900403023, + "learning_rate": 0.01, + "loss": 2.0776, + "step": 13818 + }, + { + "epoch": 1.4184113300492611, + "grad_norm": 0.13414567708969116, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 13821 + }, + { + "epoch": 1.4187192118226601, + "grad_norm": 0.06474481523036957, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 13824 + }, + { + "epoch": 1.4190270935960592, + "grad_norm": 0.11285994201898575, + "learning_rate": 0.01, + "loss": 2.0533, + "step": 13827 + }, + { + "epoch": 1.4193349753694582, + "grad_norm": 0.05104577913880348, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 13830 + }, + { + "epoch": 1.4196428571428572, + "grad_norm": 0.05463656783103943, + "learning_rate": 0.01, + "loss": 2.0788, + "step": 13833 + }, + { + "epoch": 1.4199507389162562, + "grad_norm": 0.07886187732219696, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 13836 + }, + { + "epoch": 1.4202586206896552, + "grad_norm": 0.06960279494524002, + "learning_rate": 0.01, + "loss": 2.0927, + "step": 13839 + }, + { + "epoch": 1.4205665024630543, + "grad_norm": 0.07481426745653152, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 13842 + }, + { + "epoch": 1.4208743842364533, + "grad_norm": 0.04317006468772888, + "learning_rate": 0.01, + "loss": 2.0665, + "step": 13845 + }, + { + "epoch": 1.4211822660098523, + "grad_norm": 0.10644064098596573, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 13848 + }, + { + "epoch": 1.4214901477832513, + "grad_norm": 0.09246213734149933, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 13851 + }, + { + "epoch": 1.4217980295566504, + "grad_norm": 0.05824518948793411, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 13854 + }, + { + "epoch": 1.4221059113300494, + "grad_norm": 0.06316854059696198, + "learning_rate": 0.01, + "loss": 2.076, + "step": 13857 + }, + { + "epoch": 1.4224137931034484, + "grad_norm": 0.058339640498161316, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 13860 + }, + { + "epoch": 1.4227216748768474, + "grad_norm": 0.05458427220582962, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 13863 + }, + { + "epoch": 1.4230295566502464, + "grad_norm": 0.041047900915145874, + "learning_rate": 0.01, + "loss": 2.0793, + "step": 13866 + }, + { + "epoch": 1.4233374384236452, + "grad_norm": 0.04485390707850456, + "learning_rate": 0.01, + "loss": 2.0723, + "step": 13869 + }, + { + "epoch": 1.4236453201970443, + "grad_norm": 0.13340137898921967, + "learning_rate": 0.01, + "loss": 2.0555, + "step": 13872 + }, + { + "epoch": 1.4239532019704433, + "grad_norm": 0.05519254505634308, + "learning_rate": 0.01, + "loss": 2.0931, + "step": 13875 + }, + { + "epoch": 1.4242610837438423, + "grad_norm": 0.07989728450775146, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 13878 + }, + { + "epoch": 1.4245689655172413, + "grad_norm": 0.09447802603244781, + "learning_rate": 0.01, + "loss": 2.061, + "step": 13881 + }, + { + "epoch": 1.4248768472906403, + "grad_norm": 0.05240226909518242, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 13884 + }, + { + "epoch": 1.4251847290640394, + "grad_norm": 0.07171013206243515, + "learning_rate": 0.01, + "loss": 2.0829, + "step": 13887 + }, + { + "epoch": 1.4254926108374384, + "grad_norm": 0.05098895728588104, + "learning_rate": 0.01, + "loss": 2.0716, + "step": 13890 + }, + { + "epoch": 1.4258004926108374, + "grad_norm": 0.08569507300853729, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 13893 + }, + { + "epoch": 1.4261083743842364, + "grad_norm": 0.09055166691541672, + "learning_rate": 0.01, + "loss": 2.0843, + "step": 13896 + }, + { + "epoch": 1.4264162561576355, + "grad_norm": 0.03242780640721321, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 13899 + }, + { + "epoch": 1.4267241379310345, + "grad_norm": 0.04612202197313309, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 13902 + }, + { + "epoch": 1.4270320197044335, + "grad_norm": 0.05800663307309151, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 13905 + }, + { + "epoch": 1.4273399014778325, + "grad_norm": 0.04150572046637535, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 13908 + }, + { + "epoch": 1.4276477832512315, + "grad_norm": 0.08542584627866745, + "learning_rate": 0.01, + "loss": 2.0406, + "step": 13911 + }, + { + "epoch": 1.4279556650246306, + "grad_norm": 0.11966803669929504, + "learning_rate": 0.01, + "loss": 2.0829, + "step": 13914 + }, + { + "epoch": 1.4282635467980296, + "grad_norm": 0.12066449970006943, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 13917 + }, + { + "epoch": 1.4285714285714286, + "grad_norm": 0.04103751480579376, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 13920 + }, + { + "epoch": 1.4288793103448276, + "grad_norm": 0.05432034656405449, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 13923 + }, + { + "epoch": 1.4291871921182266, + "grad_norm": 0.03935731574892998, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 13926 + }, + { + "epoch": 1.4294950738916257, + "grad_norm": 0.1475706547498703, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 13929 + }, + { + "epoch": 1.4298029556650247, + "grad_norm": 0.06562622636556625, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 13932 + }, + { + "epoch": 1.4301108374384237, + "grad_norm": 0.051726315170526505, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 13935 + }, + { + "epoch": 1.4304187192118227, + "grad_norm": 0.0998329371213913, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 13938 + }, + { + "epoch": 1.4307266009852218, + "grad_norm": 0.04965333640575409, + "learning_rate": 0.01, + "loss": 2.0568, + "step": 13941 + }, + { + "epoch": 1.4310344827586206, + "grad_norm": 0.04430006071925163, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 13944 + }, + { + "epoch": 1.4313423645320196, + "grad_norm": 0.05260150134563446, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 13947 + }, + { + "epoch": 1.4316502463054186, + "grad_norm": 0.04135138541460037, + "learning_rate": 0.01, + "loss": 2.055, + "step": 13950 + }, + { + "epoch": 1.4319581280788176, + "grad_norm": 0.08347123116254807, + "learning_rate": 0.01, + "loss": 2.0826, + "step": 13953 + }, + { + "epoch": 1.4322660098522166, + "grad_norm": 0.12328385561704636, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 13956 + }, + { + "epoch": 1.4325738916256157, + "grad_norm": 0.05809056758880615, + "learning_rate": 0.01, + "loss": 2.0798, + "step": 13959 + }, + { + "epoch": 1.4328817733990147, + "grad_norm": 0.038590408861637115, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 13962 + }, + { + "epoch": 1.4331896551724137, + "grad_norm": 0.11158851534128189, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 13965 + }, + { + "epoch": 1.4334975369458127, + "grad_norm": 0.0880589634180069, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 13968 + }, + { + "epoch": 1.4338054187192117, + "grad_norm": 0.059966232627630234, + "learning_rate": 0.01, + "loss": 2.0659, + "step": 13971 + }, + { + "epoch": 1.4341133004926108, + "grad_norm": 0.04661833122372627, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 13974 + }, + { + "epoch": 1.4344211822660098, + "grad_norm": 0.04508896544575691, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 13977 + }, + { + "epoch": 1.4347290640394088, + "grad_norm": 0.051987554877996445, + "learning_rate": 0.01, + "loss": 2.0449, + "step": 13980 + }, + { + "epoch": 1.4350369458128078, + "grad_norm": 0.04814029112458229, + "learning_rate": 0.01, + "loss": 2.0587, + "step": 13983 + }, + { + "epoch": 1.4353448275862069, + "grad_norm": 0.09631717205047607, + "learning_rate": 0.01, + "loss": 2.0747, + "step": 13986 + }, + { + "epoch": 1.4356527093596059, + "grad_norm": 0.06581971794366837, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 13989 + }, + { + "epoch": 1.435960591133005, + "grad_norm": 0.06483247131109238, + "learning_rate": 0.01, + "loss": 2.0627, + "step": 13992 + }, + { + "epoch": 1.436268472906404, + "grad_norm": 0.1000155657529831, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 13995 + }, + { + "epoch": 1.436576354679803, + "grad_norm": 0.07297492027282715, + "learning_rate": 0.01, + "loss": 2.0686, + "step": 13998 + }, + { + "epoch": 1.436884236453202, + "grad_norm": 0.054907578974962234, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 14001 + }, + { + "epoch": 1.437192118226601, + "grad_norm": 0.051127828657627106, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 14004 + }, + { + "epoch": 1.4375, + "grad_norm": 0.04157300665974617, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 14007 + }, + { + "epoch": 1.437807881773399, + "grad_norm": 0.07996746897697449, + "learning_rate": 0.01, + "loss": 2.0625, + "step": 14010 + }, + { + "epoch": 1.438115763546798, + "grad_norm": 0.0764036774635315, + "learning_rate": 0.01, + "loss": 2.076, + "step": 14013 + }, + { + "epoch": 1.438423645320197, + "grad_norm": 0.10736891627311707, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 14016 + }, + { + "epoch": 1.438731527093596, + "grad_norm": 0.0598980113863945, + "learning_rate": 0.01, + "loss": 2.0774, + "step": 14019 + }, + { + "epoch": 1.439039408866995, + "grad_norm": 0.10858605802059174, + "learning_rate": 0.01, + "loss": 2.0708, + "step": 14022 + }, + { + "epoch": 1.4393472906403941, + "grad_norm": 0.03999786823987961, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 14025 + }, + { + "epoch": 1.4396551724137931, + "grad_norm": 0.053138673305511475, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 14028 + }, + { + "epoch": 1.4399630541871922, + "grad_norm": 0.06477091461420059, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 14031 + }, + { + "epoch": 1.4402709359605912, + "grad_norm": 0.035987384617328644, + "learning_rate": 0.01, + "loss": 2.0897, + "step": 14034 + }, + { + "epoch": 1.4405788177339902, + "grad_norm": 0.06938667595386505, + "learning_rate": 0.01, + "loss": 2.0895, + "step": 14037 + }, + { + "epoch": 1.4408866995073892, + "grad_norm": 0.041746124625205994, + "learning_rate": 0.01, + "loss": 2.0705, + "step": 14040 + }, + { + "epoch": 1.4411945812807883, + "grad_norm": 0.04503123462200165, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 14043 + }, + { + "epoch": 1.4415024630541873, + "grad_norm": 0.04153100401163101, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 14046 + }, + { + "epoch": 1.4418103448275863, + "grad_norm": 0.04992615804076195, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 14049 + }, + { + "epoch": 1.4421182266009853, + "grad_norm": 0.0718725174665451, + "learning_rate": 0.01, + "loss": 2.049, + "step": 14052 + }, + { + "epoch": 1.4424261083743843, + "grad_norm": 0.13080431520938873, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 14055 + }, + { + "epoch": 1.4427339901477834, + "grad_norm": 0.04203762486577034, + "learning_rate": 0.01, + "loss": 2.0713, + "step": 14058 + }, + { + "epoch": 1.4430418719211824, + "grad_norm": 0.04111120104789734, + "learning_rate": 0.01, + "loss": 2.0845, + "step": 14061 + }, + { + "epoch": 1.4433497536945814, + "grad_norm": 0.044398125261068344, + "learning_rate": 0.01, + "loss": 2.0679, + "step": 14064 + }, + { + "epoch": 1.4436576354679804, + "grad_norm": 0.031682152301073074, + "learning_rate": 0.01, + "loss": 2.0855, + "step": 14067 + }, + { + "epoch": 1.4439655172413794, + "grad_norm": 0.07848865538835526, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 14070 + }, + { + "epoch": 1.4442733990147782, + "grad_norm": 0.08814079314470291, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 14073 + }, + { + "epoch": 1.4445812807881773, + "grad_norm": 0.05344429612159729, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 14076 + }, + { + "epoch": 1.4448891625615763, + "grad_norm": 0.05509471520781517, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 14079 + }, + { + "epoch": 1.4451970443349753, + "grad_norm": 0.08177798241376877, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 14082 + }, + { + "epoch": 1.4455049261083743, + "grad_norm": 0.07953787595033646, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 14085 + }, + { + "epoch": 1.4458128078817734, + "grad_norm": 0.06984551250934601, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 14088 + }, + { + "epoch": 1.4461206896551724, + "grad_norm": 0.07923319190740585, + "learning_rate": 0.01, + "loss": 2.06, + "step": 14091 + }, + { + "epoch": 1.4464285714285714, + "grad_norm": 0.04370349645614624, + "learning_rate": 0.01, + "loss": 2.0839, + "step": 14094 + }, + { + "epoch": 1.4467364532019704, + "grad_norm": 0.045787643641233444, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 14097 + }, + { + "epoch": 1.4470443349753694, + "grad_norm": 0.04126288741827011, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 14100 + }, + { + "epoch": 1.4473522167487685, + "grad_norm": 0.039805784821510315, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 14103 + }, + { + "epoch": 1.4476600985221675, + "grad_norm": 0.038430992513895035, + "learning_rate": 0.01, + "loss": 2.0697, + "step": 14106 + }, + { + "epoch": 1.4479679802955665, + "grad_norm": 0.07664498686790466, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 14109 + }, + { + "epoch": 1.4482758620689655, + "grad_norm": 0.04592788219451904, + "learning_rate": 0.01, + "loss": 2.042, + "step": 14112 + }, + { + "epoch": 1.4485837438423645, + "grad_norm": 0.06161922961473465, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 14115 + }, + { + "epoch": 1.4488916256157636, + "grad_norm": 0.07906373590230942, + "learning_rate": 0.01, + "loss": 2.0758, + "step": 14118 + }, + { + "epoch": 1.4491995073891626, + "grad_norm": 0.09529503434896469, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 14121 + }, + { + "epoch": 1.4495073891625616, + "grad_norm": 0.05416659638285637, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 14124 + }, + { + "epoch": 1.4498152709359606, + "grad_norm": 0.07085006684064865, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 14127 + }, + { + "epoch": 1.4501231527093597, + "grad_norm": 0.07722880691289902, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 14130 + }, + { + "epoch": 1.4504310344827587, + "grad_norm": 0.06599342823028564, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 14133 + }, + { + "epoch": 1.4507389162561577, + "grad_norm": 0.11217498779296875, + "learning_rate": 0.01, + "loss": 2.068, + "step": 14136 + }, + { + "epoch": 1.4510467980295567, + "grad_norm": 0.13082845509052277, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 14139 + }, + { + "epoch": 1.4513546798029557, + "grad_norm": 0.06812801957130432, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 14142 + }, + { + "epoch": 1.4516625615763548, + "grad_norm": 0.043554674834012985, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 14145 + }, + { + "epoch": 1.4519704433497536, + "grad_norm": 0.04550860822200775, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 14148 + }, + { + "epoch": 1.4522783251231526, + "grad_norm": 0.04838492348790169, + "learning_rate": 0.01, + "loss": 2.0642, + "step": 14151 + }, + { + "epoch": 1.4525862068965516, + "grad_norm": 0.08433537930250168, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 14154 + }, + { + "epoch": 1.4528940886699506, + "grad_norm": 0.06986009329557419, + "learning_rate": 0.01, + "loss": 2.057, + "step": 14157 + }, + { + "epoch": 1.4532019704433496, + "grad_norm": 0.06860263645648956, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 14160 + }, + { + "epoch": 1.4535098522167487, + "grad_norm": 0.06218327581882477, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 14163 + }, + { + "epoch": 1.4538177339901477, + "grad_norm": 0.10177832096815109, + "learning_rate": 0.01, + "loss": 2.059, + "step": 14166 + }, + { + "epoch": 1.4541256157635467, + "grad_norm": 0.047695957124233246, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 14169 + }, + { + "epoch": 1.4544334975369457, + "grad_norm": 0.09761510044336319, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 14172 + }, + { + "epoch": 1.4547413793103448, + "grad_norm": 0.050296783447265625, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 14175 + }, + { + "epoch": 1.4550492610837438, + "grad_norm": 0.13070064783096313, + "learning_rate": 0.01, + "loss": 2.0579, + "step": 14178 + }, + { + "epoch": 1.4553571428571428, + "grad_norm": 0.1080620214343071, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 14181 + }, + { + "epoch": 1.4556650246305418, + "grad_norm": 0.06132792308926582, + "learning_rate": 0.01, + "loss": 2.062, + "step": 14184 + }, + { + "epoch": 1.4559729064039408, + "grad_norm": 0.07258635014295578, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 14187 + }, + { + "epoch": 1.4562807881773399, + "grad_norm": 0.05423443764448166, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 14190 + }, + { + "epoch": 1.4565886699507389, + "grad_norm": 0.06038088724017143, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 14193 + }, + { + "epoch": 1.456896551724138, + "grad_norm": 0.043958742171525955, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 14196 + }, + { + "epoch": 1.457204433497537, + "grad_norm": 0.03985238075256348, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 14199 + }, + { + "epoch": 1.457512315270936, + "grad_norm": 0.05626663193106651, + "learning_rate": 0.01, + "loss": 2.0518, + "step": 14202 + }, + { + "epoch": 1.457820197044335, + "grad_norm": 0.06365952640771866, + "learning_rate": 0.01, + "loss": 2.042, + "step": 14205 + }, + { + "epoch": 1.458128078817734, + "grad_norm": 0.0698857232928276, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 14208 + }, + { + "epoch": 1.458435960591133, + "grad_norm": 0.08149702101945877, + "learning_rate": 0.01, + "loss": 2.0659, + "step": 14211 + }, + { + "epoch": 1.458743842364532, + "grad_norm": 0.055818330496549606, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 14214 + }, + { + "epoch": 1.459051724137931, + "grad_norm": 0.046251330524683, + "learning_rate": 0.01, + "loss": 2.0598, + "step": 14217 + }, + { + "epoch": 1.45935960591133, + "grad_norm": 0.10986322909593582, + "learning_rate": 0.01, + "loss": 2.0768, + "step": 14220 + }, + { + "epoch": 1.459667487684729, + "grad_norm": 0.06735626608133316, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 14223 + }, + { + "epoch": 1.4599753694581281, + "grad_norm": 0.1051633432507515, + "learning_rate": 0.01, + "loss": 2.0807, + "step": 14226 + }, + { + "epoch": 1.4602832512315271, + "grad_norm": 0.0956743136048317, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 14229 + }, + { + "epoch": 1.4605911330049262, + "grad_norm": 0.04349840059876442, + "learning_rate": 0.01, + "loss": 2.0723, + "step": 14232 + }, + { + "epoch": 1.4608990147783252, + "grad_norm": 0.0388668030500412, + "learning_rate": 0.01, + "loss": 2.0612, + "step": 14235 + }, + { + "epoch": 1.4612068965517242, + "grad_norm": 0.04311763867735863, + "learning_rate": 0.01, + "loss": 2.0553, + "step": 14238 + }, + { + "epoch": 1.4615147783251232, + "grad_norm": 0.09116464853286743, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 14241 + }, + { + "epoch": 1.4618226600985222, + "grad_norm": 0.08582088351249695, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 14244 + }, + { + "epoch": 1.4621305418719213, + "grad_norm": 0.0435602031648159, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 14247 + }, + { + "epoch": 1.4624384236453203, + "grad_norm": 0.067762091755867, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 14250 + }, + { + "epoch": 1.4627463054187193, + "grad_norm": 0.03980677202343941, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 14253 + }, + { + "epoch": 1.4630541871921183, + "grad_norm": 0.08521614968776703, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 14256 + }, + { + "epoch": 1.4633620689655173, + "grad_norm": 0.06770948320627213, + "learning_rate": 0.01, + "loss": 2.0535, + "step": 14259 + }, + { + "epoch": 1.4636699507389164, + "grad_norm": 0.053458839654922485, + "learning_rate": 0.01, + "loss": 2.0594, + "step": 14262 + }, + { + "epoch": 1.4639778325123154, + "grad_norm": 0.06733859330415726, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 14265 + }, + { + "epoch": 1.4642857142857144, + "grad_norm": 0.08033892512321472, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 14268 + }, + { + "epoch": 1.4645935960591134, + "grad_norm": 0.0832366794347763, + "learning_rate": 0.01, + "loss": 2.0867, + "step": 14271 + }, + { + "epoch": 1.4649014778325122, + "grad_norm": 0.055291153490543365, + "learning_rate": 0.01, + "loss": 2.0618, + "step": 14274 + }, + { + "epoch": 1.4652093596059113, + "grad_norm": 0.07180801033973694, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 14277 + }, + { + "epoch": 1.4655172413793103, + "grad_norm": 0.048950713127851486, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 14280 + }, + { + "epoch": 1.4658251231527093, + "grad_norm": 0.05428025498986244, + "learning_rate": 0.01, + "loss": 2.052, + "step": 14283 + }, + { + "epoch": 1.4661330049261083, + "grad_norm": 0.06631309539079666, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 14286 + }, + { + "epoch": 1.4664408866995073, + "grad_norm": 0.06743253022432327, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 14289 + }, + { + "epoch": 1.4667487684729064, + "grad_norm": 0.10901882499456406, + "learning_rate": 0.01, + "loss": 2.076, + "step": 14292 + }, + { + "epoch": 1.4670566502463054, + "grad_norm": 0.08234187960624695, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 14295 + }, + { + "epoch": 1.4673645320197044, + "grad_norm": 0.07249965518712997, + "learning_rate": 0.01, + "loss": 2.057, + "step": 14298 + }, + { + "epoch": 1.4676724137931034, + "grad_norm": 0.0705137550830841, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 14301 + }, + { + "epoch": 1.4679802955665024, + "grad_norm": 0.10730472952127457, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 14304 + }, + { + "epoch": 1.4682881773399015, + "grad_norm": 0.048364557325839996, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 14307 + }, + { + "epoch": 1.4685960591133005, + "grad_norm": 0.03604978322982788, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 14310 + }, + { + "epoch": 1.4689039408866995, + "grad_norm": 0.09732489287853241, + "learning_rate": 0.01, + "loss": 2.0627, + "step": 14313 + }, + { + "epoch": 1.4692118226600985, + "grad_norm": 0.06590714305639267, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 14316 + }, + { + "epoch": 1.4695197044334976, + "grad_norm": 0.075086310505867, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 14319 + }, + { + "epoch": 1.4698275862068966, + "grad_norm": 0.10288450121879578, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 14322 + }, + { + "epoch": 1.4701354679802956, + "grad_norm": 0.0535271093249321, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 14325 + }, + { + "epoch": 1.4704433497536946, + "grad_norm": 0.04609391465783119, + "learning_rate": 0.01, + "loss": 2.049, + "step": 14328 + }, + { + "epoch": 1.4707512315270936, + "grad_norm": 0.044252909719944, + "learning_rate": 0.01, + "loss": 2.0586, + "step": 14331 + }, + { + "epoch": 1.4710591133004927, + "grad_norm": 0.07837995141744614, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 14334 + }, + { + "epoch": 1.4713669950738917, + "grad_norm": 0.06548511236906052, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 14337 + }, + { + "epoch": 1.4716748768472907, + "grad_norm": 0.09237763285636902, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 14340 + }, + { + "epoch": 1.4719827586206897, + "grad_norm": 0.04163452237844467, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 14343 + }, + { + "epoch": 1.4722906403940887, + "grad_norm": 0.13814504444599152, + "learning_rate": 0.01, + "loss": 2.0667, + "step": 14346 + }, + { + "epoch": 1.4725985221674878, + "grad_norm": 0.054490260779857635, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 14349 + }, + { + "epoch": 1.4729064039408866, + "grad_norm": 0.07470995932817459, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 14352 + }, + { + "epoch": 1.4732142857142856, + "grad_norm": 0.12089511752128601, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 14355 + }, + { + "epoch": 1.4735221674876846, + "grad_norm": 0.05507595092058182, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 14358 + }, + { + "epoch": 1.4738300492610836, + "grad_norm": 0.05130109563469887, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 14361 + }, + { + "epoch": 1.4741379310344827, + "grad_norm": 0.04399503022432327, + "learning_rate": 0.01, + "loss": 2.0669, + "step": 14364 + }, + { + "epoch": 1.4744458128078817, + "grad_norm": 0.06161755695939064, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 14367 + }, + { + "epoch": 1.4747536945812807, + "grad_norm": 0.045603156089782715, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 14370 + }, + { + "epoch": 1.4750615763546797, + "grad_norm": 0.06444186717271805, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 14373 + }, + { + "epoch": 1.4753694581280787, + "grad_norm": 0.07450753450393677, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 14376 + }, + { + "epoch": 1.4756773399014778, + "grad_norm": 0.10367168486118317, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 14379 + }, + { + "epoch": 1.4759852216748768, + "grad_norm": 0.08999089151620865, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 14382 + }, + { + "epoch": 1.4762931034482758, + "grad_norm": 0.09803617745637894, + "learning_rate": 0.01, + "loss": 2.0972, + "step": 14385 + }, + { + "epoch": 1.4766009852216748, + "grad_norm": 0.042447153478860855, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 14388 + }, + { + "epoch": 1.4769088669950738, + "grad_norm": 0.04479740187525749, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 14391 + }, + { + "epoch": 1.4772167487684729, + "grad_norm": 0.04113270714879036, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 14394 + }, + { + "epoch": 1.4775246305418719, + "grad_norm": 0.1087644025683403, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 14397 + }, + { + "epoch": 1.477832512315271, + "grad_norm": 0.05737099424004555, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 14400 + }, + { + "epoch": 1.47814039408867, + "grad_norm": 0.11025606095790863, + "learning_rate": 0.01, + "loss": 2.067, + "step": 14403 + }, + { + "epoch": 1.478448275862069, + "grad_norm": 0.06662195175886154, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 14406 + }, + { + "epoch": 1.478756157635468, + "grad_norm": 0.05261904001235962, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 14409 + }, + { + "epoch": 1.479064039408867, + "grad_norm": 0.048272691667079926, + "learning_rate": 0.01, + "loss": 2.0858, + "step": 14412 + }, + { + "epoch": 1.479371921182266, + "grad_norm": 0.048300545662641525, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 14415 + }, + { + "epoch": 1.479679802955665, + "grad_norm": 0.08697368204593658, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 14418 + }, + { + "epoch": 1.479987684729064, + "grad_norm": 0.07993713021278381, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 14421 + }, + { + "epoch": 1.480295566502463, + "grad_norm": 0.10037390887737274, + "learning_rate": 0.01, + "loss": 2.0584, + "step": 14424 + }, + { + "epoch": 1.480603448275862, + "grad_norm": 0.06048484891653061, + "learning_rate": 0.01, + "loss": 2.0589, + "step": 14427 + }, + { + "epoch": 1.4809113300492611, + "grad_norm": 0.08982612937688828, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 14430 + }, + { + "epoch": 1.4812192118226601, + "grad_norm": 0.06678975373506546, + "learning_rate": 0.01, + "loss": 2.0544, + "step": 14433 + }, + { + "epoch": 1.4815270935960592, + "grad_norm": 0.07890944927930832, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 14436 + }, + { + "epoch": 1.4818349753694582, + "grad_norm": 0.05838685482740402, + "learning_rate": 0.01, + "loss": 2.0481, + "step": 14439 + }, + { + "epoch": 1.4821428571428572, + "grad_norm": 0.06483394652605057, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 14442 + }, + { + "epoch": 1.4824507389162562, + "grad_norm": 0.07320713996887207, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 14445 + }, + { + "epoch": 1.4827586206896552, + "grad_norm": 0.07484092563390732, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 14448 + }, + { + "epoch": 1.4830665024630543, + "grad_norm": 0.07702804356813431, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 14451 + }, + { + "epoch": 1.4833743842364533, + "grad_norm": 0.05470692366361618, + "learning_rate": 0.01, + "loss": 2.0767, + "step": 14454 + }, + { + "epoch": 1.4836822660098523, + "grad_norm": 0.055773910135030746, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 14457 + }, + { + "epoch": 1.4839901477832513, + "grad_norm": 0.03712743893265724, + "learning_rate": 0.01, + "loss": 2.0723, + "step": 14460 + }, + { + "epoch": 1.4842980295566504, + "grad_norm": 0.035963475704193115, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 14463 + }, + { + "epoch": 1.4846059113300494, + "grad_norm": 0.08578921854496002, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 14466 + }, + { + "epoch": 1.4849137931034484, + "grad_norm": 0.08239159733057022, + "learning_rate": 0.01, + "loss": 2.0654, + "step": 14469 + }, + { + "epoch": 1.4852216748768474, + "grad_norm": 0.05097891017794609, + "learning_rate": 0.01, + "loss": 2.0837, + "step": 14472 + }, + { + "epoch": 1.4855295566502464, + "grad_norm": 0.051847904920578, + "learning_rate": 0.01, + "loss": 2.059, + "step": 14475 + }, + { + "epoch": 1.4858374384236452, + "grad_norm": 0.04754810780286789, + "learning_rate": 0.01, + "loss": 2.0658, + "step": 14478 + }, + { + "epoch": 1.4861453201970443, + "grad_norm": 0.046647075563669205, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 14481 + }, + { + "epoch": 1.4864532019704433, + "grad_norm": 0.06013277545571327, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 14484 + }, + { + "epoch": 1.4867610837438423, + "grad_norm": 0.13433513045310974, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 14487 + }, + { + "epoch": 1.4870689655172413, + "grad_norm": 0.046518564224243164, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 14490 + }, + { + "epoch": 1.4873768472906403, + "grad_norm": 0.09483514726161957, + "learning_rate": 0.01, + "loss": 2.0839, + "step": 14493 + }, + { + "epoch": 1.4876847290640394, + "grad_norm": 0.07147302478551865, + "learning_rate": 0.01, + "loss": 2.0741, + "step": 14496 + }, + { + "epoch": 1.4879926108374384, + "grad_norm": 0.12423846870660782, + "learning_rate": 0.01, + "loss": 2.045, + "step": 14499 + }, + { + "epoch": 1.4883004926108374, + "grad_norm": 0.07726770639419556, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 14502 + }, + { + "epoch": 1.4886083743842364, + "grad_norm": 0.059802982956171036, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 14505 + }, + { + "epoch": 1.4889162561576355, + "grad_norm": 0.050745993852615356, + "learning_rate": 0.01, + "loss": 2.049, + "step": 14508 + }, + { + "epoch": 1.4892241379310345, + "grad_norm": 0.052064161747694016, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 14511 + }, + { + "epoch": 1.4895320197044335, + "grad_norm": 0.06646674871444702, + "learning_rate": 0.01, + "loss": 2.0689, + "step": 14514 + }, + { + "epoch": 1.4898399014778325, + "grad_norm": 0.043484605848789215, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 14517 + }, + { + "epoch": 1.4901477832512315, + "grad_norm": 0.14452145993709564, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 14520 + }, + { + "epoch": 1.4904556650246306, + "grad_norm": 0.08289093524217606, + "learning_rate": 0.01, + "loss": 2.0654, + "step": 14523 + }, + { + "epoch": 1.4907635467980296, + "grad_norm": 0.05047908052802086, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 14526 + }, + { + "epoch": 1.4910714285714286, + "grad_norm": 0.04830252006649971, + "learning_rate": 0.01, + "loss": 2.0529, + "step": 14529 + }, + { + "epoch": 1.4913793103448276, + "grad_norm": 0.0430610254406929, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 14532 + }, + { + "epoch": 1.4916871921182266, + "grad_norm": 0.04282008111476898, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 14535 + }, + { + "epoch": 1.4919950738916257, + "grad_norm": 0.037373676896095276, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 14538 + }, + { + "epoch": 1.4923029556650247, + "grad_norm": 0.04186755418777466, + "learning_rate": 0.01, + "loss": 2.058, + "step": 14541 + }, + { + "epoch": 1.4926108374384237, + "grad_norm": 0.05514196678996086, + "learning_rate": 0.01, + "loss": 2.0647, + "step": 14544 + }, + { + "epoch": 1.4929187192118227, + "grad_norm": 0.07391703873872757, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 14547 + }, + { + "epoch": 1.4932266009852218, + "grad_norm": 0.1295444518327713, + "learning_rate": 0.01, + "loss": 2.0571, + "step": 14550 + }, + { + "epoch": 1.4935344827586206, + "grad_norm": 0.06389490514993668, + "learning_rate": 0.01, + "loss": 2.0756, + "step": 14553 + }, + { + "epoch": 1.4938423645320196, + "grad_norm": 0.09335155785083771, + "learning_rate": 0.01, + "loss": 2.0904, + "step": 14556 + }, + { + "epoch": 1.4941502463054186, + "grad_norm": 0.059700366109609604, + "learning_rate": 0.01, + "loss": 2.0598, + "step": 14559 + }, + { + "epoch": 1.4944581280788176, + "grad_norm": 0.07785683870315552, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 14562 + }, + { + "epoch": 1.4947660098522166, + "grad_norm": 0.11935362964868546, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 14565 + }, + { + "epoch": 1.4950738916256157, + "grad_norm": 0.06188122183084488, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 14568 + }, + { + "epoch": 1.4953817733990147, + "grad_norm": 0.05302932485938072, + "learning_rate": 0.01, + "loss": 2.0704, + "step": 14571 + }, + { + "epoch": 1.4956896551724137, + "grad_norm": 0.03871694207191467, + "learning_rate": 0.01, + "loss": 2.062, + "step": 14574 + }, + { + "epoch": 1.4959975369458127, + "grad_norm": 0.03942064568400383, + "learning_rate": 0.01, + "loss": 2.0725, + "step": 14577 + }, + { + "epoch": 1.4963054187192117, + "grad_norm": 0.05354088917374611, + "learning_rate": 0.01, + "loss": 2.054, + "step": 14580 + }, + { + "epoch": 1.4966133004926108, + "grad_norm": 0.07863521575927734, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 14583 + }, + { + "epoch": 1.4969211822660098, + "grad_norm": 0.0440685860812664, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 14586 + }, + { + "epoch": 1.4972290640394088, + "grad_norm": 0.0724552571773529, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 14589 + }, + { + "epoch": 1.4975369458128078, + "grad_norm": 0.06099352613091469, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 14592 + }, + { + "epoch": 1.4978448275862069, + "grad_norm": 0.05534674599766731, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 14595 + }, + { + "epoch": 1.4981527093596059, + "grad_norm": 0.07876823097467422, + "learning_rate": 0.01, + "loss": 2.0686, + "step": 14598 + }, + { + "epoch": 1.498460591133005, + "grad_norm": 0.07860377430915833, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 14601 + }, + { + "epoch": 1.498768472906404, + "grad_norm": 0.054005399346351624, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 14604 + }, + { + "epoch": 1.499076354679803, + "grad_norm": 0.10550951957702637, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 14607 + }, + { + "epoch": 1.499384236453202, + "grad_norm": 0.056426841765642166, + "learning_rate": 0.01, + "loss": 2.0589, + "step": 14610 + }, + { + "epoch": 1.499692118226601, + "grad_norm": 0.09640904515981674, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 14613 + }, + { + "epoch": 1.5, + "grad_norm": 0.0822538211941719, + "learning_rate": 0.01, + "loss": 2.0684, + "step": 14616 + }, + { + "epoch": 1.500307881773399, + "grad_norm": 0.05105495825409889, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 14619 + }, + { + "epoch": 1.500615763546798, + "grad_norm": 0.07851336896419525, + "learning_rate": 0.01, + "loss": 2.0635, + "step": 14622 + }, + { + "epoch": 1.500923645320197, + "grad_norm": 0.051046207547187805, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 14625 + }, + { + "epoch": 1.501231527093596, + "grad_norm": 0.12335740774869919, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 14628 + }, + { + "epoch": 1.501539408866995, + "grad_norm": 0.04044636711478233, + "learning_rate": 0.01, + "loss": 2.0635, + "step": 14631 + }, + { + "epoch": 1.5018472906403941, + "grad_norm": 0.0532059408724308, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 14634 + }, + { + "epoch": 1.5021551724137931, + "grad_norm": 0.0446847639977932, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 14637 + }, + { + "epoch": 1.5024630541871922, + "grad_norm": 0.05464153364300728, + "learning_rate": 0.01, + "loss": 2.0464, + "step": 14640 + }, + { + "epoch": 1.5027709359605912, + "grad_norm": 0.08923088759183884, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 14643 + }, + { + "epoch": 1.5030788177339902, + "grad_norm": 0.06256496161222458, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 14646 + }, + { + "epoch": 1.5033866995073892, + "grad_norm": 0.05338229984045029, + "learning_rate": 0.01, + "loss": 2.053, + "step": 14649 + }, + { + "epoch": 1.5036945812807883, + "grad_norm": 0.04416535049676895, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 14652 + }, + { + "epoch": 1.5040024630541873, + "grad_norm": 0.07076221704483032, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 14655 + }, + { + "epoch": 1.5043103448275863, + "grad_norm": 0.08566464483737946, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 14658 + }, + { + "epoch": 1.5046182266009853, + "grad_norm": 0.049552109092473984, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 14661 + }, + { + "epoch": 1.5049261083743843, + "grad_norm": 0.11802852898836136, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 14664 + }, + { + "epoch": 1.5052339901477834, + "grad_norm": 0.05280107632279396, + "learning_rate": 0.01, + "loss": 2.0722, + "step": 14667 + }, + { + "epoch": 1.5055418719211824, + "grad_norm": 0.036458853632211685, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 14670 + }, + { + "epoch": 1.5058497536945814, + "grad_norm": 0.0465536043047905, + "learning_rate": 0.01, + "loss": 2.0765, + "step": 14673 + }, + { + "epoch": 1.5061576354679804, + "grad_norm": 0.09052444994449615, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 14676 + }, + { + "epoch": 1.5064655172413794, + "grad_norm": 0.08750707656145096, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 14679 + }, + { + "epoch": 1.5067733990147785, + "grad_norm": 0.07876972109079361, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 14682 + }, + { + "epoch": 1.5070812807881775, + "grad_norm": 0.045561011880636215, + "learning_rate": 0.01, + "loss": 2.0656, + "step": 14685 + }, + { + "epoch": 1.5073891625615765, + "grad_norm": 0.04548237472772598, + "learning_rate": 0.01, + "loss": 2.0811, + "step": 14688 + }, + { + "epoch": 1.5076970443349755, + "grad_norm": 0.04897540062665939, + "learning_rate": 0.01, + "loss": 2.046, + "step": 14691 + }, + { + "epoch": 1.5080049261083743, + "grad_norm": 0.08820399641990662, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 14694 + }, + { + "epoch": 1.5083128078817734, + "grad_norm": 0.0701432004570961, + "learning_rate": 0.01, + "loss": 2.0644, + "step": 14697 + }, + { + "epoch": 1.5086206896551724, + "grad_norm": 0.10921904444694519, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 14700 + }, + { + "epoch": 1.5089285714285714, + "grad_norm": 0.08308566361665726, + "learning_rate": 0.01, + "loss": 2.101, + "step": 14703 + }, + { + "epoch": 1.5092364532019704, + "grad_norm": 0.12545743584632874, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 14706 + }, + { + "epoch": 1.5095443349753694, + "grad_norm": 0.11245466768741608, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 14709 + }, + { + "epoch": 1.5098522167487685, + "grad_norm": 0.10128718614578247, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 14712 + }, + { + "epoch": 1.5101600985221675, + "grad_norm": 0.07226911187171936, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 14715 + }, + { + "epoch": 1.5104679802955665, + "grad_norm": 0.056605782359838486, + "learning_rate": 0.01, + "loss": 2.0686, + "step": 14718 + }, + { + "epoch": 1.5107758620689655, + "grad_norm": 0.08795683085918427, + "learning_rate": 0.01, + "loss": 2.053, + "step": 14721 + }, + { + "epoch": 1.5110837438423645, + "grad_norm": 0.07311341166496277, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 14724 + }, + { + "epoch": 1.5113916256157636, + "grad_norm": 0.07164688408374786, + "learning_rate": 0.01, + "loss": 2.048, + "step": 14727 + }, + { + "epoch": 1.5116995073891626, + "grad_norm": 0.04577312618494034, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 14730 + }, + { + "epoch": 1.5120073891625616, + "grad_norm": 0.043186552822589874, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 14733 + }, + { + "epoch": 1.5123152709359606, + "grad_norm": 0.06101042777299881, + "learning_rate": 0.01, + "loss": 2.072, + "step": 14736 + }, + { + "epoch": 1.5126231527093597, + "grad_norm": 0.12651608884334564, + "learning_rate": 0.01, + "loss": 2.0914, + "step": 14739 + }, + { + "epoch": 1.5129310344827587, + "grad_norm": 0.039495594799518585, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 14742 + }, + { + "epoch": 1.5132389162561575, + "grad_norm": 0.10854054987430573, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 14745 + }, + { + "epoch": 1.5135467980295565, + "grad_norm": 0.142778679728508, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 14748 + }, + { + "epoch": 1.5138546798029555, + "grad_norm": 0.06473375856876373, + "learning_rate": 0.01, + "loss": 2.075, + "step": 14751 + }, + { + "epoch": 1.5141625615763545, + "grad_norm": 0.050436701625585556, + "learning_rate": 0.01, + "loss": 2.0823, + "step": 14754 + }, + { + "epoch": 1.5144704433497536, + "grad_norm": 0.057088159024715424, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 14757 + }, + { + "epoch": 1.5147783251231526, + "grad_norm": 0.051623161882162094, + "learning_rate": 0.01, + "loss": 2.0816, + "step": 14760 + }, + { + "epoch": 1.5150862068965516, + "grad_norm": 0.0770149901509285, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 14763 + }, + { + "epoch": 1.5153940886699506, + "grad_norm": 0.06827536970376968, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 14766 + }, + { + "epoch": 1.5157019704433496, + "grad_norm": 0.06987358629703522, + "learning_rate": 0.01, + "loss": 2.0618, + "step": 14769 + }, + { + "epoch": 1.5160098522167487, + "grad_norm": 0.05388219282031059, + "learning_rate": 0.01, + "loss": 2.084, + "step": 14772 + }, + { + "epoch": 1.5163177339901477, + "grad_norm": 0.11866139620542526, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 14775 + }, + { + "epoch": 1.5166256157635467, + "grad_norm": 0.12754911184310913, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 14778 + }, + { + "epoch": 1.5169334975369457, + "grad_norm": 0.03591502830386162, + "learning_rate": 0.01, + "loss": 2.043, + "step": 14781 + }, + { + "epoch": 1.5172413793103448, + "grad_norm": 0.09142038226127625, + "learning_rate": 0.01, + "loss": 2.05, + "step": 14784 + }, + { + "epoch": 1.5175492610837438, + "grad_norm": 0.13140954077243805, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 14787 + }, + { + "epoch": 1.5178571428571428, + "grad_norm": 0.08330459147691727, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 14790 + }, + { + "epoch": 1.5181650246305418, + "grad_norm": 0.0779498815536499, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 14793 + }, + { + "epoch": 1.5184729064039408, + "grad_norm": 0.05396762117743492, + "learning_rate": 0.01, + "loss": 2.0586, + "step": 14796 + }, + { + "epoch": 1.5187807881773399, + "grad_norm": 0.06744614988565445, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 14799 + }, + { + "epoch": 1.5190886699507389, + "grad_norm": 0.04777420684695244, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 14802 + }, + { + "epoch": 1.519396551724138, + "grad_norm": 0.044643301516771317, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 14805 + }, + { + "epoch": 1.519704433497537, + "grad_norm": 0.05263877660036087, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 14808 + }, + { + "epoch": 1.520012315270936, + "grad_norm": 0.07794903963804245, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 14811 + }, + { + "epoch": 1.520320197044335, + "grad_norm": 0.03846001625061035, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 14814 + }, + { + "epoch": 1.520628078817734, + "grad_norm": 0.03806301951408386, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 14817 + }, + { + "epoch": 1.520935960591133, + "grad_norm": 0.08289408683776855, + "learning_rate": 0.01, + "loss": 2.0712, + "step": 14820 + }, + { + "epoch": 1.521243842364532, + "grad_norm": 0.04307285323739052, + "learning_rate": 0.01, + "loss": 2.0926, + "step": 14823 + }, + { + "epoch": 1.521551724137931, + "grad_norm": 0.04523704573512077, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 14826 + }, + { + "epoch": 1.52185960591133, + "grad_norm": 0.0813162624835968, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 14829 + }, + { + "epoch": 1.522167487684729, + "grad_norm": 0.08958449214696884, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 14832 + }, + { + "epoch": 1.5224753694581281, + "grad_norm": 0.1036042720079422, + "learning_rate": 0.01, + "loss": 2.051, + "step": 14835 + }, + { + "epoch": 1.5227832512315271, + "grad_norm": 0.06528764218091965, + "learning_rate": 0.01, + "loss": 2.0389, + "step": 14838 + }, + { + "epoch": 1.5230911330049262, + "grad_norm": 0.04857415333390236, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 14841 + }, + { + "epoch": 1.5233990147783252, + "grad_norm": 0.11137302964925766, + "learning_rate": 0.01, + "loss": 2.0706, + "step": 14844 + }, + { + "epoch": 1.5237068965517242, + "grad_norm": 0.05258537456393242, + "learning_rate": 0.01, + "loss": 2.053, + "step": 14847 + }, + { + "epoch": 1.5240147783251232, + "grad_norm": 0.05203690007328987, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 14850 + }, + { + "epoch": 1.5243226600985222, + "grad_norm": 0.036557264626026154, + "learning_rate": 0.01, + "loss": 2.0827, + "step": 14853 + }, + { + "epoch": 1.5246305418719213, + "grad_norm": 0.05553048849105835, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 14856 + }, + { + "epoch": 1.5249384236453203, + "grad_norm": 0.07551626116037369, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 14859 + }, + { + "epoch": 1.5252463054187193, + "grad_norm": 0.09335839748382568, + "learning_rate": 0.01, + "loss": 2.069, + "step": 14862 + }, + { + "epoch": 1.5255541871921183, + "grad_norm": 0.07123745232820511, + "learning_rate": 0.01, + "loss": 2.048, + "step": 14865 + }, + { + "epoch": 1.5258620689655173, + "grad_norm": 0.06792188435792923, + "learning_rate": 0.01, + "loss": 2.059, + "step": 14868 + }, + { + "epoch": 1.5261699507389164, + "grad_norm": 0.035666827112436295, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 14871 + }, + { + "epoch": 1.5264778325123154, + "grad_norm": 0.039600104093551636, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 14874 + }, + { + "epoch": 1.5267857142857144, + "grad_norm": 0.03983796760439873, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 14877 + }, + { + "epoch": 1.5270935960591134, + "grad_norm": 0.07013492286205292, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 14880 + }, + { + "epoch": 1.5274014778325125, + "grad_norm": 0.07064792513847351, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 14883 + }, + { + "epoch": 1.5277093596059115, + "grad_norm": 0.10502810031175613, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 14886 + }, + { + "epoch": 1.5280172413793105, + "grad_norm": 0.050288375467061996, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 14889 + }, + { + "epoch": 1.5283251231527095, + "grad_norm": 0.07382049411535263, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 14892 + }, + { + "epoch": 1.5286330049261085, + "grad_norm": 0.08693026751279831, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 14895 + }, + { + "epoch": 1.5289408866995073, + "grad_norm": 0.04283773526549339, + "learning_rate": 0.01, + "loss": 2.068, + "step": 14898 + }, + { + "epoch": 1.5292487684729064, + "grad_norm": 0.1044667437672615, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 14901 + }, + { + "epoch": 1.5295566502463054, + "grad_norm": 0.06316410005092621, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 14904 + }, + { + "epoch": 1.5298645320197044, + "grad_norm": 0.04687780514359474, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 14907 + }, + { + "epoch": 1.5301724137931034, + "grad_norm": 0.04785927012562752, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 14910 + }, + { + "epoch": 1.5304802955665024, + "grad_norm": 0.03788747265934944, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 14913 + }, + { + "epoch": 1.5307881773399015, + "grad_norm": 0.05618858337402344, + "learning_rate": 0.01, + "loss": 2.031, + "step": 14916 + }, + { + "epoch": 1.5310960591133005, + "grad_norm": 0.10059016942977905, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 14919 + }, + { + "epoch": 1.5314039408866995, + "grad_norm": 0.06718064099550247, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 14922 + }, + { + "epoch": 1.5317118226600985, + "grad_norm": 0.09006398916244507, + "learning_rate": 0.01, + "loss": 2.059, + "step": 14925 + }, + { + "epoch": 1.5320197044334976, + "grad_norm": 0.036577485501766205, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 14928 + }, + { + "epoch": 1.5323275862068966, + "grad_norm": 0.07979925721883774, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 14931 + }, + { + "epoch": 1.5326354679802956, + "grad_norm": 0.08286473900079727, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 14934 + }, + { + "epoch": 1.5329433497536946, + "grad_norm": 0.042596206068992615, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 14937 + }, + { + "epoch": 1.5332512315270936, + "grad_norm": 0.043695200234651566, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 14940 + }, + { + "epoch": 1.5335591133004927, + "grad_norm": 0.13041776418685913, + "learning_rate": 0.01, + "loss": 2.0966, + "step": 14943 + }, + { + "epoch": 1.5338669950738915, + "grad_norm": 0.06076871603727341, + "learning_rate": 0.01, + "loss": 2.081, + "step": 14946 + }, + { + "epoch": 1.5341748768472905, + "grad_norm": 0.08744147419929504, + "learning_rate": 0.01, + "loss": 2.0698, + "step": 14949 + }, + { + "epoch": 1.5344827586206895, + "grad_norm": 0.041992440819740295, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 14952 + }, + { + "epoch": 1.5347906403940885, + "grad_norm": 0.0773782953619957, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 14955 + }, + { + "epoch": 1.5350985221674875, + "grad_norm": 0.04371657967567444, + "learning_rate": 0.01, + "loss": 2.043, + "step": 14958 + }, + { + "epoch": 1.5354064039408866, + "grad_norm": 0.04753347858786583, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 14961 + }, + { + "epoch": 1.5357142857142856, + "grad_norm": 0.10644037276506424, + "learning_rate": 0.01, + "loss": 2.0838, + "step": 14964 + }, + { + "epoch": 1.5360221674876846, + "grad_norm": 0.037067610770463943, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 14967 + }, + { + "epoch": 1.5363300492610836, + "grad_norm": 0.06745267659425735, + "learning_rate": 0.01, + "loss": 2.0464, + "step": 14970 + }, + { + "epoch": 1.5366379310344827, + "grad_norm": 0.10053039342164993, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 14973 + }, + { + "epoch": 1.5369458128078817, + "grad_norm": 0.08785562962293625, + "learning_rate": 0.01, + "loss": 2.059, + "step": 14976 + }, + { + "epoch": 1.5372536945812807, + "grad_norm": 0.12240536510944366, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 14979 + }, + { + "epoch": 1.5375615763546797, + "grad_norm": 0.08541588485240936, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 14982 + }, + { + "epoch": 1.5378694581280787, + "grad_norm": 0.0469081737101078, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 14985 + }, + { + "epoch": 1.5381773399014778, + "grad_norm": 0.04396476596593857, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 14988 + }, + { + "epoch": 1.5384852216748768, + "grad_norm": 0.033920448273420334, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 14991 + }, + { + "epoch": 1.5387931034482758, + "grad_norm": 0.035798102617263794, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 14994 + }, + { + "epoch": 1.5391009852216748, + "grad_norm": 0.030788132920861244, + "learning_rate": 0.01, + "loss": 2.0856, + "step": 14997 + }, + { + "epoch": 1.5394088669950738, + "grad_norm": 0.06127138063311577, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 15000 + }, + { + "epoch": 1.5397167487684729, + "grad_norm": 0.07792042940855026, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 15003 + }, + { + "epoch": 1.5400246305418719, + "grad_norm": 0.1915716826915741, + "learning_rate": 0.01, + "loss": 2.06, + "step": 15006 + }, + { + "epoch": 1.540332512315271, + "grad_norm": 0.13130734860897064, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 15009 + }, + { + "epoch": 1.54064039408867, + "grad_norm": 0.08750183880329132, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 15012 + }, + { + "epoch": 1.540948275862069, + "grad_norm": 0.0678631141781807, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 15015 + }, + { + "epoch": 1.541256157635468, + "grad_norm": 0.04352593049407005, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 15018 + }, + { + "epoch": 1.541564039408867, + "grad_norm": 0.059398628771305084, + "learning_rate": 0.01, + "loss": 2.0542, + "step": 15021 + }, + { + "epoch": 1.541871921182266, + "grad_norm": 0.09179355949163437, + "learning_rate": 0.01, + "loss": 2.0623, + "step": 15024 + }, + { + "epoch": 1.542179802955665, + "grad_norm": 0.08243024349212646, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 15027 + }, + { + "epoch": 1.542487684729064, + "grad_norm": 0.05103360861539841, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 15030 + }, + { + "epoch": 1.542795566502463, + "grad_norm": 0.04206395894289017, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 15033 + }, + { + "epoch": 1.543103448275862, + "grad_norm": 0.03659799322485924, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 15036 + }, + { + "epoch": 1.5434113300492611, + "grad_norm": 0.1279965043067932, + "learning_rate": 0.01, + "loss": 2.043, + "step": 15039 + }, + { + "epoch": 1.5437192118226601, + "grad_norm": 0.09509512782096863, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 15042 + }, + { + "epoch": 1.5440270935960592, + "grad_norm": 0.07963217794895172, + "learning_rate": 0.01, + "loss": 2.0632, + "step": 15045 + }, + { + "epoch": 1.5443349753694582, + "grad_norm": 0.06425557285547256, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 15048 + }, + { + "epoch": 1.5446428571428572, + "grad_norm": 0.1166144609451294, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 15051 + }, + { + "epoch": 1.5449507389162562, + "grad_norm": 0.0558270663022995, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 15054 + }, + { + "epoch": 1.5452586206896552, + "grad_norm": 0.05666494369506836, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 15057 + }, + { + "epoch": 1.5455665024630543, + "grad_norm": 0.048931702971458435, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 15060 + }, + { + "epoch": 1.5458743842364533, + "grad_norm": 0.10072410106658936, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 15063 + }, + { + "epoch": 1.5461822660098523, + "grad_norm": 0.06339754164218903, + "learning_rate": 0.01, + "loss": 2.048, + "step": 15066 + }, + { + "epoch": 1.5464901477832513, + "grad_norm": 0.04913650080561638, + "learning_rate": 0.01, + "loss": 2.07, + "step": 15069 + }, + { + "epoch": 1.5467980295566504, + "grad_norm": 0.1012924313545227, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 15072 + }, + { + "epoch": 1.5471059113300494, + "grad_norm": 0.048015668988227844, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 15075 + }, + { + "epoch": 1.5474137931034484, + "grad_norm": 0.09666754305362701, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 15078 + }, + { + "epoch": 1.5477216748768474, + "grad_norm": 0.07722094655036926, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 15081 + }, + { + "epoch": 1.5480295566502464, + "grad_norm": 0.06525082141160965, + "learning_rate": 0.01, + "loss": 2.056, + "step": 15084 + }, + { + "epoch": 1.5483374384236455, + "grad_norm": 0.04979628697037697, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 15087 + }, + { + "epoch": 1.5486453201970445, + "grad_norm": 0.05903888866305351, + "learning_rate": 0.01, + "loss": 2.0551, + "step": 15090 + }, + { + "epoch": 1.5489532019704435, + "grad_norm": 0.09098793566226959, + "learning_rate": 0.01, + "loss": 2.0758, + "step": 15093 + }, + { + "epoch": 1.5492610837438425, + "grad_norm": 0.08262350410223007, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 15096 + }, + { + "epoch": 1.5495689655172413, + "grad_norm": 0.057414278388023376, + "learning_rate": 0.01, + "loss": 2.0887, + "step": 15099 + }, + { + "epoch": 1.5498768472906403, + "grad_norm": 0.06718642264604568, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 15102 + }, + { + "epoch": 1.5501847290640394, + "grad_norm": 0.07351098954677582, + "learning_rate": 0.01, + "loss": 2.0589, + "step": 15105 + }, + { + "epoch": 1.5504926108374384, + "grad_norm": 0.03318174555897713, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 15108 + }, + { + "epoch": 1.5508004926108374, + "grad_norm": 0.11198091506958008, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 15111 + }, + { + "epoch": 1.5511083743842364, + "grad_norm": 0.056512147188186646, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 15114 + }, + { + "epoch": 1.5514162561576355, + "grad_norm": 0.08460327982902527, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 15117 + }, + { + "epoch": 1.5517241379310345, + "grad_norm": 0.08536583930253983, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 15120 + }, + { + "epoch": 1.5520320197044335, + "grad_norm": 0.10857357084751129, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 15123 + }, + { + "epoch": 1.5523399014778325, + "grad_norm": 0.04923904314637184, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 15126 + }, + { + "epoch": 1.5526477832512315, + "grad_norm": 0.05313669145107269, + "learning_rate": 0.01, + "loss": 2.044, + "step": 15129 + }, + { + "epoch": 1.5529556650246306, + "grad_norm": 0.058348409831523895, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 15132 + }, + { + "epoch": 1.5532635467980296, + "grad_norm": 0.04621830955147743, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 15135 + }, + { + "epoch": 1.5535714285714286, + "grad_norm": 0.079473577439785, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 15138 + }, + { + "epoch": 1.5538793103448276, + "grad_norm": 0.10176654160022736, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 15141 + }, + { + "epoch": 1.5541871921182266, + "grad_norm": 0.048997897654771805, + "learning_rate": 0.01, + "loss": 2.0832, + "step": 15144 + }, + { + "epoch": 1.5544950738916257, + "grad_norm": 0.06281887739896774, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 15147 + }, + { + "epoch": 1.5548029556650245, + "grad_norm": 0.07801464200019836, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 15150 + }, + { + "epoch": 1.5551108374384235, + "grad_norm": 0.08535271883010864, + "learning_rate": 0.01, + "loss": 2.0597, + "step": 15153 + }, + { + "epoch": 1.5554187192118225, + "grad_norm": 0.06536438316106796, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 15156 + }, + { + "epoch": 1.5557266009852215, + "grad_norm": 0.045388113707304, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 15159 + }, + { + "epoch": 1.5560344827586206, + "grad_norm": 0.041893068701028824, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 15162 + }, + { + "epoch": 1.5563423645320196, + "grad_norm": 0.04261694848537445, + "learning_rate": 0.01, + "loss": 2.028, + "step": 15165 + }, + { + "epoch": 1.5566502463054186, + "grad_norm": 0.03123985230922699, + "learning_rate": 0.01, + "loss": 2.0653, + "step": 15168 + }, + { + "epoch": 1.5569581280788176, + "grad_norm": 0.048562515527009964, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 15171 + }, + { + "epoch": 1.5572660098522166, + "grad_norm": 0.1343316286802292, + "learning_rate": 0.01, + "loss": 2.062, + "step": 15174 + }, + { + "epoch": 1.5575738916256157, + "grad_norm": 0.10992839932441711, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 15177 + }, + { + "epoch": 1.5578817733990147, + "grad_norm": 0.09098651260137558, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 15180 + }, + { + "epoch": 1.5581896551724137, + "grad_norm": 0.05405926704406738, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 15183 + }, + { + "epoch": 1.5584975369458127, + "grad_norm": 0.04776093736290932, + "learning_rate": 0.01, + "loss": 2.0775, + "step": 15186 + }, + { + "epoch": 1.5588054187192117, + "grad_norm": 0.04614724963903427, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 15189 + }, + { + "epoch": 1.5591133004926108, + "grad_norm": 0.05032865330576897, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 15192 + }, + { + "epoch": 1.5594211822660098, + "grad_norm": 0.051392171531915665, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 15195 + }, + { + "epoch": 1.5597290640394088, + "grad_norm": 0.10255944728851318, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 15198 + }, + { + "epoch": 1.5600369458128078, + "grad_norm": 0.04222560301423073, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 15201 + }, + { + "epoch": 1.5603448275862069, + "grad_norm": 0.045385826379060745, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 15204 + }, + { + "epoch": 1.5606527093596059, + "grad_norm": 0.04241577908396721, + "learning_rate": 0.01, + "loss": 2.0727, + "step": 15207 + }, + { + "epoch": 1.560960591133005, + "grad_norm": 0.12387125194072723, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 15210 + }, + { + "epoch": 1.561268472906404, + "grad_norm": 0.14704599976539612, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 15213 + }, + { + "epoch": 1.561576354679803, + "grad_norm": 0.049915559589862823, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 15216 + }, + { + "epoch": 1.561884236453202, + "grad_norm": 0.057630617171525955, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 15219 + }, + { + "epoch": 1.562192118226601, + "grad_norm": 0.04765351861715317, + "learning_rate": 0.01, + "loss": 2.0763, + "step": 15222 + }, + { + "epoch": 1.5625, + "grad_norm": 0.06213679164648056, + "learning_rate": 0.01, + "loss": 2.0831, + "step": 15225 + }, + { + "epoch": 1.562807881773399, + "grad_norm": 0.07990710437297821, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 15228 + }, + { + "epoch": 1.563115763546798, + "grad_norm": 0.0683673620223999, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 15231 + }, + { + "epoch": 1.563423645320197, + "grad_norm": 0.12503905594348907, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 15234 + }, + { + "epoch": 1.563731527093596, + "grad_norm": 0.03973531350493431, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 15237 + }, + { + "epoch": 1.564039408866995, + "grad_norm": 0.07055282592773438, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 15240 + }, + { + "epoch": 1.5643472906403941, + "grad_norm": 0.06088467687368393, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 15243 + }, + { + "epoch": 1.5646551724137931, + "grad_norm": 0.06393450498580933, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 15246 + }, + { + "epoch": 1.5649630541871922, + "grad_norm": 0.08600255101919174, + "learning_rate": 0.01, + "loss": 2.072, + "step": 15249 + }, + { + "epoch": 1.5652709359605912, + "grad_norm": 0.07075429707765579, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 15252 + }, + { + "epoch": 1.5655788177339902, + "grad_norm": 0.058057527989149094, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 15255 + }, + { + "epoch": 1.5658866995073892, + "grad_norm": 0.04670482128858566, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 15258 + }, + { + "epoch": 1.5661945812807883, + "grad_norm": 0.08971681445837021, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 15261 + }, + { + "epoch": 1.5665024630541873, + "grad_norm": 0.12580984830856323, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 15264 + }, + { + "epoch": 1.5668103448275863, + "grad_norm": 0.05133863538503647, + "learning_rate": 0.01, + "loss": 2.056, + "step": 15267 + }, + { + "epoch": 1.5671182266009853, + "grad_norm": 0.07821512222290039, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 15270 + }, + { + "epoch": 1.5674261083743843, + "grad_norm": 0.07024712860584259, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 15273 + }, + { + "epoch": 1.5677339901477834, + "grad_norm": 0.09332927316427231, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 15276 + }, + { + "epoch": 1.5680418719211824, + "grad_norm": 0.06875135749578476, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 15279 + }, + { + "epoch": 1.5683497536945814, + "grad_norm": 0.08868546783924103, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 15282 + }, + { + "epoch": 1.5686576354679804, + "grad_norm": 0.07729046791791916, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 15285 + }, + { + "epoch": 1.5689655172413794, + "grad_norm": 0.07686775177717209, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 15288 + }, + { + "epoch": 1.5692733990147785, + "grad_norm": 0.0839667096734047, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 15291 + }, + { + "epoch": 1.5695812807881775, + "grad_norm": 0.0704370066523552, + "learning_rate": 0.01, + "loss": 2.0638, + "step": 15294 + }, + { + "epoch": 1.5698891625615765, + "grad_norm": 0.05312497168779373, + "learning_rate": 0.01, + "loss": 2.029, + "step": 15297 + }, + { + "epoch": 1.5701970443349755, + "grad_norm": 0.049166906625032425, + "learning_rate": 0.01, + "loss": 2.0544, + "step": 15300 + }, + { + "epoch": 1.5705049261083743, + "grad_norm": 0.041398897767066956, + "learning_rate": 0.01, + "loss": 2.0652, + "step": 15303 + }, + { + "epoch": 1.5708128078817734, + "grad_norm": 0.08617027848958969, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 15306 + }, + { + "epoch": 1.5711206896551724, + "grad_norm": 0.0348927266895771, + "learning_rate": 0.01, + "loss": 2.043, + "step": 15309 + }, + { + "epoch": 1.5714285714285714, + "grad_norm": 0.060787077993154526, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 15312 + }, + { + "epoch": 1.5717364532019704, + "grad_norm": 0.050898227840662, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 15315 + }, + { + "epoch": 1.5720443349753694, + "grad_norm": 0.04594309255480766, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 15318 + }, + { + "epoch": 1.5723522167487685, + "grad_norm": 0.1161418929696083, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 15321 + }, + { + "epoch": 1.5726600985221675, + "grad_norm": 0.05419136583805084, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 15324 + }, + { + "epoch": 1.5729679802955665, + "grad_norm": 0.07661257684230804, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 15327 + }, + { + "epoch": 1.5732758620689655, + "grad_norm": 0.09760436415672302, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 15330 + }, + { + "epoch": 1.5735837438423645, + "grad_norm": 0.07211121916770935, + "learning_rate": 0.01, + "loss": 2.037, + "step": 15333 + }, + { + "epoch": 1.5738916256157636, + "grad_norm": 0.08360971510410309, + "learning_rate": 0.01, + "loss": 2.0465, + "step": 15336 + }, + { + "epoch": 1.5741995073891626, + "grad_norm": 0.05901337414979935, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 15339 + }, + { + "epoch": 1.5745073891625616, + "grad_norm": 0.07543767988681793, + "learning_rate": 0.01, + "loss": 2.0437, + "step": 15342 + }, + { + "epoch": 1.5748152709359606, + "grad_norm": 0.04725690186023712, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 15345 + }, + { + "epoch": 1.5751231527093597, + "grad_norm": 0.051067035645246506, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 15348 + }, + { + "epoch": 1.5754310344827587, + "grad_norm": 0.03145357966423035, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 15351 + }, + { + "epoch": 1.5757389162561575, + "grad_norm": 0.09291981905698776, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 15354 + }, + { + "epoch": 1.5760467980295565, + "grad_norm": 0.03409574180841446, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 15357 + }, + { + "epoch": 1.5763546798029555, + "grad_norm": 0.045993223786354065, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 15360 + }, + { + "epoch": 1.5766625615763545, + "grad_norm": 0.03174202889204025, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 15363 + }, + { + "epoch": 1.5769704433497536, + "grad_norm": 0.057013627141714096, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 15366 + }, + { + "epoch": 1.5772783251231526, + "grad_norm": 0.05778640881180763, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 15369 + }, + { + "epoch": 1.5775862068965516, + "grad_norm": 0.11259103566408157, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 15372 + }, + { + "epoch": 1.5778940886699506, + "grad_norm": 0.05728684365749359, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 15375 + }, + { + "epoch": 1.5782019704433496, + "grad_norm": 0.07037964463233948, + "learning_rate": 0.01, + "loss": 2.072, + "step": 15378 + }, + { + "epoch": 1.5785098522167487, + "grad_norm": 0.05147834122180939, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 15381 + }, + { + "epoch": 1.5788177339901477, + "grad_norm": 0.0663742870092392, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 15384 + }, + { + "epoch": 1.5791256157635467, + "grad_norm": 0.04665178433060646, + "learning_rate": 0.01, + "loss": 2.0698, + "step": 15387 + }, + { + "epoch": 1.5794334975369457, + "grad_norm": 0.037410903722047806, + "learning_rate": 0.01, + "loss": 2.0529, + "step": 15390 + }, + { + "epoch": 1.5797413793103448, + "grad_norm": 0.03849703446030617, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 15393 + }, + { + "epoch": 1.5800492610837438, + "grad_norm": 0.10119396448135376, + "learning_rate": 0.01, + "loss": 2.0752, + "step": 15396 + }, + { + "epoch": 1.5803571428571428, + "grad_norm": 0.03294401615858078, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 15399 + }, + { + "epoch": 1.5806650246305418, + "grad_norm": 0.06310781091451645, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 15402 + }, + { + "epoch": 1.5809729064039408, + "grad_norm": 0.050191253423690796, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 15405 + }, + { + "epoch": 1.5812807881773399, + "grad_norm": 0.09952792525291443, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 15408 + }, + { + "epoch": 1.5815886699507389, + "grad_norm": 0.12618017196655273, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 15411 + }, + { + "epoch": 1.581896551724138, + "grad_norm": 0.19296571612358093, + "learning_rate": 0.01, + "loss": 2.072, + "step": 15414 + }, + { + "epoch": 1.582204433497537, + "grad_norm": 0.1124732494354248, + "learning_rate": 0.01, + "loss": 2.0451, + "step": 15417 + }, + { + "epoch": 1.582512315270936, + "grad_norm": 0.06556060910224915, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 15420 + }, + { + "epoch": 1.582820197044335, + "grad_norm": 0.05607735365629196, + "learning_rate": 0.01, + "loss": 2.0663, + "step": 15423 + }, + { + "epoch": 1.583128078817734, + "grad_norm": 0.04731295630335808, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 15426 + }, + { + "epoch": 1.583435960591133, + "grad_norm": 0.060452669858932495, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 15429 + }, + { + "epoch": 1.583743842364532, + "grad_norm": 0.056996360421180725, + "learning_rate": 0.01, + "loss": 2.0752, + "step": 15432 + }, + { + "epoch": 1.584051724137931, + "grad_norm": 0.11382313817739487, + "learning_rate": 0.01, + "loss": 2.0723, + "step": 15435 + }, + { + "epoch": 1.58435960591133, + "grad_norm": 0.05176008865237236, + "learning_rate": 0.01, + "loss": 2.0706, + "step": 15438 + }, + { + "epoch": 1.584667487684729, + "grad_norm": 0.05329972878098488, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 15441 + }, + { + "epoch": 1.5849753694581281, + "grad_norm": 0.05416284501552582, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 15444 + }, + { + "epoch": 1.5852832512315271, + "grad_norm": 0.052267350256443024, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 15447 + }, + { + "epoch": 1.5855911330049262, + "grad_norm": 0.1025579646229744, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 15450 + }, + { + "epoch": 1.5858990147783252, + "grad_norm": 0.06416940689086914, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 15453 + }, + { + "epoch": 1.5862068965517242, + "grad_norm": 0.05699596926569939, + "learning_rate": 0.01, + "loss": 2.0678, + "step": 15456 + }, + { + "epoch": 1.5865147783251232, + "grad_norm": 0.036711812019348145, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 15459 + }, + { + "epoch": 1.5868226600985222, + "grad_norm": 0.1025582030415535, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 15462 + }, + { + "epoch": 1.5871305418719213, + "grad_norm": 0.03923096880316734, + "learning_rate": 0.01, + "loss": 2.067, + "step": 15465 + }, + { + "epoch": 1.5874384236453203, + "grad_norm": 0.08267144113779068, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 15468 + }, + { + "epoch": 1.5877463054187193, + "grad_norm": 0.15374930202960968, + "learning_rate": 0.01, + "loss": 2.0384, + "step": 15471 + }, + { + "epoch": 1.5880541871921183, + "grad_norm": 0.10246127098798752, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 15474 + }, + { + "epoch": 1.5883620689655173, + "grad_norm": 0.09784136712551117, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 15477 + }, + { + "epoch": 1.5886699507389164, + "grad_norm": 0.08747786283493042, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 15480 + }, + { + "epoch": 1.5889778325123154, + "grad_norm": 0.0755406990647316, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 15483 + }, + { + "epoch": 1.5892857142857144, + "grad_norm": 0.05593521520495415, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 15486 + }, + { + "epoch": 1.5895935960591134, + "grad_norm": 0.04462866857647896, + "learning_rate": 0.01, + "loss": 2.056, + "step": 15489 + }, + { + "epoch": 1.5899014778325125, + "grad_norm": 0.040571678429841995, + "learning_rate": 0.01, + "loss": 2.0906, + "step": 15492 + }, + { + "epoch": 1.5902093596059115, + "grad_norm": 0.038100458681583405, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 15495 + }, + { + "epoch": 1.5905172413793105, + "grad_norm": 0.04336906597018242, + "learning_rate": 0.01, + "loss": 2.0716, + "step": 15498 + }, + { + "epoch": 1.5908251231527095, + "grad_norm": 0.1424836665391922, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 15501 + }, + { + "epoch": 1.5911330049261085, + "grad_norm": 0.09235331416130066, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 15504 + }, + { + "epoch": 1.5914408866995073, + "grad_norm": 0.07932816445827484, + "learning_rate": 0.01, + "loss": 2.0595, + "step": 15507 + }, + { + "epoch": 1.5917487684729064, + "grad_norm": 0.057297565042972565, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 15510 + }, + { + "epoch": 1.5920566502463054, + "grad_norm": 0.05323542281985283, + "learning_rate": 0.01, + "loss": 2.0568, + "step": 15513 + }, + { + "epoch": 1.5923645320197044, + "grad_norm": 0.039465416222810745, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 15516 + }, + { + "epoch": 1.5926724137931034, + "grad_norm": 0.044614970684051514, + "learning_rate": 0.01, + "loss": 2.0784, + "step": 15519 + }, + { + "epoch": 1.5929802955665024, + "grad_norm": 0.044074248522520065, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 15522 + }, + { + "epoch": 1.5932881773399015, + "grad_norm": 0.04098647087812424, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 15525 + }, + { + "epoch": 1.5935960591133005, + "grad_norm": 0.18400810658931732, + "learning_rate": 0.01, + "loss": 2.0623, + "step": 15528 + }, + { + "epoch": 1.5939039408866995, + "grad_norm": 0.10264160484075546, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 15531 + }, + { + "epoch": 1.5942118226600985, + "grad_norm": 0.10086511820554733, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 15534 + }, + { + "epoch": 1.5945197044334976, + "grad_norm": 0.03823179379105568, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 15537 + }, + { + "epoch": 1.5948275862068966, + "grad_norm": 0.0449577271938324, + "learning_rate": 0.01, + "loss": 2.0635, + "step": 15540 + }, + { + "epoch": 1.5951354679802956, + "grad_norm": 0.04791559278964996, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 15543 + }, + { + "epoch": 1.5954433497536946, + "grad_norm": 0.04523475095629692, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 15546 + }, + { + "epoch": 1.5957512315270936, + "grad_norm": 0.10654012113809586, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 15549 + }, + { + "epoch": 1.5960591133004927, + "grad_norm": 0.06602972745895386, + "learning_rate": 0.01, + "loss": 2.0565, + "step": 15552 + }, + { + "epoch": 1.5963669950738915, + "grad_norm": 0.10605626553297043, + "learning_rate": 0.01, + "loss": 2.0792, + "step": 15555 + }, + { + "epoch": 1.5966748768472905, + "grad_norm": 0.05995124578475952, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 15558 + }, + { + "epoch": 1.5969827586206895, + "grad_norm": 0.05426995828747749, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 15561 + }, + { + "epoch": 1.5972906403940885, + "grad_norm": 0.08749561756849289, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 15564 + }, + { + "epoch": 1.5975985221674875, + "grad_norm": 0.0735105574131012, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 15567 + }, + { + "epoch": 1.5979064039408866, + "grad_norm": 0.05417585372924805, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 15570 + }, + { + "epoch": 1.5982142857142856, + "grad_norm": 0.04170646145939827, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 15573 + }, + { + "epoch": 1.5985221674876846, + "grad_norm": 0.05886775627732277, + "learning_rate": 0.01, + "loss": 2.0419, + "step": 15576 + }, + { + "epoch": 1.5988300492610836, + "grad_norm": 0.04231201857328415, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 15579 + }, + { + "epoch": 1.5991379310344827, + "grad_norm": 0.06620585918426514, + "learning_rate": 0.01, + "loss": 2.043, + "step": 15582 + }, + { + "epoch": 1.5994458128078817, + "grad_norm": 0.10536913573741913, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 15585 + }, + { + "epoch": 1.5997536945812807, + "grad_norm": 0.14467884600162506, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 15588 + }, + { + "epoch": 1.6000615763546797, + "grad_norm": 0.11715273559093475, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 15591 + }, + { + "epoch": 1.6003694581280787, + "grad_norm": 0.04978121817111969, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 15594 + }, + { + "epoch": 1.6006773399014778, + "grad_norm": 0.06248803436756134, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 15597 + }, + { + "epoch": 1.6009852216748768, + "grad_norm": 0.05408048257231712, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 15600 + }, + { + "epoch": 1.6012931034482758, + "grad_norm": 0.05805948004126549, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 15603 + }, + { + "epoch": 1.6016009852216748, + "grad_norm": 0.03809194639325142, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 15606 + }, + { + "epoch": 1.6019088669950738, + "grad_norm": 0.07981141656637192, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 15609 + }, + { + "epoch": 1.6022167487684729, + "grad_norm": 0.04769575223326683, + "learning_rate": 0.01, + "loss": 2.0703, + "step": 15612 + }, + { + "epoch": 1.6025246305418719, + "grad_norm": 0.09913644194602966, + "learning_rate": 0.01, + "loss": 2.074, + "step": 15615 + }, + { + "epoch": 1.602832512315271, + "grad_norm": 0.12298569083213806, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 15618 + }, + { + "epoch": 1.60314039408867, + "grad_norm": 0.0525309219956398, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 15621 + }, + { + "epoch": 1.603448275862069, + "grad_norm": 0.07430320978164673, + "learning_rate": 0.01, + "loss": 2.0465, + "step": 15624 + }, + { + "epoch": 1.603756157635468, + "grad_norm": 0.036753058433532715, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 15627 + }, + { + "epoch": 1.604064039408867, + "grad_norm": 0.04560523107647896, + "learning_rate": 0.01, + "loss": 2.074, + "step": 15630 + }, + { + "epoch": 1.604371921182266, + "grad_norm": 0.07089810073375702, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 15633 + }, + { + "epoch": 1.604679802955665, + "grad_norm": 0.10833004862070084, + "learning_rate": 0.01, + "loss": 2.066, + "step": 15636 + }, + { + "epoch": 1.604987684729064, + "grad_norm": 0.06033416837453842, + "learning_rate": 0.01, + "loss": 2.0893, + "step": 15639 + }, + { + "epoch": 1.605295566502463, + "grad_norm": 0.06819162517786026, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 15642 + }, + { + "epoch": 1.605603448275862, + "grad_norm": 0.08949002623558044, + "learning_rate": 0.01, + "loss": 2.0891, + "step": 15645 + }, + { + "epoch": 1.6059113300492611, + "grad_norm": 0.04749004542827606, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 15648 + }, + { + "epoch": 1.6062192118226601, + "grad_norm": 0.06903103739023209, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 15651 + }, + { + "epoch": 1.6065270935960592, + "grad_norm": 0.10074819624423981, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 15654 + }, + { + "epoch": 1.6068349753694582, + "grad_norm": 0.0390753298997879, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 15657 + }, + { + "epoch": 1.6071428571428572, + "grad_norm": 0.04776669666171074, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 15660 + }, + { + "epoch": 1.6074507389162562, + "grad_norm": 0.1191340908408165, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 15663 + }, + { + "epoch": 1.6077586206896552, + "grad_norm": 0.08326657861471176, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 15666 + }, + { + "epoch": 1.6080665024630543, + "grad_norm": 0.044734589755535126, + "learning_rate": 0.01, + "loss": 2.0626, + "step": 15669 + }, + { + "epoch": 1.6083743842364533, + "grad_norm": 0.047262392938137054, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 15672 + }, + { + "epoch": 1.6086822660098523, + "grad_norm": 0.0908563882112503, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 15675 + }, + { + "epoch": 1.6089901477832513, + "grad_norm": 0.06681264191865921, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 15678 + }, + { + "epoch": 1.6092980295566504, + "grad_norm": 0.09569018334150314, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 15681 + }, + { + "epoch": 1.6096059113300494, + "grad_norm": 0.04303963482379913, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 15684 + }, + { + "epoch": 1.6099137931034484, + "grad_norm": 0.09924867749214172, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 15687 + }, + { + "epoch": 1.6102216748768474, + "grad_norm": 0.041328392922878265, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 15690 + }, + { + "epoch": 1.6105295566502464, + "grad_norm": 0.056367840617895126, + "learning_rate": 0.01, + "loss": 2.0746, + "step": 15693 + }, + { + "epoch": 1.6108374384236455, + "grad_norm": 0.06074264645576477, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 15696 + }, + { + "epoch": 1.6111453201970445, + "grad_norm": 0.06541740894317627, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 15699 + }, + { + "epoch": 1.6114532019704435, + "grad_norm": 0.06279835850000381, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 15702 + }, + { + "epoch": 1.6117610837438425, + "grad_norm": 0.03825109452009201, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 15705 + }, + { + "epoch": 1.6120689655172413, + "grad_norm": 0.03792817145586014, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 15708 + }, + { + "epoch": 1.6123768472906403, + "grad_norm": 0.05229473114013672, + "learning_rate": 0.01, + "loss": 2.0765, + "step": 15711 + }, + { + "epoch": 1.6126847290640394, + "grad_norm": 0.11285384744405746, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 15714 + }, + { + "epoch": 1.6129926108374384, + "grad_norm": 0.07333546876907349, + "learning_rate": 0.01, + "loss": 2.05, + "step": 15717 + }, + { + "epoch": 1.6133004926108374, + "grad_norm": 0.07698936760425568, + "learning_rate": 0.01, + "loss": 2.0757, + "step": 15720 + }, + { + "epoch": 1.6136083743842364, + "grad_norm": 0.06517963856458664, + "learning_rate": 0.01, + "loss": 2.032, + "step": 15723 + }, + { + "epoch": 1.6139162561576355, + "grad_norm": 0.07242800295352936, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 15726 + }, + { + "epoch": 1.6142241379310345, + "grad_norm": 0.03956649452447891, + "learning_rate": 0.01, + "loss": 2.0437, + "step": 15729 + }, + { + "epoch": 1.6145320197044335, + "grad_norm": 0.10249898582696915, + "learning_rate": 0.01, + "loss": 2.0716, + "step": 15732 + }, + { + "epoch": 1.6148399014778325, + "grad_norm": 0.09716839343309402, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 15735 + }, + { + "epoch": 1.6151477832512315, + "grad_norm": 0.0809134840965271, + "learning_rate": 0.01, + "loss": 2.0553, + "step": 15738 + }, + { + "epoch": 1.6154556650246306, + "grad_norm": 0.07891330122947693, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 15741 + }, + { + "epoch": 1.6157635467980296, + "grad_norm": 0.06289231032133102, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 15744 + }, + { + "epoch": 1.6160714285714286, + "grad_norm": 0.032251689583063126, + "learning_rate": 0.01, + "loss": 2.049, + "step": 15747 + }, + { + "epoch": 1.6163793103448276, + "grad_norm": 0.032203931361436844, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 15750 + }, + { + "epoch": 1.6166871921182266, + "grad_norm": 0.042572617530822754, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 15753 + }, + { + "epoch": 1.6169950738916257, + "grad_norm": 0.06869769096374512, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 15756 + }, + { + "epoch": 1.6173029556650245, + "grad_norm": 0.09649953991174698, + "learning_rate": 0.01, + "loss": 2.0811, + "step": 15759 + }, + { + "epoch": 1.6176108374384235, + "grad_norm": 0.060255225747823715, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 15762 + }, + { + "epoch": 1.6179187192118225, + "grad_norm": 0.0548517182469368, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 15765 + }, + { + "epoch": 1.6182266009852215, + "grad_norm": 0.09392546862363815, + "learning_rate": 0.01, + "loss": 2.0722, + "step": 15768 + }, + { + "epoch": 1.6185344827586206, + "grad_norm": 0.052100926637649536, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 15771 + }, + { + "epoch": 1.6188423645320196, + "grad_norm": 0.05099212005734444, + "learning_rate": 0.01, + "loss": 2.0589, + "step": 15774 + }, + { + "epoch": 1.6191502463054186, + "grad_norm": 0.0486266165971756, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 15777 + }, + { + "epoch": 1.6194581280788176, + "grad_norm": 0.044072605669498444, + "learning_rate": 0.01, + "loss": 2.0877, + "step": 15780 + }, + { + "epoch": 1.6197660098522166, + "grad_norm": 0.09196856617927551, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 15783 + }, + { + "epoch": 1.6200738916256157, + "grad_norm": 0.05948984995484352, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 15786 + }, + { + "epoch": 1.6203817733990147, + "grad_norm": 0.043075162917375565, + "learning_rate": 0.01, + "loss": 2.058, + "step": 15789 + }, + { + "epoch": 1.6206896551724137, + "grad_norm": 0.06739038228988647, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 15792 + }, + { + "epoch": 1.6209975369458127, + "grad_norm": 0.05961238220334053, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 15795 + }, + { + "epoch": 1.6213054187192117, + "grad_norm": 0.06527238339185715, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 15798 + }, + { + "epoch": 1.6216133004926108, + "grad_norm": 0.09234929084777832, + "learning_rate": 0.01, + "loss": 2.039, + "step": 15801 + }, + { + "epoch": 1.6219211822660098, + "grad_norm": 0.08050446212291718, + "learning_rate": 0.01, + "loss": 2.0769, + "step": 15804 + }, + { + "epoch": 1.6222290640394088, + "grad_norm": 0.06419754028320312, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 15807 + }, + { + "epoch": 1.6225369458128078, + "grad_norm": 0.06302323937416077, + "learning_rate": 0.01, + "loss": 2.0535, + "step": 15810 + }, + { + "epoch": 1.6228448275862069, + "grad_norm": 0.051602717489004135, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 15813 + }, + { + "epoch": 1.6231527093596059, + "grad_norm": 0.12424405664205551, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 15816 + }, + { + "epoch": 1.623460591133005, + "grad_norm": 0.10444232821464539, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 15819 + }, + { + "epoch": 1.623768472906404, + "grad_norm": 0.06170908361673355, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 15822 + }, + { + "epoch": 1.624076354679803, + "grad_norm": 0.05145244672894478, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 15825 + }, + { + "epoch": 1.624384236453202, + "grad_norm": 0.0459282286465168, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 15828 + }, + { + "epoch": 1.624692118226601, + "grad_norm": 0.05250949412584305, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 15831 + }, + { + "epoch": 1.625, + "grad_norm": 0.03222022205591202, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 15834 + }, + { + "epoch": 1.625307881773399, + "grad_norm": 0.05849120765924454, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 15837 + }, + { + "epoch": 1.625615763546798, + "grad_norm": 0.04638088122010231, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 15840 + }, + { + "epoch": 1.625923645320197, + "grad_norm": 0.046597037464380264, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 15843 + }, + { + "epoch": 1.626231527093596, + "grad_norm": 0.10477445274591446, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 15846 + }, + { + "epoch": 1.626539408866995, + "grad_norm": 0.03439783677458763, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 15849 + }, + { + "epoch": 1.6268472906403941, + "grad_norm": 0.05810544639825821, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 15852 + }, + { + "epoch": 1.6271551724137931, + "grad_norm": 0.04557522386312485, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 15855 + }, + { + "epoch": 1.6274630541871922, + "grad_norm": 0.04236530885100365, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 15858 + }, + { + "epoch": 1.6277709359605912, + "grad_norm": 0.04338948428630829, + "learning_rate": 0.01, + "loss": 2.0584, + "step": 15861 + }, + { + "epoch": 1.6280788177339902, + "grad_norm": 0.039782583713531494, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 15864 + }, + { + "epoch": 1.6283866995073892, + "grad_norm": 0.06858891248703003, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 15867 + }, + { + "epoch": 1.6286945812807883, + "grad_norm": 0.0510399155318737, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 15870 + }, + { + "epoch": 1.6290024630541873, + "grad_norm": 0.12568604946136475, + "learning_rate": 0.01, + "loss": 2.0597, + "step": 15873 + }, + { + "epoch": 1.6293103448275863, + "grad_norm": 0.09245727956295013, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 15876 + }, + { + "epoch": 1.6296182266009853, + "grad_norm": 0.05763734132051468, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 15879 + }, + { + "epoch": 1.6299261083743843, + "grad_norm": 0.06099852919578552, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 15882 + }, + { + "epoch": 1.6302339901477834, + "grad_norm": 0.05738021805882454, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 15885 + }, + { + "epoch": 1.6305418719211824, + "grad_norm": 0.04953853040933609, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 15888 + }, + { + "epoch": 1.6308497536945814, + "grad_norm": 0.08572196215391159, + "learning_rate": 0.01, + "loss": 2.0618, + "step": 15891 + }, + { + "epoch": 1.6311576354679804, + "grad_norm": 0.09245479106903076, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 15894 + }, + { + "epoch": 1.6314655172413794, + "grad_norm": 0.057964712381362915, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 15897 + }, + { + "epoch": 1.6317733990147785, + "grad_norm": 0.05189305916428566, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 15900 + }, + { + "epoch": 1.6320812807881775, + "grad_norm": 0.07327884435653687, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 15903 + }, + { + "epoch": 1.6323891625615765, + "grad_norm": 0.07089177519083023, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 15906 + }, + { + "epoch": 1.6326970443349755, + "grad_norm": 0.09783073514699936, + "learning_rate": 0.01, + "loss": 2.051, + "step": 15909 + }, + { + "epoch": 1.6330049261083743, + "grad_norm": 0.06617991626262665, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 15912 + }, + { + "epoch": 1.6333128078817734, + "grad_norm": 0.10033921152353287, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 15915 + }, + { + "epoch": 1.6336206896551724, + "grad_norm": 0.054432835429906845, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 15918 + }, + { + "epoch": 1.6339285714285714, + "grad_norm": 0.056940387934446335, + "learning_rate": 0.01, + "loss": 2.0566, + "step": 15921 + }, + { + "epoch": 1.6342364532019704, + "grad_norm": 0.12047278136014938, + "learning_rate": 0.01, + "loss": 2.0464, + "step": 15924 + }, + { + "epoch": 1.6345443349753694, + "grad_norm": 0.04637087881565094, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 15927 + }, + { + "epoch": 1.6348522167487685, + "grad_norm": 0.03925006836652756, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 15930 + }, + { + "epoch": 1.6351600985221675, + "grad_norm": 0.04180562496185303, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 15933 + }, + { + "epoch": 1.6354679802955665, + "grad_norm": 0.08031155914068222, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 15936 + }, + { + "epoch": 1.6357758620689655, + "grad_norm": 0.0812869518995285, + "learning_rate": 0.01, + "loss": 2.021, + "step": 15939 + }, + { + "epoch": 1.6360837438423645, + "grad_norm": 0.07887094467878342, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 15942 + }, + { + "epoch": 1.6363916256157636, + "grad_norm": 0.12604457139968872, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 15945 + }, + { + "epoch": 1.6366995073891626, + "grad_norm": 0.1262006163597107, + "learning_rate": 0.01, + "loss": 2.0806, + "step": 15948 + }, + { + "epoch": 1.6370073891625616, + "grad_norm": 0.07335629314184189, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 15951 + }, + { + "epoch": 1.6373152709359606, + "grad_norm": 0.043172985315322876, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 15954 + }, + { + "epoch": 1.6376231527093597, + "grad_norm": 0.07475942373275757, + "learning_rate": 0.01, + "loss": 2.0842, + "step": 15957 + }, + { + "epoch": 1.6379310344827587, + "grad_norm": 0.06113087013363838, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 15960 + }, + { + "epoch": 1.6382389162561575, + "grad_norm": 0.08709672093391418, + "learning_rate": 0.01, + "loss": 2.0886, + "step": 15963 + }, + { + "epoch": 1.6385467980295565, + "grad_norm": 0.05810529738664627, + "learning_rate": 0.01, + "loss": 2.043, + "step": 15966 + }, + { + "epoch": 1.6388546798029555, + "grad_norm": 0.0831620916724205, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 15969 + }, + { + "epoch": 1.6391625615763545, + "grad_norm": 0.040577951818704605, + "learning_rate": 0.01, + "loss": 2.0676, + "step": 15972 + }, + { + "epoch": 1.6394704433497536, + "grad_norm": 0.03428385406732559, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 15975 + }, + { + "epoch": 1.6397783251231526, + "grad_norm": 0.04800771176815033, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 15978 + }, + { + "epoch": 1.6400862068965516, + "grad_norm": 0.05769934877753258, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 15981 + }, + { + "epoch": 1.6403940886699506, + "grad_norm": 0.08842117339372635, + "learning_rate": 0.01, + "loss": 2.037, + "step": 15984 + }, + { + "epoch": 1.6407019704433496, + "grad_norm": 0.09740414470434189, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 15987 + }, + { + "epoch": 1.6410098522167487, + "grad_norm": 0.11128890514373779, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 15990 + }, + { + "epoch": 1.6413177339901477, + "grad_norm": 0.03690354898571968, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 15993 + }, + { + "epoch": 1.6416256157635467, + "grad_norm": 0.07311075925827026, + "learning_rate": 0.01, + "loss": 2.036, + "step": 15996 + }, + { + "epoch": 1.6419334975369457, + "grad_norm": 0.045825451612472534, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 15999 + }, + { + "epoch": 1.6422413793103448, + "grad_norm": 0.09123300760984421, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 16002 + }, + { + "epoch": 1.6425492610837438, + "grad_norm": 0.0702185183763504, + "learning_rate": 0.01, + "loss": 2.0715, + "step": 16005 + }, + { + "epoch": 1.6428571428571428, + "grad_norm": 0.0355604812502861, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 16008 + }, + { + "epoch": 1.6431650246305418, + "grad_norm": 0.03151632100343704, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 16011 + }, + { + "epoch": 1.6434729064039408, + "grad_norm": 0.04302441328763962, + "learning_rate": 0.01, + "loss": 2.0824, + "step": 16014 + }, + { + "epoch": 1.6437807881773399, + "grad_norm": 0.06012306734919548, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 16017 + }, + { + "epoch": 1.6440886699507389, + "grad_norm": 0.04698712378740311, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 16020 + }, + { + "epoch": 1.644396551724138, + "grad_norm": 0.03930363059043884, + "learning_rate": 0.01, + "loss": 2.0612, + "step": 16023 + }, + { + "epoch": 1.644704433497537, + "grad_norm": 0.0881473496556282, + "learning_rate": 0.01, + "loss": 2.0724, + "step": 16026 + }, + { + "epoch": 1.645012315270936, + "grad_norm": 0.04207085818052292, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 16029 + }, + { + "epoch": 1.645320197044335, + "grad_norm": 0.04729215428233147, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 16032 + }, + { + "epoch": 1.645628078817734, + "grad_norm": 0.050990305840969086, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 16035 + }, + { + "epoch": 1.645935960591133, + "grad_norm": 0.05049813538789749, + "learning_rate": 0.01, + "loss": 2.0609, + "step": 16038 + }, + { + "epoch": 1.646243842364532, + "grad_norm": 0.07787630707025528, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 16041 + }, + { + "epoch": 1.646551724137931, + "grad_norm": 0.06656081229448318, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 16044 + }, + { + "epoch": 1.64685960591133, + "grad_norm": 0.08293109387159348, + "learning_rate": 0.01, + "loss": 2.062, + "step": 16047 + }, + { + "epoch": 1.647167487684729, + "grad_norm": 0.0775810182094574, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 16050 + }, + { + "epoch": 1.6474753694581281, + "grad_norm": 0.07917825132608414, + "learning_rate": 0.01, + "loss": 2.067, + "step": 16053 + }, + { + "epoch": 1.6477832512315271, + "grad_norm": 0.07658717036247253, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 16056 + }, + { + "epoch": 1.6480911330049262, + "grad_norm": 0.07735300809144974, + "learning_rate": 0.01, + "loss": 2.0481, + "step": 16059 + }, + { + "epoch": 1.6483990147783252, + "grad_norm": 0.07964644581079483, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 16062 + }, + { + "epoch": 1.6487068965517242, + "grad_norm": 0.0601799339056015, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 16065 + }, + { + "epoch": 1.6490147783251232, + "grad_norm": 0.1039920225739479, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 16068 + }, + { + "epoch": 1.6493226600985222, + "grad_norm": 0.055755455046892166, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 16071 + }, + { + "epoch": 1.6496305418719213, + "grad_norm": 0.0998646542429924, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 16074 + }, + { + "epoch": 1.6499384236453203, + "grad_norm": 0.04582648724317551, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 16077 + }, + { + "epoch": 1.6502463054187193, + "grad_norm": 0.08638078719377518, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 16080 + }, + { + "epoch": 1.6505541871921183, + "grad_norm": 0.053813617676496506, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 16083 + }, + { + "epoch": 1.6508620689655173, + "grad_norm": 0.08186789602041245, + "learning_rate": 0.01, + "loss": 2.07, + "step": 16086 + }, + { + "epoch": 1.6511699507389164, + "grad_norm": 0.037794895470142365, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 16089 + }, + { + "epoch": 1.6514778325123154, + "grad_norm": 0.1052238717675209, + "learning_rate": 0.01, + "loss": 2.0614, + "step": 16092 + }, + { + "epoch": 1.6517857142857144, + "grad_norm": 0.07596205919981003, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 16095 + }, + { + "epoch": 1.6520935960591134, + "grad_norm": 0.047295670956373215, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 16098 + }, + { + "epoch": 1.6524014778325125, + "grad_norm": 0.05572659894824028, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 16101 + }, + { + "epoch": 1.6527093596059115, + "grad_norm": 0.0429069958627224, + "learning_rate": 0.01, + "loss": 2.0681, + "step": 16104 + }, + { + "epoch": 1.6530172413793105, + "grad_norm": 0.055060967803001404, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 16107 + }, + { + "epoch": 1.6533251231527095, + "grad_norm": 0.05243745073676109, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 16110 + }, + { + "epoch": 1.6536330049261085, + "grad_norm": 0.052228983491659164, + "learning_rate": 0.01, + "loss": 2.06, + "step": 16113 + }, + { + "epoch": 1.6539408866995073, + "grad_norm": 0.065925233066082, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 16116 + }, + { + "epoch": 1.6542487684729064, + "grad_norm": 0.05819106101989746, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 16119 + }, + { + "epoch": 1.6545566502463054, + "grad_norm": 0.04320794716477394, + "learning_rate": 0.01, + "loss": 2.0691, + "step": 16122 + }, + { + "epoch": 1.6548645320197044, + "grad_norm": 0.04202846437692642, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 16125 + }, + { + "epoch": 1.6551724137931034, + "grad_norm": 0.12747296690940857, + "learning_rate": 0.01, + "loss": 2.0419, + "step": 16128 + }, + { + "epoch": 1.6554802955665024, + "grad_norm": 0.07199030369520187, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 16131 + }, + { + "epoch": 1.6557881773399015, + "grad_norm": 0.085335373878479, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 16134 + }, + { + "epoch": 1.6560960591133005, + "grad_norm": 0.061818841844797134, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 16137 + }, + { + "epoch": 1.6564039408866995, + "grad_norm": 0.06255804747343063, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 16140 + }, + { + "epoch": 1.6567118226600985, + "grad_norm": 0.08308485150337219, + "learning_rate": 0.01, + "loss": 2.0814, + "step": 16143 + }, + { + "epoch": 1.6570197044334976, + "grad_norm": 0.06358073651790619, + "learning_rate": 0.01, + "loss": 2.048, + "step": 16146 + }, + { + "epoch": 1.6573275862068966, + "grad_norm": 0.085427425801754, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 16149 + }, + { + "epoch": 1.6576354679802956, + "grad_norm": 0.043243568390607834, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 16152 + }, + { + "epoch": 1.6579433497536946, + "grad_norm": 0.06593325734138489, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 16155 + }, + { + "epoch": 1.6582512315270936, + "grad_norm": 0.14644569158554077, + "learning_rate": 0.01, + "loss": 2.0689, + "step": 16158 + }, + { + "epoch": 1.6585591133004927, + "grad_norm": 0.1211152896285057, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 16161 + }, + { + "epoch": 1.6588669950738915, + "grad_norm": 0.11020830273628235, + "learning_rate": 0.01, + "loss": 2.0572, + "step": 16164 + }, + { + "epoch": 1.6591748768472905, + "grad_norm": 0.08850467950105667, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 16167 + }, + { + "epoch": 1.6594827586206895, + "grad_norm": 0.050562698394060135, + "learning_rate": 0.01, + "loss": 2.0542, + "step": 16170 + }, + { + "epoch": 1.6597906403940885, + "grad_norm": 0.048076871782541275, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 16173 + }, + { + "epoch": 1.6600985221674875, + "grad_norm": 0.03727034851908684, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 16176 + }, + { + "epoch": 1.6604064039408866, + "grad_norm": 0.048614371567964554, + "learning_rate": 0.01, + "loss": 2.0552, + "step": 16179 + }, + { + "epoch": 1.6607142857142856, + "grad_norm": 0.05649641901254654, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 16182 + }, + { + "epoch": 1.6610221674876846, + "grad_norm": 0.05329003930091858, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 16185 + }, + { + "epoch": 1.6613300492610836, + "grad_norm": 0.06444583833217621, + "learning_rate": 0.01, + "loss": 2.055, + "step": 16188 + }, + { + "epoch": 1.6616379310344827, + "grad_norm": 0.045777902007102966, + "learning_rate": 0.01, + "loss": 2.0476, + "step": 16191 + }, + { + "epoch": 1.6619458128078817, + "grad_norm": 0.04831868037581444, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 16194 + }, + { + "epoch": 1.6622536945812807, + "grad_norm": 0.10648196935653687, + "learning_rate": 0.01, + "loss": 2.0579, + "step": 16197 + }, + { + "epoch": 1.6625615763546797, + "grad_norm": 0.08369257301092148, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 16200 + }, + { + "epoch": 1.6628694581280787, + "grad_norm": 0.13716475665569305, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 16203 + }, + { + "epoch": 1.6631773399014778, + "grad_norm": 0.05025027319788933, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 16206 + }, + { + "epoch": 1.6634852216748768, + "grad_norm": 0.03850054368376732, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 16209 + }, + { + "epoch": 1.6637931034482758, + "grad_norm": 0.046656832098960876, + "learning_rate": 0.01, + "loss": 2.0595, + "step": 16212 + }, + { + "epoch": 1.6641009852216748, + "grad_norm": 0.03826647624373436, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 16215 + }, + { + "epoch": 1.6644088669950738, + "grad_norm": 0.061087023466825485, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 16218 + }, + { + "epoch": 1.6647167487684729, + "grad_norm": 0.03787006065249443, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 16221 + }, + { + "epoch": 1.6650246305418719, + "grad_norm": 0.09619265049695969, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 16224 + }, + { + "epoch": 1.665332512315271, + "grad_norm": 0.04012330621480942, + "learning_rate": 0.01, + "loss": 2.044, + "step": 16227 + }, + { + "epoch": 1.66564039408867, + "grad_norm": 0.062126293778419495, + "learning_rate": 0.01, + "loss": 2.0726, + "step": 16230 + }, + { + "epoch": 1.665948275862069, + "grad_norm": 0.050277624279260635, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 16233 + }, + { + "epoch": 1.666256157635468, + "grad_norm": 0.03983129933476448, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 16236 + }, + { + "epoch": 1.666564039408867, + "grad_norm": 0.13119915127754211, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 16239 + }, + { + "epoch": 1.666871921182266, + "grad_norm": 0.0525536946952343, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 16242 + }, + { + "epoch": 1.667179802955665, + "grad_norm": 0.056762780994176865, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 16245 + }, + { + "epoch": 1.667487684729064, + "grad_norm": 0.08652041852474213, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 16248 + }, + { + "epoch": 1.667795566502463, + "grad_norm": 0.14455944299697876, + "learning_rate": 0.01, + "loss": 2.0406, + "step": 16251 + }, + { + "epoch": 1.668103448275862, + "grad_norm": 0.03951118513941765, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 16254 + }, + { + "epoch": 1.6684113300492611, + "grad_norm": 0.040585123002529144, + "learning_rate": 0.01, + "loss": 2.017, + "step": 16257 + }, + { + "epoch": 1.6687192118226601, + "grad_norm": 0.05393810570240021, + "learning_rate": 0.01, + "loss": 2.0679, + "step": 16260 + }, + { + "epoch": 1.6690270935960592, + "grad_norm": 0.050093088299036026, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 16263 + }, + { + "epoch": 1.6693349753694582, + "grad_norm": 0.04196159914135933, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 16266 + }, + { + "epoch": 1.6696428571428572, + "grad_norm": 0.03978092968463898, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 16269 + }, + { + "epoch": 1.6699507389162562, + "grad_norm": 0.05054232105612755, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 16272 + }, + { + "epoch": 1.6702586206896552, + "grad_norm": 0.0746975764632225, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 16275 + }, + { + "epoch": 1.6705665024630543, + "grad_norm": 0.05685516446828842, + "learning_rate": 0.01, + "loss": 2.0591, + "step": 16278 + }, + { + "epoch": 1.6708743842364533, + "grad_norm": 0.031971871852874756, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 16281 + }, + { + "epoch": 1.6711822660098523, + "grad_norm": 0.03947863727807999, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 16284 + }, + { + "epoch": 1.6714901477832513, + "grad_norm": 0.11271070688962936, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 16287 + }, + { + "epoch": 1.6717980295566504, + "grad_norm": 0.05308755114674568, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 16290 + }, + { + "epoch": 1.6721059113300494, + "grad_norm": 0.042826078832149506, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 16293 + }, + { + "epoch": 1.6724137931034484, + "grad_norm": 0.0458630695939064, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 16296 + }, + { + "epoch": 1.6727216748768474, + "grad_norm": 0.05401900038123131, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 16299 + }, + { + "epoch": 1.6730295566502464, + "grad_norm": 0.05380195751786232, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 16302 + }, + { + "epoch": 1.6733374384236455, + "grad_norm": 0.038716450333595276, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 16305 + }, + { + "epoch": 1.6736453201970445, + "grad_norm": 0.04034694656729698, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 16308 + }, + { + "epoch": 1.6739532019704435, + "grad_norm": 0.06753403693437576, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 16311 + }, + { + "epoch": 1.6742610837438425, + "grad_norm": 0.10001173615455627, + "learning_rate": 0.01, + "loss": 2.0467, + "step": 16314 + }, + { + "epoch": 1.6745689655172413, + "grad_norm": 0.04366351664066315, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 16317 + }, + { + "epoch": 1.6748768472906403, + "grad_norm": 0.07137630879878998, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 16320 + }, + { + "epoch": 1.6751847290640394, + "grad_norm": 0.049938492476940155, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 16323 + }, + { + "epoch": 1.6754926108374384, + "grad_norm": 0.03337172046303749, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 16326 + }, + { + "epoch": 1.6758004926108374, + "grad_norm": 0.07407473772764206, + "learning_rate": 0.01, + "loss": 2.0705, + "step": 16329 + }, + { + "epoch": 1.6761083743842364, + "grad_norm": 0.07006946206092834, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 16332 + }, + { + "epoch": 1.6764162561576355, + "grad_norm": 0.05342825874686241, + "learning_rate": 0.01, + "loss": 2.0481, + "step": 16335 + }, + { + "epoch": 1.6767241379310345, + "grad_norm": 0.052405234426259995, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 16338 + }, + { + "epoch": 1.6770320197044335, + "grad_norm": 0.20231324434280396, + "learning_rate": 0.01, + "loss": 2.0472, + "step": 16341 + }, + { + "epoch": 1.6773399014778325, + "grad_norm": 0.07893595844507217, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 16344 + }, + { + "epoch": 1.6776477832512315, + "grad_norm": 0.06872416287660599, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 16347 + }, + { + "epoch": 1.6779556650246306, + "grad_norm": 0.041687123477458954, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 16350 + }, + { + "epoch": 1.6782635467980296, + "grad_norm": 0.04184873029589653, + "learning_rate": 0.01, + "loss": 2.0769, + "step": 16353 + }, + { + "epoch": 1.6785714285714286, + "grad_norm": 0.036598458886146545, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 16356 + }, + { + "epoch": 1.6788793103448276, + "grad_norm": 0.062203384935855865, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 16359 + }, + { + "epoch": 1.6791871921182266, + "grad_norm": 0.04513971135020256, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 16362 + }, + { + "epoch": 1.6794950738916257, + "grad_norm": 0.043875399976968765, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 16365 + }, + { + "epoch": 1.6798029556650245, + "grad_norm": 0.030207300558686256, + "learning_rate": 0.01, + "loss": 2.0733, + "step": 16368 + }, + { + "epoch": 1.6801108374384235, + "grad_norm": 0.07749854028224945, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 16371 + }, + { + "epoch": 1.6804187192118225, + "grad_norm": 0.10269973427057266, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 16374 + }, + { + "epoch": 1.6807266009852215, + "grad_norm": 0.043558500707149506, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 16377 + }, + { + "epoch": 1.6810344827586206, + "grad_norm": 0.0490686409175396, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 16380 + }, + { + "epoch": 1.6813423645320196, + "grad_norm": 0.062107689678668976, + "learning_rate": 0.01, + "loss": 2.0592, + "step": 16383 + }, + { + "epoch": 1.6816502463054186, + "grad_norm": 0.0856776013970375, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 16386 + }, + { + "epoch": 1.6819581280788176, + "grad_norm": 0.11694356054067612, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 16389 + }, + { + "epoch": 1.6822660098522166, + "grad_norm": 0.07279752194881439, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 16392 + }, + { + "epoch": 1.6825738916256157, + "grad_norm": 0.06813056766986847, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 16395 + }, + { + "epoch": 1.6828817733990147, + "grad_norm": 0.045916907489299774, + "learning_rate": 0.01, + "loss": 2.0714, + "step": 16398 + }, + { + "epoch": 1.6831896551724137, + "grad_norm": 0.04464447498321533, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 16401 + }, + { + "epoch": 1.6834975369458127, + "grad_norm": 0.04815223440527916, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 16404 + }, + { + "epoch": 1.6838054187192117, + "grad_norm": 0.06025001034140587, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 16407 + }, + { + "epoch": 1.6841133004926108, + "grad_norm": 0.05691540613770485, + "learning_rate": 0.01, + "loss": 2.07, + "step": 16410 + }, + { + "epoch": 1.6844211822660098, + "grad_norm": 0.04643694683909416, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 16413 + }, + { + "epoch": 1.6847290640394088, + "grad_norm": 0.03540325164794922, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 16416 + }, + { + "epoch": 1.6850369458128078, + "grad_norm": 0.034472569823265076, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 16419 + }, + { + "epoch": 1.6853448275862069, + "grad_norm": 0.04316902533173561, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 16422 + }, + { + "epoch": 1.6856527093596059, + "grad_norm": 0.04943558946251869, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 16425 + }, + { + "epoch": 1.685960591133005, + "grad_norm": 0.11482315510511398, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 16428 + }, + { + "epoch": 1.686268472906404, + "grad_norm": 0.10594377666711807, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 16431 + }, + { + "epoch": 1.686576354679803, + "grad_norm": 0.09860610961914062, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 16434 + }, + { + "epoch": 1.686884236453202, + "grad_norm": 0.06849053502082825, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 16437 + }, + { + "epoch": 1.687192118226601, + "grad_norm": 0.05089464411139488, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 16440 + }, + { + "epoch": 1.6875, + "grad_norm": 0.04762034863233566, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 16443 + }, + { + "epoch": 1.687807881773399, + "grad_norm": 0.09014497697353363, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 16446 + }, + { + "epoch": 1.688115763546798, + "grad_norm": 0.06832917779684067, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 16449 + }, + { + "epoch": 1.688423645320197, + "grad_norm": 0.0529920794069767, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 16452 + }, + { + "epoch": 1.688731527093596, + "grad_norm": 0.03208652511239052, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 16455 + }, + { + "epoch": 1.689039408866995, + "grad_norm": 0.13702784478664398, + "learning_rate": 0.01, + "loss": 2.0393, + "step": 16458 + }, + { + "epoch": 1.6893472906403941, + "grad_norm": 0.05972970649600029, + "learning_rate": 0.01, + "loss": 2.0795, + "step": 16461 + }, + { + "epoch": 1.6896551724137931, + "grad_norm": 0.043536797165870667, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 16464 + }, + { + "epoch": 1.6899630541871922, + "grad_norm": 0.0556536540389061, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 16467 + }, + { + "epoch": 1.6902709359605912, + "grad_norm": 0.06583042442798615, + "learning_rate": 0.01, + "loss": 2.0568, + "step": 16470 + }, + { + "epoch": 1.6905788177339902, + "grad_norm": 0.0535028837621212, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 16473 + }, + { + "epoch": 1.6908866995073892, + "grad_norm": 0.09974632412195206, + "learning_rate": 0.01, + "loss": 2.0589, + "step": 16476 + }, + { + "epoch": 1.6911945812807883, + "grad_norm": 0.058350350707769394, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 16479 + }, + { + "epoch": 1.6915024630541873, + "grad_norm": 0.10049036890268326, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 16482 + }, + { + "epoch": 1.6918103448275863, + "grad_norm": 0.061119675636291504, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 16485 + }, + { + "epoch": 1.6921182266009853, + "grad_norm": 0.07189033925533295, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 16488 + }, + { + "epoch": 1.6924261083743843, + "grad_norm": 0.08962611109018326, + "learning_rate": 0.01, + "loss": 2.0586, + "step": 16491 + }, + { + "epoch": 1.6927339901477834, + "grad_norm": 0.05600450560450554, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 16494 + }, + { + "epoch": 1.6930418719211824, + "grad_norm": 0.1281098574399948, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 16497 + }, + { + "epoch": 1.6933497536945814, + "grad_norm": 0.036696117371320724, + "learning_rate": 0.01, + "loss": 2.065, + "step": 16500 + }, + { + "epoch": 1.6936576354679804, + "grad_norm": 0.12428770959377289, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 16503 + }, + { + "epoch": 1.6939655172413794, + "grad_norm": 0.07593953609466553, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 16506 + }, + { + "epoch": 1.6942733990147785, + "grad_norm": 0.0686376765370369, + "learning_rate": 0.01, + "loss": 2.05, + "step": 16509 + }, + { + "epoch": 1.6945812807881775, + "grad_norm": 0.044805269688367844, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 16512 + }, + { + "epoch": 1.6948891625615765, + "grad_norm": 0.04698259010910988, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 16515 + }, + { + "epoch": 1.6951970443349755, + "grad_norm": 0.04546966403722763, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 16518 + }, + { + "epoch": 1.6955049261083743, + "grad_norm": 0.07239431142807007, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 16521 + }, + { + "epoch": 1.6958128078817734, + "grad_norm": 0.08790195733308792, + "learning_rate": 0.01, + "loss": 2.0721, + "step": 16524 + }, + { + "epoch": 1.6961206896551724, + "grad_norm": 0.05445432290434837, + "learning_rate": 0.01, + "loss": 2.039, + "step": 16527 + }, + { + "epoch": 1.6964285714285714, + "grad_norm": 0.048141270875930786, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 16530 + }, + { + "epoch": 1.6967364532019704, + "grad_norm": 0.05230564624071121, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 16533 + }, + { + "epoch": 1.6970443349753694, + "grad_norm": 0.1007009968161583, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 16536 + }, + { + "epoch": 1.6973522167487685, + "grad_norm": 0.03878286853432655, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 16539 + }, + { + "epoch": 1.6976600985221675, + "grad_norm": 0.08503543585538864, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 16542 + }, + { + "epoch": 1.6979679802955665, + "grad_norm": 0.06239473819732666, + "learning_rate": 0.01, + "loss": 2.057, + "step": 16545 + }, + { + "epoch": 1.6982758620689655, + "grad_norm": 0.06893055140972137, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 16548 + }, + { + "epoch": 1.6985837438423645, + "grad_norm": 0.08434829860925674, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 16551 + }, + { + "epoch": 1.6988916256157636, + "grad_norm": 0.031773362308740616, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 16554 + }, + { + "epoch": 1.6991995073891626, + "grad_norm": 0.11598584800958633, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 16557 + }, + { + "epoch": 1.6995073891625616, + "grad_norm": 0.07008111476898193, + "learning_rate": 0.01, + "loss": 2.0787, + "step": 16560 + }, + { + "epoch": 1.6998152709359606, + "grad_norm": 0.03940622881054878, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 16563 + }, + { + "epoch": 1.7001231527093597, + "grad_norm": 0.05206933617591858, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 16566 + }, + { + "epoch": 1.7004310344827587, + "grad_norm": 0.04568307474255562, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 16569 + }, + { + "epoch": 1.7007389162561575, + "grad_norm": 0.031628433614969254, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 16572 + }, + { + "epoch": 1.7010467980295565, + "grad_norm": 0.05636722221970558, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 16575 + }, + { + "epoch": 1.7013546798029555, + "grad_norm": 0.11134552955627441, + "learning_rate": 0.01, + "loss": 2.034, + "step": 16578 + }, + { + "epoch": 1.7016625615763545, + "grad_norm": 0.06964823603630066, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 16581 + }, + { + "epoch": 1.7019704433497536, + "grad_norm": 0.041148003190755844, + "learning_rate": 0.01, + "loss": 2.0693, + "step": 16584 + }, + { + "epoch": 1.7022783251231526, + "grad_norm": 0.03673578426241875, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 16587 + }, + { + "epoch": 1.7025862068965516, + "grad_norm": 0.03659043833613396, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 16590 + }, + { + "epoch": 1.7028940886699506, + "grad_norm": 0.03824566677212715, + "learning_rate": 0.01, + "loss": 2.0587, + "step": 16593 + }, + { + "epoch": 1.7032019704433496, + "grad_norm": 0.07334180176258087, + "learning_rate": 0.01, + "loss": 2.0626, + "step": 16596 + }, + { + "epoch": 1.7035098522167487, + "grad_norm": 0.055927857756614685, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 16599 + }, + { + "epoch": 1.7038177339901477, + "grad_norm": 0.07610691338777542, + "learning_rate": 0.01, + "loss": 2.0419, + "step": 16602 + }, + { + "epoch": 1.7041256157635467, + "grad_norm": 0.06405298411846161, + "learning_rate": 0.01, + "loss": 2.0693, + "step": 16605 + }, + { + "epoch": 1.7044334975369457, + "grad_norm": 0.06193486601114273, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 16608 + }, + { + "epoch": 1.7047413793103448, + "grad_norm": 0.12181366235017776, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 16611 + }, + { + "epoch": 1.7050492610837438, + "grad_norm": 0.049060508608818054, + "learning_rate": 0.01, + "loss": 2.044, + "step": 16614 + }, + { + "epoch": 1.7053571428571428, + "grad_norm": 0.05021090805530548, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 16617 + }, + { + "epoch": 1.7056650246305418, + "grad_norm": 0.045171257108449936, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 16620 + }, + { + "epoch": 1.7059729064039408, + "grad_norm": 0.04944808408617973, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 16623 + }, + { + "epoch": 1.7062807881773399, + "grad_norm": 0.03556932508945465, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 16626 + }, + { + "epoch": 1.7065886699507389, + "grad_norm": 0.10005172342061996, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 16629 + }, + { + "epoch": 1.706896551724138, + "grad_norm": 0.04088572412729263, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 16632 + }, + { + "epoch": 1.707204433497537, + "grad_norm": 0.04937949404120445, + "learning_rate": 0.01, + "loss": 2.0656, + "step": 16635 + }, + { + "epoch": 1.707512315270936, + "grad_norm": 0.07822302728891373, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 16638 + }, + { + "epoch": 1.707820197044335, + "grad_norm": 0.05767158418893814, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 16641 + }, + { + "epoch": 1.708128078817734, + "grad_norm": 0.08512212336063385, + "learning_rate": 0.01, + "loss": 2.0579, + "step": 16644 + }, + { + "epoch": 1.708435960591133, + "grad_norm": 0.06758993119001389, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 16647 + }, + { + "epoch": 1.708743842364532, + "grad_norm": 0.08142005652189255, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 16650 + }, + { + "epoch": 1.709051724137931, + "grad_norm": 0.06357218325138092, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 16653 + }, + { + "epoch": 1.70935960591133, + "grad_norm": 0.10591546446084976, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 16656 + }, + { + "epoch": 1.709667487684729, + "grad_norm": 0.06571496278047562, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 16659 + }, + { + "epoch": 1.7099753694581281, + "grad_norm": 0.049450814723968506, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 16662 + }, + { + "epoch": 1.7102832512315271, + "grad_norm": 0.11850273609161377, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 16665 + }, + { + "epoch": 1.7105911330049262, + "grad_norm": 0.0952281728386879, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 16668 + }, + { + "epoch": 1.7108990147783252, + "grad_norm": 0.09431217610836029, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 16671 + }, + { + "epoch": 1.7112068965517242, + "grad_norm": 0.07080823183059692, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 16674 + }, + { + "epoch": 1.7115147783251232, + "grad_norm": 0.049033813178539276, + "learning_rate": 0.01, + "loss": 2.0489, + "step": 16677 + }, + { + "epoch": 1.7118226600985222, + "grad_norm": 0.04356718435883522, + "learning_rate": 0.01, + "loss": 2.035, + "step": 16680 + }, + { + "epoch": 1.7121305418719213, + "grad_norm": 0.03276592493057251, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 16683 + }, + { + "epoch": 1.7124384236453203, + "grad_norm": 0.04438839852809906, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 16686 + }, + { + "epoch": 1.7127463054187193, + "grad_norm": 0.07276454567909241, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 16689 + }, + { + "epoch": 1.7130541871921183, + "grad_norm": 0.11324001848697662, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 16692 + }, + { + "epoch": 1.7133620689655173, + "grad_norm": 0.14715081453323364, + "learning_rate": 0.01, + "loss": 2.048, + "step": 16695 + }, + { + "epoch": 1.7136699507389164, + "grad_norm": 0.07661852240562439, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 16698 + }, + { + "epoch": 1.7139778325123154, + "grad_norm": 0.05308947339653969, + "learning_rate": 0.01, + "loss": 2.0601, + "step": 16701 + }, + { + "epoch": 1.7142857142857144, + "grad_norm": 0.06816977262496948, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 16704 + }, + { + "epoch": 1.7145935960591134, + "grad_norm": 0.05123249441385269, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 16707 + }, + { + "epoch": 1.7149014778325125, + "grad_norm": 0.05118009075522423, + "learning_rate": 0.01, + "loss": 2.0659, + "step": 16710 + }, + { + "epoch": 1.7152093596059115, + "grad_norm": 0.03276235982775688, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 16713 + }, + { + "epoch": 1.7155172413793105, + "grad_norm": 0.049824655055999756, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 16716 + }, + { + "epoch": 1.7158251231527095, + "grad_norm": 0.1416471302509308, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 16719 + }, + { + "epoch": 1.7161330049261085, + "grad_norm": 0.04109251871705055, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 16722 + }, + { + "epoch": 1.7164408866995073, + "grad_norm": 0.08853971213102341, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 16725 + }, + { + "epoch": 1.7167487684729064, + "grad_norm": 0.05180136114358902, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 16728 + }, + { + "epoch": 1.7170566502463054, + "grad_norm": 0.0667758584022522, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 16731 + }, + { + "epoch": 1.7173645320197044, + "grad_norm": 0.039203155785799026, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 16734 + }, + { + "epoch": 1.7176724137931034, + "grad_norm": 0.05210564285516739, + "learning_rate": 0.01, + "loss": 2.0666, + "step": 16737 + }, + { + "epoch": 1.7179802955665024, + "grad_norm": 0.0668390691280365, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 16740 + }, + { + "epoch": 1.7182881773399015, + "grad_norm": 0.05041831359267235, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 16743 + }, + { + "epoch": 1.7185960591133005, + "grad_norm": 0.04496284946799278, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 16746 + }, + { + "epoch": 1.7189039408866995, + "grad_norm": 0.08660906553268433, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 16749 + }, + { + "epoch": 1.7192118226600985, + "grad_norm": 0.054843079298734665, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 16752 + }, + { + "epoch": 1.7195197044334976, + "grad_norm": 0.05377354100346565, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 16755 + }, + { + "epoch": 1.7198275862068966, + "grad_norm": 0.060547634959220886, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 16758 + }, + { + "epoch": 1.7201354679802956, + "grad_norm": 0.06253104656934738, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 16761 + }, + { + "epoch": 1.7204433497536946, + "grad_norm": 0.052225805819034576, + "learning_rate": 0.01, + "loss": 2.03, + "step": 16764 + }, + { + "epoch": 1.7207512315270936, + "grad_norm": 0.04988449066877365, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 16767 + }, + { + "epoch": 1.7210591133004927, + "grad_norm": 0.049726665019989014, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 16770 + }, + { + "epoch": 1.7213669950738915, + "grad_norm": 0.05053321272134781, + "learning_rate": 0.01, + "loss": 2.0518, + "step": 16773 + }, + { + "epoch": 1.7216748768472905, + "grad_norm": 0.060702208429574966, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 16776 + }, + { + "epoch": 1.7219827586206895, + "grad_norm": 0.06695824861526489, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 16779 + }, + { + "epoch": 1.7222906403940885, + "grad_norm": 0.07498425990343094, + "learning_rate": 0.01, + "loss": 2.0652, + "step": 16782 + }, + { + "epoch": 1.7225985221674875, + "grad_norm": 0.04544251784682274, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 16785 + }, + { + "epoch": 1.7229064039408866, + "grad_norm": 0.09211461246013641, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 16788 + }, + { + "epoch": 1.7232142857142856, + "grad_norm": 0.19020068645477295, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 16791 + }, + { + "epoch": 1.7235221674876846, + "grad_norm": 0.08979224413633347, + "learning_rate": 0.01, + "loss": 2.052, + "step": 16794 + }, + { + "epoch": 1.7238300492610836, + "grad_norm": 0.06724744290113449, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 16797 + }, + { + "epoch": 1.7241379310344827, + "grad_norm": 0.05009309947490692, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 16800 + }, + { + "epoch": 1.7244458128078817, + "grad_norm": 0.04953375831246376, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 16803 + }, + { + "epoch": 1.7247536945812807, + "grad_norm": 0.12439639121294022, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 16806 + }, + { + "epoch": 1.7250615763546797, + "grad_norm": 0.126046821475029, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 16809 + }, + { + "epoch": 1.7253694581280787, + "grad_norm": 0.06693071871995926, + "learning_rate": 0.01, + "loss": 2.058, + "step": 16812 + }, + { + "epoch": 1.7256773399014778, + "grad_norm": 0.04883793368935585, + "learning_rate": 0.01, + "loss": 2.0768, + "step": 16815 + }, + { + "epoch": 1.7259852216748768, + "grad_norm": 0.06895219534635544, + "learning_rate": 0.01, + "loss": 2.057, + "step": 16818 + }, + { + "epoch": 1.7262931034482758, + "grad_norm": 0.06979874521493912, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 16821 + }, + { + "epoch": 1.7266009852216748, + "grad_norm": 0.06453370302915573, + "learning_rate": 0.01, + "loss": 2.025, + "step": 16824 + }, + { + "epoch": 1.7269088669950738, + "grad_norm": 0.11405997723340988, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 16827 + }, + { + "epoch": 1.7272167487684729, + "grad_norm": 0.10612863302230835, + "learning_rate": 0.01, + "loss": 2.0825, + "step": 16830 + }, + { + "epoch": 1.7275246305418719, + "grad_norm": 0.09805281460285187, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 16833 + }, + { + "epoch": 1.727832512315271, + "grad_norm": 0.08369138836860657, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 16836 + }, + { + "epoch": 1.72814039408867, + "grad_norm": 0.08893299847841263, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 16839 + }, + { + "epoch": 1.728448275862069, + "grad_norm": 0.06902442872524261, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 16842 + }, + { + "epoch": 1.728756157635468, + "grad_norm": 0.058703918009996414, + "learning_rate": 0.01, + "loss": 2.0406, + "step": 16845 + }, + { + "epoch": 1.729064039408867, + "grad_norm": 0.03979343920946121, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 16848 + }, + { + "epoch": 1.729371921182266, + "grad_norm": 0.08049800246953964, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 16851 + }, + { + "epoch": 1.729679802955665, + "grad_norm": 0.07980278134346008, + "learning_rate": 0.01, + "loss": 2.0471, + "step": 16854 + }, + { + "epoch": 1.729987684729064, + "grad_norm": 0.051650844514369965, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 16857 + }, + { + "epoch": 1.730295566502463, + "grad_norm": 0.06828897446393967, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 16860 + }, + { + "epoch": 1.730603448275862, + "grad_norm": 0.10987185686826706, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 16863 + }, + { + "epoch": 1.7309113300492611, + "grad_norm": 0.055677276104688644, + "learning_rate": 0.01, + "loss": 2.018, + "step": 16866 + }, + { + "epoch": 1.7312192118226601, + "grad_norm": 0.056478437036275864, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 16869 + }, + { + "epoch": 1.7315270935960592, + "grad_norm": 0.1247091144323349, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 16872 + }, + { + "epoch": 1.7318349753694582, + "grad_norm": 0.06603918969631195, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 16875 + }, + { + "epoch": 1.7321428571428572, + "grad_norm": 0.04174170270562172, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 16878 + }, + { + "epoch": 1.7324507389162562, + "grad_norm": 0.03841250762343407, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 16881 + }, + { + "epoch": 1.7327586206896552, + "grad_norm": 0.03429241105914116, + "learning_rate": 0.01, + "loss": 2.038, + "step": 16884 + }, + { + "epoch": 1.7330665024630543, + "grad_norm": 0.05175672471523285, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 16887 + }, + { + "epoch": 1.7333743842364533, + "grad_norm": 0.06318958103656769, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 16890 + }, + { + "epoch": 1.7336822660098523, + "grad_norm": 0.08888188004493713, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 16893 + }, + { + "epoch": 1.7339901477832513, + "grad_norm": 0.04479747265577316, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 16896 + }, + { + "epoch": 1.7342980295566504, + "grad_norm": 0.05286455899477005, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 16899 + }, + { + "epoch": 1.7346059113300494, + "grad_norm": 0.04719952121376991, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 16902 + }, + { + "epoch": 1.7349137931034484, + "grad_norm": 0.06204066798090935, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 16905 + }, + { + "epoch": 1.7352216748768474, + "grad_norm": 0.1099078357219696, + "learning_rate": 0.01, + "loss": 2.008, + "step": 16908 + }, + { + "epoch": 1.7355295566502464, + "grad_norm": 0.08311746269464493, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 16911 + }, + { + "epoch": 1.7358374384236455, + "grad_norm": 0.09649046510457993, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 16914 + }, + { + "epoch": 1.7361453201970445, + "grad_norm": 0.06716254353523254, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 16917 + }, + { + "epoch": 1.7364532019704435, + "grad_norm": 0.05400918424129486, + "learning_rate": 0.01, + "loss": 2.035, + "step": 16920 + }, + { + "epoch": 1.7367610837438425, + "grad_norm": 0.06857965141534805, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 16923 + }, + { + "epoch": 1.7370689655172413, + "grad_norm": 0.05842095986008644, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 16926 + }, + { + "epoch": 1.7373768472906403, + "grad_norm": 0.06279005855321884, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 16929 + }, + { + "epoch": 1.7376847290640394, + "grad_norm": 0.04209805652499199, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 16932 + }, + { + "epoch": 1.7379926108374384, + "grad_norm": 0.07557601481676102, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 16935 + }, + { + "epoch": 1.7383004926108374, + "grad_norm": 0.05998634174466133, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 16938 + }, + { + "epoch": 1.7386083743842364, + "grad_norm": 0.05477887764573097, + "learning_rate": 0.01, + "loss": 2.0659, + "step": 16941 + }, + { + "epoch": 1.7389162561576355, + "grad_norm": 0.09489591419696808, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 16944 + }, + { + "epoch": 1.7392241379310345, + "grad_norm": 0.13861320912837982, + "learning_rate": 0.01, + "loss": 2.0778, + "step": 16947 + }, + { + "epoch": 1.7395320197044335, + "grad_norm": 0.1302078664302826, + "learning_rate": 0.01, + "loss": 2.024, + "step": 16950 + }, + { + "epoch": 1.7398399014778325, + "grad_norm": 0.08335380256175995, + "learning_rate": 0.01, + "loss": 2.0612, + "step": 16953 + }, + { + "epoch": 1.7401477832512315, + "grad_norm": 0.06901963800191879, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 16956 + }, + { + "epoch": 1.7404556650246306, + "grad_norm": 0.06619597226381302, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 16959 + }, + { + "epoch": 1.7407635467980296, + "grad_norm": 0.045459166169166565, + "learning_rate": 0.01, + "loss": 2.071, + "step": 16962 + }, + { + "epoch": 1.7410714285714286, + "grad_norm": 0.06302090734243393, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 16965 + }, + { + "epoch": 1.7413793103448276, + "grad_norm": 0.07184530049562454, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 16968 + }, + { + "epoch": 1.7416871921182266, + "grad_norm": 0.07319154590368271, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 16971 + }, + { + "epoch": 1.7419950738916257, + "grad_norm": 0.0667872503399849, + "learning_rate": 0.01, + "loss": 2.0406, + "step": 16974 + }, + { + "epoch": 1.7423029556650245, + "grad_norm": 0.0988057404756546, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 16977 + }, + { + "epoch": 1.7426108374384235, + "grad_norm": 0.09142420440912247, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 16980 + }, + { + "epoch": 1.7429187192118225, + "grad_norm": 0.07581423968076706, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 16983 + }, + { + "epoch": 1.7432266009852215, + "grad_norm": 0.05793863534927368, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 16986 + }, + { + "epoch": 1.7435344827586206, + "grad_norm": 0.0717446580529213, + "learning_rate": 0.01, + "loss": 2.061, + "step": 16989 + }, + { + "epoch": 1.7438423645320196, + "grad_norm": 0.03572774678468704, + "learning_rate": 0.01, + "loss": 2.0663, + "step": 16992 + }, + { + "epoch": 1.7441502463054186, + "grad_norm": 0.09349701553583145, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 16995 + }, + { + "epoch": 1.7444581280788176, + "grad_norm": 0.08374779671430588, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 16998 + }, + { + "epoch": 1.7447660098522166, + "grad_norm": 0.045029062777757645, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 17001 + }, + { + "epoch": 1.7450738916256157, + "grad_norm": 0.06359710544347763, + "learning_rate": 0.01, + "loss": 2.073, + "step": 17004 + }, + { + "epoch": 1.7453817733990147, + "grad_norm": 0.0948299989104271, + "learning_rate": 0.01, + "loss": 2.0326, + "step": 17007 + }, + { + "epoch": 1.7456896551724137, + "grad_norm": 0.05561600998044014, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 17010 + }, + { + "epoch": 1.7459975369458127, + "grad_norm": 0.05672406032681465, + "learning_rate": 0.01, + "loss": 2.0591, + "step": 17013 + }, + { + "epoch": 1.7463054187192117, + "grad_norm": 0.047100841999053955, + "learning_rate": 0.01, + "loss": 2.0597, + "step": 17016 + }, + { + "epoch": 1.7466133004926108, + "grad_norm": 0.09477028995752335, + "learning_rate": 0.01, + "loss": 2.046, + "step": 17019 + }, + { + "epoch": 1.7469211822660098, + "grad_norm": 0.07235399633646011, + "learning_rate": 0.01, + "loss": 2.0778, + "step": 17022 + }, + { + "epoch": 1.7472290640394088, + "grad_norm": 0.08015649020671844, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 17025 + }, + { + "epoch": 1.7475369458128078, + "grad_norm": 0.07459922134876251, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 17028 + }, + { + "epoch": 1.7478448275862069, + "grad_norm": 0.10745642334222794, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 17031 + }, + { + "epoch": 1.7481527093596059, + "grad_norm": 0.049479395151138306, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 17034 + }, + { + "epoch": 1.748460591133005, + "grad_norm": 0.03935602307319641, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 17037 + }, + { + "epoch": 1.748768472906404, + "grad_norm": 0.05755804106593132, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 17040 + }, + { + "epoch": 1.749076354679803, + "grad_norm": 0.07461614906787872, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 17043 + }, + { + "epoch": 1.749384236453202, + "grad_norm": 0.07078621536493301, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 17046 + }, + { + "epoch": 1.749692118226601, + "grad_norm": 0.12035417556762695, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 17049 + }, + { + "epoch": 1.75, + "grad_norm": 0.054343827068805695, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 17052 + }, + { + "epoch": 1.750307881773399, + "grad_norm": 0.056529540568590164, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 17055 + }, + { + "epoch": 1.750615763546798, + "grad_norm": 0.09392616152763367, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 17058 + }, + { + "epoch": 1.750923645320197, + "grad_norm": 0.0874391570687294, + "learning_rate": 0.01, + "loss": 2.0733, + "step": 17061 + }, + { + "epoch": 1.751231527093596, + "grad_norm": 0.03889552876353264, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 17064 + }, + { + "epoch": 1.751539408866995, + "grad_norm": 0.06299902498722076, + "learning_rate": 0.01, + "loss": 2.01, + "step": 17067 + }, + { + "epoch": 1.7518472906403941, + "grad_norm": 0.05655315890908241, + "learning_rate": 0.01, + "loss": 2.0571, + "step": 17070 + }, + { + "epoch": 1.7521551724137931, + "grad_norm": 0.04646646976470947, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 17073 + }, + { + "epoch": 1.7524630541871922, + "grad_norm": 0.04910219460725784, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 17076 + }, + { + "epoch": 1.7527709359605912, + "grad_norm": 0.03616022691130638, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 17079 + }, + { + "epoch": 1.7530788177339902, + "grad_norm": 0.05539899319410324, + "learning_rate": 0.01, + "loss": 2.029, + "step": 17082 + }, + { + "epoch": 1.7533866995073892, + "grad_norm": 0.09409206360578537, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 17085 + }, + { + "epoch": 1.7536945812807883, + "grad_norm": 0.048882581293582916, + "learning_rate": 0.01, + "loss": 2.057, + "step": 17088 + }, + { + "epoch": 1.7540024630541873, + "grad_norm": 0.09687826037406921, + "learning_rate": 0.01, + "loss": 2.0472, + "step": 17091 + }, + { + "epoch": 1.7543103448275863, + "grad_norm": 0.06646592915058136, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 17094 + }, + { + "epoch": 1.7546182266009853, + "grad_norm": 0.07316572964191437, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 17097 + }, + { + "epoch": 1.7549261083743843, + "grad_norm": 0.058037593960762024, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 17100 + }, + { + "epoch": 1.7552339901477834, + "grad_norm": 0.05486461892724037, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 17103 + }, + { + "epoch": 1.7555418719211824, + "grad_norm": 0.0397610180079937, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 17106 + }, + { + "epoch": 1.7558497536945814, + "grad_norm": 0.11639061570167542, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 17109 + }, + { + "epoch": 1.7561576354679804, + "grad_norm": 0.04207361862063408, + "learning_rate": 0.01, + "loss": 2.064, + "step": 17112 + }, + { + "epoch": 1.7564655172413794, + "grad_norm": 0.09336013346910477, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 17115 + }, + { + "epoch": 1.7567733990147785, + "grad_norm": 0.059693820774555206, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 17118 + }, + { + "epoch": 1.7570812807881775, + "grad_norm": 0.05269778147339821, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 17121 + }, + { + "epoch": 1.7573891625615765, + "grad_norm": 0.0548628568649292, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 17124 + }, + { + "epoch": 1.7576970443349755, + "grad_norm": 0.049783483147621155, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 17127 + }, + { + "epoch": 1.7580049261083743, + "grad_norm": 0.11240525543689728, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 17130 + }, + { + "epoch": 1.7583128078817734, + "grad_norm": 0.04133368283510208, + "learning_rate": 0.01, + "loss": 2.064, + "step": 17133 + }, + { + "epoch": 1.7586206896551724, + "grad_norm": 0.042926132678985596, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 17136 + }, + { + "epoch": 1.7589285714285714, + "grad_norm": 0.053613241761922836, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 17139 + }, + { + "epoch": 1.7592364532019704, + "grad_norm": 0.03950737044215202, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 17142 + }, + { + "epoch": 1.7595443349753694, + "grad_norm": 0.045378413051366806, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 17145 + }, + { + "epoch": 1.7598522167487685, + "grad_norm": 0.036304816603660583, + "learning_rate": 0.01, + "loss": 2.0789, + "step": 17148 + }, + { + "epoch": 1.7601600985221675, + "grad_norm": 0.03886290267109871, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 17151 + }, + { + "epoch": 1.7604679802955665, + "grad_norm": 0.0885484591126442, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 17154 + }, + { + "epoch": 1.7607758620689655, + "grad_norm": 0.06733599305152893, + "learning_rate": 0.01, + "loss": 2.039, + "step": 17157 + }, + { + "epoch": 1.7610837438423645, + "grad_norm": 0.10319662094116211, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 17160 + }, + { + "epoch": 1.7613916256157636, + "grad_norm": 0.047492869198322296, + "learning_rate": 0.01, + "loss": 2.0726, + "step": 17163 + }, + { + "epoch": 1.7616995073891626, + "grad_norm": 0.04345547780394554, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 17166 + }, + { + "epoch": 1.7620073891625616, + "grad_norm": 0.0452197827398777, + "learning_rate": 0.01, + "loss": 2.0393, + "step": 17169 + }, + { + "epoch": 1.7623152709359606, + "grad_norm": 0.0703844428062439, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 17172 + }, + { + "epoch": 1.7626231527093597, + "grad_norm": 0.07864879071712494, + "learning_rate": 0.01, + "loss": 2.047, + "step": 17175 + }, + { + "epoch": 1.7629310344827587, + "grad_norm": 0.1282995641231537, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 17178 + }, + { + "epoch": 1.7632389162561575, + "grad_norm": 0.0837298184633255, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 17181 + }, + { + "epoch": 1.7635467980295565, + "grad_norm": 0.05081562697887421, + "learning_rate": 0.01, + "loss": 2.0656, + "step": 17184 + }, + { + "epoch": 1.7638546798029555, + "grad_norm": 0.07952243834733963, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 17187 + }, + { + "epoch": 1.7641625615763545, + "grad_norm": 0.06592147797346115, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 17190 + }, + { + "epoch": 1.7644704433497536, + "grad_norm": 0.04341195523738861, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 17193 + }, + { + "epoch": 1.7647783251231526, + "grad_norm": 0.04649266228079796, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 17196 + }, + { + "epoch": 1.7650862068965516, + "grad_norm": 0.04569242149591446, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 17199 + }, + { + "epoch": 1.7653940886699506, + "grad_norm": 0.040291350334882736, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 17202 + }, + { + "epoch": 1.7657019704433496, + "grad_norm": 0.05328141525387764, + "learning_rate": 0.01, + "loss": 2.0384, + "step": 17205 + }, + { + "epoch": 1.7660098522167487, + "grad_norm": 0.04405885562300682, + "learning_rate": 0.01, + "loss": 2.0566, + "step": 17208 + }, + { + "epoch": 1.7663177339901477, + "grad_norm": 0.06635614484548569, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 17211 + }, + { + "epoch": 1.7666256157635467, + "grad_norm": 0.09231774508953094, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 17214 + }, + { + "epoch": 1.7669334975369457, + "grad_norm": 0.056320998817682266, + "learning_rate": 0.01, + "loss": 2.066, + "step": 17217 + }, + { + "epoch": 1.7672413793103448, + "grad_norm": 0.049784105271101, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 17220 + }, + { + "epoch": 1.7675492610837438, + "grad_norm": 0.03728071227669716, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 17223 + }, + { + "epoch": 1.7678571428571428, + "grad_norm": 0.06607525050640106, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 17226 + }, + { + "epoch": 1.7681650246305418, + "grad_norm": 0.07367686927318573, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 17229 + }, + { + "epoch": 1.7684729064039408, + "grad_norm": 0.039499782025814056, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 17232 + }, + { + "epoch": 1.7687807881773399, + "grad_norm": 0.04863186180591583, + "learning_rate": 0.01, + "loss": 2.0595, + "step": 17235 + }, + { + "epoch": 1.7690886699507389, + "grad_norm": 0.03877348452806473, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 17238 + }, + { + "epoch": 1.769396551724138, + "grad_norm": 0.049965135753154755, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 17241 + }, + { + "epoch": 1.769704433497537, + "grad_norm": 0.0697547048330307, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 17244 + }, + { + "epoch": 1.770012315270936, + "grad_norm": 0.0562531016767025, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 17247 + }, + { + "epoch": 1.770320197044335, + "grad_norm": 0.12931805849075317, + "learning_rate": 0.01, + "loss": 2.072, + "step": 17250 + }, + { + "epoch": 1.770628078817734, + "grad_norm": 0.06590058654546738, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 17253 + }, + { + "epoch": 1.770935960591133, + "grad_norm": 0.045246463268995285, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 17256 + }, + { + "epoch": 1.771243842364532, + "grad_norm": 0.03972258046269417, + "learning_rate": 0.01, + "loss": 2.043, + "step": 17259 + }, + { + "epoch": 1.771551724137931, + "grad_norm": 0.030682874843478203, + "learning_rate": 0.01, + "loss": 2.0665, + "step": 17262 + }, + { + "epoch": 1.77185960591133, + "grad_norm": 0.08989464491605759, + "learning_rate": 0.01, + "loss": 2.042, + "step": 17265 + }, + { + "epoch": 1.772167487684729, + "grad_norm": 0.05595966801047325, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 17268 + }, + { + "epoch": 1.7724753694581281, + "grad_norm": 0.16923703253269196, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 17271 + }, + { + "epoch": 1.7727832512315271, + "grad_norm": 0.08722022920846939, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 17274 + }, + { + "epoch": 1.7730911330049262, + "grad_norm": 0.0741046667098999, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 17277 + }, + { + "epoch": 1.7733990147783252, + "grad_norm": 0.06061973422765732, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 17280 + }, + { + "epoch": 1.7737068965517242, + "grad_norm": 0.036843594163656235, + "learning_rate": 0.01, + "loss": 2.056, + "step": 17283 + }, + { + "epoch": 1.7740147783251232, + "grad_norm": 0.03937767818570137, + "learning_rate": 0.01, + "loss": 2.019, + "step": 17286 + }, + { + "epoch": 1.7743226600985222, + "grad_norm": 0.03801162540912628, + "learning_rate": 0.01, + "loss": 2.04, + "step": 17289 + }, + { + "epoch": 1.7746305418719213, + "grad_norm": 0.045572392642498016, + "learning_rate": 0.01, + "loss": 2.0665, + "step": 17292 + }, + { + "epoch": 1.7749384236453203, + "grad_norm": 0.06430240720510483, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 17295 + }, + { + "epoch": 1.7752463054187193, + "grad_norm": 0.09266401827335358, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 17298 + }, + { + "epoch": 1.7755541871921183, + "grad_norm": 0.09686179459095001, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 17301 + }, + { + "epoch": 1.7758620689655173, + "grad_norm": 0.04640132188796997, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 17304 + }, + { + "epoch": 1.7761699507389164, + "grad_norm": 0.03891894221305847, + "learning_rate": 0.01, + "loss": 2.0529, + "step": 17307 + }, + { + "epoch": 1.7764778325123154, + "grad_norm": 0.06023077294230461, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 17310 + }, + { + "epoch": 1.7767857142857144, + "grad_norm": 0.12215135246515274, + "learning_rate": 0.01, + "loss": 2.0472, + "step": 17313 + }, + { + "epoch": 1.7770935960591134, + "grad_norm": 0.04197768121957779, + "learning_rate": 0.01, + "loss": 2.038, + "step": 17316 + }, + { + "epoch": 1.7774014778325125, + "grad_norm": 0.0429445244371891, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 17319 + }, + { + "epoch": 1.7777093596059115, + "grad_norm": 0.04674970358610153, + "learning_rate": 0.01, + "loss": 2.0493, + "step": 17322 + }, + { + "epoch": 1.7780172413793105, + "grad_norm": 0.11712675541639328, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 17325 + }, + { + "epoch": 1.7783251231527095, + "grad_norm": 0.04812907800078392, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 17328 + }, + { + "epoch": 1.7786330049261085, + "grad_norm": 0.04147825017571449, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 17331 + }, + { + "epoch": 1.7789408866995073, + "grad_norm": 0.07262876629829407, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 17334 + }, + { + "epoch": 1.7792487684729064, + "grad_norm": 0.08528011292219162, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 17337 + }, + { + "epoch": 1.7795566502463054, + "grad_norm": 0.046615902334451675, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 17340 + }, + { + "epoch": 1.7798645320197044, + "grad_norm": 0.06018273904919624, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 17343 + }, + { + "epoch": 1.7801724137931034, + "grad_norm": 0.07272887974977493, + "learning_rate": 0.01, + "loss": 2.026, + "step": 17346 + }, + { + "epoch": 1.7804802955665024, + "grad_norm": 0.07152794301509857, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 17349 + }, + { + "epoch": 1.7807881773399015, + "grad_norm": 0.07950329035520554, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 17352 + }, + { + "epoch": 1.7810960591133005, + "grad_norm": 0.040778059512376785, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 17355 + }, + { + "epoch": 1.7814039408866995, + "grad_norm": 0.06180460751056671, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 17358 + }, + { + "epoch": 1.7817118226600985, + "grad_norm": 0.06950334459543228, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 17361 + }, + { + "epoch": 1.7820197044334976, + "grad_norm": 0.037724483758211136, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 17364 + }, + { + "epoch": 1.7823275862068966, + "grad_norm": 0.05991238355636597, + "learning_rate": 0.01, + "loss": 2.053, + "step": 17367 + }, + { + "epoch": 1.7826354679802956, + "grad_norm": 0.047278665006160736, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 17370 + }, + { + "epoch": 1.7829433497536946, + "grad_norm": 0.05376293137669563, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 17373 + }, + { + "epoch": 1.7832512315270936, + "grad_norm": 0.04049403965473175, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 17376 + }, + { + "epoch": 1.7835591133004927, + "grad_norm": 0.04954640567302704, + "learning_rate": 0.01, + "loss": 2.0393, + "step": 17379 + }, + { + "epoch": 1.7838669950738915, + "grad_norm": 0.049089133739471436, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 17382 + }, + { + "epoch": 1.7841748768472905, + "grad_norm": 0.0531185045838356, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 17385 + }, + { + "epoch": 1.7844827586206895, + "grad_norm": 0.060973040759563446, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 17388 + }, + { + "epoch": 1.7847906403940885, + "grad_norm": 0.044274650514125824, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 17391 + }, + { + "epoch": 1.7850985221674875, + "grad_norm": 0.08154580742120743, + "learning_rate": 0.01, + "loss": 2.011, + "step": 17394 + }, + { + "epoch": 1.7854064039408866, + "grad_norm": 0.05253531411290169, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 17397 + }, + { + "epoch": 1.7857142857142856, + "grad_norm": 0.056620582938194275, + "learning_rate": 0.01, + "loss": 2.04, + "step": 17400 + }, + { + "epoch": 1.7860221674876846, + "grad_norm": 0.069371297955513, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 17403 + }, + { + "epoch": 1.7863300492610836, + "grad_norm": 0.04726189747452736, + "learning_rate": 0.01, + "loss": 2.018, + "step": 17406 + }, + { + "epoch": 1.7866379310344827, + "grad_norm": 0.11150949448347092, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 17409 + }, + { + "epoch": 1.7869458128078817, + "grad_norm": 0.07482532411813736, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 17412 + }, + { + "epoch": 1.7872536945812807, + "grad_norm": 0.03803645819425583, + "learning_rate": 0.01, + "loss": 2.0555, + "step": 17415 + }, + { + "epoch": 1.7875615763546797, + "grad_norm": 0.08635829389095306, + "learning_rate": 0.01, + "loss": 2.0551, + "step": 17418 + }, + { + "epoch": 1.7878694581280787, + "grad_norm": 0.08558929711580276, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 17421 + }, + { + "epoch": 1.7881773399014778, + "grad_norm": 0.051051054149866104, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 17424 + }, + { + "epoch": 1.7884852216748768, + "grad_norm": 0.0584864616394043, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 17427 + }, + { + "epoch": 1.7887931034482758, + "grad_norm": 0.04015490040183067, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 17430 + }, + { + "epoch": 1.7891009852216748, + "grad_norm": 0.0499749630689621, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 17433 + }, + { + "epoch": 1.7894088669950738, + "grad_norm": 0.08796360343694687, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 17436 + }, + { + "epoch": 1.7897167487684729, + "grad_norm": 0.08200754970312119, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 17439 + }, + { + "epoch": 1.7900246305418719, + "grad_norm": 0.09300393611192703, + "learning_rate": 0.01, + "loss": 2.051, + "step": 17442 + }, + { + "epoch": 1.790332512315271, + "grad_norm": 0.08223576098680496, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 17445 + }, + { + "epoch": 1.79064039408867, + "grad_norm": 0.05235210806131363, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 17448 + }, + { + "epoch": 1.790948275862069, + "grad_norm": 0.047677502036094666, + "learning_rate": 0.01, + "loss": 2.043, + "step": 17451 + }, + { + "epoch": 1.791256157635468, + "grad_norm": 0.044341955333948135, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 17454 + }, + { + "epoch": 1.791564039408867, + "grad_norm": 0.09555595368146896, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 17457 + }, + { + "epoch": 1.791871921182266, + "grad_norm": 0.05652477219700813, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 17460 + }, + { + "epoch": 1.792179802955665, + "grad_norm": 0.0979117676615715, + "learning_rate": 0.01, + "loss": 2.0747, + "step": 17463 + }, + { + "epoch": 1.792487684729064, + "grad_norm": 0.0674947127699852, + "learning_rate": 0.01, + "loss": 2.0723, + "step": 17466 + }, + { + "epoch": 1.792795566502463, + "grad_norm": 0.05617907643318176, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 17469 + }, + { + "epoch": 1.793103448275862, + "grad_norm": 0.10979234427213669, + "learning_rate": 0.01, + "loss": 2.0638, + "step": 17472 + }, + { + "epoch": 1.7934113300492611, + "grad_norm": 0.056006476283073425, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 17475 + }, + { + "epoch": 1.7937192118226601, + "grad_norm": 0.10030517727136612, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 17478 + }, + { + "epoch": 1.7940270935960592, + "grad_norm": 0.042350657284259796, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 17481 + }, + { + "epoch": 1.7943349753694582, + "grad_norm": 0.03725098446011543, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 17484 + }, + { + "epoch": 1.7946428571428572, + "grad_norm": 0.09215757250785828, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 17487 + }, + { + "epoch": 1.7949507389162562, + "grad_norm": 0.08012344688177109, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 17490 + }, + { + "epoch": 1.7952586206896552, + "grad_norm": 0.128404900431633, + "learning_rate": 0.01, + "loss": 2.038, + "step": 17493 + }, + { + "epoch": 1.7955665024630543, + "grad_norm": 0.08718766272068024, + "learning_rate": 0.01, + "loss": 2.0557, + "step": 17496 + }, + { + "epoch": 1.7958743842364533, + "grad_norm": 0.030426733195781708, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 17499 + }, + { + "epoch": 1.7961822660098523, + "grad_norm": 0.03950949385762215, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 17502 + }, + { + "epoch": 1.7964901477832513, + "grad_norm": 0.049466658383607864, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 17505 + }, + { + "epoch": 1.7967980295566504, + "grad_norm": 0.06188172101974487, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 17508 + }, + { + "epoch": 1.7971059113300494, + "grad_norm": 0.06420351564884186, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 17511 + }, + { + "epoch": 1.7974137931034484, + "grad_norm": 0.04329871013760567, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 17514 + }, + { + "epoch": 1.7977216748768474, + "grad_norm": 0.04420280084013939, + "learning_rate": 0.01, + "loss": 2.0481, + "step": 17517 + }, + { + "epoch": 1.7980295566502464, + "grad_norm": 0.04043954238295555, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 17520 + }, + { + "epoch": 1.7983374384236455, + "grad_norm": 0.049305226653814316, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 17523 + }, + { + "epoch": 1.7986453201970445, + "grad_norm": 0.1928088515996933, + "learning_rate": 0.01, + "loss": 2.0869, + "step": 17526 + }, + { + "epoch": 1.7989532019704435, + "grad_norm": 0.12283357232809067, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 17529 + }, + { + "epoch": 1.7992610837438425, + "grad_norm": 0.07897382229566574, + "learning_rate": 0.01, + "loss": 2.045, + "step": 17532 + }, + { + "epoch": 1.7995689655172413, + "grad_norm": 0.0749836266040802, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 17535 + }, + { + "epoch": 1.7998768472906403, + "grad_norm": 0.06578727811574936, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 17538 + }, + { + "epoch": 1.8001847290640394, + "grad_norm": 0.06609571725130081, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 17541 + }, + { + "epoch": 1.8004926108374384, + "grad_norm": 0.047696053981781006, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 17544 + }, + { + "epoch": 1.8008004926108374, + "grad_norm": 0.05110754072666168, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 17547 + }, + { + "epoch": 1.8011083743842364, + "grad_norm": 0.03783520683646202, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 17550 + }, + { + "epoch": 1.8014162561576355, + "grad_norm": 0.03145405650138855, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 17553 + }, + { + "epoch": 1.8017241379310345, + "grad_norm": 0.09492892026901245, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 17556 + }, + { + "epoch": 1.8020320197044335, + "grad_norm": 0.06920488178730011, + "learning_rate": 0.01, + "loss": 2.0809, + "step": 17559 + }, + { + "epoch": 1.8023399014778325, + "grad_norm": 0.0583655945956707, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 17562 + }, + { + "epoch": 1.8026477832512315, + "grad_norm": 0.08449242264032364, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 17565 + }, + { + "epoch": 1.8029556650246306, + "grad_norm": 0.12186135351657867, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 17568 + }, + { + "epoch": 1.8032635467980296, + "grad_norm": 0.09926268458366394, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 17571 + }, + { + "epoch": 1.8035714285714286, + "grad_norm": 0.06820474565029144, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 17574 + }, + { + "epoch": 1.8038793103448276, + "grad_norm": 0.050847604870796204, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 17577 + }, + { + "epoch": 1.8041871921182266, + "grad_norm": 0.053053803741931915, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 17580 + }, + { + "epoch": 1.8044950738916257, + "grad_norm": 0.047114890068769455, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 17583 + }, + { + "epoch": 1.8048029556650245, + "grad_norm": 0.05182573199272156, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 17586 + }, + { + "epoch": 1.8051108374384235, + "grad_norm": 0.12609605491161346, + "learning_rate": 0.01, + "loss": 2.053, + "step": 17589 + }, + { + "epoch": 1.8054187192118225, + "grad_norm": 0.0496569462120533, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 17592 + }, + { + "epoch": 1.8057266009852215, + "grad_norm": 0.0490572527050972, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 17595 + }, + { + "epoch": 1.8060344827586206, + "grad_norm": 0.038300756365060806, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 17598 + }, + { + "epoch": 1.8063423645320196, + "grad_norm": 0.03666609153151512, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 17601 + }, + { + "epoch": 1.8066502463054186, + "grad_norm": 0.036330632865428925, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 17604 + }, + { + "epoch": 1.8069581280788176, + "grad_norm": 0.0605342797935009, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 17607 + }, + { + "epoch": 1.8072660098522166, + "grad_norm": 0.04346880316734314, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 17610 + }, + { + "epoch": 1.8075738916256157, + "grad_norm": 0.06400660425424576, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 17613 + }, + { + "epoch": 1.8078817733990147, + "grad_norm": 0.0812198668718338, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 17616 + }, + { + "epoch": 1.8081896551724137, + "grad_norm": 0.06756972521543503, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 17619 + }, + { + "epoch": 1.8084975369458127, + "grad_norm": 0.05277147516608238, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 17622 + }, + { + "epoch": 1.8088054187192117, + "grad_norm": 0.07904385775327682, + "learning_rate": 0.01, + "loss": 2.0393, + "step": 17625 + }, + { + "epoch": 1.8091133004926108, + "grad_norm": 0.06955704092979431, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 17628 + }, + { + "epoch": 1.8094211822660098, + "grad_norm": 0.06605497002601624, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 17631 + }, + { + "epoch": 1.8097290640394088, + "grad_norm": 0.03861093521118164, + "learning_rate": 0.01, + "loss": 2.03, + "step": 17634 + }, + { + "epoch": 1.8100369458128078, + "grad_norm": 0.04323074221611023, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 17637 + }, + { + "epoch": 1.8103448275862069, + "grad_norm": 0.03443233296275139, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 17640 + }, + { + "epoch": 1.8106527093596059, + "grad_norm": 0.04190131649374962, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 17643 + }, + { + "epoch": 1.810960591133005, + "grad_norm": 0.09095717966556549, + "learning_rate": 0.01, + "loss": 2.0529, + "step": 17646 + }, + { + "epoch": 1.811268472906404, + "grad_norm": 0.05452005937695503, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 17649 + }, + { + "epoch": 1.811576354679803, + "grad_norm": 0.05032350867986679, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 17652 + }, + { + "epoch": 1.811884236453202, + "grad_norm": 0.05733015760779381, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 17655 + }, + { + "epoch": 1.812192118226601, + "grad_norm": 0.09373817592859268, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 17658 + }, + { + "epoch": 1.8125, + "grad_norm": 0.07385890185832977, + "learning_rate": 0.01, + "loss": 2.032, + "step": 17661 + }, + { + "epoch": 1.812807881773399, + "grad_norm": 0.08643963187932968, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 17664 + }, + { + "epoch": 1.813115763546798, + "grad_norm": 0.09909530729055405, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 17667 + }, + { + "epoch": 1.813423645320197, + "grad_norm": 0.04600978642702103, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 17670 + }, + { + "epoch": 1.813731527093596, + "grad_norm": 0.033060222864151, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 17673 + }, + { + "epoch": 1.814039408866995, + "grad_norm": 0.03789517655968666, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 17676 + }, + { + "epoch": 1.8143472906403941, + "grad_norm": 0.0502844899892807, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 17679 + }, + { + "epoch": 1.8146551724137931, + "grad_norm": 0.0627695843577385, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 17682 + }, + { + "epoch": 1.8149630541871922, + "grad_norm": 0.15737055242061615, + "learning_rate": 0.01, + "loss": 2.0572, + "step": 17685 + }, + { + "epoch": 1.8152709359605912, + "grad_norm": 0.09944868832826614, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 17688 + }, + { + "epoch": 1.8155788177339902, + "grad_norm": 0.12345952540636063, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 17691 + }, + { + "epoch": 1.8158866995073892, + "grad_norm": 0.06330909579992294, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 17694 + }, + { + "epoch": 1.8161945812807883, + "grad_norm": 0.0584748238325119, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 17697 + }, + { + "epoch": 1.8165024630541873, + "grad_norm": 0.07284627109766006, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 17700 + }, + { + "epoch": 1.8168103448275863, + "grad_norm": 0.07302995771169662, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 17703 + }, + { + "epoch": 1.8171182266009853, + "grad_norm": 0.06292667984962463, + "learning_rate": 0.01, + "loss": 2.026, + "step": 17706 + }, + { + "epoch": 1.8174261083743843, + "grad_norm": 0.04821958392858505, + "learning_rate": 0.01, + "loss": 2.033, + "step": 17709 + }, + { + "epoch": 1.8177339901477834, + "grad_norm": 0.03572079911828041, + "learning_rate": 0.01, + "loss": 2.047, + "step": 17712 + }, + { + "epoch": 1.8180418719211824, + "grad_norm": 0.12643416225910187, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 17715 + }, + { + "epoch": 1.8183497536945814, + "grad_norm": 0.08803770691156387, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 17718 + }, + { + "epoch": 1.8186576354679804, + "grad_norm": 0.061583418399095535, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 17721 + }, + { + "epoch": 1.8189655172413794, + "grad_norm": 0.04947415366768837, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 17724 + }, + { + "epoch": 1.8192733990147785, + "grad_norm": 0.06042906641960144, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 17727 + }, + { + "epoch": 1.8195812807881775, + "grad_norm": 0.03236406669020653, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 17730 + }, + { + "epoch": 1.8198891625615765, + "grad_norm": 0.05975859984755516, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 17733 + }, + { + "epoch": 1.8201970443349755, + "grad_norm": 0.11028258502483368, + "learning_rate": 0.01, + "loss": 2.0654, + "step": 17736 + }, + { + "epoch": 1.8205049261083743, + "grad_norm": 0.055842846632003784, + "learning_rate": 0.01, + "loss": 2.0589, + "step": 17739 + }, + { + "epoch": 1.8208128078817734, + "grad_norm": 0.09189102053642273, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 17742 + }, + { + "epoch": 1.8211206896551724, + "grad_norm": 0.07795927673578262, + "learning_rate": 0.01, + "loss": 2.0628, + "step": 17745 + }, + { + "epoch": 1.8214285714285714, + "grad_norm": 0.06452701985836029, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 17748 + }, + { + "epoch": 1.8217364532019704, + "grad_norm": 0.056360337883234024, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 17751 + }, + { + "epoch": 1.8220443349753694, + "grad_norm": 0.08861987292766571, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 17754 + }, + { + "epoch": 1.8223522167487685, + "grad_norm": 0.07276416569948196, + "learning_rate": 0.01, + "loss": 2.022, + "step": 17757 + }, + { + "epoch": 1.8226600985221675, + "grad_norm": 0.07501320540904999, + "learning_rate": 0.01, + "loss": 2.0592, + "step": 17760 + }, + { + "epoch": 1.8229679802955665, + "grad_norm": 0.08408310264348984, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 17763 + }, + { + "epoch": 1.8232758620689655, + "grad_norm": 0.039008378982543945, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 17766 + }, + { + "epoch": 1.8235837438423645, + "grad_norm": 0.05153367295861244, + "learning_rate": 0.01, + "loss": 2.0614, + "step": 17769 + }, + { + "epoch": 1.8238916256157636, + "grad_norm": 0.05685068294405937, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 17772 + }, + { + "epoch": 1.8241995073891626, + "grad_norm": 0.10836745798587799, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 17775 + }, + { + "epoch": 1.8245073891625616, + "grad_norm": 0.13855011761188507, + "learning_rate": 0.01, + "loss": 2.044, + "step": 17778 + }, + { + "epoch": 1.8248152709359606, + "grad_norm": 0.07912803441286087, + "learning_rate": 0.01, + "loss": 2.062, + "step": 17781 + }, + { + "epoch": 1.8251231527093597, + "grad_norm": 0.065729521214962, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 17784 + }, + { + "epoch": 1.8254310344827587, + "grad_norm": 0.04546307399868965, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 17787 + }, + { + "epoch": 1.8257389162561575, + "grad_norm": 0.03415641188621521, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 17790 + }, + { + "epoch": 1.8260467980295565, + "grad_norm": 0.038325123488903046, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 17793 + }, + { + "epoch": 1.8263546798029555, + "grad_norm": 0.057417213916778564, + "learning_rate": 0.01, + "loss": 2.0465, + "step": 17796 + }, + { + "epoch": 1.8266625615763545, + "grad_norm": 0.07312962412834167, + "learning_rate": 0.01, + "loss": 2.009, + "step": 17799 + }, + { + "epoch": 1.8269704433497536, + "grad_norm": 0.06465096771717072, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 17802 + }, + { + "epoch": 1.8272783251231526, + "grad_norm": 0.049065001308918, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 17805 + }, + { + "epoch": 1.8275862068965516, + "grad_norm": 0.05004505068063736, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 17808 + }, + { + "epoch": 1.8278940886699506, + "grad_norm": 0.12177273631095886, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 17811 + }, + { + "epoch": 1.8282019704433496, + "grad_norm": 0.09006219357252121, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 17814 + }, + { + "epoch": 1.8285098522167487, + "grad_norm": 0.07000398635864258, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 17817 + }, + { + "epoch": 1.8288177339901477, + "grad_norm": 0.03561507910490036, + "learning_rate": 0.01, + "loss": 2.022, + "step": 17820 + }, + { + "epoch": 1.8291256157635467, + "grad_norm": 0.050965216010808945, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 17823 + }, + { + "epoch": 1.8294334975369457, + "grad_norm": 0.04437123239040375, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 17826 + }, + { + "epoch": 1.8297413793103448, + "grad_norm": 0.046157170087099075, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 17829 + }, + { + "epoch": 1.8300492610837438, + "grad_norm": 0.0641985610127449, + "learning_rate": 0.01, + "loss": 2.0619, + "step": 17832 + }, + { + "epoch": 1.8303571428571428, + "grad_norm": 0.10295763611793518, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 17835 + }, + { + "epoch": 1.8306650246305418, + "grad_norm": 0.08395816385746002, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 17838 + }, + { + "epoch": 1.8309729064039408, + "grad_norm": 0.07087874412536621, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 17841 + }, + { + "epoch": 1.8312807881773399, + "grad_norm": 0.04754515364766121, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 17844 + }, + { + "epoch": 1.8315886699507389, + "grad_norm": 0.042998362332582474, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 17847 + }, + { + "epoch": 1.831896551724138, + "grad_norm": 0.044786881655454636, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 17850 + }, + { + "epoch": 1.832204433497537, + "grad_norm": 0.05035366117954254, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 17853 + }, + { + "epoch": 1.832512315270936, + "grad_norm": 0.08760454505681992, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 17856 + }, + { + "epoch": 1.832820197044335, + "grad_norm": 0.07182349264621735, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 17859 + }, + { + "epoch": 1.833128078817734, + "grad_norm": 0.0653420239686966, + "learning_rate": 0.01, + "loss": 2.02, + "step": 17862 + }, + { + "epoch": 1.833435960591133, + "grad_norm": 0.07664595544338226, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 17865 + }, + { + "epoch": 1.833743842364532, + "grad_norm": 0.052884750068187714, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 17868 + }, + { + "epoch": 1.834051724137931, + "grad_norm": 0.049432456493377686, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 17871 + }, + { + "epoch": 1.83435960591133, + "grad_norm": 0.10208621621131897, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 17874 + }, + { + "epoch": 1.834667487684729, + "grad_norm": 0.0663546770811081, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 17877 + }, + { + "epoch": 1.8349753694581281, + "grad_norm": 0.0952199399471283, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 17880 + }, + { + "epoch": 1.8352832512315271, + "grad_norm": 0.04969238117337227, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 17883 + }, + { + "epoch": 1.8355911330049262, + "grad_norm": 0.05101123824715614, + "learning_rate": 0.01, + "loss": 2.0642, + "step": 17886 + }, + { + "epoch": 1.8358990147783252, + "grad_norm": 0.1026005819439888, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 17889 + }, + { + "epoch": 1.8362068965517242, + "grad_norm": 0.06481184810400009, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 17892 + }, + { + "epoch": 1.8365147783251232, + "grad_norm": 0.0684402734041214, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 17895 + }, + { + "epoch": 1.8368226600985222, + "grad_norm": 0.1051085963845253, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 17898 + }, + { + "epoch": 1.8371305418719213, + "grad_norm": 0.06582857668399811, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 17901 + }, + { + "epoch": 1.8374384236453203, + "grad_norm": 0.05665391683578491, + "learning_rate": 0.01, + "loss": 2.04, + "step": 17904 + }, + { + "epoch": 1.8377463054187193, + "grad_norm": 0.06239892914891243, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 17907 + }, + { + "epoch": 1.8380541871921183, + "grad_norm": 0.08531507849693298, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 17910 + }, + { + "epoch": 1.8383620689655173, + "grad_norm": 0.07379250973463058, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 17913 + }, + { + "epoch": 1.8386699507389164, + "grad_norm": 0.052789974957704544, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 17916 + }, + { + "epoch": 1.8389778325123154, + "grad_norm": 0.09525316208600998, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 17919 + }, + { + "epoch": 1.8392857142857144, + "grad_norm": 0.05700648948550224, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 17922 + }, + { + "epoch": 1.8395935960591134, + "grad_norm": 0.061519671231508255, + "learning_rate": 0.01, + "loss": 2.038, + "step": 17925 + }, + { + "epoch": 1.8399014778325125, + "grad_norm": 0.05594256520271301, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 17928 + }, + { + "epoch": 1.8402093596059115, + "grad_norm": 0.06823567301034927, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 17931 + }, + { + "epoch": 1.8405172413793105, + "grad_norm": 0.061398666352033615, + "learning_rate": 0.01, + "loss": 2.038, + "step": 17934 + }, + { + "epoch": 1.8408251231527095, + "grad_norm": 0.10590513050556183, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 17937 + }, + { + "epoch": 1.8411330049261085, + "grad_norm": 0.0579022578895092, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 17940 + }, + { + "epoch": 1.8414408866995073, + "grad_norm": 0.07047640532255173, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 17943 + }, + { + "epoch": 1.8417487684729064, + "grad_norm": 0.07486578077077866, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 17946 + }, + { + "epoch": 1.8420566502463054, + "grad_norm": 0.057884715497493744, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 17949 + }, + { + "epoch": 1.8423645320197044, + "grad_norm": 0.10381656140089035, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 17952 + }, + { + "epoch": 1.8426724137931034, + "grad_norm": 0.041863467544317245, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 17955 + }, + { + "epoch": 1.8429802955665024, + "grad_norm": 0.10012530535459518, + "learning_rate": 0.01, + "loss": 2.0648, + "step": 17958 + }, + { + "epoch": 1.8432881773399015, + "grad_norm": 0.05597177520394325, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 17961 + }, + { + "epoch": 1.8435960591133005, + "grad_norm": 0.05338521674275398, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 17964 + }, + { + "epoch": 1.8439039408866995, + "grad_norm": 0.049141060560941696, + "learning_rate": 0.01, + "loss": 2.0486, + "step": 17967 + }, + { + "epoch": 1.8442118226600985, + "grad_norm": 0.0784049779176712, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 17970 + }, + { + "epoch": 1.8445197044334976, + "grad_norm": 0.038596317172050476, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 17973 + }, + { + "epoch": 1.8448275862068966, + "grad_norm": 0.08521022647619247, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 17976 + }, + { + "epoch": 1.8451354679802956, + "grad_norm": 0.05890432372689247, + "learning_rate": 0.01, + "loss": 2.062, + "step": 17979 + }, + { + "epoch": 1.8454433497536946, + "grad_norm": 0.09090931713581085, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 17982 + }, + { + "epoch": 1.8457512315270936, + "grad_norm": 0.06019595265388489, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 17985 + }, + { + "epoch": 1.8460591133004927, + "grad_norm": 0.07712443917989731, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 17988 + }, + { + "epoch": 1.8463669950738915, + "grad_norm": 0.06155428662896156, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 17991 + }, + { + "epoch": 1.8466748768472905, + "grad_norm": 0.07221681624650955, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 17994 + }, + { + "epoch": 1.8469827586206895, + "grad_norm": 0.056776583194732666, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 17997 + }, + { + "epoch": 1.8472906403940885, + "grad_norm": 0.12099254876375198, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 18000 + }, + { + "epoch": 1.8475985221674875, + "grad_norm": 0.060344647616147995, + "learning_rate": 0.01, + "loss": 2.038, + "step": 18003 + }, + { + "epoch": 1.8479064039408866, + "grad_norm": 0.042333200573921204, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 18006 + }, + { + "epoch": 1.8482142857142856, + "grad_norm": 0.046059176325798035, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 18009 + }, + { + "epoch": 1.8485221674876846, + "grad_norm": 0.03853166475892067, + "learning_rate": 0.01, + "loss": 2.0681, + "step": 18012 + }, + { + "epoch": 1.8488300492610836, + "grad_norm": 0.05197960138320923, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 18015 + }, + { + "epoch": 1.8491379310344827, + "grad_norm": 0.03316551446914673, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 18018 + }, + { + "epoch": 1.8494458128078817, + "grad_norm": 0.05977516993880272, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 18021 + }, + { + "epoch": 1.8497536945812807, + "grad_norm": 0.12331486493349075, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 18024 + }, + { + "epoch": 1.8500615763546797, + "grad_norm": 0.08065730333328247, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 18027 + }, + { + "epoch": 1.8503694581280787, + "grad_norm": 0.07649014890193939, + "learning_rate": 0.01, + "loss": 2.0629, + "step": 18030 + }, + { + "epoch": 1.8506773399014778, + "grad_norm": 0.08431357145309448, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 18033 + }, + { + "epoch": 1.8509852216748768, + "grad_norm": 0.041856877505779266, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 18036 + }, + { + "epoch": 1.8512931034482758, + "grad_norm": 0.03598650172352791, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 18039 + }, + { + "epoch": 1.8516009852216748, + "grad_norm": 0.0360511913895607, + "learning_rate": 0.01, + "loss": 2.044, + "step": 18042 + }, + { + "epoch": 1.8519088669950738, + "grad_norm": 0.0409335158765316, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 18045 + }, + { + "epoch": 1.8522167487684729, + "grad_norm": 0.04646136611700058, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 18048 + }, + { + "epoch": 1.8525246305418719, + "grad_norm": 0.08265028148889542, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 18051 + }, + { + "epoch": 1.852832512315271, + "grad_norm": 0.08118387311697006, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 18054 + }, + { + "epoch": 1.85314039408867, + "grad_norm": 0.05400428548455238, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 18057 + }, + { + "epoch": 1.853448275862069, + "grad_norm": 0.04605553671717644, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 18060 + }, + { + "epoch": 1.853756157635468, + "grad_norm": 0.06259449571371078, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 18063 + }, + { + "epoch": 1.854064039408867, + "grad_norm": 0.04901091381907463, + "learning_rate": 0.01, + "loss": 2.023, + "step": 18066 + }, + { + "epoch": 1.854371921182266, + "grad_norm": 0.13033097982406616, + "learning_rate": 0.01, + "loss": 2.0696, + "step": 18069 + }, + { + "epoch": 1.854679802955665, + "grad_norm": 0.04114639014005661, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 18072 + }, + { + "epoch": 1.854987684729064, + "grad_norm": 0.05269275978207588, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 18075 + }, + { + "epoch": 1.855295566502463, + "grad_norm": 0.052419982850551605, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 18078 + }, + { + "epoch": 1.855603448275862, + "grad_norm": 0.11109264940023422, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 18081 + }, + { + "epoch": 1.8559113300492611, + "grad_norm": 0.09544682502746582, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 18084 + }, + { + "epoch": 1.8562192118226601, + "grad_norm": 0.08282047510147095, + "learning_rate": 0.01, + "loss": 2.0601, + "step": 18087 + }, + { + "epoch": 1.8565270935960592, + "grad_norm": 0.04255926236510277, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 18090 + }, + { + "epoch": 1.8568349753694582, + "grad_norm": 0.04899003729224205, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 18093 + }, + { + "epoch": 1.8571428571428572, + "grad_norm": 0.05081721395254135, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 18096 + }, + { + "epoch": 1.8574507389162562, + "grad_norm": 0.06633096188306808, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 18099 + }, + { + "epoch": 1.8577586206896552, + "grad_norm": 0.06513489037752151, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 18102 + }, + { + "epoch": 1.8580665024630543, + "grad_norm": 0.09429512917995453, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 18105 + }, + { + "epoch": 1.8583743842364533, + "grad_norm": 0.06042760610580444, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 18108 + }, + { + "epoch": 1.8586822660098523, + "grad_norm": 0.04098260775208473, + "learning_rate": 0.01, + "loss": 2.0712, + "step": 18111 + }, + { + "epoch": 1.8589901477832513, + "grad_norm": 0.04882989823818207, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 18114 + }, + { + "epoch": 1.8592980295566504, + "grad_norm": 0.06196373701095581, + "learning_rate": 0.01, + "loss": 2.0535, + "step": 18117 + }, + { + "epoch": 1.8596059113300494, + "grad_norm": 0.10515942424535751, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 18120 + }, + { + "epoch": 1.8599137931034484, + "grad_norm": 0.08962828665971756, + "learning_rate": 0.01, + "loss": 2.048, + "step": 18123 + }, + { + "epoch": 1.8602216748768474, + "grad_norm": 0.07672600448131561, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 18126 + }, + { + "epoch": 1.8605295566502464, + "grad_norm": 0.04769902676343918, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 18129 + }, + { + "epoch": 1.8608374384236455, + "grad_norm": 0.06558270752429962, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 18132 + }, + { + "epoch": 1.8611453201970445, + "grad_norm": 0.06909210234880447, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 18135 + }, + { + "epoch": 1.8614532019704435, + "grad_norm": 0.07571686059236526, + "learning_rate": 0.01, + "loss": 2.045, + "step": 18138 + }, + { + "epoch": 1.8617610837438425, + "grad_norm": 0.11170367896556854, + "learning_rate": 0.01, + "loss": 2.05, + "step": 18141 + }, + { + "epoch": 1.8620689655172413, + "grad_norm": 0.12978370487689972, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 18144 + }, + { + "epoch": 1.8623768472906403, + "grad_norm": 0.056673552840948105, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 18147 + }, + { + "epoch": 1.8626847290640394, + "grad_norm": 0.04110763967037201, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 18150 + }, + { + "epoch": 1.8629926108374384, + "grad_norm": 0.06502550840377808, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 18153 + }, + { + "epoch": 1.8633004926108374, + "grad_norm": 0.059242501854896545, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 18156 + }, + { + "epoch": 1.8636083743842364, + "grad_norm": 0.05173099413514137, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 18159 + }, + { + "epoch": 1.8639162561576355, + "grad_norm": 0.0403546541929245, + "learning_rate": 0.01, + "loss": 2.037, + "step": 18162 + }, + { + "epoch": 1.8642241379310345, + "grad_norm": 0.10920348763465881, + "learning_rate": 0.01, + "loss": 2.04, + "step": 18165 + }, + { + "epoch": 1.8645320197044335, + "grad_norm": 0.05528813973069191, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 18168 + }, + { + "epoch": 1.8648399014778325, + "grad_norm": 0.04583175480365753, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 18171 + }, + { + "epoch": 1.8651477832512315, + "grad_norm": 0.04503155127167702, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 18174 + }, + { + "epoch": 1.8654556650246306, + "grad_norm": 0.038750261068344116, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 18177 + }, + { + "epoch": 1.8657635467980296, + "grad_norm": 0.0650535374879837, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 18180 + }, + { + "epoch": 1.8660714285714286, + "grad_norm": 0.08589319884777069, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 18183 + }, + { + "epoch": 1.8663793103448276, + "grad_norm": 0.06245085969567299, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 18186 + }, + { + "epoch": 1.8666871921182266, + "grad_norm": 0.07419238984584808, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 18189 + }, + { + "epoch": 1.8669950738916257, + "grad_norm": 0.06336040049791336, + "learning_rate": 0.01, + "loss": 2.0822, + "step": 18192 + }, + { + "epoch": 1.8673029556650245, + "grad_norm": 0.09494315087795258, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 18195 + }, + { + "epoch": 1.8676108374384235, + "grad_norm": 0.06543273478746414, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 18198 + }, + { + "epoch": 1.8679187192118225, + "grad_norm": 0.05602452531456947, + "learning_rate": 0.01, + "loss": 2.0626, + "step": 18201 + }, + { + "epoch": 1.8682266009852215, + "grad_norm": 0.041735779494047165, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 18204 + }, + { + "epoch": 1.8685344827586206, + "grad_norm": 0.03998032957315445, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 18207 + }, + { + "epoch": 1.8688423645320196, + "grad_norm": 0.07010776549577713, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 18210 + }, + { + "epoch": 1.8691502463054186, + "grad_norm": 0.08516181260347366, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 18213 + }, + { + "epoch": 1.8694581280788176, + "grad_norm": 0.08233955502510071, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 18216 + }, + { + "epoch": 1.8697660098522166, + "grad_norm": 0.06725854426622391, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 18219 + }, + { + "epoch": 1.8700738916256157, + "grad_norm": 0.03345496207475662, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 18222 + }, + { + "epoch": 1.8703817733990147, + "grad_norm": 0.09758662432432175, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 18225 + }, + { + "epoch": 1.8706896551724137, + "grad_norm": 0.05376002565026283, + "learning_rate": 0.01, + "loss": 2.0592, + "step": 18228 + }, + { + "epoch": 1.8709975369458127, + "grad_norm": 0.04620193690061569, + "learning_rate": 0.01, + "loss": 2.023, + "step": 18231 + }, + { + "epoch": 1.8713054187192117, + "grad_norm": 0.0853218212723732, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 18234 + }, + { + "epoch": 1.8716133004926108, + "grad_norm": 0.15689584612846375, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 18237 + }, + { + "epoch": 1.8719211822660098, + "grad_norm": 0.05037194490432739, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 18240 + }, + { + "epoch": 1.8722290640394088, + "grad_norm": 0.031591251492500305, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 18243 + }, + { + "epoch": 1.8725369458128078, + "grad_norm": 0.05832947790622711, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 18246 + }, + { + "epoch": 1.8728448275862069, + "grad_norm": 0.059619709849357605, + "learning_rate": 0.01, + "loss": 2.053, + "step": 18249 + }, + { + "epoch": 1.8731527093596059, + "grad_norm": 0.04232211783528328, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 18252 + }, + { + "epoch": 1.873460591133005, + "grad_norm": 0.03756287693977356, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 18255 + }, + { + "epoch": 1.873768472906404, + "grad_norm": 0.04177022725343704, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 18258 + }, + { + "epoch": 1.874076354679803, + "grad_norm": 0.054342493414878845, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 18261 + }, + { + "epoch": 1.874384236453202, + "grad_norm": 0.11872408539056778, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 18264 + }, + { + "epoch": 1.874692118226601, + "grad_norm": 0.05143645405769348, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 18267 + }, + { + "epoch": 1.875, + "grad_norm": 0.06726546585559845, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 18270 + }, + { + "epoch": 1.875307881773399, + "grad_norm": 0.10031245648860931, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 18273 + }, + { + "epoch": 1.875615763546798, + "grad_norm": 0.09145006537437439, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 18276 + }, + { + "epoch": 1.875923645320197, + "grad_norm": 0.0797610953450203, + "learning_rate": 0.01, + "loss": 2.0507, + "step": 18279 + }, + { + "epoch": 1.876231527093596, + "grad_norm": 0.07170062512159348, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 18282 + }, + { + "epoch": 1.876539408866995, + "grad_norm": 0.043757934123277664, + "learning_rate": 0.01, + "loss": 2.0825, + "step": 18285 + }, + { + "epoch": 1.8768472906403941, + "grad_norm": 0.059610821306705475, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 18288 + }, + { + "epoch": 1.8771551724137931, + "grad_norm": 0.06014898791909218, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 18291 + }, + { + "epoch": 1.8774630541871922, + "grad_norm": 0.0823112353682518, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 18294 + }, + { + "epoch": 1.8777709359605912, + "grad_norm": 0.11342828720808029, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 18297 + }, + { + "epoch": 1.8780788177339902, + "grad_norm": 0.1533091962337494, + "learning_rate": 0.01, + "loss": 2.0593, + "step": 18300 + }, + { + "epoch": 1.8783866995073892, + "grad_norm": 0.09665971249341965, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 18303 + }, + { + "epoch": 1.8786945812807883, + "grad_norm": 0.043992988765239716, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 18306 + }, + { + "epoch": 1.8790024630541873, + "grad_norm": 0.03452041372656822, + "learning_rate": 0.01, + "loss": 2.009, + "step": 18309 + }, + { + "epoch": 1.8793103448275863, + "grad_norm": 0.05596618726849556, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 18312 + }, + { + "epoch": 1.8796182266009853, + "grad_norm": 0.0542016327381134, + "learning_rate": 0.01, + "loss": 2.033, + "step": 18315 + }, + { + "epoch": 1.8799261083743843, + "grad_norm": 0.049744654446840286, + "learning_rate": 0.01, + "loss": 2.0625, + "step": 18318 + }, + { + "epoch": 1.8802339901477834, + "grad_norm": 0.04219472035765648, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 18321 + }, + { + "epoch": 1.8805418719211824, + "grad_norm": 0.11828272044658661, + "learning_rate": 0.01, + "loss": 2.047, + "step": 18324 + }, + { + "epoch": 1.8808497536945814, + "grad_norm": 0.042180564254522324, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 18327 + }, + { + "epoch": 1.8811576354679804, + "grad_norm": 0.05486786365509033, + "learning_rate": 0.01, + "loss": 2.034, + "step": 18330 + }, + { + "epoch": 1.8814655172413794, + "grad_norm": 0.09456659108400345, + "learning_rate": 0.01, + "loss": 2.059, + "step": 18333 + }, + { + "epoch": 1.8817733990147785, + "grad_norm": 0.03962776064872742, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 18336 + }, + { + "epoch": 1.8820812807881775, + "grad_norm": 0.06588723510503769, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 18339 + }, + { + "epoch": 1.8823891625615765, + "grad_norm": 0.0490611270070076, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 18342 + }, + { + "epoch": 1.8826970443349755, + "grad_norm": 0.10546906292438507, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 18345 + }, + { + "epoch": 1.8830049261083743, + "grad_norm": 0.05751054733991623, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 18348 + }, + { + "epoch": 1.8833128078817734, + "grad_norm": 0.102676160633564, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 18351 + }, + { + "epoch": 1.8836206896551724, + "grad_norm": 0.0536825954914093, + "learning_rate": 0.01, + "loss": 2.0677, + "step": 18354 + }, + { + "epoch": 1.8839285714285714, + "grad_norm": 0.039357978850603104, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 18357 + }, + { + "epoch": 1.8842364532019704, + "grad_norm": 0.03515158221125603, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 18360 + }, + { + "epoch": 1.8845443349753694, + "grad_norm": 0.04234091565012932, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 18363 + }, + { + "epoch": 1.8848522167487685, + "grad_norm": 0.06893119215965271, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 18366 + }, + { + "epoch": 1.8851600985221675, + "grad_norm": 0.08353175222873688, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 18369 + }, + { + "epoch": 1.8854679802955665, + "grad_norm": 0.0567467026412487, + "learning_rate": 0.01, + "loss": 2.0672, + "step": 18372 + }, + { + "epoch": 1.8857758620689655, + "grad_norm": 0.05529101565480232, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 18375 + }, + { + "epoch": 1.8860837438423645, + "grad_norm": 0.09581262618303299, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 18378 + }, + { + "epoch": 1.8863916256157636, + "grad_norm": 0.052034202963113785, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 18381 + }, + { + "epoch": 1.8866995073891626, + "grad_norm": 0.10314558446407318, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 18384 + }, + { + "epoch": 1.8870073891625616, + "grad_norm": 0.04631441831588745, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 18387 + }, + { + "epoch": 1.8873152709359606, + "grad_norm": 0.08067111670970917, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 18390 + }, + { + "epoch": 1.8876231527093597, + "grad_norm": 0.07892802357673645, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 18393 + }, + { + "epoch": 1.8879310344827587, + "grad_norm": 0.06167163327336311, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 18396 + }, + { + "epoch": 1.8882389162561575, + "grad_norm": 0.06746269762516022, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 18399 + }, + { + "epoch": 1.8885467980295565, + "grad_norm": 0.06389199942350388, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 18402 + }, + { + "epoch": 1.8888546798029555, + "grad_norm": 0.05448369309306145, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 18405 + }, + { + "epoch": 1.8891625615763545, + "grad_norm": 0.05535599961876869, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 18408 + }, + { + "epoch": 1.8894704433497536, + "grad_norm": 0.0533415786921978, + "learning_rate": 0.01, + "loss": 2.0648, + "step": 18411 + }, + { + "epoch": 1.8897783251231526, + "grad_norm": 0.06423043459653854, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 18414 + }, + { + "epoch": 1.8900862068965516, + "grad_norm": 0.04682399705052376, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 18417 + }, + { + "epoch": 1.8903940886699506, + "grad_norm": 0.09395507723093033, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 18420 + }, + { + "epoch": 1.8907019704433496, + "grad_norm": 0.07777848839759827, + "learning_rate": 0.01, + "loss": 2.068, + "step": 18423 + }, + { + "epoch": 1.8910098522167487, + "grad_norm": 0.052006904035806656, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 18426 + }, + { + "epoch": 1.8913177339901477, + "grad_norm": 0.05325109511613846, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 18429 + }, + { + "epoch": 1.8916256157635467, + "grad_norm": 0.05496850982308388, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 18432 + }, + { + "epoch": 1.8919334975369457, + "grad_norm": 0.0395922027528286, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 18435 + }, + { + "epoch": 1.8922413793103448, + "grad_norm": 0.0664554312825203, + "learning_rate": 0.01, + "loss": 2.0555, + "step": 18438 + }, + { + "epoch": 1.8925492610837438, + "grad_norm": 0.06475098431110382, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 18441 + }, + { + "epoch": 1.8928571428571428, + "grad_norm": 0.06291298568248749, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 18444 + }, + { + "epoch": 1.8931650246305418, + "grad_norm": 0.07891640067100525, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 18447 + }, + { + "epoch": 1.8934729064039408, + "grad_norm": 0.10065143555402756, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 18450 + }, + { + "epoch": 1.8937807881773399, + "grad_norm": 0.0962565690279007, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 18453 + }, + { + "epoch": 1.8940886699507389, + "grad_norm": 0.06286763399839401, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 18456 + }, + { + "epoch": 1.894396551724138, + "grad_norm": 0.05067887529730797, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 18459 + }, + { + "epoch": 1.894704433497537, + "grad_norm": 0.03956342115998268, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 18462 + }, + { + "epoch": 1.895012315270936, + "grad_norm": 0.06670361012220383, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 18465 + }, + { + "epoch": 1.895320197044335, + "grad_norm": 0.07848145067691803, + "learning_rate": 0.01, + "loss": 2.037, + "step": 18468 + }, + { + "epoch": 1.895628078817734, + "grad_norm": 0.05415938422083855, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 18471 + }, + { + "epoch": 1.895935960591133, + "grad_norm": 0.07549092918634415, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 18474 + }, + { + "epoch": 1.896243842364532, + "grad_norm": 0.057871196419000626, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 18477 + }, + { + "epoch": 1.896551724137931, + "grad_norm": 0.059748612344264984, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 18480 + }, + { + "epoch": 1.89685960591133, + "grad_norm": 0.04501016065478325, + "learning_rate": 0.01, + "loss": 2.034, + "step": 18483 + }, + { + "epoch": 1.897167487684729, + "grad_norm": 0.06361118704080582, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 18486 + }, + { + "epoch": 1.8974753694581281, + "grad_norm": 0.09649393707513809, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 18489 + }, + { + "epoch": 1.8977832512315271, + "grad_norm": 0.08288730680942535, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 18492 + }, + { + "epoch": 1.8980911330049262, + "grad_norm": 0.037788692861795425, + "learning_rate": 0.01, + "loss": 2.028, + "step": 18495 + }, + { + "epoch": 1.8983990147783252, + "grad_norm": 0.05678097531199455, + "learning_rate": 0.01, + "loss": 2.029, + "step": 18498 + }, + { + "epoch": 1.8987068965517242, + "grad_norm": 0.05753886699676514, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 18501 + }, + { + "epoch": 1.8990147783251232, + "grad_norm": 0.0542941652238369, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 18504 + }, + { + "epoch": 1.8993226600985222, + "grad_norm": 0.06856728345155716, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 18507 + }, + { + "epoch": 1.8996305418719213, + "grad_norm": 0.09270088374614716, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 18510 + }, + { + "epoch": 1.8999384236453203, + "grad_norm": 0.04473109543323517, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 18513 + }, + { + "epoch": 1.9002463054187193, + "grad_norm": 0.06040007993578911, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 18516 + }, + { + "epoch": 1.9005541871921183, + "grad_norm": 0.032143257558345795, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 18519 + }, + { + "epoch": 1.9008620689655173, + "grad_norm": 0.04205821454524994, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 18522 + }, + { + "epoch": 1.9011699507389164, + "grad_norm": 0.03920583799481392, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 18525 + }, + { + "epoch": 1.9014778325123154, + "grad_norm": 0.17323125898838043, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 18528 + }, + { + "epoch": 1.9017857142857144, + "grad_norm": 0.04595707729458809, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 18531 + }, + { + "epoch": 1.9020935960591134, + "grad_norm": 0.03803316131234169, + "learning_rate": 0.01, + "loss": 2.0268, + "step": 18534 + }, + { + "epoch": 1.9024014778325125, + "grad_norm": 0.04623658210039139, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 18537 + }, + { + "epoch": 1.9027093596059115, + "grad_norm": 0.04388248175382614, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 18540 + }, + { + "epoch": 1.9030172413793105, + "grad_norm": 0.03582540154457092, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 18543 + }, + { + "epoch": 1.9033251231527095, + "grad_norm": 0.033453166484832764, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 18546 + }, + { + "epoch": 1.9036330049261085, + "grad_norm": 0.04929531365633011, + "learning_rate": 0.01, + "loss": 2.022, + "step": 18549 + }, + { + "epoch": 1.9039408866995073, + "grad_norm": 0.0575069934129715, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 18552 + }, + { + "epoch": 1.9042487684729064, + "grad_norm": 0.044883664697408676, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 18555 + }, + { + "epoch": 1.9045566502463054, + "grad_norm": 0.06335309147834778, + "learning_rate": 0.01, + "loss": 2.013, + "step": 18558 + }, + { + "epoch": 1.9048645320197044, + "grad_norm": 0.07315582036972046, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 18561 + }, + { + "epoch": 1.9051724137931034, + "grad_norm": 0.08378446102142334, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 18564 + }, + { + "epoch": 1.9054802955665024, + "grad_norm": 0.09492503106594086, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 18567 + }, + { + "epoch": 1.9057881773399015, + "grad_norm": 0.0497819185256958, + "learning_rate": 0.01, + "loss": 2.0551, + "step": 18570 + }, + { + "epoch": 1.9060960591133005, + "grad_norm": 0.06625241041183472, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 18573 + }, + { + "epoch": 1.9064039408866995, + "grad_norm": 0.13533645868301392, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 18576 + }, + { + "epoch": 1.9067118226600985, + "grad_norm": 0.129546657204628, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 18579 + }, + { + "epoch": 1.9070197044334976, + "grad_norm": 0.0862266942858696, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 18582 + }, + { + "epoch": 1.9073275862068966, + "grad_norm": 0.04262632504105568, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 18585 + }, + { + "epoch": 1.9076354679802956, + "grad_norm": 0.06536297500133514, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 18588 + }, + { + "epoch": 1.9079433497536946, + "grad_norm": 0.04408801719546318, + "learning_rate": 0.01, + "loss": 2.045, + "step": 18591 + }, + { + "epoch": 1.9082512315270936, + "grad_norm": 0.0382089763879776, + "learning_rate": 0.01, + "loss": 2.057, + "step": 18594 + }, + { + "epoch": 1.9085591133004927, + "grad_norm": 0.05695042014122009, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 18597 + }, + { + "epoch": 1.9088669950738915, + "grad_norm": 0.06890982389450073, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 18600 + }, + { + "epoch": 1.9091748768472905, + "grad_norm": 0.06517864018678665, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 18603 + }, + { + "epoch": 1.9094827586206895, + "grad_norm": 0.03709007799625397, + "learning_rate": 0.01, + "loss": 2.0579, + "step": 18606 + }, + { + "epoch": 1.9097906403940885, + "grad_norm": 0.040355831384658813, + "learning_rate": 0.01, + "loss": 2.023, + "step": 18609 + }, + { + "epoch": 1.9100985221674875, + "grad_norm": 0.08973202854394913, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 18612 + }, + { + "epoch": 1.9104064039408866, + "grad_norm": 0.08074682205915451, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 18615 + }, + { + "epoch": 1.9107142857142856, + "grad_norm": 0.07134959101676941, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 18618 + }, + { + "epoch": 1.9110221674876846, + "grad_norm": 0.10389960557222366, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 18621 + }, + { + "epoch": 1.9113300492610836, + "grad_norm": 0.052665699273347855, + "learning_rate": 0.01, + "loss": 2.019, + "step": 18624 + }, + { + "epoch": 1.9116379310344827, + "grad_norm": 0.06355523318052292, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 18627 + }, + { + "epoch": 1.9119458128078817, + "grad_norm": 0.06806465983390808, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 18630 + }, + { + "epoch": 1.9122536945812807, + "grad_norm": 0.08892465382814407, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 18633 + }, + { + "epoch": 1.9125615763546797, + "grad_norm": 0.09806855767965317, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 18636 + }, + { + "epoch": 1.9128694581280787, + "grad_norm": 0.036283593624830246, + "learning_rate": 0.01, + "loss": 2.03, + "step": 18639 + }, + { + "epoch": 1.9131773399014778, + "grad_norm": 0.06654248386621475, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 18642 + }, + { + "epoch": 1.9134852216748768, + "grad_norm": 0.07729227095842361, + "learning_rate": 0.01, + "loss": 2.041, + "step": 18645 + }, + { + "epoch": 1.9137931034482758, + "grad_norm": 0.05296695604920387, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 18648 + }, + { + "epoch": 1.9141009852216748, + "grad_norm": 0.05579183250665665, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 18651 + }, + { + "epoch": 1.9144088669950738, + "grad_norm": 0.04230615124106407, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 18654 + }, + { + "epoch": 1.9147167487684729, + "grad_norm": 0.0412709042429924, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 18657 + }, + { + "epoch": 1.9150246305418719, + "grad_norm": 0.056640543043613434, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 18660 + }, + { + "epoch": 1.915332512315271, + "grad_norm": 0.04353609308600426, + "learning_rate": 0.01, + "loss": 2.0703, + "step": 18663 + }, + { + "epoch": 1.91564039408867, + "grad_norm": 0.04212663322687149, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 18666 + }, + { + "epoch": 1.915948275862069, + "grad_norm": 0.07639022916555405, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 18669 + }, + { + "epoch": 1.916256157635468, + "grad_norm": 0.09405479580163956, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 18672 + }, + { + "epoch": 1.916564039408867, + "grad_norm": 0.07501058280467987, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 18675 + }, + { + "epoch": 1.916871921182266, + "grad_norm": 0.06343735009431839, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 18678 + }, + { + "epoch": 1.917179802955665, + "grad_norm": 0.07794613391160965, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 18681 + }, + { + "epoch": 1.917487684729064, + "grad_norm": 0.1063399538397789, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 18684 + }, + { + "epoch": 1.917795566502463, + "grad_norm": 0.06528618931770325, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 18687 + }, + { + "epoch": 1.918103448275862, + "grad_norm": 0.063084177672863, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 18690 + }, + { + "epoch": 1.9184113300492611, + "grad_norm": 0.06663991510868073, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 18693 + }, + { + "epoch": 1.9187192118226601, + "grad_norm": 0.09827464818954468, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 18696 + }, + { + "epoch": 1.9190270935960592, + "grad_norm": 0.052305273711681366, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 18699 + }, + { + "epoch": 1.9193349753694582, + "grad_norm": 0.07126889377832413, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 18702 + }, + { + "epoch": 1.9196428571428572, + "grad_norm": 0.06262009590864182, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 18705 + }, + { + "epoch": 1.9199507389162562, + "grad_norm": 0.056034356355667114, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 18708 + }, + { + "epoch": 1.9202586206896552, + "grad_norm": 0.07673577219247818, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 18711 + }, + { + "epoch": 1.9205665024630543, + "grad_norm": 0.06006854772567749, + "learning_rate": 0.01, + "loss": 2.0493, + "step": 18714 + }, + { + "epoch": 1.9208743842364533, + "grad_norm": 0.07149071991443634, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 18717 + }, + { + "epoch": 1.9211822660098523, + "grad_norm": 0.04935576766729355, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 18720 + }, + { + "epoch": 1.9214901477832513, + "grad_norm": 0.1052050068974495, + "learning_rate": 0.01, + "loss": 2.0384, + "step": 18723 + }, + { + "epoch": 1.9217980295566504, + "grad_norm": 0.07589028030633926, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 18726 + }, + { + "epoch": 1.9221059113300494, + "grad_norm": 0.0862005278468132, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 18729 + }, + { + "epoch": 1.9224137931034484, + "grad_norm": 0.07210662961006165, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 18732 + }, + { + "epoch": 1.9227216748768474, + "grad_norm": 0.0924825370311737, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 18735 + }, + { + "epoch": 1.9230295566502464, + "grad_norm": 0.05819706991314888, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 18738 + }, + { + "epoch": 1.9233374384236455, + "grad_norm": 0.04784362018108368, + "learning_rate": 0.01, + "loss": 2.0633, + "step": 18741 + }, + { + "epoch": 1.9236453201970445, + "grad_norm": 0.07216835021972656, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 18744 + }, + { + "epoch": 1.9239532019704435, + "grad_norm": 0.05539752170443535, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 18747 + }, + { + "epoch": 1.9242610837438425, + "grad_norm": 0.07037390768527985, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 18750 + }, + { + "epoch": 1.9245689655172413, + "grad_norm": 0.0941152572631836, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 18753 + }, + { + "epoch": 1.9248768472906403, + "grad_norm": 0.05315488949418068, + "learning_rate": 0.01, + "loss": 2.036, + "step": 18756 + }, + { + "epoch": 1.9251847290640394, + "grad_norm": 0.04986554756760597, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 18759 + }, + { + "epoch": 1.9254926108374384, + "grad_norm": 0.0750490128993988, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 18762 + }, + { + "epoch": 1.9258004926108374, + "grad_norm": 0.13903938233852386, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 18765 + }, + { + "epoch": 1.9261083743842364, + "grad_norm": 0.08733932673931122, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 18768 + }, + { + "epoch": 1.9264162561576355, + "grad_norm": 0.04527903348207474, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 18771 + }, + { + "epoch": 1.9267241379310345, + "grad_norm": 0.036207813769578934, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 18774 + }, + { + "epoch": 1.9270320197044335, + "grad_norm": 0.04572034999728203, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 18777 + }, + { + "epoch": 1.9273399014778325, + "grad_norm": 0.03662864491343498, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 18780 + }, + { + "epoch": 1.9276477832512315, + "grad_norm": 0.12049257755279541, + "learning_rate": 0.01, + "loss": 2.027, + "step": 18783 + }, + { + "epoch": 1.9279556650246306, + "grad_norm": 0.1005631759762764, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 18786 + }, + { + "epoch": 1.9282635467980296, + "grad_norm": 0.13943985104560852, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 18789 + }, + { + "epoch": 1.9285714285714286, + "grad_norm": 0.13312341272830963, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 18792 + }, + { + "epoch": 1.9288793103448276, + "grad_norm": 0.0517788864672184, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 18795 + }, + { + "epoch": 1.9291871921182266, + "grad_norm": 0.05525217577815056, + "learning_rate": 0.01, + "loss": 2.0707, + "step": 18798 + }, + { + "epoch": 1.9294950738916257, + "grad_norm": 0.04876135662198067, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 18801 + }, + { + "epoch": 1.9298029556650245, + "grad_norm": 0.04944787919521332, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 18804 + }, + { + "epoch": 1.9301108374384235, + "grad_norm": 0.06437812745571136, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 18807 + }, + { + "epoch": 1.9304187192118225, + "grad_norm": 0.04027709737420082, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 18810 + }, + { + "epoch": 1.9307266009852215, + "grad_norm": 0.05178974196314812, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 18813 + }, + { + "epoch": 1.9310344827586206, + "grad_norm": 0.05347009375691414, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 18816 + }, + { + "epoch": 1.9313423645320196, + "grad_norm": 0.03055960312485695, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 18819 + }, + { + "epoch": 1.9316502463054186, + "grad_norm": 0.10861945152282715, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 18822 + }, + { + "epoch": 1.9319581280788176, + "grad_norm": 0.05932777374982834, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 18825 + }, + { + "epoch": 1.9322660098522166, + "grad_norm": 0.046545740216970444, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 18828 + }, + { + "epoch": 1.9325738916256157, + "grad_norm": 0.07582221925258636, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 18831 + }, + { + "epoch": 1.9328817733990147, + "grad_norm": 0.07975540310144424, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 18834 + }, + { + "epoch": 1.9331896551724137, + "grad_norm": 0.07365059852600098, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 18837 + }, + { + "epoch": 1.9334975369458127, + "grad_norm": 0.09160298854112625, + "learning_rate": 0.01, + "loss": 2.027, + "step": 18840 + }, + { + "epoch": 1.9338054187192117, + "grad_norm": 0.07767198234796524, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 18843 + }, + { + "epoch": 1.9341133004926108, + "grad_norm": 0.07545919716358185, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 18846 + }, + { + "epoch": 1.9344211822660098, + "grad_norm": 0.06564575433731079, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 18849 + }, + { + "epoch": 1.9347290640394088, + "grad_norm": 0.04205799475312233, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 18852 + }, + { + "epoch": 1.9350369458128078, + "grad_norm": 0.07428024709224701, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 18855 + }, + { + "epoch": 1.9353448275862069, + "grad_norm": 0.08150817453861237, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 18858 + }, + { + "epoch": 1.9356527093596059, + "grad_norm": 0.07489453256130219, + "learning_rate": 0.01, + "loss": 2.0489, + "step": 18861 + }, + { + "epoch": 1.935960591133005, + "grad_norm": 0.09983116388320923, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 18864 + }, + { + "epoch": 1.936268472906404, + "grad_norm": 0.09074544906616211, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 18867 + }, + { + "epoch": 1.936576354679803, + "grad_norm": 0.056056223809719086, + "learning_rate": 0.01, + "loss": 2.0531, + "step": 18870 + }, + { + "epoch": 1.936884236453202, + "grad_norm": 0.04818575084209442, + "learning_rate": 0.01, + "loss": 2.029, + "step": 18873 + }, + { + "epoch": 1.937192118226601, + "grad_norm": 0.04811173304915428, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 18876 + }, + { + "epoch": 1.9375, + "grad_norm": 0.05799747258424759, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 18879 + }, + { + "epoch": 1.937807881773399, + "grad_norm": 0.07357611507177353, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 18882 + }, + { + "epoch": 1.938115763546798, + "grad_norm": 0.10275068879127502, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 18885 + }, + { + "epoch": 1.938423645320197, + "grad_norm": 0.03685866296291351, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 18888 + }, + { + "epoch": 1.938731527093596, + "grad_norm": 0.03603344038128853, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 18891 + }, + { + "epoch": 1.939039408866995, + "grad_norm": 0.06932532042264938, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 18894 + }, + { + "epoch": 1.9393472906403941, + "grad_norm": 0.05983889847993851, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 18897 + }, + { + "epoch": 1.9396551724137931, + "grad_norm": 0.1199260875582695, + "learning_rate": 0.01, + "loss": 2.0467, + "step": 18900 + }, + { + "epoch": 1.9399630541871922, + "grad_norm": 0.06222264841198921, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 18903 + }, + { + "epoch": 1.9402709359605912, + "grad_norm": 0.0764993354678154, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 18906 + }, + { + "epoch": 1.9405788177339902, + "grad_norm": 0.04790098965167999, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 18909 + }, + { + "epoch": 1.9408866995073892, + "grad_norm": 0.03822425380349159, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 18912 + }, + { + "epoch": 1.9411945812807883, + "grad_norm": 0.05336176976561546, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 18915 + }, + { + "epoch": 1.9415024630541873, + "grad_norm": 0.08732246607542038, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 18918 + }, + { + "epoch": 1.9418103448275863, + "grad_norm": 0.08886411786079407, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 18921 + }, + { + "epoch": 1.9421182266009853, + "grad_norm": 0.08069706708192825, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 18924 + }, + { + "epoch": 1.9424261083743843, + "grad_norm": 0.08464798331260681, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 18927 + }, + { + "epoch": 1.9427339901477834, + "grad_norm": 0.07051963359117508, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 18930 + }, + { + "epoch": 1.9430418719211824, + "grad_norm": 0.037250157445669174, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 18933 + }, + { + "epoch": 1.9433497536945814, + "grad_norm": 0.07512888312339783, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 18936 + }, + { + "epoch": 1.9436576354679804, + "grad_norm": 0.12079732865095139, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 18939 + }, + { + "epoch": 1.9439655172413794, + "grad_norm": 0.0511600561439991, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 18942 + }, + { + "epoch": 1.9442733990147785, + "grad_norm": 0.06442293524742126, + "learning_rate": 0.01, + "loss": 2.07, + "step": 18945 + }, + { + "epoch": 1.9445812807881775, + "grad_norm": 0.04928497597575188, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 18948 + }, + { + "epoch": 1.9448891625615765, + "grad_norm": 0.07882185280323029, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 18951 + }, + { + "epoch": 1.9451970443349755, + "grad_norm": 0.03649712726473808, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 18954 + }, + { + "epoch": 1.9455049261083743, + "grad_norm": 0.10654021054506302, + "learning_rate": 0.01, + "loss": 2.038, + "step": 18957 + }, + { + "epoch": 1.9458128078817734, + "grad_norm": 0.09655455499887466, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 18960 + }, + { + "epoch": 1.9461206896551724, + "grad_norm": 0.06114486977458, + "learning_rate": 0.01, + "loss": 2.0578, + "step": 18963 + }, + { + "epoch": 1.9464285714285714, + "grad_norm": 0.04167640954256058, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 18966 + }, + { + "epoch": 1.9467364532019704, + "grad_norm": 0.054138265550136566, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 18969 + }, + { + "epoch": 1.9470443349753694, + "grad_norm": 0.04728518798947334, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 18972 + }, + { + "epoch": 1.9473522167487685, + "grad_norm": 0.09992729872465134, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 18975 + }, + { + "epoch": 1.9476600985221675, + "grad_norm": 0.039344482123851776, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 18978 + }, + { + "epoch": 1.9479679802955665, + "grad_norm": 0.10921066254377365, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 18981 + }, + { + "epoch": 1.9482758620689655, + "grad_norm": 0.03921816125512123, + "learning_rate": 0.01, + "loss": 2.011, + "step": 18984 + }, + { + "epoch": 1.9485837438423645, + "grad_norm": 0.08293361961841583, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 18987 + }, + { + "epoch": 1.9488916256157636, + "grad_norm": 0.08310680091381073, + "learning_rate": 0.01, + "loss": 2.065, + "step": 18990 + }, + { + "epoch": 1.9491995073891626, + "grad_norm": 0.05105976015329361, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 18993 + }, + { + "epoch": 1.9495073891625616, + "grad_norm": 0.0387946255505085, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 18996 + }, + { + "epoch": 1.9498152709359606, + "grad_norm": 0.039592646062374115, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 18999 + }, + { + "epoch": 1.9501231527093597, + "grad_norm": 0.042499393224716187, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 19002 + }, + { + "epoch": 1.9504310344827587, + "grad_norm": 0.1202671155333519, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 19005 + }, + { + "epoch": 1.9507389162561575, + "grad_norm": 0.05047677457332611, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 19008 + }, + { + "epoch": 1.9510467980295565, + "grad_norm": 0.13210178911685944, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 19011 + }, + { + "epoch": 1.9513546798029555, + "grad_norm": 0.07093524187803268, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 19014 + }, + { + "epoch": 1.9516625615763545, + "grad_norm": 0.05528571456670761, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 19017 + }, + { + "epoch": 1.9519704433497536, + "grad_norm": 0.08988847583532333, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 19020 + }, + { + "epoch": 1.9522783251231526, + "grad_norm": 0.05767255648970604, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 19023 + }, + { + "epoch": 1.9525862068965516, + "grad_norm": 0.07641880214214325, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 19026 + }, + { + "epoch": 1.9528940886699506, + "grad_norm": 0.08751394599676132, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 19029 + }, + { + "epoch": 1.9532019704433496, + "grad_norm": 0.06144971400499344, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 19032 + }, + { + "epoch": 1.9535098522167487, + "grad_norm": 0.04502955824136734, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 19035 + }, + { + "epoch": 1.9538177339901477, + "grad_norm": 0.05031814053654671, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 19038 + }, + { + "epoch": 1.9541256157635467, + "grad_norm": 0.08885148912668228, + "learning_rate": 0.01, + "loss": 2.043, + "step": 19041 + }, + { + "epoch": 1.9544334975369457, + "grad_norm": 0.05610232427716255, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 19044 + }, + { + "epoch": 1.9547413793103448, + "grad_norm": 0.07169227302074432, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 19047 + }, + { + "epoch": 1.9550492610837438, + "grad_norm": 0.07136573642492294, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 19050 + }, + { + "epoch": 1.9553571428571428, + "grad_norm": 0.07761941850185394, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 19053 + }, + { + "epoch": 1.9556650246305418, + "grad_norm": 0.062269363552331924, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 19056 + }, + { + "epoch": 1.9559729064039408, + "grad_norm": 0.08797021210193634, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 19059 + }, + { + "epoch": 1.9562807881773399, + "grad_norm": 0.04401189833879471, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 19062 + }, + { + "epoch": 1.9565886699507389, + "grad_norm": 0.08460985869169235, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 19065 + }, + { + "epoch": 1.956896551724138, + "grad_norm": 0.07027498632669449, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 19068 + }, + { + "epoch": 1.957204433497537, + "grad_norm": 0.06747457385063171, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 19071 + }, + { + "epoch": 1.957512315270936, + "grad_norm": 0.10890615731477737, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 19074 + }, + { + "epoch": 1.957820197044335, + "grad_norm": 0.1049666553735733, + "learning_rate": 0.01, + "loss": 2.0683, + "step": 19077 + }, + { + "epoch": 1.958128078817734, + "grad_norm": 0.04320647194981575, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 19080 + }, + { + "epoch": 1.958435960591133, + "grad_norm": 0.06038364768028259, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 19083 + }, + { + "epoch": 1.958743842364532, + "grad_norm": 0.04486788064241409, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 19086 + }, + { + "epoch": 1.959051724137931, + "grad_norm": 0.045702993869781494, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 19089 + }, + { + "epoch": 1.95935960591133, + "grad_norm": 0.10784240067005157, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 19092 + }, + { + "epoch": 1.959667487684729, + "grad_norm": 0.07740773260593414, + "learning_rate": 0.01, + "loss": 2.079, + "step": 19095 + }, + { + "epoch": 1.9599753694581281, + "grad_norm": 0.0517832413315773, + "learning_rate": 0.01, + "loss": 2.061, + "step": 19098 + }, + { + "epoch": 1.9602832512315271, + "grad_norm": 0.04660172387957573, + "learning_rate": 0.01, + "loss": 2.026, + "step": 19101 + }, + { + "epoch": 1.9605911330049262, + "grad_norm": 0.084842748939991, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 19104 + }, + { + "epoch": 1.9608990147783252, + "grad_norm": 0.10866342484951019, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 19107 + }, + { + "epoch": 1.9612068965517242, + "grad_norm": 0.060094647109508514, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 19110 + }, + { + "epoch": 1.9615147783251232, + "grad_norm": 0.04082890599966049, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 19113 + }, + { + "epoch": 1.9618226600985222, + "grad_norm": 0.09193670004606247, + "learning_rate": 0.01, + "loss": 2.045, + "step": 19116 + }, + { + "epoch": 1.9621305418719213, + "grad_norm": 0.049036990851163864, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 19119 + }, + { + "epoch": 1.9624384236453203, + "grad_norm": 0.06658133864402771, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 19122 + }, + { + "epoch": 1.9627463054187193, + "grad_norm": 0.07290081679821014, + "learning_rate": 0.01, + "loss": 2.022, + "step": 19125 + }, + { + "epoch": 1.9630541871921183, + "grad_norm": 0.05635548382997513, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 19128 + }, + { + "epoch": 1.9633620689655173, + "grad_norm": 0.07143761217594147, + "learning_rate": 0.01, + "loss": 2.009, + "step": 19131 + }, + { + "epoch": 1.9636699507389164, + "grad_norm": 0.15296097099781036, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 19134 + }, + { + "epoch": 1.9639778325123154, + "grad_norm": 0.1795274019241333, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 19137 + }, + { + "epoch": 1.9642857142857144, + "grad_norm": 0.04691818729043007, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 19140 + }, + { + "epoch": 1.9645935960591134, + "grad_norm": 0.05018999055027962, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 19143 + }, + { + "epoch": 1.9649014778325125, + "grad_norm": 0.0349762961268425, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 19146 + }, + { + "epoch": 1.9652093596059115, + "grad_norm": 0.04055612534284592, + "learning_rate": 0.01, + "loss": 2.033, + "step": 19149 + }, + { + "epoch": 1.9655172413793105, + "grad_norm": 0.04818587005138397, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 19152 + }, + { + "epoch": 1.9658251231527095, + "grad_norm": 0.03579457104206085, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 19155 + }, + { + "epoch": 1.9661330049261085, + "grad_norm": 0.04382238909602165, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 19158 + }, + { + "epoch": 1.9664408866995073, + "grad_norm": 0.03784547746181488, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 19161 + }, + { + "epoch": 1.9667487684729064, + "grad_norm": 0.049413155764341354, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 19164 + }, + { + "epoch": 1.9670566502463054, + "grad_norm": 0.10560319572687149, + "learning_rate": 0.01, + "loss": 2.012, + "step": 19167 + }, + { + "epoch": 1.9673645320197044, + "grad_norm": 0.07912679761648178, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 19170 + }, + { + "epoch": 1.9676724137931034, + "grad_norm": 0.051868222653865814, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 19173 + }, + { + "epoch": 1.9679802955665024, + "grad_norm": 0.09925144910812378, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 19176 + }, + { + "epoch": 1.9682881773399015, + "grad_norm": 0.09824500232934952, + "learning_rate": 0.01, + "loss": 2.022, + "step": 19179 + }, + { + "epoch": 1.9685960591133005, + "grad_norm": 0.04710378497838974, + "learning_rate": 0.01, + "loss": 2.018, + "step": 19182 + }, + { + "epoch": 1.9689039408866995, + "grad_norm": 0.09339728951454163, + "learning_rate": 0.01, + "loss": 2.0623, + "step": 19185 + }, + { + "epoch": 1.9692118226600985, + "grad_norm": 0.04485667496919632, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 19188 + }, + { + "epoch": 1.9695197044334976, + "grad_norm": 0.06367155909538269, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 19191 + }, + { + "epoch": 1.9698275862068966, + "grad_norm": 0.06692302227020264, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 19194 + }, + { + "epoch": 1.9701354679802956, + "grad_norm": 0.06107610464096069, + "learning_rate": 0.01, + "loss": 2.046, + "step": 19197 + }, + { + "epoch": 1.9704433497536946, + "grad_norm": 0.06362861394882202, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 19200 + }, + { + "epoch": 1.9707512315270936, + "grad_norm": 0.07524324208498001, + "learning_rate": 0.01, + "loss": 2.044, + "step": 19203 + }, + { + "epoch": 1.9710591133004927, + "grad_norm": 0.09118182212114334, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 19206 + }, + { + "epoch": 1.9713669950738915, + "grad_norm": 0.0823112204670906, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 19209 + }, + { + "epoch": 1.9716748768472905, + "grad_norm": 0.061318982392549515, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 19212 + }, + { + "epoch": 1.9719827586206895, + "grad_norm": 0.09838750958442688, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 19215 + }, + { + "epoch": 1.9722906403940885, + "grad_norm": 0.061727046966552734, + "learning_rate": 0.01, + "loss": 2.0671, + "step": 19218 + }, + { + "epoch": 1.9725985221674875, + "grad_norm": 0.044177260249853134, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 19221 + }, + { + "epoch": 1.9729064039408866, + "grad_norm": 0.031012659892439842, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 19224 + }, + { + "epoch": 1.9732142857142856, + "grad_norm": 0.0593150295317173, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 19227 + }, + { + "epoch": 1.9735221674876846, + "grad_norm": 0.09283222258090973, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 19230 + }, + { + "epoch": 1.9738300492610836, + "grad_norm": 0.07416541129350662, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 19233 + }, + { + "epoch": 1.9741379310344827, + "grad_norm": 0.08513590693473816, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 19236 + }, + { + "epoch": 1.9744458128078817, + "grad_norm": 0.08401728421449661, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 19239 + }, + { + "epoch": 1.9747536945812807, + "grad_norm": 0.08488047868013382, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 19242 + }, + { + "epoch": 1.9750615763546797, + "grad_norm": 0.11438726633787155, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 19245 + }, + { + "epoch": 1.9753694581280787, + "grad_norm": 0.0416182205080986, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 19248 + }, + { + "epoch": 1.9756773399014778, + "grad_norm": 0.046806883066892624, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 19251 + }, + { + "epoch": 1.9759852216748768, + "grad_norm": 0.04319307208061218, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 19254 + }, + { + "epoch": 1.9762931034482758, + "grad_norm": 0.11832991987466812, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 19257 + }, + { + "epoch": 1.9766009852216748, + "grad_norm": 0.04716213047504425, + "learning_rate": 0.01, + "loss": 2.005, + "step": 19260 + }, + { + "epoch": 1.9769088669950738, + "grad_norm": 0.08626002073287964, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 19263 + }, + { + "epoch": 1.9772167487684729, + "grad_norm": 0.0981634259223938, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 19266 + }, + { + "epoch": 1.9775246305418719, + "grad_norm": 0.0657229796051979, + "learning_rate": 0.01, + "loss": 2.065, + "step": 19269 + }, + { + "epoch": 1.977832512315271, + "grad_norm": 0.0652332603931427, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 19272 + }, + { + "epoch": 1.97814039408867, + "grad_norm": 0.06810397654771805, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 19275 + }, + { + "epoch": 1.978448275862069, + "grad_norm": 0.04740637540817261, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 19278 + }, + { + "epoch": 1.978756157635468, + "grad_norm": 0.039233241230249405, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 19281 + }, + { + "epoch": 1.979064039408867, + "grad_norm": 0.07533819228410721, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 19284 + }, + { + "epoch": 1.979371921182266, + "grad_norm": 0.0820235162973404, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 19287 + }, + { + "epoch": 1.979679802955665, + "grad_norm": 0.057419124990701675, + "learning_rate": 0.01, + "loss": 2.0692, + "step": 19290 + }, + { + "epoch": 1.979987684729064, + "grad_norm": 0.10119790583848953, + "learning_rate": 0.01, + "loss": 2.0752, + "step": 19293 + }, + { + "epoch": 1.980295566502463, + "grad_norm": 0.116152822971344, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 19296 + }, + { + "epoch": 1.980603448275862, + "grad_norm": 0.05364501103758812, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 19299 + }, + { + "epoch": 1.9809113300492611, + "grad_norm": 0.09089913219213486, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 19302 + }, + { + "epoch": 1.9812192118226601, + "grad_norm": 0.06570890545845032, + "learning_rate": 0.01, + "loss": 2.048, + "step": 19305 + }, + { + "epoch": 1.9815270935960592, + "grad_norm": 0.10739763081073761, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 19308 + }, + { + "epoch": 1.9818349753694582, + "grad_norm": 0.0396854430437088, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 19311 + }, + { + "epoch": 1.9821428571428572, + "grad_norm": 0.11273244023323059, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 19314 + }, + { + "epoch": 1.9824507389162562, + "grad_norm": 0.10009465366601944, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 19317 + }, + { + "epoch": 1.9827586206896552, + "grad_norm": 0.053756825625896454, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 19320 + }, + { + "epoch": 1.9830665024630543, + "grad_norm": 0.06603456288576126, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 19323 + }, + { + "epoch": 1.9833743842364533, + "grad_norm": 0.038810715079307556, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 19326 + }, + { + "epoch": 1.9836822660098523, + "grad_norm": 0.04284658655524254, + "learning_rate": 0.01, + "loss": 2.035, + "step": 19329 + }, + { + "epoch": 1.9839901477832513, + "grad_norm": 0.04441271349787712, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 19332 + }, + { + "epoch": 1.9842980295566504, + "grad_norm": 0.04501213878393173, + "learning_rate": 0.01, + "loss": 2.0517, + "step": 19335 + }, + { + "epoch": 1.9846059113300494, + "grad_norm": 0.05109642818570137, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 19338 + }, + { + "epoch": 1.9849137931034484, + "grad_norm": 0.03543083369731903, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 19341 + }, + { + "epoch": 1.9852216748768474, + "grad_norm": 0.04665149003267288, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 19344 + }, + { + "epoch": 1.9855295566502464, + "grad_norm": 0.035318441689014435, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 19347 + }, + { + "epoch": 1.9858374384236455, + "grad_norm": 0.035862043499946594, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 19350 + }, + { + "epoch": 1.9861453201970445, + "grad_norm": 0.128739133477211, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 19353 + }, + { + "epoch": 1.9864532019704435, + "grad_norm": 0.08115250617265701, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 19356 + }, + { + "epoch": 1.9867610837438425, + "grad_norm": 0.04203096404671669, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 19359 + }, + { + "epoch": 1.9870689655172413, + "grad_norm": 0.03801970183849335, + "learning_rate": 0.01, + "loss": 2.034, + "step": 19362 + }, + { + "epoch": 1.9873768472906403, + "grad_norm": 0.05322232097387314, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 19365 + }, + { + "epoch": 1.9876847290640394, + "grad_norm": 0.037100568413734436, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 19368 + }, + { + "epoch": 1.9879926108374384, + "grad_norm": 0.03714398667216301, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 19371 + }, + { + "epoch": 1.9883004926108374, + "grad_norm": 0.050371263176202774, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 19374 + }, + { + "epoch": 1.9886083743842364, + "grad_norm": 0.03875119984149933, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 19377 + }, + { + "epoch": 1.9889162561576355, + "grad_norm": 0.06838756054639816, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 19380 + }, + { + "epoch": 1.9892241379310345, + "grad_norm": 0.04749476909637451, + "learning_rate": 0.01, + "loss": 2.022, + "step": 19383 + }, + { + "epoch": 1.9895320197044335, + "grad_norm": 0.041247084736824036, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 19386 + }, + { + "epoch": 1.9898399014778325, + "grad_norm": 0.08582460135221481, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 19389 + }, + { + "epoch": 1.9901477832512315, + "grad_norm": 0.042033273726701736, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 19392 + }, + { + "epoch": 1.9904556650246306, + "grad_norm": 0.08395756036043167, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 19395 + }, + { + "epoch": 1.9907635467980296, + "grad_norm": 0.07154903560876846, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 19398 + }, + { + "epoch": 1.9910714285714286, + "grad_norm": 0.06137581169605255, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 19401 + }, + { + "epoch": 1.9913793103448276, + "grad_norm": 0.1226835623383522, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 19404 + }, + { + "epoch": 1.9916871921182266, + "grad_norm": 0.06524399667978287, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 19407 + }, + { + "epoch": 1.9919950738916257, + "grad_norm": 0.060310300439596176, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 19410 + }, + { + "epoch": 1.9923029556650245, + "grad_norm": 0.10605314373970032, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 19413 + }, + { + "epoch": 1.9926108374384235, + "grad_norm": 0.07056690007448196, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 19416 + }, + { + "epoch": 1.9929187192118225, + "grad_norm": 0.04367789626121521, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 19419 + }, + { + "epoch": 1.9932266009852215, + "grad_norm": 0.07856806367635727, + "learning_rate": 0.01, + "loss": 2.061, + "step": 19422 + }, + { + "epoch": 1.9935344827586206, + "grad_norm": 0.07237541675567627, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 19425 + }, + { + "epoch": 1.9938423645320196, + "grad_norm": 0.04983443021774292, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 19428 + }, + { + "epoch": 1.9941502463054186, + "grad_norm": 0.049045633524656296, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 19431 + }, + { + "epoch": 1.9944581280788176, + "grad_norm": 0.07521536946296692, + "learning_rate": 0.01, + "loss": 2.021, + "step": 19434 + }, + { + "epoch": 1.9947660098522166, + "grad_norm": 0.03521602228283882, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 19437 + }, + { + "epoch": 1.9950738916256157, + "grad_norm": 0.06075441092252731, + "learning_rate": 0.01, + "loss": 2.045, + "step": 19440 + }, + { + "epoch": 1.9953817733990147, + "grad_norm": 0.08800282329320908, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 19443 + }, + { + "epoch": 1.9956896551724137, + "grad_norm": 0.04632639139890671, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 19446 + }, + { + "epoch": 1.9959975369458127, + "grad_norm": 0.05275778844952583, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 19449 + }, + { + "epoch": 1.9963054187192117, + "grad_norm": 0.04615132138133049, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 19452 + }, + { + "epoch": 1.9966133004926108, + "grad_norm": 0.12586715817451477, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 19455 + }, + { + "epoch": 1.9969211822660098, + "grad_norm": 0.09406362473964691, + "learning_rate": 0.01, + "loss": 2.028, + "step": 19458 + }, + { + "epoch": 1.9972290640394088, + "grad_norm": 0.032408129423856735, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 19461 + }, + { + "epoch": 1.9975369458128078, + "grad_norm": 0.08810164034366608, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 19464 + }, + { + "epoch": 1.9978448275862069, + "grad_norm": 0.11263968795537949, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 19467 + }, + { + "epoch": 1.9981527093596059, + "grad_norm": 0.06618282198905945, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 19470 + }, + { + "epoch": 1.998460591133005, + "grad_norm": 0.03649067133665085, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 19473 + }, + { + "epoch": 1.998768472906404, + "grad_norm": 0.03718538209795952, + "learning_rate": 0.01, + "loss": 2.0517, + "step": 19476 + }, + { + "epoch": 1.999076354679803, + "grad_norm": 0.047908563166856766, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 19479 + }, + { + "epoch": 1.999384236453202, + "grad_norm": 0.04926212877035141, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 19482 + }, + { + "epoch": 1.999692118226601, + "grad_norm": 0.08558470755815506, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 19485 + }, + { + "epoch": 2.0, + "grad_norm": 0.07099032402038574, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 19488 + }, + { + "epoch": 2.003391921060746, + "grad_norm": 0.08354249596595764, + "learning_rate": 0.01, + "loss": 2.065, + "step": 19491 + }, + { + "epoch": 2.003700277520814, + "grad_norm": 0.09245558828115463, + "learning_rate": 0.01, + "loss": 2.0571, + "step": 19494 + }, + { + "epoch": 2.004008633980882, + "grad_norm": 0.09228463470935822, + "learning_rate": 0.01, + "loss": 2.0749, + "step": 19497 + }, + { + "epoch": 2.00431699044095, + "grad_norm": 0.05558445304632187, + "learning_rate": 0.01, + "loss": 2.0754, + "step": 19500 + }, + { + "epoch": 2.0046253469010176, + "grad_norm": 0.04827789589762688, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 19503 + }, + { + "epoch": 2.0049337033610852, + "grad_norm": 0.063465915620327, + "learning_rate": 0.01, + "loss": 2.067, + "step": 19506 + }, + { + "epoch": 2.0052420598211533, + "grad_norm": 0.047648850828409195, + "learning_rate": 0.01, + "loss": 2.0614, + "step": 19509 + }, + { + "epoch": 2.005550416281221, + "grad_norm": 0.038050852715969086, + "learning_rate": 0.01, + "loss": 2.0699, + "step": 19512 + }, + { + "epoch": 2.005858772741289, + "grad_norm": 0.036580201238393784, + "learning_rate": 0.01, + "loss": 2.0832, + "step": 19515 + }, + { + "epoch": 2.0061671292013568, + "grad_norm": 0.033919982612133026, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 19518 + }, + { + "epoch": 2.0064754856614244, + "grad_norm": 0.05007147789001465, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 19521 + }, + { + "epoch": 2.0067838421214925, + "grad_norm": 0.042562540620565414, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 19524 + }, + { + "epoch": 2.00709219858156, + "grad_norm": 0.0872044712305069, + "learning_rate": 0.01, + "loss": 2.0628, + "step": 19527 + }, + { + "epoch": 2.0074005550416283, + "grad_norm": 0.06331472843885422, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 19530 + }, + { + "epoch": 2.007708911501696, + "grad_norm": 0.08928905427455902, + "learning_rate": 0.01, + "loss": 2.051, + "step": 19533 + }, + { + "epoch": 2.0080172679617636, + "grad_norm": 0.0869508758187294, + "learning_rate": 0.01, + "loss": 2.0497, + "step": 19536 + }, + { + "epoch": 2.0083256244218317, + "grad_norm": 0.04267793521285057, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 19539 + }, + { + "epoch": 2.0086339808818994, + "grad_norm": 0.046922095119953156, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 19542 + }, + { + "epoch": 2.0089423373419675, + "grad_norm": 0.07374055683612823, + "learning_rate": 0.01, + "loss": 2.0571, + "step": 19545 + }, + { + "epoch": 2.009250693802035, + "grad_norm": 0.042078323662281036, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 19548 + }, + { + "epoch": 2.009559050262103, + "grad_norm": 0.052491504698991776, + "learning_rate": 0.01, + "loss": 2.0996, + "step": 19551 + }, + { + "epoch": 2.009867406722171, + "grad_norm": 0.04900294169783592, + "learning_rate": 0.01, + "loss": 2.0476, + "step": 19554 + }, + { + "epoch": 2.0101757631822386, + "grad_norm": 0.13067513704299927, + "learning_rate": 0.01, + "loss": 2.066, + "step": 19557 + }, + { + "epoch": 2.0104841196423067, + "grad_norm": 0.09229371696710587, + "learning_rate": 0.01, + "loss": 2.0708, + "step": 19560 + }, + { + "epoch": 2.0107924761023743, + "grad_norm": 0.05014317110180855, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 19563 + }, + { + "epoch": 2.011100832562442, + "grad_norm": 0.06385400146245956, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 19566 + }, + { + "epoch": 2.01140918902251, + "grad_norm": 0.04037034139037132, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 19569 + }, + { + "epoch": 2.0117175454825778, + "grad_norm": 0.02967817150056362, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 19572 + }, + { + "epoch": 2.012025901942646, + "grad_norm": 0.04519663751125336, + "learning_rate": 0.01, + "loss": 2.0497, + "step": 19575 + }, + { + "epoch": 2.0123342584027135, + "grad_norm": 0.07825223356485367, + "learning_rate": 0.01, + "loss": 2.06, + "step": 19578 + }, + { + "epoch": 2.012642614862781, + "grad_norm": 0.13088425993919373, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 19581 + }, + { + "epoch": 2.0129509713228493, + "grad_norm": 0.10113450884819031, + "learning_rate": 0.01, + "loss": 2.0628, + "step": 19584 + }, + { + "epoch": 2.013259327782917, + "grad_norm": 0.06662772595882416, + "learning_rate": 0.01, + "loss": 2.0655, + "step": 19587 + }, + { + "epoch": 2.013567684242985, + "grad_norm": 0.04824177175760269, + "learning_rate": 0.01, + "loss": 2.0853, + "step": 19590 + }, + { + "epoch": 2.0138760407030527, + "grad_norm": 0.07255363464355469, + "learning_rate": 0.01, + "loss": 2.0614, + "step": 19593 + }, + { + "epoch": 2.0141843971631204, + "grad_norm": 0.061763517558574677, + "learning_rate": 0.01, + "loss": 2.0761, + "step": 19596 + }, + { + "epoch": 2.0144927536231885, + "grad_norm": 0.058266837149858475, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 19599 + }, + { + "epoch": 2.014801110083256, + "grad_norm": 0.05644237995147705, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 19602 + }, + { + "epoch": 2.0151094665433242, + "grad_norm": 0.102548748254776, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 19605 + }, + { + "epoch": 2.015417823003392, + "grad_norm": 0.06959159672260284, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 19608 + }, + { + "epoch": 2.0157261794634596, + "grad_norm": 0.09066049009561539, + "learning_rate": 0.01, + "loss": 2.045, + "step": 19611 + }, + { + "epoch": 2.0160345359235277, + "grad_norm": 0.061073388904333115, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 19614 + }, + { + "epoch": 2.0163428923835953, + "grad_norm": 0.09000861644744873, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 19617 + }, + { + "epoch": 2.0166512488436634, + "grad_norm": 0.040078576654195786, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 19620 + }, + { + "epoch": 2.016959605303731, + "grad_norm": 0.045984748750925064, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 19623 + }, + { + "epoch": 2.0172679617637987, + "grad_norm": 0.045942965894937515, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 19626 + }, + { + "epoch": 2.017576318223867, + "grad_norm": 0.059133514761924744, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 19629 + }, + { + "epoch": 2.0178846746839345, + "grad_norm": 0.07386631518602371, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 19632 + }, + { + "epoch": 2.0181930311440026, + "grad_norm": 0.06906817853450775, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 19635 + }, + { + "epoch": 2.0185013876040703, + "grad_norm": 0.06259379535913467, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 19638 + }, + { + "epoch": 2.018809744064138, + "grad_norm": 0.07011371850967407, + "learning_rate": 0.01, + "loss": 2.0716, + "step": 19641 + }, + { + "epoch": 2.019118100524206, + "grad_norm": 0.05763932690024376, + "learning_rate": 0.01, + "loss": 2.0618, + "step": 19644 + }, + { + "epoch": 2.0194264569842737, + "grad_norm": 0.09810350090265274, + "learning_rate": 0.01, + "loss": 2.046, + "step": 19647 + }, + { + "epoch": 2.019734813444342, + "grad_norm": 0.11434987187385559, + "learning_rate": 0.01, + "loss": 2.057, + "step": 19650 + }, + { + "epoch": 2.0200431699044095, + "grad_norm": 0.10692505538463593, + "learning_rate": 0.01, + "loss": 2.0669, + "step": 19653 + }, + { + "epoch": 2.020351526364477, + "grad_norm": 0.06918302178382874, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 19656 + }, + { + "epoch": 2.0206598828245452, + "grad_norm": 0.06661045551300049, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 19659 + }, + { + "epoch": 2.020968239284613, + "grad_norm": 0.03996479883790016, + "learning_rate": 0.01, + "loss": 2.0552, + "step": 19662 + }, + { + "epoch": 2.021276595744681, + "grad_norm": 0.041359271854162216, + "learning_rate": 0.01, + "loss": 2.0542, + "step": 19665 + }, + { + "epoch": 2.0215849522047487, + "grad_norm": 0.046693217009305954, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 19668 + }, + { + "epoch": 2.0218933086648163, + "grad_norm": 0.031555816531181335, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 19671 + }, + { + "epoch": 2.0222016651248844, + "grad_norm": 0.036573588848114014, + "learning_rate": 0.01, + "loss": 2.038, + "step": 19674 + }, + { + "epoch": 2.022510021584952, + "grad_norm": 0.09064050763845444, + "learning_rate": 0.01, + "loss": 2.0609, + "step": 19677 + }, + { + "epoch": 2.02281837804502, + "grad_norm": 0.11865704506635666, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 19680 + }, + { + "epoch": 2.023126734505088, + "grad_norm": 0.08720502257347107, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 19683 + }, + { + "epoch": 2.0234350909651555, + "grad_norm": 0.06953457742929459, + "learning_rate": 0.01, + "loss": 2.0769, + "step": 19686 + }, + { + "epoch": 2.0237434474252236, + "grad_norm": 0.04386308416724205, + "learning_rate": 0.01, + "loss": 2.0595, + "step": 19689 + }, + { + "epoch": 2.0240518038852913, + "grad_norm": 0.047490183264017105, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 19692 + }, + { + "epoch": 2.0243601603453594, + "grad_norm": 0.061406608670949936, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 19695 + }, + { + "epoch": 2.024668516805427, + "grad_norm": 0.0626315325498581, + "learning_rate": 0.01, + "loss": 2.0908, + "step": 19698 + }, + { + "epoch": 2.0249768732654947, + "grad_norm": 0.048075366765260696, + "learning_rate": 0.01, + "loss": 2.0703, + "step": 19701 + }, + { + "epoch": 2.025285229725563, + "grad_norm": 0.06243044510483742, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 19704 + }, + { + "epoch": 2.0255935861856305, + "grad_norm": 0.06498084217309952, + "learning_rate": 0.01, + "loss": 2.0812, + "step": 19707 + }, + { + "epoch": 2.0259019426456986, + "grad_norm": 0.05091014504432678, + "learning_rate": 0.01, + "loss": 2.0451, + "step": 19710 + }, + { + "epoch": 2.026210299105766, + "grad_norm": 0.04733705893158913, + "learning_rate": 0.01, + "loss": 2.059, + "step": 19713 + }, + { + "epoch": 2.026518655565834, + "grad_norm": 0.10866537690162659, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 19716 + }, + { + "epoch": 2.026827012025902, + "grad_norm": 0.07504774630069733, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 19719 + }, + { + "epoch": 2.0271353684859696, + "grad_norm": 0.07938455790281296, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 19722 + }, + { + "epoch": 2.0274437249460378, + "grad_norm": 0.10090157389640808, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 19725 + }, + { + "epoch": 2.0277520814061054, + "grad_norm": 0.04133126139640808, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 19728 + }, + { + "epoch": 2.0280604378661735, + "grad_norm": 0.12022694200277328, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 19731 + }, + { + "epoch": 2.028368794326241, + "grad_norm": 0.05904841795563698, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 19734 + }, + { + "epoch": 2.028677150786309, + "grad_norm": 0.08344896882772446, + "learning_rate": 0.01, + "loss": 2.0721, + "step": 19737 + }, + { + "epoch": 2.028985507246377, + "grad_norm": 0.045264534652233124, + "learning_rate": 0.01, + "loss": 2.0597, + "step": 19740 + }, + { + "epoch": 2.0292938637064446, + "grad_norm": 0.05907116085290909, + "learning_rate": 0.01, + "loss": 2.0561, + "step": 19743 + }, + { + "epoch": 2.0296022201665127, + "grad_norm": 0.04975851625204086, + "learning_rate": 0.01, + "loss": 2.0642, + "step": 19746 + }, + { + "epoch": 2.0299105766265804, + "grad_norm": 0.08190937340259552, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 19749 + }, + { + "epoch": 2.030218933086648, + "grad_norm": 0.14594541490077972, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 19752 + }, + { + "epoch": 2.030527289546716, + "grad_norm": 0.11920581012964249, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 19755 + }, + { + "epoch": 2.030835646006784, + "grad_norm": 0.04334663227200508, + "learning_rate": 0.01, + "loss": 2.0835, + "step": 19758 + }, + { + "epoch": 2.031144002466852, + "grad_norm": 0.05323721095919609, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 19761 + }, + { + "epoch": 2.0314523589269196, + "grad_norm": 0.09565315395593643, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 19764 + }, + { + "epoch": 2.031760715386987, + "grad_norm": 0.14498768746852875, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 19767 + }, + { + "epoch": 2.0320690718470553, + "grad_norm": 0.16146855056285858, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 19770 + }, + { + "epoch": 2.032377428307123, + "grad_norm": 0.09023015946149826, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 19773 + }, + { + "epoch": 2.032685784767191, + "grad_norm": 0.05290327966213226, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 19776 + }, + { + "epoch": 2.0329941412272587, + "grad_norm": 0.06551158428192139, + "learning_rate": 0.01, + "loss": 2.062, + "step": 19779 + }, + { + "epoch": 2.0333024976873264, + "grad_norm": 0.09268030524253845, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 19782 + }, + { + "epoch": 2.0336108541473945, + "grad_norm": 0.05402594432234764, + "learning_rate": 0.01, + "loss": 2.0739, + "step": 19785 + }, + { + "epoch": 2.033919210607462, + "grad_norm": 0.052478570491075516, + "learning_rate": 0.01, + "loss": 2.0709, + "step": 19788 + }, + { + "epoch": 2.0342275670675303, + "grad_norm": 0.03243448957800865, + "learning_rate": 0.01, + "loss": 2.049, + "step": 19791 + }, + { + "epoch": 2.034535923527598, + "grad_norm": 0.08627558499574661, + "learning_rate": 0.01, + "loss": 2.058, + "step": 19794 + }, + { + "epoch": 2.0348442799876656, + "grad_norm": 0.04757314547896385, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 19797 + }, + { + "epoch": 2.0351526364477337, + "grad_norm": 0.11217369884252548, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 19800 + }, + { + "epoch": 2.0354609929078014, + "grad_norm": 0.07525690644979477, + "learning_rate": 0.01, + "loss": 2.0782, + "step": 19803 + }, + { + "epoch": 2.0357693493678695, + "grad_norm": 0.0945955365896225, + "learning_rate": 0.01, + "loss": 2.0594, + "step": 19806 + }, + { + "epoch": 2.036077705827937, + "grad_norm": 0.07789472490549088, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 19809 + }, + { + "epoch": 2.036386062288005, + "grad_norm": 0.06672658026218414, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 19812 + }, + { + "epoch": 2.036694418748073, + "grad_norm": 0.06361529976129532, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 19815 + }, + { + "epoch": 2.0370027752081405, + "grad_norm": 0.03530391305685043, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 19818 + }, + { + "epoch": 2.0373111316682087, + "grad_norm": 0.08201812207698822, + "learning_rate": 0.01, + "loss": 2.023, + "step": 19821 + }, + { + "epoch": 2.0376194881282763, + "grad_norm": 0.09198293834924698, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 19824 + }, + { + "epoch": 2.037927844588344, + "grad_norm": 0.058875374495983124, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 19827 + }, + { + "epoch": 2.038236201048412, + "grad_norm": 0.04453382268548012, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 19830 + }, + { + "epoch": 2.0385445575084797, + "grad_norm": 0.03713817149400711, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 19833 + }, + { + "epoch": 2.038852913968548, + "grad_norm": 0.056827936321496964, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 19836 + }, + { + "epoch": 2.0391612704286155, + "grad_norm": 0.08166830986738205, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 19839 + }, + { + "epoch": 2.039469626888683, + "grad_norm": 0.06837287545204163, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 19842 + }, + { + "epoch": 2.0397779833487513, + "grad_norm": 0.08867949992418289, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 19845 + }, + { + "epoch": 2.040086339808819, + "grad_norm": 0.07119370251893997, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 19848 + }, + { + "epoch": 2.040394696268887, + "grad_norm": 0.07701986283063889, + "learning_rate": 0.01, + "loss": 2.0695, + "step": 19851 + }, + { + "epoch": 2.0407030527289547, + "grad_norm": 0.04700729623436928, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 19854 + }, + { + "epoch": 2.0410114091890224, + "grad_norm": 0.05898338556289673, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 19857 + }, + { + "epoch": 2.0413197656490905, + "grad_norm": 0.11953815072774887, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 19860 + }, + { + "epoch": 2.041628122109158, + "grad_norm": 0.09704854339361191, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 19863 + }, + { + "epoch": 2.041936478569226, + "grad_norm": 0.1362537145614624, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 19866 + }, + { + "epoch": 2.042244835029294, + "grad_norm": 0.09366025030612946, + "learning_rate": 0.01, + "loss": 2.0628, + "step": 19869 + }, + { + "epoch": 2.0425531914893615, + "grad_norm": 0.05397522822022438, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 19872 + }, + { + "epoch": 2.0428615479494296, + "grad_norm": 0.07723390311002731, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 19875 + }, + { + "epoch": 2.0431699044094973, + "grad_norm": 0.08418615907430649, + "learning_rate": 0.01, + "loss": 2.0878, + "step": 19878 + }, + { + "epoch": 2.0434782608695654, + "grad_norm": 0.06149798631668091, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 19881 + }, + { + "epoch": 2.043786617329633, + "grad_norm": 0.0474097803235054, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 19884 + }, + { + "epoch": 2.0440949737897007, + "grad_norm": 0.04854200407862663, + "learning_rate": 0.01, + "loss": 2.0637, + "step": 19887 + }, + { + "epoch": 2.044403330249769, + "grad_norm": 0.04509511590003967, + "learning_rate": 0.01, + "loss": 2.0679, + "step": 19890 + }, + { + "epoch": 2.0447116867098365, + "grad_norm": 0.05422825738787651, + "learning_rate": 0.01, + "loss": 2.0449, + "step": 19893 + }, + { + "epoch": 2.0450200431699046, + "grad_norm": 0.06556607037782669, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 19896 + }, + { + "epoch": 2.0453283996299723, + "grad_norm": 0.03906751424074173, + "learning_rate": 0.01, + "loss": 2.0694, + "step": 19899 + }, + { + "epoch": 2.04563675609004, + "grad_norm": 0.05207069590687752, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 19902 + }, + { + "epoch": 2.045945112550108, + "grad_norm": 0.04187217727303505, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 19905 + }, + { + "epoch": 2.0462534690101757, + "grad_norm": 0.04163263365626335, + "learning_rate": 0.01, + "loss": 2.0535, + "step": 19908 + }, + { + "epoch": 2.046561825470244, + "grad_norm": 0.037544943392276764, + "learning_rate": 0.01, + "loss": 2.033, + "step": 19911 + }, + { + "epoch": 2.0468701819303114, + "grad_norm": 0.03623516857624054, + "learning_rate": 0.01, + "loss": 2.0758, + "step": 19914 + }, + { + "epoch": 2.047178538390379, + "grad_norm": 0.08026546239852905, + "learning_rate": 0.01, + "loss": 2.0654, + "step": 19917 + }, + { + "epoch": 2.047486894850447, + "grad_norm": 0.05316372588276863, + "learning_rate": 0.01, + "loss": 2.0751, + "step": 19920 + }, + { + "epoch": 2.047795251310515, + "grad_norm": 0.062127552926540375, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 19923 + }, + { + "epoch": 2.048103607770583, + "grad_norm": 0.049675267189741135, + "learning_rate": 0.01, + "loss": 2.0741, + "step": 19926 + }, + { + "epoch": 2.0484119642306506, + "grad_norm": 0.0425347164273262, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 19929 + }, + { + "epoch": 2.0487203206907183, + "grad_norm": 0.03532329574227333, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 19932 + }, + { + "epoch": 2.0490286771507864, + "grad_norm": 0.05779660493135452, + "learning_rate": 0.01, + "loss": 2.0801, + "step": 19935 + }, + { + "epoch": 2.049337033610854, + "grad_norm": 0.07841507345438004, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 19938 + }, + { + "epoch": 2.049645390070922, + "grad_norm": 0.0883709266781807, + "learning_rate": 0.01, + "loss": 2.0594, + "step": 19941 + }, + { + "epoch": 2.04995374653099, + "grad_norm": 0.09949532151222229, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 19944 + }, + { + "epoch": 2.0502621029910575, + "grad_norm": 0.04350358247756958, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 19947 + }, + { + "epoch": 2.0505704594511256, + "grad_norm": 0.042655814439058304, + "learning_rate": 0.01, + "loss": 2.0821, + "step": 19950 + }, + { + "epoch": 2.0508788159111933, + "grad_norm": 0.060070816427469254, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 19953 + }, + { + "epoch": 2.0511871723712614, + "grad_norm": 0.06479921191930771, + "learning_rate": 0.01, + "loss": 2.0783, + "step": 19956 + }, + { + "epoch": 2.051495528831329, + "grad_norm": 0.0982329398393631, + "learning_rate": 0.01, + "loss": 2.0756, + "step": 19959 + }, + { + "epoch": 2.0518038852913967, + "grad_norm": 0.10483184456825256, + "learning_rate": 0.01, + "loss": 2.035, + "step": 19962 + }, + { + "epoch": 2.052112241751465, + "grad_norm": 0.06383049488067627, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 19965 + }, + { + "epoch": 2.0524205982115324, + "grad_norm": 0.13797828555107117, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 19968 + }, + { + "epoch": 2.0527289546716005, + "grad_norm": 0.037840090692043304, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 19971 + }, + { + "epoch": 2.053037311131668, + "grad_norm": 0.043872520327568054, + "learning_rate": 0.01, + "loss": 2.0609, + "step": 19974 + }, + { + "epoch": 2.053345667591736, + "grad_norm": 0.03223152458667755, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 19977 + }, + { + "epoch": 2.053654024051804, + "grad_norm": 0.05935351178050041, + "learning_rate": 0.01, + "loss": 2.066, + "step": 19980 + }, + { + "epoch": 2.0539623805118716, + "grad_norm": 0.054079607129096985, + "learning_rate": 0.01, + "loss": 2.0665, + "step": 19983 + }, + { + "epoch": 2.0542707369719397, + "grad_norm": 0.04307890310883522, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 19986 + }, + { + "epoch": 2.0545790934320074, + "grad_norm": 0.06624720245599747, + "learning_rate": 0.01, + "loss": 2.052, + "step": 19989 + }, + { + "epoch": 2.054887449892075, + "grad_norm": 0.08096028864383698, + "learning_rate": 0.01, + "loss": 2.0947, + "step": 19992 + }, + { + "epoch": 2.055195806352143, + "grad_norm": 0.0872364342212677, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 19995 + }, + { + "epoch": 2.055504162812211, + "grad_norm": 0.04538879171013832, + "learning_rate": 0.01, + "loss": 2.031, + "step": 19998 + }, + { + "epoch": 2.055812519272279, + "grad_norm": 0.11873256415128708, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 20001 + }, + { + "epoch": 2.0561208757323466, + "grad_norm": 0.05929452180862427, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 20004 + }, + { + "epoch": 2.0564292321924142, + "grad_norm": 0.05131294205784798, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 20007 + }, + { + "epoch": 2.0567375886524824, + "grad_norm": 0.05690256133675575, + "learning_rate": 0.01, + "loss": 2.0779, + "step": 20010 + }, + { + "epoch": 2.05704594511255, + "grad_norm": 0.04414551705121994, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 20013 + }, + { + "epoch": 2.057354301572618, + "grad_norm": 0.04017036780714989, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 20016 + }, + { + "epoch": 2.0576626580326858, + "grad_norm": 0.06785457581281662, + "learning_rate": 0.01, + "loss": 2.058, + "step": 20019 + }, + { + "epoch": 2.0579710144927534, + "grad_norm": 0.06258828938007355, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 20022 + }, + { + "epoch": 2.0582793709528215, + "grad_norm": 0.11196446418762207, + "learning_rate": 0.01, + "loss": 2.0624, + "step": 20025 + }, + { + "epoch": 2.058587727412889, + "grad_norm": 0.08678428828716278, + "learning_rate": 0.01, + "loss": 2.0667, + "step": 20028 + }, + { + "epoch": 2.0588960838729573, + "grad_norm": 0.13598018884658813, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 20031 + }, + { + "epoch": 2.059204440333025, + "grad_norm": 0.06666143238544464, + "learning_rate": 0.01, + "loss": 2.037, + "step": 20034 + }, + { + "epoch": 2.0595127967930926, + "grad_norm": 0.05994727462530136, + "learning_rate": 0.01, + "loss": 2.0674, + "step": 20037 + }, + { + "epoch": 2.0598211532531607, + "grad_norm": 0.03867008537054062, + "learning_rate": 0.01, + "loss": 2.056, + "step": 20040 + }, + { + "epoch": 2.0601295097132284, + "grad_norm": 0.13077500462532043, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 20043 + }, + { + "epoch": 2.0604378661732965, + "grad_norm": 0.057164691388607025, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 20046 + }, + { + "epoch": 2.060746222633364, + "grad_norm": 0.07206998765468597, + "learning_rate": 0.01, + "loss": 2.0472, + "step": 20049 + }, + { + "epoch": 2.061054579093432, + "grad_norm": 0.08844766765832901, + "learning_rate": 0.01, + "loss": 2.0535, + "step": 20052 + }, + { + "epoch": 2.0613629355535, + "grad_norm": 0.07533573359251022, + "learning_rate": 0.01, + "loss": 2.0698, + "step": 20055 + }, + { + "epoch": 2.0616712920135676, + "grad_norm": 0.03260966017842293, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 20058 + }, + { + "epoch": 2.0619796484736357, + "grad_norm": 0.03491971641778946, + "learning_rate": 0.01, + "loss": 2.0612, + "step": 20061 + }, + { + "epoch": 2.0622880049337033, + "grad_norm": 0.04022398218512535, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 20064 + }, + { + "epoch": 2.062596361393771, + "grad_norm": 0.06325655430555344, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 20067 + }, + { + "epoch": 2.062904717853839, + "grad_norm": 0.06704667955636978, + "learning_rate": 0.01, + "loss": 2.0641, + "step": 20070 + }, + { + "epoch": 2.0632130743139068, + "grad_norm": 0.06883389502763748, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 20073 + }, + { + "epoch": 2.063521430773975, + "grad_norm": 0.05242495611310005, + "learning_rate": 0.01, + "loss": 2.0701, + "step": 20076 + }, + { + "epoch": 2.0638297872340425, + "grad_norm": 0.06587128341197968, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 20079 + }, + { + "epoch": 2.06413814369411, + "grad_norm": 0.03571178764104843, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 20082 + }, + { + "epoch": 2.0644465001541783, + "grad_norm": 0.061605412513017654, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 20085 + }, + { + "epoch": 2.064754856614246, + "grad_norm": 0.05552279204130173, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 20088 + }, + { + "epoch": 2.065063213074314, + "grad_norm": 0.047950152307748795, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 20091 + }, + { + "epoch": 2.0653715695343817, + "grad_norm": 0.09466604888439178, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 20094 + }, + { + "epoch": 2.0656799259944494, + "grad_norm": 0.04828859865665436, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 20097 + }, + { + "epoch": 2.0659882824545175, + "grad_norm": 0.03933820128440857, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 20100 + }, + { + "epoch": 2.066296638914585, + "grad_norm": 0.05044875666499138, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 20103 + }, + { + "epoch": 2.0666049953746533, + "grad_norm": 0.04152398556470871, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 20106 + }, + { + "epoch": 2.066913351834721, + "grad_norm": 0.10098916292190552, + "learning_rate": 0.01, + "loss": 2.0726, + "step": 20109 + }, + { + "epoch": 2.0672217082947886, + "grad_norm": 0.06381060183048248, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 20112 + }, + { + "epoch": 2.0675300647548567, + "grad_norm": 0.13991308212280273, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 20115 + }, + { + "epoch": 2.0678384212149243, + "grad_norm": 0.061171598732471466, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 20118 + }, + { + "epoch": 2.0681467776749924, + "grad_norm": 0.04276692867279053, + "learning_rate": 0.01, + "loss": 2.0667, + "step": 20121 + }, + { + "epoch": 2.06845513413506, + "grad_norm": 0.03582247719168663, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 20124 + }, + { + "epoch": 2.0687634905951278, + "grad_norm": 0.037077244371175766, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 20127 + }, + { + "epoch": 2.069071847055196, + "grad_norm": 0.11291185766458511, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 20130 + }, + { + "epoch": 2.0693802035152635, + "grad_norm": 0.06811921298503876, + "learning_rate": 0.01, + "loss": 2.0437, + "step": 20133 + }, + { + "epoch": 2.0696885599753316, + "grad_norm": 0.049292147159576416, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 20136 + }, + { + "epoch": 2.0699969164353993, + "grad_norm": 0.08937390893697739, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 20139 + }, + { + "epoch": 2.070305272895467, + "grad_norm": 0.04353107511997223, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 20142 + }, + { + "epoch": 2.070613629355535, + "grad_norm": 0.03737090900540352, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 20145 + }, + { + "epoch": 2.0709219858156027, + "grad_norm": 0.038217127323150635, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 20148 + }, + { + "epoch": 2.071230342275671, + "grad_norm": 0.07162989675998688, + "learning_rate": 0.01, + "loss": 2.0556, + "step": 20151 + }, + { + "epoch": 2.0715386987357385, + "grad_norm": 0.06507647782564163, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 20154 + }, + { + "epoch": 2.071847055195806, + "grad_norm": 0.07880635559558868, + "learning_rate": 0.01, + "loss": 2.0599, + "step": 20157 + }, + { + "epoch": 2.0721554116558742, + "grad_norm": 0.11247913539409637, + "learning_rate": 0.01, + "loss": 2.042, + "step": 20160 + }, + { + "epoch": 2.072463768115942, + "grad_norm": 0.04084709286689758, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 20163 + }, + { + "epoch": 2.07277212457601, + "grad_norm": 0.06349261850118637, + "learning_rate": 0.01, + "loss": 2.0656, + "step": 20166 + }, + { + "epoch": 2.0730804810360777, + "grad_norm": 0.03916813060641289, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 20169 + }, + { + "epoch": 2.0733888374961453, + "grad_norm": 0.041867464780807495, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 20172 + }, + { + "epoch": 2.0736971939562134, + "grad_norm": 0.09670063108205795, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 20175 + }, + { + "epoch": 2.074005550416281, + "grad_norm": 0.05259916931390762, + "learning_rate": 0.01, + "loss": 2.059, + "step": 20178 + }, + { + "epoch": 2.074313906876349, + "grad_norm": 0.0970730185508728, + "learning_rate": 0.01, + "loss": 2.0557, + "step": 20181 + }, + { + "epoch": 2.074622263336417, + "grad_norm": 0.1317344307899475, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 20184 + }, + { + "epoch": 2.0749306197964845, + "grad_norm": 0.0787033885717392, + "learning_rate": 0.01, + "loss": 2.072, + "step": 20187 + }, + { + "epoch": 2.0752389762565526, + "grad_norm": 0.04037567600607872, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 20190 + }, + { + "epoch": 2.0755473327166203, + "grad_norm": 0.03588324785232544, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 20193 + }, + { + "epoch": 2.0758556891766884, + "grad_norm": 0.05277855321764946, + "learning_rate": 0.01, + "loss": 2.0702, + "step": 20196 + }, + { + "epoch": 2.076164045636756, + "grad_norm": 0.050833381712436676, + "learning_rate": 0.01, + "loss": 2.0748, + "step": 20199 + }, + { + "epoch": 2.076472402096824, + "grad_norm": 0.089606374502182, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 20202 + }, + { + "epoch": 2.076780758556892, + "grad_norm": 0.05270789936184883, + "learning_rate": 0.01, + "loss": 2.0555, + "step": 20205 + }, + { + "epoch": 2.0770891150169595, + "grad_norm": 0.06895376741886139, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 20208 + }, + { + "epoch": 2.0773974714770276, + "grad_norm": 0.11967889964580536, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 20211 + }, + { + "epoch": 2.0777058279370952, + "grad_norm": 0.11328759789466858, + "learning_rate": 0.01, + "loss": 2.002, + "step": 20214 + }, + { + "epoch": 2.078014184397163, + "grad_norm": 0.045189183205366135, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 20217 + }, + { + "epoch": 2.078322540857231, + "grad_norm": 0.05716565251350403, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 20220 + }, + { + "epoch": 2.0786308973172987, + "grad_norm": 0.07340056449174881, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 20223 + }, + { + "epoch": 2.0789392537773668, + "grad_norm": 0.05395069718360901, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 20226 + }, + { + "epoch": 2.0792476102374344, + "grad_norm": 0.03723681718111038, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 20229 + }, + { + "epoch": 2.0795559666975025, + "grad_norm": 0.10626024752855301, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 20232 + }, + { + "epoch": 2.07986432315757, + "grad_norm": 0.09987606853246689, + "learning_rate": 0.01, + "loss": 2.067, + "step": 20235 + }, + { + "epoch": 2.080172679617638, + "grad_norm": 0.07282060384750366, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 20238 + }, + { + "epoch": 2.080481036077706, + "grad_norm": 0.04192940518260002, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 20241 + }, + { + "epoch": 2.0807893925377736, + "grad_norm": 0.06585846096277237, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 20244 + }, + { + "epoch": 2.0810977489978413, + "grad_norm": 0.04427814856171608, + "learning_rate": 0.01, + "loss": 2.017, + "step": 20247 + }, + { + "epoch": 2.0814061054579094, + "grad_norm": 0.05114896968007088, + "learning_rate": 0.01, + "loss": 2.059, + "step": 20250 + }, + { + "epoch": 2.081714461917977, + "grad_norm": 0.0445995107293129, + "learning_rate": 0.01, + "loss": 2.0544, + "step": 20253 + }, + { + "epoch": 2.082022818378045, + "grad_norm": 0.04904405400156975, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 20256 + }, + { + "epoch": 2.082331174838113, + "grad_norm": 0.03620357811450958, + "learning_rate": 0.01, + "loss": 2.0493, + "step": 20259 + }, + { + "epoch": 2.082639531298181, + "grad_norm": 0.10994633287191391, + "learning_rate": 0.01, + "loss": 2.0719, + "step": 20262 + }, + { + "epoch": 2.0829478877582486, + "grad_norm": 0.05244474112987518, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 20265 + }, + { + "epoch": 2.0832562442183162, + "grad_norm": 0.05937792733311653, + "learning_rate": 0.01, + "loss": 2.0593, + "step": 20268 + }, + { + "epoch": 2.0835646006783843, + "grad_norm": 0.08669353276491165, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 20271 + }, + { + "epoch": 2.083872957138452, + "grad_norm": 0.054145876318216324, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 20274 + }, + { + "epoch": 2.08418131359852, + "grad_norm": 0.040682870894670486, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 20277 + }, + { + "epoch": 2.0844896700585878, + "grad_norm": 0.04110307991504669, + "learning_rate": 0.01, + "loss": 2.053, + "step": 20280 + }, + { + "epoch": 2.0847980265186554, + "grad_norm": 0.13420680165290833, + "learning_rate": 0.01, + "loss": 2.0568, + "step": 20283 + }, + { + "epoch": 2.0851063829787235, + "grad_norm": 0.049191731959581375, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 20286 + }, + { + "epoch": 2.085414739438791, + "grad_norm": 0.04682133346796036, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 20289 + }, + { + "epoch": 2.0857230958988593, + "grad_norm": 0.043646588921546936, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 20292 + }, + { + "epoch": 2.086031452358927, + "grad_norm": 0.05107354745268822, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 20295 + }, + { + "epoch": 2.0863398088189946, + "grad_norm": 0.06274458020925522, + "learning_rate": 0.01, + "loss": 2.0621, + "step": 20298 + }, + { + "epoch": 2.0866481652790627, + "grad_norm": 0.11294244229793549, + "learning_rate": 0.01, + "loss": 2.0685, + "step": 20301 + }, + { + "epoch": 2.0869565217391304, + "grad_norm": 0.04948057234287262, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 20304 + }, + { + "epoch": 2.0872648781991985, + "grad_norm": 0.04451402649283409, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 20307 + }, + { + "epoch": 2.087573234659266, + "grad_norm": 0.04940638318657875, + "learning_rate": 0.01, + "loss": 2.0584, + "step": 20310 + }, + { + "epoch": 2.087881591119334, + "grad_norm": 0.06530692428350449, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 20313 + }, + { + "epoch": 2.088189947579402, + "grad_norm": 0.13395404815673828, + "learning_rate": 0.01, + "loss": 2.028, + "step": 20316 + }, + { + "epoch": 2.0884983040394696, + "grad_norm": 0.09222474694252014, + "learning_rate": 0.01, + "loss": 2.045, + "step": 20319 + }, + { + "epoch": 2.0888066604995377, + "grad_norm": 0.06510595977306366, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 20322 + }, + { + "epoch": 2.0891150169596053, + "grad_norm": 0.055552888661623, + "learning_rate": 0.01, + "loss": 2.0612, + "step": 20325 + }, + { + "epoch": 2.089423373419673, + "grad_norm": 0.04411375895142555, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 20328 + }, + { + "epoch": 2.089731729879741, + "grad_norm": 0.05151544511318207, + "learning_rate": 0.01, + "loss": 2.0539, + "step": 20331 + }, + { + "epoch": 2.0900400863398088, + "grad_norm": 0.09836700558662415, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 20334 + }, + { + "epoch": 2.090348442799877, + "grad_norm": 0.06430090218782425, + "learning_rate": 0.01, + "loss": 2.043, + "step": 20337 + }, + { + "epoch": 2.0906567992599445, + "grad_norm": 0.09683403372764587, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 20340 + }, + { + "epoch": 2.090965155720012, + "grad_norm": 0.08345566689968109, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 20343 + }, + { + "epoch": 2.0912735121800803, + "grad_norm": 0.045199088752269745, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 20346 + }, + { + "epoch": 2.091581868640148, + "grad_norm": 0.0399625338613987, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 20349 + }, + { + "epoch": 2.091890225100216, + "grad_norm": 0.03815968707203865, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 20352 + }, + { + "epoch": 2.0921985815602837, + "grad_norm": 0.054826896637678146, + "learning_rate": 0.01, + "loss": 2.035, + "step": 20355 + }, + { + "epoch": 2.0925069380203514, + "grad_norm": 0.05717878043651581, + "learning_rate": 0.01, + "loss": 2.0613, + "step": 20358 + }, + { + "epoch": 2.0928152944804195, + "grad_norm": 0.09222474694252014, + "learning_rate": 0.01, + "loss": 2.037, + "step": 20361 + }, + { + "epoch": 2.093123650940487, + "grad_norm": 0.0983637347817421, + "learning_rate": 0.01, + "loss": 2.0652, + "step": 20364 + }, + { + "epoch": 2.0934320074005552, + "grad_norm": 0.05338272079825401, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 20367 + }, + { + "epoch": 2.093740363860623, + "grad_norm": 0.047821927815675735, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 20370 + }, + { + "epoch": 2.0940487203206906, + "grad_norm": 0.10657365620136261, + "learning_rate": 0.01, + "loss": 2.0533, + "step": 20373 + }, + { + "epoch": 2.0943570767807587, + "grad_norm": 0.08650174736976624, + "learning_rate": 0.01, + "loss": 2.0486, + "step": 20376 + }, + { + "epoch": 2.0946654332408263, + "grad_norm": 0.06975332647562027, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 20379 + }, + { + "epoch": 2.0949737897008944, + "grad_norm": 0.08443387597799301, + "learning_rate": 0.01, + "loss": 2.0529, + "step": 20382 + }, + { + "epoch": 2.095282146160962, + "grad_norm": 0.04376668483018875, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 20385 + }, + { + "epoch": 2.0955905026210297, + "grad_norm": 0.1501801759004593, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 20388 + }, + { + "epoch": 2.095898859081098, + "grad_norm": 0.08488426357507706, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 20391 + }, + { + "epoch": 2.0962072155411655, + "grad_norm": 0.05569930747151375, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 20394 + }, + { + "epoch": 2.0965155720012336, + "grad_norm": 0.059826262295246124, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 20397 + }, + { + "epoch": 2.0968239284613013, + "grad_norm": 0.0911981388926506, + "learning_rate": 0.01, + "loss": 2.0568, + "step": 20400 + }, + { + "epoch": 2.097132284921369, + "grad_norm": 0.03921716660261154, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 20403 + }, + { + "epoch": 2.097440641381437, + "grad_norm": 0.07355164736509323, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 20406 + }, + { + "epoch": 2.0977489978415047, + "grad_norm": 0.031198322772979736, + "learning_rate": 0.01, + "loss": 2.0755, + "step": 20409 + }, + { + "epoch": 2.098057354301573, + "grad_norm": 0.07405471056699753, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 20412 + }, + { + "epoch": 2.0983657107616405, + "grad_norm": 0.08160628378391266, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 20415 + }, + { + "epoch": 2.098674067221708, + "grad_norm": 0.11125149577856064, + "learning_rate": 0.01, + "loss": 2.0612, + "step": 20418 + }, + { + "epoch": 2.0989824236817762, + "grad_norm": 0.04484894871711731, + "learning_rate": 0.01, + "loss": 2.061, + "step": 20421 + }, + { + "epoch": 2.099290780141844, + "grad_norm": 0.07138056308031082, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 20424 + }, + { + "epoch": 2.099599136601912, + "grad_norm": 0.0794389471411705, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 20427 + }, + { + "epoch": 2.0999074930619797, + "grad_norm": 0.05673963576555252, + "learning_rate": 0.01, + "loss": 2.0708, + "step": 20430 + }, + { + "epoch": 2.1002158495220473, + "grad_norm": 0.054527074098587036, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 20433 + }, + { + "epoch": 2.1005242059821154, + "grad_norm": 0.04964460805058479, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 20436 + }, + { + "epoch": 2.100832562442183, + "grad_norm": 0.07147829979658127, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 20439 + }, + { + "epoch": 2.101140918902251, + "grad_norm": 0.07474019378423691, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 20442 + }, + { + "epoch": 2.101449275362319, + "grad_norm": 0.06944689154624939, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 20445 + }, + { + "epoch": 2.1017576318223865, + "grad_norm": 0.07336383312940598, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 20448 + }, + { + "epoch": 2.1020659882824546, + "grad_norm": 0.08889491856098175, + "learning_rate": 0.01, + "loss": 2.0822, + "step": 20451 + }, + { + "epoch": 2.1023743447425223, + "grad_norm": 0.07154878228902817, + "learning_rate": 0.01, + "loss": 2.0672, + "step": 20454 + }, + { + "epoch": 2.1026827012025904, + "grad_norm": 0.0471792072057724, + "learning_rate": 0.01, + "loss": 2.026, + "step": 20457 + }, + { + "epoch": 2.102991057662658, + "grad_norm": 0.10836900025606155, + "learning_rate": 0.01, + "loss": 2.037, + "step": 20460 + }, + { + "epoch": 2.1032994141227257, + "grad_norm": 0.05292079225182533, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 20463 + }, + { + "epoch": 2.103607770582794, + "grad_norm": 0.13195812702178955, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 20466 + }, + { + "epoch": 2.1039161270428615, + "grad_norm": 0.1316298395395279, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 20469 + }, + { + "epoch": 2.1042244835029296, + "grad_norm": 0.04061713069677353, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 20472 + }, + { + "epoch": 2.1045328399629972, + "grad_norm": 0.09250857681035995, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 20475 + }, + { + "epoch": 2.104841196423065, + "grad_norm": 0.058364611119031906, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 20478 + }, + { + "epoch": 2.105149552883133, + "grad_norm": 0.046974651515483856, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 20481 + }, + { + "epoch": 2.1054579093432007, + "grad_norm": 0.04835136979818344, + "learning_rate": 0.01, + "loss": 2.044, + "step": 20484 + }, + { + "epoch": 2.1057662658032688, + "grad_norm": 0.04643654450774193, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 20487 + }, + { + "epoch": 2.1060746222633364, + "grad_norm": 0.10667752474546432, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 20490 + }, + { + "epoch": 2.106382978723404, + "grad_norm": 0.07521391659975052, + "learning_rate": 0.01, + "loss": 2.0552, + "step": 20493 + }, + { + "epoch": 2.106691335183472, + "grad_norm": 0.10269229114055634, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 20496 + }, + { + "epoch": 2.10699969164354, + "grad_norm": 0.040783487260341644, + "learning_rate": 0.01, + "loss": 2.0567, + "step": 20499 + }, + { + "epoch": 2.107308048103608, + "grad_norm": 0.05012373626232147, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 20502 + }, + { + "epoch": 2.1076164045636756, + "grad_norm": 0.042675044387578964, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 20505 + }, + { + "epoch": 2.1079247610237433, + "grad_norm": 0.06164225935935974, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 20508 + }, + { + "epoch": 2.1082331174838114, + "grad_norm": 0.06368019431829453, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 20511 + }, + { + "epoch": 2.108541473943879, + "grad_norm": 0.049319278448820114, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 20514 + }, + { + "epoch": 2.108849830403947, + "grad_norm": 0.06070362776517868, + "learning_rate": 0.01, + "loss": 2.045, + "step": 20517 + }, + { + "epoch": 2.109158186864015, + "grad_norm": 0.07560203224420547, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 20520 + }, + { + "epoch": 2.1094665433240825, + "grad_norm": 0.05563758686184883, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 20523 + }, + { + "epoch": 2.1097748997841506, + "grad_norm": 0.04349389672279358, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 20526 + }, + { + "epoch": 2.110083256244218, + "grad_norm": 0.05849798396229744, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 20529 + }, + { + "epoch": 2.1103916127042863, + "grad_norm": 0.06813669949769974, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 20532 + }, + { + "epoch": 2.110699969164354, + "grad_norm": 0.08951954543590546, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 20535 + }, + { + "epoch": 2.1110083256244216, + "grad_norm": 0.08673957735300064, + "learning_rate": 0.01, + "loss": 2.0602, + "step": 20538 + }, + { + "epoch": 2.1113166820844897, + "grad_norm": 0.06135937571525574, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 20541 + }, + { + "epoch": 2.1116250385445574, + "grad_norm": 0.08979734778404236, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 20544 + }, + { + "epoch": 2.1119333950046255, + "grad_norm": 0.07878229022026062, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 20547 + }, + { + "epoch": 2.112241751464693, + "grad_norm": 0.07120572775602341, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 20550 + }, + { + "epoch": 2.112550107924761, + "grad_norm": 0.11559943854808807, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 20553 + }, + { + "epoch": 2.112858464384829, + "grad_norm": 0.09005344659090042, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 20556 + }, + { + "epoch": 2.1131668208448966, + "grad_norm": 0.05143802613019943, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 20559 + }, + { + "epoch": 2.1134751773049647, + "grad_norm": 0.03870050981640816, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 20562 + }, + { + "epoch": 2.1137835337650324, + "grad_norm": 0.06471268832683563, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 20565 + }, + { + "epoch": 2.1140918902251, + "grad_norm": 0.07047493010759354, + "learning_rate": 0.01, + "loss": 2.052, + "step": 20568 + }, + { + "epoch": 2.114400246685168, + "grad_norm": 0.08189850300550461, + "learning_rate": 0.01, + "loss": 2.012, + "step": 20571 + }, + { + "epoch": 2.114708603145236, + "grad_norm": 0.04041110724210739, + "learning_rate": 0.01, + "loss": 2.0604, + "step": 20574 + }, + { + "epoch": 2.115016959605304, + "grad_norm": 0.06573761254549026, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 20577 + }, + { + "epoch": 2.1153253160653716, + "grad_norm": 0.06190131977200508, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 20580 + }, + { + "epoch": 2.115633672525439, + "grad_norm": 0.044485028833150864, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 20583 + }, + { + "epoch": 2.1159420289855073, + "grad_norm": 0.03833581507205963, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 20586 + }, + { + "epoch": 2.116250385445575, + "grad_norm": 0.07705090194940567, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 20589 + }, + { + "epoch": 2.116558741905643, + "grad_norm": 0.12635158002376556, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 20592 + }, + { + "epoch": 2.1168670983657107, + "grad_norm": 0.06076742708683014, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 20595 + }, + { + "epoch": 2.1171754548257784, + "grad_norm": 0.06634259968996048, + "learning_rate": 0.01, + "loss": 2.0603, + "step": 20598 + }, + { + "epoch": 2.1174838112858465, + "grad_norm": 0.06167810782790184, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 20601 + }, + { + "epoch": 2.117792167745914, + "grad_norm": 0.0474831759929657, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 20604 + }, + { + "epoch": 2.1181005242059823, + "grad_norm": 0.04799888655543327, + "learning_rate": 0.01, + "loss": 2.0628, + "step": 20607 + }, + { + "epoch": 2.11840888066605, + "grad_norm": 0.055144913494586945, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 20610 + }, + { + "epoch": 2.1187172371261176, + "grad_norm": 0.1116517037153244, + "learning_rate": 0.01, + "loss": 2.0467, + "step": 20613 + }, + { + "epoch": 2.1190255935861857, + "grad_norm": 0.06136411800980568, + "learning_rate": 0.01, + "loss": 2.0489, + "step": 20616 + }, + { + "epoch": 2.1193339500462534, + "grad_norm": 0.09005284309387207, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 20619 + }, + { + "epoch": 2.1196423065063215, + "grad_norm": 0.19345355033874512, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 20622 + }, + { + "epoch": 2.119950662966389, + "grad_norm": 0.14011520147323608, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 20625 + }, + { + "epoch": 2.120259019426457, + "grad_norm": 0.06036897376179695, + "learning_rate": 0.01, + "loss": 2.0566, + "step": 20628 + }, + { + "epoch": 2.120567375886525, + "grad_norm": 0.05589490756392479, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 20631 + }, + { + "epoch": 2.1208757323465925, + "grad_norm": 0.07571965456008911, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 20634 + }, + { + "epoch": 2.1211840888066607, + "grad_norm": 0.05558032542467117, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 20637 + }, + { + "epoch": 2.1214924452667283, + "grad_norm": 0.048844993114471436, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 20640 + }, + { + "epoch": 2.121800801726796, + "grad_norm": 0.04454483836889267, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 20643 + }, + { + "epoch": 2.122109158186864, + "grad_norm": 0.04565678536891937, + "learning_rate": 0.01, + "loss": 2.0498, + "step": 20646 + }, + { + "epoch": 2.1224175146469317, + "grad_norm": 0.04082358628511429, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 20649 + }, + { + "epoch": 2.122725871107, + "grad_norm": 0.03753536194562912, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 20652 + }, + { + "epoch": 2.1230342275670675, + "grad_norm": 0.04898180440068245, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 20655 + }, + { + "epoch": 2.123342584027135, + "grad_norm": 0.0748276561498642, + "learning_rate": 0.01, + "loss": 2.0632, + "step": 20658 + }, + { + "epoch": 2.1236509404872033, + "grad_norm": 0.19312037527561188, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 20661 + }, + { + "epoch": 2.123959296947271, + "grad_norm": 0.1444995105266571, + "learning_rate": 0.01, + "loss": 2.0713, + "step": 20664 + }, + { + "epoch": 2.124267653407339, + "grad_norm": 0.03868752345442772, + "learning_rate": 0.01, + "loss": 2.045, + "step": 20667 + }, + { + "epoch": 2.1245760098674067, + "grad_norm": 0.04851067438721657, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 20670 + }, + { + "epoch": 2.1248843663274743, + "grad_norm": 0.03709336742758751, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 20673 + }, + { + "epoch": 2.1251927227875425, + "grad_norm": 0.03498173505067825, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 20676 + }, + { + "epoch": 2.12550107924761, + "grad_norm": 0.04838285222649574, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 20679 + }, + { + "epoch": 2.125809435707678, + "grad_norm": 0.04562096297740936, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 20682 + }, + { + "epoch": 2.126117792167746, + "grad_norm": 0.06128044053912163, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 20685 + }, + { + "epoch": 2.1264261486278135, + "grad_norm": 0.04903801530599594, + "learning_rate": 0.01, + "loss": 2.049, + "step": 20688 + }, + { + "epoch": 2.1267345050878816, + "grad_norm": 0.038953814655542374, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 20691 + }, + { + "epoch": 2.1270428615479493, + "grad_norm": 0.06137779355049133, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 20694 + }, + { + "epoch": 2.1273512180080174, + "grad_norm": 0.11357403546571732, + "learning_rate": 0.01, + "loss": 2.0572, + "step": 20697 + }, + { + "epoch": 2.127659574468085, + "grad_norm": 0.16223950684070587, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 20700 + }, + { + "epoch": 2.127967930928153, + "grad_norm": 0.06391070038080215, + "learning_rate": 0.01, + "loss": 2.0682, + "step": 20703 + }, + { + "epoch": 2.128276287388221, + "grad_norm": 0.03951489180326462, + "learning_rate": 0.01, + "loss": 2.0645, + "step": 20706 + }, + { + "epoch": 2.1285846438482885, + "grad_norm": 0.03921591490507126, + "learning_rate": 0.01, + "loss": 2.0538, + "step": 20709 + }, + { + "epoch": 2.1288930003083566, + "grad_norm": 0.0479004830121994, + "learning_rate": 0.01, + "loss": 2.0587, + "step": 20712 + }, + { + "epoch": 2.1292013567684243, + "grad_norm": 0.04370121285319328, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 20715 + }, + { + "epoch": 2.129509713228492, + "grad_norm": 0.05750906467437744, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 20718 + }, + { + "epoch": 2.12981806968856, + "grad_norm": 0.06549614667892456, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 20721 + }, + { + "epoch": 2.1301264261486277, + "grad_norm": 0.05763638764619827, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 20724 + }, + { + "epoch": 2.130434782608696, + "grad_norm": 0.16448546946048737, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 20727 + }, + { + "epoch": 2.1307431390687634, + "grad_norm": 0.057152118533849716, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 20730 + }, + { + "epoch": 2.1310514955288316, + "grad_norm": 0.054196059703826904, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 20733 + }, + { + "epoch": 2.131359851988899, + "grad_norm": 0.03887069597840309, + "learning_rate": 0.01, + "loss": 2.031, + "step": 20736 + }, + { + "epoch": 2.131668208448967, + "grad_norm": 0.03529683127999306, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 20739 + }, + { + "epoch": 2.131976564909035, + "grad_norm": 0.053463347256183624, + "learning_rate": 0.01, + "loss": 2.011, + "step": 20742 + }, + { + "epoch": 2.1322849213691026, + "grad_norm": 0.03482777252793312, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 20745 + }, + { + "epoch": 2.1325932778291703, + "grad_norm": 0.056043028831481934, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 20748 + }, + { + "epoch": 2.1329016342892384, + "grad_norm": 0.04648544266819954, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 20751 + }, + { + "epoch": 2.133209990749306, + "grad_norm": 0.0878090187907219, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 20754 + }, + { + "epoch": 2.133518347209374, + "grad_norm": 0.059173766523599625, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 20757 + }, + { + "epoch": 2.133826703669442, + "grad_norm": 0.09119824320077896, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 20760 + }, + { + "epoch": 2.13413506012951, + "grad_norm": 0.04082552343606949, + "learning_rate": 0.01, + "loss": 2.0501, + "step": 20763 + }, + { + "epoch": 2.1344434165895776, + "grad_norm": 0.0831313356757164, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 20766 + }, + { + "epoch": 2.1347517730496453, + "grad_norm": 0.0635252296924591, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 20769 + }, + { + "epoch": 2.1350601295097134, + "grad_norm": 0.09516814351081848, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 20772 + }, + { + "epoch": 2.135368485969781, + "grad_norm": 0.05734236165881157, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 20775 + }, + { + "epoch": 2.1356768424298487, + "grad_norm": 0.07606332749128342, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 20778 + }, + { + "epoch": 2.135985198889917, + "grad_norm": 0.041968777775764465, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 20781 + }, + { + "epoch": 2.1362935553499844, + "grad_norm": 0.10549111664295197, + "learning_rate": 0.01, + "loss": 2.0695, + "step": 20784 + }, + { + "epoch": 2.1366019118100525, + "grad_norm": 0.0783652663230896, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 20787 + }, + { + "epoch": 2.13691026827012, + "grad_norm": 0.08309295773506165, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 20790 + }, + { + "epoch": 2.1372186247301883, + "grad_norm": 0.038408368825912476, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 20793 + }, + { + "epoch": 2.137526981190256, + "grad_norm": 0.1311808079481125, + "learning_rate": 0.01, + "loss": 2.0608, + "step": 20796 + }, + { + "epoch": 2.1378353376503236, + "grad_norm": 0.08983028680086136, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 20799 + }, + { + "epoch": 2.1381436941103917, + "grad_norm": 0.12422356754541397, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 20802 + }, + { + "epoch": 2.1384520505704594, + "grad_norm": 0.0687076672911644, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 20805 + }, + { + "epoch": 2.138760407030527, + "grad_norm": 0.04577179625630379, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 20808 + }, + { + "epoch": 2.139068763490595, + "grad_norm": 0.046294886618852615, + "learning_rate": 0.01, + "loss": 2.028, + "step": 20811 + }, + { + "epoch": 2.139377119950663, + "grad_norm": 0.048477739095687866, + "learning_rate": 0.01, + "loss": 2.055, + "step": 20814 + }, + { + "epoch": 2.139685476410731, + "grad_norm": 0.035206399857997894, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 20817 + }, + { + "epoch": 2.1399938328707986, + "grad_norm": 0.0451078936457634, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 20820 + }, + { + "epoch": 2.1403021893308667, + "grad_norm": 0.09469619393348694, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 20823 + }, + { + "epoch": 2.1406105457909343, + "grad_norm": 0.03966006636619568, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 20826 + }, + { + "epoch": 2.140918902251002, + "grad_norm": 0.0793539360165596, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 20829 + }, + { + "epoch": 2.14122725871107, + "grad_norm": 0.08547502756118774, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 20832 + }, + { + "epoch": 2.1415356151711378, + "grad_norm": 0.055916544049978256, + "learning_rate": 0.01, + "loss": 2.042, + "step": 20835 + }, + { + "epoch": 2.141843971631206, + "grad_norm": 0.0369451642036438, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 20838 + }, + { + "epoch": 2.1421523280912735, + "grad_norm": 0.05001531541347504, + "learning_rate": 0.01, + "loss": 2.06, + "step": 20841 + }, + { + "epoch": 2.142460684551341, + "grad_norm": 0.09491688758134842, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 20844 + }, + { + "epoch": 2.1427690410114093, + "grad_norm": 0.05615471303462982, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 20847 + }, + { + "epoch": 2.143077397471477, + "grad_norm": 0.08531193435192108, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 20850 + }, + { + "epoch": 2.143385753931545, + "grad_norm": 0.08138839155435562, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 20853 + }, + { + "epoch": 2.1436941103916127, + "grad_norm": 0.04965364560484886, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 20856 + }, + { + "epoch": 2.1440024668516804, + "grad_norm": 0.07006839662790298, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 20859 + }, + { + "epoch": 2.1443108233117485, + "grad_norm": 0.07477371394634247, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 20862 + }, + { + "epoch": 2.144619179771816, + "grad_norm": 0.07817060500383377, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 20865 + }, + { + "epoch": 2.1449275362318843, + "grad_norm": 0.04393570497632027, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 20868 + }, + { + "epoch": 2.145235892691952, + "grad_norm": 0.0777692198753357, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 20871 + }, + { + "epoch": 2.1455442491520196, + "grad_norm": 0.05267953500151634, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 20874 + }, + { + "epoch": 2.1458526056120877, + "grad_norm": 0.053839076310396194, + "learning_rate": 0.01, + "loss": 2.0593, + "step": 20877 + }, + { + "epoch": 2.1461609620721553, + "grad_norm": 0.05793678015470505, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 20880 + }, + { + "epoch": 2.1464693185322234, + "grad_norm": 0.045539624989032745, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 20883 + }, + { + "epoch": 2.146777674992291, + "grad_norm": 0.062209442257881165, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 20886 + }, + { + "epoch": 2.1470860314523588, + "grad_norm": 0.11053802073001862, + "learning_rate": 0.01, + "loss": 2.0764, + "step": 20889 + }, + { + "epoch": 2.147394387912427, + "grad_norm": 0.037597738206386566, + "learning_rate": 0.01, + "loss": 2.046, + "step": 20892 + }, + { + "epoch": 2.1477027443724945, + "grad_norm": 0.050160784274339676, + "learning_rate": 0.01, + "loss": 2.0797, + "step": 20895 + }, + { + "epoch": 2.1480111008325626, + "grad_norm": 0.053438689559698105, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 20898 + }, + { + "epoch": 2.1483194572926303, + "grad_norm": 0.06175898388028145, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 20901 + }, + { + "epoch": 2.148627813752698, + "grad_norm": 0.062430836260318756, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 20904 + }, + { + "epoch": 2.148936170212766, + "grad_norm": 0.09347888082265854, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 20907 + }, + { + "epoch": 2.1492445266728337, + "grad_norm": 0.13494189083576202, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 20910 + }, + { + "epoch": 2.149552883132902, + "grad_norm": 0.06735777854919434, + "learning_rate": 0.01, + "loss": 2.0799, + "step": 20913 + }, + { + "epoch": 2.1498612395929695, + "grad_norm": 0.08108525723218918, + "learning_rate": 0.01, + "loss": 2.036, + "step": 20916 + }, + { + "epoch": 2.150169596053037, + "grad_norm": 0.043221328407526016, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 20919 + }, + { + "epoch": 2.1504779525131053, + "grad_norm": 0.046568017452955246, + "learning_rate": 0.01, + "loss": 2.0393, + "step": 20922 + }, + { + "epoch": 2.150786308973173, + "grad_norm": 0.040786582976579666, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 20925 + }, + { + "epoch": 2.151094665433241, + "grad_norm": 0.043856412172317505, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 20928 + }, + { + "epoch": 2.1514030218933087, + "grad_norm": 0.03569160774350166, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 20931 + }, + { + "epoch": 2.1517113783533763, + "grad_norm": 0.059598151594400406, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 20934 + }, + { + "epoch": 2.1520197348134444, + "grad_norm": 0.12518006563186646, + "learning_rate": 0.01, + "loss": 2.0389, + "step": 20937 + }, + { + "epoch": 2.152328091273512, + "grad_norm": 0.04442603886127472, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 20940 + }, + { + "epoch": 2.15263644773358, + "grad_norm": 0.1175926923751831, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 20943 + }, + { + "epoch": 2.152944804193648, + "grad_norm": 0.09045865386724472, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 20946 + }, + { + "epoch": 2.1532531606537155, + "grad_norm": 0.07519534230232239, + "learning_rate": 0.01, + "loss": 2.048, + "step": 20949 + }, + { + "epoch": 2.1535615171137836, + "grad_norm": 0.03551176190376282, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 20952 + }, + { + "epoch": 2.1538698735738513, + "grad_norm": 0.11210478097200394, + "learning_rate": 0.01, + "loss": 2.0453, + "step": 20955 + }, + { + "epoch": 2.1541782300339194, + "grad_norm": 0.09921340644359589, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 20958 + }, + { + "epoch": 2.154486586493987, + "grad_norm": 0.04131443426012993, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 20961 + }, + { + "epoch": 2.1547949429540547, + "grad_norm": 0.07579990476369858, + "learning_rate": 0.01, + "loss": 2.041, + "step": 20964 + }, + { + "epoch": 2.155103299414123, + "grad_norm": 0.04955494403839111, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 20967 + }, + { + "epoch": 2.1554116558741905, + "grad_norm": 0.038999974727630615, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 20970 + }, + { + "epoch": 2.1557200123342586, + "grad_norm": 0.04656311497092247, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 20973 + }, + { + "epoch": 2.1560283687943262, + "grad_norm": 0.08853477984666824, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 20976 + }, + { + "epoch": 2.156336725254394, + "grad_norm": 0.07657559216022491, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 20979 + }, + { + "epoch": 2.156645081714462, + "grad_norm": 0.03593476489186287, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 20982 + }, + { + "epoch": 2.1569534381745297, + "grad_norm": 0.08656775951385498, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 20985 + }, + { + "epoch": 2.1572617946345978, + "grad_norm": 0.07760220021009445, + "learning_rate": 0.01, + "loss": 2.068, + "step": 20988 + }, + { + "epoch": 2.1575701510946654, + "grad_norm": 0.09167666733264923, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 20991 + }, + { + "epoch": 2.157878507554733, + "grad_norm": 0.052361227571964264, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 20994 + }, + { + "epoch": 2.158186864014801, + "grad_norm": 0.05431961268186569, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 20997 + }, + { + "epoch": 2.158495220474869, + "grad_norm": 0.03956061974167824, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 21000 + }, + { + "epoch": 2.158803576934937, + "grad_norm": 0.03906402364373207, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 21003 + }, + { + "epoch": 2.1591119333950046, + "grad_norm": 0.07876679301261902, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 21006 + }, + { + "epoch": 2.1594202898550723, + "grad_norm": 0.051768235862255096, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 21009 + }, + { + "epoch": 2.1597286463151404, + "grad_norm": 0.05242472141981125, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 21012 + }, + { + "epoch": 2.160037002775208, + "grad_norm": 0.07014864683151245, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 21015 + }, + { + "epoch": 2.160345359235276, + "grad_norm": 0.1024969145655632, + "learning_rate": 0.01, + "loss": 2.031, + "step": 21018 + }, + { + "epoch": 2.160653715695344, + "grad_norm": 0.059565525501966476, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 21021 + }, + { + "epoch": 2.1609620721554115, + "grad_norm": 0.04438649117946625, + "learning_rate": 0.01, + "loss": 2.0736, + "step": 21024 + }, + { + "epoch": 2.1612704286154796, + "grad_norm": 0.06552638858556747, + "learning_rate": 0.01, + "loss": 2.0449, + "step": 21027 + }, + { + "epoch": 2.1615787850755472, + "grad_norm": 0.044327035546302795, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 21030 + }, + { + "epoch": 2.1618871415356153, + "grad_norm": 0.04915094003081322, + "learning_rate": 0.01, + "loss": 2.0634, + "step": 21033 + }, + { + "epoch": 2.162195497995683, + "grad_norm": 0.052909743040800095, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 21036 + }, + { + "epoch": 2.1625038544557507, + "grad_norm": 0.09883973747491837, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 21039 + }, + { + "epoch": 2.1628122109158188, + "grad_norm": 0.07719819992780685, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 21042 + }, + { + "epoch": 2.1631205673758864, + "grad_norm": 0.09743590652942657, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 21045 + }, + { + "epoch": 2.1634289238359545, + "grad_norm": 0.06583153456449509, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 21048 + }, + { + "epoch": 2.163737280296022, + "grad_norm": 0.10464660078287125, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 21051 + }, + { + "epoch": 2.16404563675609, + "grad_norm": 0.057555560022592545, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 21054 + }, + { + "epoch": 2.164353993216158, + "grad_norm": 0.04753732308745384, + "learning_rate": 0.01, + "loss": 2.054, + "step": 21057 + }, + { + "epoch": 2.1646623496762256, + "grad_norm": 0.05236852541565895, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 21060 + }, + { + "epoch": 2.1649707061362937, + "grad_norm": 0.05231897532939911, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 21063 + }, + { + "epoch": 2.1652790625963614, + "grad_norm": 0.058431778103113174, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 21066 + }, + { + "epoch": 2.165587419056429, + "grad_norm": 0.04048459604382515, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 21069 + }, + { + "epoch": 2.165895775516497, + "grad_norm": 0.0941488966345787, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 21072 + }, + { + "epoch": 2.166204131976565, + "grad_norm": 0.04498032480478287, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 21075 + }, + { + "epoch": 2.166512488436633, + "grad_norm": 0.03668253496289253, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 21078 + }, + { + "epoch": 2.1668208448967006, + "grad_norm": 0.06661085039377213, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 21081 + }, + { + "epoch": 2.1671292013567682, + "grad_norm": 0.06425791233778, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 21084 + }, + { + "epoch": 2.1674375578168363, + "grad_norm": 0.046152301132678986, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 21087 + }, + { + "epoch": 2.167745914276904, + "grad_norm": 0.12584535777568817, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 21090 + }, + { + "epoch": 2.168054270736972, + "grad_norm": 0.04133312404155731, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 21093 + }, + { + "epoch": 2.1683626271970398, + "grad_norm": 0.04181768745183945, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 21096 + }, + { + "epoch": 2.1686709836571074, + "grad_norm": 0.04648204892873764, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 21099 + }, + { + "epoch": 2.1689793401171755, + "grad_norm": 0.044040024280548096, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 21102 + }, + { + "epoch": 2.169287696577243, + "grad_norm": 0.04033771902322769, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 21105 + }, + { + "epoch": 2.1695960530373113, + "grad_norm": 0.04693743214011192, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 21108 + }, + { + "epoch": 2.169904409497379, + "grad_norm": 0.07494813948869705, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 21111 + }, + { + "epoch": 2.1702127659574466, + "grad_norm": 0.09254445135593414, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 21114 + }, + { + "epoch": 2.1705211224175147, + "grad_norm": 0.13350296020507812, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 21117 + }, + { + "epoch": 2.1708294788775824, + "grad_norm": 0.051686085760593414, + "learning_rate": 0.01, + "loss": 2.0507, + "step": 21120 + }, + { + "epoch": 2.1711378353376505, + "grad_norm": 0.043330930173397064, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 21123 + }, + { + "epoch": 2.171446191797718, + "grad_norm": 0.05219477042555809, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 21126 + }, + { + "epoch": 2.171754548257786, + "grad_norm": 0.04195651784539223, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 21129 + }, + { + "epoch": 2.172062904717854, + "grad_norm": 0.15802520513534546, + "learning_rate": 0.01, + "loss": 2.0609, + "step": 21132 + }, + { + "epoch": 2.1723712611779216, + "grad_norm": 0.08619748800992966, + "learning_rate": 0.01, + "loss": 2.0542, + "step": 21135 + }, + { + "epoch": 2.1726796176379897, + "grad_norm": 0.08852280676364899, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 21138 + }, + { + "epoch": 2.1729879740980573, + "grad_norm": 0.040646422654390335, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 21141 + }, + { + "epoch": 2.173296330558125, + "grad_norm": 0.06913924962282181, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 21144 + }, + { + "epoch": 2.173604687018193, + "grad_norm": 0.05461576208472252, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 21147 + }, + { + "epoch": 2.1739130434782608, + "grad_norm": 0.08613748103380203, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 21150 + }, + { + "epoch": 2.174221399938329, + "grad_norm": 0.06459856033325195, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 21153 + }, + { + "epoch": 2.1745297563983965, + "grad_norm": 0.08450223505496979, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 21156 + }, + { + "epoch": 2.174838112858464, + "grad_norm": 0.10049585998058319, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 21159 + }, + { + "epoch": 2.1751464693185323, + "grad_norm": 0.06031005084514618, + "learning_rate": 0.01, + "loss": 2.0668, + "step": 21162 + }, + { + "epoch": 2.1754548257786, + "grad_norm": 0.06921012699604034, + "learning_rate": 0.01, + "loss": 2.053, + "step": 21165 + }, + { + "epoch": 2.175763182238668, + "grad_norm": 0.044479697942733765, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 21168 + }, + { + "epoch": 2.1760715386987357, + "grad_norm": 0.0857187807559967, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 21171 + }, + { + "epoch": 2.176379895158804, + "grad_norm": 0.057432882487773895, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 21174 + }, + { + "epoch": 2.1766882516188715, + "grad_norm": 0.0905427411198616, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 21177 + }, + { + "epoch": 2.176996608078939, + "grad_norm": 0.05289644002914429, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 21180 + }, + { + "epoch": 2.1773049645390072, + "grad_norm": 0.06351148337125778, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 21183 + }, + { + "epoch": 2.177613320999075, + "grad_norm": 0.1098824068903923, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 21186 + }, + { + "epoch": 2.1779216774591426, + "grad_norm": 0.03698734566569328, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 21189 + }, + { + "epoch": 2.1782300339192107, + "grad_norm": 0.09595025330781937, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 21192 + }, + { + "epoch": 2.1785383903792783, + "grad_norm": 0.05725647136569023, + "learning_rate": 0.01, + "loss": 2.0568, + "step": 21195 + }, + { + "epoch": 2.1788467468393464, + "grad_norm": 0.06952492892742157, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 21198 + }, + { + "epoch": 2.179155103299414, + "grad_norm": 0.06831461936235428, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 21201 + }, + { + "epoch": 2.179463459759482, + "grad_norm": 0.05125569924712181, + "learning_rate": 0.01, + "loss": 2.0593, + "step": 21204 + }, + { + "epoch": 2.17977181621955, + "grad_norm": 0.053290076553821564, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 21207 + }, + { + "epoch": 2.1800801726796175, + "grad_norm": 0.05718007683753967, + "learning_rate": 0.01, + "loss": 2.0472, + "step": 21210 + }, + { + "epoch": 2.1803885291396856, + "grad_norm": 0.0895228236913681, + "learning_rate": 0.01, + "loss": 2.0673, + "step": 21213 + }, + { + "epoch": 2.1806968855997533, + "grad_norm": 0.05205732583999634, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 21216 + }, + { + "epoch": 2.181005242059821, + "grad_norm": 0.05785641819238663, + "learning_rate": 0.01, + "loss": 2.0557, + "step": 21219 + }, + { + "epoch": 2.181313598519889, + "grad_norm": 0.0756557285785675, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 21222 + }, + { + "epoch": 2.1816219549799567, + "grad_norm": 0.07016823440790176, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 21225 + }, + { + "epoch": 2.181930311440025, + "grad_norm": 0.06859459728002548, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 21228 + }, + { + "epoch": 2.1822386679000925, + "grad_norm": 0.14140251278877258, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 21231 + }, + { + "epoch": 2.1825470243601606, + "grad_norm": 0.0544712096452713, + "learning_rate": 0.01, + "loss": 2.04, + "step": 21234 + }, + { + "epoch": 2.1828553808202282, + "grad_norm": 0.04346593841910362, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 21237 + }, + { + "epoch": 2.183163737280296, + "grad_norm": 0.04261700063943863, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 21240 + }, + { + "epoch": 2.183472093740364, + "grad_norm": 0.04763154685497284, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 21243 + }, + { + "epoch": 2.1837804502004317, + "grad_norm": 0.06876801699399948, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 21246 + }, + { + "epoch": 2.1840888066604993, + "grad_norm": 0.07819974422454834, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 21249 + }, + { + "epoch": 2.1843971631205674, + "grad_norm": 0.06239667907357216, + "learning_rate": 0.01, + "loss": 2.0268, + "step": 21252 + }, + { + "epoch": 2.184705519580635, + "grad_norm": 0.1095786988735199, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 21255 + }, + { + "epoch": 2.185013876040703, + "grad_norm": 0.055070340633392334, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 21258 + }, + { + "epoch": 2.185322232500771, + "grad_norm": 0.08038482069969177, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 21261 + }, + { + "epoch": 2.185630588960839, + "grad_norm": 0.06929390877485275, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 21264 + }, + { + "epoch": 2.1859389454209066, + "grad_norm": 0.054179031401872635, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 21267 + }, + { + "epoch": 2.1862473018809743, + "grad_norm": 0.06956303864717484, + "learning_rate": 0.01, + "loss": 2.0586, + "step": 21270 + }, + { + "epoch": 2.1865556583410424, + "grad_norm": 0.14279653131961823, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 21273 + }, + { + "epoch": 2.18686401480111, + "grad_norm": 0.04268357530236244, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 21276 + }, + { + "epoch": 2.1871723712611777, + "grad_norm": 0.05189354717731476, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 21279 + }, + { + "epoch": 2.187480727721246, + "grad_norm": 0.05047158896923065, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 21282 + }, + { + "epoch": 2.1877890841813135, + "grad_norm": 0.041077565401792526, + "learning_rate": 0.01, + "loss": 2.0558, + "step": 21285 + }, + { + "epoch": 2.1880974406413816, + "grad_norm": 0.03880000859498978, + "learning_rate": 0.01, + "loss": 2.0472, + "step": 21288 + }, + { + "epoch": 2.1884057971014492, + "grad_norm": 0.1096898689866066, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 21291 + }, + { + "epoch": 2.1887141535615173, + "grad_norm": 0.04502374678850174, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 21294 + }, + { + "epoch": 2.189022510021585, + "grad_norm": 0.037158042192459106, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 21297 + }, + { + "epoch": 2.1893308664816526, + "grad_norm": 0.03381425887346268, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 21300 + }, + { + "epoch": 2.1896392229417208, + "grad_norm": 0.05572035536170006, + "learning_rate": 0.01, + "loss": 2.0575, + "step": 21303 + }, + { + "epoch": 2.1899475794017884, + "grad_norm": 0.06287326663732529, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 21306 + }, + { + "epoch": 2.190255935861856, + "grad_norm": 0.07691732794046402, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 21309 + }, + { + "epoch": 2.190564292321924, + "grad_norm": 0.058651309460401535, + "learning_rate": 0.01, + "loss": 2.04, + "step": 21312 + }, + { + "epoch": 2.190872648781992, + "grad_norm": 0.033279962837696075, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 21315 + }, + { + "epoch": 2.19118100524206, + "grad_norm": 0.08742087334394455, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 21318 + }, + { + "epoch": 2.1914893617021276, + "grad_norm": 0.0864923968911171, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 21321 + }, + { + "epoch": 2.1917977181621957, + "grad_norm": 0.10759606957435608, + "learning_rate": 0.01, + "loss": 2.0582, + "step": 21324 + }, + { + "epoch": 2.1921060746222634, + "grad_norm": 0.058335281908512115, + "learning_rate": 0.01, + "loss": 2.019, + "step": 21327 + }, + { + "epoch": 2.192414431082331, + "grad_norm": 0.04506481811404228, + "learning_rate": 0.01, + "loss": 2.027, + "step": 21330 + }, + { + "epoch": 2.192722787542399, + "grad_norm": 0.0454195998609066, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 21333 + }, + { + "epoch": 2.193031144002467, + "grad_norm": 0.051547158509492874, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 21336 + }, + { + "epoch": 2.193339500462535, + "grad_norm": 0.09826447069644928, + "learning_rate": 0.01, + "loss": 2.0518, + "step": 21339 + }, + { + "epoch": 2.1936478569226026, + "grad_norm": 0.05799272283911705, + "learning_rate": 0.01, + "loss": 2.0649, + "step": 21342 + }, + { + "epoch": 2.19395621338267, + "grad_norm": 0.12493482232093811, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 21345 + }, + { + "epoch": 2.1942645698427383, + "grad_norm": 0.04930184409022331, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 21348 + }, + { + "epoch": 2.194572926302806, + "grad_norm": 0.04257272928953171, + "learning_rate": 0.01, + "loss": 2.0579, + "step": 21351 + }, + { + "epoch": 2.194881282762874, + "grad_norm": 0.04625258222222328, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 21354 + }, + { + "epoch": 2.1951896392229417, + "grad_norm": 0.04295830428600311, + "learning_rate": 0.01, + "loss": 2.032, + "step": 21357 + }, + { + "epoch": 2.1954979956830094, + "grad_norm": 0.21663565933704376, + "learning_rate": 0.01, + "loss": 2.0489, + "step": 21360 + }, + { + "epoch": 2.1958063521430775, + "grad_norm": 0.15513652563095093, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 21363 + }, + { + "epoch": 2.196114708603145, + "grad_norm": 0.08245841413736343, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 21366 + }, + { + "epoch": 2.1964230650632133, + "grad_norm": 0.03768035024404526, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 21369 + }, + { + "epoch": 2.196731421523281, + "grad_norm": 0.0586925707757473, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 21372 + }, + { + "epoch": 2.1970397779833486, + "grad_norm": 0.045760899782180786, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 21375 + }, + { + "epoch": 2.1973481344434167, + "grad_norm": 0.04357283189892769, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 21378 + }, + { + "epoch": 2.1976564909034844, + "grad_norm": 0.04477246478199959, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 21381 + }, + { + "epoch": 2.1979648473635525, + "grad_norm": 0.06785521656274796, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 21384 + }, + { + "epoch": 2.19827320382362, + "grad_norm": 0.04677508771419525, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 21387 + }, + { + "epoch": 2.198581560283688, + "grad_norm": 0.049355942755937576, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 21390 + }, + { + "epoch": 2.198889916743756, + "grad_norm": 0.11005277186632156, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 21393 + }, + { + "epoch": 2.1991982732038236, + "grad_norm": 0.10170245915651321, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 21396 + }, + { + "epoch": 2.1995066296638917, + "grad_norm": 0.045158207416534424, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 21399 + }, + { + "epoch": 2.1998149861239593, + "grad_norm": 0.0780436098575592, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 21402 + }, + { + "epoch": 2.200123342584027, + "grad_norm": 0.06062453240156174, + "learning_rate": 0.01, + "loss": 2.0437, + "step": 21405 + }, + { + "epoch": 2.200431699044095, + "grad_norm": 0.09208519756793976, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 21408 + }, + { + "epoch": 2.2007400555041627, + "grad_norm": 0.05279922112822533, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 21411 + }, + { + "epoch": 2.201048411964231, + "grad_norm": 0.0831415057182312, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 21414 + }, + { + "epoch": 2.2013567684242985, + "grad_norm": 0.06481669098138809, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 21417 + }, + { + "epoch": 2.201665124884366, + "grad_norm": 0.08297551423311234, + "learning_rate": 0.01, + "loss": 2.0741, + "step": 21420 + }, + { + "epoch": 2.2019734813444343, + "grad_norm": 0.06962350755929947, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 21423 + }, + { + "epoch": 2.202281837804502, + "grad_norm": 0.08055757731199265, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 21426 + }, + { + "epoch": 2.20259019426457, + "grad_norm": 0.09755895286798477, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 21429 + }, + { + "epoch": 2.2028985507246377, + "grad_norm": 0.04400679096579552, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 21432 + }, + { + "epoch": 2.2032069071847054, + "grad_norm": 0.04204344376921654, + "learning_rate": 0.01, + "loss": 2.063, + "step": 21435 + }, + { + "epoch": 2.2035152636447735, + "grad_norm": 0.029974184930324554, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 21438 + }, + { + "epoch": 2.203823620104841, + "grad_norm": 0.07232589274644852, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 21441 + }, + { + "epoch": 2.2041319765649092, + "grad_norm": 0.06404844671487808, + "learning_rate": 0.01, + "loss": 2.0596, + "step": 21444 + }, + { + "epoch": 2.204440333024977, + "grad_norm": 0.08751700818538666, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 21447 + }, + { + "epoch": 2.2047486894850445, + "grad_norm": 0.0371503084897995, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 21450 + }, + { + "epoch": 2.2050570459451126, + "grad_norm": 0.06034844368696213, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 21453 + }, + { + "epoch": 2.2053654024051803, + "grad_norm": 0.04261939972639084, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 21456 + }, + { + "epoch": 2.2056737588652484, + "grad_norm": 0.0612785667181015, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 21459 + }, + { + "epoch": 2.205982115325316, + "grad_norm": 0.05828654393553734, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 21462 + }, + { + "epoch": 2.2062904717853837, + "grad_norm": 0.06474754214286804, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 21465 + }, + { + "epoch": 2.206598828245452, + "grad_norm": 0.04646962508559227, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 21468 + }, + { + "epoch": 2.2069071847055195, + "grad_norm": 0.07051596790552139, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 21471 + }, + { + "epoch": 2.2072155411655876, + "grad_norm": 0.05658755078911781, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 21474 + }, + { + "epoch": 2.2075238976256553, + "grad_norm": 0.039348311722278595, + "learning_rate": 0.01, + "loss": 2.0587, + "step": 21477 + }, + { + "epoch": 2.207832254085723, + "grad_norm": 0.030550241470336914, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 21480 + }, + { + "epoch": 2.208140610545791, + "grad_norm": 0.11341346800327301, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 21483 + }, + { + "epoch": 2.2084489670058587, + "grad_norm": 0.07061111927032471, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 21486 + }, + { + "epoch": 2.208757323465927, + "grad_norm": 0.10256624966859818, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 21489 + }, + { + "epoch": 2.2090656799259945, + "grad_norm": 0.06658724695444107, + "learning_rate": 0.01, + "loss": 2.0544, + "step": 21492 + }, + { + "epoch": 2.209374036386062, + "grad_norm": 0.12220150977373123, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 21495 + }, + { + "epoch": 2.20968239284613, + "grad_norm": 0.05570116639137268, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 21498 + }, + { + "epoch": 2.209990749306198, + "grad_norm": 0.04273837059736252, + "learning_rate": 0.01, + "loss": 2.032, + "step": 21501 + }, + { + "epoch": 2.210299105766266, + "grad_norm": 0.04138748720288277, + "learning_rate": 0.01, + "loss": 2.0497, + "step": 21504 + }, + { + "epoch": 2.2106074622263336, + "grad_norm": 0.08082164078950882, + "learning_rate": 0.01, + "loss": 2.025, + "step": 21507 + }, + { + "epoch": 2.2109158186864013, + "grad_norm": 0.06663049012422562, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 21510 + }, + { + "epoch": 2.2112241751464694, + "grad_norm": 0.0444667711853981, + "learning_rate": 0.01, + "loss": 2.0469, + "step": 21513 + }, + { + "epoch": 2.211532531606537, + "grad_norm": 0.04407314583659172, + "learning_rate": 0.01, + "loss": 2.0667, + "step": 21516 + }, + { + "epoch": 2.211840888066605, + "grad_norm": 0.03877383843064308, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 21519 + }, + { + "epoch": 2.212149244526673, + "grad_norm": 0.059297189116477966, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 21522 + }, + { + "epoch": 2.2124576009867405, + "grad_norm": 0.06609878689050674, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 21525 + }, + { + "epoch": 2.2127659574468086, + "grad_norm": 0.06935823708772659, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 21528 + }, + { + "epoch": 2.2130743139068763, + "grad_norm": 0.07610715180635452, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 21531 + }, + { + "epoch": 2.2133826703669444, + "grad_norm": 0.10587569326162338, + "learning_rate": 0.01, + "loss": 2.0636, + "step": 21534 + }, + { + "epoch": 2.213691026827012, + "grad_norm": 0.05116620659828186, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 21537 + }, + { + "epoch": 2.2139993832870797, + "grad_norm": 0.03773776814341545, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 21540 + }, + { + "epoch": 2.214307739747148, + "grad_norm": 0.05412130430340767, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 21543 + }, + { + "epoch": 2.2146160962072154, + "grad_norm": 0.03664164990186691, + "learning_rate": 0.01, + "loss": 2.0535, + "step": 21546 + }, + { + "epoch": 2.2149244526672835, + "grad_norm": 0.04415920004248619, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 21549 + }, + { + "epoch": 2.215232809127351, + "grad_norm": 0.05737615004181862, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 21552 + }, + { + "epoch": 2.215541165587419, + "grad_norm": 0.032385457307100296, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 21555 + }, + { + "epoch": 2.215849522047487, + "grad_norm": 0.0982925221323967, + "learning_rate": 0.01, + "loss": 2.0653, + "step": 21558 + }, + { + "epoch": 2.2161578785075546, + "grad_norm": 0.03911735862493515, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 21561 + }, + { + "epoch": 2.2164662349676227, + "grad_norm": 0.07814744859933853, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 21564 + }, + { + "epoch": 2.2167745914276904, + "grad_norm": 0.05368256941437721, + "learning_rate": 0.01, + "loss": 2.0689, + "step": 21567 + }, + { + "epoch": 2.217082947887758, + "grad_norm": 0.046178530901670456, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 21570 + }, + { + "epoch": 2.217391304347826, + "grad_norm": 0.047109801322221756, + "learning_rate": 0.01, + "loss": 2.0721, + "step": 21573 + }, + { + "epoch": 2.217699660807894, + "grad_norm": 0.05443650484085083, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 21576 + }, + { + "epoch": 2.218008017267962, + "grad_norm": 0.13156400620937347, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 21579 + }, + { + "epoch": 2.2183163737280296, + "grad_norm": 0.04178638756275177, + "learning_rate": 0.01, + "loss": 2.0517, + "step": 21582 + }, + { + "epoch": 2.2186247301880972, + "grad_norm": 0.042627740651369095, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 21585 + }, + { + "epoch": 2.2189330866481654, + "grad_norm": 0.05318658426403999, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 21588 + }, + { + "epoch": 2.219241443108233, + "grad_norm": 0.061288055032491684, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 21591 + }, + { + "epoch": 2.219549799568301, + "grad_norm": 0.06663260608911514, + "learning_rate": 0.01, + "loss": 2.0549, + "step": 21594 + }, + { + "epoch": 2.219858156028369, + "grad_norm": 0.04567466303706169, + "learning_rate": 0.01, + "loss": 2.03, + "step": 21597 + }, + { + "epoch": 2.2201665124884364, + "grad_norm": 0.12566886842250824, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 21600 + }, + { + "epoch": 2.2204748689485045, + "grad_norm": 0.03933155536651611, + "learning_rate": 0.01, + "loss": 2.022, + "step": 21603 + }, + { + "epoch": 2.220783225408572, + "grad_norm": 0.04617391526699066, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 21606 + }, + { + "epoch": 2.2210915818686403, + "grad_norm": 0.05472411960363388, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 21609 + }, + { + "epoch": 2.221399938328708, + "grad_norm": 0.05556654930114746, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 21612 + }, + { + "epoch": 2.2217082947887756, + "grad_norm": 0.05096900090575218, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 21615 + }, + { + "epoch": 2.2220166512488437, + "grad_norm": 0.039425577968358994, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 21618 + }, + { + "epoch": 2.2223250077089114, + "grad_norm": 0.05080854892730713, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 21621 + }, + { + "epoch": 2.2226333641689795, + "grad_norm": 0.03824865445494652, + "learning_rate": 0.01, + "loss": 2.0497, + "step": 21624 + }, + { + "epoch": 2.222941720629047, + "grad_norm": 0.03814932331442833, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 21627 + }, + { + "epoch": 2.223250077089115, + "grad_norm": 0.057797808200120926, + "learning_rate": 0.01, + "loss": 2.046, + "step": 21630 + }, + { + "epoch": 2.223558433549183, + "grad_norm": 0.06596177071332932, + "learning_rate": 0.01, + "loss": 2.0572, + "step": 21633 + }, + { + "epoch": 2.2238667900092506, + "grad_norm": 0.13438032567501068, + "learning_rate": 0.01, + "loss": 2.04, + "step": 21636 + }, + { + "epoch": 2.2241751464693187, + "grad_norm": 0.06200256571173668, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 21639 + }, + { + "epoch": 2.2244835029293863, + "grad_norm": 0.06471807509660721, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 21642 + }, + { + "epoch": 2.224791859389454, + "grad_norm": 0.06439206004142761, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 21645 + }, + { + "epoch": 2.225100215849522, + "grad_norm": 0.0768360123038292, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 21648 + }, + { + "epoch": 2.2254085723095898, + "grad_norm": 0.10393831878900528, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 21651 + }, + { + "epoch": 2.225716928769658, + "grad_norm": 0.03999519720673561, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 21654 + }, + { + "epoch": 2.2260252852297255, + "grad_norm": 0.04620358720421791, + "learning_rate": 0.01, + "loss": 2.0576, + "step": 21657 + }, + { + "epoch": 2.226333641689793, + "grad_norm": 0.05364964157342911, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 21660 + }, + { + "epoch": 2.2266419981498613, + "grad_norm": 0.049792349338531494, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 21663 + }, + { + "epoch": 2.226950354609929, + "grad_norm": 0.0651509091258049, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 21666 + }, + { + "epoch": 2.227258711069997, + "grad_norm": 0.035688720643520355, + "learning_rate": 0.01, + "loss": 2.0509, + "step": 21669 + }, + { + "epoch": 2.2275670675300647, + "grad_norm": 0.06412792950868607, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 21672 + }, + { + "epoch": 2.2278754239901324, + "grad_norm": 0.08088821917772293, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 21675 + }, + { + "epoch": 2.2281837804502005, + "grad_norm": 0.060282256454229355, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 21678 + }, + { + "epoch": 2.228492136910268, + "grad_norm": 0.09816791117191315, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 21681 + }, + { + "epoch": 2.2288004933703363, + "grad_norm": 0.06672241538763046, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 21684 + }, + { + "epoch": 2.229108849830404, + "grad_norm": 0.06586040556430817, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 21687 + }, + { + "epoch": 2.2294172062904716, + "grad_norm": 0.0655137374997139, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 21690 + }, + { + "epoch": 2.2297255627505397, + "grad_norm": 0.08448750525712967, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 21693 + }, + { + "epoch": 2.2300339192106073, + "grad_norm": 0.05828822776675224, + "learning_rate": 0.01, + "loss": 2.043, + "step": 21696 + }, + { + "epoch": 2.2303422756706754, + "grad_norm": 0.0816628485918045, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 21699 + }, + { + "epoch": 2.230650632130743, + "grad_norm": 0.038368817418813705, + "learning_rate": 0.01, + "loss": 2.029, + "step": 21702 + }, + { + "epoch": 2.230958988590811, + "grad_norm": 0.08584286272525787, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 21705 + }, + { + "epoch": 2.231267345050879, + "grad_norm": 0.08528412878513336, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 21708 + }, + { + "epoch": 2.2315757015109465, + "grad_norm": 0.07158780843019485, + "learning_rate": 0.01, + "loss": 2.0437, + "step": 21711 + }, + { + "epoch": 2.2318840579710146, + "grad_norm": 0.07810889184474945, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 21714 + }, + { + "epoch": 2.2321924144310823, + "grad_norm": 0.07769618928432465, + "learning_rate": 0.01, + "loss": 2.038, + "step": 21717 + }, + { + "epoch": 2.23250077089115, + "grad_norm": 0.04515406861901283, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 21720 + }, + { + "epoch": 2.232809127351218, + "grad_norm": 0.11805865168571472, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 21723 + }, + { + "epoch": 2.2331174838112857, + "grad_norm": 0.11899860948324203, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 21726 + }, + { + "epoch": 2.233425840271354, + "grad_norm": 0.03309144452214241, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 21729 + }, + { + "epoch": 2.2337341967314215, + "grad_norm": 0.03389447182416916, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 21732 + }, + { + "epoch": 2.2340425531914896, + "grad_norm": 0.03472166880965233, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 21735 + }, + { + "epoch": 2.2343509096515572, + "grad_norm": 0.11815425753593445, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 21738 + }, + { + "epoch": 2.234659266111625, + "grad_norm": 0.08007802814245224, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 21741 + }, + { + "epoch": 2.234967622571693, + "grad_norm": 0.05053863301873207, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 21744 + }, + { + "epoch": 2.2352759790317607, + "grad_norm": 0.12116878479719162, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 21747 + }, + { + "epoch": 2.2355843354918283, + "grad_norm": 0.06733332574367523, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 21750 + }, + { + "epoch": 2.2358926919518964, + "grad_norm": 0.05141659080982208, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 21753 + }, + { + "epoch": 2.236201048411964, + "grad_norm": 0.03695325180888176, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 21756 + }, + { + "epoch": 2.236509404872032, + "grad_norm": 0.033388737589120865, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 21759 + }, + { + "epoch": 2.2368177613321, + "grad_norm": 0.03913639858365059, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 21762 + }, + { + "epoch": 2.237126117792168, + "grad_norm": 0.048513270914554596, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 21765 + }, + { + "epoch": 2.2374344742522356, + "grad_norm": 0.061340250074863434, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 21768 + }, + { + "epoch": 2.2377428307123033, + "grad_norm": 0.042784787714481354, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 21771 + }, + { + "epoch": 2.2380511871723714, + "grad_norm": 0.04124082252383232, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 21774 + }, + { + "epoch": 2.238359543632439, + "grad_norm": 0.03749304264783859, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 21777 + }, + { + "epoch": 2.2386679000925067, + "grad_norm": 0.12073452770709991, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 21780 + }, + { + "epoch": 2.238976256552575, + "grad_norm": 0.06613750755786896, + "learning_rate": 0.01, + "loss": 2.066, + "step": 21783 + }, + { + "epoch": 2.2392846130126425, + "grad_norm": 0.11562148481607437, + "learning_rate": 0.01, + "loss": 2.0542, + "step": 21786 + }, + { + "epoch": 2.2395929694727106, + "grad_norm": 0.06355132162570953, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 21789 + }, + { + "epoch": 2.2399013259327782, + "grad_norm": 0.09228016436100006, + "learning_rate": 0.01, + "loss": 2.066, + "step": 21792 + }, + { + "epoch": 2.2402096823928463, + "grad_norm": 0.07648111879825592, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 21795 + }, + { + "epoch": 2.240518038852914, + "grad_norm": 0.0650177150964737, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 21798 + }, + { + "epoch": 2.2408263953129817, + "grad_norm": 0.09675853699445724, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 21801 + }, + { + "epoch": 2.2411347517730498, + "grad_norm": 0.045449864119291306, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 21804 + }, + { + "epoch": 2.2414431082331174, + "grad_norm": 0.0982547327876091, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 21807 + }, + { + "epoch": 2.241751464693185, + "grad_norm": 0.060201246291399, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 21810 + }, + { + "epoch": 2.242059821153253, + "grad_norm": 0.04503628611564636, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 21813 + }, + { + "epoch": 2.242368177613321, + "grad_norm": 0.04854295030236244, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 21816 + }, + { + "epoch": 2.242676534073389, + "grad_norm": 0.12228553742170334, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 21819 + }, + { + "epoch": 2.2429848905334566, + "grad_norm": 0.10491406172513962, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 21822 + }, + { + "epoch": 2.2432932469935247, + "grad_norm": 0.1188177838921547, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 21825 + }, + { + "epoch": 2.2436016034535924, + "grad_norm": 0.10877541452646255, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 21828 + }, + { + "epoch": 2.24390995991366, + "grad_norm": 0.03375115245580673, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 21831 + }, + { + "epoch": 2.244218316373728, + "grad_norm": 0.07588639855384827, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 21834 + }, + { + "epoch": 2.244526672833796, + "grad_norm": 0.04841979220509529, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 21837 + }, + { + "epoch": 2.2448350292938635, + "grad_norm": 0.041367027908563614, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 21840 + }, + { + "epoch": 2.2451433857539316, + "grad_norm": 0.044548399746418, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 21843 + }, + { + "epoch": 2.2454517422139992, + "grad_norm": 0.049429114907979965, + "learning_rate": 0.01, + "loss": 2.007, + "step": 21846 + }, + { + "epoch": 2.2457600986740673, + "grad_norm": 0.07232322543859482, + "learning_rate": 0.01, + "loss": 2.028, + "step": 21849 + }, + { + "epoch": 2.246068455134135, + "grad_norm": 0.05866502597928047, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 21852 + }, + { + "epoch": 2.246376811594203, + "grad_norm": 0.08406642079353333, + "learning_rate": 0.01, + "loss": 2.045, + "step": 21855 + }, + { + "epoch": 2.2466851680542708, + "grad_norm": 0.08692225068807602, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 21858 + }, + { + "epoch": 2.2469935245143384, + "grad_norm": 0.09182562679052353, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 21861 + }, + { + "epoch": 2.2473018809744065, + "grad_norm": 0.07580506801605225, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 21864 + }, + { + "epoch": 2.247610237434474, + "grad_norm": 0.09604424238204956, + "learning_rate": 0.01, + "loss": 2.054, + "step": 21867 + }, + { + "epoch": 2.2479185938945423, + "grad_norm": 0.05383382737636566, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 21870 + }, + { + "epoch": 2.24822695035461, + "grad_norm": 0.035557687282562256, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 21873 + }, + { + "epoch": 2.2485353068146776, + "grad_norm": 0.0330585315823555, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 21876 + }, + { + "epoch": 2.2488436632747457, + "grad_norm": 0.07125352323055267, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 21879 + }, + { + "epoch": 2.2491520197348134, + "grad_norm": 0.07722420245409012, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 21882 + }, + { + "epoch": 2.2494603761948815, + "grad_norm": 0.05086112394928932, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 21885 + }, + { + "epoch": 2.249768732654949, + "grad_norm": 0.055818263441324234, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 21888 + }, + { + "epoch": 2.250077089115017, + "grad_norm": 0.06524482369422913, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 21891 + }, + { + "epoch": 2.250385445575085, + "grad_norm": 0.051445212215185165, + "learning_rate": 0.01, + "loss": 2.0594, + "step": 21894 + }, + { + "epoch": 2.2506938020351526, + "grad_norm": 0.057153645902872086, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 21897 + }, + { + "epoch": 2.2510021584952202, + "grad_norm": 0.08242445439100266, + "learning_rate": 0.01, + "loss": 2.0465, + "step": 21900 + }, + { + "epoch": 2.2513105149552883, + "grad_norm": 0.06253752112388611, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 21903 + }, + { + "epoch": 2.251618871415356, + "grad_norm": 0.05388238653540611, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 21906 + }, + { + "epoch": 2.251927227875424, + "grad_norm": 0.05570909380912781, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 21909 + }, + { + "epoch": 2.2522355843354918, + "grad_norm": 0.038132745772600174, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 21912 + }, + { + "epoch": 2.25254394079556, + "grad_norm": 0.07434429973363876, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 21915 + }, + { + "epoch": 2.2528522972556275, + "grad_norm": 0.05396199971437454, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 21918 + }, + { + "epoch": 2.253160653715695, + "grad_norm": 0.06541625410318375, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 21921 + }, + { + "epoch": 2.2534690101757633, + "grad_norm": 0.07078956067562103, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 21924 + }, + { + "epoch": 2.253777366635831, + "grad_norm": 0.06990516930818558, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 21927 + }, + { + "epoch": 2.254085723095899, + "grad_norm": 0.049635425209999084, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 21930 + }, + { + "epoch": 2.2543940795559667, + "grad_norm": 0.04051049426198006, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 21933 + }, + { + "epoch": 2.2547024360160344, + "grad_norm": 0.11082252860069275, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 21936 + }, + { + "epoch": 2.2550107924761025, + "grad_norm": 0.0768849179148674, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 21939 + }, + { + "epoch": 2.25531914893617, + "grad_norm": 0.0420587994158268, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 21942 + }, + { + "epoch": 2.2556275053962382, + "grad_norm": 0.03924650698900223, + "learning_rate": 0.01, + "loss": 2.035, + "step": 21945 + }, + { + "epoch": 2.255935861856306, + "grad_norm": 0.058580152690410614, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 21948 + }, + { + "epoch": 2.2562442183163736, + "grad_norm": 0.050332482904195786, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 21951 + }, + { + "epoch": 2.2565525747764417, + "grad_norm": 0.0472397580742836, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 21954 + }, + { + "epoch": 2.2568609312365093, + "grad_norm": 0.0500427670776844, + "learning_rate": 0.01, + "loss": 2.033, + "step": 21957 + }, + { + "epoch": 2.2571692876965774, + "grad_norm": 0.08899175375699997, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 21960 + }, + { + "epoch": 2.257477644156645, + "grad_norm": 0.06647983938455582, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 21963 + }, + { + "epoch": 2.2577860006167128, + "grad_norm": 0.12703396379947662, + "learning_rate": 0.01, + "loss": 2.0532, + "step": 21966 + }, + { + "epoch": 2.258094357076781, + "grad_norm": 0.06023648753762245, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 21969 + }, + { + "epoch": 2.2584027135368485, + "grad_norm": 0.05025608092546463, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 21972 + }, + { + "epoch": 2.2587110699969166, + "grad_norm": 0.043917398899793625, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 21975 + }, + { + "epoch": 2.2590194264569843, + "grad_norm": 0.03574421629309654, + "learning_rate": 0.01, + "loss": 2.021, + "step": 21978 + }, + { + "epoch": 2.259327782917052, + "grad_norm": 0.03546285256743431, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 21981 + }, + { + "epoch": 2.25963613937712, + "grad_norm": 0.039241861552000046, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 21984 + }, + { + "epoch": 2.2599444958371877, + "grad_norm": 0.09643664956092834, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 21987 + }, + { + "epoch": 2.260252852297256, + "grad_norm": 0.08918357640504837, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 21990 + }, + { + "epoch": 2.2605612087573235, + "grad_norm": 0.05018826946616173, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 21993 + }, + { + "epoch": 2.260869565217391, + "grad_norm": 0.05288619175553322, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 21996 + }, + { + "epoch": 2.2611779216774592, + "grad_norm": 0.053800489753484726, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 21999 + }, + { + "epoch": 2.261486278137527, + "grad_norm": 0.11081501096487045, + "learning_rate": 0.01, + "loss": 2.0517, + "step": 22002 + }, + { + "epoch": 2.261794634597595, + "grad_norm": 0.045440319925546646, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 22005 + }, + { + "epoch": 2.2621029910576627, + "grad_norm": 0.07007669657468796, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 22008 + }, + { + "epoch": 2.2624113475177303, + "grad_norm": 0.04412767291069031, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 22011 + }, + { + "epoch": 2.2627197039777984, + "grad_norm": 0.034647636115550995, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 22014 + }, + { + "epoch": 2.263028060437866, + "grad_norm": 0.04766898602247238, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 22017 + }, + { + "epoch": 2.263336416897934, + "grad_norm": 0.0641711950302124, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 22020 + }, + { + "epoch": 2.263644773358002, + "grad_norm": 0.05316673591732979, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 22023 + }, + { + "epoch": 2.2639531298180695, + "grad_norm": 0.03488560765981674, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 22026 + }, + { + "epoch": 2.2642614862781376, + "grad_norm": 0.05415144935250282, + "learning_rate": 0.01, + "loss": 2.0551, + "step": 22029 + }, + { + "epoch": 2.2645698427382053, + "grad_norm": 0.08091796189546585, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 22032 + }, + { + "epoch": 2.2648781991982734, + "grad_norm": 0.0850050300359726, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 22035 + }, + { + "epoch": 2.265186555658341, + "grad_norm": 0.13837046921253204, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 22038 + }, + { + "epoch": 2.2654949121184087, + "grad_norm": 0.05676966533064842, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 22041 + }, + { + "epoch": 2.265803268578477, + "grad_norm": 0.1171020120382309, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 22044 + }, + { + "epoch": 2.2661116250385445, + "grad_norm": 0.04077135771512985, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 22047 + }, + { + "epoch": 2.2664199814986126, + "grad_norm": 0.03570380434393883, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 22050 + }, + { + "epoch": 2.2667283379586802, + "grad_norm": 0.0496290847659111, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 22053 + }, + { + "epoch": 2.267036694418748, + "grad_norm": 0.06205829232931137, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 22056 + }, + { + "epoch": 2.267345050878816, + "grad_norm": 0.04645274206995964, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 22059 + }, + { + "epoch": 2.2676534073388837, + "grad_norm": 0.04779735952615738, + "learning_rate": 0.01, + "loss": 2.009, + "step": 22062 + }, + { + "epoch": 2.2679617637989518, + "grad_norm": 0.05166240781545639, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 22065 + }, + { + "epoch": 2.2682701202590194, + "grad_norm": 0.14004342257976532, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 22068 + }, + { + "epoch": 2.268578476719087, + "grad_norm": 0.06366194784641266, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 22071 + }, + { + "epoch": 2.268886833179155, + "grad_norm": 0.04914015159010887, + "learning_rate": 0.01, + "loss": 2.026, + "step": 22074 + }, + { + "epoch": 2.269195189639223, + "grad_norm": 0.07121274620294571, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 22077 + }, + { + "epoch": 2.269503546099291, + "grad_norm": 0.048453398048877716, + "learning_rate": 0.01, + "loss": 2.047, + "step": 22080 + }, + { + "epoch": 2.2698119025593586, + "grad_norm": 0.03777848929166794, + "learning_rate": 0.01, + "loss": 2.0643, + "step": 22083 + }, + { + "epoch": 2.2701202590194263, + "grad_norm": 0.04788368567824364, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 22086 + }, + { + "epoch": 2.2704286154794944, + "grad_norm": 0.036985646933317184, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 22089 + }, + { + "epoch": 2.270736971939562, + "grad_norm": 0.08654552698135376, + "learning_rate": 0.01, + "loss": 2.0268, + "step": 22092 + }, + { + "epoch": 2.27104532839963, + "grad_norm": 0.12740878760814667, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 22095 + }, + { + "epoch": 2.271353684859698, + "grad_norm": 0.058829743415117264, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 22098 + }, + { + "epoch": 2.2716620413197655, + "grad_norm": 0.04173153638839722, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 22101 + }, + { + "epoch": 2.2719703977798336, + "grad_norm": 0.04551135376095772, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 22104 + }, + { + "epoch": 2.272278754239901, + "grad_norm": 0.04404577612876892, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 22107 + }, + { + "epoch": 2.2725871106999693, + "grad_norm": 0.033306755125522614, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 22110 + }, + { + "epoch": 2.272895467160037, + "grad_norm": 0.03450062498450279, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 22113 + }, + { + "epoch": 2.273203823620105, + "grad_norm": 0.04665246978402138, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 22116 + }, + { + "epoch": 2.2735121800801728, + "grad_norm": 0.04256023094058037, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 22119 + }, + { + "epoch": 2.2738205365402404, + "grad_norm": 0.04408838599920273, + "learning_rate": 0.01, + "loss": 2.047, + "step": 22122 + }, + { + "epoch": 2.2741288930003085, + "grad_norm": 0.17131304740905762, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 22125 + }, + { + "epoch": 2.274437249460376, + "grad_norm": 0.12661625444889069, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 22128 + }, + { + "epoch": 2.274745605920444, + "grad_norm": 0.1100076287984848, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 22131 + }, + { + "epoch": 2.275053962380512, + "grad_norm": 0.06313984096050262, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 22134 + }, + { + "epoch": 2.2753623188405796, + "grad_norm": 0.04563833773136139, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 22137 + }, + { + "epoch": 2.2756706753006477, + "grad_norm": 0.034519702196121216, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 22140 + }, + { + "epoch": 2.2759790317607154, + "grad_norm": 0.033708199858665466, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 22143 + }, + { + "epoch": 2.2762873882207835, + "grad_norm": 0.036958202719688416, + "learning_rate": 0.01, + "loss": 2.005, + "step": 22146 + }, + { + "epoch": 2.276595744680851, + "grad_norm": 0.052069418132305145, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 22149 + }, + { + "epoch": 2.276904101140919, + "grad_norm": 0.03941415995359421, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 22152 + }, + { + "epoch": 2.277212457600987, + "grad_norm": 0.041270628571510315, + "learning_rate": 0.01, + "loss": 2.0574, + "step": 22155 + }, + { + "epoch": 2.2775208140610546, + "grad_norm": 0.05398832634091377, + "learning_rate": 0.01, + "loss": 2.044, + "step": 22158 + }, + { + "epoch": 2.277829170521122, + "grad_norm": 0.048906486481428146, + "learning_rate": 0.01, + "loss": 2.046, + "step": 22161 + }, + { + "epoch": 2.2781375269811903, + "grad_norm": 0.15073837339878082, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 22164 + }, + { + "epoch": 2.278445883441258, + "grad_norm": 0.06301066279411316, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 22167 + }, + { + "epoch": 2.278754239901326, + "grad_norm": 0.07525215297937393, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 22170 + }, + { + "epoch": 2.2790625963613937, + "grad_norm": 0.059356629848480225, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 22173 + }, + { + "epoch": 2.279370952821462, + "grad_norm": 0.04340675100684166, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 22176 + }, + { + "epoch": 2.2796793092815295, + "grad_norm": 0.052859678864479065, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 22179 + }, + { + "epoch": 2.279987665741597, + "grad_norm": 0.05917971953749657, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 22182 + }, + { + "epoch": 2.2802960222016653, + "grad_norm": 0.04111889749765396, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 22185 + }, + { + "epoch": 2.280604378661733, + "grad_norm": 0.06371071189641953, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 22188 + }, + { + "epoch": 2.2809127351218006, + "grad_norm": 0.039862968027591705, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 22191 + }, + { + "epoch": 2.2812210915818687, + "grad_norm": 0.0944151058793068, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 22194 + }, + { + "epoch": 2.2815294480419364, + "grad_norm": 0.041564084589481354, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 22197 + }, + { + "epoch": 2.2818378045020045, + "grad_norm": 0.1109161302447319, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 22200 + }, + { + "epoch": 2.282146160962072, + "grad_norm": 0.14463242888450623, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 22203 + }, + { + "epoch": 2.2824545174221402, + "grad_norm": 0.06254401057958603, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 22206 + }, + { + "epoch": 2.282762873882208, + "grad_norm": 0.03546387329697609, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 22209 + }, + { + "epoch": 2.2830712303422755, + "grad_norm": 0.041129205375909805, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 22212 + }, + { + "epoch": 2.2833795868023437, + "grad_norm": 0.048473335802555084, + "learning_rate": 0.01, + "loss": 2.03, + "step": 22215 + }, + { + "epoch": 2.2836879432624113, + "grad_norm": 0.0633682832121849, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 22218 + }, + { + "epoch": 2.283996299722479, + "grad_norm": 0.06431914120912552, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 22221 + }, + { + "epoch": 2.284304656182547, + "grad_norm": 0.09050017595291138, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 22224 + }, + { + "epoch": 2.2846130126426147, + "grad_norm": 0.07363586872816086, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 22227 + }, + { + "epoch": 2.284921369102683, + "grad_norm": 0.07984726130962372, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 22230 + }, + { + "epoch": 2.2852297255627505, + "grad_norm": 0.0845586284995079, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 22233 + }, + { + "epoch": 2.2855380820228186, + "grad_norm": 0.13392622768878937, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 22236 + }, + { + "epoch": 2.2858464384828863, + "grad_norm": 0.06791893392801285, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 22239 + }, + { + "epoch": 2.286154794942954, + "grad_norm": 0.044396497309207916, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 22242 + }, + { + "epoch": 2.286463151403022, + "grad_norm": 0.04964762553572655, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 22245 + }, + { + "epoch": 2.2867715078630897, + "grad_norm": 0.06517814844846725, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 22248 + }, + { + "epoch": 2.2870798643231574, + "grad_norm": 0.043722327798604965, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 22251 + }, + { + "epoch": 2.2873882207832255, + "grad_norm": 0.06852597743272781, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 22254 + }, + { + "epoch": 2.287696577243293, + "grad_norm": 0.13437853753566742, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 22257 + }, + { + "epoch": 2.288004933703361, + "grad_norm": 0.03924357146024704, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 22260 + }, + { + "epoch": 2.288313290163429, + "grad_norm": 0.039702124893665314, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 22263 + }, + { + "epoch": 2.288621646623497, + "grad_norm": 0.05187009647488594, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 22266 + }, + { + "epoch": 2.2889300030835646, + "grad_norm": 0.0682847648859024, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 22269 + }, + { + "epoch": 2.2892383595436323, + "grad_norm": 0.046652939170598984, + "learning_rate": 0.01, + "loss": 2.0481, + "step": 22272 + }, + { + "epoch": 2.2895467160037004, + "grad_norm": 0.04348958283662796, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 22275 + }, + { + "epoch": 2.289855072463768, + "grad_norm": 0.05141732096672058, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 22278 + }, + { + "epoch": 2.2901634289238357, + "grad_norm": 0.04899610951542854, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 22281 + }, + { + "epoch": 2.290471785383904, + "grad_norm": 0.05614173039793968, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 22284 + }, + { + "epoch": 2.2907801418439715, + "grad_norm": 0.08255594223737717, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 22287 + }, + { + "epoch": 2.2910884983040396, + "grad_norm": 0.12105574458837509, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 22290 + }, + { + "epoch": 2.2913968547641073, + "grad_norm": 0.07021155953407288, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 22293 + }, + { + "epoch": 2.2917052112241754, + "grad_norm": 0.08364082872867584, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 22296 + }, + { + "epoch": 2.292013567684243, + "grad_norm": 0.1123763918876648, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 22299 + }, + { + "epoch": 2.2923219241443107, + "grad_norm": 0.06539402157068253, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 22302 + }, + { + "epoch": 2.292630280604379, + "grad_norm": 0.08749070018529892, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 22305 + }, + { + "epoch": 2.2929386370644464, + "grad_norm": 0.05580052733421326, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 22308 + }, + { + "epoch": 2.293246993524514, + "grad_norm": 0.07866258919239044, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 22311 + }, + { + "epoch": 2.293555349984582, + "grad_norm": 0.06253038346767426, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 22314 + }, + { + "epoch": 2.29386370644465, + "grad_norm": 0.0412861630320549, + "learning_rate": 0.01, + "loss": 2.0504, + "step": 22317 + }, + { + "epoch": 2.294172062904718, + "grad_norm": 0.05568886548280716, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 22320 + }, + { + "epoch": 2.2944804193647856, + "grad_norm": 0.060274332761764526, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 22323 + }, + { + "epoch": 2.2947887758248537, + "grad_norm": 0.09785215556621552, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 22326 + }, + { + "epoch": 2.2950971322849214, + "grad_norm": 0.06171462684869766, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 22329 + }, + { + "epoch": 2.295405488744989, + "grad_norm": 0.1034122183918953, + "learning_rate": 0.01, + "loss": 2.0493, + "step": 22332 + }, + { + "epoch": 2.295713845205057, + "grad_norm": 0.04855991527438164, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 22335 + }, + { + "epoch": 2.296022201665125, + "grad_norm": 0.05000189319252968, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 22338 + }, + { + "epoch": 2.2963305581251925, + "grad_norm": 0.031126966699957848, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 22341 + }, + { + "epoch": 2.2966389145852606, + "grad_norm": 0.08688051998615265, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 22344 + }, + { + "epoch": 2.2969472710453283, + "grad_norm": 0.08918049931526184, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 22347 + }, + { + "epoch": 2.2972556275053964, + "grad_norm": 0.0592593289911747, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 22350 + }, + { + "epoch": 2.297563983965464, + "grad_norm": 0.11501101404428482, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 22353 + }, + { + "epoch": 2.297872340425532, + "grad_norm": 0.12966668605804443, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 22356 + }, + { + "epoch": 2.2981806968856, + "grad_norm": 0.08889560401439667, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 22359 + }, + { + "epoch": 2.2984890533456674, + "grad_norm": 0.07578025758266449, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 22362 + }, + { + "epoch": 2.2987974098057355, + "grad_norm": 0.04283175244927406, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 22365 + }, + { + "epoch": 2.299105766265803, + "grad_norm": 0.038169119507074356, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 22368 + }, + { + "epoch": 2.299414122725871, + "grad_norm": 0.07047520577907562, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 22371 + }, + { + "epoch": 2.299722479185939, + "grad_norm": 0.06367038190364838, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 22374 + }, + { + "epoch": 2.3000308356460066, + "grad_norm": 0.06601911783218384, + "learning_rate": 0.01, + "loss": 2.026, + "step": 22377 + }, + { + "epoch": 2.3003391921060747, + "grad_norm": 0.06333800405263901, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 22380 + }, + { + "epoch": 2.3006475485661424, + "grad_norm": 0.0635596215724945, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 22383 + }, + { + "epoch": 2.3009559050262105, + "grad_norm": 0.09258962422609329, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 22386 + }, + { + "epoch": 2.301264261486278, + "grad_norm": 0.04462733119726181, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 22389 + }, + { + "epoch": 2.301572617946346, + "grad_norm": 0.04802479222416878, + "learning_rate": 0.01, + "loss": 2.0557, + "step": 22392 + }, + { + "epoch": 2.301880974406414, + "grad_norm": 0.0396190769970417, + "learning_rate": 0.01, + "loss": 2.0543, + "step": 22395 + }, + { + "epoch": 2.3021893308664816, + "grad_norm": 0.05610959604382515, + "learning_rate": 0.01, + "loss": 2.048, + "step": 22398 + }, + { + "epoch": 2.3024976873265492, + "grad_norm": 0.03454664349555969, + "learning_rate": 0.01, + "loss": 2.0592, + "step": 22401 + }, + { + "epoch": 2.3028060437866174, + "grad_norm": 0.049920883029699326, + "learning_rate": 0.01, + "loss": 2.0533, + "step": 22404 + }, + { + "epoch": 2.303114400246685, + "grad_norm": 0.04548259451985359, + "learning_rate": 0.01, + "loss": 2.045, + "step": 22407 + }, + { + "epoch": 2.303422756706753, + "grad_norm": 0.07624956220388412, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 22410 + }, + { + "epoch": 2.3037311131668208, + "grad_norm": 0.1172046959400177, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 22413 + }, + { + "epoch": 2.304039469626889, + "grad_norm": 0.07652290165424347, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 22416 + }, + { + "epoch": 2.3043478260869565, + "grad_norm": 0.07458405196666718, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 22419 + }, + { + "epoch": 2.304656182547024, + "grad_norm": 0.08384053409099579, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 22422 + }, + { + "epoch": 2.3049645390070923, + "grad_norm": 0.0492565892636776, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 22425 + }, + { + "epoch": 2.30527289546716, + "grad_norm": 0.05125366151332855, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 22428 + }, + { + "epoch": 2.3055812519272276, + "grad_norm": 0.03920417279005051, + "learning_rate": 0.01, + "loss": 2.0471, + "step": 22431 + }, + { + "epoch": 2.3058896083872957, + "grad_norm": 0.07206401228904724, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 22434 + }, + { + "epoch": 2.3061979648473634, + "grad_norm": 0.08888402581214905, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 22437 + }, + { + "epoch": 2.3065063213074315, + "grad_norm": 0.1788371056318283, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 22440 + }, + { + "epoch": 2.306814677767499, + "grad_norm": 0.11030272394418716, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 22443 + }, + { + "epoch": 2.3071230342275673, + "grad_norm": 0.08602694422006607, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 22446 + }, + { + "epoch": 2.307431390687635, + "grad_norm": 0.07269123196601868, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 22449 + }, + { + "epoch": 2.3077397471477026, + "grad_norm": 0.043196290731430054, + "learning_rate": 0.01, + "loss": 2.0617, + "step": 22452 + }, + { + "epoch": 2.3080481036077707, + "grad_norm": 0.03932726010680199, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 22455 + }, + { + "epoch": 2.3083564600678383, + "grad_norm": 0.07751597464084625, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 22458 + }, + { + "epoch": 2.3086648165279064, + "grad_norm": 0.06549305468797684, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 22461 + }, + { + "epoch": 2.308973172987974, + "grad_norm": 0.05819348245859146, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 22464 + }, + { + "epoch": 2.3092815294480418, + "grad_norm": 0.04251622408628464, + "learning_rate": 0.01, + "loss": 2.02, + "step": 22467 + }, + { + "epoch": 2.30958988590811, + "grad_norm": 0.03997926414012909, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 22470 + }, + { + "epoch": 2.3098982423681775, + "grad_norm": 0.060847315937280655, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 22473 + }, + { + "epoch": 2.3102065988282456, + "grad_norm": 0.188557431101799, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 22476 + }, + { + "epoch": 2.3105149552883133, + "grad_norm": 0.050608254969120026, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 22479 + }, + { + "epoch": 2.310823311748381, + "grad_norm": 0.0930873304605484, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 22482 + }, + { + "epoch": 2.311131668208449, + "grad_norm": 0.05231544002890587, + "learning_rate": 0.01, + "loss": 2.0646, + "step": 22485 + }, + { + "epoch": 2.3114400246685167, + "grad_norm": 0.038996320217847824, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 22488 + }, + { + "epoch": 2.311748381128585, + "grad_norm": 0.04804287478327751, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 22491 + }, + { + "epoch": 2.3120567375886525, + "grad_norm": 0.05822224169969559, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 22494 + }, + { + "epoch": 2.31236509404872, + "grad_norm": 0.04677027836441994, + "learning_rate": 0.01, + "loss": 2.0552, + "step": 22497 + }, + { + "epoch": 2.3126734505087883, + "grad_norm": 0.05270523950457573, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 22500 + }, + { + "epoch": 2.312981806968856, + "grad_norm": 0.04068690538406372, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 22503 + }, + { + "epoch": 2.313290163428924, + "grad_norm": 0.03488868847489357, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 22506 + }, + { + "epoch": 2.3135985198889917, + "grad_norm": 0.1007746085524559, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 22509 + }, + { + "epoch": 2.3139068763490593, + "grad_norm": 0.04351113364100456, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 22512 + }, + { + "epoch": 2.3142152328091274, + "grad_norm": 0.042396917939186096, + "learning_rate": 0.01, + "loss": 2.0427, + "step": 22515 + }, + { + "epoch": 2.314523589269195, + "grad_norm": 0.05541342496871948, + "learning_rate": 0.01, + "loss": 2.0577, + "step": 22518 + }, + { + "epoch": 2.314831945729263, + "grad_norm": 0.05093314126133919, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 22521 + }, + { + "epoch": 2.315140302189331, + "grad_norm": 0.09227500855922699, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 22524 + }, + { + "epoch": 2.3154486586493985, + "grad_norm": 0.07242649048566818, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 22527 + }, + { + "epoch": 2.3157570151094666, + "grad_norm": 0.07468149811029434, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 22530 + }, + { + "epoch": 2.3160653715695343, + "grad_norm": 0.0861506536602974, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 22533 + }, + { + "epoch": 2.3163737280296024, + "grad_norm": 0.05024004355072975, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 22536 + }, + { + "epoch": 2.31668208448967, + "grad_norm": 0.07255478948354721, + "learning_rate": 0.01, + "loss": 1.997, + "step": 22539 + }, + { + "epoch": 2.3169904409497377, + "grad_norm": 0.08199785649776459, + "learning_rate": 0.01, + "loss": 2.0465, + "step": 22542 + }, + { + "epoch": 2.317298797409806, + "grad_norm": 0.05194063484668732, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 22545 + }, + { + "epoch": 2.3176071538698735, + "grad_norm": 0.05785224214196205, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 22548 + }, + { + "epoch": 2.3179155103299416, + "grad_norm": 0.0767458900809288, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 22551 + }, + { + "epoch": 2.3182238667900092, + "grad_norm": 0.04905517399311066, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 22554 + }, + { + "epoch": 2.318532223250077, + "grad_norm": 0.12444967031478882, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 22557 + }, + { + "epoch": 2.318840579710145, + "grad_norm": 0.07965657114982605, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 22560 + }, + { + "epoch": 2.3191489361702127, + "grad_norm": 0.12167848646640778, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 22563 + }, + { + "epoch": 2.3194572926302808, + "grad_norm": 0.05483706668019295, + "learning_rate": 0.01, + "loss": 2.034, + "step": 22566 + }, + { + "epoch": 2.3197656490903484, + "grad_norm": 0.043046776205301285, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 22569 + }, + { + "epoch": 2.320074005550416, + "grad_norm": 0.03646457940340042, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 22572 + }, + { + "epoch": 2.320382362010484, + "grad_norm": 0.05777902901172638, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 22575 + }, + { + "epoch": 2.320690718470552, + "grad_norm": 0.08646814525127411, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 22578 + }, + { + "epoch": 2.32099907493062, + "grad_norm": 0.10770904272794724, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 22581 + }, + { + "epoch": 2.3213074313906876, + "grad_norm": 0.11546061187982559, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 22584 + }, + { + "epoch": 2.3216157878507553, + "grad_norm": 0.08060076832771301, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 22587 + }, + { + "epoch": 2.3219241443108234, + "grad_norm": 0.05546190217137337, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 22590 + }, + { + "epoch": 2.322232500770891, + "grad_norm": 0.06310277432203293, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 22593 + }, + { + "epoch": 2.322540857230959, + "grad_norm": 0.037245072424411774, + "learning_rate": 0.01, + "loss": 2.038, + "step": 22596 + }, + { + "epoch": 2.322849213691027, + "grad_norm": 0.05082730948925018, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 22599 + }, + { + "epoch": 2.3231575701510945, + "grad_norm": 0.054748065769672394, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 22602 + }, + { + "epoch": 2.3234659266111626, + "grad_norm": 0.06093902140855789, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 22605 + }, + { + "epoch": 2.3237742830712302, + "grad_norm": 0.10238637775182724, + "learning_rate": 0.01, + "loss": 2.0559, + "step": 22608 + }, + { + "epoch": 2.3240826395312983, + "grad_norm": 0.0850609764456749, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 22611 + }, + { + "epoch": 2.324390995991366, + "grad_norm": 0.04108014330267906, + "learning_rate": 0.01, + "loss": 2.045, + "step": 22614 + }, + { + "epoch": 2.3246993524514337, + "grad_norm": 0.03669281303882599, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 22617 + }, + { + "epoch": 2.3250077089115018, + "grad_norm": 0.053524449467659, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 22620 + }, + { + "epoch": 2.3253160653715694, + "grad_norm": 0.03545799478888512, + "learning_rate": 0.01, + "loss": 2.03, + "step": 22623 + }, + { + "epoch": 2.3256244218316375, + "grad_norm": 0.0569877028465271, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 22626 + }, + { + "epoch": 2.325932778291705, + "grad_norm": 0.06943153589963913, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 22629 + }, + { + "epoch": 2.326241134751773, + "grad_norm": 0.07389956712722778, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 22632 + }, + { + "epoch": 2.326549491211841, + "grad_norm": 0.08397506922483444, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 22635 + }, + { + "epoch": 2.3268578476719086, + "grad_norm": 0.13598600029945374, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 22638 + }, + { + "epoch": 2.3271662041319767, + "grad_norm": 0.08953214436769485, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 22641 + }, + { + "epoch": 2.3274745605920444, + "grad_norm": 0.09812797605991364, + "learning_rate": 0.01, + "loss": 2.0631, + "step": 22644 + }, + { + "epoch": 2.3277829170521125, + "grad_norm": 0.06696080416440964, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 22647 + }, + { + "epoch": 2.32809127351218, + "grad_norm": 0.07981070876121521, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 22650 + }, + { + "epoch": 2.328399629972248, + "grad_norm": 0.06655466556549072, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 22653 + }, + { + "epoch": 2.328707986432316, + "grad_norm": 0.061447955667972565, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 22656 + }, + { + "epoch": 2.3290163428923836, + "grad_norm": 0.08812141418457031, + "learning_rate": 0.01, + "loss": 2.0471, + "step": 22659 + }, + { + "epoch": 2.3293246993524512, + "grad_norm": 0.04082084447145462, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 22662 + }, + { + "epoch": 2.3296330558125193, + "grad_norm": 0.04827709123492241, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 22665 + }, + { + "epoch": 2.329941412272587, + "grad_norm": 0.04531668871641159, + "learning_rate": 0.01, + "loss": 2.01, + "step": 22668 + }, + { + "epoch": 2.330249768732655, + "grad_norm": 0.06739286333322525, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 22671 + }, + { + "epoch": 2.3305581251927228, + "grad_norm": 0.07753113657236099, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 22674 + }, + { + "epoch": 2.330866481652791, + "grad_norm": 0.1572093814611435, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 22677 + }, + { + "epoch": 2.3311748381128585, + "grad_norm": 0.0898297056555748, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 22680 + }, + { + "epoch": 2.331483194572926, + "grad_norm": 0.0803251639008522, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 22683 + }, + { + "epoch": 2.3317915510329943, + "grad_norm": 0.06155823543667793, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 22686 + }, + { + "epoch": 2.332099907493062, + "grad_norm": 0.03681538626551628, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 22689 + }, + { + "epoch": 2.3324082639531296, + "grad_norm": 0.03595598414540291, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 22692 + }, + { + "epoch": 2.3327166204131977, + "grad_norm": 0.06950604170560837, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 22695 + }, + { + "epoch": 2.3330249768732654, + "grad_norm": 0.07386364042758942, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 22698 + }, + { + "epoch": 2.3333333333333335, + "grad_norm": 0.06711214780807495, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 22701 + }, + { + "epoch": 2.333641689793401, + "grad_norm": 0.07357903569936752, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 22704 + }, + { + "epoch": 2.3339500462534692, + "grad_norm": 0.0660550519824028, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 22707 + }, + { + "epoch": 2.334258402713537, + "grad_norm": 0.05066053569316864, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 22710 + }, + { + "epoch": 2.3345667591736046, + "grad_norm": 0.04992471635341644, + "learning_rate": 0.01, + "loss": 2.0764, + "step": 22713 + }, + { + "epoch": 2.3348751156336727, + "grad_norm": 0.03477726876735687, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 22716 + }, + { + "epoch": 2.3351834720937403, + "grad_norm": 0.05454208329319954, + "learning_rate": 0.01, + "loss": 2.0476, + "step": 22719 + }, + { + "epoch": 2.335491828553808, + "grad_norm": 0.09009736031293869, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 22722 + }, + { + "epoch": 2.335800185013876, + "grad_norm": 0.10271045565605164, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 22725 + }, + { + "epoch": 2.3361085414739438, + "grad_norm": 0.05939007177948952, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 22728 + }, + { + "epoch": 2.336416897934012, + "grad_norm": 0.06454264372587204, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 22731 + }, + { + "epoch": 2.3367252543940795, + "grad_norm": 0.04892132803797722, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 22734 + }, + { + "epoch": 2.3370336108541476, + "grad_norm": 0.060863394290208817, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 22737 + }, + { + "epoch": 2.3373419673142153, + "grad_norm": 0.06073556840419769, + "learning_rate": 0.01, + "loss": 2.028, + "step": 22740 + }, + { + "epoch": 2.337650323774283, + "grad_norm": 0.04620682820677757, + "learning_rate": 0.01, + "loss": 2.034, + "step": 22743 + }, + { + "epoch": 2.337958680234351, + "grad_norm": 0.04834865778684616, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 22746 + }, + { + "epoch": 2.3382670366944187, + "grad_norm": 0.08154502511024475, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 22749 + }, + { + "epoch": 2.3385753931544864, + "grad_norm": 0.062378283590078354, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 22752 + }, + { + "epoch": 2.3388837496145545, + "grad_norm": 0.11560855805873871, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 22755 + }, + { + "epoch": 2.339192106074622, + "grad_norm": 0.14084307849407196, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 22758 + }, + { + "epoch": 2.3395004625346902, + "grad_norm": 0.08354218304157257, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 22761 + }, + { + "epoch": 2.339808818994758, + "grad_norm": 0.04660021886229515, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 22764 + }, + { + "epoch": 2.340117175454826, + "grad_norm": 0.06319580972194672, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 22767 + }, + { + "epoch": 2.3404255319148937, + "grad_norm": 0.06721585988998413, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 22770 + }, + { + "epoch": 2.3407338883749613, + "grad_norm": 0.08593994379043579, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 22773 + }, + { + "epoch": 2.3410422448350294, + "grad_norm": 0.07594014704227448, + "learning_rate": 0.01, + "loss": 2.045, + "step": 22776 + }, + { + "epoch": 2.341350601295097, + "grad_norm": 0.05942634493112564, + "learning_rate": 0.01, + "loss": 2.0557, + "step": 22779 + }, + { + "epoch": 2.3416589577551647, + "grad_norm": 0.09516235440969467, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 22782 + }, + { + "epoch": 2.341967314215233, + "grad_norm": 0.11480774730443954, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 22785 + }, + { + "epoch": 2.3422756706753005, + "grad_norm": 0.078018918633461, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 22788 + }, + { + "epoch": 2.3425840271353686, + "grad_norm": 0.04268670827150345, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 22791 + }, + { + "epoch": 2.3428923835954363, + "grad_norm": 0.04221808537840843, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 22794 + }, + { + "epoch": 2.3432007400555044, + "grad_norm": 0.04617379978299141, + "learning_rate": 0.01, + "loss": 2.036, + "step": 22797 + }, + { + "epoch": 2.343509096515572, + "grad_norm": 0.05600395053625107, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 22800 + }, + { + "epoch": 2.3438174529756397, + "grad_norm": 0.04997321218252182, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 22803 + }, + { + "epoch": 2.344125809435708, + "grad_norm": 0.08891329169273376, + "learning_rate": 0.01, + "loss": 2.0464, + "step": 22806 + }, + { + "epoch": 2.3444341658957755, + "grad_norm": 0.06883488595485687, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 22809 + }, + { + "epoch": 2.344742522355843, + "grad_norm": 0.05532229691743851, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 22812 + }, + { + "epoch": 2.3450508788159112, + "grad_norm": 0.04480346292257309, + "learning_rate": 0.01, + "loss": 2.036, + "step": 22815 + }, + { + "epoch": 2.345359235275979, + "grad_norm": 0.06533756107091904, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 22818 + }, + { + "epoch": 2.345667591736047, + "grad_norm": 0.09851729869842529, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 22821 + }, + { + "epoch": 2.3459759481961147, + "grad_norm": 0.06026868894696236, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 22824 + }, + { + "epoch": 2.3462843046561828, + "grad_norm": 0.10084753483533859, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 22827 + }, + { + "epoch": 2.3465926611162504, + "grad_norm": 0.09302054345607758, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 22830 + }, + { + "epoch": 2.346901017576318, + "grad_norm": 0.06304951757192612, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 22833 + }, + { + "epoch": 2.347209374036386, + "grad_norm": 0.03625926375389099, + "learning_rate": 0.01, + "loss": 2.037, + "step": 22836 + }, + { + "epoch": 2.347517730496454, + "grad_norm": 0.0602838359773159, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 22839 + }, + { + "epoch": 2.3478260869565215, + "grad_norm": 0.08285371959209442, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 22842 + }, + { + "epoch": 2.3481344434165896, + "grad_norm": 0.05780784785747528, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 22845 + }, + { + "epoch": 2.3484427998766573, + "grad_norm": 0.07491873949766159, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 22848 + }, + { + "epoch": 2.3487511563367254, + "grad_norm": 0.04745258018374443, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 22851 + }, + { + "epoch": 2.349059512796793, + "grad_norm": 0.030006757006049156, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 22854 + }, + { + "epoch": 2.349367869256861, + "grad_norm": 0.035286273807287216, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 22857 + }, + { + "epoch": 2.349676225716929, + "grad_norm": 0.08970153331756592, + "learning_rate": 0.01, + "loss": 2.0473, + "step": 22860 + }, + { + "epoch": 2.3499845821769965, + "grad_norm": 0.06819456070661545, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 22863 + }, + { + "epoch": 2.3502929386370646, + "grad_norm": 0.07130144536495209, + "learning_rate": 0.01, + "loss": 2.019, + "step": 22866 + }, + { + "epoch": 2.3506012950971322, + "grad_norm": 0.046634428203105927, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 22869 + }, + { + "epoch": 2.3509096515572, + "grad_norm": 0.10333798825740814, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 22872 + }, + { + "epoch": 2.351218008017268, + "grad_norm": 0.06691887974739075, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 22875 + }, + { + "epoch": 2.3515263644773357, + "grad_norm": 0.06780122220516205, + "learning_rate": 0.01, + "loss": 2.052, + "step": 22878 + }, + { + "epoch": 2.3518347209374038, + "grad_norm": 0.04448529705405235, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 22881 + }, + { + "epoch": 2.3521430773974714, + "grad_norm": 0.09176638722419739, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 22884 + }, + { + "epoch": 2.3524514338575395, + "grad_norm": 0.05699750408530235, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 22887 + }, + { + "epoch": 2.352759790317607, + "grad_norm": 0.0556836873292923, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 22890 + }, + { + "epoch": 2.353068146777675, + "grad_norm": 0.05335136875510216, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 22893 + }, + { + "epoch": 2.353376503237743, + "grad_norm": 0.06900188326835632, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 22896 + }, + { + "epoch": 2.3536848596978106, + "grad_norm": 0.07300775498151779, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 22899 + }, + { + "epoch": 2.3539932161578783, + "grad_norm": 0.0912926122546196, + "learning_rate": 0.01, + "loss": 2.041, + "step": 22902 + }, + { + "epoch": 2.3543015726179464, + "grad_norm": 0.0803481861948967, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 22905 + }, + { + "epoch": 2.354609929078014, + "grad_norm": 0.05067334324121475, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 22908 + }, + { + "epoch": 2.354918285538082, + "grad_norm": 0.10282410681247711, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 22911 + }, + { + "epoch": 2.35522664199815, + "grad_norm": 0.04224551469087601, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 22914 + }, + { + "epoch": 2.355534998458218, + "grad_norm": 0.06768529862165451, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 22917 + }, + { + "epoch": 2.3558433549182856, + "grad_norm": 0.10372413694858551, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 22920 + }, + { + "epoch": 2.356151711378353, + "grad_norm": 0.05974859744310379, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 22923 + }, + { + "epoch": 2.3564600678384213, + "grad_norm": 0.06408294290304184, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 22926 + }, + { + "epoch": 2.356768424298489, + "grad_norm": 0.053037382662296295, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 22929 + }, + { + "epoch": 2.3570767807585566, + "grad_norm": 0.038871798664331436, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 22932 + }, + { + "epoch": 2.3573851372186247, + "grad_norm": 0.046300627291202545, + "learning_rate": 0.01, + "loss": 2.033, + "step": 22935 + }, + { + "epoch": 2.3576934936786924, + "grad_norm": 0.05344367399811745, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 22938 + }, + { + "epoch": 2.3580018501387605, + "grad_norm": 0.0878051146864891, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 22941 + }, + { + "epoch": 2.358310206598828, + "grad_norm": 0.09469857066869736, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 22944 + }, + { + "epoch": 2.3586185630588963, + "grad_norm": 0.04746483266353607, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 22947 + }, + { + "epoch": 2.358926919518964, + "grad_norm": 0.051294367760419846, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 22950 + }, + { + "epoch": 2.3592352759790316, + "grad_norm": 0.04378626495599747, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 22953 + }, + { + "epoch": 2.3595436324390997, + "grad_norm": 0.054627690464258194, + "learning_rate": 0.01, + "loss": 2.0592, + "step": 22956 + }, + { + "epoch": 2.3598519888991674, + "grad_norm": 0.04732866585254669, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 22959 + }, + { + "epoch": 2.3601603453592355, + "grad_norm": 0.11569249629974365, + "learning_rate": 0.01, + "loss": 2.007, + "step": 22962 + }, + { + "epoch": 2.360468701819303, + "grad_norm": 0.10606824606657028, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 22965 + }, + { + "epoch": 2.360777058279371, + "grad_norm": 0.05072540044784546, + "learning_rate": 0.01, + "loss": 2.0581, + "step": 22968 + }, + { + "epoch": 2.361085414739439, + "grad_norm": 0.0738227441906929, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 22971 + }, + { + "epoch": 2.3613937711995066, + "grad_norm": 0.06440632790327072, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 22974 + }, + { + "epoch": 2.3617021276595747, + "grad_norm": 0.05426304414868355, + "learning_rate": 0.01, + "loss": 2.043, + "step": 22977 + }, + { + "epoch": 2.3620104841196423, + "grad_norm": 0.06414210051298141, + "learning_rate": 0.01, + "loss": 2.0735, + "step": 22980 + }, + { + "epoch": 2.36231884057971, + "grad_norm": 0.034726858139038086, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 22983 + }, + { + "epoch": 2.362627197039778, + "grad_norm": 0.04326315596699715, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 22986 + }, + { + "epoch": 2.3629355534998457, + "grad_norm": 0.06470071524381638, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 22989 + }, + { + "epoch": 2.363243909959914, + "grad_norm": 0.09161586314439774, + "learning_rate": 0.01, + "loss": 2.02, + "step": 22992 + }, + { + "epoch": 2.3635522664199815, + "grad_norm": 0.035171300172805786, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 22995 + }, + { + "epoch": 2.363860622880049, + "grad_norm": 0.059095609933137894, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 22998 + }, + { + "epoch": 2.3641689793401173, + "grad_norm": 0.094328872859478, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 23001 + }, + { + "epoch": 2.364477335800185, + "grad_norm": 0.059930335730314255, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 23004 + }, + { + "epoch": 2.364785692260253, + "grad_norm": 0.08969483524560928, + "learning_rate": 0.01, + "loss": 2.04, + "step": 23007 + }, + { + "epoch": 2.3650940487203207, + "grad_norm": 0.054753273725509644, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 23010 + }, + { + "epoch": 2.3654024051803884, + "grad_norm": 0.09794525057077408, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 23013 + }, + { + "epoch": 2.3657107616404565, + "grad_norm": 0.07700082659721375, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 23016 + }, + { + "epoch": 2.366019118100524, + "grad_norm": 0.03871360793709755, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 23019 + }, + { + "epoch": 2.3663274745605922, + "grad_norm": 0.08822629600763321, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 23022 + }, + { + "epoch": 2.36663583102066, + "grad_norm": 0.08018068969249725, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 23025 + }, + { + "epoch": 2.3669441874807275, + "grad_norm": 0.046322405338287354, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 23028 + }, + { + "epoch": 2.3672525439407957, + "grad_norm": 0.08056683838367462, + "learning_rate": 0.01, + "loss": 2.035, + "step": 23031 + }, + { + "epoch": 2.3675609004008633, + "grad_norm": 0.059787072241306305, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 23034 + }, + { + "epoch": 2.3678692568609314, + "grad_norm": 0.07793419063091278, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 23037 + }, + { + "epoch": 2.368177613320999, + "grad_norm": 0.1337706595659256, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 23040 + }, + { + "epoch": 2.3684859697810667, + "grad_norm": 0.0608229860663414, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 23043 + }, + { + "epoch": 2.368794326241135, + "grad_norm": 0.07523812353610992, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 23046 + }, + { + "epoch": 2.3691026827012025, + "grad_norm": 0.05788956955075264, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 23049 + }, + { + "epoch": 2.3694110391612706, + "grad_norm": 0.05372630059719086, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 23052 + }, + { + "epoch": 2.3697193956213383, + "grad_norm": 0.0775051936507225, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 23055 + }, + { + "epoch": 2.370027752081406, + "grad_norm": 0.042055148631334305, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 23058 + }, + { + "epoch": 2.370336108541474, + "grad_norm": 0.03500501438975334, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 23061 + }, + { + "epoch": 2.3706444650015417, + "grad_norm": 0.05405488237738609, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 23064 + }, + { + "epoch": 2.37095282146161, + "grad_norm": 0.04199660196900368, + "learning_rate": 0.01, + "loss": 2.024, + "step": 23067 + }, + { + "epoch": 2.3712611779216775, + "grad_norm": 0.10155687481164932, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 23070 + }, + { + "epoch": 2.371569534381745, + "grad_norm": 0.04267631843686104, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 23073 + }, + { + "epoch": 2.371877890841813, + "grad_norm": 0.08961319178342819, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 23076 + }, + { + "epoch": 2.372186247301881, + "grad_norm": 0.06389858573675156, + "learning_rate": 0.01, + "loss": 2.02, + "step": 23079 + }, + { + "epoch": 2.372494603761949, + "grad_norm": 0.0733552873134613, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 23082 + }, + { + "epoch": 2.3728029602220166, + "grad_norm": 0.04577986150979996, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 23085 + }, + { + "epoch": 2.3731113166820843, + "grad_norm": 0.07929688692092896, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 23088 + }, + { + "epoch": 2.3734196731421524, + "grad_norm": 0.07446785271167755, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 23091 + }, + { + "epoch": 2.37372802960222, + "grad_norm": 0.08491658419370651, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 23094 + }, + { + "epoch": 2.374036386062288, + "grad_norm": 0.04434317350387573, + "learning_rate": 0.01, + "loss": 2.022, + "step": 23097 + }, + { + "epoch": 2.374344742522356, + "grad_norm": 0.031715601682662964, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 23100 + }, + { + "epoch": 2.3746530989824235, + "grad_norm": 0.05073494091629982, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 23103 + }, + { + "epoch": 2.3749614554424916, + "grad_norm": 0.0484505333006382, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 23106 + }, + { + "epoch": 2.3752698119025593, + "grad_norm": 0.036467526108026505, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 23109 + }, + { + "epoch": 2.3755781683626274, + "grad_norm": 0.048451874405145645, + "learning_rate": 0.01, + "loss": 2.014, + "step": 23112 + }, + { + "epoch": 2.375886524822695, + "grad_norm": 0.048714105039834976, + "learning_rate": 0.01, + "loss": 2.0546, + "step": 23115 + }, + { + "epoch": 2.3761948812827627, + "grad_norm": 0.07499600946903229, + "learning_rate": 0.01, + "loss": 2.024, + "step": 23118 + }, + { + "epoch": 2.376503237742831, + "grad_norm": 0.052757177501916885, + "learning_rate": 0.01, + "loss": 2.07, + "step": 23121 + }, + { + "epoch": 2.3768115942028984, + "grad_norm": 0.062441807240247726, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 23124 + }, + { + "epoch": 2.3771199506629666, + "grad_norm": 0.04984834045171738, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 23127 + }, + { + "epoch": 2.377428307123034, + "grad_norm": 0.12042737007141113, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 23130 + }, + { + "epoch": 2.377736663583102, + "grad_norm": 0.08114577829837799, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 23133 + }, + { + "epoch": 2.37804502004317, + "grad_norm": 0.044427551329135895, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 23136 + }, + { + "epoch": 2.3783533765032376, + "grad_norm": 0.04814080893993378, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 23139 + }, + { + "epoch": 2.3786617329633057, + "grad_norm": 0.03783731907606125, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 23142 + }, + { + "epoch": 2.3789700894233734, + "grad_norm": 0.03743833675980568, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 23145 + }, + { + "epoch": 2.3792784458834415, + "grad_norm": 0.05341466888785362, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 23148 + }, + { + "epoch": 2.379586802343509, + "grad_norm": 0.04965018108487129, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 23151 + }, + { + "epoch": 2.379895158803577, + "grad_norm": 0.06330037117004395, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 23154 + }, + { + "epoch": 2.380203515263645, + "grad_norm": 0.04018980264663696, + "learning_rate": 0.01, + "loss": 2.045, + "step": 23157 + }, + { + "epoch": 2.3805118717237126, + "grad_norm": 0.04469529166817665, + "learning_rate": 0.01, + "loss": 2.0437, + "step": 23160 + }, + { + "epoch": 2.3808202281837803, + "grad_norm": 0.07242292910814285, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 23163 + }, + { + "epoch": 2.3811285846438484, + "grad_norm": 0.05165792256593704, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 23166 + }, + { + "epoch": 2.381436941103916, + "grad_norm": 0.12728899717330933, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 23169 + }, + { + "epoch": 2.381745297563984, + "grad_norm": 0.07357775419950485, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 23172 + }, + { + "epoch": 2.382053654024052, + "grad_norm": 0.05125182494521141, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 23175 + }, + { + "epoch": 2.38236201048412, + "grad_norm": 0.061880383640527725, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 23178 + }, + { + "epoch": 2.3826703669441875, + "grad_norm": 0.03774267062544823, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 23181 + }, + { + "epoch": 2.382978723404255, + "grad_norm": 0.04750019684433937, + "learning_rate": 0.01, + "loss": 2.046, + "step": 23184 + }, + { + "epoch": 2.3832870798643233, + "grad_norm": 0.06727109849452972, + "learning_rate": 0.01, + "loss": 2.0545, + "step": 23187 + }, + { + "epoch": 2.383595436324391, + "grad_norm": 0.08848878741264343, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 23190 + }, + { + "epoch": 2.3839037927844586, + "grad_norm": 0.07577743381261826, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 23193 + }, + { + "epoch": 2.3842121492445267, + "grad_norm": 0.07908739149570465, + "learning_rate": 0.01, + "loss": 2.0516, + "step": 23196 + }, + { + "epoch": 2.3845205057045944, + "grad_norm": 0.08100943267345428, + "learning_rate": 0.01, + "loss": 2.036, + "step": 23199 + }, + { + "epoch": 2.3848288621646625, + "grad_norm": 0.12388890236616135, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 23202 + }, + { + "epoch": 2.38513721862473, + "grad_norm": 0.0538008026778698, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 23205 + }, + { + "epoch": 2.3854455750847983, + "grad_norm": 0.04448952525854111, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 23208 + }, + { + "epoch": 2.385753931544866, + "grad_norm": 0.038850218057632446, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 23211 + }, + { + "epoch": 2.3860622880049336, + "grad_norm": 0.10436736047267914, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 23214 + }, + { + "epoch": 2.3863706444650017, + "grad_norm": 0.03787916898727417, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 23217 + }, + { + "epoch": 2.3866790009250693, + "grad_norm": 0.0874573364853859, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 23220 + }, + { + "epoch": 2.386987357385137, + "grad_norm": 0.08322203904390335, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 23223 + }, + { + "epoch": 2.387295713845205, + "grad_norm": 0.034374579787254333, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 23226 + }, + { + "epoch": 2.3876040703052728, + "grad_norm": 0.03772469237446785, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 23229 + }, + { + "epoch": 2.387912426765341, + "grad_norm": 0.12290430814027786, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 23232 + }, + { + "epoch": 2.3882207832254085, + "grad_norm": 0.04306014999747276, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 23235 + }, + { + "epoch": 2.3885291396854766, + "grad_norm": 0.10940956324338913, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 23238 + }, + { + "epoch": 2.3888374961455443, + "grad_norm": 0.06950829923152924, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 23241 + }, + { + "epoch": 2.389145852605612, + "grad_norm": 0.11061616986989975, + "learning_rate": 0.01, + "loss": 2.017, + "step": 23244 + }, + { + "epoch": 2.38945420906568, + "grad_norm": 0.051813628524541855, + "learning_rate": 0.01, + "loss": 2.0657, + "step": 23247 + }, + { + "epoch": 2.3897625655257477, + "grad_norm": 0.10411377251148224, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 23250 + }, + { + "epoch": 2.3900709219858154, + "grad_norm": 0.03951719403266907, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 23253 + }, + { + "epoch": 2.3903792784458835, + "grad_norm": 0.08920100331306458, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 23256 + }, + { + "epoch": 2.390687634905951, + "grad_norm": 0.03843710198998451, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 23259 + }, + { + "epoch": 2.3909959913660193, + "grad_norm": 0.09093856811523438, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 23262 + }, + { + "epoch": 2.391304347826087, + "grad_norm": 0.06239760294556618, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 23265 + }, + { + "epoch": 2.391612704286155, + "grad_norm": 0.07422836124897003, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 23268 + }, + { + "epoch": 2.3919210607462227, + "grad_norm": 0.04418382793664932, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 23271 + }, + { + "epoch": 2.3922294172062903, + "grad_norm": 0.08631134033203125, + "learning_rate": 0.01, + "loss": 2.0675, + "step": 23274 + }, + { + "epoch": 2.3925377736663584, + "grad_norm": 0.05164894834160805, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 23277 + }, + { + "epoch": 2.392846130126426, + "grad_norm": 0.056628335267305374, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 23280 + }, + { + "epoch": 2.3931544865864938, + "grad_norm": 0.10568714141845703, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 23283 + }, + { + "epoch": 2.393462843046562, + "grad_norm": 0.1235639825463295, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 23286 + }, + { + "epoch": 2.3937711995066295, + "grad_norm": 0.04766182228922844, + "learning_rate": 0.01, + "loss": 2.016, + "step": 23289 + }, + { + "epoch": 2.3940795559666976, + "grad_norm": 0.040086500346660614, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 23292 + }, + { + "epoch": 2.3943879124267653, + "grad_norm": 0.04474460333585739, + "learning_rate": 0.01, + "loss": 2.003, + "step": 23295 + }, + { + "epoch": 2.3946962688868334, + "grad_norm": 0.03349655494093895, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 23298 + }, + { + "epoch": 2.395004625346901, + "grad_norm": 0.04361939802765846, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 23301 + }, + { + "epoch": 2.3953129818069687, + "grad_norm": 0.08834217488765717, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 23304 + }, + { + "epoch": 2.395621338267037, + "grad_norm": 0.09799984842538834, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 23307 + }, + { + "epoch": 2.3959296947271045, + "grad_norm": 0.06085311621427536, + "learning_rate": 0.01, + "loss": 2.0326, + "step": 23310 + }, + { + "epoch": 2.396238051187172, + "grad_norm": 0.04466985911130905, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 23313 + }, + { + "epoch": 2.3965464076472403, + "grad_norm": 0.05248266085982323, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 23316 + }, + { + "epoch": 2.396854764107308, + "grad_norm": 0.06024044379591942, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 23319 + }, + { + "epoch": 2.397163120567376, + "grad_norm": 0.05061257630586624, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 23322 + }, + { + "epoch": 2.3974714770274437, + "grad_norm": 0.04136064276099205, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 23325 + }, + { + "epoch": 2.397779833487512, + "grad_norm": 0.048327211290597916, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 23328 + }, + { + "epoch": 2.3980881899475794, + "grad_norm": 0.038865648210048676, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 23331 + }, + { + "epoch": 2.398396546407647, + "grad_norm": 0.04522191360592842, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 23334 + }, + { + "epoch": 2.398704902867715, + "grad_norm": 0.033488884568214417, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 23337 + }, + { + "epoch": 2.399013259327783, + "grad_norm": 0.05207303538918495, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 23340 + }, + { + "epoch": 2.3993216157878505, + "grad_norm": 0.09892462193965912, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 23343 + }, + { + "epoch": 2.3996299722479186, + "grad_norm": 0.07379446923732758, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 23346 + }, + { + "epoch": 2.3999383287079863, + "grad_norm": 0.07604874670505524, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 23349 + }, + { + "epoch": 2.4002466851680544, + "grad_norm": 0.05876392871141434, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 23352 + }, + { + "epoch": 2.400555041628122, + "grad_norm": 0.06497185677289963, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 23355 + }, + { + "epoch": 2.40086339808819, + "grad_norm": 0.059574466198682785, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 23358 + }, + { + "epoch": 2.401171754548258, + "grad_norm": 0.03427527844905853, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 23361 + }, + { + "epoch": 2.4014801110083255, + "grad_norm": 0.04248304292559624, + "learning_rate": 0.01, + "loss": 2.022, + "step": 23364 + }, + { + "epoch": 2.4017884674683936, + "grad_norm": 0.11010278761386871, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 23367 + }, + { + "epoch": 2.4020968239284612, + "grad_norm": 0.03992384672164917, + "learning_rate": 0.01, + "loss": 2.024, + "step": 23370 + }, + { + "epoch": 2.402405180388529, + "grad_norm": 0.0774572566151619, + "learning_rate": 0.01, + "loss": 2.047, + "step": 23373 + }, + { + "epoch": 2.402713536848597, + "grad_norm": 0.0753302052617073, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 23376 + }, + { + "epoch": 2.4030218933086647, + "grad_norm": 0.06872344017028809, + "learning_rate": 0.01, + "loss": 2.041, + "step": 23379 + }, + { + "epoch": 2.4033302497687328, + "grad_norm": 0.03949934244155884, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 23382 + }, + { + "epoch": 2.4036386062288004, + "grad_norm": 0.06230955943465233, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 23385 + }, + { + "epoch": 2.4039469626888685, + "grad_norm": 0.0821446031332016, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 23388 + }, + { + "epoch": 2.404255319148936, + "grad_norm": 0.0392254963517189, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 23391 + }, + { + "epoch": 2.404563675609004, + "grad_norm": 0.04208219051361084, + "learning_rate": 0.01, + "loss": 2.008, + "step": 23394 + }, + { + "epoch": 2.404872032069072, + "grad_norm": 0.053683795034885406, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 23397 + }, + { + "epoch": 2.4051803885291396, + "grad_norm": 0.0707748755812645, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 23400 + }, + { + "epoch": 2.4054887449892073, + "grad_norm": 0.04077059030532837, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 23403 + }, + { + "epoch": 2.4057971014492754, + "grad_norm": 0.041255395859479904, + "learning_rate": 0.01, + "loss": 2.0542, + "step": 23406 + }, + { + "epoch": 2.406105457909343, + "grad_norm": 0.04560267925262451, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 23409 + }, + { + "epoch": 2.406413814369411, + "grad_norm": 0.1152443066239357, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 23412 + }, + { + "epoch": 2.406722170829479, + "grad_norm": 0.06491648405790329, + "learning_rate": 0.01, + "loss": 2.046, + "step": 23415 + }, + { + "epoch": 2.407030527289547, + "grad_norm": 0.10551664233207703, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 23418 + }, + { + "epoch": 2.4073388837496146, + "grad_norm": 0.05565710365772247, + "learning_rate": 0.01, + "loss": 2.051, + "step": 23421 + }, + { + "epoch": 2.4076472402096822, + "grad_norm": 0.07831353694200516, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 23424 + }, + { + "epoch": 2.4079555966697503, + "grad_norm": 0.04822281748056412, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 23427 + }, + { + "epoch": 2.408263953129818, + "grad_norm": 0.10326611250638962, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 23430 + }, + { + "epoch": 2.4085723095898857, + "grad_norm": 0.03122270293533802, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 23433 + }, + { + "epoch": 2.4088806660499538, + "grad_norm": 0.04365687072277069, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 23436 + }, + { + "epoch": 2.4091890225100214, + "grad_norm": 0.055597368627786636, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 23439 + }, + { + "epoch": 2.4094973789700895, + "grad_norm": 0.05635388568043709, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 23442 + }, + { + "epoch": 2.409805735430157, + "grad_norm": 0.059105440974235535, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 23445 + }, + { + "epoch": 2.4101140918902253, + "grad_norm": 0.03262312710285187, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 23448 + }, + { + "epoch": 2.410422448350293, + "grad_norm": 0.12139608711004257, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 23451 + }, + { + "epoch": 2.4107308048103606, + "grad_norm": 0.0331861712038517, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 23454 + }, + { + "epoch": 2.4110391612704287, + "grad_norm": 0.14580830931663513, + "learning_rate": 0.01, + "loss": 2.0268, + "step": 23457 + }, + { + "epoch": 2.4113475177304964, + "grad_norm": 0.08361393213272095, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 23460 + }, + { + "epoch": 2.4116558741905645, + "grad_norm": 0.04604450613260269, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 23463 + }, + { + "epoch": 2.411964230650632, + "grad_norm": 0.0660676434636116, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 23466 + }, + { + "epoch": 2.4122725871107, + "grad_norm": 0.03829890862107277, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 23469 + }, + { + "epoch": 2.412580943570768, + "grad_norm": 0.03486289829015732, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 23472 + }, + { + "epoch": 2.4128893000308356, + "grad_norm": 0.043325070291757584, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 23475 + }, + { + "epoch": 2.4131976564909037, + "grad_norm": 0.062313832342624664, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 23478 + }, + { + "epoch": 2.4135060129509713, + "grad_norm": 0.07333476096391678, + "learning_rate": 0.01, + "loss": 2.031, + "step": 23481 + }, + { + "epoch": 2.413814369411039, + "grad_norm": 0.05855254456400871, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 23484 + }, + { + "epoch": 2.414122725871107, + "grad_norm": 0.07818280905485153, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 23487 + }, + { + "epoch": 2.4144310823311748, + "grad_norm": 0.17364929616451263, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 23490 + }, + { + "epoch": 2.414739438791243, + "grad_norm": 0.04748675599694252, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 23493 + }, + { + "epoch": 2.4150477952513105, + "grad_norm": 0.04472067952156067, + "learning_rate": 0.01, + "loss": 2.001, + "step": 23496 + }, + { + "epoch": 2.415356151711378, + "grad_norm": 0.04624779149889946, + "learning_rate": 0.01, + "loss": 2.0606, + "step": 23499 + }, + { + "epoch": 2.4156645081714463, + "grad_norm": 0.04642438516020775, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 23502 + }, + { + "epoch": 2.415972864631514, + "grad_norm": 0.03872397541999817, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 23505 + }, + { + "epoch": 2.416281221091582, + "grad_norm": 0.055659957230091095, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 23508 + }, + { + "epoch": 2.4165895775516497, + "grad_norm": 0.05187131464481354, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 23511 + }, + { + "epoch": 2.4168979340117174, + "grad_norm": 0.04747389629483223, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 23514 + }, + { + "epoch": 2.4172062904717855, + "grad_norm": 0.04594513028860092, + "learning_rate": 0.01, + "loss": 2.0489, + "step": 23517 + }, + { + "epoch": 2.417514646931853, + "grad_norm": 0.08976871520280838, + "learning_rate": 0.01, + "loss": 2.0728, + "step": 23520 + }, + { + "epoch": 2.4178230033919212, + "grad_norm": 0.09563881158828735, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 23523 + }, + { + "epoch": 2.418131359851989, + "grad_norm": 0.05488200485706329, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 23526 + }, + { + "epoch": 2.4184397163120566, + "grad_norm": 0.10557366907596588, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 23529 + }, + { + "epoch": 2.4187480727721247, + "grad_norm": 0.06399507075548172, + "learning_rate": 0.01, + "loss": 2.032, + "step": 23532 + }, + { + "epoch": 2.4190564292321923, + "grad_norm": 0.06832768023014069, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 23535 + }, + { + "epoch": 2.4193647856922604, + "grad_norm": 0.04164440929889679, + "learning_rate": 0.01, + "loss": 2.046, + "step": 23538 + }, + { + "epoch": 2.419673142152328, + "grad_norm": 0.03020538203418255, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 23541 + }, + { + "epoch": 2.4199814986123958, + "grad_norm": 0.05985027551651001, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 23544 + }, + { + "epoch": 2.420289855072464, + "grad_norm": 0.08126893639564514, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 23547 + }, + { + "epoch": 2.4205982115325315, + "grad_norm": 0.03897944465279579, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 23550 + }, + { + "epoch": 2.4209065679925996, + "grad_norm": 0.05052472651004791, + "learning_rate": 0.01, + "loss": 2.0536, + "step": 23553 + }, + { + "epoch": 2.4212149244526673, + "grad_norm": 0.03434956073760986, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 23556 + }, + { + "epoch": 2.421523280912735, + "grad_norm": 0.0911344438791275, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 23559 + }, + { + "epoch": 2.421831637372803, + "grad_norm": 0.11097840219736099, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 23562 + }, + { + "epoch": 2.4221399938328707, + "grad_norm": 0.09742028266191483, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 23565 + }, + { + "epoch": 2.422448350292939, + "grad_norm": 0.04184804484248161, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 23568 + }, + { + "epoch": 2.4227567067530065, + "grad_norm": 0.04188203811645508, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 23571 + }, + { + "epoch": 2.423065063213074, + "grad_norm": 0.05326924845576286, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 23574 + }, + { + "epoch": 2.4233734196731422, + "grad_norm": 0.04598800092935562, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 23577 + }, + { + "epoch": 2.42368177613321, + "grad_norm": 0.1110750213265419, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 23580 + }, + { + "epoch": 2.423990132593278, + "grad_norm": 0.0473935566842556, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 23583 + }, + { + "epoch": 2.4242984890533457, + "grad_norm": 0.08599594235420227, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 23586 + }, + { + "epoch": 2.4246068455134133, + "grad_norm": 0.03763740509748459, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 23589 + }, + { + "epoch": 2.4249152019734814, + "grad_norm": 0.056663963943719864, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 23592 + }, + { + "epoch": 2.425223558433549, + "grad_norm": 0.09664086252450943, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 23595 + }, + { + "epoch": 2.425531914893617, + "grad_norm": 0.047283969819545746, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 23598 + }, + { + "epoch": 2.425840271353685, + "grad_norm": 0.03726861625909805, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 23601 + }, + { + "epoch": 2.4261486278137525, + "grad_norm": 0.0514906644821167, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 23604 + }, + { + "epoch": 2.4264569842738206, + "grad_norm": 0.11972562968730927, + "learning_rate": 0.01, + "loss": 2.07, + "step": 23607 + }, + { + "epoch": 2.4267653407338883, + "grad_norm": 0.17023397982120514, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 23610 + }, + { + "epoch": 2.4270736971939564, + "grad_norm": 0.1355310082435608, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 23613 + }, + { + "epoch": 2.427382053654024, + "grad_norm": 0.039905257523059845, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 23616 + }, + { + "epoch": 2.4276904101140917, + "grad_norm": 0.0339365154504776, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 23619 + }, + { + "epoch": 2.42799876657416, + "grad_norm": 0.03365493193268776, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 23622 + }, + { + "epoch": 2.4283071230342275, + "grad_norm": 0.041596464812755585, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 23625 + }, + { + "epoch": 2.4286154794942956, + "grad_norm": 0.0537833645939827, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 23628 + }, + { + "epoch": 2.4289238359543632, + "grad_norm": 0.049658019095659256, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 23631 + }, + { + "epoch": 2.429232192414431, + "grad_norm": 0.03983505442738533, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 23634 + }, + { + "epoch": 2.429540548874499, + "grad_norm": 0.0780608057975769, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 23637 + }, + { + "epoch": 2.4298489053345667, + "grad_norm": 0.13898798823356628, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 23640 + }, + { + "epoch": 2.4301572617946348, + "grad_norm": 0.07781122624874115, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 23643 + }, + { + "epoch": 2.4304656182547024, + "grad_norm": 0.045428015291690826, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 23646 + }, + { + "epoch": 2.43077397471477, + "grad_norm": 0.03437395393848419, + "learning_rate": 0.01, + "loss": 2.038, + "step": 23649 + }, + { + "epoch": 2.431082331174838, + "grad_norm": 0.06030704453587532, + "learning_rate": 0.01, + "loss": 2.0563, + "step": 23652 + }, + { + "epoch": 2.431390687634906, + "grad_norm": 0.046194083988666534, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 23655 + }, + { + "epoch": 2.431699044094974, + "grad_norm": 0.10041481256484985, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 23658 + }, + { + "epoch": 2.4320074005550416, + "grad_norm": 0.07109228521585464, + "learning_rate": 0.01, + "loss": 2.002, + "step": 23661 + }, + { + "epoch": 2.4323157570151093, + "grad_norm": 0.03319769352674484, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 23664 + }, + { + "epoch": 2.4326241134751774, + "grad_norm": 0.047379735857248306, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 23667 + }, + { + "epoch": 2.432932469935245, + "grad_norm": 0.04836783930659294, + "learning_rate": 0.01, + "loss": 2.045, + "step": 23670 + }, + { + "epoch": 2.433240826395313, + "grad_norm": 0.07264747470617294, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 23673 + }, + { + "epoch": 2.433549182855381, + "grad_norm": 0.09331446141004562, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 23676 + }, + { + "epoch": 2.433857539315449, + "grad_norm": 0.07618245482444763, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 23679 + }, + { + "epoch": 2.4341658957755166, + "grad_norm": 0.13270626962184906, + "learning_rate": 0.01, + "loss": 2.05, + "step": 23682 + }, + { + "epoch": 2.4344742522355842, + "grad_norm": 0.06691613793373108, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 23685 + }, + { + "epoch": 2.4347826086956523, + "grad_norm": 0.04376102611422539, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 23688 + }, + { + "epoch": 2.43509096515572, + "grad_norm": 0.04829081892967224, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 23691 + }, + { + "epoch": 2.4353993216157876, + "grad_norm": 0.04604188725352287, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 23694 + }, + { + "epoch": 2.4357076780758558, + "grad_norm": 0.06296957284212112, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 23697 + }, + { + "epoch": 2.4360160345359234, + "grad_norm": 0.07184949517250061, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 23700 + }, + { + "epoch": 2.4363243909959915, + "grad_norm": 0.11544491350650787, + "learning_rate": 0.01, + "loss": 2.0512, + "step": 23703 + }, + { + "epoch": 2.436632747456059, + "grad_norm": 0.03796609491109848, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 23706 + }, + { + "epoch": 2.4369411039161273, + "grad_norm": 0.09068101644515991, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 23709 + }, + { + "epoch": 2.437249460376195, + "grad_norm": 0.06220867484807968, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 23712 + }, + { + "epoch": 2.4375578168362626, + "grad_norm": 0.040711212903261185, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 23715 + }, + { + "epoch": 2.4378661732963307, + "grad_norm": 0.03610675781965256, + "learning_rate": 0.01, + "loss": 2.023, + "step": 23718 + }, + { + "epoch": 2.4381745297563984, + "grad_norm": 0.06709878146648407, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 23721 + }, + { + "epoch": 2.438482886216466, + "grad_norm": 0.10784180462360382, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 23724 + }, + { + "epoch": 2.438791242676534, + "grad_norm": 0.0911094918847084, + "learning_rate": 0.01, + "loss": 2.0594, + "step": 23727 + }, + { + "epoch": 2.439099599136602, + "grad_norm": 0.059867773205041885, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 23730 + }, + { + "epoch": 2.43940795559667, + "grad_norm": 0.06214331462979317, + "learning_rate": 0.01, + "loss": 2.0698, + "step": 23733 + }, + { + "epoch": 2.4397163120567376, + "grad_norm": 0.058527860790491104, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 23736 + }, + { + "epoch": 2.4400246685168057, + "grad_norm": 0.09416967630386353, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 23739 + }, + { + "epoch": 2.4403330249768733, + "grad_norm": 0.11225190758705139, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 23742 + }, + { + "epoch": 2.440641381436941, + "grad_norm": 0.056495241820812225, + "learning_rate": 0.01, + "loss": 2.038, + "step": 23745 + }, + { + "epoch": 2.440949737897009, + "grad_norm": 0.05432302877306938, + "learning_rate": 0.01, + "loss": 2.01, + "step": 23748 + }, + { + "epoch": 2.4412580943570767, + "grad_norm": 0.04850140959024429, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 23751 + }, + { + "epoch": 2.4415664508171444, + "grad_norm": 0.05038965865969658, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 23754 + }, + { + "epoch": 2.4418748072772125, + "grad_norm": 0.050226423889398575, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 23757 + }, + { + "epoch": 2.44218316373728, + "grad_norm": 0.05979544296860695, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 23760 + }, + { + "epoch": 2.4424915201973483, + "grad_norm": 0.04254556819796562, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 23763 + }, + { + "epoch": 2.442799876657416, + "grad_norm": 0.1078273206949234, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 23766 + }, + { + "epoch": 2.443108233117484, + "grad_norm": 0.0591372586786747, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 23769 + }, + { + "epoch": 2.4434165895775517, + "grad_norm": 0.05430880934000015, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 23772 + }, + { + "epoch": 2.4437249460376194, + "grad_norm": 0.07246505469083786, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 23775 + }, + { + "epoch": 2.4440333024976875, + "grad_norm": 0.04457786679267883, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 23778 + }, + { + "epoch": 2.444341658957755, + "grad_norm": 0.03915979340672493, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 23781 + }, + { + "epoch": 2.444650015417823, + "grad_norm": 0.08284246176481247, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 23784 + }, + { + "epoch": 2.444958371877891, + "grad_norm": 0.08254294097423553, + "learning_rate": 0.01, + "loss": 2.012, + "step": 23787 + }, + { + "epoch": 2.4452667283379586, + "grad_norm": 0.12263736873865128, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 23790 + }, + { + "epoch": 2.4455750847980267, + "grad_norm": 0.08192913979291916, + "learning_rate": 0.01, + "loss": 2.047, + "step": 23793 + }, + { + "epoch": 2.4458834412580943, + "grad_norm": 0.09507100284099579, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 23796 + }, + { + "epoch": 2.4461917977181624, + "grad_norm": 0.10554829984903336, + "learning_rate": 0.01, + "loss": 2.024, + "step": 23799 + }, + { + "epoch": 2.44650015417823, + "grad_norm": 0.051542408764362335, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 23802 + }, + { + "epoch": 2.4468085106382977, + "grad_norm": 0.05467440187931061, + "learning_rate": 0.01, + "loss": 2.043, + "step": 23805 + }, + { + "epoch": 2.447116867098366, + "grad_norm": 0.033462487161159515, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 23808 + }, + { + "epoch": 2.4474252235584335, + "grad_norm": 0.04688438028097153, + "learning_rate": 0.01, + "loss": 2.032, + "step": 23811 + }, + { + "epoch": 2.447733580018501, + "grad_norm": 0.04699881002306938, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 23814 + }, + { + "epoch": 2.4480419364785693, + "grad_norm": 0.03932753950357437, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 23817 + }, + { + "epoch": 2.448350292938637, + "grad_norm": 0.11096165329217911, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 23820 + }, + { + "epoch": 2.448658649398705, + "grad_norm": 0.03774998337030411, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 23823 + }, + { + "epoch": 2.4489670058587727, + "grad_norm": 0.03317665681242943, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 23826 + }, + { + "epoch": 2.449275362318841, + "grad_norm": 0.06077956408262253, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 23829 + }, + { + "epoch": 2.4495837187789085, + "grad_norm": 0.08997214585542679, + "learning_rate": 0.01, + "loss": 2.0451, + "step": 23832 + }, + { + "epoch": 2.449892075238976, + "grad_norm": 0.12234194576740265, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 23835 + }, + { + "epoch": 2.4502004316990442, + "grad_norm": 0.13833922147750854, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 23838 + }, + { + "epoch": 2.450508788159112, + "grad_norm": 0.06707292795181274, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 23841 + }, + { + "epoch": 2.4508171446191795, + "grad_norm": 0.04679076373577118, + "learning_rate": 0.01, + "loss": 2.0624, + "step": 23844 + }, + { + "epoch": 2.4511255010792476, + "grad_norm": 0.08921289443969727, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 23847 + }, + { + "epoch": 2.4514338575393153, + "grad_norm": 0.056680746376514435, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 23850 + }, + { + "epoch": 2.4517422139993834, + "grad_norm": 0.07349438965320587, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 23853 + }, + { + "epoch": 2.452050570459451, + "grad_norm": 0.057414181530475616, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 23856 + }, + { + "epoch": 2.452358926919519, + "grad_norm": 0.09144090861082077, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 23859 + }, + { + "epoch": 2.452667283379587, + "grad_norm": 0.05499831214547157, + "learning_rate": 0.01, + "loss": 2.035, + "step": 23862 + }, + { + "epoch": 2.4529756398396545, + "grad_norm": 0.03803296014666557, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 23865 + }, + { + "epoch": 2.4532839962997226, + "grad_norm": 0.11475666612386703, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 23868 + }, + { + "epoch": 2.4535923527597903, + "grad_norm": 0.13063554465770721, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 23871 + }, + { + "epoch": 2.453900709219858, + "grad_norm": 0.04982873052358627, + "learning_rate": 0.01, + "loss": 2.0718, + "step": 23874 + }, + { + "epoch": 2.454209065679926, + "grad_norm": 0.04090685769915581, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 23877 + }, + { + "epoch": 2.4545174221399937, + "grad_norm": 0.044233810156583786, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 23880 + }, + { + "epoch": 2.454825778600062, + "grad_norm": 0.045451819896698, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 23883 + }, + { + "epoch": 2.4551341350601295, + "grad_norm": 0.04413032531738281, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 23886 + }, + { + "epoch": 2.4554424915201976, + "grad_norm": 0.07937499135732651, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 23889 + }, + { + "epoch": 2.455750847980265, + "grad_norm": 0.09389673918485641, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 23892 + }, + { + "epoch": 2.456059204440333, + "grad_norm": 0.061937954276800156, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 23895 + }, + { + "epoch": 2.456367560900401, + "grad_norm": 0.038002993911504745, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 23898 + }, + { + "epoch": 2.4566759173604686, + "grad_norm": 0.05679142847657204, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 23901 + }, + { + "epoch": 2.4569842738205363, + "grad_norm": 0.07343320548534393, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 23904 + }, + { + "epoch": 2.4572926302806044, + "grad_norm": 0.04992273077368736, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 23907 + }, + { + "epoch": 2.457600986740672, + "grad_norm": 0.07384973764419556, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 23910 + }, + { + "epoch": 2.45790934320074, + "grad_norm": 0.05728161707520485, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 23913 + }, + { + "epoch": 2.458217699660808, + "grad_norm": 0.06384929269552231, + "learning_rate": 0.01, + "loss": 2.0471, + "step": 23916 + }, + { + "epoch": 2.458526056120876, + "grad_norm": 0.07515307515859604, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 23919 + }, + { + "epoch": 2.4588344125809436, + "grad_norm": 0.09443585574626923, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 23922 + }, + { + "epoch": 2.4591427690410113, + "grad_norm": 0.059930965304374695, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 23925 + }, + { + "epoch": 2.4594511255010794, + "grad_norm": 0.09930091351270676, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 23928 + }, + { + "epoch": 2.459759481961147, + "grad_norm": 0.03487955033779144, + "learning_rate": 0.01, + "loss": 2.003, + "step": 23931 + }, + { + "epoch": 2.4600678384212147, + "grad_norm": 0.08312834799289703, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 23934 + }, + { + "epoch": 2.460376194881283, + "grad_norm": 0.06459874659776688, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 23937 + }, + { + "epoch": 2.4606845513413504, + "grad_norm": 0.10331536084413528, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 23940 + }, + { + "epoch": 2.4609929078014185, + "grad_norm": 0.06738618016242981, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 23943 + }, + { + "epoch": 2.461301264261486, + "grad_norm": 0.05211193859577179, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 23946 + }, + { + "epoch": 2.4616096207215543, + "grad_norm": 0.05060914158821106, + "learning_rate": 0.01, + "loss": 2.0518, + "step": 23949 + }, + { + "epoch": 2.461917977181622, + "grad_norm": 0.037570733577013016, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 23952 + }, + { + "epoch": 2.4622263336416896, + "grad_norm": 0.06046308949589729, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 23955 + }, + { + "epoch": 2.4625346901017577, + "grad_norm": 0.08765476942062378, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 23958 + }, + { + "epoch": 2.4628430465618254, + "grad_norm": 0.07397017627954483, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 23961 + }, + { + "epoch": 2.463151403021893, + "grad_norm": 0.10959914326667786, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 23964 + }, + { + "epoch": 2.463459759481961, + "grad_norm": 0.04373926669359207, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 23967 + }, + { + "epoch": 2.463768115942029, + "grad_norm": 0.049903422594070435, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 23970 + }, + { + "epoch": 2.464076472402097, + "grad_norm": 0.037193864583969116, + "learning_rate": 0.01, + "loss": 2.012, + "step": 23973 + }, + { + "epoch": 2.4643848288621646, + "grad_norm": 0.06762266159057617, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 23976 + }, + { + "epoch": 2.4646931853222327, + "grad_norm": 0.03918517008423805, + "learning_rate": 0.01, + "loss": 2.002, + "step": 23979 + }, + { + "epoch": 2.4650015417823004, + "grad_norm": 0.09819602221250534, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 23982 + }, + { + "epoch": 2.465309898242368, + "grad_norm": 0.12719838321208954, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 23985 + }, + { + "epoch": 2.465618254702436, + "grad_norm": 0.05890420451760292, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 23988 + }, + { + "epoch": 2.465926611162504, + "grad_norm": 0.05101997032761574, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 23991 + }, + { + "epoch": 2.466234967622572, + "grad_norm": 0.04597810283303261, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 23994 + }, + { + "epoch": 2.4665433240826395, + "grad_norm": 0.0504877045750618, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 23997 + }, + { + "epoch": 2.466851680542707, + "grad_norm": 0.07908850163221359, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 24000 + }, + { + "epoch": 2.4671600370027753, + "grad_norm": 0.07396575808525085, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 24003 + }, + { + "epoch": 2.467468393462843, + "grad_norm": 0.06695767492055893, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 24006 + }, + { + "epoch": 2.467776749922911, + "grad_norm": 0.0907633900642395, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 24009 + }, + { + "epoch": 2.4680851063829787, + "grad_norm": 0.07585210353136063, + "learning_rate": 0.01, + "loss": 2.041, + "step": 24012 + }, + { + "epoch": 2.4683934628430464, + "grad_norm": 0.049894414842128754, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 24015 + }, + { + "epoch": 2.4687018193031145, + "grad_norm": 0.038147564977407455, + "learning_rate": 0.01, + "loss": 2.043, + "step": 24018 + }, + { + "epoch": 2.469010175763182, + "grad_norm": 0.03651060909032822, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 24021 + }, + { + "epoch": 2.4693185322232503, + "grad_norm": 0.09396708011627197, + "learning_rate": 0.01, + "loss": 2.0419, + "step": 24024 + }, + { + "epoch": 2.469626888683318, + "grad_norm": 0.03474831208586693, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 24027 + }, + { + "epoch": 2.4699352451433856, + "grad_norm": 0.09970984607934952, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 24030 + }, + { + "epoch": 2.4702436016034537, + "grad_norm": 0.10633893311023712, + "learning_rate": 0.01, + "loss": 2.019, + "step": 24033 + }, + { + "epoch": 2.4705519580635213, + "grad_norm": 0.0787937119603157, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 24036 + }, + { + "epoch": 2.4708603145235895, + "grad_norm": 0.05214501917362213, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 24039 + }, + { + "epoch": 2.471168670983657, + "grad_norm": 0.02967134490609169, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 24042 + }, + { + "epoch": 2.4714770274437248, + "grad_norm": 0.03181852400302887, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 24045 + }, + { + "epoch": 2.471785383903793, + "grad_norm": 0.03905104100704193, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 24048 + }, + { + "epoch": 2.4720937403638605, + "grad_norm": 0.051532018929719925, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 24051 + }, + { + "epoch": 2.4724020968239286, + "grad_norm": 0.13418106734752655, + "learning_rate": 0.01, + "loss": 2.0486, + "step": 24054 + }, + { + "epoch": 2.4727104532839963, + "grad_norm": 0.0745147094130516, + "learning_rate": 0.01, + "loss": 2.0448, + "step": 24057 + }, + { + "epoch": 2.473018809744064, + "grad_norm": 0.06666639447212219, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 24060 + }, + { + "epoch": 2.473327166204132, + "grad_norm": 0.08356054127216339, + "learning_rate": 0.01, + "loss": 2.028, + "step": 24063 + }, + { + "epoch": 2.4736355226641997, + "grad_norm": 0.04733874648809433, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 24066 + }, + { + "epoch": 2.473943879124268, + "grad_norm": 0.07551899552345276, + "learning_rate": 0.01, + "loss": 2.0389, + "step": 24069 + }, + { + "epoch": 2.4742522355843355, + "grad_norm": 0.03114013373851776, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 24072 + }, + { + "epoch": 2.474560592044403, + "grad_norm": 0.062112826853990555, + "learning_rate": 0.01, + "loss": 2.048, + "step": 24075 + }, + { + "epoch": 2.4748689485044713, + "grad_norm": 0.0542120561003685, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 24078 + }, + { + "epoch": 2.475177304964539, + "grad_norm": 0.06153399124741554, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 24081 + }, + { + "epoch": 2.475485661424607, + "grad_norm": 0.06306985020637512, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 24084 + }, + { + "epoch": 2.4757940178846747, + "grad_norm": 0.03326687961816788, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 24087 + }, + { + "epoch": 2.4761023743447423, + "grad_norm": 0.10279777646064758, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 24090 + }, + { + "epoch": 2.4764107308048104, + "grad_norm": 0.045618560165166855, + "learning_rate": 0.01, + "loss": 2.0476, + "step": 24093 + }, + { + "epoch": 2.476719087264878, + "grad_norm": 0.05065792426466942, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 24096 + }, + { + "epoch": 2.477027443724946, + "grad_norm": 0.04114675521850586, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 24099 + }, + { + "epoch": 2.477335800185014, + "grad_norm": 0.11044265329837799, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 24102 + }, + { + "epoch": 2.4776441566450815, + "grad_norm": 0.053481362760066986, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 24105 + }, + { + "epoch": 2.4779525131051496, + "grad_norm": 0.14947016537189484, + "learning_rate": 0.01, + "loss": 2.0511, + "step": 24108 + }, + { + "epoch": 2.4782608695652173, + "grad_norm": 0.08009488135576248, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 24111 + }, + { + "epoch": 2.4785692260252854, + "grad_norm": 0.06397935748100281, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 24114 + }, + { + "epoch": 2.478877582485353, + "grad_norm": 0.0409528985619545, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 24117 + }, + { + "epoch": 2.4791859389454207, + "grad_norm": 0.11498477309942245, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 24120 + }, + { + "epoch": 2.479494295405489, + "grad_norm": 0.02937469258904457, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 24123 + }, + { + "epoch": 2.4798026518655565, + "grad_norm": 0.03659180551767349, + "learning_rate": 0.01, + "loss": 2.0638, + "step": 24126 + }, + { + "epoch": 2.4801110083256246, + "grad_norm": 0.10866084694862366, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 24129 + }, + { + "epoch": 2.4804193647856922, + "grad_norm": 0.07002250105142593, + "learning_rate": 0.01, + "loss": 2.03, + "step": 24132 + }, + { + "epoch": 2.48072772124576, + "grad_norm": 0.07129926234483719, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 24135 + }, + { + "epoch": 2.481036077705828, + "grad_norm": 0.061107151210308075, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 24138 + }, + { + "epoch": 2.4813444341658957, + "grad_norm": 0.04937992990016937, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 24141 + }, + { + "epoch": 2.481652790625964, + "grad_norm": 0.04651058465242386, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 24144 + }, + { + "epoch": 2.4819611470860314, + "grad_norm": 0.06658688187599182, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 24147 + }, + { + "epoch": 2.482269503546099, + "grad_norm": 0.05241367965936661, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 24150 + }, + { + "epoch": 2.482577860006167, + "grad_norm": 0.03564739227294922, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 24153 + }, + { + "epoch": 2.482886216466235, + "grad_norm": 0.03984629735350609, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 24156 + }, + { + "epoch": 2.483194572926303, + "grad_norm": 0.10245262831449509, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 24159 + }, + { + "epoch": 2.4835029293863706, + "grad_norm": 0.0727042481303215, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 24162 + }, + { + "epoch": 2.4838112858464383, + "grad_norm": 0.041190728545188904, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 24165 + }, + { + "epoch": 2.4841196423065064, + "grad_norm": 0.04986109584569931, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 24168 + }, + { + "epoch": 2.484427998766574, + "grad_norm": 0.0689210444688797, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 24171 + }, + { + "epoch": 2.484736355226642, + "grad_norm": 0.043997250497341156, + "learning_rate": 0.01, + "loss": 2.007, + "step": 24174 + }, + { + "epoch": 2.48504471168671, + "grad_norm": 0.06231982633471489, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 24177 + }, + { + "epoch": 2.485353068146778, + "grad_norm": 0.09958053380250931, + "learning_rate": 0.01, + "loss": 2.022, + "step": 24180 + }, + { + "epoch": 2.4856614246068456, + "grad_norm": 0.05297970771789551, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 24183 + }, + { + "epoch": 2.4859697810669132, + "grad_norm": 0.07420172542333603, + "learning_rate": 0.01, + "loss": 1.988, + "step": 24186 + }, + { + "epoch": 2.4862781375269813, + "grad_norm": 0.049017585813999176, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 24189 + }, + { + "epoch": 2.486586493987049, + "grad_norm": 0.05398377403616905, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 24192 + }, + { + "epoch": 2.4868948504471167, + "grad_norm": 0.03338189795613289, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 24195 + }, + { + "epoch": 2.4872032069071848, + "grad_norm": 0.1013825535774231, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 24198 + }, + { + "epoch": 2.4875115633672524, + "grad_norm": 0.06101495400071144, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 24201 + }, + { + "epoch": 2.4878199198273205, + "grad_norm": 0.06915189325809479, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 24204 + }, + { + "epoch": 2.488128276287388, + "grad_norm": 0.09961054474115372, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 24207 + }, + { + "epoch": 2.4884366327474563, + "grad_norm": 0.039923045784235, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 24210 + }, + { + "epoch": 2.488744989207524, + "grad_norm": 0.07982566952705383, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 24213 + }, + { + "epoch": 2.4890533456675916, + "grad_norm": 0.06360599398612976, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 24216 + }, + { + "epoch": 2.4893617021276597, + "grad_norm": 0.06489767879247665, + "learning_rate": 0.01, + "loss": 2.0615, + "step": 24219 + }, + { + "epoch": 2.4896700585877274, + "grad_norm": 0.08873300999403, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 24222 + }, + { + "epoch": 2.489978415047795, + "grad_norm": 0.04309386387467384, + "learning_rate": 0.01, + "loss": 2.0478, + "step": 24225 + }, + { + "epoch": 2.490286771507863, + "grad_norm": 0.042991675436496735, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 24228 + }, + { + "epoch": 2.490595127967931, + "grad_norm": 0.04507692903280258, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 24231 + }, + { + "epoch": 2.490903484427999, + "grad_norm": 0.09288784116506577, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 24234 + }, + { + "epoch": 2.4912118408880666, + "grad_norm": 0.040776100009679794, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 24237 + }, + { + "epoch": 2.4915201973481347, + "grad_norm": 0.09847230464220047, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 24240 + }, + { + "epoch": 2.4918285538082023, + "grad_norm": 0.05252716690301895, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 24243 + }, + { + "epoch": 2.49213691026827, + "grad_norm": 0.04028663411736488, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 24246 + }, + { + "epoch": 2.492445266728338, + "grad_norm": 0.04721330851316452, + "learning_rate": 0.01, + "loss": 2.045, + "step": 24249 + }, + { + "epoch": 2.4927536231884058, + "grad_norm": 0.0453517884016037, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 24252 + }, + { + "epoch": 2.4930619796484734, + "grad_norm": 0.09120344370603561, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 24255 + }, + { + "epoch": 2.4933703361085415, + "grad_norm": 0.1132507398724556, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 24258 + }, + { + "epoch": 2.493678692568609, + "grad_norm": 0.07698217034339905, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 24261 + }, + { + "epoch": 2.4939870490286773, + "grad_norm": 0.04104442894458771, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 24264 + }, + { + "epoch": 2.494295405488745, + "grad_norm": 0.04681272804737091, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 24267 + }, + { + "epoch": 2.494603761948813, + "grad_norm": 0.05137484520673752, + "learning_rate": 0.01, + "loss": 2.0616, + "step": 24270 + }, + { + "epoch": 2.4949121184088807, + "grad_norm": 0.05654723569750786, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 24273 + }, + { + "epoch": 2.4952204748689484, + "grad_norm": 0.052294518798589706, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 24276 + }, + { + "epoch": 2.4955288313290165, + "grad_norm": 0.06906304508447647, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 24279 + }, + { + "epoch": 2.495837187789084, + "grad_norm": 0.0664992555975914, + "learning_rate": 0.01, + "loss": 2.037, + "step": 24282 + }, + { + "epoch": 2.496145544249152, + "grad_norm": 0.06502712517976761, + "learning_rate": 0.01, + "loss": 2.0439, + "step": 24285 + }, + { + "epoch": 2.49645390070922, + "grad_norm": 0.047290291637182236, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 24288 + }, + { + "epoch": 2.4967622571692876, + "grad_norm": 0.07271420210599899, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 24291 + }, + { + "epoch": 2.4970706136293557, + "grad_norm": 0.042307768017053604, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 24294 + }, + { + "epoch": 2.4973789700894233, + "grad_norm": 0.04834264889359474, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 24297 + }, + { + "epoch": 2.4976873265494914, + "grad_norm": 0.045435305684804916, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 24300 + }, + { + "epoch": 2.497995683009559, + "grad_norm": 0.07511632144451141, + "learning_rate": 0.01, + "loss": 2.025, + "step": 24303 + }, + { + "epoch": 2.4983040394696268, + "grad_norm": 0.14621250331401825, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 24306 + }, + { + "epoch": 2.498612395929695, + "grad_norm": 0.05969877541065216, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 24309 + }, + { + "epoch": 2.4989207523897625, + "grad_norm": 0.040014345198869705, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 24312 + }, + { + "epoch": 2.49922910884983, + "grad_norm": 0.05185026675462723, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 24315 + }, + { + "epoch": 2.4995374653098983, + "grad_norm": 0.04459863528609276, + "learning_rate": 0.01, + "loss": 2.03, + "step": 24318 + }, + { + "epoch": 2.499845821769966, + "grad_norm": 0.06208227947354317, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 24321 + }, + { + "epoch": 2.500154178230034, + "grad_norm": 0.0788293108344078, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 24324 + }, + { + "epoch": 2.5004625346901017, + "grad_norm": 0.0636831745505333, + "learning_rate": 0.01, + "loss": 2.0522, + "step": 24327 + }, + { + "epoch": 2.50077089115017, + "grad_norm": 0.05828903615474701, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 24330 + }, + { + "epoch": 2.5010792476102375, + "grad_norm": 0.06897569447755814, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 24333 + }, + { + "epoch": 2.501387604070305, + "grad_norm": 0.03793172910809517, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 24336 + }, + { + "epoch": 2.5016959605303732, + "grad_norm": 0.05384537950158119, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 24339 + }, + { + "epoch": 2.502004316990441, + "grad_norm": 0.07979964464902878, + "learning_rate": 0.01, + "loss": 2.023, + "step": 24342 + }, + { + "epoch": 2.5023126734505086, + "grad_norm": 0.054392259567976, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 24345 + }, + { + "epoch": 2.5026210299105767, + "grad_norm": 0.06897418200969696, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 24348 + }, + { + "epoch": 2.5029293863706443, + "grad_norm": 0.0801873579621315, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 24351 + }, + { + "epoch": 2.5032377428307124, + "grad_norm": 0.03708551451563835, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 24354 + }, + { + "epoch": 2.50354609929078, + "grad_norm": 0.09656143933534622, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 24357 + }, + { + "epoch": 2.503854455750848, + "grad_norm": 0.0770551860332489, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 24360 + }, + { + "epoch": 2.504162812210916, + "grad_norm": 0.08103878796100616, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 24363 + }, + { + "epoch": 2.5044711686709835, + "grad_norm": 0.10928300768136978, + "learning_rate": 0.01, + "loss": 2.0389, + "step": 24366 + }, + { + "epoch": 2.5047795251310516, + "grad_norm": 0.07541976869106293, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 24369 + }, + { + "epoch": 2.5050878815911193, + "grad_norm": 0.05937611311674118, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 24372 + }, + { + "epoch": 2.505396238051187, + "grad_norm": 0.05396249517798424, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 24375 + }, + { + "epoch": 2.505704594511255, + "grad_norm": 0.04004419967532158, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 24378 + }, + { + "epoch": 2.5060129509713227, + "grad_norm": 0.05242707580327988, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 24381 + }, + { + "epoch": 2.506321307431391, + "grad_norm": 0.038752540946006775, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 24384 + }, + { + "epoch": 2.5066296638914585, + "grad_norm": 0.07296596467494965, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 24387 + }, + { + "epoch": 2.5069380203515266, + "grad_norm": 0.116209976375103, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 24390 + }, + { + "epoch": 2.5072463768115942, + "grad_norm": 0.09165041148662567, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 24393 + }, + { + "epoch": 2.507554733271662, + "grad_norm": 0.14264173805713654, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 24396 + }, + { + "epoch": 2.50786308973173, + "grad_norm": 0.045917656272649765, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 24399 + }, + { + "epoch": 2.5081714461917977, + "grad_norm": 0.057148344814777374, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 24402 + }, + { + "epoch": 2.5084798026518653, + "grad_norm": 0.03626836836338043, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 24405 + }, + { + "epoch": 2.5087881591119334, + "grad_norm": 0.03621996194124222, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 24408 + }, + { + "epoch": 2.509096515572001, + "grad_norm": 0.05835467949509621, + "learning_rate": 0.01, + "loss": 2.0506, + "step": 24411 + }, + { + "epoch": 2.509404872032069, + "grad_norm": 0.03973361849784851, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 24414 + }, + { + "epoch": 2.509713228492137, + "grad_norm": 0.09463023394346237, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 24417 + }, + { + "epoch": 2.510021584952205, + "grad_norm": 0.07552462071180344, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 24420 + }, + { + "epoch": 2.5103299414122726, + "grad_norm": 0.1288609802722931, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 24423 + }, + { + "epoch": 2.5106382978723403, + "grad_norm": 0.06943691521883011, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 24426 + }, + { + "epoch": 2.5109466543324084, + "grad_norm": 0.08581320196390152, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 24429 + }, + { + "epoch": 2.511255010792476, + "grad_norm": 0.07379914820194244, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 24432 + }, + { + "epoch": 2.5115633672525437, + "grad_norm": 0.09235703945159912, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 24435 + }, + { + "epoch": 2.511871723712612, + "grad_norm": 0.05038774758577347, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 24438 + }, + { + "epoch": 2.5121800801726795, + "grad_norm": 0.08711019903421402, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 24441 + }, + { + "epoch": 2.5124884366327476, + "grad_norm": 0.05432825908064842, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 24444 + }, + { + "epoch": 2.5127967930928152, + "grad_norm": 0.10115527361631393, + "learning_rate": 0.01, + "loss": 2.016, + "step": 24447 + }, + { + "epoch": 2.5131051495528833, + "grad_norm": 0.10387013852596283, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 24450 + }, + { + "epoch": 2.513413506012951, + "grad_norm": 0.0740542933344841, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 24453 + }, + { + "epoch": 2.5137218624730187, + "grad_norm": 0.07834311574697495, + "learning_rate": 0.01, + "loss": 2.0731, + "step": 24456 + }, + { + "epoch": 2.5140302189330868, + "grad_norm": 0.06743736565113068, + "learning_rate": 0.01, + "loss": 2.0588, + "step": 24459 + }, + { + "epoch": 2.5143385753931544, + "grad_norm": 0.051791246980428696, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 24462 + }, + { + "epoch": 2.514646931853222, + "grad_norm": 0.0731598362326622, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 24465 + }, + { + "epoch": 2.51495528831329, + "grad_norm": 0.04995987191796303, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 24468 + }, + { + "epoch": 2.515263644773358, + "grad_norm": 0.04953973367810249, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 24471 + }, + { + "epoch": 2.515572001233426, + "grad_norm": 0.05432116240262985, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 24474 + }, + { + "epoch": 2.5158803576934936, + "grad_norm": 0.048791225999593735, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 24477 + }, + { + "epoch": 2.5161887141535617, + "grad_norm": 0.11742904037237167, + "learning_rate": 0.01, + "loss": 2.04, + "step": 24480 + }, + { + "epoch": 2.5164970706136294, + "grad_norm": 0.12617075443267822, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 24483 + }, + { + "epoch": 2.516805427073697, + "grad_norm": 0.051573995500802994, + "learning_rate": 0.01, + "loss": 2.0662, + "step": 24486 + }, + { + "epoch": 2.517113783533765, + "grad_norm": 0.09131506085395813, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 24489 + }, + { + "epoch": 2.517422139993833, + "grad_norm": 0.06593006104230881, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 24492 + }, + { + "epoch": 2.5177304964539005, + "grad_norm": 0.038310687988996506, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 24495 + }, + { + "epoch": 2.5180388529139686, + "grad_norm": 0.05975675210356712, + "learning_rate": 0.01, + "loss": 2.028, + "step": 24498 + }, + { + "epoch": 2.518347209374036, + "grad_norm": 0.04541294649243355, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 24501 + }, + { + "epoch": 2.5186555658341043, + "grad_norm": 0.053723473101854324, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 24504 + }, + { + "epoch": 2.518963922294172, + "grad_norm": 0.030095964670181274, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 24507 + }, + { + "epoch": 2.51927227875424, + "grad_norm": 0.10244923830032349, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 24510 + }, + { + "epoch": 2.5195806352143078, + "grad_norm": 0.06249944120645523, + "learning_rate": 0.01, + "loss": 2.0449, + "step": 24513 + }, + { + "epoch": 2.5198889916743754, + "grad_norm": 0.08720767498016357, + "learning_rate": 0.01, + "loss": 2.036, + "step": 24516 + }, + { + "epoch": 2.5201973481344435, + "grad_norm": 0.07686194777488708, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 24519 + }, + { + "epoch": 2.520505704594511, + "grad_norm": 0.08837150782346725, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 24522 + }, + { + "epoch": 2.520814061054579, + "grad_norm": 0.0794796347618103, + "learning_rate": 0.01, + "loss": 2.027, + "step": 24525 + }, + { + "epoch": 2.521122417514647, + "grad_norm": 0.05655858293175697, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 24528 + }, + { + "epoch": 2.521430773974715, + "grad_norm": 0.08295401185750961, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 24531 + }, + { + "epoch": 2.5217391304347827, + "grad_norm": 0.03982521593570709, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 24534 + }, + { + "epoch": 2.5220474868948504, + "grad_norm": 0.04791923984885216, + "learning_rate": 0.01, + "loss": 2.038, + "step": 24537 + }, + { + "epoch": 2.5223558433549185, + "grad_norm": 0.11436691880226135, + "learning_rate": 0.01, + "loss": 2.046, + "step": 24540 + }, + { + "epoch": 2.522664199814986, + "grad_norm": 0.1064198762178421, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 24543 + }, + { + "epoch": 2.522972556275054, + "grad_norm": 0.08036024123430252, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 24546 + }, + { + "epoch": 2.523280912735122, + "grad_norm": 0.061799556016922, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 24549 + }, + { + "epoch": 2.5235892691951896, + "grad_norm": 0.04592469707131386, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 24552 + }, + { + "epoch": 2.523897625655257, + "grad_norm": 0.036766473203897476, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 24555 + }, + { + "epoch": 2.5242059821153253, + "grad_norm": 0.09619138389825821, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 24558 + }, + { + "epoch": 2.5245143385753934, + "grad_norm": 0.03915918245911598, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 24561 + }, + { + "epoch": 2.524822695035461, + "grad_norm": 0.04883084446191788, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 24564 + }, + { + "epoch": 2.5251310514955287, + "grad_norm": 0.05630512908101082, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 24567 + }, + { + "epoch": 2.525439407955597, + "grad_norm": 0.04064425081014633, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 24570 + }, + { + "epoch": 2.5257477644156645, + "grad_norm": 0.05302917957305908, + "learning_rate": 0.01, + "loss": 2.044, + "step": 24573 + }, + { + "epoch": 2.526056120875732, + "grad_norm": 0.07677201181650162, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 24576 + }, + { + "epoch": 2.5263644773358003, + "grad_norm": 0.07950242608785629, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 24579 + }, + { + "epoch": 2.526672833795868, + "grad_norm": 0.07068518549203873, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 24582 + }, + { + "epoch": 2.5269811902559356, + "grad_norm": 0.08623625338077545, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 24585 + }, + { + "epoch": 2.5272895467160037, + "grad_norm": 0.05549190193414688, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 24588 + }, + { + "epoch": 2.527597903176072, + "grad_norm": 0.05710297450423241, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 24591 + }, + { + "epoch": 2.5279062596361395, + "grad_norm": 0.05071646347641945, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 24594 + }, + { + "epoch": 2.528214616096207, + "grad_norm": 0.09765972197055817, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 24597 + }, + { + "epoch": 2.5285229725562752, + "grad_norm": 0.05874921754002571, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 24600 + }, + { + "epoch": 2.528831329016343, + "grad_norm": 0.10598991811275482, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 24603 + }, + { + "epoch": 2.5291396854764105, + "grad_norm": 0.07071609050035477, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 24606 + }, + { + "epoch": 2.5294480419364787, + "grad_norm": 0.07132923603057861, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 24609 + }, + { + "epoch": 2.5297563983965463, + "grad_norm": 0.06741276383399963, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 24612 + }, + { + "epoch": 2.530064754856614, + "grad_norm": 0.10399371385574341, + "learning_rate": 0.01, + "loss": 2.033, + "step": 24615 + }, + { + "epoch": 2.530373111316682, + "grad_norm": 0.054513610899448395, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 24618 + }, + { + "epoch": 2.53068146777675, + "grad_norm": 0.03990021347999573, + "learning_rate": 0.01, + "loss": 2.019, + "step": 24621 + }, + { + "epoch": 2.530989824236818, + "grad_norm": 0.0329439677298069, + "learning_rate": 0.01, + "loss": 2.0653, + "step": 24624 + }, + { + "epoch": 2.5312981806968855, + "grad_norm": 0.08065532892942429, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 24627 + }, + { + "epoch": 2.5316065371569536, + "grad_norm": 0.04455409198999405, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 24630 + }, + { + "epoch": 2.5319148936170213, + "grad_norm": 0.09395566582679749, + "learning_rate": 0.01, + "loss": 2.026, + "step": 24633 + }, + { + "epoch": 2.532223250077089, + "grad_norm": 0.04042106121778488, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 24636 + }, + { + "epoch": 2.532531606537157, + "grad_norm": 0.09208521991968155, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 24639 + }, + { + "epoch": 2.5328399629972247, + "grad_norm": 0.06603435426950455, + "learning_rate": 0.01, + "loss": 2.044, + "step": 24642 + }, + { + "epoch": 2.533148319457293, + "grad_norm": 0.039963483810424805, + "learning_rate": 0.01, + "loss": 2.0491, + "step": 24645 + }, + { + "epoch": 2.5334566759173605, + "grad_norm": 0.14821624755859375, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 24648 + }, + { + "epoch": 2.5337650323774286, + "grad_norm": 0.06644035130739212, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 24651 + }, + { + "epoch": 2.534073388837496, + "grad_norm": 0.0375928059220314, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 24654 + }, + { + "epoch": 2.534381745297564, + "grad_norm": 0.06041393801569939, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 24657 + }, + { + "epoch": 2.534690101757632, + "grad_norm": 0.06117352098226547, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 24660 + }, + { + "epoch": 2.5349984582176996, + "grad_norm": 0.05386986956000328, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 24663 + }, + { + "epoch": 2.5353068146777673, + "grad_norm": 0.03399750217795372, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 24666 + }, + { + "epoch": 2.5356151711378354, + "grad_norm": 0.06256785988807678, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 24669 + }, + { + "epoch": 2.535923527597903, + "grad_norm": 0.08575739711523056, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 24672 + }, + { + "epoch": 2.536231884057971, + "grad_norm": 0.0895959809422493, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 24675 + }, + { + "epoch": 2.536540240518039, + "grad_norm": 0.06579075753688812, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 24678 + }, + { + "epoch": 2.536848596978107, + "grad_norm": 0.04509506747126579, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 24681 + }, + { + "epoch": 2.5371569534381746, + "grad_norm": 0.03535350412130356, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 24684 + }, + { + "epoch": 2.5374653098982423, + "grad_norm": 0.03496406227350235, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 24687 + }, + { + "epoch": 2.5377736663583104, + "grad_norm": 0.04595872759819031, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 24690 + }, + { + "epoch": 2.538082022818378, + "grad_norm": 0.07009676098823547, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 24693 + }, + { + "epoch": 2.5383903792784457, + "grad_norm": 0.07328460365533829, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 24696 + }, + { + "epoch": 2.538698735738514, + "grad_norm": 0.09521552175283432, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 24699 + }, + { + "epoch": 2.5390070921985815, + "grad_norm": 0.09087500721216202, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 24702 + }, + { + "epoch": 2.5393154486586496, + "grad_norm": 0.05657880753278732, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 24705 + }, + { + "epoch": 2.539623805118717, + "grad_norm": 0.13524407148361206, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 24708 + }, + { + "epoch": 2.5399321615787853, + "grad_norm": 0.04498621076345444, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 24711 + }, + { + "epoch": 2.540240518038853, + "grad_norm": 0.04117140173912048, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 24714 + }, + { + "epoch": 2.5405488744989206, + "grad_norm": 0.03630746528506279, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 24717 + }, + { + "epoch": 2.5408572309589887, + "grad_norm": 0.03791969269514084, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 24720 + }, + { + "epoch": 2.5411655874190564, + "grad_norm": 0.045213595032691956, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 24723 + }, + { + "epoch": 2.541473943879124, + "grad_norm": 0.08232447504997253, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 24726 + }, + { + "epoch": 2.541782300339192, + "grad_norm": 0.0790674090385437, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 24729 + }, + { + "epoch": 2.54209065679926, + "grad_norm": 0.09643759578466415, + "learning_rate": 0.01, + "loss": 2.008, + "step": 24732 + }, + { + "epoch": 2.542399013259328, + "grad_norm": 0.09790430217981339, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 24735 + }, + { + "epoch": 2.5427073697193956, + "grad_norm": 0.04904096946120262, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 24738 + }, + { + "epoch": 2.5430157261794637, + "grad_norm": 0.042802706360816956, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 24741 + }, + { + "epoch": 2.5433240826395314, + "grad_norm": 0.04947663098573685, + "learning_rate": 0.01, + "loss": 2.03, + "step": 24744 + }, + { + "epoch": 2.543632439099599, + "grad_norm": 0.040841687470674515, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 24747 + }, + { + "epoch": 2.543940795559667, + "grad_norm": 0.051419809460639954, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 24750 + }, + { + "epoch": 2.544249152019735, + "grad_norm": 0.07173865288496017, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 24753 + }, + { + "epoch": 2.5445575084798024, + "grad_norm": 0.07664339989423752, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 24756 + }, + { + "epoch": 2.5448658649398705, + "grad_norm": 0.05180468037724495, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 24759 + }, + { + "epoch": 2.545174221399938, + "grad_norm": 0.03839515894651413, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 24762 + }, + { + "epoch": 2.5454825778600063, + "grad_norm": 0.08712394535541534, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 24765 + }, + { + "epoch": 2.545790934320074, + "grad_norm": 0.06906873732805252, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 24768 + }, + { + "epoch": 2.546099290780142, + "grad_norm": 0.04779994115233421, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 24771 + }, + { + "epoch": 2.5464076472402097, + "grad_norm": 0.03945513069629669, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 24774 + }, + { + "epoch": 2.5467160037002774, + "grad_norm": 0.04089882969856262, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 24777 + }, + { + "epoch": 2.5470243601603455, + "grad_norm": 0.04492718353867531, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 24780 + }, + { + "epoch": 2.547332716620413, + "grad_norm": 0.0761101022362709, + "learning_rate": 0.01, + "loss": 2.024, + "step": 24783 + }, + { + "epoch": 2.547641073080481, + "grad_norm": 0.09586388617753983, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 24786 + }, + { + "epoch": 2.547949429540549, + "grad_norm": 0.0410308912396431, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 24789 + }, + { + "epoch": 2.5482577860006166, + "grad_norm": 0.0583110935986042, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 24792 + }, + { + "epoch": 2.5485661424606847, + "grad_norm": 0.03310194984078407, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 24795 + }, + { + "epoch": 2.5488744989207524, + "grad_norm": 0.0849560797214508, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 24798 + }, + { + "epoch": 2.5491828553808205, + "grad_norm": 0.052898190915584564, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 24801 + }, + { + "epoch": 2.549491211840888, + "grad_norm": 0.09630381315946579, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 24804 + }, + { + "epoch": 2.5497995683009558, + "grad_norm": 0.04892333596944809, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 24807 + }, + { + "epoch": 2.550107924761024, + "grad_norm": 0.09465577453374863, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 24810 + }, + { + "epoch": 2.5504162812210915, + "grad_norm": 0.0832308977842331, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 24813 + }, + { + "epoch": 2.550724637681159, + "grad_norm": 0.11276236176490784, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 24816 + }, + { + "epoch": 2.5510329941412273, + "grad_norm": 0.08327414095401764, + "learning_rate": 0.01, + "loss": 2.0607, + "step": 24819 + }, + { + "epoch": 2.551341350601295, + "grad_norm": 0.05502014979720116, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 24822 + }, + { + "epoch": 2.551649707061363, + "grad_norm": 0.03681863471865654, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 24825 + }, + { + "epoch": 2.5519580635214307, + "grad_norm": 0.08096860349178314, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 24828 + }, + { + "epoch": 2.552266419981499, + "grad_norm": 0.05901675671339035, + "learning_rate": 0.01, + "loss": 2.046, + "step": 24831 + }, + { + "epoch": 2.5525747764415665, + "grad_norm": 0.09850065410137177, + "learning_rate": 0.01, + "loss": 2.0495, + "step": 24834 + }, + { + "epoch": 2.552883132901634, + "grad_norm": 0.08438712358474731, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 24837 + }, + { + "epoch": 2.5531914893617023, + "grad_norm": 0.04949135333299637, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 24840 + }, + { + "epoch": 2.55349984582177, + "grad_norm": 0.044099997729063034, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 24843 + }, + { + "epoch": 2.5538082022818376, + "grad_norm": 0.08626649528741837, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 24846 + }, + { + "epoch": 2.5541165587419057, + "grad_norm": 0.08545881509780884, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 24849 + }, + { + "epoch": 2.5544249152019733, + "grad_norm": 0.06181343272328377, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 24852 + }, + { + "epoch": 2.5547332716620414, + "grad_norm": 0.0839785784482956, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 24855 + }, + { + "epoch": 2.555041628122109, + "grad_norm": 0.055504992604255676, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 24858 + }, + { + "epoch": 2.555349984582177, + "grad_norm": 0.04236135631799698, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 24861 + }, + { + "epoch": 2.555658341042245, + "grad_norm": 0.035614918917417526, + "learning_rate": 0.01, + "loss": 2.006, + "step": 24864 + }, + { + "epoch": 2.5559666975023125, + "grad_norm": 0.04150492325425148, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 24867 + }, + { + "epoch": 2.5562750539623806, + "grad_norm": 0.07994359731674194, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 24870 + }, + { + "epoch": 2.5565834104224483, + "grad_norm": 0.08954035490751266, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 24873 + }, + { + "epoch": 2.556891766882516, + "grad_norm": 0.1362268626689911, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 24876 + }, + { + "epoch": 2.557200123342584, + "grad_norm": 0.11425944417715073, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 24879 + }, + { + "epoch": 2.5575084798026517, + "grad_norm": 0.07083035260438919, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 24882 + }, + { + "epoch": 2.55781683626272, + "grad_norm": 0.06250528246164322, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 24885 + }, + { + "epoch": 2.5581251927227875, + "grad_norm": 0.047506481409072876, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 24888 + }, + { + "epoch": 2.5584335491828556, + "grad_norm": 0.04237549751996994, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 24891 + }, + { + "epoch": 2.5587419056429233, + "grad_norm": 0.04128411412239075, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 24894 + }, + { + "epoch": 2.559050262102991, + "grad_norm": 0.03886473551392555, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 24897 + }, + { + "epoch": 2.559358618563059, + "grad_norm": 0.1163051575422287, + "learning_rate": 0.01, + "loss": 2.0456, + "step": 24900 + }, + { + "epoch": 2.5596669750231267, + "grad_norm": 0.04279797896742821, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 24903 + }, + { + "epoch": 2.5599753314831943, + "grad_norm": 0.08159471303224564, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 24906 + }, + { + "epoch": 2.5602836879432624, + "grad_norm": 0.06161525472998619, + "learning_rate": 0.01, + "loss": 2.009, + "step": 24909 + }, + { + "epoch": 2.56059204440333, + "grad_norm": 0.05011424049735069, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 24912 + }, + { + "epoch": 2.560900400863398, + "grad_norm": 0.05973159521818161, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 24915 + }, + { + "epoch": 2.561208757323466, + "grad_norm": 0.07461394369602203, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 24918 + }, + { + "epoch": 2.561517113783534, + "grad_norm": 0.09631699323654175, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 24921 + }, + { + "epoch": 2.5618254702436016, + "grad_norm": 0.05727219581604004, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 24924 + }, + { + "epoch": 2.5621338267036693, + "grad_norm": 0.08594338595867157, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 24927 + }, + { + "epoch": 2.5624421831637374, + "grad_norm": 0.1109083890914917, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 24930 + }, + { + "epoch": 2.562750539623805, + "grad_norm": 0.0593339204788208, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 24933 + }, + { + "epoch": 2.5630588960838727, + "grad_norm": 0.0381302647292614, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 24936 + }, + { + "epoch": 2.563367252543941, + "grad_norm": 0.056093595921993256, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 24939 + }, + { + "epoch": 2.5636756090040085, + "grad_norm": 0.11212731897830963, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 24942 + }, + { + "epoch": 2.5639839654640766, + "grad_norm": 0.07110024988651276, + "learning_rate": 0.01, + "loss": 2.013, + "step": 24945 + }, + { + "epoch": 2.5642923219241442, + "grad_norm": 0.05951390787959099, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 24948 + }, + { + "epoch": 2.5646006783842124, + "grad_norm": 0.07836031913757324, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 24951 + }, + { + "epoch": 2.56490903484428, + "grad_norm": 0.06882999837398529, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 24954 + }, + { + "epoch": 2.5652173913043477, + "grad_norm": 0.0868605375289917, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 24957 + }, + { + "epoch": 2.5655257477644158, + "grad_norm": 0.10812171548604965, + "learning_rate": 0.01, + "loss": 2.0462, + "step": 24960 + }, + { + "epoch": 2.5658341042244834, + "grad_norm": 0.07124783843755722, + "learning_rate": 0.01, + "loss": 2.013, + "step": 24963 + }, + { + "epoch": 2.566142460684551, + "grad_norm": 0.037611838430166245, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 24966 + }, + { + "epoch": 2.566450817144619, + "grad_norm": 0.03723758086562157, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 24969 + }, + { + "epoch": 2.566759173604687, + "grad_norm": 0.08805309981107712, + "learning_rate": 0.01, + "loss": 2.01, + "step": 24972 + }, + { + "epoch": 2.567067530064755, + "grad_norm": 0.10381683707237244, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 24975 + }, + { + "epoch": 2.5673758865248226, + "grad_norm": 0.11186369508504868, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 24978 + }, + { + "epoch": 2.5676842429848907, + "grad_norm": 0.07986850291490555, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 24981 + }, + { + "epoch": 2.5679925994449584, + "grad_norm": 0.04094192385673523, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 24984 + }, + { + "epoch": 2.568300955905026, + "grad_norm": 0.049611032009124756, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 24987 + }, + { + "epoch": 2.568609312365094, + "grad_norm": 0.05613689869642258, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 24990 + }, + { + "epoch": 2.568917668825162, + "grad_norm": 0.051894500851631165, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 24993 + }, + { + "epoch": 2.5692260252852295, + "grad_norm": 0.04092536121606827, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 24996 + }, + { + "epoch": 2.5695343817452976, + "grad_norm": 0.03474249318242073, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 24999 + }, + { + "epoch": 2.5698427382053652, + "grad_norm": 0.04513520747423172, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 25002 + }, + { + "epoch": 2.5701510946654333, + "grad_norm": 0.06130135431885719, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 25005 + }, + { + "epoch": 2.570459451125501, + "grad_norm": 0.07398026436567307, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 25008 + }, + { + "epoch": 2.570767807585569, + "grad_norm": 0.06060103699564934, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 25011 + }, + { + "epoch": 2.5710761640456368, + "grad_norm": 0.051868923008441925, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 25014 + }, + { + "epoch": 2.5713845205057044, + "grad_norm": 0.09465671330690384, + "learning_rate": 0.01, + "loss": 2.014, + "step": 25017 + }, + { + "epoch": 2.5716928769657725, + "grad_norm": 0.048888836055994034, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 25020 + }, + { + "epoch": 2.57200123342584, + "grad_norm": 0.04938677325844765, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 25023 + }, + { + "epoch": 2.572309589885908, + "grad_norm": 0.1066848635673523, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 25026 + }, + { + "epoch": 2.572617946345976, + "grad_norm": 0.044199470430612564, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 25029 + }, + { + "epoch": 2.572926302806044, + "grad_norm": 0.06313291937112808, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 25032 + }, + { + "epoch": 2.5732346592661117, + "grad_norm": 0.08843620121479034, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 25035 + }, + { + "epoch": 2.5735430157261794, + "grad_norm": 0.028659775853157043, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 25038 + }, + { + "epoch": 2.5738513721862475, + "grad_norm": 0.09034299850463867, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 25041 + }, + { + "epoch": 2.574159728646315, + "grad_norm": 0.08496701717376709, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 25044 + }, + { + "epoch": 2.574468085106383, + "grad_norm": 0.04633186012506485, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 25047 + }, + { + "epoch": 2.574776441566451, + "grad_norm": 0.05091328173875809, + "learning_rate": 0.01, + "loss": 2.0622, + "step": 25050 + }, + { + "epoch": 2.5750847980265186, + "grad_norm": 0.03941154107451439, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 25053 + }, + { + "epoch": 2.5753931544865862, + "grad_norm": 0.07574623823165894, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 25056 + }, + { + "epoch": 2.5757015109466543, + "grad_norm": 0.07106275856494904, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 25059 + }, + { + "epoch": 2.5760098674067224, + "grad_norm": 0.06767601519823074, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 25062 + }, + { + "epoch": 2.57631822386679, + "grad_norm": 0.05537039414048195, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 25065 + }, + { + "epoch": 2.5766265803268578, + "grad_norm": 0.06547438353300095, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 25068 + }, + { + "epoch": 2.576934936786926, + "grad_norm": 0.0862760990858078, + "learning_rate": 0.01, + "loss": 2.004, + "step": 25071 + }, + { + "epoch": 2.5772432932469935, + "grad_norm": 0.041683733463287354, + "learning_rate": 0.01, + "loss": 2.0484, + "step": 25074 + }, + { + "epoch": 2.577551649707061, + "grad_norm": 0.049321915954351425, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 25077 + }, + { + "epoch": 2.5778600061671293, + "grad_norm": 0.09261754900217056, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 25080 + }, + { + "epoch": 2.578168362627197, + "grad_norm": 0.07979609072208405, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 25083 + }, + { + "epoch": 2.5784767190872646, + "grad_norm": 0.06629879772663116, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 25086 + }, + { + "epoch": 2.5787850755473327, + "grad_norm": 0.07896976172924042, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 25089 + }, + { + "epoch": 2.579093432007401, + "grad_norm": 0.06102503091096878, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 25092 + }, + { + "epoch": 2.5794017884674685, + "grad_norm": 0.07823985069990158, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 25095 + }, + { + "epoch": 2.579710144927536, + "grad_norm": 0.08163253217935562, + "learning_rate": 0.01, + "loss": 2.0583, + "step": 25098 + }, + { + "epoch": 2.5800185013876042, + "grad_norm": 0.06111651286482811, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 25101 + }, + { + "epoch": 2.580326857847672, + "grad_norm": 0.03768099471926689, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 25104 + }, + { + "epoch": 2.5806352143077396, + "grad_norm": 0.0871853157877922, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 25107 + }, + { + "epoch": 2.5809435707678077, + "grad_norm": 0.05394020304083824, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 25110 + }, + { + "epoch": 2.5812519272278753, + "grad_norm": 0.07910983264446259, + "learning_rate": 0.01, + "loss": 2.042, + "step": 25113 + }, + { + "epoch": 2.581560283687943, + "grad_norm": 0.06922271102666855, + "learning_rate": 0.01, + "loss": 2.0493, + "step": 25116 + }, + { + "epoch": 2.581868640148011, + "grad_norm": 0.05517781525850296, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 25119 + }, + { + "epoch": 2.582176996608079, + "grad_norm": 0.05166595056653023, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 25122 + }, + { + "epoch": 2.582485353068147, + "grad_norm": 0.045153357088565826, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 25125 + }, + { + "epoch": 2.5827937095282145, + "grad_norm": 0.07232387363910675, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 25128 + }, + { + "epoch": 2.5831020659882826, + "grad_norm": 0.035037536174058914, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 25131 + }, + { + "epoch": 2.5834104224483503, + "grad_norm": 0.039313822984695435, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 25134 + }, + { + "epoch": 2.583718778908418, + "grad_norm": 0.0632469579577446, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 25137 + }, + { + "epoch": 2.584027135368486, + "grad_norm": 0.10993051528930664, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 25140 + }, + { + "epoch": 2.5843354918285537, + "grad_norm": 0.0852990597486496, + "learning_rate": 0.01, + "loss": 2.053, + "step": 25143 + }, + { + "epoch": 2.5846438482886214, + "grad_norm": 0.0442403107881546, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 25146 + }, + { + "epoch": 2.5849522047486895, + "grad_norm": 0.03534874692559242, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 25149 + }, + { + "epoch": 2.5852605612087576, + "grad_norm": 0.031708016991615295, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 25152 + }, + { + "epoch": 2.5855689176688252, + "grad_norm": 0.056695304811000824, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 25155 + }, + { + "epoch": 2.585877274128893, + "grad_norm": 0.12697716057300568, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 25158 + }, + { + "epoch": 2.586185630588961, + "grad_norm": 0.07686912268400192, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 25161 + }, + { + "epoch": 2.5864939870490287, + "grad_norm": 0.10015466809272766, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 25164 + }, + { + "epoch": 2.5868023435090963, + "grad_norm": 0.05786514654755592, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 25167 + }, + { + "epoch": 2.5871106999691644, + "grad_norm": 0.05359407886862755, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 25170 + }, + { + "epoch": 2.587419056429232, + "grad_norm": 0.10763208568096161, + "learning_rate": 0.01, + "loss": 2.0611, + "step": 25173 + }, + { + "epoch": 2.5877274128893, + "grad_norm": 0.06255360692739487, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 25176 + }, + { + "epoch": 2.588035769349368, + "grad_norm": 0.0519418902695179, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 25179 + }, + { + "epoch": 2.588344125809436, + "grad_norm": 0.09810636937618256, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 25182 + }, + { + "epoch": 2.5886524822695036, + "grad_norm": 0.05091201886534691, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 25185 + }, + { + "epoch": 2.5889608387295713, + "grad_norm": 0.046215660870075226, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 25188 + }, + { + "epoch": 2.5892691951896394, + "grad_norm": 0.06873856484889984, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 25191 + }, + { + "epoch": 2.589577551649707, + "grad_norm": 0.08075796812772751, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 25194 + }, + { + "epoch": 2.5898859081097747, + "grad_norm": 0.10317845642566681, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 25197 + }, + { + "epoch": 2.590194264569843, + "grad_norm": 0.07780349254608154, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 25200 + }, + { + "epoch": 2.5905026210299105, + "grad_norm": 0.0646161437034607, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 25203 + }, + { + "epoch": 2.5908109774899786, + "grad_norm": 0.10224328190088272, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 25206 + }, + { + "epoch": 2.5911193339500462, + "grad_norm": 0.0714394599199295, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 25209 + }, + { + "epoch": 2.5914276904101143, + "grad_norm": 0.06261731684207916, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 25212 + }, + { + "epoch": 2.591736046870182, + "grad_norm": 0.07271763682365417, + "learning_rate": 0.01, + "loss": 2.0489, + "step": 25215 + }, + { + "epoch": 2.5920444033302497, + "grad_norm": 0.07044383883476257, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 25218 + }, + { + "epoch": 2.5923527597903178, + "grad_norm": 0.10808674246072769, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 25221 + }, + { + "epoch": 2.5926611162503854, + "grad_norm": 0.049697790294885635, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 25224 + }, + { + "epoch": 2.592969472710453, + "grad_norm": 0.08951854705810547, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 25227 + }, + { + "epoch": 2.593277829170521, + "grad_norm": 0.06834417581558228, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 25230 + }, + { + "epoch": 2.593586185630589, + "grad_norm": 0.037199974060058594, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 25233 + }, + { + "epoch": 2.593894542090657, + "grad_norm": 0.056284189224243164, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 25236 + }, + { + "epoch": 2.5942028985507246, + "grad_norm": 0.07686278969049454, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 25239 + }, + { + "epoch": 2.5945112550107927, + "grad_norm": 0.043646443635225296, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 25242 + }, + { + "epoch": 2.5948196114708604, + "grad_norm": 0.0594371035695076, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 25245 + }, + { + "epoch": 2.595127967930928, + "grad_norm": 0.08617819100618362, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 25248 + }, + { + "epoch": 2.595436324390996, + "grad_norm": 0.13672196865081787, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 25251 + }, + { + "epoch": 2.595744680851064, + "grad_norm": 0.062405068427324295, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 25254 + }, + { + "epoch": 2.5960530373111315, + "grad_norm": 0.042263686656951904, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 25257 + }, + { + "epoch": 2.5963613937711996, + "grad_norm": 0.04821668192744255, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 25260 + }, + { + "epoch": 2.5966697502312672, + "grad_norm": 0.048817023634910583, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 25263 + }, + { + "epoch": 2.5969781066913353, + "grad_norm": 0.05794850364327431, + "learning_rate": 0.01, + "loss": 2.023, + "step": 25266 + }, + { + "epoch": 2.597286463151403, + "grad_norm": 0.05057196319103241, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 25269 + }, + { + "epoch": 2.597594819611471, + "grad_norm": 0.05443112552165985, + "learning_rate": 0.01, + "loss": 2.0381, + "step": 25272 + }, + { + "epoch": 2.5979031760715388, + "grad_norm": 0.0533830001950264, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 25275 + }, + { + "epoch": 2.5982115325316064, + "grad_norm": 0.040888138115406036, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 25278 + }, + { + "epoch": 2.5985198889916745, + "grad_norm": 0.07154986262321472, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 25281 + }, + { + "epoch": 2.598828245451742, + "grad_norm": 0.17314322292804718, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 25284 + }, + { + "epoch": 2.59913660191181, + "grad_norm": 0.051602523773908615, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 25287 + }, + { + "epoch": 2.599444958371878, + "grad_norm": 0.047731827944517136, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 25290 + }, + { + "epoch": 2.5997533148319456, + "grad_norm": 0.0334257036447525, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 25293 + }, + { + "epoch": 2.6000616712920137, + "grad_norm": 0.03708617389202118, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 25296 + }, + { + "epoch": 2.6003700277520814, + "grad_norm": 0.08540193736553192, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 25299 + }, + { + "epoch": 2.6006783842121495, + "grad_norm": 0.1036924496293068, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 25302 + }, + { + "epoch": 2.600986740672217, + "grad_norm": 0.056603506207466125, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 25305 + }, + { + "epoch": 2.601295097132285, + "grad_norm": 0.1030723974108696, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 25308 + }, + { + "epoch": 2.601603453592353, + "grad_norm": 0.060525115579366684, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 25311 + }, + { + "epoch": 2.6019118100524206, + "grad_norm": 0.061082128435373306, + "learning_rate": 0.01, + "loss": 1.987, + "step": 25314 + }, + { + "epoch": 2.602220166512488, + "grad_norm": 0.045477550476789474, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 25317 + }, + { + "epoch": 2.6025285229725563, + "grad_norm": 0.03306104615330696, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 25320 + }, + { + "epoch": 2.602836879432624, + "grad_norm": 0.052543554455041885, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 25323 + }, + { + "epoch": 2.603145235892692, + "grad_norm": 0.04408182203769684, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 25326 + }, + { + "epoch": 2.6034535923527597, + "grad_norm": 0.05216488614678383, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 25329 + }, + { + "epoch": 2.603761948812828, + "grad_norm": 0.12084914743900299, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 25332 + }, + { + "epoch": 2.6040703052728955, + "grad_norm": 0.09642963856458664, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 25335 + }, + { + "epoch": 2.604378661732963, + "grad_norm": 0.06409110128879547, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 25338 + }, + { + "epoch": 2.6046870181930313, + "grad_norm": 0.07277770340442657, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 25341 + }, + { + "epoch": 2.604995374653099, + "grad_norm": 0.049252595752477646, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 25344 + }, + { + "epoch": 2.6053037311131666, + "grad_norm": 0.0495469830930233, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 25347 + }, + { + "epoch": 2.6056120875732347, + "grad_norm": 0.06318475306034088, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 25350 + }, + { + "epoch": 2.6059204440333024, + "grad_norm": 0.07843147218227386, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 25353 + }, + { + "epoch": 2.6062288004933705, + "grad_norm": 0.055239688605070114, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 25356 + }, + { + "epoch": 2.606537156953438, + "grad_norm": 0.03876148536801338, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 25359 + }, + { + "epoch": 2.6068455134135062, + "grad_norm": 0.12309783697128296, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 25362 + }, + { + "epoch": 2.607153869873574, + "grad_norm": 0.09926038980484009, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 25365 + }, + { + "epoch": 2.6074622263336416, + "grad_norm": 0.07237336784601212, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 25368 + }, + { + "epoch": 2.6077705827937097, + "grad_norm": 0.09653117507696152, + "learning_rate": 0.01, + "loss": 2.0547, + "step": 25371 + }, + { + "epoch": 2.6080789392537773, + "grad_norm": 0.0454515665769577, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 25374 + }, + { + "epoch": 2.608387295713845, + "grad_norm": 0.04541772976517677, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 25377 + }, + { + "epoch": 2.608695652173913, + "grad_norm": 0.05721856653690338, + "learning_rate": 0.01, + "loss": 2.011, + "step": 25380 + }, + { + "epoch": 2.6090040086339807, + "grad_norm": 0.0526764839887619, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 25383 + }, + { + "epoch": 2.609312365094049, + "grad_norm": 0.08415975421667099, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 25386 + }, + { + "epoch": 2.6096207215541165, + "grad_norm": 0.07950541377067566, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 25389 + }, + { + "epoch": 2.6099290780141846, + "grad_norm": 0.07684530317783356, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 25392 + }, + { + "epoch": 2.6102374344742523, + "grad_norm": 0.0458965003490448, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 25395 + }, + { + "epoch": 2.61054579093432, + "grad_norm": 0.11776190251111984, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 25398 + }, + { + "epoch": 2.610854147394388, + "grad_norm": 0.03954809904098511, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 25401 + }, + { + "epoch": 2.6111625038544557, + "grad_norm": 0.08056820929050446, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 25404 + }, + { + "epoch": 2.6114708603145234, + "grad_norm": 0.03288201987743378, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 25407 + }, + { + "epoch": 2.6117792167745915, + "grad_norm": 0.06156465783715248, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 25410 + }, + { + "epoch": 2.612087573234659, + "grad_norm": 0.04141581431031227, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 25413 + }, + { + "epoch": 2.6123959296947272, + "grad_norm": 0.06731928139925003, + "learning_rate": 0.01, + "loss": 2.028, + "step": 25416 + }, + { + "epoch": 2.612704286154795, + "grad_norm": 0.07682816684246063, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 25419 + }, + { + "epoch": 2.613012642614863, + "grad_norm": 0.10766996443271637, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 25422 + }, + { + "epoch": 2.6133209990749307, + "grad_norm": 0.11409672349691391, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 25425 + }, + { + "epoch": 2.6136293555349983, + "grad_norm": 0.07693130522966385, + "learning_rate": 0.01, + "loss": 2.02, + "step": 25428 + }, + { + "epoch": 2.6139377119950664, + "grad_norm": 0.034606434404850006, + "learning_rate": 0.01, + "loss": 2.043, + "step": 25431 + }, + { + "epoch": 2.614246068455134, + "grad_norm": 0.0957694724202156, + "learning_rate": 0.01, + "loss": 2.0527, + "step": 25434 + }, + { + "epoch": 2.6145544249152017, + "grad_norm": 0.05739649757742882, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 25437 + }, + { + "epoch": 2.61486278137527, + "grad_norm": 0.05702357366681099, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 25440 + }, + { + "epoch": 2.6151711378353375, + "grad_norm": 0.10596863180398941, + "learning_rate": 0.01, + "loss": 2.023, + "step": 25443 + }, + { + "epoch": 2.6154794942954056, + "grad_norm": 0.07135487347841263, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 25446 + }, + { + "epoch": 2.6157878507554733, + "grad_norm": 0.04034152254462242, + "learning_rate": 0.01, + "loss": 2.034, + "step": 25449 + }, + { + "epoch": 2.6160962072155414, + "grad_norm": 0.05510259047150612, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 25452 + }, + { + "epoch": 2.616404563675609, + "grad_norm": 0.03920494019985199, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 25455 + }, + { + "epoch": 2.6167129201356767, + "grad_norm": 0.06935703754425049, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 25458 + }, + { + "epoch": 2.617021276595745, + "grad_norm": 0.04524112120270729, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 25461 + }, + { + "epoch": 2.6173296330558125, + "grad_norm": 0.03639009967446327, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 25464 + }, + { + "epoch": 2.61763798951588, + "grad_norm": 0.0551072359085083, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 25467 + }, + { + "epoch": 2.617946345975948, + "grad_norm": 0.03943365439772606, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 25470 + }, + { + "epoch": 2.618254702436016, + "grad_norm": 0.05363466218113899, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 25473 + }, + { + "epoch": 2.618563058896084, + "grad_norm": 0.10065023601055145, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 25476 + }, + { + "epoch": 2.6188714153561516, + "grad_norm": 0.06447052210569382, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 25479 + }, + { + "epoch": 2.6191797718162197, + "grad_norm": 0.03966406360268593, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 25482 + }, + { + "epoch": 2.6194881282762874, + "grad_norm": 0.05280005559325218, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 25485 + }, + { + "epoch": 2.619796484736355, + "grad_norm": 0.1111968457698822, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 25488 + }, + { + "epoch": 2.620104841196423, + "grad_norm": 0.11483361572027206, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 25491 + }, + { + "epoch": 2.620413197656491, + "grad_norm": 0.039019446820020676, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 25494 + }, + { + "epoch": 2.6207215541165585, + "grad_norm": 0.05683600530028343, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 25497 + }, + { + "epoch": 2.6210299105766266, + "grad_norm": 0.042798321694135666, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 25500 + }, + { + "epoch": 2.6213382670366943, + "grad_norm": 0.040838126093149185, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 25503 + }, + { + "epoch": 2.6216466234967624, + "grad_norm": 0.07249750196933746, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 25506 + }, + { + "epoch": 2.62195497995683, + "grad_norm": 0.08197704702615738, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 25509 + }, + { + "epoch": 2.622263336416898, + "grad_norm": 0.11885122954845428, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 25512 + }, + { + "epoch": 2.622571692876966, + "grad_norm": 0.07574759423732758, + "learning_rate": 0.01, + "loss": 2.0443, + "step": 25515 + }, + { + "epoch": 2.6228800493370334, + "grad_norm": 0.05106687173247337, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 25518 + }, + { + "epoch": 2.6231884057971016, + "grad_norm": 0.03381403908133507, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 25521 + }, + { + "epoch": 2.623496762257169, + "grad_norm": 0.04259166494011879, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 25524 + }, + { + "epoch": 2.623805118717237, + "grad_norm": 0.06276170909404755, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 25527 + }, + { + "epoch": 2.624113475177305, + "grad_norm": 0.05478539317846298, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 25530 + }, + { + "epoch": 2.6244218316373726, + "grad_norm": 0.05915123224258423, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 25533 + }, + { + "epoch": 2.6247301880974407, + "grad_norm": 0.09082819521427155, + "learning_rate": 0.01, + "loss": 2.038, + "step": 25536 + }, + { + "epoch": 2.6250385445575084, + "grad_norm": 0.04604744166135788, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 25539 + }, + { + "epoch": 2.6253469010175765, + "grad_norm": 0.04548676684498787, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 25542 + }, + { + "epoch": 2.625655257477644, + "grad_norm": 0.03629077225923538, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 25545 + }, + { + "epoch": 2.625963613937712, + "grad_norm": 0.060490988194942474, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 25548 + }, + { + "epoch": 2.62627197039778, + "grad_norm": 0.12501440942287445, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 25551 + }, + { + "epoch": 2.6265803268578476, + "grad_norm": 0.052221618592739105, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 25554 + }, + { + "epoch": 2.6268886833179153, + "grad_norm": 0.08127149194478989, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 25557 + }, + { + "epoch": 2.6271970397779834, + "grad_norm": 0.13186825811862946, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 25560 + }, + { + "epoch": 2.6275053962380515, + "grad_norm": 0.10297831892967224, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 25563 + }, + { + "epoch": 2.627813752698119, + "grad_norm": 0.04737088829278946, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 25566 + }, + { + "epoch": 2.628122109158187, + "grad_norm": 0.055748652666807175, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 25569 + }, + { + "epoch": 2.628430465618255, + "grad_norm": 0.08968318998813629, + "learning_rate": 0.01, + "loss": 2.023, + "step": 25572 + }, + { + "epoch": 2.6287388220783225, + "grad_norm": 0.04962621256709099, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 25575 + }, + { + "epoch": 2.62904717853839, + "grad_norm": 0.033645693212747574, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 25578 + }, + { + "epoch": 2.6293555349984583, + "grad_norm": 0.05864016339182854, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 25581 + }, + { + "epoch": 2.629663891458526, + "grad_norm": 0.12207403779029846, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 25584 + }, + { + "epoch": 2.6299722479185936, + "grad_norm": 0.049948643893003464, + "learning_rate": 0.01, + "loss": 2.0534, + "step": 25587 + }, + { + "epoch": 2.6302806043786617, + "grad_norm": 0.08774693310260773, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 25590 + }, + { + "epoch": 2.63058896083873, + "grad_norm": 0.053613871335983276, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 25593 + }, + { + "epoch": 2.6308973172987975, + "grad_norm": 0.06298764050006866, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 25596 + }, + { + "epoch": 2.631205673758865, + "grad_norm": 0.03511015325784683, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 25599 + }, + { + "epoch": 2.6315140302189333, + "grad_norm": 0.09345996379852295, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 25602 + }, + { + "epoch": 2.631822386679001, + "grad_norm": 0.06202877685427666, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 25605 + }, + { + "epoch": 2.6321307431390686, + "grad_norm": 0.10231085866689682, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 25608 + }, + { + "epoch": 2.6324390995991367, + "grad_norm": 0.12403954565525055, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 25611 + }, + { + "epoch": 2.6327474560592043, + "grad_norm": 0.059275902807712555, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 25614 + }, + { + "epoch": 2.633055812519272, + "grad_norm": 0.04833563044667244, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 25617 + }, + { + "epoch": 2.63336416897934, + "grad_norm": 0.04218841344118118, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 25620 + }, + { + "epoch": 2.633672525439408, + "grad_norm": 0.1189088523387909, + "learning_rate": 0.01, + "loss": 2.0407, + "step": 25623 + }, + { + "epoch": 2.633980881899476, + "grad_norm": 0.11460559070110321, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 25626 + }, + { + "epoch": 2.6342892383595435, + "grad_norm": 0.13970693945884705, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 25629 + }, + { + "epoch": 2.6345975948196116, + "grad_norm": 0.06081441789865494, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 25632 + }, + { + "epoch": 2.6349059512796793, + "grad_norm": 0.055472832173109055, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 25635 + }, + { + "epoch": 2.635214307739747, + "grad_norm": 0.06767648458480835, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 25638 + }, + { + "epoch": 2.635522664199815, + "grad_norm": 0.060980260372161865, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 25641 + }, + { + "epoch": 2.6358310206598827, + "grad_norm": 0.04839742183685303, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 25644 + }, + { + "epoch": 2.6361393771199504, + "grad_norm": 0.04725825786590576, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 25647 + }, + { + "epoch": 2.6364477335800185, + "grad_norm": 0.04045959562063217, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 25650 + }, + { + "epoch": 2.6367560900400866, + "grad_norm": 0.07219504565000534, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 25653 + }, + { + "epoch": 2.6370644465001543, + "grad_norm": 0.0438094437122345, + "learning_rate": 0.01, + "loss": 2.029, + "step": 25656 + }, + { + "epoch": 2.637372802960222, + "grad_norm": 0.06555571407079697, + "learning_rate": 0.01, + "loss": 2.033, + "step": 25659 + }, + { + "epoch": 2.63768115942029, + "grad_norm": 0.07731533795595169, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 25662 + }, + { + "epoch": 2.6379895158803577, + "grad_norm": 0.045945990830659866, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 25665 + }, + { + "epoch": 2.6382978723404253, + "grad_norm": 0.07175582647323608, + "learning_rate": 0.01, + "loss": 2.019, + "step": 25668 + }, + { + "epoch": 2.6386062288004934, + "grad_norm": 0.07860400527715683, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 25671 + }, + { + "epoch": 2.638914585260561, + "grad_norm": 0.05635571479797363, + "learning_rate": 0.01, + "loss": 2.0519, + "step": 25674 + }, + { + "epoch": 2.639222941720629, + "grad_norm": 0.07352261245250702, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 25677 + }, + { + "epoch": 2.639531298180697, + "grad_norm": 0.07502644509077072, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 25680 + }, + { + "epoch": 2.639839654640765, + "grad_norm": 0.05903060361742973, + "learning_rate": 0.01, + "loss": 2.012, + "step": 25683 + }, + { + "epoch": 2.6401480111008326, + "grad_norm": 0.07454460859298706, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 25686 + }, + { + "epoch": 2.6404563675609003, + "grad_norm": 0.06615950912237167, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 25689 + }, + { + "epoch": 2.6407647240209684, + "grad_norm": 0.07897205650806427, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 25692 + }, + { + "epoch": 2.641073080481036, + "grad_norm": 0.12898573279380798, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 25695 + }, + { + "epoch": 2.6413814369411037, + "grad_norm": 0.10731782764196396, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 25698 + }, + { + "epoch": 2.641689793401172, + "grad_norm": 0.07936359196901321, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 25701 + }, + { + "epoch": 2.6419981498612395, + "grad_norm": 0.07443369179964066, + "learning_rate": 0.01, + "loss": 2.0586, + "step": 25704 + }, + { + "epoch": 2.6423065063213076, + "grad_norm": 0.07027627527713776, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 25707 + }, + { + "epoch": 2.6426148627813753, + "grad_norm": 0.04909298196434975, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 25710 + }, + { + "epoch": 2.6429232192414434, + "grad_norm": 0.09595979005098343, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 25713 + }, + { + "epoch": 2.643231575701511, + "grad_norm": 0.07217621803283691, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 25716 + }, + { + "epoch": 2.6435399321615787, + "grad_norm": 0.10547403246164322, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 25719 + }, + { + "epoch": 2.643848288621647, + "grad_norm": 0.048883359879255295, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 25722 + }, + { + "epoch": 2.6441566450817144, + "grad_norm": 0.09399348497390747, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 25725 + }, + { + "epoch": 2.644465001541782, + "grad_norm": 0.05369775742292404, + "learning_rate": 0.01, + "loss": 2.0483, + "step": 25728 + }, + { + "epoch": 2.64477335800185, + "grad_norm": 0.08048120886087418, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 25731 + }, + { + "epoch": 2.645081714461918, + "grad_norm": 0.07802169024944305, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 25734 + }, + { + "epoch": 2.645390070921986, + "grad_norm": 0.06137097254395485, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 25737 + }, + { + "epoch": 2.6456984273820536, + "grad_norm": 0.05498100444674492, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 25740 + }, + { + "epoch": 2.6460067838421217, + "grad_norm": 0.057225704193115234, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 25743 + }, + { + "epoch": 2.6463151403021894, + "grad_norm": 0.06727226078510284, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 25746 + }, + { + "epoch": 2.646623496762257, + "grad_norm": 0.04740385711193085, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 25749 + }, + { + "epoch": 2.646931853222325, + "grad_norm": 0.04808951914310455, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 25752 + }, + { + "epoch": 2.647240209682393, + "grad_norm": 0.04689471423625946, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 25755 + }, + { + "epoch": 2.6475485661424605, + "grad_norm": 0.10928355902433395, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 25758 + }, + { + "epoch": 2.6478569226025286, + "grad_norm": 0.054571595042943954, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 25761 + }, + { + "epoch": 2.6481652790625962, + "grad_norm": 0.0809570774435997, + "learning_rate": 0.01, + "loss": 2.0451, + "step": 25764 + }, + { + "epoch": 2.6484736355226643, + "grad_norm": 0.10407903790473938, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 25767 + }, + { + "epoch": 2.648781991982732, + "grad_norm": 0.045180514454841614, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 25770 + }, + { + "epoch": 2.6490903484428, + "grad_norm": 0.07642797380685806, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 25773 + }, + { + "epoch": 2.6493987049028678, + "grad_norm": 0.06943316757678986, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 25776 + }, + { + "epoch": 2.6497070613629354, + "grad_norm": 0.06536037474870682, + "learning_rate": 0.01, + "loss": 2.008, + "step": 25779 + }, + { + "epoch": 2.6500154178230035, + "grad_norm": 0.04698020964860916, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 25782 + }, + { + "epoch": 2.650323774283071, + "grad_norm": 0.05523454770445824, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 25785 + }, + { + "epoch": 2.650632130743139, + "grad_norm": 0.043647054582834244, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 25788 + }, + { + "epoch": 2.650940487203207, + "grad_norm": 0.05682402104139328, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 25791 + }, + { + "epoch": 2.6512488436632746, + "grad_norm": 0.10919704288244247, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 25794 + }, + { + "epoch": 2.6515572001233427, + "grad_norm": 0.0895003080368042, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 25797 + }, + { + "epoch": 2.6518655565834104, + "grad_norm": 0.07750852406024933, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 25800 + }, + { + "epoch": 2.6521739130434785, + "grad_norm": 0.07465649396181107, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 25803 + }, + { + "epoch": 2.652482269503546, + "grad_norm": 0.042654186487197876, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 25806 + }, + { + "epoch": 2.652790625963614, + "grad_norm": 0.04910847172141075, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 25809 + }, + { + "epoch": 2.653098982423682, + "grad_norm": 0.04584549367427826, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 25812 + }, + { + "epoch": 2.6534073388837496, + "grad_norm": 0.03400958329439163, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 25815 + }, + { + "epoch": 2.6537156953438172, + "grad_norm": 0.11867182701826096, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 25818 + }, + { + "epoch": 2.6540240518038853, + "grad_norm": 0.09303310513496399, + "learning_rate": 0.01, + "loss": 2.0533, + "step": 25821 + }, + { + "epoch": 2.654332408263953, + "grad_norm": 0.04951944947242737, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 25824 + }, + { + "epoch": 2.654640764724021, + "grad_norm": 0.05893867462873459, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 25827 + }, + { + "epoch": 2.6549491211840888, + "grad_norm": 0.034138891845941544, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 25830 + }, + { + "epoch": 2.655257477644157, + "grad_norm": 0.039834585040807724, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 25833 + }, + { + "epoch": 2.6555658341042245, + "grad_norm": 0.10098033398389816, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 25836 + }, + { + "epoch": 2.655874190564292, + "grad_norm": 0.07205129414796829, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 25839 + }, + { + "epoch": 2.6561825470243603, + "grad_norm": 0.04370702803134918, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 25842 + }, + { + "epoch": 2.656490903484428, + "grad_norm": 0.10662799328565598, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 25845 + }, + { + "epoch": 2.6567992599444956, + "grad_norm": 0.1833692342042923, + "learning_rate": 0.01, + "loss": 2.0585, + "step": 25848 + }, + { + "epoch": 2.6571076164045637, + "grad_norm": 0.12229418754577637, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 25851 + }, + { + "epoch": 2.6574159728646314, + "grad_norm": 0.05533694103360176, + "learning_rate": 0.01, + "loss": 2.026, + "step": 25854 + }, + { + "epoch": 2.6577243293246995, + "grad_norm": 0.042578935623168945, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 25857 + }, + { + "epoch": 2.658032685784767, + "grad_norm": 0.034579649567604065, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 25860 + }, + { + "epoch": 2.6583410422448353, + "grad_norm": 0.052627481520175934, + "learning_rate": 0.01, + "loss": 1.986, + "step": 25863 + }, + { + "epoch": 2.658649398704903, + "grad_norm": 0.04877294600009918, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 25866 + }, + { + "epoch": 2.6589577551649706, + "grad_norm": 0.05192401632666588, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 25869 + }, + { + "epoch": 2.6592661116250387, + "grad_norm": 0.08188097178936005, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 25872 + }, + { + "epoch": 2.6595744680851063, + "grad_norm": 0.06215586140751839, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 25875 + }, + { + "epoch": 2.659882824545174, + "grad_norm": 0.10561207681894302, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 25878 + }, + { + "epoch": 2.660191181005242, + "grad_norm": 0.08467070758342743, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 25881 + }, + { + "epoch": 2.6604995374653098, + "grad_norm": 0.05138308182358742, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 25884 + }, + { + "epoch": 2.660807893925378, + "grad_norm": 0.07387588173151016, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 25887 + }, + { + "epoch": 2.6611162503854455, + "grad_norm": 0.06682645529508591, + "learning_rate": 0.01, + "loss": 2.0508, + "step": 25890 + }, + { + "epoch": 2.6614246068455136, + "grad_norm": 0.056953735649585724, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 25893 + }, + { + "epoch": 2.6617329633055813, + "grad_norm": 0.03709590435028076, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 25896 + }, + { + "epoch": 2.662041319765649, + "grad_norm": 0.05895649641752243, + "learning_rate": 0.01, + "loss": 2.028, + "step": 25899 + }, + { + "epoch": 2.662349676225717, + "grad_norm": 0.08740679174661636, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 25902 + }, + { + "epoch": 2.6626580326857847, + "grad_norm": 0.04745563119649887, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 25905 + }, + { + "epoch": 2.6629663891458524, + "grad_norm": 0.08748458325862885, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 25908 + }, + { + "epoch": 2.6632747456059205, + "grad_norm": 0.04833563417196274, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 25911 + }, + { + "epoch": 2.663583102065988, + "grad_norm": 0.03873222693800926, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 25914 + }, + { + "epoch": 2.6638914585260562, + "grad_norm": 0.07129956781864166, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 25917 + }, + { + "epoch": 2.664199814986124, + "grad_norm": 0.08984299004077911, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 25920 + }, + { + "epoch": 2.664508171446192, + "grad_norm": 0.03720667213201523, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 25923 + }, + { + "epoch": 2.6648165279062597, + "grad_norm": 0.09795575588941574, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 25926 + }, + { + "epoch": 2.6651248843663273, + "grad_norm": 0.1043957769870758, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 25929 + }, + { + "epoch": 2.6654332408263954, + "grad_norm": 0.04737646505236626, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 25932 + }, + { + "epoch": 2.665741597286463, + "grad_norm": 0.04864402487874031, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 25935 + }, + { + "epoch": 2.6660499537465308, + "grad_norm": 0.0386229082942009, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 25938 + }, + { + "epoch": 2.666358310206599, + "grad_norm": 0.04127798601984978, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 25941 + }, + { + "epoch": 2.6666666666666665, + "grad_norm": 0.07537275552749634, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 25944 + }, + { + "epoch": 2.6669750231267346, + "grad_norm": 0.041533395648002625, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 25947 + }, + { + "epoch": 2.6672833795868023, + "grad_norm": 0.045062318444252014, + "learning_rate": 0.01, + "loss": 2.0428, + "step": 25950 + }, + { + "epoch": 2.6675917360468704, + "grad_norm": 0.08328119665384293, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 25953 + }, + { + "epoch": 2.667900092506938, + "grad_norm": 0.08402698487043381, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 25956 + }, + { + "epoch": 2.6682084489670057, + "grad_norm": 0.10571663826704025, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 25959 + }, + { + "epoch": 2.668516805427074, + "grad_norm": 0.05094289034605026, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 25962 + }, + { + "epoch": 2.6688251618871415, + "grad_norm": 0.034051552414894104, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 25965 + }, + { + "epoch": 2.669133518347209, + "grad_norm": 0.05703623592853546, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 25968 + }, + { + "epoch": 2.6694418748072772, + "grad_norm": 0.10606861114501953, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 25971 + }, + { + "epoch": 2.669750231267345, + "grad_norm": 0.11793088167905807, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 25974 + }, + { + "epoch": 2.670058587727413, + "grad_norm": 0.09058693051338196, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 25977 + }, + { + "epoch": 2.6703669441874807, + "grad_norm": 0.0677378848195076, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 25980 + }, + { + "epoch": 2.6706753006475488, + "grad_norm": 0.05636313930153847, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 25983 + }, + { + "epoch": 2.6709836571076164, + "grad_norm": 0.04547611251473427, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 25986 + }, + { + "epoch": 2.671292013567684, + "grad_norm": 0.04852728173136711, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 25989 + }, + { + "epoch": 2.671600370027752, + "grad_norm": 0.04465510696172714, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 25992 + }, + { + "epoch": 2.67190872648782, + "grad_norm": 0.043789103627204895, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 25995 + }, + { + "epoch": 2.6722170829478875, + "grad_norm": 0.12845320999622345, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 25998 + }, + { + "epoch": 2.6725254394079556, + "grad_norm": 0.054881785064935684, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 26001 + }, + { + "epoch": 2.6728337958680233, + "grad_norm": 0.0845002606511116, + "learning_rate": 0.01, + "loss": 2.0475, + "step": 26004 + }, + { + "epoch": 2.6731421523280914, + "grad_norm": 0.04782318323850632, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 26007 + }, + { + "epoch": 2.673450508788159, + "grad_norm": 0.04288490489125252, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 26010 + }, + { + "epoch": 2.673758865248227, + "grad_norm": 0.10904238373041153, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 26013 + }, + { + "epoch": 2.674067221708295, + "grad_norm": 0.08276703208684921, + "learning_rate": 0.01, + "loss": 2.032, + "step": 26016 + }, + { + "epoch": 2.6743755781683625, + "grad_norm": 0.06076609715819359, + "learning_rate": 0.01, + "loss": 2.0507, + "step": 26019 + }, + { + "epoch": 2.6746839346284306, + "grad_norm": 0.043946780264377594, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 26022 + }, + { + "epoch": 2.6749922910884982, + "grad_norm": 0.03716238588094711, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 26025 + }, + { + "epoch": 2.675300647548566, + "grad_norm": 0.04982864856719971, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 26028 + }, + { + "epoch": 2.675609004008634, + "grad_norm": 0.05211315676569939, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 26031 + }, + { + "epoch": 2.6759173604687017, + "grad_norm": 0.10215940326452255, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 26034 + }, + { + "epoch": 2.6762257169287698, + "grad_norm": 0.07742898166179657, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 26037 + }, + { + "epoch": 2.6765340733888374, + "grad_norm": 0.047653328627347946, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 26040 + }, + { + "epoch": 2.6768424298489055, + "grad_norm": 0.07179111242294312, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 26043 + }, + { + "epoch": 2.677150786308973, + "grad_norm": 0.044947609305381775, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 26046 + }, + { + "epoch": 2.677459142769041, + "grad_norm": 0.03128395974636078, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 26049 + }, + { + "epoch": 2.677767499229109, + "grad_norm": 0.037758342921733856, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 26052 + }, + { + "epoch": 2.6780758556891766, + "grad_norm": 0.059724219143390656, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 26055 + }, + { + "epoch": 2.6783842121492443, + "grad_norm": 0.09603296220302582, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 26058 + }, + { + "epoch": 2.6786925686093124, + "grad_norm": 0.059488292783498764, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 26061 + }, + { + "epoch": 2.6790009250693805, + "grad_norm": 0.07343467324972153, + "learning_rate": 0.01, + "loss": 2.0494, + "step": 26064 + }, + { + "epoch": 2.679309281529448, + "grad_norm": 0.054782915860414505, + "learning_rate": 0.01, + "loss": 2.023, + "step": 26067 + }, + { + "epoch": 2.679617637989516, + "grad_norm": 0.042636722326278687, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 26070 + }, + { + "epoch": 2.679925994449584, + "grad_norm": 0.06803017109632492, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 26073 + }, + { + "epoch": 2.6802343509096516, + "grad_norm": 0.10990459471940994, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 26076 + }, + { + "epoch": 2.6805427073697192, + "grad_norm": 0.035727545619010925, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 26079 + }, + { + "epoch": 2.6808510638297873, + "grad_norm": 0.11241263896226883, + "learning_rate": 0.01, + "loss": 2.038, + "step": 26082 + }, + { + "epoch": 2.681159420289855, + "grad_norm": 0.06156554073095322, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 26085 + }, + { + "epoch": 2.6814677767499226, + "grad_norm": 0.0609101839363575, + "learning_rate": 0.01, + "loss": 1.994, + "step": 26088 + }, + { + "epoch": 2.6817761332099908, + "grad_norm": 0.046859260648489, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 26091 + }, + { + "epoch": 2.682084489670059, + "grad_norm": 0.05803006887435913, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 26094 + }, + { + "epoch": 2.6823928461301265, + "grad_norm": 0.09425931423902512, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 26097 + }, + { + "epoch": 2.682701202590194, + "grad_norm": 0.07893898338079453, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 26100 + }, + { + "epoch": 2.6830095590502623, + "grad_norm": 0.044163595885038376, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 26103 + }, + { + "epoch": 2.68331791551033, + "grad_norm": 0.061135292053222656, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 26106 + }, + { + "epoch": 2.6836262719703976, + "grad_norm": 0.03806147351861, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 26109 + }, + { + "epoch": 2.6839346284304657, + "grad_norm": 0.050713907927274704, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 26112 + }, + { + "epoch": 2.6842429848905334, + "grad_norm": 0.05512484535574913, + "learning_rate": 0.01, + "loss": 2.038, + "step": 26115 + }, + { + "epoch": 2.684551341350601, + "grad_norm": 0.048581019043922424, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 26118 + }, + { + "epoch": 2.684859697810669, + "grad_norm": 0.04121122509241104, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 26121 + }, + { + "epoch": 2.6851680542707372, + "grad_norm": 0.036977533251047134, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 26124 + }, + { + "epoch": 2.685476410730805, + "grad_norm": 0.10436423867940903, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 26127 + }, + { + "epoch": 2.6857847671908726, + "grad_norm": 0.05357207730412483, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 26130 + }, + { + "epoch": 2.6860931236509407, + "grad_norm": 0.05386963114142418, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 26133 + }, + { + "epoch": 2.6864014801110083, + "grad_norm": 0.03591128811240196, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 26136 + }, + { + "epoch": 2.686709836571076, + "grad_norm": 0.036740854382514954, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 26139 + }, + { + "epoch": 2.687018193031144, + "grad_norm": 0.05966171249747276, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 26142 + }, + { + "epoch": 2.6873265494912117, + "grad_norm": 0.10529398918151855, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 26145 + }, + { + "epoch": 2.6876349059512794, + "grad_norm": 0.07834989577531815, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 26148 + }, + { + "epoch": 2.6879432624113475, + "grad_norm": 0.10702015459537506, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 26151 + }, + { + "epoch": 2.6882516188714156, + "grad_norm": 0.04647925868630409, + "learning_rate": 0.01, + "loss": 2.032, + "step": 26154 + }, + { + "epoch": 2.6885599753314833, + "grad_norm": 0.04523247852921486, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 26157 + }, + { + "epoch": 2.688868331791551, + "grad_norm": 0.04293215274810791, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 26160 + }, + { + "epoch": 2.689176688251619, + "grad_norm": 0.06344863772392273, + "learning_rate": 0.01, + "loss": 2.028, + "step": 26163 + }, + { + "epoch": 2.6894850447116867, + "grad_norm": 0.047177109867334366, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 26166 + }, + { + "epoch": 2.6897934011717544, + "grad_norm": 0.09941892325878143, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 26169 + }, + { + "epoch": 2.6901017576318225, + "grad_norm": 0.04238753393292427, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 26172 + }, + { + "epoch": 2.69041011409189, + "grad_norm": 0.0550382174551487, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 26175 + }, + { + "epoch": 2.690718470551958, + "grad_norm": 0.09788551181554794, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 26178 + }, + { + "epoch": 2.691026827012026, + "grad_norm": 0.044239919632673264, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 26181 + }, + { + "epoch": 2.691335183472094, + "grad_norm": 0.10677097737789154, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 26184 + }, + { + "epoch": 2.6916435399321617, + "grad_norm": 0.04113283380866051, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 26187 + }, + { + "epoch": 2.6919518963922293, + "grad_norm": 0.05748388543725014, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 26190 + }, + { + "epoch": 2.6922602528522974, + "grad_norm": 0.04931147024035454, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 26193 + }, + { + "epoch": 2.692568609312365, + "grad_norm": 0.051582470536231995, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 26196 + }, + { + "epoch": 2.6928769657724327, + "grad_norm": 0.1054171696305275, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 26199 + }, + { + "epoch": 2.693185322232501, + "grad_norm": 0.09005532413721085, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 26202 + }, + { + "epoch": 2.6934936786925685, + "grad_norm": 0.08124802261590958, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 26205 + }, + { + "epoch": 2.6938020351526366, + "grad_norm": 0.06238120049238205, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 26208 + }, + { + "epoch": 2.6941103916127043, + "grad_norm": 0.0375673770904541, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 26211 + }, + { + "epoch": 2.6944187480727724, + "grad_norm": 0.04710889235138893, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 26214 + }, + { + "epoch": 2.69472710453284, + "grad_norm": 0.0509529784321785, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 26217 + }, + { + "epoch": 2.6950354609929077, + "grad_norm": 0.043452613055706024, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 26220 + }, + { + "epoch": 2.695343817452976, + "grad_norm": 0.07350075244903564, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 26223 + }, + { + "epoch": 2.6956521739130435, + "grad_norm": 0.07672197371721268, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 26226 + }, + { + "epoch": 2.695960530373111, + "grad_norm": 0.1255597323179245, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 26229 + }, + { + "epoch": 2.6962688868331792, + "grad_norm": 0.0636356994509697, + "learning_rate": 0.01, + "loss": 2.0438, + "step": 26232 + }, + { + "epoch": 2.696577243293247, + "grad_norm": 0.06334753334522247, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 26235 + }, + { + "epoch": 2.696885599753315, + "grad_norm": 0.0592232346534729, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 26238 + }, + { + "epoch": 2.6971939562133826, + "grad_norm": 0.06983037292957306, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 26241 + }, + { + "epoch": 2.6975023126734508, + "grad_norm": 0.042423997074365616, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 26244 + }, + { + "epoch": 2.6978106691335184, + "grad_norm": 0.12152963131666183, + "learning_rate": 0.01, + "loss": 2.026, + "step": 26247 + }, + { + "epoch": 2.698119025593586, + "grad_norm": 0.03922561556100845, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 26250 + }, + { + "epoch": 2.698427382053654, + "grad_norm": 0.04790705442428589, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 26253 + }, + { + "epoch": 2.698735738513722, + "grad_norm": 0.0596231147646904, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 26256 + }, + { + "epoch": 2.6990440949737895, + "grad_norm": 0.06809087842702866, + "learning_rate": 0.01, + "loss": 2.001, + "step": 26259 + }, + { + "epoch": 2.6993524514338576, + "grad_norm": 0.08235184103250504, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 26262 + }, + { + "epoch": 2.6996608078939253, + "grad_norm": 0.07293444871902466, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 26265 + }, + { + "epoch": 2.6999691643539934, + "grad_norm": 0.04277535527944565, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 26268 + }, + { + "epoch": 2.700277520814061, + "grad_norm": 0.10841301828622818, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 26271 + }, + { + "epoch": 2.700585877274129, + "grad_norm": 0.04575572907924652, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 26274 + }, + { + "epoch": 2.700894233734197, + "grad_norm": 0.0422062948346138, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 26277 + }, + { + "epoch": 2.7012025901942645, + "grad_norm": 0.034286245703697205, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 26280 + }, + { + "epoch": 2.7015109466543326, + "grad_norm": 0.040598925203084946, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 26283 + }, + { + "epoch": 2.7018193031144, + "grad_norm": 0.20375369489192963, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 26286 + }, + { + "epoch": 2.702127659574468, + "grad_norm": 0.1908276230096817, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 26289 + }, + { + "epoch": 2.702436016034536, + "grad_norm": 0.06826306879520416, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 26292 + }, + { + "epoch": 2.7027443724946036, + "grad_norm": 0.03917758911848068, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 26295 + }, + { + "epoch": 2.7030527289546717, + "grad_norm": 0.041581716388463974, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 26298 + }, + { + "epoch": 2.7033610854147394, + "grad_norm": 0.03759411349892616, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 26301 + }, + { + "epoch": 2.7036694418748075, + "grad_norm": 0.043274398893117905, + "learning_rate": 0.01, + "loss": 2.025, + "step": 26304 + }, + { + "epoch": 2.703977798334875, + "grad_norm": 0.03156547620892525, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 26307 + }, + { + "epoch": 2.704286154794943, + "grad_norm": 0.042134515941143036, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 26310 + }, + { + "epoch": 2.704594511255011, + "grad_norm": 0.15473207831382751, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 26313 + }, + { + "epoch": 2.7049028677150786, + "grad_norm": 0.16576655209064484, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 26316 + }, + { + "epoch": 2.7052112241751463, + "grad_norm": 0.2106962651014328, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 26319 + }, + { + "epoch": 2.7055195806352144, + "grad_norm": 0.06543057411909103, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 26322 + }, + { + "epoch": 2.705827937095282, + "grad_norm": 0.05747131630778313, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 26325 + }, + { + "epoch": 2.70613629355535, + "grad_norm": 0.03801654651761055, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 26328 + }, + { + "epoch": 2.706444650015418, + "grad_norm": 0.047034505754709244, + "learning_rate": 0.01, + "loss": 2.0524, + "step": 26331 + }, + { + "epoch": 2.706753006475486, + "grad_norm": 0.03980104252696037, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 26334 + }, + { + "epoch": 2.7070613629355536, + "grad_norm": 0.04470902681350708, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 26337 + }, + { + "epoch": 2.707369719395621, + "grad_norm": 0.03287111967802048, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 26340 + }, + { + "epoch": 2.7076780758556893, + "grad_norm": 0.04395715892314911, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 26343 + }, + { + "epoch": 2.707986432315757, + "grad_norm": 0.06358876079320908, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 26346 + }, + { + "epoch": 2.7082947887758246, + "grad_norm": 0.03925269469618797, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 26349 + }, + { + "epoch": 2.7086031452358927, + "grad_norm": 0.16810861229896545, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 26352 + }, + { + "epoch": 2.7089115016959604, + "grad_norm": 0.09612049907445908, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 26355 + }, + { + "epoch": 2.7092198581560285, + "grad_norm": 0.048840370029211044, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 26358 + }, + { + "epoch": 2.709528214616096, + "grad_norm": 0.03775126487016678, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 26361 + }, + { + "epoch": 2.7098365710761643, + "grad_norm": 0.04588973522186279, + "learning_rate": 0.01, + "loss": 2.031, + "step": 26364 + }, + { + "epoch": 2.710144927536232, + "grad_norm": 0.061829451471567154, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 26367 + }, + { + "epoch": 2.7104532839962996, + "grad_norm": 0.053572434931993484, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 26370 + }, + { + "epoch": 2.7107616404563677, + "grad_norm": 0.0460902638733387, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 26373 + }, + { + "epoch": 2.7110699969164354, + "grad_norm": 0.07622378319501877, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 26376 + }, + { + "epoch": 2.711378353376503, + "grad_norm": 0.04137422889471054, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 26379 + }, + { + "epoch": 2.711686709836571, + "grad_norm": 0.052519541233778, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 26382 + }, + { + "epoch": 2.711995066296639, + "grad_norm": 0.13548482954502106, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 26385 + }, + { + "epoch": 2.712303422756707, + "grad_norm": 0.05124654993414879, + "learning_rate": 0.01, + "loss": 2.02, + "step": 26388 + }, + { + "epoch": 2.7126117792167745, + "grad_norm": 0.04233216866850853, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 26391 + }, + { + "epoch": 2.7129201356768426, + "grad_norm": 0.04341414198279381, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 26394 + }, + { + "epoch": 2.7132284921369103, + "grad_norm": 0.078862264752388, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 26397 + }, + { + "epoch": 2.713536848596978, + "grad_norm": 0.08351139724254608, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 26400 + }, + { + "epoch": 2.713845205057046, + "grad_norm": 0.10899659991264343, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 26403 + }, + { + "epoch": 2.7141535615171137, + "grad_norm": 0.11437533795833588, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 26406 + }, + { + "epoch": 2.7144619179771814, + "grad_norm": 0.04197553172707558, + "learning_rate": 0.01, + "loss": 2.01, + "step": 26409 + }, + { + "epoch": 2.7147702744372495, + "grad_norm": 0.054637305438518524, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 26412 + }, + { + "epoch": 2.715078630897317, + "grad_norm": 0.058579228818416595, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 26415 + }, + { + "epoch": 2.7153869873573853, + "grad_norm": 0.03501029685139656, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 26418 + }, + { + "epoch": 2.715695343817453, + "grad_norm": 0.04865582287311554, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 26421 + }, + { + "epoch": 2.716003700277521, + "grad_norm": 0.08878735452890396, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 26424 + }, + { + "epoch": 2.7163120567375887, + "grad_norm": 0.06919421255588531, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 26427 + }, + { + "epoch": 2.7166204131976563, + "grad_norm": 0.05429752171039581, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 26430 + }, + { + "epoch": 2.7169287696577245, + "grad_norm": 0.10294333100318909, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 26433 + }, + { + "epoch": 2.717237126117792, + "grad_norm": 0.0625937432050705, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 26436 + }, + { + "epoch": 2.7175454825778598, + "grad_norm": 0.048780061304569244, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 26439 + }, + { + "epoch": 2.717853839037928, + "grad_norm": 0.03840133175253868, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 26442 + }, + { + "epoch": 2.7181621954979955, + "grad_norm": 0.04021105915307999, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 26445 + }, + { + "epoch": 2.7184705519580636, + "grad_norm": 0.04241623356938362, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 26448 + }, + { + "epoch": 2.7187789084181313, + "grad_norm": 0.04488721489906311, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 26451 + }, + { + "epoch": 2.7190872648781994, + "grad_norm": 0.09730737656354904, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 26454 + }, + { + "epoch": 2.719395621338267, + "grad_norm": 0.05743822455406189, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 26457 + }, + { + "epoch": 2.7197039777983347, + "grad_norm": 0.042568083852529526, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 26460 + }, + { + "epoch": 2.720012334258403, + "grad_norm": 0.050452932715415955, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 26463 + }, + { + "epoch": 2.7203206907184705, + "grad_norm": 0.04751294478774071, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 26466 + }, + { + "epoch": 2.720629047178538, + "grad_norm": 0.12711678445339203, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 26469 + }, + { + "epoch": 2.7209374036386063, + "grad_norm": 0.043656837195158005, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 26472 + }, + { + "epoch": 2.721245760098674, + "grad_norm": 0.061641763895750046, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 26475 + }, + { + "epoch": 2.721554116558742, + "grad_norm": 0.04843028262257576, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 26478 + }, + { + "epoch": 2.7218624730188097, + "grad_norm": 0.05009736493229866, + "learning_rate": 0.01, + "loss": 2.025, + "step": 26481 + }, + { + "epoch": 2.722170829478878, + "grad_norm": 0.0330355204641819, + "learning_rate": 0.01, + "loss": 2.038, + "step": 26484 + }, + { + "epoch": 2.7224791859389454, + "grad_norm": 0.05958884581923485, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 26487 + }, + { + "epoch": 2.722787542399013, + "grad_norm": 0.10207222402095795, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 26490 + }, + { + "epoch": 2.723095898859081, + "grad_norm": 0.06909897923469543, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 26493 + }, + { + "epoch": 2.723404255319149, + "grad_norm": 0.09485501050949097, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 26496 + }, + { + "epoch": 2.7237126117792165, + "grad_norm": 0.0501030869781971, + "learning_rate": 0.01, + "loss": 2.03, + "step": 26499 + }, + { + "epoch": 2.7240209682392846, + "grad_norm": 0.07009368389844894, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 26502 + }, + { + "epoch": 2.7243293246993523, + "grad_norm": 0.0766390711069107, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 26505 + }, + { + "epoch": 2.7246376811594204, + "grad_norm": 0.050900235772132874, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 26508 + }, + { + "epoch": 2.724946037619488, + "grad_norm": 0.043463658541440964, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 26511 + }, + { + "epoch": 2.725254394079556, + "grad_norm": 0.07331634312868118, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 26514 + }, + { + "epoch": 2.725562750539624, + "grad_norm": 0.06863999366760254, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 26517 + }, + { + "epoch": 2.7258711069996915, + "grad_norm": 0.12374615669250488, + "learning_rate": 0.01, + "loss": 2.019, + "step": 26520 + }, + { + "epoch": 2.7261794634597596, + "grad_norm": 0.05284014344215393, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 26523 + }, + { + "epoch": 2.7264878199198272, + "grad_norm": 0.07776612043380737, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 26526 + }, + { + "epoch": 2.726796176379895, + "grad_norm": 0.0325651615858078, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 26529 + }, + { + "epoch": 2.727104532839963, + "grad_norm": 0.03690047189593315, + "learning_rate": 0.01, + "loss": 2.029, + "step": 26532 + }, + { + "epoch": 2.7274128893000307, + "grad_norm": 0.12211088836193085, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 26535 + }, + { + "epoch": 2.727721245760099, + "grad_norm": 0.05561113730072975, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 26538 + }, + { + "epoch": 2.7280296022201664, + "grad_norm": 0.05541878193616867, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 26541 + }, + { + "epoch": 2.7283379586802345, + "grad_norm": 0.037987880408763885, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 26544 + }, + { + "epoch": 2.728646315140302, + "grad_norm": 0.0748986229300499, + "learning_rate": 0.01, + "loss": 2.039, + "step": 26547 + }, + { + "epoch": 2.72895467160037, + "grad_norm": 0.05377615988254547, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 26550 + }, + { + "epoch": 2.729263028060438, + "grad_norm": 0.11756724119186401, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 26553 + }, + { + "epoch": 2.7295713845205056, + "grad_norm": 0.046288661658763885, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 26556 + }, + { + "epoch": 2.7298797409805733, + "grad_norm": 0.041496362537145615, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 26559 + }, + { + "epoch": 2.7301880974406414, + "grad_norm": 0.036013491451740265, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 26562 + }, + { + "epoch": 2.7304964539007095, + "grad_norm": 0.044654857367277145, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 26565 + }, + { + "epoch": 2.730804810360777, + "grad_norm": 0.10827535390853882, + "learning_rate": 0.01, + "loss": 2.037, + "step": 26568 + }, + { + "epoch": 2.731113166820845, + "grad_norm": 0.053766943514347076, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 26571 + }, + { + "epoch": 2.731421523280913, + "grad_norm": 0.10854397714138031, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 26574 + }, + { + "epoch": 2.7317298797409806, + "grad_norm": 0.10521306842565536, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 26577 + }, + { + "epoch": 2.7320382362010482, + "grad_norm": 0.06532178819179535, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 26580 + }, + { + "epoch": 2.7323465926611163, + "grad_norm": 0.06266357749700546, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 26583 + }, + { + "epoch": 2.732654949121184, + "grad_norm": 0.04027451574802399, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 26586 + }, + { + "epoch": 2.7329633055812517, + "grad_norm": 0.06135137006640434, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 26589 + }, + { + "epoch": 2.7332716620413198, + "grad_norm": 0.08157611638307571, + "learning_rate": 0.01, + "loss": 2.041, + "step": 26592 + }, + { + "epoch": 2.733580018501388, + "grad_norm": 0.060507632791996, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 26595 + }, + { + "epoch": 2.7338883749614555, + "grad_norm": 0.07385814189910889, + "learning_rate": 0.01, + "loss": 2.0496, + "step": 26598 + }, + { + "epoch": 2.734196731421523, + "grad_norm": 0.12423606961965561, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 26601 + }, + { + "epoch": 2.7345050878815913, + "grad_norm": 0.09299054741859436, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 26604 + }, + { + "epoch": 2.734813444341659, + "grad_norm": 0.07102067768573761, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 26607 + }, + { + "epoch": 2.7351218008017266, + "grad_norm": 0.036449629813432693, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 26610 + }, + { + "epoch": 2.7354301572617947, + "grad_norm": 0.11397985368967056, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 26613 + }, + { + "epoch": 2.7357385137218624, + "grad_norm": 0.0781063437461853, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 26616 + }, + { + "epoch": 2.73604687018193, + "grad_norm": 0.05996118485927582, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 26619 + }, + { + "epoch": 2.736355226641998, + "grad_norm": 0.05300947278738022, + "learning_rate": 0.01, + "loss": 2.032, + "step": 26622 + }, + { + "epoch": 2.7366635831020663, + "grad_norm": 0.048238106071949005, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 26625 + }, + { + "epoch": 2.736971939562134, + "grad_norm": 0.09588511288166046, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 26628 + }, + { + "epoch": 2.7372802960222016, + "grad_norm": 0.04981528967618942, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 26631 + }, + { + "epoch": 2.7375886524822697, + "grad_norm": 0.06809774041175842, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 26634 + }, + { + "epoch": 2.7378970089423373, + "grad_norm": 0.08924854546785355, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 26637 + }, + { + "epoch": 2.738205365402405, + "grad_norm": 0.06717575341463089, + "learning_rate": 0.01, + "loss": 2.039, + "step": 26640 + }, + { + "epoch": 2.738513721862473, + "grad_norm": 0.08358625322580338, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 26643 + }, + { + "epoch": 2.7388220783225408, + "grad_norm": 0.14468573033809662, + "learning_rate": 0.01, + "loss": 2.014, + "step": 26646 + }, + { + "epoch": 2.7391304347826084, + "grad_norm": 0.0533704049885273, + "learning_rate": 0.01, + "loss": 2.0268, + "step": 26649 + }, + { + "epoch": 2.7394387912426765, + "grad_norm": 0.052842382341623306, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 26652 + }, + { + "epoch": 2.7397471477027446, + "grad_norm": 0.04230334609746933, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 26655 + }, + { + "epoch": 2.7400555041628123, + "grad_norm": 0.1004776731133461, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 26658 + }, + { + "epoch": 2.74036386062288, + "grad_norm": 0.03724560886621475, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 26661 + }, + { + "epoch": 2.740672217082948, + "grad_norm": 0.04997468739748001, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 26664 + }, + { + "epoch": 2.7409805735430157, + "grad_norm": 0.08138549327850342, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 26667 + }, + { + "epoch": 2.7412889300030834, + "grad_norm": 0.06195824220776558, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 26670 + }, + { + "epoch": 2.7415972864631515, + "grad_norm": 0.07340802997350693, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 26673 + }, + { + "epoch": 2.741905642923219, + "grad_norm": 0.09338308125734329, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 26676 + }, + { + "epoch": 2.742213999383287, + "grad_norm": 0.03742242231965065, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 26679 + }, + { + "epoch": 2.742522355843355, + "grad_norm": 0.04461616277694702, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 26682 + }, + { + "epoch": 2.742830712303423, + "grad_norm": 0.062195319682359695, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 26685 + }, + { + "epoch": 2.7431390687634907, + "grad_norm": 0.12009324878454208, + "learning_rate": 0.01, + "loss": 2.003, + "step": 26688 + }, + { + "epoch": 2.7434474252235583, + "grad_norm": 0.04727381840348244, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 26691 + }, + { + "epoch": 2.7437557816836264, + "grad_norm": 0.05080636590719223, + "learning_rate": 0.01, + "loss": 2.033, + "step": 26694 + }, + { + "epoch": 2.744064138143694, + "grad_norm": 0.11046820133924484, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 26697 + }, + { + "epoch": 2.7443724946037618, + "grad_norm": 0.06709396839141846, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 26700 + }, + { + "epoch": 2.74468085106383, + "grad_norm": 0.05088644102215767, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 26703 + }, + { + "epoch": 2.7449892075238975, + "grad_norm": 0.06446198374032974, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 26706 + }, + { + "epoch": 2.7452975639839656, + "grad_norm": 0.07209669798612595, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 26709 + }, + { + "epoch": 2.7456059204440333, + "grad_norm": 0.0958387553691864, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 26712 + }, + { + "epoch": 2.7459142769041014, + "grad_norm": 0.04666278511285782, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 26715 + }, + { + "epoch": 2.746222633364169, + "grad_norm": 0.0713481456041336, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 26718 + }, + { + "epoch": 2.7465309898242367, + "grad_norm": 0.060584791004657745, + "learning_rate": 0.01, + "loss": 1.999, + "step": 26721 + }, + { + "epoch": 2.746839346284305, + "grad_norm": 0.08711333572864532, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 26724 + }, + { + "epoch": 2.7471477027443725, + "grad_norm": 0.04297727718949318, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 26727 + }, + { + "epoch": 2.74745605920444, + "grad_norm": 0.06777355074882507, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 26730 + }, + { + "epoch": 2.7477644156645082, + "grad_norm": 0.05725346878170967, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 26733 + }, + { + "epoch": 2.748072772124576, + "grad_norm": 0.0601140521466732, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 26736 + }, + { + "epoch": 2.748381128584644, + "grad_norm": 0.04107888415455818, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 26739 + }, + { + "epoch": 2.7486894850447117, + "grad_norm": 0.03484128415584564, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 26742 + }, + { + "epoch": 2.7489978415047798, + "grad_norm": 0.05098375305533409, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 26745 + }, + { + "epoch": 2.7493061979648474, + "grad_norm": 0.1751684993505478, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 26748 + }, + { + "epoch": 2.749614554424915, + "grad_norm": 0.09155084937810898, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 26751 + }, + { + "epoch": 2.749922910884983, + "grad_norm": 0.05078737810254097, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 26754 + }, + { + "epoch": 2.750231267345051, + "grad_norm": 0.03406425565481186, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 26757 + }, + { + "epoch": 2.7505396238051185, + "grad_norm": 0.07126470655202866, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 26760 + }, + { + "epoch": 2.7508479802651866, + "grad_norm": 0.05165224149823189, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 26763 + }, + { + "epoch": 2.7511563367252543, + "grad_norm": 0.04024217650294304, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 26766 + }, + { + "epoch": 2.7514646931853224, + "grad_norm": 0.05387435853481293, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 26769 + }, + { + "epoch": 2.75177304964539, + "grad_norm": 0.11387746036052704, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 26772 + }, + { + "epoch": 2.752081406105458, + "grad_norm": 0.06504768133163452, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 26775 + }, + { + "epoch": 2.752389762565526, + "grad_norm": 0.07217580825090408, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 26778 + }, + { + "epoch": 2.7526981190255935, + "grad_norm": 0.07751470804214478, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 26781 + }, + { + "epoch": 2.7530064754856616, + "grad_norm": 0.06282947957515717, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 26784 + }, + { + "epoch": 2.7533148319457292, + "grad_norm": 0.04301406815648079, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 26787 + }, + { + "epoch": 2.753623188405797, + "grad_norm": 0.06154756247997284, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 26790 + }, + { + "epoch": 2.753931544865865, + "grad_norm": 0.04729504510760307, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 26793 + }, + { + "epoch": 2.7542399013259327, + "grad_norm": 0.06597118079662323, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 26796 + }, + { + "epoch": 2.7545482577860008, + "grad_norm": 0.050065554678440094, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 26799 + }, + { + "epoch": 2.7548566142460684, + "grad_norm": 0.048531875014305115, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 26802 + }, + { + "epoch": 2.7551649707061365, + "grad_norm": 0.04954374581575394, + "learning_rate": 0.01, + "loss": 2.007, + "step": 26805 + }, + { + "epoch": 2.755473327166204, + "grad_norm": 0.06998781114816666, + "learning_rate": 0.01, + "loss": 2.0537, + "step": 26808 + }, + { + "epoch": 2.755781683626272, + "grad_norm": 0.08933461457490921, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 26811 + }, + { + "epoch": 2.75609004008634, + "grad_norm": 0.06067082658410072, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 26814 + }, + { + "epoch": 2.7563983965464076, + "grad_norm": 0.07710520923137665, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 26817 + }, + { + "epoch": 2.7567067530064753, + "grad_norm": 0.05703970044851303, + "learning_rate": 0.01, + "loss": 2.0505, + "step": 26820 + }, + { + "epoch": 2.7570151094665434, + "grad_norm": 0.1251015067100525, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 26823 + }, + { + "epoch": 2.757323465926611, + "grad_norm": 0.05942771956324577, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 26826 + }, + { + "epoch": 2.757631822386679, + "grad_norm": 0.03195277228951454, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 26829 + }, + { + "epoch": 2.757940178846747, + "grad_norm": 0.03609882667660713, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 26832 + }, + { + "epoch": 2.758248535306815, + "grad_norm": 0.04004659876227379, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 26835 + }, + { + "epoch": 2.7585568917668826, + "grad_norm": 0.06475567817687988, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 26838 + }, + { + "epoch": 2.7588652482269502, + "grad_norm": 0.04894067347049713, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 26841 + }, + { + "epoch": 2.7591736046870183, + "grad_norm": 0.11116486042737961, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 26844 + }, + { + "epoch": 2.759481961147086, + "grad_norm": 0.0832393690943718, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 26847 + }, + { + "epoch": 2.7597903176071537, + "grad_norm": 0.06433276832103729, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 26850 + }, + { + "epoch": 2.7600986740672218, + "grad_norm": 0.06255584210157394, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 26853 + }, + { + "epoch": 2.7604070305272894, + "grad_norm": 0.06610293686389923, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 26856 + }, + { + "epoch": 2.7607153869873575, + "grad_norm": 0.048567045480012894, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 26859 + }, + { + "epoch": 2.761023743447425, + "grad_norm": 0.06945166736841202, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 26862 + }, + { + "epoch": 2.7613320999074933, + "grad_norm": 0.07567547261714935, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 26865 + }, + { + "epoch": 2.761640456367561, + "grad_norm": 0.09087162464857101, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 26868 + }, + { + "epoch": 2.7619488128276286, + "grad_norm": 0.07904476672410965, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 26871 + }, + { + "epoch": 2.7622571692876967, + "grad_norm": 0.08835271000862122, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 26874 + }, + { + "epoch": 2.7625655257477644, + "grad_norm": 0.042680736631155014, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 26877 + }, + { + "epoch": 2.762873882207832, + "grad_norm": 0.034312695264816284, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 26880 + }, + { + "epoch": 2.7631822386679, + "grad_norm": 0.04073645919561386, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 26883 + }, + { + "epoch": 2.763490595127968, + "grad_norm": 0.11242496222257614, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 26886 + }, + { + "epoch": 2.763798951588036, + "grad_norm": 0.048365022987127304, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 26889 + }, + { + "epoch": 2.7641073080481036, + "grad_norm": 0.06508596241474152, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 26892 + }, + { + "epoch": 2.7644156645081717, + "grad_norm": 0.08372494578361511, + "learning_rate": 0.01, + "loss": 2.024, + "step": 26895 + }, + { + "epoch": 2.7647240209682393, + "grad_norm": 0.08499015122652054, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 26898 + }, + { + "epoch": 2.765032377428307, + "grad_norm": 0.08214948326349258, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 26901 + }, + { + "epoch": 2.765340733888375, + "grad_norm": 0.0902111828327179, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 26904 + }, + { + "epoch": 2.7656490903484428, + "grad_norm": 0.0556274875998497, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 26907 + }, + { + "epoch": 2.7659574468085104, + "grad_norm": 0.06845957040786743, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 26910 + }, + { + "epoch": 2.7662658032685785, + "grad_norm": 0.051283106207847595, + "learning_rate": 0.01, + "loss": 2.009, + "step": 26913 + }, + { + "epoch": 2.766574159728646, + "grad_norm": 0.03301118686795235, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 26916 + }, + { + "epoch": 2.7668825161887143, + "grad_norm": 0.05253078415989876, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 26919 + }, + { + "epoch": 2.767190872648782, + "grad_norm": 0.1089513972401619, + "learning_rate": 0.01, + "loss": 2.044, + "step": 26922 + }, + { + "epoch": 2.76749922910885, + "grad_norm": 0.06042607128620148, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 26925 + }, + { + "epoch": 2.7678075855689177, + "grad_norm": 0.09722250699996948, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 26928 + }, + { + "epoch": 2.7681159420289854, + "grad_norm": 0.04542861133813858, + "learning_rate": 0.01, + "loss": 2.0, + "step": 26931 + }, + { + "epoch": 2.7684242984890535, + "grad_norm": 0.14705310761928558, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 26934 + }, + { + "epoch": 2.768732654949121, + "grad_norm": 0.03334478661417961, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 26937 + }, + { + "epoch": 2.769041011409189, + "grad_norm": 0.054583244025707245, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 26940 + }, + { + "epoch": 2.769349367869257, + "grad_norm": 0.03972140699625015, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 26943 + }, + { + "epoch": 2.7696577243293246, + "grad_norm": 0.04227004200220108, + "learning_rate": 0.01, + "loss": 2.052, + "step": 26946 + }, + { + "epoch": 2.7699660807893927, + "grad_norm": 0.035285089164972305, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 26949 + }, + { + "epoch": 2.7702744372494603, + "grad_norm": 0.08037975430488586, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 26952 + }, + { + "epoch": 2.7705827937095284, + "grad_norm": 0.06296487152576447, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 26955 + }, + { + "epoch": 2.770891150169596, + "grad_norm": 0.08724946528673172, + "learning_rate": 0.01, + "loss": 2.0515, + "step": 26958 + }, + { + "epoch": 2.7711995066296637, + "grad_norm": 0.06455433368682861, + "learning_rate": 0.01, + "loss": 2.0573, + "step": 26961 + }, + { + "epoch": 2.771507863089732, + "grad_norm": 0.07615622133016586, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 26964 + }, + { + "epoch": 2.7718162195497995, + "grad_norm": 0.06695935130119324, + "learning_rate": 0.01, + "loss": 2.031, + "step": 26967 + }, + { + "epoch": 2.772124576009867, + "grad_norm": 0.04257410392165184, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 26970 + }, + { + "epoch": 2.7724329324699353, + "grad_norm": 0.1329718828201294, + "learning_rate": 0.01, + "loss": 2.014, + "step": 26973 + }, + { + "epoch": 2.772741288930003, + "grad_norm": 0.06937066465616226, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 26976 + }, + { + "epoch": 2.773049645390071, + "grad_norm": 0.07017137110233307, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 26979 + }, + { + "epoch": 2.7733580018501387, + "grad_norm": 0.03589661046862602, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 26982 + }, + { + "epoch": 2.773666358310207, + "grad_norm": 0.04110831022262573, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 26985 + }, + { + "epoch": 2.7739747147702745, + "grad_norm": 0.06182010471820831, + "learning_rate": 0.01, + "loss": 2.029, + "step": 26988 + }, + { + "epoch": 2.774283071230342, + "grad_norm": 0.08161917328834534, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 26991 + }, + { + "epoch": 2.7745914276904102, + "grad_norm": 0.05832149460911751, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 26994 + }, + { + "epoch": 2.774899784150478, + "grad_norm": 0.08298707008361816, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 26997 + }, + { + "epoch": 2.7752081406105455, + "grad_norm": 0.04794152081012726, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 27000 + }, + { + "epoch": 2.7755164970706137, + "grad_norm": 0.04620853811502457, + "learning_rate": 0.01, + "loss": 2.029, + "step": 27003 + }, + { + "epoch": 2.7758248535306813, + "grad_norm": 0.045553676784038544, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 27006 + }, + { + "epoch": 2.7761332099907494, + "grad_norm": 0.058516908437013626, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 27009 + }, + { + "epoch": 2.776441566450817, + "grad_norm": 0.05661854147911072, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 27012 + }, + { + "epoch": 2.776749922910885, + "grad_norm": 0.05626550316810608, + "learning_rate": 0.01, + "loss": 2.016, + "step": 27015 + }, + { + "epoch": 2.777058279370953, + "grad_norm": 0.08505663275718689, + "learning_rate": 0.01, + "loss": 2.014, + "step": 27018 + }, + { + "epoch": 2.7773666358310205, + "grad_norm": 0.08449403196573257, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 27021 + }, + { + "epoch": 2.7776749922910886, + "grad_norm": 0.08090987801551819, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 27024 + }, + { + "epoch": 2.7779833487511563, + "grad_norm": 0.03180038183927536, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 27027 + }, + { + "epoch": 2.778291705211224, + "grad_norm": 0.03052234649658203, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 27030 + }, + { + "epoch": 2.778600061671292, + "grad_norm": 0.07030376046895981, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 27033 + }, + { + "epoch": 2.7789084181313597, + "grad_norm": 0.1097898781299591, + "learning_rate": 0.01, + "loss": 2.016, + "step": 27036 + }, + { + "epoch": 2.779216774591428, + "grad_norm": 0.10938852280378342, + "learning_rate": 0.01, + "loss": 2.0358, + "step": 27039 + }, + { + "epoch": 2.7795251310514955, + "grad_norm": 0.17036540806293488, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 27042 + }, + { + "epoch": 2.7798334875115636, + "grad_norm": 0.07512038946151733, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 27045 + }, + { + "epoch": 2.780141843971631, + "grad_norm": 0.03864987567067146, + "learning_rate": 0.01, + "loss": 1.993, + "step": 27048 + }, + { + "epoch": 2.780450200431699, + "grad_norm": 0.07508687674999237, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 27051 + }, + { + "epoch": 2.780758556891767, + "grad_norm": 0.03866630047559738, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 27054 + }, + { + "epoch": 2.7810669133518346, + "grad_norm": 0.044196490198373795, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 27057 + }, + { + "epoch": 2.7813752698119023, + "grad_norm": 0.03751998767256737, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 27060 + }, + { + "epoch": 2.7816836262719704, + "grad_norm": 0.04259081184864044, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 27063 + }, + { + "epoch": 2.781991982732038, + "grad_norm": 0.04910355806350708, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 27066 + }, + { + "epoch": 2.782300339192106, + "grad_norm": 0.07969753444194794, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 27069 + }, + { + "epoch": 2.782608695652174, + "grad_norm": 0.04511536657810211, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 27072 + }, + { + "epoch": 2.782917052112242, + "grad_norm": 0.03906785696744919, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 27075 + }, + { + "epoch": 2.7832254085723096, + "grad_norm": 0.045391857624053955, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 27078 + }, + { + "epoch": 2.7835337650323773, + "grad_norm": 0.04607332870364189, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 27081 + }, + { + "epoch": 2.7838421214924454, + "grad_norm": 0.10543697327375412, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 27084 + }, + { + "epoch": 2.784150477952513, + "grad_norm": 0.045777421444654465, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 27087 + }, + { + "epoch": 2.7844588344125807, + "grad_norm": 0.11416932195425034, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 27090 + }, + { + "epoch": 2.784767190872649, + "grad_norm": 0.04630710557103157, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 27093 + }, + { + "epoch": 2.785075547332717, + "grad_norm": 0.1050376445055008, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 27096 + }, + { + "epoch": 2.7853839037927846, + "grad_norm": 0.04592348635196686, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 27099 + }, + { + "epoch": 2.785692260252852, + "grad_norm": 0.058079514652490616, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 27102 + }, + { + "epoch": 2.7860006167129203, + "grad_norm": 0.12133990228176117, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 27105 + }, + { + "epoch": 2.786308973172988, + "grad_norm": 0.09523560851812363, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 27108 + }, + { + "epoch": 2.7866173296330556, + "grad_norm": 0.05585847795009613, + "learning_rate": 0.01, + "loss": 2.0458, + "step": 27111 + }, + { + "epoch": 2.7869256860931237, + "grad_norm": 0.03669681027531624, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 27114 + }, + { + "epoch": 2.7872340425531914, + "grad_norm": 0.05370241776108742, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 27117 + }, + { + "epoch": 2.787542399013259, + "grad_norm": 0.04395952448248863, + "learning_rate": 0.01, + "loss": 1.992, + "step": 27120 + }, + { + "epoch": 2.787850755473327, + "grad_norm": 0.04012378677725792, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 27123 + }, + { + "epoch": 2.7881591119333953, + "grad_norm": 0.08143822848796844, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 27126 + }, + { + "epoch": 2.788467468393463, + "grad_norm": 0.05250631272792816, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 27129 + }, + { + "epoch": 2.7887758248535306, + "grad_norm": 0.09945302456617355, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 27132 + }, + { + "epoch": 2.7890841813135987, + "grad_norm": 0.06001584604382515, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 27135 + }, + { + "epoch": 2.7893925377736664, + "grad_norm": 0.05244366079568863, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 27138 + }, + { + "epoch": 2.789700894233734, + "grad_norm": 0.06054399535059929, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 27141 + }, + { + "epoch": 2.790009250693802, + "grad_norm": 0.10409083217382431, + "learning_rate": 0.01, + "loss": 2.005, + "step": 27144 + }, + { + "epoch": 2.79031760715387, + "grad_norm": 0.06229739263653755, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 27147 + }, + { + "epoch": 2.7906259636139374, + "grad_norm": 0.06340862810611725, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 27150 + }, + { + "epoch": 2.7909343200740055, + "grad_norm": 0.035666175186634064, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 27153 + }, + { + "epoch": 2.7912426765340737, + "grad_norm": 0.043176453560590744, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 27156 + }, + { + "epoch": 2.7915510329941413, + "grad_norm": 0.042664237320423126, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 27159 + }, + { + "epoch": 2.791859389454209, + "grad_norm": 0.08263540267944336, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 27162 + }, + { + "epoch": 2.792167745914277, + "grad_norm": 0.05592063441872597, + "learning_rate": 0.01, + "loss": 2.012, + "step": 27165 + }, + { + "epoch": 2.7924761023743447, + "grad_norm": 0.0740666538476944, + "learning_rate": 0.01, + "loss": 2.0348, + "step": 27168 + }, + { + "epoch": 2.7927844588344124, + "grad_norm": 0.07478248327970505, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 27171 + }, + { + "epoch": 2.7930928152944805, + "grad_norm": 0.08470360189676285, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 27174 + }, + { + "epoch": 2.793401171754548, + "grad_norm": 0.04486660659313202, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 27177 + }, + { + "epoch": 2.793709528214616, + "grad_norm": 0.12479998171329498, + "learning_rate": 0.01, + "loss": 2.005, + "step": 27180 + }, + { + "epoch": 2.794017884674684, + "grad_norm": 0.05652941018342972, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 27183 + }, + { + "epoch": 2.794326241134752, + "grad_norm": 0.054577797651290894, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 27186 + }, + { + "epoch": 2.7946345975948197, + "grad_norm": 0.03588878735899925, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 27189 + }, + { + "epoch": 2.7949429540548874, + "grad_norm": 0.0890214741230011, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 27192 + }, + { + "epoch": 2.7952513105149555, + "grad_norm": 0.0901033952832222, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 27195 + }, + { + "epoch": 2.795559666975023, + "grad_norm": 0.09306314587593079, + "learning_rate": 0.01, + "loss": 2.0337, + "step": 27198 + }, + { + "epoch": 2.7958680234350908, + "grad_norm": 0.07897783815860748, + "learning_rate": 0.01, + "loss": 2.004, + "step": 27201 + }, + { + "epoch": 2.796176379895159, + "grad_norm": 0.08055876195430756, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 27204 + }, + { + "epoch": 2.7964847363552265, + "grad_norm": 0.058927252888679504, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 27207 + }, + { + "epoch": 2.7967930928152946, + "grad_norm": 0.1303315907716751, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 27210 + }, + { + "epoch": 2.7971014492753623, + "grad_norm": 0.08321187645196915, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 27213 + }, + { + "epoch": 2.7974098057354304, + "grad_norm": 0.0715765729546547, + "learning_rate": 0.01, + "loss": 2.02, + "step": 27216 + }, + { + "epoch": 2.797718162195498, + "grad_norm": 0.047501109540462494, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 27219 + }, + { + "epoch": 2.7980265186555657, + "grad_norm": 0.04297725111246109, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 27222 + }, + { + "epoch": 2.798334875115634, + "grad_norm": 0.08612347394227982, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 27225 + }, + { + "epoch": 2.7986432315757015, + "grad_norm": 0.06801822036504745, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 27228 + }, + { + "epoch": 2.798951588035769, + "grad_norm": 0.103379026055336, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 27231 + }, + { + "epoch": 2.7992599444958373, + "grad_norm": 0.040429919958114624, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 27234 + }, + { + "epoch": 2.799568300955905, + "grad_norm": 0.09817671030759811, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 27237 + }, + { + "epoch": 2.799876657415973, + "grad_norm": 0.06191599741578102, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 27240 + }, + { + "epoch": 2.8001850138760407, + "grad_norm": 0.07992551475763321, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 27243 + }, + { + "epoch": 2.800493370336109, + "grad_norm": 0.055606722831726074, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 27246 + }, + { + "epoch": 2.8008017267961764, + "grad_norm": 0.1322477012872696, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 27249 + }, + { + "epoch": 2.801110083256244, + "grad_norm": 0.05603817105293274, + "learning_rate": 0.01, + "loss": 2.039, + "step": 27252 + }, + { + "epoch": 2.801418439716312, + "grad_norm": 0.06935392320156097, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 27255 + }, + { + "epoch": 2.80172679617638, + "grad_norm": 0.04515109956264496, + "learning_rate": 0.01, + "loss": 2.053, + "step": 27258 + }, + { + "epoch": 2.8020351526364475, + "grad_norm": 0.050864629447460175, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 27261 + }, + { + "epoch": 2.8023435090965156, + "grad_norm": 0.038876548409461975, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 27264 + }, + { + "epoch": 2.8026518655565833, + "grad_norm": 0.03906438872218132, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 27267 + }, + { + "epoch": 2.8029602220166514, + "grad_norm": 0.08978519588708878, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 27270 + }, + { + "epoch": 2.803268578476719, + "grad_norm": 0.07353704422712326, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 27273 + }, + { + "epoch": 2.803576934936787, + "grad_norm": 0.0424012616276741, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 27276 + }, + { + "epoch": 2.803885291396855, + "grad_norm": 0.05939796194434166, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 27279 + }, + { + "epoch": 2.8041936478569225, + "grad_norm": 0.06859377771615982, + "learning_rate": 0.01, + "loss": 2.005, + "step": 27282 + }, + { + "epoch": 2.8045020043169906, + "grad_norm": 0.1016155332326889, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 27285 + }, + { + "epoch": 2.8048103607770583, + "grad_norm": 0.05608060583472252, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 27288 + }, + { + "epoch": 2.805118717237126, + "grad_norm": 0.043284934014081955, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 27291 + }, + { + "epoch": 2.805427073697194, + "grad_norm": 0.04967540502548218, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 27294 + }, + { + "epoch": 2.8057354301572617, + "grad_norm": 0.040739741176366806, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 27297 + }, + { + "epoch": 2.80604378661733, + "grad_norm": 0.039170749485492706, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 27300 + }, + { + "epoch": 2.8063521430773974, + "grad_norm": 0.040820952504873276, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 27303 + }, + { + "epoch": 2.8066604995374655, + "grad_norm": 0.07061021775007248, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 27306 + }, + { + "epoch": 2.806968855997533, + "grad_norm": 0.054698627442121506, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 27309 + }, + { + "epoch": 2.807277212457601, + "grad_norm": 0.04737408831715584, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 27312 + }, + { + "epoch": 2.807585568917669, + "grad_norm": 0.11695525050163269, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 27315 + }, + { + "epoch": 2.8078939253777366, + "grad_norm": 0.0921463891863823, + "learning_rate": 0.01, + "loss": 2.039, + "step": 27318 + }, + { + "epoch": 2.8082022818378043, + "grad_norm": 0.03874325007200241, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 27321 + }, + { + "epoch": 2.8085106382978724, + "grad_norm": 0.04040201008319855, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 27324 + }, + { + "epoch": 2.80881899475794, + "grad_norm": 0.035648833960294724, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 27327 + }, + { + "epoch": 2.809127351218008, + "grad_norm": 0.0893108919262886, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 27330 + }, + { + "epoch": 2.809435707678076, + "grad_norm": 0.1203017309308052, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 27333 + }, + { + "epoch": 2.809744064138144, + "grad_norm": 0.045630257576704025, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 27336 + }, + { + "epoch": 2.8100524205982116, + "grad_norm": 0.04097437858581543, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 27339 + }, + { + "epoch": 2.8103607770582792, + "grad_norm": 0.05476262420415878, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 27342 + }, + { + "epoch": 2.8106691335183474, + "grad_norm": 0.05577860027551651, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 27345 + }, + { + "epoch": 2.810977489978415, + "grad_norm": 0.04357774555683136, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 27348 + }, + { + "epoch": 2.8112858464384827, + "grad_norm": 0.04594416916370392, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 27351 + }, + { + "epoch": 2.8115942028985508, + "grad_norm": 0.041454486548900604, + "learning_rate": 0.01, + "loss": 2.014, + "step": 27354 + }, + { + "epoch": 2.8119025593586184, + "grad_norm": 0.05279424414038658, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 27357 + }, + { + "epoch": 2.8122109158186865, + "grad_norm": 0.10371188074350357, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 27360 + }, + { + "epoch": 2.812519272278754, + "grad_norm": 0.053941383957862854, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 27363 + }, + { + "epoch": 2.8128276287388223, + "grad_norm": 0.12082924693822861, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 27366 + }, + { + "epoch": 2.81313598519889, + "grad_norm": 0.11066311597824097, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 27369 + }, + { + "epoch": 2.8134443416589576, + "grad_norm": 0.07547413557767868, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 27372 + }, + { + "epoch": 2.8137526981190257, + "grad_norm": 0.06772000342607498, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 27375 + }, + { + "epoch": 2.8140610545790934, + "grad_norm": 0.03906597942113876, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 27378 + }, + { + "epoch": 2.814369411039161, + "grad_norm": 0.048235367983579636, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 27381 + }, + { + "epoch": 2.814677767499229, + "grad_norm": 0.08060193806886673, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 27384 + }, + { + "epoch": 2.814986123959297, + "grad_norm": 0.06527181714773178, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 27387 + }, + { + "epoch": 2.815294480419365, + "grad_norm": 0.04199523106217384, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 27390 + }, + { + "epoch": 2.8156028368794326, + "grad_norm": 0.07436412572860718, + "learning_rate": 0.01, + "loss": 1.992, + "step": 27393 + }, + { + "epoch": 2.8159111933395007, + "grad_norm": 0.05724874138832092, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 27396 + }, + { + "epoch": 2.8162195497995683, + "grad_norm": 0.03609538823366165, + "learning_rate": 0.01, + "loss": 2.0376, + "step": 27399 + }, + { + "epoch": 2.816527906259636, + "grad_norm": 0.03008181042969227, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 27402 + }, + { + "epoch": 2.816836262719704, + "grad_norm": 0.0635017454624176, + "learning_rate": 0.01, + "loss": 2.0, + "step": 27405 + }, + { + "epoch": 2.8171446191797718, + "grad_norm": 0.07800552248954773, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 27408 + }, + { + "epoch": 2.8174529756398394, + "grad_norm": 0.09289496392011642, + "learning_rate": 0.01, + "loss": 1.991, + "step": 27411 + }, + { + "epoch": 2.8177613320999075, + "grad_norm": 0.0791633352637291, + "learning_rate": 0.01, + "loss": 2.033, + "step": 27414 + }, + { + "epoch": 2.818069688559975, + "grad_norm": 0.06715335696935654, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 27417 + }, + { + "epoch": 2.8183780450200433, + "grad_norm": 0.0814514085650444, + "learning_rate": 0.01, + "loss": 2.025, + "step": 27420 + }, + { + "epoch": 2.818686401480111, + "grad_norm": 0.09124473482370377, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 27423 + }, + { + "epoch": 2.818994757940179, + "grad_norm": 0.03711434826254845, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 27426 + }, + { + "epoch": 2.8193031144002467, + "grad_norm": 0.05914726108312607, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 27429 + }, + { + "epoch": 2.8196114708603144, + "grad_norm": 0.04358556494116783, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 27432 + }, + { + "epoch": 2.8199198273203825, + "grad_norm": 0.1319088488817215, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 27435 + }, + { + "epoch": 2.82022818378045, + "grad_norm": 0.07464331388473511, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 27438 + }, + { + "epoch": 2.820536540240518, + "grad_norm": 0.08253163844347, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 27441 + }, + { + "epoch": 2.820844896700586, + "grad_norm": 0.042612046003341675, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 27444 + }, + { + "epoch": 2.8211532531606536, + "grad_norm": 0.04726095870137215, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 27447 + }, + { + "epoch": 2.8214616096207217, + "grad_norm": 0.06982813775539398, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 27450 + }, + { + "epoch": 2.8217699660807893, + "grad_norm": 0.051457736641168594, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 27453 + }, + { + "epoch": 2.8220783225408574, + "grad_norm": 0.07463426142930984, + "learning_rate": 0.01, + "loss": 2.012, + "step": 27456 + }, + { + "epoch": 2.822386679000925, + "grad_norm": 0.048826638609170914, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 27459 + }, + { + "epoch": 2.8226950354609928, + "grad_norm": 0.05443079397082329, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 27462 + }, + { + "epoch": 2.823003391921061, + "grad_norm": 0.10064379125833511, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 27465 + }, + { + "epoch": 2.8233117483811285, + "grad_norm": 0.0755578950047493, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 27468 + }, + { + "epoch": 2.823620104841196, + "grad_norm": 0.05240621045231819, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 27471 + }, + { + "epoch": 2.8239284613012643, + "grad_norm": 0.08781099319458008, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 27474 + }, + { + "epoch": 2.824236817761332, + "grad_norm": 0.04524267092347145, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 27477 + }, + { + "epoch": 2.8245451742214, + "grad_norm": 0.05119558051228523, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 27480 + }, + { + "epoch": 2.8248535306814677, + "grad_norm": 0.06969384104013443, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 27483 + }, + { + "epoch": 2.825161887141536, + "grad_norm": 0.09887497872114182, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 27486 + }, + { + "epoch": 2.8254702436016035, + "grad_norm": 0.04231324791908264, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 27489 + }, + { + "epoch": 2.825778600061671, + "grad_norm": 0.11022655665874481, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 27492 + }, + { + "epoch": 2.8260869565217392, + "grad_norm": 0.16821467876434326, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 27495 + }, + { + "epoch": 2.826395312981807, + "grad_norm": 0.13946877419948578, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 27498 + }, + { + "epoch": 2.8267036694418746, + "grad_norm": 0.07387804985046387, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 27501 + }, + { + "epoch": 2.8270120259019427, + "grad_norm": 0.06437870115041733, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 27504 + }, + { + "epoch": 2.8273203823620103, + "grad_norm": 0.04310622811317444, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 27507 + }, + { + "epoch": 2.8276287388220784, + "grad_norm": 0.04511455446481705, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 27510 + }, + { + "epoch": 2.827937095282146, + "grad_norm": 0.05232998728752136, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 27513 + }, + { + "epoch": 2.828245451742214, + "grad_norm": 0.03596142679452896, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 27516 + }, + { + "epoch": 2.828553808202282, + "grad_norm": 0.035050373524427414, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 27519 + }, + { + "epoch": 2.8288621646623495, + "grad_norm": 0.03525279834866524, + "learning_rate": 0.01, + "loss": 2.007, + "step": 27522 + }, + { + "epoch": 2.8291705211224176, + "grad_norm": 0.1629800945520401, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 27525 + }, + { + "epoch": 2.8294788775824853, + "grad_norm": 0.06687575578689575, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 27528 + }, + { + "epoch": 2.829787234042553, + "grad_norm": 0.05308271199464798, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 27531 + }, + { + "epoch": 2.830095590502621, + "grad_norm": 0.05350314825773239, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 27534 + }, + { + "epoch": 2.8304039469626887, + "grad_norm": 0.03929050639271736, + "learning_rate": 0.01, + "loss": 2.024, + "step": 27537 + }, + { + "epoch": 2.830712303422757, + "grad_norm": 0.037572652101516724, + "learning_rate": 0.01, + "loss": 2.02, + "step": 27540 + }, + { + "epoch": 2.8310206598828245, + "grad_norm": 0.05316625535488129, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 27543 + }, + { + "epoch": 2.8313290163428926, + "grad_norm": 0.04561341553926468, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 27546 + }, + { + "epoch": 2.8316373728029602, + "grad_norm": 0.055242884904146194, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 27549 + }, + { + "epoch": 2.831945729263028, + "grad_norm": 0.057326629757881165, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 27552 + }, + { + "epoch": 2.832254085723096, + "grad_norm": 0.050966937094926834, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 27555 + }, + { + "epoch": 2.8325624421831637, + "grad_norm": 0.07518629729747772, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 27558 + }, + { + "epoch": 2.8328707986432313, + "grad_norm": 0.10435313731431961, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 27561 + }, + { + "epoch": 2.8331791551032994, + "grad_norm": 0.07228770107030869, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 27564 + }, + { + "epoch": 2.833487511563367, + "grad_norm": 0.06778567284345627, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 27567 + }, + { + "epoch": 2.833795868023435, + "grad_norm": 0.03698448836803436, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 27570 + }, + { + "epoch": 2.834104224483503, + "grad_norm": 0.027820177376270294, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 27573 + }, + { + "epoch": 2.834412580943571, + "grad_norm": 0.07996013760566711, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 27576 + }, + { + "epoch": 2.8347209374036386, + "grad_norm": 0.04629092290997505, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 27579 + }, + { + "epoch": 2.8350292938637063, + "grad_norm": 0.04143141210079193, + "learning_rate": 0.01, + "loss": 2.039, + "step": 27582 + }, + { + "epoch": 2.8353376503237744, + "grad_norm": 0.12624233961105347, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 27585 + }, + { + "epoch": 2.835646006783842, + "grad_norm": 0.1815887838602066, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 27588 + }, + { + "epoch": 2.8359543632439097, + "grad_norm": 0.14360418915748596, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 27591 + }, + { + "epoch": 2.836262719703978, + "grad_norm": 0.10748742520809174, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 27594 + }, + { + "epoch": 2.836571076164046, + "grad_norm": 0.0488545261323452, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 27597 + }, + { + "epoch": 2.8368794326241136, + "grad_norm": 0.03699369728565216, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 27600 + }, + { + "epoch": 2.8371877890841812, + "grad_norm": 0.04813402146100998, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 27603 + }, + { + "epoch": 2.8374961455442493, + "grad_norm": 0.06493838876485825, + "learning_rate": 0.01, + "loss": 2.0502, + "step": 27606 + }, + { + "epoch": 2.837804502004317, + "grad_norm": 0.05451219528913498, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 27609 + }, + { + "epoch": 2.8381128584643847, + "grad_norm": 0.04877667874097824, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 27612 + }, + { + "epoch": 2.8384212149244528, + "grad_norm": 0.05827799066901207, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 27615 + }, + { + "epoch": 2.8387295713845204, + "grad_norm": 0.040546271950006485, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 27618 + }, + { + "epoch": 2.839037927844588, + "grad_norm": 0.03764180466532707, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 27621 + }, + { + "epoch": 2.839346284304656, + "grad_norm": 0.06349320709705353, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 27624 + }, + { + "epoch": 2.8396546407647243, + "grad_norm": 0.07079531252384186, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 27627 + }, + { + "epoch": 2.839962997224792, + "grad_norm": 0.05074724927544594, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 27630 + }, + { + "epoch": 2.8402713536848596, + "grad_norm": 0.10624159872531891, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 27633 + }, + { + "epoch": 2.8405797101449277, + "grad_norm": 0.08726594597101212, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 27636 + }, + { + "epoch": 2.8408880666049954, + "grad_norm": 0.04581126943230629, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 27639 + }, + { + "epoch": 2.841196423065063, + "grad_norm": 0.042876582592725754, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 27642 + }, + { + "epoch": 2.841504779525131, + "grad_norm": 0.03951287642121315, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 27645 + }, + { + "epoch": 2.841813135985199, + "grad_norm": 0.04439757391810417, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 27648 + }, + { + "epoch": 2.8421214924452665, + "grad_norm": 0.05910231173038483, + "learning_rate": 0.01, + "loss": 2.025, + "step": 27651 + }, + { + "epoch": 2.8424298489053346, + "grad_norm": 0.1063590720295906, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 27654 + }, + { + "epoch": 2.8427382053654027, + "grad_norm": 0.042655881494283676, + "learning_rate": 0.01, + "loss": 2.004, + "step": 27657 + }, + { + "epoch": 2.8430465618254703, + "grad_norm": 0.037402208894491196, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 27660 + }, + { + "epoch": 2.843354918285538, + "grad_norm": 0.03912290558218956, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 27663 + }, + { + "epoch": 2.843663274745606, + "grad_norm": 0.1316000372171402, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 27666 + }, + { + "epoch": 2.8439716312056738, + "grad_norm": 0.10243986546993256, + "learning_rate": 0.01, + "loss": 2.0419, + "step": 27669 + }, + { + "epoch": 2.8442799876657414, + "grad_norm": 0.09918151050806046, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 27672 + }, + { + "epoch": 2.8445883441258095, + "grad_norm": 0.0572928749024868, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 27675 + }, + { + "epoch": 2.844896700585877, + "grad_norm": 0.09781496226787567, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 27678 + }, + { + "epoch": 2.845205057045945, + "grad_norm": 0.04969809949398041, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 27681 + }, + { + "epoch": 2.845513413506013, + "grad_norm": 0.0894259363412857, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 27684 + }, + { + "epoch": 2.845821769966081, + "grad_norm": 0.05788953974843025, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 27687 + }, + { + "epoch": 2.8461301264261487, + "grad_norm": 0.07628165185451508, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 27690 + }, + { + "epoch": 2.8464384828862164, + "grad_norm": 0.07799988240003586, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 27693 + }, + { + "epoch": 2.8467468393462845, + "grad_norm": 0.08373581618070602, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 27696 + }, + { + "epoch": 2.847055195806352, + "grad_norm": 0.054138489067554474, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 27699 + }, + { + "epoch": 2.84736355226642, + "grad_norm": 0.03457311540842056, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 27702 + }, + { + "epoch": 2.847671908726488, + "grad_norm": 0.04888417571783066, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 27705 + }, + { + "epoch": 2.8479802651865556, + "grad_norm": 0.09924766421318054, + "learning_rate": 0.01, + "loss": 2.0514, + "step": 27708 + }, + { + "epoch": 2.848288621646623, + "grad_norm": 0.0531487911939621, + "learning_rate": 0.01, + "loss": 2.01, + "step": 27711 + }, + { + "epoch": 2.8485969781066913, + "grad_norm": 0.07373910397291183, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 27714 + }, + { + "epoch": 2.8489053345667594, + "grad_norm": 0.09154459089040756, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 27717 + }, + { + "epoch": 2.849213691026827, + "grad_norm": 0.04007700830698013, + "learning_rate": 0.01, + "loss": 2.0447, + "step": 27720 + }, + { + "epoch": 2.8495220474868947, + "grad_norm": 0.06406736373901367, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 27723 + }, + { + "epoch": 2.849830403946963, + "grad_norm": 0.06983067840337753, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 27726 + }, + { + "epoch": 2.8501387604070305, + "grad_norm": 0.04832616075873375, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 27729 + }, + { + "epoch": 2.850447116867098, + "grad_norm": 0.09404818713665009, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 27732 + }, + { + "epoch": 2.8507554733271663, + "grad_norm": 0.12212470918893814, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 27735 + }, + { + "epoch": 2.851063829787234, + "grad_norm": 0.08778437972068787, + "learning_rate": 0.01, + "loss": 2.0503, + "step": 27738 + }, + { + "epoch": 2.851372186247302, + "grad_norm": 0.08406031876802444, + "learning_rate": 0.01, + "loss": 2.0432, + "step": 27741 + }, + { + "epoch": 2.8516805427073697, + "grad_norm": 0.07672454416751862, + "learning_rate": 0.01, + "loss": 1.999, + "step": 27744 + }, + { + "epoch": 2.851988899167438, + "grad_norm": 0.12199164927005768, + "learning_rate": 0.01, + "loss": 2.011, + "step": 27747 + }, + { + "epoch": 2.8522972556275055, + "grad_norm": 0.05166463926434517, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 27750 + }, + { + "epoch": 2.852605612087573, + "grad_norm": 0.11618038266897202, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 27753 + }, + { + "epoch": 2.8529139685476412, + "grad_norm": 0.06255706399679184, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 27756 + }, + { + "epoch": 2.853222325007709, + "grad_norm": 0.04340292140841484, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 27759 + }, + { + "epoch": 2.8535306814677766, + "grad_norm": 0.06595482677221298, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 27762 + }, + { + "epoch": 2.8538390379278447, + "grad_norm": 0.03980451449751854, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 27765 + }, + { + "epoch": 2.8541473943879123, + "grad_norm": 0.035016849637031555, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 27768 + }, + { + "epoch": 2.8544557508479804, + "grad_norm": 0.07189803570508957, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 27771 + }, + { + "epoch": 2.854764107308048, + "grad_norm": 0.0759616568684578, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 27774 + }, + { + "epoch": 2.855072463768116, + "grad_norm": 0.05985911190509796, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 27777 + }, + { + "epoch": 2.855380820228184, + "grad_norm": 0.0529702752828598, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 27780 + }, + { + "epoch": 2.8556891766882515, + "grad_norm": 0.046540237963199615, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 27783 + }, + { + "epoch": 2.8559975331483196, + "grad_norm": 0.04505128040909767, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 27786 + }, + { + "epoch": 2.8563058896083873, + "grad_norm": 0.041494566947221756, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 27789 + }, + { + "epoch": 2.856614246068455, + "grad_norm": 0.038743190467357635, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 27792 + }, + { + "epoch": 2.856922602528523, + "grad_norm": 0.062206536531448364, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 27795 + }, + { + "epoch": 2.8572309589885907, + "grad_norm": 0.19090187549591064, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 27798 + }, + { + "epoch": 2.857539315448659, + "grad_norm": 0.06649639457464218, + "learning_rate": 0.01, + "loss": 2.016, + "step": 27801 + }, + { + "epoch": 2.8578476719087265, + "grad_norm": 0.07956647872924805, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 27804 + }, + { + "epoch": 2.8581560283687946, + "grad_norm": 0.050361573696136475, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 27807 + }, + { + "epoch": 2.8584643848288622, + "grad_norm": 0.036132823675870895, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 27810 + }, + { + "epoch": 2.85877274128893, + "grad_norm": 0.04948203265666962, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 27813 + }, + { + "epoch": 2.859081097748998, + "grad_norm": 0.07491700351238251, + "learning_rate": 0.01, + "loss": 2.01, + "step": 27816 + }, + { + "epoch": 2.8593894542090657, + "grad_norm": 0.03278898447751999, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 27819 + }, + { + "epoch": 2.8596978106691333, + "grad_norm": 0.04186544567346573, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 27822 + }, + { + "epoch": 2.8600061671292014, + "grad_norm": 0.07123599201440811, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 27825 + }, + { + "epoch": 2.860314523589269, + "grad_norm": 0.038315288722515106, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 27828 + }, + { + "epoch": 2.860622880049337, + "grad_norm": 0.06678714603185654, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 27831 + }, + { + "epoch": 2.860931236509405, + "grad_norm": 0.10680954158306122, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 27834 + }, + { + "epoch": 2.861239592969473, + "grad_norm": 0.13149844110012054, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 27837 + }, + { + "epoch": 2.8615479494295406, + "grad_norm": 0.04700513929128647, + "learning_rate": 0.01, + "loss": 2.0548, + "step": 27840 + }, + { + "epoch": 2.8618563058896083, + "grad_norm": 0.03596799075603485, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 27843 + }, + { + "epoch": 2.8621646623496764, + "grad_norm": 0.042376477271318436, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 27846 + }, + { + "epoch": 2.862473018809744, + "grad_norm": 0.054233819246292114, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 27849 + }, + { + "epoch": 2.8627813752698117, + "grad_norm": 0.04501786455512047, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 27852 + }, + { + "epoch": 2.86308973172988, + "grad_norm": 0.06443289667367935, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 27855 + }, + { + "epoch": 2.8633980881899475, + "grad_norm": 0.05772462114691734, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 27858 + }, + { + "epoch": 2.8637064446500156, + "grad_norm": 0.039729420095682144, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 27861 + }, + { + "epoch": 2.864014801110083, + "grad_norm": 0.1330452859401703, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 27864 + }, + { + "epoch": 2.8643231575701513, + "grad_norm": 0.03952759504318237, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 27867 + }, + { + "epoch": 2.864631514030219, + "grad_norm": 0.05294906720519066, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 27870 + }, + { + "epoch": 2.8649398704902866, + "grad_norm": 0.07945666462182999, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 27873 + }, + { + "epoch": 2.8652482269503547, + "grad_norm": 0.09529011696577072, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 27876 + }, + { + "epoch": 2.8655565834104224, + "grad_norm": 0.038869790732860565, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 27879 + }, + { + "epoch": 2.86586493987049, + "grad_norm": 0.0421532541513443, + "learning_rate": 0.01, + "loss": 2.019, + "step": 27882 + }, + { + "epoch": 2.866173296330558, + "grad_norm": 0.037143412977457047, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 27885 + }, + { + "epoch": 2.866481652790626, + "grad_norm": 0.0359092615544796, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 27888 + }, + { + "epoch": 2.866790009250694, + "grad_norm": 0.04631698876619339, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 27891 + }, + { + "epoch": 2.8670983657107616, + "grad_norm": 0.06015830859541893, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 27894 + }, + { + "epoch": 2.8674067221708297, + "grad_norm": 0.09565176069736481, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 27897 + }, + { + "epoch": 2.8677150786308974, + "grad_norm": 0.05290444567799568, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 27900 + }, + { + "epoch": 2.868023435090965, + "grad_norm": 0.03383943438529968, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 27903 + }, + { + "epoch": 2.868331791551033, + "grad_norm": 0.05390051752328873, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 27906 + }, + { + "epoch": 2.868640148011101, + "grad_norm": 0.08597470074892044, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 27909 + }, + { + "epoch": 2.8689485044711684, + "grad_norm": 0.059518035501241684, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 27912 + }, + { + "epoch": 2.8692568609312366, + "grad_norm": 0.04992047697305679, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 27915 + }, + { + "epoch": 2.869565217391304, + "grad_norm": 0.04728172719478607, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 27918 + }, + { + "epoch": 2.8698735738513723, + "grad_norm": 0.038830891251564026, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 27921 + }, + { + "epoch": 2.87018193031144, + "grad_norm": 0.039699580520391464, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 27924 + }, + { + "epoch": 2.870490286771508, + "grad_norm": 0.10109611600637436, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 27927 + }, + { + "epoch": 2.8707986432315757, + "grad_norm": 0.07930929958820343, + "learning_rate": 0.01, + "loss": 2.0463, + "step": 27930 + }, + { + "epoch": 2.8711069996916434, + "grad_norm": 0.05544453486800194, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 27933 + }, + { + "epoch": 2.8714153561517115, + "grad_norm": 0.11004924774169922, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 27936 + }, + { + "epoch": 2.871723712611779, + "grad_norm": 0.09423034638166428, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 27939 + }, + { + "epoch": 2.872032069071847, + "grad_norm": 0.05001804232597351, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 27942 + }, + { + "epoch": 2.872340425531915, + "grad_norm": 0.04487982019782066, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 27945 + }, + { + "epoch": 2.8726487819919826, + "grad_norm": 0.033674515783786774, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 27948 + }, + { + "epoch": 2.8729571384520507, + "grad_norm": 0.040895912796258926, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 27951 + }, + { + "epoch": 2.8732654949121184, + "grad_norm": 0.03655741363763809, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 27954 + }, + { + "epoch": 2.8735738513721865, + "grad_norm": 0.06042269244790077, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 27957 + }, + { + "epoch": 2.873882207832254, + "grad_norm": 0.0660943016409874, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 27960 + }, + { + "epoch": 2.874190564292322, + "grad_norm": 0.0681222453713417, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 27963 + }, + { + "epoch": 2.87449892075239, + "grad_norm": 0.05666188523173332, + "learning_rate": 0.01, + "loss": 2.022, + "step": 27966 + }, + { + "epoch": 2.8748072772124575, + "grad_norm": 0.09911254048347473, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 27969 + }, + { + "epoch": 2.875115633672525, + "grad_norm": 0.0730089545249939, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 27972 + }, + { + "epoch": 2.8754239901325933, + "grad_norm": 0.05434833839535713, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 27975 + }, + { + "epoch": 2.875732346592661, + "grad_norm": 0.07539419084787369, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 27978 + }, + { + "epoch": 2.876040703052729, + "grad_norm": 0.04300360381603241, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 27981 + }, + { + "epoch": 2.8763490595127967, + "grad_norm": 0.1077357679605484, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 27984 + }, + { + "epoch": 2.876657415972865, + "grad_norm": 0.08229992538690567, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 27987 + }, + { + "epoch": 2.8769657724329325, + "grad_norm": 0.12404177337884903, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 27990 + }, + { + "epoch": 2.877274128893, + "grad_norm": 0.06843412667512894, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 27993 + }, + { + "epoch": 2.8775824853530683, + "grad_norm": 0.09625189751386642, + "learning_rate": 0.01, + "loss": 2.0435, + "step": 27996 + }, + { + "epoch": 2.877890841813136, + "grad_norm": 0.04479416087269783, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 27999 + }, + { + "epoch": 2.8781991982732036, + "grad_norm": 0.04933414235711098, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 28002 + }, + { + "epoch": 2.8785075547332717, + "grad_norm": 0.05558469891548157, + "learning_rate": 0.01, + "loss": 2.03, + "step": 28005 + }, + { + "epoch": 2.8788159111933393, + "grad_norm": 0.04813915863633156, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 28008 + }, + { + "epoch": 2.8791242676534075, + "grad_norm": 0.06402178108692169, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 28011 + }, + { + "epoch": 2.879432624113475, + "grad_norm": 0.03481597453355789, + "learning_rate": 0.01, + "loss": 2.032, + "step": 28014 + }, + { + "epoch": 2.879740980573543, + "grad_norm": 0.03682602196931839, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 28017 + }, + { + "epoch": 2.880049337033611, + "grad_norm": 0.11671306192874908, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 28020 + }, + { + "epoch": 2.8803576934936785, + "grad_norm": 0.051900725811719894, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 28023 + }, + { + "epoch": 2.8806660499537466, + "grad_norm": 0.034372419118881226, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 28026 + }, + { + "epoch": 2.8809744064138143, + "grad_norm": 0.05165507644414902, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 28029 + }, + { + "epoch": 2.881282762873882, + "grad_norm": 0.046683549880981445, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 28032 + }, + { + "epoch": 2.88159111933395, + "grad_norm": 0.04153186455368996, + "learning_rate": 0.01, + "loss": 2.022, + "step": 28035 + }, + { + "epoch": 2.8818994757940177, + "grad_norm": 0.07401791960000992, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 28038 + }, + { + "epoch": 2.882207832254086, + "grad_norm": 0.08125065267086029, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 28041 + }, + { + "epoch": 2.8825161887141535, + "grad_norm": 0.076799176633358, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 28044 + }, + { + "epoch": 2.8828245451742216, + "grad_norm": 0.09814302623271942, + "learning_rate": 0.01, + "loss": 2.028, + "step": 28047 + }, + { + "epoch": 2.8831329016342893, + "grad_norm": 0.06998278200626373, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 28050 + }, + { + "epoch": 2.883441258094357, + "grad_norm": 0.057476770132780075, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 28053 + }, + { + "epoch": 2.883749614554425, + "grad_norm": 0.037239111959934235, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 28056 + }, + { + "epoch": 2.8840579710144927, + "grad_norm": 0.08055179566144943, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 28059 + }, + { + "epoch": 2.8843663274745603, + "grad_norm": 0.07050419598817825, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 28062 + }, + { + "epoch": 2.8846746839346284, + "grad_norm": 0.05187792330980301, + "learning_rate": 0.01, + "loss": 2.004, + "step": 28065 + }, + { + "epoch": 2.884983040394696, + "grad_norm": 0.03746993839740753, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 28068 + }, + { + "epoch": 2.885291396854764, + "grad_norm": 0.09767074137926102, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 28071 + }, + { + "epoch": 2.885599753314832, + "grad_norm": 0.08471439778804779, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 28074 + }, + { + "epoch": 2.8859081097749, + "grad_norm": 0.061311863362789154, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 28077 + }, + { + "epoch": 2.8862164662349676, + "grad_norm": 0.06402043253183365, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 28080 + }, + { + "epoch": 2.8865248226950353, + "grad_norm": 0.06756860762834549, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 28083 + }, + { + "epoch": 2.8868331791551034, + "grad_norm": 0.07851870357990265, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 28086 + }, + { + "epoch": 2.887141535615171, + "grad_norm": 0.08102571219205856, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 28089 + }, + { + "epoch": 2.8874498920752387, + "grad_norm": 0.04745829850435257, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 28092 + }, + { + "epoch": 2.887758248535307, + "grad_norm": 0.04496223106980324, + "learning_rate": 0.01, + "loss": 2.012, + "step": 28095 + }, + { + "epoch": 2.8880666049953745, + "grad_norm": 0.09044700860977173, + "learning_rate": 0.01, + "loss": 2.0354, + "step": 28098 + }, + { + "epoch": 2.8883749614554426, + "grad_norm": 0.05591853708028793, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 28101 + }, + { + "epoch": 2.8886833179155103, + "grad_norm": 0.07982437312602997, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 28104 + }, + { + "epoch": 2.8889916743755784, + "grad_norm": 0.039345480501651764, + "learning_rate": 0.01, + "loss": 1.996, + "step": 28107 + }, + { + "epoch": 2.889300030835646, + "grad_norm": 0.046677373349666595, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 28110 + }, + { + "epoch": 2.8896083872957137, + "grad_norm": 0.060302551835775375, + "learning_rate": 0.01, + "loss": 2.019, + "step": 28113 + }, + { + "epoch": 2.889916743755782, + "grad_norm": 0.09422065317630768, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 28116 + }, + { + "epoch": 2.8902251002158494, + "grad_norm": 0.03713101148605347, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 28119 + }, + { + "epoch": 2.890533456675917, + "grad_norm": 0.062431566417217255, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 28122 + }, + { + "epoch": 2.890841813135985, + "grad_norm": 0.052230529487133026, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 28125 + }, + { + "epoch": 2.8911501695960533, + "grad_norm": 0.05514863133430481, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 28128 + }, + { + "epoch": 2.891458526056121, + "grad_norm": 0.04317644238471985, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 28131 + }, + { + "epoch": 2.8917668825161886, + "grad_norm": 0.05251277983188629, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 28134 + }, + { + "epoch": 2.8920752389762567, + "grad_norm": 0.10419400781393051, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 28137 + }, + { + "epoch": 2.8923835954363244, + "grad_norm": 0.08806058764457703, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 28140 + }, + { + "epoch": 2.892691951896392, + "grad_norm": 0.059875234961509705, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 28143 + }, + { + "epoch": 2.89300030835646, + "grad_norm": 0.036619991064071655, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 28146 + }, + { + "epoch": 2.893308664816528, + "grad_norm": 0.034454282373189926, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 28149 + }, + { + "epoch": 2.8936170212765955, + "grad_norm": 0.05209527164697647, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 28152 + }, + { + "epoch": 2.8939253777366636, + "grad_norm": 0.11549924314022064, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 28155 + }, + { + "epoch": 2.8942337341967317, + "grad_norm": 0.06887582689523697, + "learning_rate": 0.01, + "loss": 2.0, + "step": 28158 + }, + { + "epoch": 2.8945420906567993, + "grad_norm": 0.046488743275403976, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 28161 + }, + { + "epoch": 2.894850447116867, + "grad_norm": 0.05086890980601311, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 28164 + }, + { + "epoch": 2.895158803576935, + "grad_norm": 0.03719864413142204, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 28167 + }, + { + "epoch": 2.8954671600370028, + "grad_norm": 0.059325605630874634, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 28170 + }, + { + "epoch": 2.8957755164970704, + "grad_norm": 0.088272824883461, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 28173 + }, + { + "epoch": 2.8960838729571385, + "grad_norm": 0.0874638557434082, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 28176 + }, + { + "epoch": 2.896392229417206, + "grad_norm": 0.059453610330820084, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 28179 + }, + { + "epoch": 2.896700585877274, + "grad_norm": 0.05221414193511009, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 28182 + }, + { + "epoch": 2.897008942337342, + "grad_norm": 0.03308747336268425, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 28185 + }, + { + "epoch": 2.89731729879741, + "grad_norm": 0.07506965100765228, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 28188 + }, + { + "epoch": 2.8976256552574777, + "grad_norm": 0.06189137324690819, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 28191 + }, + { + "epoch": 2.8979340117175454, + "grad_norm": 0.07855790853500366, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 28194 + }, + { + "epoch": 2.8982423681776135, + "grad_norm": 0.08880770951509476, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 28197 + }, + { + "epoch": 2.898550724637681, + "grad_norm": 0.05860179290175438, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 28200 + }, + { + "epoch": 2.898859081097749, + "grad_norm": 0.06037219241261482, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 28203 + }, + { + "epoch": 2.899167437557817, + "grad_norm": 0.16910460591316223, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 28206 + }, + { + "epoch": 2.8994757940178846, + "grad_norm": 0.05912697687745094, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 28209 + }, + { + "epoch": 2.8997841504779522, + "grad_norm": 0.04245199263095856, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 28212 + }, + { + "epoch": 2.9000925069380203, + "grad_norm": 0.03307129442691803, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 28215 + }, + { + "epoch": 2.9004008633980884, + "grad_norm": 0.03456464782357216, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 28218 + }, + { + "epoch": 2.900709219858156, + "grad_norm": 0.04525744169950485, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 28221 + }, + { + "epoch": 2.9010175763182238, + "grad_norm": 0.046930085867643356, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 28224 + }, + { + "epoch": 2.901325932778292, + "grad_norm": 0.07545941323041916, + "learning_rate": 0.01, + "loss": 2.028, + "step": 28227 + }, + { + "epoch": 2.9016342892383595, + "grad_norm": 0.045901909470558167, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 28230 + }, + { + "epoch": 2.901942645698427, + "grad_norm": 0.06182632967829704, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 28233 + }, + { + "epoch": 2.9022510021584953, + "grad_norm": 0.1126553937792778, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 28236 + }, + { + "epoch": 2.902559358618563, + "grad_norm": 0.05637908726930618, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 28239 + }, + { + "epoch": 2.902867715078631, + "grad_norm": 0.03390496224164963, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 28242 + }, + { + "epoch": 2.9031760715386987, + "grad_norm": 0.1719658523797989, + "learning_rate": 0.01, + "loss": 2.0446, + "step": 28245 + }, + { + "epoch": 2.903484427998767, + "grad_norm": 0.054201435297727585, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 28248 + }, + { + "epoch": 2.9037927844588345, + "grad_norm": 0.05339137092232704, + "learning_rate": 0.01, + "loss": 2.024, + "step": 28251 + }, + { + "epoch": 2.904101140918902, + "grad_norm": 0.0490683875977993, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 28254 + }, + { + "epoch": 2.9044094973789703, + "grad_norm": 0.048101890832185745, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 28257 + }, + { + "epoch": 2.904717853839038, + "grad_norm": 0.034970205277204514, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 28260 + }, + { + "epoch": 2.9050262102991056, + "grad_norm": 0.05500125139951706, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 28263 + }, + { + "epoch": 2.9053345667591737, + "grad_norm": 0.0717696025967598, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 28266 + }, + { + "epoch": 2.9056429232192413, + "grad_norm": 0.08134905993938446, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 28269 + }, + { + "epoch": 2.9059512796793094, + "grad_norm": 0.13240204751491547, + "learning_rate": 0.01, + "loss": 2.0268, + "step": 28272 + }, + { + "epoch": 2.906259636139377, + "grad_norm": 0.04060851037502289, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 28275 + }, + { + "epoch": 2.906567992599445, + "grad_norm": 0.04560050368309021, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 28278 + }, + { + "epoch": 2.906876349059513, + "grad_norm": 0.051935113966464996, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 28281 + }, + { + "epoch": 2.9071847055195805, + "grad_norm": 0.04502344876527786, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 28284 + }, + { + "epoch": 2.9074930619796486, + "grad_norm": 0.04561367630958557, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 28287 + }, + { + "epoch": 2.9078014184397163, + "grad_norm": 0.05686529353260994, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 28290 + }, + { + "epoch": 2.908109774899784, + "grad_norm": 0.06489894539117813, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 28293 + }, + { + "epoch": 2.908418131359852, + "grad_norm": 0.08427495509386063, + "learning_rate": 0.01, + "loss": 2.0, + "step": 28296 + }, + { + "epoch": 2.9087264878199197, + "grad_norm": 0.08298421651124954, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 28299 + }, + { + "epoch": 2.909034844279988, + "grad_norm": 0.035743072628974915, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 28302 + }, + { + "epoch": 2.9093432007400555, + "grad_norm": 0.11177317798137665, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 28305 + }, + { + "epoch": 2.9096515572001236, + "grad_norm": 0.10962017625570297, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 28308 + }, + { + "epoch": 2.9099599136601912, + "grad_norm": 0.033734966069459915, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 28311 + }, + { + "epoch": 2.910268270120259, + "grad_norm": 0.050082772970199585, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 28314 + }, + { + "epoch": 2.910576626580327, + "grad_norm": 0.04048197343945503, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 28317 + }, + { + "epoch": 2.9108849830403947, + "grad_norm": 0.039657291024923325, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 28320 + }, + { + "epoch": 2.9111933395004623, + "grad_norm": 0.0639658197760582, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 28323 + }, + { + "epoch": 2.9115016959605304, + "grad_norm": 0.09306667000055313, + "learning_rate": 0.01, + "loss": 2.019, + "step": 28326 + }, + { + "epoch": 2.911810052420598, + "grad_norm": 0.06027163937687874, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 28329 + }, + { + "epoch": 2.912118408880666, + "grad_norm": 0.08570882678031921, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 28332 + }, + { + "epoch": 2.912426765340734, + "grad_norm": 0.07936012744903564, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 28335 + }, + { + "epoch": 2.912735121800802, + "grad_norm": 0.06479290872812271, + "learning_rate": 0.01, + "loss": 2.027, + "step": 28338 + }, + { + "epoch": 2.9130434782608696, + "grad_norm": 0.06973425298929214, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 28341 + }, + { + "epoch": 2.9133518347209373, + "grad_norm": 0.05557083338499069, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 28344 + }, + { + "epoch": 2.9136601911810054, + "grad_norm": 0.04901493340730667, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 28347 + }, + { + "epoch": 2.913968547641073, + "grad_norm": 0.1036488264799118, + "learning_rate": 0.01, + "loss": 2.0486, + "step": 28350 + }, + { + "epoch": 2.9142769041011407, + "grad_norm": 0.04318247362971306, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 28353 + }, + { + "epoch": 2.914585260561209, + "grad_norm": 0.0404491052031517, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 28356 + }, + { + "epoch": 2.9148936170212765, + "grad_norm": 0.03727111592888832, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 28359 + }, + { + "epoch": 2.9152019734813446, + "grad_norm": 0.04736052453517914, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 28362 + }, + { + "epoch": 2.9155103299414122, + "grad_norm": 0.13712109625339508, + "learning_rate": 0.01, + "loss": 2.0434, + "step": 28365 + }, + { + "epoch": 2.9158186864014803, + "grad_norm": 0.046428218483924866, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 28368 + }, + { + "epoch": 2.916127042861548, + "grad_norm": 0.036403872072696686, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 28371 + }, + { + "epoch": 2.9164353993216157, + "grad_norm": 0.04359270632266998, + "learning_rate": 0.01, + "loss": 2.0386, + "step": 28374 + }, + { + "epoch": 2.9167437557816838, + "grad_norm": 0.06155150756239891, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 28377 + }, + { + "epoch": 2.9170521122417514, + "grad_norm": 0.035659730434417725, + "learning_rate": 0.01, + "loss": 2.012, + "step": 28380 + }, + { + "epoch": 2.917360468701819, + "grad_norm": 0.09453250467777252, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 28383 + }, + { + "epoch": 2.917668825161887, + "grad_norm": 0.062337253242731094, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 28386 + }, + { + "epoch": 2.917977181621955, + "grad_norm": 0.05488646402955055, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 28389 + }, + { + "epoch": 2.918285538082023, + "grad_norm": 0.07092556357383728, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 28392 + }, + { + "epoch": 2.9185938945420906, + "grad_norm": 0.10335639864206314, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 28395 + }, + { + "epoch": 2.9189022510021587, + "grad_norm": 0.1187339797616005, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 28398 + }, + { + "epoch": 2.9192106074622264, + "grad_norm": 0.09254027903079987, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 28401 + }, + { + "epoch": 2.919518963922294, + "grad_norm": 0.04120078682899475, + "learning_rate": 0.01, + "loss": 2.032, + "step": 28404 + }, + { + "epoch": 2.919827320382362, + "grad_norm": 0.04366682097315788, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 28407 + }, + { + "epoch": 2.92013567684243, + "grad_norm": 0.03700088709592819, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 28410 + }, + { + "epoch": 2.9204440333024975, + "grad_norm": 0.03409232571721077, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 28413 + }, + { + "epoch": 2.9207523897625656, + "grad_norm": 0.04503092169761658, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 28416 + }, + { + "epoch": 2.9210607462226332, + "grad_norm": 0.04988139122724533, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 28419 + }, + { + "epoch": 2.9213691026827013, + "grad_norm": 0.05121064558625221, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 28422 + }, + { + "epoch": 2.921677459142769, + "grad_norm": 0.03916258364915848, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 28425 + }, + { + "epoch": 2.921985815602837, + "grad_norm": 0.1349031776189804, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 28428 + }, + { + "epoch": 2.9222941720629048, + "grad_norm": 0.12042077630758286, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 28431 + }, + { + "epoch": 2.9226025285229724, + "grad_norm": 0.08157286792993546, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 28434 + }, + { + "epoch": 2.9229108849830405, + "grad_norm": 0.07750184834003448, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 28437 + }, + { + "epoch": 2.923219241443108, + "grad_norm": 0.07270103693008423, + "learning_rate": 0.01, + "loss": 2.015, + "step": 28440 + }, + { + "epoch": 2.923527597903176, + "grad_norm": 0.05140276625752449, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 28443 + }, + { + "epoch": 2.923835954363244, + "grad_norm": 0.07426592707633972, + "learning_rate": 0.01, + "loss": 2.031, + "step": 28446 + }, + { + "epoch": 2.9241443108233116, + "grad_norm": 0.05136018618941307, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 28449 + }, + { + "epoch": 2.9244526672833797, + "grad_norm": 0.03354816511273384, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 28452 + }, + { + "epoch": 2.9247610237434474, + "grad_norm": 0.03671132028102875, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 28455 + }, + { + "epoch": 2.9250693802035155, + "grad_norm": 0.05378049612045288, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 28458 + }, + { + "epoch": 2.925377736663583, + "grad_norm": 0.04772641509771347, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 28461 + }, + { + "epoch": 2.925686093123651, + "grad_norm": 0.05942932888865471, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 28464 + }, + { + "epoch": 2.925994449583719, + "grad_norm": 0.059020113199949265, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 28467 + }, + { + "epoch": 2.9263028060437866, + "grad_norm": 0.19283726811408997, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 28470 + }, + { + "epoch": 2.9266111625038542, + "grad_norm": 0.09231256693601608, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 28473 + }, + { + "epoch": 2.9269195189639223, + "grad_norm": 0.058674681931734085, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 28476 + }, + { + "epoch": 2.92722787542399, + "grad_norm": 0.05014891177415848, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 28479 + }, + { + "epoch": 2.927536231884058, + "grad_norm": 0.060597196221351624, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 28482 + }, + { + "epoch": 2.9278445883441258, + "grad_norm": 0.08379890769720078, + "learning_rate": 0.01, + "loss": 2.027, + "step": 28485 + }, + { + "epoch": 2.928152944804194, + "grad_norm": 0.04832527041435242, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 28488 + }, + { + "epoch": 2.9284613012642615, + "grad_norm": 0.06709366291761398, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 28491 + }, + { + "epoch": 2.928769657724329, + "grad_norm": 0.044588811695575714, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 28494 + }, + { + "epoch": 2.9290780141843973, + "grad_norm": 0.05735667049884796, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 28497 + }, + { + "epoch": 2.929386370644465, + "grad_norm": 0.041256386786699295, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 28500 + }, + { + "epoch": 2.9296947271045326, + "grad_norm": 0.03460060432553291, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 28503 + }, + { + "epoch": 2.9300030835646007, + "grad_norm": 0.05080440267920494, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 28506 + }, + { + "epoch": 2.9303114400246684, + "grad_norm": 0.1281091421842575, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 28509 + }, + { + "epoch": 2.9306197964847365, + "grad_norm": 0.05667036399245262, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 28512 + }, + { + "epoch": 2.930928152944804, + "grad_norm": 0.10026687383651733, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 28515 + }, + { + "epoch": 2.9312365094048722, + "grad_norm": 0.04924483224749565, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 28518 + }, + { + "epoch": 2.93154486586494, + "grad_norm": 0.04905860871076584, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 28521 + }, + { + "epoch": 2.9318532223250076, + "grad_norm": 0.0525185652077198, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 28524 + }, + { + "epoch": 2.9321615787850757, + "grad_norm": 0.04196888953447342, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 28527 + }, + { + "epoch": 2.9324699352451433, + "grad_norm": 0.04660086706280708, + "learning_rate": 0.01, + "loss": 1.996, + "step": 28530 + }, + { + "epoch": 2.932778291705211, + "grad_norm": 0.05741078406572342, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 28533 + }, + { + "epoch": 2.933086648165279, + "grad_norm": 0.052953120321035385, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 28536 + }, + { + "epoch": 2.9333950046253467, + "grad_norm": 0.04325610026717186, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 28539 + }, + { + "epoch": 2.933703361085415, + "grad_norm": 0.04387751594185829, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 28542 + }, + { + "epoch": 2.9340117175454825, + "grad_norm": 0.03476174548268318, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 28545 + }, + { + "epoch": 2.9343200740055506, + "grad_norm": 0.03839149698615074, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 28548 + }, + { + "epoch": 2.9346284304656183, + "grad_norm": 0.0841054692864418, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 28551 + }, + { + "epoch": 2.934936786925686, + "grad_norm": 0.10850472748279572, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 28554 + }, + { + "epoch": 2.935245143385754, + "grad_norm": 0.12255658954381943, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 28557 + }, + { + "epoch": 2.9355534998458217, + "grad_norm": 0.05664276331663132, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 28560 + }, + { + "epoch": 2.9358618563058894, + "grad_norm": 0.11724577099084854, + "learning_rate": 0.01, + "loss": 2.027, + "step": 28563 + }, + { + "epoch": 2.9361702127659575, + "grad_norm": 0.06823346763849258, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 28566 + }, + { + "epoch": 2.936478569226025, + "grad_norm": 0.035576723515987396, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 28569 + }, + { + "epoch": 2.9367869256860932, + "grad_norm": 0.03186320886015892, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 28572 + }, + { + "epoch": 2.937095282146161, + "grad_norm": 0.03750181198120117, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 28575 + }, + { + "epoch": 2.937403638606229, + "grad_norm": 0.05272996798157692, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 28578 + }, + { + "epoch": 2.9377119950662967, + "grad_norm": 0.033289846032857895, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 28581 + }, + { + "epoch": 2.9380203515263643, + "grad_norm": 0.11037155240774155, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 28584 + }, + { + "epoch": 2.9383287079864324, + "grad_norm": 0.10620691627264023, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 28587 + }, + { + "epoch": 2.9386370644465, + "grad_norm": 0.052820686250925064, + "learning_rate": 0.01, + "loss": 2.009, + "step": 28590 + }, + { + "epoch": 2.9389454209065677, + "grad_norm": 0.057419613003730774, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 28593 + }, + { + "epoch": 2.939253777366636, + "grad_norm": 0.04066954553127289, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 28596 + }, + { + "epoch": 2.9395621338267035, + "grad_norm": 0.04638439416885376, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 28599 + }, + { + "epoch": 2.9398704902867716, + "grad_norm": 0.11629427969455719, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 28602 + }, + { + "epoch": 2.9401788467468393, + "grad_norm": 0.05921720713376999, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 28605 + }, + { + "epoch": 2.9404872032069074, + "grad_norm": 0.05282594636082649, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 28608 + }, + { + "epoch": 2.940795559666975, + "grad_norm": 0.04680659994482994, + "learning_rate": 0.01, + "loss": 2.011, + "step": 28611 + }, + { + "epoch": 2.9411039161270427, + "grad_norm": 0.11889224499464035, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 28614 + }, + { + "epoch": 2.941412272587111, + "grad_norm": 0.03500881418585777, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 28617 + }, + { + "epoch": 2.9417206290471785, + "grad_norm": 0.08639416098594666, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 28620 + }, + { + "epoch": 2.942028985507246, + "grad_norm": 0.03335639461874962, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 28623 + }, + { + "epoch": 2.9423373419673142, + "grad_norm": 0.045041028410196304, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 28626 + }, + { + "epoch": 2.9426456984273823, + "grad_norm": 0.047020211815834045, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 28629 + }, + { + "epoch": 2.94295405488745, + "grad_norm": 0.059858404099941254, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 28632 + }, + { + "epoch": 2.9432624113475176, + "grad_norm": 0.053345970809459686, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 28635 + }, + { + "epoch": 2.9435707678075858, + "grad_norm": 0.05528027564287186, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 28638 + }, + { + "epoch": 2.9438791242676534, + "grad_norm": 0.09895586222410202, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 28641 + }, + { + "epoch": 2.944187480727721, + "grad_norm": 0.11827319115400314, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 28644 + }, + { + "epoch": 2.944495837187789, + "grad_norm": 0.05013230815529823, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 28647 + }, + { + "epoch": 2.944804193647857, + "grad_norm": 0.0422658771276474, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 28650 + }, + { + "epoch": 2.9451125501079245, + "grad_norm": 0.04022778570652008, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 28653 + }, + { + "epoch": 2.9454209065679926, + "grad_norm": 0.043504439294338226, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 28656 + }, + { + "epoch": 2.9457292630280607, + "grad_norm": 0.06587618589401245, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 28659 + }, + { + "epoch": 2.9460376194881284, + "grad_norm": 0.10226722061634064, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 28662 + }, + { + "epoch": 2.946345975948196, + "grad_norm": 0.047040197998285294, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 28665 + }, + { + "epoch": 2.946654332408264, + "grad_norm": 0.0919933021068573, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 28668 + }, + { + "epoch": 2.946962688868332, + "grad_norm": 0.05978929251432419, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 28671 + }, + { + "epoch": 2.9472710453283995, + "grad_norm": 0.05814214050769806, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 28674 + }, + { + "epoch": 2.9475794017884676, + "grad_norm": 0.09039480984210968, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 28677 + }, + { + "epoch": 2.947887758248535, + "grad_norm": 0.1607222557067871, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 28680 + }, + { + "epoch": 2.948196114708603, + "grad_norm": 0.04198214039206505, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 28683 + }, + { + "epoch": 2.948504471168671, + "grad_norm": 0.06442588567733765, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 28686 + }, + { + "epoch": 2.948812827628739, + "grad_norm": 0.11082901805639267, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 28689 + }, + { + "epoch": 2.9491211840888067, + "grad_norm": 0.03669416159391403, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 28692 + }, + { + "epoch": 2.9494295405488744, + "grad_norm": 0.06837104260921478, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 28695 + }, + { + "epoch": 2.9497378970089425, + "grad_norm": 0.0466892383992672, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 28698 + }, + { + "epoch": 2.95004625346901, + "grad_norm": 0.06962305307388306, + "learning_rate": 0.01, + "loss": 2.023, + "step": 28701 + }, + { + "epoch": 2.950354609929078, + "grad_norm": 0.06136500835418701, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 28704 + }, + { + "epoch": 2.950662966389146, + "grad_norm": 0.050067611038684845, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 28707 + }, + { + "epoch": 2.9509713228492136, + "grad_norm": 0.0527566559612751, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 28710 + }, + { + "epoch": 2.9512796793092813, + "grad_norm": 0.12275776267051697, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 28713 + }, + { + "epoch": 2.9515880357693494, + "grad_norm": 0.052756138145923615, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 28716 + }, + { + "epoch": 2.9518963922294175, + "grad_norm": 0.038834694772958755, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 28719 + }, + { + "epoch": 2.952204748689485, + "grad_norm": 0.07736565917730331, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 28722 + }, + { + "epoch": 2.952513105149553, + "grad_norm": 0.10177972167730331, + "learning_rate": 0.01, + "loss": 2.017, + "step": 28725 + }, + { + "epoch": 2.952821461609621, + "grad_norm": 0.082985520362854, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 28728 + }, + { + "epoch": 2.9531298180696886, + "grad_norm": 0.05385474115610123, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 28731 + }, + { + "epoch": 2.953438174529756, + "grad_norm": 0.0803777202963829, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 28734 + }, + { + "epoch": 2.9537465309898243, + "grad_norm": 0.06875913590192795, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 28737 + }, + { + "epoch": 2.954054887449892, + "grad_norm": 0.09149770438671112, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 28740 + }, + { + "epoch": 2.95436324390996, + "grad_norm": 0.1182807981967926, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 28743 + }, + { + "epoch": 2.9546716003700277, + "grad_norm": 0.044717706739902496, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 28746 + }, + { + "epoch": 2.954979956830096, + "grad_norm": 0.04887622967362404, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 28749 + }, + { + "epoch": 2.9552883132901635, + "grad_norm": 0.041407834738492966, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 28752 + }, + { + "epoch": 2.955596669750231, + "grad_norm": 0.05831639841198921, + "learning_rate": 0.01, + "loss": 2.0485, + "step": 28755 + }, + { + "epoch": 2.9559050262102993, + "grad_norm": 0.08279699832201004, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 28758 + }, + { + "epoch": 2.956213382670367, + "grad_norm": 0.08988698571920395, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 28761 + }, + { + "epoch": 2.9565217391304346, + "grad_norm": 0.0645131915807724, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 28764 + }, + { + "epoch": 2.9568300955905027, + "grad_norm": 0.08262491226196289, + "learning_rate": 0.01, + "loss": 1.999, + "step": 28767 + }, + { + "epoch": 2.9571384520505704, + "grad_norm": 0.03773394227027893, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 28770 + }, + { + "epoch": 2.9574468085106385, + "grad_norm": 0.08012068271636963, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 28773 + }, + { + "epoch": 2.957755164970706, + "grad_norm": 0.04637681320309639, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 28776 + }, + { + "epoch": 2.9580635214307742, + "grad_norm": 0.031988177448511124, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 28779 + }, + { + "epoch": 2.958371877890842, + "grad_norm": 0.08325552940368652, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 28782 + }, + { + "epoch": 2.9586802343509095, + "grad_norm": 0.06131797283887863, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 28785 + }, + { + "epoch": 2.9589885908109776, + "grad_norm": 0.04146185144782066, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 28788 + }, + { + "epoch": 2.9592969472710453, + "grad_norm": 0.04004296660423279, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 28791 + }, + { + "epoch": 2.959605303731113, + "grad_norm": 0.07771418243646622, + "learning_rate": 0.01, + "loss": 2.025, + "step": 28794 + }, + { + "epoch": 2.959913660191181, + "grad_norm": 0.048570699989795685, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 28797 + }, + { + "epoch": 2.9602220166512487, + "grad_norm": 0.0664374902844429, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 28800 + }, + { + "epoch": 2.960530373111317, + "grad_norm": 0.09744110703468323, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 28803 + }, + { + "epoch": 2.9608387295713845, + "grad_norm": 0.03430997580289841, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 28806 + }, + { + "epoch": 2.9611470860314526, + "grad_norm": 0.036999545991420746, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 28809 + }, + { + "epoch": 2.9614554424915203, + "grad_norm": 0.05290836840867996, + "learning_rate": 0.01, + "loss": 2.011, + "step": 28812 + }, + { + "epoch": 2.961763798951588, + "grad_norm": 0.061555683612823486, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 28815 + }, + { + "epoch": 2.962072155411656, + "grad_norm": 0.06276807934045792, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 28818 + }, + { + "epoch": 2.9623805118717237, + "grad_norm": 0.05685890465974808, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 28821 + }, + { + "epoch": 2.9626888683317913, + "grad_norm": 0.09975235909223557, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 28824 + }, + { + "epoch": 2.9629972247918595, + "grad_norm": 0.04205232113599777, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 28827 + }, + { + "epoch": 2.963305581251927, + "grad_norm": 0.07952512800693512, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 28830 + }, + { + "epoch": 2.963613937711995, + "grad_norm": 0.04118579626083374, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 28833 + }, + { + "epoch": 2.963922294172063, + "grad_norm": 0.10875571519136429, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 28836 + }, + { + "epoch": 2.964230650632131, + "grad_norm": 0.16663865745067596, + "learning_rate": 0.01, + "loss": 2.001, + "step": 28839 + }, + { + "epoch": 2.9645390070921986, + "grad_norm": 0.08370403200387955, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 28842 + }, + { + "epoch": 2.9648473635522663, + "grad_norm": 0.07209211587905884, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 28845 + }, + { + "epoch": 2.9651557200123344, + "grad_norm": 0.05848775431513786, + "learning_rate": 0.01, + "loss": 2.013, + "step": 28848 + }, + { + "epoch": 2.965464076472402, + "grad_norm": 0.02791527472436428, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 28851 + }, + { + "epoch": 2.9657724329324697, + "grad_norm": 0.03520442545413971, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 28854 + }, + { + "epoch": 2.966080789392538, + "grad_norm": 0.03414986655116081, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 28857 + }, + { + "epoch": 2.9663891458526055, + "grad_norm": 0.0448157899081707, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 28860 + }, + { + "epoch": 2.9666975023126736, + "grad_norm": 0.09282497316598892, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 28863 + }, + { + "epoch": 2.9670058587727413, + "grad_norm": 0.05999337136745453, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 28866 + }, + { + "epoch": 2.9673142152328094, + "grad_norm": 0.038877278566360474, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 28869 + }, + { + "epoch": 2.967622571692877, + "grad_norm": 0.04760310798883438, + "learning_rate": 0.01, + "loss": 2.016, + "step": 28872 + }, + { + "epoch": 2.9679309281529447, + "grad_norm": 0.049317944794893265, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 28875 + }, + { + "epoch": 2.968239284613013, + "grad_norm": 0.038830939680337906, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 28878 + }, + { + "epoch": 2.9685476410730804, + "grad_norm": 0.18675923347473145, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 28881 + }, + { + "epoch": 2.968855997533148, + "grad_norm": 0.04269779101014137, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 28884 + }, + { + "epoch": 2.969164353993216, + "grad_norm": 0.04740308225154877, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 28887 + }, + { + "epoch": 2.969472710453284, + "grad_norm": 0.058595623821020126, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 28890 + }, + { + "epoch": 2.969781066913352, + "grad_norm": 0.06136814132332802, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 28893 + }, + { + "epoch": 2.9700894233734196, + "grad_norm": 0.059679534286260605, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 28896 + }, + { + "epoch": 2.9703977798334877, + "grad_norm": 0.044182952493429184, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 28899 + }, + { + "epoch": 2.9707061362935554, + "grad_norm": 0.04152587056159973, + "learning_rate": 0.01, + "loss": 2.01, + "step": 28902 + }, + { + "epoch": 2.971014492753623, + "grad_norm": 0.0424608550965786, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 28905 + }, + { + "epoch": 2.971322849213691, + "grad_norm": 0.040096018463373184, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 28908 + }, + { + "epoch": 2.971631205673759, + "grad_norm": 0.03288499265909195, + "learning_rate": 0.01, + "loss": 2.0416, + "step": 28911 + }, + { + "epoch": 2.9719395621338265, + "grad_norm": 0.05150043964385986, + "learning_rate": 0.01, + "loss": 2.0, + "step": 28914 + }, + { + "epoch": 2.9722479185938946, + "grad_norm": 0.05535360425710678, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 28917 + }, + { + "epoch": 2.9725562750539622, + "grad_norm": 0.09103085100650787, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 28920 + }, + { + "epoch": 2.9728646315140304, + "grad_norm": 0.060518983751535416, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 28923 + }, + { + "epoch": 2.973172987974098, + "grad_norm": 0.15921367704868317, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 28926 + }, + { + "epoch": 2.973481344434166, + "grad_norm": 0.04451125115156174, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 28929 + }, + { + "epoch": 2.973789700894234, + "grad_norm": 0.06099553778767586, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 28932 + }, + { + "epoch": 2.9740980573543014, + "grad_norm": 0.07864733040332794, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 28935 + }, + { + "epoch": 2.9744064138143695, + "grad_norm": 0.04279434680938721, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 28938 + }, + { + "epoch": 2.974714770274437, + "grad_norm": 0.06299113482236862, + "learning_rate": 0.01, + "loss": 2.0379, + "step": 28941 + }, + { + "epoch": 2.975023126734505, + "grad_norm": 0.04803795740008354, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 28944 + }, + { + "epoch": 2.975331483194573, + "grad_norm": 0.04646730050444603, + "learning_rate": 0.01, + "loss": 2.026, + "step": 28947 + }, + { + "epoch": 2.9756398396546406, + "grad_norm": 0.05352159962058067, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 28950 + }, + { + "epoch": 2.9759481961147087, + "grad_norm": 0.07281997799873352, + "learning_rate": 0.01, + "loss": 2.0328, + "step": 28953 + }, + { + "epoch": 2.9762565525747764, + "grad_norm": 0.050049133598804474, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 28956 + }, + { + "epoch": 2.9765649090348445, + "grad_norm": 0.039795007556676865, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 28959 + }, + { + "epoch": 2.976873265494912, + "grad_norm": 0.09085065871477127, + "learning_rate": 0.01, + "loss": 2.005, + "step": 28962 + }, + { + "epoch": 2.97718162195498, + "grad_norm": 0.1592961698770523, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 28965 + }, + { + "epoch": 2.977489978415048, + "grad_norm": 0.10092988610267639, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 28968 + }, + { + "epoch": 2.9777983348751156, + "grad_norm": 0.046051934361457825, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 28971 + }, + { + "epoch": 2.9781066913351832, + "grad_norm": 0.04267173632979393, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 28974 + }, + { + "epoch": 2.9784150477952513, + "grad_norm": 0.032134927809238434, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 28977 + }, + { + "epoch": 2.978723404255319, + "grad_norm": 0.055023569613695145, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 28980 + }, + { + "epoch": 2.979031760715387, + "grad_norm": 0.07177849858999252, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 28983 + }, + { + "epoch": 2.9793401171754548, + "grad_norm": 0.05890415981411934, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 28986 + }, + { + "epoch": 2.979648473635523, + "grad_norm": 0.04443821310997009, + "learning_rate": 0.01, + "loss": 2.042, + "step": 28989 + }, + { + "epoch": 2.9799568300955905, + "grad_norm": 0.04153164103627205, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 28992 + }, + { + "epoch": 2.980265186555658, + "grad_norm": 0.07844668626785278, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 28995 + }, + { + "epoch": 2.9805735430157263, + "grad_norm": 0.09027374535799026, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 28998 + }, + { + "epoch": 2.980881899475794, + "grad_norm": 0.04559837654232979, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 29001 + }, + { + "epoch": 2.9811902559358616, + "grad_norm": 0.03771069645881653, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 29004 + }, + { + "epoch": 2.9814986123959297, + "grad_norm": 0.09008541703224182, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 29007 + }, + { + "epoch": 2.9818069688559974, + "grad_norm": 0.060089852660894394, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 29010 + }, + { + "epoch": 2.9821153253160655, + "grad_norm": 0.11291385442018509, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 29013 + }, + { + "epoch": 2.982423681776133, + "grad_norm": 0.09720003604888916, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 29016 + }, + { + "epoch": 2.9827320382362013, + "grad_norm": 0.060459867119789124, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 29019 + }, + { + "epoch": 2.983040394696269, + "grad_norm": 0.07619535177946091, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 29022 + }, + { + "epoch": 2.9833487511563366, + "grad_norm": 0.05402089282870293, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 29025 + }, + { + "epoch": 2.9836571076164047, + "grad_norm": 0.05162883922457695, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 29028 + }, + { + "epoch": 2.9839654640764723, + "grad_norm": 0.037369467318058014, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 29031 + }, + { + "epoch": 2.98427382053654, + "grad_norm": 0.05483279377222061, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 29034 + }, + { + "epoch": 2.984582176996608, + "grad_norm": 0.050847407430410385, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 29037 + }, + { + "epoch": 2.9848905334566758, + "grad_norm": 0.07075628638267517, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 29040 + }, + { + "epoch": 2.985198889916744, + "grad_norm": 0.05580511689186096, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 29043 + }, + { + "epoch": 2.9855072463768115, + "grad_norm": 0.043689336627721786, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 29046 + }, + { + "epoch": 2.9858156028368796, + "grad_norm": 0.07577245682477951, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 29049 + }, + { + "epoch": 2.9861239592969473, + "grad_norm": 0.07917779684066772, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 29052 + }, + { + "epoch": 2.986432315757015, + "grad_norm": 0.07137954980134964, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 29055 + }, + { + "epoch": 2.986740672217083, + "grad_norm": 0.09875428676605225, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 29058 + }, + { + "epoch": 2.9870490286771507, + "grad_norm": 0.059274058789014816, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 29061 + }, + { + "epoch": 2.9873573851372184, + "grad_norm": 0.04235726222395897, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 29064 + }, + { + "epoch": 2.9876657415972865, + "grad_norm": 0.1677253097295761, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 29067 + }, + { + "epoch": 2.987974098057354, + "grad_norm": 0.05953408405184746, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 29070 + }, + { + "epoch": 2.9882824545174222, + "grad_norm": 0.031471315771341324, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 29073 + }, + { + "epoch": 2.98859081097749, + "grad_norm": 0.0490463487803936, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 29076 + }, + { + "epoch": 2.988899167437558, + "grad_norm": 0.0685456171631813, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 29079 + }, + { + "epoch": 2.9892075238976257, + "grad_norm": 0.04472583159804344, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 29082 + }, + { + "epoch": 2.9895158803576933, + "grad_norm": 0.03528788685798645, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 29085 + }, + { + "epoch": 2.9898242368177614, + "grad_norm": 0.04196497052907944, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 29088 + }, + { + "epoch": 2.990132593277829, + "grad_norm": 0.1347953975200653, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 29091 + }, + { + "epoch": 2.9904409497378968, + "grad_norm": 0.03483536094427109, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 29094 + }, + { + "epoch": 2.990749306197965, + "grad_norm": 0.04203316941857338, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 29097 + }, + { + "epoch": 2.9910576626580325, + "grad_norm": 0.039628706872463226, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 29100 + }, + { + "epoch": 2.9913660191181006, + "grad_norm": 0.04524881765246391, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 29103 + }, + { + "epoch": 2.9916743755781683, + "grad_norm": 0.0704786404967308, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 29106 + }, + { + "epoch": 2.9919827320382364, + "grad_norm": 0.06169109791517258, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 29109 + }, + { + "epoch": 2.992291088498304, + "grad_norm": 0.05929429456591606, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 29112 + }, + { + "epoch": 2.9925994449583717, + "grad_norm": 0.06046414375305176, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 29115 + }, + { + "epoch": 2.99290780141844, + "grad_norm": 0.03632686287164688, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 29118 + }, + { + "epoch": 2.9932161578785075, + "grad_norm": 0.0416223518550396, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 29121 + }, + { + "epoch": 2.993524514338575, + "grad_norm": 0.033993568271398544, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 29124 + }, + { + "epoch": 2.9938328707986432, + "grad_norm": 0.11413303017616272, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 29127 + }, + { + "epoch": 2.9941412272587113, + "grad_norm": 0.04512523114681244, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 29130 + }, + { + "epoch": 2.994449583718779, + "grad_norm": 0.08577805757522583, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 29133 + }, + { + "epoch": 2.9947579401788467, + "grad_norm": 0.09573300927877426, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 29136 + }, + { + "epoch": 2.9950662966389148, + "grad_norm": 0.04170147702097893, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 29139 + }, + { + "epoch": 2.9953746530989824, + "grad_norm": 0.04233024641871452, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 29142 + }, + { + "epoch": 2.99568300955905, + "grad_norm": 0.05406009405851364, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 29145 + }, + { + "epoch": 2.995991366019118, + "grad_norm": 0.037997808307409286, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 29148 + }, + { + "epoch": 2.996299722479186, + "grad_norm": 0.08010167628526688, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 29151 + }, + { + "epoch": 2.9966080789392535, + "grad_norm": 0.05372076854109764, + "learning_rate": 0.01, + "loss": 2.0406, + "step": 29154 + }, + { + "epoch": 2.9969164353993216, + "grad_norm": 0.04186830669641495, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 29157 + }, + { + "epoch": 2.9972247918593897, + "grad_norm": 0.0803917944431305, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 29160 + }, + { + "epoch": 2.9975331483194574, + "grad_norm": 0.06086145341396332, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 29163 + }, + { + "epoch": 2.997841504779525, + "grad_norm": 0.1197366788983345, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 29166 + }, + { + "epoch": 2.998149861239593, + "grad_norm": 0.09424477070569992, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 29169 + }, + { + "epoch": 2.998458217699661, + "grad_norm": 0.05025864019989967, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 29172 + }, + { + "epoch": 2.9987665741597285, + "grad_norm": 0.0840819776058197, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 29175 + }, + { + "epoch": 2.9990749306197966, + "grad_norm": 0.03415597230195999, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 29178 + }, + { + "epoch": 2.9993832870798642, + "grad_norm": 0.09066252410411835, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 29181 + }, + { + "epoch": 2.999691643539932, + "grad_norm": 0.05019732564687729, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 29184 + }, + { + "epoch": 3.0, + "grad_norm": 0.09318925440311432, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 29187 + }, + { + "epoch": 2.999383477188656, + "grad_norm": 0.08568185567855835, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 29190 + }, + { + "epoch": 2.9996917385943282, + "grad_norm": 0.05479726567864418, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 29193 + }, + { + "epoch": 3.0, + "grad_norm": 0.0812709629535675, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 29196 + }, + { + "epoch": 3.000308261405672, + "grad_norm": 0.06423875689506531, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 29199 + }, + { + "epoch": 3.000616522811344, + "grad_norm": 0.06900475919246674, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 29202 + }, + { + "epoch": 3.000924784217016, + "grad_norm": 0.09736461192369461, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 29205 + }, + { + "epoch": 3.001233045622688, + "grad_norm": 0.10431299358606339, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 29208 + }, + { + "epoch": 3.00154130702836, + "grad_norm": 0.06412489712238312, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 29211 + }, + { + "epoch": 3.0018495684340323, + "grad_norm": 0.07305043190717697, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 29214 + }, + { + "epoch": 3.002157829839704, + "grad_norm": 0.07680006325244904, + "learning_rate": 0.01, + "loss": 2.031, + "step": 29217 + }, + { + "epoch": 3.0024660912453762, + "grad_norm": 0.04416871443390846, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 29220 + }, + { + "epoch": 3.002774352651048, + "grad_norm": 0.05895330011844635, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 29223 + }, + { + "epoch": 3.00308261405672, + "grad_norm": 0.16763944923877716, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 29226 + }, + { + "epoch": 3.003390875462392, + "grad_norm": 0.04152580350637436, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 29229 + }, + { + "epoch": 3.003699136868064, + "grad_norm": 0.05650210753083229, + "learning_rate": 0.01, + "loss": 2.0373, + "step": 29232 + }, + { + "epoch": 3.0040073982737363, + "grad_norm": 0.10183783620595932, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 29235 + }, + { + "epoch": 3.004315659679408, + "grad_norm": 0.11545984447002411, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 29238 + }, + { + "epoch": 3.0046239210850803, + "grad_norm": 0.07768990844488144, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 29241 + }, + { + "epoch": 3.004932182490752, + "grad_norm": 0.06256531924009323, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 29244 + }, + { + "epoch": 3.005240443896424, + "grad_norm": 0.041665416210889816, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 29247 + }, + { + "epoch": 3.0055487053020964, + "grad_norm": 0.051996082067489624, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 29250 + }, + { + "epoch": 3.005856966707768, + "grad_norm": 0.032815441489219666, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 29253 + }, + { + "epoch": 3.0061652281134403, + "grad_norm": 0.060963522642850876, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 29256 + }, + { + "epoch": 3.006473489519112, + "grad_norm": 0.11818858236074448, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 29259 + }, + { + "epoch": 3.0067817509247843, + "grad_norm": 0.08653881400823593, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 29262 + }, + { + "epoch": 3.007090012330456, + "grad_norm": 0.09629751741886139, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 29265 + }, + { + "epoch": 3.0073982737361282, + "grad_norm": 0.04238956794142723, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 29268 + }, + { + "epoch": 3.0077065351418004, + "grad_norm": 0.040573202073574066, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 29271 + }, + { + "epoch": 3.008014796547472, + "grad_norm": 0.08061878383159637, + "learning_rate": 0.01, + "loss": 2.0562, + "step": 29274 + }, + { + "epoch": 3.0083230579531444, + "grad_norm": 0.06944199651479721, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 29277 + }, + { + "epoch": 3.008631319358816, + "grad_norm": 0.06629909574985504, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 29280 + }, + { + "epoch": 3.0089395807644883, + "grad_norm": 0.06654530018568039, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 29283 + }, + { + "epoch": 3.0092478421701605, + "grad_norm": 0.08806800842285156, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 29286 + }, + { + "epoch": 3.0095561035758323, + "grad_norm": 0.12367472797632217, + "learning_rate": 0.01, + "loss": 2.0382, + "step": 29289 + }, + { + "epoch": 3.0098643649815044, + "grad_norm": 0.052121471613645554, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 29292 + }, + { + "epoch": 3.010172626387176, + "grad_norm": 0.0409090481698513, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 29295 + }, + { + "epoch": 3.0104808877928484, + "grad_norm": 0.09956279397010803, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 29298 + }, + { + "epoch": 3.01078914919852, + "grad_norm": 0.04090806096792221, + "learning_rate": 0.01, + "loss": 2.031, + "step": 29301 + }, + { + "epoch": 3.0110974106041923, + "grad_norm": 0.06308458000421524, + "learning_rate": 0.01, + "loss": 2.0347, + "step": 29304 + }, + { + "epoch": 3.0114056720098645, + "grad_norm": 0.05140318349003792, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 29307 + }, + { + "epoch": 3.0117139334155363, + "grad_norm": 0.0383441224694252, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 29310 + }, + { + "epoch": 3.0120221948212085, + "grad_norm": 0.06803669035434723, + "learning_rate": 0.01, + "loss": 2.0442, + "step": 29313 + }, + { + "epoch": 3.0123304562268802, + "grad_norm": 0.042336028069257736, + "learning_rate": 0.01, + "loss": 2.018, + "step": 29316 + }, + { + "epoch": 3.0126387176325524, + "grad_norm": 0.052575305104255676, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 29319 + }, + { + "epoch": 3.0129469790382246, + "grad_norm": 0.04428831860423088, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 29322 + }, + { + "epoch": 3.0132552404438964, + "grad_norm": 0.03720409423112869, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 29325 + }, + { + "epoch": 3.0135635018495686, + "grad_norm": 0.03491399809718132, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 29328 + }, + { + "epoch": 3.0138717632552403, + "grad_norm": 0.11868512630462646, + "learning_rate": 0.01, + "loss": 2.014, + "step": 29331 + }, + { + "epoch": 3.0141800246609125, + "grad_norm": 0.05709204822778702, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 29334 + }, + { + "epoch": 3.0144882860665843, + "grad_norm": 0.09501231461763382, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 29337 + }, + { + "epoch": 3.0147965474722564, + "grad_norm": 0.04431547597050667, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 29340 + }, + { + "epoch": 3.0151048088779286, + "grad_norm": 0.07580556720495224, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 29343 + }, + { + "epoch": 3.0154130702836004, + "grad_norm": 0.05567536503076553, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 29346 + }, + { + "epoch": 3.0157213316892726, + "grad_norm": 0.03637940436601639, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 29349 + }, + { + "epoch": 3.0160295930949443, + "grad_norm": 0.07379139959812164, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 29352 + }, + { + "epoch": 3.0163378545006165, + "grad_norm": 0.08311998844146729, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 29355 + }, + { + "epoch": 3.0166461159062887, + "grad_norm": 0.11170487850904465, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 29358 + }, + { + "epoch": 3.0169543773119605, + "grad_norm": 0.055827848613262177, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 29361 + }, + { + "epoch": 3.0172626387176327, + "grad_norm": 0.06052641570568085, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 29364 + }, + { + "epoch": 3.0175709001233044, + "grad_norm": 0.03150554001331329, + "learning_rate": 0.01, + "loss": 2.024, + "step": 29367 + }, + { + "epoch": 3.0178791615289766, + "grad_norm": 0.06298622488975525, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 29370 + }, + { + "epoch": 3.0181874229346484, + "grad_norm": 0.09742710739374161, + "learning_rate": 0.01, + "loss": 2.0411, + "step": 29373 + }, + { + "epoch": 3.0184956843403206, + "grad_norm": 0.07219108939170837, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 29376 + }, + { + "epoch": 3.0188039457459928, + "grad_norm": 0.05558139458298683, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 29379 + }, + { + "epoch": 3.0191122071516645, + "grad_norm": 0.05763263627886772, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 29382 + }, + { + "epoch": 3.0194204685573367, + "grad_norm": 0.04832174628973007, + "learning_rate": 0.01, + "loss": 2.007, + "step": 29385 + }, + { + "epoch": 3.0197287299630085, + "grad_norm": 0.03823337331414223, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 29388 + }, + { + "epoch": 3.0200369913686806, + "grad_norm": 0.05253903195261955, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 29391 + }, + { + "epoch": 3.020345252774353, + "grad_norm": 0.10889255255460739, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 29394 + }, + { + "epoch": 3.0206535141800246, + "grad_norm": 0.04247021675109863, + "learning_rate": 0.01, + "loss": 2.0466, + "step": 29397 + }, + { + "epoch": 3.020961775585697, + "grad_norm": 0.09347319602966309, + "learning_rate": 0.01, + "loss": 2.037, + "step": 29400 + }, + { + "epoch": 3.0212700369913685, + "grad_norm": 0.05651739612221718, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 29403 + }, + { + "epoch": 3.0215782983970407, + "grad_norm": 0.0666181743144989, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 29406 + }, + { + "epoch": 3.021886559802713, + "grad_norm": 0.053186848759651184, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 29409 + }, + { + "epoch": 3.0221948212083847, + "grad_norm": 0.05201537534594536, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 29412 + }, + { + "epoch": 3.022503082614057, + "grad_norm": 0.02726483717560768, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 29415 + }, + { + "epoch": 3.0228113440197286, + "grad_norm": 0.10047302395105362, + "learning_rate": 0.01, + "loss": 2.0336, + "step": 29418 + }, + { + "epoch": 3.023119605425401, + "grad_norm": 0.05461571365594864, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 29421 + }, + { + "epoch": 3.0234278668310726, + "grad_norm": 0.08373844623565674, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 29424 + }, + { + "epoch": 3.0237361282367448, + "grad_norm": 0.045885663479566574, + "learning_rate": 0.01, + "loss": 2.044, + "step": 29427 + }, + { + "epoch": 3.024044389642417, + "grad_norm": 0.054790932685136795, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 29430 + }, + { + "epoch": 3.0243526510480887, + "grad_norm": 0.04917832091450691, + "learning_rate": 0.01, + "loss": 2.025, + "step": 29433 + }, + { + "epoch": 3.024660912453761, + "grad_norm": 0.09375031292438507, + "learning_rate": 0.01, + "loss": 2.0482, + "step": 29436 + }, + { + "epoch": 3.0249691738594326, + "grad_norm": 0.051234230399131775, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 29439 + }, + { + "epoch": 3.025277435265105, + "grad_norm": 0.057380858808755875, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 29442 + }, + { + "epoch": 3.025585696670777, + "grad_norm": 0.060605574399232864, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 29445 + }, + { + "epoch": 3.025893958076449, + "grad_norm": 0.09125442057847977, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 29448 + }, + { + "epoch": 3.026202219482121, + "grad_norm": 0.04081615433096886, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 29451 + }, + { + "epoch": 3.0265104808877927, + "grad_norm": 0.05347365140914917, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 29454 + }, + { + "epoch": 3.026818742293465, + "grad_norm": 0.04458871856331825, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 29457 + }, + { + "epoch": 3.0271270036991367, + "grad_norm": 0.04996645078063011, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 29460 + }, + { + "epoch": 3.027435265104809, + "grad_norm": 0.051296427845954895, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 29463 + }, + { + "epoch": 3.027743526510481, + "grad_norm": 0.05448664352297783, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 29466 + }, + { + "epoch": 3.028051787916153, + "grad_norm": 0.0587022639811039, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 29469 + }, + { + "epoch": 3.028360049321825, + "grad_norm": 0.0711282268166542, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 29472 + }, + { + "epoch": 3.0286683107274968, + "grad_norm": 0.14440664649009705, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 29475 + }, + { + "epoch": 3.028976572133169, + "grad_norm": 0.06147081404924393, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 29478 + }, + { + "epoch": 3.029284833538841, + "grad_norm": 0.0842541828751564, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 29481 + }, + { + "epoch": 3.029593094944513, + "grad_norm": 0.04915475845336914, + "learning_rate": 0.01, + "loss": 2.029, + "step": 29484 + }, + { + "epoch": 3.029901356350185, + "grad_norm": 0.04254012182354927, + "learning_rate": 0.01, + "loss": 2.0406, + "step": 29487 + }, + { + "epoch": 3.030209617755857, + "grad_norm": 0.03716140240430832, + "learning_rate": 0.01, + "loss": 2.0477, + "step": 29490 + }, + { + "epoch": 3.030517879161529, + "grad_norm": 0.09156777709722519, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 29493 + }, + { + "epoch": 3.030826140567201, + "grad_norm": 0.05401970446109772, + "learning_rate": 0.01, + "loss": 2.005, + "step": 29496 + }, + { + "epoch": 3.031134401972873, + "grad_norm": 0.11564016342163086, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 29499 + }, + { + "epoch": 3.031442663378545, + "grad_norm": 0.12813927233219147, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 29502 + }, + { + "epoch": 3.031750924784217, + "grad_norm": 0.04971994087100029, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 29505 + }, + { + "epoch": 3.032059186189889, + "grad_norm": 0.037013307213783264, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 29508 + }, + { + "epoch": 3.032367447595561, + "grad_norm": 0.048204224556684494, + "learning_rate": 0.01, + "loss": 2.0635, + "step": 29511 + }, + { + "epoch": 3.032675709001233, + "grad_norm": 0.034393493086099625, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 29514 + }, + { + "epoch": 3.0329839704069053, + "grad_norm": 0.041031621396541595, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 29517 + }, + { + "epoch": 3.033292231812577, + "grad_norm": 0.049610815942287445, + "learning_rate": 0.01, + "loss": 2.015, + "step": 29520 + }, + { + "epoch": 3.033600493218249, + "grad_norm": 0.07062069326639175, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 29523 + }, + { + "epoch": 3.033908754623921, + "grad_norm": 0.040892720222473145, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 29526 + }, + { + "epoch": 3.034217016029593, + "grad_norm": 0.036804720759391785, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 29529 + }, + { + "epoch": 3.034525277435265, + "grad_norm": 0.06749982386827469, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 29532 + }, + { + "epoch": 3.034833538840937, + "grad_norm": 0.07996654510498047, + "learning_rate": 0.01, + "loss": 2.0587, + "step": 29535 + }, + { + "epoch": 3.0351418002466093, + "grad_norm": 0.05621659383177757, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 29538 + }, + { + "epoch": 3.035450061652281, + "grad_norm": 0.04464147612452507, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 29541 + }, + { + "epoch": 3.0357583230579532, + "grad_norm": 0.04619302973151207, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 29544 + }, + { + "epoch": 3.036066584463625, + "grad_norm": 0.09262579679489136, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 29547 + }, + { + "epoch": 3.036374845869297, + "grad_norm": 0.07954932749271393, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 29550 + }, + { + "epoch": 3.0366831072749694, + "grad_norm": 0.08746150135993958, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 29553 + }, + { + "epoch": 3.036991368680641, + "grad_norm": 0.04415113106369972, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 29556 + }, + { + "epoch": 3.0372996300863133, + "grad_norm": 0.08307299762964249, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 29559 + }, + { + "epoch": 3.037607891491985, + "grad_norm": 0.05882325395941734, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 29562 + }, + { + "epoch": 3.0379161528976573, + "grad_norm": 0.08524999022483826, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 29565 + }, + { + "epoch": 3.038224414303329, + "grad_norm": 0.07542447000741959, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 29568 + }, + { + "epoch": 3.038532675709001, + "grad_norm": 0.06394769251346588, + "learning_rate": 0.01, + "loss": 2.0551, + "step": 29571 + }, + { + "epoch": 3.0388409371146734, + "grad_norm": 0.07811316847801208, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 29574 + }, + { + "epoch": 3.039149198520345, + "grad_norm": 0.0849740207195282, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 29577 + }, + { + "epoch": 3.0394574599260173, + "grad_norm": 0.05540047585964203, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 29580 + }, + { + "epoch": 3.039765721331689, + "grad_norm": 0.044082462787628174, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 29583 + }, + { + "epoch": 3.0400739827373613, + "grad_norm": 0.11179853975772858, + "learning_rate": 0.01, + "loss": 2.011, + "step": 29586 + }, + { + "epoch": 3.0403822441430335, + "grad_norm": 0.10160455852746964, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 29589 + }, + { + "epoch": 3.0406905055487052, + "grad_norm": 0.08072539418935776, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 29592 + }, + { + "epoch": 3.0409987669543774, + "grad_norm": 0.039637934416532516, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 29595 + }, + { + "epoch": 3.041307028360049, + "grad_norm": 0.05847008153796196, + "learning_rate": 0.01, + "loss": 2.02, + "step": 29598 + }, + { + "epoch": 3.0416152897657214, + "grad_norm": 0.04309094697237015, + "learning_rate": 0.01, + "loss": 2.0445, + "step": 29601 + }, + { + "epoch": 3.041923551171393, + "grad_norm": 0.04230069741606712, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 29604 + }, + { + "epoch": 3.0422318125770653, + "grad_norm": 0.08122226595878601, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 29607 + }, + { + "epoch": 3.0425400739827375, + "grad_norm": 0.05134423449635506, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 29610 + }, + { + "epoch": 3.0428483353884093, + "grad_norm": 0.06343290954828262, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 29613 + }, + { + "epoch": 3.0431565967940815, + "grad_norm": 0.04415202513337135, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 29616 + }, + { + "epoch": 3.043464858199753, + "grad_norm": 0.09160872548818588, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 29619 + }, + { + "epoch": 3.0437731196054254, + "grad_norm": 0.0800345167517662, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 29622 + }, + { + "epoch": 3.0440813810110976, + "grad_norm": 0.11805953085422516, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 29625 + }, + { + "epoch": 3.0443896424167693, + "grad_norm": 0.036926135420799255, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 29628 + }, + { + "epoch": 3.0446979038224415, + "grad_norm": 0.04666229337453842, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 29631 + }, + { + "epoch": 3.0450061652281133, + "grad_norm": 0.152203768491745, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 29634 + }, + { + "epoch": 3.0453144266337855, + "grad_norm": 0.07508762180805206, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 29637 + }, + { + "epoch": 3.0456226880394572, + "grad_norm": 0.07548423856496811, + "learning_rate": 0.01, + "loss": 2.006, + "step": 29640 + }, + { + "epoch": 3.0459309494451294, + "grad_norm": 0.03427097201347351, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 29643 + }, + { + "epoch": 3.0462392108508016, + "grad_norm": 0.0399865061044693, + "learning_rate": 0.01, + "loss": 2.012, + "step": 29646 + }, + { + "epoch": 3.0465474722564734, + "grad_norm": 0.03335277736186981, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 29649 + }, + { + "epoch": 3.0468557336621456, + "grad_norm": 0.0520477369427681, + "learning_rate": 0.01, + "loss": 2.0389, + "step": 29652 + }, + { + "epoch": 3.0471639950678173, + "grad_norm": 0.08565925061702728, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 29655 + }, + { + "epoch": 3.0474722564734895, + "grad_norm": 0.062498703598976135, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 29658 + }, + { + "epoch": 3.0477805178791617, + "grad_norm": 0.08171094208955765, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 29661 + }, + { + "epoch": 3.0480887792848335, + "grad_norm": 0.06803334504365921, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 29664 + }, + { + "epoch": 3.0483970406905057, + "grad_norm": 0.113568514585495, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 29667 + }, + { + "epoch": 3.0487053020961774, + "grad_norm": 0.049806151539087296, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 29670 + }, + { + "epoch": 3.0490135635018496, + "grad_norm": 0.05908326804637909, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 29673 + }, + { + "epoch": 3.049321824907522, + "grad_norm": 0.0421968549489975, + "learning_rate": 0.01, + "loss": 2.038, + "step": 29676 + }, + { + "epoch": 3.0496300863131935, + "grad_norm": 0.04743592441082001, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 29679 + }, + { + "epoch": 3.0499383477188657, + "grad_norm": 0.11457180231809616, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 29682 + }, + { + "epoch": 3.0502466091245375, + "grad_norm": 0.052697159349918365, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 29685 + }, + { + "epoch": 3.0505548705302097, + "grad_norm": 0.140494704246521, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 29688 + }, + { + "epoch": 3.0508631319358814, + "grad_norm": 0.03548673912882805, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 29691 + }, + { + "epoch": 3.0511713933415536, + "grad_norm": 0.03223096579313278, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 29694 + }, + { + "epoch": 3.051479654747226, + "grad_norm": 0.040596138685941696, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 29697 + }, + { + "epoch": 3.0517879161528976, + "grad_norm": 0.09559677541255951, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 29700 + }, + { + "epoch": 3.0520961775585698, + "grad_norm": 0.10038384050130844, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 29703 + }, + { + "epoch": 3.0524044389642415, + "grad_norm": 0.06066306680440903, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 29706 + }, + { + "epoch": 3.0527127003699137, + "grad_norm": 0.08278308808803558, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 29709 + }, + { + "epoch": 3.053020961775586, + "grad_norm": 0.05971555784344673, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 29712 + }, + { + "epoch": 3.0533292231812577, + "grad_norm": 0.036974966526031494, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 29715 + }, + { + "epoch": 3.05363748458693, + "grad_norm": 0.0310160294175148, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 29718 + }, + { + "epoch": 3.0539457459926016, + "grad_norm": 0.03587731346487999, + "learning_rate": 0.01, + "loss": 2.019, + "step": 29721 + }, + { + "epoch": 3.054254007398274, + "grad_norm": 0.05497679486870766, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 29724 + }, + { + "epoch": 3.0545622688039455, + "grad_norm": 0.06713774055242538, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 29727 + }, + { + "epoch": 3.0548705302096177, + "grad_norm": 0.034498222172260284, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 29730 + }, + { + "epoch": 3.05517879161529, + "grad_norm": 0.12036336213350296, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 29733 + }, + { + "epoch": 3.0554870530209617, + "grad_norm": 0.08315537869930267, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 29736 + }, + { + "epoch": 3.055795314426634, + "grad_norm": 0.041693978011608124, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 29739 + }, + { + "epoch": 3.0561035758323056, + "grad_norm": 0.08889281749725342, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 29742 + }, + { + "epoch": 3.056411837237978, + "grad_norm": 0.07068068534135818, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 29745 + }, + { + "epoch": 3.05672009864365, + "grad_norm": 0.09744048863649368, + "learning_rate": 0.01, + "loss": 2.001, + "step": 29748 + }, + { + "epoch": 3.0570283600493218, + "grad_norm": 0.04529158025979996, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 29751 + }, + { + "epoch": 3.057336621454994, + "grad_norm": 0.041666992008686066, + "learning_rate": 0.01, + "loss": 2.031, + "step": 29754 + }, + { + "epoch": 3.0576448828606657, + "grad_norm": 0.07549773156642914, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 29757 + }, + { + "epoch": 3.057953144266338, + "grad_norm": 0.046318188309669495, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 29760 + }, + { + "epoch": 3.0582614056720097, + "grad_norm": 0.05954563990235329, + "learning_rate": 0.01, + "loss": 2.01, + "step": 29763 + }, + { + "epoch": 3.058569667077682, + "grad_norm": 0.03786987066268921, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 29766 + }, + { + "epoch": 3.058877928483354, + "grad_norm": 0.04249919578433037, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 29769 + }, + { + "epoch": 3.059186189889026, + "grad_norm": 0.09349595755338669, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 29772 + }, + { + "epoch": 3.059494451294698, + "grad_norm": 0.05637031048536301, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 29775 + }, + { + "epoch": 3.0598027127003697, + "grad_norm": 0.09952693432569504, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 29778 + }, + { + "epoch": 3.060110974106042, + "grad_norm": 0.10634247213602066, + "learning_rate": 0.01, + "loss": 2.0425, + "step": 29781 + }, + { + "epoch": 3.060419235511714, + "grad_norm": 0.0774141326546669, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 29784 + }, + { + "epoch": 3.060727496917386, + "grad_norm": 0.04012331739068031, + "learning_rate": 0.01, + "loss": 2.021, + "step": 29787 + }, + { + "epoch": 3.061035758323058, + "grad_norm": 0.04289887100458145, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 29790 + }, + { + "epoch": 3.06134401972873, + "grad_norm": 0.03678658604621887, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 29793 + }, + { + "epoch": 3.061652281134402, + "grad_norm": 0.034676194190979004, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 29796 + }, + { + "epoch": 3.0619605425400738, + "grad_norm": 0.08951381593942642, + "learning_rate": 0.01, + "loss": 2.001, + "step": 29799 + }, + { + "epoch": 3.062268803945746, + "grad_norm": 0.053729988634586334, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 29802 + }, + { + "epoch": 3.062577065351418, + "grad_norm": 0.08025490492582321, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 29805 + }, + { + "epoch": 3.06288532675709, + "grad_norm": 0.11099457740783691, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 29808 + }, + { + "epoch": 3.063193588162762, + "grad_norm": 0.13354651629924774, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 29811 + }, + { + "epoch": 3.063501849568434, + "grad_norm": 0.07378706336021423, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 29814 + }, + { + "epoch": 3.063810110974106, + "grad_norm": 0.04699387028813362, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 29817 + }, + { + "epoch": 3.0641183723797782, + "grad_norm": 0.08287378400564194, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 29820 + }, + { + "epoch": 3.06442663378545, + "grad_norm": 0.04004284739494324, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 29823 + }, + { + "epoch": 3.064734895191122, + "grad_norm": 0.05801365152001381, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 29826 + }, + { + "epoch": 3.065043156596794, + "grad_norm": 0.05196039378643036, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 29829 + }, + { + "epoch": 3.065351418002466, + "grad_norm": 0.04543706774711609, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 29832 + }, + { + "epoch": 3.065659679408138, + "grad_norm": 0.05413155257701874, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 29835 + }, + { + "epoch": 3.06596794081381, + "grad_norm": 0.05158795788884163, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 29838 + }, + { + "epoch": 3.0662762022194823, + "grad_norm": 0.05547649413347244, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 29841 + }, + { + "epoch": 3.066584463625154, + "grad_norm": 0.04968711733818054, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 29844 + }, + { + "epoch": 3.066892725030826, + "grad_norm": 0.05625564232468605, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 29847 + }, + { + "epoch": 3.067200986436498, + "grad_norm": 0.05007552728056908, + "learning_rate": 0.01, + "loss": 2.022, + "step": 29850 + }, + { + "epoch": 3.06750924784217, + "grad_norm": 0.08748306334018707, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 29853 + }, + { + "epoch": 3.0678175092478424, + "grad_norm": 0.08939902484416962, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 29856 + }, + { + "epoch": 3.068125770653514, + "grad_norm": 0.04412224516272545, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 29859 + }, + { + "epoch": 3.0684340320591863, + "grad_norm": 0.04574199765920639, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 29862 + }, + { + "epoch": 3.068742293464858, + "grad_norm": 0.059090469032526016, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 29865 + }, + { + "epoch": 3.0690505548705302, + "grad_norm": 0.048365235328674316, + "learning_rate": 0.01, + "loss": 1.988, + "step": 29868 + }, + { + "epoch": 3.0693588162762024, + "grad_norm": 0.05044705048203468, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 29871 + }, + { + "epoch": 3.069667077681874, + "grad_norm": 0.06108652427792549, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 29874 + }, + { + "epoch": 3.0699753390875464, + "grad_norm": 0.04400194063782692, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 29877 + }, + { + "epoch": 3.070283600493218, + "grad_norm": 0.047024693340063095, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 29880 + }, + { + "epoch": 3.0705918618988903, + "grad_norm": 0.06958126276731491, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 29883 + }, + { + "epoch": 3.070900123304562, + "grad_norm": 0.07789502292871475, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 29886 + }, + { + "epoch": 3.0712083847102343, + "grad_norm": 0.06438666582107544, + "learning_rate": 0.01, + "loss": 2.035, + "step": 29889 + }, + { + "epoch": 3.0715166461159065, + "grad_norm": 0.1446814239025116, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 29892 + }, + { + "epoch": 3.071824907521578, + "grad_norm": 0.055988240987062454, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 29895 + }, + { + "epoch": 3.0721331689272504, + "grad_norm": 0.04055717960000038, + "learning_rate": 0.01, + "loss": 2.025, + "step": 29898 + }, + { + "epoch": 3.072441430332922, + "grad_norm": 0.11918565630912781, + "learning_rate": 0.01, + "loss": 2.0436, + "step": 29901 + }, + { + "epoch": 3.0727496917385944, + "grad_norm": 0.04726850986480713, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 29904 + }, + { + "epoch": 3.0730579531442666, + "grad_norm": 0.0526423342525959, + "learning_rate": 0.01, + "loss": 2.0541, + "step": 29907 + }, + { + "epoch": 3.0733662145499383, + "grad_norm": 0.048728957772254944, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 29910 + }, + { + "epoch": 3.0736744759556105, + "grad_norm": 0.036348532885313034, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 29913 + }, + { + "epoch": 3.0739827373612822, + "grad_norm": 0.08039457350969315, + "learning_rate": 0.01, + "loss": 1.9541, + "step": 29916 + }, + { + "epoch": 3.0742909987669544, + "grad_norm": 0.05370686575770378, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 29919 + }, + { + "epoch": 3.074599260172626, + "grad_norm": 0.08430914580821991, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 29922 + }, + { + "epoch": 3.0749075215782984, + "grad_norm": 0.04675029218196869, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 29925 + }, + { + "epoch": 3.0752157829839706, + "grad_norm": 0.0455501526594162, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 29928 + }, + { + "epoch": 3.0755240443896423, + "grad_norm": 0.04330252856016159, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 29931 + }, + { + "epoch": 3.0758323057953145, + "grad_norm": 0.04302576184272766, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 29934 + }, + { + "epoch": 3.0761405672009863, + "grad_norm": 0.07246873527765274, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 29937 + }, + { + "epoch": 3.0764488286066585, + "grad_norm": 0.12140212953090668, + "learning_rate": 0.01, + "loss": 2.0384, + "step": 29940 + }, + { + "epoch": 3.0767570900123307, + "grad_norm": 0.050940465182065964, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 29943 + }, + { + "epoch": 3.0770653514180024, + "grad_norm": 0.08281772583723068, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 29946 + }, + { + "epoch": 3.0773736128236746, + "grad_norm": 0.05485936999320984, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 29949 + }, + { + "epoch": 3.0776818742293464, + "grad_norm": 0.0354488380253315, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 29952 + }, + { + "epoch": 3.0779901356350186, + "grad_norm": 0.04454338923096657, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 29955 + }, + { + "epoch": 3.0782983970406903, + "grad_norm": 0.07980217784643173, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 29958 + }, + { + "epoch": 3.0786066584463625, + "grad_norm": 0.07601354271173477, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 29961 + }, + { + "epoch": 3.0789149198520347, + "grad_norm": 0.036425743252038956, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 29964 + }, + { + "epoch": 3.0792231812577064, + "grad_norm": 0.05909854918718338, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 29967 + }, + { + "epoch": 3.0795314426633786, + "grad_norm": 0.038156334310770035, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 29970 + }, + { + "epoch": 3.0798397040690504, + "grad_norm": 0.03241376578807831, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 29973 + }, + { + "epoch": 3.0801479654747226, + "grad_norm": 0.039934635162353516, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 29976 + }, + { + "epoch": 3.0804562268803948, + "grad_norm": 0.05287212133407593, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 29979 + }, + { + "epoch": 3.0807644882860665, + "grad_norm": 0.0807357057929039, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 29982 + }, + { + "epoch": 3.0810727496917387, + "grad_norm": 0.07264538109302521, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 29985 + }, + { + "epoch": 3.0813810110974105, + "grad_norm": 0.06328427046537399, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 29988 + }, + { + "epoch": 3.0816892725030827, + "grad_norm": 0.05093936249613762, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 29991 + }, + { + "epoch": 3.0819975339087544, + "grad_norm": 0.035449884831905365, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 29994 + }, + { + "epoch": 3.0823057953144266, + "grad_norm": 0.13781675696372986, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 29997 + }, + { + "epoch": 3.082614056720099, + "grad_norm": 0.06310711055994034, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 30000 + }, + { + "epoch": 3.0829223181257706, + "grad_norm": 0.059962496161460876, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 30003 + }, + { + "epoch": 3.0832305795314427, + "grad_norm": 0.07414010167121887, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 30006 + }, + { + "epoch": 3.0835388409371145, + "grad_norm": 0.05147621035575867, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 30009 + }, + { + "epoch": 3.0838471023427867, + "grad_norm": 0.08669129014015198, + "learning_rate": 0.01, + "loss": 2.029, + "step": 30012 + }, + { + "epoch": 3.084155363748459, + "grad_norm": 0.03791889548301697, + "learning_rate": 0.01, + "loss": 1.997, + "step": 30015 + }, + { + "epoch": 3.0844636251541306, + "grad_norm": 0.08246924728155136, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 30018 + }, + { + "epoch": 3.084771886559803, + "grad_norm": 0.11454186588525772, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 30021 + }, + { + "epoch": 3.0850801479654746, + "grad_norm": 0.07639762759208679, + "learning_rate": 0.01, + "loss": 2.033, + "step": 30024 + }, + { + "epoch": 3.085388409371147, + "grad_norm": 0.05283968895673752, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 30027 + }, + { + "epoch": 3.0856966707768185, + "grad_norm": 0.041770000010728836, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 30030 + }, + { + "epoch": 3.0860049321824907, + "grad_norm": 0.034824103116989136, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 30033 + }, + { + "epoch": 3.086313193588163, + "grad_norm": 0.043972861021757126, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 30036 + }, + { + "epoch": 3.0866214549938347, + "grad_norm": 0.03452165424823761, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 30039 + }, + { + "epoch": 3.086929716399507, + "grad_norm": 0.07175113260746002, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 30042 + }, + { + "epoch": 3.0872379778051786, + "grad_norm": 0.0780046209692955, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 30045 + }, + { + "epoch": 3.087546239210851, + "grad_norm": 0.06838949769735336, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 30048 + }, + { + "epoch": 3.087854500616523, + "grad_norm": 0.114894799888134, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 30051 + }, + { + "epoch": 3.0881627620221948, + "grad_norm": 0.10075607150793076, + "learning_rate": 0.01, + "loss": 2.025, + "step": 30054 + }, + { + "epoch": 3.088471023427867, + "grad_norm": 0.04926849529147148, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 30057 + }, + { + "epoch": 3.0887792848335387, + "grad_norm": 0.04143848270177841, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 30060 + }, + { + "epoch": 3.089087546239211, + "grad_norm": 0.04664148762822151, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 30063 + }, + { + "epoch": 3.089395807644883, + "grad_norm": 0.04764292761683464, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 30066 + }, + { + "epoch": 3.089704069050555, + "grad_norm": 0.06317167729139328, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 30069 + }, + { + "epoch": 3.090012330456227, + "grad_norm": 0.07983100414276123, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 30072 + }, + { + "epoch": 3.090320591861899, + "grad_norm": 0.03481268137693405, + "learning_rate": 0.01, + "loss": 2.0441, + "step": 30075 + }, + { + "epoch": 3.090628853267571, + "grad_norm": 0.042781632393598557, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 30078 + }, + { + "epoch": 3.0909371146732427, + "grad_norm": 0.05203581228852272, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 30081 + }, + { + "epoch": 3.091245376078915, + "grad_norm": 0.07452182471752167, + "learning_rate": 0.01, + "loss": 2.031, + "step": 30084 + }, + { + "epoch": 3.091553637484587, + "grad_norm": 0.05319884046912193, + "learning_rate": 0.01, + "loss": 2.02, + "step": 30087 + }, + { + "epoch": 3.091861898890259, + "grad_norm": 0.11648225039243698, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 30090 + }, + { + "epoch": 3.092170160295931, + "grad_norm": 0.07870937138795853, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 30093 + }, + { + "epoch": 3.092478421701603, + "grad_norm": 0.04574506729841232, + "learning_rate": 0.01, + "loss": 2.027, + "step": 30096 + }, + { + "epoch": 3.092786683107275, + "grad_norm": 0.07913927733898163, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 30099 + }, + { + "epoch": 3.0930949445129468, + "grad_norm": 0.08093220740556717, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 30102 + }, + { + "epoch": 3.093403205918619, + "grad_norm": 0.07089852541685104, + "learning_rate": 0.01, + "loss": 2.0292, + "step": 30105 + }, + { + "epoch": 3.093711467324291, + "grad_norm": 0.06293002516031265, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 30108 + }, + { + "epoch": 3.094019728729963, + "grad_norm": 0.057953476905822754, + "learning_rate": 0.01, + "loss": 2.027, + "step": 30111 + }, + { + "epoch": 3.094327990135635, + "grad_norm": 0.06989496946334839, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 30114 + }, + { + "epoch": 3.094636251541307, + "grad_norm": 0.04050515964627266, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 30117 + }, + { + "epoch": 3.094944512946979, + "grad_norm": 0.1112913116812706, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 30120 + }, + { + "epoch": 3.0952527743526512, + "grad_norm": 0.05135345458984375, + "learning_rate": 0.01, + "loss": 2.044, + "step": 30123 + }, + { + "epoch": 3.095561035758323, + "grad_norm": 0.1411667764186859, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 30126 + }, + { + "epoch": 3.095869297163995, + "grad_norm": 0.08077210187911987, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 30129 + }, + { + "epoch": 3.096177558569667, + "grad_norm": 0.10934364050626755, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 30132 + }, + { + "epoch": 3.096485819975339, + "grad_norm": 0.07186675071716309, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 30135 + }, + { + "epoch": 3.0967940813810113, + "grad_norm": 0.11918327957391739, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 30138 + }, + { + "epoch": 3.097102342786683, + "grad_norm": 0.052199963480234146, + "learning_rate": 0.01, + "loss": 2.011, + "step": 30141 + }, + { + "epoch": 3.0974106041923553, + "grad_norm": 0.06796009093523026, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 30144 + }, + { + "epoch": 3.097718865598027, + "grad_norm": 0.055949617177248, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 30147 + }, + { + "epoch": 3.098027127003699, + "grad_norm": 0.06256923824548721, + "learning_rate": 0.01, + "loss": 2.0299, + "step": 30150 + }, + { + "epoch": 3.098335388409371, + "grad_norm": 0.04565596580505371, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 30153 + }, + { + "epoch": 3.098643649815043, + "grad_norm": 0.051202937960624695, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 30156 + }, + { + "epoch": 3.0989519112207153, + "grad_norm": 0.09557224065065384, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 30159 + }, + { + "epoch": 3.099260172626387, + "grad_norm": 0.07491281628608704, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 30162 + }, + { + "epoch": 3.0995684340320593, + "grad_norm": 0.06766588240861893, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 30165 + }, + { + "epoch": 3.099876695437731, + "grad_norm": 0.036496859043836594, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 30168 + }, + { + "epoch": 3.1001849568434032, + "grad_norm": 0.09757262468338013, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 30171 + }, + { + "epoch": 3.1004932182490754, + "grad_norm": 0.046625055372714996, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 30174 + }, + { + "epoch": 3.100801479654747, + "grad_norm": 0.07655061781406403, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 30177 + }, + { + "epoch": 3.1011097410604194, + "grad_norm": 0.04577295854687691, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 30180 + }, + { + "epoch": 3.101418002466091, + "grad_norm": 0.04528047516942024, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 30183 + }, + { + "epoch": 3.1017262638717633, + "grad_norm": 0.04630058631300926, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 30186 + }, + { + "epoch": 3.102034525277435, + "grad_norm": 0.03936396911740303, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 30189 + }, + { + "epoch": 3.1023427866831073, + "grad_norm": 0.05879136547446251, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 30192 + }, + { + "epoch": 3.1026510480887795, + "grad_norm": 0.061699915677309036, + "learning_rate": 0.01, + "loss": 2.0418, + "step": 30195 + }, + { + "epoch": 3.102959309494451, + "grad_norm": 0.05961352214217186, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 30198 + }, + { + "epoch": 3.1032675709001234, + "grad_norm": 0.10209197551012039, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 30201 + }, + { + "epoch": 3.103575832305795, + "grad_norm": 0.10693737864494324, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 30204 + }, + { + "epoch": 3.1038840937114673, + "grad_norm": 0.11183932423591614, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 30207 + }, + { + "epoch": 3.1041923551171395, + "grad_norm": 0.07532890886068344, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 30210 + }, + { + "epoch": 3.1045006165228113, + "grad_norm": 0.04888713359832764, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 30213 + }, + { + "epoch": 3.1048088779284835, + "grad_norm": 0.0533674955368042, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 30216 + }, + { + "epoch": 3.1051171393341552, + "grad_norm": 0.044245727360248566, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 30219 + }, + { + "epoch": 3.1054254007398274, + "grad_norm": 0.032582368701696396, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 30222 + }, + { + "epoch": 3.105733662145499, + "grad_norm": 0.10102632641792297, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 30225 + }, + { + "epoch": 3.1060419235511714, + "grad_norm": 0.03793931379914284, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 30228 + }, + { + "epoch": 3.1063501849568436, + "grad_norm": 0.04896242544054985, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 30231 + }, + { + "epoch": 3.1066584463625153, + "grad_norm": 0.057475607842206955, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 30234 + }, + { + "epoch": 3.1069667077681875, + "grad_norm": 0.037703339010477066, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 30237 + }, + { + "epoch": 3.1072749691738593, + "grad_norm": 0.04800937697291374, + "learning_rate": 0.01, + "loss": 2.043, + "step": 30240 + }, + { + "epoch": 3.1075832305795315, + "grad_norm": 0.042761534452438354, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 30243 + }, + { + "epoch": 3.1078914919852036, + "grad_norm": 0.0864332839846611, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 30246 + }, + { + "epoch": 3.1081997533908754, + "grad_norm": 0.10482830554246902, + "learning_rate": 0.01, + "loss": 2.0601, + "step": 30249 + }, + { + "epoch": 3.1085080147965476, + "grad_norm": 0.10628984868526459, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 30252 + }, + { + "epoch": 3.1088162762022193, + "grad_norm": 0.04853438585996628, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 30255 + }, + { + "epoch": 3.1091245376078915, + "grad_norm": 0.05274122208356857, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 30258 + }, + { + "epoch": 3.1094327990135637, + "grad_norm": 0.03757349029183388, + "learning_rate": 0.01, + "loss": 2.003, + "step": 30261 + }, + { + "epoch": 3.1097410604192355, + "grad_norm": 0.04505928233265877, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 30264 + }, + { + "epoch": 3.1100493218249077, + "grad_norm": 0.08804783225059509, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 30267 + }, + { + "epoch": 3.1103575832305794, + "grad_norm": 0.11545568704605103, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 30270 + }, + { + "epoch": 3.1106658446362516, + "grad_norm": 0.04955466091632843, + "learning_rate": 0.01, + "loss": 2.048, + "step": 30273 + }, + { + "epoch": 3.1109741060419234, + "grad_norm": 0.04930401220917702, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 30276 + }, + { + "epoch": 3.1112823674475956, + "grad_norm": 0.05701540783047676, + "learning_rate": 0.01, + "loss": 2.046, + "step": 30279 + }, + { + "epoch": 3.1115906288532678, + "grad_norm": 0.07442028075456619, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 30282 + }, + { + "epoch": 3.1118988902589395, + "grad_norm": 0.06538541615009308, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 30285 + }, + { + "epoch": 3.1122071516646117, + "grad_norm": 0.0826522633433342, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 30288 + }, + { + "epoch": 3.1125154130702835, + "grad_norm": 0.1353752762079239, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 30291 + }, + { + "epoch": 3.1128236744759556, + "grad_norm": 0.06406208872795105, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 30294 + }, + { + "epoch": 3.1131319358816274, + "grad_norm": 0.036653418093919754, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 30297 + }, + { + "epoch": 3.1134401972872996, + "grad_norm": 0.0839834213256836, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 30300 + }, + { + "epoch": 3.113748458692972, + "grad_norm": 0.04629015177488327, + "learning_rate": 0.01, + "loss": 2.0488, + "step": 30303 + }, + { + "epoch": 3.1140567200986435, + "grad_norm": 0.08630986511707306, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 30306 + }, + { + "epoch": 3.1143649815043157, + "grad_norm": 0.07894504070281982, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 30309 + }, + { + "epoch": 3.1146732429099875, + "grad_norm": 0.09203556925058365, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 30312 + }, + { + "epoch": 3.1149815043156597, + "grad_norm": 0.061055563390254974, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 30315 + }, + { + "epoch": 3.115289765721332, + "grad_norm": 0.0711871087551117, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 30318 + }, + { + "epoch": 3.1155980271270036, + "grad_norm": 0.07315775007009506, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 30321 + }, + { + "epoch": 3.115906288532676, + "grad_norm": 0.1050182655453682, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 30324 + }, + { + "epoch": 3.1162145499383476, + "grad_norm": 0.04959526285529137, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 30327 + }, + { + "epoch": 3.1165228113440198, + "grad_norm": 0.061066534370183945, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 30330 + }, + { + "epoch": 3.116831072749692, + "grad_norm": 0.057984329760074615, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 30333 + }, + { + "epoch": 3.1171393341553637, + "grad_norm": 0.07337040454149246, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 30336 + }, + { + "epoch": 3.117447595561036, + "grad_norm": 0.07801029831171036, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 30339 + }, + { + "epoch": 3.1177558569667077, + "grad_norm": 0.06625111401081085, + "learning_rate": 0.01, + "loss": 2.022, + "step": 30342 + }, + { + "epoch": 3.11806411837238, + "grad_norm": 0.11416434496641159, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 30345 + }, + { + "epoch": 3.1183723797780516, + "grad_norm": 0.05046262592077255, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 30348 + }, + { + "epoch": 3.118680641183724, + "grad_norm": 0.030621282756328583, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 30351 + }, + { + "epoch": 3.118988902589396, + "grad_norm": 0.03274908661842346, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 30354 + }, + { + "epoch": 3.1192971639950677, + "grad_norm": 0.03673490136861801, + "learning_rate": 0.01, + "loss": 2.0383, + "step": 30357 + }, + { + "epoch": 3.11960542540074, + "grad_norm": 0.07161369919776917, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 30360 + }, + { + "epoch": 3.1199136868064117, + "grad_norm": 0.04244636744260788, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 30363 + }, + { + "epoch": 3.120221948212084, + "grad_norm": 0.05357150360941887, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 30366 + }, + { + "epoch": 3.120530209617756, + "grad_norm": 0.06689538061618805, + "learning_rate": 0.01, + "loss": 2.008, + "step": 30369 + }, + { + "epoch": 3.120838471023428, + "grad_norm": 0.08160898089408875, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 30372 + }, + { + "epoch": 3.1211467324291, + "grad_norm": 0.04037999361753464, + "learning_rate": 0.01, + "loss": 1.993, + "step": 30375 + }, + { + "epoch": 3.1214549938347718, + "grad_norm": 0.09855981171131134, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 30378 + }, + { + "epoch": 3.121763255240444, + "grad_norm": 0.04645252600312233, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 30381 + }, + { + "epoch": 3.1220715166461157, + "grad_norm": 0.10605467110872269, + "learning_rate": 0.01, + "loss": 2.015, + "step": 30384 + }, + { + "epoch": 3.122379778051788, + "grad_norm": 0.11321547627449036, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 30387 + }, + { + "epoch": 3.12268803945746, + "grad_norm": 0.07283324748277664, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 30390 + }, + { + "epoch": 3.122996300863132, + "grad_norm": 0.07217562943696976, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 30393 + }, + { + "epoch": 3.123304562268804, + "grad_norm": 0.036078888922929764, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 30396 + }, + { + "epoch": 3.123612823674476, + "grad_norm": 0.03730477765202522, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 30399 + }, + { + "epoch": 3.123921085080148, + "grad_norm": 0.04707048460841179, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 30402 + }, + { + "epoch": 3.12422934648582, + "grad_norm": 0.0571308508515358, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 30405 + }, + { + "epoch": 3.124537607891492, + "grad_norm": 0.05167640373110771, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 30408 + }, + { + "epoch": 3.124845869297164, + "grad_norm": 0.06759858876466751, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 30411 + }, + { + "epoch": 3.125154130702836, + "grad_norm": 0.031637318432331085, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 30414 + }, + { + "epoch": 3.125462392108508, + "grad_norm": 0.0991082713007927, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 30417 + }, + { + "epoch": 3.12577065351418, + "grad_norm": 0.06524378806352615, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 30420 + }, + { + "epoch": 3.126078914919852, + "grad_norm": 0.05751586705446243, + "learning_rate": 0.01, + "loss": 2.012, + "step": 30423 + }, + { + "epoch": 3.126387176325524, + "grad_norm": 0.03776116296648979, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 30426 + }, + { + "epoch": 3.126695437731196, + "grad_norm": 0.0619078204035759, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 30429 + }, + { + "epoch": 3.127003699136868, + "grad_norm": 0.0511760450899601, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 30432 + }, + { + "epoch": 3.12731196054254, + "grad_norm": 0.053964611142873764, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 30435 + }, + { + "epoch": 3.127620221948212, + "grad_norm": 0.11773833632469177, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 30438 + }, + { + "epoch": 3.1279284833538843, + "grad_norm": 0.04505350813269615, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 30441 + }, + { + "epoch": 3.128236744759556, + "grad_norm": 0.10077274590730667, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 30444 + }, + { + "epoch": 3.1285450061652282, + "grad_norm": 0.05291616916656494, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 30447 + }, + { + "epoch": 3.1288532675709, + "grad_norm": 0.049340371042490005, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 30450 + }, + { + "epoch": 3.129161528976572, + "grad_norm": 0.06910324841737747, + "learning_rate": 0.01, + "loss": 2.008, + "step": 30453 + }, + { + "epoch": 3.1294697903822444, + "grad_norm": 0.07307056337594986, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 30456 + }, + { + "epoch": 3.129778051787916, + "grad_norm": 0.06828980147838593, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 30459 + }, + { + "epoch": 3.1300863131935883, + "grad_norm": 0.0480424240231514, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 30462 + }, + { + "epoch": 3.13039457459926, + "grad_norm": 0.10072044283151627, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 30465 + }, + { + "epoch": 3.1307028360049323, + "grad_norm": 0.04987982660531998, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 30468 + }, + { + "epoch": 3.131011097410604, + "grad_norm": 0.10036738961935043, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 30471 + }, + { + "epoch": 3.131319358816276, + "grad_norm": 0.06445086747407913, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 30474 + }, + { + "epoch": 3.1316276202219484, + "grad_norm": 0.10858535021543503, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 30477 + }, + { + "epoch": 3.13193588162762, + "grad_norm": 0.041025932878255844, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 30480 + }, + { + "epoch": 3.1322441430332923, + "grad_norm": 0.05287109315395355, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 30483 + }, + { + "epoch": 3.132552404438964, + "grad_norm": 0.09659206867218018, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 30486 + }, + { + "epoch": 3.1328606658446363, + "grad_norm": 0.07235360145568848, + "learning_rate": 0.01, + "loss": 2.0521, + "step": 30489 + }, + { + "epoch": 3.133168927250308, + "grad_norm": 0.042338863015174866, + "learning_rate": 0.01, + "loss": 2.0403, + "step": 30492 + }, + { + "epoch": 3.1334771886559802, + "grad_norm": 0.045676395297050476, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 30495 + }, + { + "epoch": 3.1337854500616524, + "grad_norm": 0.04957246780395508, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 30498 + }, + { + "epoch": 3.134093711467324, + "grad_norm": 0.047321684658527374, + "learning_rate": 0.01, + "loss": 2.025, + "step": 30501 + }, + { + "epoch": 3.1344019728729964, + "grad_norm": 0.09219278395175934, + "learning_rate": 0.01, + "loss": 2.0326, + "step": 30504 + }, + { + "epoch": 3.134710234278668, + "grad_norm": 0.07666533440351486, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 30507 + }, + { + "epoch": 3.1350184956843403, + "grad_norm": 0.06832748651504517, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 30510 + }, + { + "epoch": 3.1353267570900125, + "grad_norm": 0.05527606979012489, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 30513 + }, + { + "epoch": 3.1356350184956843, + "grad_norm": 0.09272732585668564, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 30516 + }, + { + "epoch": 3.1359432799013565, + "grad_norm": 0.02908925898373127, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 30519 + }, + { + "epoch": 3.136251541307028, + "grad_norm": 0.04611453413963318, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 30522 + }, + { + "epoch": 3.1365598027127004, + "grad_norm": 0.05230382829904556, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 30525 + }, + { + "epoch": 3.1368680641183726, + "grad_norm": 0.09377764165401459, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 30528 + }, + { + "epoch": 3.1371763255240444, + "grad_norm": 0.049708276987075806, + "learning_rate": 0.01, + "loss": 1.996, + "step": 30531 + }, + { + "epoch": 3.1374845869297165, + "grad_norm": 0.05086242035031319, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 30534 + }, + { + "epoch": 3.1377928483353883, + "grad_norm": 0.05085150897502899, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 30537 + }, + { + "epoch": 3.1381011097410605, + "grad_norm": 0.05230359733104706, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 30540 + }, + { + "epoch": 3.1384093711467322, + "grad_norm": 0.07910077273845673, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 30543 + }, + { + "epoch": 3.1387176325524044, + "grad_norm": 0.044358085840940475, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 30546 + }, + { + "epoch": 3.1390258939580766, + "grad_norm": 0.07269710302352905, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 30549 + }, + { + "epoch": 3.1393341553637484, + "grad_norm": 0.09917914122343063, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 30552 + }, + { + "epoch": 3.1396424167694206, + "grad_norm": 0.0755099207162857, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 30555 + }, + { + "epoch": 3.1399506781750923, + "grad_norm": 0.07911227643489838, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 30558 + }, + { + "epoch": 3.1402589395807645, + "grad_norm": 0.04883533716201782, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 30561 + }, + { + "epoch": 3.1405672009864363, + "grad_norm": 0.0375591404736042, + "learning_rate": 0.01, + "loss": 2.004, + "step": 30564 + }, + { + "epoch": 3.1408754623921085, + "grad_norm": 0.08654747903347015, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 30567 + }, + { + "epoch": 3.1411837237977807, + "grad_norm": 0.07025197148323059, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 30570 + }, + { + "epoch": 3.1414919852034524, + "grad_norm": 0.11750215291976929, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 30573 + }, + { + "epoch": 3.1418002466091246, + "grad_norm": 0.037444472312927246, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 30576 + }, + { + "epoch": 3.1421085080147964, + "grad_norm": 0.044617678970098495, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 30579 + }, + { + "epoch": 3.1424167694204685, + "grad_norm": 0.06604386866092682, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 30582 + }, + { + "epoch": 3.1427250308261407, + "grad_norm": 0.09958125650882721, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 30585 + }, + { + "epoch": 3.1430332922318125, + "grad_norm": 0.05710573121905327, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 30588 + }, + { + "epoch": 3.1433415536374847, + "grad_norm": 0.05984263867139816, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 30591 + }, + { + "epoch": 3.1436498150431564, + "grad_norm": 0.04073350876569748, + "learning_rate": 0.01, + "loss": 2.032, + "step": 30594 + }, + { + "epoch": 3.1439580764488286, + "grad_norm": 0.07050776481628418, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 30597 + }, + { + "epoch": 3.144266337854501, + "grad_norm": 0.03400518372654915, + "learning_rate": 0.01, + "loss": 2.0404, + "step": 30600 + }, + { + "epoch": 3.1445745992601726, + "grad_norm": 0.06751801073551178, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 30603 + }, + { + "epoch": 3.1448828606658448, + "grad_norm": 0.06015434488654137, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 30606 + }, + { + "epoch": 3.1451911220715165, + "grad_norm": 0.11231853067874908, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 30609 + }, + { + "epoch": 3.1454993834771887, + "grad_norm": 0.047932934015989304, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 30612 + }, + { + "epoch": 3.1458076448828605, + "grad_norm": 0.04414699971675873, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 30615 + }, + { + "epoch": 3.1461159062885327, + "grad_norm": 0.06486550718545914, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 30618 + }, + { + "epoch": 3.146424167694205, + "grad_norm": 0.056324832141399384, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 30621 + }, + { + "epoch": 3.1467324290998766, + "grad_norm": 0.030867785215377808, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 30624 + }, + { + "epoch": 3.147040690505549, + "grad_norm": 0.050489556044340134, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 30627 + }, + { + "epoch": 3.1473489519112205, + "grad_norm": 0.04749634861946106, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 30630 + }, + { + "epoch": 3.1476572133168927, + "grad_norm": 0.05312662571668625, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 30633 + }, + { + "epoch": 3.147965474722565, + "grad_norm": 0.1234770268201828, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 30636 + }, + { + "epoch": 3.1482737361282367, + "grad_norm": 0.1423310786485672, + "learning_rate": 0.01, + "loss": 1.99, + "step": 30639 + }, + { + "epoch": 3.148581997533909, + "grad_norm": 0.08930431306362152, + "learning_rate": 0.01, + "loss": 2.023, + "step": 30642 + }, + { + "epoch": 3.1488902589395806, + "grad_norm": 0.03335024416446686, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 30645 + }, + { + "epoch": 3.149198520345253, + "grad_norm": 0.07785200327634811, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 30648 + }, + { + "epoch": 3.1495067817509246, + "grad_norm": 0.047731272876262665, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 30651 + }, + { + "epoch": 3.1498150431565968, + "grad_norm": 0.10476487874984741, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 30654 + }, + { + "epoch": 3.150123304562269, + "grad_norm": 0.05200812220573425, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 30657 + }, + { + "epoch": 3.1504315659679407, + "grad_norm": 0.06658156216144562, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 30660 + }, + { + "epoch": 3.150739827373613, + "grad_norm": 0.06515184789896011, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 30663 + }, + { + "epoch": 3.1510480887792847, + "grad_norm": 0.03604321926832199, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 30666 + }, + { + "epoch": 3.151356350184957, + "grad_norm": 0.10496728122234344, + "learning_rate": 0.01, + "loss": 2.016, + "step": 30669 + }, + { + "epoch": 3.151664611590629, + "grad_norm": 0.05922207236289978, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 30672 + }, + { + "epoch": 3.151972872996301, + "grad_norm": 0.03718853369355202, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 30675 + }, + { + "epoch": 3.152281134401973, + "grad_norm": 0.04691898077726364, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 30678 + }, + { + "epoch": 3.1525893958076447, + "grad_norm": 0.048930030316114426, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 30681 + }, + { + "epoch": 3.152897657213317, + "grad_norm": 0.028419634327292442, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 30684 + }, + { + "epoch": 3.1532059186189887, + "grad_norm": 0.05914349481463432, + "learning_rate": 0.01, + "loss": 2.004, + "step": 30687 + }, + { + "epoch": 3.153514180024661, + "grad_norm": 0.05946047231554985, + "learning_rate": 0.01, + "loss": 2.025, + "step": 30690 + }, + { + "epoch": 3.153822441430333, + "grad_norm": 0.06951475888490677, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 30693 + }, + { + "epoch": 3.154130702836005, + "grad_norm": 0.055885329842567444, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 30696 + }, + { + "epoch": 3.154438964241677, + "grad_norm": 0.043436676263809204, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 30699 + }, + { + "epoch": 3.1547472256473488, + "grad_norm": 0.04978411644697189, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 30702 + }, + { + "epoch": 3.155055487053021, + "grad_norm": 0.11427465081214905, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 30705 + }, + { + "epoch": 3.155363748458693, + "grad_norm": 0.045963071286678314, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 30708 + }, + { + "epoch": 3.155672009864365, + "grad_norm": 0.03811359032988548, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 30711 + }, + { + "epoch": 3.155980271270037, + "grad_norm": 0.05763382837176323, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 30714 + }, + { + "epoch": 3.156288532675709, + "grad_norm": 0.045626237988471985, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 30717 + }, + { + "epoch": 3.156596794081381, + "grad_norm": 0.037544216960668564, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 30720 + }, + { + "epoch": 3.1569050554870532, + "grad_norm": 0.14238816499710083, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 30723 + }, + { + "epoch": 3.157213316892725, + "grad_norm": 0.048318054527044296, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 30726 + }, + { + "epoch": 3.157521578298397, + "grad_norm": 0.041052673012018204, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 30729 + }, + { + "epoch": 3.157829839704069, + "grad_norm": 0.0370815135538578, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 30732 + }, + { + "epoch": 3.158138101109741, + "grad_norm": 0.07156988233327866, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 30735 + }, + { + "epoch": 3.158446362515413, + "grad_norm": 0.0757046490907669, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 30738 + }, + { + "epoch": 3.158754623921085, + "grad_norm": 0.0674174353480339, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 30741 + }, + { + "epoch": 3.1590628853267573, + "grad_norm": 0.05094176158308983, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 30744 + }, + { + "epoch": 3.159371146732429, + "grad_norm": 0.04377339780330658, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 30747 + }, + { + "epoch": 3.159679408138101, + "grad_norm": 0.04788428172469139, + "learning_rate": 0.01, + "loss": 2.032, + "step": 30750 + }, + { + "epoch": 3.159987669543773, + "grad_norm": 0.08424562215805054, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 30753 + }, + { + "epoch": 3.160295930949445, + "grad_norm": 0.0742245689034462, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 30756 + }, + { + "epoch": 3.160604192355117, + "grad_norm": 0.127692312002182, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 30759 + }, + { + "epoch": 3.160912453760789, + "grad_norm": 0.06112000718712807, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 30762 + }, + { + "epoch": 3.1612207151664613, + "grad_norm": 0.04676929488778114, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 30765 + }, + { + "epoch": 3.161528976572133, + "grad_norm": 0.07944846153259277, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 30768 + }, + { + "epoch": 3.1618372379778052, + "grad_norm": 0.05377965793013573, + "learning_rate": 0.01, + "loss": 2.0424, + "step": 30771 + }, + { + "epoch": 3.162145499383477, + "grad_norm": 0.04961777105927467, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 30774 + }, + { + "epoch": 3.162453760789149, + "grad_norm": 0.043640993535518646, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 30777 + }, + { + "epoch": 3.1627620221948214, + "grad_norm": 0.08145361393690109, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 30780 + }, + { + "epoch": 3.163070283600493, + "grad_norm": 0.03488341346383095, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 30783 + }, + { + "epoch": 3.1633785450061653, + "grad_norm": 0.054735999554395676, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 30786 + }, + { + "epoch": 3.163686806411837, + "grad_norm": 0.05064836144447327, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 30789 + }, + { + "epoch": 3.1639950678175093, + "grad_norm": 0.05693964287638664, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 30792 + }, + { + "epoch": 3.1643033292231815, + "grad_norm": 0.08762123435735703, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 30795 + }, + { + "epoch": 3.164611590628853, + "grad_norm": 0.08652741461992264, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 30798 + }, + { + "epoch": 3.1649198520345254, + "grad_norm": 0.15153749287128448, + "learning_rate": 0.01, + "loss": 2.0326, + "step": 30801 + }, + { + "epoch": 3.165228113440197, + "grad_norm": 0.09822986274957657, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 30804 + }, + { + "epoch": 3.1655363748458694, + "grad_norm": 0.07334254682064056, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 30807 + }, + { + "epoch": 3.165844636251541, + "grad_norm": 0.042224787175655365, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 30810 + }, + { + "epoch": 3.1661528976572133, + "grad_norm": 0.047276921570301056, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 30813 + }, + { + "epoch": 3.1664611590628855, + "grad_norm": 0.112834133207798, + "learning_rate": 0.01, + "loss": 1.998, + "step": 30816 + }, + { + "epoch": 3.1667694204685573, + "grad_norm": 0.0851617380976677, + "learning_rate": 0.01, + "loss": 2.013, + "step": 30819 + }, + { + "epoch": 3.1670776818742294, + "grad_norm": 0.046194661408662796, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 30822 + }, + { + "epoch": 3.167385943279901, + "grad_norm": 0.056417178362607956, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 30825 + }, + { + "epoch": 3.1676942046855734, + "grad_norm": 0.06759685277938843, + "learning_rate": 0.01, + "loss": 2.0281, + "step": 30828 + }, + { + "epoch": 3.1680024660912456, + "grad_norm": 0.08961043506860733, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 30831 + }, + { + "epoch": 3.1683107274969173, + "grad_norm": 0.03684352710843086, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 30834 + }, + { + "epoch": 3.1686189889025895, + "grad_norm": 0.1388491988182068, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 30837 + }, + { + "epoch": 3.1689272503082613, + "grad_norm": 0.03769170120358467, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 30840 + }, + { + "epoch": 3.1692355117139335, + "grad_norm": 0.040609996765851974, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 30843 + }, + { + "epoch": 3.1695437731196052, + "grad_norm": 0.04916587471961975, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 30846 + }, + { + "epoch": 3.1698520345252774, + "grad_norm": 0.042920999228954315, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 30849 + }, + { + "epoch": 3.1701602959309496, + "grad_norm": 0.05777138099074364, + "learning_rate": 0.01, + "loss": 2.019, + "step": 30852 + }, + { + "epoch": 3.1704685573366214, + "grad_norm": 0.06128811836242676, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 30855 + }, + { + "epoch": 3.1707768187422936, + "grad_norm": 0.08042391389608383, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 30858 + }, + { + "epoch": 3.1710850801479653, + "grad_norm": 0.036383189260959625, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 30861 + }, + { + "epoch": 3.1713933415536375, + "grad_norm": 0.05068094655871391, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 30864 + }, + { + "epoch": 3.1717016029593097, + "grad_norm": 0.09005576372146606, + "learning_rate": 0.01, + "loss": 2.048, + "step": 30867 + }, + { + "epoch": 3.1720098643649814, + "grad_norm": 0.0589495450258255, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 30870 + }, + { + "epoch": 3.1723181257706536, + "grad_norm": 0.04160517826676369, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 30873 + }, + { + "epoch": 3.1726263871763254, + "grad_norm": 0.044718582183122635, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 30876 + }, + { + "epoch": 3.1729346485819976, + "grad_norm": 0.09011929482221603, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 30879 + }, + { + "epoch": 3.1732429099876693, + "grad_norm": 0.0597953200340271, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 30882 + }, + { + "epoch": 3.1735511713933415, + "grad_norm": 0.06141204759478569, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 30885 + }, + { + "epoch": 3.1738594327990137, + "grad_norm": 0.09013784676790237, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 30888 + }, + { + "epoch": 3.1741676942046855, + "grad_norm": 0.08281320333480835, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 30891 + }, + { + "epoch": 3.1744759556103577, + "grad_norm": 0.09314266592264175, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 30894 + }, + { + "epoch": 3.1747842170160294, + "grad_norm": 0.04410851374268532, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 30897 + }, + { + "epoch": 3.1750924784217016, + "grad_norm": 0.12074366211891174, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 30900 + }, + { + "epoch": 3.175400739827374, + "grad_norm": 0.06861037015914917, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 30903 + }, + { + "epoch": 3.1757090012330456, + "grad_norm": 0.038134749978780746, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 30906 + }, + { + "epoch": 3.1760172626387178, + "grad_norm": 0.11108820140361786, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 30909 + }, + { + "epoch": 3.1763255240443895, + "grad_norm": 0.047687213867902756, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 30912 + }, + { + "epoch": 3.1766337854500617, + "grad_norm": 0.05983440950512886, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 30915 + }, + { + "epoch": 3.176942046855734, + "grad_norm": 0.038930587470531464, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 30918 + }, + { + "epoch": 3.1772503082614056, + "grad_norm": 0.08851155638694763, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 30921 + }, + { + "epoch": 3.177558569667078, + "grad_norm": 0.08430106192827225, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 30924 + }, + { + "epoch": 3.1778668310727496, + "grad_norm": 0.04469950869679451, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 30927 + }, + { + "epoch": 3.178175092478422, + "grad_norm": 0.06740089505910873, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 30930 + }, + { + "epoch": 3.1784833538840935, + "grad_norm": 0.06175517663359642, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 30933 + }, + { + "epoch": 3.1787916152897657, + "grad_norm": 0.047650065273046494, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 30936 + }, + { + "epoch": 3.179099876695438, + "grad_norm": 0.07261566072702408, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 30939 + }, + { + "epoch": 3.1794081381011097, + "grad_norm": 0.1270940601825714, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 30942 + }, + { + "epoch": 3.179716399506782, + "grad_norm": 0.054443880915641785, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 30945 + }, + { + "epoch": 3.1800246609124536, + "grad_norm": 0.06243740767240524, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 30948 + }, + { + "epoch": 3.180332922318126, + "grad_norm": 0.04665446653962135, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 30951 + }, + { + "epoch": 3.1806411837237976, + "grad_norm": 0.0470532663166523, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 30954 + }, + { + "epoch": 3.1809494451294698, + "grad_norm": 0.03944860398769379, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 30957 + }, + { + "epoch": 3.181257706535142, + "grad_norm": 0.04705018922686577, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 30960 + }, + { + "epoch": 3.1815659679408137, + "grad_norm": 0.04603470116853714, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 30963 + }, + { + "epoch": 3.181874229346486, + "grad_norm": 0.04761103168129921, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 30966 + }, + { + "epoch": 3.1821824907521576, + "grad_norm": 0.09109831601381302, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 30969 + }, + { + "epoch": 3.18249075215783, + "grad_norm": 0.07111615687608719, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 30972 + }, + { + "epoch": 3.182799013563502, + "grad_norm": 0.07623612880706787, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 30975 + }, + { + "epoch": 3.183107274969174, + "grad_norm": 0.0768456682562828, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 30978 + }, + { + "epoch": 3.183415536374846, + "grad_norm": 0.07147437334060669, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 30981 + }, + { + "epoch": 3.1837237977805177, + "grad_norm": 0.04732421785593033, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 30984 + }, + { + "epoch": 3.18403205918619, + "grad_norm": 0.04406769201159477, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 30987 + }, + { + "epoch": 3.184340320591862, + "grad_norm": 0.03760458901524544, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 30990 + }, + { + "epoch": 3.184648581997534, + "grad_norm": 0.051892757415771484, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 30993 + }, + { + "epoch": 3.184956843403206, + "grad_norm": 0.03961913660168648, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 30996 + }, + { + "epoch": 3.185265104808878, + "grad_norm": 0.07263363152742386, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 30999 + }, + { + "epoch": 3.18557336621455, + "grad_norm": 0.08618062734603882, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 31002 + }, + { + "epoch": 3.1858816276202218, + "grad_norm": 0.08712664991617203, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 31005 + }, + { + "epoch": 3.186189889025894, + "grad_norm": 0.05723334103822708, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 31008 + }, + { + "epoch": 3.186498150431566, + "grad_norm": 0.06170898675918579, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 31011 + }, + { + "epoch": 3.186806411837238, + "grad_norm": 0.04730013385415077, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 31014 + }, + { + "epoch": 3.18711467324291, + "grad_norm": 0.0381946824491024, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 31017 + }, + { + "epoch": 3.187422934648582, + "grad_norm": 0.09591019153594971, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 31020 + }, + { + "epoch": 3.187731196054254, + "grad_norm": 0.047843087464571, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 31023 + }, + { + "epoch": 3.188039457459926, + "grad_norm": 0.04370959475636482, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 31026 + }, + { + "epoch": 3.188347718865598, + "grad_norm": 0.060692187398672104, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 31029 + }, + { + "epoch": 3.18865598027127, + "grad_norm": 0.05906793847680092, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 31032 + }, + { + "epoch": 3.188964241676942, + "grad_norm": 0.06203675642609596, + "learning_rate": 0.01, + "loss": 2.0325, + "step": 31035 + }, + { + "epoch": 3.189272503082614, + "grad_norm": 0.07943592220544815, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 31038 + }, + { + "epoch": 3.189580764488286, + "grad_norm": 0.08803451061248779, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 31041 + }, + { + "epoch": 3.189889025893958, + "grad_norm": 0.07365550100803375, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 31044 + }, + { + "epoch": 3.1901972872996303, + "grad_norm": 0.0795077532529831, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 31047 + }, + { + "epoch": 3.190505548705302, + "grad_norm": 0.08341194689273834, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 31050 + }, + { + "epoch": 3.190813810110974, + "grad_norm": 0.05842220410704613, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 31053 + }, + { + "epoch": 3.191122071516646, + "grad_norm": 0.09980861842632294, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 31056 + }, + { + "epoch": 3.191430332922318, + "grad_norm": 0.061474163085222244, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 31059 + }, + { + "epoch": 3.1917385943279903, + "grad_norm": 0.06752124428749084, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 31062 + }, + { + "epoch": 3.192046855733662, + "grad_norm": 0.06160835176706314, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 31065 + }, + { + "epoch": 3.1923551171393343, + "grad_norm": 0.09516782313585281, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 31068 + }, + { + "epoch": 3.192663378545006, + "grad_norm": 0.049451183527708054, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 31071 + }, + { + "epoch": 3.1929716399506782, + "grad_norm": 0.08874432742595673, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 31074 + }, + { + "epoch": 3.19327990135635, + "grad_norm": 0.07393426448106766, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 31077 + }, + { + "epoch": 3.193588162762022, + "grad_norm": 0.09064768254756927, + "learning_rate": 0.01, + "loss": 2.027, + "step": 31080 + }, + { + "epoch": 3.1938964241676944, + "grad_norm": 0.05667688325047493, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 31083 + }, + { + "epoch": 3.194204685573366, + "grad_norm": 0.03858955577015877, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 31086 + }, + { + "epoch": 3.1945129469790383, + "grad_norm": 0.03137395530939102, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 31089 + }, + { + "epoch": 3.19482120838471, + "grad_norm": 0.09366928040981293, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 31092 + }, + { + "epoch": 3.1951294697903823, + "grad_norm": 0.05282336100935936, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 31095 + }, + { + "epoch": 3.1954377311960545, + "grad_norm": 0.07649802416563034, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 31098 + }, + { + "epoch": 3.195745992601726, + "grad_norm": 0.07249470800161362, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 31101 + }, + { + "epoch": 3.1960542540073984, + "grad_norm": 0.12900890409946442, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 31104 + }, + { + "epoch": 3.19636251541307, + "grad_norm": 0.08060257881879807, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 31107 + }, + { + "epoch": 3.1966707768187423, + "grad_norm": 0.07051622122526169, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 31110 + }, + { + "epoch": 3.1969790382244145, + "grad_norm": 0.0567597970366478, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 31113 + }, + { + "epoch": 3.1972872996300863, + "grad_norm": 0.053274448961019516, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 31116 + }, + { + "epoch": 3.1975955610357585, + "grad_norm": 0.0634993240237236, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 31119 + }, + { + "epoch": 3.1979038224414302, + "grad_norm": 0.060209862887859344, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 31122 + }, + { + "epoch": 3.1982120838471024, + "grad_norm": 0.05891990661621094, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 31125 + }, + { + "epoch": 3.198520345252774, + "grad_norm": 0.03743661195039749, + "learning_rate": 0.01, + "loss": 1.993, + "step": 31128 + }, + { + "epoch": 3.1988286066584464, + "grad_norm": 0.047772981226444244, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 31131 + }, + { + "epoch": 3.1991368680641186, + "grad_norm": 0.09134045243263245, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 31134 + }, + { + "epoch": 3.1994451294697903, + "grad_norm": 0.040920648723840714, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 31137 + }, + { + "epoch": 3.1997533908754625, + "grad_norm": 0.09245988726615906, + "learning_rate": 0.01, + "loss": 1.993, + "step": 31140 + }, + { + "epoch": 3.2000616522811343, + "grad_norm": 0.06823042035102844, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 31143 + }, + { + "epoch": 3.2003699136868065, + "grad_norm": 0.10324928909540176, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 31146 + }, + { + "epoch": 3.200678175092478, + "grad_norm": 0.09294021129608154, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 31149 + }, + { + "epoch": 3.2009864364981504, + "grad_norm": 0.07790663093328476, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 31152 + }, + { + "epoch": 3.2012946979038226, + "grad_norm": 0.041240107268095016, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 31155 + }, + { + "epoch": 3.2016029593094943, + "grad_norm": 0.042019765824079514, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 31158 + }, + { + "epoch": 3.2019112207151665, + "grad_norm": 0.03546491637825966, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 31161 + }, + { + "epoch": 3.2022194821208383, + "grad_norm": 0.08740135282278061, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 31164 + }, + { + "epoch": 3.2025277435265105, + "grad_norm": 0.06613611429929733, + "learning_rate": 0.01, + "loss": 2.0345, + "step": 31167 + }, + { + "epoch": 3.2028360049321827, + "grad_norm": 0.1089286357164383, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 31170 + }, + { + "epoch": 3.2031442663378544, + "grad_norm": 0.037778157740831375, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 31173 + }, + { + "epoch": 3.2034525277435266, + "grad_norm": 0.07214018702507019, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 31176 + }, + { + "epoch": 3.2037607891491984, + "grad_norm": 0.05182633548974991, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 31179 + }, + { + "epoch": 3.2040690505548706, + "grad_norm": 0.043808627873659134, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 31182 + }, + { + "epoch": 3.2043773119605428, + "grad_norm": 0.03699186071753502, + "learning_rate": 0.01, + "loss": 2.0391, + "step": 31185 + }, + { + "epoch": 3.2046855733662145, + "grad_norm": 0.10249976068735123, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 31188 + }, + { + "epoch": 3.2049938347718867, + "grad_norm": 0.05326079949736595, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 31191 + }, + { + "epoch": 3.2053020961775585, + "grad_norm": 0.09879110008478165, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 31194 + }, + { + "epoch": 3.2056103575832307, + "grad_norm": 0.042158786207437515, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 31197 + }, + { + "epoch": 3.2059186189889024, + "grad_norm": 0.13437750935554504, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 31200 + }, + { + "epoch": 3.2062268803945746, + "grad_norm": 0.07030022144317627, + "learning_rate": 0.01, + "loss": 2.0499, + "step": 31203 + }, + { + "epoch": 3.206535141800247, + "grad_norm": 0.044758979231119156, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 31206 + }, + { + "epoch": 3.2068434032059185, + "grad_norm": 0.030563069507479668, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 31209 + }, + { + "epoch": 3.2071516646115907, + "grad_norm": 0.047487739473581314, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 31212 + }, + { + "epoch": 3.2074599260172625, + "grad_norm": 0.044461995363235474, + "learning_rate": 0.01, + "loss": 2.015, + "step": 31215 + }, + { + "epoch": 3.2077681874229347, + "grad_norm": 0.16204911470413208, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 31218 + }, + { + "epoch": 3.2080764488286064, + "grad_norm": 0.0470188669860363, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 31221 + }, + { + "epoch": 3.2083847102342786, + "grad_norm": 0.04323815181851387, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 31224 + }, + { + "epoch": 3.208692971639951, + "grad_norm": 0.04388147220015526, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 31227 + }, + { + "epoch": 3.2090012330456226, + "grad_norm": 0.06811438500881195, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 31230 + }, + { + "epoch": 3.2093094944512948, + "grad_norm": 0.09423845261335373, + "learning_rate": 0.01, + "loss": 1.99, + "step": 31233 + }, + { + "epoch": 3.2096177558569665, + "grad_norm": 0.05107983946800232, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 31236 + }, + { + "epoch": 3.2099260172626387, + "grad_norm": 0.06188793480396271, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 31239 + }, + { + "epoch": 3.210234278668311, + "grad_norm": 0.04658438265323639, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 31242 + }, + { + "epoch": 3.2105425400739827, + "grad_norm": 0.05382300913333893, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 31245 + }, + { + "epoch": 3.210850801479655, + "grad_norm": 0.04271601140499115, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 31248 + }, + { + "epoch": 3.2111590628853266, + "grad_norm": 0.06256501376628876, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 31251 + }, + { + "epoch": 3.211467324290999, + "grad_norm": 0.03523874282836914, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 31254 + }, + { + "epoch": 3.211775585696671, + "grad_norm": 0.18781809508800507, + "learning_rate": 0.01, + "loss": 2.0421, + "step": 31257 + }, + { + "epoch": 3.2120838471023427, + "grad_norm": 0.11113902926445007, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 31260 + }, + { + "epoch": 3.212392108508015, + "grad_norm": 0.11578498035669327, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 31263 + }, + { + "epoch": 3.2127003699136867, + "grad_norm": 0.06620439887046814, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 31266 + }, + { + "epoch": 3.213008631319359, + "grad_norm": 0.04588307812809944, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 31269 + }, + { + "epoch": 3.2133168927250306, + "grad_norm": 0.06933780014514923, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 31272 + }, + { + "epoch": 3.213625154130703, + "grad_norm": 0.03479130566120148, + "learning_rate": 0.01, + "loss": 1.996, + "step": 31275 + }, + { + "epoch": 3.213933415536375, + "grad_norm": 0.05823906138539314, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 31278 + }, + { + "epoch": 3.2142416769420468, + "grad_norm": 0.044943809509277344, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 31281 + }, + { + "epoch": 3.214549938347719, + "grad_norm": 0.05428524687886238, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 31284 + }, + { + "epoch": 3.2148581997533907, + "grad_norm": 0.07103761285543442, + "learning_rate": 0.01, + "loss": 2.0401, + "step": 31287 + }, + { + "epoch": 3.215166461159063, + "grad_norm": 0.1237725242972374, + "learning_rate": 0.01, + "loss": 2.023, + "step": 31290 + }, + { + "epoch": 3.215474722564735, + "grad_norm": 0.03638492897152901, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 31293 + }, + { + "epoch": 3.215782983970407, + "grad_norm": 0.05026063695549965, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 31296 + }, + { + "epoch": 3.216091245376079, + "grad_norm": 0.09602409601211548, + "learning_rate": 0.01, + "loss": 2.011, + "step": 31299 + }, + { + "epoch": 3.216399506781751, + "grad_norm": 0.12711849808692932, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 31302 + }, + { + "epoch": 3.216707768187423, + "grad_norm": 0.051612287759780884, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 31305 + }, + { + "epoch": 3.2170160295930947, + "grad_norm": 0.055910855531692505, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 31308 + }, + { + "epoch": 3.217324290998767, + "grad_norm": 0.053995631635189056, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 31311 + }, + { + "epoch": 3.217632552404439, + "grad_norm": 0.03721768036484718, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 31314 + }, + { + "epoch": 3.217940813810111, + "grad_norm": 0.04018721356987953, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 31317 + }, + { + "epoch": 3.218249075215783, + "grad_norm": 0.06476118415594101, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 31320 + }, + { + "epoch": 3.218557336621455, + "grad_norm": 0.09766072034835815, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 31323 + }, + { + "epoch": 3.218865598027127, + "grad_norm": 0.0436365082859993, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 31326 + }, + { + "epoch": 3.219173859432799, + "grad_norm": 0.04617559164762497, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 31329 + }, + { + "epoch": 3.219482120838471, + "grad_norm": 0.0487680621445179, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 31332 + }, + { + "epoch": 3.219790382244143, + "grad_norm": 0.036623213440179825, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 31335 + }, + { + "epoch": 3.220098643649815, + "grad_norm": 0.04713229089975357, + "learning_rate": 0.01, + "loss": 2.01, + "step": 31338 + }, + { + "epoch": 3.220406905055487, + "grad_norm": 0.03848060593008995, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 31341 + }, + { + "epoch": 3.220715166461159, + "grad_norm": 0.03674410656094551, + "learning_rate": 0.01, + "loss": 2.031, + "step": 31344 + }, + { + "epoch": 3.221023427866831, + "grad_norm": 0.09635547548532486, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 31347 + }, + { + "epoch": 3.2213316892725032, + "grad_norm": 0.06311628222465515, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 31350 + }, + { + "epoch": 3.221639950678175, + "grad_norm": 0.05867060646414757, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 31353 + }, + { + "epoch": 3.221948212083847, + "grad_norm": 0.0816822350025177, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 31356 + }, + { + "epoch": 3.222256473489519, + "grad_norm": 0.0825878456234932, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 31359 + }, + { + "epoch": 3.222564734895191, + "grad_norm": 0.06253322958946228, + "learning_rate": 0.01, + "loss": 2.0461, + "step": 31362 + }, + { + "epoch": 3.2228729963008633, + "grad_norm": 0.07637360692024231, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 31365 + }, + { + "epoch": 3.223181257706535, + "grad_norm": 0.081746406853199, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 31368 + }, + { + "epoch": 3.2234895191122073, + "grad_norm": 0.11683212220668793, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 31371 + }, + { + "epoch": 3.223797780517879, + "grad_norm": 0.07254528999328613, + "learning_rate": 0.01, + "loss": 2.0392, + "step": 31374 + }, + { + "epoch": 3.224106041923551, + "grad_norm": 0.05394696444272995, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 31377 + }, + { + "epoch": 3.2244143033292234, + "grad_norm": 0.044905390590429306, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 31380 + }, + { + "epoch": 3.224722564734895, + "grad_norm": 0.07633423805236816, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 31383 + }, + { + "epoch": 3.2250308261405674, + "grad_norm": 0.03892616555094719, + "learning_rate": 0.01, + "loss": 2.014, + "step": 31386 + }, + { + "epoch": 3.225339087546239, + "grad_norm": 0.03514908254146576, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 31389 + }, + { + "epoch": 3.2256473489519113, + "grad_norm": 0.07658538222312927, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 31392 + }, + { + "epoch": 3.225955610357583, + "grad_norm": 0.1004643440246582, + "learning_rate": 0.01, + "loss": 2.01, + "step": 31395 + }, + { + "epoch": 3.2262638717632552, + "grad_norm": 0.08478312194347382, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 31398 + }, + { + "epoch": 3.2265721331689274, + "grad_norm": 0.05344710871577263, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 31401 + }, + { + "epoch": 3.226880394574599, + "grad_norm": 0.05862101912498474, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 31404 + }, + { + "epoch": 3.2271886559802714, + "grad_norm": 0.03430565074086189, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 31407 + }, + { + "epoch": 3.227496917385943, + "grad_norm": 0.03822310268878937, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 31410 + }, + { + "epoch": 3.2278051787916153, + "grad_norm": 0.04391561448574066, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 31413 + }, + { + "epoch": 3.228113440197287, + "grad_norm": 0.053595174103975296, + "learning_rate": 0.01, + "loss": 1.994, + "step": 31416 + }, + { + "epoch": 3.2284217016029593, + "grad_norm": 0.06710030138492584, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 31419 + }, + { + "epoch": 3.2287299630086315, + "grad_norm": 0.19077260792255402, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 31422 + }, + { + "epoch": 3.229038224414303, + "grad_norm": 0.050228483974933624, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 31425 + }, + { + "epoch": 3.2293464858199754, + "grad_norm": 0.047246966511011124, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 31428 + }, + { + "epoch": 3.229654747225647, + "grad_norm": 0.03976801037788391, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 31431 + }, + { + "epoch": 3.2299630086313194, + "grad_norm": 0.052110929042100906, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 31434 + }, + { + "epoch": 3.2302712700369915, + "grad_norm": 0.1090363934636116, + "learning_rate": 0.01, + "loss": 2.011, + "step": 31437 + }, + { + "epoch": 3.2305795314426633, + "grad_norm": 0.13336141407489777, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 31440 + }, + { + "epoch": 3.2308877928483355, + "grad_norm": 0.11287815868854523, + "learning_rate": 0.01, + "loss": 2.0384, + "step": 31443 + }, + { + "epoch": 3.2311960542540072, + "grad_norm": 0.05775724723935127, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 31446 + }, + { + "epoch": 3.2315043156596794, + "grad_norm": 0.0489221066236496, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 31449 + }, + { + "epoch": 3.2318125770653516, + "grad_norm": 0.10708906501531601, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 31452 + }, + { + "epoch": 3.2321208384710234, + "grad_norm": 0.04961223527789116, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 31455 + }, + { + "epoch": 3.2324290998766956, + "grad_norm": 0.04106178134679794, + "learning_rate": 0.01, + "loss": 2.027, + "step": 31458 + }, + { + "epoch": 3.2327373612823673, + "grad_norm": 0.051446568220853806, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 31461 + }, + { + "epoch": 3.2330456226880395, + "grad_norm": 0.046735066920518875, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 31464 + }, + { + "epoch": 3.2333538840937113, + "grad_norm": 0.04740822687745094, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 31467 + }, + { + "epoch": 3.2336621454993835, + "grad_norm": 0.03593340888619423, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 31470 + }, + { + "epoch": 3.2339704069050557, + "grad_norm": 0.058127082884311676, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 31473 + }, + { + "epoch": 3.2342786683107274, + "grad_norm": 0.05138585716485977, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 31476 + }, + { + "epoch": 3.2345869297163996, + "grad_norm": 0.04029039293527603, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 31479 + }, + { + "epoch": 3.2348951911220714, + "grad_norm": 0.05703110247850418, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 31482 + }, + { + "epoch": 3.2352034525277436, + "grad_norm": 0.06218143180012703, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 31485 + }, + { + "epoch": 3.2355117139334153, + "grad_norm": 0.07277306169271469, + "learning_rate": 0.01, + "loss": 2.0413, + "step": 31488 + }, + { + "epoch": 3.2358199753390875, + "grad_norm": 0.08520001918077469, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 31491 + }, + { + "epoch": 3.2361282367447597, + "grad_norm": 0.062044426798820496, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 31494 + }, + { + "epoch": 3.2364364981504314, + "grad_norm": 0.062475502490997314, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 31497 + }, + { + "epoch": 3.2367447595561036, + "grad_norm": 0.05683014541864395, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 31500 + }, + { + "epoch": 3.2370530209617754, + "grad_norm": 0.0409809909760952, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 31503 + }, + { + "epoch": 3.2373612823674476, + "grad_norm": 0.05398055911064148, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 31506 + }, + { + "epoch": 3.2376695437731198, + "grad_norm": 0.09552880376577377, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 31509 + }, + { + "epoch": 3.2379778051787915, + "grad_norm": 0.042877551168203354, + "learning_rate": 0.01, + "loss": 2.007, + "step": 31512 + }, + { + "epoch": 3.2382860665844637, + "grad_norm": 0.03086467832326889, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 31515 + }, + { + "epoch": 3.2385943279901355, + "grad_norm": 0.03575371578335762, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 31518 + }, + { + "epoch": 3.2389025893958077, + "grad_norm": 0.04962699115276337, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 31521 + }, + { + "epoch": 3.23921085080148, + "grad_norm": 0.07324356585741043, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 31524 + }, + { + "epoch": 3.2395191122071516, + "grad_norm": 0.08169112354516983, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 31527 + }, + { + "epoch": 3.239827373612824, + "grad_norm": 0.04129362106323242, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 31530 + }, + { + "epoch": 3.2401356350184956, + "grad_norm": 0.04921339079737663, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 31533 + }, + { + "epoch": 3.2404438964241677, + "grad_norm": 0.048255033791065216, + "learning_rate": 0.01, + "loss": 2.0486, + "step": 31536 + }, + { + "epoch": 3.2407521578298395, + "grad_norm": 0.0420132540166378, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 31539 + }, + { + "epoch": 3.2410604192355117, + "grad_norm": 0.037761542946100235, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 31542 + }, + { + "epoch": 3.241368680641184, + "grad_norm": 0.059902340173721313, + "learning_rate": 0.01, + "loss": 2.0371, + "step": 31545 + }, + { + "epoch": 3.2416769420468556, + "grad_norm": 0.07208621501922607, + "learning_rate": 0.01, + "loss": 2.014, + "step": 31548 + }, + { + "epoch": 3.241985203452528, + "grad_norm": 0.039220135658979416, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 31551 + }, + { + "epoch": 3.2422934648581996, + "grad_norm": 0.09032812714576721, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 31554 + }, + { + "epoch": 3.2426017262638718, + "grad_norm": 0.04668070003390312, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 31557 + }, + { + "epoch": 3.242909987669544, + "grad_norm": 0.07167590409517288, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 31560 + }, + { + "epoch": 3.2432182490752157, + "grad_norm": 0.09092319756746292, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 31563 + }, + { + "epoch": 3.243526510480888, + "grad_norm": 0.05797998234629631, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 31566 + }, + { + "epoch": 3.2438347718865597, + "grad_norm": 0.05728116258978844, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 31569 + }, + { + "epoch": 3.244143033292232, + "grad_norm": 0.10221456736326218, + "learning_rate": 0.01, + "loss": 2.0452, + "step": 31572 + }, + { + "epoch": 3.244451294697904, + "grad_norm": 0.0785583034157753, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 31575 + }, + { + "epoch": 3.244759556103576, + "grad_norm": 0.06105490028858185, + "learning_rate": 0.01, + "loss": 2.035, + "step": 31578 + }, + { + "epoch": 3.245067817509248, + "grad_norm": 0.031959742307662964, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 31581 + }, + { + "epoch": 3.2453760789149197, + "grad_norm": 0.07373019307851791, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 31584 + }, + { + "epoch": 3.245684340320592, + "grad_norm": 0.05989330634474754, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 31587 + }, + { + "epoch": 3.2459926017262637, + "grad_norm": 0.0927957072854042, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 31590 + }, + { + "epoch": 3.246300863131936, + "grad_norm": 0.048555102199316025, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 31593 + }, + { + "epoch": 3.246609124537608, + "grad_norm": 0.05515364184975624, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 31596 + }, + { + "epoch": 3.24691738594328, + "grad_norm": 0.04753278195858002, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 31599 + }, + { + "epoch": 3.247225647348952, + "grad_norm": 0.06210014224052429, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 31602 + }, + { + "epoch": 3.2475339087546238, + "grad_norm": 0.060913342982530594, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 31605 + }, + { + "epoch": 3.247842170160296, + "grad_norm": 0.08301867544651031, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 31608 + }, + { + "epoch": 3.2481504315659677, + "grad_norm": 0.06884342432022095, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 31611 + }, + { + "epoch": 3.24845869297164, + "grad_norm": 0.046835094690322876, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 31614 + }, + { + "epoch": 3.248766954377312, + "grad_norm": 0.11094243824481964, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 31617 + }, + { + "epoch": 3.249075215782984, + "grad_norm": 0.0603213869035244, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 31620 + }, + { + "epoch": 3.249383477188656, + "grad_norm": 0.07283317297697067, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 31623 + }, + { + "epoch": 3.249691738594328, + "grad_norm": 0.05507282167673111, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 31626 + }, + { + "epoch": 3.25, + "grad_norm": 0.039191924035549164, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 31629 + }, + { + "epoch": 3.250308261405672, + "grad_norm": 0.1467886120080948, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 31632 + }, + { + "epoch": 3.250616522811344, + "grad_norm": 0.06955720484256744, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 31635 + }, + { + "epoch": 3.250924784217016, + "grad_norm": 0.0634884312748909, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 31638 + }, + { + "epoch": 3.251233045622688, + "grad_norm": 0.035188958048820496, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 31641 + }, + { + "epoch": 3.25154130702836, + "grad_norm": 0.07601841539144516, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 31644 + }, + { + "epoch": 3.2518495684340323, + "grad_norm": 0.06929823011159897, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 31647 + }, + { + "epoch": 3.252157829839704, + "grad_norm": 0.06300003081560135, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 31650 + }, + { + "epoch": 3.2524660912453762, + "grad_norm": 0.04881738871335983, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 31653 + }, + { + "epoch": 3.252774352651048, + "grad_norm": 0.04084230959415436, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 31656 + }, + { + "epoch": 3.25308261405672, + "grad_norm": 0.10158465802669525, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 31659 + }, + { + "epoch": 3.253390875462392, + "grad_norm": 0.04703471064567566, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 31662 + }, + { + "epoch": 3.253699136868064, + "grad_norm": 0.11601495742797852, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 31665 + }, + { + "epoch": 3.2540073982737363, + "grad_norm": 0.037081558257341385, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 31668 + }, + { + "epoch": 3.254315659679408, + "grad_norm": 0.03952954337000847, + "learning_rate": 0.01, + "loss": 2.023, + "step": 31671 + }, + { + "epoch": 3.2546239210850803, + "grad_norm": 0.09437094628810883, + "learning_rate": 0.01, + "loss": 2.0528, + "step": 31674 + }, + { + "epoch": 3.254932182490752, + "grad_norm": 0.04648669436573982, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 31677 + }, + { + "epoch": 3.255240443896424, + "grad_norm": 0.06830704212188721, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 31680 + }, + { + "epoch": 3.255548705302096, + "grad_norm": 0.039575349539518356, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 31683 + }, + { + "epoch": 3.255856966707768, + "grad_norm": 0.046931225806474686, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 31686 + }, + { + "epoch": 3.2561652281134403, + "grad_norm": 0.039921220391988754, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 31689 + }, + { + "epoch": 3.256473489519112, + "grad_norm": 0.1725001186132431, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 31692 + }, + { + "epoch": 3.2567817509247843, + "grad_norm": 0.10149878263473511, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 31695 + }, + { + "epoch": 3.2570900123304565, + "grad_norm": 0.0641789436340332, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 31698 + }, + { + "epoch": 3.2573982737361282, + "grad_norm": 0.09631607681512833, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 31701 + }, + { + "epoch": 3.2577065351418004, + "grad_norm": 0.04941624775528908, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 31704 + }, + { + "epoch": 3.258014796547472, + "grad_norm": 0.03704220801591873, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 31707 + }, + { + "epoch": 3.2583230579531444, + "grad_norm": 0.05716734007000923, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 31710 + }, + { + "epoch": 3.258631319358816, + "grad_norm": 0.04187513142824173, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 31713 + }, + { + "epoch": 3.2589395807644883, + "grad_norm": 0.04240023344755173, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 31716 + }, + { + "epoch": 3.2592478421701605, + "grad_norm": 0.0434168316423893, + "learning_rate": 0.01, + "loss": 2.0293, + "step": 31719 + }, + { + "epoch": 3.2595561035758323, + "grad_norm": 0.10827293992042542, + "learning_rate": 0.01, + "loss": 2.019, + "step": 31722 + }, + { + "epoch": 3.2598643649815044, + "grad_norm": 0.04294963926076889, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 31725 + }, + { + "epoch": 3.260172626387176, + "grad_norm": 0.11746285110712051, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 31728 + }, + { + "epoch": 3.2604808877928484, + "grad_norm": 0.13203038275241852, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 31731 + }, + { + "epoch": 3.26078914919852, + "grad_norm": 0.12324203550815582, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 31734 + }, + { + "epoch": 3.2610974106041923, + "grad_norm": 0.09455161541700363, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 31737 + }, + { + "epoch": 3.2614056720098645, + "grad_norm": 0.0551525354385376, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 31740 + }, + { + "epoch": 3.2617139334155363, + "grad_norm": 0.04528261721134186, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 31743 + }, + { + "epoch": 3.2620221948212085, + "grad_norm": 0.049497511237859726, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 31746 + }, + { + "epoch": 3.2623304562268802, + "grad_norm": 0.04797462373971939, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 31749 + }, + { + "epoch": 3.2626387176325524, + "grad_norm": 0.047107502818107605, + "learning_rate": 0.01, + "loss": 1.99, + "step": 31752 + }, + { + "epoch": 3.262946979038224, + "grad_norm": 0.03374217078089714, + "learning_rate": 0.01, + "loss": 1.98, + "step": 31755 + }, + { + "epoch": 3.2632552404438964, + "grad_norm": 0.05429157614707947, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 31758 + }, + { + "epoch": 3.2635635018495686, + "grad_norm": 0.12066765129566193, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 31761 + }, + { + "epoch": 3.2638717632552403, + "grad_norm": 0.15858452022075653, + "learning_rate": 0.01, + "loss": 2.021, + "step": 31764 + }, + { + "epoch": 3.2641800246609125, + "grad_norm": 0.05770573392510414, + "learning_rate": 0.01, + "loss": 2.0513, + "step": 31767 + }, + { + "epoch": 3.2644882860665847, + "grad_norm": 0.053706735372543335, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 31770 + }, + { + "epoch": 3.2647965474722564, + "grad_norm": 0.03511708602309227, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 31773 + }, + { + "epoch": 3.2651048088779286, + "grad_norm": 0.036902979016304016, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 31776 + }, + { + "epoch": 3.2654130702836004, + "grad_norm": 0.0450621172785759, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 31779 + }, + { + "epoch": 3.2657213316892726, + "grad_norm": 0.07691927254199982, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 31782 + }, + { + "epoch": 3.2660295930949443, + "grad_norm": 0.09160054475069046, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 31785 + }, + { + "epoch": 3.2663378545006165, + "grad_norm": 0.09052203595638275, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 31788 + }, + { + "epoch": 3.2666461159062887, + "grad_norm": 0.08806884288787842, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 31791 + }, + { + "epoch": 3.2669543773119605, + "grad_norm": 0.05619393661618233, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 31794 + }, + { + "epoch": 3.2672626387176327, + "grad_norm": 0.05563674122095108, + "learning_rate": 0.01, + "loss": 2.015, + "step": 31797 + }, + { + "epoch": 3.2675709001233044, + "grad_norm": 0.058199040591716766, + "learning_rate": 0.01, + "loss": 2.014, + "step": 31800 + }, + { + "epoch": 3.2678791615289766, + "grad_norm": 0.06011686101555824, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 31803 + }, + { + "epoch": 3.2681874229346484, + "grad_norm": 0.05391063541173935, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 31806 + }, + { + "epoch": 3.2684956843403206, + "grad_norm": 0.1030382513999939, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 31809 + }, + { + "epoch": 3.2688039457459928, + "grad_norm": 0.03978987783193588, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 31812 + }, + { + "epoch": 3.2691122071516645, + "grad_norm": 0.08974360674619675, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 31815 + }, + { + "epoch": 3.2694204685573367, + "grad_norm": 0.07530324161052704, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 31818 + }, + { + "epoch": 3.2697287299630085, + "grad_norm": 0.04715275764465332, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 31821 + }, + { + "epoch": 3.2700369913686806, + "grad_norm": 0.050625238567590714, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 31824 + }, + { + "epoch": 3.270345252774353, + "grad_norm": 0.05567210912704468, + "learning_rate": 0.01, + "loss": 2.0554, + "step": 31827 + }, + { + "epoch": 3.2706535141800246, + "grad_norm": 0.09813915193080902, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 31830 + }, + { + "epoch": 3.270961775585697, + "grad_norm": 0.08543343842029572, + "learning_rate": 0.01, + "loss": 2.0405, + "step": 31833 + }, + { + "epoch": 3.2712700369913685, + "grad_norm": 0.03340763971209526, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 31836 + }, + { + "epoch": 3.2715782983970407, + "grad_norm": 0.0335637666285038, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 31839 + }, + { + "epoch": 3.271886559802713, + "grad_norm": 0.06983290612697601, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 31842 + }, + { + "epoch": 3.2721948212083847, + "grad_norm": 0.1157732903957367, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 31845 + }, + { + "epoch": 3.272503082614057, + "grad_norm": 0.11864369362592697, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 31848 + }, + { + "epoch": 3.2728113440197286, + "grad_norm": 0.09083148092031479, + "learning_rate": 0.01, + "loss": 2.025, + "step": 31851 + }, + { + "epoch": 3.273119605425401, + "grad_norm": 0.06563573330640793, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 31854 + }, + { + "epoch": 3.2734278668310726, + "grad_norm": 0.043879635632038116, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 31857 + }, + { + "epoch": 3.2737361282367448, + "grad_norm": 0.03548846393823624, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 31860 + }, + { + "epoch": 3.274044389642417, + "grad_norm": 0.036084435880184174, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 31863 + }, + { + "epoch": 3.2743526510480887, + "grad_norm": 0.03813619166612625, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 31866 + }, + { + "epoch": 3.274660912453761, + "grad_norm": 0.05276734009385109, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 31869 + }, + { + "epoch": 3.2749691738594326, + "grad_norm": 0.07557803392410278, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 31872 + }, + { + "epoch": 3.275277435265105, + "grad_norm": 0.060760460793972015, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 31875 + }, + { + "epoch": 3.2755856966707766, + "grad_norm": 0.11498884111642838, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 31878 + }, + { + "epoch": 3.275893958076449, + "grad_norm": 0.12193593382835388, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 31881 + }, + { + "epoch": 3.276202219482121, + "grad_norm": 0.10637890547513962, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 31884 + }, + { + "epoch": 3.2765104808877927, + "grad_norm": 0.08633279800415039, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 31887 + }, + { + "epoch": 3.276818742293465, + "grad_norm": 0.08105628192424774, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 31890 + }, + { + "epoch": 3.2771270036991367, + "grad_norm": 0.03692932799458504, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 31893 + }, + { + "epoch": 3.277435265104809, + "grad_norm": 0.03064770996570587, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 31896 + }, + { + "epoch": 3.277743526510481, + "grad_norm": 0.038218267261981964, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 31899 + }, + { + "epoch": 3.278051787916153, + "grad_norm": 0.05573924258351326, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 31902 + }, + { + "epoch": 3.278360049321825, + "grad_norm": 0.14293062686920166, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 31905 + }, + { + "epoch": 3.2786683107274968, + "grad_norm": 0.082049660384655, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 31908 + }, + { + "epoch": 3.278976572133169, + "grad_norm": 0.08122528344392776, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 31911 + }, + { + "epoch": 3.279284833538841, + "grad_norm": 0.054671067744493484, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 31914 + }, + { + "epoch": 3.279593094944513, + "grad_norm": 0.11112997680902481, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 31917 + }, + { + "epoch": 3.279901356350185, + "grad_norm": 0.12811101973056793, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 31920 + }, + { + "epoch": 3.280209617755857, + "grad_norm": 0.07637016475200653, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 31923 + }, + { + "epoch": 3.280517879161529, + "grad_norm": 0.03716239705681801, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 31926 + }, + { + "epoch": 3.280826140567201, + "grad_norm": 0.03950963541865349, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 31929 + }, + { + "epoch": 3.281134401972873, + "grad_norm": 0.09012940526008606, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 31932 + }, + { + "epoch": 3.281442663378545, + "grad_norm": 0.04000500217080116, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 31935 + }, + { + "epoch": 3.281750924784217, + "grad_norm": 0.06817129254341125, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 31938 + }, + { + "epoch": 3.282059186189889, + "grad_norm": 0.14285409450531006, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 31941 + }, + { + "epoch": 3.282367447595561, + "grad_norm": 0.03885696083307266, + "learning_rate": 0.01, + "loss": 2.007, + "step": 31944 + }, + { + "epoch": 3.282675709001233, + "grad_norm": 0.047379713505506516, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 31947 + }, + { + "epoch": 3.282983970406905, + "grad_norm": 0.05476104095578194, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 31950 + }, + { + "epoch": 3.283292231812577, + "grad_norm": 0.03158089146018028, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 31953 + }, + { + "epoch": 3.283600493218249, + "grad_norm": 0.04537857696413994, + "learning_rate": 0.01, + "loss": 1.991, + "step": 31956 + }, + { + "epoch": 3.283908754623921, + "grad_norm": 0.1525343656539917, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 31959 + }, + { + "epoch": 3.284217016029593, + "grad_norm": 0.11916167289018631, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 31962 + }, + { + "epoch": 3.2845252774352653, + "grad_norm": 0.09215250611305237, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 31965 + }, + { + "epoch": 3.284833538840937, + "grad_norm": 0.053620483726263046, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 31968 + }, + { + "epoch": 3.2851418002466093, + "grad_norm": 0.03575912117958069, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 31971 + }, + { + "epoch": 3.285450061652281, + "grad_norm": 0.09148744493722916, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 31974 + }, + { + "epoch": 3.2857583230579532, + "grad_norm": 0.06433127075433731, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 31977 + }, + { + "epoch": 3.286066584463625, + "grad_norm": 0.04605916887521744, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 31980 + }, + { + "epoch": 3.286374845869297, + "grad_norm": 0.07150716334581375, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 31983 + }, + { + "epoch": 3.2866831072749694, + "grad_norm": 0.04914524033665657, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 31986 + }, + { + "epoch": 3.286991368680641, + "grad_norm": 0.10281821340322495, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 31989 + }, + { + "epoch": 3.2872996300863133, + "grad_norm": 0.04685597866773605, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 31992 + }, + { + "epoch": 3.287607891491985, + "grad_norm": 0.04735150560736656, + "learning_rate": 0.01, + "loss": 2.005, + "step": 31995 + }, + { + "epoch": 3.2879161528976573, + "grad_norm": 0.07897822558879852, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 31998 + }, + { + "epoch": 3.288224414303329, + "grad_norm": 0.08091110736131668, + "learning_rate": 0.01, + "loss": 2.0397, + "step": 32001 + }, + { + "epoch": 3.288532675709001, + "grad_norm": 0.038828156888484955, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 32004 + }, + { + "epoch": 3.2888409371146734, + "grad_norm": 0.11410044133663177, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 32007 + }, + { + "epoch": 3.289149198520345, + "grad_norm": 0.11741339415311813, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 32010 + }, + { + "epoch": 3.2894574599260173, + "grad_norm": 0.054089032113552094, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 32013 + }, + { + "epoch": 3.289765721331689, + "grad_norm": 0.034770797938108444, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 32016 + }, + { + "epoch": 3.2900739827373613, + "grad_norm": 0.06313812732696533, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 32019 + }, + { + "epoch": 3.2903822441430335, + "grad_norm": 0.05844837799668312, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 32022 + }, + { + "epoch": 3.2906905055487052, + "grad_norm": 0.0374666191637516, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 32025 + }, + { + "epoch": 3.2909987669543774, + "grad_norm": 0.05456427484750748, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 32028 + }, + { + "epoch": 3.291307028360049, + "grad_norm": 0.11318197846412659, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 32031 + }, + { + "epoch": 3.2916152897657214, + "grad_norm": 0.04832073673605919, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 32034 + }, + { + "epoch": 3.2919235511713936, + "grad_norm": 0.07790713757276535, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 32037 + }, + { + "epoch": 3.2922318125770653, + "grad_norm": 0.05794338509440422, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 32040 + }, + { + "epoch": 3.2925400739827375, + "grad_norm": 0.06488461047410965, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 32043 + }, + { + "epoch": 3.2928483353884093, + "grad_norm": 0.10804028809070587, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 32046 + }, + { + "epoch": 3.2931565967940815, + "grad_norm": 0.04927225038409233, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 32049 + }, + { + "epoch": 3.293464858199753, + "grad_norm": 0.039539139717817307, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 32052 + }, + { + "epoch": 3.2937731196054254, + "grad_norm": 0.046698734164237976, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 32055 + }, + { + "epoch": 3.2940813810110976, + "grad_norm": 0.07978003472089767, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 32058 + }, + { + "epoch": 3.2943896424167693, + "grad_norm": 0.05909251049160957, + "learning_rate": 0.01, + "loss": 2.018, + "step": 32061 + }, + { + "epoch": 3.2946979038224415, + "grad_norm": 0.09814689308404922, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 32064 + }, + { + "epoch": 3.2950061652281133, + "grad_norm": 0.07647134363651276, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 32067 + }, + { + "epoch": 3.2953144266337855, + "grad_norm": 0.09203072637319565, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 32070 + }, + { + "epoch": 3.2956226880394572, + "grad_norm": 0.14764010906219482, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 32073 + }, + { + "epoch": 3.2959309494451294, + "grad_norm": 0.07483326643705368, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 32076 + }, + { + "epoch": 3.2962392108508016, + "grad_norm": 0.03683464601635933, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 32079 + }, + { + "epoch": 3.2965474722564734, + "grad_norm": 0.0658450499176979, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 32082 + }, + { + "epoch": 3.2968557336621456, + "grad_norm": 0.05505736172199249, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 32085 + }, + { + "epoch": 3.2971639950678173, + "grad_norm": 0.07295443117618561, + "learning_rate": 0.01, + "loss": 2.0444, + "step": 32088 + }, + { + "epoch": 3.2974722564734895, + "grad_norm": 0.03865521401166916, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 32091 + }, + { + "epoch": 3.2977805178791617, + "grad_norm": 0.12185568362474442, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 32094 + }, + { + "epoch": 3.2980887792848335, + "grad_norm": 0.04646170511841774, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 32097 + }, + { + "epoch": 3.2983970406905057, + "grad_norm": 0.10177022218704224, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 32100 + }, + { + "epoch": 3.2987053020961774, + "grad_norm": 0.04585393890738487, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 32103 + }, + { + "epoch": 3.2990135635018496, + "grad_norm": 0.1089714989066124, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 32106 + }, + { + "epoch": 3.299321824907522, + "grad_norm": 0.04579438269138336, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 32109 + }, + { + "epoch": 3.2996300863131935, + "grad_norm": 0.0699036568403244, + "learning_rate": 0.01, + "loss": 2.025, + "step": 32112 + }, + { + "epoch": 3.2999383477188657, + "grad_norm": 0.10070015490055084, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 32115 + }, + { + "epoch": 3.3002466091245375, + "grad_norm": 0.08273176848888397, + "learning_rate": 0.01, + "loss": 2.0368, + "step": 32118 + }, + { + "epoch": 3.3005548705302097, + "grad_norm": 0.08648907393217087, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 32121 + }, + { + "epoch": 3.3008631319358814, + "grad_norm": 0.059946708381175995, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 32124 + }, + { + "epoch": 3.3011713933415536, + "grad_norm": 0.034971099346876144, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 32127 + }, + { + "epoch": 3.301479654747226, + "grad_norm": 0.12256456911563873, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 32130 + }, + { + "epoch": 3.3017879161528976, + "grad_norm": 0.041138794273138046, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 32133 + }, + { + "epoch": 3.3020961775585698, + "grad_norm": 0.04145865887403488, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 32136 + }, + { + "epoch": 3.3024044389642415, + "grad_norm": 0.07052136212587357, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 32139 + }, + { + "epoch": 3.3027127003699137, + "grad_norm": 0.05553466081619263, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 32142 + }, + { + "epoch": 3.3030209617755855, + "grad_norm": 0.038209814578294754, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 32145 + }, + { + "epoch": 3.3033292231812577, + "grad_norm": 0.04882222041487694, + "learning_rate": 0.01, + "loss": 2.019, + "step": 32148 + }, + { + "epoch": 3.30363748458693, + "grad_norm": 0.11157884448766708, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 32151 + }, + { + "epoch": 3.3039457459926016, + "grad_norm": 0.09312507510185242, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 32154 + }, + { + "epoch": 3.304254007398274, + "grad_norm": 0.05357594043016434, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 32157 + }, + { + "epoch": 3.304562268803946, + "grad_norm": 0.07024755328893661, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 32160 + }, + { + "epoch": 3.3048705302096177, + "grad_norm": 0.0773010402917862, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 32163 + }, + { + "epoch": 3.30517879161529, + "grad_norm": 0.04807543754577637, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 32166 + }, + { + "epoch": 3.3054870530209617, + "grad_norm": 0.03652816265821457, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 32169 + }, + { + "epoch": 3.305795314426634, + "grad_norm": 0.06250651925802231, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 32172 + }, + { + "epoch": 3.3061035758323056, + "grad_norm": 0.08029799908399582, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 32175 + }, + { + "epoch": 3.306411837237978, + "grad_norm": 0.10732737928628922, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 32178 + }, + { + "epoch": 3.30672009864365, + "grad_norm": 0.07458434998989105, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 32181 + }, + { + "epoch": 3.3070283600493218, + "grad_norm": 0.0794452428817749, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 32184 + }, + { + "epoch": 3.307336621454994, + "grad_norm": 0.06960796564817429, + "learning_rate": 0.01, + "loss": 2.0533, + "step": 32187 + }, + { + "epoch": 3.3076448828606657, + "grad_norm": 0.09482841193675995, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 32190 + }, + { + "epoch": 3.307953144266338, + "grad_norm": 0.08358022570610046, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 32193 + }, + { + "epoch": 3.3082614056720097, + "grad_norm": 0.03823438659310341, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 32196 + }, + { + "epoch": 3.308569667077682, + "grad_norm": 0.07413027435541153, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 32199 + }, + { + "epoch": 3.308877928483354, + "grad_norm": 0.03165535256266594, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 32202 + }, + { + "epoch": 3.309186189889026, + "grad_norm": 0.1173541322350502, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 32205 + }, + { + "epoch": 3.309494451294698, + "grad_norm": 0.07542740553617477, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 32208 + }, + { + "epoch": 3.3098027127003697, + "grad_norm": 0.104609914124012, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 32211 + }, + { + "epoch": 3.310110974106042, + "grad_norm": 0.0530179999768734, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 32214 + }, + { + "epoch": 3.3104192355117137, + "grad_norm": 0.070836141705513, + "learning_rate": 0.01, + "loss": 1.992, + "step": 32217 + }, + { + "epoch": 3.310727496917386, + "grad_norm": 0.04056829586625099, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 32220 + }, + { + "epoch": 3.311035758323058, + "grad_norm": 0.10000187903642654, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 32223 + }, + { + "epoch": 3.31134401972873, + "grad_norm": 0.04653482139110565, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 32226 + }, + { + "epoch": 3.311652281134402, + "grad_norm": 0.10693076252937317, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 32229 + }, + { + "epoch": 3.311960542540074, + "grad_norm": 0.055378034710884094, + "learning_rate": 0.01, + "loss": 2.021, + "step": 32232 + }, + { + "epoch": 3.312268803945746, + "grad_norm": 0.037242140620946884, + "learning_rate": 0.01, + "loss": 2.0367, + "step": 32235 + }, + { + "epoch": 3.312577065351418, + "grad_norm": 0.04497090354561806, + "learning_rate": 0.01, + "loss": 1.997, + "step": 32238 + }, + { + "epoch": 3.31288532675709, + "grad_norm": 0.048384904861450195, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 32241 + }, + { + "epoch": 3.313193588162762, + "grad_norm": 0.05588208884000778, + "learning_rate": 0.01, + "loss": 2.0375, + "step": 32244 + }, + { + "epoch": 3.313501849568434, + "grad_norm": 0.05643755942583084, + "learning_rate": 0.01, + "loss": 2.0384, + "step": 32247 + }, + { + "epoch": 3.313810110974106, + "grad_norm": 0.03415621444582939, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 32250 + }, + { + "epoch": 3.3141183723797782, + "grad_norm": 0.03537356108427048, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 32253 + }, + { + "epoch": 3.31442663378545, + "grad_norm": 0.1299961805343628, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 32256 + }, + { + "epoch": 3.314734895191122, + "grad_norm": 0.05058746412396431, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 32259 + }, + { + "epoch": 3.315043156596794, + "grad_norm": 0.06381676346063614, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 32262 + }, + { + "epoch": 3.315351418002466, + "grad_norm": 0.039552103728055954, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 32265 + }, + { + "epoch": 3.315659679408138, + "grad_norm": 0.03872091323137283, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 32268 + }, + { + "epoch": 3.31596794081381, + "grad_norm": 0.04546678811311722, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 32271 + }, + { + "epoch": 3.3162762022194823, + "grad_norm": 0.04541923850774765, + "learning_rate": 0.01, + "loss": 2.023, + "step": 32274 + }, + { + "epoch": 3.316584463625154, + "grad_norm": 0.04341261461377144, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 32277 + }, + { + "epoch": 3.316892725030826, + "grad_norm": 0.10473504662513733, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 32280 + }, + { + "epoch": 3.317200986436498, + "grad_norm": 0.0668938085436821, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 32283 + }, + { + "epoch": 3.31750924784217, + "grad_norm": 0.12829263508319855, + "learning_rate": 0.01, + "loss": 2.022, + "step": 32286 + }, + { + "epoch": 3.3178175092478424, + "grad_norm": 0.05443095043301582, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 32289 + }, + { + "epoch": 3.318125770653514, + "grad_norm": 0.06268401443958282, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 32292 + }, + { + "epoch": 3.3184340320591863, + "grad_norm": 0.05700231343507767, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 32295 + }, + { + "epoch": 3.318742293464858, + "grad_norm": 0.07467647641897202, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 32298 + }, + { + "epoch": 3.3190505548705302, + "grad_norm": 0.0675196647644043, + "learning_rate": 0.01, + "loss": 2.013, + "step": 32301 + }, + { + "epoch": 3.3193588162762024, + "grad_norm": 0.044399552047252655, + "learning_rate": 0.01, + "loss": 1.993, + "step": 32304 + }, + { + "epoch": 3.319667077681874, + "grad_norm": 0.0451500304043293, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 32307 + }, + { + "epoch": 3.3199753390875464, + "grad_norm": 0.041543807834386826, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 32310 + }, + { + "epoch": 3.320283600493218, + "grad_norm": 0.08818163722753525, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 32313 + }, + { + "epoch": 3.3205918618988903, + "grad_norm": 0.05897468701004982, + "learning_rate": 0.01, + "loss": 1.999, + "step": 32316 + }, + { + "epoch": 3.320900123304562, + "grad_norm": 0.10485360026359558, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 32319 + }, + { + "epoch": 3.3212083847102343, + "grad_norm": 0.048387110233306885, + "learning_rate": 0.01, + "loss": 2.021, + "step": 32322 + }, + { + "epoch": 3.3215166461159065, + "grad_norm": 0.07535526156425476, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 32325 + }, + { + "epoch": 3.321824907521578, + "grad_norm": 0.04594804719090462, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 32328 + }, + { + "epoch": 3.3221331689272504, + "grad_norm": 0.03757678344845772, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 32331 + }, + { + "epoch": 3.322441430332922, + "grad_norm": 0.046382974833250046, + "learning_rate": 0.01, + "loss": 2.021, + "step": 32334 + }, + { + "epoch": 3.3227496917385944, + "grad_norm": 0.03983695060014725, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 32337 + }, + { + "epoch": 3.323057953144266, + "grad_norm": 0.0615588016808033, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 32340 + }, + { + "epoch": 3.3233662145499383, + "grad_norm": 0.10143701732158661, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 32343 + }, + { + "epoch": 3.3236744759556105, + "grad_norm": 0.06885727494955063, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 32346 + }, + { + "epoch": 3.3239827373612822, + "grad_norm": 0.10029948502779007, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 32349 + }, + { + "epoch": 3.3242909987669544, + "grad_norm": 0.08583710342645645, + "learning_rate": 0.01, + "loss": 1.988, + "step": 32352 + }, + { + "epoch": 3.3245992601726266, + "grad_norm": 0.08596043288707733, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 32355 + }, + { + "epoch": 3.3249075215782984, + "grad_norm": 0.0431043840944767, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 32358 + }, + { + "epoch": 3.3252157829839706, + "grad_norm": 0.044695861637592316, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 32361 + }, + { + "epoch": 3.3255240443896423, + "grad_norm": 0.03210937976837158, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 32364 + }, + { + "epoch": 3.3258323057953145, + "grad_norm": 0.03838266804814339, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 32367 + }, + { + "epoch": 3.3261405672009863, + "grad_norm": 0.05611315369606018, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 32370 + }, + { + "epoch": 3.3264488286066585, + "grad_norm": 0.10025975853204727, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 32373 + }, + { + "epoch": 3.3267570900123307, + "grad_norm": 0.10004039853811264, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 32376 + }, + { + "epoch": 3.3270653514180024, + "grad_norm": 0.0655856728553772, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 32379 + }, + { + "epoch": 3.3273736128236746, + "grad_norm": 0.09608997404575348, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 32382 + }, + { + "epoch": 3.3276818742293464, + "grad_norm": 0.14821460843086243, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 32385 + }, + { + "epoch": 3.3279901356350186, + "grad_norm": 0.05276164412498474, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 32388 + }, + { + "epoch": 3.3282983970406903, + "grad_norm": 0.049289003014564514, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 32391 + }, + { + "epoch": 3.3286066584463625, + "grad_norm": 0.05115703493356705, + "learning_rate": 0.01, + "loss": 2.004, + "step": 32394 + }, + { + "epoch": 3.3289149198520347, + "grad_norm": 0.04041285440325737, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 32397 + }, + { + "epoch": 3.3292231812577064, + "grad_norm": 0.04861520603299141, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 32400 + }, + { + "epoch": 3.3295314426633786, + "grad_norm": 0.1111973226070404, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 32403 + }, + { + "epoch": 3.3298397040690504, + "grad_norm": 0.061960045248270035, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 32406 + }, + { + "epoch": 3.3301479654747226, + "grad_norm": 0.1108783558011055, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 32409 + }, + { + "epoch": 3.3304562268803943, + "grad_norm": 0.06897444278001785, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 32412 + }, + { + "epoch": 3.3307644882860665, + "grad_norm": 0.046277862042188644, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 32415 + }, + { + "epoch": 3.3310727496917387, + "grad_norm": 0.09898782521486282, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 32418 + }, + { + "epoch": 3.3313810110974105, + "grad_norm": 0.059529174119234085, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 32421 + }, + { + "epoch": 3.3316892725030827, + "grad_norm": 0.08007462322711945, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 32424 + }, + { + "epoch": 3.331997533908755, + "grad_norm": 0.07130561769008636, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 32427 + }, + { + "epoch": 3.3323057953144266, + "grad_norm": 0.04967787116765976, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 32430 + }, + { + "epoch": 3.332614056720099, + "grad_norm": 0.08194708079099655, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 32433 + }, + { + "epoch": 3.3329223181257706, + "grad_norm": 0.056519269943237305, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 32436 + }, + { + "epoch": 3.3332305795314427, + "grad_norm": 0.08086001873016357, + "learning_rate": 0.01, + "loss": 2.021, + "step": 32439 + }, + { + "epoch": 3.3335388409371145, + "grad_norm": 0.04036881402134895, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 32442 + }, + { + "epoch": 3.3338471023427867, + "grad_norm": 0.04373360425233841, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 32445 + }, + { + "epoch": 3.334155363748459, + "grad_norm": 0.04562424495816231, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 32448 + }, + { + "epoch": 3.3344636251541306, + "grad_norm": 0.2069234549999237, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 32451 + }, + { + "epoch": 3.334771886559803, + "grad_norm": 0.08092590421438217, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 32454 + }, + { + "epoch": 3.3350801479654746, + "grad_norm": 0.059557970613241196, + "learning_rate": 0.01, + "loss": 2.0523, + "step": 32457 + }, + { + "epoch": 3.335388409371147, + "grad_norm": 0.039045874029397964, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 32460 + }, + { + "epoch": 3.3356966707768185, + "grad_norm": 0.03718112036585808, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 32463 + }, + { + "epoch": 3.3360049321824907, + "grad_norm": 0.05162828043103218, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 32466 + }, + { + "epoch": 3.336313193588163, + "grad_norm": 0.05825696140527725, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 32469 + }, + { + "epoch": 3.3366214549938347, + "grad_norm": 0.0458202064037323, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 32472 + }, + { + "epoch": 3.336929716399507, + "grad_norm": 0.07931084930896759, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 32475 + }, + { + "epoch": 3.3372379778051786, + "grad_norm": 0.05673946067690849, + "learning_rate": 0.01, + "loss": 1.998, + "step": 32478 + }, + { + "epoch": 3.337546239210851, + "grad_norm": 0.05536726489663124, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 32481 + }, + { + "epoch": 3.337854500616523, + "grad_norm": 0.053581688553094864, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 32484 + }, + { + "epoch": 3.3381627620221948, + "grad_norm": 0.057449061423540115, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 32487 + }, + { + "epoch": 3.338471023427867, + "grad_norm": 0.0768120214343071, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 32490 + }, + { + "epoch": 3.3387792848335387, + "grad_norm": 0.1322673261165619, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 32493 + }, + { + "epoch": 3.339087546239211, + "grad_norm": 0.10641443729400635, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 32496 + }, + { + "epoch": 3.339395807644883, + "grad_norm": 0.13880647718906403, + "learning_rate": 0.01, + "loss": 1.979, + "step": 32499 + }, + { + "epoch": 3.339704069050555, + "grad_norm": 0.04653307795524597, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 32502 + }, + { + "epoch": 3.340012330456227, + "grad_norm": 0.05031618848443031, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 32505 + }, + { + "epoch": 3.340320591861899, + "grad_norm": 0.042637672275304794, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 32508 + }, + { + "epoch": 3.340628853267571, + "grad_norm": 0.03557129204273224, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 32511 + }, + { + "epoch": 3.3409371146732427, + "grad_norm": 0.04271169379353523, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 32514 + }, + { + "epoch": 3.341245376078915, + "grad_norm": 0.06750103831291199, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 32517 + }, + { + "epoch": 3.341553637484587, + "grad_norm": 0.05727256461977959, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 32520 + }, + { + "epoch": 3.341861898890259, + "grad_norm": 0.05737854540348053, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 32523 + }, + { + "epoch": 3.342170160295931, + "grad_norm": 0.04525689780712128, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 32526 + }, + { + "epoch": 3.342478421701603, + "grad_norm": 0.038834329694509506, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 32529 + }, + { + "epoch": 3.342786683107275, + "grad_norm": 0.14812909066677094, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 32532 + }, + { + "epoch": 3.3430949445129468, + "grad_norm": 0.09346423298120499, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 32535 + }, + { + "epoch": 3.343403205918619, + "grad_norm": 0.03221321851015091, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 32538 + }, + { + "epoch": 3.343711467324291, + "grad_norm": 0.05457564815878868, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 32541 + }, + { + "epoch": 3.344019728729963, + "grad_norm": 0.05203322321176529, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 32544 + }, + { + "epoch": 3.344327990135635, + "grad_norm": 0.05318872258067131, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 32547 + }, + { + "epoch": 3.344636251541307, + "grad_norm": 0.034635335206985474, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 32550 + }, + { + "epoch": 3.344944512946979, + "grad_norm": 0.0421120747923851, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 32553 + }, + { + "epoch": 3.3452527743526512, + "grad_norm": 0.08523180335760117, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 32556 + }, + { + "epoch": 3.345561035758323, + "grad_norm": 0.11694061011075974, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 32559 + }, + { + "epoch": 3.345869297163995, + "grad_norm": 0.05000199005007744, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 32562 + }, + { + "epoch": 3.346177558569667, + "grad_norm": 0.0399484746158123, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 32565 + }, + { + "epoch": 3.346485819975339, + "grad_norm": 0.0491316057741642, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 32568 + }, + { + "epoch": 3.3467940813810113, + "grad_norm": 0.042924270033836365, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 32571 + }, + { + "epoch": 3.347102342786683, + "grad_norm": 0.03486446663737297, + "learning_rate": 0.01, + "loss": 2.023, + "step": 32574 + }, + { + "epoch": 3.3474106041923553, + "grad_norm": 0.031064294278621674, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 32577 + }, + { + "epoch": 3.347718865598027, + "grad_norm": 0.05951589718461037, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 32580 + }, + { + "epoch": 3.348027127003699, + "grad_norm": 0.04387381300330162, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 32583 + }, + { + "epoch": 3.348335388409371, + "grad_norm": 0.05328337103128433, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 32586 + }, + { + "epoch": 3.348643649815043, + "grad_norm": 0.04561325162649155, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 32589 + }, + { + "epoch": 3.3489519112207153, + "grad_norm": 0.047260623425245285, + "learning_rate": 0.01, + "loss": 2.0387, + "step": 32592 + }, + { + "epoch": 3.349260172626387, + "grad_norm": 0.21082252264022827, + "learning_rate": 0.01, + "loss": 2.024, + "step": 32595 + }, + { + "epoch": 3.3495684340320593, + "grad_norm": 0.08391027897596359, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 32598 + }, + { + "epoch": 3.349876695437731, + "grad_norm": 0.07036472856998444, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 32601 + }, + { + "epoch": 3.3501849568434032, + "grad_norm": 0.03812922164797783, + "learning_rate": 0.01, + "loss": 2.014, + "step": 32604 + }, + { + "epoch": 3.350493218249075, + "grad_norm": 0.041235774755477905, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 32607 + }, + { + "epoch": 3.350801479654747, + "grad_norm": 0.05174950137734413, + "learning_rate": 0.01, + "loss": 2.026, + "step": 32610 + }, + { + "epoch": 3.3511097410604194, + "grad_norm": 0.058260124176740646, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 32613 + }, + { + "epoch": 3.351418002466091, + "grad_norm": 0.045651067048311234, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 32616 + }, + { + "epoch": 3.3517262638717633, + "grad_norm": 0.043610829859972, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 32619 + }, + { + "epoch": 3.3520345252774355, + "grad_norm": 0.04924603924155235, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 32622 + }, + { + "epoch": 3.3523427866831073, + "grad_norm": 0.04765019193291664, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 32625 + }, + { + "epoch": 3.3526510480887795, + "grad_norm": 0.04744412377476692, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 32628 + }, + { + "epoch": 3.352959309494451, + "grad_norm": 0.09456950426101685, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 32631 + }, + { + "epoch": 3.3532675709001234, + "grad_norm": 0.17356513440608978, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 32634 + }, + { + "epoch": 3.353575832305795, + "grad_norm": 0.08420834690332413, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 32637 + }, + { + "epoch": 3.3538840937114673, + "grad_norm": 0.09453277289867401, + "learning_rate": 0.01, + "loss": 2.021, + "step": 32640 + }, + { + "epoch": 3.3541923551171395, + "grad_norm": 0.05444180220365524, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 32643 + }, + { + "epoch": 3.3545006165228113, + "grad_norm": 0.04824339225888252, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 32646 + }, + { + "epoch": 3.3548088779284835, + "grad_norm": 0.06650727242231369, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 32649 + }, + { + "epoch": 3.3551171393341552, + "grad_norm": 0.05119656026363373, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 32652 + }, + { + "epoch": 3.3554254007398274, + "grad_norm": 0.044617343693971634, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 32655 + }, + { + "epoch": 3.355733662145499, + "grad_norm": 0.035579435527324677, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 32658 + }, + { + "epoch": 3.3560419235511714, + "grad_norm": 0.05802566558122635, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 32661 + }, + { + "epoch": 3.3563501849568436, + "grad_norm": 0.050934724509716034, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 32664 + }, + { + "epoch": 3.3566584463625153, + "grad_norm": 0.055400047451257706, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 32667 + }, + { + "epoch": 3.3569667077681875, + "grad_norm": 0.1315484195947647, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 32670 + }, + { + "epoch": 3.3572749691738593, + "grad_norm": 0.13136912882328033, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 32673 + }, + { + "epoch": 3.3575832305795315, + "grad_norm": 0.08574076741933823, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 32676 + }, + { + "epoch": 3.357891491985203, + "grad_norm": 0.04678389057517052, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 32679 + }, + { + "epoch": 3.3581997533908754, + "grad_norm": 0.03356343135237694, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 32682 + }, + { + "epoch": 3.3585080147965476, + "grad_norm": 0.046139661222696304, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 32685 + }, + { + "epoch": 3.3588162762022193, + "grad_norm": 0.03130761533975601, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 32688 + }, + { + "epoch": 3.3591245376078915, + "grad_norm": 0.17764367163181305, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 32691 + }, + { + "epoch": 3.3594327990135637, + "grad_norm": 0.04135056957602501, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 32694 + }, + { + "epoch": 3.3597410604192355, + "grad_norm": 0.11181548237800598, + "learning_rate": 0.01, + "loss": 2.048, + "step": 32697 + }, + { + "epoch": 3.3600493218249077, + "grad_norm": 0.07631994783878326, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 32700 + }, + { + "epoch": 3.3603575832305794, + "grad_norm": 0.03839050978422165, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 32703 + }, + { + "epoch": 3.3606658446362516, + "grad_norm": 0.03893091529607773, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 32706 + }, + { + "epoch": 3.3609741060419234, + "grad_norm": 0.15776588022708893, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 32709 + }, + { + "epoch": 3.3612823674475956, + "grad_norm": 0.125548854470253, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 32712 + }, + { + "epoch": 3.3615906288532678, + "grad_norm": 0.06952936947345734, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 32715 + }, + { + "epoch": 3.3618988902589395, + "grad_norm": 0.03826635703444481, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 32718 + }, + { + "epoch": 3.3622071516646117, + "grad_norm": 0.03977655619382858, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 32721 + }, + { + "epoch": 3.3625154130702835, + "grad_norm": 0.02882550098001957, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 32724 + }, + { + "epoch": 3.3628236744759556, + "grad_norm": 0.03502441197633743, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 32727 + }, + { + "epoch": 3.3631319358816274, + "grad_norm": 0.04370797425508499, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 32730 + }, + { + "epoch": 3.3634401972872996, + "grad_norm": 0.03528802841901779, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 32733 + }, + { + "epoch": 3.363748458692972, + "grad_norm": 0.08671889454126358, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 32736 + }, + { + "epoch": 3.3640567200986435, + "grad_norm": 0.1123836413025856, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 32739 + }, + { + "epoch": 3.3643649815043157, + "grad_norm": 0.061064526438713074, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 32742 + }, + { + "epoch": 3.3646732429099875, + "grad_norm": 0.05037948489189148, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 32745 + }, + { + "epoch": 3.3649815043156597, + "grad_norm": 0.052206844091415405, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 32748 + }, + { + "epoch": 3.365289765721332, + "grad_norm": 0.05795833095908165, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 32751 + }, + { + "epoch": 3.3655980271270036, + "grad_norm": 0.030604414641857147, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 32754 + }, + { + "epoch": 3.365906288532676, + "grad_norm": 0.05441366508603096, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 32757 + }, + { + "epoch": 3.3662145499383476, + "grad_norm": 0.07509131729602814, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 32760 + }, + { + "epoch": 3.3665228113440198, + "grad_norm": 0.046888504177331924, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 32763 + }, + { + "epoch": 3.366831072749692, + "grad_norm": 0.05030560493469238, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 32766 + }, + { + "epoch": 3.3671393341553637, + "grad_norm": 0.0426168255507946, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 32769 + }, + { + "epoch": 3.367447595561036, + "grad_norm": 0.10896468907594681, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 32772 + }, + { + "epoch": 3.3677558569667077, + "grad_norm": 0.11696910113096237, + "learning_rate": 0.01, + "loss": 2.0353, + "step": 32775 + }, + { + "epoch": 3.36806411837238, + "grad_norm": 0.07340724021196365, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 32778 + }, + { + "epoch": 3.3683723797780516, + "grad_norm": 0.037968121469020844, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 32781 + }, + { + "epoch": 3.368680641183724, + "grad_norm": 0.044434670358896255, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 32784 + }, + { + "epoch": 3.368988902589396, + "grad_norm": 0.03823886066675186, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 32787 + }, + { + "epoch": 3.3692971639950677, + "grad_norm": 0.06556801497936249, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 32790 + }, + { + "epoch": 3.36960542540074, + "grad_norm": 0.06128913164138794, + "learning_rate": 0.01, + "loss": 2.032, + "step": 32793 + }, + { + "epoch": 3.3699136868064117, + "grad_norm": 0.08499012142419815, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 32796 + }, + { + "epoch": 3.370221948212084, + "grad_norm": 0.03410051763057709, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 32799 + }, + { + "epoch": 3.3705302096177556, + "grad_norm": 0.08818015456199646, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 32802 + }, + { + "epoch": 3.370838471023428, + "grad_norm": 0.045091863721609116, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 32805 + }, + { + "epoch": 3.3711467324291, + "grad_norm": 0.10982260853052139, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 32808 + }, + { + "epoch": 3.3714549938347718, + "grad_norm": 0.04633982852101326, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 32811 + }, + { + "epoch": 3.371763255240444, + "grad_norm": 0.04701898992061615, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 32814 + }, + { + "epoch": 3.372071516646116, + "grad_norm": 0.03449505567550659, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 32817 + }, + { + "epoch": 3.372379778051788, + "grad_norm": 0.03621023893356323, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 32820 + }, + { + "epoch": 3.37268803945746, + "grad_norm": 0.04743462800979614, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 32823 + }, + { + "epoch": 3.372996300863132, + "grad_norm": 0.04240218549966812, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 32826 + }, + { + "epoch": 3.373304562268804, + "grad_norm": 0.09400332719087601, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 32829 + }, + { + "epoch": 3.373612823674476, + "grad_norm": 0.07313279062509537, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 32832 + }, + { + "epoch": 3.373921085080148, + "grad_norm": 0.07604516297578812, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 32835 + }, + { + "epoch": 3.37422934648582, + "grad_norm": 0.044236812740564346, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 32838 + }, + { + "epoch": 3.374537607891492, + "grad_norm": 0.051601652055978775, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 32841 + }, + { + "epoch": 3.374845869297164, + "grad_norm": 0.10818912088871002, + "learning_rate": 0.01, + "loss": 2.001, + "step": 32844 + }, + { + "epoch": 3.375154130702836, + "grad_norm": 0.04563935101032257, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 32847 + }, + { + "epoch": 3.375462392108508, + "grad_norm": 0.053665511310100555, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 32850 + }, + { + "epoch": 3.37577065351418, + "grad_norm": 0.08934652805328369, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 32853 + }, + { + "epoch": 3.376078914919852, + "grad_norm": 0.0752192884683609, + "learning_rate": 0.01, + "loss": 2.0429, + "step": 32856 + }, + { + "epoch": 3.376387176325524, + "grad_norm": 0.05763142928481102, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 32859 + }, + { + "epoch": 3.376695437731196, + "grad_norm": 0.03926476463675499, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 32862 + }, + { + "epoch": 3.377003699136868, + "grad_norm": 0.05735384672880173, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 32865 + }, + { + "epoch": 3.37731196054254, + "grad_norm": 0.18665596842765808, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 32868 + }, + { + "epoch": 3.377620221948212, + "grad_norm": 0.06702150404453278, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 32871 + }, + { + "epoch": 3.377928483353884, + "grad_norm": 0.051258910447359085, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 32874 + }, + { + "epoch": 3.378236744759556, + "grad_norm": 0.05804390087723732, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 32877 + }, + { + "epoch": 3.3785450061652282, + "grad_norm": 0.04688677936792374, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 32880 + }, + { + "epoch": 3.3788532675709, + "grad_norm": 0.057768989354372025, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 32883 + }, + { + "epoch": 3.379161528976572, + "grad_norm": 0.05571329593658447, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 32886 + }, + { + "epoch": 3.3794697903822444, + "grad_norm": 0.04497957229614258, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 32889 + }, + { + "epoch": 3.379778051787916, + "grad_norm": 0.043453045189380646, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 32892 + }, + { + "epoch": 3.3800863131935883, + "grad_norm": 0.045709915459156036, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 32895 + }, + { + "epoch": 3.38039457459926, + "grad_norm": 0.05974254012107849, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 32898 + }, + { + "epoch": 3.3807028360049323, + "grad_norm": 0.16592206060886383, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 32901 + }, + { + "epoch": 3.381011097410604, + "grad_norm": 0.04671747609972954, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 32904 + }, + { + "epoch": 3.381319358816276, + "grad_norm": 0.07180918008089066, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 32907 + }, + { + "epoch": 3.3816276202219484, + "grad_norm": 0.06775587797164917, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 32910 + }, + { + "epoch": 3.38193588162762, + "grad_norm": 0.04381205141544342, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 32913 + }, + { + "epoch": 3.3822441430332923, + "grad_norm": 0.0345197468996048, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 32916 + }, + { + "epoch": 3.382552404438964, + "grad_norm": 0.04965033382177353, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 32919 + }, + { + "epoch": 3.3828606658446363, + "grad_norm": 0.20276527106761932, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 32922 + }, + { + "epoch": 3.383168927250308, + "grad_norm": 0.0702800378203392, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 32925 + }, + { + "epoch": 3.3834771886559802, + "grad_norm": 0.05775219202041626, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 32928 + }, + { + "epoch": 3.3837854500616524, + "grad_norm": 0.0662347599864006, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 32931 + }, + { + "epoch": 3.384093711467324, + "grad_norm": 0.05067736655473709, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 32934 + }, + { + "epoch": 3.3844019728729964, + "grad_norm": 0.057027652859687805, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 32937 + }, + { + "epoch": 3.384710234278668, + "grad_norm": 0.0408274307847023, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 32940 + }, + { + "epoch": 3.3850184956843403, + "grad_norm": 0.049467723816633224, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 32943 + }, + { + "epoch": 3.3853267570900125, + "grad_norm": 0.07573775947093964, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 32946 + }, + { + "epoch": 3.3856350184956843, + "grad_norm": 0.04027678817510605, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 32949 + }, + { + "epoch": 3.3859432799013565, + "grad_norm": 0.09980335086584091, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 32952 + }, + { + "epoch": 3.386251541307028, + "grad_norm": 0.06230602413415909, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 32955 + }, + { + "epoch": 3.3865598027127004, + "grad_norm": 0.09655454754829407, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 32958 + }, + { + "epoch": 3.3868680641183726, + "grad_norm": 0.053587790578603745, + "learning_rate": 0.01, + "loss": 2.002, + "step": 32961 + }, + { + "epoch": 3.3871763255240444, + "grad_norm": 0.08395679295063019, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 32964 + }, + { + "epoch": 3.3874845869297165, + "grad_norm": 0.08353892713785172, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 32967 + }, + { + "epoch": 3.3877928483353883, + "grad_norm": 0.11298651993274689, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 32970 + }, + { + "epoch": 3.3881011097410605, + "grad_norm": 0.08317071199417114, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 32973 + }, + { + "epoch": 3.3884093711467322, + "grad_norm": 0.07725278288125992, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 32976 + }, + { + "epoch": 3.3887176325524044, + "grad_norm": 0.06264784932136536, + "learning_rate": 0.01, + "loss": 2.017, + "step": 32979 + }, + { + "epoch": 3.3890258939580766, + "grad_norm": 0.0588025264441967, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 32982 + }, + { + "epoch": 3.3893341553637484, + "grad_norm": 0.033383727073669434, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 32985 + }, + { + "epoch": 3.3896424167694206, + "grad_norm": 0.04963357746601105, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 32988 + }, + { + "epoch": 3.3899506781750923, + "grad_norm": 0.03166192024946213, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 32991 + }, + { + "epoch": 3.3902589395807645, + "grad_norm": 0.0424019880592823, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 32994 + }, + { + "epoch": 3.3905672009864363, + "grad_norm": 0.0549466572701931, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 32997 + }, + { + "epoch": 3.3908754623921085, + "grad_norm": 0.06859169900417328, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 33000 + }, + { + "epoch": 3.3911837237977807, + "grad_norm": 0.05035685375332832, + "learning_rate": 0.01, + "loss": 2.0422, + "step": 33003 + }, + { + "epoch": 3.3914919852034524, + "grad_norm": 0.10227832943201065, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 33006 + }, + { + "epoch": 3.3918002466091246, + "grad_norm": 0.052029043436050415, + "learning_rate": 0.01, + "loss": 2.0341, + "step": 33009 + }, + { + "epoch": 3.392108508014797, + "grad_norm": 0.03569505736231804, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 33012 + }, + { + "epoch": 3.3924167694204685, + "grad_norm": 0.05492673069238663, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 33015 + }, + { + "epoch": 3.3927250308261407, + "grad_norm": 0.10698610544204712, + "learning_rate": 0.01, + "loss": 1.98, + "step": 33018 + }, + { + "epoch": 3.3930332922318125, + "grad_norm": 0.051218993961811066, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 33021 + }, + { + "epoch": 3.3933415536374847, + "grad_norm": 0.10021807998418808, + "learning_rate": 0.01, + "loss": 1.997, + "step": 33024 + }, + { + "epoch": 3.3936498150431564, + "grad_norm": 0.043556150048971176, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 33027 + }, + { + "epoch": 3.3939580764488286, + "grad_norm": 0.052555110305547714, + "learning_rate": 0.01, + "loss": 2.0, + "step": 33030 + }, + { + "epoch": 3.394266337854501, + "grad_norm": 0.1656499058008194, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 33033 + }, + { + "epoch": 3.3945745992601726, + "grad_norm": 0.08107822388410568, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 33036 + }, + { + "epoch": 3.3948828606658448, + "grad_norm": 0.05703389272093773, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 33039 + }, + { + "epoch": 3.3951911220715165, + "grad_norm": 0.060602329671382904, + "learning_rate": 0.01, + "loss": 2.01, + "step": 33042 + }, + { + "epoch": 3.3954993834771887, + "grad_norm": 0.05680840089917183, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 33045 + }, + { + "epoch": 3.3958076448828605, + "grad_norm": 0.053718626499176025, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 33048 + }, + { + "epoch": 3.3961159062885327, + "grad_norm": 0.04885102063417435, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 33051 + }, + { + "epoch": 3.396424167694205, + "grad_norm": 0.046444397419691086, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 33054 + }, + { + "epoch": 3.3967324290998766, + "grad_norm": 0.03031921572983265, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 33057 + }, + { + "epoch": 3.397040690505549, + "grad_norm": 0.048908550292253494, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 33060 + }, + { + "epoch": 3.3973489519112205, + "grad_norm": 0.06003925949335098, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 33063 + }, + { + "epoch": 3.3976572133168927, + "grad_norm": 0.10929730534553528, + "learning_rate": 0.01, + "loss": 1.998, + "step": 33066 + }, + { + "epoch": 3.3979654747225645, + "grad_norm": 0.09032581746578217, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 33069 + }, + { + "epoch": 3.3982737361282367, + "grad_norm": 0.043940551578998566, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 33072 + }, + { + "epoch": 3.398581997533909, + "grad_norm": 0.10148674994707108, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 33075 + }, + { + "epoch": 3.3988902589395806, + "grad_norm": 0.04877715930342674, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 33078 + }, + { + "epoch": 3.399198520345253, + "grad_norm": 0.10485149919986725, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 33081 + }, + { + "epoch": 3.399506781750925, + "grad_norm": 0.12222550064325333, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 33084 + }, + { + "epoch": 3.3998150431565968, + "grad_norm": 0.0744134709239006, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 33087 + }, + { + "epoch": 3.400123304562269, + "grad_norm": 0.08050314337015152, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 33090 + }, + { + "epoch": 3.4004315659679407, + "grad_norm": 0.0806950256228447, + "learning_rate": 0.01, + "loss": 1.997, + "step": 33093 + }, + { + "epoch": 3.400739827373613, + "grad_norm": 0.06369089335203171, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 33096 + }, + { + "epoch": 3.4010480887792847, + "grad_norm": 0.06041014939546585, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 33099 + }, + { + "epoch": 3.401356350184957, + "grad_norm": 0.0476149246096611, + "learning_rate": 0.01, + "loss": 1.988, + "step": 33102 + }, + { + "epoch": 3.401664611590629, + "grad_norm": 0.05710010603070259, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 33105 + }, + { + "epoch": 3.401972872996301, + "grad_norm": 0.04351675137877464, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 33108 + }, + { + "epoch": 3.402281134401973, + "grad_norm": 0.04341613128781319, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 33111 + }, + { + "epoch": 3.4025893958076447, + "grad_norm": 0.04619600623846054, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 33114 + }, + { + "epoch": 3.402897657213317, + "grad_norm": 0.07674260437488556, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 33117 + }, + { + "epoch": 3.4032059186189887, + "grad_norm": 0.03869005665183067, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 33120 + }, + { + "epoch": 3.403514180024661, + "grad_norm": 0.08710911124944687, + "learning_rate": 0.01, + "loss": 1.995, + "step": 33123 + }, + { + "epoch": 3.403822441430333, + "grad_norm": 0.09343576431274414, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 33126 + }, + { + "epoch": 3.404130702836005, + "grad_norm": 0.048723649233579636, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 33129 + }, + { + "epoch": 3.404438964241677, + "grad_norm": 0.07655228674411774, + "learning_rate": 0.01, + "loss": 2.0235, + "step": 33132 + }, + { + "epoch": 3.4047472256473488, + "grad_norm": 0.08873139321804047, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 33135 + }, + { + "epoch": 3.405055487053021, + "grad_norm": 0.06514773517847061, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 33138 + }, + { + "epoch": 3.405363748458693, + "grad_norm": 0.06446196138858795, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 33141 + }, + { + "epoch": 3.405672009864365, + "grad_norm": 0.12146038562059402, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 33144 + }, + { + "epoch": 3.405980271270037, + "grad_norm": 0.06639200448989868, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 33147 + }, + { + "epoch": 3.406288532675709, + "grad_norm": 0.05644892901182175, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 33150 + }, + { + "epoch": 3.406596794081381, + "grad_norm": 0.037636831402778625, + "learning_rate": 0.01, + "loss": 2.008, + "step": 33153 + }, + { + "epoch": 3.4069050554870532, + "grad_norm": 0.031332679092884064, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 33156 + }, + { + "epoch": 3.407213316892725, + "grad_norm": 0.051785338670015335, + "learning_rate": 0.01, + "loss": 2.011, + "step": 33159 + }, + { + "epoch": 3.407521578298397, + "grad_norm": 0.07761172205209732, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 33162 + }, + { + "epoch": 3.407829839704069, + "grad_norm": 0.09536123275756836, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 33165 + }, + { + "epoch": 3.408138101109741, + "grad_norm": 0.04122615605592728, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 33168 + }, + { + "epoch": 3.408446362515413, + "grad_norm": 0.0360184982419014, + "learning_rate": 0.01, + "loss": 2.002, + "step": 33171 + }, + { + "epoch": 3.408754623921085, + "grad_norm": 0.03222360834479332, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 33174 + }, + { + "epoch": 3.4090628853267573, + "grad_norm": 0.043042391538619995, + "learning_rate": 0.01, + "loss": 1.989, + "step": 33177 + }, + { + "epoch": 3.409371146732429, + "grad_norm": 0.06593729555606842, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 33180 + }, + { + "epoch": 3.409679408138101, + "grad_norm": 0.09074060618877411, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 33183 + }, + { + "epoch": 3.409987669543773, + "grad_norm": 0.06270799785852432, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 33186 + }, + { + "epoch": 3.410295930949445, + "grad_norm": 0.08982829004526138, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 33189 + }, + { + "epoch": 3.410604192355117, + "grad_norm": 0.04844099283218384, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 33192 + }, + { + "epoch": 3.410912453760789, + "grad_norm": 0.07782240957021713, + "learning_rate": 0.01, + "loss": 2.025, + "step": 33195 + }, + { + "epoch": 3.4112207151664613, + "grad_norm": 0.07867666333913803, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 33198 + }, + { + "epoch": 3.411528976572133, + "grad_norm": 0.07254987210035324, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 33201 + }, + { + "epoch": 3.4118372379778052, + "grad_norm": 0.04480341821908951, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 33204 + }, + { + "epoch": 3.412145499383477, + "grad_norm": 0.03986749053001404, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 33207 + }, + { + "epoch": 3.412453760789149, + "grad_norm": 0.04472361132502556, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 33210 + }, + { + "epoch": 3.4127620221948214, + "grad_norm": 0.07955579459667206, + "learning_rate": 0.01, + "loss": 2.01, + "step": 33213 + }, + { + "epoch": 3.413070283600493, + "grad_norm": 0.056707967072725296, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 33216 + }, + { + "epoch": 3.4133785450061653, + "grad_norm": 0.04070746898651123, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 33219 + }, + { + "epoch": 3.413686806411837, + "grad_norm": 0.03773896023631096, + "learning_rate": 0.01, + "loss": 2.015, + "step": 33222 + }, + { + "epoch": 3.4139950678175093, + "grad_norm": 0.10554299503564835, + "learning_rate": 0.01, + "loss": 2.0331, + "step": 33225 + }, + { + "epoch": 3.4143033292231815, + "grad_norm": 0.0555710643529892, + "learning_rate": 0.01, + "loss": 1.996, + "step": 33228 + }, + { + "epoch": 3.414611590628853, + "grad_norm": 0.1139519140124321, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 33231 + }, + { + "epoch": 3.4149198520345254, + "grad_norm": 0.042904384434223175, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 33234 + }, + { + "epoch": 3.415228113440197, + "grad_norm": 0.10528502613306046, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 33237 + }, + { + "epoch": 3.4155363748458694, + "grad_norm": 0.03914659097790718, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 33240 + }, + { + "epoch": 3.415844636251541, + "grad_norm": 0.11122586578130722, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 33243 + }, + { + "epoch": 3.4161528976572133, + "grad_norm": 0.06572670489549637, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 33246 + }, + { + "epoch": 3.4164611590628855, + "grad_norm": 0.05022534728050232, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 33249 + }, + { + "epoch": 3.4167694204685573, + "grad_norm": 0.08149400353431702, + "learning_rate": 0.01, + "loss": 2.0326, + "step": 33252 + }, + { + "epoch": 3.4170776818742294, + "grad_norm": 0.04350002855062485, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 33255 + }, + { + "epoch": 3.417385943279901, + "grad_norm": 0.0445462241768837, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 33258 + }, + { + "epoch": 3.4176942046855734, + "grad_norm": 0.04082934185862541, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 33261 + }, + { + "epoch": 3.418002466091245, + "grad_norm": 0.060355301946401596, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 33264 + }, + { + "epoch": 3.4183107274969173, + "grad_norm": 0.04439264163374901, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 33267 + }, + { + "epoch": 3.4186189889025895, + "grad_norm": 0.11760549992322922, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 33270 + }, + { + "epoch": 3.4189272503082613, + "grad_norm": 0.08547448366880417, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 33273 + }, + { + "epoch": 3.4192355117139335, + "grad_norm": 0.06072860211133957, + "learning_rate": 0.01, + "loss": 1.992, + "step": 33276 + }, + { + "epoch": 3.4195437731196057, + "grad_norm": 0.03637344762682915, + "learning_rate": 0.01, + "loss": 2.02, + "step": 33279 + }, + { + "epoch": 3.4198520345252774, + "grad_norm": 0.0440024733543396, + "learning_rate": 0.01, + "loss": 2.007, + "step": 33282 + }, + { + "epoch": 3.4201602959309496, + "grad_norm": 0.040933944284915924, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 33285 + }, + { + "epoch": 3.4204685573366214, + "grad_norm": 0.10233576595783234, + "learning_rate": 0.01, + "loss": 2.0433, + "step": 33288 + }, + { + "epoch": 3.4207768187422936, + "grad_norm": 0.10494884103536606, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 33291 + }, + { + "epoch": 3.4210850801479653, + "grad_norm": 0.04247460886836052, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 33294 + }, + { + "epoch": 3.4213933415536375, + "grad_norm": 0.07929468154907227, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 33297 + }, + { + "epoch": 3.4217016029593097, + "grad_norm": 0.04947086423635483, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 33300 + }, + { + "epoch": 3.4220098643649814, + "grad_norm": 0.05473649874329567, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 33303 + }, + { + "epoch": 3.4223181257706536, + "grad_norm": 0.06789970397949219, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 33306 + }, + { + "epoch": 3.4226263871763254, + "grad_norm": 0.044122181832790375, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 33309 + }, + { + "epoch": 3.4229346485819976, + "grad_norm": 0.0713338777422905, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 33312 + }, + { + "epoch": 3.4232429099876693, + "grad_norm": 0.09774953871965408, + "learning_rate": 0.01, + "loss": 1.999, + "step": 33315 + }, + { + "epoch": 3.4235511713933415, + "grad_norm": 0.049434032291173935, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 33318 + }, + { + "epoch": 3.4238594327990137, + "grad_norm": 0.06290262192487717, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 33321 + }, + { + "epoch": 3.4241676942046855, + "grad_norm": 0.042732108384370804, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 33324 + }, + { + "epoch": 3.4244759556103577, + "grad_norm": 0.03461041674017906, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 33327 + }, + { + "epoch": 3.4247842170160294, + "grad_norm": 0.04503572732210159, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 33330 + }, + { + "epoch": 3.4250924784217016, + "grad_norm": 0.04774646461009979, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 33333 + }, + { + "epoch": 3.4254007398273734, + "grad_norm": 0.08576779067516327, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 33336 + }, + { + "epoch": 3.4257090012330456, + "grad_norm": 0.13729599118232727, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 33339 + }, + { + "epoch": 3.4260172626387178, + "grad_norm": 0.060716260224580765, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 33342 + }, + { + "epoch": 3.4263255240443895, + "grad_norm": 0.037777479737997055, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 33345 + }, + { + "epoch": 3.4266337854500617, + "grad_norm": 0.042688485234975815, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 33348 + }, + { + "epoch": 3.426942046855734, + "grad_norm": 0.07009312510490417, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 33351 + }, + { + "epoch": 3.4272503082614056, + "grad_norm": 0.10260313749313354, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 33354 + }, + { + "epoch": 3.427558569667078, + "grad_norm": 0.08466068655252457, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 33357 + }, + { + "epoch": 3.4278668310727496, + "grad_norm": 0.061912521719932556, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 33360 + }, + { + "epoch": 3.428175092478422, + "grad_norm": 0.0470789298415184, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 33363 + }, + { + "epoch": 3.4284833538840935, + "grad_norm": 0.0477573424577713, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 33366 + }, + { + "epoch": 3.4287916152897657, + "grad_norm": 0.03324504569172859, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 33369 + }, + { + "epoch": 3.429099876695438, + "grad_norm": 0.07741666585206985, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 33372 + }, + { + "epoch": 3.4294081381011097, + "grad_norm": 0.05770926922559738, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 33375 + }, + { + "epoch": 3.429716399506782, + "grad_norm": 0.08471731096506119, + "learning_rate": 0.01, + "loss": 2.0451, + "step": 33378 + }, + { + "epoch": 3.4300246609124536, + "grad_norm": 0.04667286202311516, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 33381 + }, + { + "epoch": 3.430332922318126, + "grad_norm": 0.0683809220790863, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 33384 + }, + { + "epoch": 3.4306411837237976, + "grad_norm": 0.07834406197071075, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 33387 + }, + { + "epoch": 3.4309494451294698, + "grad_norm": 0.04956913739442825, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 33390 + }, + { + "epoch": 3.431257706535142, + "grad_norm": 0.05492135509848595, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 33393 + }, + { + "epoch": 3.4315659679408137, + "grad_norm": 0.05343586578965187, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 33396 + }, + { + "epoch": 3.431874229346486, + "grad_norm": 0.04083942621946335, + "learning_rate": 0.01, + "loss": 2.005, + "step": 33399 + }, + { + "epoch": 3.4321824907521576, + "grad_norm": 0.06474661827087402, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 33402 + }, + { + "epoch": 3.43249075215783, + "grad_norm": 0.09690015017986298, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 33405 + }, + { + "epoch": 3.432799013563502, + "grad_norm": 0.17796829342842102, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 33408 + }, + { + "epoch": 3.433107274969174, + "grad_norm": 0.11173928529024124, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 33411 + }, + { + "epoch": 3.433415536374846, + "grad_norm": 0.045607730746269226, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 33414 + }, + { + "epoch": 3.4337237977805177, + "grad_norm": 0.03982311487197876, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 33417 + }, + { + "epoch": 3.43403205918619, + "grad_norm": 0.03420604392886162, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 33420 + }, + { + "epoch": 3.434340320591862, + "grad_norm": 0.03757992014288902, + "learning_rate": 0.01, + "loss": 2.026, + "step": 33423 + }, + { + "epoch": 3.434648581997534, + "grad_norm": 0.05664653331041336, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 33426 + }, + { + "epoch": 3.434956843403206, + "grad_norm": 0.05265260115265846, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 33429 + }, + { + "epoch": 3.435265104808878, + "grad_norm": 0.0430876798927784, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 33432 + }, + { + "epoch": 3.43557336621455, + "grad_norm": 0.04210485517978668, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 33435 + }, + { + "epoch": 3.4358816276202218, + "grad_norm": 0.049002841114997864, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 33438 + }, + { + "epoch": 3.436189889025894, + "grad_norm": 0.0786898285150528, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 33441 + }, + { + "epoch": 3.436498150431566, + "grad_norm": 0.04218638688325882, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 33444 + }, + { + "epoch": 3.436806411837238, + "grad_norm": 0.13452041149139404, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 33447 + }, + { + "epoch": 3.43711467324291, + "grad_norm": 0.06728319823741913, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 33450 + }, + { + "epoch": 3.437422934648582, + "grad_norm": 0.09041707217693329, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 33453 + }, + { + "epoch": 3.437731196054254, + "grad_norm": 0.04817497730255127, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 33456 + }, + { + "epoch": 3.438039457459926, + "grad_norm": 0.05033170431852341, + "learning_rate": 0.01, + "loss": 2.016, + "step": 33459 + }, + { + "epoch": 3.438347718865598, + "grad_norm": 0.12856252491474152, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 33462 + }, + { + "epoch": 3.43865598027127, + "grad_norm": 0.03690528869628906, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 33465 + }, + { + "epoch": 3.438964241676942, + "grad_norm": 0.09053459018468857, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 33468 + }, + { + "epoch": 3.439272503082614, + "grad_norm": 0.11929309368133545, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 33471 + }, + { + "epoch": 3.4395807644882863, + "grad_norm": 0.06987284123897552, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 33474 + }, + { + "epoch": 3.439889025893958, + "grad_norm": 0.06181707605719566, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 33477 + }, + { + "epoch": 3.4401972872996303, + "grad_norm": 0.045914020389318466, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 33480 + }, + { + "epoch": 3.440505548705302, + "grad_norm": 0.04277556762099266, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 33483 + }, + { + "epoch": 3.440813810110974, + "grad_norm": 0.045943450182676315, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 33486 + }, + { + "epoch": 3.441122071516646, + "grad_norm": 0.04440785571932793, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 33489 + }, + { + "epoch": 3.441430332922318, + "grad_norm": 0.12033234536647797, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 33492 + }, + { + "epoch": 3.4417385943279903, + "grad_norm": 0.06069677323102951, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 33495 + }, + { + "epoch": 3.442046855733662, + "grad_norm": 0.08571046590805054, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 33498 + }, + { + "epoch": 3.4423551171393343, + "grad_norm": 0.05251142010092735, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 33501 + }, + { + "epoch": 3.442663378545006, + "grad_norm": 0.09658701717853546, + "learning_rate": 0.01, + "loss": 2.023, + "step": 33504 + }, + { + "epoch": 3.4429716399506782, + "grad_norm": 0.10625968873500824, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 33507 + }, + { + "epoch": 3.44327990135635, + "grad_norm": 0.061645977199077606, + "learning_rate": 0.01, + "loss": 1.987, + "step": 33510 + }, + { + "epoch": 3.443588162762022, + "grad_norm": 0.06879527121782303, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 33513 + }, + { + "epoch": 3.4438964241676944, + "grad_norm": 0.07986783981323242, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 33516 + }, + { + "epoch": 3.444204685573366, + "grad_norm": 0.06323929876089096, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 33519 + }, + { + "epoch": 3.4445129469790383, + "grad_norm": 0.08186205476522446, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 33522 + }, + { + "epoch": 3.44482120838471, + "grad_norm": 0.1049259677529335, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 33525 + }, + { + "epoch": 3.4451294697903823, + "grad_norm": 0.12427592277526855, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 33528 + }, + { + "epoch": 3.445437731196054, + "grad_norm": 0.04911283776164055, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 33531 + }, + { + "epoch": 3.445745992601726, + "grad_norm": 0.07451221346855164, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 33534 + }, + { + "epoch": 3.4460542540073984, + "grad_norm": 0.04838255047798157, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 33537 + }, + { + "epoch": 3.44636251541307, + "grad_norm": 0.0435669869184494, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 33540 + }, + { + "epoch": 3.4466707768187423, + "grad_norm": 0.12010036408901215, + "learning_rate": 0.01, + "loss": 1.965, + "step": 33543 + }, + { + "epoch": 3.4469790382244145, + "grad_norm": 0.04258548840880394, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 33546 + }, + { + "epoch": 3.4472872996300863, + "grad_norm": 0.04736476391553879, + "learning_rate": 0.01, + "loss": 1.983, + "step": 33549 + }, + { + "epoch": 3.4475955610357585, + "grad_norm": 0.04423545300960541, + "learning_rate": 0.01, + "loss": 2.001, + "step": 33552 + }, + { + "epoch": 3.4479038224414302, + "grad_norm": 0.07585839927196503, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 33555 + }, + { + "epoch": 3.4482120838471024, + "grad_norm": 0.03559425473213196, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 33558 + }, + { + "epoch": 3.448520345252774, + "grad_norm": 0.058567702770233154, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 33561 + }, + { + "epoch": 3.4488286066584464, + "grad_norm": 0.05344400927424431, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 33564 + }, + { + "epoch": 3.4491368680641186, + "grad_norm": 0.0584418885409832, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 33567 + }, + { + "epoch": 3.4494451294697903, + "grad_norm": 0.14322839677333832, + "learning_rate": 0.01, + "loss": 2.0362, + "step": 33570 + }, + { + "epoch": 3.4497533908754625, + "grad_norm": 0.039136361330747604, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 33573 + }, + { + "epoch": 3.4500616522811343, + "grad_norm": 0.0871317982673645, + "learning_rate": 0.01, + "loss": 2.03, + "step": 33576 + }, + { + "epoch": 3.4503699136868065, + "grad_norm": 0.07295375317335129, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 33579 + }, + { + "epoch": 3.450678175092478, + "grad_norm": 0.04469291865825653, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 33582 + }, + { + "epoch": 3.4509864364981504, + "grad_norm": 0.06063535064458847, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 33585 + }, + { + "epoch": 3.4512946979038226, + "grad_norm": 0.07924182713031769, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 33588 + }, + { + "epoch": 3.4516029593094943, + "grad_norm": 0.089077427983284, + "learning_rate": 0.01, + "loss": 2.017, + "step": 33591 + }, + { + "epoch": 3.4519112207151665, + "grad_norm": 0.08197617530822754, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 33594 + }, + { + "epoch": 3.4522194821208383, + "grad_norm": 0.039551399648189545, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 33597 + }, + { + "epoch": 3.4525277435265105, + "grad_norm": 0.08920145779848099, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 33600 + }, + { + "epoch": 3.4528360049321827, + "grad_norm": 0.04301462695002556, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 33603 + }, + { + "epoch": 3.4531442663378544, + "grad_norm": 0.05201060697436333, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 33606 + }, + { + "epoch": 3.4534525277435266, + "grad_norm": 0.05899956077337265, + "learning_rate": 0.01, + "loss": 2.0318, + "step": 33609 + }, + { + "epoch": 3.4537607891491984, + "grad_norm": 0.09653299301862717, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 33612 + }, + { + "epoch": 3.4540690505548706, + "grad_norm": 0.06416913866996765, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 33615 + }, + { + "epoch": 3.4543773119605428, + "grad_norm": 0.07932529598474503, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 33618 + }, + { + "epoch": 3.4546855733662145, + "grad_norm": 0.06251846253871918, + "learning_rate": 0.01, + "loss": 1.984, + "step": 33621 + }, + { + "epoch": 3.4549938347718867, + "grad_norm": 0.07022767513990402, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 33624 + }, + { + "epoch": 3.4553020961775585, + "grad_norm": 0.08116226643323898, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 33627 + }, + { + "epoch": 3.4556103575832307, + "grad_norm": 0.07052188366651535, + "learning_rate": 0.01, + "loss": 1.986, + "step": 33630 + }, + { + "epoch": 3.4559186189889024, + "grad_norm": 0.055427566170692444, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 33633 + }, + { + "epoch": 3.4562268803945746, + "grad_norm": 0.049462925642728806, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 33636 + }, + { + "epoch": 3.456535141800247, + "grad_norm": 0.05117397755384445, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 33639 + }, + { + "epoch": 3.4568434032059185, + "grad_norm": 0.14244894683361053, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 33642 + }, + { + "epoch": 3.4571516646115907, + "grad_norm": 0.040531981736421585, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 33645 + }, + { + "epoch": 3.4574599260172625, + "grad_norm": 0.0898265540599823, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 33648 + }, + { + "epoch": 3.4577681874229347, + "grad_norm": 0.06414288282394409, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 33651 + }, + { + "epoch": 3.4580764488286064, + "grad_norm": 0.06362918019294739, + "learning_rate": 0.01, + "loss": 2.031, + "step": 33654 + }, + { + "epoch": 3.4583847102342786, + "grad_norm": 0.0881992056965828, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 33657 + }, + { + "epoch": 3.458692971639951, + "grad_norm": 0.03909778594970703, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 33660 + }, + { + "epoch": 3.4590012330456226, + "grad_norm": 0.06597696989774704, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 33663 + }, + { + "epoch": 3.4593094944512948, + "grad_norm": 0.05599299073219299, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 33666 + }, + { + "epoch": 3.4596177558569665, + "grad_norm": 0.0734795406460762, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 33669 + }, + { + "epoch": 3.4599260172626387, + "grad_norm": 0.07773378491401672, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 33672 + }, + { + "epoch": 3.460234278668311, + "grad_norm": 0.04273884743452072, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 33675 + }, + { + "epoch": 3.4605425400739827, + "grad_norm": 0.08914119005203247, + "learning_rate": 0.01, + "loss": 2.0455, + "step": 33678 + }, + { + "epoch": 3.460850801479655, + "grad_norm": 0.059121765196323395, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 33681 + }, + { + "epoch": 3.4611590628853266, + "grad_norm": 0.0828641727566719, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 33684 + }, + { + "epoch": 3.461467324290999, + "grad_norm": 0.07057880610227585, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 33687 + }, + { + "epoch": 3.461775585696671, + "grad_norm": 0.0789676234126091, + "learning_rate": 0.01, + "loss": 2.005, + "step": 33690 + }, + { + "epoch": 3.4620838471023427, + "grad_norm": 0.06654086709022522, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 33693 + }, + { + "epoch": 3.462392108508015, + "grad_norm": 0.08804110437631607, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 33696 + }, + { + "epoch": 3.4627003699136867, + "grad_norm": 0.05654985085129738, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 33699 + }, + { + "epoch": 3.463008631319359, + "grad_norm": 0.03474681079387665, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 33702 + }, + { + "epoch": 3.4633168927250306, + "grad_norm": 0.03495550900697708, + "learning_rate": 0.01, + "loss": 1.985, + "step": 33705 + }, + { + "epoch": 3.463625154130703, + "grad_norm": 0.07207003980875015, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 33708 + }, + { + "epoch": 3.463933415536375, + "grad_norm": 0.10733482986688614, + "learning_rate": 0.01, + "loss": 1.998, + "step": 33711 + }, + { + "epoch": 3.4642416769420468, + "grad_norm": 0.17830905318260193, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 33714 + }, + { + "epoch": 3.464549938347719, + "grad_norm": 0.10432233661413193, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 33717 + }, + { + "epoch": 3.4648581997533907, + "grad_norm": 0.08804329484701157, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 33720 + }, + { + "epoch": 3.465166461159063, + "grad_norm": 0.09405447542667389, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 33723 + }, + { + "epoch": 3.4654747225647347, + "grad_norm": 0.08153831958770752, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 33726 + }, + { + "epoch": 3.465782983970407, + "grad_norm": 0.04865524545311928, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 33729 + }, + { + "epoch": 3.466091245376079, + "grad_norm": 0.0705978274345398, + "learning_rate": 0.01, + "loss": 2.005, + "step": 33732 + }, + { + "epoch": 3.466399506781751, + "grad_norm": 0.08283443003892899, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 33735 + }, + { + "epoch": 3.466707768187423, + "grad_norm": 0.059983205050230026, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 33738 + }, + { + "epoch": 3.467016029593095, + "grad_norm": 0.045960474759340286, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 33741 + }, + { + "epoch": 3.467324290998767, + "grad_norm": 0.03882883861660957, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 33744 + }, + { + "epoch": 3.467632552404439, + "grad_norm": 0.07004483044147491, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 33747 + }, + { + "epoch": 3.467940813810111, + "grad_norm": 0.047444459050893784, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 33750 + }, + { + "epoch": 3.468249075215783, + "grad_norm": 0.04262397438287735, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 33753 + }, + { + "epoch": 3.468557336621455, + "grad_norm": 0.05599913001060486, + "learning_rate": 0.01, + "loss": 2.005, + "step": 33756 + }, + { + "epoch": 3.468865598027127, + "grad_norm": 0.03917532414197922, + "learning_rate": 0.01, + "loss": 2.012, + "step": 33759 + }, + { + "epoch": 3.469173859432799, + "grad_norm": 0.14925096929073334, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 33762 + }, + { + "epoch": 3.469482120838471, + "grad_norm": 0.09570999443531036, + "learning_rate": 0.01, + "loss": 1.987, + "step": 33765 + }, + { + "epoch": 3.469790382244143, + "grad_norm": 0.07883327454328537, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 33768 + }, + { + "epoch": 3.470098643649815, + "grad_norm": 0.06480975449085236, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 33771 + }, + { + "epoch": 3.470406905055487, + "grad_norm": 0.054496169090270996, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 33774 + }, + { + "epoch": 3.470715166461159, + "grad_norm": 0.04248659685254097, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 33777 + }, + { + "epoch": 3.471023427866831, + "grad_norm": 0.04117753356695175, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 33780 + }, + { + "epoch": 3.4713316892725032, + "grad_norm": 0.06876087188720703, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 33783 + }, + { + "epoch": 3.471639950678175, + "grad_norm": 0.08680430799722672, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 33786 + }, + { + "epoch": 3.471948212083847, + "grad_norm": 0.07227423787117004, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 33789 + }, + { + "epoch": 3.472256473489519, + "grad_norm": 0.04946593940258026, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 33792 + }, + { + "epoch": 3.472564734895191, + "grad_norm": 0.05215618014335632, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 33795 + }, + { + "epoch": 3.4728729963008633, + "grad_norm": 0.044869258999824524, + "learning_rate": 0.01, + "loss": 2.014, + "step": 33798 + }, + { + "epoch": 3.473181257706535, + "grad_norm": 0.048952534794807434, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 33801 + }, + { + "epoch": 3.4734895191122073, + "grad_norm": 0.031407974660396576, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 33804 + }, + { + "epoch": 3.473797780517879, + "grad_norm": 0.033864185214042664, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 33807 + }, + { + "epoch": 3.474106041923551, + "grad_norm": 0.08060206472873688, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 33810 + }, + { + "epoch": 3.4744143033292234, + "grad_norm": 0.059409331530332565, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 33813 + }, + { + "epoch": 3.474722564734895, + "grad_norm": 0.04131161794066429, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 33816 + }, + { + "epoch": 3.4750308261405674, + "grad_norm": 0.04256697744131088, + "learning_rate": 0.01, + "loss": 2.0479, + "step": 33819 + }, + { + "epoch": 3.475339087546239, + "grad_norm": 0.08916765451431274, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 33822 + }, + { + "epoch": 3.4756473489519113, + "grad_norm": 0.08474129438400269, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 33825 + }, + { + "epoch": 3.475955610357583, + "grad_norm": 0.05649823695421219, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 33828 + }, + { + "epoch": 3.4762638717632552, + "grad_norm": 0.05935325473546982, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 33831 + }, + { + "epoch": 3.4765721331689274, + "grad_norm": 0.04731081798672676, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 33834 + }, + { + "epoch": 3.476880394574599, + "grad_norm": 0.03790346160531044, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 33837 + }, + { + "epoch": 3.4771886559802714, + "grad_norm": 0.03726886212825775, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 33840 + }, + { + "epoch": 3.477496917385943, + "grad_norm": 0.07210247963666916, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 33843 + }, + { + "epoch": 3.4778051787916153, + "grad_norm": 0.07953071594238281, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 33846 + }, + { + "epoch": 3.478113440197287, + "grad_norm": 0.08004479855298996, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 33849 + }, + { + "epoch": 3.4784217016029593, + "grad_norm": 0.12617255747318268, + "learning_rate": 0.01, + "loss": 2.041, + "step": 33852 + }, + { + "epoch": 3.4787299630086315, + "grad_norm": 0.08742248266935349, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 33855 + }, + { + "epoch": 3.479038224414303, + "grad_norm": 0.07119353115558624, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 33858 + }, + { + "epoch": 3.4793464858199754, + "grad_norm": 0.06368902325630188, + "learning_rate": 0.01, + "loss": 2.011, + "step": 33861 + }, + { + "epoch": 3.479654747225647, + "grad_norm": 0.04121660441160202, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 33864 + }, + { + "epoch": 3.4799630086313194, + "grad_norm": 0.1237914115190506, + "learning_rate": 0.01, + "loss": 2.012, + "step": 33867 + }, + { + "epoch": 3.4802712700369915, + "grad_norm": 0.02918284945189953, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 33870 + }, + { + "epoch": 3.4805795314426633, + "grad_norm": 0.0423772819340229, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 33873 + }, + { + "epoch": 3.4808877928483355, + "grad_norm": 0.05689895898103714, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 33876 + }, + { + "epoch": 3.4811960542540072, + "grad_norm": 0.057178955525159836, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 33879 + }, + { + "epoch": 3.4815043156596794, + "grad_norm": 0.04840772971510887, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 33882 + }, + { + "epoch": 3.4818125770653516, + "grad_norm": 0.0467451848089695, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 33885 + }, + { + "epoch": 3.4821208384710234, + "grad_norm": 0.08849336951971054, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 33888 + }, + { + "epoch": 3.4824290998766956, + "grad_norm": 0.040159258991479874, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 33891 + }, + { + "epoch": 3.4827373612823673, + "grad_norm": 0.03237557038664818, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 33894 + }, + { + "epoch": 3.4830456226880395, + "grad_norm": 0.11882402747869492, + "learning_rate": 0.01, + "loss": 1.988, + "step": 33897 + }, + { + "epoch": 3.4833538840937113, + "grad_norm": 0.04206301271915436, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 33900 + }, + { + "epoch": 3.4836621454993835, + "grad_norm": 0.08875782787799835, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 33903 + }, + { + "epoch": 3.4839704069050557, + "grad_norm": 0.07771812379360199, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 33906 + }, + { + "epoch": 3.4842786683107274, + "grad_norm": 0.0839293822646141, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 33909 + }, + { + "epoch": 3.4845869297163996, + "grad_norm": 0.051187288016080856, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 33912 + }, + { + "epoch": 3.4848951911220714, + "grad_norm": 0.07497724145650864, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 33915 + }, + { + "epoch": 3.4852034525277436, + "grad_norm": 0.09341751039028168, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 33918 + }, + { + "epoch": 3.4855117139334153, + "grad_norm": 0.17380410432815552, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 33921 + }, + { + "epoch": 3.4858199753390875, + "grad_norm": 0.1407613456249237, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 33924 + }, + { + "epoch": 3.4861282367447597, + "grad_norm": 0.04020331799983978, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 33927 + }, + { + "epoch": 3.4864364981504314, + "grad_norm": 0.07008705288171768, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 33930 + }, + { + "epoch": 3.4867447595561036, + "grad_norm": 0.04310291260480881, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 33933 + }, + { + "epoch": 3.487053020961776, + "grad_norm": 0.03993843123316765, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 33936 + }, + { + "epoch": 3.4873612823674476, + "grad_norm": 0.04465002939105034, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 33939 + }, + { + "epoch": 3.4876695437731198, + "grad_norm": 0.03715788200497627, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 33942 + }, + { + "epoch": 3.4879778051787915, + "grad_norm": 0.06855741888284683, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 33945 + }, + { + "epoch": 3.4882860665844637, + "grad_norm": 0.05004393681883812, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 33948 + }, + { + "epoch": 3.4885943279901355, + "grad_norm": 0.11410415172576904, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 33951 + }, + { + "epoch": 3.4889025893958077, + "grad_norm": 0.09844734519720078, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 33954 + }, + { + "epoch": 3.48921085080148, + "grad_norm": 0.06708649545907974, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 33957 + }, + { + "epoch": 3.4895191122071516, + "grad_norm": 0.10117511451244354, + "learning_rate": 0.01, + "loss": 2.019, + "step": 33960 + }, + { + "epoch": 3.489827373612824, + "grad_norm": 0.09758836030960083, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 33963 + }, + { + "epoch": 3.4901356350184956, + "grad_norm": 0.05189559981226921, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 33966 + }, + { + "epoch": 3.4904438964241677, + "grad_norm": 0.04805564507842064, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 33969 + }, + { + "epoch": 3.4907521578298395, + "grad_norm": 0.10716047137975693, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 33972 + }, + { + "epoch": 3.4910604192355117, + "grad_norm": 0.0761241689324379, + "learning_rate": 0.01, + "loss": 1.994, + "step": 33975 + }, + { + "epoch": 3.491368680641184, + "grad_norm": 0.09611841291189194, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 33978 + }, + { + "epoch": 3.4916769420468556, + "grad_norm": 0.05685526877641678, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 33981 + }, + { + "epoch": 3.491985203452528, + "grad_norm": 0.044158194214105606, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 33984 + }, + { + "epoch": 3.4922934648581996, + "grad_norm": 0.0626639872789383, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 33987 + }, + { + "epoch": 3.4926017262638718, + "grad_norm": 0.0559966154396534, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 33990 + }, + { + "epoch": 3.4929099876695435, + "grad_norm": 0.05526448041200638, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 33993 + }, + { + "epoch": 3.4932182490752157, + "grad_norm": 0.07910171896219254, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 33996 + }, + { + "epoch": 3.493526510480888, + "grad_norm": 0.09646596759557724, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 33999 + }, + { + "epoch": 3.4938347718865597, + "grad_norm": 0.06635434925556183, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 34002 + }, + { + "epoch": 3.494143033292232, + "grad_norm": 0.04328935965895653, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 34005 + }, + { + "epoch": 3.494451294697904, + "grad_norm": 0.040060825645923615, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 34008 + }, + { + "epoch": 3.494759556103576, + "grad_norm": 0.0396769754588604, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 34011 + }, + { + "epoch": 3.495067817509248, + "grad_norm": 0.035870879888534546, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 34014 + }, + { + "epoch": 3.4953760789149197, + "grad_norm": 0.07099170982837677, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 34017 + }, + { + "epoch": 3.495684340320592, + "grad_norm": 0.06994140148162842, + "learning_rate": 0.01, + "loss": 2.009, + "step": 34020 + }, + { + "epoch": 3.4959926017262637, + "grad_norm": 0.03673701733350754, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 34023 + }, + { + "epoch": 3.496300863131936, + "grad_norm": 0.036696165800094604, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 34026 + }, + { + "epoch": 3.496609124537608, + "grad_norm": 0.1089354008436203, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 34029 + }, + { + "epoch": 3.49691738594328, + "grad_norm": 0.04758044332265854, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 34032 + }, + { + "epoch": 3.497225647348952, + "grad_norm": 0.05122329294681549, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 34035 + }, + { + "epoch": 3.4975339087546238, + "grad_norm": 0.04168769717216492, + "learning_rate": 0.01, + "loss": 2.013, + "step": 34038 + }, + { + "epoch": 3.497842170160296, + "grad_norm": 0.03426910564303398, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 34041 + }, + { + "epoch": 3.4981504315659677, + "grad_norm": 0.036272600293159485, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 34044 + }, + { + "epoch": 3.49845869297164, + "grad_norm": 0.11142997443675995, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 34047 + }, + { + "epoch": 3.498766954377312, + "grad_norm": 0.08410037308931351, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 34050 + }, + { + "epoch": 3.499075215782984, + "grad_norm": 0.10037896782159805, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 34053 + }, + { + "epoch": 3.499383477188656, + "grad_norm": 0.05194736644625664, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 34056 + }, + { + "epoch": 3.499691738594328, + "grad_norm": 0.037128567695617676, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 34059 + }, + { + "epoch": 3.5, + "grad_norm": 0.059042248874902725, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 34062 + }, + { + "epoch": 3.5003082614056718, + "grad_norm": 0.06282515078783035, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 34065 + }, + { + "epoch": 3.500616522811344, + "grad_norm": 0.04248201847076416, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 34068 + }, + { + "epoch": 3.500924784217016, + "grad_norm": 0.047459498047828674, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 34071 + }, + { + "epoch": 3.501233045622688, + "grad_norm": 0.04447497799992561, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 34074 + }, + { + "epoch": 3.50154130702836, + "grad_norm": 0.03569423034787178, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 34077 + }, + { + "epoch": 3.5018495684340323, + "grad_norm": 0.055864010006189346, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 34080 + }, + { + "epoch": 3.502157829839704, + "grad_norm": 0.055652111768722534, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 34083 + }, + { + "epoch": 3.5024660912453762, + "grad_norm": 0.1195710226893425, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 34086 + }, + { + "epoch": 3.502774352651048, + "grad_norm": 0.04436422884464264, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 34089 + }, + { + "epoch": 3.50308261405672, + "grad_norm": 0.047165922820568085, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 34092 + }, + { + "epoch": 3.503390875462392, + "grad_norm": 0.07143979519605637, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 34095 + }, + { + "epoch": 3.503699136868064, + "grad_norm": 0.04734091833233833, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 34098 + }, + { + "epoch": 3.5040073982737363, + "grad_norm": 0.05058762803673744, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 34101 + }, + { + "epoch": 3.504315659679408, + "grad_norm": 0.03917768597602844, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 34104 + }, + { + "epoch": 3.5046239210850803, + "grad_norm": 0.06384671479463577, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 34107 + }, + { + "epoch": 3.504932182490752, + "grad_norm": 0.046532079577445984, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 34110 + }, + { + "epoch": 3.505240443896424, + "grad_norm": 0.033960457891225815, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 34113 + }, + { + "epoch": 3.505548705302096, + "grad_norm": 0.061024975031614304, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 34116 + }, + { + "epoch": 3.505856966707768, + "grad_norm": 0.09465770423412323, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 34119 + }, + { + "epoch": 3.5061652281134403, + "grad_norm": 0.08510823547840118, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 34122 + }, + { + "epoch": 3.506473489519112, + "grad_norm": 0.12201209366321564, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 34125 + }, + { + "epoch": 3.5067817509247843, + "grad_norm": 0.08503463119268417, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 34128 + }, + { + "epoch": 3.5070900123304565, + "grad_norm": 0.07231762260198593, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 34131 + }, + { + "epoch": 3.5073982737361282, + "grad_norm": 0.042714521288871765, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 34134 + }, + { + "epoch": 3.5077065351418, + "grad_norm": 0.06119026616215706, + "learning_rate": 0.01, + "loss": 2.024, + "step": 34137 + }, + { + "epoch": 3.508014796547472, + "grad_norm": 0.047117751091718674, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 34140 + }, + { + "epoch": 3.5083230579531444, + "grad_norm": 0.06318202614784241, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 34143 + }, + { + "epoch": 3.508631319358816, + "grad_norm": 0.05050423741340637, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 34146 + }, + { + "epoch": 3.5089395807644883, + "grad_norm": 0.06105552241206169, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 34149 + }, + { + "epoch": 3.5092478421701605, + "grad_norm": 0.05940508469939232, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 34152 + }, + { + "epoch": 3.5095561035758323, + "grad_norm": 0.05157890543341637, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 34155 + }, + { + "epoch": 3.5098643649815044, + "grad_norm": 0.06597436964511871, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 34158 + }, + { + "epoch": 3.510172626387176, + "grad_norm": 0.10424167662858963, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 34161 + }, + { + "epoch": 3.5104808877928484, + "grad_norm": 0.09572573006153107, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 34164 + }, + { + "epoch": 3.51078914919852, + "grad_norm": 0.07485774159431458, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 34167 + }, + { + "epoch": 3.5110974106041923, + "grad_norm": 0.12162437289953232, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 34170 + }, + { + "epoch": 3.5114056720098645, + "grad_norm": 0.09338829666376114, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 34173 + }, + { + "epoch": 3.5117139334155363, + "grad_norm": 0.06095868721604347, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 34176 + }, + { + "epoch": 3.5120221948212085, + "grad_norm": 0.057355985045433044, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 34179 + }, + { + "epoch": 3.5123304562268807, + "grad_norm": 0.10891444981098175, + "learning_rate": 0.01, + "loss": 2.0339, + "step": 34182 + }, + { + "epoch": 3.5126387176325524, + "grad_norm": 0.10567829012870789, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 34185 + }, + { + "epoch": 3.512946979038224, + "grad_norm": 0.05244187265634537, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 34188 + }, + { + "epoch": 3.5132552404438964, + "grad_norm": 0.046076592057943344, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 34191 + }, + { + "epoch": 3.5135635018495686, + "grad_norm": 0.04405316337943077, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 34194 + }, + { + "epoch": 3.5138717632552403, + "grad_norm": 0.03997344523668289, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 34197 + }, + { + "epoch": 3.5141800246609125, + "grad_norm": 0.03909468650817871, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 34200 + }, + { + "epoch": 3.5144882860665847, + "grad_norm": 0.11657961457967758, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 34203 + }, + { + "epoch": 3.5147965474722564, + "grad_norm": 0.11744063347578049, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 34206 + }, + { + "epoch": 3.5151048088779286, + "grad_norm": 0.039932142943143845, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 34209 + }, + { + "epoch": 3.5154130702836004, + "grad_norm": 0.03299909457564354, + "learning_rate": 0.01, + "loss": 2.022, + "step": 34212 + }, + { + "epoch": 3.5157213316892726, + "grad_norm": 0.1055513322353363, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 34215 + }, + { + "epoch": 3.5160295930949443, + "grad_norm": 0.05073374882340431, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 34218 + }, + { + "epoch": 3.5163378545006165, + "grad_norm": 0.05423841252923012, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 34221 + }, + { + "epoch": 3.5166461159062887, + "grad_norm": 0.05695211887359619, + "learning_rate": 0.01, + "loss": 2.011, + "step": 34224 + }, + { + "epoch": 3.5169543773119605, + "grad_norm": 0.04092913866043091, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 34227 + }, + { + "epoch": 3.5172626387176327, + "grad_norm": 0.05083661898970604, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 34230 + }, + { + "epoch": 3.5175709001233044, + "grad_norm": 0.04499472677707672, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 34233 + }, + { + "epoch": 3.5178791615289766, + "grad_norm": 0.09770061075687408, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 34236 + }, + { + "epoch": 3.5181874229346484, + "grad_norm": 0.09951679408550262, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 34239 + }, + { + "epoch": 3.5184956843403206, + "grad_norm": 0.11089123040437698, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 34242 + }, + { + "epoch": 3.5188039457459928, + "grad_norm": 0.05511726066470146, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 34245 + }, + { + "epoch": 3.5191122071516645, + "grad_norm": 0.035139378160238266, + "learning_rate": 0.01, + "loss": 2.016, + "step": 34248 + }, + { + "epoch": 3.5194204685573367, + "grad_norm": 0.05882834270596504, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 34251 + }, + { + "epoch": 3.519728729963009, + "grad_norm": 0.06780868023633957, + "learning_rate": 0.01, + "loss": 1.977, + "step": 34254 + }, + { + "epoch": 3.5200369913686806, + "grad_norm": 0.053879499435424805, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 34257 + }, + { + "epoch": 3.5203452527743524, + "grad_norm": 0.045473113656044006, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 34260 + }, + { + "epoch": 3.5206535141800246, + "grad_norm": 0.050460174679756165, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 34263 + }, + { + "epoch": 3.520961775585697, + "grad_norm": 0.040959011763334274, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 34266 + }, + { + "epoch": 3.5212700369913685, + "grad_norm": 0.048418451100587845, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 34269 + }, + { + "epoch": 3.5215782983970407, + "grad_norm": 0.06287720799446106, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 34272 + }, + { + "epoch": 3.521886559802713, + "grad_norm": 0.04529783874750137, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 34275 + }, + { + "epoch": 3.5221948212083847, + "grad_norm": 0.03729906305670738, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 34278 + }, + { + "epoch": 3.522503082614057, + "grad_norm": 0.1012713834643364, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 34281 + }, + { + "epoch": 3.5228113440197286, + "grad_norm": 0.10641775280237198, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 34284 + }, + { + "epoch": 3.523119605425401, + "grad_norm": 0.09289912134408951, + "learning_rate": 0.01, + "loss": 2.016, + "step": 34287 + }, + { + "epoch": 3.5234278668310726, + "grad_norm": 0.13354292511940002, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 34290 + }, + { + "epoch": 3.5237361282367448, + "grad_norm": 0.08027501404285431, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 34293 + }, + { + "epoch": 3.524044389642417, + "grad_norm": 0.047286976128816605, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 34296 + }, + { + "epoch": 3.5243526510480887, + "grad_norm": 0.042211420834064484, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 34299 + }, + { + "epoch": 3.524660912453761, + "grad_norm": 0.11374162137508392, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 34302 + }, + { + "epoch": 3.5249691738594326, + "grad_norm": 0.05604710429906845, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 34305 + }, + { + "epoch": 3.525277435265105, + "grad_norm": 0.09744080156087875, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 34308 + }, + { + "epoch": 3.5255856966707766, + "grad_norm": 0.08903683722019196, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 34311 + }, + { + "epoch": 3.525893958076449, + "grad_norm": 0.048648543655872345, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 34314 + }, + { + "epoch": 3.526202219482121, + "grad_norm": 0.0710827112197876, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 34317 + }, + { + "epoch": 3.5265104808877927, + "grad_norm": 0.04736728593707085, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 34320 + }, + { + "epoch": 3.526818742293465, + "grad_norm": 0.05635381117463112, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 34323 + }, + { + "epoch": 3.527127003699137, + "grad_norm": 0.06686391681432724, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 34326 + }, + { + "epoch": 3.527435265104809, + "grad_norm": 0.03842944651842117, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 34329 + }, + { + "epoch": 3.5277435265104806, + "grad_norm": 0.042534928768873215, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 34332 + }, + { + "epoch": 3.528051787916153, + "grad_norm": 0.06037287786602974, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 34335 + }, + { + "epoch": 3.528360049321825, + "grad_norm": 0.06533370167016983, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 34338 + }, + { + "epoch": 3.5286683107274968, + "grad_norm": 0.0877017006278038, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 34341 + }, + { + "epoch": 3.528976572133169, + "grad_norm": 0.09864972531795502, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 34344 + }, + { + "epoch": 3.529284833538841, + "grad_norm": 0.049320898950099945, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 34347 + }, + { + "epoch": 3.529593094944513, + "grad_norm": 0.12996013462543488, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 34350 + }, + { + "epoch": 3.529901356350185, + "grad_norm": 0.06548713147640228, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 34353 + }, + { + "epoch": 3.530209617755857, + "grad_norm": 0.045482341200113297, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 34356 + }, + { + "epoch": 3.530517879161529, + "grad_norm": 0.04433637857437134, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 34359 + }, + { + "epoch": 3.530826140567201, + "grad_norm": 0.04450944438576698, + "learning_rate": 0.01, + "loss": 1.983, + "step": 34362 + }, + { + "epoch": 3.531134401972873, + "grad_norm": 0.07188856601715088, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 34365 + }, + { + "epoch": 3.531442663378545, + "grad_norm": 0.049853190779685974, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 34368 + }, + { + "epoch": 3.531750924784217, + "grad_norm": 0.08662360161542892, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 34371 + }, + { + "epoch": 3.532059186189889, + "grad_norm": 0.07737040519714355, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 34374 + }, + { + "epoch": 3.532367447595561, + "grad_norm": 0.0868213102221489, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 34377 + }, + { + "epoch": 3.532675709001233, + "grad_norm": 0.06288056075572968, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 34380 + }, + { + "epoch": 3.532983970406905, + "grad_norm": 0.05537475645542145, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 34383 + }, + { + "epoch": 3.533292231812577, + "grad_norm": 0.13551141321659088, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 34386 + }, + { + "epoch": 3.533600493218249, + "grad_norm": 0.040236156433820724, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 34389 + }, + { + "epoch": 3.533908754623921, + "grad_norm": 0.06904727220535278, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 34392 + }, + { + "epoch": 3.534217016029593, + "grad_norm": 0.06675262004137039, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 34395 + }, + { + "epoch": 3.5345252774352653, + "grad_norm": 0.05011274665594101, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 34398 + }, + { + "epoch": 3.534833538840937, + "grad_norm": 0.04494976997375488, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 34401 + }, + { + "epoch": 3.5351418002466093, + "grad_norm": 0.04114719480276108, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 34404 + }, + { + "epoch": 3.535450061652281, + "grad_norm": 0.03544189780950546, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 34407 + }, + { + "epoch": 3.5357583230579532, + "grad_norm": 0.10223556309938431, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 34410 + }, + { + "epoch": 3.536066584463625, + "grad_norm": 0.03573578596115112, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 34413 + }, + { + "epoch": 3.536374845869297, + "grad_norm": 0.08199316263198853, + "learning_rate": 0.01, + "loss": 2.007, + "step": 34416 + }, + { + "epoch": 3.5366831072749694, + "grad_norm": 0.04587673768401146, + "learning_rate": 0.01, + "loss": 2.01, + "step": 34419 + }, + { + "epoch": 3.536991368680641, + "grad_norm": 0.061022888869047165, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 34422 + }, + { + "epoch": 3.5372996300863133, + "grad_norm": 0.09616536647081375, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 34425 + }, + { + "epoch": 3.537607891491985, + "grad_norm": 0.10521430522203445, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 34428 + }, + { + "epoch": 3.5379161528976573, + "grad_norm": 0.0551154688000679, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 34431 + }, + { + "epoch": 3.538224414303329, + "grad_norm": 0.0405128113925457, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 34434 + }, + { + "epoch": 3.538532675709001, + "grad_norm": 0.035197604447603226, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 34437 + }, + { + "epoch": 3.5388409371146734, + "grad_norm": 0.026394899934530258, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 34440 + }, + { + "epoch": 3.539149198520345, + "grad_norm": 0.09831299632787704, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 34443 + }, + { + "epoch": 3.5394574599260173, + "grad_norm": 0.08986491709947586, + "learning_rate": 0.01, + "loss": 2.023, + "step": 34446 + }, + { + "epoch": 3.5397657213316895, + "grad_norm": 0.07974385470151901, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 34449 + }, + { + "epoch": 3.5400739827373613, + "grad_norm": 0.11314170062541962, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 34452 + }, + { + "epoch": 3.540382244143033, + "grad_norm": 0.05535215139389038, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 34455 + }, + { + "epoch": 3.5406905055487052, + "grad_norm": 0.0592242069542408, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 34458 + }, + { + "epoch": 3.5409987669543774, + "grad_norm": 0.12061761319637299, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 34461 + }, + { + "epoch": 3.541307028360049, + "grad_norm": 0.11443237960338593, + "learning_rate": 0.01, + "loss": 2.004, + "step": 34464 + }, + { + "epoch": 3.5416152897657214, + "grad_norm": 0.050069622695446014, + "learning_rate": 0.01, + "loss": 2.013, + "step": 34467 + }, + { + "epoch": 3.5419235511713936, + "grad_norm": 0.0419803261756897, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 34470 + }, + { + "epoch": 3.5422318125770653, + "grad_norm": 0.03493333235383034, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 34473 + }, + { + "epoch": 3.5425400739827375, + "grad_norm": 0.036889005452394485, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 34476 + }, + { + "epoch": 3.5428483353884093, + "grad_norm": 0.05217687413096428, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 34479 + }, + { + "epoch": 3.5431565967940815, + "grad_norm": 0.050754569470882416, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 34482 + }, + { + "epoch": 3.543464858199753, + "grad_norm": 0.04706338793039322, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 34485 + }, + { + "epoch": 3.5437731196054254, + "grad_norm": 0.07039839029312134, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 34488 + }, + { + "epoch": 3.5440813810110976, + "grad_norm": 0.07069671154022217, + "learning_rate": 0.01, + "loss": 1.978, + "step": 34491 + }, + { + "epoch": 3.5443896424167693, + "grad_norm": 0.09058693796396255, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 34494 + }, + { + "epoch": 3.5446979038224415, + "grad_norm": 0.037666015326976776, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 34497 + }, + { + "epoch": 3.5450061652281133, + "grad_norm": 0.04604499414563179, + "learning_rate": 0.01, + "loss": 2.041, + "step": 34500 + }, + { + "epoch": 3.5453144266337855, + "grad_norm": 0.03853873908519745, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 34503 + }, + { + "epoch": 3.5456226880394572, + "grad_norm": 0.07123208791017532, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 34506 + }, + { + "epoch": 3.5459309494451294, + "grad_norm": 0.0936029776930809, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 34509 + }, + { + "epoch": 3.5462392108508016, + "grad_norm": 0.07412207871675491, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 34512 + }, + { + "epoch": 3.5465474722564734, + "grad_norm": 0.07681329548358917, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 34515 + }, + { + "epoch": 3.5468557336621456, + "grad_norm": 0.10403033345937729, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 34518 + }, + { + "epoch": 3.5471639950678178, + "grad_norm": 0.14240513741970062, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 34521 + }, + { + "epoch": 3.5474722564734895, + "grad_norm": 0.14203394949436188, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 34524 + }, + { + "epoch": 3.5477805178791613, + "grad_norm": 0.09036475419998169, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 34527 + }, + { + "epoch": 3.5480887792848335, + "grad_norm": 0.037448760122060776, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 34530 + }, + { + "epoch": 3.5483970406905057, + "grad_norm": 0.05539664253592491, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 34533 + }, + { + "epoch": 3.5487053020961774, + "grad_norm": 0.05857717618346214, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 34536 + }, + { + "epoch": 3.5490135635018496, + "grad_norm": 0.06406868249177933, + "learning_rate": 0.01, + "loss": 2.009, + "step": 34539 + }, + { + "epoch": 3.549321824907522, + "grad_norm": 0.04234686121344566, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 34542 + }, + { + "epoch": 3.5496300863131935, + "grad_norm": 0.038916390389204025, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 34545 + }, + { + "epoch": 3.5499383477188657, + "grad_norm": 0.039077602326869965, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 34548 + }, + { + "epoch": 3.5502466091245375, + "grad_norm": 0.03960174322128296, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 34551 + }, + { + "epoch": 3.5505548705302097, + "grad_norm": 0.12132997810840607, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 34554 + }, + { + "epoch": 3.5508631319358814, + "grad_norm": 0.09045036137104034, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 34557 + }, + { + "epoch": 3.5511713933415536, + "grad_norm": 0.07062508165836334, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 34560 + }, + { + "epoch": 3.551479654747226, + "grad_norm": 0.08182030916213989, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 34563 + }, + { + "epoch": 3.5517879161528976, + "grad_norm": 0.05917488783597946, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 34566 + }, + { + "epoch": 3.5520961775585698, + "grad_norm": 0.08519969880580902, + "learning_rate": 0.01, + "loss": 2.009, + "step": 34569 + }, + { + "epoch": 3.5524044389642415, + "grad_norm": 0.04442654922604561, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 34572 + }, + { + "epoch": 3.5527127003699137, + "grad_norm": 0.08265768736600876, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 34575 + }, + { + "epoch": 3.5530209617755855, + "grad_norm": 0.0891944020986557, + "learning_rate": 0.01, + "loss": 1.991, + "step": 34578 + }, + { + "epoch": 3.5533292231812577, + "grad_norm": 0.0688168928027153, + "learning_rate": 0.01, + "loss": 1.995, + "step": 34581 + }, + { + "epoch": 3.55363748458693, + "grad_norm": 0.0936504453420639, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 34584 + }, + { + "epoch": 3.5539457459926016, + "grad_norm": 0.10172853618860245, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 34587 + }, + { + "epoch": 3.554254007398274, + "grad_norm": 0.04822350665926933, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 34590 + }, + { + "epoch": 3.554562268803946, + "grad_norm": 0.05222393944859505, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 34593 + }, + { + "epoch": 3.5548705302096177, + "grad_norm": 0.03592358157038689, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 34596 + }, + { + "epoch": 3.5551787916152895, + "grad_norm": 0.03903461620211601, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 34599 + }, + { + "epoch": 3.5554870530209617, + "grad_norm": 0.0467611663043499, + "learning_rate": 0.01, + "loss": 1.995, + "step": 34602 + }, + { + "epoch": 3.555795314426634, + "grad_norm": 0.12140758335590363, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 34605 + }, + { + "epoch": 3.5561035758323056, + "grad_norm": 0.04155382886528969, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 34608 + }, + { + "epoch": 3.556411837237978, + "grad_norm": 0.039924267679452896, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 34611 + }, + { + "epoch": 3.55672009864365, + "grad_norm": 0.10513463616371155, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 34614 + }, + { + "epoch": 3.5570283600493218, + "grad_norm": 0.08956603705883026, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 34617 + }, + { + "epoch": 3.557336621454994, + "grad_norm": 0.045444682240486145, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 34620 + }, + { + "epoch": 3.5576448828606657, + "grad_norm": 0.05367853119969368, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 34623 + }, + { + "epoch": 3.557953144266338, + "grad_norm": 0.0465155765414238, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 34626 + }, + { + "epoch": 3.5582614056720097, + "grad_norm": 0.06788338720798492, + "learning_rate": 0.01, + "loss": 2.0526, + "step": 34629 + }, + { + "epoch": 3.558569667077682, + "grad_norm": 0.04508093744516373, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 34632 + }, + { + "epoch": 3.558877928483354, + "grad_norm": 0.05827740207314491, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 34635 + }, + { + "epoch": 3.559186189889026, + "grad_norm": 0.09915097057819366, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 34638 + }, + { + "epoch": 3.559494451294698, + "grad_norm": 0.08571092784404755, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 34641 + }, + { + "epoch": 3.55980271270037, + "grad_norm": 0.06480662524700165, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 34644 + }, + { + "epoch": 3.560110974106042, + "grad_norm": 0.055505797266960144, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 34647 + }, + { + "epoch": 3.5604192355117137, + "grad_norm": 0.05562606081366539, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 34650 + }, + { + "epoch": 3.560727496917386, + "grad_norm": 0.05720195546746254, + "learning_rate": 0.01, + "loss": 1.999, + "step": 34653 + }, + { + "epoch": 3.561035758323058, + "grad_norm": 0.14654351770877838, + "learning_rate": 0.01, + "loss": 2.0, + "step": 34656 + }, + { + "epoch": 3.56134401972873, + "grad_norm": 0.04594961181282997, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 34659 + }, + { + "epoch": 3.561652281134402, + "grad_norm": 0.052737195044755936, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 34662 + }, + { + "epoch": 3.561960542540074, + "grad_norm": 0.0722641721367836, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 34665 + }, + { + "epoch": 3.562268803945746, + "grad_norm": 0.03973691165447235, + "learning_rate": 0.01, + "loss": 2.0317, + "step": 34668 + }, + { + "epoch": 3.562577065351418, + "grad_norm": 0.06284237653017044, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 34671 + }, + { + "epoch": 3.56288532675709, + "grad_norm": 0.0880017802119255, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 34674 + }, + { + "epoch": 3.563193588162762, + "grad_norm": 0.06454182416200638, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 34677 + }, + { + "epoch": 3.563501849568434, + "grad_norm": 0.07054916024208069, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 34680 + }, + { + "epoch": 3.563810110974106, + "grad_norm": 0.08058945089578629, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 34683 + }, + { + "epoch": 3.5641183723797782, + "grad_norm": 0.08660910278558731, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 34686 + }, + { + "epoch": 3.56442663378545, + "grad_norm": 0.050544124096632004, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 34689 + }, + { + "epoch": 3.564734895191122, + "grad_norm": 0.056985314935445786, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 34692 + }, + { + "epoch": 3.565043156596794, + "grad_norm": 0.08204400539398193, + "learning_rate": 0.01, + "loss": 1.993, + "step": 34695 + }, + { + "epoch": 3.565351418002466, + "grad_norm": 0.09590046107769012, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 34698 + }, + { + "epoch": 3.565659679408138, + "grad_norm": 0.03453322499990463, + "learning_rate": 0.01, + "loss": 2.001, + "step": 34701 + }, + { + "epoch": 3.56596794081381, + "grad_norm": 0.03801025450229645, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 34704 + }, + { + "epoch": 3.5662762022194823, + "grad_norm": 0.05342378839850426, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 34707 + }, + { + "epoch": 3.566584463625154, + "grad_norm": 0.06871719658374786, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 34710 + }, + { + "epoch": 3.566892725030826, + "grad_norm": 0.06653191894292831, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 34713 + }, + { + "epoch": 3.5672009864364984, + "grad_norm": 0.10531385242938995, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 34716 + }, + { + "epoch": 3.56750924784217, + "grad_norm": 0.05481969192624092, + "learning_rate": 0.01, + "loss": 2.003, + "step": 34719 + }, + { + "epoch": 3.567817509247842, + "grad_norm": 0.04904542118310928, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 34722 + }, + { + "epoch": 3.568125770653514, + "grad_norm": 0.034647226333618164, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 34725 + }, + { + "epoch": 3.5684340320591863, + "grad_norm": 0.07234811037778854, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 34728 + }, + { + "epoch": 3.568742293464858, + "grad_norm": 0.10623595118522644, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 34731 + }, + { + "epoch": 3.5690505548705302, + "grad_norm": 0.04955185204744339, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 34734 + }, + { + "epoch": 3.5693588162762024, + "grad_norm": 0.08183744549751282, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 34737 + }, + { + "epoch": 3.569667077681874, + "grad_norm": 0.04063693434000015, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 34740 + }, + { + "epoch": 3.5699753390875464, + "grad_norm": 0.05661273002624512, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 34743 + }, + { + "epoch": 3.570283600493218, + "grad_norm": 0.03300248831510544, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 34746 + }, + { + "epoch": 3.5705918618988903, + "grad_norm": 0.09492766112089157, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 34749 + }, + { + "epoch": 3.570900123304562, + "grad_norm": 0.0505099892616272, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 34752 + }, + { + "epoch": 3.5712083847102343, + "grad_norm": 0.094505175948143, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 34755 + }, + { + "epoch": 3.5715166461159065, + "grad_norm": 0.046727851033210754, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 34758 + }, + { + "epoch": 3.571824907521578, + "grad_norm": 0.06659562885761261, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 34761 + }, + { + "epoch": 3.5721331689272504, + "grad_norm": 0.0828694999217987, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 34764 + }, + { + "epoch": 3.572441430332922, + "grad_norm": 0.12309973686933517, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 34767 + }, + { + "epoch": 3.5727496917385944, + "grad_norm": 0.03831718862056732, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 34770 + }, + { + "epoch": 3.573057953144266, + "grad_norm": 0.049565766006708145, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 34773 + }, + { + "epoch": 3.5733662145499383, + "grad_norm": 0.055259205400943756, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 34776 + }, + { + "epoch": 3.5736744759556105, + "grad_norm": 0.08979593217372894, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 34779 + }, + { + "epoch": 3.5739827373612822, + "grad_norm": 0.05166800692677498, + "learning_rate": 0.01, + "loss": 2.005, + "step": 34782 + }, + { + "epoch": 3.5742909987669544, + "grad_norm": 0.06904742866754532, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 34785 + }, + { + "epoch": 3.5745992601726266, + "grad_norm": 0.0667278841137886, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 34788 + }, + { + "epoch": 3.5749075215782984, + "grad_norm": 0.03483438491821289, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 34791 + }, + { + "epoch": 3.57521578298397, + "grad_norm": 0.08964372426271439, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 34794 + }, + { + "epoch": 3.5755240443896423, + "grad_norm": 0.09426937997341156, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 34797 + }, + { + "epoch": 3.5758323057953145, + "grad_norm": 0.0574275478720665, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 34800 + }, + { + "epoch": 3.5761405672009863, + "grad_norm": 0.03654215484857559, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 34803 + }, + { + "epoch": 3.5764488286066585, + "grad_norm": 0.05129201337695122, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 34806 + }, + { + "epoch": 3.5767570900123307, + "grad_norm": 0.07386317104101181, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 34809 + }, + { + "epoch": 3.5770653514180024, + "grad_norm": 0.1415167599916458, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 34812 + }, + { + "epoch": 3.5773736128236746, + "grad_norm": 0.04465651139616966, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 34815 + }, + { + "epoch": 3.5776818742293464, + "grad_norm": 0.05919940024614334, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 34818 + }, + { + "epoch": 3.5779901356350186, + "grad_norm": 0.03873635083436966, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 34821 + }, + { + "epoch": 3.5782983970406903, + "grad_norm": 0.05425990745425224, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 34824 + }, + { + "epoch": 3.5786066584463625, + "grad_norm": 0.11823546886444092, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 34827 + }, + { + "epoch": 3.5789149198520347, + "grad_norm": 0.12624318897724152, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 34830 + }, + { + "epoch": 3.5792231812577064, + "grad_norm": 0.05450008437037468, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 34833 + }, + { + "epoch": 3.5795314426633786, + "grad_norm": 0.04888772964477539, + "learning_rate": 0.01, + "loss": 2.007, + "step": 34836 + }, + { + "epoch": 3.579839704069051, + "grad_norm": 0.033485714346170425, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 34839 + }, + { + "epoch": 3.5801479654747226, + "grad_norm": 0.08570647239685059, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 34842 + }, + { + "epoch": 3.5804562268803943, + "grad_norm": 0.06110506132245064, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 34845 + }, + { + "epoch": 3.5807644882860665, + "grad_norm": 0.08815490454435349, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 34848 + }, + { + "epoch": 3.5810727496917387, + "grad_norm": 0.09731253236532211, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 34851 + }, + { + "epoch": 3.5813810110974105, + "grad_norm": 0.08022457361221313, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 34854 + }, + { + "epoch": 3.5816892725030827, + "grad_norm": 0.042772453278303146, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 34857 + }, + { + "epoch": 3.581997533908755, + "grad_norm": 0.030573785305023193, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 34860 + }, + { + "epoch": 3.5823057953144266, + "grad_norm": 0.05686675012111664, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 34863 + }, + { + "epoch": 3.582614056720099, + "grad_norm": 0.04291863366961479, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 34866 + }, + { + "epoch": 3.5829223181257706, + "grad_norm": 0.0715685561299324, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 34869 + }, + { + "epoch": 3.5832305795314427, + "grad_norm": 0.06964897364377975, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 34872 + }, + { + "epoch": 3.5835388409371145, + "grad_norm": 0.043709173798561096, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 34875 + }, + { + "epoch": 3.5838471023427867, + "grad_norm": 0.06593792140483856, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 34878 + }, + { + "epoch": 3.584155363748459, + "grad_norm": 0.04702428728342056, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 34881 + }, + { + "epoch": 3.5844636251541306, + "grad_norm": 0.08917208015918732, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 34884 + }, + { + "epoch": 3.584771886559803, + "grad_norm": 0.1167001873254776, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 34887 + }, + { + "epoch": 3.5850801479654746, + "grad_norm": 0.07775711268186569, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 34890 + }, + { + "epoch": 3.585388409371147, + "grad_norm": 0.08915986865758896, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 34893 + }, + { + "epoch": 3.5856966707768185, + "grad_norm": 0.045163143426179886, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 34896 + }, + { + "epoch": 3.5860049321824907, + "grad_norm": 0.0571911595761776, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 34899 + }, + { + "epoch": 3.586313193588163, + "grad_norm": 0.0707104504108429, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 34902 + }, + { + "epoch": 3.5866214549938347, + "grad_norm": 0.04241738095879555, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 34905 + }, + { + "epoch": 3.586929716399507, + "grad_norm": 0.045163869857788086, + "learning_rate": 0.01, + "loss": 2.004, + "step": 34908 + }, + { + "epoch": 3.587237977805179, + "grad_norm": 0.03191215172410011, + "learning_rate": 0.01, + "loss": 2.017, + "step": 34911 + }, + { + "epoch": 3.587546239210851, + "grad_norm": 0.033771395683288574, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 34914 + }, + { + "epoch": 3.5878545006165226, + "grad_norm": 0.06919904053211212, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 34917 + }, + { + "epoch": 3.5881627620221948, + "grad_norm": 0.05089094117283821, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 34920 + }, + { + "epoch": 3.588471023427867, + "grad_norm": 0.10625668615102768, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 34923 + }, + { + "epoch": 3.5887792848335387, + "grad_norm": 0.05255312845110893, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 34926 + }, + { + "epoch": 3.589087546239211, + "grad_norm": 0.09395511448383331, + "learning_rate": 0.01, + "loss": 1.986, + "step": 34929 + }, + { + "epoch": 3.589395807644883, + "grad_norm": 0.04209842532873154, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 34932 + }, + { + "epoch": 3.589704069050555, + "grad_norm": 0.0340830534696579, + "learning_rate": 0.01, + "loss": 2.036, + "step": 34935 + }, + { + "epoch": 3.590012330456227, + "grad_norm": 0.041663311421871185, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 34938 + }, + { + "epoch": 3.590320591861899, + "grad_norm": 0.044666144996881485, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 34941 + }, + { + "epoch": 3.590628853267571, + "grad_norm": 0.05369654670357704, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 34944 + }, + { + "epoch": 3.5909371146732427, + "grad_norm": 0.054408960044384, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 34947 + }, + { + "epoch": 3.591245376078915, + "grad_norm": 0.09313920885324478, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 34950 + }, + { + "epoch": 3.591553637484587, + "grad_norm": 0.05207030475139618, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 34953 + }, + { + "epoch": 3.591861898890259, + "grad_norm": 0.06822825968265533, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 34956 + }, + { + "epoch": 3.592170160295931, + "grad_norm": 0.05392748489975929, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 34959 + }, + { + "epoch": 3.592478421701603, + "grad_norm": 0.06300345808267593, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 34962 + }, + { + "epoch": 3.592786683107275, + "grad_norm": 0.09526319801807404, + "learning_rate": 0.01, + "loss": 1.982, + "step": 34965 + }, + { + "epoch": 3.5930949445129468, + "grad_norm": 0.060867104679346085, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 34968 + }, + { + "epoch": 3.593403205918619, + "grad_norm": 0.09763433039188385, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 34971 + }, + { + "epoch": 3.593711467324291, + "grad_norm": 0.05499181151390076, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 34974 + }, + { + "epoch": 3.594019728729963, + "grad_norm": 0.18828648328781128, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 34977 + }, + { + "epoch": 3.594327990135635, + "grad_norm": 0.1367756426334381, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 34980 + }, + { + "epoch": 3.5946362515413073, + "grad_norm": 0.0752996876835823, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 34983 + }, + { + "epoch": 3.594944512946979, + "grad_norm": 0.07500961422920227, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 34986 + }, + { + "epoch": 3.595252774352651, + "grad_norm": 0.08114928752183914, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 34989 + }, + { + "epoch": 3.595561035758323, + "grad_norm": 0.0735306516289711, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 34992 + }, + { + "epoch": 3.595869297163995, + "grad_norm": 0.04386765882372856, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 34995 + }, + { + "epoch": 3.596177558569667, + "grad_norm": 0.052437882870435715, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 34998 + }, + { + "epoch": 3.596485819975339, + "grad_norm": 0.044234346598386765, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 35001 + }, + { + "epoch": 3.5967940813810113, + "grad_norm": 0.04302847385406494, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 35004 + }, + { + "epoch": 3.597102342786683, + "grad_norm": 0.047404494136571884, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 35007 + }, + { + "epoch": 3.5974106041923553, + "grad_norm": 0.04339216649532318, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 35010 + }, + { + "epoch": 3.597718865598027, + "grad_norm": 0.07121206820011139, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 35013 + }, + { + "epoch": 3.598027127003699, + "grad_norm": 0.06314744055271149, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 35016 + }, + { + "epoch": 3.598335388409371, + "grad_norm": 0.0557650588452816, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 35019 + }, + { + "epoch": 3.598643649815043, + "grad_norm": 0.043066419661045074, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 35022 + }, + { + "epoch": 3.5989519112207153, + "grad_norm": 0.0739695131778717, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 35025 + }, + { + "epoch": 3.599260172626387, + "grad_norm": 0.13933037221431732, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 35028 + }, + { + "epoch": 3.5995684340320593, + "grad_norm": 0.03341522440314293, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 35031 + }, + { + "epoch": 3.599876695437731, + "grad_norm": 0.07127437740564346, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 35034 + }, + { + "epoch": 3.6001849568434032, + "grad_norm": 0.05078571289777756, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 35037 + }, + { + "epoch": 3.600493218249075, + "grad_norm": 0.049321308732032776, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 35040 + }, + { + "epoch": 3.600801479654747, + "grad_norm": 0.04840512201189995, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 35043 + }, + { + "epoch": 3.6011097410604194, + "grad_norm": 0.05541226640343666, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 35046 + }, + { + "epoch": 3.601418002466091, + "grad_norm": 0.03456197306513786, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 35049 + }, + { + "epoch": 3.6017262638717633, + "grad_norm": 0.0342303030192852, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 35052 + }, + { + "epoch": 3.6020345252774355, + "grad_norm": 0.043709222227334976, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 35055 + }, + { + "epoch": 3.6023427866831073, + "grad_norm": 0.05025354400277138, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 35058 + }, + { + "epoch": 3.6026510480887795, + "grad_norm": 0.0903453454375267, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 35061 + }, + { + "epoch": 3.602959309494451, + "grad_norm": 0.029984181746840477, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 35064 + }, + { + "epoch": 3.6032675709001234, + "grad_norm": 0.03956552594900131, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 35067 + }, + { + "epoch": 3.603575832305795, + "grad_norm": 0.0535871721804142, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 35070 + }, + { + "epoch": 3.6038840937114673, + "grad_norm": 0.07621357589960098, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 35073 + }, + { + "epoch": 3.6041923551171395, + "grad_norm": 0.08122174441814423, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 35076 + }, + { + "epoch": 3.6045006165228113, + "grad_norm": 0.04478932544589043, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 35079 + }, + { + "epoch": 3.6048088779284835, + "grad_norm": 0.07432077080011368, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 35082 + }, + { + "epoch": 3.6051171393341552, + "grad_norm": 0.08805304020643234, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 35085 + }, + { + "epoch": 3.6054254007398274, + "grad_norm": 0.15478205680847168, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 35088 + }, + { + "epoch": 3.605733662145499, + "grad_norm": 0.11871577054262161, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 35091 + }, + { + "epoch": 3.6060419235511714, + "grad_norm": 0.06366606056690216, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 35094 + }, + { + "epoch": 3.6063501849568436, + "grad_norm": 0.10421419143676758, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 35097 + }, + { + "epoch": 3.6066584463625153, + "grad_norm": 0.08190574496984482, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 35100 + }, + { + "epoch": 3.6069667077681875, + "grad_norm": 0.03852493688464165, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 35103 + }, + { + "epoch": 3.6072749691738597, + "grad_norm": 0.04792521148920059, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 35106 + }, + { + "epoch": 3.6075832305795315, + "grad_norm": 0.04788130521774292, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 35109 + }, + { + "epoch": 3.607891491985203, + "grad_norm": 0.06820268929004669, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 35112 + }, + { + "epoch": 3.6081997533908754, + "grad_norm": 0.05702923610806465, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 35115 + }, + { + "epoch": 3.6085080147965476, + "grad_norm": 0.10051339119672775, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 35118 + }, + { + "epoch": 3.6088162762022193, + "grad_norm": 0.07067910581827164, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 35121 + }, + { + "epoch": 3.6091245376078915, + "grad_norm": 0.03547900170087814, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 35124 + }, + { + "epoch": 3.6094327990135637, + "grad_norm": 0.062315478920936584, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 35127 + }, + { + "epoch": 3.6097410604192355, + "grad_norm": 0.12956464290618896, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 35130 + }, + { + "epoch": 3.6100493218249077, + "grad_norm": 0.1570357233285904, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 35133 + }, + { + "epoch": 3.6103575832305794, + "grad_norm": 0.06165264546871185, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 35136 + }, + { + "epoch": 3.6106658446362516, + "grad_norm": 0.046166177839040756, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 35139 + }, + { + "epoch": 3.6109741060419234, + "grad_norm": 0.052293550223112106, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 35142 + }, + { + "epoch": 3.6112823674475956, + "grad_norm": 0.046433527022600174, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 35145 + }, + { + "epoch": 3.6115906288532678, + "grad_norm": 0.029988888651132584, + "learning_rate": 0.01, + "loss": 1.9536, + "step": 35148 + }, + { + "epoch": 3.6118988902589395, + "grad_norm": 0.05726629123091698, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 35151 + }, + { + "epoch": 3.6122071516646117, + "grad_norm": 0.054002657532691956, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 35154 + }, + { + "epoch": 3.6125154130702835, + "grad_norm": 0.05368361249566078, + "learning_rate": 0.01, + "loss": 1.978, + "step": 35157 + }, + { + "epoch": 3.6128236744759556, + "grad_norm": 0.04732634872198105, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 35160 + }, + { + "epoch": 3.6131319358816274, + "grad_norm": 0.05976017564535141, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 35163 + }, + { + "epoch": 3.6134401972872996, + "grad_norm": 0.04517058655619621, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 35166 + }, + { + "epoch": 3.613748458692972, + "grad_norm": 0.12990356981754303, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 35169 + }, + { + "epoch": 3.6140567200986435, + "grad_norm": 0.059477876871824265, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 35172 + }, + { + "epoch": 3.6143649815043157, + "grad_norm": 0.05780341103672981, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 35175 + }, + { + "epoch": 3.614673242909988, + "grad_norm": 0.03971264883875847, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 35178 + }, + { + "epoch": 3.6149815043156597, + "grad_norm": 0.04069376364350319, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 35181 + }, + { + "epoch": 3.6152897657213314, + "grad_norm": 0.049401164054870605, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 35184 + }, + { + "epoch": 3.6155980271270036, + "grad_norm": 0.058909036219120026, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 35187 + }, + { + "epoch": 3.615906288532676, + "grad_norm": 0.1364602893590927, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 35190 + }, + { + "epoch": 3.6162145499383476, + "grad_norm": 0.0892588272690773, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 35193 + }, + { + "epoch": 3.6165228113440198, + "grad_norm": 0.03974326699972153, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 35196 + }, + { + "epoch": 3.616831072749692, + "grad_norm": 0.03898739442229271, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 35199 + }, + { + "epoch": 3.6171393341553637, + "grad_norm": 0.044964905828237534, + "learning_rate": 0.01, + "loss": 2.015, + "step": 35202 + }, + { + "epoch": 3.617447595561036, + "grad_norm": 0.11181700229644775, + "learning_rate": 0.01, + "loss": 1.996, + "step": 35205 + }, + { + "epoch": 3.6177558569667077, + "grad_norm": 0.0697384923696518, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 35208 + }, + { + "epoch": 3.61806411837238, + "grad_norm": 0.03923085704445839, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 35211 + }, + { + "epoch": 3.6183723797780516, + "grad_norm": 0.03635834902524948, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 35214 + }, + { + "epoch": 3.618680641183724, + "grad_norm": 0.05013216286897659, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 35217 + }, + { + "epoch": 3.618988902589396, + "grad_norm": 0.03531458228826523, + "learning_rate": 0.01, + "loss": 2.0256, + "step": 35220 + }, + { + "epoch": 3.6192971639950677, + "grad_norm": 0.09228625893592834, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 35223 + }, + { + "epoch": 3.61960542540074, + "grad_norm": 0.06587129831314087, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 35226 + }, + { + "epoch": 3.6199136868064117, + "grad_norm": 0.11610520631074905, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 35229 + }, + { + "epoch": 3.620221948212084, + "grad_norm": 0.05594666674733162, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 35232 + }, + { + "epoch": 3.6205302096177556, + "grad_norm": 0.04040682688355446, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 35235 + }, + { + "epoch": 3.620838471023428, + "grad_norm": 0.038559917360544205, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 35238 + }, + { + "epoch": 3.6211467324291, + "grad_norm": 0.05012970045208931, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 35241 + }, + { + "epoch": 3.6214549938347718, + "grad_norm": 0.09769418835639954, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 35244 + }, + { + "epoch": 3.621763255240444, + "grad_norm": 0.07791107892990112, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 35247 + }, + { + "epoch": 3.622071516646116, + "grad_norm": 0.06556175649166107, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 35250 + }, + { + "epoch": 3.622379778051788, + "grad_norm": 0.04608479142189026, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 35253 + }, + { + "epoch": 3.6226880394574597, + "grad_norm": 0.03681867569684982, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 35256 + }, + { + "epoch": 3.622996300863132, + "grad_norm": 0.05940413847565651, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 35259 + }, + { + "epoch": 3.623304562268804, + "grad_norm": 0.09911686182022095, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 35262 + }, + { + "epoch": 3.623612823674476, + "grad_norm": 0.03739270940423012, + "learning_rate": 0.01, + "loss": 2.0285, + "step": 35265 + }, + { + "epoch": 3.623921085080148, + "grad_norm": 0.11673395335674286, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 35268 + }, + { + "epoch": 3.62422934648582, + "grad_norm": 0.0795954018831253, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 35271 + }, + { + "epoch": 3.624537607891492, + "grad_norm": 0.04180069640278816, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 35274 + }, + { + "epoch": 3.624845869297164, + "grad_norm": 0.09516190737485886, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 35277 + }, + { + "epoch": 3.625154130702836, + "grad_norm": 0.11448989808559418, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 35280 + }, + { + "epoch": 3.625462392108508, + "grad_norm": 0.06945902854204178, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 35283 + }, + { + "epoch": 3.62577065351418, + "grad_norm": 0.039453648030757904, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 35286 + }, + { + "epoch": 3.626078914919852, + "grad_norm": 0.06266641616821289, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 35289 + }, + { + "epoch": 3.626387176325524, + "grad_norm": 0.04908052831888199, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 35292 + }, + { + "epoch": 3.626695437731196, + "grad_norm": 0.06186684966087341, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 35295 + }, + { + "epoch": 3.627003699136868, + "grad_norm": 0.13145780563354492, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 35298 + }, + { + "epoch": 3.6273119605425403, + "grad_norm": 0.05850294232368469, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 35301 + }, + { + "epoch": 3.627620221948212, + "grad_norm": 0.04934421926736832, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 35304 + }, + { + "epoch": 3.627928483353884, + "grad_norm": 0.07607220858335495, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 35307 + }, + { + "epoch": 3.628236744759556, + "grad_norm": 0.046615466475486755, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 35310 + }, + { + "epoch": 3.6285450061652282, + "grad_norm": 0.11176659911870956, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 35313 + }, + { + "epoch": 3.6288532675709, + "grad_norm": 0.07844175398349762, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 35316 + }, + { + "epoch": 3.629161528976572, + "grad_norm": 0.0730755403637886, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 35319 + }, + { + "epoch": 3.6294697903822444, + "grad_norm": 0.08503863960504532, + "learning_rate": 0.01, + "loss": 2.005, + "step": 35322 + }, + { + "epoch": 3.629778051787916, + "grad_norm": 0.03936958312988281, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 35325 + }, + { + "epoch": 3.6300863131935883, + "grad_norm": 0.11586350947618484, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 35328 + }, + { + "epoch": 3.63039457459926, + "grad_norm": 0.06128397583961487, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 35331 + }, + { + "epoch": 3.6307028360049323, + "grad_norm": 0.04872961342334747, + "learning_rate": 0.01, + "loss": 2.017, + "step": 35334 + }, + { + "epoch": 3.631011097410604, + "grad_norm": 0.08416412770748138, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 35337 + }, + { + "epoch": 3.631319358816276, + "grad_norm": 0.05844739452004433, + "learning_rate": 0.01, + "loss": 2.001, + "step": 35340 + }, + { + "epoch": 3.6316276202219484, + "grad_norm": 0.08564214408397675, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 35343 + }, + { + "epoch": 3.63193588162762, + "grad_norm": 0.08769746124744415, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 35346 + }, + { + "epoch": 3.6322441430332923, + "grad_norm": 0.03819827735424042, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 35349 + }, + { + "epoch": 3.632552404438964, + "grad_norm": 0.12311212718486786, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 35352 + }, + { + "epoch": 3.6328606658446363, + "grad_norm": 0.037630997598171234, + "learning_rate": 0.01, + "loss": 2.007, + "step": 35355 + }, + { + "epoch": 3.633168927250308, + "grad_norm": 0.08739642798900604, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 35358 + }, + { + "epoch": 3.6334771886559802, + "grad_norm": 0.04889992997050285, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 35361 + }, + { + "epoch": 3.6337854500616524, + "grad_norm": 0.035435836762189865, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 35364 + }, + { + "epoch": 3.634093711467324, + "grad_norm": 0.059248197823762894, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 35367 + }, + { + "epoch": 3.6344019728729964, + "grad_norm": 0.08831764757633209, + "learning_rate": 0.01, + "loss": 1.992, + "step": 35370 + }, + { + "epoch": 3.6347102342786686, + "grad_norm": 0.14940893650054932, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 35373 + }, + { + "epoch": 3.6350184956843403, + "grad_norm": 0.06616901606321335, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 35376 + }, + { + "epoch": 3.635326757090012, + "grad_norm": 0.06391241401433945, + "learning_rate": 0.01, + "loss": 1.9636, + "step": 35379 + }, + { + "epoch": 3.6356350184956843, + "grad_norm": 0.0580880343914032, + "learning_rate": 0.01, + "loss": 1.975, + "step": 35382 + }, + { + "epoch": 3.6359432799013565, + "grad_norm": 0.057876862585544586, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 35385 + }, + { + "epoch": 3.636251541307028, + "grad_norm": 0.044347915798425674, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 35388 + }, + { + "epoch": 3.6365598027127004, + "grad_norm": 0.0400017574429512, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 35391 + }, + { + "epoch": 3.6368680641183726, + "grad_norm": 0.11369085311889648, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 35394 + }, + { + "epoch": 3.6371763255240444, + "grad_norm": 0.10995481163263321, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 35397 + }, + { + "epoch": 3.6374845869297165, + "grad_norm": 0.05769447609782219, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 35400 + }, + { + "epoch": 3.6377928483353883, + "grad_norm": 0.07872482389211655, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 35403 + }, + { + "epoch": 3.6381011097410605, + "grad_norm": 0.05196002870798111, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 35406 + }, + { + "epoch": 3.6384093711467322, + "grad_norm": 0.0493265725672245, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 35409 + }, + { + "epoch": 3.6387176325524044, + "grad_norm": 0.04237900674343109, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 35412 + }, + { + "epoch": 3.6390258939580766, + "grad_norm": 0.06882897764444351, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 35415 + }, + { + "epoch": 3.6393341553637484, + "grad_norm": 0.058774422854185104, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 35418 + }, + { + "epoch": 3.6396424167694206, + "grad_norm": 0.10032794624567032, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 35421 + }, + { + "epoch": 3.6399506781750923, + "grad_norm": 0.042988426983356476, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 35424 + }, + { + "epoch": 3.6402589395807645, + "grad_norm": 0.055391326546669006, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 35427 + }, + { + "epoch": 3.6405672009864363, + "grad_norm": 0.03977194428443909, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 35430 + }, + { + "epoch": 3.6408754623921085, + "grad_norm": 0.0903034657239914, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 35433 + }, + { + "epoch": 3.6411837237977807, + "grad_norm": 0.04610143229365349, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 35436 + }, + { + "epoch": 3.6414919852034524, + "grad_norm": 0.08295582234859467, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 35439 + }, + { + "epoch": 3.6418002466091246, + "grad_norm": 0.09561655670404434, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 35442 + }, + { + "epoch": 3.642108508014797, + "grad_norm": 0.07968761771917343, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 35445 + }, + { + "epoch": 3.6424167694204685, + "grad_norm": 0.04458128660917282, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 35448 + }, + { + "epoch": 3.6427250308261403, + "grad_norm": 0.12892895936965942, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 35451 + }, + { + "epoch": 3.6430332922318125, + "grad_norm": 0.1063292846083641, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 35454 + }, + { + "epoch": 3.6433415536374847, + "grad_norm": 0.04187742993235588, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 35457 + }, + { + "epoch": 3.6436498150431564, + "grad_norm": 0.06096494942903519, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 35460 + }, + { + "epoch": 3.6439580764488286, + "grad_norm": 0.035430386662483215, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 35463 + }, + { + "epoch": 3.644266337854501, + "grad_norm": 0.039337921887636185, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 35466 + }, + { + "epoch": 3.6445745992601726, + "grad_norm": 0.04446728155016899, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 35469 + }, + { + "epoch": 3.6448828606658448, + "grad_norm": 0.06175538897514343, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 35472 + }, + { + "epoch": 3.6451911220715165, + "grad_norm": 0.1305261105298996, + "learning_rate": 0.01, + "loss": 2.008, + "step": 35475 + }, + { + "epoch": 3.6454993834771887, + "grad_norm": 0.14111317694187164, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 35478 + }, + { + "epoch": 3.6458076448828605, + "grad_norm": 0.13947373628616333, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 35481 + }, + { + "epoch": 3.6461159062885327, + "grad_norm": 0.057133182883262634, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 35484 + }, + { + "epoch": 3.646424167694205, + "grad_norm": 0.03709038347005844, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 35487 + }, + { + "epoch": 3.6467324290998766, + "grad_norm": 0.04786526411771774, + "learning_rate": 0.01, + "loss": 1.993, + "step": 35490 + }, + { + "epoch": 3.647040690505549, + "grad_norm": 0.03816988691687584, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 35493 + }, + { + "epoch": 3.6473489519112205, + "grad_norm": 0.05153171718120575, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 35496 + }, + { + "epoch": 3.6476572133168927, + "grad_norm": 0.09072964638471603, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 35499 + }, + { + "epoch": 3.6479654747225645, + "grad_norm": 0.06302040815353394, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 35502 + }, + { + "epoch": 3.6482737361282367, + "grad_norm": 0.04940348491072655, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 35505 + }, + { + "epoch": 3.648581997533909, + "grad_norm": 0.04952861741185188, + "learning_rate": 0.01, + "loss": 2.0, + "step": 35508 + }, + { + "epoch": 3.6488902589395806, + "grad_norm": 0.03227638080716133, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 35511 + }, + { + "epoch": 3.649198520345253, + "grad_norm": 0.04237101599574089, + "learning_rate": 0.01, + "loss": 2.019, + "step": 35514 + }, + { + "epoch": 3.649506781750925, + "grad_norm": 0.10213712602853775, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 35517 + }, + { + "epoch": 3.6498150431565968, + "grad_norm": 0.0747971460223198, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 35520 + }, + { + "epoch": 3.650123304562269, + "grad_norm": 0.07060317695140839, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 35523 + }, + { + "epoch": 3.6504315659679407, + "grad_norm": 0.13745035231113434, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 35526 + }, + { + "epoch": 3.650739827373613, + "grad_norm": 0.11544306576251984, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 35529 + }, + { + "epoch": 3.6510480887792847, + "grad_norm": 0.07669739425182343, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 35532 + }, + { + "epoch": 3.651356350184957, + "grad_norm": 0.04519101604819298, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 35535 + }, + { + "epoch": 3.651664611590629, + "grad_norm": 0.04446371644735336, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 35538 + }, + { + "epoch": 3.651972872996301, + "grad_norm": 0.05518916994333267, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 35541 + }, + { + "epoch": 3.652281134401973, + "grad_norm": 0.04405786469578743, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 35544 + }, + { + "epoch": 3.6525893958076447, + "grad_norm": 0.06154394894838333, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 35547 + }, + { + "epoch": 3.652897657213317, + "grad_norm": 0.07919877767562866, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 35550 + }, + { + "epoch": 3.6532059186189887, + "grad_norm": 0.0575590617954731, + "learning_rate": 0.01, + "loss": 2.011, + "step": 35553 + }, + { + "epoch": 3.653514180024661, + "grad_norm": 0.05680471658706665, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 35556 + }, + { + "epoch": 3.653822441430333, + "grad_norm": 0.0352899394929409, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 35559 + }, + { + "epoch": 3.654130702836005, + "grad_norm": 0.034432023763656616, + "learning_rate": 0.01, + "loss": 2.004, + "step": 35562 + }, + { + "epoch": 3.654438964241677, + "grad_norm": 0.10298652946949005, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 35565 + }, + { + "epoch": 3.654747225647349, + "grad_norm": 0.03996056690812111, + "learning_rate": 0.01, + "loss": 2.007, + "step": 35568 + }, + { + "epoch": 3.655055487053021, + "grad_norm": 0.07411230355501175, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 35571 + }, + { + "epoch": 3.6553637484586927, + "grad_norm": 0.04124278202652931, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 35574 + }, + { + "epoch": 3.655672009864365, + "grad_norm": 0.035065338015556335, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 35577 + }, + { + "epoch": 3.655980271270037, + "grad_norm": 0.04023493826389313, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 35580 + }, + { + "epoch": 3.656288532675709, + "grad_norm": 0.0333552286028862, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 35583 + }, + { + "epoch": 3.656596794081381, + "grad_norm": 0.1286098062992096, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 35586 + }, + { + "epoch": 3.6569050554870532, + "grad_norm": 0.061940498650074005, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 35589 + }, + { + "epoch": 3.657213316892725, + "grad_norm": 0.08766448497772217, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 35592 + }, + { + "epoch": 3.657521578298397, + "grad_norm": 0.07218505442142487, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 35595 + }, + { + "epoch": 3.657829839704069, + "grad_norm": 0.11700677126646042, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 35598 + }, + { + "epoch": 3.658138101109741, + "grad_norm": 0.05746941268444061, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 35601 + }, + { + "epoch": 3.658446362515413, + "grad_norm": 0.0517272874712944, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 35604 + }, + { + "epoch": 3.658754623921085, + "grad_norm": 0.04524237662553787, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 35607 + }, + { + "epoch": 3.6590628853267573, + "grad_norm": 0.053268514573574066, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 35610 + }, + { + "epoch": 3.659371146732429, + "grad_norm": 0.06391450762748718, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 35613 + }, + { + "epoch": 3.659679408138101, + "grad_norm": 0.06404808908700943, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 35616 + }, + { + "epoch": 3.659987669543773, + "grad_norm": 0.06734498590230942, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 35619 + }, + { + "epoch": 3.660295930949445, + "grad_norm": 0.056514717638492584, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 35622 + }, + { + "epoch": 3.660604192355117, + "grad_norm": 0.04377966374158859, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 35625 + }, + { + "epoch": 3.660912453760789, + "grad_norm": 0.0527014285326004, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 35628 + }, + { + "epoch": 3.6612207151664613, + "grad_norm": 0.08603314310312271, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 35631 + }, + { + "epoch": 3.661528976572133, + "grad_norm": 0.06637904793024063, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 35634 + }, + { + "epoch": 3.6618372379778052, + "grad_norm": 0.042211759835481644, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 35637 + }, + { + "epoch": 3.6621454993834774, + "grad_norm": 0.08589443564414978, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 35640 + }, + { + "epoch": 3.662453760789149, + "grad_norm": 0.12761181592941284, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 35643 + }, + { + "epoch": 3.662762022194821, + "grad_norm": 0.08702104538679123, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 35646 + }, + { + "epoch": 3.663070283600493, + "grad_norm": 0.1481538712978363, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 35649 + }, + { + "epoch": 3.6633785450061653, + "grad_norm": 0.05475825071334839, + "learning_rate": 0.01, + "loss": 1.991, + "step": 35652 + }, + { + "epoch": 3.663686806411837, + "grad_norm": 0.0481879860162735, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 35655 + }, + { + "epoch": 3.6639950678175093, + "grad_norm": 0.07099757343530655, + "learning_rate": 0.01, + "loss": 2.027, + "step": 35658 + }, + { + "epoch": 3.6643033292231815, + "grad_norm": 0.09161633253097534, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 35661 + }, + { + "epoch": 3.664611590628853, + "grad_norm": 0.06675172597169876, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 35664 + }, + { + "epoch": 3.6649198520345254, + "grad_norm": 0.06166239082813263, + "learning_rate": 0.01, + "loss": 1.992, + "step": 35667 + }, + { + "epoch": 3.665228113440197, + "grad_norm": 0.07947093993425369, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 35670 + }, + { + "epoch": 3.6655363748458694, + "grad_norm": 0.07639001309871674, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 35673 + }, + { + "epoch": 3.665844636251541, + "grad_norm": 0.11109112948179245, + "learning_rate": 0.01, + "loss": 2.033, + "step": 35676 + }, + { + "epoch": 3.6661528976572133, + "grad_norm": 0.0517781600356102, + "learning_rate": 0.01, + "loss": 2.0, + "step": 35679 + }, + { + "epoch": 3.6664611590628855, + "grad_norm": 0.05615885183215141, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 35682 + }, + { + "epoch": 3.6667694204685573, + "grad_norm": 0.054977256804704666, + "learning_rate": 0.01, + "loss": 1.983, + "step": 35685 + }, + { + "epoch": 3.6670776818742294, + "grad_norm": 0.08208134025335312, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 35688 + }, + { + "epoch": 3.667385943279901, + "grad_norm": 0.053141169250011444, + "learning_rate": 0.01, + "loss": 2.0, + "step": 35691 + }, + { + "epoch": 3.6676942046855734, + "grad_norm": 0.0867038443684578, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 35694 + }, + { + "epoch": 3.668002466091245, + "grad_norm": 0.04153072461485863, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 35697 + }, + { + "epoch": 3.6683107274969173, + "grad_norm": 0.050722386687994, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 35700 + }, + { + "epoch": 3.6686189889025895, + "grad_norm": 0.036444198340177536, + "learning_rate": 0.01, + "loss": 1.98, + "step": 35703 + }, + { + "epoch": 3.6689272503082613, + "grad_norm": 0.06851452589035034, + "learning_rate": 0.01, + "loss": 2.0365, + "step": 35706 + }, + { + "epoch": 3.6692355117139335, + "grad_norm": 0.05442693457007408, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 35709 + }, + { + "epoch": 3.6695437731196057, + "grad_norm": 0.04789496958255768, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 35712 + }, + { + "epoch": 3.6698520345252774, + "grad_norm": 0.05229181796312332, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 35715 + }, + { + "epoch": 3.670160295930949, + "grad_norm": 0.05596926435828209, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 35718 + }, + { + "epoch": 3.6704685573366214, + "grad_norm": 0.04481478035449982, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 35721 + }, + { + "epoch": 3.6707768187422936, + "grad_norm": 0.053352151066064835, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 35724 + }, + { + "epoch": 3.6710850801479653, + "grad_norm": 0.07115049660205841, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 35727 + }, + { + "epoch": 3.6713933415536375, + "grad_norm": 0.06887483596801758, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 35730 + }, + { + "epoch": 3.6717016029593097, + "grad_norm": 0.14638669788837433, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 35733 + }, + { + "epoch": 3.6720098643649814, + "grad_norm": 0.06305021792650223, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 35736 + }, + { + "epoch": 3.6723181257706536, + "grad_norm": 0.041157372295856476, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 35739 + }, + { + "epoch": 3.6726263871763254, + "grad_norm": 0.10821440070867538, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 35742 + }, + { + "epoch": 3.6729346485819976, + "grad_norm": 0.06525052338838577, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 35745 + }, + { + "epoch": 3.6732429099876693, + "grad_norm": 0.03519715368747711, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 35748 + }, + { + "epoch": 3.6735511713933415, + "grad_norm": 0.0548231340944767, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 35751 + }, + { + "epoch": 3.6738594327990137, + "grad_norm": 0.08685827255249023, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 35754 + }, + { + "epoch": 3.6741676942046855, + "grad_norm": 0.05920972675085068, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 35757 + }, + { + "epoch": 3.6744759556103577, + "grad_norm": 0.060545727610588074, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 35760 + }, + { + "epoch": 3.67478421701603, + "grad_norm": 0.05436963587999344, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 35763 + }, + { + "epoch": 3.6750924784217016, + "grad_norm": 0.05975078046321869, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 35766 + }, + { + "epoch": 3.6754007398273734, + "grad_norm": 0.05793645977973938, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 35769 + }, + { + "epoch": 3.6757090012330456, + "grad_norm": 0.07932164520025253, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 35772 + }, + { + "epoch": 3.6760172626387178, + "grad_norm": 0.05182117223739624, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 35775 + }, + { + "epoch": 3.6763255240443895, + "grad_norm": 0.05408613011240959, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 35778 + }, + { + "epoch": 3.6766337854500617, + "grad_norm": 0.0396132618188858, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 35781 + }, + { + "epoch": 3.676942046855734, + "grad_norm": 0.04768325388431549, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 35784 + }, + { + "epoch": 3.6772503082614056, + "grad_norm": 0.09452294558286667, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 35787 + }, + { + "epoch": 3.677558569667078, + "grad_norm": 0.09846623986959457, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 35790 + }, + { + "epoch": 3.6778668310727496, + "grad_norm": 0.1176767498254776, + "learning_rate": 0.01, + "loss": 1.989, + "step": 35793 + }, + { + "epoch": 3.678175092478422, + "grad_norm": 0.07070811092853546, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 35796 + }, + { + "epoch": 3.6784833538840935, + "grad_norm": 0.04359079524874687, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 35799 + }, + { + "epoch": 3.6787916152897657, + "grad_norm": 0.05718059092760086, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 35802 + }, + { + "epoch": 3.679099876695438, + "grad_norm": 0.03475908935070038, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 35805 + }, + { + "epoch": 3.6794081381011097, + "grad_norm": 0.03629058972001076, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 35808 + }, + { + "epoch": 3.679716399506782, + "grad_norm": 0.11145780235528946, + "learning_rate": 0.01, + "loss": 1.989, + "step": 35811 + }, + { + "epoch": 3.6800246609124536, + "grad_norm": 0.07155486941337585, + "learning_rate": 0.01, + "loss": 2.025, + "step": 35814 + }, + { + "epoch": 3.680332922318126, + "grad_norm": 0.05105472728610039, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 35817 + }, + { + "epoch": 3.6806411837237976, + "grad_norm": 0.04478003829717636, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 35820 + }, + { + "epoch": 3.6809494451294698, + "grad_norm": 0.03695627674460411, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 35823 + }, + { + "epoch": 3.681257706535142, + "grad_norm": 0.04222894459962845, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 35826 + }, + { + "epoch": 3.6815659679408137, + "grad_norm": 0.04362770542502403, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 35829 + }, + { + "epoch": 3.681874229346486, + "grad_norm": 0.07785011827945709, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 35832 + }, + { + "epoch": 3.682182490752158, + "grad_norm": 0.08382470905780792, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 35835 + }, + { + "epoch": 3.68249075215783, + "grad_norm": 0.09897731244564056, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 35838 + }, + { + "epoch": 3.6827990135635016, + "grad_norm": 0.05617908388376236, + "learning_rate": 0.01, + "loss": 1.977, + "step": 35841 + }, + { + "epoch": 3.683107274969174, + "grad_norm": 0.07543769478797913, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 35844 + }, + { + "epoch": 3.683415536374846, + "grad_norm": 0.04036831855773926, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 35847 + }, + { + "epoch": 3.6837237977805177, + "grad_norm": 0.03254294767975807, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 35850 + }, + { + "epoch": 3.68403205918619, + "grad_norm": 0.08003180474042892, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 35853 + }, + { + "epoch": 3.684340320591862, + "grad_norm": 0.0821150541305542, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 35856 + }, + { + "epoch": 3.684648581997534, + "grad_norm": 0.15571752190589905, + "learning_rate": 0.01, + "loss": 1.997, + "step": 35859 + }, + { + "epoch": 3.684956843403206, + "grad_norm": 0.07748742401599884, + "learning_rate": 0.01, + "loss": 2.001, + "step": 35862 + }, + { + "epoch": 3.685265104808878, + "grad_norm": 0.08278176933526993, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 35865 + }, + { + "epoch": 3.68557336621455, + "grad_norm": 0.08014661818742752, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 35868 + }, + { + "epoch": 3.6858816276202218, + "grad_norm": 0.03511490300297737, + "learning_rate": 0.01, + "loss": 2.006, + "step": 35871 + }, + { + "epoch": 3.686189889025894, + "grad_norm": 0.04790462180972099, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 35874 + }, + { + "epoch": 3.686498150431566, + "grad_norm": 0.05917114019393921, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 35877 + }, + { + "epoch": 3.686806411837238, + "grad_norm": 0.09026920050382614, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 35880 + }, + { + "epoch": 3.68711467324291, + "grad_norm": 0.07264431565999985, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 35883 + }, + { + "epoch": 3.687422934648582, + "grad_norm": 0.03798295557498932, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 35886 + }, + { + "epoch": 3.687731196054254, + "grad_norm": 0.1147773265838623, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 35889 + }, + { + "epoch": 3.688039457459926, + "grad_norm": 0.05281820893287659, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 35892 + }, + { + "epoch": 3.688347718865598, + "grad_norm": 0.0617707259953022, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 35895 + }, + { + "epoch": 3.68865598027127, + "grad_norm": 0.05084836110472679, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 35898 + }, + { + "epoch": 3.688964241676942, + "grad_norm": 0.04952919855713844, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 35901 + }, + { + "epoch": 3.689272503082614, + "grad_norm": 0.08321710675954819, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 35904 + }, + { + "epoch": 3.6895807644882863, + "grad_norm": 0.04074413329362869, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 35907 + }, + { + "epoch": 3.689889025893958, + "grad_norm": 0.11404154449701309, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 35910 + }, + { + "epoch": 3.69019728729963, + "grad_norm": 0.07283198833465576, + "learning_rate": 0.01, + "loss": 2.011, + "step": 35913 + }, + { + "epoch": 3.690505548705302, + "grad_norm": 0.0645599216222763, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 35916 + }, + { + "epoch": 3.690813810110974, + "grad_norm": 0.0537913516163826, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 35919 + }, + { + "epoch": 3.691122071516646, + "grad_norm": 0.04984259232878685, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 35922 + }, + { + "epoch": 3.691430332922318, + "grad_norm": 0.05349741503596306, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 35925 + }, + { + "epoch": 3.6917385943279903, + "grad_norm": 0.05882362276315689, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 35928 + }, + { + "epoch": 3.692046855733662, + "grad_norm": 0.0809783861041069, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 35931 + }, + { + "epoch": 3.6923551171393343, + "grad_norm": 0.07075916230678558, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 35934 + }, + { + "epoch": 3.692663378545006, + "grad_norm": 0.058204181492328644, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 35937 + }, + { + "epoch": 3.6929716399506782, + "grad_norm": 0.10149111598730087, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 35940 + }, + { + "epoch": 3.69327990135635, + "grad_norm": 0.0722658559679985, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 35943 + }, + { + "epoch": 3.693588162762022, + "grad_norm": 0.08981306105852127, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 35946 + }, + { + "epoch": 3.6938964241676944, + "grad_norm": 0.04798738285899162, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 35949 + }, + { + "epoch": 3.694204685573366, + "grad_norm": 0.0338914729654789, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 35952 + }, + { + "epoch": 3.6945129469790383, + "grad_norm": 0.04813714697957039, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 35955 + }, + { + "epoch": 3.6948212083847105, + "grad_norm": 0.11086717247962952, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 35958 + }, + { + "epoch": 3.6951294697903823, + "grad_norm": 0.09754761308431625, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 35961 + }, + { + "epoch": 3.695437731196054, + "grad_norm": 0.07381515204906464, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 35964 + }, + { + "epoch": 3.695745992601726, + "grad_norm": 0.0501638762652874, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 35967 + }, + { + "epoch": 3.6960542540073984, + "grad_norm": 0.04152151197195053, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 35970 + }, + { + "epoch": 3.69636251541307, + "grad_norm": 0.06455028802156448, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 35973 + }, + { + "epoch": 3.6966707768187423, + "grad_norm": 0.07925435900688171, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 35976 + }, + { + "epoch": 3.6969790382244145, + "grad_norm": 0.17305727303028107, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 35979 + }, + { + "epoch": 3.6972872996300863, + "grad_norm": 0.04664710536599159, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 35982 + }, + { + "epoch": 3.6975955610357585, + "grad_norm": 0.03971162810921669, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 35985 + }, + { + "epoch": 3.6979038224414302, + "grad_norm": 0.04888729378581047, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 35988 + }, + { + "epoch": 3.6982120838471024, + "grad_norm": 0.03428930416703224, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 35991 + }, + { + "epoch": 3.698520345252774, + "grad_norm": 0.04609334468841553, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 35994 + }, + { + "epoch": 3.6988286066584464, + "grad_norm": 0.06719902157783508, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 35997 + }, + { + "epoch": 3.6991368680641186, + "grad_norm": 0.0409255288541317, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 36000 + }, + { + "epoch": 3.6994451294697903, + "grad_norm": 0.03683490306138992, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 36003 + }, + { + "epoch": 3.6997533908754625, + "grad_norm": 0.050057847052812576, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 36006 + }, + { + "epoch": 3.7000616522811343, + "grad_norm": 0.06051032990217209, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 36009 + }, + { + "epoch": 3.7003699136868065, + "grad_norm": 0.141363725066185, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 36012 + }, + { + "epoch": 3.700678175092478, + "grad_norm": 0.04017074033617973, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 36015 + }, + { + "epoch": 3.7009864364981504, + "grad_norm": 0.05374070256948471, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 36018 + }, + { + "epoch": 3.7012946979038226, + "grad_norm": 0.07037216424942017, + "learning_rate": 0.01, + "loss": 2.014, + "step": 36021 + }, + { + "epoch": 3.7016029593094943, + "grad_norm": 0.06400209665298462, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 36024 + }, + { + "epoch": 3.7019112207151665, + "grad_norm": 0.04186910763382912, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 36027 + }, + { + "epoch": 3.7022194821208387, + "grad_norm": 0.05100405216217041, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 36030 + }, + { + "epoch": 3.7025277435265105, + "grad_norm": 0.06786265224218369, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 36033 + }, + { + "epoch": 3.7028360049321822, + "grad_norm": 0.058080319315195084, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 36036 + }, + { + "epoch": 3.7031442663378544, + "grad_norm": 0.09919019788503647, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 36039 + }, + { + "epoch": 3.7034525277435266, + "grad_norm": 0.08252627402544022, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 36042 + }, + { + "epoch": 3.7037607891491984, + "grad_norm": 0.06026385724544525, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 36045 + }, + { + "epoch": 3.7040690505548706, + "grad_norm": 0.08052903413772583, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 36048 + }, + { + "epoch": 3.7043773119605428, + "grad_norm": 0.0790569856762886, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 36051 + }, + { + "epoch": 3.7046855733662145, + "grad_norm": 0.04464380070567131, + "learning_rate": 0.01, + "loss": 2.018, + "step": 36054 + }, + { + "epoch": 3.7049938347718867, + "grad_norm": 0.06567423790693283, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 36057 + }, + { + "epoch": 3.7053020961775585, + "grad_norm": 0.06602831929922104, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 36060 + }, + { + "epoch": 3.7056103575832307, + "grad_norm": 0.06838707625865936, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 36063 + }, + { + "epoch": 3.7059186189889024, + "grad_norm": 0.09807326644659042, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 36066 + }, + { + "epoch": 3.7062268803945746, + "grad_norm": 0.06948495656251907, + "learning_rate": 0.01, + "loss": 1.992, + "step": 36069 + }, + { + "epoch": 3.706535141800247, + "grad_norm": 0.07893040776252747, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 36072 + }, + { + "epoch": 3.7068434032059185, + "grad_norm": 0.04618433490395546, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 36075 + }, + { + "epoch": 3.7071516646115907, + "grad_norm": 0.04784570261836052, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 36078 + }, + { + "epoch": 3.7074599260172625, + "grad_norm": 0.03364891558885574, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 36081 + }, + { + "epoch": 3.7077681874229347, + "grad_norm": 0.03379710018634796, + "learning_rate": 0.01, + "loss": 1.994, + "step": 36084 + }, + { + "epoch": 3.7080764488286064, + "grad_norm": 0.03952077031135559, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 36087 + }, + { + "epoch": 3.7083847102342786, + "grad_norm": 0.07781558483839035, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 36090 + }, + { + "epoch": 3.708692971639951, + "grad_norm": 0.04583312198519707, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 36093 + }, + { + "epoch": 3.7090012330456226, + "grad_norm": 0.08673562854528427, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 36096 + }, + { + "epoch": 3.7093094944512948, + "grad_norm": 0.05132952705025673, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 36099 + }, + { + "epoch": 3.709617755856967, + "grad_norm": 0.09407106041908264, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 36102 + }, + { + "epoch": 3.7099260172626387, + "grad_norm": 0.052429962903261185, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 36105 + }, + { + "epoch": 3.7102342786683105, + "grad_norm": 0.10452061146497726, + "learning_rate": 0.01, + "loss": 1.991, + "step": 36108 + }, + { + "epoch": 3.7105425400739827, + "grad_norm": 0.03275587409734726, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 36111 + }, + { + "epoch": 3.710850801479655, + "grad_norm": 0.10667680203914642, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 36114 + }, + { + "epoch": 3.7111590628853266, + "grad_norm": 0.08240865170955658, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 36117 + }, + { + "epoch": 3.711467324290999, + "grad_norm": 0.0850924402475357, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 36120 + }, + { + "epoch": 3.711775585696671, + "grad_norm": 0.03906584531068802, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 36123 + }, + { + "epoch": 3.7120838471023427, + "grad_norm": 0.04797567054629326, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 36126 + }, + { + "epoch": 3.712392108508015, + "grad_norm": 0.042494967579841614, + "learning_rate": 0.01, + "loss": 1.977, + "step": 36129 + }, + { + "epoch": 3.7127003699136867, + "grad_norm": 0.05491645634174347, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 36132 + }, + { + "epoch": 3.713008631319359, + "grad_norm": 0.10729935020208359, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 36135 + }, + { + "epoch": 3.7133168927250306, + "grad_norm": 0.043170586228370667, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 36138 + }, + { + "epoch": 3.713625154130703, + "grad_norm": 0.08662062138319016, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 36141 + }, + { + "epoch": 3.713933415536375, + "grad_norm": 0.11379045993089676, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 36144 + }, + { + "epoch": 3.7142416769420468, + "grad_norm": 0.03698570281267166, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 36147 + }, + { + "epoch": 3.714549938347719, + "grad_norm": 0.11952532082796097, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 36150 + }, + { + "epoch": 3.7148581997533907, + "grad_norm": 0.06563457101583481, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 36153 + }, + { + "epoch": 3.715166461159063, + "grad_norm": 0.07150832563638687, + "learning_rate": 0.01, + "loss": 2.012, + "step": 36156 + }, + { + "epoch": 3.7154747225647347, + "grad_norm": 0.04657771810889244, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 36159 + }, + { + "epoch": 3.715782983970407, + "grad_norm": 0.055245641618967056, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 36162 + }, + { + "epoch": 3.716091245376079, + "grad_norm": 0.040487829595804214, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 36165 + }, + { + "epoch": 3.716399506781751, + "grad_norm": 0.12351846694946289, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 36168 + }, + { + "epoch": 3.716707768187423, + "grad_norm": 0.053484536707401276, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 36171 + }, + { + "epoch": 3.717016029593095, + "grad_norm": 0.06141964718699455, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 36174 + }, + { + "epoch": 3.717324290998767, + "grad_norm": 0.09509648382663727, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 36177 + }, + { + "epoch": 3.717632552404439, + "grad_norm": 0.0969184935092926, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 36180 + }, + { + "epoch": 3.717940813810111, + "grad_norm": 0.0884992703795433, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 36183 + }, + { + "epoch": 3.718249075215783, + "grad_norm": 0.07382161915302277, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 36186 + }, + { + "epoch": 3.718557336621455, + "grad_norm": 0.07776398956775665, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 36189 + }, + { + "epoch": 3.718865598027127, + "grad_norm": 0.07049771398305893, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 36192 + }, + { + "epoch": 3.719173859432799, + "grad_norm": 0.08669892698526382, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 36195 + }, + { + "epoch": 3.719482120838471, + "grad_norm": 0.05756537616252899, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 36198 + }, + { + "epoch": 3.719790382244143, + "grad_norm": 0.06954919546842575, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 36201 + }, + { + "epoch": 3.720098643649815, + "grad_norm": 0.09297992289066315, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 36204 + }, + { + "epoch": 3.720406905055487, + "grad_norm": 0.07941876351833344, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 36207 + }, + { + "epoch": 3.720715166461159, + "grad_norm": 0.0698881521821022, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 36210 + }, + { + "epoch": 3.721023427866831, + "grad_norm": 0.09939584881067276, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 36213 + }, + { + "epoch": 3.7213316892725032, + "grad_norm": 0.059318870306015015, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 36216 + }, + { + "epoch": 3.721639950678175, + "grad_norm": 0.06797734647989273, + "learning_rate": 0.01, + "loss": 1.992, + "step": 36219 + }, + { + "epoch": 3.721948212083847, + "grad_norm": 0.03932074084877968, + "learning_rate": 0.01, + "loss": 2.012, + "step": 36222 + }, + { + "epoch": 3.7222564734895194, + "grad_norm": 0.07458118349313736, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 36225 + }, + { + "epoch": 3.722564734895191, + "grad_norm": 0.09383490681648254, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 36228 + }, + { + "epoch": 3.722872996300863, + "grad_norm": 0.06527485698461533, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 36231 + }, + { + "epoch": 3.723181257706535, + "grad_norm": 0.050437018275260925, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 36234 + }, + { + "epoch": 3.7234895191122073, + "grad_norm": 0.04380796477198601, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 36237 + }, + { + "epoch": 3.723797780517879, + "grad_norm": 0.04857274517416954, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 36240 + }, + { + "epoch": 3.724106041923551, + "grad_norm": 0.032346438616514206, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 36243 + }, + { + "epoch": 3.7244143033292234, + "grad_norm": 0.045984454452991486, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 36246 + }, + { + "epoch": 3.724722564734895, + "grad_norm": 0.058199312537908554, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 36249 + }, + { + "epoch": 3.7250308261405674, + "grad_norm": 0.0391390286386013, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 36252 + }, + { + "epoch": 3.725339087546239, + "grad_norm": 0.058478716760873795, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 36255 + }, + { + "epoch": 3.7256473489519113, + "grad_norm": 0.10977184772491455, + "learning_rate": 0.01, + "loss": 1.995, + "step": 36258 + }, + { + "epoch": 3.725955610357583, + "grad_norm": 0.06433524191379547, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 36261 + }, + { + "epoch": 3.7262638717632552, + "grad_norm": 0.07871260493993759, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 36264 + }, + { + "epoch": 3.7265721331689274, + "grad_norm": 0.09282384812831879, + "learning_rate": 0.01, + "loss": 1.991, + "step": 36267 + }, + { + "epoch": 3.726880394574599, + "grad_norm": 0.03165189549326897, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 36270 + }, + { + "epoch": 3.7271886559802714, + "grad_norm": 0.0789475068449974, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 36273 + }, + { + "epoch": 3.727496917385943, + "grad_norm": 0.13641710579395294, + "learning_rate": 0.01, + "loss": 1.996, + "step": 36276 + }, + { + "epoch": 3.7278051787916153, + "grad_norm": 0.08470667898654938, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 36279 + }, + { + "epoch": 3.728113440197287, + "grad_norm": 0.09110618382692337, + "learning_rate": 0.01, + "loss": 2.005, + "step": 36282 + }, + { + "epoch": 3.7284217016029593, + "grad_norm": 0.079217828810215, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 36285 + }, + { + "epoch": 3.7287299630086315, + "grad_norm": 0.03365809842944145, + "learning_rate": 0.01, + "loss": 1.998, + "step": 36288 + }, + { + "epoch": 3.729038224414303, + "grad_norm": 0.0691695362329483, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 36291 + }, + { + "epoch": 3.7293464858199754, + "grad_norm": 0.03766563534736633, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 36294 + }, + { + "epoch": 3.7296547472256476, + "grad_norm": 0.13410314917564392, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 36297 + }, + { + "epoch": 3.7299630086313194, + "grad_norm": 0.08052795380353928, + "learning_rate": 0.01, + "loss": 1.988, + "step": 36300 + }, + { + "epoch": 3.730271270036991, + "grad_norm": 0.04205624386668205, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 36303 + }, + { + "epoch": 3.7305795314426633, + "grad_norm": 0.055557433515787125, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 36306 + }, + { + "epoch": 3.7308877928483355, + "grad_norm": 0.08415018022060394, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 36309 + }, + { + "epoch": 3.7311960542540072, + "grad_norm": 0.057384416460990906, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 36312 + }, + { + "epoch": 3.7315043156596794, + "grad_norm": 0.046833690255880356, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 36315 + }, + { + "epoch": 3.7318125770653516, + "grad_norm": 0.0527094230055809, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 36318 + }, + { + "epoch": 3.7321208384710234, + "grad_norm": 0.04863157868385315, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 36321 + }, + { + "epoch": 3.7324290998766956, + "grad_norm": 0.05578998848795891, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 36324 + }, + { + "epoch": 3.7327373612823673, + "grad_norm": 0.08895915746688843, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 36327 + }, + { + "epoch": 3.7330456226880395, + "grad_norm": 0.14340227842330933, + "learning_rate": 0.01, + "loss": 1.999, + "step": 36330 + }, + { + "epoch": 3.7333538840937113, + "grad_norm": 0.074753038585186, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 36333 + }, + { + "epoch": 3.7336621454993835, + "grad_norm": 0.05069069564342499, + "learning_rate": 0.01, + "loss": 2.025, + "step": 36336 + }, + { + "epoch": 3.7339704069050557, + "grad_norm": 0.0417485274374485, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 36339 + }, + { + "epoch": 3.7342786683107274, + "grad_norm": 0.04727747291326523, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 36342 + }, + { + "epoch": 3.7345869297163996, + "grad_norm": 0.056336645036935806, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 36345 + }, + { + "epoch": 3.7348951911220714, + "grad_norm": 0.09889603406190872, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 36348 + }, + { + "epoch": 3.7352034525277436, + "grad_norm": 0.06653422117233276, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 36351 + }, + { + "epoch": 3.7355117139334153, + "grad_norm": 0.05115421861410141, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 36354 + }, + { + "epoch": 3.7358199753390875, + "grad_norm": 0.04250407963991165, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 36357 + }, + { + "epoch": 3.7361282367447597, + "grad_norm": 0.037854380905628204, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 36360 + }, + { + "epoch": 3.7364364981504314, + "grad_norm": 0.06039261072874069, + "learning_rate": 0.01, + "loss": 2.0364, + "step": 36363 + }, + { + "epoch": 3.7367447595561036, + "grad_norm": 0.09946703165769577, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 36366 + }, + { + "epoch": 3.737053020961776, + "grad_norm": 0.10038801282644272, + "learning_rate": 0.01, + "loss": 2.012, + "step": 36369 + }, + { + "epoch": 3.7373612823674476, + "grad_norm": 0.07845285534858704, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 36372 + }, + { + "epoch": 3.7376695437731193, + "grad_norm": 0.08079241961240768, + "learning_rate": 0.01, + "loss": 1.994, + "step": 36375 + }, + { + "epoch": 3.7379778051787915, + "grad_norm": 0.04414941743016243, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 36378 + }, + { + "epoch": 3.7382860665844637, + "grad_norm": 0.14685457944869995, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 36381 + }, + { + "epoch": 3.7385943279901355, + "grad_norm": 0.04633990302681923, + "learning_rate": 0.01, + "loss": 2.0, + "step": 36384 + }, + { + "epoch": 3.7389025893958077, + "grad_norm": 0.04103631526231766, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 36387 + }, + { + "epoch": 3.73921085080148, + "grad_norm": 0.03546123206615448, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 36390 + }, + { + "epoch": 3.7395191122071516, + "grad_norm": 0.08792685717344284, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 36393 + }, + { + "epoch": 3.739827373612824, + "grad_norm": 0.09209249913692474, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 36396 + }, + { + "epoch": 3.7401356350184956, + "grad_norm": 0.0480416901409626, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 36399 + }, + { + "epoch": 3.7404438964241677, + "grad_norm": 0.03383079916238785, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 36402 + }, + { + "epoch": 3.7407521578298395, + "grad_norm": 0.06483932584524155, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 36405 + }, + { + "epoch": 3.7410604192355117, + "grad_norm": 0.04043160006403923, + "learning_rate": 0.01, + "loss": 1.994, + "step": 36408 + }, + { + "epoch": 3.741368680641184, + "grad_norm": 0.047389864921569824, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 36411 + }, + { + "epoch": 3.7416769420468556, + "grad_norm": 0.04405448958277702, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 36414 + }, + { + "epoch": 3.741985203452528, + "grad_norm": 0.03635013848543167, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 36417 + }, + { + "epoch": 3.7422934648582, + "grad_norm": 0.06296937167644501, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 36420 + }, + { + "epoch": 3.7426017262638718, + "grad_norm": 0.08138510584831238, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 36423 + }, + { + "epoch": 3.7429099876695435, + "grad_norm": 0.05814410001039505, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 36426 + }, + { + "epoch": 3.7432182490752157, + "grad_norm": 0.09043169766664505, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 36429 + }, + { + "epoch": 3.743526510480888, + "grad_norm": 0.038527343422174454, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 36432 + }, + { + "epoch": 3.7438347718865597, + "grad_norm": 0.03342151269316673, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 36435 + }, + { + "epoch": 3.744143033292232, + "grad_norm": 0.054572802037000656, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 36438 + }, + { + "epoch": 3.744451294697904, + "grad_norm": 0.10896478593349457, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 36441 + }, + { + "epoch": 3.744759556103576, + "grad_norm": 0.04996712505817413, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 36444 + }, + { + "epoch": 3.745067817509248, + "grad_norm": 0.06720001995563507, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 36447 + }, + { + "epoch": 3.7453760789149197, + "grad_norm": 0.07731924951076508, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 36450 + }, + { + "epoch": 3.745684340320592, + "grad_norm": 0.07545910775661469, + "learning_rate": 0.01, + "loss": 2.0, + "step": 36453 + }, + { + "epoch": 3.7459926017262637, + "grad_norm": 0.07236587256193161, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 36456 + }, + { + "epoch": 3.746300863131936, + "grad_norm": 0.05105200409889221, + "learning_rate": 0.01, + "loss": 1.986, + "step": 36459 + }, + { + "epoch": 3.746609124537608, + "grad_norm": 0.06345131993293762, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 36462 + }, + { + "epoch": 3.74691738594328, + "grad_norm": 0.08864062279462814, + "learning_rate": 0.01, + "loss": 1.989, + "step": 36465 + }, + { + "epoch": 3.747225647348952, + "grad_norm": 0.06058958172798157, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 36468 + }, + { + "epoch": 3.7475339087546238, + "grad_norm": 0.08054932206869125, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 36471 + }, + { + "epoch": 3.747842170160296, + "grad_norm": 0.04538315162062645, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 36474 + }, + { + "epoch": 3.7481504315659677, + "grad_norm": 0.11694948375225067, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 36477 + }, + { + "epoch": 3.74845869297164, + "grad_norm": 0.037599921226501465, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 36480 + }, + { + "epoch": 3.748766954377312, + "grad_norm": 0.062208350747823715, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 36483 + }, + { + "epoch": 3.749075215782984, + "grad_norm": 0.04657081514596939, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 36486 + }, + { + "epoch": 3.749383477188656, + "grad_norm": 0.11601486057043076, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 36489 + }, + { + "epoch": 3.7496917385943282, + "grad_norm": 0.04120590165257454, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 36492 + }, + { + "epoch": 3.75, + "grad_norm": 0.07783524692058563, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 36495 + }, + { + "epoch": 3.7503082614056718, + "grad_norm": 0.04452613368630409, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 36498 + }, + { + "epoch": 3.750616522811344, + "grad_norm": 0.10393857210874557, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 36501 + }, + { + "epoch": 3.750924784217016, + "grad_norm": 0.11419197171926498, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 36504 + }, + { + "epoch": 3.751233045622688, + "grad_norm": 0.0752970427274704, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 36507 + }, + { + "epoch": 3.75154130702836, + "grad_norm": 0.06409469246864319, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 36510 + }, + { + "epoch": 3.7518495684340323, + "grad_norm": 0.053437262773513794, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 36513 + }, + { + "epoch": 3.752157829839704, + "grad_norm": 0.04102127254009247, + "learning_rate": 0.01, + "loss": 1.999, + "step": 36516 + }, + { + "epoch": 3.7524660912453762, + "grad_norm": 0.03595980256795883, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 36519 + }, + { + "epoch": 3.752774352651048, + "grad_norm": 0.10266067087650299, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 36522 + }, + { + "epoch": 3.75308261405672, + "grad_norm": 0.07302891463041306, + "learning_rate": 0.01, + "loss": 2.012, + "step": 36525 + }, + { + "epoch": 3.753390875462392, + "grad_norm": 0.08043140172958374, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 36528 + }, + { + "epoch": 3.753699136868064, + "grad_norm": 0.0765608549118042, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 36531 + }, + { + "epoch": 3.7540073982737363, + "grad_norm": 0.040770966559648514, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 36534 + }, + { + "epoch": 3.754315659679408, + "grad_norm": 0.09125746041536331, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 36537 + }, + { + "epoch": 3.7546239210850803, + "grad_norm": 0.10734240710735321, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 36540 + }, + { + "epoch": 3.754932182490752, + "grad_norm": 0.05876481533050537, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 36543 + }, + { + "epoch": 3.755240443896424, + "grad_norm": 0.04223402962088585, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 36546 + }, + { + "epoch": 3.755548705302096, + "grad_norm": 0.03419182077050209, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 36549 + }, + { + "epoch": 3.755856966707768, + "grad_norm": 0.08762037754058838, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 36552 + }, + { + "epoch": 3.7561652281134403, + "grad_norm": 0.035800088196992874, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 36555 + }, + { + "epoch": 3.756473489519112, + "grad_norm": 0.07538183778524399, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 36558 + }, + { + "epoch": 3.7567817509247843, + "grad_norm": 0.05067085847258568, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 36561 + }, + { + "epoch": 3.7570900123304565, + "grad_norm": 0.07041851431131363, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 36564 + }, + { + "epoch": 3.7573982737361282, + "grad_norm": 0.06819632649421692, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 36567 + }, + { + "epoch": 3.7577065351418, + "grad_norm": 0.11158425360918045, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 36570 + }, + { + "epoch": 3.758014796547472, + "grad_norm": 0.09598013758659363, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 36573 + }, + { + "epoch": 3.7583230579531444, + "grad_norm": 0.0501101016998291, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 36576 + }, + { + "epoch": 3.758631319358816, + "grad_norm": 0.03867189958691597, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 36579 + }, + { + "epoch": 3.7589395807644883, + "grad_norm": 0.03836961090564728, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 36582 + }, + { + "epoch": 3.7592478421701605, + "grad_norm": 0.04135824367403984, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 36585 + }, + { + "epoch": 3.7595561035758323, + "grad_norm": 0.0922931507229805, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 36588 + }, + { + "epoch": 3.7598643649815044, + "grad_norm": 0.048077963292598724, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 36591 + }, + { + "epoch": 3.760172626387176, + "grad_norm": 0.04263912886381149, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 36594 + }, + { + "epoch": 3.7604808877928484, + "grad_norm": 0.05825957655906677, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 36597 + }, + { + "epoch": 3.76078914919852, + "grad_norm": 0.04579320177435875, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 36600 + }, + { + "epoch": 3.7610974106041923, + "grad_norm": 0.07970302551984787, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 36603 + }, + { + "epoch": 3.7614056720098645, + "grad_norm": 0.1091640293598175, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 36606 + }, + { + "epoch": 3.7617139334155363, + "grad_norm": 0.07577066123485565, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 36609 + }, + { + "epoch": 3.7620221948212085, + "grad_norm": 0.07901261001825333, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 36612 + }, + { + "epoch": 3.7623304562268807, + "grad_norm": 0.040557824075222015, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 36615 + }, + { + "epoch": 3.7626387176325524, + "grad_norm": 0.03163420036435127, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 36618 + }, + { + "epoch": 3.762946979038224, + "grad_norm": 0.0960499569773674, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 36621 + }, + { + "epoch": 3.7632552404438964, + "grad_norm": 0.05283837392926216, + "learning_rate": 0.01, + "loss": 2.0351, + "step": 36624 + }, + { + "epoch": 3.7635635018495686, + "grad_norm": 0.03764748573303223, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 36627 + }, + { + "epoch": 3.7638717632552403, + "grad_norm": 0.07017308473587036, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 36630 + }, + { + "epoch": 3.7641800246609125, + "grad_norm": 0.06506321579217911, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 36633 + }, + { + "epoch": 3.7644882860665847, + "grad_norm": 0.040651753544807434, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 36636 + }, + { + "epoch": 3.7647965474722564, + "grad_norm": 0.0897100567817688, + "learning_rate": 0.01, + "loss": 2.014, + "step": 36639 + }, + { + "epoch": 3.7651048088779286, + "grad_norm": 0.1067187637090683, + "learning_rate": 0.01, + "loss": 2.0369, + "step": 36642 + }, + { + "epoch": 3.7654130702836004, + "grad_norm": 0.08220155537128448, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 36645 + }, + { + "epoch": 3.7657213316892726, + "grad_norm": 0.0830981582403183, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 36648 + }, + { + "epoch": 3.7660295930949443, + "grad_norm": 0.04124632850289345, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 36651 + }, + { + "epoch": 3.7663378545006165, + "grad_norm": 0.03570066764950752, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 36654 + }, + { + "epoch": 3.7666461159062887, + "grad_norm": 0.04715826362371445, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 36657 + }, + { + "epoch": 3.7669543773119605, + "grad_norm": 0.05129298195242882, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 36660 + }, + { + "epoch": 3.7672626387176327, + "grad_norm": 0.07690376043319702, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 36663 + }, + { + "epoch": 3.7675709001233044, + "grad_norm": 0.06316812336444855, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 36666 + }, + { + "epoch": 3.7678791615289766, + "grad_norm": 0.045724622905254364, + "learning_rate": 0.01, + "loss": 2.007, + "step": 36669 + }, + { + "epoch": 3.7681874229346484, + "grad_norm": 0.12661319971084595, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 36672 + }, + { + "epoch": 3.7684956843403206, + "grad_norm": 0.03898628428578377, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 36675 + }, + { + "epoch": 3.7688039457459928, + "grad_norm": 0.04297169670462608, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 36678 + }, + { + "epoch": 3.7691122071516645, + "grad_norm": 0.047098271548748016, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 36681 + }, + { + "epoch": 3.7694204685573367, + "grad_norm": 0.0880102887749672, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 36684 + }, + { + "epoch": 3.769728729963009, + "grad_norm": 0.09598886221647263, + "learning_rate": 0.01, + "loss": 1.987, + "step": 36687 + }, + { + "epoch": 3.7700369913686806, + "grad_norm": 0.07920796424150467, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 36690 + }, + { + "epoch": 3.7703452527743524, + "grad_norm": 0.09643390029668808, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 36693 + }, + { + "epoch": 3.7706535141800246, + "grad_norm": 0.07026758790016174, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 36696 + }, + { + "epoch": 3.770961775585697, + "grad_norm": 0.04533863440155983, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 36699 + }, + { + "epoch": 3.7712700369913685, + "grad_norm": 0.03511887788772583, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 36702 + }, + { + "epoch": 3.7715782983970407, + "grad_norm": 0.03846128657460213, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 36705 + }, + { + "epoch": 3.771886559802713, + "grad_norm": 0.07523466646671295, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 36708 + }, + { + "epoch": 3.7721948212083847, + "grad_norm": 0.09649614989757538, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 36711 + }, + { + "epoch": 3.772503082614057, + "grad_norm": 0.04845314472913742, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 36714 + }, + { + "epoch": 3.7728113440197286, + "grad_norm": 0.037477899342775345, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 36717 + }, + { + "epoch": 3.773119605425401, + "grad_norm": 0.08308611810207367, + "learning_rate": 0.01, + "loss": 2.017, + "step": 36720 + }, + { + "epoch": 3.7734278668310726, + "grad_norm": 0.048357848078012466, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 36723 + }, + { + "epoch": 3.7737361282367448, + "grad_norm": 0.04424552246928215, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 36726 + }, + { + "epoch": 3.774044389642417, + "grad_norm": 0.04857276752591133, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 36729 + }, + { + "epoch": 3.7743526510480887, + "grad_norm": 0.039389774203300476, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 36732 + }, + { + "epoch": 3.774660912453761, + "grad_norm": 0.04370071366429329, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 36735 + }, + { + "epoch": 3.7749691738594326, + "grad_norm": 0.05456184223294258, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 36738 + }, + { + "epoch": 3.775277435265105, + "grad_norm": 0.0888199731707573, + "learning_rate": 0.01, + "loss": 2.008, + "step": 36741 + }, + { + "epoch": 3.7755856966707766, + "grad_norm": 0.19867762923240662, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 36744 + }, + { + "epoch": 3.775893958076449, + "grad_norm": 0.17659060657024384, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 36747 + }, + { + "epoch": 3.776202219482121, + "grad_norm": 0.0629454255104065, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 36750 + }, + { + "epoch": 3.7765104808877927, + "grad_norm": 0.05801904946565628, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 36753 + }, + { + "epoch": 3.776818742293465, + "grad_norm": 0.04907959699630737, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 36756 + }, + { + "epoch": 3.777127003699137, + "grad_norm": 0.08606990426778793, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 36759 + }, + { + "epoch": 3.777435265104809, + "grad_norm": 0.03293627128005028, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 36762 + }, + { + "epoch": 3.7777435265104806, + "grad_norm": 0.033272456377744675, + "learning_rate": 0.01, + "loss": 1.982, + "step": 36765 + }, + { + "epoch": 3.778051787916153, + "grad_norm": 0.10520119965076447, + "learning_rate": 0.01, + "loss": 1.9592, + "step": 36768 + }, + { + "epoch": 3.778360049321825, + "grad_norm": 0.03949661925435066, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 36771 + }, + { + "epoch": 3.7786683107274968, + "grad_norm": 0.10781146585941315, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 36774 + }, + { + "epoch": 3.778976572133169, + "grad_norm": 0.1707312911748886, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 36777 + }, + { + "epoch": 3.779284833538841, + "grad_norm": 0.10689792037010193, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 36780 + }, + { + "epoch": 3.779593094944513, + "grad_norm": 0.06377099454402924, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 36783 + }, + { + "epoch": 3.779901356350185, + "grad_norm": 0.050422243773937225, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 36786 + }, + { + "epoch": 3.780209617755857, + "grad_norm": 0.041165612637996674, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 36789 + }, + { + "epoch": 3.780517879161529, + "grad_norm": 0.07220548391342163, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 36792 + }, + { + "epoch": 3.780826140567201, + "grad_norm": 0.05860710144042969, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 36795 + }, + { + "epoch": 3.781134401972873, + "grad_norm": 0.03842824697494507, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 36798 + }, + { + "epoch": 3.781442663378545, + "grad_norm": 0.04346943646669388, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 36801 + }, + { + "epoch": 3.781750924784217, + "grad_norm": 0.16297590732574463, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 36804 + }, + { + "epoch": 3.782059186189889, + "grad_norm": 0.06720095127820969, + "learning_rate": 0.01, + "loss": 2.0, + "step": 36807 + }, + { + "epoch": 3.782367447595561, + "grad_norm": 0.04820172116160393, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 36810 + }, + { + "epoch": 3.782675709001233, + "grad_norm": 0.0431947223842144, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 36813 + }, + { + "epoch": 3.782983970406905, + "grad_norm": 0.0517662838101387, + "learning_rate": 0.01, + "loss": 2.016, + "step": 36816 + }, + { + "epoch": 3.783292231812577, + "grad_norm": 0.06249597296118736, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 36819 + }, + { + "epoch": 3.783600493218249, + "grad_norm": 0.04001644626259804, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 36822 + }, + { + "epoch": 3.783908754623921, + "grad_norm": 0.0713401585817337, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 36825 + }, + { + "epoch": 3.784217016029593, + "grad_norm": 0.08583984524011612, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 36828 + }, + { + "epoch": 3.7845252774352653, + "grad_norm": 0.05482606962323189, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 36831 + }, + { + "epoch": 3.784833538840937, + "grad_norm": 0.04373779147863388, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 36834 + }, + { + "epoch": 3.7851418002466093, + "grad_norm": 0.09752769768238068, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 36837 + }, + { + "epoch": 3.785450061652281, + "grad_norm": 0.07635717839002609, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 36840 + }, + { + "epoch": 3.7857583230579532, + "grad_norm": 0.07021810859441757, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 36843 + }, + { + "epoch": 3.786066584463625, + "grad_norm": 0.0541268065571785, + "learning_rate": 0.01, + "loss": 2.0252, + "step": 36846 + }, + { + "epoch": 3.786374845869297, + "grad_norm": 0.07205335795879364, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 36849 + }, + { + "epoch": 3.7866831072749694, + "grad_norm": 0.057571567595005035, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 36852 + }, + { + "epoch": 3.786991368680641, + "grad_norm": 0.11135399341583252, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 36855 + }, + { + "epoch": 3.7872996300863133, + "grad_norm": 0.0698394924402237, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 36858 + }, + { + "epoch": 3.787607891491985, + "grad_norm": 0.09506375342607498, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 36861 + }, + { + "epoch": 3.7879161528976573, + "grad_norm": 0.08534973114728928, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 36864 + }, + { + "epoch": 3.788224414303329, + "grad_norm": 0.08360368013381958, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 36867 + }, + { + "epoch": 3.788532675709001, + "grad_norm": 0.08635003864765167, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 36870 + }, + { + "epoch": 3.7888409371146734, + "grad_norm": 0.033921390771865845, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 36873 + }, + { + "epoch": 3.789149198520345, + "grad_norm": 0.04312542825937271, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 36876 + }, + { + "epoch": 3.7894574599260173, + "grad_norm": 0.06157702952623367, + "learning_rate": 0.01, + "loss": 1.9622, + "step": 36879 + }, + { + "epoch": 3.7897657213316895, + "grad_norm": 0.05039060115814209, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 36882 + }, + { + "epoch": 3.7900739827373613, + "grad_norm": 0.05873194709420204, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 36885 + }, + { + "epoch": 3.790382244143033, + "grad_norm": 0.07444643974304199, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 36888 + }, + { + "epoch": 3.7906905055487052, + "grad_norm": 0.06560081243515015, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 36891 + }, + { + "epoch": 3.7909987669543774, + "grad_norm": 0.08456238359212875, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 36894 + }, + { + "epoch": 3.791307028360049, + "grad_norm": 0.09048344194889069, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 36897 + }, + { + "epoch": 3.7916152897657214, + "grad_norm": 0.07640919834375381, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 36900 + }, + { + "epoch": 3.7919235511713936, + "grad_norm": 0.0968911275267601, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 36903 + }, + { + "epoch": 3.7922318125770653, + "grad_norm": 0.08743193000555038, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 36906 + }, + { + "epoch": 3.7925400739827375, + "grad_norm": 0.056414127349853516, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 36909 + }, + { + "epoch": 3.7928483353884093, + "grad_norm": 0.04174700006842613, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 36912 + }, + { + "epoch": 3.7931565967940815, + "grad_norm": 0.03753121197223663, + "learning_rate": 0.01, + "loss": 1.978, + "step": 36915 + }, + { + "epoch": 3.793464858199753, + "grad_norm": 0.04957683011889458, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 36918 + }, + { + "epoch": 3.7937731196054254, + "grad_norm": 0.051355455070734024, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 36921 + }, + { + "epoch": 3.7940813810110976, + "grad_norm": 0.0345148891210556, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 36924 + }, + { + "epoch": 3.7943896424167693, + "grad_norm": 0.12389633059501648, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 36927 + }, + { + "epoch": 3.7946979038224415, + "grad_norm": 0.05504097789525986, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 36930 + }, + { + "epoch": 3.7950061652281133, + "grad_norm": 0.044859953224658966, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 36933 + }, + { + "epoch": 3.7953144266337855, + "grad_norm": 0.06867794692516327, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 36936 + }, + { + "epoch": 3.7956226880394572, + "grad_norm": 0.10308001190423965, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 36939 + }, + { + "epoch": 3.7959309494451294, + "grad_norm": 0.07946982234716415, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 36942 + }, + { + "epoch": 3.7962392108508016, + "grad_norm": 0.058571770787239075, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 36945 + }, + { + "epoch": 3.7965474722564734, + "grad_norm": 0.07778012007474899, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 36948 + }, + { + "epoch": 3.7968557336621456, + "grad_norm": 0.06965510547161102, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 36951 + }, + { + "epoch": 3.7971639950678178, + "grad_norm": 0.06443614512681961, + "learning_rate": 0.01, + "loss": 2.012, + "step": 36954 + }, + { + "epoch": 3.7974722564734895, + "grad_norm": 0.04750034958124161, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 36957 + }, + { + "epoch": 3.7977805178791613, + "grad_norm": 0.039454251527786255, + "learning_rate": 0.01, + "loss": 2.0343, + "step": 36960 + }, + { + "epoch": 3.7980887792848335, + "grad_norm": 0.07771621644496918, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 36963 + }, + { + "epoch": 3.7983970406905057, + "grad_norm": 0.06523919850587845, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 36966 + }, + { + "epoch": 3.7987053020961774, + "grad_norm": 0.055610157549381256, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 36969 + }, + { + "epoch": 3.7990135635018496, + "grad_norm": 0.08819667249917984, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 36972 + }, + { + "epoch": 3.799321824907522, + "grad_norm": 0.05418279394507408, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 36975 + }, + { + "epoch": 3.7996300863131935, + "grad_norm": 0.06648479402065277, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 36978 + }, + { + "epoch": 3.7999383477188657, + "grad_norm": 0.04629239812493324, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 36981 + }, + { + "epoch": 3.8002466091245375, + "grad_norm": 0.042264122515916824, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 36984 + }, + { + "epoch": 3.8005548705302097, + "grad_norm": 0.10186997801065445, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 36987 + }, + { + "epoch": 3.8008631319358814, + "grad_norm": 0.09278517216444016, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 36990 + }, + { + "epoch": 3.8011713933415536, + "grad_norm": 0.07084151357412338, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 36993 + }, + { + "epoch": 3.801479654747226, + "grad_norm": 0.07990908622741699, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 36996 + }, + { + "epoch": 3.8017879161528976, + "grad_norm": 0.039643771946430206, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 36999 + }, + { + "epoch": 3.8020961775585698, + "grad_norm": 0.03678774833679199, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 37002 + }, + { + "epoch": 3.8024044389642415, + "grad_norm": 0.040611330419778824, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 37005 + }, + { + "epoch": 3.8027127003699137, + "grad_norm": 0.03812083601951599, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 37008 + }, + { + "epoch": 3.8030209617755855, + "grad_norm": 0.07582142949104309, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 37011 + }, + { + "epoch": 3.8033292231812577, + "grad_norm": 0.14520719647407532, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 37014 + }, + { + "epoch": 3.80363748458693, + "grad_norm": 0.04497974365949631, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 37017 + }, + { + "epoch": 3.8039457459926016, + "grad_norm": 0.04178651422262192, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 37020 + }, + { + "epoch": 3.804254007398274, + "grad_norm": 0.047346848994493484, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 37023 + }, + { + "epoch": 3.804562268803946, + "grad_norm": 0.04626936465501785, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 37026 + }, + { + "epoch": 3.8048705302096177, + "grad_norm": 0.055330242961645126, + "learning_rate": 0.01, + "loss": 2.0, + "step": 37029 + }, + { + "epoch": 3.8051787916152895, + "grad_norm": 0.040033504366874695, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 37032 + }, + { + "epoch": 3.8054870530209617, + "grad_norm": 0.03897986188530922, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 37035 + }, + { + "epoch": 3.805795314426634, + "grad_norm": 0.07525118440389633, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 37038 + }, + { + "epoch": 3.8061035758323056, + "grad_norm": 0.06256567686796188, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 37041 + }, + { + "epoch": 3.806411837237978, + "grad_norm": 0.05028248950839043, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 37044 + }, + { + "epoch": 3.80672009864365, + "grad_norm": 0.03530338406562805, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 37047 + }, + { + "epoch": 3.8070283600493218, + "grad_norm": 0.044229693710803986, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 37050 + }, + { + "epoch": 3.807336621454994, + "grad_norm": 0.1117880642414093, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 37053 + }, + { + "epoch": 3.8076448828606657, + "grad_norm": 0.04328616335988045, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 37056 + }, + { + "epoch": 3.807953144266338, + "grad_norm": 0.05948890000581741, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 37059 + }, + { + "epoch": 3.8082614056720097, + "grad_norm": 0.043167680501937866, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 37062 + }, + { + "epoch": 3.808569667077682, + "grad_norm": 0.04852902144193649, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 37065 + }, + { + "epoch": 3.808877928483354, + "grad_norm": 0.06212899461388588, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 37068 + }, + { + "epoch": 3.809186189889026, + "grad_norm": 0.07403160631656647, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 37071 + }, + { + "epoch": 3.809494451294698, + "grad_norm": 0.07734464108943939, + "learning_rate": 0.01, + "loss": 2.008, + "step": 37074 + }, + { + "epoch": 3.80980271270037, + "grad_norm": 0.05057765170931816, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 37077 + }, + { + "epoch": 3.810110974106042, + "grad_norm": 0.11746016144752502, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 37080 + }, + { + "epoch": 3.8104192355117137, + "grad_norm": 0.10531330853700638, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 37083 + }, + { + "epoch": 3.810727496917386, + "grad_norm": 0.11436725407838821, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 37086 + }, + { + "epoch": 3.811035758323058, + "grad_norm": 0.04365989565849304, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 37089 + }, + { + "epoch": 3.81134401972873, + "grad_norm": 0.04271963611245155, + "learning_rate": 0.01, + "loss": 1.998, + "step": 37092 + }, + { + "epoch": 3.811652281134402, + "grad_norm": 0.03649172931909561, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 37095 + }, + { + "epoch": 3.811960542540074, + "grad_norm": 0.054175905883312225, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 37098 + }, + { + "epoch": 3.812268803945746, + "grad_norm": 0.041479047387838364, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 37101 + }, + { + "epoch": 3.812577065351418, + "grad_norm": 0.03695906326174736, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 37104 + }, + { + "epoch": 3.81288532675709, + "grad_norm": 0.05167945846915245, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 37107 + }, + { + "epoch": 3.813193588162762, + "grad_norm": 0.0706062912940979, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 37110 + }, + { + "epoch": 3.813501849568434, + "grad_norm": 0.04282987117767334, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 37113 + }, + { + "epoch": 3.813810110974106, + "grad_norm": 0.048825137317180634, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 37116 + }, + { + "epoch": 3.8141183723797782, + "grad_norm": 0.13310399651527405, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 37119 + }, + { + "epoch": 3.81442663378545, + "grad_norm": 0.05691874772310257, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 37122 + }, + { + "epoch": 3.814734895191122, + "grad_norm": 0.07542920112609863, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 37125 + }, + { + "epoch": 3.815043156596794, + "grad_norm": 0.09146812558174133, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 37128 + }, + { + "epoch": 3.815351418002466, + "grad_norm": 0.04742105305194855, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 37131 + }, + { + "epoch": 3.815659679408138, + "grad_norm": 0.03387041017413139, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 37134 + }, + { + "epoch": 3.81596794081381, + "grad_norm": 0.036746036261320114, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 37137 + }, + { + "epoch": 3.8162762022194823, + "grad_norm": 0.06593815982341766, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 37140 + }, + { + "epoch": 3.816584463625154, + "grad_norm": 0.10538439452648163, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 37143 + }, + { + "epoch": 3.816892725030826, + "grad_norm": 0.07849781960248947, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 37146 + }, + { + "epoch": 3.8172009864364984, + "grad_norm": 0.10899082571268082, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 37149 + }, + { + "epoch": 3.81750924784217, + "grad_norm": 0.05171935632824898, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 37152 + }, + { + "epoch": 3.817817509247842, + "grad_norm": 0.06028240546584129, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 37155 + }, + { + "epoch": 3.818125770653514, + "grad_norm": 0.0440855398774147, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 37158 + }, + { + "epoch": 3.8184340320591863, + "grad_norm": 0.05764901638031006, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 37161 + }, + { + "epoch": 3.818742293464858, + "grad_norm": 0.042115770280361176, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 37164 + }, + { + "epoch": 3.8190505548705302, + "grad_norm": 0.0819876417517662, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 37167 + }, + { + "epoch": 3.8193588162762024, + "grad_norm": 0.09432919323444366, + "learning_rate": 0.01, + "loss": 1.999, + "step": 37170 + }, + { + "epoch": 3.819667077681874, + "grad_norm": 0.1223209798336029, + "learning_rate": 0.01, + "loss": 1.994, + "step": 37173 + }, + { + "epoch": 3.8199753390875464, + "grad_norm": 0.08615586161613464, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 37176 + }, + { + "epoch": 3.820283600493218, + "grad_norm": 0.0847785696387291, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 37179 + }, + { + "epoch": 3.8205918618988903, + "grad_norm": 0.059272028505802155, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 37182 + }, + { + "epoch": 3.820900123304562, + "grad_norm": 0.042237572371959686, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 37185 + }, + { + "epoch": 3.8212083847102343, + "grad_norm": 0.04662346839904785, + "learning_rate": 0.01, + "loss": 1.989, + "step": 37188 + }, + { + "epoch": 3.8215166461159065, + "grad_norm": 0.04566279426217079, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 37191 + }, + { + "epoch": 3.821824907521578, + "grad_norm": 0.07829894125461578, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 37194 + }, + { + "epoch": 3.8221331689272504, + "grad_norm": 0.09386474639177322, + "learning_rate": 0.01, + "loss": 2.016, + "step": 37197 + }, + { + "epoch": 3.822441430332922, + "grad_norm": 0.04232482239603996, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 37200 + }, + { + "epoch": 3.8227496917385944, + "grad_norm": 0.09978868067264557, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 37203 + }, + { + "epoch": 3.823057953144266, + "grad_norm": 0.04246772453188896, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 37206 + }, + { + "epoch": 3.8233662145499383, + "grad_norm": 0.13856659829616547, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 37209 + }, + { + "epoch": 3.8236744759556105, + "grad_norm": 0.05659123882651329, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 37212 + }, + { + "epoch": 3.8239827373612822, + "grad_norm": 0.05944579839706421, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 37215 + }, + { + "epoch": 3.8242909987669544, + "grad_norm": 0.040483999997377396, + "learning_rate": 0.01, + "loss": 1.996, + "step": 37218 + }, + { + "epoch": 3.8245992601726266, + "grad_norm": 0.05651898682117462, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 37221 + }, + { + "epoch": 3.8249075215782984, + "grad_norm": 0.04841217026114464, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 37224 + }, + { + "epoch": 3.82521578298397, + "grad_norm": 0.05571025237441063, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 37227 + }, + { + "epoch": 3.8255240443896423, + "grad_norm": 0.07893476635217667, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 37230 + }, + { + "epoch": 3.8258323057953145, + "grad_norm": 0.07275935262441635, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 37233 + }, + { + "epoch": 3.8261405672009863, + "grad_norm": 0.14288173615932465, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 37236 + }, + { + "epoch": 3.8264488286066585, + "grad_norm": 0.18501073122024536, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 37239 + }, + { + "epoch": 3.8267570900123307, + "grad_norm": 0.12003073841333389, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 37242 + }, + { + "epoch": 3.8270653514180024, + "grad_norm": 0.05952821299433708, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 37245 + }, + { + "epoch": 3.8273736128236746, + "grad_norm": 0.052555590867996216, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 37248 + }, + { + "epoch": 3.8276818742293464, + "grad_norm": 0.05527700483798981, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 37251 + }, + { + "epoch": 3.8279901356350186, + "grad_norm": 0.043385427445173264, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 37254 + }, + { + "epoch": 3.8282983970406903, + "grad_norm": 0.05360834673047066, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 37257 + }, + { + "epoch": 3.8286066584463625, + "grad_norm": 0.04542825371026993, + "learning_rate": 0.01, + "loss": 1.981, + "step": 37260 + }, + { + "epoch": 3.8289149198520347, + "grad_norm": 0.04607833921909332, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 37263 + }, + { + "epoch": 3.8292231812577064, + "grad_norm": 0.059813372790813446, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 37266 + }, + { + "epoch": 3.8295314426633786, + "grad_norm": 0.11444689333438873, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 37269 + }, + { + "epoch": 3.829839704069051, + "grad_norm": 0.07510776817798615, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 37272 + }, + { + "epoch": 3.8301479654747226, + "grad_norm": 0.051781926304101944, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 37275 + }, + { + "epoch": 3.8304562268803943, + "grad_norm": 0.051285672932863235, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 37278 + }, + { + "epoch": 3.8307644882860665, + "grad_norm": 0.0464506596326828, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 37281 + }, + { + "epoch": 3.8310727496917387, + "grad_norm": 0.03997113183140755, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 37284 + }, + { + "epoch": 3.8313810110974105, + "grad_norm": 0.03474081680178642, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 37287 + }, + { + "epoch": 3.8316892725030827, + "grad_norm": 0.13113395869731903, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 37290 + }, + { + "epoch": 3.831997533908755, + "grad_norm": 0.03894534707069397, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 37293 + }, + { + "epoch": 3.8323057953144266, + "grad_norm": 0.030656691640615463, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 37296 + }, + { + "epoch": 3.832614056720099, + "grad_norm": 0.08632262796163559, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 37299 + }, + { + "epoch": 3.8329223181257706, + "grad_norm": 0.09762530028820038, + "learning_rate": 0.01, + "loss": 1.997, + "step": 37302 + }, + { + "epoch": 3.8332305795314427, + "grad_norm": 0.07323916256427765, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 37305 + }, + { + "epoch": 3.8335388409371145, + "grad_norm": 0.08117776364088058, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 37308 + }, + { + "epoch": 3.8338471023427867, + "grad_norm": 0.07396585494279861, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 37311 + }, + { + "epoch": 3.834155363748459, + "grad_norm": 0.07192173600196838, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 37314 + }, + { + "epoch": 3.8344636251541306, + "grad_norm": 0.06731805950403214, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 37317 + }, + { + "epoch": 3.834771886559803, + "grad_norm": 0.06851818412542343, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 37320 + }, + { + "epoch": 3.8350801479654746, + "grad_norm": 0.07433861494064331, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 37323 + }, + { + "epoch": 3.835388409371147, + "grad_norm": 0.13405515253543854, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 37326 + }, + { + "epoch": 3.8356966707768185, + "grad_norm": 0.0912710577249527, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 37329 + }, + { + "epoch": 3.8360049321824907, + "grad_norm": 0.05791820213198662, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 37332 + }, + { + "epoch": 3.836313193588163, + "grad_norm": 0.06457755714654922, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 37335 + }, + { + "epoch": 3.8366214549938347, + "grad_norm": 0.06486820429563522, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 37338 + }, + { + "epoch": 3.836929716399507, + "grad_norm": 0.04546729475259781, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 37341 + }, + { + "epoch": 3.837237977805179, + "grad_norm": 0.058978717774152756, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 37344 + }, + { + "epoch": 3.837546239210851, + "grad_norm": 0.09566085040569305, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 37347 + }, + { + "epoch": 3.8378545006165226, + "grad_norm": 0.038889624178409576, + "learning_rate": 0.01, + "loss": 2.0, + "step": 37350 + }, + { + "epoch": 3.8381627620221948, + "grad_norm": 0.09589283168315887, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 37353 + }, + { + "epoch": 3.838471023427867, + "grad_norm": 0.04719104990363121, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 37356 + }, + { + "epoch": 3.8387792848335387, + "grad_norm": 0.09488753974437714, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 37359 + }, + { + "epoch": 3.839087546239211, + "grad_norm": 0.09091513603925705, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 37362 + }, + { + "epoch": 3.839395807644883, + "grad_norm": 0.06685637682676315, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 37365 + }, + { + "epoch": 3.839704069050555, + "grad_norm": 0.0734042376279831, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 37368 + }, + { + "epoch": 3.840012330456227, + "grad_norm": 0.04996969550848007, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 37371 + }, + { + "epoch": 3.840320591861899, + "grad_norm": 0.07901585847139359, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 37374 + }, + { + "epoch": 3.840628853267571, + "grad_norm": 0.06289222836494446, + "learning_rate": 0.01, + "loss": 1.978, + "step": 37377 + }, + { + "epoch": 3.8409371146732427, + "grad_norm": 0.07179414480924606, + "learning_rate": 0.01, + "loss": 1.988, + "step": 37380 + }, + { + "epoch": 3.841245376078915, + "grad_norm": 0.05835287645459175, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 37383 + }, + { + "epoch": 3.841553637484587, + "grad_norm": 0.07789372652769089, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 37386 + }, + { + "epoch": 3.841861898890259, + "grad_norm": 0.10866318643093109, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 37389 + }, + { + "epoch": 3.842170160295931, + "grad_norm": 0.12253516167402267, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 37392 + }, + { + "epoch": 3.842478421701603, + "grad_norm": 0.1773093193769455, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 37395 + }, + { + "epoch": 3.842786683107275, + "grad_norm": 0.12998591363430023, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 37398 + }, + { + "epoch": 3.8430949445129468, + "grad_norm": 0.07139603793621063, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 37401 + }, + { + "epoch": 3.843403205918619, + "grad_norm": 0.05447724089026451, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 37404 + }, + { + "epoch": 3.843711467324291, + "grad_norm": 0.053450725972652435, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 37407 + }, + { + "epoch": 3.844019728729963, + "grad_norm": 0.042635634541511536, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 37410 + }, + { + "epoch": 3.844327990135635, + "grad_norm": 0.06024963781237602, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 37413 + }, + { + "epoch": 3.8446362515413073, + "grad_norm": 0.04149017482995987, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 37416 + }, + { + "epoch": 3.844944512946979, + "grad_norm": 0.043965183198451996, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 37419 + }, + { + "epoch": 3.845252774352651, + "grad_norm": 0.06676291674375534, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 37422 + }, + { + "epoch": 3.845561035758323, + "grad_norm": 0.1391642689704895, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 37425 + }, + { + "epoch": 3.845869297163995, + "grad_norm": 0.12824542820453644, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 37428 + }, + { + "epoch": 3.846177558569667, + "grad_norm": 0.038818515837192535, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 37431 + }, + { + "epoch": 3.846485819975339, + "grad_norm": 0.06105605140328407, + "learning_rate": 0.01, + "loss": 2.005, + "step": 37434 + }, + { + "epoch": 3.8467940813810113, + "grad_norm": 0.05692486837506294, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 37437 + }, + { + "epoch": 3.847102342786683, + "grad_norm": 0.03328600525856018, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 37440 + }, + { + "epoch": 3.8474106041923553, + "grad_norm": 0.05563362315297127, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 37443 + }, + { + "epoch": 3.847718865598027, + "grad_norm": 0.04523022845387459, + "learning_rate": 0.01, + "loss": 1.9607, + "step": 37446 + }, + { + "epoch": 3.848027127003699, + "grad_norm": 0.12618042528629303, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 37449 + }, + { + "epoch": 3.848335388409371, + "grad_norm": 0.10030481964349747, + "learning_rate": 0.01, + "loss": 2.002, + "step": 37452 + }, + { + "epoch": 3.848643649815043, + "grad_norm": 0.09524470567703247, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 37455 + }, + { + "epoch": 3.8489519112207153, + "grad_norm": 0.06369511038064957, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 37458 + }, + { + "epoch": 3.849260172626387, + "grad_norm": 0.052571844309568405, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 37461 + }, + { + "epoch": 3.8495684340320593, + "grad_norm": 0.040871210396289825, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 37464 + }, + { + "epoch": 3.849876695437731, + "grad_norm": 0.0393734946846962, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 37467 + }, + { + "epoch": 3.8501849568434032, + "grad_norm": 0.10289833694696426, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 37470 + }, + { + "epoch": 3.850493218249075, + "grad_norm": 0.053732771426439285, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 37473 + }, + { + "epoch": 3.850801479654747, + "grad_norm": 0.035672031342983246, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 37476 + }, + { + "epoch": 3.8511097410604194, + "grad_norm": 0.07263844460248947, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 37479 + }, + { + "epoch": 3.851418002466091, + "grad_norm": 0.06151323765516281, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 37482 + }, + { + "epoch": 3.8517262638717633, + "grad_norm": 0.08033137768507004, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 37485 + }, + { + "epoch": 3.8520345252774355, + "grad_norm": 0.09900759160518646, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 37488 + }, + { + "epoch": 3.8523427866831073, + "grad_norm": 0.061891715973615646, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 37491 + }, + { + "epoch": 3.8526510480887795, + "grad_norm": 0.039978478103876114, + "learning_rate": 0.01, + "loss": 1.998, + "step": 37494 + }, + { + "epoch": 3.852959309494451, + "grad_norm": 0.04366837814450264, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 37497 + }, + { + "epoch": 3.8532675709001234, + "grad_norm": 0.03704690560698509, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 37500 + }, + { + "epoch": 3.853575832305795, + "grad_norm": 0.03964201733469963, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 37503 + }, + { + "epoch": 3.8538840937114673, + "grad_norm": 0.060866422951221466, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 37506 + }, + { + "epoch": 3.8541923551171395, + "grad_norm": 0.1373164802789688, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 37509 + }, + { + "epoch": 3.8545006165228113, + "grad_norm": 0.12396371364593506, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 37512 + }, + { + "epoch": 3.8548088779284835, + "grad_norm": 0.05732661485671997, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 37515 + }, + { + "epoch": 3.8551171393341552, + "grad_norm": 0.072254478931427, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 37518 + }, + { + "epoch": 3.8554254007398274, + "grad_norm": 0.05103025957942009, + "learning_rate": 0.01, + "loss": 1.981, + "step": 37521 + }, + { + "epoch": 3.855733662145499, + "grad_norm": 0.06759181618690491, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 37524 + }, + { + "epoch": 3.8560419235511714, + "grad_norm": 0.08190746605396271, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 37527 + }, + { + "epoch": 3.8563501849568436, + "grad_norm": 0.052758537232875824, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 37530 + }, + { + "epoch": 3.8566584463625153, + "grad_norm": 0.06971180438995361, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 37533 + }, + { + "epoch": 3.8569667077681875, + "grad_norm": 0.051832135766744614, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 37536 + }, + { + "epoch": 3.8572749691738597, + "grad_norm": 0.11838405579328537, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 37539 + }, + { + "epoch": 3.8575832305795315, + "grad_norm": 0.0657329186797142, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 37542 + }, + { + "epoch": 3.857891491985203, + "grad_norm": 0.042532552033662796, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 37545 + }, + { + "epoch": 3.8581997533908754, + "grad_norm": 0.029605695977807045, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 37548 + }, + { + "epoch": 3.8585080147965476, + "grad_norm": 0.045208025723695755, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 37551 + }, + { + "epoch": 3.8588162762022193, + "grad_norm": 0.061939138919115067, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 37554 + }, + { + "epoch": 3.8591245376078915, + "grad_norm": 0.08816343545913696, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 37557 + }, + { + "epoch": 3.8594327990135637, + "grad_norm": 0.06432296335697174, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 37560 + }, + { + "epoch": 3.8597410604192355, + "grad_norm": 0.07691509276628494, + "learning_rate": 0.01, + "loss": 1.984, + "step": 37563 + }, + { + "epoch": 3.8600493218249077, + "grad_norm": 0.06328088790178299, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 37566 + }, + { + "epoch": 3.8603575832305794, + "grad_norm": 0.10897444188594818, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 37569 + }, + { + "epoch": 3.8606658446362516, + "grad_norm": 0.07461336255073547, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 37572 + }, + { + "epoch": 3.8609741060419234, + "grad_norm": 0.08543375879526138, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 37575 + }, + { + "epoch": 3.8612823674475956, + "grad_norm": 0.09546118974685669, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 37578 + }, + { + "epoch": 3.8615906288532678, + "grad_norm": 0.0741833969950676, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 37581 + }, + { + "epoch": 3.8618988902589395, + "grad_norm": 0.06818868219852448, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 37584 + }, + { + "epoch": 3.8622071516646117, + "grad_norm": 0.05515025556087494, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 37587 + }, + { + "epoch": 3.8625154130702835, + "grad_norm": 0.035819582641124725, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 37590 + }, + { + "epoch": 3.8628236744759556, + "grad_norm": 0.03145124390721321, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 37593 + }, + { + "epoch": 3.8631319358816274, + "grad_norm": 0.036893073469400406, + "learning_rate": 0.01, + "loss": 1.971, + "step": 37596 + }, + { + "epoch": 3.8634401972872996, + "grad_norm": 0.03417917340993881, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 37599 + }, + { + "epoch": 3.863748458692972, + "grad_norm": 0.06035599485039711, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 37602 + }, + { + "epoch": 3.8640567200986435, + "grad_norm": 0.12924471497535706, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 37605 + }, + { + "epoch": 3.8643649815043157, + "grad_norm": 0.1035354882478714, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 37608 + }, + { + "epoch": 3.864673242909988, + "grad_norm": 0.08066008985042572, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 37611 + }, + { + "epoch": 3.8649815043156597, + "grad_norm": 0.09418363124132156, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 37614 + }, + { + "epoch": 3.8652897657213314, + "grad_norm": 0.04805073142051697, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 37617 + }, + { + "epoch": 3.8655980271270036, + "grad_norm": 0.04753410443663597, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 37620 + }, + { + "epoch": 3.865906288532676, + "grad_norm": 0.0458386205136776, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 37623 + }, + { + "epoch": 3.8662145499383476, + "grad_norm": 0.1318642795085907, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 37626 + }, + { + "epoch": 3.8665228113440198, + "grad_norm": 0.10072299838066101, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 37629 + }, + { + "epoch": 3.866831072749692, + "grad_norm": 0.06701991707086563, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 37632 + }, + { + "epoch": 3.8671393341553637, + "grad_norm": 0.055372897535562515, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 37635 + }, + { + "epoch": 3.867447595561036, + "grad_norm": 0.061906322836875916, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 37638 + }, + { + "epoch": 3.8677558569667077, + "grad_norm": 0.05329981446266174, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 37641 + }, + { + "epoch": 3.86806411837238, + "grad_norm": 0.05068975314497948, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 37644 + }, + { + "epoch": 3.8683723797780516, + "grad_norm": 0.09255755692720413, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 37647 + }, + { + "epoch": 3.868680641183724, + "grad_norm": 0.08617328852415085, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 37650 + }, + { + "epoch": 3.868988902589396, + "grad_norm": 0.044413745403289795, + "learning_rate": 0.01, + "loss": 1.978, + "step": 37653 + }, + { + "epoch": 3.8692971639950677, + "grad_norm": 0.086729995906353, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 37656 + }, + { + "epoch": 3.86960542540074, + "grad_norm": 0.07304412871599197, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 37659 + }, + { + "epoch": 3.8699136868064117, + "grad_norm": 0.06820013374090195, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 37662 + }, + { + "epoch": 3.870221948212084, + "grad_norm": 0.06025752052664757, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 37665 + }, + { + "epoch": 3.8705302096177556, + "grad_norm": 0.0649590715765953, + "learning_rate": 0.01, + "loss": 1.996, + "step": 37668 + }, + { + "epoch": 3.870838471023428, + "grad_norm": 0.03553159162402153, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 37671 + }, + { + "epoch": 3.8711467324291, + "grad_norm": 0.06017104908823967, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 37674 + }, + { + "epoch": 3.8714549938347718, + "grad_norm": 0.05896780639886856, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 37677 + }, + { + "epoch": 3.871763255240444, + "grad_norm": 0.03493823856115341, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 37680 + }, + { + "epoch": 3.872071516646116, + "grad_norm": 0.11454503238201141, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 37683 + }, + { + "epoch": 3.872379778051788, + "grad_norm": 0.03603978455066681, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 37686 + }, + { + "epoch": 3.8726880394574597, + "grad_norm": 0.03927883505821228, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 37689 + }, + { + "epoch": 3.872996300863132, + "grad_norm": 0.06592239439487457, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 37692 + }, + { + "epoch": 3.873304562268804, + "grad_norm": 0.04402392357587814, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 37695 + }, + { + "epoch": 3.873612823674476, + "grad_norm": 0.04484686255455017, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 37698 + }, + { + "epoch": 3.873921085080148, + "grad_norm": 0.03577352687716484, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 37701 + }, + { + "epoch": 3.87422934648582, + "grad_norm": 0.03952937200665474, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 37704 + }, + { + "epoch": 3.874537607891492, + "grad_norm": 0.048469673842191696, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 37707 + }, + { + "epoch": 3.874845869297164, + "grad_norm": 0.04531377553939819, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 37710 + }, + { + "epoch": 3.875154130702836, + "grad_norm": 0.11962947994470596, + "learning_rate": 0.01, + "loss": 2.013, + "step": 37713 + }, + { + "epoch": 3.875462392108508, + "grad_norm": 0.03379445523023605, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 37716 + }, + { + "epoch": 3.87577065351418, + "grad_norm": 0.036722879856824875, + "learning_rate": 0.01, + "loss": 1.969, + "step": 37719 + }, + { + "epoch": 3.876078914919852, + "grad_norm": 0.03215174376964569, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 37722 + }, + { + "epoch": 3.876387176325524, + "grad_norm": 0.04591568931937218, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 37725 + }, + { + "epoch": 3.876695437731196, + "grad_norm": 0.04655212163925171, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 37728 + }, + { + "epoch": 3.877003699136868, + "grad_norm": 0.053555794060230255, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 37731 + }, + { + "epoch": 3.8773119605425403, + "grad_norm": 0.05492212250828743, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 37734 + }, + { + "epoch": 3.877620221948212, + "grad_norm": 0.07766193896532059, + "learning_rate": 0.01, + "loss": 1.982, + "step": 37737 + }, + { + "epoch": 3.877928483353884, + "grad_norm": 0.040087949484586716, + "learning_rate": 0.01, + "loss": 2.018, + "step": 37740 + }, + { + "epoch": 3.878236744759556, + "grad_norm": 0.07583244144916534, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 37743 + }, + { + "epoch": 3.8785450061652282, + "grad_norm": 0.0815076008439064, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 37746 + }, + { + "epoch": 3.8788532675709, + "grad_norm": 0.09940320998430252, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 37749 + }, + { + "epoch": 3.879161528976572, + "grad_norm": 0.07148890197277069, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 37752 + }, + { + "epoch": 3.8794697903822444, + "grad_norm": 0.0479053258895874, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 37755 + }, + { + "epoch": 3.879778051787916, + "grad_norm": 0.0394553542137146, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 37758 + }, + { + "epoch": 3.8800863131935883, + "grad_norm": 0.04193533584475517, + "learning_rate": 0.01, + "loss": 1.992, + "step": 37761 + }, + { + "epoch": 3.88039457459926, + "grad_norm": 0.09164579212665558, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 37764 + }, + { + "epoch": 3.8807028360049323, + "grad_norm": 0.06852073222398758, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 37767 + }, + { + "epoch": 3.881011097410604, + "grad_norm": 0.049102578312158585, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 37770 + }, + { + "epoch": 3.881319358816276, + "grad_norm": 0.12974314391613007, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 37773 + }, + { + "epoch": 3.8816276202219484, + "grad_norm": 0.07722889631986618, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 37776 + }, + { + "epoch": 3.88193588162762, + "grad_norm": 0.07344157248735428, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 37779 + }, + { + "epoch": 3.8822441430332923, + "grad_norm": 0.035780053585767746, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 37782 + }, + { + "epoch": 3.882552404438964, + "grad_norm": 0.04180228337645531, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 37785 + }, + { + "epoch": 3.8828606658446363, + "grad_norm": 0.06659300625324249, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 37788 + }, + { + "epoch": 3.883168927250308, + "grad_norm": 0.08275042474269867, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 37791 + }, + { + "epoch": 3.8834771886559802, + "grad_norm": 0.12271406501531601, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 37794 + }, + { + "epoch": 3.8837854500616524, + "grad_norm": 0.14413659274578094, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 37797 + }, + { + "epoch": 3.884093711467324, + "grad_norm": 0.0712043046951294, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 37800 + }, + { + "epoch": 3.8844019728729964, + "grad_norm": 0.06497600674629211, + "learning_rate": 0.01, + "loss": 2.018, + "step": 37803 + }, + { + "epoch": 3.8847102342786686, + "grad_norm": 0.053064875304698944, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 37806 + }, + { + "epoch": 3.8850184956843403, + "grad_norm": 0.04865000769495964, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 37809 + }, + { + "epoch": 3.885326757090012, + "grad_norm": 0.03862098976969719, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 37812 + }, + { + "epoch": 3.8856350184956843, + "grad_norm": 0.07821226119995117, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 37815 + }, + { + "epoch": 3.8859432799013565, + "grad_norm": 0.04477280378341675, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 37818 + }, + { + "epoch": 3.886251541307028, + "grad_norm": 0.11052905023097992, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 37821 + }, + { + "epoch": 3.8865598027127004, + "grad_norm": 0.07528085261583328, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 37824 + }, + { + "epoch": 3.8868680641183726, + "grad_norm": 0.09329832345247269, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 37827 + }, + { + "epoch": 3.8871763255240444, + "grad_norm": 0.03858843818306923, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 37830 + }, + { + "epoch": 3.8874845869297165, + "grad_norm": 0.05364726856350899, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 37833 + }, + { + "epoch": 3.8877928483353883, + "grad_norm": 0.036494240164756775, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 37836 + }, + { + "epoch": 3.8881011097410605, + "grad_norm": 0.033809784799814224, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 37839 + }, + { + "epoch": 3.8884093711467322, + "grad_norm": 0.08358091861009598, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 37842 + }, + { + "epoch": 3.8887176325524044, + "grad_norm": 0.04314170405268669, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 37845 + }, + { + "epoch": 3.8890258939580766, + "grad_norm": 0.06448940187692642, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 37848 + }, + { + "epoch": 3.8893341553637484, + "grad_norm": 0.04236144572496414, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 37851 + }, + { + "epoch": 3.8896424167694206, + "grad_norm": 0.08682555705308914, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 37854 + }, + { + "epoch": 3.8899506781750923, + "grad_norm": 0.1599910706281662, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 37857 + }, + { + "epoch": 3.8902589395807645, + "grad_norm": 0.04853571951389313, + "learning_rate": 0.01, + "loss": 2.013, + "step": 37860 + }, + { + "epoch": 3.8905672009864363, + "grad_norm": 0.054008036851882935, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 37863 + }, + { + "epoch": 3.8908754623921085, + "grad_norm": 0.0459190271794796, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 37866 + }, + { + "epoch": 3.8911837237977807, + "grad_norm": 0.047940943390131, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 37869 + }, + { + "epoch": 3.8914919852034524, + "grad_norm": 0.041892241686582565, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 37872 + }, + { + "epoch": 3.8918002466091246, + "grad_norm": 0.037861257791519165, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 37875 + }, + { + "epoch": 3.892108508014797, + "grad_norm": 0.1314014196395874, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 37878 + }, + { + "epoch": 3.8924167694204685, + "grad_norm": 0.053526077419519424, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 37881 + }, + { + "epoch": 3.8927250308261403, + "grad_norm": 0.044471751898527145, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 37884 + }, + { + "epoch": 3.8930332922318125, + "grad_norm": 0.10089153051376343, + "learning_rate": 0.01, + "loss": 2.005, + "step": 37887 + }, + { + "epoch": 3.8933415536374847, + "grad_norm": 0.09028996527194977, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 37890 + }, + { + "epoch": 3.8936498150431564, + "grad_norm": 0.06257162988185883, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 37893 + }, + { + "epoch": 3.8939580764488286, + "grad_norm": 0.056669414043426514, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 37896 + }, + { + "epoch": 3.894266337854501, + "grad_norm": 0.09135915338993073, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 37899 + }, + { + "epoch": 3.8945745992601726, + "grad_norm": 0.055741071701049805, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 37902 + }, + { + "epoch": 3.8948828606658448, + "grad_norm": 0.06624908000230789, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 37905 + }, + { + "epoch": 3.8951911220715165, + "grad_norm": 0.030004529282450676, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 37908 + }, + { + "epoch": 3.8954993834771887, + "grad_norm": 0.04271325841546059, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 37911 + }, + { + "epoch": 3.8958076448828605, + "grad_norm": 0.04701056331396103, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 37914 + }, + { + "epoch": 3.8961159062885327, + "grad_norm": 0.04298432916402817, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 37917 + }, + { + "epoch": 3.896424167694205, + "grad_norm": 0.04561863839626312, + "learning_rate": 0.01, + "loss": 1.9627, + "step": 37920 + }, + { + "epoch": 3.8967324290998766, + "grad_norm": 0.12965039908885956, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 37923 + }, + { + "epoch": 3.897040690505549, + "grad_norm": 0.1109326183795929, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 37926 + }, + { + "epoch": 3.8973489519112205, + "grad_norm": 0.06224660202860832, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 37929 + }, + { + "epoch": 3.8976572133168927, + "grad_norm": 0.06318973749876022, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 37932 + }, + { + "epoch": 3.8979654747225645, + "grad_norm": 0.06799352914094925, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 37935 + }, + { + "epoch": 3.8982737361282367, + "grad_norm": 0.07071252167224884, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 37938 + }, + { + "epoch": 3.898581997533909, + "grad_norm": 0.03879907727241516, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 37941 + }, + { + "epoch": 3.8988902589395806, + "grad_norm": 0.048606619238853455, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 37944 + }, + { + "epoch": 3.899198520345253, + "grad_norm": 0.09814203530550003, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 37947 + }, + { + "epoch": 3.899506781750925, + "grad_norm": 0.04557656869292259, + "learning_rate": 0.01, + "loss": 1.98, + "step": 37950 + }, + { + "epoch": 3.8998150431565968, + "grad_norm": 0.04122527688741684, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 37953 + }, + { + "epoch": 3.900123304562269, + "grad_norm": 0.060118671506643295, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 37956 + }, + { + "epoch": 3.9004315659679407, + "grad_norm": 0.14660358428955078, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 37959 + }, + { + "epoch": 3.900739827373613, + "grad_norm": 0.09819690883159637, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 37962 + }, + { + "epoch": 3.9010480887792847, + "grad_norm": 0.041503068059682846, + "learning_rate": 0.01, + "loss": 1.9565, + "step": 37965 + }, + { + "epoch": 3.901356350184957, + "grad_norm": 0.04021459445357323, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 37968 + }, + { + "epoch": 3.901664611590629, + "grad_norm": 0.04789562150835991, + "learning_rate": 0.01, + "loss": 2.021, + "step": 37971 + }, + { + "epoch": 3.901972872996301, + "grad_norm": 0.03949809446930885, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 37974 + }, + { + "epoch": 3.902281134401973, + "grad_norm": 0.041829485446214676, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 37977 + }, + { + "epoch": 3.9025893958076447, + "grad_norm": 0.13577204942703247, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 37980 + }, + { + "epoch": 3.902897657213317, + "grad_norm": 0.03821146488189697, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 37983 + }, + { + "epoch": 3.9032059186189887, + "grad_norm": 0.07382892072200775, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 37986 + }, + { + "epoch": 3.903514180024661, + "grad_norm": 0.04287475720047951, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 37989 + }, + { + "epoch": 3.903822441430333, + "grad_norm": 0.08588143438100815, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 37992 + }, + { + "epoch": 3.904130702836005, + "grad_norm": 0.060327284038066864, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 37995 + }, + { + "epoch": 3.904438964241677, + "grad_norm": 0.050726667046546936, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 37998 + }, + { + "epoch": 3.904747225647349, + "grad_norm": 0.0876336544752121, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 38001 + }, + { + "epoch": 3.905055487053021, + "grad_norm": 0.05690234154462814, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 38004 + }, + { + "epoch": 3.9053637484586927, + "grad_norm": 0.07977151870727539, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 38007 + }, + { + "epoch": 3.905672009864365, + "grad_norm": 0.038005661219358444, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 38010 + }, + { + "epoch": 3.905980271270037, + "grad_norm": 0.1033119261264801, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 38013 + }, + { + "epoch": 3.906288532675709, + "grad_norm": 0.05024554207921028, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 38016 + }, + { + "epoch": 3.906596794081381, + "grad_norm": 0.07625278830528259, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 38019 + }, + { + "epoch": 3.9069050554870532, + "grad_norm": 0.10337291657924652, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 38022 + }, + { + "epoch": 3.907213316892725, + "grad_norm": 0.04415413364768028, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 38025 + }, + { + "epoch": 3.907521578298397, + "grad_norm": 0.0347541943192482, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 38028 + }, + { + "epoch": 3.907829839704069, + "grad_norm": 0.036209288984537125, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 38031 + }, + { + "epoch": 3.908138101109741, + "grad_norm": 0.0959850400686264, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 38034 + }, + { + "epoch": 3.908446362515413, + "grad_norm": 0.05654274299740791, + "learning_rate": 0.01, + "loss": 1.983, + "step": 38037 + }, + { + "epoch": 3.908754623921085, + "grad_norm": 0.11333990842103958, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 38040 + }, + { + "epoch": 3.9090628853267573, + "grad_norm": 0.05329067260026932, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 38043 + }, + { + "epoch": 3.909371146732429, + "grad_norm": 0.03489474579691887, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 38046 + }, + { + "epoch": 3.909679408138101, + "grad_norm": 0.044765155762434006, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 38049 + }, + { + "epoch": 3.909987669543773, + "grad_norm": 0.11689729988574982, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 38052 + }, + { + "epoch": 3.910295930949445, + "grad_norm": 0.04785189777612686, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 38055 + }, + { + "epoch": 3.910604192355117, + "grad_norm": 0.040157750248909, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 38058 + }, + { + "epoch": 3.910912453760789, + "grad_norm": 0.04107039049267769, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 38061 + }, + { + "epoch": 3.9112207151664613, + "grad_norm": 0.1298598051071167, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 38064 + }, + { + "epoch": 3.911528976572133, + "grad_norm": 0.04832058027386665, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 38067 + }, + { + "epoch": 3.9118372379778052, + "grad_norm": 0.035566527396440506, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 38070 + }, + { + "epoch": 3.9121454993834774, + "grad_norm": 0.12645745277404785, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 38073 + }, + { + "epoch": 3.912453760789149, + "grad_norm": 0.13044588267803192, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 38076 + }, + { + "epoch": 3.912762022194821, + "grad_norm": 0.0751858800649643, + "learning_rate": 0.01, + "loss": 2.024, + "step": 38079 + }, + { + "epoch": 3.913070283600493, + "grad_norm": 0.06417164206504822, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 38082 + }, + { + "epoch": 3.9133785450061653, + "grad_norm": 0.03895511105656624, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 38085 + }, + { + "epoch": 3.913686806411837, + "grad_norm": 0.03581606224179268, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 38088 + }, + { + "epoch": 3.9139950678175093, + "grad_norm": 0.02936650812625885, + "learning_rate": 0.01, + "loss": 1.989, + "step": 38091 + }, + { + "epoch": 3.9143033292231815, + "grad_norm": 0.036661721765995026, + "learning_rate": 0.01, + "loss": 2.009, + "step": 38094 + }, + { + "epoch": 3.914611590628853, + "grad_norm": 0.08295129984617233, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 38097 + }, + { + "epoch": 3.9149198520345254, + "grad_norm": 0.09887045621871948, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 38100 + }, + { + "epoch": 3.915228113440197, + "grad_norm": 0.0821511521935463, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 38103 + }, + { + "epoch": 3.9155363748458694, + "grad_norm": 0.0894683301448822, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 38106 + }, + { + "epoch": 3.915844636251541, + "grad_norm": 0.043715961277484894, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 38109 + }, + { + "epoch": 3.9161528976572133, + "grad_norm": 0.06341227144002914, + "learning_rate": 0.01, + "loss": 2.004, + "step": 38112 + }, + { + "epoch": 3.9164611590628855, + "grad_norm": 0.10574996471405029, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 38115 + }, + { + "epoch": 3.9167694204685573, + "grad_norm": 0.07099676132202148, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 38118 + }, + { + "epoch": 3.9170776818742294, + "grad_norm": 0.051802802830934525, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 38121 + }, + { + "epoch": 3.917385943279901, + "grad_norm": 0.059143371880054474, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 38124 + }, + { + "epoch": 3.9176942046855734, + "grad_norm": 0.07478468120098114, + "learning_rate": 0.01, + "loss": 1.99, + "step": 38127 + }, + { + "epoch": 3.918002466091245, + "grad_norm": 0.05269934609532356, + "learning_rate": 0.01, + "loss": 2.002, + "step": 38130 + }, + { + "epoch": 3.9183107274969173, + "grad_norm": 0.03774020075798035, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 38133 + }, + { + "epoch": 3.9186189889025895, + "grad_norm": 0.06620101630687714, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 38136 + }, + { + "epoch": 3.9189272503082613, + "grad_norm": 0.13302361965179443, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 38139 + }, + { + "epoch": 3.9192355117139335, + "grad_norm": 0.05435695871710777, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 38142 + }, + { + "epoch": 3.9195437731196057, + "grad_norm": 0.041471030563116074, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 38145 + }, + { + "epoch": 3.9198520345252774, + "grad_norm": 0.032130394130945206, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 38148 + }, + { + "epoch": 3.920160295930949, + "grad_norm": 0.032780006527900696, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 38151 + }, + { + "epoch": 3.9204685573366214, + "grad_norm": 0.03699677437543869, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 38154 + }, + { + "epoch": 3.9207768187422936, + "grad_norm": 0.04473430663347244, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 38157 + }, + { + "epoch": 3.9210850801479653, + "grad_norm": 0.06131662428379059, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 38160 + }, + { + "epoch": 3.9213933415536375, + "grad_norm": 0.10085607320070267, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 38163 + }, + { + "epoch": 3.9217016029593097, + "grad_norm": 0.11734067648649216, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 38166 + }, + { + "epoch": 3.9220098643649814, + "grad_norm": 0.09287893027067184, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 38169 + }, + { + "epoch": 3.9223181257706536, + "grad_norm": 0.058617495000362396, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 38172 + }, + { + "epoch": 3.9226263871763254, + "grad_norm": 0.0597362145781517, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 38175 + }, + { + "epoch": 3.9229346485819976, + "grad_norm": 0.046750448644161224, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 38178 + }, + { + "epoch": 3.9232429099876693, + "grad_norm": 0.03863513097167015, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 38181 + }, + { + "epoch": 3.9235511713933415, + "grad_norm": 0.03276417404413223, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 38184 + }, + { + "epoch": 3.9238594327990137, + "grad_norm": 0.03270519897341728, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 38187 + }, + { + "epoch": 3.9241676942046855, + "grad_norm": 0.05820414423942566, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 38190 + }, + { + "epoch": 3.9244759556103577, + "grad_norm": 0.0589318610727787, + "learning_rate": 0.01, + "loss": 2.015, + "step": 38193 + }, + { + "epoch": 3.92478421701603, + "grad_norm": 0.05013816058635712, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 38196 + }, + { + "epoch": 3.9250924784217016, + "grad_norm": 0.10934565216302872, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 38199 + }, + { + "epoch": 3.9254007398273734, + "grad_norm": 0.08114335685968399, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 38202 + }, + { + "epoch": 3.9257090012330456, + "grad_norm": 0.056287068873643875, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 38205 + }, + { + "epoch": 3.9260172626387178, + "grad_norm": 0.04509197920560837, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 38208 + }, + { + "epoch": 3.9263255240443895, + "grad_norm": 0.04409080743789673, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 38211 + }, + { + "epoch": 3.9266337854500617, + "grad_norm": 0.044174257665872574, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 38214 + }, + { + "epoch": 3.926942046855734, + "grad_norm": 0.05122366175055504, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 38217 + }, + { + "epoch": 3.9272503082614056, + "grad_norm": 0.12582433223724365, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 38220 + }, + { + "epoch": 3.927558569667078, + "grad_norm": 0.060516782104969025, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 38223 + }, + { + "epoch": 3.9278668310727496, + "grad_norm": 0.04210484027862549, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 38226 + }, + { + "epoch": 3.928175092478422, + "grad_norm": 0.043509434908628464, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 38229 + }, + { + "epoch": 3.9284833538840935, + "grad_norm": 0.03601152077317238, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 38232 + }, + { + "epoch": 3.9287916152897657, + "grad_norm": 0.04590906575322151, + "learning_rate": 0.01, + "loss": 2.01, + "step": 38235 + }, + { + "epoch": 3.929099876695438, + "grad_norm": 0.06336984038352966, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 38238 + }, + { + "epoch": 3.9294081381011097, + "grad_norm": 0.07014600187540054, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 38241 + }, + { + "epoch": 3.929716399506782, + "grad_norm": 0.07760234922170639, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 38244 + }, + { + "epoch": 3.9300246609124536, + "grad_norm": 0.1088213101029396, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 38247 + }, + { + "epoch": 3.930332922318126, + "grad_norm": 0.04306039586663246, + "learning_rate": 0.01, + "loss": 2.014, + "step": 38250 + }, + { + "epoch": 3.9306411837237976, + "grad_norm": 0.057269759476184845, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 38253 + }, + { + "epoch": 3.9309494451294698, + "grad_norm": 0.04819104075431824, + "learning_rate": 0.01, + "loss": 2.011, + "step": 38256 + }, + { + "epoch": 3.931257706535142, + "grad_norm": 0.038784999400377274, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 38259 + }, + { + "epoch": 3.9315659679408137, + "grad_norm": 0.08599941432476044, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 38262 + }, + { + "epoch": 3.931874229346486, + "grad_norm": 0.10680285841226578, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 38265 + }, + { + "epoch": 3.932182490752158, + "grad_norm": 0.09683788567781448, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 38268 + }, + { + "epoch": 3.93249075215783, + "grad_norm": 0.040799640119075775, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 38271 + }, + { + "epoch": 3.9327990135635016, + "grad_norm": 0.08265798538923264, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 38274 + }, + { + "epoch": 3.933107274969174, + "grad_norm": 0.0628572627902031, + "learning_rate": 0.01, + "loss": 2.018, + "step": 38277 + }, + { + "epoch": 3.933415536374846, + "grad_norm": 0.06475923955440521, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 38280 + }, + { + "epoch": 3.9337237977805177, + "grad_norm": 0.043740466237068176, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 38283 + }, + { + "epoch": 3.93403205918619, + "grad_norm": 0.029720323160290718, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 38286 + }, + { + "epoch": 3.934340320591862, + "grad_norm": 0.050941772758960724, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 38289 + }, + { + "epoch": 3.934648581997534, + "grad_norm": 0.1068761870265007, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 38292 + }, + { + "epoch": 3.934956843403206, + "grad_norm": 0.06410616636276245, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 38295 + }, + { + "epoch": 3.935265104808878, + "grad_norm": 0.10598262399435043, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 38298 + }, + { + "epoch": 3.93557336621455, + "grad_norm": 0.05296116694808006, + "learning_rate": 0.01, + "loss": 1.9625, + "step": 38301 + }, + { + "epoch": 3.9358816276202218, + "grad_norm": 0.04025321081280708, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 38304 + }, + { + "epoch": 3.936189889025894, + "grad_norm": 0.11896882951259613, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 38307 + }, + { + "epoch": 3.936498150431566, + "grad_norm": 0.07203146070241928, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 38310 + }, + { + "epoch": 3.936806411837238, + "grad_norm": 0.05813155323266983, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 38313 + }, + { + "epoch": 3.93711467324291, + "grad_norm": 0.0439312644302845, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 38316 + }, + { + "epoch": 3.937422934648582, + "grad_norm": 0.05411090329289436, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 38319 + }, + { + "epoch": 3.937731196054254, + "grad_norm": 0.035287659615278244, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 38322 + }, + { + "epoch": 3.938039457459926, + "grad_norm": 0.08188273012638092, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 38325 + }, + { + "epoch": 3.938347718865598, + "grad_norm": 0.06879545003175735, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 38328 + }, + { + "epoch": 3.93865598027127, + "grad_norm": 0.06965189427137375, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 38331 + }, + { + "epoch": 3.938964241676942, + "grad_norm": 0.07698633521795273, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 38334 + }, + { + "epoch": 3.939272503082614, + "grad_norm": 0.06989213079214096, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 38337 + }, + { + "epoch": 3.9395807644882863, + "grad_norm": 0.09224730730056763, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 38340 + }, + { + "epoch": 3.939889025893958, + "grad_norm": 0.15504223108291626, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 38343 + }, + { + "epoch": 3.94019728729963, + "grad_norm": 0.06935428082942963, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 38346 + }, + { + "epoch": 3.940505548705302, + "grad_norm": 0.051906321197748184, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 38349 + }, + { + "epoch": 3.940813810110974, + "grad_norm": 0.059517163783311844, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 38352 + }, + { + "epoch": 3.941122071516646, + "grad_norm": 0.031905319541692734, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 38355 + }, + { + "epoch": 3.941430332922318, + "grad_norm": 0.06473187357187271, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 38358 + }, + { + "epoch": 3.9417385943279903, + "grad_norm": 0.0756862536072731, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 38361 + }, + { + "epoch": 3.942046855733662, + "grad_norm": 0.06513907015323639, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 38364 + }, + { + "epoch": 3.9423551171393343, + "grad_norm": 0.0908990353345871, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 38367 + }, + { + "epoch": 3.942663378545006, + "grad_norm": 0.06427323073148727, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 38370 + }, + { + "epoch": 3.9429716399506782, + "grad_norm": 0.09153769910335541, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 38373 + }, + { + "epoch": 3.94327990135635, + "grad_norm": 0.0451352633535862, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 38376 + }, + { + "epoch": 3.943588162762022, + "grad_norm": 0.06844813376665115, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 38379 + }, + { + "epoch": 3.9438964241676944, + "grad_norm": 0.07901204377412796, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 38382 + }, + { + "epoch": 3.944204685573366, + "grad_norm": 0.08094186335802078, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 38385 + }, + { + "epoch": 3.9445129469790383, + "grad_norm": 0.09053739905357361, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 38388 + }, + { + "epoch": 3.9448212083847105, + "grad_norm": 0.04751008749008179, + "learning_rate": 0.01, + "loss": 1.993, + "step": 38391 + }, + { + "epoch": 3.9451294697903823, + "grad_norm": 0.042345285415649414, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 38394 + }, + { + "epoch": 3.945437731196054, + "grad_norm": 0.1027415469288826, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 38397 + }, + { + "epoch": 3.945745992601726, + "grad_norm": 0.12780915200710297, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 38400 + }, + { + "epoch": 3.9460542540073984, + "grad_norm": 0.0731390118598938, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 38403 + }, + { + "epoch": 3.94636251541307, + "grad_norm": 0.07617928087711334, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 38406 + }, + { + "epoch": 3.9466707768187423, + "grad_norm": 0.049755457788705826, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 38409 + }, + { + "epoch": 3.9469790382244145, + "grad_norm": 0.043812233954668045, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 38412 + }, + { + "epoch": 3.9472872996300863, + "grad_norm": 0.07829032093286514, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 38415 + }, + { + "epoch": 3.9475955610357585, + "grad_norm": 0.056485142558813095, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 38418 + }, + { + "epoch": 3.9479038224414302, + "grad_norm": 0.09569665789604187, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 38421 + }, + { + "epoch": 3.9482120838471024, + "grad_norm": 0.07466506212949753, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 38424 + }, + { + "epoch": 3.948520345252774, + "grad_norm": 0.08420269191265106, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 38427 + }, + { + "epoch": 3.9488286066584464, + "grad_norm": 0.05188721418380737, + "learning_rate": 0.01, + "loss": 2.0409, + "step": 38430 + }, + { + "epoch": 3.9491368680641186, + "grad_norm": 0.042890697717666626, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 38433 + }, + { + "epoch": 3.9494451294697903, + "grad_norm": 0.05752531811594963, + "learning_rate": 0.01, + "loss": 1.975, + "step": 38436 + }, + { + "epoch": 3.9497533908754625, + "grad_norm": 0.0403323695063591, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 38439 + }, + { + "epoch": 3.9500616522811343, + "grad_norm": 0.035122547298669815, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 38442 + }, + { + "epoch": 3.9503699136868065, + "grad_norm": 0.04063395410776138, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 38445 + }, + { + "epoch": 3.950678175092478, + "grad_norm": 0.05300283804535866, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 38448 + }, + { + "epoch": 3.9509864364981504, + "grad_norm": 0.06941550225019455, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 38451 + }, + { + "epoch": 3.9512946979038226, + "grad_norm": 0.04268152639269829, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 38454 + }, + { + "epoch": 3.9516029593094943, + "grad_norm": 0.058871544897556305, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 38457 + }, + { + "epoch": 3.9519112207151665, + "grad_norm": 0.0643804594874382, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 38460 + }, + { + "epoch": 3.9522194821208387, + "grad_norm": 0.04509326070547104, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 38463 + }, + { + "epoch": 3.9525277435265105, + "grad_norm": 0.04596889764070511, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 38466 + }, + { + "epoch": 3.9528360049321822, + "grad_norm": 0.08639726787805557, + "learning_rate": 0.01, + "loss": 1.973, + "step": 38469 + }, + { + "epoch": 3.9531442663378544, + "grad_norm": 0.08404930680990219, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 38472 + }, + { + "epoch": 3.9534525277435266, + "grad_norm": 0.09206783026456833, + "learning_rate": 0.01, + "loss": 1.968, + "step": 38475 + }, + { + "epoch": 3.9537607891491984, + "grad_norm": 0.041316352784633636, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 38478 + }, + { + "epoch": 3.9540690505548706, + "grad_norm": 0.07000883668661118, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 38481 + }, + { + "epoch": 3.9543773119605428, + "grad_norm": 0.048716410994529724, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 38484 + }, + { + "epoch": 3.9546855733662145, + "grad_norm": 0.05251453444361687, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 38487 + }, + { + "epoch": 3.9549938347718867, + "grad_norm": 0.04517770931124687, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 38490 + }, + { + "epoch": 3.9553020961775585, + "grad_norm": 0.07227790355682373, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 38493 + }, + { + "epoch": 3.9556103575832307, + "grad_norm": 0.09953956305980682, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 38496 + }, + { + "epoch": 3.9559186189889024, + "grad_norm": 0.06194831430912018, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 38499 + }, + { + "epoch": 3.9562268803945746, + "grad_norm": 0.10566883534193039, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 38502 + }, + { + "epoch": 3.956535141800247, + "grad_norm": 0.04950516298413277, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 38505 + }, + { + "epoch": 3.9568434032059185, + "grad_norm": 0.04657790809869766, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 38508 + }, + { + "epoch": 3.9571516646115907, + "grad_norm": 0.05642826855182648, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 38511 + }, + { + "epoch": 3.9574599260172625, + "grad_norm": 0.049003373831510544, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 38514 + }, + { + "epoch": 3.9577681874229347, + "grad_norm": 0.05019281804561615, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 38517 + }, + { + "epoch": 3.9580764488286064, + "grad_norm": 0.05060233548283577, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 38520 + }, + { + "epoch": 3.9583847102342786, + "grad_norm": 0.051873739808797836, + "learning_rate": 0.01, + "loss": 1.998, + "step": 38523 + }, + { + "epoch": 3.958692971639951, + "grad_norm": 0.11860267072916031, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 38526 + }, + { + "epoch": 3.9590012330456226, + "grad_norm": 0.03894282132387161, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 38529 + }, + { + "epoch": 3.9593094944512948, + "grad_norm": 0.0839400663971901, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 38532 + }, + { + "epoch": 3.959617755856967, + "grad_norm": 0.10270547866821289, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 38535 + }, + { + "epoch": 3.9599260172626387, + "grad_norm": 0.07309349626302719, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 38538 + }, + { + "epoch": 3.9602342786683105, + "grad_norm": 0.03441464155912399, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 38541 + }, + { + "epoch": 3.9605425400739827, + "grad_norm": 0.04434891417622566, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 38544 + }, + { + "epoch": 3.960850801479655, + "grad_norm": 0.030151626095175743, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 38547 + }, + { + "epoch": 3.9611590628853266, + "grad_norm": 0.03249426558613777, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 38550 + }, + { + "epoch": 3.961467324290999, + "grad_norm": 0.06774075329303741, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 38553 + }, + { + "epoch": 3.961775585696671, + "grad_norm": 0.1510474681854248, + "learning_rate": 0.01, + "loss": 1.989, + "step": 38556 + }, + { + "epoch": 3.9620838471023427, + "grad_norm": 0.080832839012146, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 38559 + }, + { + "epoch": 3.962392108508015, + "grad_norm": 0.08914501219987869, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 38562 + }, + { + "epoch": 3.9627003699136867, + "grad_norm": 0.10509749501943588, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 38565 + }, + { + "epoch": 3.963008631319359, + "grad_norm": 0.0980307012796402, + "learning_rate": 0.01, + "loss": 2.006, + "step": 38568 + }, + { + "epoch": 3.9633168927250306, + "grad_norm": 0.04917595908045769, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 38571 + }, + { + "epoch": 3.963625154130703, + "grad_norm": 0.04090237617492676, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 38574 + }, + { + "epoch": 3.963933415536375, + "grad_norm": 0.06782566010951996, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 38577 + }, + { + "epoch": 3.9642416769420468, + "grad_norm": 0.04495246335864067, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 38580 + }, + { + "epoch": 3.964549938347719, + "grad_norm": 0.11113790422677994, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 38583 + }, + { + "epoch": 3.9648581997533907, + "grad_norm": 0.09196839481592178, + "learning_rate": 0.01, + "loss": 1.997, + "step": 38586 + }, + { + "epoch": 3.965166461159063, + "grad_norm": 0.07392636686563492, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 38589 + }, + { + "epoch": 3.9654747225647347, + "grad_norm": 0.0521097257733345, + "learning_rate": 0.01, + "loss": 1.983, + "step": 38592 + }, + { + "epoch": 3.965782983970407, + "grad_norm": 0.05052189901471138, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 38595 + }, + { + "epoch": 3.966091245376079, + "grad_norm": 0.08592119067907333, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 38598 + }, + { + "epoch": 3.966399506781751, + "grad_norm": 0.08535821735858917, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 38601 + }, + { + "epoch": 3.966707768187423, + "grad_norm": 0.06658685207366943, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 38604 + }, + { + "epoch": 3.967016029593095, + "grad_norm": 0.04116528108716011, + "learning_rate": 0.01, + "loss": 1.969, + "step": 38607 + }, + { + "epoch": 3.967324290998767, + "grad_norm": 0.04124008119106293, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 38610 + }, + { + "epoch": 3.967632552404439, + "grad_norm": 0.047569263726472855, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 38613 + }, + { + "epoch": 3.967940813810111, + "grad_norm": 0.04800506308674812, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 38616 + }, + { + "epoch": 3.968249075215783, + "grad_norm": 0.06227673590183258, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 38619 + }, + { + "epoch": 3.968557336621455, + "grad_norm": 0.036228880286216736, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 38622 + }, + { + "epoch": 3.968865598027127, + "grad_norm": 0.03745630383491516, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 38625 + }, + { + "epoch": 3.969173859432799, + "grad_norm": 0.08907367289066315, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 38628 + }, + { + "epoch": 3.969482120838471, + "grad_norm": 0.054506488144397736, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 38631 + }, + { + "epoch": 3.969790382244143, + "grad_norm": 0.04185614362359047, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 38634 + }, + { + "epoch": 3.970098643649815, + "grad_norm": 0.04917627200484276, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 38637 + }, + { + "epoch": 3.970406905055487, + "grad_norm": 0.040258195251226425, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 38640 + }, + { + "epoch": 3.970715166461159, + "grad_norm": 0.08127589523792267, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 38643 + }, + { + "epoch": 3.971023427866831, + "grad_norm": 0.07298692315816879, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 38646 + }, + { + "epoch": 3.9713316892725032, + "grad_norm": 0.09801699966192245, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 38649 + }, + { + "epoch": 3.971639950678175, + "grad_norm": 0.10016069561243057, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 38652 + }, + { + "epoch": 3.971948212083847, + "grad_norm": 0.038826216012239456, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 38655 + }, + { + "epoch": 3.9722564734895194, + "grad_norm": 0.04124876856803894, + "learning_rate": 0.01, + "loss": 1.977, + "step": 38658 + }, + { + "epoch": 3.972564734895191, + "grad_norm": 0.03699329122900963, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 38661 + }, + { + "epoch": 3.972872996300863, + "grad_norm": 0.03506563603878021, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 38664 + }, + { + "epoch": 3.973181257706535, + "grad_norm": 0.08274342864751816, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 38667 + }, + { + "epoch": 3.9734895191122073, + "grad_norm": 0.10225984454154968, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 38670 + }, + { + "epoch": 3.973797780517879, + "grad_norm": 0.08367688208818436, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 38673 + }, + { + "epoch": 3.974106041923551, + "grad_norm": 0.05682690069079399, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 38676 + }, + { + "epoch": 3.9744143033292234, + "grad_norm": 0.03980601951479912, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 38679 + }, + { + "epoch": 3.974722564734895, + "grad_norm": 0.03310983628034592, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 38682 + }, + { + "epoch": 3.9750308261405674, + "grad_norm": 0.05037367716431618, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 38685 + }, + { + "epoch": 3.975339087546239, + "grad_norm": 0.09068721532821655, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 38688 + }, + { + "epoch": 3.9756473489519113, + "grad_norm": 0.10251244902610779, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 38691 + }, + { + "epoch": 3.975955610357583, + "grad_norm": 0.04860818758606911, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 38694 + }, + { + "epoch": 3.9762638717632552, + "grad_norm": 0.0460125096142292, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 38697 + }, + { + "epoch": 3.9765721331689274, + "grad_norm": 0.03295229375362396, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 38700 + }, + { + "epoch": 3.976880394574599, + "grad_norm": 0.0434846356511116, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 38703 + }, + { + "epoch": 3.9771886559802714, + "grad_norm": 0.04077495262026787, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 38706 + }, + { + "epoch": 3.977496917385943, + "grad_norm": 0.08263571560382843, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 38709 + }, + { + "epoch": 3.9778051787916153, + "grad_norm": 0.1033141016960144, + "learning_rate": 0.01, + "loss": 2.02, + "step": 38712 + }, + { + "epoch": 3.978113440197287, + "grad_norm": 0.12253855168819427, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 38715 + }, + { + "epoch": 3.9784217016029593, + "grad_norm": 0.08476614207029343, + "learning_rate": 0.01, + "loss": 1.974, + "step": 38718 + }, + { + "epoch": 3.9787299630086315, + "grad_norm": 0.08248502016067505, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 38721 + }, + { + "epoch": 3.979038224414303, + "grad_norm": 0.06338318437337875, + "learning_rate": 0.01, + "loss": 1.9632, + "step": 38724 + }, + { + "epoch": 3.9793464858199754, + "grad_norm": 0.061125461012125015, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 38727 + }, + { + "epoch": 3.9796547472256476, + "grad_norm": 0.04191330447793007, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 38730 + }, + { + "epoch": 3.9799630086313194, + "grad_norm": 0.04181262478232384, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 38733 + }, + { + "epoch": 3.980271270036991, + "grad_norm": 0.054846856743097305, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 38736 + }, + { + "epoch": 3.9805795314426633, + "grad_norm": 0.1322845071554184, + "learning_rate": 0.01, + "loss": 1.9626, + "step": 38739 + }, + { + "epoch": 3.9808877928483355, + "grad_norm": 0.06795060634613037, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 38742 + }, + { + "epoch": 3.9811960542540072, + "grad_norm": 0.04729272425174713, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 38745 + }, + { + "epoch": 3.9815043156596794, + "grad_norm": 0.05951160192489624, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 38748 + }, + { + "epoch": 3.9818125770653516, + "grad_norm": 0.14003396034240723, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 38751 + }, + { + "epoch": 3.9821208384710234, + "grad_norm": 0.04996626079082489, + "learning_rate": 0.01, + "loss": 2.002, + "step": 38754 + }, + { + "epoch": 3.9824290998766956, + "grad_norm": 0.08134348690509796, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 38757 + }, + { + "epoch": 3.9827373612823673, + "grad_norm": 0.04592986777424812, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 38760 + }, + { + "epoch": 3.9830456226880395, + "grad_norm": 0.06769111007452011, + "learning_rate": 0.01, + "loss": 1.998, + "step": 38763 + }, + { + "epoch": 3.9833538840937113, + "grad_norm": 0.04501201957464218, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 38766 + }, + { + "epoch": 3.9836621454993835, + "grad_norm": 0.07144643366336823, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 38769 + }, + { + "epoch": 3.9839704069050557, + "grad_norm": 0.05670906975865364, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 38772 + }, + { + "epoch": 3.9842786683107274, + "grad_norm": 0.03870624676346779, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 38775 + }, + { + "epoch": 3.9845869297163996, + "grad_norm": 0.08053532242774963, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 38778 + }, + { + "epoch": 3.9848951911220714, + "grad_norm": 0.03753774240612984, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 38781 + }, + { + "epoch": 3.9852034525277436, + "grad_norm": 0.04568708315491676, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 38784 + }, + { + "epoch": 3.9855117139334153, + "grad_norm": 0.03626095503568649, + "learning_rate": 0.01, + "loss": 1.995, + "step": 38787 + }, + { + "epoch": 3.9858199753390875, + "grad_norm": 0.04620308801531792, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 38790 + }, + { + "epoch": 3.9861282367447597, + "grad_norm": 0.05767418071627617, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 38793 + }, + { + "epoch": 3.9864364981504314, + "grad_norm": 0.04969481751322746, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 38796 + }, + { + "epoch": 3.9867447595561036, + "grad_norm": 0.0532878078520298, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 38799 + }, + { + "epoch": 3.987053020961776, + "grad_norm": 0.07379619777202606, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 38802 + }, + { + "epoch": 3.9873612823674476, + "grad_norm": 0.07538430392742157, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 38805 + }, + { + "epoch": 3.9876695437731193, + "grad_norm": 0.0686052069067955, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 38808 + }, + { + "epoch": 3.9879778051787915, + "grad_norm": 0.08726216852664948, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 38811 + }, + { + "epoch": 3.9882860665844637, + "grad_norm": 0.08535965532064438, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 38814 + }, + { + "epoch": 3.9885943279901355, + "grad_norm": 0.046852223575115204, + "learning_rate": 0.01, + "loss": 1.982, + "step": 38817 + }, + { + "epoch": 3.9889025893958077, + "grad_norm": 0.06200144812464714, + "learning_rate": 0.01, + "loss": 2.0423, + "step": 38820 + }, + { + "epoch": 3.98921085080148, + "grad_norm": 0.03675130382180214, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 38823 + }, + { + "epoch": 3.9895191122071516, + "grad_norm": 0.054221536964178085, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 38826 + }, + { + "epoch": 3.989827373612824, + "grad_norm": 0.0411151684820652, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 38829 + }, + { + "epoch": 3.9901356350184956, + "grad_norm": 0.03962259367108345, + "learning_rate": 0.01, + "loss": 2.01, + "step": 38832 + }, + { + "epoch": 3.9904438964241677, + "grad_norm": 0.04097359627485275, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 38835 + }, + { + "epoch": 3.9907521578298395, + "grad_norm": 0.13092494010925293, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 38838 + }, + { + "epoch": 3.9910604192355117, + "grad_norm": 0.03308350592851639, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 38841 + }, + { + "epoch": 3.991368680641184, + "grad_norm": 0.06447092443704605, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 38844 + }, + { + "epoch": 3.9916769420468556, + "grad_norm": 0.06456363946199417, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 38847 + }, + { + "epoch": 3.991985203452528, + "grad_norm": 0.04208895191550255, + "learning_rate": 0.01, + "loss": 2.01, + "step": 38850 + }, + { + "epoch": 3.9922934648582, + "grad_norm": 0.03307265415787697, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 38853 + }, + { + "epoch": 3.9926017262638718, + "grad_norm": 0.06227843463420868, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 38856 + }, + { + "epoch": 3.9929099876695435, + "grad_norm": 0.1568191796541214, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 38859 + }, + { + "epoch": 3.9932182490752157, + "grad_norm": 0.05974143370985985, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 38862 + }, + { + "epoch": 3.993526510480888, + "grad_norm": 0.07882939279079437, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 38865 + }, + { + "epoch": 3.9938347718865597, + "grad_norm": 0.053341448307037354, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 38868 + }, + { + "epoch": 3.994143033292232, + "grad_norm": 0.0673101395368576, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 38871 + }, + { + "epoch": 3.994451294697904, + "grad_norm": 0.06340447813272476, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 38874 + }, + { + "epoch": 3.994759556103576, + "grad_norm": 0.06743529438972473, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 38877 + }, + { + "epoch": 3.995067817509248, + "grad_norm": 0.044702883809804916, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 38880 + }, + { + "epoch": 3.9953760789149197, + "grad_norm": 0.038102682679891586, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 38883 + }, + { + "epoch": 3.995684340320592, + "grad_norm": 0.0471016988158226, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 38886 + }, + { + "epoch": 3.9959926017262637, + "grad_norm": 0.10289987921714783, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 38889 + }, + { + "epoch": 3.996300863131936, + "grad_norm": 0.08012085407972336, + "learning_rate": 0.01, + "loss": 2.011, + "step": 38892 + }, + { + "epoch": 3.996609124537608, + "grad_norm": 0.07357537001371384, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 38895 + }, + { + "epoch": 3.99691738594328, + "grad_norm": 0.08909714221954346, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 38898 + }, + { + "epoch": 3.997225647348952, + "grad_norm": 0.044727593660354614, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 38901 + }, + { + "epoch": 3.9975339087546238, + "grad_norm": 0.039593808352947235, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 38904 + }, + { + "epoch": 3.997842170160296, + "grad_norm": 0.03478686884045601, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 38907 + }, + { + "epoch": 3.9981504315659677, + "grad_norm": 0.09729648381471634, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 38910 + }, + { + "epoch": 3.99845869297164, + "grad_norm": 0.12499833852052689, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 38913 + }, + { + "epoch": 3.998766954377312, + "grad_norm": 0.10060276091098785, + "learning_rate": 0.01, + "loss": 1.9634, + "step": 38916 + }, + { + "epoch": 3.999075215782984, + "grad_norm": 0.060861632227897644, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 38919 + }, + { + "epoch": 3.999383477188656, + "grad_norm": 0.058074526488780975, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 38922 + }, + { + "epoch": 3.9996917385943282, + "grad_norm": 0.08413925021886826, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 38925 + }, + { + "epoch": 4.0, + "grad_norm": 0.06637567281723022, + "learning_rate": 0.01, + "loss": 1.978, + "step": 38928 + }, + { + "epoch": 3.9937423061140747, + "grad_norm": 0.04972624033689499, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 38931 + }, + { + "epoch": 3.9940500615510874, + "grad_norm": 0.04883033037185669, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 38934 + }, + { + "epoch": 3.9943578169881, + "grad_norm": 0.03551949933171272, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 38937 + }, + { + "epoch": 3.994665572425113, + "grad_norm": 0.03538177162408829, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 38940 + }, + { + "epoch": 3.994973327862126, + "grad_norm": 0.13709349930286407, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 38943 + }, + { + "epoch": 3.9952810832991386, + "grad_norm": 0.05646511912345886, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 38946 + }, + { + "epoch": 3.995588838736151, + "grad_norm": 0.05141003429889679, + "learning_rate": 0.01, + "loss": 2.025, + "step": 38949 + }, + { + "epoch": 3.9958965941731637, + "grad_norm": 0.1064891591668129, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 38952 + }, + { + "epoch": 3.9962043496101765, + "grad_norm": 0.058718711137771606, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 38955 + }, + { + "epoch": 3.9965121050471892, + "grad_norm": 0.05866394191980362, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 38958 + }, + { + "epoch": 3.996819860484202, + "grad_norm": 0.036083538085222244, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 38961 + }, + { + "epoch": 3.9971276159212143, + "grad_norm": 0.05041573569178581, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 38964 + }, + { + "epoch": 3.997435371358227, + "grad_norm": 0.05070210620760918, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 38967 + }, + { + "epoch": 3.99774312679524, + "grad_norm": 0.06114819273352623, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 38970 + }, + { + "epoch": 3.9980508822322527, + "grad_norm": 0.05506499856710434, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 38973 + }, + { + "epoch": 3.9983586376692655, + "grad_norm": 0.06224251538515091, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 38976 + }, + { + "epoch": 3.9986663931062782, + "grad_norm": 0.05054394155740738, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 38979 + }, + { + "epoch": 3.998974148543291, + "grad_norm": 0.03862088546156883, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 38982 + }, + { + "epoch": 3.999281903980304, + "grad_norm": 0.04840533435344696, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 38985 + }, + { + "epoch": 3.9995896594173166, + "grad_norm": 0.05625883862376213, + "learning_rate": 0.01, + "loss": 1.993, + "step": 38988 + }, + { + "epoch": 3.9998974148543294, + "grad_norm": 0.04202372580766678, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 38991 + }, + { + "epoch": 4.000205170291342, + "grad_norm": 0.03988848999142647, + "learning_rate": 0.01, + "loss": 2.005, + "step": 38994 + }, + { + "epoch": 4.000512925728355, + "grad_norm": 0.08701229840517044, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 38997 + }, + { + "epoch": 4.000820681165367, + "grad_norm": 0.13237404823303223, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 39000 + }, + { + "epoch": 4.00112843660238, + "grad_norm": 0.0758156031370163, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 39003 + }, + { + "epoch": 4.001436192039392, + "grad_norm": 0.07759084552526474, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 39006 + }, + { + "epoch": 4.001743947476405, + "grad_norm": 0.08195871859788895, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 39009 + }, + { + "epoch": 4.002051702913418, + "grad_norm": 0.048866480588912964, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 39012 + }, + { + "epoch": 4.002359458350431, + "grad_norm": 0.04807426407933235, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 39015 + }, + { + "epoch": 4.0026672137874435, + "grad_norm": 0.07215370982885361, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 39018 + }, + { + "epoch": 4.002974969224456, + "grad_norm": 0.05422010272741318, + "learning_rate": 0.01, + "loss": 2.001, + "step": 39021 + }, + { + "epoch": 4.003282724661469, + "grad_norm": 0.06720750778913498, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 39024 + }, + { + "epoch": 4.003590480098482, + "grad_norm": 0.04077715426683426, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 39027 + }, + { + "epoch": 4.003898235535495, + "grad_norm": 0.05866453796625137, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 39030 + }, + { + "epoch": 4.004205990972507, + "grad_norm": 0.03861930966377258, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 39033 + }, + { + "epoch": 4.00451374640952, + "grad_norm": 0.03546518459916115, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 39036 + }, + { + "epoch": 4.004821501846533, + "grad_norm": 0.034643933176994324, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 39039 + }, + { + "epoch": 4.005129257283546, + "grad_norm": 0.0831715315580368, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 39042 + }, + { + "epoch": 4.005437012720558, + "grad_norm": 0.06925207376480103, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 39045 + }, + { + "epoch": 4.00574476815757, + "grad_norm": 0.08311621099710464, + "learning_rate": 0.01, + "loss": 2.0402, + "step": 39048 + }, + { + "epoch": 4.006052523594583, + "grad_norm": 0.08028697222471237, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 39051 + }, + { + "epoch": 4.006360279031596, + "grad_norm": 0.1259499341249466, + "learning_rate": 0.01, + "loss": 2.028, + "step": 39054 + }, + { + "epoch": 4.006668034468609, + "grad_norm": 0.06442322582006454, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 39057 + }, + { + "epoch": 4.0069757899056215, + "grad_norm": 0.08281309902667999, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 39060 + }, + { + "epoch": 4.007283545342634, + "grad_norm": 0.04970608651638031, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 39063 + }, + { + "epoch": 4.007591300779647, + "grad_norm": 0.04361598566174507, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 39066 + }, + { + "epoch": 4.00789905621666, + "grad_norm": 0.04321054369211197, + "learning_rate": 0.01, + "loss": 2.002, + "step": 39069 + }, + { + "epoch": 4.008206811653673, + "grad_norm": 0.05904306843876839, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 39072 + }, + { + "epoch": 4.008514567090685, + "grad_norm": 0.0728040412068367, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 39075 + }, + { + "epoch": 4.008822322527698, + "grad_norm": 0.09545755386352539, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 39078 + }, + { + "epoch": 4.009130077964711, + "grad_norm": 0.10636181384325027, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 39081 + }, + { + "epoch": 4.009437833401724, + "grad_norm": 0.08768682181835175, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 39084 + }, + { + "epoch": 4.0097455888387366, + "grad_norm": 0.04949640482664108, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 39087 + }, + { + "epoch": 4.010053344275748, + "grad_norm": 0.0413932166993618, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 39090 + }, + { + "epoch": 4.010361099712761, + "grad_norm": 0.02756902389228344, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 39093 + }, + { + "epoch": 4.010668855149774, + "grad_norm": 0.08485575020313263, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 39096 + }, + { + "epoch": 4.010976610586787, + "grad_norm": 0.0896422490477562, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 39099 + }, + { + "epoch": 4.0112843660238, + "grad_norm": 0.09696487337350845, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 39102 + }, + { + "epoch": 4.011592121460812, + "grad_norm": 0.059906743466854095, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 39105 + }, + { + "epoch": 4.011899876897825, + "grad_norm": 0.12596943974494934, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 39108 + }, + { + "epoch": 4.012207632334838, + "grad_norm": 0.08249086886644363, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 39111 + }, + { + "epoch": 4.012515387771851, + "grad_norm": 0.1073683500289917, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 39114 + }, + { + "epoch": 4.0128231432088635, + "grad_norm": 0.050193801522254944, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 39117 + }, + { + "epoch": 4.013130898645876, + "grad_norm": 0.04790155962109566, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 39120 + }, + { + "epoch": 4.013438654082889, + "grad_norm": 0.1130373477935791, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 39123 + }, + { + "epoch": 4.013746409519902, + "grad_norm": 0.16575901210308075, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 39126 + }, + { + "epoch": 4.014054164956915, + "grad_norm": 0.03896254301071167, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 39129 + }, + { + "epoch": 4.014361920393927, + "grad_norm": 0.033224210143089294, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 39132 + }, + { + "epoch": 4.014669675830939, + "grad_norm": 0.04422049596905708, + "learning_rate": 0.01, + "loss": 2.0278, + "step": 39135 + }, + { + "epoch": 4.014977431267952, + "grad_norm": 0.046339549124240875, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 39138 + }, + { + "epoch": 4.015285186704965, + "grad_norm": 0.04534962773323059, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 39141 + }, + { + "epoch": 4.015592942141978, + "grad_norm": 0.0634172111749649, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 39144 + }, + { + "epoch": 4.01590069757899, + "grad_norm": 0.0435175783932209, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 39147 + }, + { + "epoch": 4.016208453016003, + "grad_norm": 0.04143211990594864, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 39150 + }, + { + "epoch": 4.016516208453016, + "grad_norm": 0.06689900159835815, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 39153 + }, + { + "epoch": 4.016823963890029, + "grad_norm": 0.19841893017292023, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 39156 + }, + { + "epoch": 4.0171317193270415, + "grad_norm": 0.09940902143716812, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 39159 + }, + { + "epoch": 4.017439474764054, + "grad_norm": 0.0738014280796051, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 39162 + }, + { + "epoch": 4.017747230201067, + "grad_norm": 0.06441953033208847, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 39165 + }, + { + "epoch": 4.01805498563808, + "grad_norm": 0.03884090855717659, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 39168 + }, + { + "epoch": 4.018362741075093, + "grad_norm": 0.036479830741882324, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 39171 + }, + { + "epoch": 4.018670496512105, + "grad_norm": 0.04188670963048935, + "learning_rate": 0.01, + "loss": 2.0239, + "step": 39174 + }, + { + "epoch": 4.018978251949118, + "grad_norm": 0.07043974846601486, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 39177 + }, + { + "epoch": 4.01928600738613, + "grad_norm": 0.07807689160108566, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 39180 + }, + { + "epoch": 4.019593762823143, + "grad_norm": 0.05508783459663391, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 39183 + }, + { + "epoch": 4.019901518260156, + "grad_norm": 0.040311504155397415, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 39186 + }, + { + "epoch": 4.020209273697168, + "grad_norm": 0.03907238692045212, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 39189 + }, + { + "epoch": 4.020517029134181, + "grad_norm": 0.1371290385723114, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 39192 + }, + { + "epoch": 4.020824784571194, + "grad_norm": 0.05499713122844696, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 39195 + }, + { + "epoch": 4.021132540008207, + "grad_norm": 0.049838222563266754, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 39198 + }, + { + "epoch": 4.0214402954452195, + "grad_norm": 0.04565451666712761, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 39201 + }, + { + "epoch": 4.021748050882232, + "grad_norm": 0.06939809769392014, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 39204 + }, + { + "epoch": 4.022055806319245, + "grad_norm": 0.036337222903966904, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 39207 + }, + { + "epoch": 4.022363561756258, + "grad_norm": 0.11887694150209427, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 39210 + }, + { + "epoch": 4.022671317193271, + "grad_norm": 0.05074974149465561, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 39213 + }, + { + "epoch": 4.022979072630283, + "grad_norm": 0.04023103788495064, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 39216 + }, + { + "epoch": 4.023286828067296, + "grad_norm": 0.09158769249916077, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 39219 + }, + { + "epoch": 4.023594583504309, + "grad_norm": 0.06678687036037445, + "learning_rate": 0.01, + "loss": 2.0338, + "step": 39222 + }, + { + "epoch": 4.023902338941321, + "grad_norm": 0.055356625467538834, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 39225 + }, + { + "epoch": 4.024210094378334, + "grad_norm": 0.051128923892974854, + "learning_rate": 0.01, + "loss": 2.0291, + "step": 39228 + }, + { + "epoch": 4.024517849815346, + "grad_norm": 0.08770928531885147, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 39231 + }, + { + "epoch": 4.024825605252359, + "grad_norm": 0.06450860947370529, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 39234 + }, + { + "epoch": 4.025133360689372, + "grad_norm": 0.03998043015599251, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 39237 + }, + { + "epoch": 4.025441116126385, + "grad_norm": 0.036666858941316605, + "learning_rate": 0.01, + "loss": 2.0451, + "step": 39240 + }, + { + "epoch": 4.025748871563398, + "grad_norm": 0.03850167244672775, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 39243 + }, + { + "epoch": 4.02605662700041, + "grad_norm": 0.03165037930011749, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 39246 + }, + { + "epoch": 4.026364382437423, + "grad_norm": 0.03471562638878822, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 39249 + }, + { + "epoch": 4.026672137874436, + "grad_norm": 0.10216906666755676, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 39252 + }, + { + "epoch": 4.026979893311449, + "grad_norm": 0.13467098772525787, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 39255 + }, + { + "epoch": 4.0272876487484615, + "grad_norm": 0.05322883278131485, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 39258 + }, + { + "epoch": 4.027595404185474, + "grad_norm": 0.0329531729221344, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 39261 + }, + { + "epoch": 4.027903159622487, + "grad_norm": 0.04283340275287628, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 39264 + }, + { + "epoch": 4.0282109150595, + "grad_norm": 0.09303436428308487, + "learning_rate": 0.01, + "loss": 2.003, + "step": 39267 + }, + { + "epoch": 4.028518670496512, + "grad_norm": 0.04981641098856926, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 39270 + }, + { + "epoch": 4.0288264259335245, + "grad_norm": 0.05858089402318001, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 39273 + }, + { + "epoch": 4.029134181370537, + "grad_norm": 0.05271727591753006, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 39276 + }, + { + "epoch": 4.02944193680755, + "grad_norm": 0.0625569149851799, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 39279 + }, + { + "epoch": 4.029749692244563, + "grad_norm": 0.06783869862556458, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 39282 + }, + { + "epoch": 4.030057447681576, + "grad_norm": 0.05175579711794853, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 39285 + }, + { + "epoch": 4.030365203118588, + "grad_norm": 0.12327279895544052, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 39288 + }, + { + "epoch": 4.030672958555601, + "grad_norm": 0.09904535114765167, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 39291 + }, + { + "epoch": 4.030980713992614, + "grad_norm": 0.06502281874418259, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 39294 + }, + { + "epoch": 4.031288469429627, + "grad_norm": 0.05546945706009865, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 39297 + }, + { + "epoch": 4.0315962248666395, + "grad_norm": 0.03637825697660446, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 39300 + }, + { + "epoch": 4.031903980303652, + "grad_norm": 0.03696468472480774, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 39303 + }, + { + "epoch": 4.032211735740665, + "grad_norm": 0.11666533350944519, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 39306 + }, + { + "epoch": 4.032519491177678, + "grad_norm": 0.10067463666200638, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 39309 + }, + { + "epoch": 4.032827246614691, + "grad_norm": 0.0598643533885479, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 39312 + }, + { + "epoch": 4.0331350020517025, + "grad_norm": 0.057127151638269424, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 39315 + }, + { + "epoch": 4.033442757488715, + "grad_norm": 0.05786604434251785, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 39318 + }, + { + "epoch": 4.033750512925728, + "grad_norm": 0.040237389504909515, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 39321 + }, + { + "epoch": 4.034058268362741, + "grad_norm": 0.09420931339263916, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 39324 + }, + { + "epoch": 4.034366023799754, + "grad_norm": 0.11208292096853256, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 39327 + }, + { + "epoch": 4.034673779236766, + "grad_norm": 0.07000657171010971, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 39330 + }, + { + "epoch": 4.034981534673779, + "grad_norm": 0.05524434149265289, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 39333 + }, + { + "epoch": 4.035289290110792, + "grad_norm": 0.03453601896762848, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 39336 + }, + { + "epoch": 4.035597045547805, + "grad_norm": 0.046687569469213486, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 39339 + }, + { + "epoch": 4.0359048009848175, + "grad_norm": 0.04349486157298088, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 39342 + }, + { + "epoch": 4.03621255642183, + "grad_norm": 0.08332299441099167, + "learning_rate": 0.01, + "loss": 2.011, + "step": 39345 + }, + { + "epoch": 4.036520311858843, + "grad_norm": 0.07960904389619827, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 39348 + }, + { + "epoch": 4.036828067295856, + "grad_norm": 0.06175240874290466, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 39351 + }, + { + "epoch": 4.037135822732869, + "grad_norm": 0.03728936240077019, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 39354 + }, + { + "epoch": 4.037443578169881, + "grad_norm": 0.046342454850673676, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 39357 + }, + { + "epoch": 4.037751333606893, + "grad_norm": 0.059486132115125656, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 39360 + }, + { + "epoch": 4.038059089043906, + "grad_norm": 0.09025575965642929, + "learning_rate": 0.01, + "loss": 2.0306, + "step": 39363 + }, + { + "epoch": 4.038366844480919, + "grad_norm": 0.0599956177175045, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 39366 + }, + { + "epoch": 4.038674599917932, + "grad_norm": 0.06386277079582214, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 39369 + }, + { + "epoch": 4.038982355354944, + "grad_norm": 0.10979870706796646, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 39372 + }, + { + "epoch": 4.039290110791957, + "grad_norm": 0.13358891010284424, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 39375 + }, + { + "epoch": 4.03959786622897, + "grad_norm": 0.07506405562162399, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 39378 + }, + { + "epoch": 4.039905621665983, + "grad_norm": 0.03969530388712883, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 39381 + }, + { + "epoch": 4.0402133771029956, + "grad_norm": 0.06700876355171204, + "learning_rate": 0.01, + "loss": 2.005, + "step": 39384 + }, + { + "epoch": 4.040521132540008, + "grad_norm": 0.06389278918504715, + "learning_rate": 0.01, + "loss": 2.015, + "step": 39387 + }, + { + "epoch": 4.040828887977021, + "grad_norm": 0.04753594473004341, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 39390 + }, + { + "epoch": 4.041136643414034, + "grad_norm": 0.0517578050494194, + "learning_rate": 0.01, + "loss": 1.979, + "step": 39393 + }, + { + "epoch": 4.041444398851047, + "grad_norm": 0.043198052793741226, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 39396 + }, + { + "epoch": 4.0417521542880595, + "grad_norm": 0.04130061715841293, + "learning_rate": 0.01, + "loss": 2.0426, + "step": 39399 + }, + { + "epoch": 4.042059909725072, + "grad_norm": 0.037592917680740356, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 39402 + }, + { + "epoch": 4.042367665162084, + "grad_norm": 0.07257888466119766, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 39405 + }, + { + "epoch": 4.042675420599097, + "grad_norm": 0.08611748367547989, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 39408 + }, + { + "epoch": 4.04298317603611, + "grad_norm": 0.11179140955209732, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 39411 + }, + { + "epoch": 4.0432909314731225, + "grad_norm": 0.09140360355377197, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 39414 + }, + { + "epoch": 4.043598686910135, + "grad_norm": 0.040217410773038864, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 39417 + }, + { + "epoch": 4.043906442347148, + "grad_norm": 0.04423901066184044, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 39420 + }, + { + "epoch": 4.044214197784161, + "grad_norm": 0.047180719673633575, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 39423 + }, + { + "epoch": 4.044521953221174, + "grad_norm": 0.03836076334118843, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 39426 + }, + { + "epoch": 4.044829708658186, + "grad_norm": 0.08214177936315536, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 39429 + }, + { + "epoch": 4.045137464095199, + "grad_norm": 0.04551496356725693, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 39432 + }, + { + "epoch": 4.045445219532212, + "grad_norm": 0.08608072996139526, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 39435 + }, + { + "epoch": 4.045752974969225, + "grad_norm": 0.03998774662613869, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 39438 + }, + { + "epoch": 4.0460607304062375, + "grad_norm": 0.06219779700040817, + "learning_rate": 0.01, + "loss": 2.001, + "step": 39441 + }, + { + "epoch": 4.04636848584325, + "grad_norm": 0.12329383194446564, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 39444 + }, + { + "epoch": 4.046676241280263, + "grad_norm": 0.10584307461977005, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 39447 + }, + { + "epoch": 4.046983996717275, + "grad_norm": 0.06407187879085541, + "learning_rate": 0.01, + "loss": 2.023, + "step": 39450 + }, + { + "epoch": 4.047291752154288, + "grad_norm": 0.057736970484256744, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 39453 + }, + { + "epoch": 4.0475995075913005, + "grad_norm": 0.062264811247587204, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 39456 + }, + { + "epoch": 4.047907263028313, + "grad_norm": 0.0482734851539135, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 39459 + }, + { + "epoch": 4.048215018465326, + "grad_norm": 0.03942275047302246, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 39462 + }, + { + "epoch": 4.048522773902339, + "grad_norm": 0.08987545222043991, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 39465 + }, + { + "epoch": 4.048830529339352, + "grad_norm": 0.08133430033922195, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 39468 + }, + { + "epoch": 4.049138284776364, + "grad_norm": 0.03588191419839859, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 39471 + }, + { + "epoch": 4.049446040213377, + "grad_norm": 0.058000437915325165, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 39474 + }, + { + "epoch": 4.04975379565039, + "grad_norm": 0.08807062357664108, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 39477 + }, + { + "epoch": 4.050061551087403, + "grad_norm": 0.05153276026248932, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 39480 + }, + { + "epoch": 4.0503693065244155, + "grad_norm": 0.08411730825901031, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 39483 + }, + { + "epoch": 4.050677061961428, + "grad_norm": 0.09271445870399475, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 39486 + }, + { + "epoch": 4.050984817398441, + "grad_norm": 0.07173626124858856, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 39489 + }, + { + "epoch": 4.051292572835454, + "grad_norm": 0.058220986276865005, + "learning_rate": 0.01, + "loss": 2.0296, + "step": 39492 + }, + { + "epoch": 4.051600328272466, + "grad_norm": 0.09059619903564453, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 39495 + }, + { + "epoch": 4.0519080837094785, + "grad_norm": 0.11159291118383408, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 39498 + }, + { + "epoch": 4.052215839146491, + "grad_norm": 0.03904344514012337, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 39501 + }, + { + "epoch": 4.052523594583504, + "grad_norm": 0.12682397663593292, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 39504 + }, + { + "epoch": 4.052831350020517, + "grad_norm": 0.06277670711278915, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 39507 + }, + { + "epoch": 4.05313910545753, + "grad_norm": 0.03622843325138092, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 39510 + }, + { + "epoch": 4.053446860894542, + "grad_norm": 0.056741926819086075, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 39513 + }, + { + "epoch": 4.053754616331555, + "grad_norm": 0.0654342994093895, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 39516 + }, + { + "epoch": 4.054062371768568, + "grad_norm": 0.05300883948802948, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 39519 + }, + { + "epoch": 4.054370127205581, + "grad_norm": 0.1103016659617424, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 39522 + }, + { + "epoch": 4.0546778826425935, + "grad_norm": 0.10315825045108795, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 39525 + }, + { + "epoch": 4.054985638079606, + "grad_norm": 0.11007767170667648, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 39528 + }, + { + "epoch": 4.055293393516619, + "grad_norm": 0.053403954952955246, + "learning_rate": 0.01, + "loss": 1.9443, + "step": 39531 + }, + { + "epoch": 4.055601148953632, + "grad_norm": 0.05486089363694191, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 39534 + }, + { + "epoch": 4.055908904390645, + "grad_norm": 0.05680430680513382, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 39537 + }, + { + "epoch": 4.056216659827657, + "grad_norm": 0.07202226668596268, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 39540 + }, + { + "epoch": 4.056524415264669, + "grad_norm": 0.050710614770650864, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 39543 + }, + { + "epoch": 4.056832170701682, + "grad_norm": 0.05018226429820061, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 39546 + }, + { + "epoch": 4.057139926138695, + "grad_norm": 0.04539674147963524, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 39549 + }, + { + "epoch": 4.057447681575708, + "grad_norm": 0.0405915230512619, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 39552 + }, + { + "epoch": 4.0577554370127205, + "grad_norm": 0.04220306873321533, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 39555 + }, + { + "epoch": 4.058063192449733, + "grad_norm": 0.06802038848400116, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 39558 + }, + { + "epoch": 4.058370947886746, + "grad_norm": 0.16860038042068481, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 39561 + }, + { + "epoch": 4.058678703323759, + "grad_norm": 0.13039590418338776, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 39564 + }, + { + "epoch": 4.058986458760772, + "grad_norm": 0.05722019821405411, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 39567 + }, + { + "epoch": 4.059294214197784, + "grad_norm": 0.05984622612595558, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 39570 + }, + { + "epoch": 4.059601969634797, + "grad_norm": 0.04732242226600647, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 39573 + }, + { + "epoch": 4.05990972507181, + "grad_norm": 0.04328930750489235, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 39576 + }, + { + "epoch": 4.060217480508823, + "grad_norm": 0.06630559265613556, + "learning_rate": 0.01, + "loss": 2.0459, + "step": 39579 + }, + { + "epoch": 4.0605252359458355, + "grad_norm": 0.06271739304065704, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 39582 + }, + { + "epoch": 4.060832991382847, + "grad_norm": 0.05598871782422066, + "learning_rate": 0.01, + "loss": 2.0322, + "step": 39585 + }, + { + "epoch": 4.06114074681986, + "grad_norm": 0.04648594930768013, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 39588 + }, + { + "epoch": 4.061448502256873, + "grad_norm": 0.06579215824604034, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 39591 + }, + { + "epoch": 4.061756257693886, + "grad_norm": 0.05206866189837456, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 39594 + }, + { + "epoch": 4.0620640131308985, + "grad_norm": 0.06146420165896416, + "learning_rate": 0.01, + "loss": 1.998, + "step": 39597 + }, + { + "epoch": 4.062371768567911, + "grad_norm": 0.09550274908542633, + "learning_rate": 0.01, + "loss": 2.023, + "step": 39600 + }, + { + "epoch": 4.062679524004924, + "grad_norm": 0.041216351091861725, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 39603 + }, + { + "epoch": 4.062987279441937, + "grad_norm": 0.050457730889320374, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 39606 + }, + { + "epoch": 4.06329503487895, + "grad_norm": 0.03148980066180229, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 39609 + }, + { + "epoch": 4.063602790315962, + "grad_norm": 0.03415573388338089, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 39612 + }, + { + "epoch": 4.063910545752975, + "grad_norm": 0.038664404302835464, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 39615 + }, + { + "epoch": 4.064218301189988, + "grad_norm": 0.10088005661964417, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 39618 + }, + { + "epoch": 4.064526056627001, + "grad_norm": 0.05986418575048447, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 39621 + }, + { + "epoch": 4.0648338120640135, + "grad_norm": 0.04586298391222954, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 39624 + }, + { + "epoch": 4.065141567501026, + "grad_norm": 0.09720548987388611, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 39627 + }, + { + "epoch": 4.065449322938038, + "grad_norm": 0.1310441493988037, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 39630 + }, + { + "epoch": 4.065757078375051, + "grad_norm": 0.0445309616625309, + "learning_rate": 0.01, + "loss": 2.0295, + "step": 39633 + }, + { + "epoch": 4.066064833812064, + "grad_norm": 0.05492424964904785, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 39636 + }, + { + "epoch": 4.0663725892490765, + "grad_norm": 0.09137557446956635, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 39639 + }, + { + "epoch": 4.066680344686089, + "grad_norm": 0.07394784688949585, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 39642 + }, + { + "epoch": 4.066988100123102, + "grad_norm": 0.0890335887670517, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 39645 + }, + { + "epoch": 4.067295855560115, + "grad_norm": 0.06005888432264328, + "learning_rate": 0.01, + "loss": 1.997, + "step": 39648 + }, + { + "epoch": 4.067603610997128, + "grad_norm": 0.08164118975400925, + "learning_rate": 0.01, + "loss": 1.995, + "step": 39651 + }, + { + "epoch": 4.06791136643414, + "grad_norm": 0.041462332010269165, + "learning_rate": 0.01, + "loss": 1.999, + "step": 39654 + }, + { + "epoch": 4.068219121871153, + "grad_norm": 0.14200016856193542, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 39657 + }, + { + "epoch": 4.068526877308166, + "grad_norm": 0.04974464327096939, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 39660 + }, + { + "epoch": 4.068834632745179, + "grad_norm": 0.05781686678528786, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 39663 + }, + { + "epoch": 4.0691423881821915, + "grad_norm": 0.050336726009845734, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 39666 + }, + { + "epoch": 4.069450143619204, + "grad_norm": 0.0692603662610054, + "learning_rate": 0.01, + "loss": 2.024, + "step": 39669 + }, + { + "epoch": 4.069757899056217, + "grad_norm": 0.052262064069509506, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 39672 + }, + { + "epoch": 4.070065654493229, + "grad_norm": 0.0743674710392952, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 39675 + }, + { + "epoch": 4.070373409930242, + "grad_norm": 0.03609304502606392, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 39678 + }, + { + "epoch": 4.0706811653672546, + "grad_norm": 0.05369256064295769, + "learning_rate": 0.01, + "loss": 2.027, + "step": 39681 + }, + { + "epoch": 4.070988920804267, + "grad_norm": 0.04112347960472107, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 39684 + }, + { + "epoch": 4.07129667624128, + "grad_norm": 0.05583459138870239, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 39687 + }, + { + "epoch": 4.071604431678293, + "grad_norm": 0.06682361662387848, + "learning_rate": 0.01, + "loss": 2.0344, + "step": 39690 + }, + { + "epoch": 4.071912187115306, + "grad_norm": 0.08554589748382568, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 39693 + }, + { + "epoch": 4.0722199425523185, + "grad_norm": 0.07087216526269913, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 39696 + }, + { + "epoch": 4.072527697989331, + "grad_norm": 0.06562238186597824, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 39699 + }, + { + "epoch": 4.072835453426344, + "grad_norm": 0.036247964948415756, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 39702 + }, + { + "epoch": 4.073143208863357, + "grad_norm": 0.08515971153974533, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 39705 + }, + { + "epoch": 4.07345096430037, + "grad_norm": 0.07769300043582916, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 39708 + }, + { + "epoch": 4.073758719737382, + "grad_norm": 0.0872216522693634, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 39711 + }, + { + "epoch": 4.074066475174395, + "grad_norm": 0.06590529531240463, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 39714 + }, + { + "epoch": 4.074374230611408, + "grad_norm": 0.059110917150974274, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 39717 + }, + { + "epoch": 4.07468198604842, + "grad_norm": 0.04299427196383476, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 39720 + }, + { + "epoch": 4.074989741485433, + "grad_norm": 0.10769655555486679, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 39723 + }, + { + "epoch": 4.075297496922445, + "grad_norm": 0.08587364107370377, + "learning_rate": 0.01, + "loss": 2.004, + "step": 39726 + }, + { + "epoch": 4.075605252359458, + "grad_norm": 0.08979383856058121, + "learning_rate": 0.01, + "loss": 2.011, + "step": 39729 + }, + { + "epoch": 4.075913007796471, + "grad_norm": 0.12115131318569183, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 39732 + }, + { + "epoch": 4.076220763233484, + "grad_norm": 0.1939251571893692, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 39735 + }, + { + "epoch": 4.0765285186704965, + "grad_norm": 0.05781332403421402, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 39738 + }, + { + "epoch": 4.076836274107509, + "grad_norm": 0.03456675633788109, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 39741 + }, + { + "epoch": 4.077144029544522, + "grad_norm": 0.040457479655742645, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 39744 + }, + { + "epoch": 4.077451784981535, + "grad_norm": 0.06412683427333832, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 39747 + }, + { + "epoch": 4.077759540418548, + "grad_norm": 0.05500893294811249, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 39750 + }, + { + "epoch": 4.07806729585556, + "grad_norm": 0.05995875224471092, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 39753 + }, + { + "epoch": 4.078375051292573, + "grad_norm": 0.1099732369184494, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 39756 + }, + { + "epoch": 4.078682806729586, + "grad_norm": 0.11458323895931244, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 39759 + }, + { + "epoch": 4.078990562166599, + "grad_norm": 0.07978501915931702, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 39762 + }, + { + "epoch": 4.079298317603611, + "grad_norm": 0.04269685968756676, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 39765 + }, + { + "epoch": 4.079606073040623, + "grad_norm": 0.051762815564870834, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 39768 + }, + { + "epoch": 4.079913828477636, + "grad_norm": 0.030949685722589493, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 39771 + }, + { + "epoch": 4.080221583914649, + "grad_norm": 0.1207941323518753, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 39774 + }, + { + "epoch": 4.080529339351662, + "grad_norm": 0.12475111335515976, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 39777 + }, + { + "epoch": 4.0808370947886745, + "grad_norm": 0.10487036406993866, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 39780 + }, + { + "epoch": 4.081144850225687, + "grad_norm": 0.088489830493927, + "learning_rate": 0.01, + "loss": 2.0399, + "step": 39783 + }, + { + "epoch": 4.0814526056627, + "grad_norm": 0.06538698077201843, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 39786 + }, + { + "epoch": 4.081760361099713, + "grad_norm": 0.05029508098959923, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 39789 + }, + { + "epoch": 4.082068116536726, + "grad_norm": 0.04905729368329048, + "learning_rate": 0.01, + "loss": 2.005, + "step": 39792 + }, + { + "epoch": 4.082375871973738, + "grad_norm": 0.060302965342998505, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 39795 + }, + { + "epoch": 4.082683627410751, + "grad_norm": 0.06065473333001137, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 39798 + }, + { + "epoch": 4.082991382847764, + "grad_norm": 0.04160602018237114, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 39801 + }, + { + "epoch": 4.083299138284777, + "grad_norm": 0.04311453923583031, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 39804 + }, + { + "epoch": 4.0836068937217895, + "grad_norm": 0.03628389909863472, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 39807 + }, + { + "epoch": 4.083914649158801, + "grad_norm": 0.09799020737409592, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 39810 + }, + { + "epoch": 4.084222404595814, + "grad_norm": 0.07026764005422592, + "learning_rate": 0.01, + "loss": 1.989, + "step": 39813 + }, + { + "epoch": 4.084530160032827, + "grad_norm": 0.11306377500295639, + "learning_rate": 0.01, + "loss": 2.0241, + "step": 39816 + }, + { + "epoch": 4.08483791546984, + "grad_norm": 0.13824355602264404, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 39819 + }, + { + "epoch": 4.0851456709068525, + "grad_norm": 0.07312388718128204, + "learning_rate": 0.01, + "loss": 2.0323, + "step": 39822 + }, + { + "epoch": 4.085453426343865, + "grad_norm": 0.06378597021102905, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 39825 + }, + { + "epoch": 4.085761181780878, + "grad_norm": 0.04329591616988182, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 39828 + }, + { + "epoch": 4.086068937217891, + "grad_norm": 0.05057251825928688, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 39831 + }, + { + "epoch": 4.086376692654904, + "grad_norm": 0.047054242342710495, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 39834 + }, + { + "epoch": 4.086684448091916, + "grad_norm": 0.06537993997335434, + "learning_rate": 0.01, + "loss": 1.987, + "step": 39837 + }, + { + "epoch": 4.086992203528929, + "grad_norm": 0.08527065068483353, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 39840 + }, + { + "epoch": 4.087299958965942, + "grad_norm": 0.05401263013482094, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 39843 + }, + { + "epoch": 4.087607714402955, + "grad_norm": 0.04258432239294052, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 39846 + }, + { + "epoch": 4.087915469839968, + "grad_norm": 0.08178570866584778, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 39849 + }, + { + "epoch": 4.08822322527698, + "grad_norm": 0.06067502498626709, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 39852 + }, + { + "epoch": 4.088530980713992, + "grad_norm": 0.04289801046252251, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 39855 + }, + { + "epoch": 4.088838736151005, + "grad_norm": 0.10091704875230789, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 39858 + }, + { + "epoch": 4.089146491588018, + "grad_norm": 0.05211932212114334, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 39861 + }, + { + "epoch": 4.089454247025031, + "grad_norm": 0.08183594793081284, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 39864 + }, + { + "epoch": 4.089762002462043, + "grad_norm": 0.13209478557109833, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 39867 + }, + { + "epoch": 4.090069757899056, + "grad_norm": 0.08384159207344055, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 39870 + }, + { + "epoch": 4.090377513336069, + "grad_norm": 0.10875227302312851, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 39873 + }, + { + "epoch": 4.090685268773082, + "grad_norm": 0.09350070357322693, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 39876 + }, + { + "epoch": 4.0909930242100945, + "grad_norm": 0.0466117262840271, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 39879 + }, + { + "epoch": 4.091300779647107, + "grad_norm": 0.09274325519800186, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 39882 + }, + { + "epoch": 4.09160853508412, + "grad_norm": 0.05788525938987732, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 39885 + }, + { + "epoch": 4.091916290521133, + "grad_norm": 0.07033047825098038, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 39888 + }, + { + "epoch": 4.092224045958146, + "grad_norm": 0.07227031141519547, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 39891 + }, + { + "epoch": 4.092531801395158, + "grad_norm": 0.08519124984741211, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 39894 + }, + { + "epoch": 4.09283955683217, + "grad_norm": 0.038923412561416626, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 39897 + }, + { + "epoch": 4.093147312269183, + "grad_norm": 0.03778720274567604, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 39900 + }, + { + "epoch": 4.093455067706196, + "grad_norm": 0.046422503888607025, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 39903 + }, + { + "epoch": 4.093762823143209, + "grad_norm": 0.13946807384490967, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 39906 + }, + { + "epoch": 4.094070578580221, + "grad_norm": 0.07924194633960724, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 39909 + }, + { + "epoch": 4.094378334017234, + "grad_norm": 0.04913933575153351, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 39912 + }, + { + "epoch": 4.094686089454247, + "grad_norm": 0.03534455969929695, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 39915 + }, + { + "epoch": 4.09499384489126, + "grad_norm": 0.03871719539165497, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 39918 + }, + { + "epoch": 4.0953016003282725, + "grad_norm": 0.05986125394701958, + "learning_rate": 0.01, + "loss": 2.01, + "step": 39921 + }, + { + "epoch": 4.095609355765285, + "grad_norm": 0.06470568478107452, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 39924 + }, + { + "epoch": 4.095917111202298, + "grad_norm": 0.05725434049963951, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 39927 + }, + { + "epoch": 4.096224866639311, + "grad_norm": 0.05102056264877319, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 39930 + }, + { + "epoch": 4.096532622076324, + "grad_norm": 0.04540586844086647, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 39933 + }, + { + "epoch": 4.096840377513336, + "grad_norm": 0.08318594843149185, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 39936 + }, + { + "epoch": 4.097148132950349, + "grad_norm": 0.0833197757601738, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 39939 + }, + { + "epoch": 4.097455888387361, + "grad_norm": 0.06058152765035629, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 39942 + }, + { + "epoch": 4.097763643824374, + "grad_norm": 0.09669670462608337, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 39945 + }, + { + "epoch": 4.098071399261387, + "grad_norm": 0.06633847951889038, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 39948 + }, + { + "epoch": 4.098379154698399, + "grad_norm": 0.1021406352519989, + "learning_rate": 0.01, + "loss": 2.021, + "step": 39951 + }, + { + "epoch": 4.098686910135412, + "grad_norm": 0.047858573496341705, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 39954 + }, + { + "epoch": 4.098994665572425, + "grad_norm": 0.04331503435969353, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 39957 + }, + { + "epoch": 4.099302421009438, + "grad_norm": 0.0399680957198143, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 39960 + }, + { + "epoch": 4.0996101764464505, + "grad_norm": 0.09427163749933243, + "learning_rate": 0.01, + "loss": 1.997, + "step": 39963 + }, + { + "epoch": 4.099917931883463, + "grad_norm": 0.06199577823281288, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 39966 + }, + { + "epoch": 4.100225687320476, + "grad_norm": 0.04445228725671768, + "learning_rate": 0.01, + "loss": 1.98, + "step": 39969 + }, + { + "epoch": 4.100533442757489, + "grad_norm": 0.04458901658654213, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 39972 + }, + { + "epoch": 4.100841198194502, + "grad_norm": 0.05720875784754753, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 39975 + }, + { + "epoch": 4.101148953631514, + "grad_norm": 0.0806422233581543, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 39978 + }, + { + "epoch": 4.101456709068527, + "grad_norm": 0.07191216200590134, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 39981 + }, + { + "epoch": 4.10176446450554, + "grad_norm": 0.04921800270676613, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 39984 + }, + { + "epoch": 4.102072219942552, + "grad_norm": 0.09171293675899506, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 39987 + }, + { + "epoch": 4.102379975379565, + "grad_norm": 0.08604893833398819, + "learning_rate": 0.01, + "loss": 1.998, + "step": 39990 + }, + { + "epoch": 4.1026877308165774, + "grad_norm": 0.0489855632185936, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 39993 + }, + { + "epoch": 4.10299548625359, + "grad_norm": 0.09026241302490234, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 39996 + }, + { + "epoch": 4.103303241690603, + "grad_norm": 0.03529585152864456, + "learning_rate": 0.01, + "loss": 1.989, + "step": 39999 + }, + { + "epoch": 4.103610997127616, + "grad_norm": 0.10228559374809265, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 40002 + }, + { + "epoch": 4.103918752564629, + "grad_norm": 0.04634955897927284, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 40005 + }, + { + "epoch": 4.104226508001641, + "grad_norm": 0.059635523706674576, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 40008 + }, + { + "epoch": 4.104534263438654, + "grad_norm": 0.07889647036790848, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 40011 + }, + { + "epoch": 4.104842018875667, + "grad_norm": 0.056453004479408264, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 40014 + }, + { + "epoch": 4.10514977431268, + "grad_norm": 0.038360368460416794, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 40017 + }, + { + "epoch": 4.1054575297496925, + "grad_norm": 0.08849389106035233, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 40020 + }, + { + "epoch": 4.105765285186705, + "grad_norm": 0.06063401326537132, + "learning_rate": 0.01, + "loss": 2.011, + "step": 40023 + }, + { + "epoch": 4.106073040623718, + "grad_norm": 0.08102670311927795, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 40026 + }, + { + "epoch": 4.106380796060731, + "grad_norm": 0.12359301745891571, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 40029 + }, + { + "epoch": 4.106688551497743, + "grad_norm": 0.04933517053723335, + "learning_rate": 0.01, + "loss": 2.0297, + "step": 40032 + }, + { + "epoch": 4.1069963069347555, + "grad_norm": 0.06319262832403183, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 40035 + }, + { + "epoch": 4.107304062371768, + "grad_norm": 0.1100512370467186, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 40038 + }, + { + "epoch": 4.107611817808781, + "grad_norm": 0.04997371882200241, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 40041 + }, + { + "epoch": 4.107919573245794, + "grad_norm": 0.034478992223739624, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 40044 + }, + { + "epoch": 4.108227328682807, + "grad_norm": 0.07332266122102737, + "learning_rate": 0.01, + "loss": 1.987, + "step": 40047 + }, + { + "epoch": 4.108535084119819, + "grad_norm": 0.07530300319194794, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 40050 + }, + { + "epoch": 4.108842839556832, + "grad_norm": 0.05256710946559906, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 40053 + }, + { + "epoch": 4.109150594993845, + "grad_norm": 0.0342395044863224, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 40056 + }, + { + "epoch": 4.109458350430858, + "grad_norm": 0.05822393298149109, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 40059 + }, + { + "epoch": 4.1097661058678705, + "grad_norm": 0.11184973269701004, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 40062 + }, + { + "epoch": 4.110073861304883, + "grad_norm": 0.10424233227968216, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 40065 + }, + { + "epoch": 4.110381616741896, + "grad_norm": 0.07766477763652802, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 40068 + }, + { + "epoch": 4.110689372178909, + "grad_norm": 0.05194033682346344, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 40071 + }, + { + "epoch": 4.110997127615922, + "grad_norm": 0.059180594980716705, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 40074 + }, + { + "epoch": 4.1113048830529335, + "grad_norm": 0.056441277265548706, + "learning_rate": 0.01, + "loss": 2.0308, + "step": 40077 + }, + { + "epoch": 4.111612638489946, + "grad_norm": 0.10722373425960541, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 40080 + }, + { + "epoch": 4.111920393926959, + "grad_norm": 0.05328166112303734, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 40083 + }, + { + "epoch": 4.112228149363972, + "grad_norm": 0.0920194610953331, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 40086 + }, + { + "epoch": 4.112535904800985, + "grad_norm": 0.09387510269880295, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 40089 + }, + { + "epoch": 4.112843660237997, + "grad_norm": 0.05598600208759308, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 40092 + }, + { + "epoch": 4.11315141567501, + "grad_norm": 0.07474517822265625, + "learning_rate": 0.01, + "loss": 2.026, + "step": 40095 + }, + { + "epoch": 4.113459171112023, + "grad_norm": 0.05041923001408577, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 40098 + }, + { + "epoch": 4.113766926549036, + "grad_norm": 0.09958838671445847, + "learning_rate": 0.01, + "loss": 2.007, + "step": 40101 + }, + { + "epoch": 4.1140746819860485, + "grad_norm": 0.07080104202032089, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 40104 + }, + { + "epoch": 4.114382437423061, + "grad_norm": 0.04018507897853851, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 40107 + }, + { + "epoch": 4.114690192860074, + "grad_norm": 0.034507866948843, + "learning_rate": 0.01, + "loss": 1.995, + "step": 40110 + }, + { + "epoch": 4.114997948297087, + "grad_norm": 0.09373819082975388, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 40113 + }, + { + "epoch": 4.1153057037341, + "grad_norm": 0.09473507106304169, + "learning_rate": 0.01, + "loss": 2.0374, + "step": 40116 + }, + { + "epoch": 4.115613459171112, + "grad_norm": 0.06728008389472961, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 40119 + }, + { + "epoch": 4.115921214608124, + "grad_norm": 0.03551316261291504, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 40122 + }, + { + "epoch": 4.116228970045137, + "grad_norm": 0.048464663326740265, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 40125 + }, + { + "epoch": 4.11653672548215, + "grad_norm": 0.06069257855415344, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 40128 + }, + { + "epoch": 4.116844480919163, + "grad_norm": 0.04196292161941528, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 40131 + }, + { + "epoch": 4.117152236356175, + "grad_norm": 0.056623879820108414, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 40134 + }, + { + "epoch": 4.117459991793188, + "grad_norm": 0.04838422313332558, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 40137 + }, + { + "epoch": 4.117767747230201, + "grad_norm": 0.05446647107601166, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 40140 + }, + { + "epoch": 4.118075502667214, + "grad_norm": 0.04145834967494011, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 40143 + }, + { + "epoch": 4.118383258104227, + "grad_norm": 0.07565242797136307, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 40146 + }, + { + "epoch": 4.118691013541239, + "grad_norm": 0.16024605929851532, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 40149 + }, + { + "epoch": 4.118998768978252, + "grad_norm": 0.10673293471336365, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 40152 + }, + { + "epoch": 4.119306524415265, + "grad_norm": 0.04822041094303131, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 40155 + }, + { + "epoch": 4.119614279852278, + "grad_norm": 0.05074264481663704, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 40158 + }, + { + "epoch": 4.1199220352892905, + "grad_norm": 0.0467289499938488, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 40161 + }, + { + "epoch": 4.120229790726303, + "grad_norm": 0.06745675206184387, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 40164 + }, + { + "epoch": 4.120537546163315, + "grad_norm": 0.05463431030511856, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 40167 + }, + { + "epoch": 4.120845301600328, + "grad_norm": 0.057621899992227554, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 40170 + }, + { + "epoch": 4.121153057037341, + "grad_norm": 0.03955928236246109, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 40173 + }, + { + "epoch": 4.1214608124743535, + "grad_norm": 0.09852177649736404, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 40176 + }, + { + "epoch": 4.121768567911366, + "grad_norm": 0.12283693999052048, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 40179 + }, + { + "epoch": 4.122076323348379, + "grad_norm": 0.046991802752017975, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 40182 + }, + { + "epoch": 4.122384078785392, + "grad_norm": 0.032669685781002045, + "learning_rate": 0.01, + "loss": 2.005, + "step": 40185 + }, + { + "epoch": 4.122691834222405, + "grad_norm": 0.029325902462005615, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 40188 + }, + { + "epoch": 4.122999589659417, + "grad_norm": 0.05086469277739525, + "learning_rate": 0.01, + "loss": 1.986, + "step": 40191 + }, + { + "epoch": 4.12330734509643, + "grad_norm": 0.05128968507051468, + "learning_rate": 0.01, + "loss": 1.983, + "step": 40194 + }, + { + "epoch": 4.123615100533443, + "grad_norm": 0.06649978458881378, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 40197 + }, + { + "epoch": 4.123922855970456, + "grad_norm": 0.07910530269145966, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 40200 + }, + { + "epoch": 4.1242306114074685, + "grad_norm": 0.07179386913776398, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 40203 + }, + { + "epoch": 4.124538366844481, + "grad_norm": 0.04028356075286865, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 40206 + }, + { + "epoch": 4.124846122281494, + "grad_norm": 0.14858920872211456, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 40209 + }, + { + "epoch": 4.125153877718506, + "grad_norm": 0.0865345299243927, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 40212 + }, + { + "epoch": 4.125461633155519, + "grad_norm": 0.04412895813584328, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 40215 + }, + { + "epoch": 4.1257693885925315, + "grad_norm": 0.0482075996696949, + "learning_rate": 0.01, + "loss": 2.013, + "step": 40218 + }, + { + "epoch": 4.126077144029544, + "grad_norm": 0.0381084606051445, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 40221 + }, + { + "epoch": 4.126384899466557, + "grad_norm": 0.03551500290632248, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 40224 + }, + { + "epoch": 4.12669265490357, + "grad_norm": 0.029879622161388397, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 40227 + }, + { + "epoch": 4.127000410340583, + "grad_norm": 0.04461509361863136, + "learning_rate": 0.01, + "loss": 2.006, + "step": 40230 + }, + { + "epoch": 4.127308165777595, + "grad_norm": 0.08034146577119827, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 40233 + }, + { + "epoch": 4.127615921214608, + "grad_norm": 0.03752557560801506, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 40236 + }, + { + "epoch": 4.127923676651621, + "grad_norm": 0.09391690045595169, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 40239 + }, + { + "epoch": 4.128231432088634, + "grad_norm": 0.10475057363510132, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 40242 + }, + { + "epoch": 4.1285391875256465, + "grad_norm": 0.05833762139081955, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 40245 + }, + { + "epoch": 4.128846942962659, + "grad_norm": 0.07527395337820053, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 40248 + }, + { + "epoch": 4.129154698399672, + "grad_norm": 0.037238337099552155, + "learning_rate": 0.01, + "loss": 2.0569, + "step": 40251 + }, + { + "epoch": 4.129462453836685, + "grad_norm": 0.08547326922416687, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 40254 + }, + { + "epoch": 4.129770209273697, + "grad_norm": 0.04352400079369545, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 40257 + }, + { + "epoch": 4.1300779647107095, + "grad_norm": 0.03715146332979202, + "learning_rate": 0.01, + "loss": 2.005, + "step": 40260 + }, + { + "epoch": 4.130385720147722, + "grad_norm": 0.03312180936336517, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 40263 + }, + { + "epoch": 4.130693475584735, + "grad_norm": 0.14868606626987457, + "learning_rate": 0.01, + "loss": 2.016, + "step": 40266 + }, + { + "epoch": 4.131001231021748, + "grad_norm": 0.0412895530462265, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 40269 + }, + { + "epoch": 4.131308986458761, + "grad_norm": 0.059335898607969284, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 40272 + }, + { + "epoch": 4.131616741895773, + "grad_norm": 0.08401087671518326, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 40275 + }, + { + "epoch": 4.131924497332786, + "grad_norm": 0.09615478664636612, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 40278 + }, + { + "epoch": 4.132232252769799, + "grad_norm": 0.06387398391962051, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 40281 + }, + { + "epoch": 4.132540008206812, + "grad_norm": 0.07762457430362701, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 40284 + }, + { + "epoch": 4.132847763643825, + "grad_norm": 0.08931776881217957, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 40287 + }, + { + "epoch": 4.133155519080837, + "grad_norm": 0.03763844072818756, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 40290 + }, + { + "epoch": 4.13346327451785, + "grad_norm": 0.06352074444293976, + "learning_rate": 0.01, + "loss": 2.0431, + "step": 40293 + }, + { + "epoch": 4.133771029954863, + "grad_norm": 0.04778370261192322, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 40296 + }, + { + "epoch": 4.134078785391876, + "grad_norm": 0.06776099652051926, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 40299 + }, + { + "epoch": 4.134386540828888, + "grad_norm": 0.072423554956913, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 40302 + }, + { + "epoch": 4.1346942962659, + "grad_norm": 0.10224346071481705, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 40305 + }, + { + "epoch": 4.135002051702913, + "grad_norm": 0.045054350048303604, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 40308 + }, + { + "epoch": 4.135309807139926, + "grad_norm": 0.10343952476978302, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 40311 + }, + { + "epoch": 4.135617562576939, + "grad_norm": 0.12315492331981659, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 40314 + }, + { + "epoch": 4.1359253180139515, + "grad_norm": 0.06620458513498306, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 40317 + }, + { + "epoch": 4.136233073450964, + "grad_norm": 0.06378698348999023, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 40320 + }, + { + "epoch": 4.136540828887977, + "grad_norm": 0.06669528782367706, + "learning_rate": 0.01, + "loss": 2.022, + "step": 40323 + }, + { + "epoch": 4.13684858432499, + "grad_norm": 0.07347302883863449, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 40326 + }, + { + "epoch": 4.137156339762003, + "grad_norm": 0.06786450743675232, + "learning_rate": 0.01, + "loss": 2.0327, + "step": 40329 + }, + { + "epoch": 4.137464095199015, + "grad_norm": 0.10124550014734268, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 40332 + }, + { + "epoch": 4.137771850636028, + "grad_norm": 0.07563018798828125, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 40335 + }, + { + "epoch": 4.138079606073041, + "grad_norm": 0.08920261263847351, + "learning_rate": 0.01, + "loss": 2.032, + "step": 40338 + }, + { + "epoch": 4.138387361510054, + "grad_norm": 0.07678209245204926, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 40341 + }, + { + "epoch": 4.1386951169470665, + "grad_norm": 0.03569749370217323, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 40344 + }, + { + "epoch": 4.139002872384078, + "grad_norm": 0.046265408396720886, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 40347 + }, + { + "epoch": 4.139310627821091, + "grad_norm": 0.04766137897968292, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 40350 + }, + { + "epoch": 4.139618383258104, + "grad_norm": 0.09092257916927338, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 40353 + }, + { + "epoch": 4.139926138695117, + "grad_norm": 0.05511738359928131, + "learning_rate": 0.01, + "loss": 2.019, + "step": 40356 + }, + { + "epoch": 4.1402338941321295, + "grad_norm": 0.04944039136171341, + "learning_rate": 0.01, + "loss": 1.999, + "step": 40359 + }, + { + "epoch": 4.140541649569142, + "grad_norm": 0.04905549809336662, + "learning_rate": 0.01, + "loss": 2.025, + "step": 40362 + }, + { + "epoch": 4.140849405006155, + "grad_norm": 0.07323266565799713, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 40365 + }, + { + "epoch": 4.141157160443168, + "grad_norm": 0.07263099402189255, + "learning_rate": 0.01, + "loss": 2.016, + "step": 40368 + }, + { + "epoch": 4.141464915880181, + "grad_norm": 0.05902627855539322, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 40371 + }, + { + "epoch": 4.141772671317193, + "grad_norm": 0.0597088448703289, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 40374 + }, + { + "epoch": 4.142080426754206, + "grad_norm": 0.04829247295856476, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 40377 + }, + { + "epoch": 4.142388182191219, + "grad_norm": 0.10093509405851364, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 40380 + }, + { + "epoch": 4.142695937628232, + "grad_norm": 0.06805883347988129, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 40383 + }, + { + "epoch": 4.1430036930652445, + "grad_norm": 0.05700362101197243, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 40386 + }, + { + "epoch": 4.143311448502257, + "grad_norm": 0.10143036395311356, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 40389 + }, + { + "epoch": 4.143619203939269, + "grad_norm": 0.0752461776137352, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 40392 + }, + { + "epoch": 4.143926959376282, + "grad_norm": 0.10534628480672836, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 40395 + }, + { + "epoch": 4.144234714813295, + "grad_norm": 0.042690735310316086, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 40398 + }, + { + "epoch": 4.1445424702503075, + "grad_norm": 0.04265071824193001, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 40401 + }, + { + "epoch": 4.14485022568732, + "grad_norm": 0.04449966922402382, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 40404 + }, + { + "epoch": 4.145157981124333, + "grad_norm": 0.06278623640537262, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 40407 + }, + { + "epoch": 4.145465736561346, + "grad_norm": 0.09633596986532211, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 40410 + }, + { + "epoch": 4.145773491998359, + "grad_norm": 0.06465546041727066, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 40413 + }, + { + "epoch": 4.146081247435371, + "grad_norm": 0.07929039746522903, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 40416 + }, + { + "epoch": 4.146389002872384, + "grad_norm": 0.04692156985402107, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 40419 + }, + { + "epoch": 4.146696758309397, + "grad_norm": 0.09933728724718094, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 40422 + }, + { + "epoch": 4.14700451374641, + "grad_norm": 0.07595301419496536, + "learning_rate": 0.01, + "loss": 2.0262, + "step": 40425 + }, + { + "epoch": 4.1473122691834226, + "grad_norm": 0.06487558037042618, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 40428 + }, + { + "epoch": 4.147620024620435, + "grad_norm": 0.06612923741340637, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 40431 + }, + { + "epoch": 4.147927780057448, + "grad_norm": 0.08177967369556427, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 40434 + }, + { + "epoch": 4.14823553549446, + "grad_norm": 0.12479262799024582, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 40437 + }, + { + "epoch": 4.148543290931473, + "grad_norm": 0.053598951548337936, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 40440 + }, + { + "epoch": 4.148851046368486, + "grad_norm": 0.05604923143982887, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 40443 + }, + { + "epoch": 4.149158801805498, + "grad_norm": 0.044350240379571915, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 40446 + }, + { + "epoch": 4.149466557242511, + "grad_norm": 0.03988419473171234, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 40449 + }, + { + "epoch": 4.149774312679524, + "grad_norm": 0.03739091381430626, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 40452 + }, + { + "epoch": 4.150082068116537, + "grad_norm": 0.0570409819483757, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 40455 + }, + { + "epoch": 4.1503898235535495, + "grad_norm": 0.11358576267957687, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 40458 + }, + { + "epoch": 4.150697578990562, + "grad_norm": 0.08568841218948364, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 40461 + }, + { + "epoch": 4.151005334427575, + "grad_norm": 0.10045678168535233, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 40464 + }, + { + "epoch": 4.151313089864588, + "grad_norm": 0.0720805749297142, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 40467 + }, + { + "epoch": 4.151620845301601, + "grad_norm": 0.136969655752182, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 40470 + }, + { + "epoch": 4.151928600738613, + "grad_norm": 0.1128631979227066, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 40473 + }, + { + "epoch": 4.152236356175626, + "grad_norm": 0.06798527389764786, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 40476 + }, + { + "epoch": 4.152544111612638, + "grad_norm": 0.04990516975522041, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 40479 + }, + { + "epoch": 4.152851867049651, + "grad_norm": 0.0540931336581707, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 40482 + }, + { + "epoch": 4.153159622486664, + "grad_norm": 0.06866136193275452, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 40485 + }, + { + "epoch": 4.153467377923676, + "grad_norm": 0.05682525411248207, + "learning_rate": 0.01, + "loss": 2.009, + "step": 40488 + }, + { + "epoch": 4.153775133360689, + "grad_norm": 0.07948753237724304, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 40491 + }, + { + "epoch": 4.154082888797702, + "grad_norm": 0.10209072381258011, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 40494 + }, + { + "epoch": 4.154390644234715, + "grad_norm": 0.04499402642250061, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 40497 + }, + { + "epoch": 4.1546983996717275, + "grad_norm": 0.03882760554552078, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 40500 + }, + { + "epoch": 4.15500615510874, + "grad_norm": 0.1203235313296318, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 40503 + }, + { + "epoch": 4.155313910545753, + "grad_norm": 0.10118594765663147, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 40506 + }, + { + "epoch": 4.155621665982766, + "grad_norm": 0.057894591242074966, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 40509 + }, + { + "epoch": 4.155929421419779, + "grad_norm": 0.09510418772697449, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 40512 + }, + { + "epoch": 4.156237176856791, + "grad_norm": 0.06964008510112762, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 40515 + }, + { + "epoch": 4.156544932293804, + "grad_norm": 0.04545210301876068, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 40518 + }, + { + "epoch": 4.156852687730817, + "grad_norm": 0.03616971895098686, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 40521 + }, + { + "epoch": 4.157160443167829, + "grad_norm": 0.038192588835954666, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 40524 + }, + { + "epoch": 4.157468198604842, + "grad_norm": 0.046076469123363495, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 40527 + }, + { + "epoch": 4.157775954041854, + "grad_norm": 0.08816591650247574, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 40530 + }, + { + "epoch": 4.158083709478867, + "grad_norm": 0.10513858497142792, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 40533 + }, + { + "epoch": 4.15839146491588, + "grad_norm": 0.05273423343896866, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 40536 + }, + { + "epoch": 4.158699220352893, + "grad_norm": 0.11179885268211365, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 40539 + }, + { + "epoch": 4.1590069757899055, + "grad_norm": 0.049401313066482544, + "learning_rate": 0.01, + "loss": 2.0208, + "step": 40542 + }, + { + "epoch": 4.159314731226918, + "grad_norm": 0.04798784479498863, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 40545 + }, + { + "epoch": 4.159622486663931, + "grad_norm": 0.04317957162857056, + "learning_rate": 0.01, + "loss": 2.018, + "step": 40548 + }, + { + "epoch": 4.159930242100944, + "grad_norm": 0.031536102294921875, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 40551 + }, + { + "epoch": 4.160237997537957, + "grad_norm": 0.09016025066375732, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 40554 + }, + { + "epoch": 4.160545752974969, + "grad_norm": 0.048575472086668015, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 40557 + }, + { + "epoch": 4.160853508411982, + "grad_norm": 0.1236988827586174, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 40560 + }, + { + "epoch": 4.161161263848995, + "grad_norm": 0.13077518343925476, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 40563 + }, + { + "epoch": 4.161469019286008, + "grad_norm": 0.10104335844516754, + "learning_rate": 0.01, + "loss": 1.998, + "step": 40566 + }, + { + "epoch": 4.16177677472302, + "grad_norm": 0.08807270973920822, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 40569 + }, + { + "epoch": 4.162084530160032, + "grad_norm": 0.05569664016366005, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 40572 + }, + { + "epoch": 4.162392285597045, + "grad_norm": 0.04396286606788635, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 40575 + }, + { + "epoch": 4.162700041034058, + "grad_norm": 0.041279278695583344, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 40578 + }, + { + "epoch": 4.163007796471071, + "grad_norm": 0.05588890612125397, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 40581 + }, + { + "epoch": 4.163315551908084, + "grad_norm": 0.03629462048411369, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 40584 + }, + { + "epoch": 4.163623307345096, + "grad_norm": 0.05996616184711456, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 40587 + }, + { + "epoch": 4.163931062782109, + "grad_norm": 0.0385168232023716, + "learning_rate": 0.01, + "loss": 2.019, + "step": 40590 + }, + { + "epoch": 4.164238818219122, + "grad_norm": 0.04890631511807442, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 40593 + }, + { + "epoch": 4.164546573656135, + "grad_norm": 0.06312946230173111, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 40596 + }, + { + "epoch": 4.1648543290931475, + "grad_norm": 0.05250309780240059, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 40599 + }, + { + "epoch": 4.16516208453016, + "grad_norm": 0.05581989511847496, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 40602 + }, + { + "epoch": 4.165469839967173, + "grad_norm": 0.033916786313056946, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 40605 + }, + { + "epoch": 4.165777595404186, + "grad_norm": 0.11886032670736313, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 40608 + }, + { + "epoch": 4.166085350841199, + "grad_norm": 0.06368937343358994, + "learning_rate": 0.01, + "loss": 2.014, + "step": 40611 + }, + { + "epoch": 4.1663931062782105, + "grad_norm": 0.04808172211050987, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 40614 + }, + { + "epoch": 4.166700861715223, + "grad_norm": 0.03308833763003349, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 40617 + }, + { + "epoch": 4.167008617152236, + "grad_norm": 0.041934408247470856, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 40620 + }, + { + "epoch": 4.167316372589249, + "grad_norm": 0.0798778086900711, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 40623 + }, + { + "epoch": 4.167624128026262, + "grad_norm": 0.055231209844350815, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 40626 + }, + { + "epoch": 4.167931883463274, + "grad_norm": 0.04620687663555145, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 40629 + }, + { + "epoch": 4.168239638900287, + "grad_norm": 0.09074298292398453, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 40632 + }, + { + "epoch": 4.1685473943373, + "grad_norm": 0.09173654764890671, + "learning_rate": 0.01, + "loss": 2.017, + "step": 40635 + }, + { + "epoch": 4.168855149774313, + "grad_norm": 0.052037082612514496, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 40638 + }, + { + "epoch": 4.1691629052113255, + "grad_norm": 0.07793330401182175, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 40641 + }, + { + "epoch": 4.169470660648338, + "grad_norm": 0.12099308520555496, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 40644 + }, + { + "epoch": 4.169778416085351, + "grad_norm": 0.08884571492671967, + "learning_rate": 0.01, + "loss": 2.015, + "step": 40647 + }, + { + "epoch": 4.170086171522364, + "grad_norm": 0.07165110856294632, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 40650 + }, + { + "epoch": 4.170393926959377, + "grad_norm": 0.10293866693973541, + "learning_rate": 0.01, + "loss": 2.004, + "step": 40653 + }, + { + "epoch": 4.170701682396389, + "grad_norm": 0.09834318608045578, + "learning_rate": 0.01, + "loss": 2.0313, + "step": 40656 + }, + { + "epoch": 4.171009437833401, + "grad_norm": 0.047723252326250076, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 40659 + }, + { + "epoch": 4.171317193270414, + "grad_norm": 0.05522621423006058, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 40662 + }, + { + "epoch": 4.171624948707427, + "grad_norm": 0.03939025476574898, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 40665 + }, + { + "epoch": 4.17193270414444, + "grad_norm": 0.03266485407948494, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 40668 + }, + { + "epoch": 4.172240459581452, + "grad_norm": 0.033200979232788086, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 40671 + }, + { + "epoch": 4.172548215018465, + "grad_norm": 0.07104014605283737, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 40674 + }, + { + "epoch": 4.172855970455478, + "grad_norm": 0.0823940560221672, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 40677 + }, + { + "epoch": 4.173163725892491, + "grad_norm": 0.062255583703517914, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 40680 + }, + { + "epoch": 4.1734714813295035, + "grad_norm": 0.13120077550411224, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 40683 + }, + { + "epoch": 4.173779236766516, + "grad_norm": 0.07655888795852661, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 40686 + }, + { + "epoch": 4.174086992203529, + "grad_norm": 0.07436554878950119, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 40689 + }, + { + "epoch": 4.174394747640542, + "grad_norm": 0.052044034004211426, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 40692 + }, + { + "epoch": 4.174702503077555, + "grad_norm": 0.0385587215423584, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 40695 + }, + { + "epoch": 4.175010258514567, + "grad_norm": 0.04062971845269203, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 40698 + }, + { + "epoch": 4.17531801395158, + "grad_norm": 0.05078468099236488, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 40701 + }, + { + "epoch": 4.175625769388592, + "grad_norm": 0.05820399895310402, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 40704 + }, + { + "epoch": 4.175933524825605, + "grad_norm": 0.05630197748541832, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 40707 + }, + { + "epoch": 4.176241280262618, + "grad_norm": 0.047048747539520264, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 40710 + }, + { + "epoch": 4.17654903569963, + "grad_norm": 0.09604250639677048, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 40713 + }, + { + "epoch": 4.176856791136643, + "grad_norm": 0.06629175692796707, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 40716 + }, + { + "epoch": 4.177164546573656, + "grad_norm": 0.1041264608502388, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 40719 + }, + { + "epoch": 4.177472302010669, + "grad_norm": 0.10279016941785812, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 40722 + }, + { + "epoch": 4.1777800574476815, + "grad_norm": 0.047386229038238525, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 40725 + }, + { + "epoch": 4.178087812884694, + "grad_norm": 0.03940087929368019, + "learning_rate": 0.01, + "loss": 2.0454, + "step": 40728 + }, + { + "epoch": 4.178395568321707, + "grad_norm": 0.1065608337521553, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 40731 + }, + { + "epoch": 4.17870332375872, + "grad_norm": 0.03307456895709038, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 40734 + }, + { + "epoch": 4.179011079195733, + "grad_norm": 0.044952236115932465, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 40737 + }, + { + "epoch": 4.1793188346327454, + "grad_norm": 0.04699942097067833, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 40740 + }, + { + "epoch": 4.179626590069758, + "grad_norm": 0.04086962714791298, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 40743 + }, + { + "epoch": 4.179934345506771, + "grad_norm": 0.04364610090851784, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 40746 + }, + { + "epoch": 4.180242100943783, + "grad_norm": 0.13256701827049255, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 40749 + }, + { + "epoch": 4.180549856380796, + "grad_norm": 0.1418839991092682, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 40752 + }, + { + "epoch": 4.1808576118178085, + "grad_norm": 0.10980424284934998, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 40755 + }, + { + "epoch": 4.181165367254821, + "grad_norm": 0.11712696403265, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 40758 + }, + { + "epoch": 4.181473122691834, + "grad_norm": 0.04676150158047676, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 40761 + }, + { + "epoch": 4.181780878128847, + "grad_norm": 0.06010957807302475, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 40764 + }, + { + "epoch": 4.18208863356586, + "grad_norm": 0.04058792442083359, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 40767 + }, + { + "epoch": 4.182396389002872, + "grad_norm": 0.05905113369226456, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 40770 + }, + { + "epoch": 4.182704144439885, + "grad_norm": 0.031559672206640244, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 40773 + }, + { + "epoch": 4.183011899876898, + "grad_norm": 0.03369845449924469, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 40776 + }, + { + "epoch": 4.183319655313911, + "grad_norm": 0.03323826193809509, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 40779 + }, + { + "epoch": 4.1836274107509235, + "grad_norm": 0.09272177517414093, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 40782 + }, + { + "epoch": 4.183935166187936, + "grad_norm": 0.12024440616369247, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 40785 + }, + { + "epoch": 4.184242921624949, + "grad_norm": 0.06225709244608879, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 40788 + }, + { + "epoch": 4.184550677061962, + "grad_norm": 0.07221471518278122, + "learning_rate": 0.01, + "loss": 2.015, + "step": 40791 + }, + { + "epoch": 4.184858432498974, + "grad_norm": 0.05865592509508133, + "learning_rate": 0.01, + "loss": 2.026, + "step": 40794 + }, + { + "epoch": 4.1851661879359865, + "grad_norm": 0.05323261767625809, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 40797 + }, + { + "epoch": 4.185473943372999, + "grad_norm": 0.0738186463713646, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 40800 + }, + { + "epoch": 4.185781698810012, + "grad_norm": 0.05065621808171272, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 40803 + }, + { + "epoch": 4.186089454247025, + "grad_norm": 0.07014346867799759, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 40806 + }, + { + "epoch": 4.186397209684038, + "grad_norm": 0.09202650934457779, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 40809 + }, + { + "epoch": 4.18670496512105, + "grad_norm": 0.07297877967357635, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 40812 + }, + { + "epoch": 4.187012720558063, + "grad_norm": 0.11443314701318741, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 40815 + }, + { + "epoch": 4.187320475995076, + "grad_norm": 0.10481325536966324, + "learning_rate": 0.01, + "loss": 1.989, + "step": 40818 + }, + { + "epoch": 4.187628231432089, + "grad_norm": 0.03423392400145531, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 40821 + }, + { + "epoch": 4.1879359868691015, + "grad_norm": 0.03760581091046333, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 40824 + }, + { + "epoch": 4.188243742306114, + "grad_norm": 0.04355360567569733, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 40827 + }, + { + "epoch": 4.188551497743127, + "grad_norm": 0.07982810586690903, + "learning_rate": 0.01, + "loss": 2.0474, + "step": 40830 + }, + { + "epoch": 4.18885925318014, + "grad_norm": 0.17527154088020325, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 40833 + }, + { + "epoch": 4.189167008617153, + "grad_norm": 0.09842000156641006, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 40836 + }, + { + "epoch": 4.1894747640541645, + "grad_norm": 0.04522009938955307, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 40839 + }, + { + "epoch": 4.189782519491177, + "grad_norm": 0.03711741417646408, + "learning_rate": 0.01, + "loss": 2.014, + "step": 40842 + }, + { + "epoch": 4.19009027492819, + "grad_norm": 0.06014026701450348, + "learning_rate": 0.01, + "loss": 2.007, + "step": 40845 + }, + { + "epoch": 4.190398030365203, + "grad_norm": 0.06271639466285706, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 40848 + }, + { + "epoch": 4.190705785802216, + "grad_norm": 0.09300049394369125, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 40851 + }, + { + "epoch": 4.191013541239228, + "grad_norm": 0.05301731079816818, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 40854 + }, + { + "epoch": 4.191321296676241, + "grad_norm": 0.031089186668395996, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 40857 + }, + { + "epoch": 4.191629052113254, + "grad_norm": 0.04351799562573433, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 40860 + }, + { + "epoch": 4.191936807550267, + "grad_norm": 0.03952482342720032, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 40863 + }, + { + "epoch": 4.1922445629872795, + "grad_norm": 0.09664411842823029, + "learning_rate": 0.01, + "loss": 2.0385, + "step": 40866 + }, + { + "epoch": 4.192552318424292, + "grad_norm": 0.11290398985147476, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 40869 + }, + { + "epoch": 4.192860073861305, + "grad_norm": 0.03346327319741249, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 40872 + }, + { + "epoch": 4.193167829298318, + "grad_norm": 0.07427312433719635, + "learning_rate": 0.01, + "loss": 1.981, + "step": 40875 + }, + { + "epoch": 4.193475584735331, + "grad_norm": 0.053705740720033646, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 40878 + }, + { + "epoch": 4.193783340172343, + "grad_norm": 0.0523017942905426, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 40881 + }, + { + "epoch": 4.194091095609355, + "grad_norm": 0.056644510477781296, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 40884 + }, + { + "epoch": 4.194398851046368, + "grad_norm": 0.03145689144730568, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 40887 + }, + { + "epoch": 4.194706606483381, + "grad_norm": 0.05200685188174248, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 40890 + }, + { + "epoch": 4.195014361920394, + "grad_norm": 0.06475922465324402, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 40893 + }, + { + "epoch": 4.1953221173574065, + "grad_norm": 0.0805899053812027, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 40896 + }, + { + "epoch": 4.195629872794419, + "grad_norm": 0.09969832003116608, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 40899 + }, + { + "epoch": 4.195937628231432, + "grad_norm": 0.0634358674287796, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 40902 + }, + { + "epoch": 4.196245383668445, + "grad_norm": 0.09012358635663986, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 40905 + }, + { + "epoch": 4.196553139105458, + "grad_norm": 0.06891899555921555, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 40908 + }, + { + "epoch": 4.19686089454247, + "grad_norm": 0.07446330040693283, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 40911 + }, + { + "epoch": 4.197168649979483, + "grad_norm": 0.03457944840192795, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 40914 + }, + { + "epoch": 4.197476405416496, + "grad_norm": 0.03754154592752457, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 40917 + }, + { + "epoch": 4.197784160853509, + "grad_norm": 0.0626758560538292, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 40920 + }, + { + "epoch": 4.1980919162905215, + "grad_norm": 0.0431663803756237, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 40923 + }, + { + "epoch": 4.198399671727534, + "grad_norm": 0.059978071600198746, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 40926 + }, + { + "epoch": 4.198707427164546, + "grad_norm": 0.045393504202365875, + "learning_rate": 0.01, + "loss": 2.0355, + "step": 40929 + }, + { + "epoch": 4.199015182601559, + "grad_norm": 0.1481604129076004, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 40932 + }, + { + "epoch": 4.199322938038572, + "grad_norm": 0.08962929248809814, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 40935 + }, + { + "epoch": 4.1996306934755845, + "grad_norm": 0.10029556602239609, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 40938 + }, + { + "epoch": 4.199938448912597, + "grad_norm": 0.060972318053245544, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 40941 + }, + { + "epoch": 4.20024620434961, + "grad_norm": 0.08175275474786758, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 40944 + }, + { + "epoch": 4.200553959786623, + "grad_norm": 0.07742544263601303, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 40947 + }, + { + "epoch": 4.200861715223636, + "grad_norm": 0.06145945191383362, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 40950 + }, + { + "epoch": 4.201169470660648, + "grad_norm": 0.03785976395010948, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 40953 + }, + { + "epoch": 4.201477226097661, + "grad_norm": 0.049219708889722824, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 40956 + }, + { + "epoch": 4.201784981534674, + "grad_norm": 0.05865636467933655, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 40959 + }, + { + "epoch": 4.202092736971687, + "grad_norm": 0.04115782678127289, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 40962 + }, + { + "epoch": 4.2024004924086995, + "grad_norm": 0.07156416773796082, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 40965 + }, + { + "epoch": 4.202708247845712, + "grad_norm": 0.11241970211267471, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 40968 + }, + { + "epoch": 4.203016003282725, + "grad_norm": 0.052014194428920746, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 40971 + }, + { + "epoch": 4.203323758719737, + "grad_norm": 0.03571850433945656, + "learning_rate": 0.01, + "loss": 2.006, + "step": 40974 + }, + { + "epoch": 4.20363151415675, + "grad_norm": 0.03782523795962334, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 40977 + }, + { + "epoch": 4.2039392695937625, + "grad_norm": 0.05531090870499611, + "learning_rate": 0.01, + "loss": 1.991, + "step": 40980 + }, + { + "epoch": 4.204247025030775, + "grad_norm": 0.04620610550045967, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 40983 + }, + { + "epoch": 4.204554780467788, + "grad_norm": 0.034513216465711594, + "learning_rate": 0.01, + "loss": 2.004, + "step": 40986 + }, + { + "epoch": 4.204862535904801, + "grad_norm": 0.12451375275850296, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 40989 + }, + { + "epoch": 4.205170291341814, + "grad_norm": 0.038147494196891785, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 40992 + }, + { + "epoch": 4.205478046778826, + "grad_norm": 0.0428970605134964, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 40995 + }, + { + "epoch": 4.205785802215839, + "grad_norm": 0.04861719533801079, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 40998 + }, + { + "epoch": 4.206093557652852, + "grad_norm": 0.05677000805735588, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 41001 + }, + { + "epoch": 4.206401313089865, + "grad_norm": 0.040025245398283005, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 41004 + }, + { + "epoch": 4.2067090685268775, + "grad_norm": 0.09284701943397522, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 41007 + }, + { + "epoch": 4.20701682396389, + "grad_norm": 0.06293929368257523, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 41010 + }, + { + "epoch": 4.207324579400903, + "grad_norm": 0.10422204434871674, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 41013 + }, + { + "epoch": 4.207632334837916, + "grad_norm": 0.05504370108246803, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 41016 + }, + { + "epoch": 4.207940090274928, + "grad_norm": 0.03916056081652641, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 41019 + }, + { + "epoch": 4.2082478457119405, + "grad_norm": 0.05535780265927315, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 41022 + }, + { + "epoch": 4.208555601148953, + "grad_norm": 0.11614353209733963, + "learning_rate": 0.01, + "loss": 2.0394, + "step": 41025 + }, + { + "epoch": 4.208863356585966, + "grad_norm": 0.054821841418743134, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 41028 + }, + { + "epoch": 4.209171112022979, + "grad_norm": 0.0761130154132843, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 41031 + }, + { + "epoch": 4.209478867459992, + "grad_norm": 0.05529718101024628, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 41034 + }, + { + "epoch": 4.2097866228970044, + "grad_norm": 0.05739063769578934, + "learning_rate": 0.01, + "loss": 2.0408, + "step": 41037 + }, + { + "epoch": 4.210094378334017, + "grad_norm": 0.03629623353481293, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 41040 + }, + { + "epoch": 4.21040213377103, + "grad_norm": 0.09579025954008102, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 41043 + }, + { + "epoch": 4.210709889208043, + "grad_norm": 0.09709680080413818, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 41046 + }, + { + "epoch": 4.211017644645056, + "grad_norm": 0.06710288673639297, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 41049 + }, + { + "epoch": 4.211325400082068, + "grad_norm": 0.17285798490047455, + "learning_rate": 0.01, + "loss": 2.0525, + "step": 41052 + }, + { + "epoch": 4.211633155519081, + "grad_norm": 0.13886108994483948, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 41055 + }, + { + "epoch": 4.211940910956094, + "grad_norm": 0.08146315068006516, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 41058 + }, + { + "epoch": 4.212248666393107, + "grad_norm": 0.041313815861940384, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 41061 + }, + { + "epoch": 4.212556421830119, + "grad_norm": 0.07856039702892303, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 41064 + }, + { + "epoch": 4.212864177267131, + "grad_norm": 0.03942018374800682, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 41067 + }, + { + "epoch": 4.213171932704144, + "grad_norm": 0.06405628472566605, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 41070 + }, + { + "epoch": 4.213479688141157, + "grad_norm": 0.11233191937208176, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 41073 + }, + { + "epoch": 4.21378744357817, + "grad_norm": 0.061680734157562256, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 41076 + }, + { + "epoch": 4.2140951990151825, + "grad_norm": 0.049544453620910645, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 41079 + }, + { + "epoch": 4.214402954452195, + "grad_norm": 0.03959604352712631, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 41082 + }, + { + "epoch": 4.214710709889208, + "grad_norm": 0.03029470518231392, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 41085 + }, + { + "epoch": 4.215018465326221, + "grad_norm": 0.04742530733346939, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 41088 + }, + { + "epoch": 4.215326220763234, + "grad_norm": 0.11508273333311081, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 41091 + }, + { + "epoch": 4.215633976200246, + "grad_norm": 0.16011863946914673, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 41094 + }, + { + "epoch": 4.215941731637259, + "grad_norm": 0.0831206887960434, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 41097 + }, + { + "epoch": 4.216249487074272, + "grad_norm": 0.05117999389767647, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 41100 + }, + { + "epoch": 4.216557242511285, + "grad_norm": 0.08137553930282593, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 41103 + }, + { + "epoch": 4.2168649979482975, + "grad_norm": 0.04084109142422676, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 41106 + }, + { + "epoch": 4.217172753385309, + "grad_norm": 0.11708495765924454, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 41109 + }, + { + "epoch": 4.217480508822322, + "grad_norm": 0.036096177995204926, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 41112 + }, + { + "epoch": 4.217788264259335, + "grad_norm": 0.03205428272485733, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 41115 + }, + { + "epoch": 4.218096019696348, + "grad_norm": 0.05120716243982315, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 41118 + }, + { + "epoch": 4.2184037751333605, + "grad_norm": 0.08021282404661179, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 41121 + }, + { + "epoch": 4.218711530570373, + "grad_norm": 0.05003154277801514, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 41124 + }, + { + "epoch": 4.219019286007386, + "grad_norm": 0.0867641344666481, + "learning_rate": 0.01, + "loss": 2.01, + "step": 41127 + }, + { + "epoch": 4.219327041444399, + "grad_norm": 0.0697675347328186, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 41130 + }, + { + "epoch": 4.219634796881412, + "grad_norm": 0.06696760654449463, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 41133 + }, + { + "epoch": 4.219942552318424, + "grad_norm": 0.09599725902080536, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 41136 + }, + { + "epoch": 4.220250307755437, + "grad_norm": 0.04233787953853607, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 41139 + }, + { + "epoch": 4.22055806319245, + "grad_norm": 0.08935974538326263, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 41142 + }, + { + "epoch": 4.220865818629463, + "grad_norm": 0.049136627465486526, + "learning_rate": 0.01, + "loss": 1.993, + "step": 41145 + }, + { + "epoch": 4.2211735740664755, + "grad_norm": 0.0316915288567543, + "learning_rate": 0.01, + "loss": 2.006, + "step": 41148 + }, + { + "epoch": 4.221481329503488, + "grad_norm": 0.04271787405014038, + "learning_rate": 0.01, + "loss": 2.002, + "step": 41151 + }, + { + "epoch": 4.2217890849405, + "grad_norm": 0.03403954207897186, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 41154 + }, + { + "epoch": 4.222096840377513, + "grad_norm": 0.07457596808671951, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 41157 + }, + { + "epoch": 4.222404595814526, + "grad_norm": 0.06875099986791611, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 41160 + }, + { + "epoch": 4.2227123512515385, + "grad_norm": 0.05186415836215019, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 41163 + }, + { + "epoch": 4.223020106688551, + "grad_norm": 0.051673002541065216, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 41166 + }, + { + "epoch": 4.223327862125564, + "grad_norm": 0.03935972973704338, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 41169 + }, + { + "epoch": 4.223635617562577, + "grad_norm": 0.07746358215808868, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 41172 + }, + { + "epoch": 4.22394337299959, + "grad_norm": 0.14719370007514954, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 41175 + }, + { + "epoch": 4.224251128436602, + "grad_norm": 0.08811825513839722, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 41178 + }, + { + "epoch": 4.224558883873615, + "grad_norm": 0.04378504678606987, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 41181 + }, + { + "epoch": 4.224866639310628, + "grad_norm": 0.03978777304291725, + "learning_rate": 0.01, + "loss": 2.006, + "step": 41184 + }, + { + "epoch": 4.225174394747641, + "grad_norm": 0.03860542178153992, + "learning_rate": 0.01, + "loss": 2.009, + "step": 41187 + }, + { + "epoch": 4.225482150184654, + "grad_norm": 0.06839700043201447, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 41190 + }, + { + "epoch": 4.225789905621666, + "grad_norm": 0.09107422828674316, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 41193 + }, + { + "epoch": 4.226097661058679, + "grad_norm": 0.08443713933229446, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 41196 + }, + { + "epoch": 4.226405416495691, + "grad_norm": 0.07428136467933655, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 41199 + }, + { + "epoch": 4.226713171932704, + "grad_norm": 0.07102616876363754, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 41202 + }, + { + "epoch": 4.227020927369717, + "grad_norm": 0.06131945922970772, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 41205 + }, + { + "epoch": 4.227328682806729, + "grad_norm": 0.07921816408634186, + "learning_rate": 0.01, + "loss": 2.021, + "step": 41208 + }, + { + "epoch": 4.227636438243742, + "grad_norm": 0.05274220556020737, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 41211 + }, + { + "epoch": 4.227944193680755, + "grad_norm": 0.12561160326004028, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 41214 + }, + { + "epoch": 4.228251949117768, + "grad_norm": 0.053055427968502045, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 41217 + }, + { + "epoch": 4.2285597045547805, + "grad_norm": 0.04999428242444992, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 41220 + }, + { + "epoch": 4.228867459991793, + "grad_norm": 0.06127345934510231, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 41223 + }, + { + "epoch": 4.229175215428806, + "grad_norm": 0.05634259432554245, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 41226 + }, + { + "epoch": 4.229482970865819, + "grad_norm": 0.030200546607375145, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 41229 + }, + { + "epoch": 4.229790726302832, + "grad_norm": 0.12201087921857834, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 41232 + }, + { + "epoch": 4.230098481739844, + "grad_norm": 0.07482577860355377, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 41235 + }, + { + "epoch": 4.230406237176857, + "grad_norm": 0.10311067849397659, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 41238 + }, + { + "epoch": 4.23071399261387, + "grad_norm": 0.09040312469005585, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 41241 + }, + { + "epoch": 4.231021748050882, + "grad_norm": 0.06239837408065796, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 41244 + }, + { + "epoch": 4.231329503487895, + "grad_norm": 0.033743564039468765, + "learning_rate": 0.01, + "loss": 2.0273, + "step": 41247 + }, + { + "epoch": 4.231637258924907, + "grad_norm": 0.046916600316762924, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 41250 + }, + { + "epoch": 4.23194501436192, + "grad_norm": 0.06271935999393463, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 41253 + }, + { + "epoch": 4.232252769798933, + "grad_norm": 0.05794825777411461, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 41256 + }, + { + "epoch": 4.232560525235946, + "grad_norm": 0.0886342003941536, + "learning_rate": 0.01, + "loss": 2.011, + "step": 41259 + }, + { + "epoch": 4.2328682806729585, + "grad_norm": 0.06492005288600922, + "learning_rate": 0.01, + "loss": 1.994, + "step": 41262 + }, + { + "epoch": 4.233176036109971, + "grad_norm": 0.1275957226753235, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 41265 + }, + { + "epoch": 4.233483791546984, + "grad_norm": 0.08362898975610733, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 41268 + }, + { + "epoch": 4.233791546983997, + "grad_norm": 0.0909474641084671, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 41271 + }, + { + "epoch": 4.23409930242101, + "grad_norm": 0.04275381565093994, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 41274 + }, + { + "epoch": 4.234407057858022, + "grad_norm": 0.04790336266160011, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 41277 + }, + { + "epoch": 4.234714813295035, + "grad_norm": 0.03371073678135872, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 41280 + }, + { + "epoch": 4.235022568732048, + "grad_norm": 0.05681711062788963, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 41283 + }, + { + "epoch": 4.235330324169061, + "grad_norm": 0.040656253695487976, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 41286 + }, + { + "epoch": 4.235638079606073, + "grad_norm": 0.04097260907292366, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 41289 + }, + { + "epoch": 4.235945835043085, + "grad_norm": 0.042979929596185684, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 41292 + }, + { + "epoch": 4.236253590480098, + "grad_norm": 0.03832445293664932, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 41295 + }, + { + "epoch": 4.236561345917111, + "grad_norm": 0.04340042173862457, + "learning_rate": 0.01, + "loss": 2.0301, + "step": 41298 + }, + { + "epoch": 4.236869101354124, + "grad_norm": 0.10501760244369507, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 41301 + }, + { + "epoch": 4.2371768567911365, + "grad_norm": 0.09777186065912247, + "learning_rate": 0.01, + "loss": 2.0283, + "step": 41304 + }, + { + "epoch": 4.237484612228149, + "grad_norm": 0.06624646484851837, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 41307 + }, + { + "epoch": 4.237792367665162, + "grad_norm": 0.055278148502111435, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 41310 + }, + { + "epoch": 4.238100123102175, + "grad_norm": 0.11712317168712616, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 41313 + }, + { + "epoch": 4.238407878539188, + "grad_norm": 0.06384153664112091, + "learning_rate": 0.01, + "loss": 2.015, + "step": 41316 + }, + { + "epoch": 4.2387156339762, + "grad_norm": 0.0486673079431057, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 41319 + }, + { + "epoch": 4.239023389413213, + "grad_norm": 0.04492638260126114, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 41322 + }, + { + "epoch": 4.239331144850226, + "grad_norm": 0.034185852855443954, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 41325 + }, + { + "epoch": 4.239638900287239, + "grad_norm": 0.04562927410006523, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 41328 + }, + { + "epoch": 4.239946655724252, + "grad_norm": 0.1411084234714508, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 41331 + }, + { + "epoch": 4.2402544111612634, + "grad_norm": 0.17035670578479767, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 41334 + }, + { + "epoch": 4.240562166598276, + "grad_norm": 0.06952272355556488, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 41337 + }, + { + "epoch": 4.240869922035289, + "grad_norm": 0.08368392288684845, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 41340 + }, + { + "epoch": 4.241177677472302, + "grad_norm": 0.04599005728960037, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 41343 + }, + { + "epoch": 4.241485432909315, + "grad_norm": 0.045579466968774796, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 41346 + }, + { + "epoch": 4.241793188346327, + "grad_norm": 0.049636196345090866, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 41349 + }, + { + "epoch": 4.24210094378334, + "grad_norm": 0.047992490231990814, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 41352 + }, + { + "epoch": 4.242408699220353, + "grad_norm": 0.05155181884765625, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 41355 + }, + { + "epoch": 4.242716454657366, + "grad_norm": 0.04805142432451248, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 41358 + }, + { + "epoch": 4.2430242100943785, + "grad_norm": 0.09783121943473816, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 41361 + }, + { + "epoch": 4.243331965531391, + "grad_norm": 0.05536942929029465, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 41364 + }, + { + "epoch": 4.243639720968404, + "grad_norm": 0.1335456669330597, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 41367 + }, + { + "epoch": 4.243947476405417, + "grad_norm": 0.05100298300385475, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 41370 + }, + { + "epoch": 4.24425523184243, + "grad_norm": 0.04158430173993111, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 41373 + }, + { + "epoch": 4.244562987279442, + "grad_norm": 0.03490443900227547, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 41376 + }, + { + "epoch": 4.244870742716454, + "grad_norm": 0.03529435768723488, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 41379 + }, + { + "epoch": 4.245178498153467, + "grad_norm": 0.03825982287526131, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 41382 + }, + { + "epoch": 4.24548625359048, + "grad_norm": 0.11641440540552139, + "learning_rate": 0.01, + "loss": 2.0487, + "step": 41385 + }, + { + "epoch": 4.245794009027493, + "grad_norm": 0.043827321380376816, + "learning_rate": 0.01, + "loss": 2.009, + "step": 41388 + }, + { + "epoch": 4.246101764464505, + "grad_norm": 0.060956139117479324, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 41391 + }, + { + "epoch": 4.246409519901518, + "grad_norm": 0.11849243938922882, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 41394 + }, + { + "epoch": 4.246717275338531, + "grad_norm": 0.08758600056171417, + "learning_rate": 0.01, + "loss": 1.9596, + "step": 41397 + }, + { + "epoch": 4.247025030775544, + "grad_norm": 0.0848364606499672, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 41400 + }, + { + "epoch": 4.2473327862125565, + "grad_norm": 0.08009137958288193, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 41403 + }, + { + "epoch": 4.247640541649569, + "grad_norm": 0.06123640015721321, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 41406 + }, + { + "epoch": 4.247948297086582, + "grad_norm": 0.042272213846445084, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 41409 + }, + { + "epoch": 4.248256052523595, + "grad_norm": 0.051934532821178436, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 41412 + }, + { + "epoch": 4.248563807960608, + "grad_norm": 0.04881110414862633, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 41415 + }, + { + "epoch": 4.24887156339762, + "grad_norm": 0.03183252364397049, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 41418 + }, + { + "epoch": 4.249179318834633, + "grad_norm": 0.1036367192864418, + "learning_rate": 0.01, + "loss": 1.976, + "step": 41421 + }, + { + "epoch": 4.249487074271645, + "grad_norm": 0.08779038488864899, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 41424 + }, + { + "epoch": 4.249794829708658, + "grad_norm": 0.07684400677680969, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 41427 + }, + { + "epoch": 4.250102585145671, + "grad_norm": 0.08273176103830338, + "learning_rate": 0.01, + "loss": 1.975, + "step": 41430 + }, + { + "epoch": 4.250410340582683, + "grad_norm": 0.04036150500178337, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 41433 + }, + { + "epoch": 4.250718096019696, + "grad_norm": 0.04532729461789131, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 41436 + }, + { + "epoch": 4.251025851456709, + "grad_norm": 0.045257970690727234, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 41439 + }, + { + "epoch": 4.251333606893722, + "grad_norm": 0.11603814363479614, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 41442 + }, + { + "epoch": 4.2516413623307345, + "grad_norm": 0.07269345223903656, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 41445 + }, + { + "epoch": 4.251949117767747, + "grad_norm": 0.06193891167640686, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 41448 + }, + { + "epoch": 4.25225687320476, + "grad_norm": 0.09230732172727585, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 41451 + }, + { + "epoch": 4.252564628641773, + "grad_norm": 0.04278898611664772, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 41454 + }, + { + "epoch": 4.252872384078786, + "grad_norm": 0.04253445938229561, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 41457 + }, + { + "epoch": 4.253180139515798, + "grad_norm": 0.07245481014251709, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 41460 + }, + { + "epoch": 4.253487894952811, + "grad_norm": 0.10126817971467972, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 41463 + }, + { + "epoch": 4.253795650389824, + "grad_norm": 0.04528803005814552, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 41466 + }, + { + "epoch": 4.254103405826836, + "grad_norm": 0.04987543821334839, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 41469 + }, + { + "epoch": 4.254411161263849, + "grad_norm": 0.05521645396947861, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 41472 + }, + { + "epoch": 4.254718916700861, + "grad_norm": 0.06709643453359604, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 41475 + }, + { + "epoch": 4.255026672137874, + "grad_norm": 0.07900220155715942, + "learning_rate": 0.01, + "loss": 2.0332, + "step": 41478 + }, + { + "epoch": 4.255334427574887, + "grad_norm": 0.06128143519163132, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 41481 + }, + { + "epoch": 4.2556421830119, + "grad_norm": 0.044023312628269196, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 41484 + }, + { + "epoch": 4.255949938448913, + "grad_norm": 0.034501735121011734, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 41487 + }, + { + "epoch": 4.256257693885925, + "grad_norm": 0.08301688730716705, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 41490 + }, + { + "epoch": 4.256565449322938, + "grad_norm": 0.05008229240775108, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 41493 + }, + { + "epoch": 4.256873204759951, + "grad_norm": 0.08899793028831482, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 41496 + }, + { + "epoch": 4.257180960196964, + "grad_norm": 0.055265627801418304, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 41499 + }, + { + "epoch": 4.2574887156339765, + "grad_norm": 0.04912308603525162, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 41502 + }, + { + "epoch": 4.257796471070989, + "grad_norm": 0.057400181889534, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 41505 + }, + { + "epoch": 4.258104226508002, + "grad_norm": 0.13875073194503784, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 41508 + }, + { + "epoch": 4.258411981945015, + "grad_norm": 0.10987017303705215, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 41511 + }, + { + "epoch": 4.258719737382027, + "grad_norm": 0.06881477683782578, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 41514 + }, + { + "epoch": 4.2590274928190395, + "grad_norm": 0.06515093892812729, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 41517 + }, + { + "epoch": 4.259335248256052, + "grad_norm": 0.05030984431505203, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 41520 + }, + { + "epoch": 4.259643003693065, + "grad_norm": 0.061900872737169266, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 41523 + }, + { + "epoch": 4.259950759130078, + "grad_norm": 0.052526991814374924, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 41526 + }, + { + "epoch": 4.260258514567091, + "grad_norm": 0.07355368137359619, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 41529 + }, + { + "epoch": 4.260566270004103, + "grad_norm": 0.09191373735666275, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 41532 + }, + { + "epoch": 4.260874025441116, + "grad_norm": 0.04627171531319618, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 41535 + }, + { + "epoch": 4.261181780878129, + "grad_norm": 0.04639091342687607, + "learning_rate": 0.01, + "loss": 2.002, + "step": 41538 + }, + { + "epoch": 4.261489536315142, + "grad_norm": 0.0914679765701294, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 41541 + }, + { + "epoch": 4.2617972917521545, + "grad_norm": 0.08489304035902023, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 41544 + }, + { + "epoch": 4.262105047189167, + "grad_norm": 0.03301496058702469, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 41547 + }, + { + "epoch": 4.26241280262618, + "grad_norm": 0.08343908190727234, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 41550 + }, + { + "epoch": 4.262720558063193, + "grad_norm": 0.05923202261328697, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 41553 + }, + { + "epoch": 4.263028313500206, + "grad_norm": 0.044505976140499115, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 41556 + }, + { + "epoch": 4.2633360689372175, + "grad_norm": 0.05136754736304283, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 41559 + }, + { + "epoch": 4.26364382437423, + "grad_norm": 0.0830690786242485, + "learning_rate": 0.01, + "loss": 2.011, + "step": 41562 + }, + { + "epoch": 4.263951579811243, + "grad_norm": 0.11335346102714539, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 41565 + }, + { + "epoch": 4.264259335248256, + "grad_norm": 0.0629742443561554, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 41568 + }, + { + "epoch": 4.264567090685269, + "grad_norm": 0.09297124296426773, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 41571 + }, + { + "epoch": 4.264874846122281, + "grad_norm": 0.05171617120504379, + "learning_rate": 0.01, + "loss": 1.9528, + "step": 41574 + }, + { + "epoch": 4.265182601559294, + "grad_norm": 0.09433134645223618, + "learning_rate": 0.01, + "loss": 2.005, + "step": 41577 + }, + { + "epoch": 4.265490356996307, + "grad_norm": 0.058073755353689194, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 41580 + }, + { + "epoch": 4.26579811243332, + "grad_norm": 0.037740156054496765, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 41583 + }, + { + "epoch": 4.2661058678703325, + "grad_norm": 0.12522292137145996, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 41586 + }, + { + "epoch": 4.266413623307345, + "grad_norm": 0.07263893634080887, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 41589 + }, + { + "epoch": 4.266721378744358, + "grad_norm": 0.08800274133682251, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 41592 + }, + { + "epoch": 4.267029134181371, + "grad_norm": 0.04018472880125046, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 41595 + }, + { + "epoch": 4.267336889618384, + "grad_norm": 0.04245147481560707, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 41598 + }, + { + "epoch": 4.267644645055396, + "grad_norm": 0.03626253455877304, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 41601 + }, + { + "epoch": 4.267952400492408, + "grad_norm": 0.1148434430360794, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 41604 + }, + { + "epoch": 4.268260155929421, + "grad_norm": 0.03992197662591934, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 41607 + }, + { + "epoch": 4.268567911366434, + "grad_norm": 0.07781147211790085, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 41610 + }, + { + "epoch": 4.268875666803447, + "grad_norm": 0.08838597685098648, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 41613 + }, + { + "epoch": 4.269183422240459, + "grad_norm": 0.07930974662303925, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 41616 + }, + { + "epoch": 4.269491177677472, + "grad_norm": 0.08094513416290283, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 41619 + }, + { + "epoch": 4.269798933114485, + "grad_norm": 0.06766554713249207, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 41622 + }, + { + "epoch": 4.270106688551498, + "grad_norm": 0.07384651899337769, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 41625 + }, + { + "epoch": 4.2704144439885106, + "grad_norm": 0.043780550360679626, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 41628 + }, + { + "epoch": 4.270722199425523, + "grad_norm": 0.06705281883478165, + "learning_rate": 0.01, + "loss": 2.008, + "step": 41631 + }, + { + "epoch": 4.271029954862536, + "grad_norm": 0.051532238721847534, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 41634 + }, + { + "epoch": 4.271337710299549, + "grad_norm": 0.09668219834566116, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 41637 + }, + { + "epoch": 4.271645465736562, + "grad_norm": 0.0774909183382988, + "learning_rate": 0.01, + "loss": 2.0307, + "step": 41640 + }, + { + "epoch": 4.2719532211735745, + "grad_norm": 0.11848165839910507, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 41643 + }, + { + "epoch": 4.272260976610587, + "grad_norm": 0.09055308997631073, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 41646 + }, + { + "epoch": 4.272568732047599, + "grad_norm": 0.06557660549879074, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 41649 + }, + { + "epoch": 4.272876487484612, + "grad_norm": 0.055074457079172134, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 41652 + }, + { + "epoch": 4.273184242921625, + "grad_norm": 0.07604243606328964, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 41655 + }, + { + "epoch": 4.2734919983586375, + "grad_norm": 0.07098755240440369, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 41658 + }, + { + "epoch": 4.27379975379565, + "grad_norm": 0.11538244038820267, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 41661 + }, + { + "epoch": 4.274107509232663, + "grad_norm": 0.03773383051156998, + "learning_rate": 0.01, + "loss": 1.999, + "step": 41664 + }, + { + "epoch": 4.274415264669676, + "grad_norm": 0.03163829445838928, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 41667 + }, + { + "epoch": 4.274723020106689, + "grad_norm": 0.0678187757730484, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 41670 + }, + { + "epoch": 4.275030775543701, + "grad_norm": 0.0774695947766304, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 41673 + }, + { + "epoch": 4.275338530980714, + "grad_norm": 0.05830325931310654, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 41676 + }, + { + "epoch": 4.275646286417727, + "grad_norm": 0.11642345786094666, + "learning_rate": 0.01, + "loss": 1.993, + "step": 41679 + }, + { + "epoch": 4.27595404185474, + "grad_norm": 0.12688972055912018, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 41682 + }, + { + "epoch": 4.2762617972917525, + "grad_norm": 0.11521381884813309, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 41685 + }, + { + "epoch": 4.276569552728765, + "grad_norm": 0.1203092560172081, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 41688 + }, + { + "epoch": 4.276877308165778, + "grad_norm": 0.09710691124200821, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 41691 + }, + { + "epoch": 4.27718506360279, + "grad_norm": 0.07945617288351059, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 41694 + }, + { + "epoch": 4.277492819039803, + "grad_norm": 0.07407965511083603, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 41697 + }, + { + "epoch": 4.2778005744768155, + "grad_norm": 0.06321244686841965, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 41700 + }, + { + "epoch": 4.278108329913828, + "grad_norm": 0.056950200349092484, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 41703 + }, + { + "epoch": 4.278416085350841, + "grad_norm": 0.039905134588479996, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 41706 + }, + { + "epoch": 4.278723840787854, + "grad_norm": 0.05050415173172951, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 41709 + }, + { + "epoch": 4.279031596224867, + "grad_norm": 0.05510304123163223, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 41712 + }, + { + "epoch": 4.279339351661879, + "grad_norm": 0.05586516857147217, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 41715 + }, + { + "epoch": 4.279647107098892, + "grad_norm": 0.05404721572995186, + "learning_rate": 0.01, + "loss": 1.985, + "step": 41718 + }, + { + "epoch": 4.279954862535905, + "grad_norm": 0.04340701550245285, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 41721 + }, + { + "epoch": 4.280262617972918, + "grad_norm": 0.053679756820201874, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 41724 + }, + { + "epoch": 4.2805703734099305, + "grad_norm": 0.1286962479352951, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 41727 + }, + { + "epoch": 4.280878128846943, + "grad_norm": 0.07245181500911713, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 41730 + }, + { + "epoch": 4.281185884283956, + "grad_norm": 0.08518802374601364, + "learning_rate": 0.01, + "loss": 2.0305, + "step": 41733 + }, + { + "epoch": 4.281493639720969, + "grad_norm": 0.07493653893470764, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 41736 + }, + { + "epoch": 4.281801395157981, + "grad_norm": 0.05031900852918625, + "learning_rate": 0.01, + "loss": 1.981, + "step": 41739 + }, + { + "epoch": 4.2821091505949935, + "grad_norm": 0.07814056426286697, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 41742 + }, + { + "epoch": 4.282416906032006, + "grad_norm": 0.047507043927907944, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 41745 + }, + { + "epoch": 4.282724661469019, + "grad_norm": 0.06547687947750092, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 41748 + }, + { + "epoch": 4.283032416906032, + "grad_norm": 0.059194277971982956, + "learning_rate": 0.01, + "loss": 2.003, + "step": 41751 + }, + { + "epoch": 4.283340172343045, + "grad_norm": 0.04526950791478157, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 41754 + }, + { + "epoch": 4.283647927780057, + "grad_norm": 0.031040268018841743, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 41757 + }, + { + "epoch": 4.28395568321707, + "grad_norm": 0.09988913685083389, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 41760 + }, + { + "epoch": 4.284263438654083, + "grad_norm": 0.04122784361243248, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 41763 + }, + { + "epoch": 4.284571194091096, + "grad_norm": 0.055508848279714584, + "learning_rate": 0.01, + "loss": 2.0457, + "step": 41766 + }, + { + "epoch": 4.2848789495281085, + "grad_norm": 0.10151500999927521, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 41769 + }, + { + "epoch": 4.285186704965121, + "grad_norm": 0.041592396795749664, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 41772 + }, + { + "epoch": 4.285494460402134, + "grad_norm": 0.06108968332409859, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 41775 + }, + { + "epoch": 4.285802215839147, + "grad_norm": 0.06336821615695953, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 41778 + }, + { + "epoch": 4.28610997127616, + "grad_norm": 0.03348274528980255, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 41781 + }, + { + "epoch": 4.286417726713172, + "grad_norm": 0.04698178544640541, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 41784 + }, + { + "epoch": 4.286725482150184, + "grad_norm": 0.04394696652889252, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 41787 + }, + { + "epoch": 4.287033237587197, + "grad_norm": 0.15938106179237366, + "learning_rate": 0.01, + "loss": 2.012, + "step": 41790 + }, + { + "epoch": 4.28734099302421, + "grad_norm": 0.08870629966259003, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 41793 + }, + { + "epoch": 4.287648748461223, + "grad_norm": 0.051104262471199036, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 41796 + }, + { + "epoch": 4.2879565038982355, + "grad_norm": 0.03226442262530327, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 41799 + }, + { + "epoch": 4.288264259335248, + "grad_norm": 0.033240124583244324, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 41802 + }, + { + "epoch": 4.288572014772261, + "grad_norm": 0.04799087345600128, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 41805 + }, + { + "epoch": 4.288879770209274, + "grad_norm": 0.04805191978812218, + "learning_rate": 0.01, + "loss": 1.998, + "step": 41808 + }, + { + "epoch": 4.289187525646287, + "grad_norm": 0.10758639872074127, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 41811 + }, + { + "epoch": 4.289495281083299, + "grad_norm": 0.06141864135861397, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 41814 + }, + { + "epoch": 4.289803036520312, + "grad_norm": 0.057809922844171524, + "learning_rate": 0.01, + "loss": 1.998, + "step": 41817 + }, + { + "epoch": 4.290110791957325, + "grad_norm": 0.06831464916467667, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 41820 + }, + { + "epoch": 4.290418547394338, + "grad_norm": 0.08271254599094391, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 41823 + }, + { + "epoch": 4.2907263028313505, + "grad_norm": 0.04244139790534973, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 41826 + }, + { + "epoch": 4.291034058268362, + "grad_norm": 0.04482168331742287, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 41829 + }, + { + "epoch": 4.291341813705375, + "grad_norm": 0.04742707312107086, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 41832 + }, + { + "epoch": 4.291649569142388, + "grad_norm": 0.12863384187221527, + "learning_rate": 0.01, + "loss": 1.996, + "step": 41835 + }, + { + "epoch": 4.291957324579401, + "grad_norm": 0.12212485820055008, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 41838 + }, + { + "epoch": 4.2922650800164135, + "grad_norm": 0.0465460866689682, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 41841 + }, + { + "epoch": 4.292572835453426, + "grad_norm": 0.052605509757995605, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 41844 + }, + { + "epoch": 4.292880590890439, + "grad_norm": 0.046292662620544434, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 41847 + }, + { + "epoch": 4.293188346327452, + "grad_norm": 0.04217211529612541, + "learning_rate": 0.01, + "loss": 2.0, + "step": 41850 + }, + { + "epoch": 4.293496101764465, + "grad_norm": 0.08655425906181335, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 41853 + }, + { + "epoch": 4.293803857201477, + "grad_norm": 0.0645185261964798, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 41856 + }, + { + "epoch": 4.29411161263849, + "grad_norm": 0.06806469708681107, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 41859 + }, + { + "epoch": 4.294419368075503, + "grad_norm": 0.05178931728005409, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 41862 + }, + { + "epoch": 4.294727123512516, + "grad_norm": 0.0440845787525177, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 41865 + }, + { + "epoch": 4.2950348789495285, + "grad_norm": 0.04800264537334442, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 41868 + }, + { + "epoch": 4.295342634386541, + "grad_norm": 0.03780617192387581, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 41871 + }, + { + "epoch": 4.295650389823553, + "grad_norm": 0.0536942295730114, + "learning_rate": 0.01, + "loss": 1.999, + "step": 41874 + }, + { + "epoch": 4.295958145260566, + "grad_norm": 0.09988999366760254, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 41877 + }, + { + "epoch": 4.296265900697579, + "grad_norm": 0.06863691657781601, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 41880 + }, + { + "epoch": 4.2965736561345915, + "grad_norm": 0.04894992709159851, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 41883 + }, + { + "epoch": 4.296881411571604, + "grad_norm": 0.041689950972795486, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 41886 + }, + { + "epoch": 4.297189167008617, + "grad_norm": 0.10208067297935486, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 41889 + }, + { + "epoch": 4.29749692244563, + "grad_norm": 0.030840028077363968, + "learning_rate": 0.01, + "loss": 1.991, + "step": 41892 + }, + { + "epoch": 4.297804677882643, + "grad_norm": 0.04242958873510361, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 41895 + }, + { + "epoch": 4.298112433319655, + "grad_norm": 0.11578787118196487, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 41898 + }, + { + "epoch": 4.298420188756668, + "grad_norm": 0.059238482266664505, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 41901 + }, + { + "epoch": 4.298727944193681, + "grad_norm": 0.03906838968396187, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 41904 + }, + { + "epoch": 4.299035699630694, + "grad_norm": 0.06461112201213837, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 41907 + }, + { + "epoch": 4.2993434550677065, + "grad_norm": 0.1491340696811676, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 41910 + }, + { + "epoch": 4.299651210504719, + "grad_norm": 0.06621528416872025, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 41913 + }, + { + "epoch": 4.299958965941732, + "grad_norm": 0.06322132796049118, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 41916 + }, + { + "epoch": 4.300266721378744, + "grad_norm": 0.04899013042449951, + "learning_rate": 0.01, + "loss": 1.996, + "step": 41919 + }, + { + "epoch": 4.300574476815757, + "grad_norm": 0.04941810667514801, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 41922 + }, + { + "epoch": 4.3008822322527696, + "grad_norm": 0.04341074824333191, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 41925 + }, + { + "epoch": 4.301189987689782, + "grad_norm": 0.08827680349349976, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 41928 + }, + { + "epoch": 4.301497743126795, + "grad_norm": 0.05221998319029808, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 41931 + }, + { + "epoch": 4.301805498563808, + "grad_norm": 0.10630286484956741, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 41934 + }, + { + "epoch": 4.302113254000821, + "grad_norm": 0.043958306312561035, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 41937 + }, + { + "epoch": 4.3024210094378335, + "grad_norm": 0.057621411979198456, + "learning_rate": 0.01, + "loss": 2.01, + "step": 41940 + }, + { + "epoch": 4.302728764874846, + "grad_norm": 0.09467203170061111, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 41943 + }, + { + "epoch": 4.303036520311859, + "grad_norm": 0.06720858812332153, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 41946 + }, + { + "epoch": 4.303344275748872, + "grad_norm": 0.06861304491758347, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 41949 + }, + { + "epoch": 4.303652031185885, + "grad_norm": 0.038296621292829514, + "learning_rate": 0.01, + "loss": 1.991, + "step": 41952 + }, + { + "epoch": 4.303959786622897, + "grad_norm": 0.05808268114924431, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 41955 + }, + { + "epoch": 4.30426754205991, + "grad_norm": 0.05521778017282486, + "learning_rate": 0.01, + "loss": 1.995, + "step": 41958 + }, + { + "epoch": 4.304575297496923, + "grad_norm": 0.05509946867823601, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 41961 + }, + { + "epoch": 4.304883052933935, + "grad_norm": 0.04729253426194191, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 41964 + }, + { + "epoch": 4.305190808370948, + "grad_norm": 0.06389732658863068, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 41967 + }, + { + "epoch": 4.30549856380796, + "grad_norm": 0.04609325900673866, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 41970 + }, + { + "epoch": 4.305806319244973, + "grad_norm": 0.06793837994337082, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 41973 + }, + { + "epoch": 4.306114074681986, + "grad_norm": 0.0791841521859169, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 41976 + }, + { + "epoch": 4.306421830118999, + "grad_norm": 0.07721048593521118, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 41979 + }, + { + "epoch": 4.3067295855560115, + "grad_norm": 0.04971477389335632, + "learning_rate": 0.01, + "loss": 1.971, + "step": 41982 + }, + { + "epoch": 4.307037340993024, + "grad_norm": 0.11230115592479706, + "learning_rate": 0.01, + "loss": 2.013, + "step": 41985 + }, + { + "epoch": 4.307345096430037, + "grad_norm": 0.08187992870807648, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 41988 + }, + { + "epoch": 4.30765285186705, + "grad_norm": 0.07407639175653458, + "learning_rate": 0.01, + "loss": 1.9617, + "step": 41991 + }, + { + "epoch": 4.307960607304063, + "grad_norm": 0.051022280007600784, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 41994 + }, + { + "epoch": 4.308268362741075, + "grad_norm": 0.041618864983320236, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 41997 + }, + { + "epoch": 4.308576118178088, + "grad_norm": 0.0507926307618618, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 42000 + }, + { + "epoch": 4.308883873615101, + "grad_norm": 0.07467113435268402, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 42003 + }, + { + "epoch": 4.309191629052114, + "grad_norm": 0.06563274562358856, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 42006 + }, + { + "epoch": 4.309499384489126, + "grad_norm": 0.05920867621898651, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 42009 + }, + { + "epoch": 4.309807139926138, + "grad_norm": 0.12882298231124878, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 42012 + }, + { + "epoch": 4.310114895363151, + "grad_norm": 0.07217466831207275, + "learning_rate": 0.01, + "loss": 2.018, + "step": 42015 + }, + { + "epoch": 4.310422650800164, + "grad_norm": 0.06030949205160141, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 42018 + }, + { + "epoch": 4.310730406237177, + "grad_norm": 0.04477029666304588, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 42021 + }, + { + "epoch": 4.3110381616741895, + "grad_norm": 0.042469825595617294, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 42024 + }, + { + "epoch": 4.311345917111202, + "grad_norm": 0.061194293200969696, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 42027 + }, + { + "epoch": 4.311653672548215, + "grad_norm": 0.07249957323074341, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 42030 + }, + { + "epoch": 4.311961427985228, + "grad_norm": 0.1172809898853302, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 42033 + }, + { + "epoch": 4.312269183422241, + "grad_norm": 0.05327514931559563, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 42036 + }, + { + "epoch": 4.312576938859253, + "grad_norm": 0.06902623176574707, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 42039 + }, + { + "epoch": 4.312884694296266, + "grad_norm": 0.039753060787916183, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 42042 + }, + { + "epoch": 4.313192449733279, + "grad_norm": 0.047289080917835236, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 42045 + }, + { + "epoch": 4.313500205170292, + "grad_norm": 0.11222794651985168, + "learning_rate": 0.01, + "loss": 2.008, + "step": 42048 + }, + { + "epoch": 4.313807960607304, + "grad_norm": 0.09836508333683014, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 42051 + }, + { + "epoch": 4.314115716044316, + "grad_norm": 0.06988558173179626, + "learning_rate": 0.01, + "loss": 2.007, + "step": 42054 + }, + { + "epoch": 4.314423471481329, + "grad_norm": 0.05915610492229462, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 42057 + }, + { + "epoch": 4.314731226918342, + "grad_norm": 0.14300785958766937, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 42060 + }, + { + "epoch": 4.315038982355355, + "grad_norm": 0.055672645568847656, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 42063 + }, + { + "epoch": 4.3153467377923675, + "grad_norm": 0.07753617316484451, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 42066 + }, + { + "epoch": 4.31565449322938, + "grad_norm": 0.04788988083600998, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 42069 + }, + { + "epoch": 4.315962248666393, + "grad_norm": 0.04761343449354172, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 42072 + }, + { + "epoch": 4.316270004103406, + "grad_norm": 0.051400624215602875, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 42075 + }, + { + "epoch": 4.316577759540419, + "grad_norm": 0.050774481147527695, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 42078 + }, + { + "epoch": 4.3168855149774314, + "grad_norm": 0.08724766224622726, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 42081 + }, + { + "epoch": 4.317193270414444, + "grad_norm": 0.07128842920064926, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 42084 + }, + { + "epoch": 4.317501025851457, + "grad_norm": 0.16834615170955658, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 42087 + }, + { + "epoch": 4.31780878128847, + "grad_norm": 0.07254631817340851, + "learning_rate": 0.01, + "loss": 1.962, + "step": 42090 + }, + { + "epoch": 4.318116536725482, + "grad_norm": 0.0355360321700573, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 42093 + }, + { + "epoch": 4.3184242921624945, + "grad_norm": 0.03480659797787666, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 42096 + }, + { + "epoch": 4.318732047599507, + "grad_norm": 0.04848271980881691, + "learning_rate": 0.01, + "loss": 2.003, + "step": 42099 + }, + { + "epoch": 4.31903980303652, + "grad_norm": 0.047225676476955414, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 42102 + }, + { + "epoch": 4.319347558473533, + "grad_norm": 0.07466583698987961, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 42105 + }, + { + "epoch": 4.319655313910546, + "grad_norm": 0.03580273687839508, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 42108 + }, + { + "epoch": 4.319963069347558, + "grad_norm": 0.0513874776661396, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 42111 + }, + { + "epoch": 4.320270824784571, + "grad_norm": 0.08838716894388199, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 42114 + }, + { + "epoch": 4.320578580221584, + "grad_norm": 0.048829689621925354, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 42117 + }, + { + "epoch": 4.320886335658597, + "grad_norm": 0.0572056770324707, + "learning_rate": 0.01, + "loss": 2.0366, + "step": 42120 + }, + { + "epoch": 4.3211940910956095, + "grad_norm": 0.0953284278512001, + "learning_rate": 0.01, + "loss": 1.99, + "step": 42123 + }, + { + "epoch": 4.321501846532622, + "grad_norm": 0.08970024436712265, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 42126 + }, + { + "epoch": 4.321809601969635, + "grad_norm": 0.03790782392024994, + "learning_rate": 0.01, + "loss": 2.017, + "step": 42129 + }, + { + "epoch": 4.322117357406648, + "grad_norm": 0.11770451813936234, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 42132 + }, + { + "epoch": 4.322425112843661, + "grad_norm": 0.08634433895349503, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 42135 + }, + { + "epoch": 4.3227328682806725, + "grad_norm": 0.08693015575408936, + "learning_rate": 0.01, + "loss": 1.994, + "step": 42138 + }, + { + "epoch": 4.323040623717685, + "grad_norm": 0.07767558842897415, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 42141 + }, + { + "epoch": 4.323348379154698, + "grad_norm": 0.03783591464161873, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 42144 + }, + { + "epoch": 4.323656134591711, + "grad_norm": 0.036055248230695724, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 42147 + }, + { + "epoch": 4.323963890028724, + "grad_norm": 0.056252893060445786, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 42150 + }, + { + "epoch": 4.324271645465736, + "grad_norm": 0.07847966253757477, + "learning_rate": 0.01, + "loss": 2.007, + "step": 42153 + }, + { + "epoch": 4.324579400902749, + "grad_norm": 0.07340630888938904, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 42156 + }, + { + "epoch": 4.324887156339762, + "grad_norm": 0.0631684884428978, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 42159 + }, + { + "epoch": 4.325194911776775, + "grad_norm": 0.03661903738975525, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 42162 + }, + { + "epoch": 4.3255026672137875, + "grad_norm": 0.06492697447538376, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 42165 + }, + { + "epoch": 4.3258104226508, + "grad_norm": 0.07288751751184464, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 42168 + }, + { + "epoch": 4.326118178087813, + "grad_norm": 0.04615149274468422, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 42171 + }, + { + "epoch": 4.326425933524826, + "grad_norm": 0.06735312938690186, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 42174 + }, + { + "epoch": 4.326733688961839, + "grad_norm": 0.05109792947769165, + "learning_rate": 0.01, + "loss": 2.0274, + "step": 42177 + }, + { + "epoch": 4.327041444398851, + "grad_norm": 0.047006141394376755, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 42180 + }, + { + "epoch": 4.327349199835863, + "grad_norm": 0.11803962290287018, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 42183 + }, + { + "epoch": 4.327656955272876, + "grad_norm": 0.06282762438058853, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 42186 + }, + { + "epoch": 4.327964710709889, + "grad_norm": 0.07451837509870529, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 42189 + }, + { + "epoch": 4.328272466146902, + "grad_norm": 0.05453307554125786, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 42192 + }, + { + "epoch": 4.328580221583914, + "grad_norm": 0.03320490941405296, + "learning_rate": 0.01, + "loss": 1.97, + "step": 42195 + }, + { + "epoch": 4.328887977020927, + "grad_norm": 0.03890087082982063, + "learning_rate": 0.01, + "loss": 2.0277, + "step": 42198 + }, + { + "epoch": 4.32919573245794, + "grad_norm": 0.04567558318376541, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 42201 + }, + { + "epoch": 4.329503487894953, + "grad_norm": 0.11574912816286087, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 42204 + }, + { + "epoch": 4.3298112433319655, + "grad_norm": 0.1619519144296646, + "learning_rate": 0.01, + "loss": 2.0264, + "step": 42207 + }, + { + "epoch": 4.330118998768978, + "grad_norm": 0.07246614992618561, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 42210 + }, + { + "epoch": 4.330426754205991, + "grad_norm": 0.06830492615699768, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 42213 + }, + { + "epoch": 4.330734509643004, + "grad_norm": 0.03900605067610741, + "learning_rate": 0.01, + "loss": 2.005, + "step": 42216 + }, + { + "epoch": 4.331042265080017, + "grad_norm": 0.04035233333706856, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 42219 + }, + { + "epoch": 4.331350020517029, + "grad_norm": 0.08681115508079529, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 42222 + }, + { + "epoch": 4.331657775954042, + "grad_norm": 0.10521326214075089, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 42225 + }, + { + "epoch": 4.331965531391054, + "grad_norm": 0.05561526492238045, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 42228 + }, + { + "epoch": 4.332273286828067, + "grad_norm": 0.10138184577226639, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 42231 + }, + { + "epoch": 4.33258104226508, + "grad_norm": 0.05151226371526718, + "learning_rate": 0.01, + "loss": 1.997, + "step": 42234 + }, + { + "epoch": 4.3328887977020925, + "grad_norm": 0.04308367893099785, + "learning_rate": 0.01, + "loss": 1.989, + "step": 42237 + }, + { + "epoch": 4.333196553139105, + "grad_norm": 0.09749255329370499, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 42240 + }, + { + "epoch": 4.333504308576118, + "grad_norm": 0.078557088971138, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 42243 + }, + { + "epoch": 4.333812064013131, + "grad_norm": 0.05035284161567688, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 42246 + }, + { + "epoch": 4.334119819450144, + "grad_norm": 0.08703385293483734, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 42249 + }, + { + "epoch": 4.334427574887156, + "grad_norm": 0.06751354783773422, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 42252 + }, + { + "epoch": 4.334735330324169, + "grad_norm": 0.06264498084783554, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 42255 + }, + { + "epoch": 4.335043085761182, + "grad_norm": 0.08927709609270096, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 42258 + }, + { + "epoch": 4.335350841198195, + "grad_norm": 0.0882975161075592, + "learning_rate": 0.01, + "loss": 1.982, + "step": 42261 + }, + { + "epoch": 4.3356585966352075, + "grad_norm": 0.08568523824214935, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 42264 + }, + { + "epoch": 4.33596635207222, + "grad_norm": 0.10143941640853882, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 42267 + }, + { + "epoch": 4.336274107509233, + "grad_norm": 0.04442453384399414, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 42270 + }, + { + "epoch": 4.336581862946245, + "grad_norm": 0.04202549159526825, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 42273 + }, + { + "epoch": 4.336889618383258, + "grad_norm": 0.07024986296892166, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 42276 + }, + { + "epoch": 4.3371973738202705, + "grad_norm": 0.0714881494641304, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 42279 + }, + { + "epoch": 4.337505129257283, + "grad_norm": 0.05677810311317444, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 42282 + }, + { + "epoch": 4.337812884694296, + "grad_norm": 0.08475086092948914, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 42285 + }, + { + "epoch": 4.338120640131309, + "grad_norm": 0.05561790242791176, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 42288 + }, + { + "epoch": 4.338428395568322, + "grad_norm": 0.0845925584435463, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 42291 + }, + { + "epoch": 4.338736151005334, + "grad_norm": 0.07267442345619202, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 42294 + }, + { + "epoch": 4.339043906442347, + "grad_norm": 0.06486202031373978, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 42297 + }, + { + "epoch": 4.33935166187936, + "grad_norm": 0.08498860895633698, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 42300 + }, + { + "epoch": 4.339659417316373, + "grad_norm": 0.05737947300076485, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 42303 + }, + { + "epoch": 4.3399671727533855, + "grad_norm": 0.1146705150604248, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 42306 + }, + { + "epoch": 4.340274928190398, + "grad_norm": 0.06821808218955994, + "learning_rate": 0.01, + "loss": 2.003, + "step": 42309 + }, + { + "epoch": 4.340582683627411, + "grad_norm": 0.06554093956947327, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 42312 + }, + { + "epoch": 4.340890439064424, + "grad_norm": 0.055730611085891724, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 42315 + }, + { + "epoch": 4.341198194501436, + "grad_norm": 0.12713190913200378, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 42318 + }, + { + "epoch": 4.3415059499384485, + "grad_norm": 0.04995013028383255, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 42321 + }, + { + "epoch": 4.341813705375461, + "grad_norm": 0.05785641819238663, + "learning_rate": 0.01, + "loss": 2.001, + "step": 42324 + }, + { + "epoch": 4.342121460812474, + "grad_norm": 0.06933962553739548, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 42327 + }, + { + "epoch": 4.342429216249487, + "grad_norm": 0.08787462115287781, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 42330 + }, + { + "epoch": 4.3427369716865, + "grad_norm": 0.03759448602795601, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 42333 + }, + { + "epoch": 4.343044727123512, + "grad_norm": 0.08787883818149567, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 42336 + }, + { + "epoch": 4.343352482560525, + "grad_norm": 0.07424912601709366, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 42339 + }, + { + "epoch": 4.343660237997538, + "grad_norm": 0.08268291503190994, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 42342 + }, + { + "epoch": 4.343967993434551, + "grad_norm": 0.09832719713449478, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 42345 + }, + { + "epoch": 4.3442757488715635, + "grad_norm": 0.08465267717838287, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 42348 + }, + { + "epoch": 4.344583504308576, + "grad_norm": 0.08722463995218277, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 42351 + }, + { + "epoch": 4.344891259745589, + "grad_norm": 0.03291288763284683, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 42354 + }, + { + "epoch": 4.345199015182602, + "grad_norm": 0.05389249697327614, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 42357 + }, + { + "epoch": 4.345506770619615, + "grad_norm": 0.057934414595365524, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 42360 + }, + { + "epoch": 4.3458145260566265, + "grad_norm": 0.09527049958705902, + "learning_rate": 0.01, + "loss": 1.996, + "step": 42363 + }, + { + "epoch": 4.346122281493639, + "grad_norm": 0.09653705358505249, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 42366 + }, + { + "epoch": 4.346430036930652, + "grad_norm": 0.050867971032857895, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 42369 + }, + { + "epoch": 4.346737792367665, + "grad_norm": 0.17523349821567535, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 42372 + }, + { + "epoch": 4.347045547804678, + "grad_norm": 0.04011973738670349, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 42375 + }, + { + "epoch": 4.3473533032416904, + "grad_norm": 0.0476989708840847, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 42378 + }, + { + "epoch": 4.347661058678703, + "grad_norm": 0.062353190034627914, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 42381 + }, + { + "epoch": 4.347968814115716, + "grad_norm": 0.03900708258152008, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 42384 + }, + { + "epoch": 4.348276569552729, + "grad_norm": 0.05116381496191025, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 42387 + }, + { + "epoch": 4.348584324989742, + "grad_norm": 0.0740213617682457, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 42390 + }, + { + "epoch": 4.348892080426754, + "grad_norm": 0.04419323056936264, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 42393 + }, + { + "epoch": 4.349199835863767, + "grad_norm": 0.09228520840406418, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 42396 + }, + { + "epoch": 4.34950759130078, + "grad_norm": 0.06969837844371796, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 42399 + }, + { + "epoch": 4.349815346737793, + "grad_norm": 0.06493277847766876, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 42402 + }, + { + "epoch": 4.3501231021748055, + "grad_norm": 0.10470300912857056, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 42405 + }, + { + "epoch": 4.350430857611817, + "grad_norm": 0.055797114968299866, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 42408 + }, + { + "epoch": 4.35073861304883, + "grad_norm": 0.08295798301696777, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 42411 + }, + { + "epoch": 4.351046368485843, + "grad_norm": 0.03319832682609558, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 42414 + }, + { + "epoch": 4.351354123922856, + "grad_norm": 0.08333670347929001, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 42417 + }, + { + "epoch": 4.3516618793598685, + "grad_norm": 0.15636205673217773, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 42420 + }, + { + "epoch": 4.351969634796881, + "grad_norm": 0.04145883768796921, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 42423 + }, + { + "epoch": 4.352277390233894, + "grad_norm": 0.06319641321897507, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 42426 + }, + { + "epoch": 4.352585145670907, + "grad_norm": 0.10287382453680038, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 42429 + }, + { + "epoch": 4.35289290110792, + "grad_norm": 0.05073247849941254, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 42432 + }, + { + "epoch": 4.353200656544932, + "grad_norm": 0.05621569603681564, + "learning_rate": 0.01, + "loss": 2.006, + "step": 42435 + }, + { + "epoch": 4.353508411981945, + "grad_norm": 0.044255949556827545, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 42438 + }, + { + "epoch": 4.353816167418958, + "grad_norm": 0.09396500885486603, + "learning_rate": 0.01, + "loss": 2.011, + "step": 42441 + }, + { + "epoch": 4.354123922855971, + "grad_norm": 0.04211452975869179, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 42444 + }, + { + "epoch": 4.3544316782929835, + "grad_norm": 0.09612414985895157, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 42447 + }, + { + "epoch": 4.354739433729996, + "grad_norm": 0.07747933268547058, + "learning_rate": 0.01, + "loss": 2.005, + "step": 42450 + }, + { + "epoch": 4.355047189167008, + "grad_norm": 0.06796756386756897, + "learning_rate": 0.01, + "loss": 2.006, + "step": 42453 + }, + { + "epoch": 4.355354944604021, + "grad_norm": 0.052594736218452454, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 42456 + }, + { + "epoch": 4.355662700041034, + "grad_norm": 0.09094807505607605, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 42459 + }, + { + "epoch": 4.3559704554780465, + "grad_norm": 0.06846702843904495, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 42462 + }, + { + "epoch": 4.356278210915059, + "grad_norm": 0.059900566935539246, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 42465 + }, + { + "epoch": 4.356585966352072, + "grad_norm": 0.07737037539482117, + "learning_rate": 0.01, + "loss": 2.005, + "step": 42468 + }, + { + "epoch": 4.356893721789085, + "grad_norm": 0.10885298252105713, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 42471 + }, + { + "epoch": 4.357201477226098, + "grad_norm": 0.12740680575370789, + "learning_rate": 0.01, + "loss": 2.007, + "step": 42474 + }, + { + "epoch": 4.35750923266311, + "grad_norm": 0.05705080181360245, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 42477 + }, + { + "epoch": 4.357816988100123, + "grad_norm": 0.047689832746982574, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 42480 + }, + { + "epoch": 4.358124743537136, + "grad_norm": 0.06346622854471207, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 42483 + }, + { + "epoch": 4.358432498974149, + "grad_norm": 0.08776500821113586, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 42486 + }, + { + "epoch": 4.3587402544111615, + "grad_norm": 0.08766961097717285, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 42489 + }, + { + "epoch": 4.359048009848174, + "grad_norm": 0.045849695801734924, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 42492 + }, + { + "epoch": 4.359355765285187, + "grad_norm": 0.10003980994224548, + "learning_rate": 0.01, + "loss": 2.003, + "step": 42495 + }, + { + "epoch": 4.359663520722199, + "grad_norm": 0.05734704062342644, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 42498 + }, + { + "epoch": 4.359971276159212, + "grad_norm": 0.05776417255401611, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 42501 + }, + { + "epoch": 4.3602790315962245, + "grad_norm": 0.03467059135437012, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 42504 + }, + { + "epoch": 4.360586787033237, + "grad_norm": 0.03380267322063446, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 42507 + }, + { + "epoch": 4.36089454247025, + "grad_norm": 0.06621702015399933, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 42510 + }, + { + "epoch": 4.361202297907263, + "grad_norm": 0.05189868062734604, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 42513 + }, + { + "epoch": 4.361510053344276, + "grad_norm": 0.05479085072875023, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 42516 + }, + { + "epoch": 4.361817808781288, + "grad_norm": 0.07013875991106033, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 42519 + }, + { + "epoch": 4.362125564218301, + "grad_norm": 0.07816500216722488, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 42522 + }, + { + "epoch": 4.362433319655314, + "grad_norm": 0.05446416139602661, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 42525 + }, + { + "epoch": 4.362741075092327, + "grad_norm": 0.05260547250509262, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 42528 + }, + { + "epoch": 4.36304883052934, + "grad_norm": 0.042641572654247284, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 42531 + }, + { + "epoch": 4.363356585966352, + "grad_norm": 0.05067918077111244, + "learning_rate": 0.01, + "loss": 1.977, + "step": 42534 + }, + { + "epoch": 4.363664341403365, + "grad_norm": 0.05734257400035858, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 42537 + }, + { + "epoch": 4.363972096840378, + "grad_norm": 0.12982626259326935, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 42540 + }, + { + "epoch": 4.36427985227739, + "grad_norm": 0.06049492582678795, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 42543 + }, + { + "epoch": 4.364587607714403, + "grad_norm": 0.03683345392346382, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 42546 + }, + { + "epoch": 4.364895363151415, + "grad_norm": 0.055864546447992325, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 42549 + }, + { + "epoch": 4.365203118588428, + "grad_norm": 0.046534840017557144, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 42552 + }, + { + "epoch": 4.365510874025441, + "grad_norm": 0.07829025387763977, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 42555 + }, + { + "epoch": 4.365818629462454, + "grad_norm": 0.03704720363020897, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 42558 + }, + { + "epoch": 4.3661263848994665, + "grad_norm": 0.03933021053671837, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 42561 + }, + { + "epoch": 4.366434140336479, + "grad_norm": 0.05160917341709137, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 42564 + }, + { + "epoch": 4.366741895773492, + "grad_norm": 0.16336973011493683, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 42567 + }, + { + "epoch": 4.367049651210505, + "grad_norm": 0.15664827823638916, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 42570 + }, + { + "epoch": 4.367357406647518, + "grad_norm": 0.06535400450229645, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 42573 + }, + { + "epoch": 4.36766516208453, + "grad_norm": 0.10573652386665344, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 42576 + }, + { + "epoch": 4.367972917521543, + "grad_norm": 0.06016778200864792, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 42579 + }, + { + "epoch": 4.368280672958556, + "grad_norm": 0.07716617733240128, + "learning_rate": 0.01, + "loss": 2.012, + "step": 42582 + }, + { + "epoch": 4.368588428395569, + "grad_norm": 0.0795513242483139, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 42585 + }, + { + "epoch": 4.368896183832581, + "grad_norm": 0.042184434831142426, + "learning_rate": 0.01, + "loss": 1.9473, + "step": 42588 + }, + { + "epoch": 4.369203939269593, + "grad_norm": 0.10784424096345901, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 42591 + }, + { + "epoch": 4.369511694706606, + "grad_norm": 0.0906398668885231, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 42594 + }, + { + "epoch": 4.369819450143619, + "grad_norm": 0.07714588940143585, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 42597 + }, + { + "epoch": 4.370127205580632, + "grad_norm": 0.07262132316827774, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 42600 + }, + { + "epoch": 4.3704349610176445, + "grad_norm": 0.04687703400850296, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 42603 + }, + { + "epoch": 4.370742716454657, + "grad_norm": 0.03540663421154022, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 42606 + }, + { + "epoch": 4.37105047189167, + "grad_norm": 0.0655878484249115, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 42609 + }, + { + "epoch": 4.371358227328683, + "grad_norm": 0.14327290654182434, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 42612 + }, + { + "epoch": 4.371665982765696, + "grad_norm": 0.051352307200431824, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 42615 + }, + { + "epoch": 4.371973738202708, + "grad_norm": 0.03427935391664505, + "learning_rate": 0.01, + "loss": 1.995, + "step": 42618 + }, + { + "epoch": 4.372281493639721, + "grad_norm": 0.06677401810884476, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 42621 + }, + { + "epoch": 4.372589249076734, + "grad_norm": 0.0740409791469574, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 42624 + }, + { + "epoch": 4.372897004513747, + "grad_norm": 0.07356753200292587, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 42627 + }, + { + "epoch": 4.3732047599507595, + "grad_norm": 0.0342116579413414, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 42630 + }, + { + "epoch": 4.373512515387771, + "grad_norm": 0.04127725213766098, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 42633 + }, + { + "epoch": 4.373820270824784, + "grad_norm": 0.05259817838668823, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 42636 + }, + { + "epoch": 4.374128026261797, + "grad_norm": 0.041953880339860916, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 42639 + }, + { + "epoch": 4.37443578169881, + "grad_norm": 0.042254798114299774, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 42642 + }, + { + "epoch": 4.3747435371358225, + "grad_norm": 0.0722968801856041, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 42645 + }, + { + "epoch": 4.375051292572835, + "grad_norm": 0.12318527698516846, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 42648 + }, + { + "epoch": 4.375359048009848, + "grad_norm": 0.048684168606996536, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 42651 + }, + { + "epoch": 4.375666803446861, + "grad_norm": 0.09488745033740997, + "learning_rate": 0.01, + "loss": 1.9645, + "step": 42654 + }, + { + "epoch": 4.375974558883874, + "grad_norm": 0.06261547654867172, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 42657 + }, + { + "epoch": 4.376282314320886, + "grad_norm": 0.03739078342914581, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 42660 + }, + { + "epoch": 4.376590069757899, + "grad_norm": 0.03686247393488884, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 42663 + }, + { + "epoch": 4.376897825194912, + "grad_norm": 0.038870710879564285, + "learning_rate": 0.01, + "loss": 2.012, + "step": 42666 + }, + { + "epoch": 4.377205580631925, + "grad_norm": 0.04153933376073837, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 42669 + }, + { + "epoch": 4.3775133360689376, + "grad_norm": 0.07403891533613205, + "learning_rate": 0.01, + "loss": 1.9581, + "step": 42672 + }, + { + "epoch": 4.37782109150595, + "grad_norm": 0.12554992735385895, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 42675 + }, + { + "epoch": 4.378128846942962, + "grad_norm": 0.07833071053028107, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 42678 + }, + { + "epoch": 4.378436602379975, + "grad_norm": 0.05616781488060951, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 42681 + }, + { + "epoch": 4.378744357816988, + "grad_norm": 0.034405291080474854, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 42684 + }, + { + "epoch": 4.379052113254001, + "grad_norm": 0.03216303512454033, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 42687 + }, + { + "epoch": 4.379359868691013, + "grad_norm": 0.03294415399432182, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 42690 + }, + { + "epoch": 4.379667624128026, + "grad_norm": 0.07378646731376648, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 42693 + }, + { + "epoch": 4.379975379565039, + "grad_norm": 0.0922391265630722, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 42696 + }, + { + "epoch": 4.380283135002052, + "grad_norm": 0.06231202930212021, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 42699 + }, + { + "epoch": 4.3805908904390645, + "grad_norm": 0.07775771617889404, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 42702 + }, + { + "epoch": 4.380898645876077, + "grad_norm": 0.041460320353507996, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 42705 + }, + { + "epoch": 4.38120640131309, + "grad_norm": 0.10348492860794067, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 42708 + }, + { + "epoch": 4.381514156750103, + "grad_norm": 0.06981760263442993, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 42711 + }, + { + "epoch": 4.381821912187116, + "grad_norm": 0.05024630203843117, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 42714 + }, + { + "epoch": 4.382129667624128, + "grad_norm": 0.09696882963180542, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 42717 + }, + { + "epoch": 4.382437423061141, + "grad_norm": 0.08955802023410797, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 42720 + }, + { + "epoch": 4.382745178498153, + "grad_norm": 0.053882379084825516, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 42723 + }, + { + "epoch": 4.383052933935166, + "grad_norm": 0.09641711413860321, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 42726 + }, + { + "epoch": 4.383360689372179, + "grad_norm": 0.03148825094103813, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 42729 + }, + { + "epoch": 4.383668444809191, + "grad_norm": 0.13528583943843842, + "learning_rate": 0.01, + "loss": 1.973, + "step": 42732 + }, + { + "epoch": 4.383976200246204, + "grad_norm": 0.08340415358543396, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 42735 + }, + { + "epoch": 4.384283955683217, + "grad_norm": 0.04938989877700806, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 42738 + }, + { + "epoch": 4.38459171112023, + "grad_norm": 0.03983978554606438, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 42741 + }, + { + "epoch": 4.3848994665572425, + "grad_norm": 0.04310479387640953, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 42744 + }, + { + "epoch": 4.385207221994255, + "grad_norm": 0.047569889575242996, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 42747 + }, + { + "epoch": 4.385514977431268, + "grad_norm": 0.04927491769194603, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 42750 + }, + { + "epoch": 4.385822732868281, + "grad_norm": 0.17855384945869446, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 42753 + }, + { + "epoch": 4.386130488305294, + "grad_norm": 0.06133484095335007, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 42756 + }, + { + "epoch": 4.386438243742306, + "grad_norm": 0.0671703889966011, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 42759 + }, + { + "epoch": 4.386745999179319, + "grad_norm": 0.06793912500143051, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 42762 + }, + { + "epoch": 4.387053754616332, + "grad_norm": 0.042816221714019775, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 42765 + }, + { + "epoch": 4.387361510053344, + "grad_norm": 0.035412371158599854, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 42768 + }, + { + "epoch": 4.387669265490357, + "grad_norm": 0.05142438784241676, + "learning_rate": 0.01, + "loss": 2.026, + "step": 42771 + }, + { + "epoch": 4.387977020927369, + "grad_norm": 0.04674524813890457, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 42774 + }, + { + "epoch": 4.388284776364382, + "grad_norm": 0.2127211093902588, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 42777 + }, + { + "epoch": 4.388592531801395, + "grad_norm": 0.09352391213178635, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 42780 + }, + { + "epoch": 4.388900287238408, + "grad_norm": 0.06070404127240181, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 42783 + }, + { + "epoch": 4.3892080426754205, + "grad_norm": 0.0433930978178978, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 42786 + }, + { + "epoch": 4.389515798112433, + "grad_norm": 0.03960421308875084, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 42789 + }, + { + "epoch": 4.389823553549446, + "grad_norm": 0.043349895626306534, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 42792 + }, + { + "epoch": 4.390131308986459, + "grad_norm": 0.04139290004968643, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 42795 + }, + { + "epoch": 4.390439064423472, + "grad_norm": 0.08798687905073166, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 42798 + }, + { + "epoch": 4.390746819860484, + "grad_norm": 0.061553046107292175, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 42801 + }, + { + "epoch": 4.391054575297497, + "grad_norm": 0.04880871623754501, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 42804 + }, + { + "epoch": 4.39136233073451, + "grad_norm": 0.06029786914587021, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 42807 + }, + { + "epoch": 4.391670086171523, + "grad_norm": 0.047968216240406036, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 42810 + }, + { + "epoch": 4.391977841608535, + "grad_norm": 0.11133129149675369, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 42813 + }, + { + "epoch": 4.392285597045547, + "grad_norm": 0.09831759333610535, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 42816 + }, + { + "epoch": 4.39259335248256, + "grad_norm": 0.0829746425151825, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 42819 + }, + { + "epoch": 4.392901107919573, + "grad_norm": 0.04381052777171135, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 42822 + }, + { + "epoch": 4.393208863356586, + "grad_norm": 0.06539449840784073, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 42825 + }, + { + "epoch": 4.393516618793599, + "grad_norm": 0.03784729540348053, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 42828 + }, + { + "epoch": 4.393824374230611, + "grad_norm": 0.10152629017829895, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 42831 + }, + { + "epoch": 4.394132129667624, + "grad_norm": 0.043561842292547226, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 42834 + }, + { + "epoch": 4.394439885104637, + "grad_norm": 0.06225054711103439, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 42837 + }, + { + "epoch": 4.39474764054165, + "grad_norm": 0.08047157526016235, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 42840 + }, + { + "epoch": 4.3950553959786625, + "grad_norm": 0.09267039597034454, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 42843 + }, + { + "epoch": 4.395363151415675, + "grad_norm": 0.10524188727140427, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 42846 + }, + { + "epoch": 4.395670906852688, + "grad_norm": 0.0726306214928627, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 42849 + }, + { + "epoch": 4.395978662289701, + "grad_norm": 0.036908458918333054, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 42852 + }, + { + "epoch": 4.396286417726714, + "grad_norm": 0.052610307931900024, + "learning_rate": 0.01, + "loss": 1.9566, + "step": 42855 + }, + { + "epoch": 4.3965941731637255, + "grad_norm": 0.04229322075843811, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 42858 + }, + { + "epoch": 4.396901928600738, + "grad_norm": 0.1478923261165619, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 42861 + }, + { + "epoch": 4.397209684037751, + "grad_norm": 0.08942049741744995, + "learning_rate": 0.01, + "loss": 2.001, + "step": 42864 + }, + { + "epoch": 4.397517439474764, + "grad_norm": 0.051714204251766205, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 42867 + }, + { + "epoch": 4.397825194911777, + "grad_norm": 0.03621753305196762, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 42870 + }, + { + "epoch": 4.398132950348789, + "grad_norm": 0.03929129242897034, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 42873 + }, + { + "epoch": 4.398440705785802, + "grad_norm": 0.04855189844965935, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 42876 + }, + { + "epoch": 4.398748461222815, + "grad_norm": 0.060284826904535294, + "learning_rate": 0.01, + "loss": 1.975, + "step": 42879 + }, + { + "epoch": 4.399056216659828, + "grad_norm": 0.07179313898086548, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 42882 + }, + { + "epoch": 4.3993639720968405, + "grad_norm": 0.10332684218883514, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 42885 + }, + { + "epoch": 4.399671727533853, + "grad_norm": 0.13461638987064362, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 42888 + }, + { + "epoch": 4.399979482970866, + "grad_norm": 0.08879181742668152, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 42891 + }, + { + "epoch": 4.400287238407879, + "grad_norm": 0.064743272960186, + "learning_rate": 0.01, + "loss": 1.992, + "step": 42894 + }, + { + "epoch": 4.400594993844892, + "grad_norm": 0.04650283232331276, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 42897 + }, + { + "epoch": 4.400902749281904, + "grad_norm": 0.05072256550192833, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 42900 + }, + { + "epoch": 4.401210504718916, + "grad_norm": 0.05984727293252945, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 42903 + }, + { + "epoch": 4.401518260155929, + "grad_norm": 0.0773845687508583, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 42906 + }, + { + "epoch": 4.401826015592942, + "grad_norm": 0.06231288984417915, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 42909 + }, + { + "epoch": 4.402133771029955, + "grad_norm": 0.07276583462953568, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 42912 + }, + { + "epoch": 4.402441526466967, + "grad_norm": 0.043372802436351776, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 42915 + }, + { + "epoch": 4.40274928190398, + "grad_norm": 0.05217559635639191, + "learning_rate": 0.01, + "loss": 2.021, + "step": 42918 + }, + { + "epoch": 4.403057037340993, + "grad_norm": 0.058887772262096405, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 42921 + }, + { + "epoch": 4.403364792778006, + "grad_norm": 0.04377232864499092, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 42924 + }, + { + "epoch": 4.4036725482150185, + "grad_norm": 0.032925624400377274, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 42927 + }, + { + "epoch": 4.403980303652031, + "grad_norm": 0.1263015866279602, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 42930 + }, + { + "epoch": 4.404288059089044, + "grad_norm": 0.046885982155799866, + "learning_rate": 0.01, + "loss": 2.002, + "step": 42933 + }, + { + "epoch": 4.404595814526057, + "grad_norm": 0.10321955382823944, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 42936 + }, + { + "epoch": 4.40490356996307, + "grad_norm": 0.06488531827926636, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 42939 + }, + { + "epoch": 4.405211325400082, + "grad_norm": 0.09423347562551498, + "learning_rate": 0.01, + "loss": 1.9653, + "step": 42942 + }, + { + "epoch": 4.405519080837095, + "grad_norm": 0.06422553211450577, + "learning_rate": 0.01, + "loss": 2.014, + "step": 42945 + }, + { + "epoch": 4.405826836274107, + "grad_norm": 0.05872100591659546, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 42948 + }, + { + "epoch": 4.40613459171112, + "grad_norm": 0.043210845440626144, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 42951 + }, + { + "epoch": 4.406442347148133, + "grad_norm": 0.041857898235321045, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 42954 + }, + { + "epoch": 4.406750102585145, + "grad_norm": 0.03347545117139816, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 42957 + }, + { + "epoch": 4.407057858022158, + "grad_norm": 0.0377437062561512, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 42960 + }, + { + "epoch": 4.407365613459171, + "grad_norm": 0.07432477176189423, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 42963 + }, + { + "epoch": 4.407673368896184, + "grad_norm": 0.038358092308044434, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 42966 + }, + { + "epoch": 4.4079811243331966, + "grad_norm": 0.09125792980194092, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 42969 + }, + { + "epoch": 4.408288879770209, + "grad_norm": 0.11572171747684479, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 42972 + }, + { + "epoch": 4.408596635207222, + "grad_norm": 0.05868324264883995, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 42975 + }, + { + "epoch": 4.408904390644235, + "grad_norm": 0.0679447203874588, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 42978 + }, + { + "epoch": 4.409212146081248, + "grad_norm": 0.050446171313524246, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 42981 + }, + { + "epoch": 4.4095199015182605, + "grad_norm": 0.05003255605697632, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 42984 + }, + { + "epoch": 4.409827656955273, + "grad_norm": 0.05460989847779274, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 42987 + }, + { + "epoch": 4.410135412392286, + "grad_norm": 0.04039241746068001, + "learning_rate": 0.01, + "loss": 1.981, + "step": 42990 + }, + { + "epoch": 4.410443167829298, + "grad_norm": 0.04114096984267235, + "learning_rate": 0.01, + "loss": 1.9696, + "step": 42993 + }, + { + "epoch": 4.410750923266311, + "grad_norm": 0.1269209384918213, + "learning_rate": 0.01, + "loss": 1.995, + "step": 42996 + }, + { + "epoch": 4.4110586787033235, + "grad_norm": 0.059638604521751404, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 42999 + }, + { + "epoch": 4.411366434140336, + "grad_norm": 0.09658347070217133, + "learning_rate": 0.01, + "loss": 1.984, + "step": 43002 + }, + { + "epoch": 4.411674189577349, + "grad_norm": 0.05749305710196495, + "learning_rate": 0.01, + "loss": 1.982, + "step": 43005 + }, + { + "epoch": 4.411981945014362, + "grad_norm": 0.04522128403186798, + "learning_rate": 0.01, + "loss": 1.987, + "step": 43008 + }, + { + "epoch": 4.412289700451375, + "grad_norm": 0.034170012921094894, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 43011 + }, + { + "epoch": 4.412597455888387, + "grad_norm": 0.04310225695371628, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 43014 + }, + { + "epoch": 4.4129052113254, + "grad_norm": 0.15212641656398773, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 43017 + }, + { + "epoch": 4.413212966762413, + "grad_norm": 0.12978756427764893, + "learning_rate": 0.01, + "loss": 1.99, + "step": 43020 + }, + { + "epoch": 4.413520722199426, + "grad_norm": 0.07762716710567474, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 43023 + }, + { + "epoch": 4.4138284776364385, + "grad_norm": 0.049494557082653046, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 43026 + }, + { + "epoch": 4.414136233073451, + "grad_norm": 0.060781434178352356, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 43029 + }, + { + "epoch": 4.414443988510464, + "grad_norm": 0.03154407814145088, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 43032 + }, + { + "epoch": 4.414751743947477, + "grad_norm": 0.048733990639448166, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 43035 + }, + { + "epoch": 4.415059499384489, + "grad_norm": 0.04283260181546211, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 43038 + }, + { + "epoch": 4.4153672548215015, + "grad_norm": 0.06798703223466873, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 43041 + }, + { + "epoch": 4.415675010258514, + "grad_norm": 0.10504204034805298, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 43044 + }, + { + "epoch": 4.415982765695527, + "grad_norm": 0.1270654797554016, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 43047 + }, + { + "epoch": 4.41629052113254, + "grad_norm": 0.06907479465007782, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 43050 + }, + { + "epoch": 4.416598276569553, + "grad_norm": 0.034706976264715195, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 43053 + }, + { + "epoch": 4.416906032006565, + "grad_norm": 0.033550575375556946, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 43056 + }, + { + "epoch": 4.417213787443578, + "grad_norm": 0.03790535405278206, + "learning_rate": 0.01, + "loss": 2.009, + "step": 43059 + }, + { + "epoch": 4.417521542880591, + "grad_norm": 0.04516111686825752, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 43062 + }, + { + "epoch": 4.417829298317604, + "grad_norm": 0.07906030863523483, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 43065 + }, + { + "epoch": 4.4181370537546165, + "grad_norm": 0.11393613368272781, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 43068 + }, + { + "epoch": 4.418444809191629, + "grad_norm": 0.04494154825806618, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 43071 + }, + { + "epoch": 4.418752564628642, + "grad_norm": 0.04806877672672272, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 43074 + }, + { + "epoch": 4.419060320065655, + "grad_norm": 0.09511521458625793, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 43077 + }, + { + "epoch": 4.419368075502668, + "grad_norm": 0.036587249487638474, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 43080 + }, + { + "epoch": 4.4196758309396795, + "grad_norm": 0.03894515708088875, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 43083 + }, + { + "epoch": 4.419983586376692, + "grad_norm": 0.06960659474134445, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 43086 + }, + { + "epoch": 4.420291341813705, + "grad_norm": 0.04635101556777954, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 43089 + }, + { + "epoch": 4.420599097250718, + "grad_norm": 0.09964662045240402, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 43092 + }, + { + "epoch": 4.420906852687731, + "grad_norm": 0.10087699443101883, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 43095 + }, + { + "epoch": 4.421214608124743, + "grad_norm": 0.09748293459415436, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 43098 + }, + { + "epoch": 4.421522363561756, + "grad_norm": 0.04654933884739876, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 43101 + }, + { + "epoch": 4.421830118998769, + "grad_norm": 0.05607482045888901, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 43104 + }, + { + "epoch": 4.422137874435782, + "grad_norm": 0.0513363815844059, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 43107 + }, + { + "epoch": 4.4224456298727945, + "grad_norm": 0.048932064324617386, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 43110 + }, + { + "epoch": 4.422753385309807, + "grad_norm": 0.05465288087725639, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 43113 + }, + { + "epoch": 4.42306114074682, + "grad_norm": 0.04400217905640602, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 43116 + }, + { + "epoch": 4.423368896183833, + "grad_norm": 0.03483066335320473, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 43119 + }, + { + "epoch": 4.423676651620846, + "grad_norm": 0.04909312352538109, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 43122 + }, + { + "epoch": 4.4239844070578584, + "grad_norm": 0.09361930191516876, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 43125 + }, + { + "epoch": 4.42429216249487, + "grad_norm": 0.06980263441801071, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 43128 + }, + { + "epoch": 4.424599917931883, + "grad_norm": 0.06628268212080002, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 43131 + }, + { + "epoch": 4.424907673368896, + "grad_norm": 0.10180728137493134, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 43134 + }, + { + "epoch": 4.425215428805909, + "grad_norm": 0.10624035447835922, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 43137 + }, + { + "epoch": 4.4255231842429215, + "grad_norm": 0.08775760233402252, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 43140 + }, + { + "epoch": 4.425830939679934, + "grad_norm": 0.06270244717597961, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 43143 + }, + { + "epoch": 4.426138695116947, + "grad_norm": 0.06912422925233841, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 43146 + }, + { + "epoch": 4.42644645055396, + "grad_norm": 0.05379674583673477, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 43149 + }, + { + "epoch": 4.426754205990973, + "grad_norm": 0.041072819381952286, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 43152 + }, + { + "epoch": 4.427061961427985, + "grad_norm": 0.05191728100180626, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 43155 + }, + { + "epoch": 4.427369716864998, + "grad_norm": 0.03773737698793411, + "learning_rate": 0.01, + "loss": 2.001, + "step": 43158 + }, + { + "epoch": 4.427677472302011, + "grad_norm": 0.10148506611585617, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 43161 + }, + { + "epoch": 4.427985227739024, + "grad_norm": 0.071526899933815, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 43164 + }, + { + "epoch": 4.4282929831760365, + "grad_norm": 0.07906235009431839, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 43167 + }, + { + "epoch": 4.428600738613049, + "grad_norm": 0.18193936347961426, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 43170 + }, + { + "epoch": 4.428908494050061, + "grad_norm": 0.1734820157289505, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 43173 + }, + { + "epoch": 4.429216249487074, + "grad_norm": 0.09781987965106964, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 43176 + }, + { + "epoch": 4.429524004924087, + "grad_norm": 0.06472992151975632, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 43179 + }, + { + "epoch": 4.4298317603610995, + "grad_norm": 0.04425714537501335, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 43182 + }, + { + "epoch": 4.430139515798112, + "grad_norm": 0.04678405821323395, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 43185 + }, + { + "epoch": 4.430447271235125, + "grad_norm": 0.04311143234372139, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 43188 + }, + { + "epoch": 4.430755026672138, + "grad_norm": 0.060729045420885086, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 43191 + }, + { + "epoch": 4.431062782109151, + "grad_norm": 0.07931876182556152, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 43194 + }, + { + "epoch": 4.431370537546163, + "grad_norm": 0.048263415694236755, + "learning_rate": 0.01, + "loss": 2.012, + "step": 43197 + }, + { + "epoch": 4.431678292983176, + "grad_norm": 0.05372344329953194, + "learning_rate": 0.01, + "loss": 1.9636, + "step": 43200 + }, + { + "epoch": 4.431986048420189, + "grad_norm": 0.06506495922803879, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 43203 + }, + { + "epoch": 4.432293803857202, + "grad_norm": 0.03484785556793213, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 43206 + }, + { + "epoch": 4.4326015592942145, + "grad_norm": 0.18487481772899628, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 43209 + }, + { + "epoch": 4.432909314731227, + "grad_norm": 0.11683176457881927, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 43212 + }, + { + "epoch": 4.43321707016824, + "grad_norm": 0.08598039299249649, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 43215 + }, + { + "epoch": 4.433524825605252, + "grad_norm": 0.0889374166727066, + "learning_rate": 0.01, + "loss": 1.982, + "step": 43218 + }, + { + "epoch": 4.433832581042265, + "grad_norm": 0.061477046459913254, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 43221 + }, + { + "epoch": 4.4341403364792775, + "grad_norm": 0.046285588294267654, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 43224 + }, + { + "epoch": 4.43444809191629, + "grad_norm": 0.06310747563838959, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 43227 + }, + { + "epoch": 4.434755847353303, + "grad_norm": 0.04792320355772972, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 43230 + }, + { + "epoch": 4.435063602790316, + "grad_norm": 0.03359830752015114, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 43233 + }, + { + "epoch": 4.435371358227329, + "grad_norm": 0.04137792810797691, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 43236 + }, + { + "epoch": 4.435679113664341, + "grad_norm": 0.04756288602948189, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 43239 + }, + { + "epoch": 4.435986869101354, + "grad_norm": 0.054949600249528885, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 43242 + }, + { + "epoch": 4.436294624538367, + "grad_norm": 0.14858773350715637, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 43245 + }, + { + "epoch": 4.43660237997538, + "grad_norm": 0.08089875429868698, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 43248 + }, + { + "epoch": 4.4369101354123925, + "grad_norm": 0.0340421199798584, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 43251 + }, + { + "epoch": 4.437217890849405, + "grad_norm": 0.04666365310549736, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 43254 + }, + { + "epoch": 4.437525646286418, + "grad_norm": 0.04860776662826538, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 43257 + }, + { + "epoch": 4.437833401723431, + "grad_norm": 0.04814871773123741, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 43260 + }, + { + "epoch": 4.438141157160443, + "grad_norm": 0.07159804552793503, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 43263 + }, + { + "epoch": 4.4384489125974556, + "grad_norm": 0.08109670132398605, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 43266 + }, + { + "epoch": 4.438756668034468, + "grad_norm": 0.10254354774951935, + "learning_rate": 0.01, + "loss": 1.991, + "step": 43269 + }, + { + "epoch": 4.439064423471481, + "grad_norm": 0.10418622195720673, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 43272 + }, + { + "epoch": 4.439372178908494, + "grad_norm": 0.04432861879467964, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 43275 + }, + { + "epoch": 4.439679934345507, + "grad_norm": 0.05000505968928337, + "learning_rate": 0.01, + "loss": 2.016, + "step": 43278 + }, + { + "epoch": 4.4399876897825195, + "grad_norm": 0.0718022808432579, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 43281 + }, + { + "epoch": 4.440295445219532, + "grad_norm": 0.038088515400886536, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 43284 + }, + { + "epoch": 4.440603200656545, + "grad_norm": 0.04395698755979538, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 43287 + }, + { + "epoch": 4.440910956093558, + "grad_norm": 0.03977638855576515, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 43290 + }, + { + "epoch": 4.441218711530571, + "grad_norm": 0.11403058469295502, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 43293 + }, + { + "epoch": 4.441526466967583, + "grad_norm": 0.03809293359518051, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 43296 + }, + { + "epoch": 4.441834222404596, + "grad_norm": 0.04494985193014145, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 43299 + }, + { + "epoch": 4.442141977841609, + "grad_norm": 0.11755307763814926, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 43302 + }, + { + "epoch": 4.442449733278622, + "grad_norm": 0.046333327889442444, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 43305 + }, + { + "epoch": 4.442757488715634, + "grad_norm": 0.05719512701034546, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 43308 + }, + { + "epoch": 4.443065244152646, + "grad_norm": 0.0707264393568039, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 43311 + }, + { + "epoch": 4.443372999589659, + "grad_norm": 0.043551988899707794, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 43314 + }, + { + "epoch": 4.443680755026672, + "grad_norm": 0.11364515870809555, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 43317 + }, + { + "epoch": 4.443988510463685, + "grad_norm": 0.15514688193798065, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 43320 + }, + { + "epoch": 4.4442962659006975, + "grad_norm": 0.10261968523263931, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 43323 + }, + { + "epoch": 4.44460402133771, + "grad_norm": 0.09683386236429214, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 43326 + }, + { + "epoch": 4.444911776774723, + "grad_norm": 0.055726949125528336, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 43329 + }, + { + "epoch": 4.445219532211736, + "grad_norm": 0.053106311708688736, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 43332 + }, + { + "epoch": 4.445527287648749, + "grad_norm": 0.043625880032777786, + "learning_rate": 0.01, + "loss": 2.023, + "step": 43335 + }, + { + "epoch": 4.445835043085761, + "grad_norm": 0.05958040803670883, + "learning_rate": 0.01, + "loss": 1.987, + "step": 43338 + }, + { + "epoch": 4.446142798522774, + "grad_norm": 0.043522778898477554, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 43341 + }, + { + "epoch": 4.446450553959787, + "grad_norm": 0.038740675896406174, + "learning_rate": 0.01, + "loss": 1.991, + "step": 43344 + }, + { + "epoch": 4.4467583093968, + "grad_norm": 0.043132517486810684, + "learning_rate": 0.01, + "loss": 2.006, + "step": 43347 + }, + { + "epoch": 4.4470660648338125, + "grad_norm": 0.07173844426870346, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 43350 + }, + { + "epoch": 4.447373820270824, + "grad_norm": 0.06787187606096268, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 43353 + }, + { + "epoch": 4.447681575707837, + "grad_norm": 0.1125207170844078, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 43356 + }, + { + "epoch": 4.44798933114485, + "grad_norm": 0.037585411220788956, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 43359 + }, + { + "epoch": 4.448297086581863, + "grad_norm": 0.09652412682771683, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 43362 + }, + { + "epoch": 4.4486048420188755, + "grad_norm": 0.0548916831612587, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 43365 + }, + { + "epoch": 4.448912597455888, + "grad_norm": 0.07648541778326035, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 43368 + }, + { + "epoch": 4.449220352892901, + "grad_norm": 0.07968877255916595, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 43371 + }, + { + "epoch": 4.449528108329914, + "grad_norm": 0.046214036643505096, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 43374 + }, + { + "epoch": 4.449835863766927, + "grad_norm": 0.03589135408401489, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 43377 + }, + { + "epoch": 4.450143619203939, + "grad_norm": 0.1217019185423851, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 43380 + }, + { + "epoch": 4.450451374640952, + "grad_norm": 0.14711309969425201, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 43383 + }, + { + "epoch": 4.450759130077965, + "grad_norm": 0.15004196763038635, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 43386 + }, + { + "epoch": 4.451066885514978, + "grad_norm": 0.143090158700943, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 43389 + }, + { + "epoch": 4.4513746409519905, + "grad_norm": 0.06957674771547318, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 43392 + }, + { + "epoch": 4.451682396389003, + "grad_norm": 0.10823699831962585, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 43395 + }, + { + "epoch": 4.451990151826015, + "grad_norm": 0.0608796700835228, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 43398 + }, + { + "epoch": 4.452297907263028, + "grad_norm": 0.038806330412626266, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 43401 + }, + { + "epoch": 4.452605662700041, + "grad_norm": 0.053961463272571564, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 43404 + }, + { + "epoch": 4.4529134181370535, + "grad_norm": 0.03717347979545593, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 43407 + }, + { + "epoch": 4.453221173574066, + "grad_norm": 0.04289384186267853, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 43410 + }, + { + "epoch": 4.453528929011079, + "grad_norm": 0.08649279922246933, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 43413 + }, + { + "epoch": 4.453836684448092, + "grad_norm": 0.1384621560573578, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 43416 + }, + { + "epoch": 4.454144439885105, + "grad_norm": 0.09169614315032959, + "learning_rate": 0.01, + "loss": 1.968, + "step": 43419 + }, + { + "epoch": 4.4544521953221174, + "grad_norm": 0.07004016637802124, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 43422 + }, + { + "epoch": 4.45475995075913, + "grad_norm": 0.0574488528072834, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 43425 + }, + { + "epoch": 4.455067706196143, + "grad_norm": 0.048521172255277634, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 43428 + }, + { + "epoch": 4.455375461633156, + "grad_norm": 0.11481918394565582, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 43431 + }, + { + "epoch": 4.455683217070169, + "grad_norm": 0.09158429503440857, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 43434 + }, + { + "epoch": 4.455990972507181, + "grad_norm": 0.039962366223335266, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 43437 + }, + { + "epoch": 4.456298727944194, + "grad_norm": 0.04112045839428902, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 43440 + }, + { + "epoch": 4.456606483381206, + "grad_norm": 0.057623397558927536, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 43443 + }, + { + "epoch": 4.456914238818219, + "grad_norm": 0.0683390349149704, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 43446 + }, + { + "epoch": 4.457221994255232, + "grad_norm": 0.09766959398984909, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 43449 + }, + { + "epoch": 4.457529749692244, + "grad_norm": 0.041423216462135315, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 43452 + }, + { + "epoch": 4.457837505129257, + "grad_norm": 0.08813819289207458, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 43455 + }, + { + "epoch": 4.45814526056627, + "grad_norm": 0.06834255903959274, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 43458 + }, + { + "epoch": 4.458453016003283, + "grad_norm": 0.08782140165567398, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 43461 + }, + { + "epoch": 4.4587607714402955, + "grad_norm": 0.08695351332426071, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 43464 + }, + { + "epoch": 4.459068526877308, + "grad_norm": 0.09302899986505508, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 43467 + }, + { + "epoch": 4.459376282314321, + "grad_norm": 0.06920462846755981, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 43470 + }, + { + "epoch": 4.459684037751334, + "grad_norm": 0.04809924215078354, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 43473 + }, + { + "epoch": 4.459991793188347, + "grad_norm": 0.06642390787601471, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 43476 + }, + { + "epoch": 4.460299548625359, + "grad_norm": 0.04986566677689552, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 43479 + }, + { + "epoch": 4.460607304062372, + "grad_norm": 0.061649248003959656, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 43482 + }, + { + "epoch": 4.460915059499385, + "grad_norm": 0.049117859452962875, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 43485 + }, + { + "epoch": 4.461222814936397, + "grad_norm": 0.049163367599248886, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 43488 + }, + { + "epoch": 4.46153057037341, + "grad_norm": 0.036282382905483246, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 43491 + }, + { + "epoch": 4.461838325810422, + "grad_norm": 0.10942814499139786, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 43494 + }, + { + "epoch": 4.462146081247435, + "grad_norm": 0.06589425355195999, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 43497 + }, + { + "epoch": 4.462453836684448, + "grad_norm": 0.0967121571302414, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 43500 + }, + { + "epoch": 4.462761592121461, + "grad_norm": 0.0673070177435875, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 43503 + }, + { + "epoch": 4.4630693475584735, + "grad_norm": 0.09439177066087723, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 43506 + }, + { + "epoch": 4.463377102995486, + "grad_norm": 0.06875397264957428, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 43509 + }, + { + "epoch": 4.463684858432499, + "grad_norm": 0.0774875059723854, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 43512 + }, + { + "epoch": 4.463992613869512, + "grad_norm": 0.07138268649578094, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 43515 + }, + { + "epoch": 4.464300369306525, + "grad_norm": 0.03174857050180435, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 43518 + }, + { + "epoch": 4.464608124743537, + "grad_norm": 0.11445671319961548, + "learning_rate": 0.01, + "loss": 1.967, + "step": 43521 + }, + { + "epoch": 4.46491588018055, + "grad_norm": 0.041139326989650726, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 43524 + }, + { + "epoch": 4.465223635617563, + "grad_norm": 0.043187763541936874, + "learning_rate": 0.01, + "loss": 2.024, + "step": 43527 + }, + { + "epoch": 4.465531391054576, + "grad_norm": 0.09367438405752182, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 43530 + }, + { + "epoch": 4.465839146491588, + "grad_norm": 0.07866624742746353, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 43533 + }, + { + "epoch": 4.4661469019286, + "grad_norm": 0.08221796900033951, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 43536 + }, + { + "epoch": 4.466454657365613, + "grad_norm": 0.07687985897064209, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 43539 + }, + { + "epoch": 4.466762412802626, + "grad_norm": 0.042440030723810196, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 43542 + }, + { + "epoch": 4.467070168239639, + "grad_norm": 0.03422633558511734, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 43545 + }, + { + "epoch": 4.4673779236766515, + "grad_norm": 0.05047105997800827, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 43548 + }, + { + "epoch": 4.467685679113664, + "grad_norm": 0.0817263275384903, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 43551 + }, + { + "epoch": 4.467993434550677, + "grad_norm": 0.07055595517158508, + "learning_rate": 0.01, + "loss": 2.008, + "step": 43554 + }, + { + "epoch": 4.46830118998769, + "grad_norm": 0.12304790318012238, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 43557 + }, + { + "epoch": 4.468608945424703, + "grad_norm": 0.057413533329963684, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 43560 + }, + { + "epoch": 4.468916700861715, + "grad_norm": 0.1333860456943512, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 43563 + }, + { + "epoch": 4.469224456298728, + "grad_norm": 0.04758629575371742, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 43566 + }, + { + "epoch": 4.469532211735741, + "grad_norm": 0.0403926707804203, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 43569 + }, + { + "epoch": 4.469839967172754, + "grad_norm": 0.05051876977086067, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 43572 + }, + { + "epoch": 4.470147722609767, + "grad_norm": 0.12117879837751389, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 43575 + }, + { + "epoch": 4.4704554780467785, + "grad_norm": 0.0969235822558403, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 43578 + }, + { + "epoch": 4.470763233483791, + "grad_norm": 0.10259240120649338, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 43581 + }, + { + "epoch": 4.471070988920804, + "grad_norm": 0.056327935308218, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 43584 + }, + { + "epoch": 4.471378744357817, + "grad_norm": 0.09567862004041672, + "learning_rate": 0.01, + "loss": 2.026, + "step": 43587 + }, + { + "epoch": 4.47168649979483, + "grad_norm": 0.0687853991985321, + "learning_rate": 0.01, + "loss": 2.011, + "step": 43590 + }, + { + "epoch": 4.471994255231842, + "grad_norm": 0.03400299698114395, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 43593 + }, + { + "epoch": 4.472302010668855, + "grad_norm": 0.05291087552905083, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 43596 + }, + { + "epoch": 4.472609766105868, + "grad_norm": 0.09208089858293533, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 43599 + }, + { + "epoch": 4.472917521542881, + "grad_norm": 0.08073403686285019, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 43602 + }, + { + "epoch": 4.4732252769798935, + "grad_norm": 0.04130372405052185, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 43605 + }, + { + "epoch": 4.473533032416906, + "grad_norm": 0.06413860619068146, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 43608 + }, + { + "epoch": 4.473840787853919, + "grad_norm": 0.10064514726400375, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 43611 + }, + { + "epoch": 4.474148543290932, + "grad_norm": 0.04522353783249855, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 43614 + }, + { + "epoch": 4.474456298727945, + "grad_norm": 0.03851405903697014, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 43617 + }, + { + "epoch": 4.474764054164957, + "grad_norm": 0.03857644274830818, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 43620 + }, + { + "epoch": 4.475071809601969, + "grad_norm": 0.07934223115444183, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 43623 + }, + { + "epoch": 4.475379565038982, + "grad_norm": 0.034822918474674225, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 43626 + }, + { + "epoch": 4.475687320475995, + "grad_norm": 0.07185374945402145, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 43629 + }, + { + "epoch": 4.475995075913008, + "grad_norm": 0.03542499616742134, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 43632 + }, + { + "epoch": 4.47630283135002, + "grad_norm": 0.034001853317022324, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 43635 + }, + { + "epoch": 4.476610586787033, + "grad_norm": 0.04940172657370567, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 43638 + }, + { + "epoch": 4.476918342224046, + "grad_norm": 0.04434162750840187, + "learning_rate": 0.01, + "loss": 1.983, + "step": 43641 + }, + { + "epoch": 4.477226097661059, + "grad_norm": 0.08915964514017105, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 43644 + }, + { + "epoch": 4.4775338530980715, + "grad_norm": 0.05530424416065216, + "learning_rate": 0.01, + "loss": 1.98, + "step": 43647 + }, + { + "epoch": 4.477841608535084, + "grad_norm": 0.06746593117713928, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 43650 + }, + { + "epoch": 4.478149363972097, + "grad_norm": 0.05016857758164406, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 43653 + }, + { + "epoch": 4.47845711940911, + "grad_norm": 0.04478998854756355, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 43656 + }, + { + "epoch": 4.478764874846123, + "grad_norm": 0.04121081531047821, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 43659 + }, + { + "epoch": 4.479072630283135, + "grad_norm": 0.0476783849298954, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 43662 + }, + { + "epoch": 4.479380385720148, + "grad_norm": 0.15095461905002594, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 43665 + }, + { + "epoch": 4.47968814115716, + "grad_norm": 0.06961385160684586, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 43668 + }, + { + "epoch": 4.479995896594173, + "grad_norm": 0.040564242750406265, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 43671 + }, + { + "epoch": 4.480303652031186, + "grad_norm": 0.07302725315093994, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 43674 + }, + { + "epoch": 4.480611407468198, + "grad_norm": 0.12494261562824249, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 43677 + }, + { + "epoch": 4.480919162905211, + "grad_norm": 0.06394487619400024, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 43680 + }, + { + "epoch": 4.481226918342224, + "grad_norm": 0.0740828663110733, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 43683 + }, + { + "epoch": 4.481534673779237, + "grad_norm": 0.06996148079633713, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 43686 + }, + { + "epoch": 4.4818424292162495, + "grad_norm": 0.041247058659791946, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 43689 + }, + { + "epoch": 4.482150184653262, + "grad_norm": 0.04092543199658394, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 43692 + }, + { + "epoch": 4.482457940090275, + "grad_norm": 0.05542224645614624, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 43695 + }, + { + "epoch": 4.482765695527288, + "grad_norm": 0.0780789703130722, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 43698 + }, + { + "epoch": 4.483073450964301, + "grad_norm": 0.06363578885793686, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 43701 + }, + { + "epoch": 4.483381206401313, + "grad_norm": 0.12707744538784027, + "learning_rate": 0.01, + "loss": 1.9427, + "step": 43704 + }, + { + "epoch": 4.483688961838326, + "grad_norm": 0.14165590703487396, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 43707 + }, + { + "epoch": 4.483996717275339, + "grad_norm": 0.08245092630386353, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 43710 + }, + { + "epoch": 4.484304472712351, + "grad_norm": 0.048774946480989456, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 43713 + }, + { + "epoch": 4.484612228149364, + "grad_norm": 0.05654727295041084, + "learning_rate": 0.01, + "loss": 1.999, + "step": 43716 + }, + { + "epoch": 4.4849199835863764, + "grad_norm": 0.046862781047821045, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 43719 + }, + { + "epoch": 4.485227739023389, + "grad_norm": 0.06660104542970657, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 43722 + }, + { + "epoch": 4.485535494460402, + "grad_norm": 0.05910905450582504, + "learning_rate": 0.01, + "loss": 1.992, + "step": 43725 + }, + { + "epoch": 4.485843249897415, + "grad_norm": 0.05047675967216492, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 43728 + }, + { + "epoch": 4.486151005334428, + "grad_norm": 0.03190279006958008, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 43731 + }, + { + "epoch": 4.48645876077144, + "grad_norm": 0.04960602894425392, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 43734 + }, + { + "epoch": 4.486766516208453, + "grad_norm": 0.10073108971118927, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 43737 + }, + { + "epoch": 4.487074271645466, + "grad_norm": 0.051219914108514786, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 43740 + }, + { + "epoch": 4.487382027082479, + "grad_norm": 0.051645878702402115, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 43743 + }, + { + "epoch": 4.4876897825194915, + "grad_norm": 0.08252865076065063, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 43746 + }, + { + "epoch": 4.487997537956504, + "grad_norm": 0.06515108048915863, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 43749 + }, + { + "epoch": 4.488305293393517, + "grad_norm": 0.038027096539735794, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 43752 + }, + { + "epoch": 4.48861304883053, + "grad_norm": 0.06444455683231354, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 43755 + }, + { + "epoch": 4.488920804267542, + "grad_norm": 0.03724157065153122, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 43758 + }, + { + "epoch": 4.4892285597045545, + "grad_norm": 0.04831653833389282, + "learning_rate": 0.01, + "loss": 2.02, + "step": 43761 + }, + { + "epoch": 4.489536315141567, + "grad_norm": 0.062199629843235016, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 43764 + }, + { + "epoch": 4.48984407057858, + "grad_norm": 0.047005314379930496, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 43767 + }, + { + "epoch": 4.490151826015593, + "grad_norm": 0.1316227912902832, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 43770 + }, + { + "epoch": 4.490459581452606, + "grad_norm": 0.05741405114531517, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 43773 + }, + { + "epoch": 4.490767336889618, + "grad_norm": 0.10407622158527374, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 43776 + }, + { + "epoch": 4.491075092326631, + "grad_norm": 0.05979277566075325, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 43779 + }, + { + "epoch": 4.491382847763644, + "grad_norm": 0.033753860741853714, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 43782 + }, + { + "epoch": 4.491690603200657, + "grad_norm": 0.03481614217162132, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 43785 + }, + { + "epoch": 4.4919983586376695, + "grad_norm": 0.05884877219796181, + "learning_rate": 0.01, + "loss": 1.98, + "step": 43788 + }, + { + "epoch": 4.492306114074682, + "grad_norm": 0.10501875728368759, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 43791 + }, + { + "epoch": 4.492613869511695, + "grad_norm": 0.07319078594446182, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 43794 + }, + { + "epoch": 4.492921624948708, + "grad_norm": 0.04055263102054596, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 43797 + }, + { + "epoch": 4.493229380385721, + "grad_norm": 0.1268715113401413, + "learning_rate": 0.01, + "loss": 2.016, + "step": 43800 + }, + { + "epoch": 4.4935371358227325, + "grad_norm": 0.0518607497215271, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 43803 + }, + { + "epoch": 4.493844891259745, + "grad_norm": 0.08158674836158752, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 43806 + }, + { + "epoch": 4.494152646696758, + "grad_norm": 0.07762011885643005, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 43809 + }, + { + "epoch": 4.494460402133771, + "grad_norm": 0.09235764294862747, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 43812 + }, + { + "epoch": 4.494768157570784, + "grad_norm": 0.050333961844444275, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 43815 + }, + { + "epoch": 4.495075913007796, + "grad_norm": 0.0546598955988884, + "learning_rate": 0.01, + "loss": 2.011, + "step": 43818 + }, + { + "epoch": 4.495383668444809, + "grad_norm": 0.07909304648637772, + "learning_rate": 0.01, + "loss": 2.002, + "step": 43821 + }, + { + "epoch": 4.495691423881822, + "grad_norm": 0.10644279420375824, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 43824 + }, + { + "epoch": 4.495999179318835, + "grad_norm": 0.06348330527544022, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 43827 + }, + { + "epoch": 4.4963069347558475, + "grad_norm": 0.060767900198698044, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 43830 + }, + { + "epoch": 4.49661469019286, + "grad_norm": 0.050787363201379776, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 43833 + }, + { + "epoch": 4.496922445629873, + "grad_norm": 0.0362878292798996, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 43836 + }, + { + "epoch": 4.497230201066886, + "grad_norm": 0.07702784240245819, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 43839 + }, + { + "epoch": 4.497537956503899, + "grad_norm": 0.05007346719503403, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 43842 + }, + { + "epoch": 4.4978457119409105, + "grad_norm": 0.04794207960367203, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 43845 + }, + { + "epoch": 4.498153467377923, + "grad_norm": 0.04176037013530731, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 43848 + }, + { + "epoch": 4.498461222814936, + "grad_norm": 0.06070488691329956, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 43851 + }, + { + "epoch": 4.498768978251949, + "grad_norm": 0.0750289261341095, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 43854 + }, + { + "epoch": 4.499076733688962, + "grad_norm": 0.1204972118139267, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 43857 + }, + { + "epoch": 4.499384489125974, + "grad_norm": 0.03909352049231529, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 43860 + }, + { + "epoch": 4.499692244562987, + "grad_norm": 0.060046713799238205, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 43863 + }, + { + "epoch": 4.5, + "grad_norm": 0.03170366585254669, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 43866 + }, + { + "epoch": 4.500307755437013, + "grad_norm": 0.07817841321229935, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 43869 + }, + { + "epoch": 4.500615510874026, + "grad_norm": 0.06809035688638687, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 43872 + }, + { + "epoch": 4.500923266311038, + "grad_norm": 0.0353827029466629, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 43875 + }, + { + "epoch": 4.501231021748051, + "grad_norm": 0.05174241214990616, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 43878 + }, + { + "epoch": 4.501538777185064, + "grad_norm": 0.05049923434853554, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 43881 + }, + { + "epoch": 4.501846532622077, + "grad_norm": 0.04014773294329643, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 43884 + }, + { + "epoch": 4.502154288059089, + "grad_norm": 0.08103401213884354, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 43887 + }, + { + "epoch": 4.502462043496102, + "grad_norm": 0.04270040616393089, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 43890 + }, + { + "epoch": 4.502769798933114, + "grad_norm": 0.05039724335074425, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 43893 + }, + { + "epoch": 4.503077554370127, + "grad_norm": 0.10098660737276077, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 43896 + }, + { + "epoch": 4.50338530980714, + "grad_norm": 0.08645161241292953, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 43899 + }, + { + "epoch": 4.5036930652441525, + "grad_norm": 0.06836593151092529, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 43902 + }, + { + "epoch": 4.504000820681165, + "grad_norm": 0.09137406945228577, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 43905 + }, + { + "epoch": 4.504308576118178, + "grad_norm": 0.04432569816708565, + "learning_rate": 0.01, + "loss": 1.985, + "step": 43908 + }, + { + "epoch": 4.504616331555191, + "grad_norm": 0.03743622079491615, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 43911 + }, + { + "epoch": 4.504924086992204, + "grad_norm": 0.09280388057231903, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 43914 + }, + { + "epoch": 4.505231842429216, + "grad_norm": 0.06827981770038605, + "learning_rate": 0.01, + "loss": 2.017, + "step": 43917 + }, + { + "epoch": 4.505539597866229, + "grad_norm": 0.13798165321350098, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 43920 + }, + { + "epoch": 4.505847353303242, + "grad_norm": 0.046148303896188736, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 43923 + }, + { + "epoch": 4.506155108740255, + "grad_norm": 0.06119319424033165, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 43926 + }, + { + "epoch": 4.5064628641772675, + "grad_norm": 0.04381044954061508, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 43929 + }, + { + "epoch": 4.506770619614279, + "grad_norm": 0.043389271944761276, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 43932 + }, + { + "epoch": 4.507078375051293, + "grad_norm": 0.0379410944879055, + "learning_rate": 0.01, + "loss": 2.002, + "step": 43935 + }, + { + "epoch": 4.507386130488305, + "grad_norm": 0.043701719492673874, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 43938 + }, + { + "epoch": 4.507693885925318, + "grad_norm": 0.11455623805522919, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 43941 + }, + { + "epoch": 4.5080016413623305, + "grad_norm": 0.06367077678442001, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 43944 + }, + { + "epoch": 4.508309396799343, + "grad_norm": 0.12104804813861847, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 43947 + }, + { + "epoch": 4.508617152236356, + "grad_norm": 0.08374746888875961, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 43950 + }, + { + "epoch": 4.508924907673369, + "grad_norm": 0.12107446789741516, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 43953 + }, + { + "epoch": 4.509232663110382, + "grad_norm": 0.043210193514823914, + "learning_rate": 0.01, + "loss": 1.972, + "step": 43956 + }, + { + "epoch": 4.509540418547394, + "grad_norm": 0.05984468385577202, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 43959 + }, + { + "epoch": 4.509848173984407, + "grad_norm": 0.04827868938446045, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 43962 + }, + { + "epoch": 4.51015592942142, + "grad_norm": 0.04763716831803322, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 43965 + }, + { + "epoch": 4.510463684858433, + "grad_norm": 0.045888885855674744, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 43968 + }, + { + "epoch": 4.5107714402954455, + "grad_norm": 0.06434401869773865, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 43971 + }, + { + "epoch": 4.511079195732458, + "grad_norm": 0.09480862319469452, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 43974 + }, + { + "epoch": 4.51138695116947, + "grad_norm": 0.10739507526159286, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 43977 + }, + { + "epoch": 4.511694706606484, + "grad_norm": 0.06446696072816849, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 43980 + }, + { + "epoch": 4.512002462043496, + "grad_norm": 0.0567287839949131, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 43983 + }, + { + "epoch": 4.5123102174805085, + "grad_norm": 0.0359378419816494, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 43986 + }, + { + "epoch": 4.512617972917521, + "grad_norm": 0.052227430045604706, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 43989 + }, + { + "epoch": 4.512925728354534, + "grad_norm": 0.058354392647743225, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 43992 + }, + { + "epoch": 4.513233483791547, + "grad_norm": 0.06100015714764595, + "learning_rate": 0.01, + "loss": 1.996, + "step": 43995 + }, + { + "epoch": 4.51354123922856, + "grad_norm": 0.0857095718383789, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 43998 + }, + { + "epoch": 4.513848994665572, + "grad_norm": 0.11230607330799103, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 44001 + }, + { + "epoch": 4.514156750102585, + "grad_norm": 0.082217276096344, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 44004 + }, + { + "epoch": 4.514464505539598, + "grad_norm": 0.07966562360525131, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 44007 + }, + { + "epoch": 4.514772260976611, + "grad_norm": 0.0608987994492054, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 44010 + }, + { + "epoch": 4.5150800164136236, + "grad_norm": 0.029933054000139236, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 44013 + }, + { + "epoch": 4.515387771850636, + "grad_norm": 0.04696916788816452, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 44016 + }, + { + "epoch": 4.515695527287649, + "grad_norm": 0.0494072362780571, + "learning_rate": 0.01, + "loss": 2.003, + "step": 44019 + }, + { + "epoch": 4.516003282724661, + "grad_norm": 0.06069015711545944, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 44022 + }, + { + "epoch": 4.516311038161675, + "grad_norm": 0.05014580115675926, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 44025 + }, + { + "epoch": 4.516618793598687, + "grad_norm": 0.04753846675157547, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 44028 + }, + { + "epoch": 4.516926549035699, + "grad_norm": 0.053366005420684814, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 44031 + }, + { + "epoch": 4.517234304472712, + "grad_norm": 0.09559368342161179, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 44034 + }, + { + "epoch": 4.517542059909725, + "grad_norm": 0.12470517307519913, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 44037 + }, + { + "epoch": 4.517849815346738, + "grad_norm": 0.0809641033411026, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 44040 + }, + { + "epoch": 4.5181575707837505, + "grad_norm": 0.04899699613451958, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 44043 + }, + { + "epoch": 4.518465326220763, + "grad_norm": 0.06368394196033478, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 44046 + }, + { + "epoch": 4.518773081657776, + "grad_norm": 0.06713195890188217, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 44049 + }, + { + "epoch": 4.519080837094789, + "grad_norm": 0.12240014225244522, + "learning_rate": 0.01, + "loss": 1.983, + "step": 44052 + }, + { + "epoch": 4.519388592531802, + "grad_norm": 0.159604012966156, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 44055 + }, + { + "epoch": 4.519696347968814, + "grad_norm": 0.09968844056129456, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 44058 + }, + { + "epoch": 4.520004103405827, + "grad_norm": 0.1151421070098877, + "learning_rate": 0.01, + "loss": 1.999, + "step": 44061 + }, + { + "epoch": 4.52031185884284, + "grad_norm": 0.117409847676754, + "learning_rate": 0.01, + "loss": 1.977, + "step": 44064 + }, + { + "epoch": 4.520619614279852, + "grad_norm": 0.05031849071383476, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 44067 + }, + { + "epoch": 4.5209273697168655, + "grad_norm": 0.04156704619526863, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 44070 + }, + { + "epoch": 4.521235125153877, + "grad_norm": 0.04768043011426926, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 44073 + }, + { + "epoch": 4.52154288059089, + "grad_norm": 0.04492770880460739, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 44076 + }, + { + "epoch": 4.521850636027903, + "grad_norm": 0.0356624610722065, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 44079 + }, + { + "epoch": 4.522158391464916, + "grad_norm": 0.06383637338876724, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 44082 + }, + { + "epoch": 4.5224661469019285, + "grad_norm": 0.09323472529649734, + "learning_rate": 0.01, + "loss": 1.989, + "step": 44085 + }, + { + "epoch": 4.522773902338941, + "grad_norm": 0.08748291432857513, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 44088 + }, + { + "epoch": 4.523081657775954, + "grad_norm": 0.12068930268287659, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 44091 + }, + { + "epoch": 4.523389413212967, + "grad_norm": 0.12926380336284637, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 44094 + }, + { + "epoch": 4.52369716864998, + "grad_norm": 0.053785938769578934, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 44097 + }, + { + "epoch": 4.524004924086992, + "grad_norm": 0.056706249713897705, + "learning_rate": 0.01, + "loss": 1.9529, + "step": 44100 + }, + { + "epoch": 4.524312679524005, + "grad_norm": 0.040739428251981735, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 44103 + }, + { + "epoch": 4.524620434961018, + "grad_norm": 0.07002007216215134, + "learning_rate": 0.01, + "loss": 1.988, + "step": 44106 + }, + { + "epoch": 4.524928190398031, + "grad_norm": 0.08624965697526932, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 44109 + }, + { + "epoch": 4.525235945835043, + "grad_norm": 0.05654805898666382, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 44112 + }, + { + "epoch": 4.525543701272056, + "grad_norm": 0.0629354789853096, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 44115 + }, + { + "epoch": 4.525851456709068, + "grad_norm": 0.10447383671998978, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 44118 + }, + { + "epoch": 4.526159212146081, + "grad_norm": 0.08281921595335007, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 44121 + }, + { + "epoch": 4.526466967583094, + "grad_norm": 0.10570526868104935, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 44124 + }, + { + "epoch": 4.5267747230201065, + "grad_norm": 0.040542326867580414, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 44127 + }, + { + "epoch": 4.527082478457119, + "grad_norm": 0.060009557753801346, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 44130 + }, + { + "epoch": 4.527390233894132, + "grad_norm": 0.09265922009944916, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 44133 + }, + { + "epoch": 4.527697989331145, + "grad_norm": 0.0457131452858448, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 44136 + }, + { + "epoch": 4.528005744768158, + "grad_norm": 0.038852475583553314, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 44139 + }, + { + "epoch": 4.52831350020517, + "grad_norm": 0.03757132962346077, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 44142 + }, + { + "epoch": 4.528621255642183, + "grad_norm": 0.04073426127433777, + "learning_rate": 0.01, + "loss": 1.988, + "step": 44145 + }, + { + "epoch": 4.528929011079196, + "grad_norm": 0.05840800702571869, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 44148 + }, + { + "epoch": 4.529236766516209, + "grad_norm": 0.06951642036437988, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 44151 + }, + { + "epoch": 4.5295445219532215, + "grad_norm": 0.062115710228681564, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 44154 + }, + { + "epoch": 4.529852277390233, + "grad_norm": 0.0439622737467289, + "learning_rate": 0.01, + "loss": 1.969, + "step": 44157 + }, + { + "epoch": 4.530160032827247, + "grad_norm": 0.06429772078990936, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 44160 + }, + { + "epoch": 4.530467788264259, + "grad_norm": 0.1072159856557846, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 44163 + }, + { + "epoch": 4.530775543701272, + "grad_norm": 0.08709017932415009, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 44166 + }, + { + "epoch": 4.531083299138285, + "grad_norm": 0.07494400441646576, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 44169 + }, + { + "epoch": 4.531391054575297, + "grad_norm": 0.09518608450889587, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 44172 + }, + { + "epoch": 4.53169881001231, + "grad_norm": 0.04578256234526634, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 44175 + }, + { + "epoch": 4.532006565449323, + "grad_norm": 0.03707175329327583, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 44178 + }, + { + "epoch": 4.532314320886336, + "grad_norm": 0.042071472853422165, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 44181 + }, + { + "epoch": 4.5326220763233485, + "grad_norm": 0.05591168627142906, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 44184 + }, + { + "epoch": 4.532929831760361, + "grad_norm": 0.04541923105716705, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 44187 + }, + { + "epoch": 4.533237587197374, + "grad_norm": 0.07019765675067902, + "learning_rate": 0.01, + "loss": 2.009, + "step": 44190 + }, + { + "epoch": 4.533545342634387, + "grad_norm": 0.04877987504005432, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 44193 + }, + { + "epoch": 4.5338530980714, + "grad_norm": 0.04220633581280708, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 44196 + }, + { + "epoch": 4.534160853508412, + "grad_norm": 0.17436882853507996, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 44199 + }, + { + "epoch": 4.534468608945424, + "grad_norm": 0.03670203685760498, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 44202 + }, + { + "epoch": 4.534776364382438, + "grad_norm": 0.04544707387685776, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 44205 + }, + { + "epoch": 4.53508411981945, + "grad_norm": 0.03833407908678055, + "learning_rate": 0.01, + "loss": 2.0196, + "step": 44208 + }, + { + "epoch": 4.535391875256463, + "grad_norm": 0.03395809605717659, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 44211 + }, + { + "epoch": 4.535699630693475, + "grad_norm": 0.04812290519475937, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 44214 + }, + { + "epoch": 4.536007386130488, + "grad_norm": 0.04580771178007126, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 44217 + }, + { + "epoch": 4.536315141567501, + "grad_norm": 0.04926560819149017, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 44220 + }, + { + "epoch": 4.536622897004514, + "grad_norm": 0.08950170129537582, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 44223 + }, + { + "epoch": 4.5369306524415265, + "grad_norm": 0.04416525736451149, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 44226 + }, + { + "epoch": 4.537238407878539, + "grad_norm": 0.04912101849913597, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 44229 + }, + { + "epoch": 4.537546163315552, + "grad_norm": 0.039088208228349686, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 44232 + }, + { + "epoch": 4.537853918752565, + "grad_norm": 0.03769220411777496, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 44235 + }, + { + "epoch": 4.538161674189578, + "grad_norm": 0.14437700808048248, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 44238 + }, + { + "epoch": 4.53846942962659, + "grad_norm": 0.09406454116106033, + "learning_rate": 0.01, + "loss": 1.997, + "step": 44241 + }, + { + "epoch": 4.538777185063603, + "grad_norm": 0.0553220696747303, + "learning_rate": 0.01, + "loss": 1.999, + "step": 44244 + }, + { + "epoch": 4.539084940500615, + "grad_norm": 0.04257743060588837, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 44247 + }, + { + "epoch": 4.539392695937629, + "grad_norm": 0.05212993547320366, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 44250 + }, + { + "epoch": 4.539700451374641, + "grad_norm": 0.050963662564754486, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 44253 + }, + { + "epoch": 4.540008206811653, + "grad_norm": 0.04554356262087822, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 44256 + }, + { + "epoch": 4.540315962248666, + "grad_norm": 0.11272426694631577, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 44259 + }, + { + "epoch": 4.540623717685679, + "grad_norm": 0.06912017613649368, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 44262 + }, + { + "epoch": 4.540931473122692, + "grad_norm": 0.057526472955942154, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 44265 + }, + { + "epoch": 4.5412392285597045, + "grad_norm": 0.035935260355472565, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 44268 + }, + { + "epoch": 4.541546983996717, + "grad_norm": 0.06651175767183304, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 44271 + }, + { + "epoch": 4.54185473943373, + "grad_norm": 0.11073578149080276, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 44274 + }, + { + "epoch": 4.542162494870743, + "grad_norm": 0.08459115028381348, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 44277 + }, + { + "epoch": 4.542470250307756, + "grad_norm": 0.04882695525884628, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 44280 + }, + { + "epoch": 4.542778005744768, + "grad_norm": 0.0500728003680706, + "learning_rate": 0.01, + "loss": 1.9624, + "step": 44283 + }, + { + "epoch": 4.543085761181781, + "grad_norm": 0.03797118738293648, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 44286 + }, + { + "epoch": 4.543393516618794, + "grad_norm": 0.046217989176511765, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 44289 + }, + { + "epoch": 4.543701272055806, + "grad_norm": 0.057793501764535904, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 44292 + }, + { + "epoch": 4.544009027492819, + "grad_norm": 0.03469870239496231, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 44295 + }, + { + "epoch": 4.544316782929831, + "grad_norm": 0.11007340252399445, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 44298 + }, + { + "epoch": 4.544624538366844, + "grad_norm": 0.07559779286384583, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 44301 + }, + { + "epoch": 4.544932293803857, + "grad_norm": 0.10915376991033554, + "learning_rate": 0.01, + "loss": 2.0, + "step": 44304 + }, + { + "epoch": 4.54524004924087, + "grad_norm": 0.07973102480173111, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 44307 + }, + { + "epoch": 4.5455478046778826, + "grad_norm": 0.06999395787715912, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 44310 + }, + { + "epoch": 4.545855560114895, + "grad_norm": 0.05275473743677139, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 44313 + }, + { + "epoch": 4.546163315551908, + "grad_norm": 0.054669059813022614, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 44316 + }, + { + "epoch": 4.546471070988921, + "grad_norm": 0.046913836151361465, + "learning_rate": 0.01, + "loss": 2.041, + "step": 44319 + }, + { + "epoch": 4.546778826425934, + "grad_norm": 0.043503716588020325, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 44322 + }, + { + "epoch": 4.5470865818629465, + "grad_norm": 0.058872975409030914, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 44325 + }, + { + "epoch": 4.547394337299959, + "grad_norm": 0.08830869197845459, + "learning_rate": 0.01, + "loss": 2.022, + "step": 44328 + }, + { + "epoch": 4.547702092736972, + "grad_norm": 0.0850677490234375, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 44331 + }, + { + "epoch": 4.548009848173985, + "grad_norm": 0.058975327759981155, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 44334 + }, + { + "epoch": 4.548317603610997, + "grad_norm": 0.04586830735206604, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 44337 + }, + { + "epoch": 4.5486253590480095, + "grad_norm": 0.046169981360435486, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 44340 + }, + { + "epoch": 4.548933114485022, + "grad_norm": 0.06343907862901688, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 44343 + }, + { + "epoch": 4.549240869922035, + "grad_norm": 0.03225269168615341, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 44346 + }, + { + "epoch": 4.549548625359048, + "grad_norm": 0.0852704718708992, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 44349 + }, + { + "epoch": 4.549856380796061, + "grad_norm": 0.058122653514146805, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 44352 + }, + { + "epoch": 4.550164136233073, + "grad_norm": 0.08065648376941681, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 44355 + }, + { + "epoch": 4.550471891670086, + "grad_norm": 0.04599373787641525, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 44358 + }, + { + "epoch": 4.550779647107099, + "grad_norm": 0.03361526504158974, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 44361 + }, + { + "epoch": 4.551087402544112, + "grad_norm": 0.04159310460090637, + "learning_rate": 0.01, + "loss": 2.006, + "step": 44364 + }, + { + "epoch": 4.5513951579811245, + "grad_norm": 0.06349869817495346, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 44367 + }, + { + "epoch": 4.551702913418137, + "grad_norm": 0.08402734994888306, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 44370 + }, + { + "epoch": 4.55201066885515, + "grad_norm": 0.0695672482252121, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 44373 + }, + { + "epoch": 4.552318424292163, + "grad_norm": 0.038909196853637695, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 44376 + }, + { + "epoch": 4.552626179729176, + "grad_norm": 0.032846856862306595, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 44379 + }, + { + "epoch": 4.5529339351661875, + "grad_norm": 0.03906947746872902, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 44382 + }, + { + "epoch": 4.5532416906032, + "grad_norm": 0.06816279888153076, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 44385 + }, + { + "epoch": 4.553549446040213, + "grad_norm": 0.13728150725364685, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 44388 + }, + { + "epoch": 4.553857201477226, + "grad_norm": 0.11365284025669098, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 44391 + }, + { + "epoch": 4.554164956914239, + "grad_norm": 0.058936670422554016, + "learning_rate": 0.01, + "loss": 1.978, + "step": 44394 + }, + { + "epoch": 4.554472712351251, + "grad_norm": 0.044918566942214966, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 44397 + }, + { + "epoch": 4.554780467788264, + "grad_norm": 0.04904935136437416, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 44400 + }, + { + "epoch": 4.555088223225277, + "grad_norm": 0.04912208393216133, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 44403 + }, + { + "epoch": 4.55539597866229, + "grad_norm": 0.0992012619972229, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 44406 + }, + { + "epoch": 4.5557037340993025, + "grad_norm": 0.05080341920256615, + "learning_rate": 0.01, + "loss": 2.004, + "step": 44409 + }, + { + "epoch": 4.556011489536315, + "grad_norm": 0.10849186778068542, + "learning_rate": 0.01, + "loss": 2.0349, + "step": 44412 + }, + { + "epoch": 4.556319244973328, + "grad_norm": 0.04914950951933861, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 44415 + }, + { + "epoch": 4.556627000410341, + "grad_norm": 0.040149789303541183, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 44418 + }, + { + "epoch": 4.556934755847354, + "grad_norm": 0.04807689040899277, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 44421 + }, + { + "epoch": 4.557242511284366, + "grad_norm": 0.03420715779066086, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 44424 + }, + { + "epoch": 4.557550266721378, + "grad_norm": 0.033837419003248215, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 44427 + }, + { + "epoch": 4.557858022158391, + "grad_norm": 0.05432615429162979, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 44430 + }, + { + "epoch": 4.558165777595404, + "grad_norm": 0.09718727320432663, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 44433 + }, + { + "epoch": 4.558473533032417, + "grad_norm": 0.09546732157468796, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 44436 + }, + { + "epoch": 4.558781288469429, + "grad_norm": 0.04132693633437157, + "learning_rate": 0.01, + "loss": 1.9634, + "step": 44439 + }, + { + "epoch": 4.559089043906442, + "grad_norm": 0.07769662886857986, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 44442 + }, + { + "epoch": 4.559396799343455, + "grad_norm": 0.08077646046876907, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 44445 + }, + { + "epoch": 4.559704554780468, + "grad_norm": 0.0781002938747406, + "learning_rate": 0.01, + "loss": 1.976, + "step": 44448 + }, + { + "epoch": 4.5600123102174805, + "grad_norm": 0.057897116988897324, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 44451 + }, + { + "epoch": 4.560320065654493, + "grad_norm": 0.06867967545986176, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 44454 + }, + { + "epoch": 4.560627821091506, + "grad_norm": 0.06109149381518364, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 44457 + }, + { + "epoch": 4.560935576528519, + "grad_norm": 0.038964226841926575, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 44460 + }, + { + "epoch": 4.561243331965532, + "grad_norm": 0.0609222911298275, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 44463 + }, + { + "epoch": 4.5615510874025444, + "grad_norm": 0.09428851306438446, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 44466 + }, + { + "epoch": 4.561858842839557, + "grad_norm": 0.09745607525110245, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 44469 + }, + { + "epoch": 4.562166598276569, + "grad_norm": 0.09413721412420273, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 44472 + }, + { + "epoch": 4.562474353713582, + "grad_norm": 0.0537935309112072, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 44475 + }, + { + "epoch": 4.562782109150595, + "grad_norm": 0.03104214183986187, + "learning_rate": 0.01, + "loss": 1.995, + "step": 44478 + }, + { + "epoch": 4.5630898645876075, + "grad_norm": 0.028320681303739548, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 44481 + }, + { + "epoch": 4.56339762002462, + "grad_norm": 0.09736626595258713, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 44484 + }, + { + "epoch": 4.563705375461633, + "grad_norm": 0.03548412024974823, + "learning_rate": 0.01, + "loss": 2.008, + "step": 44487 + }, + { + "epoch": 4.564013130898646, + "grad_norm": 0.11299438029527664, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 44490 + }, + { + "epoch": 4.564320886335659, + "grad_norm": 0.07769119739532471, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 44493 + }, + { + "epoch": 4.564628641772671, + "grad_norm": 0.04660061001777649, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 44496 + }, + { + "epoch": 4.564936397209684, + "grad_norm": 0.045153431594371796, + "learning_rate": 0.01, + "loss": 2.012, + "step": 44499 + }, + { + "epoch": 4.565244152646697, + "grad_norm": 0.040483929216861725, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 44502 + }, + { + "epoch": 4.56555190808371, + "grad_norm": 0.04947364702820778, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 44505 + }, + { + "epoch": 4.5658596635207225, + "grad_norm": 0.0688960924744606, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 44508 + }, + { + "epoch": 4.566167418957735, + "grad_norm": 0.11255665123462677, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 44511 + }, + { + "epoch": 4.566475174394748, + "grad_norm": 0.07215286791324615, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 44514 + }, + { + "epoch": 4.56678292983176, + "grad_norm": 0.07593537867069244, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 44517 + }, + { + "epoch": 4.567090685268773, + "grad_norm": 0.053777799010276794, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 44520 + }, + { + "epoch": 4.5673984407057855, + "grad_norm": 0.04630263149738312, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 44523 + }, + { + "epoch": 4.567706196142798, + "grad_norm": 0.1870114654302597, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 44526 + }, + { + "epoch": 4.568013951579811, + "grad_norm": 0.04411546140909195, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 44529 + }, + { + "epoch": 4.568321707016824, + "grad_norm": 0.04254088178277016, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 44532 + }, + { + "epoch": 4.568629462453837, + "grad_norm": 0.048210930079221725, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 44535 + }, + { + "epoch": 4.568937217890849, + "grad_norm": 0.046062175184488297, + "learning_rate": 0.01, + "loss": 2.009, + "step": 44538 + }, + { + "epoch": 4.569244973327862, + "grad_norm": 0.04656999930739403, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 44541 + }, + { + "epoch": 4.569552728764875, + "grad_norm": 0.04990769177675247, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 44544 + }, + { + "epoch": 4.569860484201888, + "grad_norm": 0.06637271493673325, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 44547 + }, + { + "epoch": 4.5701682396389005, + "grad_norm": 0.0446067713201046, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 44550 + }, + { + "epoch": 4.570475995075913, + "grad_norm": 0.044182851910591125, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 44553 + }, + { + "epoch": 4.570783750512926, + "grad_norm": 0.03427280858159065, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 44556 + }, + { + "epoch": 4.571091505949939, + "grad_norm": 0.0435144379734993, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 44559 + }, + { + "epoch": 4.571399261386951, + "grad_norm": 0.046480659395456314, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 44562 + }, + { + "epoch": 4.5717070168239635, + "grad_norm": 0.047410015016794205, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 44565 + }, + { + "epoch": 4.572014772260976, + "grad_norm": 0.0613541379570961, + "learning_rate": 0.01, + "loss": 1.967, + "step": 44568 + }, + { + "epoch": 4.572322527697989, + "grad_norm": 0.04605888947844505, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 44571 + }, + { + "epoch": 4.572630283135002, + "grad_norm": 0.08377258479595184, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 44574 + }, + { + "epoch": 4.572938038572015, + "grad_norm": 0.09191520512104034, + "learning_rate": 0.01, + "loss": 1.984, + "step": 44577 + }, + { + "epoch": 4.573245794009027, + "grad_norm": 0.11382446438074112, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 44580 + }, + { + "epoch": 4.57355354944604, + "grad_norm": 0.05597241222858429, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 44583 + }, + { + "epoch": 4.573861304883053, + "grad_norm": 0.044153302907943726, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 44586 + }, + { + "epoch": 4.574169060320066, + "grad_norm": 0.0449075847864151, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 44589 + }, + { + "epoch": 4.5744768157570785, + "grad_norm": 0.06252507120370865, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 44592 + }, + { + "epoch": 4.574784571194091, + "grad_norm": 0.047335173934698105, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 44595 + }, + { + "epoch": 4.575092326631104, + "grad_norm": 0.046538159251213074, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 44598 + }, + { + "epoch": 4.575400082068117, + "grad_norm": 0.043892424553632736, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 44601 + }, + { + "epoch": 4.57570783750513, + "grad_norm": 0.14133551716804504, + "learning_rate": 0.01, + "loss": 1.992, + "step": 44604 + }, + { + "epoch": 4.5760155929421416, + "grad_norm": 0.06392577290534973, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 44607 + }, + { + "epoch": 4.576323348379154, + "grad_norm": 0.07599660754203796, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 44610 + }, + { + "epoch": 4.576631103816167, + "grad_norm": 0.0688132718205452, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 44613 + }, + { + "epoch": 4.57693885925318, + "grad_norm": 0.05262705683708191, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 44616 + }, + { + "epoch": 4.577246614690193, + "grad_norm": 0.04527880623936653, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 44619 + }, + { + "epoch": 4.5775543701272055, + "grad_norm": 0.05383728817105293, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 44622 + }, + { + "epoch": 4.577862125564218, + "grad_norm": 0.07166964560747147, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 44625 + }, + { + "epoch": 4.578169881001231, + "grad_norm": 0.04192749038338661, + "learning_rate": 0.01, + "loss": 1.9627, + "step": 44628 + }, + { + "epoch": 4.578477636438244, + "grad_norm": 0.06395778805017471, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 44631 + }, + { + "epoch": 4.578785391875257, + "grad_norm": 0.05522435903549194, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 44634 + }, + { + "epoch": 4.579093147312269, + "grad_norm": 0.0383891724050045, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 44637 + }, + { + "epoch": 4.579400902749282, + "grad_norm": 0.11526113003492355, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 44640 + }, + { + "epoch": 4.579708658186295, + "grad_norm": 0.04987471178174019, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 44643 + }, + { + "epoch": 4.580016413623308, + "grad_norm": 0.055467016994953156, + "learning_rate": 0.01, + "loss": 1.991, + "step": 44646 + }, + { + "epoch": 4.5803241690603205, + "grad_norm": 0.08823923766613007, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 44649 + }, + { + "epoch": 4.580631924497332, + "grad_norm": 0.06108856573700905, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 44652 + }, + { + "epoch": 4.580939679934345, + "grad_norm": 0.046790335327386856, + "learning_rate": 0.01, + "loss": 2.021, + "step": 44655 + }, + { + "epoch": 4.581247435371358, + "grad_norm": 0.04152047634124756, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 44658 + }, + { + "epoch": 4.581555190808371, + "grad_norm": 0.06719448417425156, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 44661 + }, + { + "epoch": 4.5818629462453835, + "grad_norm": 0.14338631927967072, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 44664 + }, + { + "epoch": 4.582170701682396, + "grad_norm": 0.06660101562738419, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 44667 + }, + { + "epoch": 4.582478457119409, + "grad_norm": 0.0552043579518795, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 44670 + }, + { + "epoch": 4.582786212556422, + "grad_norm": 0.08016394078731537, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 44673 + }, + { + "epoch": 4.583093967993435, + "grad_norm": 0.05147711932659149, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 44676 + }, + { + "epoch": 4.583401723430447, + "grad_norm": 0.044893477112054825, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 44679 + }, + { + "epoch": 4.58370947886746, + "grad_norm": 0.1312035769224167, + "learning_rate": 0.01, + "loss": 1.994, + "step": 44682 + }, + { + "epoch": 4.584017234304473, + "grad_norm": 0.0376642569899559, + "learning_rate": 0.01, + "loss": 1.951, + "step": 44685 + }, + { + "epoch": 4.584324989741486, + "grad_norm": 0.042604606598615646, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 44688 + }, + { + "epoch": 4.5846327451784985, + "grad_norm": 0.04277000203728676, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 44691 + }, + { + "epoch": 4.584940500615511, + "grad_norm": 0.07913113385438919, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 44694 + }, + { + "epoch": 4.585248256052523, + "grad_norm": 0.08000600337982178, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 44697 + }, + { + "epoch": 4.585556011489536, + "grad_norm": 0.05239587649703026, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 44700 + }, + { + "epoch": 4.585863766926549, + "grad_norm": 0.04813678562641144, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 44703 + }, + { + "epoch": 4.5861715223635615, + "grad_norm": 0.11590283364057541, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 44706 + }, + { + "epoch": 4.586479277800574, + "grad_norm": 0.19828790426254272, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 44709 + }, + { + "epoch": 4.586787033237587, + "grad_norm": 0.14478129148483276, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 44712 + }, + { + "epoch": 4.5870947886746, + "grad_norm": 0.042516618967056274, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 44715 + }, + { + "epoch": 4.587402544111613, + "grad_norm": 0.04690965265035629, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 44718 + }, + { + "epoch": 4.587710299548625, + "grad_norm": 0.035743579268455505, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 44721 + }, + { + "epoch": 4.588018054985638, + "grad_norm": 0.041939638555049896, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 44724 + }, + { + "epoch": 4.588325810422651, + "grad_norm": 0.039647046476602554, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 44727 + }, + { + "epoch": 4.588633565859664, + "grad_norm": 0.04442642256617546, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 44730 + }, + { + "epoch": 4.5889413212966765, + "grad_norm": 0.08688386529684067, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 44733 + }, + { + "epoch": 4.589249076733689, + "grad_norm": 0.03309828042984009, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 44736 + }, + { + "epoch": 4.589556832170702, + "grad_norm": 0.1094844713807106, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 44739 + }, + { + "epoch": 4.589864587607714, + "grad_norm": 0.04613770171999931, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 44742 + }, + { + "epoch": 4.590172343044727, + "grad_norm": 0.10529785603284836, + "learning_rate": 0.01, + "loss": 2.0468, + "step": 44745 + }, + { + "epoch": 4.5904800984817395, + "grad_norm": 0.09901240468025208, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 44748 + }, + { + "epoch": 4.590787853918752, + "grad_norm": 0.08486896753311157, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 44751 + }, + { + "epoch": 4.591095609355765, + "grad_norm": 0.05477188900113106, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 44754 + }, + { + "epoch": 4.591403364792778, + "grad_norm": 0.03555532172322273, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 44757 + }, + { + "epoch": 4.591711120229791, + "grad_norm": 0.0637480840086937, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 44760 + }, + { + "epoch": 4.5920188756668034, + "grad_norm": 0.09844323992729187, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 44763 + }, + { + "epoch": 4.592326631103816, + "grad_norm": 0.06749750673770905, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 44766 + }, + { + "epoch": 4.592634386540829, + "grad_norm": 0.0942719504237175, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 44769 + }, + { + "epoch": 4.592942141977842, + "grad_norm": 0.043663688004016876, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 44772 + }, + { + "epoch": 4.593249897414855, + "grad_norm": 0.1031889095902443, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 44775 + }, + { + "epoch": 4.593557652851867, + "grad_norm": 0.060684684664011, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 44778 + }, + { + "epoch": 4.59386540828888, + "grad_norm": 0.08744547516107559, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 44781 + }, + { + "epoch": 4.594173163725893, + "grad_norm": 0.05547311529517174, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 44784 + }, + { + "epoch": 4.594480919162905, + "grad_norm": 0.05069347843527794, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 44787 + }, + { + "epoch": 4.594788674599918, + "grad_norm": 0.11832018941640854, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 44790 + }, + { + "epoch": 4.59509643003693, + "grad_norm": 0.09115731716156006, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 44793 + }, + { + "epoch": 4.595404185473943, + "grad_norm": 0.03262989968061447, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 44796 + }, + { + "epoch": 4.595711940910956, + "grad_norm": 0.08880288898944855, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 44799 + }, + { + "epoch": 4.596019696347969, + "grad_norm": 0.059965986758470535, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 44802 + }, + { + "epoch": 4.5963274517849815, + "grad_norm": 0.040046051144599915, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 44805 + }, + { + "epoch": 4.596635207221994, + "grad_norm": 0.05327828601002693, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 44808 + }, + { + "epoch": 4.596942962659007, + "grad_norm": 0.0532514713704586, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 44811 + }, + { + "epoch": 4.59725071809602, + "grad_norm": 0.0502878837287426, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 44814 + }, + { + "epoch": 4.597558473533033, + "grad_norm": 0.05360707640647888, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 44817 + }, + { + "epoch": 4.597866228970045, + "grad_norm": 0.08648170530796051, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 44820 + }, + { + "epoch": 4.598173984407058, + "grad_norm": 0.056780677288770676, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 44823 + }, + { + "epoch": 4.598481739844071, + "grad_norm": 0.032956380397081375, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 44826 + }, + { + "epoch": 4.598789495281084, + "grad_norm": 0.04322326183319092, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 44829 + }, + { + "epoch": 4.599097250718096, + "grad_norm": 0.10878471285104752, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 44832 + }, + { + "epoch": 4.599405006155108, + "grad_norm": 0.041027724742889404, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 44835 + }, + { + "epoch": 4.599712761592121, + "grad_norm": 0.09541984647512436, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 44838 + }, + { + "epoch": 4.600020517029134, + "grad_norm": 0.0648130476474762, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 44841 + }, + { + "epoch": 4.600328272466147, + "grad_norm": 0.10848550498485565, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 44844 + }, + { + "epoch": 4.6006360279031595, + "grad_norm": 0.062398817390203476, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 44847 + }, + { + "epoch": 4.600943783340172, + "grad_norm": 0.05789678171277046, + "learning_rate": 0.01, + "loss": 1.999, + "step": 44850 + }, + { + "epoch": 4.601251538777185, + "grad_norm": 0.03198247775435448, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 44853 + }, + { + "epoch": 4.601559294214198, + "grad_norm": 0.05636049434542656, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 44856 + }, + { + "epoch": 4.601867049651211, + "grad_norm": 0.07471849024295807, + "learning_rate": 0.01, + "loss": 1.997, + "step": 44859 + }, + { + "epoch": 4.602174805088223, + "grad_norm": 0.09839174151420593, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 44862 + }, + { + "epoch": 4.602482560525236, + "grad_norm": 0.08253321796655655, + "learning_rate": 0.01, + "loss": 2.003, + "step": 44865 + }, + { + "epoch": 4.602790315962249, + "grad_norm": 0.06502492725849152, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 44868 + }, + { + "epoch": 4.603098071399262, + "grad_norm": 0.04798365756869316, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 44871 + }, + { + "epoch": 4.6034058268362745, + "grad_norm": 0.04243507608771324, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 44874 + }, + { + "epoch": 4.603713582273286, + "grad_norm": 0.03410327062010765, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 44877 + }, + { + "epoch": 4.604021337710299, + "grad_norm": 0.09597765654325485, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 44880 + }, + { + "epoch": 4.604329093147312, + "grad_norm": 0.06745591014623642, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 44883 + }, + { + "epoch": 4.604636848584325, + "grad_norm": 0.10422816127538681, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 44886 + }, + { + "epoch": 4.6049446040213375, + "grad_norm": 0.05743027105927467, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 44889 + }, + { + "epoch": 4.60525235945835, + "grad_norm": 0.04410535469651222, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 44892 + }, + { + "epoch": 4.605560114895363, + "grad_norm": 0.07853147387504578, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 44895 + }, + { + "epoch": 4.605867870332376, + "grad_norm": 0.056344617158174515, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 44898 + }, + { + "epoch": 4.606175625769389, + "grad_norm": 0.045788802206516266, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 44901 + }, + { + "epoch": 4.606483381206401, + "grad_norm": 0.07213722914457321, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 44904 + }, + { + "epoch": 4.606791136643414, + "grad_norm": 0.08182168006896973, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 44907 + }, + { + "epoch": 4.607098892080427, + "grad_norm": 0.06299345195293427, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 44910 + }, + { + "epoch": 4.60740664751744, + "grad_norm": 0.046955596655607224, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 44913 + }, + { + "epoch": 4.607714402954453, + "grad_norm": 0.05844559147953987, + "learning_rate": 0.01, + "loss": 1.988, + "step": 44916 + }, + { + "epoch": 4.608022158391465, + "grad_norm": 0.04892998933792114, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 44919 + }, + { + "epoch": 4.608329913828477, + "grad_norm": 0.040492888540029526, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 44922 + }, + { + "epoch": 4.60863766926549, + "grad_norm": 0.043649546802043915, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 44925 + }, + { + "epoch": 4.608945424702503, + "grad_norm": 0.19346511363983154, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 44928 + }, + { + "epoch": 4.609253180139516, + "grad_norm": 0.0724545568227768, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 44931 + }, + { + "epoch": 4.609560935576528, + "grad_norm": 0.048261623829603195, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 44934 + }, + { + "epoch": 4.609868691013541, + "grad_norm": 0.06115753576159477, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 44937 + }, + { + "epoch": 4.610176446450554, + "grad_norm": 0.05957823619246483, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 44940 + }, + { + "epoch": 4.610484201887567, + "grad_norm": 0.08261608332395554, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 44943 + }, + { + "epoch": 4.6107919573245795, + "grad_norm": 0.04762962833046913, + "learning_rate": 0.01, + "loss": 1.9538, + "step": 44946 + }, + { + "epoch": 4.611099712761592, + "grad_norm": 0.06040159985423088, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 44949 + }, + { + "epoch": 4.611407468198605, + "grad_norm": 0.06975025683641434, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 44952 + }, + { + "epoch": 4.611715223635618, + "grad_norm": 0.06275621056556702, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 44955 + }, + { + "epoch": 4.612022979072631, + "grad_norm": 0.04177596792578697, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 44958 + }, + { + "epoch": 4.612330734509643, + "grad_norm": 0.05913246050477028, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 44961 + }, + { + "epoch": 4.612638489946656, + "grad_norm": 0.05337538942694664, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 44964 + }, + { + "epoch": 4.612946245383668, + "grad_norm": 0.04543198645114899, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 44967 + }, + { + "epoch": 4.613254000820681, + "grad_norm": 0.05056144669651985, + "learning_rate": 0.01, + "loss": 1.9628, + "step": 44970 + }, + { + "epoch": 4.613561756257694, + "grad_norm": 0.2109542340040207, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 44973 + }, + { + "epoch": 4.613869511694706, + "grad_norm": 0.11741621792316437, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 44976 + }, + { + "epoch": 4.614177267131719, + "grad_norm": 0.06218573451042175, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 44979 + }, + { + "epoch": 4.614485022568732, + "grad_norm": 0.04318585991859436, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 44982 + }, + { + "epoch": 4.614792778005745, + "grad_norm": 0.05122276023030281, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 44985 + }, + { + "epoch": 4.6151005334427575, + "grad_norm": 0.06790675967931747, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 44988 + }, + { + "epoch": 4.61540828887977, + "grad_norm": 0.06424128264188766, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 44991 + }, + { + "epoch": 4.615716044316783, + "grad_norm": 0.055609673261642456, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 44994 + }, + { + "epoch": 4.616023799753796, + "grad_norm": 0.04479989409446716, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 44997 + }, + { + "epoch": 4.616331555190809, + "grad_norm": 0.046773526817560196, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 45000 + }, + { + "epoch": 4.616639310627821, + "grad_norm": 0.044277340173721313, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 45003 + }, + { + "epoch": 4.616947066064834, + "grad_norm": 0.06604879349470139, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 45006 + }, + { + "epoch": 4.617254821501847, + "grad_norm": 0.07454725354909897, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 45009 + }, + { + "epoch": 4.617562576938859, + "grad_norm": 0.09837469458580017, + "learning_rate": 0.01, + "loss": 1.998, + "step": 45012 + }, + { + "epoch": 4.617870332375872, + "grad_norm": 0.12640568614006042, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 45015 + }, + { + "epoch": 4.618178087812884, + "grad_norm": 0.06357913464307785, + "learning_rate": 0.01, + "loss": 1.9416, + "step": 45018 + }, + { + "epoch": 4.618485843249897, + "grad_norm": 0.05319363251328468, + "learning_rate": 0.01, + "loss": 2.001, + "step": 45021 + }, + { + "epoch": 4.61879359868691, + "grad_norm": 0.05755499005317688, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 45024 + }, + { + "epoch": 4.619101354123923, + "grad_norm": 0.03921099379658699, + "learning_rate": 0.01, + "loss": 2.007, + "step": 45027 + }, + { + "epoch": 4.6194091095609355, + "grad_norm": 0.062433432787656784, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 45030 + }, + { + "epoch": 4.619716864997948, + "grad_norm": 0.048542365431785583, + "learning_rate": 0.01, + "loss": 1.934, + "step": 45033 + }, + { + "epoch": 4.620024620434961, + "grad_norm": 0.12152877449989319, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 45036 + }, + { + "epoch": 4.620332375871974, + "grad_norm": 0.052054520696401596, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 45039 + }, + { + "epoch": 4.620640131308987, + "grad_norm": 0.11336644738912582, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 45042 + }, + { + "epoch": 4.620947886745999, + "grad_norm": 0.05044134706258774, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 45045 + }, + { + "epoch": 4.621255642183012, + "grad_norm": 0.06728419661521912, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 45048 + }, + { + "epoch": 4.621563397620025, + "grad_norm": 0.0826968103647232, + "learning_rate": 0.01, + "loss": 1.989, + "step": 45051 + }, + { + "epoch": 4.621871153057038, + "grad_norm": 0.07135532796382904, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 45054 + }, + { + "epoch": 4.62217890849405, + "grad_norm": 0.05112279951572418, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 45057 + }, + { + "epoch": 4.6224866639310624, + "grad_norm": 0.11058257520198822, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 45060 + }, + { + "epoch": 4.622794419368075, + "grad_norm": 0.12000041455030441, + "learning_rate": 0.01, + "loss": 1.9503, + "step": 45063 + }, + { + "epoch": 4.623102174805088, + "grad_norm": 0.06073766201734543, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 45066 + }, + { + "epoch": 4.623409930242101, + "grad_norm": 0.055321842432022095, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 45069 + }, + { + "epoch": 4.623717685679114, + "grad_norm": 0.04220004379749298, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 45072 + }, + { + "epoch": 4.624025441116126, + "grad_norm": 0.03700163960456848, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 45075 + }, + { + "epoch": 4.624333196553139, + "grad_norm": 0.108041912317276, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 45078 + }, + { + "epoch": 4.624640951990152, + "grad_norm": 0.04682699963450432, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 45081 + }, + { + "epoch": 4.624948707427165, + "grad_norm": 0.07901785522699356, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 45084 + }, + { + "epoch": 4.6252564628641775, + "grad_norm": 0.07119090855121613, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 45087 + }, + { + "epoch": 4.62556421830119, + "grad_norm": 0.08904542028903961, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 45090 + }, + { + "epoch": 4.625871973738203, + "grad_norm": 0.06656675785779953, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 45093 + }, + { + "epoch": 4.626179729175216, + "grad_norm": 0.06560304015874863, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 45096 + }, + { + "epoch": 4.626487484612229, + "grad_norm": 0.05664901062846184, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 45099 + }, + { + "epoch": 4.6267952400492405, + "grad_norm": 0.0491751953959465, + "learning_rate": 0.01, + "loss": 1.986, + "step": 45102 + }, + { + "epoch": 4.627102995486253, + "grad_norm": 0.11787789314985275, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 45105 + }, + { + "epoch": 4.627410750923266, + "grad_norm": 0.04068392515182495, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 45108 + }, + { + "epoch": 4.627718506360279, + "grad_norm": 0.03958519548177719, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 45111 + }, + { + "epoch": 4.628026261797292, + "grad_norm": 0.05667821317911148, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 45114 + }, + { + "epoch": 4.628334017234304, + "grad_norm": 0.04660872370004654, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 45117 + }, + { + "epoch": 4.628641772671317, + "grad_norm": 0.05565042048692703, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 45120 + }, + { + "epoch": 4.62894952810833, + "grad_norm": 0.05158378556370735, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 45123 + }, + { + "epoch": 4.629257283545343, + "grad_norm": 0.04500264301896095, + "learning_rate": 0.01, + "loss": 1.9597, + "step": 45126 + }, + { + "epoch": 4.6295650389823555, + "grad_norm": 0.03781789168715477, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 45129 + }, + { + "epoch": 4.629872794419368, + "grad_norm": 0.09032827615737915, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 45132 + }, + { + "epoch": 4.630180549856381, + "grad_norm": 0.09161376953125, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 45135 + }, + { + "epoch": 4.630488305293394, + "grad_norm": 0.07650554925203323, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 45138 + }, + { + "epoch": 4.630796060730407, + "grad_norm": 0.07098524272441864, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 45141 + }, + { + "epoch": 4.631103816167419, + "grad_norm": 0.053486138582229614, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 45144 + }, + { + "epoch": 4.631411571604431, + "grad_norm": 0.06696584820747375, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 45147 + }, + { + "epoch": 4.631719327041444, + "grad_norm": 0.08330658078193665, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 45150 + }, + { + "epoch": 4.632027082478457, + "grad_norm": 0.05537624657154083, + "learning_rate": 0.01, + "loss": 1.99, + "step": 45153 + }, + { + "epoch": 4.63233483791547, + "grad_norm": 0.07297627627849579, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 45156 + }, + { + "epoch": 4.632642593352482, + "grad_norm": 0.07492797076702118, + "learning_rate": 0.01, + "loss": 1.976, + "step": 45159 + }, + { + "epoch": 4.632950348789495, + "grad_norm": 0.06871726363897324, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 45162 + }, + { + "epoch": 4.633258104226508, + "grad_norm": 0.04638645797967911, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 45165 + }, + { + "epoch": 4.633565859663521, + "grad_norm": 0.10735375434160233, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 45168 + }, + { + "epoch": 4.6338736151005335, + "grad_norm": 0.1550443023443222, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 45171 + }, + { + "epoch": 4.634181370537546, + "grad_norm": 0.14652806520462036, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 45174 + }, + { + "epoch": 4.634489125974559, + "grad_norm": 0.06344394385814667, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 45177 + }, + { + "epoch": 4.634796881411572, + "grad_norm": 0.03594981133937836, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 45180 + }, + { + "epoch": 4.635104636848585, + "grad_norm": 0.034205902367830276, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 45183 + }, + { + "epoch": 4.635412392285597, + "grad_norm": 0.041966572403907776, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 45186 + }, + { + "epoch": 4.63572014772261, + "grad_norm": 0.05192418769001961, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 45189 + }, + { + "epoch": 4.636027903159622, + "grad_norm": 0.04771101847290993, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 45192 + }, + { + "epoch": 4.636335658596635, + "grad_norm": 0.05367758497595787, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 45195 + }, + { + "epoch": 4.636643414033648, + "grad_norm": 0.08973217755556107, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 45198 + }, + { + "epoch": 4.63695116947066, + "grad_norm": 0.06793297082185745, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 45201 + }, + { + "epoch": 4.637258924907673, + "grad_norm": 0.06299318373203278, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 45204 + }, + { + "epoch": 4.637566680344686, + "grad_norm": 0.106409452855587, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 45207 + }, + { + "epoch": 4.637874435781699, + "grad_norm": 0.044573575258255005, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 45210 + }, + { + "epoch": 4.638182191218712, + "grad_norm": 0.04855922982096672, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 45213 + }, + { + "epoch": 4.638489946655724, + "grad_norm": 0.05310840159654617, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 45216 + }, + { + "epoch": 4.638797702092737, + "grad_norm": 0.1408100426197052, + "learning_rate": 0.01, + "loss": 2.016, + "step": 45219 + }, + { + "epoch": 4.63910545752975, + "grad_norm": 0.07140195369720459, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 45222 + }, + { + "epoch": 4.639413212966763, + "grad_norm": 0.0864189863204956, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 45225 + }, + { + "epoch": 4.6397209684037755, + "grad_norm": 0.0877571702003479, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 45228 + }, + { + "epoch": 4.640028723840788, + "grad_norm": 0.06890790909528732, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 45231 + }, + { + "epoch": 4.640336479277801, + "grad_norm": 0.04007607325911522, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 45234 + }, + { + "epoch": 4.640644234714813, + "grad_norm": 0.09311459213495255, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 45237 + }, + { + "epoch": 4.640951990151826, + "grad_norm": 0.0721447765827179, + "learning_rate": 0.01, + "loss": 1.954, + "step": 45240 + }, + { + "epoch": 4.6412597455888385, + "grad_norm": 0.07306293398141861, + "learning_rate": 0.01, + "loss": 2.02, + "step": 45243 + }, + { + "epoch": 4.641567501025851, + "grad_norm": 0.044194191694259644, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 45246 + }, + { + "epoch": 4.641875256462864, + "grad_norm": 0.07482686638832092, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 45249 + }, + { + "epoch": 4.642183011899877, + "grad_norm": 0.05982416495680809, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 45252 + }, + { + "epoch": 4.64249076733689, + "grad_norm": 0.06082857400178909, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 45255 + }, + { + "epoch": 4.642798522773902, + "grad_norm": 0.12249299138784409, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 45258 + }, + { + "epoch": 4.643106278210915, + "grad_norm": 0.04660319164395332, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 45261 + }, + { + "epoch": 4.643414033647928, + "grad_norm": 0.13198639452457428, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 45264 + }, + { + "epoch": 4.643721789084941, + "grad_norm": 0.11743400990962982, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 45267 + }, + { + "epoch": 4.6440295445219535, + "grad_norm": 0.08904967457056046, + "learning_rate": 0.01, + "loss": 1.9585, + "step": 45270 + }, + { + "epoch": 4.644337299958966, + "grad_norm": 0.051379457116127014, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 45273 + }, + { + "epoch": 4.644645055395979, + "grad_norm": 0.053696874529123306, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 45276 + }, + { + "epoch": 4.644952810832992, + "grad_norm": 0.03924264386296272, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 45279 + }, + { + "epoch": 4.645260566270004, + "grad_norm": 0.04208714887499809, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 45282 + }, + { + "epoch": 4.6455683217070165, + "grad_norm": 0.11654502153396606, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 45285 + }, + { + "epoch": 4.645876077144029, + "grad_norm": 0.06177401542663574, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 45288 + }, + { + "epoch": 4.646183832581042, + "grad_norm": 0.04343295469880104, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 45291 + }, + { + "epoch": 4.646491588018055, + "grad_norm": 0.036727067083120346, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 45294 + }, + { + "epoch": 4.646799343455068, + "grad_norm": 0.06670525670051575, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 45297 + }, + { + "epoch": 4.64710709889208, + "grad_norm": 0.08610829710960388, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 45300 + }, + { + "epoch": 4.647414854329093, + "grad_norm": 0.04402744024991989, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 45303 + }, + { + "epoch": 4.647722609766106, + "grad_norm": 0.09110675007104874, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 45306 + }, + { + "epoch": 4.648030365203119, + "grad_norm": 0.12931224703788757, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 45309 + }, + { + "epoch": 4.6483381206401315, + "grad_norm": 0.03825344517827034, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 45312 + }, + { + "epoch": 4.648645876077144, + "grad_norm": 0.04855644330382347, + "learning_rate": 0.01, + "loss": 1.992, + "step": 45315 + }, + { + "epoch": 4.648953631514157, + "grad_norm": 0.08731474727392197, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 45318 + }, + { + "epoch": 4.649261386951169, + "grad_norm": 0.06591195613145828, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 45321 + }, + { + "epoch": 4.649569142388183, + "grad_norm": 0.051368821412324905, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 45324 + }, + { + "epoch": 4.6498768978251945, + "grad_norm": 0.09959837794303894, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 45327 + }, + { + "epoch": 4.650184653262207, + "grad_norm": 0.08669820427894592, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 45330 + }, + { + "epoch": 4.65049240869922, + "grad_norm": 0.03989667445421219, + "learning_rate": 0.01, + "loss": 1.996, + "step": 45333 + }, + { + "epoch": 4.650800164136233, + "grad_norm": 0.033241745084524155, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 45336 + }, + { + "epoch": 4.651107919573246, + "grad_norm": 0.03395982086658478, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 45339 + }, + { + "epoch": 4.651415675010258, + "grad_norm": 0.038975682109594345, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 45342 + }, + { + "epoch": 4.651723430447271, + "grad_norm": 0.04904354363679886, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 45345 + }, + { + "epoch": 4.652031185884284, + "grad_norm": 0.11245663464069366, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 45348 + }, + { + "epoch": 4.652338941321297, + "grad_norm": 0.11784044653177261, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 45351 + }, + { + "epoch": 4.6526466967583096, + "grad_norm": 0.054707154631614685, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 45354 + }, + { + "epoch": 4.652954452195322, + "grad_norm": 0.07143942266702652, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 45357 + }, + { + "epoch": 4.653262207632335, + "grad_norm": 0.05629519745707512, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 45360 + }, + { + "epoch": 4.653569963069348, + "grad_norm": 0.03609561547636986, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 45363 + }, + { + "epoch": 4.65387771850636, + "grad_norm": 0.049254827201366425, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 45366 + }, + { + "epoch": 4.6541854739433735, + "grad_norm": 0.049836140125989914, + "learning_rate": 0.01, + "loss": 2.0302, + "step": 45369 + }, + { + "epoch": 4.654493229380385, + "grad_norm": 0.043429117649793625, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 45372 + }, + { + "epoch": 4.654800984817398, + "grad_norm": 0.09842117130756378, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 45375 + }, + { + "epoch": 4.655108740254411, + "grad_norm": 0.06700047105550766, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 45378 + }, + { + "epoch": 4.655416495691424, + "grad_norm": 0.0717921331524849, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 45381 + }, + { + "epoch": 4.6557242511284365, + "grad_norm": 0.11065293103456497, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 45384 + }, + { + "epoch": 4.656032006565449, + "grad_norm": 0.07875839620828629, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 45387 + }, + { + "epoch": 4.656339762002462, + "grad_norm": 0.07618141919374466, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 45390 + }, + { + "epoch": 4.656647517439475, + "grad_norm": 0.05607747659087181, + "learning_rate": 0.01, + "loss": 2.007, + "step": 45393 + }, + { + "epoch": 4.656955272876488, + "grad_norm": 0.08270974457263947, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 45396 + }, + { + "epoch": 4.6572630283135, + "grad_norm": 0.10751419514417648, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 45399 + }, + { + "epoch": 4.657570783750513, + "grad_norm": 0.07406135648488998, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 45402 + }, + { + "epoch": 4.657878539187526, + "grad_norm": 0.06641979515552521, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 45405 + }, + { + "epoch": 4.658186294624539, + "grad_norm": 0.04510427638888359, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 45408 + }, + { + "epoch": 4.658494050061551, + "grad_norm": 0.0381624698638916, + "learning_rate": 0.01, + "loss": 2.013, + "step": 45411 + }, + { + "epoch": 4.658801805498564, + "grad_norm": 0.08912669867277145, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 45414 + }, + { + "epoch": 4.659109560935576, + "grad_norm": 0.04501614347100258, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 45417 + }, + { + "epoch": 4.659417316372589, + "grad_norm": 0.10741306841373444, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 45420 + }, + { + "epoch": 4.659725071809602, + "grad_norm": 0.05976792797446251, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 45423 + }, + { + "epoch": 4.6600328272466145, + "grad_norm": 0.09859906136989594, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 45426 + }, + { + "epoch": 4.660340582683627, + "grad_norm": 0.050599753856658936, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 45429 + }, + { + "epoch": 4.66064833812064, + "grad_norm": 0.04848974943161011, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 45432 + }, + { + "epoch": 4.660956093557653, + "grad_norm": 0.07970554381608963, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 45435 + }, + { + "epoch": 4.661263848994666, + "grad_norm": 0.06040119752287865, + "learning_rate": 0.01, + "loss": 2.001, + "step": 45438 + }, + { + "epoch": 4.661571604431678, + "grad_norm": 0.05686302110552788, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 45441 + }, + { + "epoch": 4.661879359868691, + "grad_norm": 0.0757538229227066, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 45444 + }, + { + "epoch": 4.662187115305704, + "grad_norm": 0.07825610786676407, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 45447 + }, + { + "epoch": 4.662494870742717, + "grad_norm": 0.048520684242248535, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 45450 + }, + { + "epoch": 4.6628026261797295, + "grad_norm": 0.046711694449186325, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 45453 + }, + { + "epoch": 4.663110381616741, + "grad_norm": 0.058854326605796814, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 45456 + }, + { + "epoch": 4.663418137053755, + "grad_norm": 0.04749085754156113, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 45459 + }, + { + "epoch": 4.663725892490767, + "grad_norm": 0.05710771679878235, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 45462 + }, + { + "epoch": 4.66403364792778, + "grad_norm": 0.10407797247171402, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 45465 + }, + { + "epoch": 4.6643414033647925, + "grad_norm": 0.07726982980966568, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 45468 + }, + { + "epoch": 4.664649158801805, + "grad_norm": 0.11478970944881439, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 45471 + }, + { + "epoch": 4.664956914238818, + "grad_norm": 0.1078820750117302, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 45474 + }, + { + "epoch": 4.665264669675831, + "grad_norm": 0.06113171949982643, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 45477 + }, + { + "epoch": 4.665572425112844, + "grad_norm": 0.04639894515275955, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 45480 + }, + { + "epoch": 4.665880180549856, + "grad_norm": 0.04308944195508957, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 45483 + }, + { + "epoch": 4.666187935986869, + "grad_norm": 0.036519356071949005, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 45486 + }, + { + "epoch": 4.666495691423882, + "grad_norm": 0.04407155141234398, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 45489 + }, + { + "epoch": 4.666803446860895, + "grad_norm": 0.03955180197954178, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 45492 + }, + { + "epoch": 4.6671112022979075, + "grad_norm": 0.06779368221759796, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 45495 + }, + { + "epoch": 4.66741895773492, + "grad_norm": 0.11751384288072586, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 45498 + }, + { + "epoch": 4.667726713171932, + "grad_norm": 0.05809053033590317, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 45501 + }, + { + "epoch": 4.668034468608946, + "grad_norm": 0.07685140520334244, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 45504 + }, + { + "epoch": 4.668342224045958, + "grad_norm": 0.055087387561798096, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 45507 + }, + { + "epoch": 4.668649979482971, + "grad_norm": 0.05234852805733681, + "learning_rate": 0.01, + "loss": 1.997, + "step": 45510 + }, + { + "epoch": 4.668957734919983, + "grad_norm": 0.048037078231573105, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 45513 + }, + { + "epoch": 4.669265490356996, + "grad_norm": 0.03744732588529587, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 45516 + }, + { + "epoch": 4.669573245794009, + "grad_norm": 0.053839731961488724, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 45519 + }, + { + "epoch": 4.669881001231022, + "grad_norm": 0.06782069802284241, + "learning_rate": 0.01, + "loss": 2.003, + "step": 45522 + }, + { + "epoch": 4.6701887566680345, + "grad_norm": 0.05053957551717758, + "learning_rate": 0.01, + "loss": 2.004, + "step": 45525 + }, + { + "epoch": 4.670496512105047, + "grad_norm": 0.07486964762210846, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 45528 + }, + { + "epoch": 4.67080426754206, + "grad_norm": 0.07367604970932007, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 45531 + }, + { + "epoch": 4.671112022979073, + "grad_norm": 0.06390465050935745, + "learning_rate": 0.01, + "loss": 1.981, + "step": 45534 + }, + { + "epoch": 4.671419778416086, + "grad_norm": 0.1271253079175949, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 45537 + }, + { + "epoch": 4.671727533853098, + "grad_norm": 0.08515705168247223, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 45540 + }, + { + "epoch": 4.672035289290111, + "grad_norm": 0.03478894755244255, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 45543 + }, + { + "epoch": 4.672343044727123, + "grad_norm": 0.051871661096811295, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 45546 + }, + { + "epoch": 4.672650800164137, + "grad_norm": 0.0924333781003952, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 45549 + }, + { + "epoch": 4.672958555601149, + "grad_norm": 0.13955476880073547, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 45552 + }, + { + "epoch": 4.673266311038161, + "grad_norm": 0.07893053442239761, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 45555 + }, + { + "epoch": 4.673574066475174, + "grad_norm": 0.048040106892585754, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 45558 + }, + { + "epoch": 4.673881821912187, + "grad_norm": 0.05462590605020523, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 45561 + }, + { + "epoch": 4.6741895773492, + "grad_norm": 0.07224661111831665, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 45564 + }, + { + "epoch": 4.6744973327862125, + "grad_norm": 0.09311232715845108, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 45567 + }, + { + "epoch": 4.674805088223225, + "grad_norm": 0.051444876939058304, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 45570 + }, + { + "epoch": 4.675112843660238, + "grad_norm": 0.04749058559536934, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 45573 + }, + { + "epoch": 4.675420599097251, + "grad_norm": 0.04723438620567322, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 45576 + }, + { + "epoch": 4.675728354534264, + "grad_norm": 0.10198043286800385, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 45579 + }, + { + "epoch": 4.676036109971276, + "grad_norm": 0.07877392321825027, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 45582 + }, + { + "epoch": 4.676343865408289, + "grad_norm": 0.10339850187301636, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 45585 + }, + { + "epoch": 4.676651620845302, + "grad_norm": 0.07544226199388504, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 45588 + }, + { + "epoch": 4.676959376282314, + "grad_norm": 0.06043079495429993, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 45591 + }, + { + "epoch": 4.6772671317193275, + "grad_norm": 0.06057659909129143, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 45594 + }, + { + "epoch": 4.677574887156339, + "grad_norm": 0.08405612409114838, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 45597 + }, + { + "epoch": 4.677882642593352, + "grad_norm": 0.048926811665296555, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 45600 + }, + { + "epoch": 4.678190398030365, + "grad_norm": 0.05887090042233467, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 45603 + }, + { + "epoch": 4.678498153467378, + "grad_norm": 0.04116439446806908, + "learning_rate": 0.01, + "loss": 2.0309, + "step": 45606 + }, + { + "epoch": 4.6788059089043905, + "grad_norm": 0.04675902798771858, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 45609 + }, + { + "epoch": 4.679113664341403, + "grad_norm": 0.036510296165943146, + "learning_rate": 0.01, + "loss": 1.986, + "step": 45612 + }, + { + "epoch": 4.679421419778416, + "grad_norm": 0.06395171582698822, + "learning_rate": 0.01, + "loss": 1.9632, + "step": 45615 + }, + { + "epoch": 4.679729175215429, + "grad_norm": 0.09183214604854584, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 45618 + }, + { + "epoch": 4.680036930652442, + "grad_norm": 0.03406717628240585, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 45621 + }, + { + "epoch": 4.680344686089454, + "grad_norm": 0.11709492653608322, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 45624 + }, + { + "epoch": 4.680652441526467, + "grad_norm": 0.054468922317028046, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 45627 + }, + { + "epoch": 4.68096019696348, + "grad_norm": 0.07991788536310196, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 45630 + }, + { + "epoch": 4.681267952400493, + "grad_norm": 0.046350929886102676, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 45633 + }, + { + "epoch": 4.681575707837505, + "grad_norm": 0.09740296006202698, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 45636 + }, + { + "epoch": 4.681883463274518, + "grad_norm": 0.0619819350540638, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 45639 + }, + { + "epoch": 4.68219121871153, + "grad_norm": 0.04457273334264755, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 45642 + }, + { + "epoch": 4.682498974148543, + "grad_norm": 0.07806507498025894, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 45645 + }, + { + "epoch": 4.682806729585556, + "grad_norm": 0.07045695930719376, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 45648 + }, + { + "epoch": 4.6831144850225686, + "grad_norm": 0.0896361917257309, + "learning_rate": 0.01, + "loss": 1.988, + "step": 45651 + }, + { + "epoch": 4.683422240459581, + "grad_norm": 0.04496191442012787, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 45654 + }, + { + "epoch": 4.683729995896594, + "grad_norm": 0.041538260877132416, + "learning_rate": 0.01, + "loss": 2.0357, + "step": 45657 + }, + { + "epoch": 4.684037751333607, + "grad_norm": 0.07717595249414444, + "learning_rate": 0.01, + "loss": 1.977, + "step": 45660 + }, + { + "epoch": 4.68434550677062, + "grad_norm": 0.046603985130786896, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 45663 + }, + { + "epoch": 4.6846532622076325, + "grad_norm": 0.0826171487569809, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 45666 + }, + { + "epoch": 4.684961017644645, + "grad_norm": 0.09356506168842316, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 45669 + }, + { + "epoch": 4.685268773081658, + "grad_norm": 0.04961970075964928, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 45672 + }, + { + "epoch": 4.685576528518671, + "grad_norm": 0.08724430203437805, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 45675 + }, + { + "epoch": 4.685884283955684, + "grad_norm": 0.093470498919487, + "learning_rate": 0.01, + "loss": 1.995, + "step": 45678 + }, + { + "epoch": 4.6861920393926955, + "grad_norm": 0.04148003086447716, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 45681 + }, + { + "epoch": 4.686499794829709, + "grad_norm": 0.04073407128453255, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 45684 + }, + { + "epoch": 4.686807550266721, + "grad_norm": 0.06185337156057358, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 45687 + }, + { + "epoch": 4.687115305703734, + "grad_norm": 0.06323441118001938, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 45690 + }, + { + "epoch": 4.687423061140747, + "grad_norm": 0.06550868600606918, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 45693 + }, + { + "epoch": 4.687730816577759, + "grad_norm": 0.10702592879533768, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 45696 + }, + { + "epoch": 4.688038572014772, + "grad_norm": 0.07939399778842926, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 45699 + }, + { + "epoch": 4.688346327451785, + "grad_norm": 0.09626048058271408, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 45702 + }, + { + "epoch": 4.688654082888798, + "grad_norm": 0.10478439927101135, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 45705 + }, + { + "epoch": 4.6889618383258105, + "grad_norm": 0.06496943533420563, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 45708 + }, + { + "epoch": 4.689269593762823, + "grad_norm": 0.060445625334978104, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 45711 + }, + { + "epoch": 4.689577349199836, + "grad_norm": 0.050236016511917114, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 45714 + }, + { + "epoch": 4.689885104636849, + "grad_norm": 0.07051600515842438, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 45717 + }, + { + "epoch": 4.690192860073862, + "grad_norm": 0.14171123504638672, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 45720 + }, + { + "epoch": 4.690500615510874, + "grad_norm": 0.04662410169839859, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 45723 + }, + { + "epoch": 4.690808370947886, + "grad_norm": 0.04155685007572174, + "learning_rate": 0.01, + "loss": 1.986, + "step": 45726 + }, + { + "epoch": 4.6911161263849, + "grad_norm": 0.03519884869456291, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 45729 + }, + { + "epoch": 4.691423881821912, + "grad_norm": 0.04860999807715416, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 45732 + }, + { + "epoch": 4.691731637258925, + "grad_norm": 0.05452680215239525, + "learning_rate": 0.01, + "loss": 1.987, + "step": 45735 + }, + { + "epoch": 4.692039392695937, + "grad_norm": 0.08102243393659592, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 45738 + }, + { + "epoch": 4.69234714813295, + "grad_norm": 0.04494756832718849, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 45741 + }, + { + "epoch": 4.692654903569963, + "grad_norm": 0.05493905395269394, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 45744 + }, + { + "epoch": 4.692962659006976, + "grad_norm": 0.037139080464839935, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 45747 + }, + { + "epoch": 4.6932704144439885, + "grad_norm": 0.04770129173994064, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 45750 + }, + { + "epoch": 4.693578169881001, + "grad_norm": 0.1386919915676117, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 45753 + }, + { + "epoch": 4.693885925318014, + "grad_norm": 0.038857076317071915, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 45756 + }, + { + "epoch": 4.694193680755027, + "grad_norm": 0.08089780062437057, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 45759 + }, + { + "epoch": 4.69450143619204, + "grad_norm": 0.05583566427230835, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 45762 + }, + { + "epoch": 4.694809191629052, + "grad_norm": 0.06422879546880722, + "learning_rate": 0.01, + "loss": 2.001, + "step": 45765 + }, + { + "epoch": 4.695116947066065, + "grad_norm": 0.037838250398635864, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 45768 + }, + { + "epoch": 4.695424702503077, + "grad_norm": 0.04485329985618591, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 45771 + }, + { + "epoch": 4.695732457940091, + "grad_norm": 0.13175508379936218, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 45774 + }, + { + "epoch": 4.696040213377103, + "grad_norm": 0.04778193309903145, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 45777 + }, + { + "epoch": 4.696347968814115, + "grad_norm": 0.07214421778917313, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 45780 + }, + { + "epoch": 4.696655724251128, + "grad_norm": 0.04276994615793228, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 45783 + }, + { + "epoch": 4.696963479688141, + "grad_norm": 0.049977049231529236, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 45786 + }, + { + "epoch": 4.697271235125154, + "grad_norm": 0.031859464943408966, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 45789 + }, + { + "epoch": 4.6975789905621665, + "grad_norm": 0.05537641420960426, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 45792 + }, + { + "epoch": 4.697886745999179, + "grad_norm": 0.07403066009283066, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 45795 + }, + { + "epoch": 4.698194501436192, + "grad_norm": 0.037336938083171844, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 45798 + }, + { + "epoch": 4.698502256873205, + "grad_norm": 0.04439583793282509, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 45801 + }, + { + "epoch": 4.698810012310218, + "grad_norm": 0.05648301541805267, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 45804 + }, + { + "epoch": 4.6991177677472304, + "grad_norm": 0.07558471709489822, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 45807 + }, + { + "epoch": 4.699425523184243, + "grad_norm": 0.04831695184111595, + "learning_rate": 0.01, + "loss": 1.981, + "step": 45810 + }, + { + "epoch": 4.699733278621256, + "grad_norm": 0.05198276415467262, + "learning_rate": 0.01, + "loss": 1.9696, + "step": 45813 + }, + { + "epoch": 4.700041034058268, + "grad_norm": 0.05408303439617157, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 45816 + }, + { + "epoch": 4.700348789495282, + "grad_norm": 0.107550710439682, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 45819 + }, + { + "epoch": 4.7006565449322935, + "grad_norm": 0.05953781679272652, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 45822 + }, + { + "epoch": 4.700964300369306, + "grad_norm": 0.09626014530658722, + "learning_rate": 0.01, + "loss": 1.989, + "step": 45825 + }, + { + "epoch": 4.701272055806319, + "grad_norm": 0.08343878388404846, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 45828 + }, + { + "epoch": 4.701579811243332, + "grad_norm": 0.037152498960494995, + "learning_rate": 0.01, + "loss": 1.9595, + "step": 45831 + }, + { + "epoch": 4.701887566680345, + "grad_norm": 0.10978374630212784, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 45834 + }, + { + "epoch": 4.702195322117357, + "grad_norm": 0.04754413291811943, + "learning_rate": 0.01, + "loss": 1.997, + "step": 45837 + }, + { + "epoch": 4.70250307755437, + "grad_norm": 0.04514869302511215, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 45840 + }, + { + "epoch": 4.702810832991383, + "grad_norm": 0.08105579018592834, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 45843 + }, + { + "epoch": 4.703118588428396, + "grad_norm": 0.032461777329444885, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 45846 + }, + { + "epoch": 4.7034263438654085, + "grad_norm": 0.13264963030815125, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 45849 + }, + { + "epoch": 4.703734099302421, + "grad_norm": 0.06816978752613068, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 45852 + }, + { + "epoch": 4.704041854739434, + "grad_norm": 0.09646057337522507, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 45855 + }, + { + "epoch": 4.704349610176447, + "grad_norm": 0.06418583542108536, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 45858 + }, + { + "epoch": 4.704657365613459, + "grad_norm": 0.03923073783516884, + "learning_rate": 0.01, + "loss": 2.008, + "step": 45861 + }, + { + "epoch": 4.704965121050472, + "grad_norm": 0.03935366868972778, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 45864 + }, + { + "epoch": 4.705272876487484, + "grad_norm": 0.0409211590886116, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 45867 + }, + { + "epoch": 4.705580631924497, + "grad_norm": 0.02996712550520897, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 45870 + }, + { + "epoch": 4.70588838736151, + "grad_norm": 0.03149070590734482, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 45873 + }, + { + "epoch": 4.706196142798523, + "grad_norm": 0.11619815230369568, + "learning_rate": 0.01, + "loss": 2.0, + "step": 45876 + }, + { + "epoch": 4.706503898235535, + "grad_norm": 0.08959172666072845, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 45879 + }, + { + "epoch": 4.706811653672548, + "grad_norm": 0.03898904472589493, + "learning_rate": 0.01, + "loss": 2.006, + "step": 45882 + }, + { + "epoch": 4.707119409109561, + "grad_norm": 0.05690839886665344, + "learning_rate": 0.01, + "loss": 1.995, + "step": 45885 + }, + { + "epoch": 4.707427164546574, + "grad_norm": 0.08014564961194992, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 45888 + }, + { + "epoch": 4.7077349199835865, + "grad_norm": 0.07317539304494858, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 45891 + }, + { + "epoch": 4.708042675420599, + "grad_norm": 0.040355369448661804, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 45894 + }, + { + "epoch": 4.708350430857612, + "grad_norm": 0.04205753654241562, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 45897 + }, + { + "epoch": 4.708658186294625, + "grad_norm": 0.07082203030586243, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 45900 + }, + { + "epoch": 4.708965941731638, + "grad_norm": 0.037901826202869415, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 45903 + }, + { + "epoch": 4.7092736971686495, + "grad_norm": 0.04728815332055092, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 45906 + }, + { + "epoch": 4.709581452605663, + "grad_norm": 0.048279549926519394, + "learning_rate": 0.01, + "loss": 1.982, + "step": 45909 + }, + { + "epoch": 4.709889208042675, + "grad_norm": 0.06365431100130081, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 45912 + }, + { + "epoch": 4.710196963479688, + "grad_norm": 0.07750722020864487, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 45915 + }, + { + "epoch": 4.710504718916701, + "grad_norm": 0.07337852567434311, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 45918 + }, + { + "epoch": 4.710812474353713, + "grad_norm": 0.055369194597005844, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 45921 + }, + { + "epoch": 4.711120229790726, + "grad_norm": 0.07653316110372543, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 45924 + }, + { + "epoch": 4.711427985227739, + "grad_norm": 0.13082928955554962, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 45927 + }, + { + "epoch": 4.711735740664752, + "grad_norm": 0.07909176498651505, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 45930 + }, + { + "epoch": 4.7120434961017645, + "grad_norm": 0.055445730686187744, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 45933 + }, + { + "epoch": 4.712351251538777, + "grad_norm": 0.08689797669649124, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 45936 + }, + { + "epoch": 4.71265900697579, + "grad_norm": 0.051975540816783905, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 45939 + }, + { + "epoch": 4.712966762412803, + "grad_norm": 0.1104854941368103, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 45942 + }, + { + "epoch": 4.713274517849816, + "grad_norm": 0.05927729606628418, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 45945 + }, + { + "epoch": 4.713582273286828, + "grad_norm": 0.051379501819610596, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 45948 + }, + { + "epoch": 4.71389002872384, + "grad_norm": 0.03545750305056572, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 45951 + }, + { + "epoch": 4.714197784160854, + "grad_norm": 0.044772762805223465, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 45954 + }, + { + "epoch": 4.714505539597866, + "grad_norm": 0.04172508046030998, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 45957 + }, + { + "epoch": 4.714813295034879, + "grad_norm": 0.04818372428417206, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 45960 + }, + { + "epoch": 4.7151210504718915, + "grad_norm": 0.10572110861539841, + "learning_rate": 0.01, + "loss": 1.9645, + "step": 45963 + }, + { + "epoch": 4.715428805908904, + "grad_norm": 0.04968751594424248, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 45966 + }, + { + "epoch": 4.715736561345917, + "grad_norm": 0.08244633674621582, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 45969 + }, + { + "epoch": 4.71604431678293, + "grad_norm": 0.0786314308643341, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 45972 + }, + { + "epoch": 4.716352072219943, + "grad_norm": 0.05768943205475807, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 45975 + }, + { + "epoch": 4.716659827656955, + "grad_norm": 0.04455199092626572, + "learning_rate": 0.01, + "loss": 1.993, + "step": 45978 + }, + { + "epoch": 4.716967583093968, + "grad_norm": 0.05535956844687462, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 45981 + }, + { + "epoch": 4.717275338530981, + "grad_norm": 0.03555374965071678, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 45984 + }, + { + "epoch": 4.717583093967994, + "grad_norm": 0.06458409130573273, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 45987 + }, + { + "epoch": 4.7178908494050065, + "grad_norm": 0.05734160915017128, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 45990 + }, + { + "epoch": 4.718198604842019, + "grad_norm": 0.06240745261311531, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 45993 + }, + { + "epoch": 4.718506360279031, + "grad_norm": 0.08987503498792648, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 45996 + }, + { + "epoch": 4.718814115716045, + "grad_norm": 0.06078198924660683, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 45999 + }, + { + "epoch": 4.719121871153057, + "grad_norm": 0.12024971842765808, + "learning_rate": 0.01, + "loss": 2.006, + "step": 46002 + }, + { + "epoch": 4.7194296265900695, + "grad_norm": 0.06620301306247711, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 46005 + }, + { + "epoch": 4.719737382027082, + "grad_norm": 0.0450078584253788, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 46008 + }, + { + "epoch": 4.720045137464095, + "grad_norm": 0.04509684816002846, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 46011 + }, + { + "epoch": 4.720352892901108, + "grad_norm": 0.06029663607478142, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 46014 + }, + { + "epoch": 4.720660648338121, + "grad_norm": 0.06620631366968155, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 46017 + }, + { + "epoch": 4.720968403775133, + "grad_norm": 0.09920935332775116, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 46020 + }, + { + "epoch": 4.721276159212146, + "grad_norm": 0.04000372067093849, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 46023 + }, + { + "epoch": 4.721583914649159, + "grad_norm": 0.10262927412986755, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 46026 + }, + { + "epoch": 4.721891670086172, + "grad_norm": 0.07029026746749878, + "learning_rate": 0.01, + "loss": 2.0492, + "step": 46029 + }, + { + "epoch": 4.7221994255231845, + "grad_norm": 0.03733726218342781, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 46032 + }, + { + "epoch": 4.722507180960197, + "grad_norm": 0.16273632645606995, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 46035 + }, + { + "epoch": 4.72281493639721, + "grad_norm": 0.052774641662836075, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 46038 + }, + { + "epoch": 4.723122691834222, + "grad_norm": 0.04785846173763275, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 46041 + }, + { + "epoch": 4.723430447271236, + "grad_norm": 0.046762675046920776, + "learning_rate": 0.01, + "loss": 2.01, + "step": 46044 + }, + { + "epoch": 4.7237382027082475, + "grad_norm": 0.055082205682992935, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 46047 + }, + { + "epoch": 4.72404595814526, + "grad_norm": 0.12330979853868484, + "learning_rate": 0.01, + "loss": 2.006, + "step": 46050 + }, + { + "epoch": 4.724353713582273, + "grad_norm": 0.0426286906003952, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 46053 + }, + { + "epoch": 4.724661469019286, + "grad_norm": 0.09888054430484772, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 46056 + }, + { + "epoch": 4.724969224456299, + "grad_norm": 0.09335997700691223, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 46059 + }, + { + "epoch": 4.725276979893311, + "grad_norm": 0.06959028542041779, + "learning_rate": 0.01, + "loss": 1.9583, + "step": 46062 + }, + { + "epoch": 4.725584735330324, + "grad_norm": 0.06538756936788559, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 46065 + }, + { + "epoch": 4.725892490767337, + "grad_norm": 0.0652519017457962, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 46068 + }, + { + "epoch": 4.72620024620435, + "grad_norm": 0.049920666962862015, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 46071 + }, + { + "epoch": 4.7265080016413625, + "grad_norm": 0.0796656534075737, + "learning_rate": 0.01, + "loss": 1.9637, + "step": 46074 + }, + { + "epoch": 4.726815757078375, + "grad_norm": 0.08785120397806168, + "learning_rate": 0.01, + "loss": 1.9645, + "step": 46077 + }, + { + "epoch": 4.727123512515388, + "grad_norm": 0.05050429701805115, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 46080 + }, + { + "epoch": 4.727431267952401, + "grad_norm": 0.039991263300180435, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 46083 + }, + { + "epoch": 4.727739023389413, + "grad_norm": 0.04895581305027008, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 46086 + }, + { + "epoch": 4.728046778826426, + "grad_norm": 0.13111530244350433, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 46089 + }, + { + "epoch": 4.728354534263438, + "grad_norm": 0.07493706792593002, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 46092 + }, + { + "epoch": 4.728662289700451, + "grad_norm": 0.06003058701753616, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 46095 + }, + { + "epoch": 4.728970045137464, + "grad_norm": 0.05581682547926903, + "learning_rate": 0.01, + "loss": 1.986, + "step": 46098 + }, + { + "epoch": 4.729277800574477, + "grad_norm": 0.0741606056690216, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 46101 + }, + { + "epoch": 4.7295855560114894, + "grad_norm": 0.05753305181860924, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 46104 + }, + { + "epoch": 4.729893311448502, + "grad_norm": 0.06790949404239655, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 46107 + }, + { + "epoch": 4.730201066885515, + "grad_norm": 0.05599404126405716, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 46110 + }, + { + "epoch": 4.730508822322528, + "grad_norm": 0.06556524336338043, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 46113 + }, + { + "epoch": 4.730816577759541, + "grad_norm": 0.043739136308431625, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 46116 + }, + { + "epoch": 4.731124333196553, + "grad_norm": 0.05598102882504463, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 46119 + }, + { + "epoch": 4.731432088633566, + "grad_norm": 0.0398273728787899, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 46122 + }, + { + "epoch": 4.731739844070579, + "grad_norm": 0.06281284987926483, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 46125 + }, + { + "epoch": 4.732047599507592, + "grad_norm": 0.0575578436255455, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 46128 + }, + { + "epoch": 4.732355354944604, + "grad_norm": 0.044283825904130936, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 46131 + }, + { + "epoch": 4.732663110381616, + "grad_norm": 0.11150834709405899, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 46134 + }, + { + "epoch": 4.732970865818629, + "grad_norm": 0.11505670100450516, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 46137 + }, + { + "epoch": 4.733278621255642, + "grad_norm": 0.10406883805990219, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 46140 + }, + { + "epoch": 4.733586376692655, + "grad_norm": 0.07568677514791489, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 46143 + }, + { + "epoch": 4.7338941321296675, + "grad_norm": 0.05774052441120148, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 46146 + }, + { + "epoch": 4.73420188756668, + "grad_norm": 0.05138164013624191, + "learning_rate": 0.01, + "loss": 1.9697, + "step": 46149 + }, + { + "epoch": 4.734509643003693, + "grad_norm": 0.09138276427984238, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 46152 + }, + { + "epoch": 4.734817398440706, + "grad_norm": 0.04819070175290108, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 46155 + }, + { + "epoch": 4.735125153877719, + "grad_norm": 0.06231243535876274, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 46158 + }, + { + "epoch": 4.735432909314731, + "grad_norm": 0.05212223157286644, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 46161 + }, + { + "epoch": 4.735740664751744, + "grad_norm": 0.05681807920336723, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 46164 + }, + { + "epoch": 4.736048420188757, + "grad_norm": 0.039965178817510605, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 46167 + }, + { + "epoch": 4.73635617562577, + "grad_norm": 0.0815226286649704, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 46170 + }, + { + "epoch": 4.7366639310627825, + "grad_norm": 0.121616430580616, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 46173 + }, + { + "epoch": 4.736971686499794, + "grad_norm": 0.06908087432384491, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 46176 + }, + { + "epoch": 4.737279441936807, + "grad_norm": 0.043230995535850525, + "learning_rate": 0.01, + "loss": 1.995, + "step": 46179 + }, + { + "epoch": 4.73758719737382, + "grad_norm": 0.10230391472578049, + "learning_rate": 0.01, + "loss": 1.967, + "step": 46182 + }, + { + "epoch": 4.737894952810833, + "grad_norm": 0.06521748751401901, + "learning_rate": 0.01, + "loss": 1.9531, + "step": 46185 + }, + { + "epoch": 4.7382027082478455, + "grad_norm": 0.052706390619277954, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 46188 + }, + { + "epoch": 4.738510463684858, + "grad_norm": 0.0332234725356102, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 46191 + }, + { + "epoch": 4.738818219121871, + "grad_norm": 0.061153993010520935, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 46194 + }, + { + "epoch": 4.739125974558884, + "grad_norm": 0.12053243815898895, + "learning_rate": 0.01, + "loss": 1.997, + "step": 46197 + }, + { + "epoch": 4.739433729995897, + "grad_norm": 0.09798255562782288, + "learning_rate": 0.01, + "loss": 2.01, + "step": 46200 + }, + { + "epoch": 4.739741485432909, + "grad_norm": 0.05450673773884773, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 46203 + }, + { + "epoch": 4.740049240869922, + "grad_norm": 0.03913121297955513, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 46206 + }, + { + "epoch": 4.740356996306935, + "grad_norm": 0.036051902920007706, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 46209 + }, + { + "epoch": 4.740664751743948, + "grad_norm": 0.04099172353744507, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 46212 + }, + { + "epoch": 4.7409725071809605, + "grad_norm": 0.03864535689353943, + "learning_rate": 0.01, + "loss": 1.981, + "step": 46215 + }, + { + "epoch": 4.741280262617973, + "grad_norm": 0.055634405463933945, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 46218 + }, + { + "epoch": 4.741588018054985, + "grad_norm": 0.06536100059747696, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 46221 + }, + { + "epoch": 4.741895773491998, + "grad_norm": 0.05309274420142174, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 46224 + }, + { + "epoch": 4.742203528929011, + "grad_norm": 0.09953348338603973, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 46227 + }, + { + "epoch": 4.7425112843660235, + "grad_norm": 0.04084203764796257, + "learning_rate": 0.01, + "loss": 1.982, + "step": 46230 + }, + { + "epoch": 4.742819039803036, + "grad_norm": 0.12028990685939789, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 46233 + }, + { + "epoch": 4.743126795240049, + "grad_norm": 0.04335862770676613, + "learning_rate": 0.01, + "loss": 1.9552, + "step": 46236 + }, + { + "epoch": 4.743434550677062, + "grad_norm": 0.06697961688041687, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 46239 + }, + { + "epoch": 4.743742306114075, + "grad_norm": 0.047941289842128754, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 46242 + }, + { + "epoch": 4.744050061551087, + "grad_norm": 0.03778136894106865, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 46245 + }, + { + "epoch": 4.7443578169881, + "grad_norm": 0.04735583811998367, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 46248 + }, + { + "epoch": 4.744665572425113, + "grad_norm": 0.04471844062209129, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 46251 + }, + { + "epoch": 4.744973327862126, + "grad_norm": 0.03621865063905716, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 46254 + }, + { + "epoch": 4.745281083299139, + "grad_norm": 0.12407182902097702, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 46257 + }, + { + "epoch": 4.745588838736151, + "grad_norm": 0.05654411017894745, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 46260 + }, + { + "epoch": 4.745896594173164, + "grad_norm": 0.08955933898687363, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 46263 + }, + { + "epoch": 4.746204349610176, + "grad_norm": 0.08366284519433975, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 46266 + }, + { + "epoch": 4.746512105047189, + "grad_norm": 0.056272462010383606, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 46269 + }, + { + "epoch": 4.746819860484202, + "grad_norm": 0.05544830113649368, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 46272 + }, + { + "epoch": 4.747127615921214, + "grad_norm": 0.04018571227788925, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 46275 + }, + { + "epoch": 4.747435371358227, + "grad_norm": 0.07131030410528183, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 46278 + }, + { + "epoch": 4.74774312679524, + "grad_norm": 0.03746544569730759, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 46281 + }, + { + "epoch": 4.748050882232253, + "grad_norm": 0.09419632703065872, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 46284 + }, + { + "epoch": 4.7483586376692655, + "grad_norm": 0.05771811679005623, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 46287 + }, + { + "epoch": 4.748666393106278, + "grad_norm": 0.0985054075717926, + "learning_rate": 0.01, + "loss": 2.0356, + "step": 46290 + }, + { + "epoch": 4.748974148543291, + "grad_norm": 0.06566286832094193, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 46293 + }, + { + "epoch": 4.749281903980304, + "grad_norm": 0.043330125510692596, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 46296 + }, + { + "epoch": 4.749589659417317, + "grad_norm": 0.05344987288117409, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 46299 + }, + { + "epoch": 4.749897414854329, + "grad_norm": 0.032919514924287796, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 46302 + }, + { + "epoch": 4.750205170291342, + "grad_norm": 0.08051367104053497, + "learning_rate": 0.01, + "loss": 1.9671, + "step": 46305 + }, + { + "epoch": 4.750512925728355, + "grad_norm": 0.09481201320886612, + "learning_rate": 0.01, + "loss": 1.978, + "step": 46308 + }, + { + "epoch": 4.750820681165367, + "grad_norm": 0.1356784701347351, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 46311 + }, + { + "epoch": 4.75112843660238, + "grad_norm": 0.12291105091571808, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 46314 + }, + { + "epoch": 4.751436192039392, + "grad_norm": 0.050581369549036026, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 46317 + }, + { + "epoch": 4.751743947476405, + "grad_norm": 0.08423294126987457, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 46320 + }, + { + "epoch": 4.752051702913418, + "grad_norm": 0.0642426609992981, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 46323 + }, + { + "epoch": 4.752359458350431, + "grad_norm": 0.042584337294101715, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 46326 + }, + { + "epoch": 4.7526672137874435, + "grad_norm": 0.04110237583518028, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 46329 + }, + { + "epoch": 4.752974969224456, + "grad_norm": 0.034602370113134384, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 46332 + }, + { + "epoch": 4.753282724661469, + "grad_norm": 0.05274072289466858, + "learning_rate": 0.01, + "loss": 1.9606, + "step": 46335 + }, + { + "epoch": 4.753590480098482, + "grad_norm": 0.09157788008451462, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 46338 + }, + { + "epoch": 4.753898235535495, + "grad_norm": 0.04491696506738663, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 46341 + }, + { + "epoch": 4.754205990972507, + "grad_norm": 0.044836509972810745, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 46344 + }, + { + "epoch": 4.75451374640952, + "grad_norm": 0.08086413145065308, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 46347 + }, + { + "epoch": 4.754821501846533, + "grad_norm": 0.04024931788444519, + "learning_rate": 0.01, + "loss": 1.9634, + "step": 46350 + }, + { + "epoch": 4.755129257283546, + "grad_norm": 0.053472552448511124, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 46353 + }, + { + "epoch": 4.755437012720558, + "grad_norm": 0.06579295545816422, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 46356 + }, + { + "epoch": 4.75574476815757, + "grad_norm": 0.07256436347961426, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 46359 + }, + { + "epoch": 4.756052523594583, + "grad_norm": 0.1356937736272812, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 46362 + }, + { + "epoch": 4.756360279031596, + "grad_norm": 0.06238779425621033, + "learning_rate": 0.01, + "loss": 1.995, + "step": 46365 + }, + { + "epoch": 4.756668034468609, + "grad_norm": 0.03617888316512108, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 46368 + }, + { + "epoch": 4.7569757899056215, + "grad_norm": 0.039169710129499435, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 46371 + }, + { + "epoch": 4.757283545342634, + "grad_norm": 0.03998740762472153, + "learning_rate": 0.01, + "loss": 1.989, + "step": 46374 + }, + { + "epoch": 4.757591300779647, + "grad_norm": 0.09922688454389572, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 46377 + }, + { + "epoch": 4.75789905621666, + "grad_norm": 0.07870779931545258, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 46380 + }, + { + "epoch": 4.758206811653673, + "grad_norm": 0.09917730838060379, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 46383 + }, + { + "epoch": 4.758514567090685, + "grad_norm": 0.14981189370155334, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 46386 + }, + { + "epoch": 4.758822322527698, + "grad_norm": 0.08356380462646484, + "learning_rate": 0.01, + "loss": 1.984, + "step": 46389 + }, + { + "epoch": 4.759130077964711, + "grad_norm": 0.05980211868882179, + "learning_rate": 0.01, + "loss": 1.975, + "step": 46392 + }, + { + "epoch": 4.759437833401724, + "grad_norm": 0.05891801416873932, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 46395 + }, + { + "epoch": 4.7597455888387366, + "grad_norm": 0.08687376976013184, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 46398 + }, + { + "epoch": 4.760053344275748, + "grad_norm": 0.03482063114643097, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 46401 + }, + { + "epoch": 4.760361099712761, + "grad_norm": 0.04206204041838646, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 46404 + }, + { + "epoch": 4.760668855149774, + "grad_norm": 0.051311641931533813, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 46407 + }, + { + "epoch": 4.760976610586787, + "grad_norm": 0.06586962938308716, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 46410 + }, + { + "epoch": 4.7612843660238, + "grad_norm": 0.058405712246894836, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 46413 + }, + { + "epoch": 4.761592121460812, + "grad_norm": 0.060229748487472534, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 46416 + }, + { + "epoch": 4.761899876897825, + "grad_norm": 0.08985790610313416, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 46419 + }, + { + "epoch": 4.762207632334838, + "grad_norm": 0.13349880278110504, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 46422 + }, + { + "epoch": 4.762515387771851, + "grad_norm": 0.05167052149772644, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 46425 + }, + { + "epoch": 4.7628231432088635, + "grad_norm": 0.03675553575158119, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 46428 + }, + { + "epoch": 4.763130898645876, + "grad_norm": 0.06192685663700104, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 46431 + }, + { + "epoch": 4.763438654082889, + "grad_norm": 0.06537027657032013, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 46434 + }, + { + "epoch": 4.763746409519902, + "grad_norm": 0.07077626138925552, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 46437 + }, + { + "epoch": 4.764054164956915, + "grad_norm": 0.0640728622674942, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 46440 + }, + { + "epoch": 4.764361920393927, + "grad_norm": 0.04746294394135475, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 46443 + }, + { + "epoch": 4.764669675830939, + "grad_norm": 0.04115734621882439, + "learning_rate": 0.01, + "loss": 1.9552, + "step": 46446 + }, + { + "epoch": 4.764977431267952, + "grad_norm": 0.11647975444793701, + "learning_rate": 0.01, + "loss": 1.9621, + "step": 46449 + }, + { + "epoch": 4.765285186704965, + "grad_norm": 0.0611908994615078, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 46452 + }, + { + "epoch": 4.765592942141978, + "grad_norm": 0.11524607241153717, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 46455 + }, + { + "epoch": 4.76590069757899, + "grad_norm": 0.10703855752944946, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 46458 + }, + { + "epoch": 4.766208453016003, + "grad_norm": 0.052681829780340195, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 46461 + }, + { + "epoch": 4.766516208453016, + "grad_norm": 0.04313669726252556, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 46464 + }, + { + "epoch": 4.766823963890029, + "grad_norm": 0.06806657463312149, + "learning_rate": 0.01, + "loss": 1.988, + "step": 46467 + }, + { + "epoch": 4.7671317193270415, + "grad_norm": 0.07249857485294342, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 46470 + }, + { + "epoch": 4.767439474764054, + "grad_norm": 0.07816947996616364, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 46473 + }, + { + "epoch": 4.767747230201067, + "grad_norm": 0.05120289698243141, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 46476 + }, + { + "epoch": 4.76805498563808, + "grad_norm": 0.09938623756170273, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 46479 + }, + { + "epoch": 4.768362741075093, + "grad_norm": 0.060353558510541916, + "learning_rate": 0.01, + "loss": 1.989, + "step": 46482 + }, + { + "epoch": 4.768670496512105, + "grad_norm": 0.10951244086027145, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 46485 + }, + { + "epoch": 4.768978251949118, + "grad_norm": 0.04746172949671745, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 46488 + }, + { + "epoch": 4.76928600738613, + "grad_norm": 0.07137439399957657, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 46491 + }, + { + "epoch": 4.769593762823143, + "grad_norm": 0.13574503362178802, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 46494 + }, + { + "epoch": 4.769901518260156, + "grad_norm": 0.047539595514535904, + "learning_rate": 0.01, + "loss": 1.97, + "step": 46497 + }, + { + "epoch": 4.770209273697168, + "grad_norm": 0.0612449012696743, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 46500 + }, + { + "epoch": 4.770517029134181, + "grad_norm": 0.05257963016629219, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 46503 + }, + { + "epoch": 4.770824784571194, + "grad_norm": 0.05487014353275299, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 46506 + }, + { + "epoch": 4.771132540008207, + "grad_norm": 0.03313500061631203, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 46509 + }, + { + "epoch": 4.7714402954452195, + "grad_norm": 0.04244723170995712, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 46512 + }, + { + "epoch": 4.771748050882232, + "grad_norm": 0.06064971908926964, + "learning_rate": 0.01, + "loss": 1.999, + "step": 46515 + }, + { + "epoch": 4.772055806319245, + "grad_norm": 0.04784930869936943, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 46518 + }, + { + "epoch": 4.772363561756258, + "grad_norm": 0.04266538843512535, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 46521 + }, + { + "epoch": 4.772671317193271, + "grad_norm": 0.09486623853445053, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 46524 + }, + { + "epoch": 4.772979072630283, + "grad_norm": 0.05113883316516876, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 46527 + }, + { + "epoch": 4.773286828067296, + "grad_norm": 0.11440654844045639, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 46530 + }, + { + "epoch": 4.773594583504309, + "grad_norm": 0.07778608053922653, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 46533 + }, + { + "epoch": 4.773902338941321, + "grad_norm": 0.042305488139390945, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 46536 + }, + { + "epoch": 4.774210094378334, + "grad_norm": 0.06056047976016998, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 46539 + }, + { + "epoch": 4.774517849815346, + "grad_norm": 0.03576405718922615, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 46542 + }, + { + "epoch": 4.774825605252359, + "grad_norm": 0.04558248445391655, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 46545 + }, + { + "epoch": 4.775133360689372, + "grad_norm": 0.04870672523975372, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 46548 + }, + { + "epoch": 4.775441116126385, + "grad_norm": 0.04591087996959686, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 46551 + }, + { + "epoch": 4.775748871563398, + "grad_norm": 0.08307138830423355, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 46554 + }, + { + "epoch": 4.77605662700041, + "grad_norm": 0.0701267346739769, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 46557 + }, + { + "epoch": 4.776364382437423, + "grad_norm": 0.13456737995147705, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 46560 + }, + { + "epoch": 4.776672137874436, + "grad_norm": 0.06605277210474014, + "learning_rate": 0.01, + "loss": 1.984, + "step": 46563 + }, + { + "epoch": 4.776979893311449, + "grad_norm": 0.05360471457242966, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 46566 + }, + { + "epoch": 4.7772876487484615, + "grad_norm": 0.04942501336336136, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 46569 + }, + { + "epoch": 4.777595404185474, + "grad_norm": 0.09876788407564163, + "learning_rate": 0.01, + "loss": 2.0284, + "step": 46572 + }, + { + "epoch": 4.777903159622487, + "grad_norm": 0.07075868546962738, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 46575 + }, + { + "epoch": 4.7782109150595, + "grad_norm": 0.06624365597963333, + "learning_rate": 0.01, + "loss": 1.976, + "step": 46578 + }, + { + "epoch": 4.778518670496512, + "grad_norm": 0.04903232306241989, + "learning_rate": 0.01, + "loss": 1.9583, + "step": 46581 + }, + { + "epoch": 4.7788264259335245, + "grad_norm": 0.06817879527807236, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 46584 + }, + { + "epoch": 4.779134181370537, + "grad_norm": 0.10077866911888123, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 46587 + }, + { + "epoch": 4.77944193680755, + "grad_norm": 0.05322563648223877, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 46590 + }, + { + "epoch": 4.779749692244563, + "grad_norm": 0.09559939801692963, + "learning_rate": 0.01, + "loss": 1.9541, + "step": 46593 + }, + { + "epoch": 4.780057447681576, + "grad_norm": 0.06942281872034073, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 46596 + }, + { + "epoch": 4.780365203118588, + "grad_norm": 0.1250401884317398, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 46599 + }, + { + "epoch": 4.780672958555601, + "grad_norm": 0.09563729166984558, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 46602 + }, + { + "epoch": 4.780980713992614, + "grad_norm": 0.08675848692655563, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 46605 + }, + { + "epoch": 4.781288469429627, + "grad_norm": 0.0791327953338623, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 46608 + }, + { + "epoch": 4.7815962248666395, + "grad_norm": 0.10748487710952759, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 46611 + }, + { + "epoch": 4.781903980303652, + "grad_norm": 0.056079965084791183, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 46614 + }, + { + "epoch": 4.782211735740665, + "grad_norm": 0.04614640399813652, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 46617 + }, + { + "epoch": 4.782519491177678, + "grad_norm": 0.07398012280464172, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 46620 + }, + { + "epoch": 4.782827246614691, + "grad_norm": 0.07945587486028671, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 46623 + }, + { + "epoch": 4.7831350020517025, + "grad_norm": 0.040440626442432404, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 46626 + }, + { + "epoch": 4.783442757488715, + "grad_norm": 0.1381184458732605, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 46629 + }, + { + "epoch": 4.783750512925728, + "grad_norm": 0.06996659189462662, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 46632 + }, + { + "epoch": 4.784058268362741, + "grad_norm": 0.03792927786707878, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 46635 + }, + { + "epoch": 4.784366023799754, + "grad_norm": 0.03911750763654709, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 46638 + }, + { + "epoch": 4.784673779236766, + "grad_norm": 0.04588170349597931, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 46641 + }, + { + "epoch": 4.784981534673779, + "grad_norm": 0.10618551820516586, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 46644 + }, + { + "epoch": 4.785289290110792, + "grad_norm": 0.07402194291353226, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 46647 + }, + { + "epoch": 4.785597045547805, + "grad_norm": 0.05611973628401756, + "learning_rate": 0.01, + "loss": 1.9618, + "step": 46650 + }, + { + "epoch": 4.7859048009848175, + "grad_norm": 0.062334805727005005, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 46653 + }, + { + "epoch": 4.78621255642183, + "grad_norm": 0.05972002074122429, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 46656 + }, + { + "epoch": 4.786520311858843, + "grad_norm": 0.10354367643594742, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 46659 + }, + { + "epoch": 4.786828067295856, + "grad_norm": 0.07653992623090744, + "learning_rate": 0.01, + "loss": 1.982, + "step": 46662 + }, + { + "epoch": 4.787135822732869, + "grad_norm": 0.0790034830570221, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 46665 + }, + { + "epoch": 4.787443578169881, + "grad_norm": 0.11524873226881027, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 46668 + }, + { + "epoch": 4.787751333606893, + "grad_norm": 0.11828222125768661, + "learning_rate": 0.01, + "loss": 1.987, + "step": 46671 + }, + { + "epoch": 4.788059089043906, + "grad_norm": 0.06129033491015434, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 46674 + }, + { + "epoch": 4.788366844480919, + "grad_norm": 0.060850802809000015, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 46677 + }, + { + "epoch": 4.788674599917932, + "grad_norm": 0.0488838255405426, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 46680 + }, + { + "epoch": 4.788982355354944, + "grad_norm": 0.03288913145661354, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 46683 + }, + { + "epoch": 4.789290110791957, + "grad_norm": 0.038961250334978104, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 46686 + }, + { + "epoch": 4.78959786622897, + "grad_norm": 0.10202857851982117, + "learning_rate": 0.01, + "loss": 2.019, + "step": 46689 + }, + { + "epoch": 4.789905621665983, + "grad_norm": 0.05087895691394806, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 46692 + }, + { + "epoch": 4.7902133771029956, + "grad_norm": 0.07954477518796921, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 46695 + }, + { + "epoch": 4.790521132540008, + "grad_norm": 0.11283519119024277, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 46698 + }, + { + "epoch": 4.790828887977021, + "grad_norm": 0.04189791902899742, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 46701 + }, + { + "epoch": 4.791136643414034, + "grad_norm": 0.09559596329927444, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 46704 + }, + { + "epoch": 4.791444398851047, + "grad_norm": 0.07935875654220581, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 46707 + }, + { + "epoch": 4.7917521542880595, + "grad_norm": 0.09595377743244171, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 46710 + }, + { + "epoch": 4.792059909725072, + "grad_norm": 0.06680227816104889, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 46713 + }, + { + "epoch": 4.792367665162084, + "grad_norm": 0.07122410833835602, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 46716 + }, + { + "epoch": 4.792675420599097, + "grad_norm": 0.0937454104423523, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 46719 + }, + { + "epoch": 4.79298317603611, + "grad_norm": 0.08886270225048065, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 46722 + }, + { + "epoch": 4.7932909314731225, + "grad_norm": 0.04537273570895195, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 46725 + }, + { + "epoch": 4.793598686910135, + "grad_norm": 0.10327073931694031, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 46728 + }, + { + "epoch": 4.793906442347148, + "grad_norm": 0.08701428025960922, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 46731 + }, + { + "epoch": 4.794214197784161, + "grad_norm": 0.06731964647769928, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 46734 + }, + { + "epoch": 4.794521953221174, + "grad_norm": 0.15847548842430115, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 46737 + }, + { + "epoch": 4.794829708658186, + "grad_norm": 0.04891221970319748, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 46740 + }, + { + "epoch": 4.795137464095199, + "grad_norm": 0.040448226034641266, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 46743 + }, + { + "epoch": 4.795445219532212, + "grad_norm": 0.04388444870710373, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 46746 + }, + { + "epoch": 4.795752974969225, + "grad_norm": 0.05044842138886452, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 46749 + }, + { + "epoch": 4.7960607304062375, + "grad_norm": 0.17745061218738556, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 46752 + }, + { + "epoch": 4.79636848584325, + "grad_norm": 0.07918280363082886, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 46755 + }, + { + "epoch": 4.796676241280263, + "grad_norm": 0.0841284915804863, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 46758 + }, + { + "epoch": 4.796983996717275, + "grad_norm": 0.07425282150506973, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 46761 + }, + { + "epoch": 4.797291752154288, + "grad_norm": 0.11900149285793304, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 46764 + }, + { + "epoch": 4.7975995075913005, + "grad_norm": 0.054541297256946564, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 46767 + }, + { + "epoch": 4.797907263028313, + "grad_norm": 0.05434846505522728, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 46770 + }, + { + "epoch": 4.798215018465326, + "grad_norm": 0.045795127749443054, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 46773 + }, + { + "epoch": 4.798522773902339, + "grad_norm": 0.044646721333265305, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 46776 + }, + { + "epoch": 4.798830529339352, + "grad_norm": 0.06140962243080139, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 46779 + }, + { + "epoch": 4.799138284776364, + "grad_norm": 0.1806284338235855, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 46782 + }, + { + "epoch": 4.799446040213377, + "grad_norm": 0.1726996749639511, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 46785 + }, + { + "epoch": 4.79975379565039, + "grad_norm": 0.093462273478508, + "learning_rate": 0.01, + "loss": 2.0224, + "step": 46788 + }, + { + "epoch": 4.800061551087403, + "grad_norm": 0.09162432700395584, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 46791 + }, + { + "epoch": 4.8003693065244155, + "grad_norm": 0.05243920534849167, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 46794 + }, + { + "epoch": 4.800677061961428, + "grad_norm": 0.05156363546848297, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 46797 + }, + { + "epoch": 4.800984817398441, + "grad_norm": 0.03927348554134369, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 46800 + }, + { + "epoch": 4.801292572835454, + "grad_norm": 0.04184743016958237, + "learning_rate": 0.01, + "loss": 1.967, + "step": 46803 + }, + { + "epoch": 4.801600328272466, + "grad_norm": 0.10456445813179016, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 46806 + }, + { + "epoch": 4.8019080837094785, + "grad_norm": 0.14495427906513214, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 46809 + }, + { + "epoch": 4.802215839146491, + "grad_norm": 0.06935403496026993, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 46812 + }, + { + "epoch": 4.802523594583504, + "grad_norm": 0.07718656957149506, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 46815 + }, + { + "epoch": 4.802831350020517, + "grad_norm": 0.04619847983121872, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 46818 + }, + { + "epoch": 4.80313910545753, + "grad_norm": 0.04528527334332466, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 46821 + }, + { + "epoch": 4.803446860894542, + "grad_norm": 0.0626635029911995, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 46824 + }, + { + "epoch": 4.803754616331555, + "grad_norm": 0.055482156574726105, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 46827 + }, + { + "epoch": 4.804062371768568, + "grad_norm": 0.04317907243967056, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 46830 + }, + { + "epoch": 4.804370127205581, + "grad_norm": 0.12392894178628922, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 46833 + }, + { + "epoch": 4.8046778826425935, + "grad_norm": 0.07023516297340393, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 46836 + }, + { + "epoch": 4.804985638079606, + "grad_norm": 0.10643202811479568, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 46839 + }, + { + "epoch": 4.805293393516619, + "grad_norm": 0.07375111430883408, + "learning_rate": 0.01, + "loss": 1.9657, + "step": 46842 + }, + { + "epoch": 4.805601148953632, + "grad_norm": 0.039533890783786774, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 46845 + }, + { + "epoch": 4.805908904390645, + "grad_norm": 0.03812634199857712, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 46848 + }, + { + "epoch": 4.806216659827657, + "grad_norm": 0.049066439270973206, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 46851 + }, + { + "epoch": 4.806524415264669, + "grad_norm": 0.17093585431575775, + "learning_rate": 0.01, + "loss": 1.996, + "step": 46854 + }, + { + "epoch": 4.806832170701682, + "grad_norm": 0.06310732662677765, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 46857 + }, + { + "epoch": 4.807139926138695, + "grad_norm": 0.04781056195497513, + "learning_rate": 0.01, + "loss": 1.987, + "step": 46860 + }, + { + "epoch": 4.807447681575708, + "grad_norm": 0.04082764312624931, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 46863 + }, + { + "epoch": 4.8077554370127205, + "grad_norm": 0.06627890467643738, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 46866 + }, + { + "epoch": 4.808063192449733, + "grad_norm": 0.07753533869981766, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 46869 + }, + { + "epoch": 4.808370947886746, + "grad_norm": 0.05382109060883522, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 46872 + }, + { + "epoch": 4.808678703323759, + "grad_norm": 0.06153309345245361, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 46875 + }, + { + "epoch": 4.808986458760772, + "grad_norm": 0.0524064376950264, + "learning_rate": 0.01, + "loss": 1.975, + "step": 46878 + }, + { + "epoch": 4.809294214197784, + "grad_norm": 0.04740193486213684, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 46881 + }, + { + "epoch": 4.809601969634797, + "grad_norm": 0.04750111699104309, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 46884 + }, + { + "epoch": 4.80990972507181, + "grad_norm": 0.1953573226928711, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 46887 + }, + { + "epoch": 4.810217480508823, + "grad_norm": 0.05784987658262253, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 46890 + }, + { + "epoch": 4.8105252359458355, + "grad_norm": 0.06495459377765656, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 46893 + }, + { + "epoch": 4.810832991382847, + "grad_norm": 0.04319414868950844, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 46896 + }, + { + "epoch": 4.81114074681986, + "grad_norm": 0.05057989060878754, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 46899 + }, + { + "epoch": 4.811448502256873, + "grad_norm": 0.04836462065577507, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 46902 + }, + { + "epoch": 4.811756257693886, + "grad_norm": 0.06928513944149017, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 46905 + }, + { + "epoch": 4.8120640131308985, + "grad_norm": 0.04418247938156128, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 46908 + }, + { + "epoch": 4.812371768567911, + "grad_norm": 0.05600956827402115, + "learning_rate": 0.01, + "loss": 1.9597, + "step": 46911 + }, + { + "epoch": 4.812679524004924, + "grad_norm": 0.18245935440063477, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 46914 + }, + { + "epoch": 4.812987279441937, + "grad_norm": 0.05147803574800491, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 46917 + }, + { + "epoch": 4.81329503487895, + "grad_norm": 0.049182165414094925, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 46920 + }, + { + "epoch": 4.813602790315962, + "grad_norm": 0.03926403820514679, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 46923 + }, + { + "epoch": 4.813910545752975, + "grad_norm": 0.04399009421467781, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 46926 + }, + { + "epoch": 4.814218301189988, + "grad_norm": 0.05575468763709068, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 46929 + }, + { + "epoch": 4.814526056627001, + "grad_norm": 0.056770700961351395, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 46932 + }, + { + "epoch": 4.8148338120640135, + "grad_norm": 0.0790528804063797, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 46935 + }, + { + "epoch": 4.815141567501026, + "grad_norm": 0.07976264506578445, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 46938 + }, + { + "epoch": 4.815449322938038, + "grad_norm": 0.058160681277513504, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 46941 + }, + { + "epoch": 4.815757078375051, + "grad_norm": 0.05894159525632858, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 46944 + }, + { + "epoch": 4.816064833812064, + "grad_norm": 0.061383627355098724, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 46947 + }, + { + "epoch": 4.8163725892490765, + "grad_norm": 0.06993051618337631, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 46950 + }, + { + "epoch": 4.816680344686089, + "grad_norm": 0.1546536386013031, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 46953 + }, + { + "epoch": 4.816988100123102, + "grad_norm": 0.11143519729375839, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 46956 + }, + { + "epoch": 4.817295855560115, + "grad_norm": 0.054721418768167496, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 46959 + }, + { + "epoch": 4.817603610997128, + "grad_norm": 0.04508695378899574, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 46962 + }, + { + "epoch": 4.81791136643414, + "grad_norm": 0.06738116592168808, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 46965 + }, + { + "epoch": 4.818219121871153, + "grad_norm": 0.05306596681475639, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 46968 + }, + { + "epoch": 4.818526877308166, + "grad_norm": 0.05283980816602707, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 46971 + }, + { + "epoch": 4.818834632745179, + "grad_norm": 0.04085366427898407, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 46974 + }, + { + "epoch": 4.8191423881821915, + "grad_norm": 0.0549020953476429, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 46977 + }, + { + "epoch": 4.819450143619204, + "grad_norm": 0.08194736391305923, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 46980 + }, + { + "epoch": 4.819757899056217, + "grad_norm": 0.07541119307279587, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 46983 + }, + { + "epoch": 4.820065654493229, + "grad_norm": 0.05164722725749016, + "learning_rate": 0.01, + "loss": 1.988, + "step": 46986 + }, + { + "epoch": 4.820373409930242, + "grad_norm": 0.03965797275304794, + "learning_rate": 0.01, + "loss": 1.988, + "step": 46989 + }, + { + "epoch": 4.8206811653672546, + "grad_norm": 0.05798366665840149, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 46992 + }, + { + "epoch": 4.820988920804267, + "grad_norm": 0.09747203439474106, + "learning_rate": 0.01, + "loss": 1.9585, + "step": 46995 + }, + { + "epoch": 4.82129667624128, + "grad_norm": 0.037640564143657684, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 46998 + }, + { + "epoch": 4.821604431678293, + "grad_norm": 0.06714722514152527, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 47001 + }, + { + "epoch": 4.821912187115306, + "grad_norm": 0.06069006398320198, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 47004 + }, + { + "epoch": 4.8222199425523185, + "grad_norm": 0.04241282492876053, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 47007 + }, + { + "epoch": 4.822527697989331, + "grad_norm": 0.07319297641515732, + "learning_rate": 0.01, + "loss": 1.961, + "step": 47010 + }, + { + "epoch": 4.822835453426344, + "grad_norm": 0.11949057132005692, + "learning_rate": 0.01, + "loss": 1.9639, + "step": 47013 + }, + { + "epoch": 4.823143208863357, + "grad_norm": 0.10720200836658478, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 47016 + }, + { + "epoch": 4.82345096430037, + "grad_norm": 0.05312662571668625, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 47019 + }, + { + "epoch": 4.823758719737382, + "grad_norm": 0.05288184434175491, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 47022 + }, + { + "epoch": 4.824066475174395, + "grad_norm": 0.04024795815348625, + "learning_rate": 0.01, + "loss": 1.9603, + "step": 47025 + }, + { + "epoch": 4.824374230611408, + "grad_norm": 0.03714558109641075, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 47028 + }, + { + "epoch": 4.82468198604842, + "grad_norm": 0.043919868767261505, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 47031 + }, + { + "epoch": 4.824989741485433, + "grad_norm": 0.09199999272823334, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 47034 + }, + { + "epoch": 4.825297496922445, + "grad_norm": 0.09651891142129898, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 47037 + }, + { + "epoch": 4.825605252359458, + "grad_norm": 0.11211739480495453, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 47040 + }, + { + "epoch": 4.825913007796471, + "grad_norm": 0.11191114038228989, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 47043 + }, + { + "epoch": 4.826220763233484, + "grad_norm": 0.06726837903261185, + "learning_rate": 0.01, + "loss": 2.001, + "step": 47046 + }, + { + "epoch": 4.8265285186704965, + "grad_norm": 0.04758633300662041, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 47049 + }, + { + "epoch": 4.826836274107509, + "grad_norm": 0.07138072699308395, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 47052 + }, + { + "epoch": 4.827144029544522, + "grad_norm": 0.08691728860139847, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 47055 + }, + { + "epoch": 4.827451784981535, + "grad_norm": 0.060696471482515335, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 47058 + }, + { + "epoch": 4.827759540418548, + "grad_norm": 0.04225600138306618, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 47061 + }, + { + "epoch": 4.82806729585556, + "grad_norm": 0.03796116262674332, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 47064 + }, + { + "epoch": 4.828375051292573, + "grad_norm": 0.056367259472608566, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 47067 + }, + { + "epoch": 4.828682806729586, + "grad_norm": 0.10544770210981369, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 47070 + }, + { + "epoch": 4.828990562166599, + "grad_norm": 0.06839180737733841, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 47073 + }, + { + "epoch": 4.829298317603611, + "grad_norm": 0.08350997418165207, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 47076 + }, + { + "epoch": 4.829606073040623, + "grad_norm": 0.05540642887353897, + "learning_rate": 0.01, + "loss": 1.97, + "step": 47079 + }, + { + "epoch": 4.829913828477636, + "grad_norm": 0.08671069890260696, + "learning_rate": 0.01, + "loss": 1.967, + "step": 47082 + }, + { + "epoch": 4.830221583914649, + "grad_norm": 0.1410573422908783, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 47085 + }, + { + "epoch": 4.830529339351662, + "grad_norm": 0.06324710696935654, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 47088 + }, + { + "epoch": 4.8308370947886745, + "grad_norm": 0.04952717572450638, + "learning_rate": 0.01, + "loss": 1.972, + "step": 47091 + }, + { + "epoch": 4.831144850225687, + "grad_norm": 0.058474645018577576, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 47094 + }, + { + "epoch": 4.8314526056627, + "grad_norm": 0.08904005587100983, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 47097 + }, + { + "epoch": 4.831760361099713, + "grad_norm": 0.03303196281194687, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 47100 + }, + { + "epoch": 4.832068116536726, + "grad_norm": 0.0696646049618721, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 47103 + }, + { + "epoch": 4.832375871973738, + "grad_norm": 0.09613518416881561, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 47106 + }, + { + "epoch": 4.832683627410751, + "grad_norm": 0.08955409377813339, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 47109 + }, + { + "epoch": 4.832991382847764, + "grad_norm": 0.07022068649530411, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 47112 + }, + { + "epoch": 4.833299138284777, + "grad_norm": 0.05557604506611824, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 47115 + }, + { + "epoch": 4.8336068937217895, + "grad_norm": 0.04961394891142845, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 47118 + }, + { + "epoch": 4.833914649158801, + "grad_norm": 0.07381154596805573, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 47121 + }, + { + "epoch": 4.834222404595814, + "grad_norm": 0.08874998986721039, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 47124 + }, + { + "epoch": 4.834530160032827, + "grad_norm": 0.12152114510536194, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 47127 + }, + { + "epoch": 4.83483791546984, + "grad_norm": 0.18640320003032684, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 47130 + }, + { + "epoch": 4.8351456709068525, + "grad_norm": 0.13211971521377563, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 47133 + }, + { + "epoch": 4.835453426343865, + "grad_norm": 0.0825662836432457, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 47136 + }, + { + "epoch": 4.835761181780878, + "grad_norm": 0.05962991341948509, + "learning_rate": 0.01, + "loss": 1.991, + "step": 47139 + }, + { + "epoch": 4.836068937217891, + "grad_norm": 0.045787274837493896, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 47142 + }, + { + "epoch": 4.836376692654904, + "grad_norm": 0.05166277661919594, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 47145 + }, + { + "epoch": 4.836684448091916, + "grad_norm": 0.07144337892532349, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 47148 + }, + { + "epoch": 4.836992203528929, + "grad_norm": 0.03732317313551903, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 47151 + }, + { + "epoch": 4.837299958965942, + "grad_norm": 0.06613879650831223, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 47154 + }, + { + "epoch": 4.837607714402955, + "grad_norm": 0.05564868822693825, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 47157 + }, + { + "epoch": 4.837915469839967, + "grad_norm": 0.03259768709540367, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 47160 + }, + { + "epoch": 4.83822322527698, + "grad_norm": 0.11291679739952087, + "learning_rate": 0.01, + "loss": 1.9619, + "step": 47163 + }, + { + "epoch": 4.838530980713992, + "grad_norm": 0.06787018477916718, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 47166 + }, + { + "epoch": 4.838838736151005, + "grad_norm": 0.10512536764144897, + "learning_rate": 0.01, + "loss": 1.986, + "step": 47169 + }, + { + "epoch": 4.839146491588018, + "grad_norm": 0.10330035537481308, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 47172 + }, + { + "epoch": 4.839454247025031, + "grad_norm": 0.06286308169364929, + "learning_rate": 0.01, + "loss": 1.994, + "step": 47175 + }, + { + "epoch": 4.839762002462043, + "grad_norm": 0.04793789982795715, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 47178 + }, + { + "epoch": 4.840069757899056, + "grad_norm": 0.043382007628679276, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 47181 + }, + { + "epoch": 4.840377513336069, + "grad_norm": 0.08022630959749222, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 47184 + }, + { + "epoch": 4.840685268773082, + "grad_norm": 0.09300918877124786, + "learning_rate": 0.01, + "loss": 1.959, + "step": 47187 + }, + { + "epoch": 4.8409930242100945, + "grad_norm": 0.05550304800271988, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 47190 + }, + { + "epoch": 4.841300779647107, + "grad_norm": 0.0407077856361866, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 47193 + }, + { + "epoch": 4.84160853508412, + "grad_norm": 0.04916580393910408, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 47196 + }, + { + "epoch": 4.841916290521133, + "grad_norm": 0.090577132999897, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 47199 + }, + { + "epoch": 4.842224045958146, + "grad_norm": 0.11230761557817459, + "learning_rate": 0.01, + "loss": 1.975, + "step": 47202 + }, + { + "epoch": 4.8425318013951575, + "grad_norm": 0.11779794096946716, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 47205 + }, + { + "epoch": 4.842839556832171, + "grad_norm": 0.04648299142718315, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 47208 + }, + { + "epoch": 4.843147312269183, + "grad_norm": 0.04901035502552986, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 47211 + }, + { + "epoch": 4.843455067706196, + "grad_norm": 0.05582377314567566, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 47214 + }, + { + "epoch": 4.843762823143209, + "grad_norm": 0.08325490355491638, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 47217 + }, + { + "epoch": 4.844070578580221, + "grad_norm": 0.09663175791501999, + "learning_rate": 0.01, + "loss": 1.983, + "step": 47220 + }, + { + "epoch": 4.844378334017234, + "grad_norm": 0.067304328083992, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 47223 + }, + { + "epoch": 4.844686089454247, + "grad_norm": 0.09804333001375198, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 47226 + }, + { + "epoch": 4.84499384489126, + "grad_norm": 0.07931843400001526, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 47229 + }, + { + "epoch": 4.8453016003282725, + "grad_norm": 0.07244410365819931, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 47232 + }, + { + "epoch": 4.845609355765285, + "grad_norm": 0.08068135380744934, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 47235 + }, + { + "epoch": 4.845917111202298, + "grad_norm": 0.062296342104673386, + "learning_rate": 0.01, + "loss": 1.993, + "step": 47238 + }, + { + "epoch": 4.846224866639311, + "grad_norm": 0.09988021850585938, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 47241 + }, + { + "epoch": 4.846532622076324, + "grad_norm": 0.12119688838720322, + "learning_rate": 0.01, + "loss": 1.986, + "step": 47244 + }, + { + "epoch": 4.846840377513336, + "grad_norm": 0.06407175213098526, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 47247 + }, + { + "epoch": 4.847148132950348, + "grad_norm": 0.05600906163454056, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 47250 + }, + { + "epoch": 4.847455888387362, + "grad_norm": 0.04448190703988075, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 47253 + }, + { + "epoch": 4.847763643824374, + "grad_norm": 0.046519339084625244, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 47256 + }, + { + "epoch": 4.848071399261387, + "grad_norm": 0.07584928721189499, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 47259 + }, + { + "epoch": 4.848379154698399, + "grad_norm": 0.06511086225509644, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 47262 + }, + { + "epoch": 4.848686910135412, + "grad_norm": 0.10978051275014877, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 47265 + }, + { + "epoch": 4.848994665572425, + "grad_norm": 0.10694348812103271, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 47268 + }, + { + "epoch": 4.849302421009438, + "grad_norm": 0.11489532142877579, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 47271 + }, + { + "epoch": 4.8496101764464505, + "grad_norm": 0.061532165855169296, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 47274 + }, + { + "epoch": 4.849917931883463, + "grad_norm": 0.034115977585315704, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 47277 + }, + { + "epoch": 4.850225687320476, + "grad_norm": 0.07114948332309723, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 47280 + }, + { + "epoch": 4.850533442757489, + "grad_norm": 0.03593161702156067, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 47283 + }, + { + "epoch": 4.850841198194502, + "grad_norm": 0.09017783403396606, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 47286 + }, + { + "epoch": 4.851148953631514, + "grad_norm": 0.045291002839803696, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 47289 + }, + { + "epoch": 4.851456709068527, + "grad_norm": 0.05328730493783951, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 47292 + }, + { + "epoch": 4.851764464505539, + "grad_norm": 0.08284175395965576, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 47295 + }, + { + "epoch": 4.852072219942553, + "grad_norm": 0.04549727216362953, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 47298 + }, + { + "epoch": 4.852379975379565, + "grad_norm": 0.09103915095329285, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 47301 + }, + { + "epoch": 4.8526877308165774, + "grad_norm": 0.09698940068483353, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 47304 + }, + { + "epoch": 4.85299548625359, + "grad_norm": 0.12437165528535843, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 47307 + }, + { + "epoch": 4.853303241690603, + "grad_norm": 0.0723615437746048, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 47310 + }, + { + "epoch": 4.853610997127616, + "grad_norm": 0.06390126794576645, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 47313 + }, + { + "epoch": 4.853918752564629, + "grad_norm": 0.04488823935389519, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 47316 + }, + { + "epoch": 4.854226508001641, + "grad_norm": 0.036022037267684937, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 47319 + }, + { + "epoch": 4.854534263438654, + "grad_norm": 0.06746529787778854, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 47322 + }, + { + "epoch": 4.854842018875667, + "grad_norm": 0.06267426908016205, + "learning_rate": 0.01, + "loss": 1.97, + "step": 47325 + }, + { + "epoch": 4.85514977431268, + "grad_norm": 0.08596473187208176, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 47328 + }, + { + "epoch": 4.8554575297496925, + "grad_norm": 0.04593675211071968, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 47331 + }, + { + "epoch": 4.855765285186705, + "grad_norm": 0.08707760274410248, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 47334 + }, + { + "epoch": 4.856073040623718, + "grad_norm": 0.05224407836794853, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 47337 + }, + { + "epoch": 4.85638079606073, + "grad_norm": 0.05910166725516319, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 47340 + }, + { + "epoch": 4.856688551497744, + "grad_norm": 0.14354678988456726, + "learning_rate": 0.01, + "loss": 1.986, + "step": 47343 + }, + { + "epoch": 4.8569963069347555, + "grad_norm": 0.11897499859333038, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 47346 + }, + { + "epoch": 4.857304062371768, + "grad_norm": 0.06904298812150955, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 47349 + }, + { + "epoch": 4.857611817808781, + "grad_norm": 0.04855037108063698, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 47352 + }, + { + "epoch": 4.857919573245794, + "grad_norm": 0.042485300451517105, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 47355 + }, + { + "epoch": 4.858227328682807, + "grad_norm": 0.052240677177906036, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 47358 + }, + { + "epoch": 4.858535084119819, + "grad_norm": 0.09882494062185287, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 47361 + }, + { + "epoch": 4.858842839556832, + "grad_norm": 0.059417568147182465, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 47364 + }, + { + "epoch": 4.859150594993845, + "grad_norm": 0.042187973856925964, + "learning_rate": 0.01, + "loss": 1.9445, + "step": 47367 + }, + { + "epoch": 4.859458350430858, + "grad_norm": 0.11045199632644653, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 47370 + }, + { + "epoch": 4.8597661058678705, + "grad_norm": 0.06902570277452469, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 47373 + }, + { + "epoch": 4.860073861304883, + "grad_norm": 0.1256779134273529, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 47376 + }, + { + "epoch": 4.860381616741896, + "grad_norm": 0.0714133083820343, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 47379 + }, + { + "epoch": 4.860689372178909, + "grad_norm": 0.050711020827293396, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 47382 + }, + { + "epoch": 4.860997127615921, + "grad_norm": 0.04845008999109268, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 47385 + }, + { + "epoch": 4.861304883052934, + "grad_norm": 0.04254496470093727, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 47388 + }, + { + "epoch": 4.861612638489946, + "grad_norm": 0.03248690441250801, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 47391 + }, + { + "epoch": 4.861920393926959, + "grad_norm": 0.05999647080898285, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 47394 + }, + { + "epoch": 4.862228149363972, + "grad_norm": 0.09282340854406357, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 47397 + }, + { + "epoch": 4.862535904800985, + "grad_norm": 0.04029770568013191, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 47400 + }, + { + "epoch": 4.862843660237997, + "grad_norm": 0.030764177441596985, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 47403 + }, + { + "epoch": 4.86315141567501, + "grad_norm": 0.04076581448316574, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 47406 + }, + { + "epoch": 4.863459171112023, + "grad_norm": 0.0759870857000351, + "learning_rate": 0.01, + "loss": 1.9605, + "step": 47409 + }, + { + "epoch": 4.863766926549036, + "grad_norm": 0.041376739740371704, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 47412 + }, + { + "epoch": 4.8640746819860485, + "grad_norm": 0.13923729956150055, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 47415 + }, + { + "epoch": 4.864382437423061, + "grad_norm": 0.06702505052089691, + "learning_rate": 0.01, + "loss": 2.002, + "step": 47418 + }, + { + "epoch": 4.864690192860074, + "grad_norm": 0.04206367954611778, + "learning_rate": 0.01, + "loss": 2.003, + "step": 47421 + }, + { + "epoch": 4.864997948297087, + "grad_norm": 0.043106552213430405, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 47424 + }, + { + "epoch": 4.8653057037341, + "grad_norm": 0.04751205816864967, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 47427 + }, + { + "epoch": 4.8656134591711115, + "grad_norm": 0.11286492645740509, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 47430 + }, + { + "epoch": 4.865921214608125, + "grad_norm": 0.04195297136902809, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 47433 + }, + { + "epoch": 4.866228970045137, + "grad_norm": 0.03481072559952736, + "learning_rate": 0.01, + "loss": 1.982, + "step": 47436 + }, + { + "epoch": 4.86653672548215, + "grad_norm": 0.0647101029753685, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 47439 + }, + { + "epoch": 4.866844480919163, + "grad_norm": 0.09517384320497513, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 47442 + }, + { + "epoch": 4.867152236356175, + "grad_norm": 0.06879560649394989, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 47445 + }, + { + "epoch": 4.867459991793188, + "grad_norm": 0.08635231107473373, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 47448 + }, + { + "epoch": 4.867767747230201, + "grad_norm": 0.04220673069357872, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 47451 + }, + { + "epoch": 4.868075502667214, + "grad_norm": 0.07045330852270126, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 47454 + }, + { + "epoch": 4.868383258104227, + "grad_norm": 0.04260876774787903, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 47457 + }, + { + "epoch": 4.868691013541239, + "grad_norm": 0.040992897003889084, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 47460 + }, + { + "epoch": 4.868998768978252, + "grad_norm": 0.04472249746322632, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 47463 + }, + { + "epoch": 4.869306524415265, + "grad_norm": 0.03990897163748741, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 47466 + }, + { + "epoch": 4.869614279852278, + "grad_norm": 0.10024430602788925, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 47469 + }, + { + "epoch": 4.8699220352892905, + "grad_norm": 0.08980470895767212, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 47472 + }, + { + "epoch": 4.870229790726302, + "grad_norm": 0.05399052053689957, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 47475 + }, + { + "epoch": 4.870537546163316, + "grad_norm": 0.03817398473620415, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 47478 + }, + { + "epoch": 4.870845301600328, + "grad_norm": 0.0670650526881218, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 47481 + }, + { + "epoch": 4.871153057037341, + "grad_norm": 0.0896904319524765, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 47484 + }, + { + "epoch": 4.8714608124743535, + "grad_norm": 0.10440392047166824, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 47487 + }, + { + "epoch": 4.871768567911366, + "grad_norm": 0.0894385576248169, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 47490 + }, + { + "epoch": 4.872076323348379, + "grad_norm": 0.05117709934711456, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 47493 + }, + { + "epoch": 4.872384078785392, + "grad_norm": 0.03292097896337509, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 47496 + }, + { + "epoch": 4.872691834222405, + "grad_norm": 0.032028477638959885, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 47499 + }, + { + "epoch": 4.872999589659417, + "grad_norm": 0.046977583318948746, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 47502 + }, + { + "epoch": 4.87330734509643, + "grad_norm": 0.11463116854429245, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 47505 + }, + { + "epoch": 4.873615100533443, + "grad_norm": 0.031687479466199875, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 47508 + }, + { + "epoch": 4.873922855970456, + "grad_norm": 0.04342150315642357, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 47511 + }, + { + "epoch": 4.8742306114074685, + "grad_norm": 0.03970487043261528, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 47514 + }, + { + "epoch": 4.874538366844481, + "grad_norm": 0.05668526887893677, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 47517 + }, + { + "epoch": 4.874846122281493, + "grad_norm": 0.05608886480331421, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 47520 + }, + { + "epoch": 4.875153877718507, + "grad_norm": 0.13083675503730774, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 47523 + }, + { + "epoch": 4.875461633155519, + "grad_norm": 0.040449466556310654, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 47526 + }, + { + "epoch": 4.8757693885925315, + "grad_norm": 0.08093597739934921, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 47529 + }, + { + "epoch": 4.876077144029544, + "grad_norm": 0.08471735566854477, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 47532 + }, + { + "epoch": 4.876384899466557, + "grad_norm": 0.05568789690732956, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 47535 + }, + { + "epoch": 4.87669265490357, + "grad_norm": 0.07529760152101517, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 47538 + }, + { + "epoch": 4.877000410340583, + "grad_norm": 0.06487952917814255, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 47541 + }, + { + "epoch": 4.877308165777595, + "grad_norm": 0.049183983355760574, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 47544 + }, + { + "epoch": 4.877615921214608, + "grad_norm": 0.08050165325403214, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 47547 + }, + { + "epoch": 4.877923676651621, + "grad_norm": 0.061584021896123886, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 47550 + }, + { + "epoch": 4.878231432088634, + "grad_norm": 0.052319157868623734, + "learning_rate": 0.01, + "loss": 2.01, + "step": 47553 + }, + { + "epoch": 4.8785391875256465, + "grad_norm": 0.059711821377277374, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 47556 + }, + { + "epoch": 4.878846942962659, + "grad_norm": 0.10813643783330917, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 47559 + }, + { + "epoch": 4.879154698399672, + "grad_norm": 0.0562468096613884, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 47562 + }, + { + "epoch": 4.879462453836684, + "grad_norm": 0.14491213858127594, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 47565 + }, + { + "epoch": 4.879770209273698, + "grad_norm": 0.06594674289226532, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 47568 + }, + { + "epoch": 4.8800779647107095, + "grad_norm": 0.05883457511663437, + "learning_rate": 0.01, + "loss": 2.01, + "step": 47571 + }, + { + "epoch": 4.880385720147722, + "grad_norm": 0.049259252846241, + "learning_rate": 0.01, + "loss": 1.987, + "step": 47574 + }, + { + "epoch": 4.880693475584735, + "grad_norm": 0.0817684531211853, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 47577 + }, + { + "epoch": 4.881001231021748, + "grad_norm": 0.07413051277399063, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 47580 + }, + { + "epoch": 4.881308986458761, + "grad_norm": 0.03806111216545105, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 47583 + }, + { + "epoch": 4.881616741895773, + "grad_norm": 0.11986687034368515, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 47586 + }, + { + "epoch": 4.881924497332786, + "grad_norm": 0.09377092123031616, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 47589 + }, + { + "epoch": 4.882232252769799, + "grad_norm": 0.05205828696489334, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 47592 + }, + { + "epoch": 4.882540008206812, + "grad_norm": 0.07014745473861694, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 47595 + }, + { + "epoch": 4.882847763643825, + "grad_norm": 0.04630004242062569, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 47598 + }, + { + "epoch": 4.883155519080837, + "grad_norm": 0.06072268262505531, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 47601 + }, + { + "epoch": 4.88346327451785, + "grad_norm": 0.04583202302455902, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 47604 + }, + { + "epoch": 4.883771029954863, + "grad_norm": 0.10760218650102615, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 47607 + }, + { + "epoch": 4.884078785391875, + "grad_norm": 0.09803519397974014, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 47610 + }, + { + "epoch": 4.8843865408288885, + "grad_norm": 0.05660640448331833, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 47613 + }, + { + "epoch": 4.8846942962659, + "grad_norm": 0.07300207018852234, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 47616 + }, + { + "epoch": 4.885002051702913, + "grad_norm": 0.05942653492093086, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 47619 + }, + { + "epoch": 4.885309807139926, + "grad_norm": 0.0775621309876442, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 47622 + }, + { + "epoch": 4.885617562576939, + "grad_norm": 0.08601850271224976, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 47625 + }, + { + "epoch": 4.8859253180139515, + "grad_norm": 0.07847361266613007, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 47628 + }, + { + "epoch": 4.886233073450964, + "grad_norm": 0.06876290589570999, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 47631 + }, + { + "epoch": 4.886540828887977, + "grad_norm": 0.06279505789279938, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 47634 + }, + { + "epoch": 4.88684858432499, + "grad_norm": 0.0461944080889225, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 47637 + }, + { + "epoch": 4.887156339762003, + "grad_norm": 0.08709289878606796, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 47640 + }, + { + "epoch": 4.887464095199015, + "grad_norm": 0.07311128079891205, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 47643 + }, + { + "epoch": 4.887771850636028, + "grad_norm": 0.11558615416288376, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 47646 + }, + { + "epoch": 4.888079606073041, + "grad_norm": 0.044442903250455856, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 47649 + }, + { + "epoch": 4.888387361510054, + "grad_norm": 0.03592165187001228, + "learning_rate": 0.01, + "loss": 1.997, + "step": 47652 + }, + { + "epoch": 4.888695116947066, + "grad_norm": 0.053503166884183884, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 47655 + }, + { + "epoch": 4.889002872384079, + "grad_norm": 0.05185321345925331, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 47658 + }, + { + "epoch": 4.889310627821091, + "grad_norm": 0.10305842012166977, + "learning_rate": 0.01, + "loss": 1.9621, + "step": 47661 + }, + { + "epoch": 4.889618383258104, + "grad_norm": 0.04605614393949509, + "learning_rate": 0.01, + "loss": 2.0359, + "step": 47664 + }, + { + "epoch": 4.889926138695117, + "grad_norm": 0.08601140230894089, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 47667 + }, + { + "epoch": 4.8902338941321295, + "grad_norm": 0.039195116609334946, + "learning_rate": 0.01, + "loss": 1.978, + "step": 47670 + }, + { + "epoch": 4.890541649569142, + "grad_norm": 0.04058361053466797, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 47673 + }, + { + "epoch": 4.890849405006155, + "grad_norm": 0.049590058624744415, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 47676 + }, + { + "epoch": 4.891157160443168, + "grad_norm": 0.05253410339355469, + "learning_rate": 0.01, + "loss": 2.0, + "step": 47679 + }, + { + "epoch": 4.891464915880181, + "grad_norm": 0.05858082324266434, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 47682 + }, + { + "epoch": 4.891772671317193, + "grad_norm": 0.05094842612743378, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 47685 + }, + { + "epoch": 4.892080426754206, + "grad_norm": 0.0539892241358757, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 47688 + }, + { + "epoch": 4.892388182191219, + "grad_norm": 0.15945689380168915, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 47691 + }, + { + "epoch": 4.892695937628232, + "grad_norm": 0.03433748334646225, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 47694 + }, + { + "epoch": 4.8930036930652445, + "grad_norm": 0.047357238829135895, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 47697 + }, + { + "epoch": 4.893311448502256, + "grad_norm": 0.05974509194493294, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 47700 + }, + { + "epoch": 4.89361920393927, + "grad_norm": 0.05918588861823082, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 47703 + }, + { + "epoch": 4.893926959376282, + "grad_norm": 0.04418300464749336, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 47706 + }, + { + "epoch": 4.894234714813295, + "grad_norm": 0.034721486270427704, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 47709 + }, + { + "epoch": 4.8945424702503075, + "grad_norm": 0.08422865718603134, + "learning_rate": 0.01, + "loss": 1.976, + "step": 47712 + }, + { + "epoch": 4.89485022568732, + "grad_norm": 0.12269464135169983, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 47715 + }, + { + "epoch": 4.895157981124333, + "grad_norm": 0.06587913632392883, + "learning_rate": 0.01, + "loss": 1.999, + "step": 47718 + }, + { + "epoch": 4.895465736561346, + "grad_norm": 0.12484870105981827, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 47721 + }, + { + "epoch": 4.895773491998359, + "grad_norm": 0.07100055366754532, + "learning_rate": 0.01, + "loss": 1.985, + "step": 47724 + }, + { + "epoch": 4.896081247435371, + "grad_norm": 0.03272338956594467, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 47727 + }, + { + "epoch": 4.896389002872384, + "grad_norm": 0.03650757670402527, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 47730 + }, + { + "epoch": 4.896696758309397, + "grad_norm": 0.04600701853632927, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 47733 + }, + { + "epoch": 4.89700451374641, + "grad_norm": 0.06520526856184006, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 47736 + }, + { + "epoch": 4.8973122691834226, + "grad_norm": 0.04096482694149017, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 47739 + }, + { + "epoch": 4.897620024620435, + "grad_norm": 0.03720017522573471, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 47742 + }, + { + "epoch": 4.897927780057447, + "grad_norm": 0.04412877559661865, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 47745 + }, + { + "epoch": 4.898235535494461, + "grad_norm": 0.03968506306409836, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 47748 + }, + { + "epoch": 4.898543290931473, + "grad_norm": 0.10775657743215561, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 47751 + }, + { + "epoch": 4.898851046368486, + "grad_norm": 0.05303318426012993, + "learning_rate": 0.01, + "loss": 1.9536, + "step": 47754 + }, + { + "epoch": 4.899158801805498, + "grad_norm": 0.0775865837931633, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 47757 + }, + { + "epoch": 4.899466557242511, + "grad_norm": 0.10708294063806534, + "learning_rate": 0.01, + "loss": 1.972, + "step": 47760 + }, + { + "epoch": 4.899774312679524, + "grad_norm": 0.05531914532184601, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 47763 + }, + { + "epoch": 4.900082068116537, + "grad_norm": 0.057492613792419434, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 47766 + }, + { + "epoch": 4.9003898235535495, + "grad_norm": 0.04654363915324211, + "learning_rate": 0.01, + "loss": 1.966, + "step": 47769 + }, + { + "epoch": 4.900697578990562, + "grad_norm": 0.060792889446020126, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 47772 + }, + { + "epoch": 4.901005334427575, + "grad_norm": 0.053037889301776886, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 47775 + }, + { + "epoch": 4.901313089864588, + "grad_norm": 0.07746932655572891, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 47778 + }, + { + "epoch": 4.901620845301601, + "grad_norm": 0.07753589004278183, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 47781 + }, + { + "epoch": 4.901928600738613, + "grad_norm": 0.07140833884477615, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 47784 + }, + { + "epoch": 4.902236356175626, + "grad_norm": 0.12805962562561035, + "learning_rate": 0.01, + "loss": 1.984, + "step": 47787 + }, + { + "epoch": 4.902544111612638, + "grad_norm": 0.10444001108407974, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 47790 + }, + { + "epoch": 4.902851867049652, + "grad_norm": 0.13313624262809753, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 47793 + }, + { + "epoch": 4.903159622486664, + "grad_norm": 0.0864720493555069, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 47796 + }, + { + "epoch": 4.903467377923676, + "grad_norm": 0.05329997465014458, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 47799 + }, + { + "epoch": 4.903775133360689, + "grad_norm": 0.053774427622556686, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 47802 + }, + { + "epoch": 4.904082888797702, + "grad_norm": 0.06760123372077942, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 47805 + }, + { + "epoch": 4.904390644234715, + "grad_norm": 0.06961317360401154, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 47808 + }, + { + "epoch": 4.9046983996717275, + "grad_norm": 0.05297344923019409, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 47811 + }, + { + "epoch": 4.90500615510874, + "grad_norm": 0.06930317729711533, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 47814 + }, + { + "epoch": 4.905313910545753, + "grad_norm": 0.039554011076688766, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 47817 + }, + { + "epoch": 4.905621665982766, + "grad_norm": 0.03862786293029785, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 47820 + }, + { + "epoch": 4.905929421419779, + "grad_norm": 0.03559514880180359, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 47823 + }, + { + "epoch": 4.906237176856791, + "grad_norm": 0.11802364140748978, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 47826 + }, + { + "epoch": 4.906544932293804, + "grad_norm": 0.049168869853019714, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 47829 + }, + { + "epoch": 4.906852687730817, + "grad_norm": 0.07636560499668121, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 47832 + }, + { + "epoch": 4.907160443167829, + "grad_norm": 0.08972848206758499, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 47835 + }, + { + "epoch": 4.9074681986048425, + "grad_norm": 0.06916697323322296, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 47838 + }, + { + "epoch": 4.907775954041854, + "grad_norm": 0.058684833347797394, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 47841 + }, + { + "epoch": 4.908083709478867, + "grad_norm": 0.045184120535850525, + "learning_rate": 0.01, + "loss": 1.9579, + "step": 47844 + }, + { + "epoch": 4.90839146491588, + "grad_norm": 0.11755534261465073, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 47847 + }, + { + "epoch": 4.908699220352893, + "grad_norm": 0.07570980489253998, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 47850 + }, + { + "epoch": 4.9090069757899055, + "grad_norm": 0.050079140812158585, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 47853 + }, + { + "epoch": 4.909314731226918, + "grad_norm": 0.12019573897123337, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 47856 + }, + { + "epoch": 4.909622486663931, + "grad_norm": 0.10437455028295517, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 47859 + }, + { + "epoch": 4.909930242100944, + "grad_norm": 0.05818986892700195, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 47862 + }, + { + "epoch": 4.910237997537957, + "grad_norm": 0.04473674297332764, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 47865 + }, + { + "epoch": 4.910545752974969, + "grad_norm": 0.07120556384325027, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 47868 + }, + { + "epoch": 4.910853508411982, + "grad_norm": 0.0661742091178894, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 47871 + }, + { + "epoch": 4.911161263848995, + "grad_norm": 0.07108204811811447, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 47874 + }, + { + "epoch": 4.911469019286008, + "grad_norm": 0.09054633975028992, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 47877 + }, + { + "epoch": 4.91177677472302, + "grad_norm": 0.13030128180980682, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 47880 + }, + { + "epoch": 4.912084530160033, + "grad_norm": 0.15652155876159668, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 47883 + }, + { + "epoch": 4.912392285597045, + "grad_norm": 0.10536278784275055, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 47886 + }, + { + "epoch": 4.912700041034058, + "grad_norm": 0.0899362787604332, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 47889 + }, + { + "epoch": 4.913007796471071, + "grad_norm": 0.057359661906957626, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 47892 + }, + { + "epoch": 4.913315551908084, + "grad_norm": 0.04800909757614136, + "learning_rate": 0.01, + "loss": 1.994, + "step": 47895 + }, + { + "epoch": 4.913623307345096, + "grad_norm": 0.04786820337176323, + "learning_rate": 0.01, + "loss": 2.002, + "step": 47898 + }, + { + "epoch": 4.913931062782109, + "grad_norm": 0.04169714078307152, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 47901 + }, + { + "epoch": 4.914238818219122, + "grad_norm": 0.04943560063838959, + "learning_rate": 0.01, + "loss": 1.9579, + "step": 47904 + }, + { + "epoch": 4.914546573656135, + "grad_norm": 0.06505610793828964, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 47907 + }, + { + "epoch": 4.9148543290931475, + "grad_norm": 0.057665206491947174, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 47910 + }, + { + "epoch": 4.91516208453016, + "grad_norm": 0.060052540153265, + "learning_rate": 0.01, + "loss": 1.989, + "step": 47913 + }, + { + "epoch": 4.915469839967173, + "grad_norm": 0.062361933290958405, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 47916 + }, + { + "epoch": 4.915777595404186, + "grad_norm": 0.15210957825183868, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 47919 + }, + { + "epoch": 4.916085350841199, + "grad_norm": 0.05437038466334343, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 47922 + }, + { + "epoch": 4.9163931062782105, + "grad_norm": 0.07012643665075302, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 47925 + }, + { + "epoch": 4.916700861715223, + "grad_norm": 0.056515853852033615, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 47928 + }, + { + "epoch": 4.917008617152236, + "grad_norm": 0.13166914880275726, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 47931 + }, + { + "epoch": 4.917316372589249, + "grad_norm": 0.05462309718132019, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 47934 + }, + { + "epoch": 4.917624128026262, + "grad_norm": 0.0725654810667038, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 47937 + }, + { + "epoch": 4.917931883463274, + "grad_norm": 0.09769755601882935, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 47940 + }, + { + "epoch": 4.918239638900287, + "grad_norm": 0.10543838888406754, + "learning_rate": 0.01, + "loss": 2.015, + "step": 47943 + }, + { + "epoch": 4.9185473943373, + "grad_norm": 0.08627963066101074, + "learning_rate": 0.01, + "loss": 1.9588, + "step": 47946 + }, + { + "epoch": 4.918855149774313, + "grad_norm": 0.05162891000509262, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 47949 + }, + { + "epoch": 4.9191629052113255, + "grad_norm": 0.040748897939920425, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 47952 + }, + { + "epoch": 4.919470660648338, + "grad_norm": 0.042143408209085464, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 47955 + }, + { + "epoch": 4.919778416085351, + "grad_norm": 0.035993028432130814, + "learning_rate": 0.01, + "loss": 1.9651, + "step": 47958 + }, + { + "epoch": 4.920086171522364, + "grad_norm": 0.13255073130130768, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 47961 + }, + { + "epoch": 4.920393926959377, + "grad_norm": 0.06527701765298843, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 47964 + }, + { + "epoch": 4.920701682396389, + "grad_norm": 0.08764603734016418, + "learning_rate": 0.01, + "loss": 1.9612, + "step": 47967 + }, + { + "epoch": 4.921009437833401, + "grad_norm": 0.11476396769285202, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 47970 + }, + { + "epoch": 4.921317193270414, + "grad_norm": 0.11724267154932022, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 47973 + }, + { + "epoch": 4.921624948707427, + "grad_norm": 0.06371249258518219, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 47976 + }, + { + "epoch": 4.92193270414444, + "grad_norm": 0.05650569498538971, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 47979 + }, + { + "epoch": 4.922240459581452, + "grad_norm": 0.05101975426077843, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 47982 + }, + { + "epoch": 4.922548215018465, + "grad_norm": 0.06948293745517731, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 47985 + }, + { + "epoch": 4.922855970455478, + "grad_norm": 0.05776602029800415, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 47988 + }, + { + "epoch": 4.923163725892491, + "grad_norm": 0.03927835077047348, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 47991 + }, + { + "epoch": 4.9234714813295035, + "grad_norm": 0.07943009585142136, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 47994 + }, + { + "epoch": 4.923779236766516, + "grad_norm": 0.07352134585380554, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 47997 + }, + { + "epoch": 4.924086992203529, + "grad_norm": 0.07295040786266327, + "learning_rate": 0.01, + "loss": 1.9583, + "step": 48000 + }, + { + "epoch": 4.924394747640542, + "grad_norm": 0.08415599912405014, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 48003 + }, + { + "epoch": 4.924702503077555, + "grad_norm": 0.0890984758734703, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 48006 + }, + { + "epoch": 4.925010258514567, + "grad_norm": 0.12055069953203201, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 48009 + }, + { + "epoch": 4.92531801395158, + "grad_norm": 0.0676504373550415, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 48012 + }, + { + "epoch": 4.925625769388592, + "grad_norm": 0.047612790018320084, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 48015 + }, + { + "epoch": 4.925933524825605, + "grad_norm": 0.06470039486885071, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 48018 + }, + { + "epoch": 4.926241280262618, + "grad_norm": 0.07510625571012497, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 48021 + }, + { + "epoch": 4.92654903569963, + "grad_norm": 0.07793190330266953, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 48024 + }, + { + "epoch": 4.926856791136643, + "grad_norm": 0.08655183017253876, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 48027 + }, + { + "epoch": 4.927164546573656, + "grad_norm": 0.07441940903663635, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 48030 + }, + { + "epoch": 4.927472302010669, + "grad_norm": 0.04783869534730911, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 48033 + }, + { + "epoch": 4.9277800574476815, + "grad_norm": 0.13127107918262482, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 48036 + }, + { + "epoch": 4.928087812884694, + "grad_norm": 0.05267849192023277, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 48039 + }, + { + "epoch": 4.928395568321707, + "grad_norm": 0.04276135936379433, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 48042 + }, + { + "epoch": 4.92870332375872, + "grad_norm": 0.04237223416566849, + "learning_rate": 0.01, + "loss": 1.989, + "step": 48045 + }, + { + "epoch": 4.929011079195733, + "grad_norm": 0.052018001675605774, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 48048 + }, + { + "epoch": 4.9293188346327454, + "grad_norm": 0.05408487468957901, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 48051 + }, + { + "epoch": 4.929626590069758, + "grad_norm": 0.07300473004579544, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 48054 + }, + { + "epoch": 4.929934345506771, + "grad_norm": 0.08607280254364014, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 48057 + }, + { + "epoch": 4.930242100943783, + "grad_norm": 0.061927784234285355, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 48060 + }, + { + "epoch": 4.930549856380796, + "grad_norm": 0.08371556550264359, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 48063 + }, + { + "epoch": 4.9308576118178085, + "grad_norm": 0.03664041683077812, + "learning_rate": 0.01, + "loss": 1.997, + "step": 48066 + }, + { + "epoch": 4.931165367254821, + "grad_norm": 0.06964648514986038, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 48069 + }, + { + "epoch": 4.931473122691834, + "grad_norm": 0.07257051765918732, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 48072 + }, + { + "epoch": 4.931780878128847, + "grad_norm": 0.06781255453824997, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 48075 + }, + { + "epoch": 4.93208863356586, + "grad_norm": 0.04258018732070923, + "learning_rate": 0.01, + "loss": 1.992, + "step": 48078 + }, + { + "epoch": 4.932396389002872, + "grad_norm": 0.05434480682015419, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 48081 + }, + { + "epoch": 4.932704144439885, + "grad_norm": 0.03577110916376114, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 48084 + }, + { + "epoch": 4.933011899876898, + "grad_norm": 0.11260990798473358, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 48087 + }, + { + "epoch": 4.933319655313911, + "grad_norm": 0.09070918709039688, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 48090 + }, + { + "epoch": 4.9336274107509235, + "grad_norm": 0.06896468997001648, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 48093 + }, + { + "epoch": 4.933935166187936, + "grad_norm": 0.050933387130498886, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 48096 + }, + { + "epoch": 4.934242921624949, + "grad_norm": 0.04397554323077202, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 48099 + }, + { + "epoch": 4.934550677061962, + "grad_norm": 0.03253142163157463, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 48102 + }, + { + "epoch": 4.934858432498974, + "grad_norm": 0.051716264337301254, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 48105 + }, + { + "epoch": 4.9351661879359865, + "grad_norm": 0.04921911656856537, + "learning_rate": 0.01, + "loss": 1.988, + "step": 48108 + }, + { + "epoch": 4.935473943372999, + "grad_norm": 0.05059951916337013, + "learning_rate": 0.01, + "loss": 1.989, + "step": 48111 + }, + { + "epoch": 4.935781698810012, + "grad_norm": 0.11451517045497894, + "learning_rate": 0.01, + "loss": 1.989, + "step": 48114 + }, + { + "epoch": 4.936089454247025, + "grad_norm": 0.06287554651498795, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 48117 + }, + { + "epoch": 4.936397209684038, + "grad_norm": 0.11319955438375473, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 48120 + }, + { + "epoch": 4.93670496512105, + "grad_norm": 0.04149606078863144, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 48123 + }, + { + "epoch": 4.937012720558063, + "grad_norm": 0.044562436640262604, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 48126 + }, + { + "epoch": 4.937320475995076, + "grad_norm": 0.04073583707213402, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 48129 + }, + { + "epoch": 4.937628231432089, + "grad_norm": 0.05489436164498329, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 48132 + }, + { + "epoch": 4.9379359868691015, + "grad_norm": 0.07751783728599548, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 48135 + }, + { + "epoch": 4.938243742306114, + "grad_norm": 0.06630382686853409, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 48138 + }, + { + "epoch": 4.938551497743127, + "grad_norm": 0.07446899265050888, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 48141 + }, + { + "epoch": 4.93885925318014, + "grad_norm": 0.0776534453034401, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 48144 + }, + { + "epoch": 4.939167008617153, + "grad_norm": 0.07835227996110916, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 48147 + }, + { + "epoch": 4.9394747640541645, + "grad_norm": 0.0798632800579071, + "learning_rate": 0.01, + "loss": 1.9653, + "step": 48150 + }, + { + "epoch": 4.939782519491177, + "grad_norm": 0.044298071414232254, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 48153 + }, + { + "epoch": 4.94009027492819, + "grad_norm": 0.10383112728595734, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 48156 + }, + { + "epoch": 4.940398030365203, + "grad_norm": 0.12793728709220886, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 48159 + }, + { + "epoch": 4.940705785802216, + "grad_norm": 0.038207195699214935, + "learning_rate": 0.01, + "loss": 1.9651, + "step": 48162 + }, + { + "epoch": 4.941013541239228, + "grad_norm": 0.0840001255273819, + "learning_rate": 0.01, + "loss": 1.977, + "step": 48165 + }, + { + "epoch": 4.941321296676241, + "grad_norm": 0.11788827925920486, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 48168 + }, + { + "epoch": 4.941629052113254, + "grad_norm": 0.05462497100234032, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 48171 + }, + { + "epoch": 4.941936807550267, + "grad_norm": 0.0785188302397728, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 48174 + }, + { + "epoch": 4.9422445629872795, + "grad_norm": 0.09669160097837448, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 48177 + }, + { + "epoch": 4.942552318424292, + "grad_norm": 0.0880751982331276, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 48180 + }, + { + "epoch": 4.942860073861305, + "grad_norm": 0.04356632009148598, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 48183 + }, + { + "epoch": 4.943167829298318, + "grad_norm": 0.055611494928598404, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 48186 + }, + { + "epoch": 4.943475584735331, + "grad_norm": 0.05191848427057266, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 48189 + }, + { + "epoch": 4.943783340172343, + "grad_norm": 0.06415262818336487, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 48192 + }, + { + "epoch": 4.944091095609355, + "grad_norm": 0.04284198582172394, + "learning_rate": 0.01, + "loss": 1.999, + "step": 48195 + }, + { + "epoch": 4.944398851046368, + "grad_norm": 0.03310967609286308, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 48198 + }, + { + "epoch": 4.944706606483381, + "grad_norm": 0.11449988186359406, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 48201 + }, + { + "epoch": 4.945014361920394, + "grad_norm": 0.0641254335641861, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 48204 + }, + { + "epoch": 4.9453221173574065, + "grad_norm": 0.08665329962968826, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 48207 + }, + { + "epoch": 4.945629872794419, + "grad_norm": 0.03855408355593681, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 48210 + }, + { + "epoch": 4.945937628231432, + "grad_norm": 0.03156152740120888, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 48213 + }, + { + "epoch": 4.946245383668445, + "grad_norm": 0.052971091121435165, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 48216 + }, + { + "epoch": 4.946553139105458, + "grad_norm": 0.04167775437235832, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 48219 + }, + { + "epoch": 4.94686089454247, + "grad_norm": 0.051760535687208176, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 48222 + }, + { + "epoch": 4.947168649979483, + "grad_norm": 0.0969996377825737, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 48225 + }, + { + "epoch": 4.947476405416496, + "grad_norm": 0.05064645782113075, + "learning_rate": 0.01, + "loss": 1.967, + "step": 48228 + }, + { + "epoch": 4.947784160853509, + "grad_norm": 0.04742693901062012, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 48231 + }, + { + "epoch": 4.9480919162905215, + "grad_norm": 0.03507422283291817, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 48234 + }, + { + "epoch": 4.948399671727534, + "grad_norm": 0.03717927634716034, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 48237 + }, + { + "epoch": 4.948707427164546, + "grad_norm": 0.11404886096715927, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 48240 + }, + { + "epoch": 4.949015182601559, + "grad_norm": 0.05842389166355133, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 48243 + }, + { + "epoch": 4.949322938038572, + "grad_norm": 0.0430951751768589, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 48246 + }, + { + "epoch": 4.9496306934755845, + "grad_norm": 0.053793564438819885, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 48249 + }, + { + "epoch": 4.949938448912597, + "grad_norm": 0.04643286019563675, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 48252 + }, + { + "epoch": 4.95024620434961, + "grad_norm": 0.0575956366956234, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 48255 + }, + { + "epoch": 4.950553959786623, + "grad_norm": 0.05439090356230736, + "learning_rate": 0.01, + "loss": 1.978, + "step": 48258 + }, + { + "epoch": 4.950861715223636, + "grad_norm": 0.05502607673406601, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 48261 + }, + { + "epoch": 4.951169470660648, + "grad_norm": 0.07984888553619385, + "learning_rate": 0.01, + "loss": 1.979, + "step": 48264 + }, + { + "epoch": 4.951477226097661, + "grad_norm": 0.041320640593767166, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 48267 + }, + { + "epoch": 4.951784981534674, + "grad_norm": 0.12548021972179413, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 48270 + }, + { + "epoch": 4.952092736971687, + "grad_norm": 0.035638876259326935, + "learning_rate": 0.01, + "loss": 1.989, + "step": 48273 + }, + { + "epoch": 4.9524004924086995, + "grad_norm": 0.13796448707580566, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 48276 + }, + { + "epoch": 4.952708247845712, + "grad_norm": 0.08978889882564545, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 48279 + }, + { + "epoch": 4.953016003282725, + "grad_norm": 0.0677703395485878, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 48282 + }, + { + "epoch": 4.953323758719737, + "grad_norm": 0.04120895639061928, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 48285 + }, + { + "epoch": 4.95363151415675, + "grad_norm": 0.043558813631534576, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 48288 + }, + { + "epoch": 4.9539392695937625, + "grad_norm": 0.03488008677959442, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 48291 + }, + { + "epoch": 4.954247025030775, + "grad_norm": 0.06290942430496216, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 48294 + }, + { + "epoch": 4.954554780467788, + "grad_norm": 0.05662504583597183, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 48297 + }, + { + "epoch": 4.954862535904801, + "grad_norm": 0.04810362681746483, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 48300 + }, + { + "epoch": 4.955170291341814, + "grad_norm": 0.06158094108104706, + "learning_rate": 0.01, + "loss": 1.984, + "step": 48303 + }, + { + "epoch": 4.955478046778826, + "grad_norm": 0.1016242504119873, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 48306 + }, + { + "epoch": 4.955785802215839, + "grad_norm": 0.05129433050751686, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 48309 + }, + { + "epoch": 4.956093557652852, + "grad_norm": 0.09010904282331467, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 48312 + }, + { + "epoch": 4.956401313089865, + "grad_norm": 0.09995526820421219, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 48315 + }, + { + "epoch": 4.9567090685268775, + "grad_norm": 0.0642913207411766, + "learning_rate": 0.01, + "loss": 1.9573, + "step": 48318 + }, + { + "epoch": 4.95701682396389, + "grad_norm": 0.03862082585692406, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 48321 + }, + { + "epoch": 4.957324579400903, + "grad_norm": 0.11760932207107544, + "learning_rate": 0.01, + "loss": 2.003, + "step": 48324 + }, + { + "epoch": 4.957632334837916, + "grad_norm": 0.09624608606100082, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 48327 + }, + { + "epoch": 4.957940090274928, + "grad_norm": 0.06814394891262054, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 48330 + }, + { + "epoch": 4.9582478457119405, + "grad_norm": 0.09379391372203827, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 48333 + }, + { + "epoch": 4.958555601148953, + "grad_norm": 0.04310177266597748, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 48336 + }, + { + "epoch": 4.958863356585966, + "grad_norm": 0.048953697085380554, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 48339 + }, + { + "epoch": 4.959171112022979, + "grad_norm": 0.03562283515930176, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 48342 + }, + { + "epoch": 4.959478867459992, + "grad_norm": 0.040618475526571274, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 48345 + }, + { + "epoch": 4.9597866228970044, + "grad_norm": 0.11639663577079773, + "learning_rate": 0.01, + "loss": 1.979, + "step": 48348 + }, + { + "epoch": 4.960094378334017, + "grad_norm": 0.07946206629276276, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 48351 + }, + { + "epoch": 4.96040213377103, + "grad_norm": 0.05358874425292015, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 48354 + }, + { + "epoch": 4.960709889208043, + "grad_norm": 0.07157052308320999, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 48357 + }, + { + "epoch": 4.961017644645056, + "grad_norm": 0.038184091448783875, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 48360 + }, + { + "epoch": 4.961325400082068, + "grad_norm": 0.04140111058950424, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 48363 + }, + { + "epoch": 4.961633155519081, + "grad_norm": 0.08905436098575592, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 48366 + }, + { + "epoch": 4.961940910956094, + "grad_norm": 0.07200294733047485, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 48369 + }, + { + "epoch": 4.962248666393107, + "grad_norm": 0.0786944180727005, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 48372 + }, + { + "epoch": 4.962556421830119, + "grad_norm": 0.08718118071556091, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 48375 + }, + { + "epoch": 4.962864177267131, + "grad_norm": 0.10729999840259552, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 48378 + }, + { + "epoch": 4.963171932704144, + "grad_norm": 0.05224734544754028, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 48381 + }, + { + "epoch": 4.963479688141157, + "grad_norm": 0.10347335785627365, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 48384 + }, + { + "epoch": 4.96378744357817, + "grad_norm": 0.09103485941886902, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 48387 + }, + { + "epoch": 4.9640951990151825, + "grad_norm": 0.05988696217536926, + "learning_rate": 0.01, + "loss": 1.9608, + "step": 48390 + }, + { + "epoch": 4.964402954452195, + "grad_norm": 0.05333305522799492, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 48393 + }, + { + "epoch": 4.964710709889208, + "grad_norm": 0.039692364633083344, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 48396 + }, + { + "epoch": 4.965018465326221, + "grad_norm": 0.048610180616378784, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 48399 + }, + { + "epoch": 4.965326220763234, + "grad_norm": 0.06438957899808884, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 48402 + }, + { + "epoch": 4.965633976200246, + "grad_norm": 0.06306184828281403, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 48405 + }, + { + "epoch": 4.965941731637259, + "grad_norm": 0.0924021527171135, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 48408 + }, + { + "epoch": 4.966249487074272, + "grad_norm": 0.06868547946214676, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 48411 + }, + { + "epoch": 4.966557242511285, + "grad_norm": 0.04776471480727196, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 48414 + }, + { + "epoch": 4.9668649979482975, + "grad_norm": 0.0417228639125824, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 48417 + }, + { + "epoch": 4.967172753385309, + "grad_norm": 0.03331043943762779, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 48420 + }, + { + "epoch": 4.967480508822322, + "grad_norm": 0.07828322052955627, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 48423 + }, + { + "epoch": 4.967788264259335, + "grad_norm": 0.11830344796180725, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 48426 + }, + { + "epoch": 4.968096019696348, + "grad_norm": 0.13753825426101685, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 48429 + }, + { + "epoch": 4.9684037751333605, + "grad_norm": 0.10867384821176529, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 48432 + }, + { + "epoch": 4.968711530570373, + "grad_norm": 0.14065410196781158, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 48435 + }, + { + "epoch": 4.969019286007386, + "grad_norm": 0.1064314916729927, + "learning_rate": 0.01, + "loss": 1.963, + "step": 48438 + }, + { + "epoch": 4.969327041444399, + "grad_norm": 0.08995570242404938, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 48441 + }, + { + "epoch": 4.969634796881412, + "grad_norm": 0.05942520126700401, + "learning_rate": 0.01, + "loss": 1.961, + "step": 48444 + }, + { + "epoch": 4.969942552318424, + "grad_norm": 0.03557314723730087, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 48447 + }, + { + "epoch": 4.970250307755437, + "grad_norm": 0.058727700263261795, + "learning_rate": 0.01, + "loss": 1.9581, + "step": 48450 + }, + { + "epoch": 4.97055806319245, + "grad_norm": 0.07610124349594116, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 48453 + }, + { + "epoch": 4.970865818629463, + "grad_norm": 0.062314316630363464, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 48456 + }, + { + "epoch": 4.9711735740664755, + "grad_norm": 0.060933034867048264, + "learning_rate": 0.01, + "loss": 1.959, + "step": 48459 + }, + { + "epoch": 4.971481329503488, + "grad_norm": 0.11259069293737411, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 48462 + }, + { + "epoch": 4.9717890849405, + "grad_norm": 0.039150118827819824, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 48465 + }, + { + "epoch": 4.972096840377513, + "grad_norm": 0.06994688510894775, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 48468 + }, + { + "epoch": 4.972404595814526, + "grad_norm": 0.08845566213130951, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 48471 + }, + { + "epoch": 4.9727123512515385, + "grad_norm": 0.0835181474685669, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 48474 + }, + { + "epoch": 4.973020106688551, + "grad_norm": 0.059876278042793274, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 48477 + }, + { + "epoch": 4.973327862125564, + "grad_norm": 0.08387959748506546, + "learning_rate": 0.01, + "loss": 1.9581, + "step": 48480 + }, + { + "epoch": 4.973635617562577, + "grad_norm": 0.04472680762410164, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 48483 + }, + { + "epoch": 4.97394337299959, + "grad_norm": 0.04980779439210892, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 48486 + }, + { + "epoch": 4.974251128436602, + "grad_norm": 0.05865331366658211, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 48489 + }, + { + "epoch": 4.974558883873615, + "grad_norm": 0.07731412351131439, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 48492 + }, + { + "epoch": 4.974866639310628, + "grad_norm": 0.0759957805275917, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 48495 + }, + { + "epoch": 4.975174394747641, + "grad_norm": 0.06392304599285126, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 48498 + }, + { + "epoch": 4.975482150184654, + "grad_norm": 0.04608240723609924, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 48501 + }, + { + "epoch": 4.975789905621666, + "grad_norm": 0.04515860974788666, + "learning_rate": 0.01, + "loss": 1.965, + "step": 48504 + }, + { + "epoch": 4.976097661058679, + "grad_norm": 0.049364540725946426, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 48507 + }, + { + "epoch": 4.976405416495691, + "grad_norm": 0.05034893751144409, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 48510 + }, + { + "epoch": 4.976713171932704, + "grad_norm": 0.05965251848101616, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 48513 + }, + { + "epoch": 4.977020927369717, + "grad_norm": 0.03976500406861305, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 48516 + }, + { + "epoch": 4.977328682806729, + "grad_norm": 0.0873221829533577, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 48519 + }, + { + "epoch": 4.977636438243742, + "grad_norm": 0.10230670869350433, + "learning_rate": 0.01, + "loss": 1.991, + "step": 48522 + }, + { + "epoch": 4.977944193680755, + "grad_norm": 0.1398303061723709, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 48525 + }, + { + "epoch": 4.978251949117768, + "grad_norm": 0.047815751284360886, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 48528 + }, + { + "epoch": 4.9785597045547805, + "grad_norm": 0.05280955508351326, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 48531 + }, + { + "epoch": 4.978867459991793, + "grad_norm": 0.05164310708642006, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 48534 + }, + { + "epoch": 4.979175215428806, + "grad_norm": 0.04212404415011406, + "learning_rate": 0.01, + "loss": 1.962, + "step": 48537 + }, + { + "epoch": 4.979482970865819, + "grad_norm": 0.03191149979829788, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 48540 + }, + { + "epoch": 4.979790726302832, + "grad_norm": 0.09330854564905167, + "learning_rate": 0.01, + "loss": 1.9564, + "step": 48543 + }, + { + "epoch": 4.980098481739844, + "grad_norm": 0.03602724149823189, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 48546 + }, + { + "epoch": 4.980406237176857, + "grad_norm": 0.1307518631219864, + "learning_rate": 0.01, + "loss": 1.987, + "step": 48549 + }, + { + "epoch": 4.98071399261387, + "grad_norm": 0.17725148797035217, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 48552 + }, + { + "epoch": 4.981021748050882, + "grad_norm": 0.13484884798526764, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 48555 + }, + { + "epoch": 4.981329503487895, + "grad_norm": 0.15105341374874115, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 48558 + }, + { + "epoch": 4.981637258924907, + "grad_norm": 0.07108210027217865, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 48561 + }, + { + "epoch": 4.98194501436192, + "grad_norm": 0.04044497013092041, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 48564 + }, + { + "epoch": 4.982252769798933, + "grad_norm": 0.03189781680703163, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 48567 + }, + { + "epoch": 4.982560525235946, + "grad_norm": 0.12914758920669556, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 48570 + }, + { + "epoch": 4.9828682806729585, + "grad_norm": 0.09454645961523056, + "learning_rate": 0.01, + "loss": 1.966, + "step": 48573 + }, + { + "epoch": 4.983176036109971, + "grad_norm": 0.09286819398403168, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 48576 + }, + { + "epoch": 4.983483791546984, + "grad_norm": 0.05915534123778343, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 48579 + }, + { + "epoch": 4.983791546983997, + "grad_norm": 0.09016136080026627, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 48582 + }, + { + "epoch": 4.98409930242101, + "grad_norm": 0.06749111413955688, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 48585 + }, + { + "epoch": 4.984407057858022, + "grad_norm": 0.05699833482503891, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 48588 + }, + { + "epoch": 4.984714813295035, + "grad_norm": 0.06643623113632202, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 48591 + }, + { + "epoch": 4.985022568732048, + "grad_norm": 0.05193551629781723, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 48594 + }, + { + "epoch": 4.985330324169061, + "grad_norm": 0.03996053710579872, + "learning_rate": 0.01, + "loss": 2.013, + "step": 48597 + }, + { + "epoch": 4.985638079606073, + "grad_norm": 0.09908989816904068, + "learning_rate": 0.01, + "loss": 1.9584, + "step": 48600 + }, + { + "epoch": 4.985945835043085, + "grad_norm": 0.09618446230888367, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 48603 + }, + { + "epoch": 4.986253590480098, + "grad_norm": 0.04452410712838173, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 48606 + }, + { + "epoch": 4.986561345917111, + "grad_norm": 0.08481396734714508, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 48609 + }, + { + "epoch": 4.986869101354124, + "grad_norm": 0.07361941784620285, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 48612 + }, + { + "epoch": 4.9871768567911365, + "grad_norm": 0.04092632979154587, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 48615 + }, + { + "epoch": 4.987484612228149, + "grad_norm": 0.05964810773730278, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 48618 + }, + { + "epoch": 4.987792367665162, + "grad_norm": 0.04937126114964485, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 48621 + }, + { + "epoch": 4.988100123102175, + "grad_norm": 0.061311025172472, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 48624 + }, + { + "epoch": 4.988407878539188, + "grad_norm": 0.11813945323228836, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 48627 + }, + { + "epoch": 4.9887156339762, + "grad_norm": 0.13528530299663544, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 48630 + }, + { + "epoch": 4.989023389413213, + "grad_norm": 0.13620121777057648, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 48633 + }, + { + "epoch": 4.989331144850226, + "grad_norm": 0.050104204565286636, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 48636 + }, + { + "epoch": 4.989638900287239, + "grad_norm": 0.04701809585094452, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 48639 + }, + { + "epoch": 4.989946655724252, + "grad_norm": 0.05600928142666817, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 48642 + }, + { + "epoch": 4.9902544111612634, + "grad_norm": 0.03713737428188324, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 48645 + }, + { + "epoch": 4.990562166598276, + "grad_norm": 0.10586056858301163, + "learning_rate": 0.01, + "loss": 2.023, + "step": 48648 + }, + { + "epoch": 4.990869922035289, + "grad_norm": 0.07154802978038788, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 48651 + }, + { + "epoch": 4.991177677472302, + "grad_norm": 0.046645209193229675, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 48654 + }, + { + "epoch": 4.991485432909315, + "grad_norm": 0.10580138862133026, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 48657 + }, + { + "epoch": 4.991793188346327, + "grad_norm": 0.05583944171667099, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 48660 + }, + { + "epoch": 4.99210094378334, + "grad_norm": 0.04817153140902519, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 48663 + }, + { + "epoch": 4.992408699220353, + "grad_norm": 0.1129242405295372, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 48666 + }, + { + "epoch": 4.992716454657366, + "grad_norm": 0.09947514533996582, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 48669 + }, + { + "epoch": 4.9930242100943785, + "grad_norm": 0.07797490060329437, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 48672 + }, + { + "epoch": 4.993331965531391, + "grad_norm": 0.04402044415473938, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 48675 + }, + { + "epoch": 4.993639720968404, + "grad_norm": 0.05189018324017525, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 48678 + }, + { + "epoch": 4.993947476405417, + "grad_norm": 0.04376624524593353, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 48681 + }, + { + "epoch": 4.99425523184243, + "grad_norm": 0.06388211250305176, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 48684 + }, + { + "epoch": 4.994562987279442, + "grad_norm": 0.05990754812955856, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 48687 + }, + { + "epoch": 4.994870742716454, + "grad_norm": 0.06319117546081543, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 48690 + }, + { + "epoch": 4.995178498153467, + "grad_norm": 0.06176729500293732, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 48693 + }, + { + "epoch": 4.99548625359048, + "grad_norm": 0.06712348759174347, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 48696 + }, + { + "epoch": 4.995794009027493, + "grad_norm": 0.046728748828172684, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 48699 + }, + { + "epoch": 4.996101764464505, + "grad_norm": 0.04008499160408974, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 48702 + }, + { + "epoch": 4.996409519901518, + "grad_norm": 0.04931486025452614, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 48705 + }, + { + "epoch": 4.996717275338531, + "grad_norm": 0.09341800212860107, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 48708 + }, + { + "epoch": 4.997025030775544, + "grad_norm": 0.17475301027297974, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 48711 + }, + { + "epoch": 4.9973327862125565, + "grad_norm": 0.10119811445474625, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 48714 + }, + { + "epoch": 4.997640541649569, + "grad_norm": 0.04519075155258179, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 48717 + }, + { + "epoch": 4.997948297086582, + "grad_norm": 0.04394150897860527, + "learning_rate": 0.01, + "loss": 1.9691, + "step": 48720 + }, + { + "epoch": 4.998256052523595, + "grad_norm": 0.03471103683114052, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 48723 + }, + { + "epoch": 4.998563807960608, + "grad_norm": 0.06422135978937149, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 48726 + }, + { + "epoch": 4.99887156339762, + "grad_norm": 0.10134468972682953, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 48729 + }, + { + "epoch": 4.999179318834633, + "grad_norm": 0.07451833784580231, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 48732 + }, + { + "epoch": 4.999487074271645, + "grad_norm": 0.12009834498167038, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 48735 + }, + { + "epoch": 4.999794829708658, + "grad_norm": 0.18911142647266388, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 48738 + }, + { + "epoch": 5.005751258087707, + "grad_norm": 0.11327698826789856, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 48741 + }, + { + "epoch": 5.006059361199548, + "grad_norm": 0.05276428908109665, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 48744 + }, + { + "epoch": 5.006367464311389, + "grad_norm": 0.04349682852625847, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 48747 + }, + { + "epoch": 5.006675567423231, + "grad_norm": 0.043818019330501556, + "learning_rate": 0.01, + "loss": 2.0334, + "step": 48750 + }, + { + "epoch": 5.006983670535073, + "grad_norm": 0.04884595423936844, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 48753 + }, + { + "epoch": 5.007291773646914, + "grad_norm": 0.04434294253587723, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 48756 + }, + { + "epoch": 5.007599876758755, + "grad_norm": 0.07619164884090424, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 48759 + }, + { + "epoch": 5.0079079798705965, + "grad_norm": 0.04731893911957741, + "learning_rate": 0.01, + "loss": 2.006, + "step": 48762 + }, + { + "epoch": 5.008216082982438, + "grad_norm": 0.03700774163007736, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 48765 + }, + { + "epoch": 5.00852418609428, + "grad_norm": 0.03112631104886532, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 48768 + }, + { + "epoch": 5.008832289206121, + "grad_norm": 0.12492241710424423, + "learning_rate": 0.01, + "loss": 2.0255, + "step": 48771 + }, + { + "epoch": 5.0091403923179625, + "grad_norm": 0.03778549283742905, + "learning_rate": 0.01, + "loss": 1.968, + "step": 48774 + }, + { + "epoch": 5.009448495429804, + "grad_norm": 0.06593509018421173, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 48777 + }, + { + "epoch": 5.009756598541645, + "grad_norm": 0.04298333451151848, + "learning_rate": 0.01, + "loss": 2.03, + "step": 48780 + }, + { + "epoch": 5.010064701653486, + "grad_norm": 0.04566636681556702, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 48783 + }, + { + "epoch": 5.010372804765328, + "grad_norm": 0.045355070382356644, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 48786 + }, + { + "epoch": 5.01068090787717, + "grad_norm": 0.10494118183851242, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 48789 + }, + { + "epoch": 5.010989010989011, + "grad_norm": 0.07352183014154434, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 48792 + }, + { + "epoch": 5.011297114100852, + "grad_norm": 0.07270955294370651, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 48795 + }, + { + "epoch": 5.0116052172126935, + "grad_norm": 0.04416406527161598, + "learning_rate": 0.01, + "loss": 2.0346, + "step": 48798 + }, + { + "epoch": 5.011913320324536, + "grad_norm": 0.08084416389465332, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 48801 + }, + { + "epoch": 5.012221423436377, + "grad_norm": 0.04440615326166153, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 48804 + }, + { + "epoch": 5.012529526548218, + "grad_norm": 0.0649610310792923, + "learning_rate": 0.01, + "loss": 2.0398, + "step": 48807 + }, + { + "epoch": 5.012837629660059, + "grad_norm": 0.08533710986375809, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 48810 + }, + { + "epoch": 5.013145732771901, + "grad_norm": 0.06310707330703735, + "learning_rate": 0.01, + "loss": 2.0566, + "step": 48813 + }, + { + "epoch": 5.013453835883743, + "grad_norm": 0.07096098363399506, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 48816 + }, + { + "epoch": 5.013761938995584, + "grad_norm": 0.08358955383300781, + "learning_rate": 0.01, + "loss": 2.011, + "step": 48819 + }, + { + "epoch": 5.014070042107425, + "grad_norm": 0.07774472236633301, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 48822 + }, + { + "epoch": 5.014378145219267, + "grad_norm": 0.090924933552742, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 48825 + }, + { + "epoch": 5.014686248331108, + "grad_norm": 0.08830771595239639, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 48828 + }, + { + "epoch": 5.014994351442949, + "grad_norm": 0.09647586941719055, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 48831 + }, + { + "epoch": 5.015302454554791, + "grad_norm": 0.09413495659828186, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 48834 + }, + { + "epoch": 5.0156105576666326, + "grad_norm": 0.046874430030584335, + "learning_rate": 0.01, + "loss": 1.998, + "step": 48837 + }, + { + "epoch": 5.015918660778474, + "grad_norm": 0.050309523940086365, + "learning_rate": 0.01, + "loss": 1.998, + "step": 48840 + }, + { + "epoch": 5.016226763890315, + "grad_norm": 0.045271504670381546, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 48843 + }, + { + "epoch": 5.016534867002156, + "grad_norm": 0.03297847509384155, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 48846 + }, + { + "epoch": 5.0168429701139985, + "grad_norm": 0.08260242640972137, + "learning_rate": 0.01, + "loss": 2.02, + "step": 48849 + }, + { + "epoch": 5.01715107322584, + "grad_norm": 0.04784693941473961, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 48852 + }, + { + "epoch": 5.017459176337681, + "grad_norm": 0.07972519099712372, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 48855 + }, + { + "epoch": 5.017767279449522, + "grad_norm": 0.09882769733667374, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 48858 + }, + { + "epoch": 5.0180753825613635, + "grad_norm": 0.059475596994161606, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 48861 + }, + { + "epoch": 5.018383485673206, + "grad_norm": 0.03795355185866356, + "learning_rate": 0.01, + "loss": 2.0319, + "step": 48864 + }, + { + "epoch": 5.018691588785047, + "grad_norm": 0.04603972285985947, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 48867 + }, + { + "epoch": 5.018999691896888, + "grad_norm": 0.0678548589348793, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 48870 + }, + { + "epoch": 5.0193077950087295, + "grad_norm": 0.0728834941983223, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 48873 + }, + { + "epoch": 5.019615898120571, + "grad_norm": 0.08255651593208313, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 48876 + }, + { + "epoch": 5.019924001232413, + "grad_norm": 0.08427122980356216, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 48879 + }, + { + "epoch": 5.020232104344254, + "grad_norm": 0.06279109418392181, + "learning_rate": 0.01, + "loss": 1.997, + "step": 48882 + }, + { + "epoch": 5.020540207456095, + "grad_norm": 0.12473344802856445, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 48885 + }, + { + "epoch": 5.020848310567937, + "grad_norm": 0.05066891387104988, + "learning_rate": 0.01, + "loss": 2.024, + "step": 48888 + }, + { + "epoch": 5.021156413679778, + "grad_norm": 0.038826942443847656, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 48891 + }, + { + "epoch": 5.021464516791619, + "grad_norm": 0.058017902076244354, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 48894 + }, + { + "epoch": 5.021772619903461, + "grad_norm": 0.09492091834545135, + "learning_rate": 0.01, + "loss": 1.994, + "step": 48897 + }, + { + "epoch": 5.022080723015303, + "grad_norm": 0.037246495485305786, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 48900 + }, + { + "epoch": 5.022388826127144, + "grad_norm": 0.06708169728517532, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 48903 + }, + { + "epoch": 5.022696929238985, + "grad_norm": 0.07195274531841278, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 48906 + }, + { + "epoch": 5.023005032350826, + "grad_norm": 0.04685629904270172, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 48909 + }, + { + "epoch": 5.0233131354626686, + "grad_norm": 0.08163397759199142, + "learning_rate": 0.01, + "loss": 2.0, + "step": 48912 + }, + { + "epoch": 5.02362123857451, + "grad_norm": 0.05403751879930496, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 48915 + }, + { + "epoch": 5.023929341686351, + "grad_norm": 0.038569968193769455, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 48918 + }, + { + "epoch": 5.024237444798192, + "grad_norm": 0.055535174906253815, + "learning_rate": 0.01, + "loss": 2.003, + "step": 48921 + }, + { + "epoch": 5.024545547910034, + "grad_norm": 0.05628294125199318, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 48924 + }, + { + "epoch": 5.024853651021876, + "grad_norm": 0.06412038207054138, + "learning_rate": 0.01, + "loss": 1.995, + "step": 48927 + }, + { + "epoch": 5.025161754133717, + "grad_norm": 0.09966779500246048, + "learning_rate": 0.01, + "loss": 2.0417, + "step": 48930 + }, + { + "epoch": 5.025469857245558, + "grad_norm": 0.059476420283317566, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 48933 + }, + { + "epoch": 5.0257779603573995, + "grad_norm": 0.04914550483226776, + "learning_rate": 0.01, + "loss": 2.017, + "step": 48936 + }, + { + "epoch": 5.026086063469241, + "grad_norm": 0.03358187898993492, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 48939 + }, + { + "epoch": 5.026394166581082, + "grad_norm": 0.0671076700091362, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 48942 + }, + { + "epoch": 5.026702269692924, + "grad_norm": 0.14911647140979767, + "learning_rate": 0.01, + "loss": 2.027, + "step": 48945 + }, + { + "epoch": 5.0270103728047655, + "grad_norm": 0.05344945192337036, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 48948 + }, + { + "epoch": 5.027318475916607, + "grad_norm": 0.05113920569419861, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 48951 + }, + { + "epoch": 5.027626579028448, + "grad_norm": 0.052601687610149384, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 48954 + }, + { + "epoch": 5.027934682140289, + "grad_norm": 0.04715648666024208, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 48957 + }, + { + "epoch": 5.028242785252131, + "grad_norm": 0.0414542555809021, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 48960 + }, + { + "epoch": 5.028550888363973, + "grad_norm": 0.057792216539382935, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 48963 + }, + { + "epoch": 5.028858991475814, + "grad_norm": 0.12371774017810822, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 48966 + }, + { + "epoch": 5.029167094587655, + "grad_norm": 0.053585126996040344, + "learning_rate": 0.01, + "loss": 2.003, + "step": 48969 + }, + { + "epoch": 5.0294751976994965, + "grad_norm": 0.051625724881887436, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 48972 + }, + { + "epoch": 5.029783300811339, + "grad_norm": 0.03650549426674843, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 48975 + }, + { + "epoch": 5.03009140392318, + "grad_norm": 0.039793796837329865, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 48978 + }, + { + "epoch": 5.030399507035021, + "grad_norm": 0.03223228082060814, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 48981 + }, + { + "epoch": 5.030707610146862, + "grad_norm": 0.06604496389627457, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 48984 + }, + { + "epoch": 5.031015713258704, + "grad_norm": 0.13230498135089874, + "learning_rate": 0.01, + "loss": 2.014, + "step": 48987 + }, + { + "epoch": 5.031323816370545, + "grad_norm": 0.07130693644285202, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 48990 + }, + { + "epoch": 5.031631919482387, + "grad_norm": 0.13743533194065094, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 48993 + }, + { + "epoch": 5.031940022594228, + "grad_norm": 0.08371279388666153, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 48996 + }, + { + "epoch": 5.03224812570607, + "grad_norm": 0.06169065833091736, + "learning_rate": 0.01, + "loss": 2.011, + "step": 48999 + }, + { + "epoch": 5.032556228817911, + "grad_norm": 0.05723833665251732, + "learning_rate": 0.01, + "loss": 1.994, + "step": 49002 + }, + { + "epoch": 5.032864331929752, + "grad_norm": 0.043473754078149796, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 49005 + }, + { + "epoch": 5.033172435041594, + "grad_norm": 0.08324360102415085, + "learning_rate": 0.01, + "loss": 2.002, + "step": 49008 + }, + { + "epoch": 5.0334805381534355, + "grad_norm": 0.04197626933455467, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 49011 + }, + { + "epoch": 5.033788641265277, + "grad_norm": 0.07882298529148102, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 49014 + }, + { + "epoch": 5.034096744377118, + "grad_norm": 0.08073476701974869, + "learning_rate": 0.01, + "loss": 2.0272, + "step": 49017 + }, + { + "epoch": 5.034404847488959, + "grad_norm": 0.0678163543343544, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 49020 + }, + { + "epoch": 5.0347129506008015, + "grad_norm": 0.04524783417582512, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 49023 + }, + { + "epoch": 5.035021053712643, + "grad_norm": 0.06805024296045303, + "learning_rate": 0.01, + "loss": 2.0321, + "step": 49026 + }, + { + "epoch": 5.035329156824484, + "grad_norm": 0.12917374074459076, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 49029 + }, + { + "epoch": 5.035637259936325, + "grad_norm": 0.04843614995479584, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 49032 + }, + { + "epoch": 5.0359453630481665, + "grad_norm": 0.09850560128688812, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 49035 + }, + { + "epoch": 5.036253466160008, + "grad_norm": 0.04039955511689186, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 49038 + }, + { + "epoch": 5.03656156927185, + "grad_norm": 0.06758705526590347, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 49041 + }, + { + "epoch": 5.036869672383691, + "grad_norm": 0.03571697697043419, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 49044 + }, + { + "epoch": 5.0371777754955325, + "grad_norm": 0.034528639167547226, + "learning_rate": 0.01, + "loss": 1.9608, + "step": 49047 + }, + { + "epoch": 5.037485878607374, + "grad_norm": 0.05735669657588005, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 49050 + }, + { + "epoch": 5.037793981719215, + "grad_norm": 0.11180947721004486, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 49053 + }, + { + "epoch": 5.038102084831057, + "grad_norm": 0.08823433518409729, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 49056 + }, + { + "epoch": 5.038410187942898, + "grad_norm": 0.06959319114685059, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 49059 + }, + { + "epoch": 5.03871829105474, + "grad_norm": 0.03767579421401024, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 49062 + }, + { + "epoch": 5.039026394166581, + "grad_norm": 0.032121919095516205, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 49065 + }, + { + "epoch": 5.039334497278422, + "grad_norm": 0.09328833967447281, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 49068 + }, + { + "epoch": 5.039642600390264, + "grad_norm": 0.05128837004303932, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 49071 + }, + { + "epoch": 5.039950703502106, + "grad_norm": 0.04546624422073364, + "learning_rate": 0.01, + "loss": 2.0395, + "step": 49074 + }, + { + "epoch": 5.040258806613947, + "grad_norm": 0.03980513662099838, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 49077 + }, + { + "epoch": 5.040566909725788, + "grad_norm": 0.04204264655709267, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 49080 + }, + { + "epoch": 5.040875012837629, + "grad_norm": 0.04164162278175354, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 49083 + }, + { + "epoch": 5.041183115949471, + "grad_norm": 0.0698886588215828, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 49086 + }, + { + "epoch": 5.041491219061313, + "grad_norm": 0.11362603306770325, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 49089 + }, + { + "epoch": 5.041799322173154, + "grad_norm": 0.08820103108882904, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 49092 + }, + { + "epoch": 5.042107425284995, + "grad_norm": 0.06023460626602173, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 49095 + }, + { + "epoch": 5.042415528396837, + "grad_norm": 0.03523271903395653, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 49098 + }, + { + "epoch": 5.042723631508678, + "grad_norm": 0.062407344579696655, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 49101 + }, + { + "epoch": 5.04303173462052, + "grad_norm": 0.04747510328888893, + "learning_rate": 0.01, + "loss": 1.996, + "step": 49104 + }, + { + "epoch": 5.043339837732361, + "grad_norm": 0.04824723303318024, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 49107 + }, + { + "epoch": 5.0436479408442025, + "grad_norm": 0.1672361046075821, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 49110 + }, + { + "epoch": 5.043956043956044, + "grad_norm": 0.09675043821334839, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 49113 + }, + { + "epoch": 5.044264147067885, + "grad_norm": 0.06804441660642624, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 49116 + }, + { + "epoch": 5.044572250179727, + "grad_norm": 0.05074039101600647, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 49119 + }, + { + "epoch": 5.0448803532915685, + "grad_norm": 0.049977827817201614, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 49122 + }, + { + "epoch": 5.04518845640341, + "grad_norm": 0.05549508333206177, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 49125 + }, + { + "epoch": 5.045496559515251, + "grad_norm": 0.03386814519762993, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 49128 + }, + { + "epoch": 5.045804662627092, + "grad_norm": 0.04851256310939789, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 49131 + }, + { + "epoch": 5.0461127657389335, + "grad_norm": 0.0848245769739151, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 49134 + }, + { + "epoch": 5.046420868850776, + "grad_norm": 0.03692524507641792, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 49137 + }, + { + "epoch": 5.046728971962617, + "grad_norm": 0.0406675823032856, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 49140 + }, + { + "epoch": 5.047037075074458, + "grad_norm": 0.07141982764005661, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 49143 + }, + { + "epoch": 5.0473451781862995, + "grad_norm": 0.0453253835439682, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 49146 + }, + { + "epoch": 5.047653281298141, + "grad_norm": 0.04967833310365677, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 49149 + }, + { + "epoch": 5.047961384409983, + "grad_norm": 0.09721168875694275, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 49152 + }, + { + "epoch": 5.048269487521824, + "grad_norm": 0.03806902468204498, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 49155 + }, + { + "epoch": 5.048577590633665, + "grad_norm": 0.048705510795116425, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 49158 + }, + { + "epoch": 5.048885693745507, + "grad_norm": 0.04676016420125961, + "learning_rate": 0.01, + "loss": 2.007, + "step": 49161 + }, + { + "epoch": 5.049193796857348, + "grad_norm": 0.1444026082754135, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 49164 + }, + { + "epoch": 5.04950189996919, + "grad_norm": 0.07510826736688614, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 49167 + }, + { + "epoch": 5.049810003081031, + "grad_norm": 0.05828002095222473, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 49170 + }, + { + "epoch": 5.050118106192873, + "grad_norm": 0.04933730885386467, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 49173 + }, + { + "epoch": 5.050426209304714, + "grad_norm": 0.07392150163650513, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 49176 + }, + { + "epoch": 5.050734312416555, + "grad_norm": 0.03829526528716087, + "learning_rate": 0.01, + "loss": 2.0377, + "step": 49179 + }, + { + "epoch": 5.051042415528396, + "grad_norm": 0.06644531339406967, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 49182 + }, + { + "epoch": 5.0513505186402385, + "grad_norm": 0.045286018401384354, + "learning_rate": 0.01, + "loss": 2.019, + "step": 49185 + }, + { + "epoch": 5.05165862175208, + "grad_norm": 0.1067107766866684, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 49188 + }, + { + "epoch": 5.051966724863921, + "grad_norm": 0.09251461923122406, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 49191 + }, + { + "epoch": 5.052274827975762, + "grad_norm": 0.051101312041282654, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 49194 + }, + { + "epoch": 5.052582931087604, + "grad_norm": 0.060298655182123184, + "learning_rate": 0.01, + "loss": 2.0393, + "step": 49197 + }, + { + "epoch": 5.052891034199446, + "grad_norm": 0.11112777143716812, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 49200 + }, + { + "epoch": 5.053199137311287, + "grad_norm": 0.05832698941230774, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 49203 + }, + { + "epoch": 5.053507240423128, + "grad_norm": 0.04670676961541176, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 49206 + }, + { + "epoch": 5.0538153435349695, + "grad_norm": 0.03849385678768158, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 49209 + }, + { + "epoch": 5.054123446646811, + "grad_norm": 0.043539416044950485, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 49212 + }, + { + "epoch": 5.054431549758653, + "grad_norm": 0.04201329126954079, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 49215 + }, + { + "epoch": 5.054739652870494, + "grad_norm": 0.046697720885276794, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 49218 + }, + { + "epoch": 5.0550477559823355, + "grad_norm": 0.13588139414787292, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 49221 + }, + { + "epoch": 5.055355859094177, + "grad_norm": 0.06000100448727608, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 49224 + }, + { + "epoch": 5.055663962206018, + "grad_norm": 0.05746195465326309, + "learning_rate": 0.01, + "loss": 2.017, + "step": 49227 + }, + { + "epoch": 5.05597206531786, + "grad_norm": 0.05890364944934845, + "learning_rate": 0.01, + "loss": 2.0246, + "step": 49230 + }, + { + "epoch": 5.056280168429701, + "grad_norm": 0.05617443472146988, + "learning_rate": 0.01, + "loss": 2.009, + "step": 49233 + }, + { + "epoch": 5.056588271541543, + "grad_norm": 0.035529427230358124, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 49236 + }, + { + "epoch": 5.056896374653384, + "grad_norm": 0.08901556581258774, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 49239 + }, + { + "epoch": 5.057204477765225, + "grad_norm": 0.07534974068403244, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 49242 + }, + { + "epoch": 5.0575125808770665, + "grad_norm": 0.09517022967338562, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 49245 + }, + { + "epoch": 5.057820683988909, + "grad_norm": 0.0671476274728775, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 49248 + }, + { + "epoch": 5.05812878710075, + "grad_norm": 0.08913878351449966, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 49251 + }, + { + "epoch": 5.058436890212591, + "grad_norm": 0.06179509684443474, + "learning_rate": 0.01, + "loss": 2.015, + "step": 49254 + }, + { + "epoch": 5.058744993324432, + "grad_norm": 0.055043041706085205, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 49257 + }, + { + "epoch": 5.059053096436274, + "grad_norm": 0.05528896301984787, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 49260 + }, + { + "epoch": 5.059361199548116, + "grad_norm": 0.1153421550989151, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 49263 + }, + { + "epoch": 5.059669302659957, + "grad_norm": 0.11637650430202484, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 49266 + }, + { + "epoch": 5.059977405771798, + "grad_norm": 0.04912794381380081, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 49269 + }, + { + "epoch": 5.06028550888364, + "grad_norm": 0.030755288898944855, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 49272 + }, + { + "epoch": 5.060593611995481, + "grad_norm": 0.03253510594367981, + "learning_rate": 0.01, + "loss": 1.999, + "step": 49275 + }, + { + "epoch": 5.060901715107323, + "grad_norm": 0.0353284515440464, + "learning_rate": 0.01, + "loss": 2.008, + "step": 49278 + }, + { + "epoch": 5.061209818219164, + "grad_norm": 0.04621535912156105, + "learning_rate": 0.01, + "loss": 2.0276, + "step": 49281 + }, + { + "epoch": 5.0615179213310055, + "grad_norm": 0.08098949491977692, + "learning_rate": 0.01, + "loss": 1.98, + "step": 49284 + }, + { + "epoch": 5.061826024442847, + "grad_norm": 0.07662132382392883, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 49287 + }, + { + "epoch": 5.062134127554688, + "grad_norm": 0.06088561937212944, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 49290 + }, + { + "epoch": 5.062442230666529, + "grad_norm": 0.09895024448633194, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 49293 + }, + { + "epoch": 5.0627503337783715, + "grad_norm": 0.05712589621543884, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 49296 + }, + { + "epoch": 5.063058436890213, + "grad_norm": 0.03906116634607315, + "learning_rate": 0.01, + "loss": 1.998, + "step": 49299 + }, + { + "epoch": 5.063366540002054, + "grad_norm": 0.04972919449210167, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 49302 + }, + { + "epoch": 5.063674643113895, + "grad_norm": 0.048737164586782455, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 49305 + }, + { + "epoch": 5.0639827462257365, + "grad_norm": 0.06541066616773605, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 49308 + }, + { + "epoch": 5.064290849337579, + "grad_norm": 0.048164594918489456, + "learning_rate": 0.01, + "loss": 2.0352, + "step": 49311 + }, + { + "epoch": 5.06459895244942, + "grad_norm": 0.09063941240310669, + "learning_rate": 0.01, + "loss": 2.0265, + "step": 49314 + }, + { + "epoch": 5.064907055561261, + "grad_norm": 0.04573111608624458, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 49317 + }, + { + "epoch": 5.0652151586731025, + "grad_norm": 0.033861320465803146, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 49320 + }, + { + "epoch": 5.065523261784944, + "grad_norm": 0.03708826005458832, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 49323 + }, + { + "epoch": 5.065831364896786, + "grad_norm": 0.10216791927814484, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 49326 + }, + { + "epoch": 5.066139468008627, + "grad_norm": 0.06112508475780487, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 49329 + }, + { + "epoch": 5.066447571120468, + "grad_norm": 0.06171619892120361, + "learning_rate": 0.01, + "loss": 2.007, + "step": 49332 + }, + { + "epoch": 5.06675567423231, + "grad_norm": 0.03746636584401131, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 49335 + }, + { + "epoch": 5.067063777344151, + "grad_norm": 0.06251370906829834, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 49338 + }, + { + "epoch": 5.067371880455992, + "grad_norm": 0.03557705506682396, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 49341 + }, + { + "epoch": 5.067679983567834, + "grad_norm": 0.036395229399204254, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 49344 + }, + { + "epoch": 5.067988086679676, + "grad_norm": 0.12709848582744598, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 49347 + }, + { + "epoch": 5.068296189791517, + "grad_norm": 0.05967814847826958, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 49350 + }, + { + "epoch": 5.068604292903358, + "grad_norm": 0.09794972836971283, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 49353 + }, + { + "epoch": 5.068912396015199, + "grad_norm": 0.06263583153486252, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 49356 + }, + { + "epoch": 5.0692204991270415, + "grad_norm": 0.08471337705850601, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 49359 + }, + { + "epoch": 5.069528602238883, + "grad_norm": 0.06739859282970428, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 49362 + }, + { + "epoch": 5.069836705350724, + "grad_norm": 0.09328118711709976, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 49365 + }, + { + "epoch": 5.070144808462565, + "grad_norm": 0.09012078493833542, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 49368 + }, + { + "epoch": 5.070452911574407, + "grad_norm": 0.03964925929903984, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 49371 + }, + { + "epoch": 5.070761014686249, + "grad_norm": 0.12138742208480835, + "learning_rate": 0.01, + "loss": 2.0361, + "step": 49374 + }, + { + "epoch": 5.07106911779809, + "grad_norm": 0.04422127828001976, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 49377 + }, + { + "epoch": 5.071377220909931, + "grad_norm": 0.038298092782497406, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 49380 + }, + { + "epoch": 5.0716853240217725, + "grad_norm": 0.04425305128097534, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 49383 + }, + { + "epoch": 5.071993427133614, + "grad_norm": 0.08276382088661194, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 49386 + }, + { + "epoch": 5.072301530245455, + "grad_norm": 0.06378073245286942, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 49389 + }, + { + "epoch": 5.072609633357297, + "grad_norm": 0.12052054703235626, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 49392 + }, + { + "epoch": 5.0729177364691385, + "grad_norm": 0.04634268954396248, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 49395 + }, + { + "epoch": 5.07322583958098, + "grad_norm": 0.055755455046892166, + "learning_rate": 0.01, + "loss": 2.0214, + "step": 49398 + }, + { + "epoch": 5.073533942692821, + "grad_norm": 0.04300512373447418, + "learning_rate": 0.01, + "loss": 2.0191, + "step": 49401 + }, + { + "epoch": 5.073842045804662, + "grad_norm": 0.08284097909927368, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 49404 + }, + { + "epoch": 5.074150148916504, + "grad_norm": 0.046609655022621155, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 49407 + }, + { + "epoch": 5.074458252028346, + "grad_norm": 0.06387645751237869, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 49410 + }, + { + "epoch": 5.074766355140187, + "grad_norm": 0.0506816990673542, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 49413 + }, + { + "epoch": 5.075074458252028, + "grad_norm": 0.03865443170070648, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 49416 + }, + { + "epoch": 5.0753825613638694, + "grad_norm": 0.07702656835317612, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 49419 + }, + { + "epoch": 5.075690664475712, + "grad_norm": 0.12181714177131653, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 49422 + }, + { + "epoch": 5.075998767587553, + "grad_norm": 0.06351039558649063, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 49425 + }, + { + "epoch": 5.076306870699394, + "grad_norm": 0.09312722831964493, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 49428 + }, + { + "epoch": 5.076614973811235, + "grad_norm": 0.06879006326198578, + "learning_rate": 0.01, + "loss": 1.982, + "step": 49431 + }, + { + "epoch": 5.076923076923077, + "grad_norm": 0.06043083220720291, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 49434 + }, + { + "epoch": 5.077231180034918, + "grad_norm": 0.049164239317178726, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 49437 + }, + { + "epoch": 5.07753928314676, + "grad_norm": 0.04470280185341835, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 49440 + }, + { + "epoch": 5.077847386258601, + "grad_norm": 0.04513731226325035, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 49443 + }, + { + "epoch": 5.078155489370443, + "grad_norm": 0.07849404215812683, + "learning_rate": 0.01, + "loss": 2.0244, + "step": 49446 + }, + { + "epoch": 5.078463592482284, + "grad_norm": 0.04768620431423187, + "learning_rate": 0.01, + "loss": 2.0, + "step": 49449 + }, + { + "epoch": 5.078771695594125, + "grad_norm": 0.09680715203285217, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 49452 + }, + { + "epoch": 5.079079798705967, + "grad_norm": 0.07119087129831314, + "learning_rate": 0.01, + "loss": 2.01, + "step": 49455 + }, + { + "epoch": 5.0793879018178085, + "grad_norm": 0.11560992896556854, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 49458 + }, + { + "epoch": 5.07969600492965, + "grad_norm": 0.039443932473659515, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 49461 + }, + { + "epoch": 5.080004108041491, + "grad_norm": 0.040348734706640244, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 49464 + }, + { + "epoch": 5.080312211153332, + "grad_norm": 0.10496348142623901, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 49467 + }, + { + "epoch": 5.0806203142651745, + "grad_norm": 0.10493961721658707, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 49470 + }, + { + "epoch": 5.080928417377016, + "grad_norm": 0.08104293048381805, + "learning_rate": 0.01, + "loss": 2.008, + "step": 49473 + }, + { + "epoch": 5.081236520488857, + "grad_norm": 0.07609682530164719, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 49476 + }, + { + "epoch": 5.081544623600698, + "grad_norm": 0.03504324331879616, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 49479 + }, + { + "epoch": 5.0818527267125395, + "grad_norm": 0.03438768908381462, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 49482 + }, + { + "epoch": 5.082160829824382, + "grad_norm": 0.0372585728764534, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 49485 + }, + { + "epoch": 5.082468932936223, + "grad_norm": 0.06997973471879959, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 49488 + }, + { + "epoch": 5.082777036048064, + "grad_norm": 0.07300589978694916, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 49491 + }, + { + "epoch": 5.0830851391599055, + "grad_norm": 0.053376756608486176, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 49494 + }, + { + "epoch": 5.083393242271747, + "grad_norm": 0.060256477445364, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 49497 + }, + { + "epoch": 5.083701345383588, + "grad_norm": 0.0293456818908453, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 49500 + }, + { + "epoch": 5.08400944849543, + "grad_norm": 0.08368721604347229, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 49503 + }, + { + "epoch": 5.084317551607271, + "grad_norm": 0.15514978766441345, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 49506 + }, + { + "epoch": 5.084625654719113, + "grad_norm": 0.07931728661060333, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 49509 + }, + { + "epoch": 5.084933757830954, + "grad_norm": 0.038475409150123596, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 49512 + }, + { + "epoch": 5.085241860942795, + "grad_norm": 0.03167513385415077, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 49515 + }, + { + "epoch": 5.085549964054637, + "grad_norm": 0.053547751158475876, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 49518 + }, + { + "epoch": 5.085858067166479, + "grad_norm": 0.06962644308805466, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 49521 + }, + { + "epoch": 5.08616617027832, + "grad_norm": 0.06724515557289124, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 49524 + }, + { + "epoch": 5.086474273390161, + "grad_norm": 0.06945919245481491, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 49527 + }, + { + "epoch": 5.086782376502002, + "grad_norm": 0.03792745992541313, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 49530 + }, + { + "epoch": 5.0870904796138445, + "grad_norm": 0.05056298151612282, + "learning_rate": 0.01, + "loss": 2.0414, + "step": 49533 + }, + { + "epoch": 5.087398582725686, + "grad_norm": 0.07531926780939102, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 49536 + }, + { + "epoch": 5.087706685837527, + "grad_norm": 0.0834566205739975, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 49539 + }, + { + "epoch": 5.088014788949368, + "grad_norm": 0.038478609174489975, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 49542 + }, + { + "epoch": 5.08832289206121, + "grad_norm": 0.06002604216337204, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 49545 + }, + { + "epoch": 5.088630995173051, + "grad_norm": 0.046000853180885315, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 49548 + }, + { + "epoch": 5.088939098284893, + "grad_norm": 0.06248699501156807, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 49551 + }, + { + "epoch": 5.089247201396734, + "grad_norm": 0.10761575400829315, + "learning_rate": 0.01, + "loss": 1.983, + "step": 49554 + }, + { + "epoch": 5.0895553045085755, + "grad_norm": 0.09329602122306824, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 49557 + }, + { + "epoch": 5.089863407620417, + "grad_norm": 0.08233852684497833, + "learning_rate": 0.01, + "loss": 1.993, + "step": 49560 + }, + { + "epoch": 5.090171510732258, + "grad_norm": 0.06591898202896118, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 49563 + }, + { + "epoch": 5.0904796138441, + "grad_norm": 0.11147011071443558, + "learning_rate": 0.01, + "loss": 2.0415, + "step": 49566 + }, + { + "epoch": 5.0907877169559415, + "grad_norm": 0.10501214861869812, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 49569 + }, + { + "epoch": 5.091095820067783, + "grad_norm": 0.04929099977016449, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 49572 + }, + { + "epoch": 5.091403923179624, + "grad_norm": 0.09390784054994583, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 49575 + }, + { + "epoch": 5.091712026291465, + "grad_norm": 0.08599641174077988, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 49578 + }, + { + "epoch": 5.092020129403307, + "grad_norm": 0.04285844415426254, + "learning_rate": 0.01, + "loss": 2.005, + "step": 49581 + }, + { + "epoch": 5.092328232515149, + "grad_norm": 0.034273531287908554, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 49584 + }, + { + "epoch": 5.09263633562699, + "grad_norm": 0.04617328196763992, + "learning_rate": 0.01, + "loss": 1.986, + "step": 49587 + }, + { + "epoch": 5.092944438738831, + "grad_norm": 0.08739766478538513, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 49590 + }, + { + "epoch": 5.093252541850672, + "grad_norm": 0.06263922899961472, + "learning_rate": 0.01, + "loss": 2.0396, + "step": 49593 + }, + { + "epoch": 5.093560644962514, + "grad_norm": 0.06044527515769005, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 49596 + }, + { + "epoch": 5.093868748074356, + "grad_norm": 0.046116676181554794, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 49599 + }, + { + "epoch": 5.094176851186197, + "grad_norm": 0.1035202220082283, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 49602 + }, + { + "epoch": 5.094484954298038, + "grad_norm": 0.03816954419016838, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 49605 + }, + { + "epoch": 5.09479305740988, + "grad_norm": 0.04604346677660942, + "learning_rate": 0.01, + "loss": 1.997, + "step": 49608 + }, + { + "epoch": 5.095101160521721, + "grad_norm": 0.05297078937292099, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 49611 + }, + { + "epoch": 5.095409263633563, + "grad_norm": 0.03836045414209366, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 49614 + }, + { + "epoch": 5.095717366745404, + "grad_norm": 0.047086507081985474, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 49617 + }, + { + "epoch": 5.096025469857246, + "grad_norm": 0.04657857492566109, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 49620 + }, + { + "epoch": 5.096333572969087, + "grad_norm": 0.08411470055580139, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 49623 + }, + { + "epoch": 5.096641676080928, + "grad_norm": 0.16819079220294952, + "learning_rate": 0.01, + "loss": 2.013, + "step": 49626 + }, + { + "epoch": 5.09694977919277, + "grad_norm": 0.04950143024325371, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 49629 + }, + { + "epoch": 5.0972578823046115, + "grad_norm": 0.039262961596250534, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 49632 + }, + { + "epoch": 5.097565985416453, + "grad_norm": 0.03746853023767471, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 49635 + }, + { + "epoch": 5.097874088528294, + "grad_norm": 0.052741505205631256, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 49638 + }, + { + "epoch": 5.098182191640135, + "grad_norm": 0.1192871630191803, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 49641 + }, + { + "epoch": 5.098490294751977, + "grad_norm": 0.054899461567401886, + "learning_rate": 0.01, + "loss": 1.998, + "step": 49644 + }, + { + "epoch": 5.098798397863819, + "grad_norm": 0.05850033089518547, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 49647 + }, + { + "epoch": 5.09910650097566, + "grad_norm": 0.08758574724197388, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 49650 + }, + { + "epoch": 5.099414604087501, + "grad_norm": 0.09481152147054672, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 49653 + }, + { + "epoch": 5.0997227071993425, + "grad_norm": 0.12264327704906464, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 49656 + }, + { + "epoch": 5.100030810311184, + "grad_norm": 0.06704699993133545, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 49659 + }, + { + "epoch": 5.100338913423026, + "grad_norm": 0.10752804577350616, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 49662 + }, + { + "epoch": 5.100647016534867, + "grad_norm": 0.09217878431081772, + "learning_rate": 0.01, + "loss": 2.019, + "step": 49665 + }, + { + "epoch": 5.1009551196467084, + "grad_norm": 0.04479275271296501, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 49668 + }, + { + "epoch": 5.10126322275855, + "grad_norm": 0.06177330017089844, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 49671 + }, + { + "epoch": 5.101571325870391, + "grad_norm": 0.09911325573921204, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 49674 + }, + { + "epoch": 5.101879428982233, + "grad_norm": 0.06496170163154602, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 49677 + }, + { + "epoch": 5.102187532094074, + "grad_norm": 0.04296518489718437, + "learning_rate": 0.01, + "loss": 2.0, + "step": 49680 + }, + { + "epoch": 5.102495635205916, + "grad_norm": 0.05492605268955231, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 49683 + }, + { + "epoch": 5.102803738317757, + "grad_norm": 0.033720582723617554, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 49686 + }, + { + "epoch": 5.103111841429598, + "grad_norm": 0.10172949731349945, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 49689 + }, + { + "epoch": 5.103419944541439, + "grad_norm": 0.05326984077692032, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 49692 + }, + { + "epoch": 5.103728047653282, + "grad_norm": 0.10597484558820724, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 49695 + }, + { + "epoch": 5.104036150765123, + "grad_norm": 0.03910377249121666, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 49698 + }, + { + "epoch": 5.104344253876964, + "grad_norm": 0.04232342913746834, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 49701 + }, + { + "epoch": 5.104652356988805, + "grad_norm": 0.11343611031770706, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 49704 + }, + { + "epoch": 5.104960460100647, + "grad_norm": 0.06593618541955948, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 49707 + }, + { + "epoch": 5.105268563212489, + "grad_norm": 0.07576625049114227, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 49710 + }, + { + "epoch": 5.10557666632433, + "grad_norm": 0.10935617238283157, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 49713 + }, + { + "epoch": 5.105884769436171, + "grad_norm": 0.04176800325512886, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 49716 + }, + { + "epoch": 5.106192872548013, + "grad_norm": 0.05533302202820778, + "learning_rate": 0.01, + "loss": 2.007, + "step": 49719 + }, + { + "epoch": 5.106500975659854, + "grad_norm": 0.05446555092930794, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 49722 + }, + { + "epoch": 5.106809078771696, + "grad_norm": 0.05760158970952034, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 49725 + }, + { + "epoch": 5.107117181883537, + "grad_norm": 0.11345206201076508, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 49728 + }, + { + "epoch": 5.1074252849953785, + "grad_norm": 0.09869284927845001, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 49731 + }, + { + "epoch": 5.10773338810722, + "grad_norm": 0.050909820944070816, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 49734 + }, + { + "epoch": 5.108041491219061, + "grad_norm": 0.03889784961938858, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 49737 + }, + { + "epoch": 5.108349594330903, + "grad_norm": 0.04064812883734703, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 49740 + }, + { + "epoch": 5.1086576974427444, + "grad_norm": 0.13409452140331268, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 49743 + }, + { + "epoch": 5.108965800554586, + "grad_norm": 0.0955972746014595, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 49746 + }, + { + "epoch": 5.109273903666427, + "grad_norm": 0.11944996565580368, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 49749 + }, + { + "epoch": 5.109582006778268, + "grad_norm": 0.06599771976470947, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 49752 + }, + { + "epoch": 5.1098901098901095, + "grad_norm": 0.05203530192375183, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 49755 + }, + { + "epoch": 5.110198213001952, + "grad_norm": 0.052099455147981644, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 49758 + }, + { + "epoch": 5.110506316113793, + "grad_norm": 0.06005854532122612, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 49761 + }, + { + "epoch": 5.110814419225634, + "grad_norm": 0.0429551899433136, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 49764 + }, + { + "epoch": 5.111122522337475, + "grad_norm": 0.07173555344343185, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 49767 + }, + { + "epoch": 5.111430625449317, + "grad_norm": 0.05251854285597801, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 49770 + }, + { + "epoch": 5.111738728561159, + "grad_norm": 0.06687440723180771, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 49773 + }, + { + "epoch": 5.112046831673, + "grad_norm": 0.0841129869222641, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 49776 + }, + { + "epoch": 5.112354934784841, + "grad_norm": 0.086825892329216, + "learning_rate": 0.01, + "loss": 2.009, + "step": 49779 + }, + { + "epoch": 5.112663037896683, + "grad_norm": 0.059246089309453964, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 49782 + }, + { + "epoch": 5.112971141008524, + "grad_norm": 0.061836544424295425, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 49785 + }, + { + "epoch": 5.113279244120366, + "grad_norm": 0.0878891870379448, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 49788 + }, + { + "epoch": 5.113587347232207, + "grad_norm": 0.061963435262441635, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 49791 + }, + { + "epoch": 5.113895450344049, + "grad_norm": 0.07002797722816467, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 49794 + }, + { + "epoch": 5.11420355345589, + "grad_norm": 0.07307753711938858, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 49797 + }, + { + "epoch": 5.114511656567731, + "grad_norm": 0.05582696199417114, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 49800 + }, + { + "epoch": 5.114819759679572, + "grad_norm": 0.11906569451093674, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 49803 + }, + { + "epoch": 5.1151278627914145, + "grad_norm": 0.041671089828014374, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 49806 + }, + { + "epoch": 5.115435965903256, + "grad_norm": 0.040786996483802795, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 49809 + }, + { + "epoch": 5.115744069015097, + "grad_norm": 0.06962720304727554, + "learning_rate": 0.01, + "loss": 2.0245, + "step": 49812 + }, + { + "epoch": 5.116052172126938, + "grad_norm": 0.05079250782728195, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 49815 + }, + { + "epoch": 5.11636027523878, + "grad_norm": 0.03422404080629349, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 49818 + }, + { + "epoch": 5.116668378350622, + "grad_norm": 0.13034658133983612, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 49821 + }, + { + "epoch": 5.116976481462463, + "grad_norm": 0.05432206392288208, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 49824 + }, + { + "epoch": 5.117284584574304, + "grad_norm": 0.11153416335582733, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 49827 + }, + { + "epoch": 5.1175926876861455, + "grad_norm": 0.04324459657073021, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 49830 + }, + { + "epoch": 5.117900790797987, + "grad_norm": 0.035336676985025406, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 49833 + }, + { + "epoch": 5.118208893909829, + "grad_norm": 0.07241083681583405, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 49836 + }, + { + "epoch": 5.11851699702167, + "grad_norm": 0.05331496521830559, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 49839 + }, + { + "epoch": 5.118825100133511, + "grad_norm": 0.04856008291244507, + "learning_rate": 0.01, + "loss": 2.009, + "step": 49842 + }, + { + "epoch": 5.119133203245353, + "grad_norm": 0.07900402694940567, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 49845 + }, + { + "epoch": 5.119441306357194, + "grad_norm": 0.04300111532211304, + "learning_rate": 0.01, + "loss": 2.013, + "step": 49848 + }, + { + "epoch": 5.119749409469035, + "grad_norm": 0.09242533892393112, + "learning_rate": 0.01, + "loss": 1.996, + "step": 49851 + }, + { + "epoch": 5.120057512580877, + "grad_norm": 0.047889694571495056, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 49854 + }, + { + "epoch": 5.120365615692719, + "grad_norm": 0.04471924528479576, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 49857 + }, + { + "epoch": 5.12067371880456, + "grad_norm": 0.11666672676801682, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 49860 + }, + { + "epoch": 5.120981821916401, + "grad_norm": 0.0470040999352932, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 49863 + }, + { + "epoch": 5.121289925028242, + "grad_norm": 0.10009215027093887, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 49866 + }, + { + "epoch": 5.121598028140085, + "grad_norm": 0.06280893087387085, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 49869 + }, + { + "epoch": 5.121906131251926, + "grad_norm": 0.046029094606637955, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 49872 + }, + { + "epoch": 5.122214234363767, + "grad_norm": 0.11030067503452301, + "learning_rate": 0.01, + "loss": 2.006, + "step": 49875 + }, + { + "epoch": 5.122522337475608, + "grad_norm": 0.033092547208070755, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 49878 + }, + { + "epoch": 5.12283044058745, + "grad_norm": 0.051649268716573715, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 49881 + }, + { + "epoch": 5.123138543699292, + "grad_norm": 0.06344709545373917, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 49884 + }, + { + "epoch": 5.123446646811133, + "grad_norm": 0.08509237319231033, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 49887 + }, + { + "epoch": 5.123754749922974, + "grad_norm": 0.04539303854107857, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 49890 + }, + { + "epoch": 5.124062853034816, + "grad_norm": 0.03646918386220932, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 49893 + }, + { + "epoch": 5.124370956146657, + "grad_norm": 0.12570123374462128, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 49896 + }, + { + "epoch": 5.124679059258498, + "grad_norm": 0.12240875512361526, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 49899 + }, + { + "epoch": 5.12498716237034, + "grad_norm": 0.10540018230676651, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 49902 + }, + { + "epoch": 5.1252952654821815, + "grad_norm": 0.08514107763767242, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 49905 + }, + { + "epoch": 5.125603368594023, + "grad_norm": 0.04462766274809837, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 49908 + }, + { + "epoch": 5.125911471705864, + "grad_norm": 0.03537189960479736, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 49911 + }, + { + "epoch": 5.126219574817705, + "grad_norm": 0.053130924701690674, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 49914 + }, + { + "epoch": 5.126527677929547, + "grad_norm": 0.08888891339302063, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 49917 + }, + { + "epoch": 5.126835781041389, + "grad_norm": 0.051719069480895996, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 49920 + }, + { + "epoch": 5.12714388415323, + "grad_norm": 0.123109832406044, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 49923 + }, + { + "epoch": 5.127451987265071, + "grad_norm": 0.08993472158908844, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 49926 + }, + { + "epoch": 5.1277600903769125, + "grad_norm": 0.10910573601722717, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 49929 + }, + { + "epoch": 5.128068193488755, + "grad_norm": 0.13778774440288544, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 49932 + }, + { + "epoch": 5.128376296600596, + "grad_norm": 0.08411096781492233, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 49935 + }, + { + "epoch": 5.128684399712437, + "grad_norm": 0.05669613182544708, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 49938 + }, + { + "epoch": 5.128992502824278, + "grad_norm": 0.037695713341236115, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 49941 + }, + { + "epoch": 5.12930060593612, + "grad_norm": 0.07977671176195145, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 49944 + }, + { + "epoch": 5.129608709047961, + "grad_norm": 0.10012632608413696, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 49947 + }, + { + "epoch": 5.129916812159803, + "grad_norm": 0.06524799764156342, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 49950 + }, + { + "epoch": 5.130224915271644, + "grad_norm": 0.1130509302020073, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 49953 + }, + { + "epoch": 5.130533018383486, + "grad_norm": 0.06062379479408264, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 49956 + }, + { + "epoch": 5.130841121495327, + "grad_norm": 0.06229391694068909, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 49959 + }, + { + "epoch": 5.131149224607168, + "grad_norm": 0.04881103336811066, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 49962 + }, + { + "epoch": 5.13145732771901, + "grad_norm": 0.0779888853430748, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 49965 + }, + { + "epoch": 5.131765430830852, + "grad_norm": 0.03707825019955635, + "learning_rate": 0.01, + "loss": 2.016, + "step": 49968 + }, + { + "epoch": 5.132073533942693, + "grad_norm": 0.12145381420850754, + "learning_rate": 0.01, + "loss": 2.007, + "step": 49971 + }, + { + "epoch": 5.132381637054534, + "grad_norm": 0.08990494906902313, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 49974 + }, + { + "epoch": 5.132689740166375, + "grad_norm": 0.09638572484254837, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 49977 + }, + { + "epoch": 5.1329978432782175, + "grad_norm": 0.037770826369524, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 49980 + }, + { + "epoch": 5.133305946390059, + "grad_norm": 0.038396887481212616, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 49983 + }, + { + "epoch": 5.1336140495019, + "grad_norm": 0.052246298640966415, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 49986 + }, + { + "epoch": 5.133922152613741, + "grad_norm": 0.043142352253198624, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 49989 + }, + { + "epoch": 5.134230255725583, + "grad_norm": 0.04713413119316101, + "learning_rate": 0.01, + "loss": 1.972, + "step": 49992 + }, + { + "epoch": 5.134538358837425, + "grad_norm": 0.06687591224908829, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 49995 + }, + { + "epoch": 5.134846461949266, + "grad_norm": 0.057987745851278305, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 49998 + }, + { + "epoch": 5.135154565061107, + "grad_norm": 0.048778288066387177, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 50001 + }, + { + "epoch": 5.1354626681729485, + "grad_norm": 0.04489746689796448, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 50004 + }, + { + "epoch": 5.13577077128479, + "grad_norm": 0.08324793726205826, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 50007 + }, + { + "epoch": 5.136078874396631, + "grad_norm": 0.04505028948187828, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 50010 + }, + { + "epoch": 5.136386977508473, + "grad_norm": 0.07827684283256531, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 50013 + }, + { + "epoch": 5.136695080620314, + "grad_norm": 0.07187260687351227, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 50016 + }, + { + "epoch": 5.137003183732156, + "grad_norm": 0.0374215804040432, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 50019 + }, + { + "epoch": 5.137311286843997, + "grad_norm": 0.06169632822275162, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 50022 + }, + { + "epoch": 5.137619389955838, + "grad_norm": 0.08089695870876312, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 50025 + }, + { + "epoch": 5.13792749306768, + "grad_norm": 0.06311798840761185, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 50028 + }, + { + "epoch": 5.138235596179522, + "grad_norm": 0.0869307816028595, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 50031 + }, + { + "epoch": 5.138543699291363, + "grad_norm": 0.07645547389984131, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 50034 + }, + { + "epoch": 5.138851802403204, + "grad_norm": 0.09578394144773483, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 50037 + }, + { + "epoch": 5.139159905515045, + "grad_norm": 0.09977228194475174, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 50040 + }, + { + "epoch": 5.139468008626887, + "grad_norm": 0.05820827558636665, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 50043 + }, + { + "epoch": 5.139776111738729, + "grad_norm": 0.03890974819660187, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 50046 + }, + { + "epoch": 5.14008421485057, + "grad_norm": 0.10406100749969482, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 50049 + }, + { + "epoch": 5.140392317962411, + "grad_norm": 0.057227544486522675, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 50052 + }, + { + "epoch": 5.140700421074253, + "grad_norm": 0.07142063230276108, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 50055 + }, + { + "epoch": 5.141008524186094, + "grad_norm": 0.047450605779886246, + "learning_rate": 0.01, + "loss": 2.0203, + "step": 50058 + }, + { + "epoch": 5.141316627297936, + "grad_norm": 0.07935485243797302, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 50061 + }, + { + "epoch": 5.141624730409777, + "grad_norm": 0.14235766232013702, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 50064 + }, + { + "epoch": 5.141932833521619, + "grad_norm": 0.054345373064279556, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 50067 + }, + { + "epoch": 5.14224093663346, + "grad_norm": 0.03830769658088684, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 50070 + }, + { + "epoch": 5.142549039745301, + "grad_norm": 0.034983497112989426, + "learning_rate": 0.01, + "loss": 2.005, + "step": 50073 + }, + { + "epoch": 5.142857142857143, + "grad_norm": 0.05580296739935875, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 50076 + }, + { + "epoch": 5.1431652459689845, + "grad_norm": 0.11556407809257507, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 50079 + }, + { + "epoch": 5.143473349080826, + "grad_norm": 0.05813178792595863, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 50082 + }, + { + "epoch": 5.143781452192667, + "grad_norm": 0.08391161262989044, + "learning_rate": 0.01, + "loss": 2.008, + "step": 50085 + }, + { + "epoch": 5.144089555304508, + "grad_norm": 0.1391163021326065, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 50088 + }, + { + "epoch": 5.14439765841635, + "grad_norm": 0.038378529250621796, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 50091 + }, + { + "epoch": 5.144705761528192, + "grad_norm": 0.03499170020222664, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 50094 + }, + { + "epoch": 5.145013864640033, + "grad_norm": 0.038385018706321716, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 50097 + }, + { + "epoch": 5.145321967751874, + "grad_norm": 0.04664738476276398, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 50100 + }, + { + "epoch": 5.1456300708637155, + "grad_norm": 0.05988583341240883, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 50103 + }, + { + "epoch": 5.145938173975557, + "grad_norm": 0.05822984501719475, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 50106 + }, + { + "epoch": 5.146246277087399, + "grad_norm": 0.1176968440413475, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 50109 + }, + { + "epoch": 5.14655438019924, + "grad_norm": 0.04409262165427208, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 50112 + }, + { + "epoch": 5.146862483311081, + "grad_norm": 0.18404054641723633, + "learning_rate": 0.01, + "loss": 2.0388, + "step": 50115 + }, + { + "epoch": 5.147170586422923, + "grad_norm": 0.07370147854089737, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 50118 + }, + { + "epoch": 5.147478689534764, + "grad_norm": 0.05898935720324516, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 50121 + }, + { + "epoch": 5.147786792646606, + "grad_norm": 0.04993924871087074, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 50124 + }, + { + "epoch": 5.148094895758447, + "grad_norm": 0.07191821932792664, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 50127 + }, + { + "epoch": 5.148402998870289, + "grad_norm": 0.06233205646276474, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 50130 + }, + { + "epoch": 5.14871110198213, + "grad_norm": 0.10599711537361145, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 50133 + }, + { + "epoch": 5.149019205093971, + "grad_norm": 0.05540407449007034, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 50136 + }, + { + "epoch": 5.149327308205813, + "grad_norm": 0.0512741319835186, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 50139 + }, + { + "epoch": 5.149635411317655, + "grad_norm": 0.060490820556879044, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 50142 + }, + { + "epoch": 5.149943514429496, + "grad_norm": 0.03850322216749191, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 50145 + }, + { + "epoch": 5.150251617541337, + "grad_norm": 0.12944872677326202, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 50148 + }, + { + "epoch": 5.150559720653178, + "grad_norm": 0.1282481700181961, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 50151 + }, + { + "epoch": 5.15086782376502, + "grad_norm": 0.09446661174297333, + "learning_rate": 0.01, + "loss": 2.011, + "step": 50154 + }, + { + "epoch": 5.151175926876862, + "grad_norm": 0.04041890799999237, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 50157 + }, + { + "epoch": 5.151484029988703, + "grad_norm": 0.056447647511959076, + "learning_rate": 0.01, + "loss": 2.008, + "step": 50160 + }, + { + "epoch": 5.151792133100544, + "grad_norm": 0.0449320413172245, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 50163 + }, + { + "epoch": 5.1521002362123856, + "grad_norm": 0.07914337515830994, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 50166 + }, + { + "epoch": 5.152408339324227, + "grad_norm": 0.06510215252637863, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 50169 + }, + { + "epoch": 5.152716442436069, + "grad_norm": 0.04413073882460594, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 50172 + }, + { + "epoch": 5.15302454554791, + "grad_norm": 0.045415036380290985, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 50175 + }, + { + "epoch": 5.1533326486597515, + "grad_norm": 0.04759620502591133, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 50178 + }, + { + "epoch": 5.153640751771593, + "grad_norm": 0.08537039160728455, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 50181 + }, + { + "epoch": 5.153948854883434, + "grad_norm": 0.10971151292324066, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 50184 + }, + { + "epoch": 5.154256957995276, + "grad_norm": 0.04773986339569092, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 50187 + }, + { + "epoch": 5.154565061107117, + "grad_norm": 0.13717158138751984, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 50190 + }, + { + "epoch": 5.154873164218959, + "grad_norm": 0.05396975204348564, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 50193 + }, + { + "epoch": 5.1551812673308, + "grad_norm": 0.03611796349287033, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 50196 + }, + { + "epoch": 5.155489370442641, + "grad_norm": 0.0544486828148365, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 50199 + }, + { + "epoch": 5.1557974735544825, + "grad_norm": 0.1198575496673584, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 50202 + }, + { + "epoch": 5.156105576666325, + "grad_norm": 0.04922753944993019, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 50205 + }, + { + "epoch": 5.156413679778166, + "grad_norm": 0.07132868468761444, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 50208 + }, + { + "epoch": 5.156721782890007, + "grad_norm": 0.06232021376490593, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 50211 + }, + { + "epoch": 5.157029886001848, + "grad_norm": 0.0492694191634655, + "learning_rate": 0.01, + "loss": 2.017, + "step": 50214 + }, + { + "epoch": 5.15733798911369, + "grad_norm": 0.040781404823064804, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 50217 + }, + { + "epoch": 5.157646092225532, + "grad_norm": 0.04086026921868324, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 50220 + }, + { + "epoch": 5.157954195337373, + "grad_norm": 0.04154505580663681, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 50223 + }, + { + "epoch": 5.158262298449214, + "grad_norm": 0.043042492121458054, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 50226 + }, + { + "epoch": 5.158570401561056, + "grad_norm": 0.10211813449859619, + "learning_rate": 0.01, + "loss": 2.014, + "step": 50229 + }, + { + "epoch": 5.158878504672897, + "grad_norm": 0.0644875019788742, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 50232 + }, + { + "epoch": 5.159186607784739, + "grad_norm": 0.09346074610948563, + "learning_rate": 0.01, + "loss": 2.0304, + "step": 50235 + }, + { + "epoch": 5.15949471089658, + "grad_norm": 0.04961559548974037, + "learning_rate": 0.01, + "loss": 2.0267, + "step": 50238 + }, + { + "epoch": 5.159802814008422, + "grad_norm": 0.07135666906833649, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 50241 + }, + { + "epoch": 5.160110917120263, + "grad_norm": 0.0363953560590744, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 50244 + }, + { + "epoch": 5.160419020232104, + "grad_norm": 0.05364762246608734, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 50247 + }, + { + "epoch": 5.160727123343945, + "grad_norm": 0.07405871897935867, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 50250 + }, + { + "epoch": 5.1610352264557875, + "grad_norm": 0.06045752391219139, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 50253 + }, + { + "epoch": 5.161343329567629, + "grad_norm": 0.05497819930315018, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 50256 + }, + { + "epoch": 5.16165143267947, + "grad_norm": 0.12490664422512054, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 50259 + }, + { + "epoch": 5.161959535791311, + "grad_norm": 0.04628274589776993, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 50262 + }, + { + "epoch": 5.1622676389031525, + "grad_norm": 0.06884883344173431, + "learning_rate": 0.01, + "loss": 2.021, + "step": 50265 + }, + { + "epoch": 5.162575742014995, + "grad_norm": 0.057228926569223404, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 50268 + }, + { + "epoch": 5.162883845126836, + "grad_norm": 0.05467236414551735, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 50271 + }, + { + "epoch": 5.163191948238677, + "grad_norm": 0.10743111371994019, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 50274 + }, + { + "epoch": 5.1635000513505185, + "grad_norm": 0.06426141411066055, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 50277 + }, + { + "epoch": 5.16380815446236, + "grad_norm": 0.09047043323516846, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 50280 + }, + { + "epoch": 5.164116257574202, + "grad_norm": 0.032664790749549866, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 50283 + }, + { + "epoch": 5.164424360686043, + "grad_norm": 0.05022372305393219, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 50286 + }, + { + "epoch": 5.164732463797884, + "grad_norm": 0.06359392404556274, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 50289 + }, + { + "epoch": 5.165040566909726, + "grad_norm": 0.0480986088514328, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 50292 + }, + { + "epoch": 5.165348670021567, + "grad_norm": 0.04164107143878937, + "learning_rate": 0.01, + "loss": 1.994, + "step": 50295 + }, + { + "epoch": 5.165656773133408, + "grad_norm": 0.06567779183387756, + "learning_rate": 0.01, + "loss": 2.0243, + "step": 50298 + }, + { + "epoch": 5.16596487624525, + "grad_norm": 0.11087372153997421, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 50301 + }, + { + "epoch": 5.166272979357092, + "grad_norm": 0.056734826415777206, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 50304 + }, + { + "epoch": 5.166581082468933, + "grad_norm": 0.06245841085910797, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 50307 + }, + { + "epoch": 5.166889185580774, + "grad_norm": 0.07361923158168793, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 50310 + }, + { + "epoch": 5.167197288692615, + "grad_norm": 0.08085532486438751, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 50313 + }, + { + "epoch": 5.167505391804458, + "grad_norm": 0.08500105887651443, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 50316 + }, + { + "epoch": 5.167813494916299, + "grad_norm": 0.07736580818891525, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 50319 + }, + { + "epoch": 5.16812159802814, + "grad_norm": 0.08762416243553162, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 50322 + }, + { + "epoch": 5.168429701139981, + "grad_norm": 0.05399163439869881, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 50325 + }, + { + "epoch": 5.168737804251823, + "grad_norm": 0.05431235954165459, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 50328 + }, + { + "epoch": 5.169045907363665, + "grad_norm": 0.04496511071920395, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 50331 + }, + { + "epoch": 5.169354010475506, + "grad_norm": 0.04711058363318443, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 50334 + }, + { + "epoch": 5.169662113587347, + "grad_norm": 0.08989371359348297, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 50337 + }, + { + "epoch": 5.1699702166991885, + "grad_norm": 0.048945628106594086, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 50340 + }, + { + "epoch": 5.17027831981103, + "grad_norm": 0.09270982444286346, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 50343 + }, + { + "epoch": 5.170586422922872, + "grad_norm": 0.05704176053404808, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 50346 + }, + { + "epoch": 5.170894526034713, + "grad_norm": 0.03455890342593193, + "learning_rate": 0.01, + "loss": 2.0412, + "step": 50349 + }, + { + "epoch": 5.1712026291465545, + "grad_norm": 0.041682351380586624, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 50352 + }, + { + "epoch": 5.171510732258396, + "grad_norm": 0.04951677471399307, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 50355 + }, + { + "epoch": 5.171818835370237, + "grad_norm": 0.056010644882917404, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 50358 + }, + { + "epoch": 5.172126938482078, + "grad_norm": 0.1273152083158493, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 50361 + }, + { + "epoch": 5.17243504159392, + "grad_norm": 0.08742735534906387, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 50364 + }, + { + "epoch": 5.172743144705762, + "grad_norm": 0.03796623274683952, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 50367 + }, + { + "epoch": 5.173051247817603, + "grad_norm": 0.035885389894247055, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 50370 + }, + { + "epoch": 5.173359350929444, + "grad_norm": 0.040873028337955475, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 50373 + }, + { + "epoch": 5.1736674540412855, + "grad_norm": 0.03645748645067215, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 50376 + }, + { + "epoch": 5.173975557153128, + "grad_norm": 0.08969543129205704, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 50379 + }, + { + "epoch": 5.174283660264969, + "grad_norm": 0.05043506622314453, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 50382 + }, + { + "epoch": 5.17459176337681, + "grad_norm": 0.053546857088804245, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 50385 + }, + { + "epoch": 5.174899866488651, + "grad_norm": 0.03222036734223366, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 50388 + }, + { + "epoch": 5.175207969600493, + "grad_norm": 0.07949094474315643, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 50391 + }, + { + "epoch": 5.175516072712334, + "grad_norm": 0.0858977660536766, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 50394 + }, + { + "epoch": 5.175824175824176, + "grad_norm": 0.10471560060977936, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 50397 + }, + { + "epoch": 5.176132278936017, + "grad_norm": 0.10742645710706711, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 50400 + }, + { + "epoch": 5.176440382047859, + "grad_norm": 0.035415954887866974, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 50403 + }, + { + "epoch": 5.1767484851597, + "grad_norm": 0.043476980179548264, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 50406 + }, + { + "epoch": 5.177056588271541, + "grad_norm": 0.05659857392311096, + "learning_rate": 0.01, + "loss": 2.006, + "step": 50409 + }, + { + "epoch": 5.177364691383383, + "grad_norm": 0.09809272736310959, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 50412 + }, + { + "epoch": 5.1776727944952246, + "grad_norm": 0.0645933598279953, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 50415 + }, + { + "epoch": 5.177980897607066, + "grad_norm": 0.11137600988149643, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 50418 + }, + { + "epoch": 5.178289000718907, + "grad_norm": 0.03614633530378342, + "learning_rate": 0.01, + "loss": 2.0087, + "step": 50421 + }, + { + "epoch": 5.178597103830748, + "grad_norm": 0.09580224752426147, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 50424 + }, + { + "epoch": 5.1789052069425905, + "grad_norm": 0.0874679684638977, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 50427 + }, + { + "epoch": 5.179213310054432, + "grad_norm": 0.06637660413980484, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 50430 + }, + { + "epoch": 5.179521413166273, + "grad_norm": 0.049818407744169235, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 50433 + }, + { + "epoch": 5.179829516278114, + "grad_norm": 0.035875897854566574, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 50436 + }, + { + "epoch": 5.1801376193899555, + "grad_norm": 0.12956075370311737, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 50439 + }, + { + "epoch": 5.180445722501798, + "grad_norm": 0.0568457767367363, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 50442 + }, + { + "epoch": 5.180753825613639, + "grad_norm": 0.06275864690542221, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 50445 + }, + { + "epoch": 5.18106192872548, + "grad_norm": 0.07609914243221283, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 50448 + }, + { + "epoch": 5.1813700318373215, + "grad_norm": 0.0721612498164177, + "learning_rate": 0.01, + "loss": 2.0329, + "step": 50451 + }, + { + "epoch": 5.181678134949163, + "grad_norm": 0.08733054995536804, + "learning_rate": 0.01, + "loss": 1.9605, + "step": 50454 + }, + { + "epoch": 5.181986238061004, + "grad_norm": 0.10601712018251419, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 50457 + }, + { + "epoch": 5.182294341172846, + "grad_norm": 0.17671173810958862, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 50460 + }, + { + "epoch": 5.182602444284687, + "grad_norm": 0.08600035309791565, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 50463 + }, + { + "epoch": 5.182910547396529, + "grad_norm": 0.05488591641187668, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 50466 + }, + { + "epoch": 5.18321865050837, + "grad_norm": 0.08030954003334045, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 50469 + }, + { + "epoch": 5.183526753620211, + "grad_norm": 0.05973450466990471, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 50472 + }, + { + "epoch": 5.183834856732053, + "grad_norm": 0.07898557931184769, + "learning_rate": 0.01, + "loss": 2.0174, + "step": 50475 + }, + { + "epoch": 5.184142959843895, + "grad_norm": 0.10037455707788467, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 50478 + }, + { + "epoch": 5.184451062955736, + "grad_norm": 0.08369861543178558, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 50481 + }, + { + "epoch": 5.184759166067577, + "grad_norm": 0.06350437551736832, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 50484 + }, + { + "epoch": 5.185067269179418, + "grad_norm": 0.05332079157233238, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 50487 + }, + { + "epoch": 5.1853753722912606, + "grad_norm": 0.09419017285108566, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 50490 + }, + { + "epoch": 5.185683475403102, + "grad_norm": 0.05123918130993843, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 50493 + }, + { + "epoch": 5.185991578514943, + "grad_norm": 0.08905530720949173, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 50496 + }, + { + "epoch": 5.186299681626784, + "grad_norm": 0.04132084175944328, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 50499 + }, + { + "epoch": 5.186607784738626, + "grad_norm": 0.04010608792304993, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 50502 + }, + { + "epoch": 5.186915887850467, + "grad_norm": 0.035268135368824005, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 50505 + }, + { + "epoch": 5.187223990962309, + "grad_norm": 0.07214079797267914, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 50508 + }, + { + "epoch": 5.18753209407415, + "grad_norm": 0.0641101822257042, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 50511 + }, + { + "epoch": 5.1878401971859915, + "grad_norm": 0.05329526588320732, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 50514 + }, + { + "epoch": 5.188148300297833, + "grad_norm": 0.10318466275930405, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 50517 + }, + { + "epoch": 5.188456403409674, + "grad_norm": 0.04416116699576378, + "learning_rate": 0.01, + "loss": 2.0333, + "step": 50520 + }, + { + "epoch": 5.188764506521516, + "grad_norm": 0.03857633098959923, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 50523 + }, + { + "epoch": 5.1890726096333575, + "grad_norm": 0.054197683930397034, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 50526 + }, + { + "epoch": 5.189380712745199, + "grad_norm": 0.045404430478811264, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 50529 + }, + { + "epoch": 5.18968881585704, + "grad_norm": 0.10853458195924759, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 50532 + }, + { + "epoch": 5.189996918968881, + "grad_norm": 0.043089404702186584, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 50535 + }, + { + "epoch": 5.190305022080723, + "grad_norm": 0.05289897695183754, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 50538 + }, + { + "epoch": 5.190613125192565, + "grad_norm": 0.06284762918949127, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 50541 + }, + { + "epoch": 5.190921228304406, + "grad_norm": 0.0615723617374897, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 50544 + }, + { + "epoch": 5.191229331416247, + "grad_norm": 0.10425807535648346, + "learning_rate": 0.01, + "loss": 2.003, + "step": 50547 + }, + { + "epoch": 5.1915374345280885, + "grad_norm": 0.09661048650741577, + "learning_rate": 0.01, + "loss": 2.004, + "step": 50550 + }, + { + "epoch": 5.19184553763993, + "grad_norm": 0.059544507414102554, + "learning_rate": 0.01, + "loss": 2.0324, + "step": 50553 + }, + { + "epoch": 5.192153640751772, + "grad_norm": 0.08903210610151291, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 50556 + }, + { + "epoch": 5.192461743863613, + "grad_norm": 0.04461904987692833, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 50559 + }, + { + "epoch": 5.192769846975454, + "grad_norm": 0.07844073325395584, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 50562 + }, + { + "epoch": 5.193077950087296, + "grad_norm": 0.08520335704088211, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 50565 + }, + { + "epoch": 5.193386053199137, + "grad_norm": 0.13090673089027405, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 50568 + }, + { + "epoch": 5.193694156310979, + "grad_norm": 0.08202611654996872, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 50571 + }, + { + "epoch": 5.19400225942282, + "grad_norm": 0.05638153478503227, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 50574 + }, + { + "epoch": 5.194310362534662, + "grad_norm": 0.03813661262392998, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 50577 + }, + { + "epoch": 5.194618465646503, + "grad_norm": 0.13044418394565582, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 50580 + }, + { + "epoch": 5.194926568758344, + "grad_norm": 0.04875580221414566, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 50583 + }, + { + "epoch": 5.195234671870186, + "grad_norm": 0.03675463795661926, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 50586 + }, + { + "epoch": 5.1955427749820275, + "grad_norm": 0.050565268844366074, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 50589 + }, + { + "epoch": 5.195850878093869, + "grad_norm": 0.08294785022735596, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 50592 + }, + { + "epoch": 5.19615898120571, + "grad_norm": 0.04059421271085739, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 50595 + }, + { + "epoch": 5.196467084317551, + "grad_norm": 0.044956889003515244, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 50598 + }, + { + "epoch": 5.1967751874293935, + "grad_norm": 0.11942701786756516, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 50601 + }, + { + "epoch": 5.197083290541235, + "grad_norm": 0.04948386549949646, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 50604 + }, + { + "epoch": 5.197391393653076, + "grad_norm": 0.08146567642688751, + "learning_rate": 0.01, + "loss": 2.0315, + "step": 50607 + }, + { + "epoch": 5.197699496764917, + "grad_norm": 0.0451958030462265, + "learning_rate": 0.01, + "loss": 2.0138, + "step": 50610 + }, + { + "epoch": 5.1980075998767585, + "grad_norm": 0.036100223660469055, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 50613 + }, + { + "epoch": 5.1983157029886, + "grad_norm": 0.035324469208717346, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 50616 + }, + { + "epoch": 5.198623806100442, + "grad_norm": 0.05005744844675064, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 50619 + }, + { + "epoch": 5.198931909212283, + "grad_norm": 0.08080115169286728, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 50622 + }, + { + "epoch": 5.1992400123241245, + "grad_norm": 0.07723166048526764, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 50625 + }, + { + "epoch": 5.199548115435966, + "grad_norm": 0.11351467669010162, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 50628 + }, + { + "epoch": 5.199856218547807, + "grad_norm": 0.03940621018409729, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 50631 + }, + { + "epoch": 5.200164321659649, + "grad_norm": 0.06582506000995636, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 50634 + }, + { + "epoch": 5.20047242477149, + "grad_norm": 0.030670402571558952, + "learning_rate": 0.01, + "loss": 1.979, + "step": 50637 + }, + { + "epoch": 5.200780527883332, + "grad_norm": 0.06636448204517365, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 50640 + }, + { + "epoch": 5.201088630995173, + "grad_norm": 0.06079031527042389, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 50643 + }, + { + "epoch": 5.201396734107014, + "grad_norm": 0.1049150750041008, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 50646 + }, + { + "epoch": 5.2017048372188555, + "grad_norm": 0.08547158539295197, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 50649 + }, + { + "epoch": 5.202012940330698, + "grad_norm": 0.06914935261011124, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 50652 + }, + { + "epoch": 5.202321043442539, + "grad_norm": 0.05997157096862793, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 50655 + }, + { + "epoch": 5.20262914655438, + "grad_norm": 0.052482035011053085, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 50658 + }, + { + "epoch": 5.202937249666221, + "grad_norm": 0.12078742682933807, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 50661 + }, + { + "epoch": 5.203245352778063, + "grad_norm": 0.08411680161952972, + "learning_rate": 0.01, + "loss": 2.0155, + "step": 50664 + }, + { + "epoch": 5.203553455889905, + "grad_norm": 0.06186600774526596, + "learning_rate": 0.01, + "loss": 2.022, + "step": 50667 + }, + { + "epoch": 5.203861559001746, + "grad_norm": 0.09473706781864166, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 50670 + }, + { + "epoch": 5.204169662113587, + "grad_norm": 0.05376753211021423, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 50673 + }, + { + "epoch": 5.204477765225429, + "grad_norm": 0.08271234482526779, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 50676 + }, + { + "epoch": 5.20478586833727, + "grad_norm": 0.07704611122608185, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 50679 + }, + { + "epoch": 5.205093971449112, + "grad_norm": 0.0716482475399971, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 50682 + }, + { + "epoch": 5.205402074560953, + "grad_norm": 0.07560107111930847, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 50685 + }, + { + "epoch": 5.2057101776727945, + "grad_norm": 0.07398194819688797, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 50688 + }, + { + "epoch": 5.206018280784636, + "grad_norm": 0.09211590141057968, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 50691 + }, + { + "epoch": 5.206326383896477, + "grad_norm": 0.0511045902967453, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 50694 + }, + { + "epoch": 5.206634487008319, + "grad_norm": 0.046343546360731125, + "learning_rate": 0.01, + "loss": 1.989, + "step": 50697 + }, + { + "epoch": 5.2069425901201605, + "grad_norm": 0.0472230389714241, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 50700 + }, + { + "epoch": 5.207250693232002, + "grad_norm": 0.09529436379671097, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 50703 + }, + { + "epoch": 5.207558796343843, + "grad_norm": 0.15323568880558014, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 50706 + }, + { + "epoch": 5.207866899455684, + "grad_norm": 0.1495465189218521, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 50709 + }, + { + "epoch": 5.2081750025675255, + "grad_norm": 0.09416273981332779, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 50712 + }, + { + "epoch": 5.208483105679368, + "grad_norm": 0.05051533132791519, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 50715 + }, + { + "epoch": 5.208791208791209, + "grad_norm": 0.03743917867541313, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 50718 + }, + { + "epoch": 5.20909931190305, + "grad_norm": 0.04133860394358635, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 50721 + }, + { + "epoch": 5.2094074150148915, + "grad_norm": 0.05624905601143837, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 50724 + }, + { + "epoch": 5.209715518126733, + "grad_norm": 0.04526040330529213, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 50727 + }, + { + "epoch": 5.210023621238575, + "grad_norm": 0.06159577891230583, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 50730 + }, + { + "epoch": 5.210331724350416, + "grad_norm": 0.10257083177566528, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 50733 + }, + { + "epoch": 5.210639827462257, + "grad_norm": 0.0896536186337471, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 50736 + }, + { + "epoch": 5.210947930574099, + "grad_norm": 0.0499761626124382, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 50739 + }, + { + "epoch": 5.21125603368594, + "grad_norm": 0.044219888746738434, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 50742 + }, + { + "epoch": 5.211564136797782, + "grad_norm": 0.056992996484041214, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 50745 + }, + { + "epoch": 5.211872239909623, + "grad_norm": 0.10208120197057724, + "learning_rate": 0.01, + "loss": 2.014, + "step": 50748 + }, + { + "epoch": 5.212180343021465, + "grad_norm": 0.07243528962135315, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 50751 + }, + { + "epoch": 5.212488446133306, + "grad_norm": 0.04413043335080147, + "learning_rate": 0.01, + "loss": 1.996, + "step": 50754 + }, + { + "epoch": 5.212796549245147, + "grad_norm": 0.09615755081176758, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 50757 + }, + { + "epoch": 5.213104652356988, + "grad_norm": 0.04845009744167328, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 50760 + }, + { + "epoch": 5.2134127554688305, + "grad_norm": 0.12175197154283524, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 50763 + }, + { + "epoch": 5.213720858580672, + "grad_norm": 0.045076884329319, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 50766 + }, + { + "epoch": 5.214028961692513, + "grad_norm": 0.07600415498018265, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 50769 + }, + { + "epoch": 5.214337064804354, + "grad_norm": 0.06227222830057144, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 50772 + }, + { + "epoch": 5.214645167916196, + "grad_norm": 0.10495235025882721, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 50775 + }, + { + "epoch": 5.214953271028038, + "grad_norm": 0.08388978242874146, + "learning_rate": 0.01, + "loss": 2.018, + "step": 50778 + }, + { + "epoch": 5.215261374139879, + "grad_norm": 0.07591544091701508, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 50781 + }, + { + "epoch": 5.21556947725172, + "grad_norm": 0.07411694526672363, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 50784 + }, + { + "epoch": 5.2158775803635615, + "grad_norm": 0.07496411353349686, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 50787 + }, + { + "epoch": 5.216185683475403, + "grad_norm": 0.07005130499601364, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 50790 + }, + { + "epoch": 5.216493786587245, + "grad_norm": 0.05165226384997368, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 50793 + }, + { + "epoch": 5.216801889699086, + "grad_norm": 0.09063982218503952, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 50796 + }, + { + "epoch": 5.2171099928109275, + "grad_norm": 0.03189365193247795, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 50799 + }, + { + "epoch": 5.217418095922769, + "grad_norm": 0.07051954418420792, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 50802 + }, + { + "epoch": 5.21772619903461, + "grad_norm": 0.045339349657297134, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 50805 + }, + { + "epoch": 5.218034302146451, + "grad_norm": 0.041392091661691666, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 50808 + }, + { + "epoch": 5.218342405258293, + "grad_norm": 0.05115804076194763, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 50811 + }, + { + "epoch": 5.218650508370135, + "grad_norm": 0.0681786835193634, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 50814 + }, + { + "epoch": 5.218958611481976, + "grad_norm": 0.057782597839832306, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 50817 + }, + { + "epoch": 5.219266714593817, + "grad_norm": 0.04151969403028488, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 50820 + }, + { + "epoch": 5.2195748177056585, + "grad_norm": 0.06815563142299652, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 50823 + }, + { + "epoch": 5.219882920817501, + "grad_norm": 0.1696784943342209, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 50826 + }, + { + "epoch": 5.220191023929342, + "grad_norm": 0.04126200079917908, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 50829 + }, + { + "epoch": 5.220499127041183, + "grad_norm": 0.03278988599777222, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 50832 + }, + { + "epoch": 5.220807230153024, + "grad_norm": 0.0632409155368805, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 50835 + }, + { + "epoch": 5.221115333264866, + "grad_norm": 0.06449749320745468, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 50838 + }, + { + "epoch": 5.221423436376708, + "grad_norm": 0.04530004784464836, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 50841 + }, + { + "epoch": 5.221731539488549, + "grad_norm": 0.06646733731031418, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 50844 + }, + { + "epoch": 5.22203964260039, + "grad_norm": 0.040766507387161255, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 50847 + }, + { + "epoch": 5.222347745712232, + "grad_norm": 0.04910712689161301, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 50850 + }, + { + "epoch": 5.222655848824073, + "grad_norm": 0.03790167346596718, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 50853 + }, + { + "epoch": 5.222963951935915, + "grad_norm": 0.04654322564601898, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 50856 + }, + { + "epoch": 5.223272055047756, + "grad_norm": 0.05322917550802231, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 50859 + }, + { + "epoch": 5.2235801581595975, + "grad_norm": 0.10331053286790848, + "learning_rate": 0.01, + "loss": 2.0289, + "step": 50862 + }, + { + "epoch": 5.223888261271439, + "grad_norm": 0.14793960750102997, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 50865 + }, + { + "epoch": 5.22419636438328, + "grad_norm": 0.06507808715105057, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 50868 + }, + { + "epoch": 5.224504467495121, + "grad_norm": 0.06138547509908676, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 50871 + }, + { + "epoch": 5.2248125706069635, + "grad_norm": 0.04522119089961052, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 50874 + }, + { + "epoch": 5.225120673718805, + "grad_norm": 0.044236768037080765, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 50877 + }, + { + "epoch": 5.225428776830646, + "grad_norm": 0.05313803628087044, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 50880 + }, + { + "epoch": 5.225736879942487, + "grad_norm": 0.06283990293741226, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 50883 + }, + { + "epoch": 5.2260449830543285, + "grad_norm": 0.05976197123527527, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 50886 + }, + { + "epoch": 5.226353086166171, + "grad_norm": 0.10755223780870438, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 50889 + }, + { + "epoch": 5.226661189278012, + "grad_norm": 0.040908023715019226, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 50892 + }, + { + "epoch": 5.226969292389853, + "grad_norm": 0.08019308000802994, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 50895 + }, + { + "epoch": 5.2272773955016945, + "grad_norm": 0.04088309779763222, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 50898 + }, + { + "epoch": 5.227585498613536, + "grad_norm": 0.06042852997779846, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 50901 + }, + { + "epoch": 5.227893601725377, + "grad_norm": 0.06619790196418762, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 50904 + }, + { + "epoch": 5.228201704837219, + "grad_norm": 0.0903916209936142, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 50907 + }, + { + "epoch": 5.22850980794906, + "grad_norm": 0.06611988693475723, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 50910 + }, + { + "epoch": 5.228817911060902, + "grad_norm": 0.07255574315786362, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 50913 + }, + { + "epoch": 5.229126014172743, + "grad_norm": 0.07492070645093918, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 50916 + }, + { + "epoch": 5.229434117284584, + "grad_norm": 0.07850334793329239, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 50919 + }, + { + "epoch": 5.229742220396426, + "grad_norm": 0.0485299751162529, + "learning_rate": 0.01, + "loss": 1.999, + "step": 50922 + }, + { + "epoch": 5.230050323508268, + "grad_norm": 0.09580907970666885, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 50925 + }, + { + "epoch": 5.230358426620109, + "grad_norm": 0.10689478367567062, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 50928 + }, + { + "epoch": 5.23066652973195, + "grad_norm": 0.08192954957485199, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 50931 + }, + { + "epoch": 5.230974632843791, + "grad_norm": 0.06330616772174835, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 50934 + }, + { + "epoch": 5.2312827359556335, + "grad_norm": 0.041825070977211, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 50937 + }, + { + "epoch": 5.231590839067475, + "grad_norm": 0.04370388388633728, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 50940 + }, + { + "epoch": 5.231898942179316, + "grad_norm": 0.039774972945451736, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 50943 + }, + { + "epoch": 5.232207045291157, + "grad_norm": 0.06065038964152336, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 50946 + }, + { + "epoch": 5.232515148402999, + "grad_norm": 0.1340397149324417, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 50949 + }, + { + "epoch": 5.232823251514841, + "grad_norm": 0.05149194970726967, + "learning_rate": 0.01, + "loss": 2.0259, + "step": 50952 + }, + { + "epoch": 5.233131354626682, + "grad_norm": 0.043973732739686966, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 50955 + }, + { + "epoch": 5.233439457738523, + "grad_norm": 0.034024860709905624, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 50958 + }, + { + "epoch": 5.2337475608503645, + "grad_norm": 0.03558748587965965, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 50961 + }, + { + "epoch": 5.234055663962206, + "grad_norm": 0.03661567345261574, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 50964 + }, + { + "epoch": 5.234363767074047, + "grad_norm": 0.11346925795078278, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 50967 + }, + { + "epoch": 5.234671870185889, + "grad_norm": 0.05934759974479675, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 50970 + }, + { + "epoch": 5.2349799732977305, + "grad_norm": 0.08264946192502975, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 50973 + }, + { + "epoch": 5.235288076409572, + "grad_norm": 0.0470314584672451, + "learning_rate": 0.01, + "loss": 2.001, + "step": 50976 + }, + { + "epoch": 5.235596179521413, + "grad_norm": 0.04239676892757416, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 50979 + }, + { + "epoch": 5.235904282633254, + "grad_norm": 0.09247265011072159, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 50982 + }, + { + "epoch": 5.236212385745096, + "grad_norm": 0.05270032957196236, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 50985 + }, + { + "epoch": 5.236520488856938, + "grad_norm": 0.0351402647793293, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 50988 + }, + { + "epoch": 5.236828591968779, + "grad_norm": 0.04401613771915436, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 50991 + }, + { + "epoch": 5.23713669508062, + "grad_norm": 0.0353761650621891, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 50994 + }, + { + "epoch": 5.2374447981924614, + "grad_norm": 0.13582314550876617, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 50997 + }, + { + "epoch": 5.237752901304304, + "grad_norm": 0.06481800973415375, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 51000 + }, + { + "epoch": 5.238061004416145, + "grad_norm": 0.06499173492193222, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 51003 + }, + { + "epoch": 5.238369107527986, + "grad_norm": 0.059027299284935, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 51006 + }, + { + "epoch": 5.238677210639827, + "grad_norm": 0.11211716383695602, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 51009 + }, + { + "epoch": 5.238985313751669, + "grad_norm": 0.041850294917821884, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 51012 + }, + { + "epoch": 5.23929341686351, + "grad_norm": 0.11037513613700867, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 51015 + }, + { + "epoch": 5.239601519975352, + "grad_norm": 0.06720243394374847, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 51018 + }, + { + "epoch": 5.239909623087193, + "grad_norm": 0.05992870405316353, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 51021 + }, + { + "epoch": 5.240217726199035, + "grad_norm": 0.046941906213760376, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 51024 + }, + { + "epoch": 5.240525829310876, + "grad_norm": 0.0415794812142849, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 51027 + }, + { + "epoch": 5.240833932422717, + "grad_norm": 0.046740952879190445, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 51030 + }, + { + "epoch": 5.241142035534559, + "grad_norm": 0.04328366369009018, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 51033 + }, + { + "epoch": 5.2414501386464005, + "grad_norm": 0.10686604678630829, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 51036 + }, + { + "epoch": 5.241758241758242, + "grad_norm": 0.0445748046040535, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 51039 + }, + { + "epoch": 5.242066344870083, + "grad_norm": 0.04299461841583252, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 51042 + }, + { + "epoch": 5.242374447981924, + "grad_norm": 0.06391250342130661, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 51045 + }, + { + "epoch": 5.2426825510937665, + "grad_norm": 0.03528610244393349, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 51048 + }, + { + "epoch": 5.242990654205608, + "grad_norm": 0.030670564621686935, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 51051 + }, + { + "epoch": 5.243298757317449, + "grad_norm": 0.11291905492544174, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 51054 + }, + { + "epoch": 5.24360686042929, + "grad_norm": 0.08508855104446411, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 51057 + }, + { + "epoch": 5.2439149635411315, + "grad_norm": 0.1319185048341751, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 51060 + }, + { + "epoch": 5.244223066652973, + "grad_norm": 0.08218291401863098, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 51063 + }, + { + "epoch": 5.244531169764815, + "grad_norm": 0.06311830878257751, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 51066 + }, + { + "epoch": 5.244839272876656, + "grad_norm": 0.03945956006646156, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 51069 + }, + { + "epoch": 5.2451473759884975, + "grad_norm": 0.045635320246219635, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 51072 + }, + { + "epoch": 5.245455479100339, + "grad_norm": 0.047721873968839645, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 51075 + }, + { + "epoch": 5.24576358221218, + "grad_norm": 0.04936512932181358, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 51078 + }, + { + "epoch": 5.246071685324022, + "grad_norm": 0.05856813117861748, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 51081 + }, + { + "epoch": 5.246379788435863, + "grad_norm": 0.05068356543779373, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 51084 + }, + { + "epoch": 5.246687891547705, + "grad_norm": 0.05900732800364494, + "learning_rate": 0.01, + "loss": 1.992, + "step": 51087 + }, + { + "epoch": 5.246995994659546, + "grad_norm": 0.12454086542129517, + "learning_rate": 0.01, + "loss": 2.02, + "step": 51090 + }, + { + "epoch": 5.247304097771387, + "grad_norm": 0.037892140448093414, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 51093 + }, + { + "epoch": 5.247612200883229, + "grad_norm": 0.07839351892471313, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 51096 + }, + { + "epoch": 5.247920303995071, + "grad_norm": 0.04203120246529579, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 51099 + }, + { + "epoch": 5.248228407106912, + "grad_norm": 0.07562438398599625, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 51102 + }, + { + "epoch": 5.248536510218753, + "grad_norm": 0.044604718685150146, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 51105 + }, + { + "epoch": 5.248844613330594, + "grad_norm": 0.09438357502222061, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 51108 + }, + { + "epoch": 5.249152716442436, + "grad_norm": 0.04773309826850891, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 51111 + }, + { + "epoch": 5.249460819554278, + "grad_norm": 0.033143848180770874, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 51114 + }, + { + "epoch": 5.249768922666119, + "grad_norm": 0.0772877037525177, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 51117 + }, + { + "epoch": 5.25007702577796, + "grad_norm": 0.054028406739234924, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 51120 + }, + { + "epoch": 5.250385128889802, + "grad_norm": 0.07667548954486847, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 51123 + }, + { + "epoch": 5.250693232001643, + "grad_norm": 0.06274887174367905, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 51126 + }, + { + "epoch": 5.251001335113485, + "grad_norm": 0.09405583888292313, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 51129 + }, + { + "epoch": 5.251309438225326, + "grad_norm": 0.06297732889652252, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 51132 + }, + { + "epoch": 5.2516175413371675, + "grad_norm": 0.08258040994405746, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 51135 + }, + { + "epoch": 5.251925644449009, + "grad_norm": 0.11019886285066605, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 51138 + }, + { + "epoch": 5.25223374756085, + "grad_norm": 0.06206972151994705, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 51141 + }, + { + "epoch": 5.252541850672692, + "grad_norm": 0.045681048184633255, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 51144 + }, + { + "epoch": 5.2528499537845335, + "grad_norm": 0.041622232645750046, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 51147 + }, + { + "epoch": 5.253158056896375, + "grad_norm": 0.05589982122182846, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 51150 + }, + { + "epoch": 5.253466160008216, + "grad_norm": 0.06394509226083755, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 51153 + }, + { + "epoch": 5.253774263120057, + "grad_norm": 0.05354580655694008, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 51156 + }, + { + "epoch": 5.2540823662318985, + "grad_norm": 0.06941652297973633, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 51159 + }, + { + "epoch": 5.254390469343741, + "grad_norm": 0.0771641731262207, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 51162 + }, + { + "epoch": 5.254698572455582, + "grad_norm": 0.08898761868476868, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 51165 + }, + { + "epoch": 5.255006675567423, + "grad_norm": 0.03489289805293083, + "learning_rate": 0.01, + "loss": 1.992, + "step": 51168 + }, + { + "epoch": 5.255314778679264, + "grad_norm": 0.0783892497420311, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 51171 + }, + { + "epoch": 5.255622881791106, + "grad_norm": 0.08177445828914642, + "learning_rate": 0.01, + "loss": 2.01, + "step": 51174 + }, + { + "epoch": 5.255930984902948, + "grad_norm": 0.04709051921963692, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 51177 + }, + { + "epoch": 5.256239088014789, + "grad_norm": 0.13084626197814941, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 51180 + }, + { + "epoch": 5.25654719112663, + "grad_norm": 0.04432738944888115, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 51183 + }, + { + "epoch": 5.256855294238472, + "grad_norm": 0.053161200135946274, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 51186 + }, + { + "epoch": 5.257163397350313, + "grad_norm": 0.039357706904411316, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 51189 + }, + { + "epoch": 5.257471500462155, + "grad_norm": 0.052901457995176315, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 51192 + }, + { + "epoch": 5.257779603573996, + "grad_norm": 0.11097205430269241, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 51195 + }, + { + "epoch": 5.258087706685838, + "grad_norm": 0.07301553338766098, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 51198 + }, + { + "epoch": 5.258395809797679, + "grad_norm": 0.17759805917739868, + "learning_rate": 0.01, + "loss": 2.0266, + "step": 51201 + }, + { + "epoch": 5.25870391290952, + "grad_norm": 0.07599959522485733, + "learning_rate": 0.01, + "loss": 1.982, + "step": 51204 + }, + { + "epoch": 5.259012016021362, + "grad_norm": 0.13010208308696747, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 51207 + }, + { + "epoch": 5.2593201191332035, + "grad_norm": 0.07105369120836258, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 51210 + }, + { + "epoch": 5.259628222245045, + "grad_norm": 0.16369540989398956, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 51213 + }, + { + "epoch": 5.259936325356886, + "grad_norm": 0.11588908731937408, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 51216 + }, + { + "epoch": 5.260244428468727, + "grad_norm": 0.045902661979198456, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 51219 + }, + { + "epoch": 5.260552531580569, + "grad_norm": 0.04714805632829666, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 51222 + }, + { + "epoch": 5.260860634692411, + "grad_norm": 0.05099105089902878, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 51225 + }, + { + "epoch": 5.261168737804252, + "grad_norm": 0.050430044531822205, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 51228 + }, + { + "epoch": 5.261476840916093, + "grad_norm": 0.03998453542590141, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 51231 + }, + { + "epoch": 5.2617849440279345, + "grad_norm": 0.05709048733115196, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 51234 + }, + { + "epoch": 5.262093047139776, + "grad_norm": 0.04667646437883377, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 51237 + }, + { + "epoch": 5.262401150251618, + "grad_norm": 0.0413067601621151, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 51240 + }, + { + "epoch": 5.262709253363459, + "grad_norm": 0.037300482392311096, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 51243 + }, + { + "epoch": 5.2630173564753004, + "grad_norm": 0.10188855230808258, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 51246 + }, + { + "epoch": 5.263325459587142, + "grad_norm": 0.060019396245479584, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 51249 + }, + { + "epoch": 5.263633562698983, + "grad_norm": 0.07587499171495438, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 51252 + }, + { + "epoch": 5.263941665810824, + "grad_norm": 0.17544515430927277, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 51255 + }, + { + "epoch": 5.264249768922666, + "grad_norm": 0.046111736446619034, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 51258 + }, + { + "epoch": 5.264557872034508, + "grad_norm": 0.03697605058550835, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 51261 + }, + { + "epoch": 5.264865975146349, + "grad_norm": 0.04376983270049095, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 51264 + }, + { + "epoch": 5.26517407825819, + "grad_norm": 0.06879153102636337, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 51267 + }, + { + "epoch": 5.265482181370031, + "grad_norm": 0.05067580193281174, + "learning_rate": 0.01, + "loss": 1.987, + "step": 51270 + }, + { + "epoch": 5.265790284481874, + "grad_norm": 0.04876921325922012, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 51273 + }, + { + "epoch": 5.266098387593715, + "grad_norm": 0.08174460381269455, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 51276 + }, + { + "epoch": 5.266406490705556, + "grad_norm": 0.08350025117397308, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 51279 + }, + { + "epoch": 5.266714593817397, + "grad_norm": 0.10765060782432556, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 51282 + }, + { + "epoch": 5.267022696929239, + "grad_norm": 0.09596231579780579, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 51285 + }, + { + "epoch": 5.267330800041081, + "grad_norm": 0.03738878667354584, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 51288 + }, + { + "epoch": 5.267638903152922, + "grad_norm": 0.03415136784315109, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 51291 + }, + { + "epoch": 5.267947006264763, + "grad_norm": 0.04650856927037239, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 51294 + }, + { + "epoch": 5.268255109376605, + "grad_norm": 0.06548796594142914, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 51297 + }, + { + "epoch": 5.268563212488446, + "grad_norm": 0.05420374125242233, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 51300 + }, + { + "epoch": 5.268871315600288, + "grad_norm": 0.10747869312763214, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 51303 + }, + { + "epoch": 5.269179418712129, + "grad_norm": 0.03331341966986656, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 51306 + }, + { + "epoch": 5.2694875218239705, + "grad_norm": 0.10144448280334473, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 51309 + }, + { + "epoch": 5.269795624935812, + "grad_norm": 0.08695587515830994, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 51312 + }, + { + "epoch": 5.270103728047653, + "grad_norm": 0.053817540407180786, + "learning_rate": 0.01, + "loss": 2.026, + "step": 51315 + }, + { + "epoch": 5.270411831159494, + "grad_norm": 0.04269054904580116, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 51318 + }, + { + "epoch": 5.2707199342713364, + "grad_norm": 0.048786550760269165, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 51321 + }, + { + "epoch": 5.271028037383178, + "grad_norm": 0.0634552389383316, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 51324 + }, + { + "epoch": 5.271336140495019, + "grad_norm": 0.14295388758182526, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 51327 + }, + { + "epoch": 5.27164424360686, + "grad_norm": 0.05080576241016388, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 51330 + }, + { + "epoch": 5.2719523467187015, + "grad_norm": 0.06417543441057205, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 51333 + }, + { + "epoch": 5.272260449830544, + "grad_norm": 0.06565088778734207, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 51336 + }, + { + "epoch": 5.272568552942385, + "grad_norm": 0.028631992638111115, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 51339 + }, + { + "epoch": 5.272876656054226, + "grad_norm": 0.10242610424757004, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 51342 + }, + { + "epoch": 5.273184759166067, + "grad_norm": 0.11979396641254425, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 51345 + }, + { + "epoch": 5.273492862277909, + "grad_norm": 0.07476961612701416, + "learning_rate": 0.01, + "loss": 2.0282, + "step": 51348 + }, + { + "epoch": 5.273800965389751, + "grad_norm": 0.05603867769241333, + "learning_rate": 0.01, + "loss": 1.991, + "step": 51351 + }, + { + "epoch": 5.274109068501592, + "grad_norm": 0.04897085204720497, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 51354 + }, + { + "epoch": 5.274417171613433, + "grad_norm": 0.03439117968082428, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 51357 + }, + { + "epoch": 5.274725274725275, + "grad_norm": 0.08314791321754456, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 51360 + }, + { + "epoch": 5.275033377837116, + "grad_norm": 0.0685926079750061, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 51363 + }, + { + "epoch": 5.275341480948958, + "grad_norm": 0.088614821434021, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 51366 + }, + { + "epoch": 5.275649584060799, + "grad_norm": 0.03873438388109207, + "learning_rate": 0.01, + "loss": 2.001, + "step": 51369 + }, + { + "epoch": 5.275957687172641, + "grad_norm": 0.11569857597351074, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 51372 + }, + { + "epoch": 5.276265790284482, + "grad_norm": 0.11536852270364761, + "learning_rate": 0.01, + "loss": 2.024, + "step": 51375 + }, + { + "epoch": 5.276573893396323, + "grad_norm": 0.040931250900030136, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 51378 + }, + { + "epoch": 5.276881996508164, + "grad_norm": 0.13397638499736786, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 51381 + }, + { + "epoch": 5.2771900996200065, + "grad_norm": 0.045118771493434906, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 51384 + }, + { + "epoch": 5.277498202731848, + "grad_norm": 0.04626978933811188, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 51387 + }, + { + "epoch": 5.277806305843689, + "grad_norm": 0.03898259624838829, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 51390 + }, + { + "epoch": 5.27811440895553, + "grad_norm": 0.14309214055538177, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 51393 + }, + { + "epoch": 5.278422512067372, + "grad_norm": 0.11283177882432938, + "learning_rate": 0.01, + "loss": 1.986, + "step": 51396 + }, + { + "epoch": 5.278730615179214, + "grad_norm": 0.07250397652387619, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 51399 + }, + { + "epoch": 5.279038718291055, + "grad_norm": 0.04467407613992691, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 51402 + }, + { + "epoch": 5.279346821402896, + "grad_norm": 0.03758449852466583, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 51405 + }, + { + "epoch": 5.2796549245147375, + "grad_norm": 0.04290134087204933, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 51408 + }, + { + "epoch": 5.279963027626579, + "grad_norm": 0.21099735796451569, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 51411 + }, + { + "epoch": 5.28027113073842, + "grad_norm": 0.10676965117454529, + "learning_rate": 0.01, + "loss": 2.006, + "step": 51414 + }, + { + "epoch": 5.280579233850262, + "grad_norm": 0.11726178228855133, + "learning_rate": 0.01, + "loss": 2.0066, + "step": 51417 + }, + { + "epoch": 5.280887336962103, + "grad_norm": 0.06197341904044151, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 51420 + }, + { + "epoch": 5.281195440073945, + "grad_norm": 0.04718432575464249, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 51423 + }, + { + "epoch": 5.281503543185786, + "grad_norm": 0.049280427396297455, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 51426 + }, + { + "epoch": 5.281811646297627, + "grad_norm": 0.036890413612127304, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 51429 + }, + { + "epoch": 5.282119749409469, + "grad_norm": 0.03962325677275658, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 51432 + }, + { + "epoch": 5.282427852521311, + "grad_norm": 0.03786443546414375, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 51435 + }, + { + "epoch": 5.282735955633152, + "grad_norm": 0.06800255179405212, + "learning_rate": 0.01, + "loss": 1.965, + "step": 51438 + }, + { + "epoch": 5.283044058744993, + "grad_norm": 0.1254369616508484, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 51441 + }, + { + "epoch": 5.283352161856834, + "grad_norm": 0.10241379588842392, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 51444 + }, + { + "epoch": 5.283660264968677, + "grad_norm": 0.07036352902650833, + "learning_rate": 0.01, + "loss": 1.986, + "step": 51447 + }, + { + "epoch": 5.283968368080518, + "grad_norm": 0.04033416137099266, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 51450 + }, + { + "epoch": 5.284276471192359, + "grad_norm": 0.03396594151854515, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 51453 + }, + { + "epoch": 5.2845845743042, + "grad_norm": 0.038950271904468536, + "learning_rate": 0.01, + "loss": 1.99, + "step": 51456 + }, + { + "epoch": 5.284892677416042, + "grad_norm": 0.12410634011030197, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 51459 + }, + { + "epoch": 5.285200780527884, + "grad_norm": 0.08871324360370636, + "learning_rate": 0.01, + "loss": 2.0303, + "step": 51462 + }, + { + "epoch": 5.285508883639725, + "grad_norm": 0.06051253527402878, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 51465 + }, + { + "epoch": 5.285816986751566, + "grad_norm": 0.08062247186899185, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 51468 + }, + { + "epoch": 5.286125089863408, + "grad_norm": 0.09288395196199417, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 51471 + }, + { + "epoch": 5.286433192975249, + "grad_norm": 0.11983957886695862, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 51474 + }, + { + "epoch": 5.28674129608709, + "grad_norm": 0.12828132510185242, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 51477 + }, + { + "epoch": 5.287049399198932, + "grad_norm": 0.09051026403903961, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 51480 + }, + { + "epoch": 5.2873575023107735, + "grad_norm": 0.08622095733880997, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 51483 + }, + { + "epoch": 5.287665605422615, + "grad_norm": 0.0727437287569046, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 51486 + }, + { + "epoch": 5.287973708534456, + "grad_norm": 0.052949920296669006, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 51489 + }, + { + "epoch": 5.288281811646297, + "grad_norm": 0.04807107150554657, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 51492 + }, + { + "epoch": 5.288589914758139, + "grad_norm": 0.12251218408346176, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 51495 + }, + { + "epoch": 5.288898017869981, + "grad_norm": 0.07985778152942657, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 51498 + }, + { + "epoch": 5.289206120981822, + "grad_norm": 0.0659778043627739, + "learning_rate": 0.01, + "loss": 1.9511, + "step": 51501 + }, + { + "epoch": 5.289514224093663, + "grad_norm": 0.0646664947271347, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 51504 + }, + { + "epoch": 5.2898223272055045, + "grad_norm": 0.05297090485692024, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 51507 + }, + { + "epoch": 5.290130430317346, + "grad_norm": 0.039955638349056244, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 51510 + }, + { + "epoch": 5.290438533429188, + "grad_norm": 0.03601599857211113, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 51513 + }, + { + "epoch": 5.290746636541029, + "grad_norm": 0.03554227575659752, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 51516 + }, + { + "epoch": 5.29105473965287, + "grad_norm": 0.0429302453994751, + "learning_rate": 0.01, + "loss": 1.996, + "step": 51519 + }, + { + "epoch": 5.291362842764712, + "grad_norm": 0.07092410326004028, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 51522 + }, + { + "epoch": 5.291670945876553, + "grad_norm": 0.09126897156238556, + "learning_rate": 0.01, + "loss": 2.01, + "step": 51525 + }, + { + "epoch": 5.291979048988395, + "grad_norm": 0.08033829182386398, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 51528 + }, + { + "epoch": 5.292287152100236, + "grad_norm": 0.0636729821562767, + "learning_rate": 0.01, + "loss": 1.985, + "step": 51531 + }, + { + "epoch": 5.292595255212078, + "grad_norm": 0.05228522792458534, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 51534 + }, + { + "epoch": 5.292903358323919, + "grad_norm": 0.04770840331912041, + "learning_rate": 0.01, + "loss": 1.9626, + "step": 51537 + }, + { + "epoch": 5.29321146143576, + "grad_norm": 0.06592493504285812, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 51540 + }, + { + "epoch": 5.293519564547602, + "grad_norm": 0.043730318546295166, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 51543 + }, + { + "epoch": 5.293827667659444, + "grad_norm": 0.11756035685539246, + "learning_rate": 0.01, + "loss": 2.015, + "step": 51546 + }, + { + "epoch": 5.294135770771285, + "grad_norm": 0.05374009907245636, + "learning_rate": 0.01, + "loss": 1.978, + "step": 51549 + }, + { + "epoch": 5.294443873883126, + "grad_norm": 0.03395754098892212, + "learning_rate": 0.01, + "loss": 1.992, + "step": 51552 + }, + { + "epoch": 5.294751976994967, + "grad_norm": 0.04565683752298355, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 51555 + }, + { + "epoch": 5.2950600801068095, + "grad_norm": 0.06022532284259796, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 51558 + }, + { + "epoch": 5.295368183218651, + "grad_norm": 0.03321307152509689, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 51561 + }, + { + "epoch": 5.295676286330492, + "grad_norm": 0.09450728446245193, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 51564 + }, + { + "epoch": 5.295984389442333, + "grad_norm": 0.07322457432746887, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 51567 + }, + { + "epoch": 5.296292492554175, + "grad_norm": 0.07152074575424194, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 51570 + }, + { + "epoch": 5.296600595666016, + "grad_norm": 0.09634838998317719, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 51573 + }, + { + "epoch": 5.296908698777858, + "grad_norm": 0.055339280515909195, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 51576 + }, + { + "epoch": 5.297216801889699, + "grad_norm": 0.03655093163251877, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 51579 + }, + { + "epoch": 5.2975249050015405, + "grad_norm": 0.04170520231127739, + "learning_rate": 0.01, + "loss": 1.989, + "step": 51582 + }, + { + "epoch": 5.297833008113382, + "grad_norm": 0.04089641198515892, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 51585 + }, + { + "epoch": 5.298141111225223, + "grad_norm": 0.03209071606397629, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 51588 + }, + { + "epoch": 5.298449214337065, + "grad_norm": 0.040264058858156204, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 51591 + }, + { + "epoch": 5.298757317448906, + "grad_norm": 0.040750179439783096, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 51594 + }, + { + "epoch": 5.299065420560748, + "grad_norm": 0.09608472883701324, + "learning_rate": 0.01, + "loss": 2.025, + "step": 51597 + }, + { + "epoch": 5.299373523672589, + "grad_norm": 0.0965270921587944, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 51600 + }, + { + "epoch": 5.29968162678443, + "grad_norm": 0.07110472768545151, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 51603 + }, + { + "epoch": 5.2999897298962715, + "grad_norm": 0.08404947817325592, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 51606 + }, + { + "epoch": 5.300297833008114, + "grad_norm": 0.04731042683124542, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 51609 + }, + { + "epoch": 5.300605936119955, + "grad_norm": 0.045290857553482056, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 51612 + }, + { + "epoch": 5.300914039231796, + "grad_norm": 0.04302288219332695, + "learning_rate": 0.01, + "loss": 2.016, + "step": 51615 + }, + { + "epoch": 5.301222142343637, + "grad_norm": 0.04258449375629425, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 51618 + }, + { + "epoch": 5.301530245455479, + "grad_norm": 0.04786079004406929, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 51621 + }, + { + "epoch": 5.301838348567321, + "grad_norm": 0.14586381614208221, + "learning_rate": 0.01, + "loss": 1.994, + "step": 51624 + }, + { + "epoch": 5.302146451679162, + "grad_norm": 0.06271131336688995, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 51627 + }, + { + "epoch": 5.302454554791003, + "grad_norm": 0.05278899893164635, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 51630 + }, + { + "epoch": 5.302762657902845, + "grad_norm": 0.04671400785446167, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 51633 + }, + { + "epoch": 5.303070761014686, + "grad_norm": 0.07106892019510269, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 51636 + }, + { + "epoch": 5.303378864126528, + "grad_norm": 0.031581420451402664, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 51639 + }, + { + "epoch": 5.303686967238369, + "grad_norm": 0.04924008622765541, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 51642 + }, + { + "epoch": 5.303995070350211, + "grad_norm": 0.11483835428953171, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 51645 + }, + { + "epoch": 5.304303173462052, + "grad_norm": 0.07446176558732986, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 51648 + }, + { + "epoch": 5.304611276573893, + "grad_norm": 0.051111143082380295, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 51651 + }, + { + "epoch": 5.304919379685735, + "grad_norm": 0.040741320699453354, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 51654 + }, + { + "epoch": 5.3052274827975765, + "grad_norm": 0.06887371838092804, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 51657 + }, + { + "epoch": 5.305535585909418, + "grad_norm": 0.09351345151662827, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 51660 + }, + { + "epoch": 5.305843689021259, + "grad_norm": 0.0568513348698616, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 51663 + }, + { + "epoch": 5.3061517921331, + "grad_norm": 0.05117219313979149, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 51666 + }, + { + "epoch": 5.3064598952449415, + "grad_norm": 0.04374157264828682, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 51669 + }, + { + "epoch": 5.306767998356784, + "grad_norm": 0.04442832991480827, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 51672 + }, + { + "epoch": 5.307076101468625, + "grad_norm": 0.0560653991997242, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 51675 + }, + { + "epoch": 5.307384204580466, + "grad_norm": 0.11248762905597687, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 51678 + }, + { + "epoch": 5.3076923076923075, + "grad_norm": 0.05383045971393585, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 51681 + }, + { + "epoch": 5.308000410804149, + "grad_norm": 0.11476562172174454, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 51684 + }, + { + "epoch": 5.308308513915991, + "grad_norm": 0.04139787703752518, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 51687 + }, + { + "epoch": 5.308616617027832, + "grad_norm": 0.03532332554459572, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 51690 + }, + { + "epoch": 5.308924720139673, + "grad_norm": 0.04809233918786049, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 51693 + }, + { + "epoch": 5.309232823251515, + "grad_norm": 0.0827130451798439, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 51696 + }, + { + "epoch": 5.309540926363356, + "grad_norm": 0.05010407045483589, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 51699 + }, + { + "epoch": 5.309849029475198, + "grad_norm": 0.04733329638838768, + "learning_rate": 0.01, + "loss": 2.0, + "step": 51702 + }, + { + "epoch": 5.310157132587039, + "grad_norm": 0.03515147417783737, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 51705 + }, + { + "epoch": 5.310465235698881, + "grad_norm": 0.12705236673355103, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 51708 + }, + { + "epoch": 5.310773338810722, + "grad_norm": 0.04811834171414375, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 51711 + }, + { + "epoch": 5.311081441922563, + "grad_norm": 0.04282277077436447, + "learning_rate": 0.01, + "loss": 2.012, + "step": 51714 + }, + { + "epoch": 5.311389545034405, + "grad_norm": 0.039072856307029724, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 51717 + }, + { + "epoch": 5.311697648146247, + "grad_norm": 0.06571515649557114, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 51720 + }, + { + "epoch": 5.312005751258088, + "grad_norm": 0.10408081859350204, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 51723 + }, + { + "epoch": 5.312313854369929, + "grad_norm": 0.12248563021421432, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 51726 + }, + { + "epoch": 5.31262195748177, + "grad_norm": 0.1178579330444336, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 51729 + }, + { + "epoch": 5.312930060593612, + "grad_norm": 0.042379625141620636, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 51732 + }, + { + "epoch": 5.313238163705454, + "grad_norm": 0.05351175367832184, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 51735 + }, + { + "epoch": 5.313546266817295, + "grad_norm": 0.03492636978626251, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 51738 + }, + { + "epoch": 5.313854369929136, + "grad_norm": 0.037354279309511185, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 51741 + }, + { + "epoch": 5.3141624730409776, + "grad_norm": 0.0453021377325058, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 51744 + }, + { + "epoch": 5.314470576152819, + "grad_norm": 0.040230412036180496, + "learning_rate": 0.01, + "loss": 2.007, + "step": 51747 + }, + { + "epoch": 5.314778679264661, + "grad_norm": 0.1004524752497673, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 51750 + }, + { + "epoch": 5.315086782376502, + "grad_norm": 0.08435871452093124, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 51753 + }, + { + "epoch": 5.3153948854883435, + "grad_norm": 0.04728049412369728, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 51756 + }, + { + "epoch": 5.315702988600185, + "grad_norm": 0.043835487216711044, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 51759 + }, + { + "epoch": 5.316011091712026, + "grad_norm": 0.03761078417301178, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 51762 + }, + { + "epoch": 5.316319194823867, + "grad_norm": 0.11318635195493698, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 51765 + }, + { + "epoch": 5.316627297935709, + "grad_norm": 0.06980354338884354, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 51768 + }, + { + "epoch": 5.316935401047551, + "grad_norm": 0.09948752075433731, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 51771 + }, + { + "epoch": 5.317243504159392, + "grad_norm": 0.07391460239887238, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 51774 + }, + { + "epoch": 5.317551607271233, + "grad_norm": 0.06508208811283112, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 51777 + }, + { + "epoch": 5.3178597103830745, + "grad_norm": 0.0692305937409401, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 51780 + }, + { + "epoch": 5.318167813494917, + "grad_norm": 0.07129498571157455, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 51783 + }, + { + "epoch": 5.318475916606758, + "grad_norm": 0.05130002647638321, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 51786 + }, + { + "epoch": 5.318784019718599, + "grad_norm": 0.07163992524147034, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 51789 + }, + { + "epoch": 5.31909212283044, + "grad_norm": 0.09687676280736923, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 51792 + }, + { + "epoch": 5.319400225942282, + "grad_norm": 0.08195064216852188, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 51795 + }, + { + "epoch": 5.319708329054124, + "grad_norm": 0.05641806125640869, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 51798 + }, + { + "epoch": 5.320016432165965, + "grad_norm": 0.06832972913980484, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 51801 + }, + { + "epoch": 5.320324535277806, + "grad_norm": 0.06402765214443207, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 51804 + }, + { + "epoch": 5.320632638389648, + "grad_norm": 0.045856647193431854, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 51807 + }, + { + "epoch": 5.320940741501489, + "grad_norm": 0.10627341270446777, + "learning_rate": 0.01, + "loss": 2.0, + "step": 51810 + }, + { + "epoch": 5.321248844613331, + "grad_norm": 0.07530563324689865, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 51813 + }, + { + "epoch": 5.321556947725172, + "grad_norm": 0.06049705296754837, + "learning_rate": 0.01, + "loss": 2.0227, + "step": 51816 + }, + { + "epoch": 5.3218650508370136, + "grad_norm": 0.05264494568109512, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 51819 + }, + { + "epoch": 5.322173153948855, + "grad_norm": 0.03524477034807205, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 51822 + }, + { + "epoch": 5.322481257060696, + "grad_norm": 0.03644990921020508, + "learning_rate": 0.01, + "loss": 2.0254, + "step": 51825 + }, + { + "epoch": 5.322789360172537, + "grad_norm": 0.10562828928232193, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 51828 + }, + { + "epoch": 5.3230974632843795, + "grad_norm": 0.06203228980302811, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 51831 + }, + { + "epoch": 5.323405566396221, + "grad_norm": 0.06565918028354645, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 51834 + }, + { + "epoch": 5.323713669508062, + "grad_norm": 0.03533428907394409, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 51837 + }, + { + "epoch": 5.324021772619903, + "grad_norm": 0.054743893444538116, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 51840 + }, + { + "epoch": 5.3243298757317445, + "grad_norm": 0.04253426194190979, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 51843 + }, + { + "epoch": 5.324637978843587, + "grad_norm": 0.05230151116847992, + "learning_rate": 0.01, + "loss": 2.0335, + "step": 51846 + }, + { + "epoch": 5.324946081955428, + "grad_norm": 0.08154330402612686, + "learning_rate": 0.01, + "loss": 1.972, + "step": 51849 + }, + { + "epoch": 5.325254185067269, + "grad_norm": 0.0635039433836937, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 51852 + }, + { + "epoch": 5.3255622881791105, + "grad_norm": 0.07905185222625732, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 51855 + }, + { + "epoch": 5.325870391290952, + "grad_norm": 0.04034522920846939, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 51858 + }, + { + "epoch": 5.326178494402793, + "grad_norm": 0.045876212418079376, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 51861 + }, + { + "epoch": 5.326486597514635, + "grad_norm": 0.03529779985547066, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 51864 + }, + { + "epoch": 5.326794700626476, + "grad_norm": 0.04534045606851578, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 51867 + }, + { + "epoch": 5.327102803738318, + "grad_norm": 0.126200869679451, + "learning_rate": 0.01, + "loss": 1.9621, + "step": 51870 + }, + { + "epoch": 5.327410906850159, + "grad_norm": 0.052106015384197235, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 51873 + }, + { + "epoch": 5.327719009962, + "grad_norm": 0.048572082072496414, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 51876 + }, + { + "epoch": 5.328027113073842, + "grad_norm": 0.057247593998909, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 51879 + }, + { + "epoch": 5.328335216185684, + "grad_norm": 0.05806770548224449, + "learning_rate": 0.01, + "loss": 1.989, + "step": 51882 + }, + { + "epoch": 5.328643319297525, + "grad_norm": 0.13235436379909515, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 51885 + }, + { + "epoch": 5.328951422409366, + "grad_norm": 0.05209680646657944, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 51888 + }, + { + "epoch": 5.329259525521207, + "grad_norm": 0.04446623846888542, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 51891 + }, + { + "epoch": 5.32956762863305, + "grad_norm": 0.0674331933259964, + "learning_rate": 0.01, + "loss": 1.99, + "step": 51894 + }, + { + "epoch": 5.329875731744891, + "grad_norm": 0.11401736736297607, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 51897 + }, + { + "epoch": 5.330183834856732, + "grad_norm": 0.08108768612146378, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 51900 + }, + { + "epoch": 5.330491937968573, + "grad_norm": 0.06601007282733917, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 51903 + }, + { + "epoch": 5.330800041080415, + "grad_norm": 0.05304531753063202, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 51906 + }, + { + "epoch": 5.331108144192257, + "grad_norm": 0.04129822179675102, + "learning_rate": 0.01, + "loss": 2.0316, + "step": 51909 + }, + { + "epoch": 5.331416247304098, + "grad_norm": 0.06261187046766281, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 51912 + }, + { + "epoch": 5.331724350415939, + "grad_norm": 0.06908193230628967, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 51915 + }, + { + "epoch": 5.3320324535277805, + "grad_norm": 0.10063374042510986, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 51918 + }, + { + "epoch": 5.332340556639622, + "grad_norm": 0.11441531032323837, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 51921 + }, + { + "epoch": 5.332648659751463, + "grad_norm": 0.058185406029224396, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 51924 + }, + { + "epoch": 5.332956762863305, + "grad_norm": 0.041803937405347824, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 51927 + }, + { + "epoch": 5.3332648659751465, + "grad_norm": 0.12652553617954254, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 51930 + }, + { + "epoch": 5.333572969086988, + "grad_norm": 0.04237103462219238, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 51933 + }, + { + "epoch": 5.333881072198829, + "grad_norm": 0.052531465888023376, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 51936 + }, + { + "epoch": 5.33418917531067, + "grad_norm": 0.0361291877925396, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 51939 + }, + { + "epoch": 5.334497278422512, + "grad_norm": 0.17653311789035797, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 51942 + }, + { + "epoch": 5.334805381534354, + "grad_norm": 0.04208230972290039, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 51945 + }, + { + "epoch": 5.335113484646195, + "grad_norm": 0.05036168918013573, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 51948 + }, + { + "epoch": 5.335421587758036, + "grad_norm": 0.032406702637672424, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 51951 + }, + { + "epoch": 5.3357296908698775, + "grad_norm": 0.03707049414515495, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 51954 + }, + { + "epoch": 5.33603779398172, + "grad_norm": 0.10224796086549759, + "learning_rate": 0.01, + "loss": 2.0212, + "step": 51957 + }, + { + "epoch": 5.336345897093561, + "grad_norm": 0.07522287964820862, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 51960 + }, + { + "epoch": 5.336654000205402, + "grad_norm": 0.08081628382205963, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 51963 + }, + { + "epoch": 5.336962103317243, + "grad_norm": 0.03779719024896622, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 51966 + }, + { + "epoch": 5.337270206429085, + "grad_norm": 0.05938563495874405, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 51969 + }, + { + "epoch": 5.337578309540927, + "grad_norm": 0.058824703097343445, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 51972 + }, + { + "epoch": 5.337886412652768, + "grad_norm": 0.09814310073852539, + "learning_rate": 0.01, + "loss": 2.004, + "step": 51975 + }, + { + "epoch": 5.338194515764609, + "grad_norm": 0.038881540298461914, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 51978 + }, + { + "epoch": 5.338502618876451, + "grad_norm": 0.06858659535646439, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 51981 + }, + { + "epoch": 5.338810721988292, + "grad_norm": 0.05999214947223663, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 51984 + }, + { + "epoch": 5.339118825100133, + "grad_norm": 0.13660067319869995, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 51987 + }, + { + "epoch": 5.339426928211975, + "grad_norm": 0.039648644626140594, + "learning_rate": 0.01, + "loss": 2.0287, + "step": 51990 + }, + { + "epoch": 5.3397350313238165, + "grad_norm": 0.04098828509449959, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 51993 + }, + { + "epoch": 5.340043134435658, + "grad_norm": 0.07291056960821152, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 51996 + }, + { + "epoch": 5.340351237547499, + "grad_norm": 0.07260385155677795, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 51999 + }, + { + "epoch": 5.34065934065934, + "grad_norm": 0.08830993622541428, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 52002 + }, + { + "epoch": 5.3409674437711825, + "grad_norm": 0.053973227739334106, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 52005 + }, + { + "epoch": 5.341275546883024, + "grad_norm": 0.06421860307455063, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 52008 + }, + { + "epoch": 5.341583649994865, + "grad_norm": 0.06905265897512436, + "learning_rate": 0.01, + "loss": 2.0258, + "step": 52011 + }, + { + "epoch": 5.341891753106706, + "grad_norm": 0.1201087012887001, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 52014 + }, + { + "epoch": 5.3421998562185475, + "grad_norm": 0.0491718128323555, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 52017 + }, + { + "epoch": 5.342507959330389, + "grad_norm": 0.04123944044113159, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 52020 + }, + { + "epoch": 5.342816062442231, + "grad_norm": 0.059747952967882156, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 52023 + }, + { + "epoch": 5.343124165554072, + "grad_norm": 0.07639419287443161, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 52026 + }, + { + "epoch": 5.3434322686659135, + "grad_norm": 0.04553646221756935, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 52029 + }, + { + "epoch": 5.343740371777755, + "grad_norm": 0.05324438959360123, + "learning_rate": 0.01, + "loss": 2.011, + "step": 52032 + }, + { + "epoch": 5.344048474889596, + "grad_norm": 0.07225726544857025, + "learning_rate": 0.01, + "loss": 1.988, + "step": 52035 + }, + { + "epoch": 5.344356578001438, + "grad_norm": 0.10456754267215729, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 52038 + }, + { + "epoch": 5.344664681113279, + "grad_norm": 0.06349442899227142, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 52041 + }, + { + "epoch": 5.344972784225121, + "grad_norm": 0.08539248257875443, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 52044 + }, + { + "epoch": 5.345280887336962, + "grad_norm": 0.04877861216664314, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 52047 + }, + { + "epoch": 5.345588990448803, + "grad_norm": 0.0842355415225029, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 52050 + }, + { + "epoch": 5.345897093560645, + "grad_norm": 0.03320346772670746, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 52053 + }, + { + "epoch": 5.346205196672487, + "grad_norm": 0.09604234993457794, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 52056 + }, + { + "epoch": 5.346513299784328, + "grad_norm": 0.04435954615473747, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 52059 + }, + { + "epoch": 5.346821402896169, + "grad_norm": 0.07951738685369492, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 52062 + }, + { + "epoch": 5.34712950600801, + "grad_norm": 0.05883636698126793, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 52065 + }, + { + "epoch": 5.3474376091198526, + "grad_norm": 0.08984318375587463, + "learning_rate": 0.01, + "loss": 1.98, + "step": 52068 + }, + { + "epoch": 5.347745712231694, + "grad_norm": 0.11542551219463348, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 52071 + }, + { + "epoch": 5.348053815343535, + "grad_norm": 0.07631759345531464, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 52074 + }, + { + "epoch": 5.348361918455376, + "grad_norm": 0.05458938702940941, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 52077 + }, + { + "epoch": 5.348670021567218, + "grad_norm": 0.03696439042687416, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 52080 + }, + { + "epoch": 5.348978124679059, + "grad_norm": 0.05871397256851196, + "learning_rate": 0.01, + "loss": 1.974, + "step": 52083 + }, + { + "epoch": 5.349286227790901, + "grad_norm": 0.046202853322029114, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 52086 + }, + { + "epoch": 5.349594330902742, + "grad_norm": 0.035825759172439575, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 52089 + }, + { + "epoch": 5.3499024340145835, + "grad_norm": 0.12834282219409943, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 52092 + }, + { + "epoch": 5.350210537126425, + "grad_norm": 0.05964813381433487, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 52095 + }, + { + "epoch": 5.350518640238266, + "grad_norm": 0.0718245729804039, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 52098 + }, + { + "epoch": 5.350826743350108, + "grad_norm": 0.043250247836112976, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 52101 + }, + { + "epoch": 5.3511348464619495, + "grad_norm": 0.0491093210875988, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 52104 + }, + { + "epoch": 5.351442949573791, + "grad_norm": 0.06597597897052765, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 52107 + }, + { + "epoch": 5.351751052685632, + "grad_norm": 0.1260969340801239, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 52110 + }, + { + "epoch": 5.352059155797473, + "grad_norm": 0.04004066437482834, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 52113 + }, + { + "epoch": 5.3523672589093145, + "grad_norm": 0.03897303342819214, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 52116 + }, + { + "epoch": 5.352675362021157, + "grad_norm": 0.05720753222703934, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 52119 + }, + { + "epoch": 5.352983465132998, + "grad_norm": 0.09778839349746704, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 52122 + }, + { + "epoch": 5.353291568244839, + "grad_norm": 0.10825862735509872, + "learning_rate": 0.01, + "loss": 1.986, + "step": 52125 + }, + { + "epoch": 5.3535996713566805, + "grad_norm": 0.06417248398065567, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 52128 + }, + { + "epoch": 5.353907774468522, + "grad_norm": 0.03844156488776207, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 52131 + }, + { + "epoch": 5.354215877580364, + "grad_norm": 0.05346846207976341, + "learning_rate": 0.01, + "loss": 2.0165, + "step": 52134 + }, + { + "epoch": 5.354523980692205, + "grad_norm": 0.07128198444843292, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 52137 + }, + { + "epoch": 5.354832083804046, + "grad_norm": 0.03174986317753792, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 52140 + }, + { + "epoch": 5.355140186915888, + "grad_norm": 0.044908635318279266, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 52143 + }, + { + "epoch": 5.355448290027729, + "grad_norm": 0.14737063646316528, + "learning_rate": 0.01, + "loss": 2.0202, + "step": 52146 + }, + { + "epoch": 5.355756393139571, + "grad_norm": 0.08280967175960541, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 52149 + }, + { + "epoch": 5.356064496251412, + "grad_norm": 0.037819184362888336, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 52152 + }, + { + "epoch": 5.356372599363254, + "grad_norm": 0.03838292881846428, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 52155 + }, + { + "epoch": 5.356680702475095, + "grad_norm": 0.04593195393681526, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 52158 + }, + { + "epoch": 5.356988805586936, + "grad_norm": 0.12287592142820358, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 52161 + }, + { + "epoch": 5.357296908698778, + "grad_norm": 0.05081895366311073, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 52164 + }, + { + "epoch": 5.3576050118106195, + "grad_norm": 0.15700340270996094, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 52167 + }, + { + "epoch": 5.357913114922461, + "grad_norm": 0.049683380872011185, + "learning_rate": 0.01, + "loss": 2.003, + "step": 52170 + }, + { + "epoch": 5.358221218034302, + "grad_norm": 0.03398337587714195, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 52173 + }, + { + "epoch": 5.358529321146143, + "grad_norm": 0.04002157971262932, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 52176 + }, + { + "epoch": 5.358837424257985, + "grad_norm": 0.037759970873594284, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 52179 + }, + { + "epoch": 5.359145527369827, + "grad_norm": 0.04797700420022011, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 52182 + }, + { + "epoch": 5.359453630481668, + "grad_norm": 0.06852797418832779, + "learning_rate": 0.01, + "loss": 2.0288, + "step": 52185 + }, + { + "epoch": 5.359761733593509, + "grad_norm": 0.04743816703557968, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 52188 + }, + { + "epoch": 5.3600698367053505, + "grad_norm": 0.05316634103655815, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 52191 + }, + { + "epoch": 5.360377939817192, + "grad_norm": 0.07262757420539856, + "learning_rate": 0.01, + "loss": 1.992, + "step": 52194 + }, + { + "epoch": 5.360686042929034, + "grad_norm": 0.13863062858581543, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 52197 + }, + { + "epoch": 5.360994146040875, + "grad_norm": 0.0368843711912632, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 52200 + }, + { + "epoch": 5.3613022491527165, + "grad_norm": 0.05429408326745033, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 52203 + }, + { + "epoch": 5.361610352264558, + "grad_norm": 0.04265204817056656, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 52206 + }, + { + "epoch": 5.361918455376399, + "grad_norm": 0.04122883826494217, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 52209 + }, + { + "epoch": 5.362226558488241, + "grad_norm": 0.04695272073149681, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 52212 + }, + { + "epoch": 5.362534661600082, + "grad_norm": 0.04153517633676529, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 52215 + }, + { + "epoch": 5.362842764711924, + "grad_norm": 0.09016060084104538, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 52218 + }, + { + "epoch": 5.363150867823765, + "grad_norm": 0.06228369474411011, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 52221 + }, + { + "epoch": 5.363458970935606, + "grad_norm": 0.09304657578468323, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 52224 + }, + { + "epoch": 5.363767074047448, + "grad_norm": 0.07483693957328796, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 52227 + }, + { + "epoch": 5.36407517715929, + "grad_norm": 0.08632933348417282, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 52230 + }, + { + "epoch": 5.364383280271131, + "grad_norm": 0.08443045616149902, + "learning_rate": 0.01, + "loss": 2.0161, + "step": 52233 + }, + { + "epoch": 5.364691383382972, + "grad_norm": 0.05415327101945877, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 52236 + }, + { + "epoch": 5.364999486494813, + "grad_norm": 0.048056915402412415, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 52239 + }, + { + "epoch": 5.365307589606655, + "grad_norm": 0.03430894389748573, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 52242 + }, + { + "epoch": 5.365615692718497, + "grad_norm": 0.10147974640130997, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 52245 + }, + { + "epoch": 5.365923795830338, + "grad_norm": 0.09672293066978455, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 52248 + }, + { + "epoch": 5.366231898942179, + "grad_norm": 0.08904405683279037, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 52251 + }, + { + "epoch": 5.366540002054021, + "grad_norm": 0.05163189023733139, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 52254 + }, + { + "epoch": 5.366848105165862, + "grad_norm": 0.03694668784737587, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 52257 + }, + { + "epoch": 5.367156208277704, + "grad_norm": 0.036716192960739136, + "learning_rate": 0.01, + "loss": 2.004, + "step": 52260 + }, + { + "epoch": 5.367464311389545, + "grad_norm": 0.046369098126888275, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 52263 + }, + { + "epoch": 5.3677724145013865, + "grad_norm": 0.06647578626871109, + "learning_rate": 0.01, + "loss": 1.9564, + "step": 52266 + }, + { + "epoch": 5.368080517613228, + "grad_norm": 0.11546402424573898, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 52269 + }, + { + "epoch": 5.368388620725069, + "grad_norm": 0.08381645381450653, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 52272 + }, + { + "epoch": 5.36869672383691, + "grad_norm": 0.09374178946018219, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 52275 + }, + { + "epoch": 5.3690048269487525, + "grad_norm": 0.13528801500797272, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 52278 + }, + { + "epoch": 5.369312930060594, + "grad_norm": 0.09537555277347565, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 52281 + }, + { + "epoch": 5.369621033172435, + "grad_norm": 0.06615101546049118, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 52284 + }, + { + "epoch": 5.369929136284276, + "grad_norm": 0.03951498121023178, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 52287 + }, + { + "epoch": 5.3702372393961175, + "grad_norm": 0.04514235630631447, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 52290 + }, + { + "epoch": 5.37054534250796, + "grad_norm": 0.05101289227604866, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 52293 + }, + { + "epoch": 5.370853445619801, + "grad_norm": 0.10146338492631912, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 52296 + }, + { + "epoch": 5.371161548731642, + "grad_norm": 0.06167877838015556, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 52299 + }, + { + "epoch": 5.3714696518434835, + "grad_norm": 0.10302039980888367, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 52302 + }, + { + "epoch": 5.371777754955325, + "grad_norm": 0.07716668397188187, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 52305 + }, + { + "epoch": 5.372085858067167, + "grad_norm": 0.08410248160362244, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 52308 + }, + { + "epoch": 5.372393961179008, + "grad_norm": 0.05326802283525467, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 52311 + }, + { + "epoch": 5.372702064290849, + "grad_norm": 0.08413115888834, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 52314 + }, + { + "epoch": 5.373010167402691, + "grad_norm": 0.053719133138656616, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 52317 + }, + { + "epoch": 5.373318270514532, + "grad_norm": 0.07752490788698196, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 52320 + }, + { + "epoch": 5.373626373626374, + "grad_norm": 0.0719638466835022, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 52323 + }, + { + "epoch": 5.373934476738215, + "grad_norm": 0.0800856202840805, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 52326 + }, + { + "epoch": 5.374242579850057, + "grad_norm": 0.0889526829123497, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 52329 + }, + { + "epoch": 5.374550682961898, + "grad_norm": 0.08525931090116501, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 52332 + }, + { + "epoch": 5.374858786073739, + "grad_norm": 0.038573917001485825, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 52335 + }, + { + "epoch": 5.37516688918558, + "grad_norm": 0.03686724230647087, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 52338 + }, + { + "epoch": 5.3754749922974225, + "grad_norm": 0.042029861360788345, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 52341 + }, + { + "epoch": 5.375783095409264, + "grad_norm": 0.08990278095006943, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 52344 + }, + { + "epoch": 5.376091198521105, + "grad_norm": 0.09406303614377975, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 52347 + }, + { + "epoch": 5.376399301632946, + "grad_norm": 0.1285853236913681, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 52350 + }, + { + "epoch": 5.376707404744788, + "grad_norm": 0.06205267086625099, + "learning_rate": 0.01, + "loss": 2.01, + "step": 52353 + }, + { + "epoch": 5.37701550785663, + "grad_norm": 0.09469316154718399, + "learning_rate": 0.01, + "loss": 1.998, + "step": 52356 + }, + { + "epoch": 5.377323610968471, + "grad_norm": 0.08087198436260223, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 52359 + }, + { + "epoch": 5.377631714080312, + "grad_norm": 0.10511235147714615, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 52362 + }, + { + "epoch": 5.3779398171921535, + "grad_norm": 0.07102752476930618, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 52365 + }, + { + "epoch": 5.378247920303995, + "grad_norm": 0.04023940861225128, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 52368 + }, + { + "epoch": 5.378556023415836, + "grad_norm": 0.06366323679685593, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 52371 + }, + { + "epoch": 5.378864126527678, + "grad_norm": 0.045444704592227936, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 52374 + }, + { + "epoch": 5.3791722296395195, + "grad_norm": 0.07034427672624588, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 52377 + }, + { + "epoch": 5.379480332751361, + "grad_norm": 0.04844088852405548, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 52380 + }, + { + "epoch": 5.379788435863202, + "grad_norm": 0.05628515034914017, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 52383 + }, + { + "epoch": 5.380096538975043, + "grad_norm": 0.10569090396165848, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 52386 + }, + { + "epoch": 5.380404642086885, + "grad_norm": 0.14752137660980225, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 52389 + }, + { + "epoch": 5.380712745198727, + "grad_norm": 0.09316124767065048, + "learning_rate": 0.01, + "loss": 1.978, + "step": 52392 + }, + { + "epoch": 5.381020848310568, + "grad_norm": 0.0789172351360321, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 52395 + }, + { + "epoch": 5.381328951422409, + "grad_norm": 0.04636065661907196, + "learning_rate": 0.01, + "loss": 1.9603, + "step": 52398 + }, + { + "epoch": 5.3816370545342505, + "grad_norm": 0.051946815103292465, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 52401 + }, + { + "epoch": 5.381945157646093, + "grad_norm": 0.0423317514359951, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 52404 + }, + { + "epoch": 5.382253260757934, + "grad_norm": 0.03624933212995529, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 52407 + }, + { + "epoch": 5.382561363869775, + "grad_norm": 0.0415869876742363, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 52410 + }, + { + "epoch": 5.382869466981616, + "grad_norm": 0.1304771602153778, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 52413 + }, + { + "epoch": 5.383177570093458, + "grad_norm": 0.05917195603251457, + "learning_rate": 0.01, + "loss": 2.0216, + "step": 52416 + }, + { + "epoch": 5.3834856732053, + "grad_norm": 0.04846251383423805, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 52419 + }, + { + "epoch": 5.383793776317141, + "grad_norm": 0.03447849303483963, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 52422 + }, + { + "epoch": 5.384101879428982, + "grad_norm": 0.042299896478652954, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 52425 + }, + { + "epoch": 5.384409982540824, + "grad_norm": 0.053316473960876465, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 52428 + }, + { + "epoch": 5.384718085652665, + "grad_norm": 0.05238528177142143, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 52431 + }, + { + "epoch": 5.385026188764506, + "grad_norm": 0.05088873207569122, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 52434 + }, + { + "epoch": 5.385334291876348, + "grad_norm": 0.03723147138953209, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 52437 + }, + { + "epoch": 5.3856423949881895, + "grad_norm": 0.04240123927593231, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 52440 + }, + { + "epoch": 5.385950498100031, + "grad_norm": 0.04458059370517731, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 52443 + }, + { + "epoch": 5.386258601211872, + "grad_norm": 0.20143818855285645, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 52446 + }, + { + "epoch": 5.386566704323713, + "grad_norm": 0.05507873743772507, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 52449 + }, + { + "epoch": 5.3868748074355555, + "grad_norm": 0.040351588279008865, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 52452 + }, + { + "epoch": 5.387182910547397, + "grad_norm": 0.044757384806871414, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 52455 + }, + { + "epoch": 5.387491013659238, + "grad_norm": 0.05201313644647598, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 52458 + }, + { + "epoch": 5.387799116771079, + "grad_norm": 0.053258076310157776, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 52461 + }, + { + "epoch": 5.3881072198829205, + "grad_norm": 0.08738038688898087, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 52464 + }, + { + "epoch": 5.388415322994762, + "grad_norm": 0.06154690682888031, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 52467 + }, + { + "epoch": 5.388723426106604, + "grad_norm": 0.045472290366888046, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 52470 + }, + { + "epoch": 5.389031529218445, + "grad_norm": 0.05027802661061287, + "learning_rate": 0.01, + "loss": 1.99, + "step": 52473 + }, + { + "epoch": 5.3893396323302865, + "grad_norm": 0.06531531363725662, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 52476 + }, + { + "epoch": 5.389647735442128, + "grad_norm": 0.0642043873667717, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 52479 + }, + { + "epoch": 5.389955838553969, + "grad_norm": 0.03432301804423332, + "learning_rate": 0.01, + "loss": 1.995, + "step": 52482 + }, + { + "epoch": 5.390263941665811, + "grad_norm": 0.14385442435741425, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 52485 + }, + { + "epoch": 5.390572044777652, + "grad_norm": 0.05068526789546013, + "learning_rate": 0.01, + "loss": 2.0122, + "step": 52488 + }, + { + "epoch": 5.390880147889494, + "grad_norm": 0.0718868151307106, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 52491 + }, + { + "epoch": 5.391188251001335, + "grad_norm": 0.06522323191165924, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 52494 + }, + { + "epoch": 5.391496354113176, + "grad_norm": 0.03200114890933037, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 52497 + }, + { + "epoch": 5.391804457225018, + "grad_norm": 0.11630173027515411, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 52500 + }, + { + "epoch": 5.39211256033686, + "grad_norm": 0.07612688839435577, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 52503 + }, + { + "epoch": 5.392420663448701, + "grad_norm": 0.09313171356916428, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 52506 + }, + { + "epoch": 5.392728766560542, + "grad_norm": 0.07034334540367126, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 52509 + }, + { + "epoch": 5.393036869672383, + "grad_norm": 0.07270947843790054, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 52512 + }, + { + "epoch": 5.3933449727842255, + "grad_norm": 0.051841702312231064, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 52515 + }, + { + "epoch": 5.393653075896067, + "grad_norm": 0.04291679337620735, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 52518 + }, + { + "epoch": 5.393961179007908, + "grad_norm": 0.03652627766132355, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 52521 + }, + { + "epoch": 5.394269282119749, + "grad_norm": 0.03804773837327957, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 52524 + }, + { + "epoch": 5.394577385231591, + "grad_norm": 0.05173708498477936, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 52527 + }, + { + "epoch": 5.394885488343432, + "grad_norm": 0.07177083939313889, + "learning_rate": 0.01, + "loss": 1.994, + "step": 52530 + }, + { + "epoch": 5.395193591455274, + "grad_norm": 0.08862923830747604, + "learning_rate": 0.01, + "loss": 2.008, + "step": 52533 + }, + { + "epoch": 5.395501694567115, + "grad_norm": 0.09389739483594894, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 52536 + }, + { + "epoch": 5.3958097976789565, + "grad_norm": 0.03884744644165039, + "learning_rate": 0.01, + "loss": 1.997, + "step": 52539 + }, + { + "epoch": 5.396117900790798, + "grad_norm": 0.04176723584532738, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 52542 + }, + { + "epoch": 5.396426003902639, + "grad_norm": 0.04131205379962921, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 52545 + }, + { + "epoch": 5.396734107014481, + "grad_norm": 0.03634188696742058, + "learning_rate": 0.01, + "loss": 1.999, + "step": 52548 + }, + { + "epoch": 5.3970422101263225, + "grad_norm": 0.09134528040885925, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 52551 + }, + { + "epoch": 5.397350313238164, + "grad_norm": 0.07570212334394455, + "learning_rate": 0.01, + "loss": 2.003, + "step": 52554 + }, + { + "epoch": 5.397658416350005, + "grad_norm": 0.11560734361410141, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 52557 + }, + { + "epoch": 5.397966519461846, + "grad_norm": 0.03760908916592598, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 52560 + }, + { + "epoch": 5.398274622573688, + "grad_norm": 0.05205194652080536, + "learning_rate": 0.01, + "loss": 2.0133, + "step": 52563 + }, + { + "epoch": 5.39858272568553, + "grad_norm": 0.07257603853940964, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 52566 + }, + { + "epoch": 5.398890828797371, + "grad_norm": 0.07266250997781754, + "learning_rate": 0.01, + "loss": 2.003, + "step": 52569 + }, + { + "epoch": 5.399198931909212, + "grad_norm": 0.0367962047457695, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 52572 + }, + { + "epoch": 5.3995070350210534, + "grad_norm": 0.05613946169614792, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 52575 + }, + { + "epoch": 5.399815138132896, + "grad_norm": 0.10363534092903137, + "learning_rate": 0.01, + "loss": 1.99, + "step": 52578 + }, + { + "epoch": 5.400123241244737, + "grad_norm": 0.09217333793640137, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 52581 + }, + { + "epoch": 5.400431344356578, + "grad_norm": 0.0713183805346489, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 52584 + }, + { + "epoch": 5.400739447468419, + "grad_norm": 0.0670512244105339, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 52587 + }, + { + "epoch": 5.401047550580261, + "grad_norm": 0.10012122988700867, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 52590 + }, + { + "epoch": 5.401355653692102, + "grad_norm": 0.047828782349824905, + "learning_rate": 0.01, + "loss": 1.99, + "step": 52593 + }, + { + "epoch": 5.401663756803944, + "grad_norm": 0.09758254140615463, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 52596 + }, + { + "epoch": 5.401971859915785, + "grad_norm": 0.044294700026512146, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 52599 + }, + { + "epoch": 5.402279963027627, + "grad_norm": 0.04579133540391922, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 52602 + }, + { + "epoch": 5.402588066139468, + "grad_norm": 0.04279174283146858, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 52605 + }, + { + "epoch": 5.402896169251309, + "grad_norm": 0.08676068484783173, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 52608 + }, + { + "epoch": 5.403204272363151, + "grad_norm": 0.09505254775285721, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 52611 + }, + { + "epoch": 5.4035123754749925, + "grad_norm": 0.06927873194217682, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 52614 + }, + { + "epoch": 5.403820478586834, + "grad_norm": 0.09732890874147415, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 52617 + }, + { + "epoch": 5.404128581698675, + "grad_norm": 0.03702055662870407, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 52620 + }, + { + "epoch": 5.404436684810516, + "grad_norm": 0.08636049926280975, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 52623 + }, + { + "epoch": 5.404744787922358, + "grad_norm": 0.07209763675928116, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 52626 + }, + { + "epoch": 5.4050528910342, + "grad_norm": 0.05202876031398773, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 52629 + }, + { + "epoch": 5.405360994146041, + "grad_norm": 0.0709710493683815, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 52632 + }, + { + "epoch": 5.405669097257882, + "grad_norm": 0.03506077453494072, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 52635 + }, + { + "epoch": 5.4059772003697235, + "grad_norm": 0.04027107357978821, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 52638 + }, + { + "epoch": 5.406285303481565, + "grad_norm": 0.07768195122480392, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 52641 + }, + { + "epoch": 5.406593406593407, + "grad_norm": 0.13171711564064026, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 52644 + }, + { + "epoch": 5.406901509705248, + "grad_norm": 0.13514290750026703, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 52647 + }, + { + "epoch": 5.4072096128170895, + "grad_norm": 0.05603281781077385, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 52650 + }, + { + "epoch": 5.407517715928931, + "grad_norm": 0.07667485624551773, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 52653 + }, + { + "epoch": 5.407825819040772, + "grad_norm": 0.06463679671287537, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 52656 + }, + { + "epoch": 5.408133922152614, + "grad_norm": 0.06655814498662949, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 52659 + }, + { + "epoch": 5.408442025264455, + "grad_norm": 0.1041889637708664, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 52662 + }, + { + "epoch": 5.408750128376297, + "grad_norm": 0.06591400504112244, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 52665 + }, + { + "epoch": 5.409058231488138, + "grad_norm": 0.033431414514780045, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 52668 + }, + { + "epoch": 5.409366334599979, + "grad_norm": 0.04565748572349548, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 52671 + }, + { + "epoch": 5.409674437711821, + "grad_norm": 0.04200183227658272, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 52674 + }, + { + "epoch": 5.409982540823663, + "grad_norm": 0.03807186335325241, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 52677 + }, + { + "epoch": 5.410290643935504, + "grad_norm": 0.09112047404050827, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 52680 + }, + { + "epoch": 5.410598747047345, + "grad_norm": 0.10211756825447083, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 52683 + }, + { + "epoch": 5.410906850159186, + "grad_norm": 0.1345423012971878, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 52686 + }, + { + "epoch": 5.411214953271028, + "grad_norm": 0.07363910228013992, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 52689 + }, + { + "epoch": 5.41152305638287, + "grad_norm": 0.08829092979431152, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 52692 + }, + { + "epoch": 5.411831159494711, + "grad_norm": 0.06006823107600212, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 52695 + }, + { + "epoch": 5.412139262606552, + "grad_norm": 0.06111016124486923, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 52698 + }, + { + "epoch": 5.412447365718394, + "grad_norm": 0.057088688015937805, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 52701 + }, + { + "epoch": 5.412755468830235, + "grad_norm": 0.04059537127614021, + "learning_rate": 0.01, + "loss": 1.989, + "step": 52704 + }, + { + "epoch": 5.413063571942077, + "grad_norm": 0.2159087210893631, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 52707 + }, + { + "epoch": 5.413371675053918, + "grad_norm": 0.07151810079813004, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 52710 + }, + { + "epoch": 5.4136797781657595, + "grad_norm": 0.09309381246566772, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 52713 + }, + { + "epoch": 5.413987881277601, + "grad_norm": 0.039323315024375916, + "learning_rate": 0.01, + "loss": 1.972, + "step": 52716 + }, + { + "epoch": 5.414295984389442, + "grad_norm": 0.09738846868276596, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 52719 + }, + { + "epoch": 5.414604087501283, + "grad_norm": 0.07482850551605225, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 52722 + }, + { + "epoch": 5.4149121906131255, + "grad_norm": 0.05960662290453911, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 52725 + }, + { + "epoch": 5.415220293724967, + "grad_norm": 0.061568450182676315, + "learning_rate": 0.01, + "loss": 2.0127, + "step": 52728 + }, + { + "epoch": 5.415528396836808, + "grad_norm": 0.05249075964093208, + "learning_rate": 0.01, + "loss": 2.0298, + "step": 52731 + }, + { + "epoch": 5.415836499948649, + "grad_norm": 0.04260426387190819, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 52734 + }, + { + "epoch": 5.4161446030604905, + "grad_norm": 0.035422783344984055, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 52737 + }, + { + "epoch": 5.416452706172333, + "grad_norm": 0.03902021422982216, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 52740 + }, + { + "epoch": 5.416760809284174, + "grad_norm": 0.04080606997013092, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 52743 + }, + { + "epoch": 5.417068912396015, + "grad_norm": 0.04044007509946823, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 52746 + }, + { + "epoch": 5.417377015507856, + "grad_norm": 0.04506811872124672, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 52749 + }, + { + "epoch": 5.417685118619698, + "grad_norm": 0.053388748317956924, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 52752 + }, + { + "epoch": 5.41799322173154, + "grad_norm": 0.09019593149423599, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 52755 + }, + { + "epoch": 5.418301324843381, + "grad_norm": 0.12063855677843094, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 52758 + }, + { + "epoch": 5.418609427955222, + "grad_norm": 0.07498898357152939, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 52761 + }, + { + "epoch": 5.418917531067064, + "grad_norm": 0.07565269619226456, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 52764 + }, + { + "epoch": 5.419225634178905, + "grad_norm": 0.037328194826841354, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 52767 + }, + { + "epoch": 5.419533737290747, + "grad_norm": 0.059995539486408234, + "learning_rate": 0.01, + "loss": 2.0149, + "step": 52770 + }, + { + "epoch": 5.419841840402588, + "grad_norm": 0.18053491413593292, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 52773 + }, + { + "epoch": 5.42014994351443, + "grad_norm": 0.1632491648197174, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 52776 + }, + { + "epoch": 5.420458046626271, + "grad_norm": 0.06863465160131454, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 52779 + }, + { + "epoch": 5.420766149738112, + "grad_norm": 0.05202522501349449, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 52782 + }, + { + "epoch": 5.421074252849953, + "grad_norm": 0.039888009428977966, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 52785 + }, + { + "epoch": 5.4213823559617955, + "grad_norm": 0.04122290015220642, + "learning_rate": 0.01, + "loss": 2.004, + "step": 52788 + }, + { + "epoch": 5.421690459073637, + "grad_norm": 0.03863810375332832, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 52791 + }, + { + "epoch": 5.421998562185478, + "grad_norm": 0.04215069115161896, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 52794 + }, + { + "epoch": 5.422306665297319, + "grad_norm": 0.09779973328113556, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 52797 + }, + { + "epoch": 5.422614768409161, + "grad_norm": 0.0620935894548893, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 52800 + }, + { + "epoch": 5.422922871521003, + "grad_norm": 0.05332612618803978, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 52803 + }, + { + "epoch": 5.423230974632844, + "grad_norm": 0.04671257734298706, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 52806 + }, + { + "epoch": 5.423539077744685, + "grad_norm": 0.03246668353676796, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 52809 + }, + { + "epoch": 5.4238471808565265, + "grad_norm": 0.04667939245700836, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 52812 + }, + { + "epoch": 5.424155283968368, + "grad_norm": 0.08633271604776382, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 52815 + }, + { + "epoch": 5.42446338708021, + "grad_norm": 0.07084902375936508, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 52818 + }, + { + "epoch": 5.424771490192051, + "grad_norm": 0.05388319492340088, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 52821 + }, + { + "epoch": 5.4250795933038924, + "grad_norm": 0.05652158334851265, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 52824 + }, + { + "epoch": 5.425387696415734, + "grad_norm": 0.09929019957780838, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 52827 + }, + { + "epoch": 5.425695799527575, + "grad_norm": 0.1725517362356186, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 52830 + }, + { + "epoch": 5.426003902639417, + "grad_norm": 0.06725597381591797, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 52833 + }, + { + "epoch": 5.426312005751258, + "grad_norm": 0.03839759901165962, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 52836 + }, + { + "epoch": 5.4266201088631, + "grad_norm": 0.03678586333990097, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 52839 + }, + { + "epoch": 5.426928211974941, + "grad_norm": 0.04450935125350952, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 52842 + }, + { + "epoch": 5.427236315086782, + "grad_norm": 0.05059666931629181, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 52845 + }, + { + "epoch": 5.427544418198623, + "grad_norm": 0.05548638850450516, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 52848 + }, + { + "epoch": 5.427852521310466, + "grad_norm": 0.03727211058139801, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 52851 + }, + { + "epoch": 5.428160624422307, + "grad_norm": 0.1027202233672142, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 52854 + }, + { + "epoch": 5.428468727534148, + "grad_norm": 0.07482005655765533, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 52857 + }, + { + "epoch": 5.428776830645989, + "grad_norm": 0.06325170397758484, + "learning_rate": 0.01, + "loss": 2.0173, + "step": 52860 + }, + { + "epoch": 5.429084933757831, + "grad_norm": 0.11125578731298447, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 52863 + }, + { + "epoch": 5.429393036869673, + "grad_norm": 0.07175584882497787, + "learning_rate": 0.01, + "loss": 2.0186, + "step": 52866 + }, + { + "epoch": 5.429701139981514, + "grad_norm": 0.03667625039815903, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 52869 + }, + { + "epoch": 5.430009243093355, + "grad_norm": 0.0515107661485672, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 52872 + }, + { + "epoch": 5.430317346205197, + "grad_norm": 0.09832940995693207, + "learning_rate": 0.01, + "loss": 1.991, + "step": 52875 + }, + { + "epoch": 5.430625449317038, + "grad_norm": 0.06182995066046715, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 52878 + }, + { + "epoch": 5.430933552428879, + "grad_norm": 0.1432095468044281, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 52881 + }, + { + "epoch": 5.431241655540721, + "grad_norm": 0.11832471191883087, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 52884 + }, + { + "epoch": 5.4315497586525625, + "grad_norm": 0.07653117924928665, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 52887 + }, + { + "epoch": 5.431857861764404, + "grad_norm": 0.06316263228654861, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 52890 + }, + { + "epoch": 5.432165964876245, + "grad_norm": 0.058272287249565125, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 52893 + }, + { + "epoch": 5.432474067988086, + "grad_norm": 0.06886950880289078, + "learning_rate": 0.01, + "loss": 1.987, + "step": 52896 + }, + { + "epoch": 5.4327821710999284, + "grad_norm": 0.053393036127090454, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 52899 + }, + { + "epoch": 5.43309027421177, + "grad_norm": 0.06651714444160461, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 52902 + }, + { + "epoch": 5.433398377323611, + "grad_norm": 0.04366718977689743, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 52905 + }, + { + "epoch": 5.433706480435452, + "grad_norm": 0.040242016315460205, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 52908 + }, + { + "epoch": 5.4340145835472935, + "grad_norm": 0.0598304383456707, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 52911 + }, + { + "epoch": 5.434322686659136, + "grad_norm": 0.17316143214702606, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 52914 + }, + { + "epoch": 5.434630789770977, + "grad_norm": 0.13133604824543, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 52917 + }, + { + "epoch": 5.434938892882818, + "grad_norm": 0.0751945972442627, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 52920 + }, + { + "epoch": 5.435246995994659, + "grad_norm": 0.06649640202522278, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 52923 + }, + { + "epoch": 5.435555099106501, + "grad_norm": 0.13051864504814148, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 52926 + }, + { + "epoch": 5.435863202218343, + "grad_norm": 0.06402359157800674, + "learning_rate": 0.01, + "loss": 1.9606, + "step": 52929 + }, + { + "epoch": 5.436171305330184, + "grad_norm": 0.06441336125135422, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 52932 + }, + { + "epoch": 5.436479408442025, + "grad_norm": 0.09019657224416733, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 52935 + }, + { + "epoch": 5.436787511553867, + "grad_norm": 0.04703563451766968, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 52938 + }, + { + "epoch": 5.437095614665708, + "grad_norm": 0.03909967467188835, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 52941 + }, + { + "epoch": 5.437403717777549, + "grad_norm": 0.05746940150856972, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 52944 + }, + { + "epoch": 5.437711820889391, + "grad_norm": 0.11890576034784317, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 52947 + }, + { + "epoch": 5.438019924001233, + "grad_norm": 0.07725408673286438, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 52950 + }, + { + "epoch": 5.438328027113074, + "grad_norm": 0.05112382769584656, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 52953 + }, + { + "epoch": 5.438636130224915, + "grad_norm": 0.08786381781101227, + "learning_rate": 0.01, + "loss": 1.9671, + "step": 52956 + }, + { + "epoch": 5.438944233336756, + "grad_norm": 0.07547960430383682, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 52959 + }, + { + "epoch": 5.4392523364485985, + "grad_norm": 0.06332848221063614, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 52962 + }, + { + "epoch": 5.43956043956044, + "grad_norm": 0.09106019139289856, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 52965 + }, + { + "epoch": 5.439868542672281, + "grad_norm": 0.1387149691581726, + "learning_rate": 0.01, + "loss": 2.005, + "step": 52968 + }, + { + "epoch": 5.440176645784122, + "grad_norm": 0.07359499484300613, + "learning_rate": 0.01, + "loss": 1.986, + "step": 52971 + }, + { + "epoch": 5.440484748895964, + "grad_norm": 0.06554149091243744, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 52974 + }, + { + "epoch": 5.440792852007805, + "grad_norm": 0.08161085098981857, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 52977 + }, + { + "epoch": 5.441100955119647, + "grad_norm": 0.07675690948963165, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 52980 + }, + { + "epoch": 5.441409058231488, + "grad_norm": 0.04832153394818306, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 52983 + }, + { + "epoch": 5.4417171613433295, + "grad_norm": 0.03355338051915169, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 52986 + }, + { + "epoch": 5.442025264455171, + "grad_norm": 0.03371288999915123, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 52989 + }, + { + "epoch": 5.442333367567012, + "grad_norm": 0.11185171455144882, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 52992 + }, + { + "epoch": 5.442641470678854, + "grad_norm": 0.059647444635629654, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 52995 + }, + { + "epoch": 5.442949573790695, + "grad_norm": 0.03346579894423485, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 52998 + }, + { + "epoch": 5.443257676902537, + "grad_norm": 0.0569952167570591, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 53001 + }, + { + "epoch": 5.443565780014378, + "grad_norm": 0.07441236078739166, + "learning_rate": 0.01, + "loss": 1.991, + "step": 53004 + }, + { + "epoch": 5.443873883126219, + "grad_norm": 0.11744049191474915, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 53007 + }, + { + "epoch": 5.444181986238061, + "grad_norm": 0.04918253421783447, + "learning_rate": 0.01, + "loss": 2.0148, + "step": 53010 + }, + { + "epoch": 5.444490089349903, + "grad_norm": 0.03746315464377403, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 53013 + }, + { + "epoch": 5.444798192461744, + "grad_norm": 0.055012766271829605, + "learning_rate": 0.01, + "loss": 1.998, + "step": 53016 + }, + { + "epoch": 5.445106295573585, + "grad_norm": 0.06424736231565475, + "learning_rate": 0.01, + "loss": 1.998, + "step": 53019 + }, + { + "epoch": 5.445414398685426, + "grad_norm": 0.09382134675979614, + "learning_rate": 0.01, + "loss": 2.0071, + "step": 53022 + }, + { + "epoch": 5.445722501797269, + "grad_norm": 0.048184242099523544, + "learning_rate": 0.01, + "loss": 1.985, + "step": 53025 + }, + { + "epoch": 5.44603060490911, + "grad_norm": 0.05549463629722595, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 53028 + }, + { + "epoch": 5.446338708020951, + "grad_norm": 0.10756690055131912, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 53031 + }, + { + "epoch": 5.446646811132792, + "grad_norm": 0.03808826580643654, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 53034 + }, + { + "epoch": 5.446954914244634, + "grad_norm": 0.050678886473178864, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 53037 + }, + { + "epoch": 5.447263017356475, + "grad_norm": 0.03573575243353844, + "learning_rate": 0.01, + "loss": 2.0233, + "step": 53040 + }, + { + "epoch": 5.447571120468317, + "grad_norm": 0.05302232876420021, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 53043 + }, + { + "epoch": 5.447879223580158, + "grad_norm": 0.03617763891816139, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 53046 + }, + { + "epoch": 5.448187326692, + "grad_norm": 0.039550527930259705, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 53049 + }, + { + "epoch": 5.448495429803841, + "grad_norm": 0.041170112788677216, + "learning_rate": 0.01, + "loss": 1.9428, + "step": 53052 + }, + { + "epoch": 5.448803532915682, + "grad_norm": 0.04932108521461487, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 53055 + }, + { + "epoch": 5.449111636027524, + "grad_norm": 0.03305281326174736, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 53058 + }, + { + "epoch": 5.4494197391393655, + "grad_norm": 0.04628564044833183, + "learning_rate": 0.01, + "loss": 2.009, + "step": 53061 + }, + { + "epoch": 5.449727842251207, + "grad_norm": 0.04561088606715202, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 53064 + }, + { + "epoch": 5.450035945363048, + "grad_norm": 0.11011772602796555, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 53067 + }, + { + "epoch": 5.450344048474889, + "grad_norm": 0.06649364531040192, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 53070 + }, + { + "epoch": 5.450652151586731, + "grad_norm": 0.1190907210111618, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 53073 + }, + { + "epoch": 5.450960254698573, + "grad_norm": 0.03680254891514778, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 53076 + }, + { + "epoch": 5.451268357810414, + "grad_norm": 0.04634016007184982, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 53079 + }, + { + "epoch": 5.451576460922255, + "grad_norm": 0.04958662390708923, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 53082 + }, + { + "epoch": 5.4518845640340965, + "grad_norm": 0.04827871546149254, + "learning_rate": 0.01, + "loss": 2.0159, + "step": 53085 + }, + { + "epoch": 5.452192667145939, + "grad_norm": 0.10182766616344452, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 53088 + }, + { + "epoch": 5.45250077025778, + "grad_norm": 0.08067356050014496, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 53091 + }, + { + "epoch": 5.452808873369621, + "grad_norm": 0.06457395106554031, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 53094 + }, + { + "epoch": 5.453116976481462, + "grad_norm": 0.09059132635593414, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 53097 + }, + { + "epoch": 5.453425079593304, + "grad_norm": 0.05704977363348007, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 53100 + }, + { + "epoch": 5.453733182705145, + "grad_norm": 0.09887251257896423, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 53103 + }, + { + "epoch": 5.454041285816987, + "grad_norm": 0.03840193152427673, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 53106 + }, + { + "epoch": 5.454349388928828, + "grad_norm": 0.08743079751729965, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 53109 + }, + { + "epoch": 5.45465749204067, + "grad_norm": 0.054274316877126694, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 53112 + }, + { + "epoch": 5.454965595152511, + "grad_norm": 0.033519454300403595, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 53115 + }, + { + "epoch": 5.455273698264352, + "grad_norm": 0.1241462305188179, + "learning_rate": 0.01, + "loss": 2.003, + "step": 53118 + }, + { + "epoch": 5.455581801376194, + "grad_norm": 0.11901737749576569, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 53121 + }, + { + "epoch": 5.455889904488036, + "grad_norm": 0.06983425468206406, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 53124 + }, + { + "epoch": 5.456198007599877, + "grad_norm": 0.07202869653701782, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 53127 + }, + { + "epoch": 5.456506110711718, + "grad_norm": 0.049013327807188034, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 53130 + }, + { + "epoch": 5.456814213823559, + "grad_norm": 0.04855305328965187, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 53133 + }, + { + "epoch": 5.457122316935401, + "grad_norm": 0.05479707196354866, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 53136 + }, + { + "epoch": 5.457430420047243, + "grad_norm": 0.04120011255145073, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 53139 + }, + { + "epoch": 5.457738523159084, + "grad_norm": 0.11232541501522064, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 53142 + }, + { + "epoch": 5.458046626270925, + "grad_norm": 0.0826067104935646, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 53145 + }, + { + "epoch": 5.458354729382767, + "grad_norm": 0.0358428992331028, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 53148 + }, + { + "epoch": 5.458662832494608, + "grad_norm": 0.06724508851766586, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 53151 + }, + { + "epoch": 5.45897093560645, + "grad_norm": 0.05402735620737076, + "learning_rate": 0.01, + "loss": 1.9626, + "step": 53154 + }, + { + "epoch": 5.459279038718291, + "grad_norm": 0.10397180914878845, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 53157 + }, + { + "epoch": 5.4595871418301325, + "grad_norm": 0.16697724163532257, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 53160 + }, + { + "epoch": 5.459895244941974, + "grad_norm": 0.12541674077510834, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 53163 + }, + { + "epoch": 5.460203348053815, + "grad_norm": 0.11177428066730499, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 53166 + }, + { + "epoch": 5.460511451165657, + "grad_norm": 0.12203194200992584, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 53169 + }, + { + "epoch": 5.460819554277498, + "grad_norm": 0.03482053428888321, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 53172 + }, + { + "epoch": 5.46112765738934, + "grad_norm": 0.03225795179605484, + "learning_rate": 0.01, + "loss": 1.9601, + "step": 53175 + }, + { + "epoch": 5.461435760501181, + "grad_norm": 0.03760567680001259, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 53178 + }, + { + "epoch": 5.461743863613022, + "grad_norm": 0.12543334066867828, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 53181 + }, + { + "epoch": 5.462051966724864, + "grad_norm": 0.04533065855503082, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 53184 + }, + { + "epoch": 5.462360069836706, + "grad_norm": 0.07519727945327759, + "learning_rate": 0.01, + "loss": 1.994, + "step": 53187 + }, + { + "epoch": 5.462668172948547, + "grad_norm": 0.11682818084955215, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 53190 + }, + { + "epoch": 5.462976276060388, + "grad_norm": 0.043735865503549576, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 53193 + }, + { + "epoch": 5.463284379172229, + "grad_norm": 0.09902381896972656, + "learning_rate": 0.01, + "loss": 2.0089, + "step": 53196 + }, + { + "epoch": 5.463592482284071, + "grad_norm": 0.05974416807293892, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 53199 + }, + { + "epoch": 5.463900585395913, + "grad_norm": 0.07005894929170609, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 53202 + }, + { + "epoch": 5.464208688507754, + "grad_norm": 0.055365189909935, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 53205 + }, + { + "epoch": 5.464516791619595, + "grad_norm": 0.07333406060934067, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 53208 + }, + { + "epoch": 5.464824894731437, + "grad_norm": 0.03612162545323372, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 53211 + }, + { + "epoch": 5.465132997843278, + "grad_norm": 0.036687567830085754, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 53214 + }, + { + "epoch": 5.46544110095512, + "grad_norm": 0.0842447429895401, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 53217 + }, + { + "epoch": 5.465749204066961, + "grad_norm": 0.06415588408708572, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 53220 + }, + { + "epoch": 5.466057307178803, + "grad_norm": 0.0578574612736702, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 53223 + }, + { + "epoch": 5.466365410290644, + "grad_norm": 0.04436985403299332, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 53226 + }, + { + "epoch": 5.466673513402485, + "grad_norm": 0.1035226359963417, + "learning_rate": 0.01, + "loss": 1.9639, + "step": 53229 + }, + { + "epoch": 5.466981616514326, + "grad_norm": 0.04867973551154137, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 53232 + }, + { + "epoch": 5.4672897196261685, + "grad_norm": 0.0710483267903328, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 53235 + }, + { + "epoch": 5.46759782273801, + "grad_norm": 0.052401233464479446, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 53238 + }, + { + "epoch": 5.467905925849851, + "grad_norm": 0.036160893738269806, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 53241 + }, + { + "epoch": 5.468214028961692, + "grad_norm": 0.04797692224383354, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 53244 + }, + { + "epoch": 5.4685221320735335, + "grad_norm": 0.037899672985076904, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 53247 + }, + { + "epoch": 5.468830235185376, + "grad_norm": 0.054781220853328705, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 53250 + }, + { + "epoch": 5.469138338297217, + "grad_norm": 0.09595558792352676, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 53253 + }, + { + "epoch": 5.469446441409058, + "grad_norm": 0.0511094331741333, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 53256 + }, + { + "epoch": 5.4697545445208995, + "grad_norm": 0.05115760117769241, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 53259 + }, + { + "epoch": 5.470062647632741, + "grad_norm": 0.05593256279826164, + "learning_rate": 0.01, + "loss": 2.019, + "step": 53262 + }, + { + "epoch": 5.470370750744583, + "grad_norm": 0.048911042511463165, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 53265 + }, + { + "epoch": 5.470678853856424, + "grad_norm": 0.05227271467447281, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 53268 + }, + { + "epoch": 5.470986956968265, + "grad_norm": 0.11259990185499191, + "learning_rate": 0.01, + "loss": 1.987, + "step": 53271 + }, + { + "epoch": 5.471295060080107, + "grad_norm": 0.04125455394387245, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 53274 + }, + { + "epoch": 5.471603163191948, + "grad_norm": 0.11485335975885391, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 53277 + }, + { + "epoch": 5.47191126630379, + "grad_norm": 0.07149787247180939, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 53280 + }, + { + "epoch": 5.472219369415631, + "grad_norm": 0.05775618925690651, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 53283 + }, + { + "epoch": 5.472527472527473, + "grad_norm": 0.04515690356492996, + "learning_rate": 0.01, + "loss": 1.99, + "step": 53286 + }, + { + "epoch": 5.472835575639314, + "grad_norm": 0.0433974415063858, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 53289 + }, + { + "epoch": 5.473143678751155, + "grad_norm": 0.03472794219851494, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 53292 + }, + { + "epoch": 5.473451781862996, + "grad_norm": 0.04648016393184662, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 53295 + }, + { + "epoch": 5.473759884974839, + "grad_norm": 0.048154812306165695, + "learning_rate": 0.01, + "loss": 1.988, + "step": 53298 + }, + { + "epoch": 5.47406798808668, + "grad_norm": 0.040329910814762115, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 53301 + }, + { + "epoch": 5.474376091198521, + "grad_norm": 0.10805533081293106, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 53304 + }, + { + "epoch": 5.474684194310362, + "grad_norm": 0.04139288142323494, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 53307 + }, + { + "epoch": 5.474992297422204, + "grad_norm": 0.08323890715837479, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 53310 + }, + { + "epoch": 5.475300400534046, + "grad_norm": 0.07098772376775742, + "learning_rate": 0.01, + "loss": 2.001, + "step": 53313 + }, + { + "epoch": 5.475608503645887, + "grad_norm": 0.09589933604001999, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 53316 + }, + { + "epoch": 5.475916606757728, + "grad_norm": 0.09487750381231308, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 53319 + }, + { + "epoch": 5.4762247098695696, + "grad_norm": 0.04062903672456741, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 53322 + }, + { + "epoch": 5.476532812981411, + "grad_norm": 0.036831121891736984, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 53325 + }, + { + "epoch": 5.476840916093252, + "grad_norm": 0.05887876823544502, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 53328 + }, + { + "epoch": 5.477149019205094, + "grad_norm": 0.07680708169937134, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 53331 + }, + { + "epoch": 5.4774571223169355, + "grad_norm": 0.06624645739793777, + "learning_rate": 0.01, + "loss": 2.0242, + "step": 53334 + }, + { + "epoch": 5.477765225428777, + "grad_norm": 0.051530107855796814, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 53337 + }, + { + "epoch": 5.478073328540618, + "grad_norm": 0.046162448823451996, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 53340 + }, + { + "epoch": 5.478381431652459, + "grad_norm": 0.038336243480443954, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 53343 + }, + { + "epoch": 5.478689534764301, + "grad_norm": 0.03402607515454292, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 53346 + }, + { + "epoch": 5.478997637876143, + "grad_norm": 0.10580262541770935, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 53349 + }, + { + "epoch": 5.479305740987984, + "grad_norm": 0.13053545355796814, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 53352 + }, + { + "epoch": 5.479613844099825, + "grad_norm": 0.050016142427921295, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 53355 + }, + { + "epoch": 5.4799219472116665, + "grad_norm": 0.03820059821009636, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 53358 + }, + { + "epoch": 5.480230050323509, + "grad_norm": 0.04353965446352959, + "learning_rate": 0.01, + "loss": 2.0286, + "step": 53361 + }, + { + "epoch": 5.48053815343535, + "grad_norm": 0.04177290201187134, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 53364 + }, + { + "epoch": 5.480846256547191, + "grad_norm": 0.03511528670787811, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 53367 + }, + { + "epoch": 5.481154359659032, + "grad_norm": 0.10579612106084824, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 53370 + }, + { + "epoch": 5.481462462770874, + "grad_norm": 0.08428878337144852, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 53373 + }, + { + "epoch": 5.481770565882716, + "grad_norm": 0.045665886253118515, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 53376 + }, + { + "epoch": 5.482078668994557, + "grad_norm": 0.10956547409296036, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 53379 + }, + { + "epoch": 5.482386772106398, + "grad_norm": 0.07283762842416763, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 53382 + }, + { + "epoch": 5.48269487521824, + "grad_norm": 0.11426263302564621, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 53385 + }, + { + "epoch": 5.483002978330081, + "grad_norm": 0.06644517928361893, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 53388 + }, + { + "epoch": 5.483311081441922, + "grad_norm": 0.06233721226453781, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 53391 + }, + { + "epoch": 5.483619184553764, + "grad_norm": 0.06707890331745148, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 53394 + }, + { + "epoch": 5.4839272876656056, + "grad_norm": 0.06242217868566513, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 53397 + }, + { + "epoch": 5.484235390777447, + "grad_norm": 0.03913586214184761, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 53400 + }, + { + "epoch": 5.484543493889288, + "grad_norm": 0.10017285495996475, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 53403 + }, + { + "epoch": 5.484851597001129, + "grad_norm": 0.07849404960870743, + "learning_rate": 0.01, + "loss": 2.017, + "step": 53406 + }, + { + "epoch": 5.4851597001129715, + "grad_norm": 0.06911784410476685, + "learning_rate": 0.01, + "loss": 2.0207, + "step": 53409 + }, + { + "epoch": 5.485467803224813, + "grad_norm": 0.07752948254346848, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 53412 + }, + { + "epoch": 5.485775906336654, + "grad_norm": 0.0855301171541214, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 53415 + }, + { + "epoch": 5.486084009448495, + "grad_norm": 0.039153728634119034, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 53418 + }, + { + "epoch": 5.4863921125603365, + "grad_norm": 0.09871362149715424, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 53421 + }, + { + "epoch": 5.486700215672179, + "grad_norm": 0.05920962989330292, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 53424 + }, + { + "epoch": 5.48700831878402, + "grad_norm": 0.04103608801960945, + "learning_rate": 0.01, + "loss": 2.0363, + "step": 53427 + }, + { + "epoch": 5.487316421895861, + "grad_norm": 0.08447948098182678, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 53430 + }, + { + "epoch": 5.4876245250077025, + "grad_norm": 0.055456507951021194, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 53433 + }, + { + "epoch": 5.487932628119544, + "grad_norm": 0.05828576907515526, + "learning_rate": 0.01, + "loss": 1.983, + "step": 53436 + }, + { + "epoch": 5.488240731231386, + "grad_norm": 0.09117809683084488, + "learning_rate": 0.01, + "loss": 2.0269, + "step": 53439 + }, + { + "epoch": 5.488548834343227, + "grad_norm": 0.08137334883213043, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 53442 + }, + { + "epoch": 5.488856937455068, + "grad_norm": 0.08830280601978302, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 53445 + }, + { + "epoch": 5.48916504056691, + "grad_norm": 0.04386366158723831, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 53448 + }, + { + "epoch": 5.489473143678751, + "grad_norm": 0.0500885471701622, + "learning_rate": 0.01, + "loss": 1.997, + "step": 53451 + }, + { + "epoch": 5.489781246790592, + "grad_norm": 0.044326718896627426, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 53454 + }, + { + "epoch": 5.490089349902434, + "grad_norm": 0.1106194257736206, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 53457 + }, + { + "epoch": 5.490397453014276, + "grad_norm": 0.05222434550523758, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 53460 + }, + { + "epoch": 5.490705556126117, + "grad_norm": 0.08016736060380936, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 53463 + }, + { + "epoch": 5.491013659237958, + "grad_norm": 0.06921573728322983, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 53466 + }, + { + "epoch": 5.491321762349799, + "grad_norm": 0.10140072554349899, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 53469 + }, + { + "epoch": 5.491629865461642, + "grad_norm": 0.05930350720882416, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 53472 + }, + { + "epoch": 5.491937968573483, + "grad_norm": 0.054523758590221405, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 53475 + }, + { + "epoch": 5.492246071685324, + "grad_norm": 0.06033066287636757, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 53478 + }, + { + "epoch": 5.492554174797165, + "grad_norm": 0.11593367904424667, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 53481 + }, + { + "epoch": 5.492862277909007, + "grad_norm": 0.054470766335725784, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 53484 + }, + { + "epoch": 5.493170381020848, + "grad_norm": 0.05710428208112717, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 53487 + }, + { + "epoch": 5.49347848413269, + "grad_norm": 0.08135402947664261, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 53490 + }, + { + "epoch": 5.493786587244531, + "grad_norm": 0.13751734793186188, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 53493 + }, + { + "epoch": 5.4940946903563725, + "grad_norm": 0.07379119843244553, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 53496 + }, + { + "epoch": 5.494402793468214, + "grad_norm": 0.0595991387963295, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 53499 + }, + { + "epoch": 5.494710896580055, + "grad_norm": 0.05081510916352272, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 53502 + }, + { + "epoch": 5.495018999691897, + "grad_norm": 0.040366947650909424, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 53505 + }, + { + "epoch": 5.4953271028037385, + "grad_norm": 0.10154601186513901, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 53508 + }, + { + "epoch": 5.49563520591558, + "grad_norm": 0.0562141053378582, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 53511 + }, + { + "epoch": 5.495943309027421, + "grad_norm": 0.07368075847625732, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 53514 + }, + { + "epoch": 5.496251412139262, + "grad_norm": 0.04702366143465042, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 53517 + }, + { + "epoch": 5.496559515251104, + "grad_norm": 0.05341365188360214, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 53520 + }, + { + "epoch": 5.496867618362946, + "grad_norm": 0.10820145905017853, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 53523 + }, + { + "epoch": 5.497175721474787, + "grad_norm": 0.053429488092660904, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 53526 + }, + { + "epoch": 5.497483824586628, + "grad_norm": 0.1272108554840088, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 53529 + }, + { + "epoch": 5.4977919276984695, + "grad_norm": 0.043057285249233246, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 53532 + }, + { + "epoch": 5.498100030810312, + "grad_norm": 0.055451132357120514, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 53535 + }, + { + "epoch": 5.498408133922153, + "grad_norm": 0.11000920832157135, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 53538 + }, + { + "epoch": 5.498716237033994, + "grad_norm": 0.043610602617263794, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 53541 + }, + { + "epoch": 5.499024340145835, + "grad_norm": 0.12951324880123138, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 53544 + }, + { + "epoch": 5.499332443257677, + "grad_norm": 0.1155344694852829, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 53547 + }, + { + "epoch": 5.499640546369518, + "grad_norm": 0.04202111065387726, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 53550 + }, + { + "epoch": 5.49994864948136, + "grad_norm": 0.05797869712114334, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 53553 + }, + { + "epoch": 5.500256752593201, + "grad_norm": 0.055514171719551086, + "learning_rate": 0.01, + "loss": 2.002, + "step": 53556 + }, + { + "epoch": 5.500564855705043, + "grad_norm": 0.032696306705474854, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 53559 + }, + { + "epoch": 5.500872958816884, + "grad_norm": 0.07791826128959656, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 53562 + }, + { + "epoch": 5.501181061928725, + "grad_norm": 0.12042553722858429, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 53565 + }, + { + "epoch": 5.501489165040567, + "grad_norm": 0.08734118938446045, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 53568 + }, + { + "epoch": 5.5017972681524085, + "grad_norm": 0.1427556276321411, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 53571 + }, + { + "epoch": 5.50210537126425, + "grad_norm": 0.05691046267747879, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 53574 + }, + { + "epoch": 5.502413474376091, + "grad_norm": 0.05428704619407654, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 53577 + }, + { + "epoch": 5.502721577487932, + "grad_norm": 0.07390681654214859, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 53580 + }, + { + "epoch": 5.503029680599774, + "grad_norm": 0.04650009423494339, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 53583 + }, + { + "epoch": 5.503337783711616, + "grad_norm": 0.06623617559671402, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 53586 + }, + { + "epoch": 5.503645886823457, + "grad_norm": 0.08254354447126389, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 53589 + }, + { + "epoch": 5.503953989935298, + "grad_norm": 0.07407466322183609, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 53592 + }, + { + "epoch": 5.5042620930471395, + "grad_norm": 0.05553009733557701, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 53595 + }, + { + "epoch": 5.504570196158982, + "grad_norm": 0.068050317466259, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 53598 + }, + { + "epoch": 5.504878299270823, + "grad_norm": 0.036538973450660706, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 53601 + }, + { + "epoch": 5.505186402382664, + "grad_norm": 0.04083050787448883, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 53604 + }, + { + "epoch": 5.5054945054945055, + "grad_norm": 0.03994308039546013, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 53607 + }, + { + "epoch": 5.505802608606347, + "grad_norm": 0.039935458451509476, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 53610 + }, + { + "epoch": 5.506110711718188, + "grad_norm": 0.09762649983167648, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 53613 + }, + { + "epoch": 5.50641881483003, + "grad_norm": 0.058254171162843704, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 53616 + }, + { + "epoch": 5.506726917941871, + "grad_norm": 0.11991842836141586, + "learning_rate": 0.01, + "loss": 2.0198, + "step": 53619 + }, + { + "epoch": 5.507035021053713, + "grad_norm": 0.04026370868086815, + "learning_rate": 0.01, + "loss": 1.9698, + "step": 53622 + }, + { + "epoch": 5.507343124165554, + "grad_norm": 0.03855542093515396, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 53625 + }, + { + "epoch": 5.507651227277395, + "grad_norm": 0.04439062252640724, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 53628 + }, + { + "epoch": 5.507959330389237, + "grad_norm": 0.09283201396465302, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 53631 + }, + { + "epoch": 5.508267433501079, + "grad_norm": 0.05495656281709671, + "learning_rate": 0.01, + "loss": 1.9517, + "step": 53634 + }, + { + "epoch": 5.50857553661292, + "grad_norm": 0.08464661240577698, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 53637 + }, + { + "epoch": 5.508883639724761, + "grad_norm": 0.06856382638216019, + "learning_rate": 0.01, + "loss": 1.9549, + "step": 53640 + }, + { + "epoch": 5.509191742836602, + "grad_norm": 0.10367941111326218, + "learning_rate": 0.01, + "loss": 2.0157, + "step": 53643 + }, + { + "epoch": 5.509499845948444, + "grad_norm": 0.07614094018936157, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 53646 + }, + { + "epoch": 5.509807949060286, + "grad_norm": 0.07301559299230576, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 53649 + }, + { + "epoch": 5.510116052172127, + "grad_norm": 0.03928094357252121, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 53652 + }, + { + "epoch": 5.510424155283968, + "grad_norm": 0.04542843624949455, + "learning_rate": 0.01, + "loss": 2.0183, + "step": 53655 + }, + { + "epoch": 5.51073225839581, + "grad_norm": 0.08662543445825577, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 53658 + }, + { + "epoch": 5.511040361507651, + "grad_norm": 0.045004189014434814, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 53661 + }, + { + "epoch": 5.511348464619493, + "grad_norm": 0.03661379590630531, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 53664 + }, + { + "epoch": 5.511656567731334, + "grad_norm": 0.05117429420351982, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 53667 + }, + { + "epoch": 5.5119646708431755, + "grad_norm": 0.06222992762923241, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 53670 + }, + { + "epoch": 5.512272773955017, + "grad_norm": 0.04274081811308861, + "learning_rate": 0.01, + "loss": 1.977, + "step": 53673 + }, + { + "epoch": 5.512580877066858, + "grad_norm": 0.09774081408977509, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 53676 + }, + { + "epoch": 5.512888980178699, + "grad_norm": 0.15694968402385712, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 53679 + }, + { + "epoch": 5.5131970832905415, + "grad_norm": 0.06906448304653168, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 53682 + }, + { + "epoch": 5.513505186402383, + "grad_norm": 0.04059962183237076, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 53685 + }, + { + "epoch": 5.513813289514224, + "grad_norm": 0.03401316702365875, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 53688 + }, + { + "epoch": 5.514121392626065, + "grad_norm": 0.03932545334100723, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 53691 + }, + { + "epoch": 5.514429495737907, + "grad_norm": 0.04314441978931427, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 53694 + }, + { + "epoch": 5.514737598849749, + "grad_norm": 0.04282282292842865, + "learning_rate": 0.01, + "loss": 2.0311, + "step": 53697 + }, + { + "epoch": 5.51504570196159, + "grad_norm": 0.07264575362205505, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 53700 + }, + { + "epoch": 5.515353805073431, + "grad_norm": 0.031450774520635605, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 53703 + }, + { + "epoch": 5.5156619081852725, + "grad_norm": 0.04431367665529251, + "learning_rate": 0.01, + "loss": 2.0218, + "step": 53706 + }, + { + "epoch": 5.515970011297114, + "grad_norm": 0.059152550995349884, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 53709 + }, + { + "epoch": 5.516278114408956, + "grad_norm": 0.05627863109111786, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 53712 + }, + { + "epoch": 5.516586217520797, + "grad_norm": 0.12007083743810654, + "learning_rate": 0.01, + "loss": 2.003, + "step": 53715 + }, + { + "epoch": 5.516894320632638, + "grad_norm": 0.04498304799199104, + "learning_rate": 0.01, + "loss": 2.0171, + "step": 53718 + }, + { + "epoch": 5.51720242374448, + "grad_norm": 0.05469832196831703, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 53721 + }, + { + "epoch": 5.517510526856321, + "grad_norm": 0.12083622813224792, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 53724 + }, + { + "epoch": 5.517818629968163, + "grad_norm": 0.05532558634877205, + "learning_rate": 0.01, + "loss": 2.0263, + "step": 53727 + }, + { + "epoch": 5.518126733080004, + "grad_norm": 0.0655357614159584, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 53730 + }, + { + "epoch": 5.518434836191846, + "grad_norm": 0.03844601288437843, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 53733 + }, + { + "epoch": 5.518742939303687, + "grad_norm": 0.08736705034971237, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 53736 + }, + { + "epoch": 5.519051042415528, + "grad_norm": 0.03798610344529152, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 53739 + }, + { + "epoch": 5.519359145527369, + "grad_norm": 0.08266885578632355, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 53742 + }, + { + "epoch": 5.5196672486392115, + "grad_norm": 0.12414561212062836, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 53745 + }, + { + "epoch": 5.519975351751053, + "grad_norm": 0.07735760509967804, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 53748 + }, + { + "epoch": 5.520283454862894, + "grad_norm": 0.07708865404129028, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 53751 + }, + { + "epoch": 5.520591557974735, + "grad_norm": 0.08443256467580795, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 53754 + }, + { + "epoch": 5.520899661086577, + "grad_norm": 0.061041250824928284, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 53757 + }, + { + "epoch": 5.521207764198419, + "grad_norm": 0.06206076219677925, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 53760 + }, + { + "epoch": 5.52151586731026, + "grad_norm": 0.07099471986293793, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 53763 + }, + { + "epoch": 5.521823970422101, + "grad_norm": 0.08134863525629044, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 53766 + }, + { + "epoch": 5.5221320735339425, + "grad_norm": 0.08037443459033966, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 53769 + }, + { + "epoch": 5.522440176645784, + "grad_norm": 0.06751944124698639, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 53772 + }, + { + "epoch": 5.522748279757625, + "grad_norm": 0.04069173336029053, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 53775 + }, + { + "epoch": 5.523056382869467, + "grad_norm": 0.04320038482546806, + "learning_rate": 0.01, + "loss": 2.016, + "step": 53778 + }, + { + "epoch": 5.5233644859813085, + "grad_norm": 0.11609040200710297, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 53781 + }, + { + "epoch": 5.52367258909315, + "grad_norm": 0.050336502492427826, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 53784 + }, + { + "epoch": 5.523980692204991, + "grad_norm": 0.039348434656858444, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 53787 + }, + { + "epoch": 5.524288795316833, + "grad_norm": 0.08109190315008163, + "learning_rate": 0.01, + "loss": 1.961, + "step": 53790 + }, + { + "epoch": 5.524596898428674, + "grad_norm": 0.07181521505117416, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 53793 + }, + { + "epoch": 5.524905001540516, + "grad_norm": 0.04678622633218765, + "learning_rate": 0.01, + "loss": 1.967, + "step": 53796 + }, + { + "epoch": 5.525213104652357, + "grad_norm": 0.079826720058918, + "learning_rate": 0.01, + "loss": 2.0056, + "step": 53799 + }, + { + "epoch": 5.525521207764198, + "grad_norm": 0.08414063602685928, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 53802 + }, + { + "epoch": 5.5258293108760395, + "grad_norm": 0.04829956591129303, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 53805 + }, + { + "epoch": 5.526137413987882, + "grad_norm": 0.0862230584025383, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 53808 + }, + { + "epoch": 5.526445517099723, + "grad_norm": 0.06035618856549263, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 53811 + }, + { + "epoch": 5.526753620211564, + "grad_norm": 0.04363265261054039, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 53814 + }, + { + "epoch": 5.527061723323405, + "grad_norm": 0.06226656585931778, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 53817 + }, + { + "epoch": 5.527369826435247, + "grad_norm": 0.10821603238582611, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 53820 + }, + { + "epoch": 5.527677929547089, + "grad_norm": 0.06734979152679443, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 53823 + }, + { + "epoch": 5.52798603265893, + "grad_norm": 0.07929663360118866, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 53826 + }, + { + "epoch": 5.528294135770771, + "grad_norm": 0.11255302280187607, + "learning_rate": 0.01, + "loss": 1.99, + "step": 53829 + }, + { + "epoch": 5.528602238882613, + "grad_norm": 0.06797608733177185, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 53832 + }, + { + "epoch": 5.528910341994454, + "grad_norm": 0.07606469094753265, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 53835 + }, + { + "epoch": 5.529218445106295, + "grad_norm": 0.04698120057582855, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 53838 + }, + { + "epoch": 5.529526548218137, + "grad_norm": 0.07087966799736023, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 53841 + }, + { + "epoch": 5.5298346513299785, + "grad_norm": 0.048692237585783005, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 53844 + }, + { + "epoch": 5.53014275444182, + "grad_norm": 0.04359065368771553, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 53847 + }, + { + "epoch": 5.530450857553661, + "grad_norm": 0.05424369126558304, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 53850 + }, + { + "epoch": 5.530758960665503, + "grad_norm": 0.13464900851249695, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 53853 + }, + { + "epoch": 5.5310670637773445, + "grad_norm": 0.038927361369132996, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 53856 + }, + { + "epoch": 5.531375166889186, + "grad_norm": 0.040312107652425766, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 53859 + }, + { + "epoch": 5.531683270001027, + "grad_norm": 0.05727381631731987, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 53862 + }, + { + "epoch": 5.531991373112868, + "grad_norm": 0.06750021874904633, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 53865 + }, + { + "epoch": 5.5322994762247095, + "grad_norm": 0.08220100402832031, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 53868 + }, + { + "epoch": 5.532607579336552, + "grad_norm": 0.05215999484062195, + "learning_rate": 0.01, + "loss": 2.026, + "step": 53871 + }, + { + "epoch": 5.532915682448393, + "grad_norm": 0.06510480493307114, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 53874 + }, + { + "epoch": 5.533223785560234, + "grad_norm": 0.04641730710864067, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 53877 + }, + { + "epoch": 5.5335318886720755, + "grad_norm": 0.04414188116788864, + "learning_rate": 0.01, + "loss": 2.0314, + "step": 53880 + }, + { + "epoch": 5.533839991783917, + "grad_norm": 0.041879378259181976, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 53883 + }, + { + "epoch": 5.534148094895759, + "grad_norm": 0.039413318037986755, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 53886 + }, + { + "epoch": 5.5344561980076, + "grad_norm": 0.0784526839852333, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 53889 + }, + { + "epoch": 5.534764301119441, + "grad_norm": 0.1049879789352417, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 53892 + }, + { + "epoch": 5.535072404231283, + "grad_norm": 0.15476803481578827, + "learning_rate": 0.01, + "loss": 2.017, + "step": 53895 + }, + { + "epoch": 5.535380507343124, + "grad_norm": 0.1224508136510849, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 53898 + }, + { + "epoch": 5.535688610454965, + "grad_norm": 0.060283955186605453, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 53901 + }, + { + "epoch": 5.535996713566807, + "grad_norm": 0.05532943457365036, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 53904 + }, + { + "epoch": 5.536304816678649, + "grad_norm": 0.04745487496256828, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 53907 + }, + { + "epoch": 5.53661291979049, + "grad_norm": 0.05770549178123474, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 53910 + }, + { + "epoch": 5.536921022902331, + "grad_norm": 0.05675048008561134, + "learning_rate": 0.01, + "loss": 2.004, + "step": 53913 + }, + { + "epoch": 5.537229126014172, + "grad_norm": 0.05538811534643173, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 53916 + }, + { + "epoch": 5.5375372291260145, + "grad_norm": 0.05474154278635979, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 53919 + }, + { + "epoch": 5.537845332237856, + "grad_norm": 0.1373576670885086, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 53922 + }, + { + "epoch": 5.538153435349697, + "grad_norm": 0.04938695207238197, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 53925 + }, + { + "epoch": 5.538461538461538, + "grad_norm": 0.08616656810045242, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 53928 + }, + { + "epoch": 5.53876964157338, + "grad_norm": 0.0794534832239151, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 53931 + }, + { + "epoch": 5.539077744685221, + "grad_norm": 0.07034434378147125, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 53934 + }, + { + "epoch": 5.539385847797063, + "grad_norm": 0.09252175688743591, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 53937 + }, + { + "epoch": 5.539693950908904, + "grad_norm": 0.05770866200327873, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 53940 + }, + { + "epoch": 5.5400020540207455, + "grad_norm": 0.06952711939811707, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 53943 + }, + { + "epoch": 5.540310157132587, + "grad_norm": 0.06332490593194962, + "learning_rate": 0.01, + "loss": 1.972, + "step": 53946 + }, + { + "epoch": 5.540618260244429, + "grad_norm": 0.03297451511025429, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 53949 + }, + { + "epoch": 5.54092636335627, + "grad_norm": 0.03710363432765007, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 53952 + }, + { + "epoch": 5.5412344664681115, + "grad_norm": 0.05471167713403702, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 53955 + }, + { + "epoch": 5.541542569579953, + "grad_norm": 0.0861392468214035, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 53958 + }, + { + "epoch": 5.541850672691794, + "grad_norm": 0.08588635921478271, + "learning_rate": 0.01, + "loss": 2.003, + "step": 53961 + }, + { + "epoch": 5.542158775803635, + "grad_norm": 0.09388336539268494, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 53964 + }, + { + "epoch": 5.542466878915477, + "grad_norm": 0.1397831290960312, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 53967 + }, + { + "epoch": 5.542774982027319, + "grad_norm": 0.10498721152544022, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 53970 + }, + { + "epoch": 5.54308308513916, + "grad_norm": 0.0574629008769989, + "learning_rate": 0.01, + "loss": 2.02, + "step": 53973 + }, + { + "epoch": 5.543391188251001, + "grad_norm": 0.03409456089138985, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 53976 + }, + { + "epoch": 5.5436992913628425, + "grad_norm": 0.03830345720052719, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 53979 + }, + { + "epoch": 5.544007394474685, + "grad_norm": 0.0545862540602684, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 53982 + }, + { + "epoch": 5.544315497586526, + "grad_norm": 0.047009505331516266, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 53985 + }, + { + "epoch": 5.544623600698367, + "grad_norm": 0.0546221099793911, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 53988 + }, + { + "epoch": 5.544931703810208, + "grad_norm": 0.05153699591755867, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 53991 + }, + { + "epoch": 5.54523980692205, + "grad_norm": 0.1104668453335762, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 53994 + }, + { + "epoch": 5.545547910033891, + "grad_norm": 0.09211790561676025, + "learning_rate": 0.01, + "loss": 1.978, + "step": 53997 + }, + { + "epoch": 5.545856013145733, + "grad_norm": 0.03746125102043152, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 54000 + }, + { + "epoch": 5.546164116257574, + "grad_norm": 0.05226179584860802, + "learning_rate": 0.01, + "loss": 1.981, + "step": 54003 + }, + { + "epoch": 5.546472219369416, + "grad_norm": 0.08278732746839523, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 54006 + }, + { + "epoch": 5.546780322481257, + "grad_norm": 0.08003208786249161, + "learning_rate": 0.01, + "loss": 2.0169, + "step": 54009 + }, + { + "epoch": 5.547088425593098, + "grad_norm": 0.09529578685760498, + "learning_rate": 0.01, + "loss": 1.98, + "step": 54012 + }, + { + "epoch": 5.54739652870494, + "grad_norm": 0.08121462911367416, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 54015 + }, + { + "epoch": 5.5477046318167815, + "grad_norm": 0.07625698298215866, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 54018 + }, + { + "epoch": 5.548012734928623, + "grad_norm": 0.11102813482284546, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 54021 + }, + { + "epoch": 5.548320838040464, + "grad_norm": 0.05425316095352173, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 54024 + }, + { + "epoch": 5.548628941152305, + "grad_norm": 0.050913844257593155, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 54027 + }, + { + "epoch": 5.548937044264147, + "grad_norm": 0.049932949244976044, + "learning_rate": 0.01, + "loss": 1.985, + "step": 54030 + }, + { + "epoch": 5.549245147375989, + "grad_norm": 0.058598097413778305, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 54033 + }, + { + "epoch": 5.54955325048783, + "grad_norm": 0.06767188012599945, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 54036 + }, + { + "epoch": 5.549861353599671, + "grad_norm": 0.0709863007068634, + "learning_rate": 0.01, + "loss": 1.97, + "step": 54039 + }, + { + "epoch": 5.5501694567115125, + "grad_norm": 0.09273546189069748, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 54042 + }, + { + "epoch": 5.550477559823355, + "grad_norm": 0.04681755229830742, + "learning_rate": 0.01, + "loss": 1.982, + "step": 54045 + }, + { + "epoch": 5.550785662935196, + "grad_norm": 0.08744305372238159, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 54048 + }, + { + "epoch": 5.551093766047037, + "grad_norm": 0.03497626259922981, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 54051 + }, + { + "epoch": 5.5514018691588785, + "grad_norm": 0.05988140404224396, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 54054 + }, + { + "epoch": 5.55170997227072, + "grad_norm": 0.0464041493833065, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 54057 + }, + { + "epoch": 5.552018075382561, + "grad_norm": 0.051982734352350235, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 54060 + }, + { + "epoch": 5.552326178494403, + "grad_norm": 0.045320626348257065, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 54063 + }, + { + "epoch": 5.552634281606244, + "grad_norm": 0.04230513423681259, + "learning_rate": 0.01, + "loss": 2.0064, + "step": 54066 + }, + { + "epoch": 5.552942384718086, + "grad_norm": 0.0393347293138504, + "learning_rate": 0.01, + "loss": 2.0179, + "step": 54069 + }, + { + "epoch": 5.553250487829927, + "grad_norm": 0.1013195738196373, + "learning_rate": 0.01, + "loss": 1.984, + "step": 54072 + }, + { + "epoch": 5.553558590941768, + "grad_norm": 0.08008227497339249, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 54075 + }, + { + "epoch": 5.55386669405361, + "grad_norm": 0.0729672759771347, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 54078 + }, + { + "epoch": 5.554174797165452, + "grad_norm": 0.0624358095228672, + "learning_rate": 0.01, + "loss": 2.02, + "step": 54081 + }, + { + "epoch": 5.554482900277293, + "grad_norm": 0.03352997824549675, + "learning_rate": 0.01, + "loss": 1.988, + "step": 54084 + }, + { + "epoch": 5.554791003389134, + "grad_norm": 0.03241400793194771, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 54087 + }, + { + "epoch": 5.555099106500975, + "grad_norm": 0.033829499036073685, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 54090 + }, + { + "epoch": 5.555407209612817, + "grad_norm": 0.03398764133453369, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 54093 + }, + { + "epoch": 5.555715312724659, + "grad_norm": 0.04630080237984657, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 54096 + }, + { + "epoch": 5.5560234158365, + "grad_norm": 0.08986920863389969, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 54099 + }, + { + "epoch": 5.556331518948341, + "grad_norm": 0.07276762276887894, + "learning_rate": 0.01, + "loss": 1.985, + "step": 54102 + }, + { + "epoch": 5.556639622060183, + "grad_norm": 0.07180680334568024, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 54105 + }, + { + "epoch": 5.556947725172025, + "grad_norm": 0.0470985509455204, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 54108 + }, + { + "epoch": 5.557255828283866, + "grad_norm": 0.07641714811325073, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 54111 + }, + { + "epoch": 5.557563931395707, + "grad_norm": 0.11065167188644409, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 54114 + }, + { + "epoch": 5.5578720345075485, + "grad_norm": 0.10439474880695343, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 54117 + }, + { + "epoch": 5.55818013761939, + "grad_norm": 0.044907502830028534, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 54120 + }, + { + "epoch": 5.558488240731231, + "grad_norm": 0.052572451531887054, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 54123 + }, + { + "epoch": 5.558796343843073, + "grad_norm": 0.03218472748994827, + "learning_rate": 0.01, + "loss": 1.995, + "step": 54126 + }, + { + "epoch": 5.5591044469549145, + "grad_norm": 0.04737766459584236, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 54129 + }, + { + "epoch": 5.559412550066756, + "grad_norm": 0.045241083949804306, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 54132 + }, + { + "epoch": 5.559720653178597, + "grad_norm": 0.08022741228342056, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 54135 + }, + { + "epoch": 5.560028756290438, + "grad_norm": 0.1389225870370865, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 54138 + }, + { + "epoch": 5.56033685940228, + "grad_norm": 0.1731427162885666, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 54141 + }, + { + "epoch": 5.560644962514122, + "grad_norm": 0.13785654306411743, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 54144 + }, + { + "epoch": 5.560953065625963, + "grad_norm": 0.08374970406293869, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 54147 + }, + { + "epoch": 5.561261168737804, + "grad_norm": 0.038511909544467926, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 54150 + }, + { + "epoch": 5.5615692718496454, + "grad_norm": 0.04264768585562706, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 54153 + }, + { + "epoch": 5.561877374961487, + "grad_norm": 0.04369993880391121, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 54156 + }, + { + "epoch": 5.562185478073329, + "grad_norm": 0.04195026680827141, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 54159 + }, + { + "epoch": 5.56249358118517, + "grad_norm": 0.04474294185638428, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 54162 + }, + { + "epoch": 5.562801684297011, + "grad_norm": 0.049389854073524475, + "learning_rate": 0.01, + "loss": 2.027, + "step": 54165 + }, + { + "epoch": 5.563109787408853, + "grad_norm": 0.06065073981881142, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 54168 + }, + { + "epoch": 5.563417890520694, + "grad_norm": 0.1028941348195076, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 54171 + }, + { + "epoch": 5.563725993632536, + "grad_norm": 0.05602087453007698, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 54174 + }, + { + "epoch": 5.564034096744377, + "grad_norm": 0.09422741830348969, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 54177 + }, + { + "epoch": 5.564342199856219, + "grad_norm": 0.08502856642007828, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 54180 + }, + { + "epoch": 5.56465030296806, + "grad_norm": 0.1169920489192009, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 54183 + }, + { + "epoch": 5.564958406079901, + "grad_norm": 0.08334633708000183, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 54186 + }, + { + "epoch": 5.565266509191742, + "grad_norm": 0.04524173587560654, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 54189 + }, + { + "epoch": 5.5655746123035845, + "grad_norm": 0.04702974855899811, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 54192 + }, + { + "epoch": 5.565882715415426, + "grad_norm": 0.052152637392282486, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 54195 + }, + { + "epoch": 5.566190818527267, + "grad_norm": 0.07976489514112473, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 54198 + }, + { + "epoch": 5.566498921639108, + "grad_norm": 0.10382959991693497, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 54201 + }, + { + "epoch": 5.5668070247509505, + "grad_norm": 0.062233816832304, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 54204 + }, + { + "epoch": 5.567115127862792, + "grad_norm": 0.0779416561126709, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 54207 + }, + { + "epoch": 5.567423230974633, + "grad_norm": 0.05779222771525383, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 54210 + }, + { + "epoch": 5.567731334086474, + "grad_norm": 0.035859446972608566, + "learning_rate": 0.01, + "loss": 1.983, + "step": 54213 + }, + { + "epoch": 5.5680394371983155, + "grad_norm": 0.03528286889195442, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 54216 + }, + { + "epoch": 5.568347540310157, + "grad_norm": 0.03673080727458, + "learning_rate": 0.01, + "loss": 1.975, + "step": 54219 + }, + { + "epoch": 5.568655643421999, + "grad_norm": 0.10049016028642654, + "learning_rate": 0.01, + "loss": 1.999, + "step": 54222 + }, + { + "epoch": 5.56896374653384, + "grad_norm": 0.09414393454790115, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 54225 + }, + { + "epoch": 5.5692718496456814, + "grad_norm": 0.09574013203382492, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 54228 + }, + { + "epoch": 5.569579952757523, + "grad_norm": 0.06100035086274147, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 54231 + }, + { + "epoch": 5.569888055869364, + "grad_norm": 0.03801640495657921, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 54234 + }, + { + "epoch": 5.570196158981206, + "grad_norm": 0.04721992835402489, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 54237 + }, + { + "epoch": 5.570504262093047, + "grad_norm": 0.14547844231128693, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 54240 + }, + { + "epoch": 5.570812365204889, + "grad_norm": 0.0706636980175972, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 54243 + }, + { + "epoch": 5.57112046831673, + "grad_norm": 0.05795181170105934, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 54246 + }, + { + "epoch": 5.571428571428571, + "grad_norm": 0.04111074283719063, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 54249 + }, + { + "epoch": 5.571736674540412, + "grad_norm": 0.07275404036045074, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 54252 + }, + { + "epoch": 5.572044777652255, + "grad_norm": 0.06297045946121216, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 54255 + }, + { + "epoch": 5.572352880764096, + "grad_norm": 0.03748214617371559, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 54258 + }, + { + "epoch": 5.572660983875937, + "grad_norm": 0.0806899219751358, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 54261 + }, + { + "epoch": 5.572969086987778, + "grad_norm": 0.07261806726455688, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 54264 + }, + { + "epoch": 5.57327719009962, + "grad_norm": 0.09828619658946991, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 54267 + }, + { + "epoch": 5.573585293211462, + "grad_norm": 0.057755280286073685, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 54270 + }, + { + "epoch": 5.573893396323303, + "grad_norm": 0.053999438881874084, + "learning_rate": 0.01, + "loss": 1.992, + "step": 54273 + }, + { + "epoch": 5.574201499435144, + "grad_norm": 0.058348219841718674, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 54276 + }, + { + "epoch": 5.574509602546986, + "grad_norm": 0.0748370811343193, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 54279 + }, + { + "epoch": 5.574817705658827, + "grad_norm": 0.12268301099538803, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 54282 + }, + { + "epoch": 5.575125808770668, + "grad_norm": 0.04664819315075874, + "learning_rate": 0.01, + "loss": 2.0232, + "step": 54285 + }, + { + "epoch": 5.57543391188251, + "grad_norm": 0.061234939843416214, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 54288 + }, + { + "epoch": 5.5757420149943515, + "grad_norm": 0.034011028707027435, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 54291 + }, + { + "epoch": 5.576050118106193, + "grad_norm": 0.03644438087940216, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 54294 + }, + { + "epoch": 5.576358221218034, + "grad_norm": 0.03703255578875542, + "learning_rate": 0.01, + "loss": 2.01, + "step": 54297 + }, + { + "epoch": 5.576666324329876, + "grad_norm": 0.06192943826317787, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 54300 + }, + { + "epoch": 5.5769744274417175, + "grad_norm": 0.07393354922533035, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 54303 + }, + { + "epoch": 5.577282530553559, + "grad_norm": 0.10186754167079926, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 54306 + }, + { + "epoch": 5.5775906336654, + "grad_norm": 0.05970088392496109, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 54309 + }, + { + "epoch": 5.577898736777241, + "grad_norm": 0.07863925397396088, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 54312 + }, + { + "epoch": 5.5782068398890825, + "grad_norm": 0.08788790553808212, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 54315 + }, + { + "epoch": 5.578514943000925, + "grad_norm": 0.04963497817516327, + "learning_rate": 0.01, + "loss": 2.0, + "step": 54318 + }, + { + "epoch": 5.578823046112766, + "grad_norm": 0.06898415833711624, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 54321 + }, + { + "epoch": 5.579131149224607, + "grad_norm": 0.07146736234426498, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 54324 + }, + { + "epoch": 5.579439252336448, + "grad_norm": 0.08930405974388123, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 54327 + }, + { + "epoch": 5.57974735544829, + "grad_norm": 0.11615147441625595, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 54330 + }, + { + "epoch": 5.580055458560132, + "grad_norm": 0.12027255445718765, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 54333 + }, + { + "epoch": 5.580363561671973, + "grad_norm": 0.09193901717662811, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 54336 + }, + { + "epoch": 5.580671664783814, + "grad_norm": 0.0674210712313652, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 54339 + }, + { + "epoch": 5.580979767895656, + "grad_norm": 0.05408472940325737, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 54342 + }, + { + "epoch": 5.581287871007497, + "grad_norm": 0.04289040341973305, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 54345 + }, + { + "epoch": 5.581595974119338, + "grad_norm": 0.04341943934559822, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 54348 + }, + { + "epoch": 5.58190407723118, + "grad_norm": 0.03630705177783966, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 54351 + }, + { + "epoch": 5.582212180343022, + "grad_norm": 0.10383928567171097, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 54354 + }, + { + "epoch": 5.582520283454863, + "grad_norm": 0.042623065412044525, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 54357 + }, + { + "epoch": 5.582828386566704, + "grad_norm": 0.07011984288692474, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 54360 + }, + { + "epoch": 5.583136489678545, + "grad_norm": 0.09444596618413925, + "learning_rate": 0.01, + "loss": 1.989, + "step": 54363 + }, + { + "epoch": 5.5834445927903875, + "grad_norm": 0.0737951472401619, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 54366 + }, + { + "epoch": 5.583752695902229, + "grad_norm": 0.06040029227733612, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 54369 + }, + { + "epoch": 5.58406079901407, + "grad_norm": 0.059084903448820114, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 54372 + }, + { + "epoch": 5.584368902125911, + "grad_norm": 0.043141599744558334, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 54375 + }, + { + "epoch": 5.584677005237753, + "grad_norm": 0.07285004109144211, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 54378 + }, + { + "epoch": 5.584985108349595, + "grad_norm": 0.05245014652609825, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 54381 + }, + { + "epoch": 5.585293211461436, + "grad_norm": 0.06724348664283752, + "learning_rate": 0.01, + "loss": 1.984, + "step": 54384 + }, + { + "epoch": 5.585601314573277, + "grad_norm": 0.0695512667298317, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 54387 + }, + { + "epoch": 5.5859094176851185, + "grad_norm": 0.08221160620450974, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 54390 + }, + { + "epoch": 5.58621752079696, + "grad_norm": 0.04641614854335785, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 54393 + }, + { + "epoch": 5.586525623908802, + "grad_norm": 0.04592394083738327, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 54396 + }, + { + "epoch": 5.586833727020643, + "grad_norm": 0.04568556696176529, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 54399 + }, + { + "epoch": 5.587141830132484, + "grad_norm": 0.05011072754859924, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 54402 + }, + { + "epoch": 5.587449933244326, + "grad_norm": 0.05919931083917618, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 54405 + }, + { + "epoch": 5.587758036356167, + "grad_norm": 0.1045934408903122, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 54408 + }, + { + "epoch": 5.588066139468008, + "grad_norm": 0.06998443603515625, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 54411 + }, + { + "epoch": 5.58837424257985, + "grad_norm": 0.07034524530172348, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 54414 + }, + { + "epoch": 5.588682345691692, + "grad_norm": 0.10572990775108337, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 54417 + }, + { + "epoch": 5.588990448803533, + "grad_norm": 0.04444350302219391, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 54420 + }, + { + "epoch": 5.589298551915374, + "grad_norm": 0.06670062988996506, + "learning_rate": 0.01, + "loss": 1.998, + "step": 54423 + }, + { + "epoch": 5.589606655027215, + "grad_norm": 0.08078444004058838, + "learning_rate": 0.01, + "loss": 1.991, + "step": 54426 + }, + { + "epoch": 5.589914758139058, + "grad_norm": 0.06824928522109985, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 54429 + }, + { + "epoch": 5.590222861250899, + "grad_norm": 0.04053177684545517, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 54432 + }, + { + "epoch": 5.59053096436274, + "grad_norm": 0.07821489870548248, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 54435 + }, + { + "epoch": 5.590839067474581, + "grad_norm": 0.09564534574747086, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 54438 + }, + { + "epoch": 5.591147170586423, + "grad_norm": 0.06303589791059494, + "learning_rate": 0.01, + "loss": 1.984, + "step": 54441 + }, + { + "epoch": 5.591455273698264, + "grad_norm": 0.08767011016607285, + "learning_rate": 0.01, + "loss": 1.986, + "step": 54444 + }, + { + "epoch": 5.591763376810106, + "grad_norm": 0.06719005852937698, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 54447 + }, + { + "epoch": 5.592071479921947, + "grad_norm": 0.0828474760055542, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 54450 + }, + { + "epoch": 5.592379583033789, + "grad_norm": 0.07154206931591034, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 54453 + }, + { + "epoch": 5.59268768614563, + "grad_norm": 0.0818270891904831, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 54456 + }, + { + "epoch": 5.592995789257472, + "grad_norm": 0.046949781477451324, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 54459 + }, + { + "epoch": 5.593303892369313, + "grad_norm": 0.17068155109882355, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 54462 + }, + { + "epoch": 5.5936119954811545, + "grad_norm": 0.14092612266540527, + "learning_rate": 0.01, + "loss": 2.0142, + "step": 54465 + }, + { + "epoch": 5.593920098592996, + "grad_norm": 0.12458490580320358, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 54468 + }, + { + "epoch": 5.594228201704837, + "grad_norm": 0.07861830294132233, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 54471 + }, + { + "epoch": 5.594536304816678, + "grad_norm": 0.0819336324930191, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 54474 + }, + { + "epoch": 5.5948444079285204, + "grad_norm": 0.04734665900468826, + "learning_rate": 0.01, + "loss": 1.999, + "step": 54477 + }, + { + "epoch": 5.595152511040362, + "grad_norm": 0.04812568798661232, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 54480 + }, + { + "epoch": 5.595460614152203, + "grad_norm": 0.03981874883174896, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 54483 + }, + { + "epoch": 5.595768717264044, + "grad_norm": 0.034884098917245865, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 54486 + }, + { + "epoch": 5.5960768203758855, + "grad_norm": 0.04170473292469978, + "learning_rate": 0.01, + "loss": 1.98, + "step": 54489 + }, + { + "epoch": 5.596384923487728, + "grad_norm": 0.06037883087992668, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 54492 + }, + { + "epoch": 5.596693026599569, + "grad_norm": 0.06271529197692871, + "learning_rate": 0.01, + "loss": 1.976, + "step": 54495 + }, + { + "epoch": 5.59700112971141, + "grad_norm": 0.0646272599697113, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 54498 + }, + { + "epoch": 5.597309232823251, + "grad_norm": 0.05499435216188431, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 54501 + }, + { + "epoch": 5.597617335935093, + "grad_norm": 0.06327464431524277, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 54504 + }, + { + "epoch": 5.597925439046934, + "grad_norm": 0.07843179255723953, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 54507 + }, + { + "epoch": 5.598233542158776, + "grad_norm": 0.13546060025691986, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 54510 + }, + { + "epoch": 5.598541645270617, + "grad_norm": 0.05903356522321701, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 54513 + }, + { + "epoch": 5.598849748382459, + "grad_norm": 0.10746420919895172, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 54516 + }, + { + "epoch": 5.5991578514943, + "grad_norm": 0.07332249730825424, + "learning_rate": 0.01, + "loss": 2.004, + "step": 54519 + }, + { + "epoch": 5.599465954606141, + "grad_norm": 0.05419987067580223, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 54522 + }, + { + "epoch": 5.599774057717983, + "grad_norm": 0.06261706352233887, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 54525 + }, + { + "epoch": 5.600082160829825, + "grad_norm": 0.06889716535806656, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 54528 + }, + { + "epoch": 5.600390263941666, + "grad_norm": 0.07229785621166229, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 54531 + }, + { + "epoch": 5.600698367053507, + "grad_norm": 0.07027054578065872, + "learning_rate": 0.01, + "loss": 1.983, + "step": 54534 + }, + { + "epoch": 5.601006470165348, + "grad_norm": 0.0769757479429245, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 54537 + }, + { + "epoch": 5.60131457327719, + "grad_norm": 0.07835566997528076, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 54540 + }, + { + "epoch": 5.601622676389032, + "grad_norm": 0.059996653348207474, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 54543 + }, + { + "epoch": 5.601930779500873, + "grad_norm": 0.0982513576745987, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 54546 + }, + { + "epoch": 5.602238882612714, + "grad_norm": 0.08362521976232529, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 54549 + }, + { + "epoch": 5.602546985724556, + "grad_norm": 0.0593801811337471, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 54552 + }, + { + "epoch": 5.602855088836398, + "grad_norm": 0.09806974232196808, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 54555 + }, + { + "epoch": 5.603163191948239, + "grad_norm": 0.041621893644332886, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 54558 + }, + { + "epoch": 5.60347129506008, + "grad_norm": 0.04981600120663643, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 54561 + }, + { + "epoch": 5.6037793981719215, + "grad_norm": 0.08302900940179825, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 54564 + }, + { + "epoch": 5.604087501283763, + "grad_norm": 0.03515220060944557, + "learning_rate": 0.01, + "loss": 1.991, + "step": 54567 + }, + { + "epoch": 5.604395604395604, + "grad_norm": 0.0783744752407074, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 54570 + }, + { + "epoch": 5.604703707507446, + "grad_norm": 0.03960327431559563, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 54573 + }, + { + "epoch": 5.605011810619287, + "grad_norm": 0.04865705221891403, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 54576 + }, + { + "epoch": 5.605319913731129, + "grad_norm": 0.03959539160132408, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 54579 + }, + { + "epoch": 5.60562801684297, + "grad_norm": 0.08320534974336624, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 54582 + }, + { + "epoch": 5.605936119954811, + "grad_norm": 0.038179684430360794, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 54585 + }, + { + "epoch": 5.606244223066653, + "grad_norm": 0.04269682243466377, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 54588 + }, + { + "epoch": 5.606552326178495, + "grad_norm": 0.08585328608751297, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 54591 + }, + { + "epoch": 5.606860429290336, + "grad_norm": 0.04968829080462456, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 54594 + }, + { + "epoch": 5.607168532402177, + "grad_norm": 0.04485391452908516, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 54597 + }, + { + "epoch": 5.607476635514018, + "grad_norm": 0.03415564075112343, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 54600 + }, + { + "epoch": 5.60778473862586, + "grad_norm": 0.10459756851196289, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 54603 + }, + { + "epoch": 5.608092841737702, + "grad_norm": 0.04644683003425598, + "learning_rate": 0.01, + "loss": 1.995, + "step": 54606 + }, + { + "epoch": 5.608400944849543, + "grad_norm": 0.09354628622531891, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 54609 + }, + { + "epoch": 5.608709047961384, + "grad_norm": 0.07625284790992737, + "learning_rate": 0.01, + "loss": 2.017, + "step": 54612 + }, + { + "epoch": 5.609017151073226, + "grad_norm": 0.07845180481672287, + "learning_rate": 0.01, + "loss": 1.99, + "step": 54615 + }, + { + "epoch": 5.609325254185067, + "grad_norm": 0.060051124542951584, + "learning_rate": 0.01, + "loss": 2.001, + "step": 54618 + }, + { + "epoch": 5.609633357296909, + "grad_norm": 0.07250028848648071, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 54621 + }, + { + "epoch": 5.60994146040875, + "grad_norm": 0.10221341997385025, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 54624 + }, + { + "epoch": 5.610249563520592, + "grad_norm": 0.03648064285516739, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 54627 + }, + { + "epoch": 5.610557666632433, + "grad_norm": 0.04965173453092575, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 54630 + }, + { + "epoch": 5.610865769744274, + "grad_norm": 0.04213662073016167, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 54633 + }, + { + "epoch": 5.611173872856115, + "grad_norm": 0.11422538757324219, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 54636 + }, + { + "epoch": 5.6114819759679575, + "grad_norm": 0.054801687598228455, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 54639 + }, + { + "epoch": 5.611790079079799, + "grad_norm": 0.06683303415775299, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 54642 + }, + { + "epoch": 5.61209818219164, + "grad_norm": 0.04719147831201553, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 54645 + }, + { + "epoch": 5.612406285303481, + "grad_norm": 0.040852706879377365, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 54648 + }, + { + "epoch": 5.612714388415323, + "grad_norm": 0.038343146443367004, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 54651 + }, + { + "epoch": 5.613022491527165, + "grad_norm": 0.03426671028137207, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 54654 + }, + { + "epoch": 5.613330594639006, + "grad_norm": 0.08030149340629578, + "learning_rate": 0.01, + "loss": 1.988, + "step": 54657 + }, + { + "epoch": 5.613638697750847, + "grad_norm": 0.04974358528852463, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 54660 + }, + { + "epoch": 5.6139468008626885, + "grad_norm": 0.04733881726861, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 54663 + }, + { + "epoch": 5.61425490397453, + "grad_norm": 0.04850970208644867, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 54666 + }, + { + "epoch": 5.614563007086372, + "grad_norm": 0.08880652487277985, + "learning_rate": 0.01, + "loss": 1.984, + "step": 54669 + }, + { + "epoch": 5.614871110198213, + "grad_norm": 0.07070966809988022, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 54672 + }, + { + "epoch": 5.615179213310054, + "grad_norm": 0.043020039796829224, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 54675 + }, + { + "epoch": 5.615487316421896, + "grad_norm": 0.06512738764286041, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 54678 + }, + { + "epoch": 5.615795419533737, + "grad_norm": 0.09249335527420044, + "learning_rate": 0.01, + "loss": 1.988, + "step": 54681 + }, + { + "epoch": 5.616103522645579, + "grad_norm": 0.12002009153366089, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 54684 + }, + { + "epoch": 5.61641162575742, + "grad_norm": 0.046711284667253494, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 54687 + }, + { + "epoch": 5.616719728869262, + "grad_norm": 0.0453648641705513, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 54690 + }, + { + "epoch": 5.617027831981103, + "grad_norm": 0.06286431849002838, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 54693 + }, + { + "epoch": 5.617335935092944, + "grad_norm": 0.10770335048437119, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 54696 + }, + { + "epoch": 5.617644038204785, + "grad_norm": 0.038174375891685486, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 54699 + }, + { + "epoch": 5.617952141316628, + "grad_norm": 0.0749521404504776, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 54702 + }, + { + "epoch": 5.618260244428469, + "grad_norm": 0.08033082634210587, + "learning_rate": 0.01, + "loss": 2.0188, + "step": 54705 + }, + { + "epoch": 5.61856834754031, + "grad_norm": 0.06879189610481262, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 54708 + }, + { + "epoch": 5.618876450652151, + "grad_norm": 0.06201532483100891, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 54711 + }, + { + "epoch": 5.6191845537639935, + "grad_norm": 0.0482785739004612, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 54714 + }, + { + "epoch": 5.619492656875835, + "grad_norm": 0.08434705436229706, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 54717 + }, + { + "epoch": 5.619800759987676, + "grad_norm": 0.06971675902605057, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 54720 + }, + { + "epoch": 5.620108863099517, + "grad_norm": 0.05243263766169548, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 54723 + }, + { + "epoch": 5.620416966211359, + "grad_norm": 0.05071935057640076, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 54726 + }, + { + "epoch": 5.6207250693232, + "grad_norm": 0.07799027860164642, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 54729 + }, + { + "epoch": 5.621033172435042, + "grad_norm": 0.05585414171218872, + "learning_rate": 0.01, + "loss": 1.9517, + "step": 54732 + }, + { + "epoch": 5.621341275546883, + "grad_norm": 0.04890783876180649, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 54735 + }, + { + "epoch": 5.6216493786587245, + "grad_norm": 0.035397402942180634, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 54738 + }, + { + "epoch": 5.621957481770566, + "grad_norm": 0.04959969222545624, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 54741 + }, + { + "epoch": 5.622265584882407, + "grad_norm": 0.1236480176448822, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 54744 + }, + { + "epoch": 5.622573687994249, + "grad_norm": 0.05167923495173454, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 54747 + }, + { + "epoch": 5.62288179110609, + "grad_norm": 0.08985866606235504, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 54750 + }, + { + "epoch": 5.623189894217932, + "grad_norm": 0.051048051565885544, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 54753 + }, + { + "epoch": 5.623497997329773, + "grad_norm": 0.034315209835767746, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 54756 + }, + { + "epoch": 5.623806100441614, + "grad_norm": 0.034064918756484985, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 54759 + }, + { + "epoch": 5.6241142035534555, + "grad_norm": 0.04847462847828865, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 54762 + }, + { + "epoch": 5.624422306665298, + "grad_norm": 0.036340802907943726, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 54765 + }, + { + "epoch": 5.624730409777139, + "grad_norm": 0.07472583651542664, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 54768 + }, + { + "epoch": 5.62503851288898, + "grad_norm": 0.05728251487016678, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 54771 + }, + { + "epoch": 5.625346616000821, + "grad_norm": 0.08100686967372894, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 54774 + }, + { + "epoch": 5.625654719112663, + "grad_norm": 0.03416838496923447, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 54777 + }, + { + "epoch": 5.625962822224505, + "grad_norm": 0.08783119171857834, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 54780 + }, + { + "epoch": 5.626270925336346, + "grad_norm": 0.06878135353326797, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 54783 + }, + { + "epoch": 5.626579028448187, + "grad_norm": 0.08717949688434601, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 54786 + }, + { + "epoch": 5.626887131560029, + "grad_norm": 0.06441211700439453, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 54789 + }, + { + "epoch": 5.62719523467187, + "grad_norm": 0.0610957108438015, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 54792 + }, + { + "epoch": 5.627503337783711, + "grad_norm": 0.04509379714727402, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 54795 + }, + { + "epoch": 5.627811440895553, + "grad_norm": 0.05279795825481415, + "learning_rate": 0.01, + "loss": 1.998, + "step": 54798 + }, + { + "epoch": 5.628119544007395, + "grad_norm": 0.03723832964897156, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 54801 + }, + { + "epoch": 5.628427647119236, + "grad_norm": 0.10692798346281052, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 54804 + }, + { + "epoch": 5.628735750231077, + "grad_norm": 0.09552669525146484, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 54807 + }, + { + "epoch": 5.629043853342919, + "grad_norm": 0.11247537285089493, + "learning_rate": 0.01, + "loss": 1.9629, + "step": 54810 + }, + { + "epoch": 5.6293519564547605, + "grad_norm": 0.08334960043430328, + "learning_rate": 0.01, + "loss": 1.9591, + "step": 54813 + }, + { + "epoch": 5.629660059566602, + "grad_norm": 0.03950768709182739, + "learning_rate": 0.01, + "loss": 1.993, + "step": 54816 + }, + { + "epoch": 5.629968162678443, + "grad_norm": 0.032677773386240005, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 54819 + }, + { + "epoch": 5.630276265790284, + "grad_norm": 0.0373060442507267, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 54822 + }, + { + "epoch": 5.6305843689021255, + "grad_norm": 0.07568337768316269, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 54825 + }, + { + "epoch": 5.630892472013968, + "grad_norm": 0.08441541343927383, + "learning_rate": 0.01, + "loss": 2.017, + "step": 54828 + }, + { + "epoch": 5.631200575125809, + "grad_norm": 0.06486140936613083, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 54831 + }, + { + "epoch": 5.63150867823765, + "grad_norm": 0.06372927129268646, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 54834 + }, + { + "epoch": 5.6318167813494915, + "grad_norm": 0.06529858708381653, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 54837 + }, + { + "epoch": 5.632124884461333, + "grad_norm": 0.08682098984718323, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 54840 + }, + { + "epoch": 5.632432987573175, + "grad_norm": 0.05896419286727905, + "learning_rate": 0.01, + "loss": 2.0086, + "step": 54843 + }, + { + "epoch": 5.632741090685016, + "grad_norm": 0.06567796319723129, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 54846 + }, + { + "epoch": 5.633049193796857, + "grad_norm": 0.06519652158021927, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 54849 + }, + { + "epoch": 5.633357296908699, + "grad_norm": 0.09215736389160156, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 54852 + }, + { + "epoch": 5.63366540002054, + "grad_norm": 0.08821207284927368, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 54855 + }, + { + "epoch": 5.633973503132381, + "grad_norm": 0.06266074627637863, + "learning_rate": 0.01, + "loss": 2.0139, + "step": 54858 + }, + { + "epoch": 5.634281606244223, + "grad_norm": 0.11765746027231216, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 54861 + }, + { + "epoch": 5.634589709356065, + "grad_norm": 0.07203897088766098, + "learning_rate": 0.01, + "loss": 1.9625, + "step": 54864 + }, + { + "epoch": 5.634897812467906, + "grad_norm": 0.05088105797767639, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 54867 + }, + { + "epoch": 5.635205915579747, + "grad_norm": 0.04583646357059479, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 54870 + }, + { + "epoch": 5.635514018691588, + "grad_norm": 0.03866413235664368, + "learning_rate": 0.01, + "loss": 1.989, + "step": 54873 + }, + { + "epoch": 5.635822121803431, + "grad_norm": 0.02919906936585903, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 54876 + }, + { + "epoch": 5.636130224915272, + "grad_norm": 0.04621945321559906, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 54879 + }, + { + "epoch": 5.636438328027113, + "grad_norm": 0.131577268242836, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 54882 + }, + { + "epoch": 5.636746431138954, + "grad_norm": 0.13305455446243286, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 54885 + }, + { + "epoch": 5.637054534250796, + "grad_norm": 0.046413157135248184, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 54888 + }, + { + "epoch": 5.637362637362637, + "grad_norm": 0.0828058049082756, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 54891 + }, + { + "epoch": 5.637670740474479, + "grad_norm": 0.09685652703046799, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 54894 + }, + { + "epoch": 5.63797884358632, + "grad_norm": 0.055401384830474854, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 54897 + }, + { + "epoch": 5.6382869466981616, + "grad_norm": 0.04287857934832573, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 54900 + }, + { + "epoch": 5.638595049810003, + "grad_norm": 0.09044301509857178, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 54903 + }, + { + "epoch": 5.638903152921845, + "grad_norm": 0.07684798538684845, + "learning_rate": 0.01, + "loss": 1.973, + "step": 54906 + }, + { + "epoch": 5.639211256033686, + "grad_norm": 0.05879480764269829, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 54909 + }, + { + "epoch": 5.6395193591455275, + "grad_norm": 0.04824329912662506, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 54912 + }, + { + "epoch": 5.639827462257369, + "grad_norm": 0.0385722778737545, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 54915 + }, + { + "epoch": 5.64013556536921, + "grad_norm": 0.10394332557916641, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 54918 + }, + { + "epoch": 5.640443668481051, + "grad_norm": 0.08453499525785446, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 54921 + }, + { + "epoch": 5.640751771592893, + "grad_norm": 0.037400417029857635, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 54924 + }, + { + "epoch": 5.641059874704735, + "grad_norm": 0.04908459633588791, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 54927 + }, + { + "epoch": 5.641367977816576, + "grad_norm": 0.06965642422437668, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 54930 + }, + { + "epoch": 5.641676080928417, + "grad_norm": 0.11287185549736023, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 54933 + }, + { + "epoch": 5.6419841840402585, + "grad_norm": 0.039775166660547256, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 54936 + }, + { + "epoch": 5.642292287152101, + "grad_norm": 0.05167205631732941, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 54939 + }, + { + "epoch": 5.642600390263942, + "grad_norm": 0.09172987937927246, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 54942 + }, + { + "epoch": 5.642908493375783, + "grad_norm": 0.11361383646726608, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 54945 + }, + { + "epoch": 5.643216596487624, + "grad_norm": 0.07098819315433502, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 54948 + }, + { + "epoch": 5.643524699599466, + "grad_norm": 0.06430887430906296, + "learning_rate": 0.01, + "loss": 1.9575, + "step": 54951 + }, + { + "epoch": 5.643832802711307, + "grad_norm": 0.04281394183635712, + "learning_rate": 0.01, + "loss": 1.98, + "step": 54954 + }, + { + "epoch": 5.644140905823149, + "grad_norm": 0.04618782550096512, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 54957 + }, + { + "epoch": 5.64444900893499, + "grad_norm": 0.049203407019376755, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 54960 + }, + { + "epoch": 5.644757112046832, + "grad_norm": 0.07782324403524399, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 54963 + }, + { + "epoch": 5.645065215158673, + "grad_norm": 0.11196355521678925, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 54966 + }, + { + "epoch": 5.645373318270515, + "grad_norm": 0.08459745347499847, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 54969 + }, + { + "epoch": 5.645681421382356, + "grad_norm": 0.05610903725028038, + "learning_rate": 0.01, + "loss": 2.0065, + "step": 54972 + }, + { + "epoch": 5.6459895244941976, + "grad_norm": 0.07638850063085556, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 54975 + }, + { + "epoch": 5.646297627606039, + "grad_norm": 0.0996907651424408, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 54978 + }, + { + "epoch": 5.64660573071788, + "grad_norm": 0.05218489095568657, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 54981 + }, + { + "epoch": 5.646913833829721, + "grad_norm": 0.05683809146285057, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 54984 + }, + { + "epoch": 5.6472219369415635, + "grad_norm": 0.08494491875171661, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 54987 + }, + { + "epoch": 5.647530040053405, + "grad_norm": 0.09330440312623978, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 54990 + }, + { + "epoch": 5.647838143165246, + "grad_norm": 0.1456758677959442, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 54993 + }, + { + "epoch": 5.648146246277087, + "grad_norm": 0.13807424902915955, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 54996 + }, + { + "epoch": 5.6484543493889285, + "grad_norm": 0.0649813711643219, + "learning_rate": 0.01, + "loss": 2.017, + "step": 54999 + }, + { + "epoch": 5.648762452500771, + "grad_norm": 0.0742340162396431, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 55002 + }, + { + "epoch": 5.649070555612612, + "grad_norm": 0.09716660529375076, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 55005 + }, + { + "epoch": 5.649378658724453, + "grad_norm": 0.056228429079055786, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 55008 + }, + { + "epoch": 5.6496867618362945, + "grad_norm": 0.045122385025024414, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 55011 + }, + { + "epoch": 5.649994864948136, + "grad_norm": 0.0388353131711483, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 55014 + }, + { + "epoch": 5.650302968059977, + "grad_norm": 0.03766791522502899, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 55017 + }, + { + "epoch": 5.650611071171819, + "grad_norm": 0.037102095782756805, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 55020 + }, + { + "epoch": 5.65091917428366, + "grad_norm": 0.03547612577676773, + "learning_rate": 0.01, + "loss": 2.001, + "step": 55023 + }, + { + "epoch": 5.651227277395502, + "grad_norm": 0.14113888144493103, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 55026 + }, + { + "epoch": 5.651535380507343, + "grad_norm": 0.13051262497901917, + "learning_rate": 0.01, + "loss": 2.002, + "step": 55029 + }, + { + "epoch": 5.651843483619184, + "grad_norm": 0.050375718623399734, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 55032 + }, + { + "epoch": 5.652151586731026, + "grad_norm": 0.05951124429702759, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 55035 + }, + { + "epoch": 5.652459689842868, + "grad_norm": 0.0422302782535553, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 55038 + }, + { + "epoch": 5.652767792954709, + "grad_norm": 0.04383467882871628, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 55041 + }, + { + "epoch": 5.65307589606655, + "grad_norm": 0.06659442186355591, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 55044 + }, + { + "epoch": 5.653383999178391, + "grad_norm": 0.03979937732219696, + "learning_rate": 0.01, + "loss": 2.009, + "step": 55047 + }, + { + "epoch": 5.653692102290233, + "grad_norm": 0.07855933159589767, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 55050 + }, + { + "epoch": 5.654000205402075, + "grad_norm": 0.06732465326786041, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 55053 + }, + { + "epoch": 5.654308308513916, + "grad_norm": 0.057772446423769, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 55056 + }, + { + "epoch": 5.654616411625757, + "grad_norm": 0.08292173594236374, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 55059 + }, + { + "epoch": 5.654924514737599, + "grad_norm": 0.0935162603855133, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 55062 + }, + { + "epoch": 5.655232617849441, + "grad_norm": 0.06377442181110382, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 55065 + }, + { + "epoch": 5.655540720961282, + "grad_norm": 0.08845983445644379, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 55068 + }, + { + "epoch": 5.655848824073123, + "grad_norm": 0.06194892153143883, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 55071 + }, + { + "epoch": 5.6561569271849645, + "grad_norm": 0.06892132014036179, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 55074 + }, + { + "epoch": 5.656465030296806, + "grad_norm": 0.04041128605604172, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 55077 + }, + { + "epoch": 5.656773133408647, + "grad_norm": 0.09989805519580841, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 55080 + }, + { + "epoch": 5.657081236520489, + "grad_norm": 0.0866503044962883, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 55083 + }, + { + "epoch": 5.6573893396323305, + "grad_norm": 0.043805480003356934, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 55086 + }, + { + "epoch": 5.657697442744172, + "grad_norm": 0.038269441574811935, + "learning_rate": 0.01, + "loss": 1.9519, + "step": 55089 + }, + { + "epoch": 5.658005545856013, + "grad_norm": 0.04652794450521469, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 55092 + }, + { + "epoch": 5.658313648967854, + "grad_norm": 0.09699436277151108, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 55095 + }, + { + "epoch": 5.658621752079696, + "grad_norm": 0.07722003012895584, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 55098 + }, + { + "epoch": 5.658929855191538, + "grad_norm": 0.08195403218269348, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 55101 + }, + { + "epoch": 5.659237958303379, + "grad_norm": 0.04434705525636673, + "learning_rate": 0.01, + "loss": 1.981, + "step": 55104 + }, + { + "epoch": 5.65954606141522, + "grad_norm": 0.03978164121508598, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 55107 + }, + { + "epoch": 5.6598541645270615, + "grad_norm": 0.1201346144080162, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 55110 + }, + { + "epoch": 5.660162267638903, + "grad_norm": 0.17597338557243347, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 55113 + }, + { + "epoch": 5.660470370750745, + "grad_norm": 0.13311070203781128, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 55116 + }, + { + "epoch": 5.660778473862586, + "grad_norm": 0.11461780220270157, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 55119 + }, + { + "epoch": 5.661086576974427, + "grad_norm": 0.04778537154197693, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 55122 + }, + { + "epoch": 5.661394680086269, + "grad_norm": 0.03900016471743584, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 55125 + }, + { + "epoch": 5.66170278319811, + "grad_norm": 0.03934657946228981, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 55128 + }, + { + "epoch": 5.662010886309952, + "grad_norm": 0.07235165685415268, + "learning_rate": 0.01, + "loss": 2.0177, + "step": 55131 + }, + { + "epoch": 5.662318989421793, + "grad_norm": 0.09168880432844162, + "learning_rate": 0.01, + "loss": 2.0312, + "step": 55134 + }, + { + "epoch": 5.662627092533635, + "grad_norm": 0.058992091566324234, + "learning_rate": 0.01, + "loss": 1.984, + "step": 55137 + }, + { + "epoch": 5.662935195645476, + "grad_norm": 0.044471897184848785, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 55140 + }, + { + "epoch": 5.663243298757317, + "grad_norm": 0.04644366726279259, + "learning_rate": 0.01, + "loss": 2.018, + "step": 55143 + }, + { + "epoch": 5.663551401869158, + "grad_norm": 0.04064124450087547, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 55146 + }, + { + "epoch": 5.6638595049810005, + "grad_norm": 0.0546630322933197, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 55149 + }, + { + "epoch": 5.664167608092842, + "grad_norm": 0.07874899357557297, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 55152 + }, + { + "epoch": 5.664475711204683, + "grad_norm": 0.10178565979003906, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 55155 + }, + { + "epoch": 5.664783814316524, + "grad_norm": 0.10570824146270752, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 55158 + }, + { + "epoch": 5.6650919174283665, + "grad_norm": 0.046325813978910446, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 55161 + }, + { + "epoch": 5.665400020540208, + "grad_norm": 0.05771588161587715, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 55164 + }, + { + "epoch": 5.665708123652049, + "grad_norm": 0.0589786060154438, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 55167 + }, + { + "epoch": 5.66601622676389, + "grad_norm": 0.043214842677116394, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 55170 + }, + { + "epoch": 5.6663243298757315, + "grad_norm": 0.09702472388744354, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 55173 + }, + { + "epoch": 5.666632432987573, + "grad_norm": 0.04949367418885231, + "learning_rate": 0.01, + "loss": 2.001, + "step": 55176 + }, + { + "epoch": 5.666940536099415, + "grad_norm": 0.10156387835741043, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 55179 + }, + { + "epoch": 5.667248639211256, + "grad_norm": 0.04134589806199074, + "learning_rate": 0.01, + "loss": 1.992, + "step": 55182 + }, + { + "epoch": 5.6675567423230975, + "grad_norm": 0.09493035078048706, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 55185 + }, + { + "epoch": 5.667864845434939, + "grad_norm": 0.06814124435186386, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 55188 + }, + { + "epoch": 5.66817294854678, + "grad_norm": 0.05078943446278572, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 55191 + }, + { + "epoch": 5.668481051658622, + "grad_norm": 0.04670390486717224, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 55194 + }, + { + "epoch": 5.668789154770463, + "grad_norm": 0.04085162654519081, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 55197 + }, + { + "epoch": 5.669097257882305, + "grad_norm": 0.05365972965955734, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 55200 + }, + { + "epoch": 5.669405360994146, + "grad_norm": 0.06176181137561798, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 55203 + }, + { + "epoch": 5.669713464105987, + "grad_norm": 0.08370962738990784, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 55206 + }, + { + "epoch": 5.6700215672178285, + "grad_norm": 0.06180374324321747, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 55209 + }, + { + "epoch": 5.670329670329671, + "grad_norm": 0.04040297865867615, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 55212 + }, + { + "epoch": 5.670637773441512, + "grad_norm": 0.041469234973192215, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 55215 + }, + { + "epoch": 5.670945876553353, + "grad_norm": 0.04767376556992531, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 55218 + }, + { + "epoch": 5.671253979665194, + "grad_norm": 0.127590611577034, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 55221 + }, + { + "epoch": 5.671562082777036, + "grad_norm": 0.09273551404476166, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 55224 + }, + { + "epoch": 5.671870185888878, + "grad_norm": 0.06734216213226318, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 55227 + }, + { + "epoch": 5.672178289000719, + "grad_norm": 0.04960544407367706, + "learning_rate": 0.01, + "loss": 1.9583, + "step": 55230 + }, + { + "epoch": 5.67248639211256, + "grad_norm": 0.08085974305868149, + "learning_rate": 0.01, + "loss": 2.0236, + "step": 55233 + }, + { + "epoch": 5.672794495224402, + "grad_norm": 0.09541311115026474, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 55236 + }, + { + "epoch": 5.673102598336243, + "grad_norm": 0.04482199624180794, + "learning_rate": 0.01, + "loss": 2.0372, + "step": 55239 + }, + { + "epoch": 5.673410701448085, + "grad_norm": 0.0415610708296299, + "learning_rate": 0.01, + "loss": 2.0211, + "step": 55242 + }, + { + "epoch": 5.673718804559926, + "grad_norm": 0.08066660910844803, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 55245 + }, + { + "epoch": 5.6740269076717675, + "grad_norm": 0.06819882988929749, + "learning_rate": 0.01, + "loss": 1.9637, + "step": 55248 + }, + { + "epoch": 5.674335010783609, + "grad_norm": 0.10055188089609146, + "learning_rate": 0.01, + "loss": 1.9581, + "step": 55251 + }, + { + "epoch": 5.67464311389545, + "grad_norm": 0.05193830654025078, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 55254 + }, + { + "epoch": 5.674951217007292, + "grad_norm": 0.09766846150159836, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 55257 + }, + { + "epoch": 5.6752593201191335, + "grad_norm": 0.041506506502628326, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 55260 + }, + { + "epoch": 5.675567423230975, + "grad_norm": 0.04589756205677986, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 55263 + }, + { + "epoch": 5.675875526342816, + "grad_norm": 0.05841269716620445, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 55266 + }, + { + "epoch": 5.676183629454657, + "grad_norm": 0.08855876326560974, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 55269 + }, + { + "epoch": 5.6764917325664985, + "grad_norm": 0.055619269609451294, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 55272 + }, + { + "epoch": 5.676799835678341, + "grad_norm": 0.04398469999432564, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 55275 + }, + { + "epoch": 5.677107938790182, + "grad_norm": 0.073618583381176, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 55278 + }, + { + "epoch": 5.677416041902023, + "grad_norm": 0.03379726782441139, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 55281 + }, + { + "epoch": 5.6777241450138645, + "grad_norm": 0.040897171944379807, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 55284 + }, + { + "epoch": 5.678032248125706, + "grad_norm": 0.09364822506904602, + "learning_rate": 0.01, + "loss": 2.02, + "step": 55287 + }, + { + "epoch": 5.678340351237548, + "grad_norm": 0.05096183717250824, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 55290 + }, + { + "epoch": 5.678648454349389, + "grad_norm": 0.03920522332191467, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 55293 + }, + { + "epoch": 5.67895655746123, + "grad_norm": 0.12465393543243408, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 55296 + }, + { + "epoch": 5.679264660573072, + "grad_norm": 0.0732463076710701, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 55299 + }, + { + "epoch": 5.679572763684913, + "grad_norm": 0.048661403357982635, + "learning_rate": 0.01, + "loss": 2.0204, + "step": 55302 + }, + { + "epoch": 5.679880866796754, + "grad_norm": 0.072269506752491, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 55305 + }, + { + "epoch": 5.680188969908596, + "grad_norm": 0.09489680081605911, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 55308 + }, + { + "epoch": 5.680497073020438, + "grad_norm": 0.05124731361865997, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 55311 + }, + { + "epoch": 5.680805176132279, + "grad_norm": 0.05603638291358948, + "learning_rate": 0.01, + "loss": 2.021, + "step": 55314 + }, + { + "epoch": 5.68111327924412, + "grad_norm": 0.045195356011390686, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 55317 + }, + { + "epoch": 5.681421382355962, + "grad_norm": 0.08664342761039734, + "learning_rate": 0.01, + "loss": 1.985, + "step": 55320 + }, + { + "epoch": 5.6817294854678035, + "grad_norm": 0.06681100279092789, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 55323 + }, + { + "epoch": 5.682037588579645, + "grad_norm": 0.040817707777023315, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 55326 + }, + { + "epoch": 5.682345691691486, + "grad_norm": 0.04150600731372833, + "learning_rate": 0.01, + "loss": 1.986, + "step": 55329 + }, + { + "epoch": 5.682653794803327, + "grad_norm": 0.05804332345724106, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 55332 + }, + { + "epoch": 5.682961897915169, + "grad_norm": 0.06679341942071915, + "learning_rate": 0.01, + "loss": 2.0132, + "step": 55335 + }, + { + "epoch": 5.683270001027011, + "grad_norm": 0.1082872524857521, + "learning_rate": 0.01, + "loss": 1.9618, + "step": 55338 + }, + { + "epoch": 5.683578104138852, + "grad_norm": 0.039868131279945374, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 55341 + }, + { + "epoch": 5.683886207250693, + "grad_norm": 0.056761614978313446, + "learning_rate": 0.01, + "loss": 1.9671, + "step": 55344 + }, + { + "epoch": 5.6841943103625345, + "grad_norm": 0.05743727087974548, + "learning_rate": 0.01, + "loss": 2.0146, + "step": 55347 + }, + { + "epoch": 5.684502413474376, + "grad_norm": 0.07240551710128784, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 55350 + }, + { + "epoch": 5.684810516586218, + "grad_norm": 0.04794316738843918, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 55353 + }, + { + "epoch": 5.685118619698059, + "grad_norm": 0.03990946710109711, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 55356 + }, + { + "epoch": 5.6854267228099005, + "grad_norm": 0.030655885115265846, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 55359 + }, + { + "epoch": 5.685734825921742, + "grad_norm": 0.05635961890220642, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 55362 + }, + { + "epoch": 5.686042929033583, + "grad_norm": 0.058308038860559464, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 55365 + }, + { + "epoch": 5.686351032145424, + "grad_norm": 0.08183693885803223, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 55368 + }, + { + "epoch": 5.686659135257266, + "grad_norm": 0.14002621173858643, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 55371 + }, + { + "epoch": 5.686967238369108, + "grad_norm": 0.06427164375782013, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 55374 + }, + { + "epoch": 5.687275341480949, + "grad_norm": 0.03860678896307945, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 55377 + }, + { + "epoch": 5.68758344459279, + "grad_norm": 0.035588864237070084, + "learning_rate": 0.01, + "loss": 1.9627, + "step": 55380 + }, + { + "epoch": 5.6878915477046315, + "grad_norm": 0.035896506160497665, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 55383 + }, + { + "epoch": 5.688199650816474, + "grad_norm": 0.042555298656225204, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 55386 + }, + { + "epoch": 5.688507753928315, + "grad_norm": 0.061510197818279266, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 55389 + }, + { + "epoch": 5.688815857040156, + "grad_norm": 0.058596979826688766, + "learning_rate": 0.01, + "loss": 1.989, + "step": 55392 + }, + { + "epoch": 5.689123960151997, + "grad_norm": 0.14717184007167816, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 55395 + }, + { + "epoch": 5.689432063263839, + "grad_norm": 0.1496891975402832, + "learning_rate": 0.01, + "loss": 2.013, + "step": 55398 + }, + { + "epoch": 5.68974016637568, + "grad_norm": 0.09148060530424118, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 55401 + }, + { + "epoch": 5.690048269487522, + "grad_norm": 0.06617487967014313, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 55404 + }, + { + "epoch": 5.690356372599363, + "grad_norm": 0.0447409562766552, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 55407 + }, + { + "epoch": 5.690664475711205, + "grad_norm": 0.07360169291496277, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 55410 + }, + { + "epoch": 5.690972578823046, + "grad_norm": 0.03748020529747009, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 55413 + }, + { + "epoch": 5.691280681934888, + "grad_norm": 0.0812792256474495, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 55416 + }, + { + "epoch": 5.691588785046729, + "grad_norm": 0.06878095865249634, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 55419 + }, + { + "epoch": 5.6918968881585705, + "grad_norm": 0.10537760704755783, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 55422 + }, + { + "epoch": 5.692204991270412, + "grad_norm": 0.04603094980120659, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 55425 + }, + { + "epoch": 5.692513094382253, + "grad_norm": 0.09780580550432205, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 55428 + }, + { + "epoch": 5.692821197494094, + "grad_norm": 0.07139319181442261, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 55431 + }, + { + "epoch": 5.6931293006059365, + "grad_norm": 0.10430671274662018, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 55434 + }, + { + "epoch": 5.693437403717778, + "grad_norm": 0.07455434650182724, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 55437 + }, + { + "epoch": 5.693745506829619, + "grad_norm": 0.06788843870162964, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 55440 + }, + { + "epoch": 5.69405360994146, + "grad_norm": 0.07325445860624313, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 55443 + }, + { + "epoch": 5.6943617130533015, + "grad_norm": 0.06702747941017151, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 55446 + }, + { + "epoch": 5.694669816165144, + "grad_norm": 0.05118415504693985, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 55449 + }, + { + "epoch": 5.694977919276985, + "grad_norm": 0.08692149817943573, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 55452 + }, + { + "epoch": 5.695286022388826, + "grad_norm": 0.11190303415060043, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 55455 + }, + { + "epoch": 5.6955941255006675, + "grad_norm": 0.048586875200271606, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 55458 + }, + { + "epoch": 5.695902228612509, + "grad_norm": 0.04205205664038658, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 55461 + }, + { + "epoch": 5.69621033172435, + "grad_norm": 0.06149724870920181, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 55464 + }, + { + "epoch": 5.696518434836192, + "grad_norm": 0.0992293581366539, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 55467 + }, + { + "epoch": 5.696826537948033, + "grad_norm": 0.13116061687469482, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 55470 + }, + { + "epoch": 5.697134641059875, + "grad_norm": 0.06159098818898201, + "learning_rate": 0.01, + "loss": 1.976, + "step": 55473 + }, + { + "epoch": 5.697442744171716, + "grad_norm": 0.03453617915511131, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 55476 + }, + { + "epoch": 5.697750847283557, + "grad_norm": 0.09355533123016357, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 55479 + }, + { + "epoch": 5.698058950395399, + "grad_norm": 0.059095028787851334, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 55482 + }, + { + "epoch": 5.698367053507241, + "grad_norm": 0.0825907438993454, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 55485 + }, + { + "epoch": 5.698675156619082, + "grad_norm": 0.07268752157688141, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 55488 + }, + { + "epoch": 5.698983259730923, + "grad_norm": 0.07047848403453827, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 55491 + }, + { + "epoch": 5.699291362842764, + "grad_norm": 0.09214555472135544, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 55494 + }, + { + "epoch": 5.699599465954606, + "grad_norm": 0.11323852092027664, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 55497 + }, + { + "epoch": 5.699907569066448, + "grad_norm": 0.06520719081163406, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 55500 + }, + { + "epoch": 5.700215672178289, + "grad_norm": 0.04669101536273956, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 55503 + }, + { + "epoch": 5.70052377529013, + "grad_norm": 0.04730800911784172, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 55506 + }, + { + "epoch": 5.700831878401972, + "grad_norm": 0.043729908764362335, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 55509 + }, + { + "epoch": 5.701139981513814, + "grad_norm": 0.03472939133644104, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 55512 + }, + { + "epoch": 5.701448084625655, + "grad_norm": 0.050825025886297226, + "learning_rate": 0.01, + "loss": 1.975, + "step": 55515 + }, + { + "epoch": 5.701756187737496, + "grad_norm": 0.06947685033082962, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 55518 + }, + { + "epoch": 5.7020642908493375, + "grad_norm": 0.036018531769514084, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 55521 + }, + { + "epoch": 5.702372393961179, + "grad_norm": 0.10103366523981094, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 55524 + }, + { + "epoch": 5.70268049707302, + "grad_norm": 0.07310350984334946, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 55527 + }, + { + "epoch": 5.702988600184862, + "grad_norm": 0.13540640473365784, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 55530 + }, + { + "epoch": 5.7032967032967035, + "grad_norm": 0.0949084460735321, + "learning_rate": 0.01, + "loss": 2.01, + "step": 55533 + }, + { + "epoch": 5.703604806408545, + "grad_norm": 0.059144023805856705, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 55536 + }, + { + "epoch": 5.703912909520386, + "grad_norm": 0.0527474619448185, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 55539 + }, + { + "epoch": 5.704221012632227, + "grad_norm": 0.06749939173460007, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 55542 + }, + { + "epoch": 5.704529115744069, + "grad_norm": 0.03750371187925339, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 55545 + }, + { + "epoch": 5.704837218855911, + "grad_norm": 0.04007263481616974, + "learning_rate": 0.01, + "loss": 2.0147, + "step": 55548 + }, + { + "epoch": 5.705145321967752, + "grad_norm": 0.1166180819272995, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 55551 + }, + { + "epoch": 5.705453425079593, + "grad_norm": 0.09550142288208008, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 55554 + }, + { + "epoch": 5.7057615281914345, + "grad_norm": 0.03766748309135437, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 55557 + }, + { + "epoch": 5.706069631303276, + "grad_norm": 0.05305793881416321, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 55560 + }, + { + "epoch": 5.706377734415118, + "grad_norm": 0.042423125356435776, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 55563 + }, + { + "epoch": 5.706685837526959, + "grad_norm": 0.08636484295129776, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 55566 + }, + { + "epoch": 5.7069939406388, + "grad_norm": 0.05162766948342323, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 55569 + }, + { + "epoch": 5.707302043750642, + "grad_norm": 0.08721368759870529, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 55572 + }, + { + "epoch": 5.707610146862484, + "grad_norm": 0.043255776166915894, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 55575 + }, + { + "epoch": 5.707918249974325, + "grad_norm": 0.0371641106903553, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 55578 + }, + { + "epoch": 5.708226353086166, + "grad_norm": 0.03695603460073471, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 55581 + }, + { + "epoch": 5.708534456198008, + "grad_norm": 0.07745962589979172, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 55584 + }, + { + "epoch": 5.708842559309849, + "grad_norm": 0.10786707699298859, + "learning_rate": 0.01, + "loss": 1.974, + "step": 55587 + }, + { + "epoch": 5.70915066242169, + "grad_norm": 0.11932874470949173, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 55590 + }, + { + "epoch": 5.709458765533532, + "grad_norm": 0.09362657368183136, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 55593 + }, + { + "epoch": 5.7097668686453735, + "grad_norm": 0.049765367060899734, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 55596 + }, + { + "epoch": 5.710074971757215, + "grad_norm": 0.0707634910941124, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 55599 + }, + { + "epoch": 5.710383074869056, + "grad_norm": 0.05576471611857414, + "learning_rate": 0.01, + "loss": 2.0247, + "step": 55602 + }, + { + "epoch": 5.710691177980897, + "grad_norm": 0.036324393004179, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 55605 + }, + { + "epoch": 5.7109992810927395, + "grad_norm": 0.043876856565475464, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 55608 + }, + { + "epoch": 5.711307384204581, + "grad_norm": 0.04931717738509178, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 55611 + }, + { + "epoch": 5.711615487316422, + "grad_norm": 0.10611497610807419, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 55614 + }, + { + "epoch": 5.711923590428263, + "grad_norm": 0.04808138310909271, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 55617 + }, + { + "epoch": 5.7122316935401045, + "grad_norm": 0.05550553277134895, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 55620 + }, + { + "epoch": 5.712539796651946, + "grad_norm": 0.07001514732837677, + "learning_rate": 0.01, + "loss": 2.0225, + "step": 55623 + }, + { + "epoch": 5.712847899763788, + "grad_norm": 0.04201444238424301, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 55626 + }, + { + "epoch": 5.713156002875629, + "grad_norm": 0.04204641655087471, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 55629 + }, + { + "epoch": 5.7134641059874705, + "grad_norm": 0.07260296493768692, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 55632 + }, + { + "epoch": 5.713772209099312, + "grad_norm": 0.04765797406435013, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 55635 + }, + { + "epoch": 5.714080312211153, + "grad_norm": 0.10189679265022278, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 55638 + }, + { + "epoch": 5.714388415322995, + "grad_norm": 0.08928123861551285, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 55641 + }, + { + "epoch": 5.714696518434836, + "grad_norm": 0.041944585740566254, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 55644 + }, + { + "epoch": 5.715004621546678, + "grad_norm": 0.062304090708494186, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 55647 + }, + { + "epoch": 5.715312724658519, + "grad_norm": 0.03752179071307182, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 55650 + }, + { + "epoch": 5.71562082777036, + "grad_norm": 0.05441533774137497, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 55653 + }, + { + "epoch": 5.715928930882201, + "grad_norm": 0.0389556922018528, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 55656 + }, + { + "epoch": 5.716237033994044, + "grad_norm": 0.046292494982481, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 55659 + }, + { + "epoch": 5.716545137105885, + "grad_norm": 0.0998992770910263, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 55662 + }, + { + "epoch": 5.716853240217726, + "grad_norm": 0.07048474252223969, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 55665 + }, + { + "epoch": 5.717161343329567, + "grad_norm": 0.03293071687221527, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 55668 + }, + { + "epoch": 5.7174694464414095, + "grad_norm": 0.040962520986795425, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 55671 + }, + { + "epoch": 5.717777549553251, + "grad_norm": 0.08064155280590057, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 55674 + }, + { + "epoch": 5.718085652665092, + "grad_norm": 0.10333026945590973, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 55677 + }, + { + "epoch": 5.718393755776933, + "grad_norm": 0.06801532953977585, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 55680 + }, + { + "epoch": 5.718701858888775, + "grad_norm": 0.051722411066293716, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 55683 + }, + { + "epoch": 5.719009962000616, + "grad_norm": 0.08710015565156937, + "learning_rate": 0.01, + "loss": 1.982, + "step": 55686 + }, + { + "epoch": 5.719318065112458, + "grad_norm": 0.06947915256023407, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 55689 + }, + { + "epoch": 5.719626168224299, + "grad_norm": 0.08588126301765442, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 55692 + }, + { + "epoch": 5.7199342713361405, + "grad_norm": 0.1062588170170784, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 55695 + }, + { + "epoch": 5.720242374447982, + "grad_norm": 0.044331252574920654, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 55698 + }, + { + "epoch": 5.720550477559823, + "grad_norm": 0.06031282618641853, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 55701 + }, + { + "epoch": 5.720858580671665, + "grad_norm": 0.0506250225007534, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 55704 + }, + { + "epoch": 5.7211666837835065, + "grad_norm": 0.04892846941947937, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 55707 + }, + { + "epoch": 5.721474786895348, + "grad_norm": 0.0958351120352745, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 55710 + }, + { + "epoch": 5.721782890007189, + "grad_norm": 0.03931442275643349, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 55713 + }, + { + "epoch": 5.72209099311903, + "grad_norm": 0.10494615882635117, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 55716 + }, + { + "epoch": 5.7223990962308715, + "grad_norm": 0.06329034268856049, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 55719 + }, + { + "epoch": 5.722707199342714, + "grad_norm": 0.08237000554800034, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 55722 + }, + { + "epoch": 5.723015302454555, + "grad_norm": 0.063106007874012, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 55725 + }, + { + "epoch": 5.723323405566396, + "grad_norm": 0.04435192793607712, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 55728 + }, + { + "epoch": 5.7236315086782374, + "grad_norm": 0.09624417126178741, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 55731 + }, + { + "epoch": 5.723939611790079, + "grad_norm": 0.04826802760362625, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 55734 + }, + { + "epoch": 5.724247714901921, + "grad_norm": 0.13376633822917938, + "learning_rate": 0.01, + "loss": 2.0249, + "step": 55737 + }, + { + "epoch": 5.724555818013762, + "grad_norm": 0.10685109347105026, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 55740 + }, + { + "epoch": 5.724863921125603, + "grad_norm": 0.03832371160387993, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 55743 + }, + { + "epoch": 5.725172024237445, + "grad_norm": 0.06955388933420181, + "learning_rate": 0.01, + "loss": 1.983, + "step": 55746 + }, + { + "epoch": 5.725480127349286, + "grad_norm": 0.10767482221126556, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 55749 + }, + { + "epoch": 5.725788230461127, + "grad_norm": 0.09542632102966309, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 55752 + }, + { + "epoch": 5.726096333572969, + "grad_norm": 0.07101954519748688, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 55755 + }, + { + "epoch": 5.726404436684811, + "grad_norm": 0.04699917882680893, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 55758 + }, + { + "epoch": 5.726712539796652, + "grad_norm": 0.03901418298482895, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 55761 + }, + { + "epoch": 5.727020642908493, + "grad_norm": 0.03572557494044304, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 55764 + }, + { + "epoch": 5.727328746020335, + "grad_norm": 0.048515480011701584, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 55767 + }, + { + "epoch": 5.7276368491321765, + "grad_norm": 0.09653262794017792, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 55770 + }, + { + "epoch": 5.727944952244018, + "grad_norm": 0.05700475722551346, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 55773 + }, + { + "epoch": 5.728253055355859, + "grad_norm": 0.1171969622373581, + "learning_rate": 0.01, + "loss": 1.9628, + "step": 55776 + }, + { + "epoch": 5.7285611584677, + "grad_norm": 0.043651919811964035, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 55779 + }, + { + "epoch": 5.728869261579542, + "grad_norm": 0.034597914665937424, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 55782 + }, + { + "epoch": 5.729177364691384, + "grad_norm": 0.036805570125579834, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 55785 + }, + { + "epoch": 5.729485467803225, + "grad_norm": 0.0409085676074028, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 55788 + }, + { + "epoch": 5.729793570915066, + "grad_norm": 0.041818439960479736, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 55791 + }, + { + "epoch": 5.7301016740269075, + "grad_norm": 0.04998002573847771, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 55794 + }, + { + "epoch": 5.730409777138749, + "grad_norm": 0.13136835396289825, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 55797 + }, + { + "epoch": 5.730717880250591, + "grad_norm": 0.09088631719350815, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 55800 + }, + { + "epoch": 5.731025983362432, + "grad_norm": 0.04242292046546936, + "learning_rate": 0.01, + "loss": 1.995, + "step": 55803 + }, + { + "epoch": 5.7313340864742734, + "grad_norm": 0.06529027223587036, + "learning_rate": 0.01, + "loss": 1.992, + "step": 55806 + }, + { + "epoch": 5.731642189586115, + "grad_norm": 0.07886287569999695, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 55809 + }, + { + "epoch": 5.731950292697956, + "grad_norm": 0.05292735993862152, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 55812 + }, + { + "epoch": 5.732258395809797, + "grad_norm": 0.08382521569728851, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 55815 + }, + { + "epoch": 5.732566498921639, + "grad_norm": 0.16346225142478943, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 55818 + }, + { + "epoch": 5.732874602033481, + "grad_norm": 0.1087159663438797, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 55821 + }, + { + "epoch": 5.733182705145322, + "grad_norm": 0.08878868818283081, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 55824 + }, + { + "epoch": 5.733490808257163, + "grad_norm": 0.05677541717886925, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 55827 + }, + { + "epoch": 5.733798911369005, + "grad_norm": 0.047212038189172745, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 55830 + }, + { + "epoch": 5.734107014480847, + "grad_norm": 0.04530366137623787, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 55833 + }, + { + "epoch": 5.734415117592688, + "grad_norm": 0.03656543791294098, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 55836 + }, + { + "epoch": 5.734723220704529, + "grad_norm": 0.05110878124833107, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 55839 + }, + { + "epoch": 5.73503132381637, + "grad_norm": 0.046113792806863785, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 55842 + }, + { + "epoch": 5.735339426928212, + "grad_norm": 0.05249856784939766, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 55845 + }, + { + "epoch": 5.735647530040054, + "grad_norm": 0.10378940403461456, + "learning_rate": 0.01, + "loss": 1.99, + "step": 55848 + }, + { + "epoch": 5.735955633151895, + "grad_norm": 0.04738283157348633, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 55851 + }, + { + "epoch": 5.736263736263736, + "grad_norm": 0.042795851826667786, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 55854 + }, + { + "epoch": 5.736571839375578, + "grad_norm": 0.060027096420526505, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 55857 + }, + { + "epoch": 5.736879942487419, + "grad_norm": 0.060275256633758545, + "learning_rate": 0.01, + "loss": 2.0119, + "step": 55860 + }, + { + "epoch": 5.737188045599261, + "grad_norm": 0.038434866815805435, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 55863 + }, + { + "epoch": 5.737496148711102, + "grad_norm": 0.06112179905176163, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 55866 + }, + { + "epoch": 5.7378042518229435, + "grad_norm": 0.057865045964717865, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 55869 + }, + { + "epoch": 5.738112354934785, + "grad_norm": 0.10420432686805725, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 55872 + }, + { + "epoch": 5.738420458046626, + "grad_norm": 0.10990259796380997, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 55875 + }, + { + "epoch": 5.738728561158467, + "grad_norm": 0.047898877412080765, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 55878 + }, + { + "epoch": 5.7390366642703095, + "grad_norm": 0.09271835535764694, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 55881 + }, + { + "epoch": 5.739344767382151, + "grad_norm": 0.046148382127285004, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 55884 + }, + { + "epoch": 5.739652870493992, + "grad_norm": 0.09337476640939713, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 55887 + }, + { + "epoch": 5.739960973605833, + "grad_norm": 0.0676882416009903, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 55890 + }, + { + "epoch": 5.7402690767176745, + "grad_norm": 0.07760494947433472, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 55893 + }, + { + "epoch": 5.740577179829517, + "grad_norm": 0.0753534585237503, + "learning_rate": 0.01, + "loss": 2.0221, + "step": 55896 + }, + { + "epoch": 5.740885282941358, + "grad_norm": 0.07207735627889633, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 55899 + }, + { + "epoch": 5.741193386053199, + "grad_norm": 0.10786162316799164, + "learning_rate": 0.01, + "loss": 1.994, + "step": 55902 + }, + { + "epoch": 5.74150148916504, + "grad_norm": 0.05810957029461861, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 55905 + }, + { + "epoch": 5.741809592276882, + "grad_norm": 0.043440163135528564, + "learning_rate": 0.01, + "loss": 2.025, + "step": 55908 + }, + { + "epoch": 5.742117695388723, + "grad_norm": 0.10091213136911392, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 55911 + }, + { + "epoch": 5.742425798500565, + "grad_norm": 0.05655033513903618, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 55914 + }, + { + "epoch": 5.742733901612406, + "grad_norm": 0.04754583537578583, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 55917 + }, + { + "epoch": 5.743042004724248, + "grad_norm": 0.04805220663547516, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 55920 + }, + { + "epoch": 5.743350107836089, + "grad_norm": 0.03961215168237686, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 55923 + }, + { + "epoch": 5.743658210947931, + "grad_norm": 0.0900992751121521, + "learning_rate": 0.01, + "loss": 2.004, + "step": 55926 + }, + { + "epoch": 5.743966314059772, + "grad_norm": 0.06700705736875534, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 55929 + }, + { + "epoch": 5.744274417171614, + "grad_norm": 0.06921757012605667, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 55932 + }, + { + "epoch": 5.744582520283455, + "grad_norm": 0.08982661366462708, + "learning_rate": 0.01, + "loss": 1.9646, + "step": 55935 + }, + { + "epoch": 5.744890623395296, + "grad_norm": 0.059035494923591614, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 55938 + }, + { + "epoch": 5.745198726507137, + "grad_norm": 0.11368583887815475, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 55941 + }, + { + "epoch": 5.7455068296189795, + "grad_norm": 0.08658309280872345, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 55944 + }, + { + "epoch": 5.745814932730821, + "grad_norm": 0.06159745901823044, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 55947 + }, + { + "epoch": 5.746123035842662, + "grad_norm": 0.09689722955226898, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 55950 + }, + { + "epoch": 5.746431138954503, + "grad_norm": 0.04213634133338928, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 55953 + }, + { + "epoch": 5.746739242066345, + "grad_norm": 0.09022536873817444, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 55956 + }, + { + "epoch": 5.747047345178187, + "grad_norm": 0.047155823558568954, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 55959 + }, + { + "epoch": 5.747355448290028, + "grad_norm": 0.12048459053039551, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 55962 + }, + { + "epoch": 5.747663551401869, + "grad_norm": 0.14343701303005219, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 55965 + }, + { + "epoch": 5.7479716545137105, + "grad_norm": 0.10892770439386368, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 55968 + }, + { + "epoch": 5.748279757625552, + "grad_norm": 0.08472274988889694, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 55971 + }, + { + "epoch": 5.748587860737393, + "grad_norm": 0.06257399171590805, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 55974 + }, + { + "epoch": 5.748895963849235, + "grad_norm": 0.050180837512016296, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 55977 + }, + { + "epoch": 5.749204066961076, + "grad_norm": 0.04516899958252907, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 55980 + }, + { + "epoch": 5.749512170072918, + "grad_norm": 0.06078992411494255, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 55983 + }, + { + "epoch": 5.749820273184759, + "grad_norm": 0.060303375124931335, + "learning_rate": 0.01, + "loss": 1.983, + "step": 55986 + }, + { + "epoch": 5.7501283762966, + "grad_norm": 0.046474192291498184, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 55989 + }, + { + "epoch": 5.750436479408442, + "grad_norm": 0.042475223541259766, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 55992 + }, + { + "epoch": 5.750744582520284, + "grad_norm": 0.10338003933429718, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 55995 + }, + { + "epoch": 5.751052685632125, + "grad_norm": 0.07736215740442276, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 55998 + }, + { + "epoch": 5.751360788743966, + "grad_norm": 0.12122607231140137, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 56001 + }, + { + "epoch": 5.751668891855807, + "grad_norm": 0.12788768112659454, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 56004 + }, + { + "epoch": 5.751976994967649, + "grad_norm": 0.1270526796579361, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 56007 + }, + { + "epoch": 5.752285098079491, + "grad_norm": 0.07083453238010406, + "learning_rate": 0.01, + "loss": 2.0271, + "step": 56010 + }, + { + "epoch": 5.752593201191332, + "grad_norm": 0.0539688877761364, + "learning_rate": 0.01, + "loss": 2.0156, + "step": 56013 + }, + { + "epoch": 5.752901304303173, + "grad_norm": 0.05941673740744591, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 56016 + }, + { + "epoch": 5.753209407415015, + "grad_norm": 0.058209896087646484, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 56019 + }, + { + "epoch": 5.753517510526857, + "grad_norm": 0.046941760927438736, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 56022 + }, + { + "epoch": 5.753825613638698, + "grad_norm": 0.05372985079884529, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 56025 + }, + { + "epoch": 5.754133716750539, + "grad_norm": 0.04523862898349762, + "learning_rate": 0.01, + "loss": 2.0294, + "step": 56028 + }, + { + "epoch": 5.754441819862381, + "grad_norm": 0.03816952556371689, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 56031 + }, + { + "epoch": 5.754749922974222, + "grad_norm": 0.06410220265388489, + "learning_rate": 0.01, + "loss": 2.0222, + "step": 56034 + }, + { + "epoch": 5.755058026086063, + "grad_norm": 0.03941243886947632, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 56037 + }, + { + "epoch": 5.755366129197905, + "grad_norm": 0.054606303572654724, + "learning_rate": 0.01, + "loss": 1.9634, + "step": 56040 + }, + { + "epoch": 5.7556742323097465, + "grad_norm": 0.12037497013807297, + "learning_rate": 0.01, + "loss": 2.013, + "step": 56043 + }, + { + "epoch": 5.755982335421588, + "grad_norm": 0.09681439399719238, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 56046 + }, + { + "epoch": 5.756290438533429, + "grad_norm": 0.09768577665090561, + "learning_rate": 0.01, + "loss": 2.0103, + "step": 56049 + }, + { + "epoch": 5.75659854164527, + "grad_norm": 0.08952365070581436, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 56052 + }, + { + "epoch": 5.7569066447571124, + "grad_norm": 0.09528356790542603, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 56055 + }, + { + "epoch": 5.757214747868954, + "grad_norm": 0.05678083375096321, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 56058 + }, + { + "epoch": 5.757522850980795, + "grad_norm": 0.040836770087480545, + "learning_rate": 0.01, + "loss": 1.9526, + "step": 56061 + }, + { + "epoch": 5.757830954092636, + "grad_norm": 0.053255595266819, + "learning_rate": 0.01, + "loss": 1.977, + "step": 56064 + }, + { + "epoch": 5.7581390572044775, + "grad_norm": 0.053145814687013626, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 56067 + }, + { + "epoch": 5.758447160316319, + "grad_norm": 0.04844813421368599, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 56070 + }, + { + "epoch": 5.758755263428161, + "grad_norm": 0.08748742938041687, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 56073 + }, + { + "epoch": 5.759063366540002, + "grad_norm": 0.03808058798313141, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 56076 + }, + { + "epoch": 5.759371469651843, + "grad_norm": 0.0475618913769722, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 56079 + }, + { + "epoch": 5.759679572763685, + "grad_norm": 0.04134085774421692, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 56082 + }, + { + "epoch": 5.759987675875526, + "grad_norm": 0.035581640899181366, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 56085 + }, + { + "epoch": 5.760295778987368, + "grad_norm": 0.1027594655752182, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 56088 + }, + { + "epoch": 5.760603882099209, + "grad_norm": 0.06380899995565414, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 56091 + }, + { + "epoch": 5.760911985211051, + "grad_norm": 0.04780165106058121, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 56094 + }, + { + "epoch": 5.761220088322892, + "grad_norm": 0.0501483753323555, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 56097 + }, + { + "epoch": 5.761528191434733, + "grad_norm": 0.06381183862686157, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 56100 + }, + { + "epoch": 5.761836294546574, + "grad_norm": 0.08505979180335999, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 56103 + }, + { + "epoch": 5.762144397658417, + "grad_norm": 0.09470894932746887, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 56106 + }, + { + "epoch": 5.762452500770258, + "grad_norm": 0.08021756261587143, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 56109 + }, + { + "epoch": 5.762760603882099, + "grad_norm": 0.05404616892337799, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 56112 + }, + { + "epoch": 5.76306870699394, + "grad_norm": 0.05812733992934227, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 56115 + }, + { + "epoch": 5.7633768101057825, + "grad_norm": 0.045452944934368134, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 56118 + }, + { + "epoch": 5.763684913217624, + "grad_norm": 0.06332234293222427, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 56121 + }, + { + "epoch": 5.763993016329465, + "grad_norm": 0.0571395680308342, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 56124 + }, + { + "epoch": 5.764301119441306, + "grad_norm": 0.057966724038124084, + "learning_rate": 0.01, + "loss": 1.983, + "step": 56127 + }, + { + "epoch": 5.764609222553148, + "grad_norm": 0.03700026124715805, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 56130 + }, + { + "epoch": 5.764917325664989, + "grad_norm": 0.06366675347089767, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 56133 + }, + { + "epoch": 5.765225428776831, + "grad_norm": 0.12095164507627487, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 56136 + }, + { + "epoch": 5.765533531888672, + "grad_norm": 0.05511580780148506, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 56139 + }, + { + "epoch": 5.7658416350005135, + "grad_norm": 0.06662758439779282, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 56142 + }, + { + "epoch": 5.766149738112355, + "grad_norm": 0.05345858260989189, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 56145 + }, + { + "epoch": 5.766457841224196, + "grad_norm": 0.05073786526918411, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 56148 + }, + { + "epoch": 5.766765944336038, + "grad_norm": 0.041545137763023376, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 56151 + }, + { + "epoch": 5.767074047447879, + "grad_norm": 0.058929163962602615, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 56154 + }, + { + "epoch": 5.767382150559721, + "grad_norm": 0.0575728714466095, + "learning_rate": 0.01, + "loss": 1.993, + "step": 56157 + }, + { + "epoch": 5.767690253671562, + "grad_norm": 0.05252945050597191, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 56160 + }, + { + "epoch": 5.767998356783403, + "grad_norm": 0.09407012909650803, + "learning_rate": 0.01, + "loss": 1.975, + "step": 56163 + }, + { + "epoch": 5.7683064598952445, + "grad_norm": 0.07041514664888382, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 56166 + }, + { + "epoch": 5.768614563007087, + "grad_norm": 0.0976720005273819, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 56169 + }, + { + "epoch": 5.768922666118928, + "grad_norm": 0.06705368310213089, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 56172 + }, + { + "epoch": 5.769230769230769, + "grad_norm": 0.044996488839387894, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 56175 + }, + { + "epoch": 5.76953887234261, + "grad_norm": 0.05325739085674286, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 56178 + }, + { + "epoch": 5.769846975454453, + "grad_norm": 0.06506424397230148, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 56181 + }, + { + "epoch": 5.770155078566294, + "grad_norm": 0.05719895660877228, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 56184 + }, + { + "epoch": 5.770463181678135, + "grad_norm": 0.057186469435691833, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 56187 + }, + { + "epoch": 5.770771284789976, + "grad_norm": 0.06783724576234818, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 56190 + }, + { + "epoch": 5.771079387901818, + "grad_norm": 0.10789873450994492, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 56193 + }, + { + "epoch": 5.771387491013659, + "grad_norm": 0.07688331604003906, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 56196 + }, + { + "epoch": 5.771695594125501, + "grad_norm": 0.056692346930503845, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 56199 + }, + { + "epoch": 5.772003697237342, + "grad_norm": 0.04593949392437935, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 56202 + }, + { + "epoch": 5.772311800349184, + "grad_norm": 0.050233110785484314, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 56205 + }, + { + "epoch": 5.772619903461025, + "grad_norm": 0.049515530467033386, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 56208 + }, + { + "epoch": 5.772928006572866, + "grad_norm": 0.10692589730024338, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 56211 + }, + { + "epoch": 5.773236109684708, + "grad_norm": 0.054260801523923874, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 56214 + }, + { + "epoch": 5.7735442127965495, + "grad_norm": 0.042156677693128586, + "learning_rate": 0.01, + "loss": 1.983, + "step": 56217 + }, + { + "epoch": 5.773852315908391, + "grad_norm": 0.06891094893217087, + "learning_rate": 0.01, + "loss": 1.981, + "step": 56220 + }, + { + "epoch": 5.774160419020232, + "grad_norm": 0.09000008553266525, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 56223 + }, + { + "epoch": 5.774468522132073, + "grad_norm": 0.051672134548425674, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 56226 + }, + { + "epoch": 5.7747766252439146, + "grad_norm": 0.04013100638985634, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 56229 + }, + { + "epoch": 5.775084728355757, + "grad_norm": 0.051951587200164795, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 56232 + }, + { + "epoch": 5.775392831467598, + "grad_norm": 0.038350678980350494, + "learning_rate": 0.01, + "loss": 1.9587, + "step": 56235 + }, + { + "epoch": 5.775700934579439, + "grad_norm": 0.10026026517152786, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 56238 + }, + { + "epoch": 5.7760090376912805, + "grad_norm": 0.07415781170129776, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 56241 + }, + { + "epoch": 5.776317140803122, + "grad_norm": 0.04173508659005165, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 56244 + }, + { + "epoch": 5.776625243914964, + "grad_norm": 0.1886957734823227, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 56247 + }, + { + "epoch": 5.776933347026805, + "grad_norm": 0.13357476890087128, + "learning_rate": 0.01, + "loss": 1.9562, + "step": 56250 + }, + { + "epoch": 5.777241450138646, + "grad_norm": 0.08402860164642334, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 56253 + }, + { + "epoch": 5.777549553250488, + "grad_norm": 0.08017169684171677, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 56256 + }, + { + "epoch": 5.777857656362329, + "grad_norm": 0.08612015098333359, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 56259 + }, + { + "epoch": 5.77816575947417, + "grad_norm": 0.06540670245885849, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 56262 + }, + { + "epoch": 5.778473862586012, + "grad_norm": 0.03119773231446743, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 56265 + }, + { + "epoch": 5.778781965697854, + "grad_norm": 0.12924209237098694, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 56268 + }, + { + "epoch": 5.779090068809695, + "grad_norm": 0.07823926955461502, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 56271 + }, + { + "epoch": 5.779398171921536, + "grad_norm": 0.05518370866775513, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 56274 + }, + { + "epoch": 5.779706275033378, + "grad_norm": 0.041604407131671906, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 56277 + }, + { + "epoch": 5.78001437814522, + "grad_norm": 0.05646267905831337, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 56280 + }, + { + "epoch": 5.780322481257061, + "grad_norm": 0.051092468202114105, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 56283 + }, + { + "epoch": 5.780630584368902, + "grad_norm": 0.05034413933753967, + "learning_rate": 0.01, + "loss": 1.9559, + "step": 56286 + }, + { + "epoch": 5.780938687480743, + "grad_norm": 0.03945804387331009, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 56289 + }, + { + "epoch": 5.781246790592585, + "grad_norm": 0.046318311244249344, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 56292 + }, + { + "epoch": 5.781554893704427, + "grad_norm": 0.0614444762468338, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 56295 + }, + { + "epoch": 5.781862996816268, + "grad_norm": 0.06555134057998657, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 56298 + }, + { + "epoch": 5.782171099928109, + "grad_norm": 0.08905301988124847, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 56301 + }, + { + "epoch": 5.7824792030399506, + "grad_norm": 0.06253067404031754, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 56304 + }, + { + "epoch": 5.782787306151792, + "grad_norm": 0.05287610739469528, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 56307 + }, + { + "epoch": 5.783095409263634, + "grad_norm": 0.11111927032470703, + "learning_rate": 0.01, + "loss": 2.0164, + "step": 56310 + }, + { + "epoch": 5.783403512375475, + "grad_norm": 0.05433667451143265, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 56313 + }, + { + "epoch": 5.7837116154873165, + "grad_norm": 0.03661932423710823, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 56316 + }, + { + "epoch": 5.784019718599158, + "grad_norm": 0.06176665052771568, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 56319 + }, + { + "epoch": 5.784327821710999, + "grad_norm": 0.05721355602145195, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 56322 + }, + { + "epoch": 5.78463592482284, + "grad_norm": 0.043899018317461014, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 56325 + }, + { + "epoch": 5.784944027934682, + "grad_norm": 0.17083556950092316, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 56328 + }, + { + "epoch": 5.785252131046524, + "grad_norm": 0.12060192972421646, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 56331 + }, + { + "epoch": 5.785560234158365, + "grad_norm": 0.1456676870584488, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 56334 + }, + { + "epoch": 5.785868337270206, + "grad_norm": 0.08020723611116409, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 56337 + }, + { + "epoch": 5.7861764403820475, + "grad_norm": 0.058028947561979294, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 56340 + }, + { + "epoch": 5.78648454349389, + "grad_norm": 0.031094344332814217, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 56343 + }, + { + "epoch": 5.786792646605731, + "grad_norm": 0.03784453868865967, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 56346 + }, + { + "epoch": 5.787100749717572, + "grad_norm": 0.03983352333307266, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 56349 + }, + { + "epoch": 5.787408852829413, + "grad_norm": 0.048995792865753174, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 56352 + }, + { + "epoch": 5.787716955941255, + "grad_norm": 0.040493566542863846, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 56355 + }, + { + "epoch": 5.788025059053096, + "grad_norm": 0.04488976299762726, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 56358 + }, + { + "epoch": 5.788333162164938, + "grad_norm": 0.1611676812171936, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 56361 + }, + { + "epoch": 5.788641265276779, + "grad_norm": 0.079713374376297, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 56364 + }, + { + "epoch": 5.788949368388621, + "grad_norm": 0.06308376044034958, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 56367 + }, + { + "epoch": 5.789257471500462, + "grad_norm": 0.049073606729507446, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 56370 + }, + { + "epoch": 5.789565574612304, + "grad_norm": 0.06402777135372162, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 56373 + }, + { + "epoch": 5.789873677724145, + "grad_norm": 0.05663265287876129, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 56376 + }, + { + "epoch": 5.790181780835987, + "grad_norm": 0.05829964950680733, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 56379 + }, + { + "epoch": 5.790489883947828, + "grad_norm": 0.05013945326209068, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 56382 + }, + { + "epoch": 5.790797987059669, + "grad_norm": 0.04025455191731453, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 56385 + }, + { + "epoch": 5.79110609017151, + "grad_norm": 0.05371120572090149, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 56388 + }, + { + "epoch": 5.7914141932833525, + "grad_norm": 0.03760494664311409, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 56391 + }, + { + "epoch": 5.791722296395194, + "grad_norm": 0.05783433839678764, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 56394 + }, + { + "epoch": 5.792030399507035, + "grad_norm": 0.04827668145298958, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 56397 + }, + { + "epoch": 5.792338502618876, + "grad_norm": 0.055127400904893875, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 56400 + }, + { + "epoch": 5.7926466057307175, + "grad_norm": 0.07991458475589752, + "learning_rate": 0.01, + "loss": 1.9551, + "step": 56403 + }, + { + "epoch": 5.79295470884256, + "grad_norm": 0.06287828832864761, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 56406 + }, + { + "epoch": 5.793262811954401, + "grad_norm": 0.07629155367612839, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 56409 + }, + { + "epoch": 5.793570915066242, + "grad_norm": 0.10665415227413177, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 56412 + }, + { + "epoch": 5.7938790181780835, + "grad_norm": 0.048113856464624405, + "learning_rate": 0.01, + "loss": 2.0162, + "step": 56415 + }, + { + "epoch": 5.794187121289925, + "grad_norm": 0.12309219688177109, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 56418 + }, + { + "epoch": 5.794495224401766, + "grad_norm": 0.08479398488998413, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 56421 + }, + { + "epoch": 5.794803327513608, + "grad_norm": 0.06182289868593216, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 56424 + }, + { + "epoch": 5.795111430625449, + "grad_norm": 0.042767733335494995, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 56427 + }, + { + "epoch": 5.795419533737291, + "grad_norm": 0.07279690355062485, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 56430 + }, + { + "epoch": 5.795727636849132, + "grad_norm": 0.05660317465662956, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 56433 + }, + { + "epoch": 5.796035739960974, + "grad_norm": 0.048105914145708084, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 56436 + }, + { + "epoch": 5.796343843072815, + "grad_norm": 0.09529261291027069, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 56439 + }, + { + "epoch": 5.796651946184657, + "grad_norm": 0.09696771949529648, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 56442 + }, + { + "epoch": 5.796960049296498, + "grad_norm": 0.10225138068199158, + "learning_rate": 0.01, + "loss": 2.009, + "step": 56445 + }, + { + "epoch": 5.797268152408339, + "grad_norm": 0.09067768603563309, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 56448 + }, + { + "epoch": 5.79757625552018, + "grad_norm": 0.03427765890955925, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 56451 + }, + { + "epoch": 5.797884358632023, + "grad_norm": 0.03189976140856743, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 56454 + }, + { + "epoch": 5.798192461743864, + "grad_norm": 0.04521431401371956, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 56457 + }, + { + "epoch": 5.798500564855705, + "grad_norm": 0.05165833979845047, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 56460 + }, + { + "epoch": 5.798808667967546, + "grad_norm": 0.051866378635168076, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 56463 + }, + { + "epoch": 5.799116771079388, + "grad_norm": 0.03956654295325279, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 56466 + }, + { + "epoch": 5.79942487419123, + "grad_norm": 0.04093864560127258, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 56469 + }, + { + "epoch": 5.799732977303071, + "grad_norm": 0.05415187031030655, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 56472 + }, + { + "epoch": 5.800041080414912, + "grad_norm": 0.057444531470537186, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 56475 + }, + { + "epoch": 5.8003491835267535, + "grad_norm": 0.08681999891996384, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 56478 + }, + { + "epoch": 5.800657286638595, + "grad_norm": 0.08110462129116058, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 56481 + }, + { + "epoch": 5.800965389750436, + "grad_norm": 0.04393799602985382, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 56484 + }, + { + "epoch": 5.801273492862278, + "grad_norm": 0.05482124909758568, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 56487 + }, + { + "epoch": 5.8015815959741195, + "grad_norm": 0.11982918530702591, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 56490 + }, + { + "epoch": 5.801889699085961, + "grad_norm": 0.10209926217794418, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 56493 + }, + { + "epoch": 5.802197802197802, + "grad_norm": 0.0397653728723526, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 56496 + }, + { + "epoch": 5.802505905309643, + "grad_norm": 0.09022632986307144, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 56499 + }, + { + "epoch": 5.802814008421485, + "grad_norm": 0.07979937642812729, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 56502 + }, + { + "epoch": 5.803122111533327, + "grad_norm": 0.05430705472826958, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 56505 + }, + { + "epoch": 5.803430214645168, + "grad_norm": 0.05586136132478714, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 56508 + }, + { + "epoch": 5.803738317757009, + "grad_norm": 0.05488377809524536, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 56511 + }, + { + "epoch": 5.8040464208688505, + "grad_norm": 0.04581581428647041, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 56514 + }, + { + "epoch": 5.804354523980692, + "grad_norm": 0.11193082481622696, + "learning_rate": 0.01, + "loss": 2.0275, + "step": 56517 + }, + { + "epoch": 5.804662627092534, + "grad_norm": 0.0932486429810524, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 56520 + }, + { + "epoch": 5.804970730204375, + "grad_norm": 0.079062819480896, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 56523 + }, + { + "epoch": 5.805278833316216, + "grad_norm": 0.04556051269173622, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 56526 + }, + { + "epoch": 5.805586936428058, + "grad_norm": 0.04513680562376976, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 56529 + }, + { + "epoch": 5.8058950395399, + "grad_norm": 0.06065935268998146, + "learning_rate": 0.01, + "loss": 1.985, + "step": 56532 + }, + { + "epoch": 5.806203142651741, + "grad_norm": 0.03341379761695862, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 56535 + }, + { + "epoch": 5.806511245763582, + "grad_norm": 0.13032658398151398, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 56538 + }, + { + "epoch": 5.806819348875424, + "grad_norm": 0.049995262175798416, + "learning_rate": 0.01, + "loss": 1.998, + "step": 56541 + }, + { + "epoch": 5.807127451987265, + "grad_norm": 0.10843599587678909, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 56544 + }, + { + "epoch": 5.807435555099106, + "grad_norm": 0.12207616865634918, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 56547 + }, + { + "epoch": 5.807743658210948, + "grad_norm": 0.18218643963336945, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 56550 + }, + { + "epoch": 5.8080517613227896, + "grad_norm": 0.1526477336883545, + "learning_rate": 0.01, + "loss": 2.0081, + "step": 56553 + }, + { + "epoch": 5.808359864434631, + "grad_norm": 0.08327028155326843, + "learning_rate": 0.01, + "loss": 1.971, + "step": 56556 + }, + { + "epoch": 5.808667967546472, + "grad_norm": 0.05534267798066139, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 56559 + }, + { + "epoch": 5.808976070658313, + "grad_norm": 0.04754161089658737, + "learning_rate": 0.01, + "loss": 1.964, + "step": 56562 + }, + { + "epoch": 5.8092841737701555, + "grad_norm": 0.039216890931129456, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 56565 + }, + { + "epoch": 5.809592276881997, + "grad_norm": 0.05179159343242645, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 56568 + }, + { + "epoch": 5.809900379993838, + "grad_norm": 0.03787977248430252, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 56571 + }, + { + "epoch": 5.810208483105679, + "grad_norm": 0.06589755415916443, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 56574 + }, + { + "epoch": 5.8105165862175205, + "grad_norm": 0.04956568777561188, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 56577 + }, + { + "epoch": 5.810824689329362, + "grad_norm": 0.039915554225444794, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 56580 + }, + { + "epoch": 5.811132792441204, + "grad_norm": 0.10185667872428894, + "learning_rate": 0.01, + "loss": 1.991, + "step": 56583 + }, + { + "epoch": 5.811440895553045, + "grad_norm": 0.048244234174489975, + "learning_rate": 0.01, + "loss": 2.007, + "step": 56586 + }, + { + "epoch": 5.8117489986648865, + "grad_norm": 0.07163000851869583, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 56589 + }, + { + "epoch": 5.812057101776728, + "grad_norm": 0.04289057105779648, + "learning_rate": 0.01, + "loss": 2.0326, + "step": 56592 + }, + { + "epoch": 5.812365204888569, + "grad_norm": 0.06520239263772964, + "learning_rate": 0.01, + "loss": 2.0223, + "step": 56595 + }, + { + "epoch": 5.812673308000411, + "grad_norm": 0.038391079753637314, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 56598 + }, + { + "epoch": 5.812981411112252, + "grad_norm": 0.039008256047964096, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 56601 + }, + { + "epoch": 5.813289514224094, + "grad_norm": 0.1321951448917389, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 56604 + }, + { + "epoch": 5.813597617335935, + "grad_norm": 0.058711450546979904, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 56607 + }, + { + "epoch": 5.813905720447776, + "grad_norm": 0.10861786454916, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 56610 + }, + { + "epoch": 5.8142138235596175, + "grad_norm": 0.09143928438425064, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 56613 + }, + { + "epoch": 5.81452192667146, + "grad_norm": 0.051334600895643234, + "learning_rate": 0.01, + "loss": 2.007, + "step": 56616 + }, + { + "epoch": 5.814830029783301, + "grad_norm": 0.0675191655755043, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 56619 + }, + { + "epoch": 5.815138132895142, + "grad_norm": 0.038013167679309845, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 56622 + }, + { + "epoch": 5.815446236006983, + "grad_norm": 0.043695393949747086, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 56625 + }, + { + "epoch": 5.8157543391188256, + "grad_norm": 0.034250471740961075, + "learning_rate": 0.01, + "loss": 1.9587, + "step": 56628 + }, + { + "epoch": 5.816062442230667, + "grad_norm": 0.11236503720283508, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 56631 + }, + { + "epoch": 5.816370545342508, + "grad_norm": 0.053564272820949554, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 56634 + }, + { + "epoch": 5.816678648454349, + "grad_norm": 0.08416426926851273, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 56637 + }, + { + "epoch": 5.816986751566191, + "grad_norm": 0.047465983778238297, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 56640 + }, + { + "epoch": 5.817294854678032, + "grad_norm": 0.12391756474971771, + "learning_rate": 0.01, + "loss": 1.997, + "step": 56643 + }, + { + "epoch": 5.817602957789874, + "grad_norm": 0.12705251574516296, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 56646 + }, + { + "epoch": 5.817911060901715, + "grad_norm": 0.09919688105583191, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 56649 + }, + { + "epoch": 5.8182191640135565, + "grad_norm": 0.08405104279518127, + "learning_rate": 0.01, + "loss": 2.016, + "step": 56652 + }, + { + "epoch": 5.818527267125398, + "grad_norm": 0.04591039568185806, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 56655 + }, + { + "epoch": 5.818835370237239, + "grad_norm": 0.04161922633647919, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 56658 + }, + { + "epoch": 5.819143473349081, + "grad_norm": 0.05382911115884781, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 56661 + }, + { + "epoch": 5.8194515764609225, + "grad_norm": 0.05096543952822685, + "learning_rate": 0.01, + "loss": 1.993, + "step": 56664 + }, + { + "epoch": 5.819759679572764, + "grad_norm": 0.03849412500858307, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 56667 + }, + { + "epoch": 5.820067782684605, + "grad_norm": 0.04661410301923752, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 56670 + }, + { + "epoch": 5.820375885796446, + "grad_norm": 0.11310985684394836, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 56673 + }, + { + "epoch": 5.8206839889082875, + "grad_norm": 0.04283592104911804, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 56676 + }, + { + "epoch": 5.82099209202013, + "grad_norm": 0.09948618710041046, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 56679 + }, + { + "epoch": 5.821300195131971, + "grad_norm": 0.07223562151193619, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 56682 + }, + { + "epoch": 5.821608298243812, + "grad_norm": 0.067604660987854, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 56685 + }, + { + "epoch": 5.8219164013556535, + "grad_norm": 0.03564516827464104, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 56688 + }, + { + "epoch": 5.822224504467496, + "grad_norm": 0.046253006905317307, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 56691 + }, + { + "epoch": 5.822532607579337, + "grad_norm": 0.05620354413986206, + "learning_rate": 0.01, + "loss": 1.98, + "step": 56694 + }, + { + "epoch": 5.822840710691178, + "grad_norm": 0.110667385160923, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 56697 + }, + { + "epoch": 5.823148813803019, + "grad_norm": 0.05062146484851837, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 56700 + }, + { + "epoch": 5.823456916914861, + "grad_norm": 0.10704591870307922, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 56703 + }, + { + "epoch": 5.823765020026702, + "grad_norm": 0.05372390151023865, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 56706 + }, + { + "epoch": 5.824073123138544, + "grad_norm": 0.05827971547842026, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 56709 + }, + { + "epoch": 5.824381226250385, + "grad_norm": 0.04202426224946976, + "learning_rate": 0.01, + "loss": 1.9506, + "step": 56712 + }, + { + "epoch": 5.824689329362227, + "grad_norm": 0.08493483811616898, + "learning_rate": 0.01, + "loss": 2.0143, + "step": 56715 + }, + { + "epoch": 5.824997432474068, + "grad_norm": 0.043885089457035065, + "learning_rate": 0.01, + "loss": 1.978, + "step": 56718 + }, + { + "epoch": 5.825305535585909, + "grad_norm": 0.04681296646595001, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 56721 + }, + { + "epoch": 5.825613638697751, + "grad_norm": 0.04231657460331917, + "learning_rate": 0.01, + "loss": 1.982, + "step": 56724 + }, + { + "epoch": 5.8259217418095925, + "grad_norm": 0.04888215288519859, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 56727 + }, + { + "epoch": 5.826229844921434, + "grad_norm": 0.0635887086391449, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 56730 + }, + { + "epoch": 5.826537948033275, + "grad_norm": 0.056875888258218765, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 56733 + }, + { + "epoch": 5.826846051145116, + "grad_norm": 0.05551552772521973, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 56736 + }, + { + "epoch": 5.827154154256958, + "grad_norm": 0.10465902090072632, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 56739 + }, + { + "epoch": 5.8274622573688, + "grad_norm": 0.08767648041248322, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 56742 + }, + { + "epoch": 5.827770360480641, + "grad_norm": 0.04951823502779007, + "learning_rate": 0.01, + "loss": 2.0045, + "step": 56745 + }, + { + "epoch": 5.828078463592482, + "grad_norm": 0.04926539584994316, + "learning_rate": 0.01, + "loss": 1.984, + "step": 56748 + }, + { + "epoch": 5.8283865667043235, + "grad_norm": 0.05217811465263367, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 56751 + }, + { + "epoch": 5.828694669816165, + "grad_norm": 0.0460977777838707, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 56754 + }, + { + "epoch": 5.829002772928007, + "grad_norm": 0.046701837331056595, + "learning_rate": 0.01, + "loss": 2.0079, + "step": 56757 + }, + { + "epoch": 5.829310876039848, + "grad_norm": 0.07417173683643341, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 56760 + }, + { + "epoch": 5.8296189791516895, + "grad_norm": 0.09357844293117523, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 56763 + }, + { + "epoch": 5.829927082263531, + "grad_norm": 0.05171707645058632, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 56766 + }, + { + "epoch": 5.830235185375372, + "grad_norm": 0.08236930519342422, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 56769 + }, + { + "epoch": 5.830543288487213, + "grad_norm": 0.041667647659778595, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 56772 + }, + { + "epoch": 5.830851391599055, + "grad_norm": 0.055335305631160736, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 56775 + }, + { + "epoch": 5.831159494710897, + "grad_norm": 0.03667658939957619, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 56778 + }, + { + "epoch": 5.831467597822738, + "grad_norm": 0.05994969233870506, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 56781 + }, + { + "epoch": 5.831775700934579, + "grad_norm": 0.1395941525697708, + "learning_rate": 0.01, + "loss": 2.0184, + "step": 56784 + }, + { + "epoch": 5.832083804046421, + "grad_norm": 0.0712098479270935, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 56787 + }, + { + "epoch": 5.832391907158263, + "grad_norm": 0.08360549062490463, + "learning_rate": 0.01, + "loss": 1.985, + "step": 56790 + }, + { + "epoch": 5.832700010270104, + "grad_norm": 0.07638189941644669, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 56793 + }, + { + "epoch": 5.833008113381945, + "grad_norm": 0.07885719835758209, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 56796 + }, + { + "epoch": 5.833316216493786, + "grad_norm": 0.055790308862924576, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 56799 + }, + { + "epoch": 5.833624319605628, + "grad_norm": 0.03926543518900871, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 56802 + }, + { + "epoch": 5.83393242271747, + "grad_norm": 0.10085275024175644, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 56805 + }, + { + "epoch": 5.834240525829311, + "grad_norm": 0.07995092123746872, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 56808 + }, + { + "epoch": 5.834548628941152, + "grad_norm": 0.09439895302057266, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 56811 + }, + { + "epoch": 5.834856732052994, + "grad_norm": 0.04961158335208893, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 56814 + }, + { + "epoch": 5.835164835164835, + "grad_norm": 0.052938688546419144, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 56817 + }, + { + "epoch": 5.835472938276677, + "grad_norm": 0.04960361868143082, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 56820 + }, + { + "epoch": 5.835781041388518, + "grad_norm": 0.08586288243532181, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 56823 + }, + { + "epoch": 5.8360891445003595, + "grad_norm": 0.07194332033395767, + "learning_rate": 0.01, + "loss": 2.01, + "step": 56826 + }, + { + "epoch": 5.836397247612201, + "grad_norm": 0.062126416712999344, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 56829 + }, + { + "epoch": 5.836705350724042, + "grad_norm": 0.06656119972467422, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 56832 + }, + { + "epoch": 5.837013453835883, + "grad_norm": 0.0884518176317215, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 56835 + }, + { + "epoch": 5.8373215569477255, + "grad_norm": 0.04115528613328934, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 56838 + }, + { + "epoch": 5.837629660059567, + "grad_norm": 0.05185645818710327, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 56841 + }, + { + "epoch": 5.837937763171408, + "grad_norm": 0.11587214469909668, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 56844 + }, + { + "epoch": 5.838245866283249, + "grad_norm": 0.13516643643379211, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 56847 + }, + { + "epoch": 5.8385539693950905, + "grad_norm": 0.0748513862490654, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 56850 + }, + { + "epoch": 5.838862072506933, + "grad_norm": 0.12254352867603302, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 56853 + }, + { + "epoch": 5.839170175618774, + "grad_norm": 0.07876627147197723, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 56856 + }, + { + "epoch": 5.839478278730615, + "grad_norm": 0.07364428788423538, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 56859 + }, + { + "epoch": 5.8397863818424565, + "grad_norm": 0.0350789949297905, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 56862 + }, + { + "epoch": 5.840094484954298, + "grad_norm": 0.046593520790338516, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 56865 + }, + { + "epoch": 5.840402588066139, + "grad_norm": 0.05111907422542572, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 56868 + }, + { + "epoch": 5.840710691177981, + "grad_norm": 0.046573907136917114, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 56871 + }, + { + "epoch": 5.841018794289822, + "grad_norm": 0.05139172077178955, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 56874 + }, + { + "epoch": 5.841326897401664, + "grad_norm": 0.06465848535299301, + "learning_rate": 0.01, + "loss": 1.994, + "step": 56877 + }, + { + "epoch": 5.841635000513505, + "grad_norm": 0.046135857701301575, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 56880 + }, + { + "epoch": 5.841943103625347, + "grad_norm": 0.039065003395080566, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 56883 + }, + { + "epoch": 5.842251206737188, + "grad_norm": 0.05646162107586861, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 56886 + }, + { + "epoch": 5.84255930984903, + "grad_norm": 0.1448718160390854, + "learning_rate": 0.01, + "loss": 2.0192, + "step": 56889 + }, + { + "epoch": 5.842867412960871, + "grad_norm": 0.12302438169717789, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 56892 + }, + { + "epoch": 5.843175516072712, + "grad_norm": 0.0701448991894722, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 56895 + }, + { + "epoch": 5.843483619184553, + "grad_norm": 0.08622895181179047, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 56898 + }, + { + "epoch": 5.8437917222963955, + "grad_norm": 0.04280500486493111, + "learning_rate": 0.01, + "loss": 1.954, + "step": 56901 + }, + { + "epoch": 5.844099825408237, + "grad_norm": 0.04177187755703926, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 56904 + }, + { + "epoch": 5.844407928520078, + "grad_norm": 0.04321052134037018, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 56907 + }, + { + "epoch": 5.844716031631919, + "grad_norm": 0.10391934216022491, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 56910 + }, + { + "epoch": 5.845024134743761, + "grad_norm": 0.07634170353412628, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 56913 + }, + { + "epoch": 5.845332237855603, + "grad_norm": 0.05854891613125801, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 56916 + }, + { + "epoch": 5.845640340967444, + "grad_norm": 0.08058078587055206, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 56919 + }, + { + "epoch": 5.845948444079285, + "grad_norm": 0.10716883093118668, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 56922 + }, + { + "epoch": 5.8462565471911265, + "grad_norm": 0.1634785681962967, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 56925 + }, + { + "epoch": 5.846564650302968, + "grad_norm": 0.08859071135520935, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 56928 + }, + { + "epoch": 5.846872753414809, + "grad_norm": 0.05146167427301407, + "learning_rate": 0.01, + "loss": 1.997, + "step": 56931 + }, + { + "epoch": 5.847180856526651, + "grad_norm": 0.057162970304489136, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 56934 + }, + { + "epoch": 5.8474889596384925, + "grad_norm": 0.042328424751758575, + "learning_rate": 0.01, + "loss": 2.005, + "step": 56937 + }, + { + "epoch": 5.847797062750334, + "grad_norm": 0.05657609552145004, + "learning_rate": 0.01, + "loss": 2.0205, + "step": 56940 + }, + { + "epoch": 5.848105165862175, + "grad_norm": 0.11977431923151016, + "learning_rate": 0.01, + "loss": 2.007, + "step": 56943 + }, + { + "epoch": 5.848413268974016, + "grad_norm": 0.13686580955982208, + "learning_rate": 0.01, + "loss": 2.0215, + "step": 56946 + }, + { + "epoch": 5.848721372085858, + "grad_norm": 0.06063876673579216, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 56949 + }, + { + "epoch": 5.8490294751977, + "grad_norm": 0.05211206525564194, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 56952 + }, + { + "epoch": 5.849337578309541, + "grad_norm": 0.03639880567789078, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 56955 + }, + { + "epoch": 5.849645681421382, + "grad_norm": 0.07671289145946503, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 56958 + }, + { + "epoch": 5.8499537845332235, + "grad_norm": 0.03963657468557358, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 56961 + }, + { + "epoch": 5.850261887645065, + "grad_norm": 0.040136873722076416, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 56964 + }, + { + "epoch": 5.850569990756907, + "grad_norm": 0.06622539460659027, + "learning_rate": 0.01, + "loss": 1.992, + "step": 56967 + }, + { + "epoch": 5.850878093868748, + "grad_norm": 0.04892749339342117, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 56970 + }, + { + "epoch": 5.851186196980589, + "grad_norm": 0.10630463808774948, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 56973 + }, + { + "epoch": 5.851494300092431, + "grad_norm": 0.08189810067415237, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 56976 + }, + { + "epoch": 5.851802403204273, + "grad_norm": 0.04350016266107559, + "learning_rate": 0.01, + "loss": 1.984, + "step": 56979 + }, + { + "epoch": 5.852110506316114, + "grad_norm": 0.04086649417877197, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 56982 + }, + { + "epoch": 5.852418609427955, + "grad_norm": 0.0460704006254673, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 56985 + }, + { + "epoch": 5.852726712539797, + "grad_norm": 0.04429091140627861, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 56988 + }, + { + "epoch": 5.853034815651638, + "grad_norm": 0.08944038301706314, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 56991 + }, + { + "epoch": 5.853342918763479, + "grad_norm": 0.039852675050497055, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 56994 + }, + { + "epoch": 5.853651021875321, + "grad_norm": 0.051225848495960236, + "learning_rate": 0.01, + "loss": 1.995, + "step": 56997 + }, + { + "epoch": 5.8539591249871625, + "grad_norm": 0.07715211063623428, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 57000 + }, + { + "epoch": 5.854267228099004, + "grad_norm": 0.05754586309194565, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 57003 + }, + { + "epoch": 5.854575331210845, + "grad_norm": 0.0871339812874794, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 57006 + }, + { + "epoch": 5.854883434322686, + "grad_norm": 0.03794780746102333, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 57009 + }, + { + "epoch": 5.8551915374345285, + "grad_norm": 0.039838340133428574, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 57012 + }, + { + "epoch": 5.85549964054637, + "grad_norm": 0.03378939628601074, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 57015 + }, + { + "epoch": 5.855807743658211, + "grad_norm": 0.033859383314847946, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 57018 + }, + { + "epoch": 5.856115846770052, + "grad_norm": 0.08148138970136642, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 57021 + }, + { + "epoch": 5.8564239498818935, + "grad_norm": 0.11949529498815536, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 57024 + }, + { + "epoch": 5.856732052993735, + "grad_norm": 0.06349018216133118, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 57027 + }, + { + "epoch": 5.857040156105577, + "grad_norm": 0.03922737017273903, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 57030 + }, + { + "epoch": 5.857348259217418, + "grad_norm": 0.04704468697309494, + "learning_rate": 0.01, + "loss": 2.0088, + "step": 57033 + }, + { + "epoch": 5.8576563623292595, + "grad_norm": 0.06949195265769958, + "learning_rate": 0.01, + "loss": 2.005, + "step": 57036 + }, + { + "epoch": 5.857964465441101, + "grad_norm": 0.08585426956415176, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 57039 + }, + { + "epoch": 5.858272568552943, + "grad_norm": 0.09531115740537643, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 57042 + }, + { + "epoch": 5.858580671664784, + "grad_norm": 0.07545875012874603, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 57045 + }, + { + "epoch": 5.858888774776625, + "grad_norm": 0.11838539689779282, + "learning_rate": 0.01, + "loss": 1.9612, + "step": 57048 + }, + { + "epoch": 5.859196877888467, + "grad_norm": 0.1177034080028534, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 57051 + }, + { + "epoch": 5.859504981000308, + "grad_norm": 0.08327648043632507, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 57054 + }, + { + "epoch": 5.859813084112149, + "grad_norm": 0.05028563365340233, + "learning_rate": 0.01, + "loss": 1.977, + "step": 57057 + }, + { + "epoch": 5.860121187223991, + "grad_norm": 0.03819550573825836, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 57060 + }, + { + "epoch": 5.860429290335833, + "grad_norm": 0.06301325559616089, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 57063 + }, + { + "epoch": 5.860737393447674, + "grad_norm": 0.09482091665267944, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 57066 + }, + { + "epoch": 5.861045496559515, + "grad_norm": 0.07003244757652283, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 57069 + }, + { + "epoch": 5.861353599671356, + "grad_norm": 0.04322872310876846, + "learning_rate": 0.01, + "loss": 1.96, + "step": 57072 + }, + { + "epoch": 5.8616617027831985, + "grad_norm": 0.04223179072141647, + "learning_rate": 0.01, + "loss": 1.9618, + "step": 57075 + }, + { + "epoch": 5.86196980589504, + "grad_norm": 0.09732475876808167, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 57078 + }, + { + "epoch": 5.862277909006881, + "grad_norm": 0.08102111518383026, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 57081 + }, + { + "epoch": 5.862586012118722, + "grad_norm": 0.06564348191022873, + "learning_rate": 0.01, + "loss": 1.989, + "step": 57084 + }, + { + "epoch": 5.862894115230564, + "grad_norm": 0.11364365369081497, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 57087 + }, + { + "epoch": 5.863202218342405, + "grad_norm": 0.05005546286702156, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 57090 + }, + { + "epoch": 5.863510321454247, + "grad_norm": 0.10924969613552094, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 57093 + }, + { + "epoch": 5.863818424566088, + "grad_norm": 0.06546615809202194, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 57096 + }, + { + "epoch": 5.8641265276779295, + "grad_norm": 0.04817098379135132, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 57099 + }, + { + "epoch": 5.864434630789771, + "grad_norm": 0.038462646305561066, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 57102 + }, + { + "epoch": 5.864742733901612, + "grad_norm": 0.03544708341360092, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 57105 + }, + { + "epoch": 5.865050837013454, + "grad_norm": 0.032861895859241486, + "learning_rate": 0.01, + "loss": 1.9565, + "step": 57108 + }, + { + "epoch": 5.8653589401252955, + "grad_norm": 0.13162890076637268, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 57111 + }, + { + "epoch": 5.865667043237137, + "grad_norm": 0.13489802181720734, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 57114 + }, + { + "epoch": 5.865975146348978, + "grad_norm": 0.08409550786018372, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 57117 + }, + { + "epoch": 5.866283249460819, + "grad_norm": 0.04150281846523285, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 57120 + }, + { + "epoch": 5.8665913525726605, + "grad_norm": 0.04543888941407204, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 57123 + }, + { + "epoch": 5.866899455684503, + "grad_norm": 0.0386471152305603, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 57126 + }, + { + "epoch": 5.867207558796344, + "grad_norm": 0.029136119410395622, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 57129 + }, + { + "epoch": 5.867515661908185, + "grad_norm": 0.031866688281297684, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 57132 + }, + { + "epoch": 5.8678237650200264, + "grad_norm": 0.05178746208548546, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 57135 + }, + { + "epoch": 5.868131868131869, + "grad_norm": 0.10231690853834152, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 57138 + }, + { + "epoch": 5.86843997124371, + "grad_norm": 0.06103064864873886, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 57141 + }, + { + "epoch": 5.868748074355551, + "grad_norm": 0.05619410425424576, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 57144 + }, + { + "epoch": 5.869056177467392, + "grad_norm": 0.07958339899778366, + "learning_rate": 0.01, + "loss": 1.963, + "step": 57147 + }, + { + "epoch": 5.869364280579234, + "grad_norm": 0.12638811767101288, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 57150 + }, + { + "epoch": 5.869672383691075, + "grad_norm": 0.05043957009911537, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 57153 + }, + { + "epoch": 5.869980486802917, + "grad_norm": 0.049426887184381485, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 57156 + }, + { + "epoch": 5.870288589914758, + "grad_norm": 0.058896906673908234, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 57159 + }, + { + "epoch": 5.8705966930266, + "grad_norm": 0.06517619639635086, + "learning_rate": 0.01, + "loss": 2.0153, + "step": 57162 + }, + { + "epoch": 5.870904796138441, + "grad_norm": 0.04372745007276535, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 57165 + }, + { + "epoch": 5.871212899250282, + "grad_norm": 0.11192513257265091, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 57168 + }, + { + "epoch": 5.871521002362124, + "grad_norm": 0.04966152831912041, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 57171 + }, + { + "epoch": 5.8718291054739655, + "grad_norm": 0.04251588135957718, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 57174 + }, + { + "epoch": 5.872137208585807, + "grad_norm": 0.03627980872988701, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 57177 + }, + { + "epoch": 5.872445311697648, + "grad_norm": 0.035204388201236725, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 57180 + }, + { + "epoch": 5.872753414809489, + "grad_norm": 0.097038634121418, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 57183 + }, + { + "epoch": 5.873061517921331, + "grad_norm": 0.0762251615524292, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 57186 + }, + { + "epoch": 5.873369621033173, + "grad_norm": 0.12268881499767303, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 57189 + }, + { + "epoch": 5.873677724145014, + "grad_norm": 0.04830612614750862, + "learning_rate": 0.01, + "loss": 1.999, + "step": 57192 + }, + { + "epoch": 5.873985827256855, + "grad_norm": 0.03913014009594917, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 57195 + }, + { + "epoch": 5.8742939303686965, + "grad_norm": 0.043585240840911865, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 57198 + }, + { + "epoch": 5.874602033480538, + "grad_norm": 0.07954023778438568, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 57201 + }, + { + "epoch": 5.87491013659238, + "grad_norm": 0.08643771708011627, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 57204 + }, + { + "epoch": 5.875218239704221, + "grad_norm": 0.0801578015089035, + "learning_rate": 0.01, + "loss": 2.0187, + "step": 57207 + }, + { + "epoch": 5.8755263428160625, + "grad_norm": 0.07038013637065887, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 57210 + }, + { + "epoch": 5.875834445927904, + "grad_norm": 0.09337194263935089, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 57213 + }, + { + "epoch": 5.876142549039745, + "grad_norm": 0.07053009420633316, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 57216 + }, + { + "epoch": 5.876450652151586, + "grad_norm": 0.0576632060110569, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 57219 + }, + { + "epoch": 5.876758755263428, + "grad_norm": 0.0459139384329319, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 57222 + }, + { + "epoch": 5.87706685837527, + "grad_norm": 0.0351143553853035, + "learning_rate": 0.01, + "loss": 1.993, + "step": 57225 + }, + { + "epoch": 5.877374961487111, + "grad_norm": 0.07681302726268768, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 57228 + }, + { + "epoch": 5.877683064598952, + "grad_norm": 0.08413039892911911, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 57231 + }, + { + "epoch": 5.877991167710794, + "grad_norm": 0.07289810478687286, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 57234 + }, + { + "epoch": 5.878299270822636, + "grad_norm": 0.10013864189386368, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 57237 + }, + { + "epoch": 5.878607373934477, + "grad_norm": 0.042369335889816284, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 57240 + }, + { + "epoch": 5.878915477046318, + "grad_norm": 0.06880860030651093, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 57243 + }, + { + "epoch": 5.879223580158159, + "grad_norm": 0.07166635245084763, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 57246 + }, + { + "epoch": 5.879531683270001, + "grad_norm": 0.07346632331609726, + "learning_rate": 0.01, + "loss": 2.003, + "step": 57249 + }, + { + "epoch": 5.879839786381843, + "grad_norm": 0.039783868938684464, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 57252 + }, + { + "epoch": 5.880147889493684, + "grad_norm": 0.03261881321668625, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 57255 + }, + { + "epoch": 5.880455992605525, + "grad_norm": 0.05967556685209274, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 57258 + }, + { + "epoch": 5.880764095717367, + "grad_norm": 0.09463750571012497, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 57261 + }, + { + "epoch": 5.881072198829208, + "grad_norm": 0.11261694133281708, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 57264 + }, + { + "epoch": 5.88138030194105, + "grad_norm": 0.04502738267183304, + "learning_rate": 0.01, + "loss": 2.0151, + "step": 57267 + }, + { + "epoch": 5.881688405052891, + "grad_norm": 0.048553161323070526, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 57270 + }, + { + "epoch": 5.8819965081647325, + "grad_norm": 0.04814717173576355, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 57273 + }, + { + "epoch": 5.882304611276574, + "grad_norm": 0.11577591300010681, + "learning_rate": 0.01, + "loss": 1.9696, + "step": 57276 + }, + { + "epoch": 5.882612714388415, + "grad_norm": 0.07953160256147385, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 57279 + }, + { + "epoch": 5.882920817500256, + "grad_norm": 0.0455656498670578, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 57282 + }, + { + "epoch": 5.8832289206120985, + "grad_norm": 0.035418231040239334, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 57285 + }, + { + "epoch": 5.88353702372394, + "grad_norm": 0.03444494679570198, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 57288 + }, + { + "epoch": 5.883845126835781, + "grad_norm": 0.03543773293495178, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 57291 + }, + { + "epoch": 5.884153229947622, + "grad_norm": 0.032163105905056, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 57294 + }, + { + "epoch": 5.884461333059464, + "grad_norm": 0.051954787224531174, + "learning_rate": 0.01, + "loss": 2.0193, + "step": 57297 + }, + { + "epoch": 5.884769436171306, + "grad_norm": 0.046241723001003265, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 57300 + }, + { + "epoch": 5.885077539283147, + "grad_norm": 0.08583594113588333, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 57303 + }, + { + "epoch": 5.885385642394988, + "grad_norm": 0.10830538719892502, + "learning_rate": 0.01, + "loss": 1.993, + "step": 57306 + }, + { + "epoch": 5.885693745506829, + "grad_norm": 0.04670783504843712, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 57309 + }, + { + "epoch": 5.886001848618671, + "grad_norm": 0.08331948518753052, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 57312 + }, + { + "epoch": 5.886309951730513, + "grad_norm": 0.12991750240325928, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 57315 + }, + { + "epoch": 5.886618054842354, + "grad_norm": 0.03781532123684883, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 57318 + }, + { + "epoch": 5.886926157954195, + "grad_norm": 0.03549522906541824, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 57321 + }, + { + "epoch": 5.887234261066037, + "grad_norm": 0.03147748485207558, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 57324 + }, + { + "epoch": 5.887542364177878, + "grad_norm": 0.06375817954540253, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 57327 + }, + { + "epoch": 5.88785046728972, + "grad_norm": 0.06203543394804001, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 57330 + }, + { + "epoch": 5.888158570401561, + "grad_norm": 0.07817850261926651, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 57333 + }, + { + "epoch": 5.888466673513403, + "grad_norm": 0.06806226819753647, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 57336 + }, + { + "epoch": 5.888774776625244, + "grad_norm": 0.06197969987988472, + "learning_rate": 0.01, + "loss": 1.973, + "step": 57339 + }, + { + "epoch": 5.889082879737085, + "grad_norm": 0.10083005577325821, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 57342 + }, + { + "epoch": 5.889390982848926, + "grad_norm": 0.04016329348087311, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 57345 + }, + { + "epoch": 5.8896990859607685, + "grad_norm": 0.047332972288131714, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 57348 + }, + { + "epoch": 5.89000718907261, + "grad_norm": 0.042285602539777756, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 57351 + }, + { + "epoch": 5.890315292184451, + "grad_norm": 0.0776951014995575, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 57354 + }, + { + "epoch": 5.890623395296292, + "grad_norm": 0.1287294626235962, + "learning_rate": 0.01, + "loss": 2.0342, + "step": 57357 + }, + { + "epoch": 5.890931498408134, + "grad_norm": 0.08230342715978622, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 57360 + }, + { + "epoch": 5.891239601519976, + "grad_norm": 0.03847470134496689, + "learning_rate": 0.01, + "loss": 1.965, + "step": 57363 + }, + { + "epoch": 5.891547704631817, + "grad_norm": 0.07836028188467026, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 57366 + }, + { + "epoch": 5.891855807743658, + "grad_norm": 0.03260621055960655, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 57369 + }, + { + "epoch": 5.8921639108554995, + "grad_norm": 0.036644842475652695, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 57372 + }, + { + "epoch": 5.892472013967341, + "grad_norm": 0.03415127098560333, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 57375 + }, + { + "epoch": 5.892780117079182, + "grad_norm": 0.05682433769106865, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 57378 + }, + { + "epoch": 5.893088220191024, + "grad_norm": 0.09808420389890671, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 57381 + }, + { + "epoch": 5.8933963233028654, + "grad_norm": 0.05321237072348595, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 57384 + }, + { + "epoch": 5.893704426414707, + "grad_norm": 0.03606530278921127, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 57387 + }, + { + "epoch": 5.894012529526548, + "grad_norm": 0.04051011800765991, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 57390 + }, + { + "epoch": 5.89432063263839, + "grad_norm": 0.039596255868673325, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 57393 + }, + { + "epoch": 5.894628735750231, + "grad_norm": 0.0865618884563446, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 57396 + }, + { + "epoch": 5.894936838862073, + "grad_norm": 0.05438371002674103, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 57399 + }, + { + "epoch": 5.895244941973914, + "grad_norm": 0.14930184185504913, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 57402 + }, + { + "epoch": 5.895553045085755, + "grad_norm": 0.05614696815609932, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 57405 + }, + { + "epoch": 5.895861148197596, + "grad_norm": 0.06839166581630707, + "learning_rate": 0.01, + "loss": 1.985, + "step": 57408 + }, + { + "epoch": 5.896169251309439, + "grad_norm": 0.0660998523235321, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 57411 + }, + { + "epoch": 5.89647735442128, + "grad_norm": 0.07487353682518005, + "learning_rate": 0.01, + "loss": 1.996, + "step": 57414 + }, + { + "epoch": 5.896785457533121, + "grad_norm": 0.05647150054574013, + "learning_rate": 0.01, + "loss": 2.0115, + "step": 57417 + }, + { + "epoch": 5.897093560644962, + "grad_norm": 0.04570586606860161, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 57420 + }, + { + "epoch": 5.897401663756804, + "grad_norm": 0.10942738503217697, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 57423 + }, + { + "epoch": 5.897709766868646, + "grad_norm": 0.08452852070331573, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 57426 + }, + { + "epoch": 5.898017869980487, + "grad_norm": 0.07079064846038818, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 57429 + }, + { + "epoch": 5.898325973092328, + "grad_norm": 0.09797564148902893, + "learning_rate": 0.01, + "loss": 1.949, + "step": 57432 + }, + { + "epoch": 5.89863407620417, + "grad_norm": 0.08445065468549728, + "learning_rate": 0.01, + "loss": 2.0102, + "step": 57435 + }, + { + "epoch": 5.898942179316011, + "grad_norm": 0.08496986329555511, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 57438 + }, + { + "epoch": 5.899250282427852, + "grad_norm": 0.04799206554889679, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 57441 + }, + { + "epoch": 5.899558385539694, + "grad_norm": 0.047865018248558044, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 57444 + }, + { + "epoch": 5.8998664886515355, + "grad_norm": 0.040415599942207336, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 57447 + }, + { + "epoch": 5.900174591763377, + "grad_norm": 0.05303875729441643, + "learning_rate": 0.01, + "loss": 1.986, + "step": 57450 + }, + { + "epoch": 5.900482694875218, + "grad_norm": 0.13320137560367584, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 57453 + }, + { + "epoch": 5.900790797987059, + "grad_norm": 0.05218903720378876, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 57456 + }, + { + "epoch": 5.9010989010989015, + "grad_norm": 0.06745684146881104, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 57459 + }, + { + "epoch": 5.901407004210743, + "grad_norm": 0.04268602281808853, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 57462 + }, + { + "epoch": 5.901715107322584, + "grad_norm": 0.034592967480421066, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 57465 + }, + { + "epoch": 5.902023210434425, + "grad_norm": 0.11330728232860565, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 57468 + }, + { + "epoch": 5.9023313135462665, + "grad_norm": 0.035573434084653854, + "learning_rate": 0.01, + "loss": 2.0189, + "step": 57471 + }, + { + "epoch": 5.902639416658108, + "grad_norm": 0.09724743664264679, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 57474 + }, + { + "epoch": 5.90294751976995, + "grad_norm": 0.06769842654466629, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 57477 + }, + { + "epoch": 5.903255622881791, + "grad_norm": 0.07262661308050156, + "learning_rate": 0.01, + "loss": 1.972, + "step": 57480 + }, + { + "epoch": 5.903563725993632, + "grad_norm": 0.08442901074886322, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 57483 + }, + { + "epoch": 5.903871829105474, + "grad_norm": 0.07244334369897842, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 57486 + }, + { + "epoch": 5.904179932217316, + "grad_norm": 0.0898541584610939, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 57489 + }, + { + "epoch": 5.904488035329157, + "grad_norm": 0.043548524379730225, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 57492 + }, + { + "epoch": 5.904796138440998, + "grad_norm": 0.035105109214782715, + "learning_rate": 0.01, + "loss": 1.968, + "step": 57495 + }, + { + "epoch": 5.90510424155284, + "grad_norm": 0.06654632091522217, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 57498 + }, + { + "epoch": 5.905412344664681, + "grad_norm": 0.09614937752485275, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 57501 + }, + { + "epoch": 5.905720447776522, + "grad_norm": 0.07232387363910675, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 57504 + }, + { + "epoch": 5.906028550888364, + "grad_norm": 0.06795191764831543, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 57507 + }, + { + "epoch": 5.906336654000206, + "grad_norm": 0.1627775877714157, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 57510 + }, + { + "epoch": 5.906644757112047, + "grad_norm": 0.043800655752420425, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 57513 + }, + { + "epoch": 5.906952860223888, + "grad_norm": 0.09019804745912552, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 57516 + }, + { + "epoch": 5.907260963335729, + "grad_norm": 0.03738325461745262, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 57519 + }, + { + "epoch": 5.9075690664475715, + "grad_norm": 0.05333522707223892, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 57522 + }, + { + "epoch": 5.907877169559413, + "grad_norm": 0.03560793399810791, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 57525 + }, + { + "epoch": 5.908185272671254, + "grad_norm": 0.045784592628479004, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 57528 + }, + { + "epoch": 5.908493375783095, + "grad_norm": 0.05486133694648743, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 57531 + }, + { + "epoch": 5.908801478894937, + "grad_norm": 0.06346391886472702, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 57534 + }, + { + "epoch": 5.909109582006778, + "grad_norm": 0.06552404165267944, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 57537 + }, + { + "epoch": 5.90941768511862, + "grad_norm": 0.07176794856786728, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 57540 + }, + { + "epoch": 5.909725788230461, + "grad_norm": 0.05690211430191994, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 57543 + }, + { + "epoch": 5.9100338913423025, + "grad_norm": 0.07518581300973892, + "learning_rate": 0.01, + "loss": 2.0117, + "step": 57546 + }, + { + "epoch": 5.910341994454144, + "grad_norm": 0.09749139845371246, + "learning_rate": 0.01, + "loss": 2.0104, + "step": 57549 + }, + { + "epoch": 5.910650097565985, + "grad_norm": 0.06265246123075485, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 57552 + }, + { + "epoch": 5.910958200677827, + "grad_norm": 0.09425773471593857, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 57555 + }, + { + "epoch": 5.911266303789668, + "grad_norm": 0.07862033694982529, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 57558 + }, + { + "epoch": 5.91157440690151, + "grad_norm": 0.052102018147706985, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 57561 + }, + { + "epoch": 5.911882510013351, + "grad_norm": 0.04333946481347084, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 57564 + }, + { + "epoch": 5.912190613125192, + "grad_norm": 0.03312124311923981, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 57567 + }, + { + "epoch": 5.912498716237034, + "grad_norm": 0.11217939108610153, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 57570 + }, + { + "epoch": 5.912806819348876, + "grad_norm": 0.050783589482307434, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 57573 + }, + { + "epoch": 5.913114922460717, + "grad_norm": 0.05247243866324425, + "learning_rate": 0.01, + "loss": 2.0166, + "step": 57576 + }, + { + "epoch": 5.913423025572558, + "grad_norm": 0.03641197457909584, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 57579 + }, + { + "epoch": 5.913731128684399, + "grad_norm": 0.03802553936839104, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 57582 + }, + { + "epoch": 5.914039231796242, + "grad_norm": 0.04474913701415062, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 57585 + }, + { + "epoch": 5.914347334908083, + "grad_norm": 0.050698988139629364, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 57588 + }, + { + "epoch": 5.914655438019924, + "grad_norm": 0.12217648327350616, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 57591 + }, + { + "epoch": 5.914963541131765, + "grad_norm": 0.10421942919492722, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 57594 + }, + { + "epoch": 5.915271644243607, + "grad_norm": 0.09191686660051346, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 57597 + }, + { + "epoch": 5.915579747355448, + "grad_norm": 0.07071512192487717, + "learning_rate": 0.01, + "loss": 1.9977, + "step": 57600 + }, + { + "epoch": 5.91588785046729, + "grad_norm": 0.0706767663359642, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 57603 + }, + { + "epoch": 5.916195953579131, + "grad_norm": 0.04327024519443512, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 57606 + }, + { + "epoch": 5.916504056690973, + "grad_norm": 0.04743794724345207, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 57609 + }, + { + "epoch": 5.916812159802814, + "grad_norm": 0.04772097244858742, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 57612 + }, + { + "epoch": 5.917120262914655, + "grad_norm": 0.0430108904838562, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 57615 + }, + { + "epoch": 5.917428366026497, + "grad_norm": 0.07793119549751282, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 57618 + }, + { + "epoch": 5.9177364691383385, + "grad_norm": 0.10654459148645401, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 57621 + }, + { + "epoch": 5.91804457225018, + "grad_norm": 0.03443089500069618, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 57624 + }, + { + "epoch": 5.918352675362021, + "grad_norm": 0.07121492922306061, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 57627 + }, + { + "epoch": 5.918660778473862, + "grad_norm": 0.04436872899532318, + "learning_rate": 0.01, + "loss": 2.0261, + "step": 57630 + }, + { + "epoch": 5.918968881585704, + "grad_norm": 0.08435078710317612, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 57633 + }, + { + "epoch": 5.919276984697546, + "grad_norm": 0.1054021418094635, + "learning_rate": 0.01, + "loss": 2.007, + "step": 57636 + }, + { + "epoch": 5.919585087809387, + "grad_norm": 0.05516025796532631, + "learning_rate": 0.01, + "loss": 1.9433, + "step": 57639 + }, + { + "epoch": 5.919893190921228, + "grad_norm": 0.067764513194561, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 57642 + }, + { + "epoch": 5.9202012940330695, + "grad_norm": 0.0520036555826664, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 57645 + }, + { + "epoch": 5.920509397144912, + "grad_norm": 0.071280837059021, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 57648 + }, + { + "epoch": 5.920817500256753, + "grad_norm": 0.04528915137052536, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 57651 + }, + { + "epoch": 5.921125603368594, + "grad_norm": 0.0340840145945549, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 57654 + }, + { + "epoch": 5.921433706480435, + "grad_norm": 0.033173661679029465, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 57657 + }, + { + "epoch": 5.921741809592277, + "grad_norm": 0.13926701247692108, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 57660 + }, + { + "epoch": 5.922049912704118, + "grad_norm": 0.07138355076313019, + "learning_rate": 0.01, + "loss": 1.966, + "step": 57663 + }, + { + "epoch": 5.92235801581596, + "grad_norm": 0.0728163793683052, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 57666 + }, + { + "epoch": 5.922666118927801, + "grad_norm": 0.08973317593336105, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 57669 + }, + { + "epoch": 5.922974222039643, + "grad_norm": 0.0479208379983902, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 57672 + }, + { + "epoch": 5.923282325151484, + "grad_norm": 0.05372065678238869, + "learning_rate": 0.01, + "loss": 2.0279, + "step": 57675 + }, + { + "epoch": 5.923590428263325, + "grad_norm": 0.048417530953884125, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 57678 + }, + { + "epoch": 5.923898531375167, + "grad_norm": 0.03113439865410328, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 57681 + }, + { + "epoch": 5.924206634487009, + "grad_norm": 0.0359586738049984, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 57684 + }, + { + "epoch": 5.92451473759885, + "grad_norm": 0.12019523233175278, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 57687 + }, + { + "epoch": 5.924822840710691, + "grad_norm": 0.0717984288930893, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 57690 + }, + { + "epoch": 5.925130943822532, + "grad_norm": 0.06465215235948563, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 57693 + }, + { + "epoch": 5.925439046934374, + "grad_norm": 0.1053556352853775, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 57696 + }, + { + "epoch": 5.925747150046216, + "grad_norm": 0.04565432667732239, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 57699 + }, + { + "epoch": 5.926055253158057, + "grad_norm": 0.05233050882816315, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 57702 + }, + { + "epoch": 5.926363356269898, + "grad_norm": 0.05413827672600746, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 57705 + }, + { + "epoch": 5.92667145938174, + "grad_norm": 0.0694475993514061, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 57708 + }, + { + "epoch": 5.926979562493581, + "grad_norm": 0.03973362222313881, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 57711 + }, + { + "epoch": 5.927287665605423, + "grad_norm": 0.048481449484825134, + "learning_rate": 0.01, + "loss": 1.964, + "step": 57714 + }, + { + "epoch": 5.927595768717264, + "grad_norm": 0.04115751013159752, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 57717 + }, + { + "epoch": 5.9279038718291055, + "grad_norm": 0.056814514100551605, + "learning_rate": 0.01, + "loss": 2.0123, + "step": 57720 + }, + { + "epoch": 5.928211974940947, + "grad_norm": 0.07510741055011749, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 57723 + }, + { + "epoch": 5.928520078052788, + "grad_norm": 0.10000273585319519, + "learning_rate": 0.01, + "loss": 1.979, + "step": 57726 + }, + { + "epoch": 5.928828181164629, + "grad_norm": 0.10124478489160538, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 57729 + }, + { + "epoch": 5.929136284276471, + "grad_norm": 0.1368652582168579, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 57732 + }, + { + "epoch": 5.929444387388313, + "grad_norm": 0.06806531548500061, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 57735 + }, + { + "epoch": 5.929752490500154, + "grad_norm": 0.03443896025419235, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 57738 + }, + { + "epoch": 5.930060593611995, + "grad_norm": 0.03277003765106201, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 57741 + }, + { + "epoch": 5.930368696723837, + "grad_norm": 0.04082879796624184, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 57744 + }, + { + "epoch": 5.930676799835679, + "grad_norm": 0.11657889932394028, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 57747 + }, + { + "epoch": 5.93098490294752, + "grad_norm": 0.08914856612682343, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 57750 + }, + { + "epoch": 5.931293006059361, + "grad_norm": 0.06309764087200165, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 57753 + }, + { + "epoch": 5.931601109171202, + "grad_norm": 0.051464032381772995, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 57756 + }, + { + "epoch": 5.931909212283044, + "grad_norm": 0.037711381912231445, + "learning_rate": 0.01, + "loss": 2.0257, + "step": 57759 + }, + { + "epoch": 5.932217315394886, + "grad_norm": 0.06184235215187073, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 57762 + }, + { + "epoch": 5.932525418506727, + "grad_norm": 0.07253403961658478, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 57765 + }, + { + "epoch": 5.932833521618568, + "grad_norm": 0.0968317911028862, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 57768 + }, + { + "epoch": 5.93314162473041, + "grad_norm": 0.0691918134689331, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 57771 + }, + { + "epoch": 5.933449727842251, + "grad_norm": 0.0434565395116806, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 57774 + }, + { + "epoch": 5.933757830954093, + "grad_norm": 0.04627044126391411, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 57777 + }, + { + "epoch": 5.934065934065934, + "grad_norm": 0.04456416517496109, + "learning_rate": 0.01, + "loss": 2.0219, + "step": 57780 + }, + { + "epoch": 5.934374037177776, + "grad_norm": 0.038884878158569336, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 57783 + }, + { + "epoch": 5.934682140289617, + "grad_norm": 0.03564108535647392, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 57786 + }, + { + "epoch": 5.934990243401458, + "grad_norm": 0.06104537844657898, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 57789 + }, + { + "epoch": 5.935298346513299, + "grad_norm": 0.06845796853303909, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 57792 + }, + { + "epoch": 5.9356064496251415, + "grad_norm": 0.08483695238828659, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 57795 + }, + { + "epoch": 5.935914552736983, + "grad_norm": 0.05989287048578262, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 57798 + }, + { + "epoch": 5.936222655848824, + "grad_norm": 0.04331030324101448, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 57801 + }, + { + "epoch": 5.936530758960665, + "grad_norm": 0.05447021499276161, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 57804 + }, + { + "epoch": 5.9368388620725066, + "grad_norm": 0.10276515781879425, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 57807 + }, + { + "epoch": 5.937146965184349, + "grad_norm": 0.041528135538101196, + "learning_rate": 0.01, + "loss": 1.978, + "step": 57810 + }, + { + "epoch": 5.93745506829619, + "grad_norm": 0.09760654717683792, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 57813 + }, + { + "epoch": 5.937763171408031, + "grad_norm": 0.07332238554954529, + "learning_rate": 0.01, + "loss": 2.0096, + "step": 57816 + }, + { + "epoch": 5.9380712745198725, + "grad_norm": 0.07201950252056122, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 57819 + }, + { + "epoch": 5.938379377631714, + "grad_norm": 0.09542597830295563, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 57822 + }, + { + "epoch": 5.938687480743555, + "grad_norm": 0.08886115252971649, + "learning_rate": 0.01, + "loss": 2.016, + "step": 57825 + }, + { + "epoch": 5.938995583855397, + "grad_norm": 0.0604422464966774, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 57828 + }, + { + "epoch": 5.939303686967238, + "grad_norm": 0.04549078643321991, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 57831 + }, + { + "epoch": 5.93961179007908, + "grad_norm": 0.09901918470859528, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 57834 + }, + { + "epoch": 5.939919893190921, + "grad_norm": 0.10208103060722351, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 57837 + }, + { + "epoch": 5.940227996302763, + "grad_norm": 0.08842794597148895, + "learning_rate": 0.01, + "loss": 1.977, + "step": 57840 + }, + { + "epoch": 5.940536099414604, + "grad_norm": 0.06819964945316315, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 57843 + }, + { + "epoch": 5.940844202526446, + "grad_norm": 0.07434326410293579, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 57846 + }, + { + "epoch": 5.941152305638287, + "grad_norm": 0.06985678523778915, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 57849 + }, + { + "epoch": 5.941460408750128, + "grad_norm": 0.04155593365430832, + "learning_rate": 0.01, + "loss": 1.9645, + "step": 57852 + }, + { + "epoch": 5.941768511861969, + "grad_norm": 0.07389968633651733, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 57855 + }, + { + "epoch": 5.942076614973812, + "grad_norm": 0.11060785502195358, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 57858 + }, + { + "epoch": 5.942384718085653, + "grad_norm": 0.035507991909980774, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 57861 + }, + { + "epoch": 5.942692821197494, + "grad_norm": 0.07544751465320587, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 57864 + }, + { + "epoch": 5.943000924309335, + "grad_norm": 0.03793545812368393, + "learning_rate": 0.01, + "loss": 1.998, + "step": 57867 + }, + { + "epoch": 5.943309027421177, + "grad_norm": 0.07497958838939667, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 57870 + }, + { + "epoch": 5.943617130533019, + "grad_norm": 0.0712079107761383, + "learning_rate": 0.01, + "loss": 2.0135, + "step": 57873 + }, + { + "epoch": 5.94392523364486, + "grad_norm": 0.03715150058269501, + "learning_rate": 0.01, + "loss": 1.9586, + "step": 57876 + }, + { + "epoch": 5.944233336756701, + "grad_norm": 0.0650571882724762, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 57879 + }, + { + "epoch": 5.9445414398685426, + "grad_norm": 0.0977357029914856, + "learning_rate": 0.01, + "loss": 1.994, + "step": 57882 + }, + { + "epoch": 5.944849542980384, + "grad_norm": 0.06483075022697449, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 57885 + }, + { + "epoch": 5.945157646092225, + "grad_norm": 0.09345372766256332, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 57888 + }, + { + "epoch": 5.945465749204067, + "grad_norm": 0.06418720632791519, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 57891 + }, + { + "epoch": 5.9457738523159085, + "grad_norm": 0.05608039349317551, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 57894 + }, + { + "epoch": 5.94608195542775, + "grad_norm": 0.04540601745247841, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 57897 + }, + { + "epoch": 5.946390058539591, + "grad_norm": 0.07881978154182434, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 57900 + }, + { + "epoch": 5.946698161651433, + "grad_norm": 0.05478779971599579, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 57903 + }, + { + "epoch": 5.947006264763274, + "grad_norm": 0.06574473530054092, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 57906 + }, + { + "epoch": 5.947314367875116, + "grad_norm": 0.06080929934978485, + "learning_rate": 0.01, + "loss": 1.9615, + "step": 57909 + }, + { + "epoch": 5.947622470986957, + "grad_norm": 0.06462790071964264, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 57912 + }, + { + "epoch": 5.947930574098798, + "grad_norm": 0.06746607273817062, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 57915 + }, + { + "epoch": 5.9482386772106395, + "grad_norm": 0.048096004873514175, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 57918 + }, + { + "epoch": 5.948546780322482, + "grad_norm": 0.038138337433338165, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 57921 + }, + { + "epoch": 5.948854883434323, + "grad_norm": 0.05787679925560951, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 57924 + }, + { + "epoch": 5.949162986546164, + "grad_norm": 0.21429073810577393, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 57927 + }, + { + "epoch": 5.949471089658005, + "grad_norm": 0.103017657995224, + "learning_rate": 0.01, + "loss": 2.0201, + "step": 57930 + }, + { + "epoch": 5.949779192769847, + "grad_norm": 0.08076374232769012, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 57933 + }, + { + "epoch": 5.950087295881689, + "grad_norm": 0.06803920865058899, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 57936 + }, + { + "epoch": 5.95039539899353, + "grad_norm": 0.0801796242594719, + "learning_rate": 0.01, + "loss": 1.994, + "step": 57939 + }, + { + "epoch": 5.950703502105371, + "grad_norm": 0.0715690553188324, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 57942 + }, + { + "epoch": 5.951011605217213, + "grad_norm": 0.051856063306331635, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 57945 + }, + { + "epoch": 5.951319708329054, + "grad_norm": 0.03726186603307724, + "learning_rate": 0.01, + "loss": 2.006, + "step": 57948 + }, + { + "epoch": 5.951627811440895, + "grad_norm": 0.04276345297694206, + "learning_rate": 0.01, + "loss": 1.994, + "step": 57951 + }, + { + "epoch": 5.951935914552737, + "grad_norm": 0.06446687877178192, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 57954 + }, + { + "epoch": 5.952244017664579, + "grad_norm": 0.05513986572623253, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 57957 + }, + { + "epoch": 5.95255212077642, + "grad_norm": 0.06750188022851944, + "learning_rate": 0.01, + "loss": 2.0185, + "step": 57960 + }, + { + "epoch": 5.952860223888261, + "grad_norm": 0.048399876803159714, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 57963 + }, + { + "epoch": 5.953168327000102, + "grad_norm": 0.04391476884484291, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 57966 + }, + { + "epoch": 5.9534764301119445, + "grad_norm": 0.05262988805770874, + "learning_rate": 0.01, + "loss": 1.98, + "step": 57969 + }, + { + "epoch": 5.953784533223786, + "grad_norm": 0.1819307655096054, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 57972 + }, + { + "epoch": 5.954092636335627, + "grad_norm": 0.04456859081983566, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 57975 + }, + { + "epoch": 5.954400739447468, + "grad_norm": 0.11903820186853409, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 57978 + }, + { + "epoch": 5.9547088425593095, + "grad_norm": 0.08669394254684448, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 57981 + }, + { + "epoch": 5.955016945671151, + "grad_norm": 0.05538726970553398, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 57984 + }, + { + "epoch": 5.955325048782993, + "grad_norm": 0.06540273129940033, + "learning_rate": 0.01, + "loss": 1.954, + "step": 57987 + }, + { + "epoch": 5.955633151894834, + "grad_norm": 0.05096886307001114, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 57990 + }, + { + "epoch": 5.9559412550066755, + "grad_norm": 0.0463346429169178, + "learning_rate": 0.01, + "loss": 1.985, + "step": 57993 + }, + { + "epoch": 5.956249358118517, + "grad_norm": 0.12739206850528717, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 57996 + }, + { + "epoch": 5.956557461230359, + "grad_norm": 0.03725777193903923, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 57999 + }, + { + "epoch": 5.9568655643422, + "grad_norm": 0.041961897164583206, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 58002 + }, + { + "epoch": 5.957173667454041, + "grad_norm": 0.039089135825634, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 58005 + }, + { + "epoch": 5.957481770565883, + "grad_norm": 0.03455056622624397, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 58008 + }, + { + "epoch": 5.957789873677724, + "grad_norm": 0.10427875816822052, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 58011 + }, + { + "epoch": 5.958097976789565, + "grad_norm": 0.11531616002321243, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 58014 + }, + { + "epoch": 5.958406079901407, + "grad_norm": 0.05732328072190285, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 58017 + }, + { + "epoch": 5.958714183013249, + "grad_norm": 0.033681951463222504, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 58020 + }, + { + "epoch": 5.95902228612509, + "grad_norm": 0.03731759265065193, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 58023 + }, + { + "epoch": 5.959330389236931, + "grad_norm": 0.03403918072581291, + "learning_rate": 0.01, + "loss": 2.0195, + "step": 58026 + }, + { + "epoch": 5.959638492348772, + "grad_norm": 0.10777036845684052, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 58029 + }, + { + "epoch": 5.959946595460615, + "grad_norm": 0.03863784670829773, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 58032 + }, + { + "epoch": 5.960254698572456, + "grad_norm": 0.11702859401702881, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 58035 + }, + { + "epoch": 5.960562801684297, + "grad_norm": 0.04561970755457878, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 58038 + }, + { + "epoch": 5.960870904796138, + "grad_norm": 0.07471676170825958, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 58041 + }, + { + "epoch": 5.96117900790798, + "grad_norm": 0.06594023108482361, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 58044 + }, + { + "epoch": 5.961487111019821, + "grad_norm": 0.10957533866167068, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 58047 + }, + { + "epoch": 5.961795214131663, + "grad_norm": 0.06384073197841644, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 58050 + }, + { + "epoch": 5.962103317243504, + "grad_norm": 0.04451090097427368, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 58053 + }, + { + "epoch": 5.9624114203553455, + "grad_norm": 0.036886006593704224, + "learning_rate": 0.01, + "loss": 1.982, + "step": 58056 + }, + { + "epoch": 5.962719523467187, + "grad_norm": 0.06101905182003975, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 58059 + }, + { + "epoch": 5.963027626579028, + "grad_norm": 0.037433281540870667, + "learning_rate": 0.01, + "loss": 1.951, + "step": 58062 + }, + { + "epoch": 5.96333572969087, + "grad_norm": 0.04497874528169632, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 58065 + }, + { + "epoch": 5.9636438328027115, + "grad_norm": 0.10465840995311737, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 58068 + }, + { + "epoch": 5.963951935914553, + "grad_norm": 0.08285420387983322, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 58071 + }, + { + "epoch": 5.964260039026394, + "grad_norm": 0.0607406347990036, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 58074 + }, + { + "epoch": 5.964568142138235, + "grad_norm": 0.07265600562095642, + "learning_rate": 0.01, + "loss": 1.978, + "step": 58077 + }, + { + "epoch": 5.9648762452500765, + "grad_norm": 0.06835401058197021, + "learning_rate": 0.01, + "loss": 2.008, + "step": 58080 + }, + { + "epoch": 5.965184348361919, + "grad_norm": 0.08795753121376038, + "learning_rate": 0.01, + "loss": 1.983, + "step": 58083 + }, + { + "epoch": 5.96549245147376, + "grad_norm": 0.06189946457743645, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 58086 + }, + { + "epoch": 5.965800554585601, + "grad_norm": 0.05601467564702034, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 58089 + }, + { + "epoch": 5.9661086576974425, + "grad_norm": 0.07447000592947006, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 58092 + }, + { + "epoch": 5.966416760809285, + "grad_norm": 0.08373255282640457, + "learning_rate": 0.01, + "loss": 1.969, + "step": 58095 + }, + { + "epoch": 5.966724863921126, + "grad_norm": 0.09241122007369995, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 58098 + }, + { + "epoch": 5.967032967032967, + "grad_norm": 0.0638846680521965, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 58101 + }, + { + "epoch": 5.967341070144808, + "grad_norm": 0.0532197505235672, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 58104 + }, + { + "epoch": 5.96764917325665, + "grad_norm": 0.10008466243743896, + "learning_rate": 0.01, + "loss": 1.9972, + "step": 58107 + }, + { + "epoch": 5.967957276368491, + "grad_norm": 0.047970160841941833, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 58110 + }, + { + "epoch": 5.968265379480333, + "grad_norm": 0.046584948897361755, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 58113 + }, + { + "epoch": 5.968573482592174, + "grad_norm": 0.04055574908852577, + "learning_rate": 0.01, + "loss": 1.966, + "step": 58116 + }, + { + "epoch": 5.968881585704016, + "grad_norm": 0.11462211608886719, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 58119 + }, + { + "epoch": 5.969189688815857, + "grad_norm": 0.07639250159263611, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 58122 + }, + { + "epoch": 5.969497791927698, + "grad_norm": 0.08450743556022644, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 58125 + }, + { + "epoch": 5.96980589503954, + "grad_norm": 0.06165710464119911, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 58128 + }, + { + "epoch": 5.9701139981513816, + "grad_norm": 0.042419277131557465, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 58131 + }, + { + "epoch": 5.970422101263223, + "grad_norm": 0.04378311708569527, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 58134 + }, + { + "epoch": 5.970730204375064, + "grad_norm": 0.05443147197365761, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 58137 + }, + { + "epoch": 5.971038307486905, + "grad_norm": 0.05718831345438957, + "learning_rate": 0.01, + "loss": 1.991, + "step": 58140 + }, + { + "epoch": 5.971346410598747, + "grad_norm": 0.0620989128947258, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 58143 + }, + { + "epoch": 5.971654513710589, + "grad_norm": 0.11351976543664932, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 58146 + }, + { + "epoch": 5.97196261682243, + "grad_norm": 0.05350454896688461, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 58149 + }, + { + "epoch": 5.972270719934271, + "grad_norm": 0.08652366697788239, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 58152 + }, + { + "epoch": 5.9725788230461125, + "grad_norm": 0.054177410900592804, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 58155 + }, + { + "epoch": 5.972886926157955, + "grad_norm": 0.047728173434734344, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 58158 + }, + { + "epoch": 5.973195029269796, + "grad_norm": 0.048977095633745193, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 58161 + }, + { + "epoch": 5.973503132381637, + "grad_norm": 0.042776644229888916, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 58164 + }, + { + "epoch": 5.9738112354934785, + "grad_norm": 0.09739521145820618, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 58167 + }, + { + "epoch": 5.97411933860532, + "grad_norm": 0.0636570006608963, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 58170 + }, + { + "epoch": 5.974427441717161, + "grad_norm": 0.09212375432252884, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 58173 + }, + { + "epoch": 5.974735544829003, + "grad_norm": 0.06589896231889725, + "learning_rate": 0.01, + "loss": 2.0172, + "step": 58176 + }, + { + "epoch": 5.975043647940844, + "grad_norm": 0.04317329451441765, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 58179 + }, + { + "epoch": 5.975351751052686, + "grad_norm": 0.04963945969939232, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 58182 + }, + { + "epoch": 5.975659854164527, + "grad_norm": 0.054626185446977615, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 58185 + }, + { + "epoch": 5.975967957276368, + "grad_norm": 0.0750926285982132, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 58188 + }, + { + "epoch": 5.97627606038821, + "grad_norm": 0.09490969032049179, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 58191 + }, + { + "epoch": 5.976584163500052, + "grad_norm": 0.19652721285820007, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 58194 + }, + { + "epoch": 5.976892266611893, + "grad_norm": 0.13692377507686615, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 58197 + }, + { + "epoch": 5.977200369723734, + "grad_norm": 0.10185639560222626, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 58200 + }, + { + "epoch": 5.977508472835575, + "grad_norm": 0.08201511949300766, + "learning_rate": 0.01, + "loss": 1.9697, + "step": 58203 + }, + { + "epoch": 5.977816575947417, + "grad_norm": 0.06355354934930801, + "learning_rate": 0.01, + "loss": 1.9582, + "step": 58206 + }, + { + "epoch": 5.978124679059259, + "grad_norm": 0.07959393411874771, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 58209 + }, + { + "epoch": 5.9784327821711, + "grad_norm": 0.08127464354038239, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 58212 + }, + { + "epoch": 5.978740885282941, + "grad_norm": 0.052127279341220856, + "learning_rate": 0.01, + "loss": 1.982, + "step": 58215 + }, + { + "epoch": 5.979048988394783, + "grad_norm": 0.05060075968503952, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 58218 + }, + { + "epoch": 5.979357091506624, + "grad_norm": 0.0653509721159935, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 58221 + }, + { + "epoch": 5.979665194618466, + "grad_norm": 0.04588339477777481, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 58224 + }, + { + "epoch": 5.979973297730307, + "grad_norm": 0.027341017499566078, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 58227 + }, + { + "epoch": 5.9802814008421485, + "grad_norm": 0.039760638028383255, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 58230 + }, + { + "epoch": 5.98058950395399, + "grad_norm": 0.07517565786838531, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 58233 + }, + { + "epoch": 5.980897607065831, + "grad_norm": 0.07364608347415924, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 58236 + }, + { + "epoch": 5.981205710177672, + "grad_norm": 0.057517606765031815, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 58239 + }, + { + "epoch": 5.9815138132895145, + "grad_norm": 0.032561108469963074, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 58242 + }, + { + "epoch": 5.981821916401356, + "grad_norm": 0.08549618721008301, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 58245 + }, + { + "epoch": 5.982130019513197, + "grad_norm": 0.17904026806354523, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 58248 + }, + { + "epoch": 5.982438122625038, + "grad_norm": 0.10775711387395859, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 58251 + }, + { + "epoch": 5.98274622573688, + "grad_norm": 0.07369556277990341, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 58254 + }, + { + "epoch": 5.983054328848722, + "grad_norm": 0.059407759457826614, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 58257 + }, + { + "epoch": 5.983362431960563, + "grad_norm": 0.05741313472390175, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 58260 + }, + { + "epoch": 5.983670535072404, + "grad_norm": 0.07792560756206512, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 58263 + }, + { + "epoch": 5.9839786381842455, + "grad_norm": 0.058633413165807724, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 58266 + }, + { + "epoch": 5.984286741296087, + "grad_norm": 0.04207305610179901, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 58269 + }, + { + "epoch": 5.984594844407929, + "grad_norm": 0.039717648178339005, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 58272 + }, + { + "epoch": 5.98490294751977, + "grad_norm": 0.03505009412765503, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 58275 + }, + { + "epoch": 5.985211050631611, + "grad_norm": 0.03421800956130028, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 58278 + }, + { + "epoch": 5.985519153743453, + "grad_norm": 0.11582440882921219, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 58281 + }, + { + "epoch": 5.985827256855294, + "grad_norm": 0.058088093996047974, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 58284 + }, + { + "epoch": 5.986135359967136, + "grad_norm": 0.08388987928628922, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 58287 + }, + { + "epoch": 5.986443463078977, + "grad_norm": 0.07332730293273926, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 58290 + }, + { + "epoch": 5.986751566190819, + "grad_norm": 0.03843742609024048, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 58293 + }, + { + "epoch": 5.98705966930266, + "grad_norm": 0.07863465696573257, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 58296 + }, + { + "epoch": 5.987367772414501, + "grad_norm": 0.08023706078529358, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 58299 + }, + { + "epoch": 5.987675875526342, + "grad_norm": 0.037095215171575546, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 58302 + }, + { + "epoch": 5.9879839786381845, + "grad_norm": 0.04752547666430473, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 58305 + }, + { + "epoch": 5.988292081750026, + "grad_norm": 0.053975239396095276, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 58308 + }, + { + "epoch": 5.988600184861867, + "grad_norm": 0.08200733363628387, + "learning_rate": 0.01, + "loss": 1.991, + "step": 58311 + }, + { + "epoch": 5.988908287973708, + "grad_norm": 0.056134093552827835, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 58314 + }, + { + "epoch": 5.98921639108555, + "grad_norm": 0.04401000216603279, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 58317 + }, + { + "epoch": 5.989524494197392, + "grad_norm": 0.06809469312429428, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 58320 + }, + { + "epoch": 5.989832597309233, + "grad_norm": 0.06399431079626083, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 58323 + }, + { + "epoch": 5.990140700421074, + "grad_norm": 0.1221606507897377, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 58326 + }, + { + "epoch": 5.9904488035329155, + "grad_norm": 0.054819442331790924, + "learning_rate": 0.01, + "loss": 1.9657, + "step": 58329 + }, + { + "epoch": 5.990756906644757, + "grad_norm": 0.053588200360536575, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 58332 + }, + { + "epoch": 5.991065009756598, + "grad_norm": 0.060072384774684906, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 58335 + }, + { + "epoch": 5.99137311286844, + "grad_norm": 0.09491874277591705, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 58338 + }, + { + "epoch": 5.9916812159802815, + "grad_norm": 0.054036714136600494, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 58341 + }, + { + "epoch": 5.991989319092123, + "grad_norm": 0.04162592813372612, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 58344 + }, + { + "epoch": 5.992297422203964, + "grad_norm": 0.05602291598916054, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 58347 + }, + { + "epoch": 5.992605525315806, + "grad_norm": 0.038415491580963135, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 58350 + }, + { + "epoch": 5.992913628427647, + "grad_norm": 0.07123242318630219, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 58353 + }, + { + "epoch": 5.993221731539489, + "grad_norm": 0.06751185655593872, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 58356 + }, + { + "epoch": 5.99352983465133, + "grad_norm": 0.07169979065656662, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 58359 + }, + { + "epoch": 5.993837937763171, + "grad_norm": 0.13775870203971863, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 58362 + }, + { + "epoch": 5.9941460408750125, + "grad_norm": 0.08033827692270279, + "learning_rate": 0.01, + "loss": 2.0378, + "step": 58365 + }, + { + "epoch": 5.994454143986855, + "grad_norm": 0.07793736457824707, + "learning_rate": 0.01, + "loss": 1.9651, + "step": 58368 + }, + { + "epoch": 5.994762247098696, + "grad_norm": 0.06328029185533524, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 58371 + }, + { + "epoch": 5.995070350210537, + "grad_norm": 0.05584852769970894, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 58374 + }, + { + "epoch": 5.995378453322378, + "grad_norm": 0.04354814067482948, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 58377 + }, + { + "epoch": 5.99568655643422, + "grad_norm": 0.05028558522462845, + "learning_rate": 0.01, + "loss": 1.9582, + "step": 58380 + }, + { + "epoch": 5.995994659546062, + "grad_norm": 0.053422022610902786, + "learning_rate": 0.01, + "loss": 1.997, + "step": 58383 + }, + { + "epoch": 5.996302762657903, + "grad_norm": 0.03941678628325462, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 58386 + }, + { + "epoch": 5.996610865769744, + "grad_norm": 0.03764568641781807, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 58389 + }, + { + "epoch": 5.996918968881586, + "grad_norm": 0.044926904141902924, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 58392 + }, + { + "epoch": 5.997227071993427, + "grad_norm": 0.046521514654159546, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 58395 + }, + { + "epoch": 5.997535175105268, + "grad_norm": 0.12329057604074478, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 58398 + }, + { + "epoch": 5.99784327821711, + "grad_norm": 0.045972906053066254, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 58401 + }, + { + "epoch": 5.9981513813289515, + "grad_norm": 0.1293979287147522, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 58404 + }, + { + "epoch": 5.998459484440793, + "grad_norm": 0.06918042153120041, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 58407 + }, + { + "epoch": 5.998767587552634, + "grad_norm": 0.04279787465929985, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 58410 + }, + { + "epoch": 5.999075690664475, + "grad_norm": 0.09146596491336823, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 58413 + }, + { + "epoch": 5.9993837937763175, + "grad_norm": 0.06269899010658264, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 58416 + }, + { + "epoch": 5.999691896888159, + "grad_norm": 0.04407677426934242, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 58419 + }, + { + "epoch": 6.0, + "grad_norm": 0.04100476950407028, + "learning_rate": 0.01, + "loss": 2.015, + "step": 58422 + }, + { + "epoch": 5.999691928527419, + "grad_norm": 0.05454897880554199, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 58425 + }, + { + "epoch": 6.0, + "grad_norm": 0.12488140910863876, + "learning_rate": 0.01, + "loss": 2.0163, + "step": 58428 + }, + { + "epoch": 6.000308071472582, + "grad_norm": 0.08063201606273651, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 58431 + }, + { + "epoch": 6.000616142945163, + "grad_norm": 0.08693194389343262, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 58434 + }, + { + "epoch": 6.000924214417745, + "grad_norm": 0.048637568950653076, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 58437 + }, + { + "epoch": 6.001232285890326, + "grad_norm": 0.047587309032678604, + "learning_rate": 0.01, + "loss": 1.998, + "step": 58440 + }, + { + "epoch": 6.0015403573629085, + "grad_norm": 0.04123762995004654, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 58443 + }, + { + "epoch": 6.00184842883549, + "grad_norm": 0.038054220378398895, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 58446 + }, + { + "epoch": 6.002156500308072, + "grad_norm": 0.07207085937261581, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 58449 + }, + { + "epoch": 6.002464571780653, + "grad_norm": 0.09471093118190765, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 58452 + }, + { + "epoch": 6.002772643253235, + "grad_norm": 0.050923608243465424, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 58455 + }, + { + "epoch": 6.003080714725816, + "grad_norm": 0.09074869751930237, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 58458 + }, + { + "epoch": 6.003388786198398, + "grad_norm": 0.12536507844924927, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 58461 + }, + { + "epoch": 6.003696857670979, + "grad_norm": 0.04264422506093979, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 58464 + }, + { + "epoch": 6.004004929143561, + "grad_norm": 0.03600556403398514, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 58467 + }, + { + "epoch": 6.004313000616143, + "grad_norm": 0.030723579227924347, + "learning_rate": 0.01, + "loss": 1.975, + "step": 58470 + }, + { + "epoch": 6.0046210720887245, + "grad_norm": 0.042884331196546555, + "learning_rate": 0.01, + "loss": 1.994, + "step": 58473 + }, + { + "epoch": 6.004929143561307, + "grad_norm": 0.07880793511867523, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 58476 + }, + { + "epoch": 6.005237215033888, + "grad_norm": 0.08945189416408539, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 58479 + }, + { + "epoch": 6.00554528650647, + "grad_norm": 0.07887895405292511, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 58482 + }, + { + "epoch": 6.005853357979051, + "grad_norm": 0.13316544890403748, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 58485 + }, + { + "epoch": 6.006161429451633, + "grad_norm": 0.06402456760406494, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 58488 + }, + { + "epoch": 6.006469500924214, + "grad_norm": 0.03985295444726944, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 58491 + }, + { + "epoch": 6.006777572396796, + "grad_norm": 0.03584379702806473, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 58494 + }, + { + "epoch": 6.007085643869377, + "grad_norm": 0.03731578588485718, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 58497 + }, + { + "epoch": 6.007393715341959, + "grad_norm": 0.04280545935034752, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 58500 + }, + { + "epoch": 6.007701786814541, + "grad_norm": 0.037182942032814026, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 58503 + }, + { + "epoch": 6.008009858287123, + "grad_norm": 0.04180056229233742, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 58506 + }, + { + "epoch": 6.008317929759705, + "grad_norm": 0.05659356340765953, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 58509 + }, + { + "epoch": 6.008626001232286, + "grad_norm": 0.04323246702551842, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 58512 + }, + { + "epoch": 6.008934072704868, + "grad_norm": 0.15815724432468414, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 58515 + }, + { + "epoch": 6.009242144177449, + "grad_norm": 0.041637711226940155, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 58518 + }, + { + "epoch": 6.009550215650031, + "grad_norm": 0.09015413373708725, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 58521 + }, + { + "epoch": 6.009858287122612, + "grad_norm": 0.10606445372104645, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 58524 + }, + { + "epoch": 6.010166358595194, + "grad_norm": 0.06839009374380112, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 58527 + }, + { + "epoch": 6.0104744300677755, + "grad_norm": 0.051956940442323685, + "learning_rate": 0.01, + "loss": 1.967, + "step": 58530 + }, + { + "epoch": 6.0107825015403575, + "grad_norm": 0.034211624413728714, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 58533 + }, + { + "epoch": 6.011090573012939, + "grad_norm": 0.04351538419723511, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 58536 + }, + { + "epoch": 6.011398644485521, + "grad_norm": 0.07221609354019165, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 58539 + }, + { + "epoch": 6.011706715958102, + "grad_norm": 0.11168903857469559, + "learning_rate": 0.01, + "loss": 1.991, + "step": 58542 + }, + { + "epoch": 6.012014787430684, + "grad_norm": 0.06332577764987946, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 58545 + }, + { + "epoch": 6.012322858903265, + "grad_norm": 0.0567488819360733, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 58548 + }, + { + "epoch": 6.012630930375847, + "grad_norm": 0.04636390134692192, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 58551 + }, + { + "epoch": 6.012939001848429, + "grad_norm": 0.040273915976285934, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 58554 + }, + { + "epoch": 6.01324707332101, + "grad_norm": 0.09343009442090988, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 58557 + }, + { + "epoch": 6.013555144793592, + "grad_norm": 0.07643181830644608, + "learning_rate": 0.01, + "loss": 1.9507, + "step": 58560 + }, + { + "epoch": 6.013863216266174, + "grad_norm": 0.1327466368675232, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 58563 + }, + { + "epoch": 6.014171287738756, + "grad_norm": 0.1656189262866974, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 58566 + }, + { + "epoch": 6.014479359211337, + "grad_norm": 0.07180788367986679, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 58569 + }, + { + "epoch": 6.014787430683919, + "grad_norm": 0.04216361045837402, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 58572 + }, + { + "epoch": 6.0150955021565, + "grad_norm": 0.04374970495700836, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 58575 + }, + { + "epoch": 6.015403573629082, + "grad_norm": 0.038325972855091095, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 58578 + }, + { + "epoch": 6.015711645101663, + "grad_norm": 0.03523325175046921, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 58581 + }, + { + "epoch": 6.016019716574245, + "grad_norm": 0.03328186646103859, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 58584 + }, + { + "epoch": 6.016327788046826, + "grad_norm": 0.09052954614162445, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 58587 + }, + { + "epoch": 6.0166358595194085, + "grad_norm": 0.08605097979307175, + "learning_rate": 0.01, + "loss": 2.0121, + "step": 58590 + }, + { + "epoch": 6.0169439309919905, + "grad_norm": 0.05200384184718132, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 58593 + }, + { + "epoch": 6.017252002464572, + "grad_norm": 0.07615986466407776, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 58596 + }, + { + "epoch": 6.017560073937154, + "grad_norm": 0.043676577508449554, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 58599 + }, + { + "epoch": 6.017868145409735, + "grad_norm": 0.058520250022411346, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 58602 + }, + { + "epoch": 6.018176216882317, + "grad_norm": 0.07133082300424576, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 58605 + }, + { + "epoch": 6.018484288354898, + "grad_norm": 0.08711257576942444, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 58608 + }, + { + "epoch": 6.01879235982748, + "grad_norm": 0.0483718067407608, + "learning_rate": 0.01, + "loss": 1.932, + "step": 58611 + }, + { + "epoch": 6.019100431300061, + "grad_norm": 0.05014586076140404, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 58614 + }, + { + "epoch": 6.019408502772643, + "grad_norm": 0.10905557870864868, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 58617 + }, + { + "epoch": 6.0197165742452245, + "grad_norm": 0.03817577287554741, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 58620 + }, + { + "epoch": 6.020024645717807, + "grad_norm": 0.0783611536026001, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 58623 + }, + { + "epoch": 6.020332717190388, + "grad_norm": 0.0832376778125763, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 58626 + }, + { + "epoch": 6.02064078866297, + "grad_norm": 0.05190072953701019, + "learning_rate": 0.01, + "loss": 1.9639, + "step": 58629 + }, + { + "epoch": 6.020948860135552, + "grad_norm": 0.09829907864332199, + "learning_rate": 0.01, + "loss": 2.0106, + "step": 58632 + }, + { + "epoch": 6.021256931608133, + "grad_norm": 0.08857165277004242, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 58635 + }, + { + "epoch": 6.021565003080715, + "grad_norm": 0.07858851552009583, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 58638 + }, + { + "epoch": 6.021873074553296, + "grad_norm": 0.04164360463619232, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 58641 + }, + { + "epoch": 6.022181146025878, + "grad_norm": 0.037627752870321274, + "learning_rate": 0.01, + "loss": 1.9653, + "step": 58644 + }, + { + "epoch": 6.0224892174984594, + "grad_norm": 0.03442845493555069, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 58647 + }, + { + "epoch": 6.0227972889710415, + "grad_norm": 0.04693920910358429, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 58650 + }, + { + "epoch": 6.023105360443623, + "grad_norm": 0.07563184201717377, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 58653 + }, + { + "epoch": 6.023413431916205, + "grad_norm": 0.08100397139787674, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 58656 + }, + { + "epoch": 6.023721503388786, + "grad_norm": 0.12132440507411957, + "learning_rate": 0.01, + "loss": 1.969, + "step": 58659 + }, + { + "epoch": 6.024029574861368, + "grad_norm": 0.04983309283852577, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 58662 + }, + { + "epoch": 6.024337646333949, + "grad_norm": 0.06472596526145935, + "learning_rate": 0.01, + "loss": 2.0084, + "step": 58665 + }, + { + "epoch": 6.024645717806531, + "grad_norm": 0.034389570355415344, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 58668 + }, + { + "epoch": 6.024953789279113, + "grad_norm": 0.10626552999019623, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 58671 + }, + { + "epoch": 6.025261860751694, + "grad_norm": 0.0675535798072815, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 58674 + }, + { + "epoch": 6.025569932224276, + "grad_norm": 0.04010651633143425, + "learning_rate": 0.01, + "loss": 1.969, + "step": 58677 + }, + { + "epoch": 6.0258780036968576, + "grad_norm": 0.034451622515916824, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 58680 + }, + { + "epoch": 6.02618607516944, + "grad_norm": 0.06580517441034317, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 58683 + }, + { + "epoch": 6.026494146642021, + "grad_norm": 0.05853043496608734, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 58686 + }, + { + "epoch": 6.026802218114603, + "grad_norm": 0.04377220198512077, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 58689 + }, + { + "epoch": 6.027110289587184, + "grad_norm": 0.03288479149341583, + "learning_rate": 0.01, + "loss": 1.978, + "step": 58692 + }, + { + "epoch": 6.027418361059766, + "grad_norm": 0.04060712829232216, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 58695 + }, + { + "epoch": 6.027726432532347, + "grad_norm": 0.11332166939973831, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 58698 + }, + { + "epoch": 6.028034504004929, + "grad_norm": 0.13282176852226257, + "learning_rate": 0.01, + "loss": 1.9528, + "step": 58701 + }, + { + "epoch": 6.02834257547751, + "grad_norm": 0.08038832992315292, + "learning_rate": 0.01, + "loss": 2.0108, + "step": 58704 + }, + { + "epoch": 6.0286506469500925, + "grad_norm": 0.05667036771774292, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 58707 + }, + { + "epoch": 6.0289587184226745, + "grad_norm": 0.06444176286458969, + "learning_rate": 0.01, + "loss": 1.972, + "step": 58710 + }, + { + "epoch": 6.029266789895256, + "grad_norm": 0.08207248896360397, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 58713 + }, + { + "epoch": 6.029574861367838, + "grad_norm": 0.057919155806303024, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 58716 + }, + { + "epoch": 6.029882932840419, + "grad_norm": 0.0630873367190361, + "learning_rate": 0.01, + "loss": 2.004, + "step": 58719 + }, + { + "epoch": 6.030191004313001, + "grad_norm": 0.14096465706825256, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 58722 + }, + { + "epoch": 6.030499075785582, + "grad_norm": 0.06392169743776321, + "learning_rate": 0.01, + "loss": 1.9605, + "step": 58725 + }, + { + "epoch": 6.030807147258164, + "grad_norm": 0.051594968885183334, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 58728 + }, + { + "epoch": 6.031115218730745, + "grad_norm": 0.05645729973912239, + "learning_rate": 0.01, + "loss": 1.977, + "step": 58731 + }, + { + "epoch": 6.031423290203327, + "grad_norm": 0.056138813495635986, + "learning_rate": 0.01, + "loss": 2.016, + "step": 58734 + }, + { + "epoch": 6.0317313616759085, + "grad_norm": 0.08171719312667847, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 58737 + }, + { + "epoch": 6.032039433148491, + "grad_norm": 0.0954081118106842, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 58740 + }, + { + "epoch": 6.032347504621072, + "grad_norm": 0.09134764224290848, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 58743 + }, + { + "epoch": 6.032655576093654, + "grad_norm": 0.05880044028162956, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 58746 + }, + { + "epoch": 6.032963647566235, + "grad_norm": 0.06801950186491013, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 58749 + }, + { + "epoch": 6.033271719038817, + "grad_norm": 0.038541264832019806, + "learning_rate": 0.01, + "loss": 1.9595, + "step": 58752 + }, + { + "epoch": 6.033579790511399, + "grad_norm": 0.03735314682126045, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 58755 + }, + { + "epoch": 6.03388786198398, + "grad_norm": 0.10068950057029724, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 58758 + }, + { + "epoch": 6.034195933456562, + "grad_norm": 0.04904381185770035, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 58761 + }, + { + "epoch": 6.034504004929143, + "grad_norm": 0.05660933256149292, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 58764 + }, + { + "epoch": 6.0348120764017255, + "grad_norm": 0.0632736012339592, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 58767 + }, + { + "epoch": 6.035120147874307, + "grad_norm": 0.06228591129183769, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 58770 + }, + { + "epoch": 6.035428219346889, + "grad_norm": 0.03460165485739708, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 58773 + }, + { + "epoch": 6.03573629081947, + "grad_norm": 0.04163900017738342, + "learning_rate": 0.01, + "loss": 1.983, + "step": 58776 + }, + { + "epoch": 6.036044362292052, + "grad_norm": 0.07276707142591476, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 58779 + }, + { + "epoch": 6.036352433764633, + "grad_norm": 0.07738452404737473, + "learning_rate": 0.01, + "loss": 1.996, + "step": 58782 + }, + { + "epoch": 6.036660505237215, + "grad_norm": 0.1065252274274826, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 58785 + }, + { + "epoch": 6.036968576709796, + "grad_norm": 0.05357460305094719, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 58788 + }, + { + "epoch": 6.037276648182378, + "grad_norm": 0.03857807815074921, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 58791 + }, + { + "epoch": 6.03758471965496, + "grad_norm": 0.029968131333589554, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 58794 + }, + { + "epoch": 6.0378927911275415, + "grad_norm": 0.0720914974808693, + "learning_rate": 0.01, + "loss": 1.995, + "step": 58797 + }, + { + "epoch": 6.038200862600124, + "grad_norm": 0.12587358057498932, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 58800 + }, + { + "epoch": 6.038508934072705, + "grad_norm": 0.07049199193716049, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 58803 + }, + { + "epoch": 6.038817005545287, + "grad_norm": 0.05485573783516884, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 58806 + }, + { + "epoch": 6.039125077017868, + "grad_norm": 0.05481892451643944, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 58809 + }, + { + "epoch": 6.03943314849045, + "grad_norm": 0.07906284928321838, + "learning_rate": 0.01, + "loss": 1.9584, + "step": 58812 + }, + { + "epoch": 6.039741219963031, + "grad_norm": 0.10519934445619583, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 58815 + }, + { + "epoch": 6.040049291435613, + "grad_norm": 0.06294261664152145, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 58818 + }, + { + "epoch": 6.040357362908194, + "grad_norm": 0.0904410257935524, + "learning_rate": 0.01, + "loss": 1.9626, + "step": 58821 + }, + { + "epoch": 6.040665434380776, + "grad_norm": 0.053544074296951294, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 58824 + }, + { + "epoch": 6.040973505853358, + "grad_norm": 0.07926991581916809, + "learning_rate": 0.01, + "loss": 1.968, + "step": 58827 + }, + { + "epoch": 6.04128157732594, + "grad_norm": 0.09197907149791718, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 58830 + }, + { + "epoch": 6.041589648798522, + "grad_norm": 0.05957088991999626, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 58833 + }, + { + "epoch": 6.041897720271103, + "grad_norm": 0.1431286334991455, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 58836 + }, + { + "epoch": 6.042205791743685, + "grad_norm": 0.06428467482328415, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 58839 + }, + { + "epoch": 6.042513863216266, + "grad_norm": 0.07960224896669388, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 58842 + }, + { + "epoch": 6.042821934688848, + "grad_norm": 0.040846168994903564, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 58845 + }, + { + "epoch": 6.043130006161429, + "grad_norm": 0.04430864006280899, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 58848 + }, + { + "epoch": 6.043438077634011, + "grad_norm": 0.04534313082695007, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 58851 + }, + { + "epoch": 6.0437461491065925, + "grad_norm": 0.04214495047926903, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 58854 + }, + { + "epoch": 6.0440542205791745, + "grad_norm": 0.036912716925144196, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 58857 + }, + { + "epoch": 6.044362292051756, + "grad_norm": 0.05208496004343033, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 58860 + }, + { + "epoch": 6.044670363524338, + "grad_norm": 0.10304973274469376, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 58863 + }, + { + "epoch": 6.044978434996919, + "grad_norm": 0.14296580851078033, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 58866 + }, + { + "epoch": 6.045286506469501, + "grad_norm": 0.037938348948955536, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 58869 + }, + { + "epoch": 6.045594577942083, + "grad_norm": 0.054850075393915176, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 58872 + }, + { + "epoch": 6.045902649414664, + "grad_norm": 0.0785508081316948, + "learning_rate": 0.01, + "loss": 1.974, + "step": 58875 + }, + { + "epoch": 6.046210720887246, + "grad_norm": 0.07267174124717712, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 58878 + }, + { + "epoch": 6.046518792359827, + "grad_norm": 0.04367669299244881, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 58881 + }, + { + "epoch": 6.046826863832409, + "grad_norm": 0.046264924108982086, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 58884 + }, + { + "epoch": 6.047134935304991, + "grad_norm": 0.08904755860567093, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 58887 + }, + { + "epoch": 6.047443006777573, + "grad_norm": 0.06151941046118736, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 58890 + }, + { + "epoch": 6.047751078250154, + "grad_norm": 0.09928801655769348, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 58893 + }, + { + "epoch": 6.048059149722736, + "grad_norm": 0.04402837157249451, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 58896 + }, + { + "epoch": 6.048367221195317, + "grad_norm": 0.08484535664319992, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 58899 + }, + { + "epoch": 6.048675292667899, + "grad_norm": 0.07044728100299835, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 58902 + }, + { + "epoch": 6.04898336414048, + "grad_norm": 0.05778975039720535, + "learning_rate": 0.01, + "loss": 1.999, + "step": 58905 + }, + { + "epoch": 6.049291435613062, + "grad_norm": 0.08870556205511093, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 58908 + }, + { + "epoch": 6.049599507085643, + "grad_norm": 0.06904757022857666, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 58911 + }, + { + "epoch": 6.0499075785582255, + "grad_norm": 0.07772015035152435, + "learning_rate": 0.01, + "loss": 1.9439, + "step": 58914 + }, + { + "epoch": 6.0502156500308075, + "grad_norm": 0.05567057430744171, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 58917 + }, + { + "epoch": 6.050523721503389, + "grad_norm": 0.06966744363307953, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 58920 + }, + { + "epoch": 6.050831792975971, + "grad_norm": 0.05111026018857956, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 58923 + }, + { + "epoch": 6.051139864448552, + "grad_norm": 0.07328280061483383, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 58926 + }, + { + "epoch": 6.051447935921134, + "grad_norm": 0.06918063014745712, + "learning_rate": 0.01, + "loss": 1.9504, + "step": 58929 + }, + { + "epoch": 6.051756007393715, + "grad_norm": 0.09920765459537506, + "learning_rate": 0.01, + "loss": 2.0058, + "step": 58932 + }, + { + "epoch": 6.052064078866297, + "grad_norm": 0.057603057473897934, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 58935 + }, + { + "epoch": 6.052372150338878, + "grad_norm": 0.0861181914806366, + "learning_rate": 0.01, + "loss": 2.0107, + "step": 58938 + }, + { + "epoch": 6.05268022181146, + "grad_norm": 0.1477275937795639, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 58941 + }, + { + "epoch": 6.0529882932840415, + "grad_norm": 0.04588627070188522, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 58944 + }, + { + "epoch": 6.053296364756624, + "grad_norm": 0.09523765742778778, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 58947 + }, + { + "epoch": 6.053604436229205, + "grad_norm": 0.05901789665222168, + "learning_rate": 0.01, + "loss": 2.0197, + "step": 58950 + }, + { + "epoch": 6.053912507701787, + "grad_norm": 0.0464630164206028, + "learning_rate": 0.01, + "loss": 1.964, + "step": 58953 + }, + { + "epoch": 6.054220579174369, + "grad_norm": 0.06684694439172745, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 58956 + }, + { + "epoch": 6.05452865064695, + "grad_norm": 0.062367189675569534, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 58959 + }, + { + "epoch": 6.054836722119532, + "grad_norm": 0.050568412989377975, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 58962 + }, + { + "epoch": 6.055144793592113, + "grad_norm": 0.05513317883014679, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 58965 + }, + { + "epoch": 6.055452865064695, + "grad_norm": 0.05048702657222748, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 58968 + }, + { + "epoch": 6.055760936537276, + "grad_norm": 0.04989680275321007, + "learning_rate": 0.01, + "loss": 1.971, + "step": 58971 + }, + { + "epoch": 6.0560690080098585, + "grad_norm": 0.03208424523472786, + "learning_rate": 0.01, + "loss": 2.002, + "step": 58974 + }, + { + "epoch": 6.05637707948244, + "grad_norm": 0.11022038012742996, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 58977 + }, + { + "epoch": 6.056685150955022, + "grad_norm": 0.10186657309532166, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 58980 + }, + { + "epoch": 6.056993222427603, + "grad_norm": 0.04729219898581505, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 58983 + }, + { + "epoch": 6.057301293900185, + "grad_norm": 0.08434822410345078, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 58986 + }, + { + "epoch": 6.057609365372766, + "grad_norm": 0.05614599958062172, + "learning_rate": 0.01, + "loss": 2.009, + "step": 58989 + }, + { + "epoch": 6.057917436845348, + "grad_norm": 0.06520257890224457, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 58992 + }, + { + "epoch": 6.05822550831793, + "grad_norm": 0.035195183008909225, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 58995 + }, + { + "epoch": 6.058533579790511, + "grad_norm": 0.08378977328538895, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 58998 + }, + { + "epoch": 6.058841651263093, + "grad_norm": 0.05082874745130539, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 59001 + }, + { + "epoch": 6.0591497227356745, + "grad_norm": 0.10246657580137253, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 59004 + }, + { + "epoch": 6.059457794208257, + "grad_norm": 0.0681087076663971, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 59007 + }, + { + "epoch": 6.059765865680838, + "grad_norm": 0.10320194065570831, + "learning_rate": 0.01, + "loss": 1.9569, + "step": 59010 + }, + { + "epoch": 6.06007393715342, + "grad_norm": 0.04554738476872444, + "learning_rate": 0.01, + "loss": 2.0199, + "step": 59013 + }, + { + "epoch": 6.060382008626001, + "grad_norm": 0.11251513659954071, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 59016 + }, + { + "epoch": 6.060690080098583, + "grad_norm": 0.042101431638002396, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 59019 + }, + { + "epoch": 6.060998151571164, + "grad_norm": 0.05242328718304634, + "learning_rate": 0.01, + "loss": 1.977, + "step": 59022 + }, + { + "epoch": 6.061306223043746, + "grad_norm": 0.07696748524904251, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 59025 + }, + { + "epoch": 6.061614294516327, + "grad_norm": 0.07448645681142807, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 59028 + }, + { + "epoch": 6.061922365988909, + "grad_norm": 0.05332387611269951, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 59031 + }, + { + "epoch": 6.0622304374614915, + "grad_norm": 0.046122957020998, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 59034 + }, + { + "epoch": 6.062538508934073, + "grad_norm": 0.06084294244647026, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 59037 + }, + { + "epoch": 6.062846580406655, + "grad_norm": 0.09956135600805283, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 59040 + }, + { + "epoch": 6.063154651879236, + "grad_norm": 0.05223178490996361, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 59043 + }, + { + "epoch": 6.063462723351818, + "grad_norm": 0.08285564929246902, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 59046 + }, + { + "epoch": 6.063770794824399, + "grad_norm": 0.05346845090389252, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 59049 + }, + { + "epoch": 6.064078866296981, + "grad_norm": 0.08269158750772476, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 59052 + }, + { + "epoch": 6.064386937769562, + "grad_norm": 0.07285866141319275, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 59055 + }, + { + "epoch": 6.064695009242144, + "grad_norm": 0.07736973464488983, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 59058 + }, + { + "epoch": 6.0650030807147255, + "grad_norm": 0.0628119483590126, + "learning_rate": 0.01, + "loss": 2.0, + "step": 59061 + }, + { + "epoch": 6.0653111521873075, + "grad_norm": 0.044494885951280594, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 59064 + }, + { + "epoch": 6.065619223659889, + "grad_norm": 0.1270086020231247, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 59067 + }, + { + "epoch": 6.065927295132471, + "grad_norm": 0.045628707855939865, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 59070 + }, + { + "epoch": 6.066235366605053, + "grad_norm": 0.07165969908237457, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 59073 + }, + { + "epoch": 6.066543438077634, + "grad_norm": 0.047646794468164444, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 59076 + }, + { + "epoch": 6.066851509550216, + "grad_norm": 0.05064648762345314, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 59079 + }, + { + "epoch": 6.067159581022797, + "grad_norm": 0.07075773924589157, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 59082 + }, + { + "epoch": 6.067467652495379, + "grad_norm": 0.0734126940369606, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 59085 + }, + { + "epoch": 6.06777572396796, + "grad_norm": 0.07513909041881561, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 59088 + }, + { + "epoch": 6.068083795440542, + "grad_norm": 0.04252862557768822, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 59091 + }, + { + "epoch": 6.068391866913124, + "grad_norm": 0.06020990386605263, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 59094 + }, + { + "epoch": 6.068699938385706, + "grad_norm": 0.048400718718767166, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 59097 + }, + { + "epoch": 6.069008009858287, + "grad_norm": 0.10299364477396011, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 59100 + }, + { + "epoch": 6.069316081330869, + "grad_norm": 0.07474274933338165, + "learning_rate": 0.01, + "loss": 2.0238, + "step": 59103 + }, + { + "epoch": 6.06962415280345, + "grad_norm": 0.069256491959095, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 59106 + }, + { + "epoch": 6.069932224276032, + "grad_norm": 0.07016000151634216, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 59109 + }, + { + "epoch": 6.070240295748613, + "grad_norm": 0.10577663034200668, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 59112 + }, + { + "epoch": 6.070548367221195, + "grad_norm": 0.10170361399650574, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 59115 + }, + { + "epoch": 6.070856438693777, + "grad_norm": 0.03669926896691322, + "learning_rate": 0.01, + "loss": 1.9588, + "step": 59118 + }, + { + "epoch": 6.0711645101663585, + "grad_norm": 0.04145694151520729, + "learning_rate": 0.01, + "loss": 1.9565, + "step": 59121 + }, + { + "epoch": 6.0714725816389405, + "grad_norm": 0.052021101117134094, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 59124 + }, + { + "epoch": 6.071780653111522, + "grad_norm": 0.10580527782440186, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 59127 + }, + { + "epoch": 6.072088724584104, + "grad_norm": 0.05877790227532387, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 59130 + }, + { + "epoch": 6.072396796056685, + "grad_norm": 0.047968316823244095, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 59133 + }, + { + "epoch": 6.072704867529267, + "grad_norm": 0.05399814620614052, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 59136 + }, + { + "epoch": 6.073012939001848, + "grad_norm": 0.0343160405755043, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 59139 + }, + { + "epoch": 6.07332101047443, + "grad_norm": 0.032716646790504456, + "learning_rate": 0.01, + "loss": 1.989, + "step": 59142 + }, + { + "epoch": 6.073629081947011, + "grad_norm": 0.09958682209253311, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 59145 + }, + { + "epoch": 6.073937153419593, + "grad_norm": 0.14549368619918823, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 59148 + }, + { + "epoch": 6.0742452248921746, + "grad_norm": 0.12808917462825775, + "learning_rate": 0.01, + "loss": 2.0228, + "step": 59151 + }, + { + "epoch": 6.074553296364757, + "grad_norm": 0.06274955719709396, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 59154 + }, + { + "epoch": 6.074861367837339, + "grad_norm": 0.06658618897199631, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 59157 + }, + { + "epoch": 6.07516943930992, + "grad_norm": 0.07997333258390427, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 59160 + }, + { + "epoch": 6.075477510782502, + "grad_norm": 0.040492795407772064, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 59163 + }, + { + "epoch": 6.075785582255083, + "grad_norm": 0.03949406370520592, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 59166 + }, + { + "epoch": 6.076093653727665, + "grad_norm": 0.0330752469599247, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 59169 + }, + { + "epoch": 6.076401725200246, + "grad_norm": 0.03734998777508736, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 59172 + }, + { + "epoch": 6.076709796672828, + "grad_norm": 0.04145140200853348, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 59175 + }, + { + "epoch": 6.0770178681454095, + "grad_norm": 0.04934060946106911, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 59178 + }, + { + "epoch": 6.0773259396179915, + "grad_norm": 0.09385284036397934, + "learning_rate": 0.01, + "loss": 2.0134, + "step": 59181 + }, + { + "epoch": 6.077634011090573, + "grad_norm": 0.14405569434165955, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 59184 + }, + { + "epoch": 6.077942082563155, + "grad_norm": 0.12107555568218231, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 59187 + }, + { + "epoch": 6.078250154035736, + "grad_norm": 0.05842713639140129, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 59190 + }, + { + "epoch": 6.078558225508318, + "grad_norm": 0.049650490283966064, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 59193 + }, + { + "epoch": 6.0788662969809, + "grad_norm": 0.06532774120569229, + "learning_rate": 0.01, + "loss": 2.0231, + "step": 59196 + }, + { + "epoch": 6.079174368453481, + "grad_norm": 0.03809603303670883, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 59199 + }, + { + "epoch": 6.079482439926063, + "grad_norm": 0.07845079898834229, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 59202 + }, + { + "epoch": 6.079790511398644, + "grad_norm": 0.15672674775123596, + "learning_rate": 0.01, + "loss": 1.997, + "step": 59205 + }, + { + "epoch": 6.080098582871226, + "grad_norm": 0.11329050362110138, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 59208 + }, + { + "epoch": 6.080406654343808, + "grad_norm": 0.08986864238977432, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 59211 + }, + { + "epoch": 6.08071472581639, + "grad_norm": 0.040678489953279495, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 59214 + }, + { + "epoch": 6.081022797288971, + "grad_norm": 0.09467331320047379, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 59217 + }, + { + "epoch": 6.081330868761553, + "grad_norm": 0.0797513797879219, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 59220 + }, + { + "epoch": 6.081638940234134, + "grad_norm": 0.04497670754790306, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 59223 + }, + { + "epoch": 6.081947011706716, + "grad_norm": 0.08867593109607697, + "learning_rate": 0.01, + "loss": 1.9627, + "step": 59226 + }, + { + "epoch": 6.082255083179297, + "grad_norm": 0.1013980433344841, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 59229 + }, + { + "epoch": 6.082563154651879, + "grad_norm": 0.05733179301023483, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 59232 + }, + { + "epoch": 6.082871226124461, + "grad_norm": 0.09696310758590698, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 59235 + }, + { + "epoch": 6.0831792975970425, + "grad_norm": 0.07615906745195389, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 59238 + }, + { + "epoch": 6.0834873690696245, + "grad_norm": 0.08034536242485046, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 59241 + }, + { + "epoch": 6.083795440542206, + "grad_norm": 0.04975961148738861, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 59244 + }, + { + "epoch": 6.084103512014788, + "grad_norm": 0.09680989384651184, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 59247 + }, + { + "epoch": 6.084411583487369, + "grad_norm": 0.06167134270071983, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 59250 + }, + { + "epoch": 6.084719654959951, + "grad_norm": 0.08627012372016907, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 59253 + }, + { + "epoch": 6.085027726432532, + "grad_norm": 0.053778212517499924, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 59256 + }, + { + "epoch": 6.085335797905114, + "grad_norm": 0.10851852595806122, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 59259 + }, + { + "epoch": 6.085643869377695, + "grad_norm": 0.08398763090372086, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 59262 + }, + { + "epoch": 6.085951940850277, + "grad_norm": 0.09030786901712418, + "learning_rate": 0.01, + "loss": 2.009, + "step": 59265 + }, + { + "epoch": 6.0862600123228585, + "grad_norm": 0.08578209578990936, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 59268 + }, + { + "epoch": 6.086568083795441, + "grad_norm": 0.06893924623727798, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 59271 + }, + { + "epoch": 6.086876155268023, + "grad_norm": 0.044449809938669205, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 59274 + }, + { + "epoch": 6.087184226740604, + "grad_norm": 0.03283555805683136, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 59277 + }, + { + "epoch": 6.087492298213186, + "grad_norm": 0.05007379502058029, + "learning_rate": 0.01, + "loss": 1.994, + "step": 59280 + }, + { + "epoch": 6.087800369685767, + "grad_norm": 0.05644026771187782, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 59283 + }, + { + "epoch": 6.088108441158349, + "grad_norm": 0.06911731511354446, + "learning_rate": 0.01, + "loss": 1.9543, + "step": 59286 + }, + { + "epoch": 6.08841651263093, + "grad_norm": 0.06676710397005081, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 59289 + }, + { + "epoch": 6.088724584103512, + "grad_norm": 0.03128058835864067, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 59292 + }, + { + "epoch": 6.089032655576093, + "grad_norm": 0.05113793537020683, + "learning_rate": 0.01, + "loss": 1.966, + "step": 59295 + }, + { + "epoch": 6.0893407270486755, + "grad_norm": 0.10867103934288025, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 59298 + }, + { + "epoch": 6.089648798521257, + "grad_norm": 0.10439618676900864, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 59301 + }, + { + "epoch": 6.089956869993839, + "grad_norm": 0.06279850751161575, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 59304 + }, + { + "epoch": 6.09026494146642, + "grad_norm": 0.07557038217782974, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 59307 + }, + { + "epoch": 6.090573012939002, + "grad_norm": 0.06895217299461365, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 59310 + }, + { + "epoch": 6.090881084411583, + "grad_norm": 0.058836501091718674, + "learning_rate": 0.01, + "loss": 1.976, + "step": 59313 + }, + { + "epoch": 6.091189155884165, + "grad_norm": 0.10100754350423813, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 59316 + }, + { + "epoch": 6.091497227356747, + "grad_norm": 0.03705455735325813, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 59319 + }, + { + "epoch": 6.091805298829328, + "grad_norm": 0.09770546853542328, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 59322 + }, + { + "epoch": 6.09211337030191, + "grad_norm": 0.07368703931570053, + "learning_rate": 0.01, + "loss": 1.9476, + "step": 59325 + }, + { + "epoch": 6.0924214417744915, + "grad_norm": 0.07088816910982132, + "learning_rate": 0.01, + "loss": 2.0124, + "step": 59328 + }, + { + "epoch": 6.092729513247074, + "grad_norm": 0.05165349692106247, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 59331 + }, + { + "epoch": 6.093037584719655, + "grad_norm": 0.08270641416311264, + "learning_rate": 0.01, + "loss": 1.991, + "step": 59334 + }, + { + "epoch": 6.093345656192237, + "grad_norm": 0.07178719341754913, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 59337 + }, + { + "epoch": 6.093653727664818, + "grad_norm": 0.07591982930898666, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 59340 + }, + { + "epoch": 6.0939617991374, + "grad_norm": 0.08362317830324173, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 59343 + }, + { + "epoch": 6.094269870609981, + "grad_norm": 0.04838939011096954, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 59346 + }, + { + "epoch": 6.094577942082563, + "grad_norm": 0.049368396401405334, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 59349 + }, + { + "epoch": 6.094886013555144, + "grad_norm": 0.05581490695476532, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 59352 + }, + { + "epoch": 6.095194085027726, + "grad_norm": 0.04965098947286606, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 59355 + }, + { + "epoch": 6.0955021565003085, + "grad_norm": 0.03643220290541649, + "learning_rate": 0.01, + "loss": 2.0234, + "step": 59358 + }, + { + "epoch": 6.09581022797289, + "grad_norm": 0.08060404658317566, + "learning_rate": 0.01, + "loss": 1.987, + "step": 59361 + }, + { + "epoch": 6.096118299445472, + "grad_norm": 0.08821488916873932, + "learning_rate": 0.01, + "loss": 1.9602, + "step": 59364 + }, + { + "epoch": 6.096426370918053, + "grad_norm": 0.04556925222277641, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 59367 + }, + { + "epoch": 6.096734442390635, + "grad_norm": 0.07568595558404922, + "learning_rate": 0.01, + "loss": 1.989, + "step": 59370 + }, + { + "epoch": 6.097042513863216, + "grad_norm": 0.06441906094551086, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 59373 + }, + { + "epoch": 6.097350585335798, + "grad_norm": 0.04911012202501297, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 59376 + }, + { + "epoch": 6.097658656808379, + "grad_norm": 0.10038016736507416, + "learning_rate": 0.01, + "loss": 1.97, + "step": 59379 + }, + { + "epoch": 6.097966728280961, + "grad_norm": 0.08682964742183685, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 59382 + }, + { + "epoch": 6.0982747997535425, + "grad_norm": 0.07904212176799774, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 59385 + }, + { + "epoch": 6.0985828712261245, + "grad_norm": 0.07314693182706833, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 59388 + }, + { + "epoch": 6.098890942698706, + "grad_norm": 0.04866940528154373, + "learning_rate": 0.01, + "loss": 1.998, + "step": 59391 + }, + { + "epoch": 6.099199014171288, + "grad_norm": 0.040898289531469345, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 59394 + }, + { + "epoch": 6.09950708564387, + "grad_norm": 0.04597887024283409, + "learning_rate": 0.01, + "loss": 2.0, + "step": 59397 + }, + { + "epoch": 6.099815157116451, + "grad_norm": 0.04504725709557533, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 59400 + }, + { + "epoch": 6.100123228589033, + "grad_norm": 0.032154761254787445, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 59403 + }, + { + "epoch": 6.100431300061614, + "grad_norm": 0.06787566095590591, + "learning_rate": 0.01, + "loss": 1.999, + "step": 59406 + }, + { + "epoch": 6.100739371534196, + "grad_norm": 0.07191510498523712, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 59409 + }, + { + "epoch": 6.101047443006777, + "grad_norm": 0.08066849410533905, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 59412 + }, + { + "epoch": 6.101355514479359, + "grad_norm": 0.05546758696436882, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 59415 + }, + { + "epoch": 6.101663585951941, + "grad_norm": 0.059205375611782074, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 59418 + }, + { + "epoch": 6.101971657424523, + "grad_norm": 0.03468778356909752, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 59421 + }, + { + "epoch": 6.102279728897104, + "grad_norm": 0.06100203096866608, + "learning_rate": 0.01, + "loss": 2.0237, + "step": 59424 + }, + { + "epoch": 6.102587800369686, + "grad_norm": 0.04229642450809479, + "learning_rate": 0.01, + "loss": 1.969, + "step": 59427 + }, + { + "epoch": 6.102895871842267, + "grad_norm": 0.09364788234233856, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 59430 + }, + { + "epoch": 6.103203943314849, + "grad_norm": 0.0706750899553299, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 59433 + }, + { + "epoch": 6.103512014787431, + "grad_norm": 0.1148315817117691, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 59436 + }, + { + "epoch": 6.103820086260012, + "grad_norm": 0.057128921151161194, + "learning_rate": 0.01, + "loss": 1.9544, + "step": 59439 + }, + { + "epoch": 6.104128157732594, + "grad_norm": 0.054126545786857605, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 59442 + }, + { + "epoch": 6.1044362292051755, + "grad_norm": 0.050927091389894485, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 59445 + }, + { + "epoch": 6.1047443006777575, + "grad_norm": 0.05484678968787193, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 59448 + }, + { + "epoch": 6.105052372150339, + "grad_norm": 0.06659942865371704, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 59451 + }, + { + "epoch": 6.105360443622921, + "grad_norm": 0.06512758880853653, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 59454 + }, + { + "epoch": 6.105668515095502, + "grad_norm": 0.04978008568286896, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 59457 + }, + { + "epoch": 6.105976586568084, + "grad_norm": 0.03648846223950386, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 59460 + }, + { + "epoch": 6.106284658040665, + "grad_norm": 0.049807704985141754, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 59463 + }, + { + "epoch": 6.106592729513247, + "grad_norm": 0.04505782201886177, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 59466 + }, + { + "epoch": 6.106900800985828, + "grad_norm": 0.05675986409187317, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 59469 + }, + { + "epoch": 6.10720887245841, + "grad_norm": 0.06363193690776825, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 59472 + }, + { + "epoch": 6.107516943930992, + "grad_norm": 0.038001857697963715, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 59475 + }, + { + "epoch": 6.107825015403574, + "grad_norm": 0.034627631306648254, + "learning_rate": 0.01, + "loss": 1.976, + "step": 59478 + }, + { + "epoch": 6.108133086876156, + "grad_norm": 0.0814884752035141, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 59481 + }, + { + "epoch": 6.108441158348737, + "grad_norm": 0.0862545445561409, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 59484 + }, + { + "epoch": 6.108749229821319, + "grad_norm": 0.05416722968220711, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 59487 + }, + { + "epoch": 6.1090573012939, + "grad_norm": 0.04082367196679115, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 59490 + }, + { + "epoch": 6.109365372766482, + "grad_norm": 0.0981779396533966, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 59493 + }, + { + "epoch": 6.109673444239063, + "grad_norm": 0.03428742289543152, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 59496 + }, + { + "epoch": 6.109981515711645, + "grad_norm": 0.07878245413303375, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 59499 + }, + { + "epoch": 6.110289587184226, + "grad_norm": 0.1018940880894661, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 59502 + }, + { + "epoch": 6.1105976586568085, + "grad_norm": 0.03978511691093445, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 59505 + }, + { + "epoch": 6.11090573012939, + "grad_norm": 0.05915730074048042, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 59508 + }, + { + "epoch": 6.111213801601972, + "grad_norm": 0.0455721952021122, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 59511 + }, + { + "epoch": 6.111521873074553, + "grad_norm": 0.050054021179676056, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 59514 + }, + { + "epoch": 6.111829944547135, + "grad_norm": 0.0369170643389225, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 59517 + }, + { + "epoch": 6.112138016019717, + "grad_norm": 0.044435255229473114, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 59520 + }, + { + "epoch": 6.112446087492298, + "grad_norm": 0.04968203604221344, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 59523 + }, + { + "epoch": 6.11275415896488, + "grad_norm": 0.04474148899316788, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 59526 + }, + { + "epoch": 6.113062230437461, + "grad_norm": 0.03932742401957512, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 59529 + }, + { + "epoch": 6.113370301910043, + "grad_norm": 0.10069919377565384, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 59532 + }, + { + "epoch": 6.1136783733826245, + "grad_norm": 0.08742933720350266, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 59535 + }, + { + "epoch": 6.113986444855207, + "grad_norm": 0.15486708283424377, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 59538 + }, + { + "epoch": 6.114294516327788, + "grad_norm": 0.05859851837158203, + "learning_rate": 0.01, + "loss": 2.01, + "step": 59541 + }, + { + "epoch": 6.11460258780037, + "grad_norm": 0.04623505100607872, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 59544 + }, + { + "epoch": 6.114910659272951, + "grad_norm": 0.037663958966732025, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 59547 + }, + { + "epoch": 6.115218730745533, + "grad_norm": 0.03428487107157707, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 59550 + }, + { + "epoch": 6.115526802218114, + "grad_norm": 0.03549535945057869, + "learning_rate": 0.01, + "loss": 1.984, + "step": 59553 + }, + { + "epoch": 6.115834873690696, + "grad_norm": 0.0357876755297184, + "learning_rate": 0.01, + "loss": 1.9636, + "step": 59556 + }, + { + "epoch": 6.116142945163278, + "grad_norm": 0.05952336639165878, + "learning_rate": 0.01, + "loss": 1.9522, + "step": 59559 + }, + { + "epoch": 6.116451016635859, + "grad_norm": 0.06661629676818848, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 59562 + }, + { + "epoch": 6.1167590881084415, + "grad_norm": 0.037326935678720474, + "learning_rate": 0.01, + "loss": 1.959, + "step": 59565 + }, + { + "epoch": 6.117067159581023, + "grad_norm": 0.08297394216060638, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 59568 + }, + { + "epoch": 6.117375231053605, + "grad_norm": 0.08954669535160065, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 59571 + }, + { + "epoch": 6.117683302526186, + "grad_norm": 0.06428781896829605, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 59574 + }, + { + "epoch": 6.117991373998768, + "grad_norm": 0.0963866114616394, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 59577 + }, + { + "epoch": 6.118299445471349, + "grad_norm": 0.07301589101552963, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 59580 + }, + { + "epoch": 6.118607516943931, + "grad_norm": 0.05073026567697525, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 59583 + }, + { + "epoch": 6.118915588416512, + "grad_norm": 0.04244513809680939, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 59586 + }, + { + "epoch": 6.119223659889094, + "grad_norm": 0.0322258435189724, + "learning_rate": 0.01, + "loss": 1.9584, + "step": 59589 + }, + { + "epoch": 6.1195317313616755, + "grad_norm": 0.040786877274513245, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 59592 + }, + { + "epoch": 6.1198398028342575, + "grad_norm": 0.1062447801232338, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 59595 + }, + { + "epoch": 6.12014787430684, + "grad_norm": 0.07283103466033936, + "learning_rate": 0.01, + "loss": 1.9989, + "step": 59598 + }, + { + "epoch": 6.120455945779421, + "grad_norm": 0.04273154214024544, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 59601 + }, + { + "epoch": 6.120764017252003, + "grad_norm": 0.0657401755452156, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 59604 + }, + { + "epoch": 6.121072088724584, + "grad_norm": 0.03795840963721275, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 59607 + }, + { + "epoch": 6.121380160197166, + "grad_norm": 0.03355659544467926, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 59610 + }, + { + "epoch": 6.121688231669747, + "grad_norm": 0.13272467255592346, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 59613 + }, + { + "epoch": 6.121996303142329, + "grad_norm": 0.07595691084861755, + "learning_rate": 0.01, + "loss": 1.979, + "step": 59616 + }, + { + "epoch": 6.12230437461491, + "grad_norm": 0.0829743966460228, + "learning_rate": 0.01, + "loss": 1.988, + "step": 59619 + }, + { + "epoch": 6.122612446087492, + "grad_norm": 0.05950823426246643, + "learning_rate": 0.01, + "loss": 1.986, + "step": 59622 + }, + { + "epoch": 6.122920517560074, + "grad_norm": 0.06740408390760422, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 59625 + }, + { + "epoch": 6.123228589032656, + "grad_norm": 0.03415486961603165, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 59628 + }, + { + "epoch": 6.123536660505237, + "grad_norm": 0.06124688684940338, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 59631 + }, + { + "epoch": 6.123844731977819, + "grad_norm": 0.06151755899190903, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 59634 + }, + { + "epoch": 6.124152803450401, + "grad_norm": 0.12702985107898712, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 59637 + }, + { + "epoch": 6.124460874922982, + "grad_norm": 0.08845409005880356, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 59640 + }, + { + "epoch": 6.124768946395564, + "grad_norm": 0.061156027019023895, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 59643 + }, + { + "epoch": 6.125077017868145, + "grad_norm": 0.050899405032396317, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 59646 + }, + { + "epoch": 6.125385089340727, + "grad_norm": 0.066854327917099, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 59649 + }, + { + "epoch": 6.1256931608133085, + "grad_norm": 0.06697458028793335, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 59652 + }, + { + "epoch": 6.1260012322858906, + "grad_norm": 0.05130474641919136, + "learning_rate": 0.01, + "loss": 1.996, + "step": 59655 + }, + { + "epoch": 6.126309303758472, + "grad_norm": 0.04654531553387642, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 59658 + }, + { + "epoch": 6.126617375231054, + "grad_norm": 0.036213308572769165, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 59661 + }, + { + "epoch": 6.126925446703635, + "grad_norm": 0.052255984395742416, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 59664 + }, + { + "epoch": 6.127233518176217, + "grad_norm": 0.07511945068836212, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 59667 + }, + { + "epoch": 6.127541589648798, + "grad_norm": 0.09632497280836105, + "learning_rate": 0.01, + "loss": 1.978, + "step": 59670 + }, + { + "epoch": 6.12784966112138, + "grad_norm": 0.059645794332027435, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 59673 + }, + { + "epoch": 6.128157732593962, + "grad_norm": 0.08466697484254837, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 59676 + }, + { + "epoch": 6.128465804066543, + "grad_norm": 0.06881053000688553, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 59679 + }, + { + "epoch": 6.1287738755391254, + "grad_norm": 0.04392458125948906, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 59682 + }, + { + "epoch": 6.129081947011707, + "grad_norm": 0.046918466687202454, + "learning_rate": 0.01, + "loss": 2.006, + "step": 59685 + }, + { + "epoch": 6.129390018484289, + "grad_norm": 0.13943582773208618, + "learning_rate": 0.01, + "loss": 1.944, + "step": 59688 + }, + { + "epoch": 6.12969808995687, + "grad_norm": 0.032962556928396225, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 59691 + }, + { + "epoch": 6.130006161429452, + "grad_norm": 0.04881718382239342, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 59694 + }, + { + "epoch": 6.130314232902033, + "grad_norm": 0.049873992800712585, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 59697 + }, + { + "epoch": 6.130622304374615, + "grad_norm": 0.11788579076528549, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 59700 + }, + { + "epoch": 6.130930375847196, + "grad_norm": 0.06456585973501205, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 59703 + }, + { + "epoch": 6.131238447319778, + "grad_norm": 0.04507961496710777, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 59706 + }, + { + "epoch": 6.1315465187923595, + "grad_norm": 0.04093556106090546, + "learning_rate": 0.01, + "loss": 1.992, + "step": 59709 + }, + { + "epoch": 6.1318545902649415, + "grad_norm": 0.034374650567770004, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 59712 + }, + { + "epoch": 6.132162661737523, + "grad_norm": 0.09779324382543564, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 59715 + }, + { + "epoch": 6.132470733210105, + "grad_norm": 0.03912382200360298, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 59718 + }, + { + "epoch": 6.132778804682687, + "grad_norm": 0.046537820249795914, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 59721 + }, + { + "epoch": 6.133086876155268, + "grad_norm": 0.04848983883857727, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 59724 + }, + { + "epoch": 6.13339494762785, + "grad_norm": 0.03337480127811432, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 59727 + }, + { + "epoch": 6.133703019100431, + "grad_norm": 0.06988492608070374, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 59730 + }, + { + "epoch": 6.134011090573013, + "grad_norm": 0.1184145137667656, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 59733 + }, + { + "epoch": 6.134319162045594, + "grad_norm": 0.1065261960029602, + "learning_rate": 0.01, + "loss": 1.9516, + "step": 59736 + }, + { + "epoch": 6.134627233518176, + "grad_norm": 0.03989608585834503, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 59739 + }, + { + "epoch": 6.134935304990758, + "grad_norm": 0.05950331315398216, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 59742 + }, + { + "epoch": 6.13524337646334, + "grad_norm": 0.044078536331653595, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 59745 + }, + { + "epoch": 6.135551447935921, + "grad_norm": 0.06196853518486023, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 59748 + }, + { + "epoch": 6.135859519408503, + "grad_norm": 0.05450844019651413, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 59751 + }, + { + "epoch": 6.136167590881084, + "grad_norm": 0.05260879918932915, + "learning_rate": 0.01, + "loss": 1.9602, + "step": 59754 + }, + { + "epoch": 6.136475662353666, + "grad_norm": 0.04335511103272438, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 59757 + }, + { + "epoch": 6.136783733826248, + "grad_norm": 0.05219843611121178, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 59760 + }, + { + "epoch": 6.137091805298829, + "grad_norm": 0.06641986966133118, + "learning_rate": 0.01, + "loss": 2.021, + "step": 59763 + }, + { + "epoch": 6.137399876771411, + "grad_norm": 0.10496216267347336, + "learning_rate": 0.01, + "loss": 2.001, + "step": 59766 + }, + { + "epoch": 6.1377079482439925, + "grad_norm": 0.1305655688047409, + "learning_rate": 0.01, + "loss": 1.972, + "step": 59769 + }, + { + "epoch": 6.1380160197165745, + "grad_norm": 0.06683500856161118, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 59772 + }, + { + "epoch": 6.138324091189156, + "grad_norm": 0.06884671747684479, + "learning_rate": 0.01, + "loss": 1.975, + "step": 59775 + }, + { + "epoch": 6.138632162661738, + "grad_norm": 0.04899144545197487, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 59778 + }, + { + "epoch": 6.138940234134319, + "grad_norm": 0.061058346182107925, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 59781 + }, + { + "epoch": 6.139248305606901, + "grad_norm": 0.03729567304253578, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 59784 + }, + { + "epoch": 6.139556377079482, + "grad_norm": 0.1232062354683876, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 59787 + }, + { + "epoch": 6.139864448552064, + "grad_norm": 0.07398378103971481, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 59790 + }, + { + "epoch": 6.140172520024645, + "grad_norm": 0.06523609161376953, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 59793 + }, + { + "epoch": 6.140480591497227, + "grad_norm": 0.04748447984457016, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 59796 + }, + { + "epoch": 6.140788662969809, + "grad_norm": 0.10762014240026474, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 59799 + }, + { + "epoch": 6.141096734442391, + "grad_norm": 0.05152611434459686, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 59802 + }, + { + "epoch": 6.141404805914973, + "grad_norm": 0.03151378408074379, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 59805 + }, + { + "epoch": 6.141712877387554, + "grad_norm": 0.045448195189237595, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 59808 + }, + { + "epoch": 6.142020948860136, + "grad_norm": 0.03704848885536194, + "learning_rate": 0.01, + "loss": 1.9596, + "step": 59811 + }, + { + "epoch": 6.142329020332717, + "grad_norm": 0.0592067614197731, + "learning_rate": 0.01, + "loss": 1.9417, + "step": 59814 + }, + { + "epoch": 6.142637091805299, + "grad_norm": 0.11523483693599701, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 59817 + }, + { + "epoch": 6.14294516327788, + "grad_norm": 0.14963838458061218, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 59820 + }, + { + "epoch": 6.143253234750462, + "grad_norm": 0.08962684869766235, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 59823 + }, + { + "epoch": 6.143561306223043, + "grad_norm": 0.06388752162456512, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 59826 + }, + { + "epoch": 6.1438693776956255, + "grad_norm": 0.06632399559020996, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 59829 + }, + { + "epoch": 6.144177449168207, + "grad_norm": 0.08517513424158096, + "learning_rate": 0.01, + "loss": 1.988, + "step": 59832 + }, + { + "epoch": 6.144485520640789, + "grad_norm": 0.05397310480475426, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 59835 + }, + { + "epoch": 6.144793592113371, + "grad_norm": 0.04470159485936165, + "learning_rate": 0.01, + "loss": 1.962, + "step": 59838 + }, + { + "epoch": 6.145101663585952, + "grad_norm": 0.048731885850429535, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 59841 + }, + { + "epoch": 6.145409735058534, + "grad_norm": 0.13363894820213318, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 59844 + }, + { + "epoch": 6.145717806531115, + "grad_norm": 0.04807397723197937, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 59847 + }, + { + "epoch": 6.146025878003697, + "grad_norm": 0.05982908979058266, + "learning_rate": 0.01, + "loss": 1.993, + "step": 59850 + }, + { + "epoch": 6.146333949476278, + "grad_norm": 0.0730501338839531, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 59853 + }, + { + "epoch": 6.14664202094886, + "grad_norm": 0.04355951398611069, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 59856 + }, + { + "epoch": 6.1469500924214415, + "grad_norm": 0.10257246345281601, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 59859 + }, + { + "epoch": 6.147258163894024, + "grad_norm": 0.0933048278093338, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 59862 + }, + { + "epoch": 6.147566235366605, + "grad_norm": 0.03633146733045578, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 59865 + }, + { + "epoch": 6.147874306839187, + "grad_norm": 0.07809139788150787, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 59868 + }, + { + "epoch": 6.148182378311768, + "grad_norm": 0.06432943791151047, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 59871 + }, + { + "epoch": 6.14849044978435, + "grad_norm": 0.04523482546210289, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 59874 + }, + { + "epoch": 6.148798521256932, + "grad_norm": 0.04328586533665657, + "learning_rate": 0.01, + "loss": 1.978, + "step": 59877 + }, + { + "epoch": 6.149106592729513, + "grad_norm": 0.04336148872971535, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 59880 + }, + { + "epoch": 6.149414664202095, + "grad_norm": 0.11612840741872787, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 59883 + }, + { + "epoch": 6.149722735674676, + "grad_norm": 0.040377210825681686, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 59886 + }, + { + "epoch": 6.1500308071472585, + "grad_norm": 0.05374842882156372, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 59889 + }, + { + "epoch": 6.15033887861984, + "grad_norm": 0.042278483510017395, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 59892 + }, + { + "epoch": 6.150646950092422, + "grad_norm": 0.06057736650109291, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 59895 + }, + { + "epoch": 6.150955021565003, + "grad_norm": 0.07426716387271881, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 59898 + }, + { + "epoch": 6.151263093037585, + "grad_norm": 0.06555135548114777, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 59901 + }, + { + "epoch": 6.151571164510166, + "grad_norm": 0.031795963644981384, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 59904 + }, + { + "epoch": 6.151879235982748, + "grad_norm": 0.0928960070014, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 59907 + }, + { + "epoch": 6.152187307455329, + "grad_norm": 0.05229020118713379, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 59910 + }, + { + "epoch": 6.152495378927911, + "grad_norm": 0.05363921821117401, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 59913 + }, + { + "epoch": 6.1528034504004925, + "grad_norm": 0.05340690538287163, + "learning_rate": 0.01, + "loss": 1.9615, + "step": 59916 + }, + { + "epoch": 6.1531115218730745, + "grad_norm": 0.04054640233516693, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 59919 + }, + { + "epoch": 6.153419593345657, + "grad_norm": 0.05909667909145355, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 59922 + }, + { + "epoch": 6.153727664818238, + "grad_norm": 0.04531288146972656, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 59925 + }, + { + "epoch": 6.15403573629082, + "grad_norm": 0.041250940412282944, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 59928 + }, + { + "epoch": 6.154343807763401, + "grad_norm": 0.042447373270988464, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 59931 + }, + { + "epoch": 6.154651879235983, + "grad_norm": 0.06417303532361984, + "learning_rate": 0.01, + "loss": 1.973, + "step": 59934 + }, + { + "epoch": 6.154959950708564, + "grad_norm": 0.12572647631168365, + "learning_rate": 0.01, + "loss": 1.971, + "step": 59937 + }, + { + "epoch": 6.155268022181146, + "grad_norm": 0.06711404025554657, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 59940 + }, + { + "epoch": 6.155576093653727, + "grad_norm": 0.09349125623703003, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 59943 + }, + { + "epoch": 6.155884165126309, + "grad_norm": 0.046295300126075745, + "learning_rate": 0.01, + "loss": 1.984, + "step": 59946 + }, + { + "epoch": 6.156192236598891, + "grad_norm": 0.08443499356508255, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 59949 + }, + { + "epoch": 6.156500308071473, + "grad_norm": 0.048439864069223404, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 59952 + }, + { + "epoch": 6.156808379544054, + "grad_norm": 0.10180726647377014, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 59955 + }, + { + "epoch": 6.157116451016636, + "grad_norm": 0.03144579380750656, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 59958 + }, + { + "epoch": 6.157424522489218, + "grad_norm": 0.0712040439248085, + "learning_rate": 0.01, + "loss": 1.982, + "step": 59961 + }, + { + "epoch": 6.157732593961799, + "grad_norm": 0.054967526346445084, + "learning_rate": 0.01, + "loss": 2.0012, + "step": 59964 + }, + { + "epoch": 6.158040665434381, + "grad_norm": 0.04168044403195381, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 59967 + }, + { + "epoch": 6.158348736906962, + "grad_norm": 0.05962495878338814, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 59970 + }, + { + "epoch": 6.158656808379544, + "grad_norm": 0.11579214036464691, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 59973 + }, + { + "epoch": 6.1589648798521255, + "grad_norm": 0.03569880872964859, + "learning_rate": 0.01, + "loss": 1.9566, + "step": 59976 + }, + { + "epoch": 6.1592729513247075, + "grad_norm": 0.09522563964128494, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 59979 + }, + { + "epoch": 6.159581022797289, + "grad_norm": 0.07732608169317245, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 59982 + }, + { + "epoch": 6.159889094269871, + "grad_norm": 0.057550933212041855, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 59985 + }, + { + "epoch": 6.160197165742452, + "grad_norm": 0.0942176878452301, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 59988 + }, + { + "epoch": 6.160505237215034, + "grad_norm": 0.0959196537733078, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 59991 + }, + { + "epoch": 6.160813308687615, + "grad_norm": 0.07278607040643692, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 59994 + }, + { + "epoch": 6.161121380160197, + "grad_norm": 0.05867347866296768, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 59997 + }, + { + "epoch": 6.161429451632779, + "grad_norm": 0.03255612030625343, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 60000 + }, + { + "epoch": 6.16173752310536, + "grad_norm": 0.056017834693193436, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 60003 + }, + { + "epoch": 6.162045594577942, + "grad_norm": 0.0943060889840126, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 60006 + }, + { + "epoch": 6.162353666050524, + "grad_norm": 0.08472935855388641, + "learning_rate": 0.01, + "loss": 2.004, + "step": 60009 + }, + { + "epoch": 6.162661737523106, + "grad_norm": 0.053891006857156754, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 60012 + }, + { + "epoch": 6.162969808995687, + "grad_norm": 0.042883194983005524, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 60015 + }, + { + "epoch": 6.163277880468269, + "grad_norm": 0.05750950425863266, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 60018 + }, + { + "epoch": 6.16358595194085, + "grad_norm": 0.07917001843452454, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 60021 + }, + { + "epoch": 6.163894023413432, + "grad_norm": 0.06416572630405426, + "learning_rate": 0.01, + "loss": 1.9474, + "step": 60024 + }, + { + "epoch": 6.164202094886013, + "grad_norm": 0.06587263941764832, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 60027 + }, + { + "epoch": 6.164510166358595, + "grad_norm": 0.09511373192071915, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 60030 + }, + { + "epoch": 6.164818237831176, + "grad_norm": 0.11690583825111389, + "learning_rate": 0.01, + "loss": 1.9966, + "step": 60033 + }, + { + "epoch": 6.1651263093037585, + "grad_norm": 0.05916045978665352, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 60036 + }, + { + "epoch": 6.1654343807763405, + "grad_norm": 0.07679677754640579, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 60039 + }, + { + "epoch": 6.165742452248922, + "grad_norm": 0.05868346244096756, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 60042 + }, + { + "epoch": 6.166050523721504, + "grad_norm": 0.04336436092853546, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 60045 + }, + { + "epoch": 6.166358595194085, + "grad_norm": 0.053842004388570786, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 60048 + }, + { + "epoch": 6.166666666666667, + "grad_norm": 0.05783376097679138, + "learning_rate": 0.01, + "loss": 1.972, + "step": 60051 + }, + { + "epoch": 6.166974738139248, + "grad_norm": 0.12786927819252014, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 60054 + }, + { + "epoch": 6.16728280961183, + "grad_norm": 0.10869529098272324, + "learning_rate": 0.01, + "loss": 2.0226, + "step": 60057 + }, + { + "epoch": 6.167590881084411, + "grad_norm": 0.09978947043418884, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 60060 + }, + { + "epoch": 6.167898952556993, + "grad_norm": 0.06388422101736069, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 60063 + }, + { + "epoch": 6.1682070240295745, + "grad_norm": 0.05348409339785576, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 60066 + }, + { + "epoch": 6.168515095502157, + "grad_norm": 0.047684285789728165, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 60069 + }, + { + "epoch": 6.168823166974738, + "grad_norm": 0.031933482736349106, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 60072 + }, + { + "epoch": 6.16913123844732, + "grad_norm": 0.06409978866577148, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 60075 + }, + { + "epoch": 6.169439309919902, + "grad_norm": 0.07085554301738739, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 60078 + }, + { + "epoch": 6.169747381392483, + "grad_norm": 0.04958326742053032, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 60081 + }, + { + "epoch": 6.170055452865065, + "grad_norm": 0.037209220230579376, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 60084 + }, + { + "epoch": 6.170363524337646, + "grad_norm": 0.044104501605033875, + "learning_rate": 0.01, + "loss": 2.0076, + "step": 60087 + }, + { + "epoch": 6.170671595810228, + "grad_norm": 0.06651319563388824, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 60090 + }, + { + "epoch": 6.1709796672828094, + "grad_norm": 0.15120342373847961, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 60093 + }, + { + "epoch": 6.1712877387553915, + "grad_norm": 0.17715202271938324, + "learning_rate": 0.01, + "loss": 2.015, + "step": 60096 + }, + { + "epoch": 6.171595810227973, + "grad_norm": 0.07036132365465164, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 60099 + }, + { + "epoch": 6.171903881700555, + "grad_norm": 0.05515659227967262, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 60102 + }, + { + "epoch": 6.172211953173136, + "grad_norm": 0.054766733199357986, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 60105 + }, + { + "epoch": 6.172520024645718, + "grad_norm": 0.06652894616127014, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 60108 + }, + { + "epoch": 6.172828096118299, + "grad_norm": 0.05079234391450882, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 60111 + }, + { + "epoch": 6.173136167590881, + "grad_norm": 0.04592439532279968, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 60114 + }, + { + "epoch": 6.173444239063462, + "grad_norm": 0.03100336715579033, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 60117 + }, + { + "epoch": 6.173752310536044, + "grad_norm": 0.03455538675189018, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 60120 + }, + { + "epoch": 6.174060382008626, + "grad_norm": 0.04403119906783104, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 60123 + }, + { + "epoch": 6.1743684534812076, + "grad_norm": 0.1155620738863945, + "learning_rate": 0.01, + "loss": 2.0095, + "step": 60126 + }, + { + "epoch": 6.17467652495379, + "grad_norm": 0.06684102863073349, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 60129 + }, + { + "epoch": 6.174984596426371, + "grad_norm": 0.04837580397725105, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 60132 + }, + { + "epoch": 6.175292667898953, + "grad_norm": 0.11638902872800827, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 60135 + }, + { + "epoch": 6.175600739371534, + "grad_norm": 0.06774953007698059, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 60138 + }, + { + "epoch": 6.175908810844116, + "grad_norm": 0.05518386512994766, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 60141 + }, + { + "epoch": 6.176216882316697, + "grad_norm": 0.03791549429297447, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 60144 + }, + { + "epoch": 6.176524953789279, + "grad_norm": 0.0599411316215992, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 60147 + }, + { + "epoch": 6.17683302526186, + "grad_norm": 0.08578135818243027, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 60150 + }, + { + "epoch": 6.1771410967344424, + "grad_norm": 0.04651505872607231, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 60153 + }, + { + "epoch": 6.177449168207024, + "grad_norm": 0.09119927883148193, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 60156 + }, + { + "epoch": 6.177757239679606, + "grad_norm": 0.12429966032505035, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 60159 + }, + { + "epoch": 6.178065311152188, + "grad_norm": 0.0350540392100811, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 60162 + }, + { + "epoch": 6.178373382624769, + "grad_norm": 0.06904268264770508, + "learning_rate": 0.01, + "loss": 1.9439, + "step": 60165 + }, + { + "epoch": 6.178681454097351, + "grad_norm": 0.06134537607431412, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 60168 + }, + { + "epoch": 6.178989525569932, + "grad_norm": 0.07607719302177429, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 60171 + }, + { + "epoch": 6.179297597042514, + "grad_norm": 0.1023942083120346, + "learning_rate": 0.01, + "loss": 1.9637, + "step": 60174 + }, + { + "epoch": 6.179605668515095, + "grad_norm": 0.04248664528131485, + "learning_rate": 0.01, + "loss": 1.9515, + "step": 60177 + }, + { + "epoch": 6.179913739987677, + "grad_norm": 0.036357518285512924, + "learning_rate": 0.01, + "loss": 1.9509, + "step": 60180 + }, + { + "epoch": 6.1802218114602585, + "grad_norm": 0.04085879400372505, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 60183 + }, + { + "epoch": 6.180529882932841, + "grad_norm": 0.05432041734457016, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 60186 + }, + { + "epoch": 6.180837954405422, + "grad_norm": 0.0373106487095356, + "learning_rate": 0.01, + "loss": 1.9559, + "step": 60189 + }, + { + "epoch": 6.181146025878004, + "grad_norm": 0.13600775599479675, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 60192 + }, + { + "epoch": 6.181454097350585, + "grad_norm": 0.10217521339654922, + "learning_rate": 0.01, + "loss": 1.9617, + "step": 60195 + }, + { + "epoch": 6.181762168823167, + "grad_norm": 0.11078688502311707, + "learning_rate": 0.01, + "loss": 1.9419, + "step": 60198 + }, + { + "epoch": 6.182070240295749, + "grad_norm": 0.11216065287590027, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 60201 + }, + { + "epoch": 6.18237831176833, + "grad_norm": 0.07498262822628021, + "learning_rate": 0.01, + "loss": 2.004, + "step": 60204 + }, + { + "epoch": 6.182686383240912, + "grad_norm": 0.0481102392077446, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 60207 + }, + { + "epoch": 6.182994454713493, + "grad_norm": 0.06563237309455872, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 60210 + }, + { + "epoch": 6.1833025261860755, + "grad_norm": 0.065886951982975, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 60213 + }, + { + "epoch": 6.183610597658657, + "grad_norm": 0.06081174686551094, + "learning_rate": 0.01, + "loss": 2.0077, + "step": 60216 + }, + { + "epoch": 6.183918669131239, + "grad_norm": 0.040813907980918884, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 60219 + }, + { + "epoch": 6.18422674060382, + "grad_norm": 0.08460288494825363, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 60222 + }, + { + "epoch": 6.184534812076402, + "grad_norm": 0.1325504183769226, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 60225 + }, + { + "epoch": 6.184842883548983, + "grad_norm": 0.047543518245220184, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 60228 + }, + { + "epoch": 6.185150955021565, + "grad_norm": 0.09578222036361694, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 60231 + }, + { + "epoch": 6.185459026494146, + "grad_norm": 0.08167849481105804, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 60234 + }, + { + "epoch": 6.185767097966728, + "grad_norm": 0.04946918785572052, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 60237 + }, + { + "epoch": 6.1860751694393095, + "grad_norm": 0.08602156490087509, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 60240 + }, + { + "epoch": 6.1863832409118915, + "grad_norm": 0.07393812388181686, + "learning_rate": 0.01, + "loss": 1.974, + "step": 60243 + }, + { + "epoch": 6.186691312384474, + "grad_norm": 0.04238250479102135, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 60246 + }, + { + "epoch": 6.186999383857055, + "grad_norm": 0.05332363396883011, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 60249 + }, + { + "epoch": 6.187307455329637, + "grad_norm": 0.048810552805662155, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 60252 + }, + { + "epoch": 6.187615526802218, + "grad_norm": 0.04000997915863991, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 60255 + }, + { + "epoch": 6.1879235982748, + "grad_norm": 0.07165291905403137, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 60258 + }, + { + "epoch": 6.188231669747381, + "grad_norm": 0.04843559488654137, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 60261 + }, + { + "epoch": 6.188539741219963, + "grad_norm": 0.048593342304229736, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 60264 + }, + { + "epoch": 6.188847812692544, + "grad_norm": 0.05250190943479538, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 60267 + }, + { + "epoch": 6.189155884165126, + "grad_norm": 0.09123876690864563, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 60270 + }, + { + "epoch": 6.189463955637708, + "grad_norm": 0.11671872437000275, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 60273 + }, + { + "epoch": 6.18977202711029, + "grad_norm": 0.048420678824186325, + "learning_rate": 0.01, + "loss": 1.9576, + "step": 60276 + }, + { + "epoch": 6.190080098582872, + "grad_norm": 0.11455632746219635, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 60279 + }, + { + "epoch": 6.190388170055453, + "grad_norm": 0.08793000131845474, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 60282 + }, + { + "epoch": 6.190696241528035, + "grad_norm": 0.0460558645427227, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 60285 + }, + { + "epoch": 6.191004313000616, + "grad_norm": 0.0427497997879982, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 60288 + }, + { + "epoch": 6.191312384473198, + "grad_norm": 0.04136178269982338, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 60291 + }, + { + "epoch": 6.191620455945779, + "grad_norm": 0.06737589836120605, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 60294 + }, + { + "epoch": 6.191928527418361, + "grad_norm": 0.05001933127641678, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 60297 + }, + { + "epoch": 6.1922365988909425, + "grad_norm": 0.13523389399051666, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 60300 + }, + { + "epoch": 6.1925446703635245, + "grad_norm": 0.09118752926588058, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 60303 + }, + { + "epoch": 6.192852741836106, + "grad_norm": 0.061937130987644196, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 60306 + }, + { + "epoch": 6.193160813308688, + "grad_norm": 0.09417203068733215, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 60309 + }, + { + "epoch": 6.193468884781269, + "grad_norm": 0.1443474441766739, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 60312 + }, + { + "epoch": 6.193776956253851, + "grad_norm": 0.12889619171619415, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 60315 + }, + { + "epoch": 6.194085027726432, + "grad_norm": 0.08010325580835342, + "learning_rate": 0.01, + "loss": 1.9624, + "step": 60318 + }, + { + "epoch": 6.194393099199014, + "grad_norm": 0.0863533690571785, + "learning_rate": 0.01, + "loss": 2.0098, + "step": 60321 + }, + { + "epoch": 6.194701170671596, + "grad_norm": 0.0709909126162529, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 60324 + }, + { + "epoch": 6.195009242144177, + "grad_norm": 0.04236047342419624, + "learning_rate": 0.01, + "loss": 2.0178, + "step": 60327 + }, + { + "epoch": 6.195317313616759, + "grad_norm": 0.06927076727151871, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 60330 + }, + { + "epoch": 6.195625385089341, + "grad_norm": 0.07250656932592392, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 60333 + }, + { + "epoch": 6.195933456561923, + "grad_norm": 0.06588046252727509, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 60336 + }, + { + "epoch": 6.196241528034504, + "grad_norm": 0.07093591243028641, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 60339 + }, + { + "epoch": 6.196549599507086, + "grad_norm": 0.10864640772342682, + "learning_rate": 0.01, + "loss": 1.979, + "step": 60342 + }, + { + "epoch": 6.196857670979667, + "grad_norm": 0.12769301235675812, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 60345 + }, + { + "epoch": 6.197165742452249, + "grad_norm": 0.03568786382675171, + "learning_rate": 0.01, + "loss": 1.983, + "step": 60348 + }, + { + "epoch": 6.19747381392483, + "grad_norm": 0.08632007986307144, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 60351 + }, + { + "epoch": 6.197781885397412, + "grad_norm": 0.047804027795791626, + "learning_rate": 0.01, + "loss": 1.995, + "step": 60354 + }, + { + "epoch": 6.198089956869993, + "grad_norm": 0.08226168155670166, + "learning_rate": 0.01, + "loss": 1.979, + "step": 60357 + }, + { + "epoch": 6.1983980283425755, + "grad_norm": 0.06796471774578094, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 60360 + }, + { + "epoch": 6.1987060998151575, + "grad_norm": 0.05324438586831093, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 60363 + }, + { + "epoch": 6.199014171287739, + "grad_norm": 0.05389709025621414, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 60366 + }, + { + "epoch": 6.199322242760321, + "grad_norm": 0.04287771135568619, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 60369 + }, + { + "epoch": 6.199630314232902, + "grad_norm": 0.06289256364107132, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 60372 + }, + { + "epoch": 6.199938385705484, + "grad_norm": 0.04109280928969383, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 60375 + }, + { + "epoch": 6.200246457178065, + "grad_norm": 0.13262084126472473, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 60378 + }, + { + "epoch": 6.200554528650647, + "grad_norm": 0.05487149953842163, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 60381 + }, + { + "epoch": 6.200862600123228, + "grad_norm": 0.08410999178886414, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 60384 + }, + { + "epoch": 6.20117067159581, + "grad_norm": 0.09868727624416351, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 60387 + }, + { + "epoch": 6.2014787430683915, + "grad_norm": 0.09402374923229218, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 60390 + }, + { + "epoch": 6.201786814540974, + "grad_norm": 0.09398900717496872, + "learning_rate": 0.01, + "loss": 1.968, + "step": 60393 + }, + { + "epoch": 6.202094886013555, + "grad_norm": 0.07040904462337494, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 60396 + }, + { + "epoch": 6.202402957486137, + "grad_norm": 0.09048958867788315, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 60399 + }, + { + "epoch": 6.202711028958719, + "grad_norm": 0.08249911665916443, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 60402 + }, + { + "epoch": 6.2030191004313, + "grad_norm": 0.1375819742679596, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 60405 + }, + { + "epoch": 6.203327171903882, + "grad_norm": 0.12005623430013657, + "learning_rate": 0.01, + "loss": 1.9528, + "step": 60408 + }, + { + "epoch": 6.203635243376463, + "grad_norm": 0.08359742164611816, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 60411 + }, + { + "epoch": 6.203943314849045, + "grad_norm": 0.08574346452951431, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 60414 + }, + { + "epoch": 6.204251386321626, + "grad_norm": 0.04601282626390457, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 60417 + }, + { + "epoch": 6.2045594577942085, + "grad_norm": 0.04463723674416542, + "learning_rate": 0.01, + "loss": 1.965, + "step": 60420 + }, + { + "epoch": 6.20486752926679, + "grad_norm": 0.05424230918288231, + "learning_rate": 0.01, + "loss": 2.0251, + "step": 60423 + }, + { + "epoch": 6.205175600739372, + "grad_norm": 0.0748244971036911, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 60426 + }, + { + "epoch": 6.205483672211953, + "grad_norm": 0.05594291165471077, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 60429 + }, + { + "epoch": 6.205791743684535, + "grad_norm": 0.03947063907980919, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 60432 + }, + { + "epoch": 6.206099815157116, + "grad_norm": 0.037693090736866, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 60435 + }, + { + "epoch": 6.206407886629698, + "grad_norm": 0.09147128462791443, + "learning_rate": 0.01, + "loss": 1.955, + "step": 60438 + }, + { + "epoch": 6.206715958102279, + "grad_norm": 0.03525812551379204, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 60441 + }, + { + "epoch": 6.207024029574861, + "grad_norm": 0.0658460482954979, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 60444 + }, + { + "epoch": 6.207332101047443, + "grad_norm": 0.10629269480705261, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 60447 + }, + { + "epoch": 6.2076401725200245, + "grad_norm": 0.07760986685752869, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 60450 + }, + { + "epoch": 6.207948243992607, + "grad_norm": 0.0387595109641552, + "learning_rate": 0.01, + "loss": 1.9586, + "step": 60453 + }, + { + "epoch": 6.208256315465188, + "grad_norm": 0.04037671163678169, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 60456 + }, + { + "epoch": 6.20856438693777, + "grad_norm": 0.049021679908037186, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 60459 + }, + { + "epoch": 6.208872458410351, + "grad_norm": 0.04115486890077591, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 60462 + }, + { + "epoch": 6.209180529882933, + "grad_norm": 0.06775692850351334, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 60465 + }, + { + "epoch": 6.209488601355514, + "grad_norm": 0.04244436323642731, + "learning_rate": 0.01, + "loss": 1.9982, + "step": 60468 + }, + { + "epoch": 6.209796672828096, + "grad_norm": 0.046518050134181976, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 60471 + }, + { + "epoch": 6.210104744300677, + "grad_norm": 0.058811433613300323, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 60474 + }, + { + "epoch": 6.210412815773259, + "grad_norm": 0.08617477864027023, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 60477 + }, + { + "epoch": 6.2107208872458415, + "grad_norm": 0.1398414820432663, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 60480 + }, + { + "epoch": 6.211028958718423, + "grad_norm": 0.04411006346344948, + "learning_rate": 0.01, + "loss": 2.0152, + "step": 60483 + }, + { + "epoch": 6.211337030191005, + "grad_norm": 0.05274950712919235, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 60486 + }, + { + "epoch": 6.211645101663586, + "grad_norm": 0.03863611817359924, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 60489 + }, + { + "epoch": 6.211953173136168, + "grad_norm": 0.04664864018559456, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 60492 + }, + { + "epoch": 6.212261244608749, + "grad_norm": 0.03843964263796806, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 60495 + }, + { + "epoch": 6.212569316081331, + "grad_norm": 0.02867240644991398, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 60498 + }, + { + "epoch": 6.212877387553912, + "grad_norm": 0.03859257698059082, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 60501 + }, + { + "epoch": 6.213185459026494, + "grad_norm": 0.04639716073870659, + "learning_rate": 0.01, + "loss": 2.0111, + "step": 60504 + }, + { + "epoch": 6.2134935304990755, + "grad_norm": 0.05346795171499252, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 60507 + }, + { + "epoch": 6.2138016019716575, + "grad_norm": 0.09336802363395691, + "learning_rate": 0.01, + "loss": 2.0141, + "step": 60510 + }, + { + "epoch": 6.214109673444239, + "grad_norm": 0.10028377920389175, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 60513 + }, + { + "epoch": 6.214417744916821, + "grad_norm": 0.04280233010649681, + "learning_rate": 0.01, + "loss": 2.0057, + "step": 60516 + }, + { + "epoch": 6.214725816389402, + "grad_norm": 0.07395056635141373, + "learning_rate": 0.01, + "loss": 2.0094, + "step": 60519 + }, + { + "epoch": 6.215033887861984, + "grad_norm": 0.08924415707588196, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 60522 + }, + { + "epoch": 6.215341959334566, + "grad_norm": 0.06368307024240494, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 60525 + }, + { + "epoch": 6.215650030807147, + "grad_norm": 0.07443444430828094, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 60528 + }, + { + "epoch": 6.215958102279729, + "grad_norm": 0.06193174049258232, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 60531 + }, + { + "epoch": 6.21626617375231, + "grad_norm": 0.05765648931264877, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 60534 + }, + { + "epoch": 6.216574245224892, + "grad_norm": 0.07838603854179382, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 60537 + }, + { + "epoch": 6.216882316697474, + "grad_norm": 0.0865786075592041, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 60540 + }, + { + "epoch": 6.217190388170056, + "grad_norm": 0.06937874108552933, + "learning_rate": 0.01, + "loss": 1.9574, + "step": 60543 + }, + { + "epoch": 6.217498459642637, + "grad_norm": 0.04611770063638687, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 60546 + }, + { + "epoch": 6.217806531115219, + "grad_norm": 0.10261213779449463, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 60549 + }, + { + "epoch": 6.2181146025878, + "grad_norm": 0.06451880186796188, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 60552 + }, + { + "epoch": 6.218422674060382, + "grad_norm": 0.06459330767393112, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 60555 + }, + { + "epoch": 6.218730745532963, + "grad_norm": 0.06935889273881912, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 60558 + }, + { + "epoch": 6.219038817005545, + "grad_norm": 0.07407599687576294, + "learning_rate": 0.01, + "loss": 2.0052, + "step": 60561 + }, + { + "epoch": 6.219346888478127, + "grad_norm": 0.09501077234745026, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 60564 + }, + { + "epoch": 6.2196549599507085, + "grad_norm": 0.0854761153459549, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 60567 + }, + { + "epoch": 6.2199630314232905, + "grad_norm": 0.052260614931583405, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 60570 + }, + { + "epoch": 6.220271102895872, + "grad_norm": 0.03612583130598068, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 60573 + }, + { + "epoch": 6.220579174368454, + "grad_norm": 0.04795749485492706, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 60576 + }, + { + "epoch": 6.220887245841035, + "grad_norm": 0.055898912250995636, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 60579 + }, + { + "epoch": 6.221195317313617, + "grad_norm": 0.056687548756599426, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 60582 + }, + { + "epoch": 6.221503388786198, + "grad_norm": 0.052614741027355194, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 60585 + }, + { + "epoch": 6.22181146025878, + "grad_norm": 0.08860262483358383, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 60588 + }, + { + "epoch": 6.222119531731361, + "grad_norm": 0.10606038570404053, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 60591 + }, + { + "epoch": 6.222427603203943, + "grad_norm": 0.05913405120372772, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 60594 + }, + { + "epoch": 6.2227356746765246, + "grad_norm": 0.05625823140144348, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 60597 + }, + { + "epoch": 6.223043746149107, + "grad_norm": 0.10503005236387253, + "learning_rate": 0.01, + "loss": 2.0125, + "step": 60600 + }, + { + "epoch": 6.223351817621689, + "grad_norm": 0.06931479275226593, + "learning_rate": 0.01, + "loss": 1.979, + "step": 60603 + }, + { + "epoch": 6.22365988909427, + "grad_norm": 0.07577981054782867, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 60606 + }, + { + "epoch": 6.223967960566852, + "grad_norm": 0.04593481123447418, + "learning_rate": 0.01, + "loss": 1.9587, + "step": 60609 + }, + { + "epoch": 6.224276032039433, + "grad_norm": 0.040800996124744415, + "learning_rate": 0.01, + "loss": 1.976, + "step": 60612 + }, + { + "epoch": 6.224584103512015, + "grad_norm": 0.035023946315050125, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 60615 + }, + { + "epoch": 6.224892174984596, + "grad_norm": 0.10616744309663773, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 60618 + }, + { + "epoch": 6.225200246457178, + "grad_norm": 0.06860567629337311, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 60621 + }, + { + "epoch": 6.2255083179297594, + "grad_norm": 0.06851069629192352, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 60624 + }, + { + "epoch": 6.2258163894023415, + "grad_norm": 0.06767469644546509, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 60627 + }, + { + "epoch": 6.226124460874923, + "grad_norm": 0.06542889773845673, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 60630 + }, + { + "epoch": 6.226432532347505, + "grad_norm": 0.0505717433989048, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 60633 + }, + { + "epoch": 6.226740603820086, + "grad_norm": 0.04307612031698227, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 60636 + }, + { + "epoch": 6.227048675292668, + "grad_norm": 0.12549397349357605, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 60639 + }, + { + "epoch": 6.227356746765249, + "grad_norm": 0.10073670744895935, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 60642 + }, + { + "epoch": 6.227664818237831, + "grad_norm": 0.042758628726005554, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 60645 + }, + { + "epoch": 6.227972889710413, + "grad_norm": 0.0379779078066349, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 60648 + }, + { + "epoch": 6.228280961182994, + "grad_norm": 0.05374911054968834, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 60651 + }, + { + "epoch": 6.228589032655576, + "grad_norm": 0.0438760407269001, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 60654 + }, + { + "epoch": 6.228897104128158, + "grad_norm": 0.05077781528234482, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 60657 + }, + { + "epoch": 6.22920517560074, + "grad_norm": 0.05097432807087898, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 60660 + }, + { + "epoch": 6.229513247073321, + "grad_norm": 0.061216987669467926, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 60663 + }, + { + "epoch": 6.229821318545903, + "grad_norm": 0.056796032935380936, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 60666 + }, + { + "epoch": 6.230129390018484, + "grad_norm": 0.04003208130598068, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 60669 + }, + { + "epoch": 6.230437461491066, + "grad_norm": 0.07271415740251541, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 60672 + }, + { + "epoch": 6.230745532963647, + "grad_norm": 0.07599439471960068, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 60675 + }, + { + "epoch": 6.231053604436229, + "grad_norm": 0.40395355224609375, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 60678 + }, + { + "epoch": 6.231361675908811, + "grad_norm": 0.10945183783769608, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 60681 + }, + { + "epoch": 6.2316697473813925, + "grad_norm": 0.10694218426942825, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 60684 + }, + { + "epoch": 6.2319778188539745, + "grad_norm": 0.05942070484161377, + "learning_rate": 0.01, + "loss": 2.0023, + "step": 60687 + }, + { + "epoch": 6.232285890326556, + "grad_norm": 0.039438262581825256, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 60690 + }, + { + "epoch": 6.232593961799138, + "grad_norm": 0.042470790445804596, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 60693 + }, + { + "epoch": 6.232902033271719, + "grad_norm": 0.05736652761697769, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 60696 + }, + { + "epoch": 6.233210104744301, + "grad_norm": 0.03797580674290657, + "learning_rate": 0.01, + "loss": 1.9456, + "step": 60699 + }, + { + "epoch": 6.233518176216882, + "grad_norm": 0.042780667543411255, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 60702 + }, + { + "epoch": 6.233826247689464, + "grad_norm": 0.04742565006017685, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 60705 + }, + { + "epoch": 6.234134319162045, + "grad_norm": 0.10806404799222946, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 60708 + }, + { + "epoch": 6.234442390634627, + "grad_norm": 0.09392410516738892, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 60711 + }, + { + "epoch": 6.2347504621072085, + "grad_norm": 0.06125201657414436, + "learning_rate": 0.01, + "loss": 1.996, + "step": 60714 + }, + { + "epoch": 6.235058533579791, + "grad_norm": 0.08396472036838531, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 60717 + }, + { + "epoch": 6.235366605052372, + "grad_norm": 0.05900922417640686, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 60720 + }, + { + "epoch": 6.235674676524954, + "grad_norm": 0.10509319603443146, + "learning_rate": 0.01, + "loss": 2.003, + "step": 60723 + }, + { + "epoch": 6.235982747997536, + "grad_norm": 0.13138900697231293, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 60726 + }, + { + "epoch": 6.236290819470117, + "grad_norm": 0.05676103010773659, + "learning_rate": 0.01, + "loss": 1.984, + "step": 60729 + }, + { + "epoch": 6.236598890942699, + "grad_norm": 0.04155607149004936, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 60732 + }, + { + "epoch": 6.23690696241528, + "grad_norm": 0.03284106031060219, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 60735 + }, + { + "epoch": 6.237215033887862, + "grad_norm": 0.03673785179853439, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 60738 + }, + { + "epoch": 6.237523105360443, + "grad_norm": 0.04972091317176819, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 60741 + }, + { + "epoch": 6.2378311768330255, + "grad_norm": 0.06821681559085846, + "learning_rate": 0.01, + "loss": 1.987, + "step": 60744 + }, + { + "epoch": 6.238139248305607, + "grad_norm": 0.14047065377235413, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 60747 + }, + { + "epoch": 6.238447319778189, + "grad_norm": 0.09423762559890747, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 60750 + }, + { + "epoch": 6.23875539125077, + "grad_norm": 0.08889120817184448, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 60753 + }, + { + "epoch": 6.239063462723352, + "grad_norm": 0.07696396857500076, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 60756 + }, + { + "epoch": 6.239371534195933, + "grad_norm": 0.13203272223472595, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 60759 + }, + { + "epoch": 6.239679605668515, + "grad_norm": 0.07637298852205276, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 60762 + }, + { + "epoch": 6.239987677141097, + "grad_norm": 0.035956770181655884, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 60765 + }, + { + "epoch": 6.240295748613678, + "grad_norm": 0.051339924335479736, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 60768 + }, + { + "epoch": 6.24060382008626, + "grad_norm": 0.05336092412471771, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 60771 + }, + { + "epoch": 6.2409118915588415, + "grad_norm": 0.061884574592113495, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 60774 + }, + { + "epoch": 6.241219963031424, + "grad_norm": 0.0763407051563263, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 60777 + }, + { + "epoch": 6.241528034504005, + "grad_norm": 0.06376196444034576, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 60780 + }, + { + "epoch": 6.241836105976587, + "grad_norm": 0.04951758310198784, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 60783 + }, + { + "epoch": 6.242144177449168, + "grad_norm": 0.03801729902625084, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 60786 + }, + { + "epoch": 6.24245224892175, + "grad_norm": 0.05235125496983528, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 60789 + }, + { + "epoch": 6.242760320394331, + "grad_norm": 0.09875135123729706, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 60792 + }, + { + "epoch": 6.243068391866913, + "grad_norm": 0.07917656749486923, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 60795 + }, + { + "epoch": 6.243376463339494, + "grad_norm": 0.09031876921653748, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 60798 + }, + { + "epoch": 6.243684534812076, + "grad_norm": 0.03974262252449989, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 60801 + }, + { + "epoch": 6.2439926062846585, + "grad_norm": 0.10321113467216492, + "learning_rate": 0.01, + "loss": 1.997, + "step": 60804 + }, + { + "epoch": 6.24430067775724, + "grad_norm": 0.041257478296756744, + "learning_rate": 0.01, + "loss": 1.978, + "step": 60807 + }, + { + "epoch": 6.244608749229822, + "grad_norm": 0.054699040949344635, + "learning_rate": 0.01, + "loss": 1.9478, + "step": 60810 + }, + { + "epoch": 6.244916820702403, + "grad_norm": 0.06867776066064835, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 60813 + }, + { + "epoch": 6.245224892174985, + "grad_norm": 0.04628169536590576, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 60816 + }, + { + "epoch": 6.245532963647566, + "grad_norm": 0.04721110686659813, + "learning_rate": 0.01, + "loss": 1.981, + "step": 60819 + }, + { + "epoch": 6.245841035120148, + "grad_norm": 0.1265910118818283, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 60822 + }, + { + "epoch": 6.246149106592729, + "grad_norm": 0.09225190430879593, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 60825 + }, + { + "epoch": 6.246457178065311, + "grad_norm": 0.06333420425653458, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 60828 + }, + { + "epoch": 6.2467652495378925, + "grad_norm": 0.06048038601875305, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 60831 + }, + { + "epoch": 6.2470733210104745, + "grad_norm": 0.032611507922410965, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 60834 + }, + { + "epoch": 6.247381392483056, + "grad_norm": 0.038066837936639786, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 60837 + }, + { + "epoch": 6.247689463955638, + "grad_norm": 0.0952901542186737, + "learning_rate": 0.01, + "loss": 1.979, + "step": 60840 + }, + { + "epoch": 6.247997535428219, + "grad_norm": 0.051439084112644196, + "learning_rate": 0.01, + "loss": 1.9403, + "step": 60843 + }, + { + "epoch": 6.248305606900801, + "grad_norm": 0.12137739360332489, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 60846 + }, + { + "epoch": 6.248613678373383, + "grad_norm": 0.04107406362891197, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 60849 + }, + { + "epoch": 6.248921749845964, + "grad_norm": 0.053470056504011154, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 60852 + }, + { + "epoch": 6.249229821318546, + "grad_norm": 0.10296319425106049, + "learning_rate": 0.01, + "loss": 2.0136, + "step": 60855 + }, + { + "epoch": 6.249537892791127, + "grad_norm": 0.05375886335968971, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 60858 + }, + { + "epoch": 6.249845964263709, + "grad_norm": 0.04653402417898178, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 60861 + }, + { + "epoch": 6.250154035736291, + "grad_norm": 0.04048166796565056, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 60864 + }, + { + "epoch": 6.250462107208873, + "grad_norm": 0.04350602254271507, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 60867 + }, + { + "epoch": 6.250770178681454, + "grad_norm": 0.06153450533747673, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 60870 + }, + { + "epoch": 6.251078250154036, + "grad_norm": 0.05672883987426758, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 60873 + }, + { + "epoch": 6.251386321626617, + "grad_norm": 0.04813450202345848, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 60876 + }, + { + "epoch": 6.251694393099199, + "grad_norm": 0.03838599845767021, + "learning_rate": 0.01, + "loss": 2.0072, + "step": 60879 + }, + { + "epoch": 6.252002464571781, + "grad_norm": 0.04607195779681206, + "learning_rate": 0.01, + "loss": 1.97, + "step": 60882 + }, + { + "epoch": 6.252310536044362, + "grad_norm": 0.06564761698246002, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 60885 + }, + { + "epoch": 6.252618607516944, + "grad_norm": 0.0656748041510582, + "learning_rate": 0.01, + "loss": 1.9651, + "step": 60888 + }, + { + "epoch": 6.2529266789895255, + "grad_norm": 0.09336625039577484, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 60891 + }, + { + "epoch": 6.2532347504621075, + "grad_norm": 0.08100081235170364, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 60894 + }, + { + "epoch": 6.253542821934689, + "grad_norm": 0.06392189860343933, + "learning_rate": 0.01, + "loss": 1.975, + "step": 60897 + }, + { + "epoch": 6.253850893407271, + "grad_norm": 0.11884801834821701, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 60900 + }, + { + "epoch": 6.254158964879852, + "grad_norm": 0.08046597987413406, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 60903 + }, + { + "epoch": 6.254467036352434, + "grad_norm": 0.03278736025094986, + "learning_rate": 0.01, + "loss": 1.966, + "step": 60906 + }, + { + "epoch": 6.254775107825015, + "grad_norm": 0.043066561222076416, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 60909 + }, + { + "epoch": 6.255083179297597, + "grad_norm": 0.08042460680007935, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 60912 + }, + { + "epoch": 6.255391250770178, + "grad_norm": 0.05132247880101204, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 60915 + }, + { + "epoch": 6.25569932224276, + "grad_norm": 0.04719965532422066, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 60918 + }, + { + "epoch": 6.2560073937153415, + "grad_norm": 0.08247886598110199, + "learning_rate": 0.01, + "loss": 1.9532, + "step": 60921 + }, + { + "epoch": 6.256315465187924, + "grad_norm": 0.0856601819396019, + "learning_rate": 0.01, + "loss": 2.0051, + "step": 60924 + }, + { + "epoch": 6.256623536660506, + "grad_norm": 0.06547616422176361, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 60927 + }, + { + "epoch": 6.256931608133087, + "grad_norm": 0.04583069309592247, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 60930 + }, + { + "epoch": 6.257239679605669, + "grad_norm": 0.1286034882068634, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 60933 + }, + { + "epoch": 6.25754775107825, + "grad_norm": 0.07549592107534409, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 60936 + }, + { + "epoch": 6.257855822550832, + "grad_norm": 0.06334639340639114, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 60939 + }, + { + "epoch": 6.258163894023413, + "grad_norm": 0.050806958228349686, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 60942 + }, + { + "epoch": 6.258471965495995, + "grad_norm": 0.03487928584218025, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 60945 + }, + { + "epoch": 6.258780036968576, + "grad_norm": 0.03992629423737526, + "learning_rate": 0.01, + "loss": 1.9632, + "step": 60948 + }, + { + "epoch": 6.2590881084411585, + "grad_norm": 0.06908503919839859, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 60951 + }, + { + "epoch": 6.25939617991374, + "grad_norm": 0.10641307383775711, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 60954 + }, + { + "epoch": 6.259704251386322, + "grad_norm": 0.05809535086154938, + "learning_rate": 0.01, + "loss": 1.966, + "step": 60957 + }, + { + "epoch": 6.260012322858903, + "grad_norm": 0.1139754205942154, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 60960 + }, + { + "epoch": 6.260320394331485, + "grad_norm": 0.1501069813966751, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 60963 + }, + { + "epoch": 6.260628465804067, + "grad_norm": 0.10279611498117447, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 60966 + }, + { + "epoch": 6.260936537276648, + "grad_norm": 0.04817177355289459, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 60969 + }, + { + "epoch": 6.26124460874923, + "grad_norm": 0.036743566393852234, + "learning_rate": 0.01, + "loss": 1.9561, + "step": 60972 + }, + { + "epoch": 6.261552680221811, + "grad_norm": 0.041490793228149414, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 60975 + }, + { + "epoch": 6.261860751694393, + "grad_norm": 0.034102845937013626, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 60978 + }, + { + "epoch": 6.2621688231669745, + "grad_norm": 0.04929140582680702, + "learning_rate": 0.01, + "loss": 1.9571, + "step": 60981 + }, + { + "epoch": 6.262476894639557, + "grad_norm": 0.1550266444683075, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 60984 + }, + { + "epoch": 6.262784966112138, + "grad_norm": 0.1096281111240387, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 60987 + }, + { + "epoch": 6.26309303758472, + "grad_norm": 0.057930875569581985, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 60990 + }, + { + "epoch": 6.263401109057301, + "grad_norm": 0.04393153637647629, + "learning_rate": 0.01, + "loss": 1.9468, + "step": 60993 + }, + { + "epoch": 6.263709180529883, + "grad_norm": 0.039023157209157944, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 60996 + }, + { + "epoch": 6.264017252002464, + "grad_norm": 0.05385271832346916, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 60999 + }, + { + "epoch": 6.264325323475046, + "grad_norm": 0.11487401276826859, + "learning_rate": 0.01, + "loss": 1.9636, + "step": 61002 + }, + { + "epoch": 6.264633394947628, + "grad_norm": 0.12395527213811874, + "learning_rate": 0.01, + "loss": 1.9657, + "step": 61005 + }, + { + "epoch": 6.264941466420209, + "grad_norm": 0.05898820608854294, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 61008 + }, + { + "epoch": 6.2652495378927915, + "grad_norm": 0.06743215769529343, + "learning_rate": 0.01, + "loss": 1.9511, + "step": 61011 + }, + { + "epoch": 6.265557609365373, + "grad_norm": 0.04019298404455185, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 61014 + }, + { + "epoch": 6.265865680837955, + "grad_norm": 0.053353726863861084, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 61017 + }, + { + "epoch": 6.266173752310536, + "grad_norm": 0.05660318583250046, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 61020 + }, + { + "epoch": 6.266481823783118, + "grad_norm": 0.08507215976715088, + "learning_rate": 0.01, + "loss": 2.0229, + "step": 61023 + }, + { + "epoch": 6.266789895255699, + "grad_norm": 0.10339481383562088, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 61026 + }, + { + "epoch": 6.267097966728281, + "grad_norm": 0.06297086924314499, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 61029 + }, + { + "epoch": 6.267406038200862, + "grad_norm": 0.03891312703490257, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 61032 + }, + { + "epoch": 6.267714109673444, + "grad_norm": 0.05895547196269035, + "learning_rate": 0.01, + "loss": 1.984, + "step": 61035 + }, + { + "epoch": 6.2680221811460255, + "grad_norm": 0.058469437062740326, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 61038 + }, + { + "epoch": 6.2683302526186075, + "grad_norm": 0.04402352124452591, + "learning_rate": 0.01, + "loss": 1.9456, + "step": 61041 + }, + { + "epoch": 6.268638324091189, + "grad_norm": 0.07434606552124023, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 61044 + }, + { + "epoch": 6.268946395563771, + "grad_norm": 0.07005775719881058, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 61047 + }, + { + "epoch": 6.269254467036353, + "grad_norm": 0.08956246078014374, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 61050 + }, + { + "epoch": 6.269562538508934, + "grad_norm": 0.04520926997065544, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 61053 + }, + { + "epoch": 6.269870609981516, + "grad_norm": 0.09920626133680344, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 61056 + }, + { + "epoch": 6.270178681454097, + "grad_norm": 0.10885010659694672, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 61059 + }, + { + "epoch": 6.270486752926679, + "grad_norm": 0.0662059485912323, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 61062 + }, + { + "epoch": 6.27079482439926, + "grad_norm": 0.09873577207326889, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 61065 + }, + { + "epoch": 6.271102895871842, + "grad_norm": 0.0979217141866684, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 61068 + }, + { + "epoch": 6.271410967344424, + "grad_norm": 0.06409544497728348, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 61071 + }, + { + "epoch": 6.271719038817006, + "grad_norm": 0.05898788571357727, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 61074 + }, + { + "epoch": 6.272027110289587, + "grad_norm": 0.048941727727651596, + "learning_rate": 0.01, + "loss": 2.0042, + "step": 61077 + }, + { + "epoch": 6.272335181762169, + "grad_norm": 0.04335403069853783, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 61080 + }, + { + "epoch": 6.272643253234751, + "grad_norm": 0.08291465789079666, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 61083 + }, + { + "epoch": 6.272951324707332, + "grad_norm": 0.09848134219646454, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 61086 + }, + { + "epoch": 6.273259396179914, + "grad_norm": 0.10949241369962692, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 61089 + }, + { + "epoch": 6.273567467652495, + "grad_norm": 0.07039642333984375, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 61092 + }, + { + "epoch": 6.273875539125077, + "grad_norm": 0.0475379079580307, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 61095 + }, + { + "epoch": 6.2741836105976585, + "grad_norm": 0.07531355321407318, + "learning_rate": 0.01, + "loss": 1.99, + "step": 61098 + }, + { + "epoch": 6.2744916820702406, + "grad_norm": 0.04126337915658951, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 61101 + }, + { + "epoch": 6.274799753542822, + "grad_norm": 0.03969768062233925, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 61104 + }, + { + "epoch": 6.275107825015404, + "grad_norm": 0.06768359243869781, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 61107 + }, + { + "epoch": 6.275415896487985, + "grad_norm": 0.10613830387592316, + "learning_rate": 0.01, + "loss": 1.956, + "step": 61110 + }, + { + "epoch": 6.275723967960567, + "grad_norm": 0.09580209851264954, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 61113 + }, + { + "epoch": 6.276032039433148, + "grad_norm": 0.06177694723010063, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 61116 + }, + { + "epoch": 6.27634011090573, + "grad_norm": 0.10451437532901764, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 61119 + }, + { + "epoch": 6.276648182378311, + "grad_norm": 0.1352027803659439, + "learning_rate": 0.01, + "loss": 1.993, + "step": 61122 + }, + { + "epoch": 6.276956253850893, + "grad_norm": 0.0892416313290596, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 61125 + }, + { + "epoch": 6.2772643253234754, + "grad_norm": 0.04253193363547325, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 61128 + }, + { + "epoch": 6.277572396796057, + "grad_norm": 0.03616737946867943, + "learning_rate": 0.01, + "loss": 1.9522, + "step": 61131 + }, + { + "epoch": 6.277880468268639, + "grad_norm": 0.09631824493408203, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 61134 + }, + { + "epoch": 6.27818853974122, + "grad_norm": 0.08627616614103317, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 61137 + }, + { + "epoch": 6.278496611213802, + "grad_norm": 0.07595238834619522, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 61140 + }, + { + "epoch": 6.278804682686383, + "grad_norm": 0.05115518346428871, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 61143 + }, + { + "epoch": 6.279112754158965, + "grad_norm": 0.07910732924938202, + "learning_rate": 0.01, + "loss": 1.9566, + "step": 61146 + }, + { + "epoch": 6.279420825631546, + "grad_norm": 0.07935528457164764, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 61149 + }, + { + "epoch": 6.279728897104128, + "grad_norm": 0.09080187976360321, + "learning_rate": 0.01, + "loss": 1.9684, + "step": 61152 + }, + { + "epoch": 6.2800369685767095, + "grad_norm": 0.07743295282125473, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 61155 + }, + { + "epoch": 6.2803450400492915, + "grad_norm": 0.07669807970523834, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 61158 + }, + { + "epoch": 6.280653111521873, + "grad_norm": 0.09190505743026733, + "learning_rate": 0.01, + "loss": 1.954, + "step": 61161 + }, + { + "epoch": 6.280961182994455, + "grad_norm": 0.052665840834379196, + "learning_rate": 0.01, + "loss": 1.998, + "step": 61164 + }, + { + "epoch": 6.281269254467037, + "grad_norm": 0.05133817344903946, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 61167 + }, + { + "epoch": 6.281577325939618, + "grad_norm": 0.038431648164987564, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 61170 + }, + { + "epoch": 6.2818853974122, + "grad_norm": 0.057378388941287994, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 61173 + }, + { + "epoch": 6.282193468884781, + "grad_norm": 0.08355475962162018, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 61176 + }, + { + "epoch": 6.282501540357363, + "grad_norm": 0.07666066288948059, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 61179 + }, + { + "epoch": 6.282809611829944, + "grad_norm": 0.12239743769168854, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 61182 + }, + { + "epoch": 6.283117683302526, + "grad_norm": 0.10445159673690796, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 61185 + }, + { + "epoch": 6.283425754775108, + "grad_norm": 0.04401460289955139, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 61188 + }, + { + "epoch": 6.28373382624769, + "grad_norm": 0.08247647434473038, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 61191 + }, + { + "epoch": 6.284041897720271, + "grad_norm": 0.06200701370835304, + "learning_rate": 0.01, + "loss": 1.9557, + "step": 61194 + }, + { + "epoch": 6.284349969192853, + "grad_norm": 0.04233565926551819, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 61197 + }, + { + "epoch": 6.284658040665434, + "grad_norm": 0.09187982976436615, + "learning_rate": 0.01, + "loss": 1.9991, + "step": 61200 + }, + { + "epoch": 6.284966112138016, + "grad_norm": 0.03373527526855469, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 61203 + }, + { + "epoch": 6.285274183610598, + "grad_norm": 0.09450080990791321, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 61206 + }, + { + "epoch": 6.285582255083179, + "grad_norm": 0.048632752150297165, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 61209 + }, + { + "epoch": 6.285890326555761, + "grad_norm": 0.11564646661281586, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 61212 + }, + { + "epoch": 6.2861983980283425, + "grad_norm": 0.04203884303569794, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 61215 + }, + { + "epoch": 6.2865064695009245, + "grad_norm": 0.08716481178998947, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 61218 + }, + { + "epoch": 6.286814540973506, + "grad_norm": 0.07940181344747543, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 61221 + }, + { + "epoch": 6.287122612446088, + "grad_norm": 0.06720132380723953, + "learning_rate": 0.01, + "loss": 1.9655, + "step": 61224 + }, + { + "epoch": 6.287430683918669, + "grad_norm": 0.05566677451133728, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 61227 + }, + { + "epoch": 6.287738755391251, + "grad_norm": 0.09876339137554169, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 61230 + }, + { + "epoch": 6.288046826863832, + "grad_norm": 0.054778262972831726, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 61233 + }, + { + "epoch": 6.288354898336414, + "grad_norm": 0.06283058226108551, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 61236 + }, + { + "epoch": 6.288662969808995, + "grad_norm": 0.054917361587285995, + "learning_rate": 0.01, + "loss": 2.0248, + "step": 61239 + }, + { + "epoch": 6.288971041281577, + "grad_norm": 0.10483105480670929, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 61242 + }, + { + "epoch": 6.2892791127541585, + "grad_norm": 0.07183388620615005, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 61245 + }, + { + "epoch": 6.289587184226741, + "grad_norm": 0.12913282215595245, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 61248 + }, + { + "epoch": 6.289895255699323, + "grad_norm": 0.1015811562538147, + "learning_rate": 0.01, + "loss": 1.992, + "step": 61251 + }, + { + "epoch": 6.290203327171904, + "grad_norm": 0.09693120419979095, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 61254 + }, + { + "epoch": 6.290511398644486, + "grad_norm": 0.05746886506676674, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 61257 + }, + { + "epoch": 6.290819470117067, + "grad_norm": 0.07819090038537979, + "learning_rate": 0.01, + "loss": 1.9485, + "step": 61260 + }, + { + "epoch": 6.291127541589649, + "grad_norm": 0.039794620126485825, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 61263 + }, + { + "epoch": 6.29143561306223, + "grad_norm": 0.06474246084690094, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 61266 + }, + { + "epoch": 6.291743684534812, + "grad_norm": 0.05018305405974388, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 61269 + }, + { + "epoch": 6.292051756007393, + "grad_norm": 0.10312799364328384, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 61272 + }, + { + "epoch": 6.2923598274799755, + "grad_norm": 0.0430091917514801, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 61275 + }, + { + "epoch": 6.292667898952557, + "grad_norm": 0.08931942284107208, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 61278 + }, + { + "epoch": 6.292975970425139, + "grad_norm": 0.09583033621311188, + "learning_rate": 0.01, + "loss": 1.98, + "step": 61281 + }, + { + "epoch": 6.293284041897721, + "grad_norm": 0.048897985368967056, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 61284 + }, + { + "epoch": 6.293592113370302, + "grad_norm": 0.07638606429100037, + "learning_rate": 0.01, + "loss": 1.968, + "step": 61287 + }, + { + "epoch": 6.293900184842884, + "grad_norm": 0.07323414832353592, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 61290 + }, + { + "epoch": 6.294208256315465, + "grad_norm": 0.08963891863822937, + "learning_rate": 0.01, + "loss": 2.002, + "step": 61293 + }, + { + "epoch": 6.294516327788047, + "grad_norm": 0.047504641115665436, + "learning_rate": 0.01, + "loss": 1.962, + "step": 61296 + }, + { + "epoch": 6.294824399260628, + "grad_norm": 0.04849178344011307, + "learning_rate": 0.01, + "loss": 1.983, + "step": 61299 + }, + { + "epoch": 6.29513247073321, + "grad_norm": 0.06779339909553528, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 61302 + }, + { + "epoch": 6.2954405422057915, + "grad_norm": 0.03595037758350372, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 61305 + }, + { + "epoch": 6.295748613678374, + "grad_norm": 0.04232453927397728, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 61308 + }, + { + "epoch": 6.296056685150955, + "grad_norm": 0.03607799485325813, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 61311 + }, + { + "epoch": 6.296364756623537, + "grad_norm": 0.07026591151952744, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 61314 + }, + { + "epoch": 6.296672828096118, + "grad_norm": 0.09154605120420456, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 61317 + }, + { + "epoch": 6.2969808995687, + "grad_norm": 0.0732119083404541, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 61320 + }, + { + "epoch": 6.297288971041281, + "grad_norm": 0.12241560965776443, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 61323 + }, + { + "epoch": 6.297597042513863, + "grad_norm": 0.04552261903882027, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 61326 + }, + { + "epoch": 6.297905113986445, + "grad_norm": 0.10219983011484146, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 61329 + }, + { + "epoch": 6.298213185459026, + "grad_norm": 0.09614024311304092, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 61332 + }, + { + "epoch": 6.2985212569316085, + "grad_norm": 0.049760278314352036, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 61335 + }, + { + "epoch": 6.29882932840419, + "grad_norm": 0.11046284437179565, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 61338 + }, + { + "epoch": 6.299137399876772, + "grad_norm": 0.045198407024145126, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 61341 + }, + { + "epoch": 6.299445471349353, + "grad_norm": 0.0499146468937397, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 61344 + }, + { + "epoch": 6.299753542821935, + "grad_norm": 0.0700070783495903, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 61347 + }, + { + "epoch": 6.300061614294516, + "grad_norm": 0.042327769100666046, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 61350 + }, + { + "epoch": 6.300369685767098, + "grad_norm": 0.042714498937129974, + "learning_rate": 0.01, + "loss": 1.98, + "step": 61353 + }, + { + "epoch": 6.300677757239679, + "grad_norm": 0.06567323952913284, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 61356 + }, + { + "epoch": 6.300985828712261, + "grad_norm": 0.07993308454751968, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 61359 + }, + { + "epoch": 6.3012939001848425, + "grad_norm": 0.08032864332199097, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 61362 + }, + { + "epoch": 6.3016019716574245, + "grad_norm": 0.05398751050233841, + "learning_rate": 0.01, + "loss": 1.9286, + "step": 61365 + }, + { + "epoch": 6.301910043130006, + "grad_norm": 0.04342971369624138, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 61368 + }, + { + "epoch": 6.302218114602588, + "grad_norm": 0.0811370387673378, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 61371 + }, + { + "epoch": 6.30252618607517, + "grad_norm": 0.09355277568101883, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 61374 + }, + { + "epoch": 6.302834257547751, + "grad_norm": 0.06557541340589523, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 61377 + }, + { + "epoch": 6.303142329020333, + "grad_norm": 0.038711193948984146, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 61380 + }, + { + "epoch": 6.303450400492914, + "grad_norm": 0.04032447189092636, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 61383 + }, + { + "epoch": 6.303758471965496, + "grad_norm": 0.03779391944408417, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 61386 + }, + { + "epoch": 6.304066543438077, + "grad_norm": 0.054389867931604385, + "learning_rate": 0.01, + "loss": 1.994, + "step": 61389 + }, + { + "epoch": 6.304374614910659, + "grad_norm": 0.0877804309129715, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 61392 + }, + { + "epoch": 6.304682686383241, + "grad_norm": 0.06545720249414444, + "learning_rate": 0.01, + "loss": 1.9409, + "step": 61395 + }, + { + "epoch": 6.304990757855823, + "grad_norm": 0.10159642994403839, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 61398 + }, + { + "epoch": 6.305298829328404, + "grad_norm": 0.045314956456422806, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 61401 + }, + { + "epoch": 6.305606900800986, + "grad_norm": 0.1006140187382698, + "learning_rate": 0.01, + "loss": 1.962, + "step": 61404 + }, + { + "epoch": 6.305914972273568, + "grad_norm": 0.09133684635162354, + "learning_rate": 0.01, + "loss": 1.9624, + "step": 61407 + }, + { + "epoch": 6.306223043746149, + "grad_norm": 0.11910711973905563, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 61410 + }, + { + "epoch": 6.306531115218731, + "grad_norm": 0.11194338649511337, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 61413 + }, + { + "epoch": 6.306839186691312, + "grad_norm": 0.050022371113300323, + "learning_rate": 0.01, + "loss": 1.957, + "step": 61416 + }, + { + "epoch": 6.307147258163894, + "grad_norm": 0.039385128766298294, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 61419 + }, + { + "epoch": 6.3074553296364755, + "grad_norm": 0.048881761729717255, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 61422 + }, + { + "epoch": 6.3077634011090575, + "grad_norm": 0.062211450189352036, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 61425 + }, + { + "epoch": 6.308071472581639, + "grad_norm": 0.047393426299095154, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 61428 + }, + { + "epoch": 6.308379544054221, + "grad_norm": 0.03558918833732605, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 61431 + }, + { + "epoch": 6.308687615526802, + "grad_norm": 0.05444757267832756, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 61434 + }, + { + "epoch": 6.308995686999384, + "grad_norm": 0.0579729862511158, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 61437 + }, + { + "epoch": 6.309303758471965, + "grad_norm": 0.10818339139223099, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 61440 + }, + { + "epoch": 6.309611829944547, + "grad_norm": 0.053433943539857864, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 61443 + }, + { + "epoch": 6.309919901417128, + "grad_norm": 0.09320402890443802, + "learning_rate": 0.01, + "loss": 1.9363, + "step": 61446 + }, + { + "epoch": 6.31022797288971, + "grad_norm": 0.10474387556314468, + "learning_rate": 0.01, + "loss": 2.0013, + "step": 61449 + }, + { + "epoch": 6.310536044362292, + "grad_norm": 0.059648603200912476, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 61452 + }, + { + "epoch": 6.310844115834874, + "grad_norm": 0.05086411163210869, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 61455 + }, + { + "epoch": 6.311152187307456, + "grad_norm": 0.05620935931801796, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 61458 + }, + { + "epoch": 6.311460258780037, + "grad_norm": 0.07844830304384232, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 61461 + }, + { + "epoch": 6.311768330252619, + "grad_norm": 0.1557673066854477, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 61464 + }, + { + "epoch": 6.3120764017252, + "grad_norm": 0.09628250449895859, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 61467 + }, + { + "epoch": 6.312384473197782, + "grad_norm": 0.045699939131736755, + "learning_rate": 0.01, + "loss": 2.0116, + "step": 61470 + }, + { + "epoch": 6.312692544670363, + "grad_norm": 0.033145416527986526, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 61473 + }, + { + "epoch": 6.313000616142945, + "grad_norm": 0.03600894287228584, + "learning_rate": 0.01, + "loss": 1.9406, + "step": 61476 + }, + { + "epoch": 6.313308687615526, + "grad_norm": 0.09642411768436432, + "learning_rate": 0.01, + "loss": 1.993, + "step": 61479 + }, + { + "epoch": 6.3136167590881085, + "grad_norm": 0.047719743102788925, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 61482 + }, + { + "epoch": 6.3139248305606905, + "grad_norm": 0.0641685277223587, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 61485 + }, + { + "epoch": 6.314232902033272, + "grad_norm": 0.06864326447248459, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 61488 + }, + { + "epoch": 6.314540973505854, + "grad_norm": 0.062220584601163864, + "learning_rate": 0.01, + "loss": 1.988, + "step": 61491 + }, + { + "epoch": 6.314849044978435, + "grad_norm": 0.0497710257768631, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 61494 + }, + { + "epoch": 6.315157116451017, + "grad_norm": 0.06263673305511475, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 61497 + }, + { + "epoch": 6.315465187923598, + "grad_norm": 0.1437608301639557, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 61500 + }, + { + "epoch": 6.31577325939618, + "grad_norm": 0.1427847445011139, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 61503 + }, + { + "epoch": 6.316081330868761, + "grad_norm": 0.06643825769424438, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 61506 + }, + { + "epoch": 6.316389402341343, + "grad_norm": 0.05207568779587746, + "learning_rate": 0.01, + "loss": 1.966, + "step": 61509 + }, + { + "epoch": 6.3166974738139245, + "grad_norm": 0.05009368434548378, + "learning_rate": 0.01, + "loss": 2.0048, + "step": 61512 + }, + { + "epoch": 6.317005545286507, + "grad_norm": 0.060909830033779144, + "learning_rate": 0.01, + "loss": 2.0055, + "step": 61515 + }, + { + "epoch": 6.317313616759088, + "grad_norm": 0.050222769379615784, + "learning_rate": 0.01, + "loss": 2.0128, + "step": 61518 + }, + { + "epoch": 6.31762168823167, + "grad_norm": 0.03374829515814781, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 61521 + }, + { + "epoch": 6.317929759704251, + "grad_norm": 0.07113096117973328, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 61524 + }, + { + "epoch": 6.318237831176833, + "grad_norm": 0.061376191675662994, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 61527 + }, + { + "epoch": 6.318545902649415, + "grad_norm": 0.07323316484689713, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 61530 + }, + { + "epoch": 6.318853974121996, + "grad_norm": 0.07050851732492447, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 61533 + }, + { + "epoch": 6.319162045594578, + "grad_norm": 0.04889465495944023, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 61536 + }, + { + "epoch": 6.319470117067159, + "grad_norm": 0.10975257307291031, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 61539 + }, + { + "epoch": 6.3197781885397415, + "grad_norm": 0.06909262388944626, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 61542 + }, + { + "epoch": 6.320086260012323, + "grad_norm": 0.0708390325307846, + "learning_rate": 0.01, + "loss": 1.9606, + "step": 61545 + }, + { + "epoch": 6.320394331484905, + "grad_norm": 0.04191325604915619, + "learning_rate": 0.01, + "loss": 1.993, + "step": 61548 + }, + { + "epoch": 6.320702402957486, + "grad_norm": 0.04027121514081955, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 61551 + }, + { + "epoch": 6.321010474430068, + "grad_norm": 0.03705594688653946, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 61554 + }, + { + "epoch": 6.321318545902649, + "grad_norm": 0.04737750440835953, + "learning_rate": 0.01, + "loss": 1.989, + "step": 61557 + }, + { + "epoch": 6.321626617375231, + "grad_norm": 0.1080993041396141, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 61560 + }, + { + "epoch": 6.321934688847812, + "grad_norm": 0.08178503066301346, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 61563 + }, + { + "epoch": 6.322242760320394, + "grad_norm": 0.09055802971124649, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 61566 + }, + { + "epoch": 6.3225508317929755, + "grad_norm": 0.03342537209391594, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 61569 + }, + { + "epoch": 6.3228589032655576, + "grad_norm": 0.12082437425851822, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 61572 + }, + { + "epoch": 6.32316697473814, + "grad_norm": 0.05053761973977089, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 61575 + }, + { + "epoch": 6.323475046210721, + "grad_norm": 0.0372505746781826, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 61578 + }, + { + "epoch": 6.323783117683303, + "grad_norm": 0.0640554130077362, + "learning_rate": 0.01, + "loss": 1.9961, + "step": 61581 + }, + { + "epoch": 6.324091189155884, + "grad_norm": 0.04472392797470093, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 61584 + }, + { + "epoch": 6.324399260628466, + "grad_norm": 0.09325999766588211, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 61587 + }, + { + "epoch": 6.324707332101047, + "grad_norm": 0.07012490928173065, + "learning_rate": 0.01, + "loss": 1.9937, + "step": 61590 + }, + { + "epoch": 6.325015403573629, + "grad_norm": 0.13324911892414093, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 61593 + }, + { + "epoch": 6.32532347504621, + "grad_norm": 0.074961818754673, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 61596 + }, + { + "epoch": 6.3256315465187924, + "grad_norm": 0.06711915135383606, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 61599 + }, + { + "epoch": 6.325939617991374, + "grad_norm": 0.12803415954113007, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 61602 + }, + { + "epoch": 6.326247689463956, + "grad_norm": 0.07260297238826752, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 61605 + }, + { + "epoch": 6.326555760936538, + "grad_norm": 0.16781297326087952, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 61608 + }, + { + "epoch": 6.326863832409119, + "grad_norm": 0.05119356885552406, + "learning_rate": 0.01, + "loss": 2.0217, + "step": 61611 + }, + { + "epoch": 6.327171903881701, + "grad_norm": 0.05765308439731598, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 61614 + }, + { + "epoch": 6.327479975354282, + "grad_norm": 0.039318110793828964, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 61617 + }, + { + "epoch": 6.327788046826864, + "grad_norm": 0.04655304551124573, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 61620 + }, + { + "epoch": 6.328096118299445, + "grad_norm": 0.08642113953828812, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 61623 + }, + { + "epoch": 6.328404189772027, + "grad_norm": 0.04844063147902489, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 61626 + }, + { + "epoch": 6.3287122612446085, + "grad_norm": 0.058742884546518326, + "learning_rate": 0.01, + "loss": 2.0026, + "step": 61629 + }, + { + "epoch": 6.3290203327171906, + "grad_norm": 0.036662664264440536, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 61632 + }, + { + "epoch": 6.329328404189772, + "grad_norm": 0.08772391080856323, + "learning_rate": 0.01, + "loss": 2.0158, + "step": 61635 + }, + { + "epoch": 6.329636475662354, + "grad_norm": 0.06502344459295273, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 61638 + }, + { + "epoch": 6.329944547134935, + "grad_norm": 0.06459985673427582, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 61641 + }, + { + "epoch": 6.330252618607517, + "grad_norm": 0.03769855946302414, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 61644 + }, + { + "epoch": 6.330560690080098, + "grad_norm": 0.046935372054576874, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 61647 + }, + { + "epoch": 6.33086876155268, + "grad_norm": 0.04765419661998749, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 61650 + }, + { + "epoch": 6.331176833025262, + "grad_norm": 0.07804597169160843, + "learning_rate": 0.01, + "loss": 1.961, + "step": 61653 + }, + { + "epoch": 6.331484904497843, + "grad_norm": 0.04642481356859207, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 61656 + }, + { + "epoch": 6.3317929759704255, + "grad_norm": 0.11623187363147736, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 61659 + }, + { + "epoch": 6.332101047443007, + "grad_norm": 0.08578827977180481, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 61662 + }, + { + "epoch": 6.332409118915589, + "grad_norm": 0.05141110345721245, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 61665 + }, + { + "epoch": 6.33271719038817, + "grad_norm": 0.03601311147212982, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 61668 + }, + { + "epoch": 6.333025261860752, + "grad_norm": 0.06763188540935516, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 61671 + }, + { + "epoch": 6.333333333333333, + "grad_norm": 0.08627673238515854, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 61674 + }, + { + "epoch": 6.333641404805915, + "grad_norm": 0.06787147372961044, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 61677 + }, + { + "epoch": 6.333949476278496, + "grad_norm": 0.08557649701833725, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 61680 + }, + { + "epoch": 6.334257547751078, + "grad_norm": 0.08303692191839218, + "learning_rate": 0.01, + "loss": 1.9503, + "step": 61683 + }, + { + "epoch": 6.33456561922366, + "grad_norm": 0.06721941381692886, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 61686 + }, + { + "epoch": 6.3348736906962415, + "grad_norm": 0.11784909665584564, + "learning_rate": 0.01, + "loss": 1.969, + "step": 61689 + }, + { + "epoch": 6.335181762168824, + "grad_norm": 0.04680579900741577, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 61692 + }, + { + "epoch": 6.335489833641405, + "grad_norm": 0.10561893880367279, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 61695 + }, + { + "epoch": 6.335797905113987, + "grad_norm": 0.10209949314594269, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 61698 + }, + { + "epoch": 6.336105976586568, + "grad_norm": 0.0697985514998436, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 61701 + }, + { + "epoch": 6.33641404805915, + "grad_norm": 0.04770383983850479, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 61704 + }, + { + "epoch": 6.336722119531731, + "grad_norm": 0.03596745431423187, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 61707 + }, + { + "epoch": 6.337030191004313, + "grad_norm": 0.05980326980352402, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 61710 + }, + { + "epoch": 6.337338262476894, + "grad_norm": 0.04213361069560051, + "learning_rate": 0.01, + "loss": 1.987, + "step": 61713 + }, + { + "epoch": 6.337646333949476, + "grad_norm": 0.12276975810527802, + "learning_rate": 0.01, + "loss": 1.9571, + "step": 61716 + }, + { + "epoch": 6.337954405422058, + "grad_norm": 0.04725951328873634, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 61719 + }, + { + "epoch": 6.33826247689464, + "grad_norm": 0.08252322673797607, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 61722 + }, + { + "epoch": 6.338570548367221, + "grad_norm": 0.12866702675819397, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 61725 + }, + { + "epoch": 6.338878619839803, + "grad_norm": 0.11567038297653198, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 61728 + }, + { + "epoch": 6.339186691312385, + "grad_norm": 0.048908136785030365, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 61731 + }, + { + "epoch": 6.339494762784966, + "grad_norm": 0.04868915677070618, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 61734 + }, + { + "epoch": 6.339802834257548, + "grad_norm": 0.03802793473005295, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 61737 + }, + { + "epoch": 6.340110905730129, + "grad_norm": 0.040892910212278366, + "learning_rate": 0.01, + "loss": 1.9691, + "step": 61740 + }, + { + "epoch": 6.340418977202711, + "grad_norm": 0.057897284626960754, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 61743 + }, + { + "epoch": 6.3407270486752925, + "grad_norm": 0.034404922276735306, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 61746 + }, + { + "epoch": 6.3410351201478745, + "grad_norm": 0.05493491142988205, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 61749 + }, + { + "epoch": 6.341343191620456, + "grad_norm": 0.09743682295084, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 61752 + }, + { + "epoch": 6.341651263093038, + "grad_norm": 0.06471186131238937, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 61755 + }, + { + "epoch": 6.341959334565619, + "grad_norm": 0.07594270259141922, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 61758 + }, + { + "epoch": 6.342267406038201, + "grad_norm": 0.05741607025265694, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 61761 + }, + { + "epoch": 6.342575477510782, + "grad_norm": 0.07117846608161926, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 61764 + }, + { + "epoch": 6.342883548983364, + "grad_norm": 0.08182870596647263, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 61767 + }, + { + "epoch": 6.343191620455945, + "grad_norm": 0.06772911548614502, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 61770 + }, + { + "epoch": 6.343499691928527, + "grad_norm": 0.04902360588312149, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 61773 + }, + { + "epoch": 6.343807763401109, + "grad_norm": 0.12090668827295303, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 61776 + }, + { + "epoch": 6.344115834873691, + "grad_norm": 0.04338901489973068, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 61779 + }, + { + "epoch": 6.344423906346273, + "grad_norm": 0.07592718303203583, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 61782 + }, + { + "epoch": 6.344731977818854, + "grad_norm": 0.0540313795208931, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 61785 + }, + { + "epoch": 6.345040049291436, + "grad_norm": 0.10975626856088638, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 61788 + }, + { + "epoch": 6.345348120764017, + "grad_norm": 0.1409357637166977, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 61791 + }, + { + "epoch": 6.345656192236599, + "grad_norm": 0.10727324336767197, + "learning_rate": 0.01, + "loss": 1.9466, + "step": 61794 + }, + { + "epoch": 6.34596426370918, + "grad_norm": 0.08473125845193863, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 61797 + }, + { + "epoch": 6.346272335181762, + "grad_norm": 0.06947775185108185, + "learning_rate": 0.01, + "loss": 1.979, + "step": 61800 + }, + { + "epoch": 6.346580406654343, + "grad_norm": 0.06887286901473999, + "learning_rate": 0.01, + "loss": 1.979, + "step": 61803 + }, + { + "epoch": 6.3468884781269255, + "grad_norm": 0.08204744011163712, + "learning_rate": 0.01, + "loss": 1.9594, + "step": 61806 + }, + { + "epoch": 6.3471965495995075, + "grad_norm": 0.06321869790554047, + "learning_rate": 0.01, + "loss": 1.9524, + "step": 61809 + }, + { + "epoch": 6.347504621072089, + "grad_norm": 0.06997507065534592, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 61812 + }, + { + "epoch": 6.347812692544671, + "grad_norm": 0.04468904808163643, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 61815 + }, + { + "epoch": 6.348120764017252, + "grad_norm": 0.07359863072633743, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 61818 + }, + { + "epoch": 6.348428835489834, + "grad_norm": 0.08013535290956497, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 61821 + }, + { + "epoch": 6.348736906962415, + "grad_norm": 0.08246944099664688, + "learning_rate": 0.01, + "loss": 1.9988, + "step": 61824 + }, + { + "epoch": 6.349044978434997, + "grad_norm": 0.05869217962026596, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 61827 + }, + { + "epoch": 6.349353049907578, + "grad_norm": 0.04672044888138771, + "learning_rate": 0.01, + "loss": 1.9645, + "step": 61830 + }, + { + "epoch": 6.34966112138016, + "grad_norm": 0.03837782144546509, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 61833 + }, + { + "epoch": 6.3499691928527415, + "grad_norm": 0.04574459418654442, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 61836 + }, + { + "epoch": 6.350277264325324, + "grad_norm": 0.03845152631402016, + "learning_rate": 0.01, + "loss": 1.9607, + "step": 61839 + }, + { + "epoch": 6.350585335797905, + "grad_norm": 0.03869105130434036, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 61842 + }, + { + "epoch": 6.350893407270487, + "grad_norm": 0.08753649145364761, + "learning_rate": 0.01, + "loss": 2.0112, + "step": 61845 + }, + { + "epoch": 6.351201478743068, + "grad_norm": 0.05175444483757019, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 61848 + }, + { + "epoch": 6.35150955021565, + "grad_norm": 0.08007702976465225, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 61851 + }, + { + "epoch": 6.351817621688232, + "grad_norm": 0.08175135403871536, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 61854 + }, + { + "epoch": 6.352125693160813, + "grad_norm": 0.042124420404434204, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 61857 + }, + { + "epoch": 6.352433764633395, + "grad_norm": 0.030145036056637764, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 61860 + }, + { + "epoch": 6.352741836105976, + "grad_norm": 0.05578388646245003, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 61863 + }, + { + "epoch": 6.3530499075785585, + "grad_norm": 0.06224137172102928, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 61866 + }, + { + "epoch": 6.35335797905114, + "grad_norm": 0.03723108768463135, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 61869 + }, + { + "epoch": 6.353666050523722, + "grad_norm": 0.05681099742650986, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 61872 + }, + { + "epoch": 6.353974121996303, + "grad_norm": 0.06745577603578568, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 61875 + }, + { + "epoch": 6.354282193468885, + "grad_norm": 0.17442718148231506, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 61878 + }, + { + "epoch": 6.354590264941466, + "grad_norm": 0.07263945788145065, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 61881 + }, + { + "epoch": 6.354898336414048, + "grad_norm": 0.047694019973278046, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 61884 + }, + { + "epoch": 6.35520640788663, + "grad_norm": 0.03988689184188843, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 61887 + }, + { + "epoch": 6.355514479359211, + "grad_norm": 0.06448500603437424, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 61890 + }, + { + "epoch": 6.355822550831793, + "grad_norm": 0.09949947893619537, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 61893 + }, + { + "epoch": 6.3561306223043745, + "grad_norm": 0.04593118652701378, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 61896 + }, + { + "epoch": 6.356438693776957, + "grad_norm": 0.05074120685458183, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 61899 + }, + { + "epoch": 6.356746765249538, + "grad_norm": 0.044762320816516876, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 61902 + }, + { + "epoch": 6.35705483672212, + "grad_norm": 0.04705975204706192, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 61905 + }, + { + "epoch": 6.357362908194701, + "grad_norm": 0.03957728296518326, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 61908 + }, + { + "epoch": 6.357670979667283, + "grad_norm": 0.050351545214653015, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 61911 + }, + { + "epoch": 6.357979051139864, + "grad_norm": 0.05305488035082817, + "learning_rate": 0.01, + "loss": 1.9602, + "step": 61914 + }, + { + "epoch": 6.358287122612446, + "grad_norm": 0.03815659508109093, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 61917 + }, + { + "epoch": 6.358595194085027, + "grad_norm": 0.09699538350105286, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 61920 + }, + { + "epoch": 6.358903265557609, + "grad_norm": 0.13865162432193756, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 61923 + }, + { + "epoch": 6.359211337030191, + "grad_norm": 0.0713433250784874, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 61926 + }, + { + "epoch": 6.359519408502773, + "grad_norm": 0.06301635503768921, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 61929 + }, + { + "epoch": 6.359827479975355, + "grad_norm": 0.06763561815023422, + "learning_rate": 0.01, + "loss": 2.0041, + "step": 61932 + }, + { + "epoch": 6.360135551447936, + "grad_norm": 0.051800407469272614, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 61935 + }, + { + "epoch": 6.360443622920518, + "grad_norm": 0.07054926455020905, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 61938 + }, + { + "epoch": 6.360751694393099, + "grad_norm": 0.09424702078104019, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 61941 + }, + { + "epoch": 6.361059765865681, + "grad_norm": 0.06715767085552216, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 61944 + }, + { + "epoch": 6.361367837338262, + "grad_norm": 0.052323173731565475, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 61947 + }, + { + "epoch": 6.361675908810844, + "grad_norm": 0.04951905459165573, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 61950 + }, + { + "epoch": 6.3619839802834255, + "grad_norm": 0.056527990847826004, + "learning_rate": 0.01, + "loss": 1.9546, + "step": 61953 + }, + { + "epoch": 6.3622920517560075, + "grad_norm": 0.04317193478345871, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 61956 + }, + { + "epoch": 6.362600123228589, + "grad_norm": 0.07142667472362518, + "learning_rate": 0.01, + "loss": 1.9552, + "step": 61959 + }, + { + "epoch": 6.362908194701171, + "grad_norm": 0.087591253221035, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 61962 + }, + { + "epoch": 6.363216266173752, + "grad_norm": 0.044100482016801834, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 61965 + }, + { + "epoch": 6.363524337646334, + "grad_norm": 0.05616932362318039, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 61968 + }, + { + "epoch": 6.363832409118915, + "grad_norm": 0.05864831432700157, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 61971 + }, + { + "epoch": 6.364140480591497, + "grad_norm": 0.04249054566025734, + "learning_rate": 0.01, + "loss": 1.992, + "step": 61974 + }, + { + "epoch": 6.364448552064079, + "grad_norm": 0.047203633934259415, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 61977 + }, + { + "epoch": 6.36475662353666, + "grad_norm": 0.0450938381254673, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 61980 + }, + { + "epoch": 6.365064695009242, + "grad_norm": 0.13708913326263428, + "learning_rate": 0.01, + "loss": 1.97, + "step": 61983 + }, + { + "epoch": 6.365372766481824, + "grad_norm": 0.0903947725892067, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 61986 + }, + { + "epoch": 6.365680837954406, + "grad_norm": 0.039598993957042694, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 61989 + }, + { + "epoch": 6.365988909426987, + "grad_norm": 0.06196282058954239, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 61992 + }, + { + "epoch": 6.366296980899569, + "grad_norm": 0.058830760419368744, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 61995 + }, + { + "epoch": 6.36660505237215, + "grad_norm": 0.03394271805882454, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 61998 + }, + { + "epoch": 6.366913123844732, + "grad_norm": 0.11069590598344803, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 62001 + }, + { + "epoch": 6.367221195317313, + "grad_norm": 0.03749784827232361, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 62004 + }, + { + "epoch": 6.367529266789895, + "grad_norm": 0.06352918595075607, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 62007 + }, + { + "epoch": 6.367837338262477, + "grad_norm": 0.037357673048973083, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 62010 + }, + { + "epoch": 6.3681454097350585, + "grad_norm": 0.09099667519330978, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 62013 + }, + { + "epoch": 6.3684534812076405, + "grad_norm": 0.054853178560733795, + "learning_rate": 0.01, + "loss": 2.0031, + "step": 62016 + }, + { + "epoch": 6.368761552680222, + "grad_norm": 0.04815756157040596, + "learning_rate": 0.01, + "loss": 1.9458, + "step": 62019 + }, + { + "epoch": 6.369069624152804, + "grad_norm": 0.12704138457775116, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 62022 + }, + { + "epoch": 6.369377695625385, + "grad_norm": 0.1324865221977234, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 62025 + }, + { + "epoch": 6.369685767097967, + "grad_norm": 0.10938073694705963, + "learning_rate": 0.01, + "loss": 1.971, + "step": 62028 + }, + { + "epoch": 6.369993838570548, + "grad_norm": 0.055503327399492264, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 62031 + }, + { + "epoch": 6.37030191004313, + "grad_norm": 0.049480196088552475, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 62034 + }, + { + "epoch": 6.370609981515711, + "grad_norm": 0.04294247552752495, + "learning_rate": 0.01, + "loss": 1.9979, + "step": 62037 + }, + { + "epoch": 6.370918052988293, + "grad_norm": 0.03694196790456772, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 62040 + }, + { + "epoch": 6.3712261244608746, + "grad_norm": 0.08281165361404419, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 62043 + }, + { + "epoch": 6.371534195933457, + "grad_norm": 0.05012732744216919, + "learning_rate": 0.01, + "loss": 1.9971, + "step": 62046 + }, + { + "epoch": 6.371842267406038, + "grad_norm": 0.06646348536014557, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 62049 + }, + { + "epoch": 6.37215033887862, + "grad_norm": 0.046320248395204544, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 62052 + }, + { + "epoch": 6.372458410351202, + "grad_norm": 0.13739866018295288, + "learning_rate": 0.01, + "loss": 1.9592, + "step": 62055 + }, + { + "epoch": 6.372766481823783, + "grad_norm": 0.10860442370176315, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 62058 + }, + { + "epoch": 6.373074553296365, + "grad_norm": 0.1861836165189743, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 62061 + }, + { + "epoch": 6.373382624768946, + "grad_norm": 0.07088860869407654, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 62064 + }, + { + "epoch": 6.373690696241528, + "grad_norm": 0.055799081921577454, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 62067 + }, + { + "epoch": 6.3739987677141094, + "grad_norm": 0.08463507890701294, + "learning_rate": 0.01, + "loss": 1.988, + "step": 62070 + }, + { + "epoch": 6.3743068391866915, + "grad_norm": 0.07785413414239883, + "learning_rate": 0.01, + "loss": 1.9594, + "step": 62073 + }, + { + "epoch": 6.374614910659273, + "grad_norm": 0.042249925434589386, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 62076 + }, + { + "epoch": 6.374922982131855, + "grad_norm": 0.08121603727340698, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 62079 + }, + { + "epoch": 6.375231053604436, + "grad_norm": 0.08757340908050537, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 62082 + }, + { + "epoch": 6.375539125077018, + "grad_norm": 0.11189188808202744, + "learning_rate": 0.01, + "loss": 1.9862, + "step": 62085 + }, + { + "epoch": 6.3758471965496, + "grad_norm": 0.04559013247489929, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 62088 + }, + { + "epoch": 6.376155268022181, + "grad_norm": 0.044948089867830276, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 62091 + }, + { + "epoch": 6.376463339494763, + "grad_norm": 0.030356265604496002, + "learning_rate": 0.01, + "loss": 1.9504, + "step": 62094 + }, + { + "epoch": 6.376771410967344, + "grad_norm": 0.12627916038036346, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 62097 + }, + { + "epoch": 6.377079482439926, + "grad_norm": 0.046097807586193085, + "learning_rate": 0.01, + "loss": 1.968, + "step": 62100 + }, + { + "epoch": 6.377387553912508, + "grad_norm": 0.057985857129096985, + "learning_rate": 0.01, + "loss": 2.0091, + "step": 62103 + }, + { + "epoch": 6.37769562538509, + "grad_norm": 0.07194691151380539, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 62106 + }, + { + "epoch": 6.378003696857671, + "grad_norm": 0.07052842527627945, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 62109 + }, + { + "epoch": 6.378311768330253, + "grad_norm": 0.0420130155980587, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 62112 + }, + { + "epoch": 6.378619839802834, + "grad_norm": 0.08693109452724457, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 62115 + }, + { + "epoch": 6.378927911275416, + "grad_norm": 0.05671975761651993, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 62118 + }, + { + "epoch": 6.379235982747997, + "grad_norm": 0.04355829954147339, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 62121 + }, + { + "epoch": 6.379544054220579, + "grad_norm": 0.045782145112752914, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 62124 + }, + { + "epoch": 6.37985212569316, + "grad_norm": 0.07497083395719528, + "learning_rate": 0.01, + "loss": 1.994, + "step": 62127 + }, + { + "epoch": 6.3801601971657425, + "grad_norm": 0.067107655107975, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 62130 + }, + { + "epoch": 6.3804682686383245, + "grad_norm": 0.10962393879890442, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 62133 + }, + { + "epoch": 6.380776340110906, + "grad_norm": 0.128241628408432, + "learning_rate": 0.01, + "loss": 1.96, + "step": 62136 + }, + { + "epoch": 6.381084411583488, + "grad_norm": 0.03978749364614487, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 62139 + }, + { + "epoch": 6.381392483056069, + "grad_norm": 0.0986032783985138, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 62142 + }, + { + "epoch": 6.381700554528651, + "grad_norm": 0.05384555831551552, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 62145 + }, + { + "epoch": 6.382008626001232, + "grad_norm": 0.08981155604124069, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 62148 + }, + { + "epoch": 6.382316697473814, + "grad_norm": 0.14535114169120789, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 62151 + }, + { + "epoch": 6.382624768946395, + "grad_norm": 0.11009112000465393, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 62154 + }, + { + "epoch": 6.382932840418977, + "grad_norm": 0.07238960266113281, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 62157 + }, + { + "epoch": 6.3832409118915585, + "grad_norm": 0.0916430875658989, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 62160 + }, + { + "epoch": 6.383548983364141, + "grad_norm": 0.0457562655210495, + "learning_rate": 0.01, + "loss": 1.979, + "step": 62163 + }, + { + "epoch": 6.383857054836722, + "grad_norm": 0.09100457280874252, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 62166 + }, + { + "epoch": 6.384165126309304, + "grad_norm": 0.06494874507188797, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 62169 + }, + { + "epoch": 6.384473197781885, + "grad_norm": 0.06534988433122635, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 62172 + }, + { + "epoch": 6.384781269254467, + "grad_norm": 0.04221831634640694, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 62175 + }, + { + "epoch": 6.385089340727049, + "grad_norm": 0.1350170373916626, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 62178 + }, + { + "epoch": 6.38539741219963, + "grad_norm": 0.10296313464641571, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 62181 + }, + { + "epoch": 6.385705483672212, + "grad_norm": 0.052958227694034576, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 62184 + }, + { + "epoch": 6.386013555144793, + "grad_norm": 0.046673450618982315, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 62187 + }, + { + "epoch": 6.3863216266173755, + "grad_norm": 0.052400704473257065, + "learning_rate": 0.01, + "loss": 1.9459, + "step": 62190 + }, + { + "epoch": 6.386629698089957, + "grad_norm": 0.05483454838395119, + "learning_rate": 0.01, + "loss": 1.9565, + "step": 62193 + }, + { + "epoch": 6.386937769562539, + "grad_norm": 0.04824971407651901, + "learning_rate": 0.01, + "loss": 1.9547, + "step": 62196 + }, + { + "epoch": 6.38724584103512, + "grad_norm": 0.04102877154946327, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 62199 + }, + { + "epoch": 6.387553912507702, + "grad_norm": 0.052934035658836365, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 62202 + }, + { + "epoch": 6.387861983980283, + "grad_norm": 0.13166899979114532, + "learning_rate": 0.01, + "loss": 2.0194, + "step": 62205 + }, + { + "epoch": 6.388170055452865, + "grad_norm": 0.06457889080047607, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 62208 + }, + { + "epoch": 6.388478126925447, + "grad_norm": 0.061608802527189255, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 62211 + }, + { + "epoch": 6.388786198398028, + "grad_norm": 0.03722333163022995, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 62214 + }, + { + "epoch": 6.38909426987061, + "grad_norm": 0.03712205961346626, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 62217 + }, + { + "epoch": 6.3894023413431915, + "grad_norm": 0.10517171770334244, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 62220 + }, + { + "epoch": 6.389710412815774, + "grad_norm": 0.07701227068901062, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 62223 + }, + { + "epoch": 6.390018484288355, + "grad_norm": 0.13547784090042114, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 62226 + }, + { + "epoch": 6.390326555760937, + "grad_norm": 0.11633336544036865, + "learning_rate": 0.01, + "loss": 2.0137, + "step": 62229 + }, + { + "epoch": 6.390634627233518, + "grad_norm": 0.09636779129505157, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 62232 + }, + { + "epoch": 6.3909426987061, + "grad_norm": 0.08367501944303513, + "learning_rate": 0.01, + "loss": 1.9637, + "step": 62235 + }, + { + "epoch": 6.391250770178681, + "grad_norm": 0.06181328743696213, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 62238 + }, + { + "epoch": 6.391558841651263, + "grad_norm": 0.08050753176212311, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 62241 + }, + { + "epoch": 6.391866913123844, + "grad_norm": 0.04931900277733803, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 62244 + }, + { + "epoch": 6.392174984596426, + "grad_norm": 0.050407491624355316, + "learning_rate": 0.01, + "loss": 2.001, + "step": 62247 + }, + { + "epoch": 6.392483056069008, + "grad_norm": 0.03501970320940018, + "learning_rate": 0.01, + "loss": 1.9427, + "step": 62250 + }, + { + "epoch": 6.39279112754159, + "grad_norm": 0.04515289515256882, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 62253 + }, + { + "epoch": 6.393099199014172, + "grad_norm": 0.07897801697254181, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 62256 + }, + { + "epoch": 6.393407270486753, + "grad_norm": 0.09098079800605774, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 62259 + }, + { + "epoch": 6.393715341959335, + "grad_norm": 0.046846143901348114, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 62262 + }, + { + "epoch": 6.394023413431916, + "grad_norm": 0.08435478061437607, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 62265 + }, + { + "epoch": 6.394331484904498, + "grad_norm": 0.04902444779872894, + "learning_rate": 0.01, + "loss": 2.0083, + "step": 62268 + }, + { + "epoch": 6.394639556377079, + "grad_norm": 0.053175996989011765, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 62271 + }, + { + "epoch": 6.394947627849661, + "grad_norm": 0.04319942370057106, + "learning_rate": 0.01, + "loss": 1.957, + "step": 62274 + }, + { + "epoch": 6.3952556993222425, + "grad_norm": 0.056976351886987686, + "learning_rate": 0.01, + "loss": 1.979, + "step": 62277 + }, + { + "epoch": 6.3955637707948245, + "grad_norm": 0.12992046773433685, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 62280 + }, + { + "epoch": 6.395871842267406, + "grad_norm": 0.0788559541106224, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 62283 + }, + { + "epoch": 6.396179913739988, + "grad_norm": 0.039425671100616455, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 62286 + }, + { + "epoch": 6.39648798521257, + "grad_norm": 0.0928255170583725, + "learning_rate": 0.01, + "loss": 1.976, + "step": 62289 + }, + { + "epoch": 6.396796056685151, + "grad_norm": 0.06437569856643677, + "learning_rate": 0.01, + "loss": 2.011, + "step": 62292 + }, + { + "epoch": 6.397104128157733, + "grad_norm": 0.05675747990608215, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 62295 + }, + { + "epoch": 6.397412199630314, + "grad_norm": 0.06161409988999367, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 62298 + }, + { + "epoch": 6.397720271102896, + "grad_norm": 0.035643287003040314, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 62301 + }, + { + "epoch": 6.398028342575477, + "grad_norm": 0.06932775676250458, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 62304 + }, + { + "epoch": 6.398336414048059, + "grad_norm": 0.1191667765378952, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 62307 + }, + { + "epoch": 6.398644485520641, + "grad_norm": 0.06702014803886414, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 62310 + }, + { + "epoch": 6.398952556993223, + "grad_norm": 0.045102011412382126, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 62313 + }, + { + "epoch": 6.399260628465804, + "grad_norm": 0.042483970522880554, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 62316 + }, + { + "epoch": 6.399568699938386, + "grad_norm": 0.035098928958177567, + "learning_rate": 0.01, + "loss": 1.9512, + "step": 62319 + }, + { + "epoch": 6.399876771410967, + "grad_norm": 0.05023285374045372, + "learning_rate": 0.01, + "loss": 1.9571, + "step": 62322 + }, + { + "epoch": 6.400184842883549, + "grad_norm": 0.14267301559448242, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 62325 + }, + { + "epoch": 6.40049291435613, + "grad_norm": 0.12871447205543518, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 62328 + }, + { + "epoch": 6.400800985828712, + "grad_norm": 0.18785615265369415, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 62331 + }, + { + "epoch": 6.401109057301294, + "grad_norm": 0.14859537780284882, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 62334 + }, + { + "epoch": 6.4014171287738755, + "grad_norm": 0.10787920653820038, + "learning_rate": 0.01, + "loss": 1.979, + "step": 62337 + }, + { + "epoch": 6.4017252002464575, + "grad_norm": 0.0459236241877079, + "learning_rate": 0.01, + "loss": 1.9536, + "step": 62340 + }, + { + "epoch": 6.402033271719039, + "grad_norm": 0.04476577043533325, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 62343 + }, + { + "epoch": 6.402341343191621, + "grad_norm": 0.04856594651937485, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 62346 + }, + { + "epoch": 6.402649414664202, + "grad_norm": 0.047260161489248276, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 62349 + }, + { + "epoch": 6.402957486136784, + "grad_norm": 0.05097677931189537, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 62352 + }, + { + "epoch": 6.403265557609365, + "grad_norm": 0.10697360336780548, + "learning_rate": 0.01, + "loss": 1.9619, + "step": 62355 + }, + { + "epoch": 6.403573629081947, + "grad_norm": 0.11435877531766891, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 62358 + }, + { + "epoch": 6.403881700554528, + "grad_norm": 0.036153070628643036, + "learning_rate": 0.01, + "loss": 1.9515, + "step": 62361 + }, + { + "epoch": 6.40418977202711, + "grad_norm": 0.07002195715904236, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 62364 + }, + { + "epoch": 6.4044978434996915, + "grad_norm": 0.05492027476429939, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 62367 + }, + { + "epoch": 6.404805914972274, + "grad_norm": 0.06763515621423721, + "learning_rate": 0.01, + "loss": 1.97, + "step": 62370 + }, + { + "epoch": 6.405113986444855, + "grad_norm": 0.03954880312085152, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 62373 + }, + { + "epoch": 6.405422057917437, + "grad_norm": 0.06005239859223366, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 62376 + }, + { + "epoch": 6.405730129390019, + "grad_norm": 0.06014340743422508, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 62379 + }, + { + "epoch": 6.4060382008626, + "grad_norm": 0.05861683562397957, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 62382 + }, + { + "epoch": 6.406346272335182, + "grad_norm": 0.07609166949987411, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 62385 + }, + { + "epoch": 6.406654343807763, + "grad_norm": 0.08934800326824188, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 62388 + }, + { + "epoch": 6.406962415280345, + "grad_norm": 0.14556893706321716, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 62391 + }, + { + "epoch": 6.407270486752926, + "grad_norm": 0.07740515470504761, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 62394 + }, + { + "epoch": 6.4075785582255085, + "grad_norm": 0.04366164281964302, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 62397 + }, + { + "epoch": 6.40788662969809, + "grad_norm": 0.04770512506365776, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 62400 + }, + { + "epoch": 6.408194701170672, + "grad_norm": 0.04657142981886864, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 62403 + }, + { + "epoch": 6.408502772643253, + "grad_norm": 0.04207182675600052, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 62406 + }, + { + "epoch": 6.408810844115835, + "grad_norm": 0.05520906671881676, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 62409 + }, + { + "epoch": 6.409118915588417, + "grad_norm": 0.07524003833532333, + "learning_rate": 0.01, + "loss": 2.0114, + "step": 62412 + }, + { + "epoch": 6.409426987060998, + "grad_norm": 0.04558379203081131, + "learning_rate": 0.01, + "loss": 1.99, + "step": 62415 + }, + { + "epoch": 6.40973505853358, + "grad_norm": 0.09892844408750534, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 62418 + }, + { + "epoch": 6.410043130006161, + "grad_norm": 0.07591421902179718, + "learning_rate": 0.01, + "loss": 1.9601, + "step": 62421 + }, + { + "epoch": 6.410351201478743, + "grad_norm": 0.09021826833486557, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 62424 + }, + { + "epoch": 6.4106592729513245, + "grad_norm": 0.043195899575948715, + "learning_rate": 0.01, + "loss": 1.9557, + "step": 62427 + }, + { + "epoch": 6.410967344423907, + "grad_norm": 0.10521116852760315, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 62430 + }, + { + "epoch": 6.411275415896488, + "grad_norm": 0.061183419078588486, + "learning_rate": 0.01, + "loss": 2.0113, + "step": 62433 + }, + { + "epoch": 6.41158348736907, + "grad_norm": 0.0777936577796936, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 62436 + }, + { + "epoch": 6.411891558841651, + "grad_norm": 0.07783685624599457, + "learning_rate": 0.01, + "loss": 1.9624, + "step": 62439 + }, + { + "epoch": 6.412199630314233, + "grad_norm": 0.10137835890054703, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 62442 + }, + { + "epoch": 6.412507701786814, + "grad_norm": 0.07583697885274887, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 62445 + }, + { + "epoch": 6.412815773259396, + "grad_norm": 0.05925040692090988, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 62448 + }, + { + "epoch": 6.413123844731977, + "grad_norm": 0.07420961558818817, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 62451 + }, + { + "epoch": 6.413431916204559, + "grad_norm": 0.07555720955133438, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 62454 + }, + { + "epoch": 6.4137399876771415, + "grad_norm": 0.05991441011428833, + "learning_rate": 0.01, + "loss": 1.9469, + "step": 62457 + }, + { + "epoch": 6.414048059149723, + "grad_norm": 0.04959188401699066, + "learning_rate": 0.01, + "loss": 1.9636, + "step": 62460 + }, + { + "epoch": 6.414356130622305, + "grad_norm": 0.09466046094894409, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 62463 + }, + { + "epoch": 6.414664202094886, + "grad_norm": 0.08828117698431015, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 62466 + }, + { + "epoch": 6.414972273567468, + "grad_norm": 0.0796947106719017, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 62469 + }, + { + "epoch": 6.415280345040049, + "grad_norm": 0.09187500178813934, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 62472 + }, + { + "epoch": 6.415588416512631, + "grad_norm": 0.032242316752672195, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 62475 + }, + { + "epoch": 6.415896487985212, + "grad_norm": 0.08650948852300644, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 62478 + }, + { + "epoch": 6.416204559457794, + "grad_norm": 0.07760648429393768, + "learning_rate": 0.01, + "loss": 1.985, + "step": 62481 + }, + { + "epoch": 6.4165126309303755, + "grad_norm": 0.10039196908473969, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 62484 + }, + { + "epoch": 6.4168207024029575, + "grad_norm": 0.06620651483535767, + "learning_rate": 0.01, + "loss": 1.984, + "step": 62487 + }, + { + "epoch": 6.41712877387554, + "grad_norm": 0.07534004002809525, + "learning_rate": 0.01, + "loss": 1.975, + "step": 62490 + }, + { + "epoch": 6.417436845348121, + "grad_norm": 0.04290451481938362, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 62493 + }, + { + "epoch": 6.417744916820703, + "grad_norm": 0.040604498237371445, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 62496 + }, + { + "epoch": 6.418052988293284, + "grad_norm": 0.04257834702730179, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 62499 + }, + { + "epoch": 6.418361059765866, + "grad_norm": 0.06738926470279694, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 62502 + }, + { + "epoch": 6.418669131238447, + "grad_norm": 0.05635688826441765, + "learning_rate": 0.01, + "loss": 2.0168, + "step": 62505 + }, + { + "epoch": 6.418977202711029, + "grad_norm": 0.10578261315822601, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 62508 + }, + { + "epoch": 6.41928527418361, + "grad_norm": 0.08642464131116867, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 62511 + }, + { + "epoch": 6.419593345656192, + "grad_norm": 0.036675188690423965, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 62514 + }, + { + "epoch": 6.419901417128774, + "grad_norm": 0.14191675186157227, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 62517 + }, + { + "epoch": 6.420209488601356, + "grad_norm": 0.13353928923606873, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 62520 + }, + { + "epoch": 6.420517560073937, + "grad_norm": 0.06307082623243332, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 62523 + }, + { + "epoch": 6.420825631546519, + "grad_norm": 0.04877189174294472, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 62526 + }, + { + "epoch": 6.4211337030191, + "grad_norm": 0.07062195241451263, + "learning_rate": 0.01, + "loss": 1.9535, + "step": 62529 + }, + { + "epoch": 6.421441774491682, + "grad_norm": 0.03799920529127121, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 62532 + }, + { + "epoch": 6.421749845964264, + "grad_norm": 0.0635172426700592, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 62535 + }, + { + "epoch": 6.422057917436845, + "grad_norm": 0.04074868932366371, + "learning_rate": 0.01, + "loss": 1.956, + "step": 62538 + }, + { + "epoch": 6.422365988909427, + "grad_norm": 0.1227545514702797, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 62541 + }, + { + "epoch": 6.4226740603820085, + "grad_norm": 0.10859929770231247, + "learning_rate": 0.01, + "loss": 1.9823, + "step": 62544 + }, + { + "epoch": 6.4229821318545905, + "grad_norm": 0.10589033365249634, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 62547 + }, + { + "epoch": 6.423290203327172, + "grad_norm": 0.1324671059846878, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 62550 + }, + { + "epoch": 6.423598274799754, + "grad_norm": 0.0601799450814724, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 62553 + }, + { + "epoch": 6.423906346272335, + "grad_norm": 0.05349354445934296, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 62556 + }, + { + "epoch": 6.424214417744917, + "grad_norm": 0.03839118406176567, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 62559 + }, + { + "epoch": 6.424522489217498, + "grad_norm": 0.035764630883932114, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 62562 + }, + { + "epoch": 6.42483056069008, + "grad_norm": 0.05545911565423012, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 62565 + }, + { + "epoch": 6.425138632162661, + "grad_norm": 0.044913556426763535, + "learning_rate": 0.01, + "loss": 1.9601, + "step": 62568 + }, + { + "epoch": 6.425446703635243, + "grad_norm": 0.040859974920749664, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 62571 + }, + { + "epoch": 6.425754775107825, + "grad_norm": 0.04757828265428543, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 62574 + }, + { + "epoch": 6.426062846580407, + "grad_norm": 0.0439058393239975, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 62577 + }, + { + "epoch": 6.426370918052989, + "grad_norm": 0.059357352554798126, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 62580 + }, + { + "epoch": 6.42667898952557, + "grad_norm": 0.1129942387342453, + "learning_rate": 0.01, + "loss": 1.957, + "step": 62583 + }, + { + "epoch": 6.426987060998152, + "grad_norm": 0.09056062996387482, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 62586 + }, + { + "epoch": 6.427295132470733, + "grad_norm": 0.05224711075425148, + "learning_rate": 0.01, + "loss": 1.9771, + "step": 62589 + }, + { + "epoch": 6.427603203943315, + "grad_norm": 0.03806770220398903, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 62592 + }, + { + "epoch": 6.427911275415896, + "grad_norm": 0.045875824987888336, + "learning_rate": 0.01, + "loss": 1.9619, + "step": 62595 + }, + { + "epoch": 6.428219346888478, + "grad_norm": 0.054107557982206345, + "learning_rate": 0.01, + "loss": 1.9426, + "step": 62598 + }, + { + "epoch": 6.4285274183610595, + "grad_norm": 0.049330100417137146, + "learning_rate": 0.01, + "loss": 1.9399, + "step": 62601 + }, + { + "epoch": 6.4288354898336415, + "grad_norm": 0.09636044502258301, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 62604 + }, + { + "epoch": 6.429143561306223, + "grad_norm": 0.06452757120132446, + "learning_rate": 0.01, + "loss": 1.9612, + "step": 62607 + }, + { + "epoch": 6.429451632778805, + "grad_norm": 0.04598628729581833, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 62610 + }, + { + "epoch": 6.429759704251387, + "grad_norm": 0.06763578951358795, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 62613 + }, + { + "epoch": 6.430067775723968, + "grad_norm": 0.12232638895511627, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 62616 + }, + { + "epoch": 6.43037584719655, + "grad_norm": 0.09073688089847565, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 62619 + }, + { + "epoch": 6.430683918669131, + "grad_norm": 0.08724263310432434, + "learning_rate": 0.01, + "loss": 1.9629, + "step": 62622 + }, + { + "epoch": 6.430991990141713, + "grad_norm": 0.11307045817375183, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 62625 + }, + { + "epoch": 6.431300061614294, + "grad_norm": 0.037230703979730606, + "learning_rate": 0.01, + "loss": 1.9507, + "step": 62628 + }, + { + "epoch": 6.431608133086876, + "grad_norm": 0.06643498688936234, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 62631 + }, + { + "epoch": 6.431916204559458, + "grad_norm": 0.04486044496297836, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 62634 + }, + { + "epoch": 6.43222427603204, + "grad_norm": 0.03463894501328468, + "learning_rate": 0.01, + "loss": 2.0016, + "step": 62637 + }, + { + "epoch": 6.432532347504621, + "grad_norm": 0.04060268774628639, + "learning_rate": 0.01, + "loss": 1.975, + "step": 62640 + }, + { + "epoch": 6.432840418977203, + "grad_norm": 0.11157824844121933, + "learning_rate": 0.01, + "loss": 1.9548, + "step": 62643 + }, + { + "epoch": 6.433148490449784, + "grad_norm": 0.05599267780780792, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 62646 + }, + { + "epoch": 6.433456561922366, + "grad_norm": 0.05528303235769272, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 62649 + }, + { + "epoch": 6.433764633394947, + "grad_norm": 0.053959596902132034, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 62652 + }, + { + "epoch": 6.434072704867529, + "grad_norm": 0.06588397920131683, + "learning_rate": 0.01, + "loss": 1.989, + "step": 62655 + }, + { + "epoch": 6.434380776340111, + "grad_norm": 0.058823537081480026, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 62658 + }, + { + "epoch": 6.4346888478126925, + "grad_norm": 0.1689031720161438, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 62661 + }, + { + "epoch": 6.4349969192852745, + "grad_norm": 0.09005407243967056, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 62664 + }, + { + "epoch": 6.435304990757856, + "grad_norm": 0.04335148632526398, + "learning_rate": 0.01, + "loss": 1.976, + "step": 62667 + }, + { + "epoch": 6.435613062230438, + "grad_norm": 0.04634424299001694, + "learning_rate": 0.01, + "loss": 1.9452, + "step": 62670 + }, + { + "epoch": 6.435921133703019, + "grad_norm": 0.03891894966363907, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 62673 + }, + { + "epoch": 6.436229205175601, + "grad_norm": 0.05635913461446762, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 62676 + }, + { + "epoch": 6.436537276648182, + "grad_norm": 0.05616259574890137, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 62679 + }, + { + "epoch": 6.436845348120764, + "grad_norm": 0.1745036244392395, + "learning_rate": 0.01, + "loss": 1.97, + "step": 62682 + }, + { + "epoch": 6.437153419593345, + "grad_norm": 0.09336113184690475, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 62685 + }, + { + "epoch": 6.437461491065927, + "grad_norm": 0.06508792191743851, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 62688 + }, + { + "epoch": 6.437769562538509, + "grad_norm": 0.08041112869977951, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 62691 + }, + { + "epoch": 6.438077634011091, + "grad_norm": 0.050097182393074036, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 62694 + }, + { + "epoch": 6.438385705483673, + "grad_norm": 0.09112852811813354, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 62697 + }, + { + "epoch": 6.438693776956254, + "grad_norm": 0.06812035292387009, + "learning_rate": 0.01, + "loss": 2.0099, + "step": 62700 + }, + { + "epoch": 6.439001848428836, + "grad_norm": 0.04868394508957863, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 62703 + }, + { + "epoch": 6.439309919901417, + "grad_norm": 0.03731069713830948, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 62706 + }, + { + "epoch": 6.439617991373999, + "grad_norm": 0.03705144673585892, + "learning_rate": 0.01, + "loss": 1.9439, + "step": 62709 + }, + { + "epoch": 6.43992606284658, + "grad_norm": 0.06617160141468048, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 62712 + }, + { + "epoch": 6.440234134319162, + "grad_norm": 0.09520690143108368, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 62715 + }, + { + "epoch": 6.440542205791743, + "grad_norm": 0.10066824406385422, + "learning_rate": 0.01, + "loss": 1.9998, + "step": 62718 + }, + { + "epoch": 6.4408502772643255, + "grad_norm": 0.04232907295227051, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 62721 + }, + { + "epoch": 6.441158348736907, + "grad_norm": 0.08188414573669434, + "learning_rate": 0.01, + "loss": 1.9495, + "step": 62724 + }, + { + "epoch": 6.441466420209489, + "grad_norm": 0.11537371575832367, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 62727 + }, + { + "epoch": 6.44177449168207, + "grad_norm": 0.03267863765358925, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 62730 + }, + { + "epoch": 6.442082563154652, + "grad_norm": 0.0837605893611908, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 62733 + }, + { + "epoch": 6.442390634627234, + "grad_norm": 0.05545349791646004, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 62736 + }, + { + "epoch": 6.442698706099815, + "grad_norm": 0.06512763351202011, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 62739 + }, + { + "epoch": 6.443006777572397, + "grad_norm": 0.051384586840867996, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 62742 + }, + { + "epoch": 6.443314849044978, + "grad_norm": 0.035269416868686676, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 62745 + }, + { + "epoch": 6.44362292051756, + "grad_norm": 0.11074446141719818, + "learning_rate": 0.01, + "loss": 2.0109, + "step": 62748 + }, + { + "epoch": 6.4439309919901415, + "grad_norm": 0.05051399767398834, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 62751 + }, + { + "epoch": 6.444239063462724, + "grad_norm": 0.07275965064764023, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 62754 + }, + { + "epoch": 6.444547134935305, + "grad_norm": 0.07027794420719147, + "learning_rate": 0.01, + "loss": 1.999, + "step": 62757 + }, + { + "epoch": 6.444855206407887, + "grad_norm": 0.11397121101617813, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 62760 + }, + { + "epoch": 6.445163277880468, + "grad_norm": 0.08914832770824432, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 62763 + }, + { + "epoch": 6.44547134935305, + "grad_norm": 0.1111316904425621, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 62766 + }, + { + "epoch": 6.445779420825631, + "grad_norm": 0.11033376306295395, + "learning_rate": 0.01, + "loss": 2.001, + "step": 62769 + }, + { + "epoch": 6.446087492298213, + "grad_norm": 0.07109701633453369, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 62772 + }, + { + "epoch": 6.446395563770794, + "grad_norm": 0.0448211170732975, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 62775 + }, + { + "epoch": 6.446703635243376, + "grad_norm": 0.04059508815407753, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 62778 + }, + { + "epoch": 6.4470117067159585, + "grad_norm": 0.04148499295115471, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 62781 + }, + { + "epoch": 6.44731977818854, + "grad_norm": 0.04664915055036545, + "learning_rate": 0.01, + "loss": 1.969, + "step": 62784 + }, + { + "epoch": 6.447627849661122, + "grad_norm": 0.03414386510848999, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 62787 + }, + { + "epoch": 6.447935921133703, + "grad_norm": 0.047360535711050034, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 62790 + }, + { + "epoch": 6.448243992606285, + "grad_norm": 0.11773015558719635, + "learning_rate": 0.01, + "loss": 1.9424, + "step": 62793 + }, + { + "epoch": 6.448552064078866, + "grad_norm": 0.08103271573781967, + "learning_rate": 0.01, + "loss": 2.0067, + "step": 62796 + }, + { + "epoch": 6.448860135551448, + "grad_norm": 0.07534775882959366, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 62799 + }, + { + "epoch": 6.449168207024029, + "grad_norm": 0.0421251580119133, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 62802 + }, + { + "epoch": 6.449476278496611, + "grad_norm": 0.06340447813272476, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 62805 + }, + { + "epoch": 6.4497843499691925, + "grad_norm": 0.06287892907857895, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 62808 + }, + { + "epoch": 6.4500924214417745, + "grad_norm": 0.11696802824735641, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 62811 + }, + { + "epoch": 6.450400492914357, + "grad_norm": 0.061545319855213165, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 62814 + }, + { + "epoch": 6.450708564386938, + "grad_norm": 0.04134809225797653, + "learning_rate": 0.01, + "loss": 1.9419, + "step": 62817 + }, + { + "epoch": 6.45101663585952, + "grad_norm": 0.11149853467941284, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 62820 + }, + { + "epoch": 6.451324707332101, + "grad_norm": 0.06323488801717758, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 62823 + }, + { + "epoch": 6.451632778804683, + "grad_norm": 0.0836939662694931, + "learning_rate": 0.01, + "loss": 2.006, + "step": 62826 + }, + { + "epoch": 6.451940850277264, + "grad_norm": 0.04251860827207565, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 62829 + }, + { + "epoch": 6.452248921749846, + "grad_norm": 0.08365978300571442, + "learning_rate": 0.01, + "loss": 1.977, + "step": 62832 + }, + { + "epoch": 6.452556993222427, + "grad_norm": 0.07985960692167282, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 62835 + }, + { + "epoch": 6.452865064695009, + "grad_norm": 0.0690624862909317, + "learning_rate": 0.01, + "loss": 1.9691, + "step": 62838 + }, + { + "epoch": 6.453173136167591, + "grad_norm": 0.07743382453918457, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 62841 + }, + { + "epoch": 6.453481207640173, + "grad_norm": 0.06049206852912903, + "learning_rate": 0.01, + "loss": 2.0078, + "step": 62844 + }, + { + "epoch": 6.453789279112754, + "grad_norm": 0.049416352063417435, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 62847 + }, + { + "epoch": 6.454097350585336, + "grad_norm": 0.03889904171228409, + "learning_rate": 0.01, + "loss": 1.9522, + "step": 62850 + }, + { + "epoch": 6.454405422057917, + "grad_norm": 0.03183984011411667, + "learning_rate": 0.01, + "loss": 1.9544, + "step": 62853 + }, + { + "epoch": 6.454713493530499, + "grad_norm": 0.03685016930103302, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 62856 + }, + { + "epoch": 6.455021565003081, + "grad_norm": 0.05258958786725998, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 62859 + }, + { + "epoch": 6.455329636475662, + "grad_norm": 0.12214828282594681, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 62862 + }, + { + "epoch": 6.455637707948244, + "grad_norm": 0.04400373622775078, + "learning_rate": 0.01, + "loss": 1.9588, + "step": 62865 + }, + { + "epoch": 6.4559457794208255, + "grad_norm": 0.09445548057556152, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 62868 + }, + { + "epoch": 6.4562538508934075, + "grad_norm": 0.05584699660539627, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 62871 + }, + { + "epoch": 6.456561922365989, + "grad_norm": 0.041519295424222946, + "learning_rate": 0.01, + "loss": 1.9585, + "step": 62874 + }, + { + "epoch": 6.456869993838571, + "grad_norm": 0.08750978112220764, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 62877 + }, + { + "epoch": 6.457178065311152, + "grad_norm": 0.0746956318616867, + "learning_rate": 0.01, + "loss": 1.99, + "step": 62880 + }, + { + "epoch": 6.457486136783734, + "grad_norm": 0.05346643924713135, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 62883 + }, + { + "epoch": 6.457794208256315, + "grad_norm": 0.033672984689474106, + "learning_rate": 0.01, + "loss": 1.9696, + "step": 62886 + }, + { + "epoch": 6.458102279728897, + "grad_norm": 0.07131464779376984, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 62889 + }, + { + "epoch": 6.458410351201478, + "grad_norm": 0.08488958328962326, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 62892 + }, + { + "epoch": 6.45871842267406, + "grad_norm": 0.041019588708877563, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 62895 + }, + { + "epoch": 6.459026494146642, + "grad_norm": 0.07616984844207764, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 62898 + }, + { + "epoch": 6.459334565619224, + "grad_norm": 0.071281798183918, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 62901 + }, + { + "epoch": 6.459642637091806, + "grad_norm": 0.04009273648262024, + "learning_rate": 0.01, + "loss": 1.9522, + "step": 62904 + }, + { + "epoch": 6.459950708564387, + "grad_norm": 0.059646125882864, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 62907 + }, + { + "epoch": 6.460258780036969, + "grad_norm": 0.08733568340539932, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 62910 + }, + { + "epoch": 6.46056685150955, + "grad_norm": 0.06603758037090302, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 62913 + }, + { + "epoch": 6.460874922982132, + "grad_norm": 0.036482322961091995, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 62916 + }, + { + "epoch": 6.461182994454713, + "grad_norm": 0.08736536651849747, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 62919 + }, + { + "epoch": 6.461491065927295, + "grad_norm": 0.10915714502334595, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 62922 + }, + { + "epoch": 6.461799137399876, + "grad_norm": 0.07954758405685425, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 62925 + }, + { + "epoch": 6.4621072088724585, + "grad_norm": 0.05602665990591049, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 62928 + }, + { + "epoch": 6.46241528034504, + "grad_norm": 0.09531257301568985, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 62931 + }, + { + "epoch": 6.462723351817622, + "grad_norm": 0.044863101094961166, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 62934 + }, + { + "epoch": 6.463031423290204, + "grad_norm": 0.0783008560538292, + "learning_rate": 0.01, + "loss": 1.9402, + "step": 62937 + }, + { + "epoch": 6.463339494762785, + "grad_norm": 0.05667195841670036, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 62940 + }, + { + "epoch": 6.463647566235367, + "grad_norm": 0.13006943464279175, + "learning_rate": 0.01, + "loss": 2.0073, + "step": 62943 + }, + { + "epoch": 6.463955637707948, + "grad_norm": 0.08932863920927048, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 62946 + }, + { + "epoch": 6.46426370918053, + "grad_norm": 0.04788200557231903, + "learning_rate": 0.01, + "loss": 1.9902, + "step": 62949 + }, + { + "epoch": 6.464571780653111, + "grad_norm": 0.03904096782207489, + "learning_rate": 0.01, + "loss": 1.956, + "step": 62952 + }, + { + "epoch": 6.464879852125693, + "grad_norm": 0.06443644315004349, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 62955 + }, + { + "epoch": 6.4651879235982745, + "grad_norm": 0.08434759825468063, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 62958 + }, + { + "epoch": 6.465495995070857, + "grad_norm": 0.03871188312768936, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 62961 + }, + { + "epoch": 6.465804066543438, + "grad_norm": 0.11748526990413666, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 62964 + }, + { + "epoch": 6.46611213801602, + "grad_norm": 0.05763693153858185, + "learning_rate": 0.01, + "loss": 1.9485, + "step": 62967 + }, + { + "epoch": 6.466420209488601, + "grad_norm": 0.0419640988111496, + "learning_rate": 0.01, + "loss": 1.983, + "step": 62970 + }, + { + "epoch": 6.466728280961183, + "grad_norm": 0.061243150383234024, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 62973 + }, + { + "epoch": 6.467036352433764, + "grad_norm": 0.10403522849082947, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 62976 + }, + { + "epoch": 6.467344423906346, + "grad_norm": 0.14000679552555084, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 62979 + }, + { + "epoch": 6.467652495378928, + "grad_norm": 0.08773007243871689, + "learning_rate": 0.01, + "loss": 1.989, + "step": 62982 + }, + { + "epoch": 6.467960566851509, + "grad_norm": 0.04810422658920288, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 62985 + }, + { + "epoch": 6.4682686383240915, + "grad_norm": 0.05809152126312256, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 62988 + }, + { + "epoch": 6.468576709796673, + "grad_norm": 0.05598244071006775, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 62991 + }, + { + "epoch": 6.468884781269255, + "grad_norm": 0.07979332655668259, + "learning_rate": 0.01, + "loss": 1.9527, + "step": 62994 + }, + { + "epoch": 6.469192852741836, + "grad_norm": 0.044398579746484756, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 62997 + }, + { + "epoch": 6.469500924214418, + "grad_norm": 0.04663238674402237, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 63000 + }, + { + "epoch": 6.469808995686999, + "grad_norm": 0.04528966173529625, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 63003 + }, + { + "epoch": 6.470117067159581, + "grad_norm": 0.06028036028146744, + "learning_rate": 0.01, + "loss": 1.9504, + "step": 63006 + }, + { + "epoch": 6.470425138632162, + "grad_norm": 0.094419464468956, + "learning_rate": 0.01, + "loss": 1.9973, + "step": 63009 + }, + { + "epoch": 6.470733210104744, + "grad_norm": 0.18547490239143372, + "learning_rate": 0.01, + "loss": 2.003, + "step": 63012 + }, + { + "epoch": 6.471041281577326, + "grad_norm": 0.09084778279066086, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 63015 + }, + { + "epoch": 6.4713493530499075, + "grad_norm": 0.07517223805189133, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 63018 + }, + { + "epoch": 6.47165742452249, + "grad_norm": 0.041310783475637436, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 63021 + }, + { + "epoch": 6.471965495995071, + "grad_norm": 0.04006296768784523, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 63024 + }, + { + "epoch": 6.472273567467653, + "grad_norm": 0.03506629914045334, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 63027 + }, + { + "epoch": 6.472581638940234, + "grad_norm": 0.04409859701991081, + "learning_rate": 0.01, + "loss": 1.9993, + "step": 63030 + }, + { + "epoch": 6.472889710412816, + "grad_norm": 0.054022327065467834, + "learning_rate": 0.01, + "loss": 1.985, + "step": 63033 + }, + { + "epoch": 6.473197781885397, + "grad_norm": 0.06177505478262901, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 63036 + }, + { + "epoch": 6.473505853357979, + "grad_norm": 0.10999149829149246, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 63039 + }, + { + "epoch": 6.47381392483056, + "grad_norm": 0.130665123462677, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 63042 + }, + { + "epoch": 6.4741219963031424, + "grad_norm": 0.15091292560100555, + "learning_rate": 0.01, + "loss": 2.008, + "step": 63045 + }, + { + "epoch": 6.474430067775724, + "grad_norm": 0.1041717529296875, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 63048 + }, + { + "epoch": 6.474738139248306, + "grad_norm": 0.05246599763631821, + "learning_rate": 0.01, + "loss": 1.9521, + "step": 63051 + }, + { + "epoch": 6.475046210720887, + "grad_norm": 0.04646655172109604, + "learning_rate": 0.01, + "loss": 1.998, + "step": 63054 + }, + { + "epoch": 6.475354282193469, + "grad_norm": 0.047972384840250015, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 63057 + }, + { + "epoch": 6.475662353666051, + "grad_norm": 0.057053469121456146, + "learning_rate": 0.01, + "loss": 1.983, + "step": 63060 + }, + { + "epoch": 6.475970425138632, + "grad_norm": 0.044478513300418854, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 63063 + }, + { + "epoch": 6.476278496611214, + "grad_norm": 0.13227659463882446, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 63066 + }, + { + "epoch": 6.476586568083795, + "grad_norm": 0.09201903641223907, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 63069 + }, + { + "epoch": 6.476894639556377, + "grad_norm": 0.07452027499675751, + "learning_rate": 0.01, + "loss": 1.9585, + "step": 63072 + }, + { + "epoch": 6.4772027110289585, + "grad_norm": 0.04616081714630127, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 63075 + }, + { + "epoch": 6.4775107825015406, + "grad_norm": 0.047700148075819016, + "learning_rate": 0.01, + "loss": 1.961, + "step": 63078 + }, + { + "epoch": 6.477818853974122, + "grad_norm": 0.0366378016769886, + "learning_rate": 0.01, + "loss": 2.0038, + "step": 63081 + }, + { + "epoch": 6.478126925446704, + "grad_norm": 0.037750110030174255, + "learning_rate": 0.01, + "loss": 1.98, + "step": 63084 + }, + { + "epoch": 6.478434996919285, + "grad_norm": 0.05896897614002228, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 63087 + }, + { + "epoch": 6.478743068391867, + "grad_norm": 0.13248635828495026, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 63090 + }, + { + "epoch": 6.479051139864448, + "grad_norm": 0.14373722672462463, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 63093 + }, + { + "epoch": 6.47935921133703, + "grad_norm": 0.07670046389102936, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 63096 + }, + { + "epoch": 6.479667282809612, + "grad_norm": 0.05786823108792305, + "learning_rate": 0.01, + "loss": 1.99, + "step": 63099 + }, + { + "epoch": 6.479975354282193, + "grad_norm": 0.10580223053693771, + "learning_rate": 0.01, + "loss": 1.988, + "step": 63102 + }, + { + "epoch": 6.4802834257547755, + "grad_norm": 0.09750565141439438, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 63105 + }, + { + "epoch": 6.480591497227357, + "grad_norm": 0.07120301574468613, + "learning_rate": 0.01, + "loss": 1.9575, + "step": 63108 + }, + { + "epoch": 6.480899568699939, + "grad_norm": 0.046966131776571274, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 63111 + }, + { + "epoch": 6.48120764017252, + "grad_norm": 0.04642505198717117, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 63114 + }, + { + "epoch": 6.481515711645102, + "grad_norm": 0.0937868282198906, + "learning_rate": 0.01, + "loss": 1.9597, + "step": 63117 + }, + { + "epoch": 6.481823783117683, + "grad_norm": 0.11612875759601593, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 63120 + }, + { + "epoch": 6.482131854590265, + "grad_norm": 0.042997948825359344, + "learning_rate": 0.01, + "loss": 2.0063, + "step": 63123 + }, + { + "epoch": 6.482439926062846, + "grad_norm": 0.10609213262796402, + "learning_rate": 0.01, + "loss": 1.9562, + "step": 63126 + }, + { + "epoch": 6.482747997535428, + "grad_norm": 0.09225320816040039, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 63129 + }, + { + "epoch": 6.4830560690080095, + "grad_norm": 0.053099583834409714, + "learning_rate": 0.01, + "loss": 1.993, + "step": 63132 + }, + { + "epoch": 6.4833641404805915, + "grad_norm": 0.04756970703601837, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 63135 + }, + { + "epoch": 6.483672211953174, + "grad_norm": 0.04079375043511391, + "learning_rate": 0.01, + "loss": 1.9496, + "step": 63138 + }, + { + "epoch": 6.483980283425755, + "grad_norm": 0.08000772446393967, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 63141 + }, + { + "epoch": 6.484288354898337, + "grad_norm": 0.05502250790596008, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 63144 + }, + { + "epoch": 6.484596426370918, + "grad_norm": 0.07607629895210266, + "learning_rate": 0.01, + "loss": 1.965, + "step": 63147 + }, + { + "epoch": 6.4849044978435, + "grad_norm": 0.0457836389541626, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 63150 + }, + { + "epoch": 6.485212569316081, + "grad_norm": 0.04571022093296051, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 63153 + }, + { + "epoch": 6.485520640788663, + "grad_norm": 0.054583076387643814, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 63156 + }, + { + "epoch": 6.485828712261244, + "grad_norm": 0.08559385687112808, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 63159 + }, + { + "epoch": 6.486136783733826, + "grad_norm": 0.06536659598350525, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 63162 + }, + { + "epoch": 6.486444855206408, + "grad_norm": 0.031179916113615036, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 63165 + }, + { + "epoch": 6.48675292667899, + "grad_norm": 0.038442451506853104, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 63168 + }, + { + "epoch": 6.487060998151571, + "grad_norm": 0.05742299556732178, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 63171 + }, + { + "epoch": 6.487369069624153, + "grad_norm": 0.07068540900945663, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 63174 + }, + { + "epoch": 6.487677141096734, + "grad_norm": 0.041148263961076736, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 63177 + }, + { + "epoch": 6.487985212569316, + "grad_norm": 0.08058618754148483, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 63180 + }, + { + "epoch": 6.488293284041898, + "grad_norm": 0.10617338865995407, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 63183 + }, + { + "epoch": 6.488601355514479, + "grad_norm": 0.13301149010658264, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 63186 + }, + { + "epoch": 6.488909426987061, + "grad_norm": 0.12188655138015747, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 63189 + }, + { + "epoch": 6.4892174984596425, + "grad_norm": 0.07612743228673935, + "learning_rate": 0.01, + "loss": 2.0, + "step": 63192 + }, + { + "epoch": 6.4895255699322245, + "grad_norm": 0.08802825957536697, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 63195 + }, + { + "epoch": 6.489833641404806, + "grad_norm": 0.05692920833826065, + "learning_rate": 0.01, + "loss": 1.985, + "step": 63198 + }, + { + "epoch": 6.490141712877388, + "grad_norm": 0.0412018783390522, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 63201 + }, + { + "epoch": 6.490449784349969, + "grad_norm": 0.0954689234495163, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 63204 + }, + { + "epoch": 6.490757855822551, + "grad_norm": 0.11650601774454117, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 63207 + }, + { + "epoch": 6.491065927295132, + "grad_norm": 0.06705356389284134, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 63210 + }, + { + "epoch": 6.491373998767714, + "grad_norm": 0.04871569201350212, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 63213 + }, + { + "epoch": 6.491682070240296, + "grad_norm": 0.041996728628873825, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 63216 + }, + { + "epoch": 6.491990141712877, + "grad_norm": 0.03821207210421562, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 63219 + }, + { + "epoch": 6.492298213185459, + "grad_norm": 0.03589041158556938, + "learning_rate": 0.01, + "loss": 1.981, + "step": 63222 + }, + { + "epoch": 6.492606284658041, + "grad_norm": 0.05628860369324684, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 63225 + }, + { + "epoch": 6.492914356130623, + "grad_norm": 0.10156149417161942, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 63228 + }, + { + "epoch": 6.493222427603204, + "grad_norm": 0.1743369847536087, + "learning_rate": 0.01, + "loss": 1.9564, + "step": 63231 + }, + { + "epoch": 6.493530499075786, + "grad_norm": 0.13694548606872559, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 63234 + }, + { + "epoch": 6.493838570548367, + "grad_norm": 0.12643152475357056, + "learning_rate": 0.01, + "loss": 1.979, + "step": 63237 + }, + { + "epoch": 6.494146642020949, + "grad_norm": 0.14127200841903687, + "learning_rate": 0.01, + "loss": 1.9621, + "step": 63240 + }, + { + "epoch": 6.49445471349353, + "grad_norm": 0.05180880054831505, + "learning_rate": 0.01, + "loss": 1.9607, + "step": 63243 + }, + { + "epoch": 6.494762784966112, + "grad_norm": 0.050564274191856384, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 63246 + }, + { + "epoch": 6.495070856438693, + "grad_norm": 0.09520803391933441, + "learning_rate": 0.01, + "loss": 1.9697, + "step": 63249 + }, + { + "epoch": 6.4953789279112755, + "grad_norm": 0.09522721916437149, + "learning_rate": 0.01, + "loss": 1.957, + "step": 63252 + }, + { + "epoch": 6.495686999383857, + "grad_norm": 0.1086997389793396, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 63255 + }, + { + "epoch": 6.495995070856439, + "grad_norm": 0.08121590316295624, + "learning_rate": 0.01, + "loss": 1.966, + "step": 63258 + }, + { + "epoch": 6.496303142329021, + "grad_norm": 0.06703486293554306, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 63261 + }, + { + "epoch": 6.496611213801602, + "grad_norm": 0.04283798858523369, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 63264 + }, + { + "epoch": 6.496919285274184, + "grad_norm": 0.04943424090743065, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 63267 + }, + { + "epoch": 6.497227356746765, + "grad_norm": 0.0578305721282959, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 63270 + }, + { + "epoch": 6.497535428219347, + "grad_norm": 0.0359860323369503, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 63273 + }, + { + "epoch": 6.497843499691928, + "grad_norm": 0.04893532767891884, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 63276 + }, + { + "epoch": 6.49815157116451, + "grad_norm": 0.04525068402290344, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 63279 + }, + { + "epoch": 6.4984596426370915, + "grad_norm": 0.04810551553964615, + "learning_rate": 0.01, + "loss": 1.9921, + "step": 63282 + }, + { + "epoch": 6.498767714109674, + "grad_norm": 0.05285782366991043, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 63285 + }, + { + "epoch": 6.499075785582255, + "grad_norm": 0.032118529081344604, + "learning_rate": 0.01, + "loss": 1.9732, + "step": 63288 + }, + { + "epoch": 6.499383857054837, + "grad_norm": 0.049875080585479736, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 63291 + }, + { + "epoch": 6.499691928527418, + "grad_norm": 0.04658648371696472, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 63294 + }, + { + "epoch": 6.5, + "grad_norm": 0.05129887908697128, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 63297 + }, + { + "epoch": 6.500308071472581, + "grad_norm": 0.07968533784151077, + "learning_rate": 0.01, + "loss": 1.9645, + "step": 63300 + }, + { + "epoch": 6.500616142945163, + "grad_norm": 0.08152198046445847, + "learning_rate": 0.01, + "loss": 1.9582, + "step": 63303 + }, + { + "epoch": 6.500924214417745, + "grad_norm": 0.07405789196491241, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 63306 + }, + { + "epoch": 6.501232285890326, + "grad_norm": 0.07860677689313889, + "learning_rate": 0.01, + "loss": 1.9587, + "step": 63309 + }, + { + "epoch": 6.5015403573629085, + "grad_norm": 0.051370490342378616, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 63312 + }, + { + "epoch": 6.50184842883549, + "grad_norm": 0.04912220686674118, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 63315 + }, + { + "epoch": 6.502156500308072, + "grad_norm": 0.042900361120700836, + "learning_rate": 0.01, + "loss": 1.981, + "step": 63318 + }, + { + "epoch": 6.502464571780653, + "grad_norm": 0.16261926293373108, + "learning_rate": 0.01, + "loss": 1.9983, + "step": 63321 + }, + { + "epoch": 6.502772643253235, + "grad_norm": 0.11455561220645905, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 63324 + }, + { + "epoch": 6.503080714725816, + "grad_norm": 0.04585309699177742, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 63327 + }, + { + "epoch": 6.503388786198398, + "grad_norm": 0.03483370691537857, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 63330 + }, + { + "epoch": 6.503696857670979, + "grad_norm": 0.08230151981115341, + "learning_rate": 0.01, + "loss": 1.9607, + "step": 63333 + }, + { + "epoch": 6.504004929143561, + "grad_norm": 0.06978236138820648, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 63336 + }, + { + "epoch": 6.504313000616143, + "grad_norm": 0.03723878785967827, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 63339 + }, + { + "epoch": 6.5046210720887245, + "grad_norm": 0.0846422016620636, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 63342 + }, + { + "epoch": 6.504929143561307, + "grad_norm": 0.06443771719932556, + "learning_rate": 0.01, + "loss": 1.9698, + "step": 63345 + }, + { + "epoch": 6.505237215033888, + "grad_norm": 0.07399289309978485, + "learning_rate": 0.01, + "loss": 2.0061, + "step": 63348 + }, + { + "epoch": 6.50554528650647, + "grad_norm": 0.08382997661828995, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 63351 + }, + { + "epoch": 6.505853357979051, + "grad_norm": 0.0767715722322464, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 63354 + }, + { + "epoch": 6.506161429451633, + "grad_norm": 0.07842829078435898, + "learning_rate": 0.01, + "loss": 1.9532, + "step": 63357 + }, + { + "epoch": 6.506469500924214, + "grad_norm": 0.04764385148882866, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 63360 + }, + { + "epoch": 6.506777572396796, + "grad_norm": 0.08968043327331543, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 63363 + }, + { + "epoch": 6.507085643869377, + "grad_norm": 0.07326337695121765, + "learning_rate": 0.01, + "loss": 1.9575, + "step": 63366 + }, + { + "epoch": 6.507393715341959, + "grad_norm": 0.04753720387816429, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 63369 + }, + { + "epoch": 6.507701786814541, + "grad_norm": 0.05614113807678223, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 63372 + }, + { + "epoch": 6.508009858287123, + "grad_norm": 0.04377448558807373, + "learning_rate": 0.01, + "loss": 1.971, + "step": 63375 + }, + { + "epoch": 6.508317929759704, + "grad_norm": 0.03820153325796127, + "learning_rate": 0.01, + "loss": 2.0105, + "step": 63378 + }, + { + "epoch": 6.508626001232286, + "grad_norm": 0.03955162316560745, + "learning_rate": 0.01, + "loss": 1.9584, + "step": 63381 + }, + { + "epoch": 6.508934072704868, + "grad_norm": 0.03919532150030136, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 63384 + }, + { + "epoch": 6.509242144177449, + "grad_norm": 0.13084079325199127, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 63387 + }, + { + "epoch": 6.509550215650031, + "grad_norm": 0.05490676313638687, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 63390 + }, + { + "epoch": 6.509858287122612, + "grad_norm": 0.048263441771268845, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 63393 + }, + { + "epoch": 6.510166358595194, + "grad_norm": 0.07833252102136612, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 63396 + }, + { + "epoch": 6.5104744300677755, + "grad_norm": 0.06575249880552292, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 63399 + }, + { + "epoch": 6.5107825015403575, + "grad_norm": 0.1300118863582611, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 63402 + }, + { + "epoch": 6.511090573012939, + "grad_norm": 0.05606196075677872, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 63405 + }, + { + "epoch": 6.511398644485521, + "grad_norm": 0.04275618493556976, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 63408 + }, + { + "epoch": 6.511706715958102, + "grad_norm": 0.11378994584083557, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 63411 + }, + { + "epoch": 6.512014787430684, + "grad_norm": 0.04268041253089905, + "learning_rate": 0.01, + "loss": 1.9571, + "step": 63414 + }, + { + "epoch": 6.512322858903266, + "grad_norm": 0.18747419118881226, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 63417 + }, + { + "epoch": 6.512630930375847, + "grad_norm": 0.10926712304353714, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 63420 + }, + { + "epoch": 6.512939001848429, + "grad_norm": 0.12267261743545532, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 63423 + }, + { + "epoch": 6.51324707332101, + "grad_norm": 0.06755910813808441, + "learning_rate": 0.01, + "loss": 1.9691, + "step": 63426 + }, + { + "epoch": 6.513555144793592, + "grad_norm": 0.06156865134835243, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 63429 + }, + { + "epoch": 6.513863216266174, + "grad_norm": 0.0420864075422287, + "learning_rate": 0.01, + "loss": 1.9596, + "step": 63432 + }, + { + "epoch": 6.514171287738756, + "grad_norm": 0.037585970014333725, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 63435 + }, + { + "epoch": 6.514479359211337, + "grad_norm": 0.042937878519296646, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 63438 + }, + { + "epoch": 6.514787430683919, + "grad_norm": 0.04278058186173439, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 63441 + }, + { + "epoch": 6.5150955021565, + "grad_norm": 0.053777556866407394, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 63444 + }, + { + "epoch": 6.515403573629082, + "grad_norm": 0.11828344315290451, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 63447 + }, + { + "epoch": 6.515711645101663, + "grad_norm": 0.07692524790763855, + "learning_rate": 0.01, + "loss": 1.9837, + "step": 63450 + }, + { + "epoch": 6.516019716574245, + "grad_norm": 0.036424048244953156, + "learning_rate": 0.01, + "loss": 1.9669, + "step": 63453 + }, + { + "epoch": 6.516327788046826, + "grad_norm": 0.051881253719329834, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 63456 + }, + { + "epoch": 6.5166358595194085, + "grad_norm": 0.09392795711755753, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 63459 + }, + { + "epoch": 6.5169439309919905, + "grad_norm": 0.05411149188876152, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 63462 + }, + { + "epoch": 6.517252002464572, + "grad_norm": 0.07104165852069855, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 63465 + }, + { + "epoch": 6.517560073937154, + "grad_norm": 0.0653427243232727, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 63468 + }, + { + "epoch": 6.517868145409735, + "grad_norm": 0.07316904515028, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 63471 + }, + { + "epoch": 6.518176216882317, + "grad_norm": 0.08225788921117783, + "learning_rate": 0.01, + "loss": 1.968, + "step": 63474 + }, + { + "epoch": 6.518484288354898, + "grad_norm": 0.07449998706579208, + "learning_rate": 0.01, + "loss": 1.9587, + "step": 63477 + }, + { + "epoch": 6.51879235982748, + "grad_norm": 0.07791251689195633, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 63480 + }, + { + "epoch": 6.519100431300061, + "grad_norm": 0.1233309879899025, + "learning_rate": 0.01, + "loss": 1.968, + "step": 63483 + }, + { + "epoch": 6.519408502772643, + "grad_norm": 0.041390251368284225, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 63486 + }, + { + "epoch": 6.5197165742452245, + "grad_norm": 0.039635319262742996, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 63489 + }, + { + "epoch": 6.520024645717807, + "grad_norm": 0.03680063784122467, + "learning_rate": 0.01, + "loss": 1.9501, + "step": 63492 + }, + { + "epoch": 6.520332717190389, + "grad_norm": 0.08327323198318481, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 63495 + }, + { + "epoch": 6.52064078866297, + "grad_norm": 0.10368441045284271, + "learning_rate": 0.01, + "loss": 1.9563, + "step": 63498 + }, + { + "epoch": 6.520948860135551, + "grad_norm": 0.05991170555353165, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 63501 + }, + { + "epoch": 6.521256931608133, + "grad_norm": 0.05868203192949295, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 63504 + }, + { + "epoch": 6.521565003080715, + "grad_norm": 0.04409966990351677, + "learning_rate": 0.01, + "loss": 1.9698, + "step": 63507 + }, + { + "epoch": 6.521873074553296, + "grad_norm": 0.04939546808600426, + "learning_rate": 0.01, + "loss": 2.0037, + "step": 63510 + }, + { + "epoch": 6.522181146025878, + "grad_norm": 0.041482388973236084, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 63513 + }, + { + "epoch": 6.5224892174984594, + "grad_norm": 0.03503831848502159, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 63516 + }, + { + "epoch": 6.5227972889710415, + "grad_norm": 0.07293230295181274, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 63519 + }, + { + "epoch": 6.523105360443623, + "grad_norm": 0.13121885061264038, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 63522 + }, + { + "epoch": 6.523413431916205, + "grad_norm": 0.05674733221530914, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 63525 + }, + { + "epoch": 6.523721503388786, + "grad_norm": 0.13403059542179108, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 63528 + }, + { + "epoch": 6.524029574861368, + "grad_norm": 0.05892037972807884, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 63531 + }, + { + "epoch": 6.524337646333949, + "grad_norm": 0.05163764953613281, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 63534 + }, + { + "epoch": 6.524645717806531, + "grad_norm": 0.10264305770397186, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 63537 + }, + { + "epoch": 6.524953789279113, + "grad_norm": 0.060135189443826675, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 63540 + }, + { + "epoch": 6.525261860751694, + "grad_norm": 0.033466801047325134, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 63543 + }, + { + "epoch": 6.525569932224276, + "grad_norm": 0.05220318213105202, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 63546 + }, + { + "epoch": 6.5258780036968576, + "grad_norm": 0.04468940570950508, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 63549 + }, + { + "epoch": 6.52618607516944, + "grad_norm": 0.07253078371286392, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 63552 + }, + { + "epoch": 6.526494146642021, + "grad_norm": 0.039232298731803894, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 63555 + }, + { + "epoch": 6.526802218114603, + "grad_norm": 0.08601675182580948, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 63558 + }, + { + "epoch": 6.527110289587184, + "grad_norm": 0.11496642231941223, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 63561 + }, + { + "epoch": 6.527418361059766, + "grad_norm": 0.21819603443145752, + "learning_rate": 0.01, + "loss": 2.0011, + "step": 63564 + }, + { + "epoch": 6.527726432532347, + "grad_norm": 0.15641893446445465, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 63567 + }, + { + "epoch": 6.528034504004929, + "grad_norm": 0.07390442490577698, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 63570 + }, + { + "epoch": 6.52834257547751, + "grad_norm": 0.03637871518731117, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 63573 + }, + { + "epoch": 6.5286506469500925, + "grad_norm": 0.05536114424467087, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 63576 + }, + { + "epoch": 6.528958718422674, + "grad_norm": 0.08773189783096313, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 63579 + }, + { + "epoch": 6.529266789895256, + "grad_norm": 0.05206519737839699, + "learning_rate": 0.01, + "loss": 2.0209, + "step": 63582 + }, + { + "epoch": 6.529574861367838, + "grad_norm": 0.12326787412166595, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 63585 + }, + { + "epoch": 6.529882932840419, + "grad_norm": 0.10255524516105652, + "learning_rate": 0.01, + "loss": 1.9552, + "step": 63588 + }, + { + "epoch": 6.530191004313001, + "grad_norm": 0.08496958762407303, + "learning_rate": 0.01, + "loss": 1.9621, + "step": 63591 + }, + { + "epoch": 6.530499075785582, + "grad_norm": 0.040596868842840195, + "learning_rate": 0.01, + "loss": 1.9465, + "step": 63594 + }, + { + "epoch": 6.530807147258164, + "grad_norm": 0.033690448850393295, + "learning_rate": 0.01, + "loss": 1.967, + "step": 63597 + }, + { + "epoch": 6.531115218730745, + "grad_norm": 0.0766686350107193, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 63600 + }, + { + "epoch": 6.531423290203327, + "grad_norm": 0.12199605256319046, + "learning_rate": 0.01, + "loss": 1.982, + "step": 63603 + }, + { + "epoch": 6.5317313616759085, + "grad_norm": 0.03897617757320404, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 63606 + }, + { + "epoch": 6.532039433148491, + "grad_norm": 0.05026644468307495, + "learning_rate": 0.01, + "loss": 2.0126, + "step": 63609 + }, + { + "epoch": 6.532347504621072, + "grad_norm": 0.03886674344539642, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 63612 + }, + { + "epoch": 6.532655576093654, + "grad_norm": 0.09314893931150436, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 63615 + }, + { + "epoch": 6.532963647566236, + "grad_norm": 0.048525359481573105, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 63618 + }, + { + "epoch": 6.533271719038817, + "grad_norm": 0.027339305728673935, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 63621 + }, + { + "epoch": 6.533579790511399, + "grad_norm": 0.0443040207028389, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 63624 + }, + { + "epoch": 6.53388786198398, + "grad_norm": 0.06850685924291611, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 63627 + }, + { + "epoch": 6.534195933456562, + "grad_norm": 0.06264297664165497, + "learning_rate": 0.01, + "loss": 1.9552, + "step": 63630 + }, + { + "epoch": 6.534504004929143, + "grad_norm": 0.06047286093235016, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 63633 + }, + { + "epoch": 6.5348120764017255, + "grad_norm": 0.08621931076049805, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 63636 + }, + { + "epoch": 6.535120147874307, + "grad_norm": 0.06598355621099472, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 63639 + }, + { + "epoch": 6.535428219346889, + "grad_norm": 0.04652687907218933, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 63642 + }, + { + "epoch": 6.53573629081947, + "grad_norm": 0.04016298055648804, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 63645 + }, + { + "epoch": 6.536044362292052, + "grad_norm": 0.039485424757003784, + "learning_rate": 0.01, + "loss": 1.928, + "step": 63648 + }, + { + "epoch": 6.536352433764633, + "grad_norm": 0.03557172790169716, + "learning_rate": 0.01, + "loss": 1.96, + "step": 63651 + }, + { + "epoch": 6.536660505237215, + "grad_norm": 0.0416797399520874, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 63654 + }, + { + "epoch": 6.536968576709796, + "grad_norm": 0.09189657121896744, + "learning_rate": 0.01, + "loss": 1.98, + "step": 63657 + }, + { + "epoch": 6.537276648182378, + "grad_norm": 0.04484305903315544, + "learning_rate": 0.01, + "loss": 2.0131, + "step": 63660 + }, + { + "epoch": 6.53758471965496, + "grad_norm": 0.059794455766677856, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 63663 + }, + { + "epoch": 6.5378927911275415, + "grad_norm": 0.05551350116729736, + "learning_rate": 0.01, + "loss": 1.9546, + "step": 63666 + }, + { + "epoch": 6.538200862600124, + "grad_norm": 0.19956345856189728, + "learning_rate": 0.01, + "loss": 1.961, + "step": 63669 + }, + { + "epoch": 6.538508934072705, + "grad_norm": 0.0885189101099968, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 63672 + }, + { + "epoch": 6.538817005545287, + "grad_norm": 0.05539345368742943, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 63675 + }, + { + "epoch": 6.539125077017868, + "grad_norm": 0.037228211760520935, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 63678 + }, + { + "epoch": 6.53943314849045, + "grad_norm": 0.03209219127893448, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 63681 + }, + { + "epoch": 6.539741219963031, + "grad_norm": 0.029509764164686203, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 63684 + }, + { + "epoch": 6.540049291435613, + "grad_norm": 0.052676524966955185, + "learning_rate": 0.01, + "loss": 1.997, + "step": 63687 + }, + { + "epoch": 6.540357362908194, + "grad_norm": 0.0744934156537056, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 63690 + }, + { + "epoch": 6.540665434380776, + "grad_norm": 0.05411761999130249, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 63693 + }, + { + "epoch": 6.5409735058533585, + "grad_norm": 0.04553327336907387, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 63696 + }, + { + "epoch": 6.54128157732594, + "grad_norm": 0.16345827281475067, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 63699 + }, + { + "epoch": 6.541589648798521, + "grad_norm": 0.05779232829809189, + "learning_rate": 0.01, + "loss": 1.97, + "step": 63702 + }, + { + "epoch": 6.541897720271103, + "grad_norm": 0.032575078308582306, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 63705 + }, + { + "epoch": 6.542205791743685, + "grad_norm": 0.043234266340732574, + "learning_rate": 0.01, + "loss": 1.987, + "step": 63708 + }, + { + "epoch": 6.542513863216266, + "grad_norm": 0.050926946103572845, + "learning_rate": 0.01, + "loss": 1.999, + "step": 63711 + }, + { + "epoch": 6.542821934688848, + "grad_norm": 0.040199290961027145, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 63714 + }, + { + "epoch": 6.543130006161429, + "grad_norm": 0.0373854786157608, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 63717 + }, + { + "epoch": 6.543438077634011, + "grad_norm": 0.04420515522360802, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 63720 + }, + { + "epoch": 6.5437461491065925, + "grad_norm": 0.10335779935121536, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 63723 + }, + { + "epoch": 6.5440542205791745, + "grad_norm": 0.08750100433826447, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 63726 + }, + { + "epoch": 6.544362292051756, + "grad_norm": 0.08968067169189453, + "learning_rate": 0.01, + "loss": 2.003, + "step": 63729 + }, + { + "epoch": 6.544670363524338, + "grad_norm": 0.05931568518280983, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 63732 + }, + { + "epoch": 6.544978434996919, + "grad_norm": 0.04726015031337738, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 63735 + }, + { + "epoch": 6.545286506469501, + "grad_norm": 0.048892538994550705, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 63738 + }, + { + "epoch": 6.545594577942083, + "grad_norm": 0.042674802243709564, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 63741 + }, + { + "epoch": 6.545902649414664, + "grad_norm": 0.11424809694290161, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 63744 + }, + { + "epoch": 6.546210720887246, + "grad_norm": 0.037352122366428375, + "learning_rate": 0.01, + "loss": 1.9509, + "step": 63747 + }, + { + "epoch": 6.546518792359827, + "grad_norm": 0.04247456043958664, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 63750 + }, + { + "epoch": 6.546826863832409, + "grad_norm": 0.05194523185491562, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 63753 + }, + { + "epoch": 6.547134935304991, + "grad_norm": 0.055400025099515915, + "learning_rate": 0.01, + "loss": 1.9541, + "step": 63756 + }, + { + "epoch": 6.547443006777573, + "grad_norm": 0.06295850872993469, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 63759 + }, + { + "epoch": 6.547751078250154, + "grad_norm": 0.05281165987253189, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 63762 + }, + { + "epoch": 6.548059149722736, + "grad_norm": 0.04838143289089203, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 63765 + }, + { + "epoch": 6.548367221195317, + "grad_norm": 0.03333796560764313, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 63768 + }, + { + "epoch": 6.548675292667899, + "grad_norm": 0.029952581971883774, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 63771 + }, + { + "epoch": 6.54898336414048, + "grad_norm": 0.03036186844110489, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 63774 + }, + { + "epoch": 6.549291435613062, + "grad_norm": 0.06050482019782066, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 63777 + }, + { + "epoch": 6.549599507085643, + "grad_norm": 0.08855880796909332, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 63780 + }, + { + "epoch": 6.5499075785582255, + "grad_norm": 0.08679243922233582, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 63783 + }, + { + "epoch": 6.5502156500308075, + "grad_norm": 0.04234171286225319, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 63786 + }, + { + "epoch": 6.550523721503389, + "grad_norm": 0.029922012239694595, + "learning_rate": 0.01, + "loss": 1.9517, + "step": 63789 + }, + { + "epoch": 6.550831792975971, + "grad_norm": 0.11024188250303268, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 63792 + }, + { + "epoch": 6.551139864448552, + "grad_norm": 0.03447732329368591, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 63795 + }, + { + "epoch": 6.551447935921134, + "grad_norm": 0.04188188910484314, + "learning_rate": 0.01, + "loss": 1.98, + "step": 63798 + }, + { + "epoch": 6.551756007393715, + "grad_norm": 0.040945570915937424, + "learning_rate": 0.01, + "loss": 1.9852, + "step": 63801 + }, + { + "epoch": 6.552064078866297, + "grad_norm": 0.07144046574831009, + "learning_rate": 0.01, + "loss": 1.98, + "step": 63804 + }, + { + "epoch": 6.552372150338878, + "grad_norm": 0.043573856353759766, + "learning_rate": 0.01, + "loss": 1.969, + "step": 63807 + }, + { + "epoch": 6.55268022181146, + "grad_norm": 0.04076509550213814, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 63810 + }, + { + "epoch": 6.5529882932840415, + "grad_norm": 0.042045023292303085, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 63813 + }, + { + "epoch": 6.553296364756624, + "grad_norm": 0.047036029398441315, + "learning_rate": 0.01, + "loss": 1.9671, + "step": 63816 + }, + { + "epoch": 6.553604436229206, + "grad_norm": 0.08206555247306824, + "learning_rate": 0.01, + "loss": 1.997, + "step": 63819 + }, + { + "epoch": 6.553912507701787, + "grad_norm": 0.04344995692372322, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 63822 + }, + { + "epoch": 6.554220579174368, + "grad_norm": 0.05620454624295235, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 63825 + }, + { + "epoch": 6.55452865064695, + "grad_norm": 0.042846135795116425, + "learning_rate": 0.01, + "loss": 1.967, + "step": 63828 + }, + { + "epoch": 6.554836722119532, + "grad_norm": 0.04379443824291229, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 63831 + }, + { + "epoch": 6.555144793592113, + "grad_norm": 0.050486281514167786, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 63834 + }, + { + "epoch": 6.555452865064695, + "grad_norm": 0.10757488012313843, + "learning_rate": 0.01, + "loss": 1.96, + "step": 63837 + }, + { + "epoch": 6.555760936537276, + "grad_norm": 0.09059060364961624, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 63840 + }, + { + "epoch": 6.5560690080098585, + "grad_norm": 0.055471502244472504, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 63843 + }, + { + "epoch": 6.55637707948244, + "grad_norm": 0.10934463888406754, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 63846 + }, + { + "epoch": 6.556685150955022, + "grad_norm": 0.08888571709394455, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 63849 + }, + { + "epoch": 6.556993222427603, + "grad_norm": 0.11083342134952545, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 63852 + }, + { + "epoch": 6.557301293900185, + "grad_norm": 0.07405796647071838, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 63855 + }, + { + "epoch": 6.557609365372766, + "grad_norm": 0.08451070636510849, + "learning_rate": 0.01, + "loss": 2.0033, + "step": 63858 + }, + { + "epoch": 6.557917436845348, + "grad_norm": 0.05954553931951523, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 63861 + }, + { + "epoch": 6.55822550831793, + "grad_norm": 0.06008210405707359, + "learning_rate": 0.01, + "loss": 1.9529, + "step": 63864 + }, + { + "epoch": 6.558533579790511, + "grad_norm": 0.0861048474907875, + "learning_rate": 0.01, + "loss": 1.9767, + "step": 63867 + }, + { + "epoch": 6.558841651263093, + "grad_norm": 0.06240614131093025, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 63870 + }, + { + "epoch": 6.5591497227356745, + "grad_norm": 0.05393391102552414, + "learning_rate": 0.01, + "loss": 1.9604, + "step": 63873 + }, + { + "epoch": 6.559457794208257, + "grad_norm": 0.08556719869375229, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 63876 + }, + { + "epoch": 6.559765865680838, + "grad_norm": 0.045306041836738586, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 63879 + }, + { + "epoch": 6.56007393715342, + "grad_norm": 0.11380963772535324, + "learning_rate": 0.01, + "loss": 2.0034, + "step": 63882 + }, + { + "epoch": 6.560382008626001, + "grad_norm": 0.04248273745179176, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 63885 + }, + { + "epoch": 6.560690080098583, + "grad_norm": 0.040910713374614716, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 63888 + }, + { + "epoch": 6.560998151571164, + "grad_norm": 0.046450424939394, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 63891 + }, + { + "epoch": 6.561306223043746, + "grad_norm": 0.07835663855075836, + "learning_rate": 0.01, + "loss": 1.973, + "step": 63894 + }, + { + "epoch": 6.561614294516328, + "grad_norm": 0.04756823554635048, + "learning_rate": 0.01, + "loss": 1.9691, + "step": 63897 + }, + { + "epoch": 6.561922365988909, + "grad_norm": 0.10655516386032104, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 63900 + }, + { + "epoch": 6.562230437461491, + "grad_norm": 0.08743315935134888, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 63903 + }, + { + "epoch": 6.562538508934073, + "grad_norm": 0.05087851360440254, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 63906 + }, + { + "epoch": 6.562846580406655, + "grad_norm": 0.03635932877659798, + "learning_rate": 0.01, + "loss": 1.9521, + "step": 63909 + }, + { + "epoch": 6.563154651879236, + "grad_norm": 0.09845136106014252, + "learning_rate": 0.01, + "loss": 1.979, + "step": 63912 + }, + { + "epoch": 6.563462723351818, + "grad_norm": 0.03554631769657135, + "learning_rate": 0.01, + "loss": 1.9448, + "step": 63915 + }, + { + "epoch": 6.563770794824399, + "grad_norm": 0.053068485110998154, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 63918 + }, + { + "epoch": 6.564078866296981, + "grad_norm": 0.09752979129552841, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 63921 + }, + { + "epoch": 6.564386937769562, + "grad_norm": 0.10045387595891953, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 63924 + }, + { + "epoch": 6.564695009242144, + "grad_norm": 0.1082577034831047, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 63927 + }, + { + "epoch": 6.5650030807147255, + "grad_norm": 0.09065879136323929, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 63930 + }, + { + "epoch": 6.5653111521873075, + "grad_norm": 0.06496050953865051, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 63933 + }, + { + "epoch": 6.565619223659889, + "grad_norm": 0.07092882692813873, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 63936 + }, + { + "epoch": 6.565927295132471, + "grad_norm": 0.048295971006155014, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 63939 + }, + { + "epoch": 6.566235366605053, + "grad_norm": 0.045929424464702606, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 63942 + }, + { + "epoch": 6.566543438077634, + "grad_norm": 0.03663928061723709, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 63945 + }, + { + "epoch": 6.566851509550216, + "grad_norm": 0.03723525255918503, + "learning_rate": 0.01, + "loss": 1.9486, + "step": 63948 + }, + { + "epoch": 6.567159581022797, + "grad_norm": 0.05147719010710716, + "learning_rate": 0.01, + "loss": 1.9737, + "step": 63951 + }, + { + "epoch": 6.567467652495379, + "grad_norm": 0.04248051717877388, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 63954 + }, + { + "epoch": 6.56777572396796, + "grad_norm": 0.054685961455106735, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 63957 + }, + { + "epoch": 6.568083795440542, + "grad_norm": 0.07126769423484802, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 63960 + }, + { + "epoch": 6.568391866913124, + "grad_norm": 0.0660753920674324, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 63963 + }, + { + "epoch": 6.568699938385706, + "grad_norm": 0.04418491572141647, + "learning_rate": 0.01, + "loss": 1.9591, + "step": 63966 + }, + { + "epoch": 6.569008009858287, + "grad_norm": 0.03849758952856064, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 63969 + }, + { + "epoch": 6.569316081330869, + "grad_norm": 0.0360284261405468, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 63972 + }, + { + "epoch": 6.56962415280345, + "grad_norm": 0.04783300310373306, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 63975 + }, + { + "epoch": 6.569932224276032, + "grad_norm": 0.104099340736866, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 63978 + }, + { + "epoch": 6.570240295748613, + "grad_norm": 0.06214939430356026, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 63981 + }, + { + "epoch": 6.570548367221195, + "grad_norm": 0.03583189472556114, + "learning_rate": 0.01, + "loss": 1.962, + "step": 63984 + }, + { + "epoch": 6.570856438693777, + "grad_norm": 0.03806734457612038, + "learning_rate": 0.01, + "loss": 1.9445, + "step": 63987 + }, + { + "epoch": 6.5711645101663585, + "grad_norm": 0.037077397108078, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 63990 + }, + { + "epoch": 6.5714725816389405, + "grad_norm": 0.1366073340177536, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 63993 + }, + { + "epoch": 6.571780653111522, + "grad_norm": 0.06739377975463867, + "learning_rate": 0.01, + "loss": 1.946, + "step": 63996 + }, + { + "epoch": 6.572088724584104, + "grad_norm": 0.041534364223480225, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 63999 + }, + { + "epoch": 6.572396796056685, + "grad_norm": 0.04053931310772896, + "learning_rate": 0.01, + "loss": 1.9929, + "step": 64002 + }, + { + "epoch": 6.572704867529267, + "grad_norm": 0.04500468447804451, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 64005 + }, + { + "epoch": 6.573012939001848, + "grad_norm": 0.07406989485025406, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 64008 + }, + { + "epoch": 6.57332101047443, + "grad_norm": 0.05247531831264496, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 64011 + }, + { + "epoch": 6.573629081947011, + "grad_norm": 0.117593914270401, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 64014 + }, + { + "epoch": 6.573937153419593, + "grad_norm": 0.07242528349161148, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 64017 + }, + { + "epoch": 6.574245224892175, + "grad_norm": 0.05359083414077759, + "learning_rate": 0.01, + "loss": 1.9632, + "step": 64020 + }, + { + "epoch": 6.574553296364757, + "grad_norm": 0.036466315388679504, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 64023 + }, + { + "epoch": 6.574861367837338, + "grad_norm": 0.03925064578652382, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 64026 + }, + { + "epoch": 6.57516943930992, + "grad_norm": 0.05542049929499626, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 64029 + }, + { + "epoch": 6.575477510782502, + "grad_norm": 0.06237075477838516, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 64032 + }, + { + "epoch": 6.575785582255083, + "grad_norm": 0.04179569333791733, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 64035 + }, + { + "epoch": 6.576093653727665, + "grad_norm": 0.11507870256900787, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 64038 + }, + { + "epoch": 6.576401725200246, + "grad_norm": 0.06069584935903549, + "learning_rate": 0.01, + "loss": 1.9697, + "step": 64041 + }, + { + "epoch": 6.576709796672828, + "grad_norm": 0.041366275399923325, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 64044 + }, + { + "epoch": 6.5770178681454095, + "grad_norm": 0.06424157321453094, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 64047 + }, + { + "epoch": 6.5773259396179915, + "grad_norm": 0.06879021972417831, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 64050 + }, + { + "epoch": 6.577634011090573, + "grad_norm": 0.043172743171453476, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 64053 + }, + { + "epoch": 6.577942082563155, + "grad_norm": 0.05824809893965721, + "learning_rate": 0.01, + "loss": 1.9463, + "step": 64056 + }, + { + "epoch": 6.578250154035736, + "grad_norm": 0.045327652245759964, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 64059 + }, + { + "epoch": 6.578558225508318, + "grad_norm": 0.11322353035211563, + "learning_rate": 0.01, + "loss": 1.981, + "step": 64062 + }, + { + "epoch": 6.5788662969809, + "grad_norm": 0.06283524632453918, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 64065 + }, + { + "epoch": 6.579174368453481, + "grad_norm": 0.06951749324798584, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 64068 + }, + { + "epoch": 6.579482439926063, + "grad_norm": 0.1091168001294136, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 64071 + }, + { + "epoch": 6.579790511398644, + "grad_norm": 0.0779736191034317, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 64074 + }, + { + "epoch": 6.580098582871226, + "grad_norm": 0.06814195215702057, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 64077 + }, + { + "epoch": 6.580406654343808, + "grad_norm": 0.06565315276384354, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 64080 + }, + { + "epoch": 6.58071472581639, + "grad_norm": 0.08950956165790558, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 64083 + }, + { + "epoch": 6.581022797288971, + "grad_norm": 0.06202126666903496, + "learning_rate": 0.01, + "loss": 1.992, + "step": 64086 + }, + { + "epoch": 6.581330868761553, + "grad_norm": 0.10947906970977783, + "learning_rate": 0.01, + "loss": 1.988, + "step": 64089 + }, + { + "epoch": 6.581638940234134, + "grad_norm": 0.051477983593940735, + "learning_rate": 0.01, + "loss": 1.9994, + "step": 64092 + }, + { + "epoch": 6.581947011706716, + "grad_norm": 0.05183662101626396, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 64095 + }, + { + "epoch": 6.582255083179298, + "grad_norm": 0.04651165008544922, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 64098 + }, + { + "epoch": 6.582563154651879, + "grad_norm": 0.035913266241550446, + "learning_rate": 0.01, + "loss": 1.96, + "step": 64101 + }, + { + "epoch": 6.58287122612446, + "grad_norm": 0.0991610661149025, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 64104 + }, + { + "epoch": 6.5831792975970425, + "grad_norm": 0.04391265660524368, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 64107 + }, + { + "epoch": 6.5834873690696245, + "grad_norm": 0.14331793785095215, + "learning_rate": 0.01, + "loss": 2.026, + "step": 64110 + }, + { + "epoch": 6.583795440542206, + "grad_norm": 0.10682855546474457, + "learning_rate": 0.01, + "loss": 1.965, + "step": 64113 + }, + { + "epoch": 6.584103512014788, + "grad_norm": 0.07142464816570282, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 64116 + }, + { + "epoch": 6.584411583487369, + "grad_norm": 0.05298778787255287, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 64119 + }, + { + "epoch": 6.584719654959951, + "grad_norm": 0.10031582415103912, + "learning_rate": 0.01, + "loss": 1.9498, + "step": 64122 + }, + { + "epoch": 6.585027726432532, + "grad_norm": 0.03978649899363518, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 64125 + }, + { + "epoch": 6.585335797905114, + "grad_norm": 0.05913195759057999, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 64128 + }, + { + "epoch": 6.585643869377695, + "grad_norm": 0.03559190407395363, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 64131 + }, + { + "epoch": 6.585951940850277, + "grad_norm": 0.09079554677009583, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 64134 + }, + { + "epoch": 6.5862600123228585, + "grad_norm": 0.04525060951709747, + "learning_rate": 0.01, + "loss": 1.9758, + "step": 64137 + }, + { + "epoch": 6.586568083795441, + "grad_norm": 0.03372851014137268, + "learning_rate": 0.01, + "loss": 1.983, + "step": 64140 + }, + { + "epoch": 6.586876155268023, + "grad_norm": 0.08057595044374466, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 64143 + }, + { + "epoch": 6.587184226740604, + "grad_norm": 0.09445854276418686, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 64146 + }, + { + "epoch": 6.587492298213186, + "grad_norm": 0.07656941562891006, + "learning_rate": 0.01, + "loss": 1.987, + "step": 64149 + }, + { + "epoch": 6.587800369685767, + "grad_norm": 0.08286568522453308, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 64152 + }, + { + "epoch": 6.588108441158349, + "grad_norm": 0.11229046434164047, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 64155 + }, + { + "epoch": 6.58841651263093, + "grad_norm": 0.06434221565723419, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 64158 + }, + { + "epoch": 6.588724584103512, + "grad_norm": 0.08923232555389404, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 64161 + }, + { + "epoch": 6.589032655576093, + "grad_norm": 0.07555590569972992, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 64164 + }, + { + "epoch": 6.5893407270486755, + "grad_norm": 0.05860813334584236, + "learning_rate": 0.01, + "loss": 1.982, + "step": 64167 + }, + { + "epoch": 6.589648798521257, + "grad_norm": 0.03441310673952103, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 64170 + }, + { + "epoch": 6.589956869993839, + "grad_norm": 0.0361168198287487, + "learning_rate": 0.01, + "loss": 1.9671, + "step": 64173 + }, + { + "epoch": 6.59026494146642, + "grad_norm": 0.04222318157553673, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 64176 + }, + { + "epoch": 6.590573012939002, + "grad_norm": 0.12981876730918884, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 64179 + }, + { + "epoch": 6.590881084411583, + "grad_norm": 0.05409705266356468, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 64182 + }, + { + "epoch": 6.591189155884165, + "grad_norm": 0.053002189844846725, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 64185 + }, + { + "epoch": 6.591497227356747, + "grad_norm": 0.061368245631456375, + "learning_rate": 0.01, + "loss": 1.9612, + "step": 64188 + }, + { + "epoch": 6.591805298829328, + "grad_norm": 0.10517262667417526, + "learning_rate": 0.01, + "loss": 1.973, + "step": 64191 + }, + { + "epoch": 6.59211337030191, + "grad_norm": 0.06446947157382965, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 64194 + }, + { + "epoch": 6.5924214417744915, + "grad_norm": 0.06423608213663101, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 64197 + }, + { + "epoch": 6.592729513247074, + "grad_norm": 0.034221209585666656, + "learning_rate": 0.01, + "loss": 1.962, + "step": 64200 + }, + { + "epoch": 6.593037584719655, + "grad_norm": 0.12078302353620529, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 64203 + }, + { + "epoch": 6.593345656192237, + "grad_norm": 0.08189702033996582, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 64206 + }, + { + "epoch": 6.593653727664818, + "grad_norm": 0.0505688339471817, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 64209 + }, + { + "epoch": 6.5939617991374, + "grad_norm": 0.05289214104413986, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 64212 + }, + { + "epoch": 6.594269870609981, + "grad_norm": 0.0513903982937336, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 64215 + }, + { + "epoch": 6.594577942082563, + "grad_norm": 0.06634233146905899, + "learning_rate": 0.01, + "loss": 1.964, + "step": 64218 + }, + { + "epoch": 6.594886013555145, + "grad_norm": 0.0847700983285904, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 64221 + }, + { + "epoch": 6.595194085027726, + "grad_norm": 0.08042684942483902, + "learning_rate": 0.01, + "loss": 1.991, + "step": 64224 + }, + { + "epoch": 6.595502156500308, + "grad_norm": 0.046448756009340286, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 64227 + }, + { + "epoch": 6.59581022797289, + "grad_norm": 0.09152430295944214, + "learning_rate": 0.01, + "loss": 1.997, + "step": 64230 + }, + { + "epoch": 6.596118299445472, + "grad_norm": 0.05537572130560875, + "learning_rate": 0.01, + "loss": 2.0014, + "step": 64233 + }, + { + "epoch": 6.596426370918053, + "grad_norm": 0.040232930332422256, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 64236 + }, + { + "epoch": 6.596734442390635, + "grad_norm": 0.040378376841545105, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 64239 + }, + { + "epoch": 6.597042513863216, + "grad_norm": 0.036219045519828796, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 64242 + }, + { + "epoch": 6.597350585335798, + "grad_norm": 0.0671059712767601, + "learning_rate": 0.01, + "loss": 1.9738, + "step": 64245 + }, + { + "epoch": 6.597658656808379, + "grad_norm": 0.05195783078670502, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 64248 + }, + { + "epoch": 6.597966728280961, + "grad_norm": 0.05707523226737976, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 64251 + }, + { + "epoch": 6.5982747997535425, + "grad_norm": 0.10035475343465805, + "learning_rate": 0.01, + "loss": 2.0062, + "step": 64254 + }, + { + "epoch": 6.5985828712261245, + "grad_norm": 0.08237627893686295, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 64257 + }, + { + "epoch": 6.598890942698706, + "grad_norm": 0.06940212100744247, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 64260 + }, + { + "epoch": 6.599199014171288, + "grad_norm": 0.08880186080932617, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 64263 + }, + { + "epoch": 6.59950708564387, + "grad_norm": 0.07859902083873749, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 64266 + }, + { + "epoch": 6.599815157116451, + "grad_norm": 0.10869091004133224, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 64269 + }, + { + "epoch": 6.600123228589033, + "grad_norm": 0.09375559538602829, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 64272 + }, + { + "epoch": 6.600431300061614, + "grad_norm": 0.047256410121917725, + "learning_rate": 0.01, + "loss": 2.0044, + "step": 64275 + }, + { + "epoch": 6.600739371534196, + "grad_norm": 0.04523398354649544, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 64278 + }, + { + "epoch": 6.601047443006777, + "grad_norm": 0.03981922194361687, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 64281 + }, + { + "epoch": 6.601355514479359, + "grad_norm": 0.05818277969956398, + "learning_rate": 0.01, + "loss": 2.002, + "step": 64284 + }, + { + "epoch": 6.601663585951941, + "grad_norm": 0.04212537035346031, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 64287 + }, + { + "epoch": 6.601971657424523, + "grad_norm": 0.033235009759664536, + "learning_rate": 0.01, + "loss": 1.9896, + "step": 64290 + }, + { + "epoch": 6.602279728897104, + "grad_norm": 0.0338917002081871, + "learning_rate": 0.01, + "loss": 1.9502, + "step": 64293 + }, + { + "epoch": 6.602587800369686, + "grad_norm": 0.07970410585403442, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 64296 + }, + { + "epoch": 6.602895871842268, + "grad_norm": 0.05640435963869095, + "learning_rate": 0.01, + "loss": 2.0047, + "step": 64299 + }, + { + "epoch": 6.603203943314849, + "grad_norm": 0.03606804460287094, + "learning_rate": 0.01, + "loss": 1.98, + "step": 64302 + }, + { + "epoch": 6.60351201478743, + "grad_norm": 0.04679587855935097, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 64305 + }, + { + "epoch": 6.603820086260012, + "grad_norm": 0.10526128858327866, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 64308 + }, + { + "epoch": 6.604128157732594, + "grad_norm": 0.1200772076845169, + "learning_rate": 0.01, + "loss": 1.974, + "step": 64311 + }, + { + "epoch": 6.6044362292051755, + "grad_norm": 0.1391524225473404, + "learning_rate": 0.01, + "loss": 1.965, + "step": 64314 + }, + { + "epoch": 6.6047443006777575, + "grad_norm": 0.08838554471731186, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 64317 + }, + { + "epoch": 6.605052372150339, + "grad_norm": 0.07253210991621017, + "learning_rate": 0.01, + "loss": 2.0028, + "step": 64320 + }, + { + "epoch": 6.605360443622921, + "grad_norm": 0.04417060315608978, + "learning_rate": 0.01, + "loss": 1.9559, + "step": 64323 + }, + { + "epoch": 6.605668515095502, + "grad_norm": 0.04443688318133354, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 64326 + }, + { + "epoch": 6.605976586568084, + "grad_norm": 0.05711906775832176, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 64329 + }, + { + "epoch": 6.606284658040665, + "grad_norm": 0.05172707885503769, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 64332 + }, + { + "epoch": 6.606592729513247, + "grad_norm": 0.08967714011669159, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 64335 + }, + { + "epoch": 6.606900800985828, + "grad_norm": 0.03300314024090767, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 64338 + }, + { + "epoch": 6.60720887245841, + "grad_norm": 0.052630916237831116, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 64341 + }, + { + "epoch": 6.607516943930992, + "grad_norm": 0.041368499398231506, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 64344 + }, + { + "epoch": 6.607825015403574, + "grad_norm": 0.04549229145050049, + "learning_rate": 0.01, + "loss": 1.972, + "step": 64347 + }, + { + "epoch": 6.608133086876156, + "grad_norm": 0.057475391775369644, + "learning_rate": 0.01, + "loss": 1.977, + "step": 64350 + }, + { + "epoch": 6.608441158348737, + "grad_norm": 0.056770164519548416, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 64353 + }, + { + "epoch": 6.608749229821319, + "grad_norm": 0.12769392132759094, + "learning_rate": 0.01, + "loss": 1.9643, + "step": 64356 + }, + { + "epoch": 6.6090573012939, + "grad_norm": 0.05759736895561218, + "learning_rate": 0.01, + "loss": 1.9962, + "step": 64359 + }, + { + "epoch": 6.609365372766482, + "grad_norm": 0.10004235059022903, + "learning_rate": 0.01, + "loss": 1.9524, + "step": 64362 + }, + { + "epoch": 6.609673444239063, + "grad_norm": 0.0365755669772625, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 64365 + }, + { + "epoch": 6.609981515711645, + "grad_norm": 0.07999947667121887, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 64368 + }, + { + "epoch": 6.610289587184226, + "grad_norm": 0.055819109082221985, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 64371 + }, + { + "epoch": 6.6105976586568085, + "grad_norm": 0.046389635652303696, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 64374 + }, + { + "epoch": 6.61090573012939, + "grad_norm": 0.04378519952297211, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 64377 + }, + { + "epoch": 6.611213801601972, + "grad_norm": 0.04519166797399521, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 64380 + }, + { + "epoch": 6.611521873074553, + "grad_norm": 0.037725985050201416, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 64383 + }, + { + "epoch": 6.611829944547135, + "grad_norm": 0.03793521970510483, + "learning_rate": 0.01, + "loss": 1.9545, + "step": 64386 + }, + { + "epoch": 6.612138016019717, + "grad_norm": 0.04742049798369408, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 64389 + }, + { + "epoch": 6.612446087492298, + "grad_norm": 0.059588026255369186, + "learning_rate": 0.01, + "loss": 1.976, + "step": 64392 + }, + { + "epoch": 6.61275415896488, + "grad_norm": 0.06134435534477234, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 64395 + }, + { + "epoch": 6.613062230437461, + "grad_norm": 0.11348873376846313, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 64398 + }, + { + "epoch": 6.613370301910043, + "grad_norm": 0.03893901780247688, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 64401 + }, + { + "epoch": 6.6136783733826245, + "grad_norm": 0.11874943226575851, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 64404 + }, + { + "epoch": 6.613986444855207, + "grad_norm": 0.08608514815568924, + "learning_rate": 0.01, + "loss": 1.9592, + "step": 64407 + }, + { + "epoch": 6.614294516327788, + "grad_norm": 0.04932364821434021, + "learning_rate": 0.01, + "loss": 1.9503, + "step": 64410 + }, + { + "epoch": 6.61460258780037, + "grad_norm": 0.04308156296610832, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 64413 + }, + { + "epoch": 6.614910659272951, + "grad_norm": 0.050084516406059265, + "learning_rate": 0.01, + "loss": 1.9996, + "step": 64416 + }, + { + "epoch": 6.615218730745533, + "grad_norm": 0.054838646203279495, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 64419 + }, + { + "epoch": 6.615526802218115, + "grad_norm": 0.08248993754386902, + "learning_rate": 0.01, + "loss": 1.964, + "step": 64422 + }, + { + "epoch": 6.615834873690696, + "grad_norm": 0.09142714738845825, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 64425 + }, + { + "epoch": 6.616142945163277, + "grad_norm": 0.07664018124341965, + "learning_rate": 0.01, + "loss": 1.9591, + "step": 64428 + }, + { + "epoch": 6.616451016635859, + "grad_norm": 0.10052567720413208, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 64431 + }, + { + "epoch": 6.6167590881084415, + "grad_norm": 0.04676009342074394, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 64434 + }, + { + "epoch": 6.617067159581023, + "grad_norm": 0.05421235412359238, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 64437 + }, + { + "epoch": 6.617375231053605, + "grad_norm": 0.05721297487616539, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 64440 + }, + { + "epoch": 6.617683302526186, + "grad_norm": 0.05209130793809891, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 64443 + }, + { + "epoch": 6.617991373998768, + "grad_norm": 0.032787423580884933, + "learning_rate": 0.01, + "loss": 1.979, + "step": 64446 + }, + { + "epoch": 6.618299445471349, + "grad_norm": 0.11715228855609894, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 64449 + }, + { + "epoch": 6.618607516943931, + "grad_norm": 0.044540733098983765, + "learning_rate": 0.01, + "loss": 1.9501, + "step": 64452 + }, + { + "epoch": 6.618915588416512, + "grad_norm": 0.06670498847961426, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 64455 + }, + { + "epoch": 6.619223659889094, + "grad_norm": 0.09549476206302643, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 64458 + }, + { + "epoch": 6.6195317313616755, + "grad_norm": 0.06052359193563461, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 64461 + }, + { + "epoch": 6.6198398028342575, + "grad_norm": 0.04301074892282486, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 64464 + }, + { + "epoch": 6.62014787430684, + "grad_norm": 0.06434419006109238, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 64467 + }, + { + "epoch": 6.620455945779421, + "grad_norm": 0.051222655922174454, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 64470 + }, + { + "epoch": 6.620764017252003, + "grad_norm": 0.06115943565964699, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 64473 + }, + { + "epoch": 6.621072088724584, + "grad_norm": 0.07994543761014938, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 64476 + }, + { + "epoch": 6.621380160197166, + "grad_norm": 0.06953758746385574, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 64479 + }, + { + "epoch": 6.621688231669747, + "grad_norm": 0.12298289686441422, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 64482 + }, + { + "epoch": 6.621996303142329, + "grad_norm": 0.05092281848192215, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 64485 + }, + { + "epoch": 6.62230437461491, + "grad_norm": 0.043478354811668396, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 64488 + }, + { + "epoch": 6.622612446087492, + "grad_norm": 0.043610502034425735, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 64491 + }, + { + "epoch": 6.622920517560074, + "grad_norm": 0.052348487079143524, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 64494 + }, + { + "epoch": 6.623228589032656, + "grad_norm": 0.05436374992132187, + "learning_rate": 0.01, + "loss": 1.9554, + "step": 64497 + }, + { + "epoch": 6.623536660505238, + "grad_norm": 0.057916752994060516, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 64500 + }, + { + "epoch": 6.623844731977819, + "grad_norm": 0.047713443636894226, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 64503 + }, + { + "epoch": 6.6241528034504, + "grad_norm": 0.03382120653986931, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 64506 + }, + { + "epoch": 6.624460874922982, + "grad_norm": 0.0990116074681282, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 64509 + }, + { + "epoch": 6.624768946395564, + "grad_norm": 0.0787537470459938, + "learning_rate": 0.01, + "loss": 1.988, + "step": 64512 + }, + { + "epoch": 6.625077017868145, + "grad_norm": 0.07667285948991776, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 64515 + }, + { + "epoch": 6.625385089340727, + "grad_norm": 0.04837285354733467, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 64518 + }, + { + "epoch": 6.6256931608133085, + "grad_norm": 0.04143200442194939, + "learning_rate": 0.01, + "loss": 2.0021, + "step": 64521 + }, + { + "epoch": 6.6260012322858906, + "grad_norm": 0.033114057034254074, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 64524 + }, + { + "epoch": 6.626309303758472, + "grad_norm": 0.0412205308675766, + "learning_rate": 0.01, + "loss": 1.9918, + "step": 64527 + }, + { + "epoch": 6.626617375231054, + "grad_norm": 0.10429148375988007, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 64530 + }, + { + "epoch": 6.626925446703635, + "grad_norm": 0.05905142053961754, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 64533 + }, + { + "epoch": 6.627233518176217, + "grad_norm": 0.05937071144580841, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 64536 + }, + { + "epoch": 6.627541589648798, + "grad_norm": 0.10505139082670212, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 64539 + }, + { + "epoch": 6.62784966112138, + "grad_norm": 0.08412894606590271, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 64542 + }, + { + "epoch": 6.628157732593962, + "grad_norm": 0.07351752370595932, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 64545 + }, + { + "epoch": 6.628465804066543, + "grad_norm": 0.07745961844921112, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 64548 + }, + { + "epoch": 6.6287738755391254, + "grad_norm": 0.07289955765008926, + "learning_rate": 0.01, + "loss": 1.9546, + "step": 64551 + }, + { + "epoch": 6.629081947011707, + "grad_norm": 0.04405929520726204, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 64554 + }, + { + "epoch": 6.629390018484289, + "grad_norm": 0.0912909060716629, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 64557 + }, + { + "epoch": 6.62969808995687, + "grad_norm": 0.042689189314842224, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 64560 + }, + { + "epoch": 6.630006161429452, + "grad_norm": 0.14025220274925232, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 64563 + }, + { + "epoch": 6.630314232902033, + "grad_norm": 0.1245136708021164, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 64566 + }, + { + "epoch": 6.630622304374615, + "grad_norm": 0.09421566873788834, + "learning_rate": 0.01, + "loss": 1.9583, + "step": 64569 + }, + { + "epoch": 6.630930375847196, + "grad_norm": 0.0803411453962326, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 64572 + }, + { + "epoch": 6.631238447319778, + "grad_norm": 0.06703267991542816, + "learning_rate": 0.01, + "loss": 1.9602, + "step": 64575 + }, + { + "epoch": 6.6315465187923595, + "grad_norm": 0.1008155420422554, + "learning_rate": 0.01, + "loss": 1.9158, + "step": 64578 + }, + { + "epoch": 6.6318545902649415, + "grad_norm": 0.08870470523834229, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 64581 + }, + { + "epoch": 6.632162661737523, + "grad_norm": 0.06180182099342346, + "learning_rate": 0.01, + "loss": 1.992, + "step": 64584 + }, + { + "epoch": 6.632470733210105, + "grad_norm": 0.06106216087937355, + "learning_rate": 0.01, + "loss": 1.9888, + "step": 64587 + }, + { + "epoch": 6.632778804682687, + "grad_norm": 0.05340215936303139, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 64590 + }, + { + "epoch": 6.633086876155268, + "grad_norm": 0.04080619663000107, + "learning_rate": 0.01, + "loss": 1.97, + "step": 64593 + }, + { + "epoch": 6.63339494762785, + "grad_norm": 0.031813837587833405, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 64596 + }, + { + "epoch": 6.633703019100431, + "grad_norm": 0.0589885450899601, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 64599 + }, + { + "epoch": 6.634011090573013, + "grad_norm": 0.14397123456001282, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 64602 + }, + { + "epoch": 6.634319162045594, + "grad_norm": 0.058227211236953735, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 64605 + }, + { + "epoch": 6.634627233518176, + "grad_norm": 0.05160403624176979, + "learning_rate": 0.01, + "loss": 1.953, + "step": 64608 + }, + { + "epoch": 6.634935304990758, + "grad_norm": 0.052490971982479095, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 64611 + }, + { + "epoch": 6.63524337646334, + "grad_norm": 0.06203007325530052, + "learning_rate": 0.01, + "loss": 1.991, + "step": 64614 + }, + { + "epoch": 6.635551447935921, + "grad_norm": 0.06790245324373245, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 64617 + }, + { + "epoch": 6.635859519408503, + "grad_norm": 0.0575333833694458, + "learning_rate": 0.01, + "loss": 1.9963, + "step": 64620 + }, + { + "epoch": 6.636167590881085, + "grad_norm": 0.05253339931368828, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 64623 + }, + { + "epoch": 6.636475662353666, + "grad_norm": 0.0605839341878891, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 64626 + }, + { + "epoch": 6.636783733826247, + "grad_norm": 0.046164620667696, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 64629 + }, + { + "epoch": 6.637091805298829, + "grad_norm": 0.04549845680594444, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 64632 + }, + { + "epoch": 6.637399876771411, + "grad_norm": 0.04419662430882454, + "learning_rate": 0.01, + "loss": 1.9575, + "step": 64635 + }, + { + "epoch": 6.6377079482439925, + "grad_norm": 0.04874144867062569, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 64638 + }, + { + "epoch": 6.6380160197165745, + "grad_norm": 0.06364091485738754, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 64641 + }, + { + "epoch": 6.638324091189156, + "grad_norm": 0.11188903450965881, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 64644 + }, + { + "epoch": 6.638632162661738, + "grad_norm": 0.03762582689523697, + "learning_rate": 0.01, + "loss": 1.97, + "step": 64647 + }, + { + "epoch": 6.638940234134319, + "grad_norm": 0.03571620211005211, + "learning_rate": 0.01, + "loss": 1.975, + "step": 64650 + }, + { + "epoch": 6.639248305606901, + "grad_norm": 0.05100245773792267, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 64653 + }, + { + "epoch": 6.639556377079482, + "grad_norm": 0.0773586705327034, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 64656 + }, + { + "epoch": 6.639864448552064, + "grad_norm": 0.056971583515405655, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 64659 + }, + { + "epoch": 6.640172520024645, + "grad_norm": 0.04947191849350929, + "learning_rate": 0.01, + "loss": 1.9586, + "step": 64662 + }, + { + "epoch": 6.640480591497227, + "grad_norm": 0.039240311831235886, + "learning_rate": 0.01, + "loss": 2.0069, + "step": 64665 + }, + { + "epoch": 6.640788662969809, + "grad_norm": 0.03866692632436752, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 64668 + }, + { + "epoch": 6.641096734442391, + "grad_norm": 0.05008673667907715, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 64671 + }, + { + "epoch": 6.641404805914973, + "grad_norm": 0.12828943133354187, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 64674 + }, + { + "epoch": 6.641712877387554, + "grad_norm": 0.04267043247818947, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 64677 + }, + { + "epoch": 6.642020948860136, + "grad_norm": 0.09645269066095352, + "learning_rate": 0.01, + "loss": 1.9822, + "step": 64680 + }, + { + "epoch": 6.642329020332717, + "grad_norm": 0.053970299661159515, + "learning_rate": 0.01, + "loss": 1.9629, + "step": 64683 + }, + { + "epoch": 6.642637091805299, + "grad_norm": 0.15396493673324585, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 64686 + }, + { + "epoch": 6.64294516327788, + "grad_norm": 0.06772658973932266, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 64689 + }, + { + "epoch": 6.643253234750462, + "grad_norm": 0.05688326433300972, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 64692 + }, + { + "epoch": 6.643561306223043, + "grad_norm": 0.05814405530691147, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 64695 + }, + { + "epoch": 6.6438693776956255, + "grad_norm": 0.033603183925151825, + "learning_rate": 0.01, + "loss": 1.9562, + "step": 64698 + }, + { + "epoch": 6.6441774491682075, + "grad_norm": 0.06284506618976593, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 64701 + }, + { + "epoch": 6.644485520640789, + "grad_norm": 0.03463011607527733, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 64704 + }, + { + "epoch": 6.64479359211337, + "grad_norm": 0.039407879114151, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 64707 + }, + { + "epoch": 6.645101663585952, + "grad_norm": 0.034094471484422684, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 64710 + }, + { + "epoch": 6.645409735058534, + "grad_norm": 0.15402834117412567, + "learning_rate": 0.01, + "loss": 1.9939, + "step": 64713 + }, + { + "epoch": 6.645717806531115, + "grad_norm": 0.055694807320833206, + "learning_rate": 0.01, + "loss": 1.9946, + "step": 64716 + }, + { + "epoch": 6.646025878003697, + "grad_norm": 0.07708931714296341, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 64719 + }, + { + "epoch": 6.646333949476278, + "grad_norm": 0.07107258588075638, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 64722 + }, + { + "epoch": 6.64664202094886, + "grad_norm": 0.06758569926023483, + "learning_rate": 0.01, + "loss": 1.9544, + "step": 64725 + }, + { + "epoch": 6.6469500924214415, + "grad_norm": 0.07093843817710876, + "learning_rate": 0.01, + "loss": 1.9627, + "step": 64728 + }, + { + "epoch": 6.647258163894024, + "grad_norm": 0.06615183502435684, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 64731 + }, + { + "epoch": 6.647566235366605, + "grad_norm": 0.06096789985895157, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 64734 + }, + { + "epoch": 6.647874306839187, + "grad_norm": 0.03493250906467438, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 64737 + }, + { + "epoch": 6.648182378311768, + "grad_norm": 0.058653466403484344, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 64740 + }, + { + "epoch": 6.64849044978435, + "grad_norm": 0.1340709775686264, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 64743 + }, + { + "epoch": 6.648798521256932, + "grad_norm": 0.0948764905333519, + "learning_rate": 0.01, + "loss": 1.9954, + "step": 64746 + }, + { + "epoch": 6.649106592729513, + "grad_norm": 0.03758051246404648, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 64749 + }, + { + "epoch": 6.649414664202095, + "grad_norm": 0.05022870749235153, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 64752 + }, + { + "epoch": 6.649722735674676, + "grad_norm": 0.04376206919550896, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 64755 + }, + { + "epoch": 6.6500308071472585, + "grad_norm": 0.05255085602402687, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 64758 + }, + { + "epoch": 6.65033887861984, + "grad_norm": 0.04554371163249016, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 64761 + }, + { + "epoch": 6.650646950092422, + "grad_norm": 0.046166516840457916, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 64764 + }, + { + "epoch": 6.650955021565003, + "grad_norm": 0.06942164152860641, + "learning_rate": 0.01, + "loss": 1.977, + "step": 64767 + }, + { + "epoch": 6.651263093037585, + "grad_norm": 0.07894229888916016, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 64770 + }, + { + "epoch": 6.651571164510166, + "grad_norm": 0.10424064844846725, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 64773 + }, + { + "epoch": 6.651879235982748, + "grad_norm": 0.1305040717124939, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 64776 + }, + { + "epoch": 6.652187307455329, + "grad_norm": 0.0960015282034874, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 64779 + }, + { + "epoch": 6.652495378927911, + "grad_norm": 0.051948267966508865, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 64782 + }, + { + "epoch": 6.6528034504004925, + "grad_norm": 0.049625445157289505, + "learning_rate": 0.01, + "loss": 1.974, + "step": 64785 + }, + { + "epoch": 6.6531115218730745, + "grad_norm": 0.03437644988298416, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 64788 + }, + { + "epoch": 6.653419593345657, + "grad_norm": 0.04177222028374672, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 64791 + }, + { + "epoch": 6.653727664818238, + "grad_norm": 0.12556210160255432, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 64794 + }, + { + "epoch": 6.65403573629082, + "grad_norm": 0.06504391878843307, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 64797 + }, + { + "epoch": 6.654343807763401, + "grad_norm": 0.0797589123249054, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 64800 + }, + { + "epoch": 6.654651879235983, + "grad_norm": 0.05979294329881668, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 64803 + }, + { + "epoch": 6.654959950708564, + "grad_norm": 0.07763978838920593, + "learning_rate": 0.01, + "loss": 1.9639, + "step": 64806 + }, + { + "epoch": 6.655268022181146, + "grad_norm": 0.06913294643163681, + "learning_rate": 0.01, + "loss": 1.9651, + "step": 64809 + }, + { + "epoch": 6.655576093653727, + "grad_norm": 0.0825156420469284, + "learning_rate": 0.01, + "loss": 1.9491, + "step": 64812 + }, + { + "epoch": 6.655884165126309, + "grad_norm": 0.04779151454567909, + "learning_rate": 0.01, + "loss": 1.9637, + "step": 64815 + }, + { + "epoch": 6.656192236598891, + "grad_norm": 0.09039946645498276, + "learning_rate": 0.01, + "loss": 1.979, + "step": 64818 + }, + { + "epoch": 6.656500308071473, + "grad_norm": 0.03368096798658371, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 64821 + }, + { + "epoch": 6.656808379544055, + "grad_norm": 0.11677176505327225, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 64824 + }, + { + "epoch": 6.657116451016636, + "grad_norm": 0.09988972544670105, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 64827 + }, + { + "epoch": 6.657424522489217, + "grad_norm": 0.1377715915441513, + "learning_rate": 0.01, + "loss": 1.9832, + "step": 64830 + }, + { + "epoch": 6.657732593961799, + "grad_norm": 0.04986416921019554, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 64833 + }, + { + "epoch": 6.658040665434381, + "grad_norm": 0.06681905686855316, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 64836 + }, + { + "epoch": 6.658348736906962, + "grad_norm": 0.05175319314002991, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 64839 + }, + { + "epoch": 6.658656808379544, + "grad_norm": 0.048531901091337204, + "learning_rate": 0.01, + "loss": 2.0054, + "step": 64842 + }, + { + "epoch": 6.6589648798521255, + "grad_norm": 0.06149359792470932, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 64845 + }, + { + "epoch": 6.6592729513247075, + "grad_norm": 0.0352664515376091, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 64848 + }, + { + "epoch": 6.659581022797289, + "grad_norm": 0.0510052926838398, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 64851 + }, + { + "epoch": 6.659889094269871, + "grad_norm": 0.06455834954977036, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 64854 + }, + { + "epoch": 6.660197165742452, + "grad_norm": 0.13268320262432098, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 64857 + }, + { + "epoch": 6.660505237215034, + "grad_norm": 0.0314185805618763, + "learning_rate": 0.01, + "loss": 1.9935, + "step": 64860 + }, + { + "epoch": 6.660813308687615, + "grad_norm": 0.06962891668081284, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 64863 + }, + { + "epoch": 6.661121380160197, + "grad_norm": 0.11769289523363113, + "learning_rate": 0.01, + "loss": 2.0032, + "step": 64866 + }, + { + "epoch": 6.661429451632779, + "grad_norm": 0.03778669983148575, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 64869 + }, + { + "epoch": 6.66173752310536, + "grad_norm": 0.09534257650375366, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 64872 + }, + { + "epoch": 6.662045594577942, + "grad_norm": 0.03727418929338455, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 64875 + }, + { + "epoch": 6.662353666050524, + "grad_norm": 0.04617612436413765, + "learning_rate": 0.01, + "loss": 1.978, + "step": 64878 + }, + { + "epoch": 6.662661737523106, + "grad_norm": 0.043121397495269775, + "learning_rate": 0.01, + "loss": 1.977, + "step": 64881 + }, + { + "epoch": 6.662969808995687, + "grad_norm": 0.03990964964032173, + "learning_rate": 0.01, + "loss": 1.973, + "step": 64884 + }, + { + "epoch": 6.663277880468269, + "grad_norm": 0.03709634020924568, + "learning_rate": 0.01, + "loss": 1.9594, + "step": 64887 + }, + { + "epoch": 6.66358595194085, + "grad_norm": 0.042194269597530365, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 64890 + }, + { + "epoch": 6.663894023413432, + "grad_norm": 0.08765631169080734, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 64893 + }, + { + "epoch": 6.664202094886013, + "grad_norm": 0.10358686000108719, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 64896 + }, + { + "epoch": 6.664510166358595, + "grad_norm": 0.05577368661761284, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 64899 + }, + { + "epoch": 6.664818237831177, + "grad_norm": 0.07221733778715134, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 64902 + }, + { + "epoch": 6.6651263093037585, + "grad_norm": 0.08421463519334793, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 64905 + }, + { + "epoch": 6.66543438077634, + "grad_norm": 0.04022625833749771, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 64908 + }, + { + "epoch": 6.665742452248922, + "grad_norm": 0.10746564716100693, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 64911 + }, + { + "epoch": 6.666050523721504, + "grad_norm": 0.10090082883834839, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 64914 + }, + { + "epoch": 6.666358595194085, + "grad_norm": 0.03953251615166664, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 64917 + }, + { + "epoch": 6.666666666666667, + "grad_norm": 0.09518130123615265, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 64920 + }, + { + "epoch": 6.666974738139248, + "grad_norm": 0.06792232394218445, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 64923 + }, + { + "epoch": 6.66728280961183, + "grad_norm": 0.08679928630590439, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 64926 + }, + { + "epoch": 6.667590881084411, + "grad_norm": 0.07284796237945557, + "learning_rate": 0.01, + "loss": 1.9691, + "step": 64929 + }, + { + "epoch": 6.667898952556993, + "grad_norm": 0.07962015271186829, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 64932 + }, + { + "epoch": 6.6682070240295745, + "grad_norm": 0.04905517399311066, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 64935 + }, + { + "epoch": 6.668515095502157, + "grad_norm": 0.1008431613445282, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 64938 + }, + { + "epoch": 6.668823166974738, + "grad_norm": 0.07995069026947021, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 64941 + }, + { + "epoch": 6.66913123844732, + "grad_norm": 0.08693604916334152, + "learning_rate": 0.01, + "loss": 1.9604, + "step": 64944 + }, + { + "epoch": 6.669439309919902, + "grad_norm": 0.07200144976377487, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 64947 + }, + { + "epoch": 6.669747381392483, + "grad_norm": 0.10411632061004639, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 64950 + }, + { + "epoch": 6.670055452865065, + "grad_norm": 0.03982757031917572, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 64953 + }, + { + "epoch": 6.670363524337646, + "grad_norm": 0.03512009605765343, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 64956 + }, + { + "epoch": 6.670671595810228, + "grad_norm": 0.056927431374788284, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 64959 + }, + { + "epoch": 6.6709796672828094, + "grad_norm": 0.04020826891064644, + "learning_rate": 0.01, + "loss": 1.9408, + "step": 64962 + }, + { + "epoch": 6.6712877387553915, + "grad_norm": 0.051895178854465485, + "learning_rate": 0.01, + "loss": 1.9598, + "step": 64965 + }, + { + "epoch": 6.671595810227973, + "grad_norm": 0.1494154930114746, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 64968 + }, + { + "epoch": 6.671903881700555, + "grad_norm": 0.06913480907678604, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 64971 + }, + { + "epoch": 6.672211953173136, + "grad_norm": 0.0441024973988533, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 64974 + }, + { + "epoch": 6.672520024645718, + "grad_norm": 0.053763311356306076, + "learning_rate": 0.01, + "loss": 1.9948, + "step": 64977 + }, + { + "epoch": 6.672828096118299, + "grad_norm": 0.08884178847074509, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 64980 + }, + { + "epoch": 6.673136167590881, + "grad_norm": 0.06425255537033081, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 64983 + }, + { + "epoch": 6.673444239063462, + "grad_norm": 0.07111632078886032, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 64986 + }, + { + "epoch": 6.673752310536044, + "grad_norm": 0.06380520761013031, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 64989 + }, + { + "epoch": 6.674060382008626, + "grad_norm": 0.06785110384225845, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 64992 + }, + { + "epoch": 6.6743684534812076, + "grad_norm": 0.13397693634033203, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 64995 + }, + { + "epoch": 6.67467652495379, + "grad_norm": 0.06838545948266983, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 64998 + }, + { + "epoch": 6.674984596426371, + "grad_norm": 0.05458493158221245, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 65001 + }, + { + "epoch": 6.675292667898953, + "grad_norm": 0.04406043142080307, + "learning_rate": 0.01, + "loss": 1.9596, + "step": 65004 + }, + { + "epoch": 6.675600739371534, + "grad_norm": 0.03164122626185417, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 65007 + }, + { + "epoch": 6.675908810844116, + "grad_norm": 0.03512512892484665, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 65010 + }, + { + "epoch": 6.676216882316697, + "grad_norm": 0.03886500746011734, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 65013 + }, + { + "epoch": 6.676524953789279, + "grad_norm": 0.04235444217920303, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 65016 + }, + { + "epoch": 6.67683302526186, + "grad_norm": 0.11992576718330383, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 65019 + }, + { + "epoch": 6.6771410967344424, + "grad_norm": 0.07870931923389435, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 65022 + }, + { + "epoch": 6.6774491682070245, + "grad_norm": 0.11495670676231384, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 65025 + }, + { + "epoch": 6.677757239679606, + "grad_norm": 0.10441329330205917, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 65028 + }, + { + "epoch": 6.678065311152187, + "grad_norm": 0.08615846931934357, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 65031 + }, + { + "epoch": 6.678373382624769, + "grad_norm": 0.053645677864551544, + "learning_rate": 0.01, + "loss": 2.0039, + "step": 65034 + }, + { + "epoch": 6.678681454097351, + "grad_norm": 0.0375412255525589, + "learning_rate": 0.01, + "loss": 1.9721, + "step": 65037 + }, + { + "epoch": 6.678989525569932, + "grad_norm": 0.03644879162311554, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 65040 + }, + { + "epoch": 6.679297597042514, + "grad_norm": 0.09399533271789551, + "learning_rate": 0.01, + "loss": 1.9674, + "step": 65043 + }, + { + "epoch": 6.679605668515095, + "grad_norm": 0.06882072985172272, + "learning_rate": 0.01, + "loss": 1.9863, + "step": 65046 + }, + { + "epoch": 6.679913739987677, + "grad_norm": 0.10664650052785873, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 65049 + }, + { + "epoch": 6.6802218114602585, + "grad_norm": 0.044063057750463486, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 65052 + }, + { + "epoch": 6.680529882932841, + "grad_norm": 0.037052053958177567, + "learning_rate": 0.01, + "loss": 1.963, + "step": 65055 + }, + { + "epoch": 6.680837954405422, + "grad_norm": 0.038574136793613434, + "learning_rate": 0.01, + "loss": 1.9605, + "step": 65058 + }, + { + "epoch": 6.681146025878004, + "grad_norm": 0.06184682250022888, + "learning_rate": 0.01, + "loss": 1.9944, + "step": 65061 + }, + { + "epoch": 6.681454097350585, + "grad_norm": 0.09441886097192764, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 65064 + }, + { + "epoch": 6.681762168823167, + "grad_norm": 0.07284927368164062, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 65067 + }, + { + "epoch": 6.682070240295749, + "grad_norm": 0.07610774785280228, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 65070 + }, + { + "epoch": 6.68237831176833, + "grad_norm": 0.04308845102787018, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 65073 + }, + { + "epoch": 6.682686383240912, + "grad_norm": 0.08398102223873138, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 65076 + }, + { + "epoch": 6.682994454713493, + "grad_norm": 0.11537694185972214, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 65079 + }, + { + "epoch": 6.6833025261860755, + "grad_norm": 0.03176436200737953, + "learning_rate": 0.01, + "loss": 1.9525, + "step": 65082 + }, + { + "epoch": 6.683610597658657, + "grad_norm": 0.09571046382188797, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 65085 + }, + { + "epoch": 6.683918669131239, + "grad_norm": 0.04681390896439552, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 65088 + }, + { + "epoch": 6.68422674060382, + "grad_norm": 0.26577845215797424, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 65091 + }, + { + "epoch": 6.684534812076402, + "grad_norm": 0.12212441116571426, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 65094 + }, + { + "epoch": 6.684842883548983, + "grad_norm": 0.4320748448371887, + "learning_rate": 0.01, + "loss": 1.9581, + "step": 65097 + }, + { + "epoch": 6.685150955021565, + "grad_norm": 0.04880547523498535, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 65100 + }, + { + "epoch": 6.685459026494147, + "grad_norm": 0.08876339346170425, + "learning_rate": 0.01, + "loss": 1.974, + "step": 65103 + }, + { + "epoch": 6.685767097966728, + "grad_norm": 0.06511343270540237, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 65106 + }, + { + "epoch": 6.6860751694393095, + "grad_norm": 0.050562430173158646, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 65109 + }, + { + "epoch": 6.6863832409118915, + "grad_norm": 0.04717005044221878, + "learning_rate": 0.01, + "loss": 1.9602, + "step": 65112 + }, + { + "epoch": 6.686691312384474, + "grad_norm": 0.08370763063430786, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 65115 + }, + { + "epoch": 6.686999383857055, + "grad_norm": 0.0477861724793911, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 65118 + }, + { + "epoch": 6.687307455329637, + "grad_norm": 0.02870395965874195, + "learning_rate": 0.01, + "loss": 2.0043, + "step": 65121 + }, + { + "epoch": 6.687615526802218, + "grad_norm": 0.04413042590022087, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 65124 + }, + { + "epoch": 6.6879235982748, + "grad_norm": 0.041404690593481064, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 65127 + }, + { + "epoch": 6.688231669747381, + "grad_norm": 0.04159929230809212, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 65130 + }, + { + "epoch": 6.688539741219963, + "grad_norm": 0.06357663124799728, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 65133 + }, + { + "epoch": 6.688847812692544, + "grad_norm": 0.03610898181796074, + "learning_rate": 0.01, + "loss": 2.0024, + "step": 65136 + }, + { + "epoch": 6.689155884165126, + "grad_norm": 0.038069941103458405, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 65139 + }, + { + "epoch": 6.689463955637708, + "grad_norm": 0.05543750151991844, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 65142 + }, + { + "epoch": 6.68977202711029, + "grad_norm": 0.10848159343004227, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 65145 + }, + { + "epoch": 6.690080098582872, + "grad_norm": 0.1446017026901245, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 65148 + }, + { + "epoch": 6.690388170055453, + "grad_norm": 0.10384636372327805, + "learning_rate": 0.01, + "loss": 1.9581, + "step": 65151 + }, + { + "epoch": 6.690696241528035, + "grad_norm": 0.07247021794319153, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 65154 + }, + { + "epoch": 6.691004313000616, + "grad_norm": 0.04569610580801964, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 65157 + }, + { + "epoch": 6.691312384473198, + "grad_norm": 0.039695657789707184, + "learning_rate": 0.01, + "loss": 1.9897, + "step": 65160 + }, + { + "epoch": 6.691620455945779, + "grad_norm": 0.053198885172605515, + "learning_rate": 0.01, + "loss": 1.998, + "step": 65163 + }, + { + "epoch": 6.691928527418361, + "grad_norm": 0.042604029178619385, + "learning_rate": 0.01, + "loss": 1.9965, + "step": 65166 + }, + { + "epoch": 6.6922365988909425, + "grad_norm": 0.031200909987092018, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 65169 + }, + { + "epoch": 6.6925446703635245, + "grad_norm": 0.10486329346895218, + "learning_rate": 0.01, + "loss": 1.9919, + "step": 65172 + }, + { + "epoch": 6.692852741836106, + "grad_norm": 0.046825818717479706, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 65175 + }, + { + "epoch": 6.693160813308688, + "grad_norm": 0.1281237006187439, + "learning_rate": 0.01, + "loss": 2.0059, + "step": 65178 + }, + { + "epoch": 6.693468884781269, + "grad_norm": 0.09412495791912079, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 65181 + }, + { + "epoch": 6.693776956253851, + "grad_norm": 0.08914454281330109, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 65184 + }, + { + "epoch": 6.694085027726432, + "grad_norm": 0.07769876718521118, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 65187 + }, + { + "epoch": 6.694393099199014, + "grad_norm": 0.10803245007991791, + "learning_rate": 0.01, + "loss": 1.9865, + "step": 65190 + }, + { + "epoch": 6.694701170671596, + "grad_norm": 0.07634082436561584, + "learning_rate": 0.01, + "loss": 1.9459, + "step": 65193 + }, + { + "epoch": 6.695009242144177, + "grad_norm": 0.033576395362615585, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 65196 + }, + { + "epoch": 6.695317313616759, + "grad_norm": 0.04042442888021469, + "learning_rate": 0.01, + "loss": 1.992, + "step": 65199 + }, + { + "epoch": 6.695625385089341, + "grad_norm": 0.04007275775074959, + "learning_rate": 0.01, + "loss": 2.0092, + "step": 65202 + }, + { + "epoch": 6.695933456561923, + "grad_norm": 0.036564283072948456, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 65205 + }, + { + "epoch": 6.696241528034504, + "grad_norm": 0.03179538995027542, + "learning_rate": 0.01, + "loss": 1.957, + "step": 65208 + }, + { + "epoch": 6.696549599507086, + "grad_norm": 0.050880614668130875, + "learning_rate": 0.01, + "loss": 1.985, + "step": 65211 + }, + { + "epoch": 6.696857670979667, + "grad_norm": 0.07803148031234741, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 65214 + }, + { + "epoch": 6.697165742452249, + "grad_norm": 0.11088874191045761, + "learning_rate": 0.01, + "loss": 1.9561, + "step": 65217 + }, + { + "epoch": 6.69747381392483, + "grad_norm": 0.05180731415748596, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 65220 + }, + { + "epoch": 6.697781885397412, + "grad_norm": 0.09849876910448074, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 65223 + }, + { + "epoch": 6.698089956869994, + "grad_norm": 0.07928299903869629, + "learning_rate": 0.01, + "loss": 1.974, + "step": 65226 + }, + { + "epoch": 6.6983980283425755, + "grad_norm": 0.058122437447309494, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 65229 + }, + { + "epoch": 6.698706099815157, + "grad_norm": 0.059113189578056335, + "learning_rate": 0.01, + "loss": 1.987, + "step": 65232 + }, + { + "epoch": 6.699014171287739, + "grad_norm": 0.03366167098283768, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 65235 + }, + { + "epoch": 6.699322242760321, + "grad_norm": 0.036344975233078, + "learning_rate": 0.01, + "loss": 1.9468, + "step": 65238 + }, + { + "epoch": 6.699630314232902, + "grad_norm": 0.10664808005094528, + "learning_rate": 0.01, + "loss": 1.9469, + "step": 65241 + }, + { + "epoch": 6.699938385705484, + "grad_norm": 0.09889326244592667, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 65244 + }, + { + "epoch": 6.700246457178065, + "grad_norm": 0.05460183694958687, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 65247 + }, + { + "epoch": 6.700554528650647, + "grad_norm": 0.08168340474367142, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 65250 + }, + { + "epoch": 6.700862600123228, + "grad_norm": 0.0726526603102684, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 65253 + }, + { + "epoch": 6.70117067159581, + "grad_norm": 0.0469973124563694, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 65256 + }, + { + "epoch": 6.7014787430683915, + "grad_norm": 0.05402790755033493, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 65259 + }, + { + "epoch": 6.701786814540974, + "grad_norm": 0.03723495826125145, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 65262 + }, + { + "epoch": 6.702094886013555, + "grad_norm": 0.1069960966706276, + "learning_rate": 0.01, + "loss": 1.9526, + "step": 65265 + }, + { + "epoch": 6.702402957486137, + "grad_norm": 0.0806579738855362, + "learning_rate": 0.01, + "loss": 1.98, + "step": 65268 + }, + { + "epoch": 6.702711028958719, + "grad_norm": 0.05724218115210533, + "learning_rate": 0.01, + "loss": 2.001, + "step": 65271 + }, + { + "epoch": 6.7030191004313, + "grad_norm": 0.10128419101238251, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 65274 + }, + { + "epoch": 6.703327171903882, + "grad_norm": 0.1476512998342514, + "learning_rate": 0.01, + "loss": 2.0008, + "step": 65277 + }, + { + "epoch": 6.703635243376463, + "grad_norm": 0.10202914476394653, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 65280 + }, + { + "epoch": 6.703943314849045, + "grad_norm": 0.042887743562459946, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 65283 + }, + { + "epoch": 6.704251386321626, + "grad_norm": 0.0640069991350174, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 65286 + }, + { + "epoch": 6.7045594577942085, + "grad_norm": 0.042582917958498, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 65289 + }, + { + "epoch": 6.70486752926679, + "grad_norm": 0.0463312529027462, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 65292 + }, + { + "epoch": 6.705175600739372, + "grad_norm": 0.05490421503782272, + "learning_rate": 0.01, + "loss": 1.9697, + "step": 65295 + }, + { + "epoch": 6.705483672211953, + "grad_norm": 0.07986756414175034, + "learning_rate": 0.01, + "loss": 1.9504, + "step": 65298 + }, + { + "epoch": 6.705791743684535, + "grad_norm": 0.06604810804128647, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 65301 + }, + { + "epoch": 6.706099815157117, + "grad_norm": 0.036626990884542465, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 65304 + }, + { + "epoch": 6.706407886629698, + "grad_norm": 0.03825300931930542, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 65307 + }, + { + "epoch": 6.706715958102279, + "grad_norm": 0.07136386632919312, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 65310 + }, + { + "epoch": 6.707024029574861, + "grad_norm": 0.059436917304992676, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 65313 + }, + { + "epoch": 6.707332101047443, + "grad_norm": 0.06798838824033737, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 65316 + }, + { + "epoch": 6.7076401725200245, + "grad_norm": 0.05605984479188919, + "learning_rate": 0.01, + "loss": 2.0175, + "step": 65319 + }, + { + "epoch": 6.707948243992607, + "grad_norm": 0.039418842643499374, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 65322 + }, + { + "epoch": 6.708256315465188, + "grad_norm": 0.037476614117622375, + "learning_rate": 0.01, + "loss": 1.985, + "step": 65325 + }, + { + "epoch": 6.70856438693777, + "grad_norm": 0.03878027945756912, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 65328 + }, + { + "epoch": 6.708872458410351, + "grad_norm": 0.14439933001995087, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 65331 + }, + { + "epoch": 6.709180529882933, + "grad_norm": 0.1026519313454628, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 65334 + }, + { + "epoch": 6.709488601355514, + "grad_norm": 0.059400398284196854, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 65337 + }, + { + "epoch": 6.709796672828096, + "grad_norm": 0.03667070344090462, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 65340 + }, + { + "epoch": 6.710104744300677, + "grad_norm": 0.03821050748229027, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 65343 + }, + { + "epoch": 6.710412815773259, + "grad_norm": 0.034569595009088516, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 65346 + }, + { + "epoch": 6.7107208872458415, + "grad_norm": 0.0894671380519867, + "learning_rate": 0.01, + "loss": 1.979, + "step": 65349 + }, + { + "epoch": 6.711028958718423, + "grad_norm": 0.1035616546869278, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 65352 + }, + { + "epoch": 6.711337030191005, + "grad_norm": 0.07528524845838547, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 65355 + }, + { + "epoch": 6.711645101663586, + "grad_norm": 0.073489710688591, + "learning_rate": 0.01, + "loss": 1.9892, + "step": 65358 + }, + { + "epoch": 6.711953173136168, + "grad_norm": 0.047937504947185516, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 65361 + }, + { + "epoch": 6.712261244608749, + "grad_norm": 0.049860548228025436, + "learning_rate": 0.01, + "loss": 1.99, + "step": 65364 + }, + { + "epoch": 6.712569316081331, + "grad_norm": 0.04179536923766136, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 65367 + }, + { + "epoch": 6.712877387553912, + "grad_norm": 0.03599520027637482, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 65370 + }, + { + "epoch": 6.713185459026494, + "grad_norm": 0.03743865713477135, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 65373 + }, + { + "epoch": 6.7134935304990755, + "grad_norm": 0.04530680924654007, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 65376 + }, + { + "epoch": 6.7138016019716575, + "grad_norm": 0.05956900492310524, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 65379 + }, + { + "epoch": 6.714109673444239, + "grad_norm": 0.03879319131374359, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 65382 + }, + { + "epoch": 6.714417744916821, + "grad_norm": 0.08729801326990128, + "learning_rate": 0.01, + "loss": 1.979, + "step": 65385 + }, + { + "epoch": 6.714725816389402, + "grad_norm": 0.06801248341798782, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 65388 + }, + { + "epoch": 6.715033887861984, + "grad_norm": 0.10621631890535355, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 65391 + }, + { + "epoch": 6.715341959334566, + "grad_norm": 0.06591764837503433, + "learning_rate": 0.01, + "loss": 1.9941, + "step": 65394 + }, + { + "epoch": 6.715650030807147, + "grad_norm": 0.08169190585613251, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 65397 + }, + { + "epoch": 6.715958102279729, + "grad_norm": 0.06591983139514923, + "learning_rate": 0.01, + "loss": 1.987, + "step": 65400 + }, + { + "epoch": 6.71626617375231, + "grad_norm": 0.102086141705513, + "learning_rate": 0.01, + "loss": 1.962, + "step": 65403 + }, + { + "epoch": 6.716574245224892, + "grad_norm": 0.13108035922050476, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 65406 + }, + { + "epoch": 6.716882316697474, + "grad_norm": 0.09894704073667526, + "learning_rate": 0.01, + "loss": 2.0025, + "step": 65409 + }, + { + "epoch": 6.717190388170056, + "grad_norm": 0.05907077714800835, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 65412 + }, + { + "epoch": 6.717498459642637, + "grad_norm": 0.044414445757865906, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 65415 + }, + { + "epoch": 6.717806531115219, + "grad_norm": 0.04454610496759415, + "learning_rate": 0.01, + "loss": 1.947, + "step": 65418 + }, + { + "epoch": 6.7181146025878, + "grad_norm": 0.044069502502679825, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 65421 + }, + { + "epoch": 6.718422674060382, + "grad_norm": 0.05330649018287659, + "learning_rate": 0.01, + "loss": 2.0213, + "step": 65424 + }, + { + "epoch": 6.718730745532964, + "grad_norm": 0.13220176100730896, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 65427 + }, + { + "epoch": 6.719038817005545, + "grad_norm": 0.05000099912285805, + "learning_rate": 0.01, + "loss": 1.9834, + "step": 65430 + }, + { + "epoch": 6.7193468884781264, + "grad_norm": 0.053126510232686996, + "learning_rate": 0.01, + "loss": 1.9683, + "step": 65433 + }, + { + "epoch": 6.7196549599507085, + "grad_norm": 0.050792306661605835, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 65436 + }, + { + "epoch": 6.7199630314232905, + "grad_norm": 0.05356533080339432, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 65439 + }, + { + "epoch": 6.720271102895872, + "grad_norm": 0.03830750659108162, + "learning_rate": 0.01, + "loss": 1.974, + "step": 65442 + }, + { + "epoch": 6.720579174368454, + "grad_norm": 0.0419539138674736, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 65445 + }, + { + "epoch": 6.720887245841035, + "grad_norm": 0.04633840546011925, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 65448 + }, + { + "epoch": 6.721195317313617, + "grad_norm": 0.048049312084913254, + "learning_rate": 0.01, + "loss": 1.978, + "step": 65451 + }, + { + "epoch": 6.721503388786198, + "grad_norm": 0.031329698860645294, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 65454 + }, + { + "epoch": 6.72181146025878, + "grad_norm": 0.03230907768011093, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 65457 + }, + { + "epoch": 6.722119531731361, + "grad_norm": 0.09823235124349594, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 65460 + }, + { + "epoch": 6.722427603203943, + "grad_norm": 0.11478835344314575, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 65463 + }, + { + "epoch": 6.7227356746765246, + "grad_norm": 0.040770623832941055, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 65466 + }, + { + "epoch": 6.723043746149107, + "grad_norm": 0.11709921061992645, + "learning_rate": 0.01, + "loss": 1.9885, + "step": 65469 + }, + { + "epoch": 6.723351817621689, + "grad_norm": 0.041359901428222656, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 65472 + }, + { + "epoch": 6.72365988909427, + "grad_norm": 0.03594958409667015, + "learning_rate": 0.01, + "loss": 1.9651, + "step": 65475 + }, + { + "epoch": 6.723967960566852, + "grad_norm": 0.03344079852104187, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 65478 + }, + { + "epoch": 6.724276032039433, + "grad_norm": 0.03400930017232895, + "learning_rate": 0.01, + "loss": 1.9618, + "step": 65481 + }, + { + "epoch": 6.724584103512015, + "grad_norm": 0.11725469678640366, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 65484 + }, + { + "epoch": 6.724892174984596, + "grad_norm": 0.08199802041053772, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 65487 + }, + { + "epoch": 6.725200246457178, + "grad_norm": 0.04940160736441612, + "learning_rate": 0.01, + "loss": 1.9546, + "step": 65490 + }, + { + "epoch": 6.7255083179297594, + "grad_norm": 0.08786390721797943, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 65493 + }, + { + "epoch": 6.7258163894023415, + "grad_norm": 0.04642069712281227, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 65496 + }, + { + "epoch": 6.726124460874923, + "grad_norm": 0.0684671550989151, + "learning_rate": 0.01, + "loss": 1.9626, + "step": 65499 + }, + { + "epoch": 6.726432532347505, + "grad_norm": 0.05767513066530228, + "learning_rate": 0.01, + "loss": 2.001, + "step": 65502 + }, + { + "epoch": 6.726740603820086, + "grad_norm": 0.04825710505247116, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 65505 + }, + { + "epoch": 6.727048675292668, + "grad_norm": 0.08460171520709991, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 65508 + }, + { + "epoch": 6.727356746765249, + "grad_norm": 0.08406694233417511, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 65511 + }, + { + "epoch": 6.727664818237831, + "grad_norm": 0.09590575098991394, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 65514 + }, + { + "epoch": 6.727972889710413, + "grad_norm": 0.05631608888506889, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 65517 + }, + { + "epoch": 6.728280961182994, + "grad_norm": 0.04405519738793373, + "learning_rate": 0.01, + "loss": 1.973, + "step": 65520 + }, + { + "epoch": 6.728589032655576, + "grad_norm": 0.04463804140686989, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 65523 + }, + { + "epoch": 6.728897104128158, + "grad_norm": 0.048253465443849564, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 65526 + }, + { + "epoch": 6.72920517560074, + "grad_norm": 0.058578286319971085, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 65529 + }, + { + "epoch": 6.729513247073321, + "grad_norm": 0.0791950449347496, + "learning_rate": 0.01, + "loss": 1.962, + "step": 65532 + }, + { + "epoch": 6.729821318545903, + "grad_norm": 0.112459696829319, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 65535 + }, + { + "epoch": 6.730129390018484, + "grad_norm": 0.03688877448439598, + "learning_rate": 0.01, + "loss": 1.98, + "step": 65538 + }, + { + "epoch": 6.730437461491066, + "grad_norm": 0.041237879544496536, + "learning_rate": 0.01, + "loss": 1.9844, + "step": 65541 + }, + { + "epoch": 6.730745532963647, + "grad_norm": 0.09671095013618469, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 65544 + }, + { + "epoch": 6.731053604436229, + "grad_norm": 0.05881296843290329, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 65547 + }, + { + "epoch": 6.731361675908811, + "grad_norm": 0.07665944844484329, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 65550 + }, + { + "epoch": 6.7316697473813925, + "grad_norm": 0.12369941920042038, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 65553 + }, + { + "epoch": 6.7319778188539745, + "grad_norm": 0.03289101645350456, + "learning_rate": 0.01, + "loss": 1.972, + "step": 65556 + }, + { + "epoch": 6.732285890326556, + "grad_norm": 0.07767914235591888, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 65559 + }, + { + "epoch": 6.732593961799138, + "grad_norm": 0.16727425158023834, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 65562 + }, + { + "epoch": 6.732902033271719, + "grad_norm": 0.13580100238323212, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 65565 + }, + { + "epoch": 6.733210104744301, + "grad_norm": 0.06935961544513702, + "learning_rate": 0.01, + "loss": 1.985, + "step": 65568 + }, + { + "epoch": 6.733518176216882, + "grad_norm": 0.07026053220033646, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 65571 + }, + { + "epoch": 6.733826247689464, + "grad_norm": 0.08974307775497437, + "learning_rate": 0.01, + "loss": 1.9715, + "step": 65574 + }, + { + "epoch": 6.734134319162045, + "grad_norm": 0.04675333574414253, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 65577 + }, + { + "epoch": 6.734442390634627, + "grad_norm": 0.04853864386677742, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 65580 + }, + { + "epoch": 6.7347504621072085, + "grad_norm": 0.03581572324037552, + "learning_rate": 0.01, + "loss": 1.947, + "step": 65583 + }, + { + "epoch": 6.735058533579791, + "grad_norm": 0.03860647231340408, + "learning_rate": 0.01, + "loss": 2.0082, + "step": 65586 + }, + { + "epoch": 6.735366605052372, + "grad_norm": 0.0573217049241066, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 65589 + }, + { + "epoch": 6.735674676524954, + "grad_norm": 0.09368444234132767, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 65592 + }, + { + "epoch": 6.735982747997536, + "grad_norm": 0.21956096589565277, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 65595 + }, + { + "epoch": 6.736290819470117, + "grad_norm": 0.12725447118282318, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 65598 + }, + { + "epoch": 6.736598890942699, + "grad_norm": 0.06952683627605438, + "learning_rate": 0.01, + "loss": 1.9499, + "step": 65601 + }, + { + "epoch": 6.73690696241528, + "grad_norm": 0.03885588422417641, + "learning_rate": 0.01, + "loss": 1.9634, + "step": 65604 + }, + { + "epoch": 6.737215033887862, + "grad_norm": 0.06260085850954056, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 65607 + }, + { + "epoch": 6.737523105360443, + "grad_norm": 0.045172885060310364, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 65610 + }, + { + "epoch": 6.7378311768330255, + "grad_norm": 0.05928365886211395, + "learning_rate": 0.01, + "loss": 1.9915, + "step": 65613 + }, + { + "epoch": 6.738139248305607, + "grad_norm": 0.039838556200265884, + "learning_rate": 0.01, + "loss": 1.9747, + "step": 65616 + }, + { + "epoch": 6.738447319778189, + "grad_norm": 0.035764627158641815, + "learning_rate": 0.01, + "loss": 1.9774, + "step": 65619 + }, + { + "epoch": 6.73875539125077, + "grad_norm": 0.05831705033779144, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 65622 + }, + { + "epoch": 6.739063462723352, + "grad_norm": 0.07349859923124313, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 65625 + }, + { + "epoch": 6.739371534195934, + "grad_norm": 0.05156675726175308, + "learning_rate": 0.01, + "loss": 1.972, + "step": 65628 + }, + { + "epoch": 6.739679605668515, + "grad_norm": 0.09530221670866013, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 65631 + }, + { + "epoch": 6.739987677141096, + "grad_norm": 0.04756055027246475, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 65634 + }, + { + "epoch": 6.740295748613678, + "grad_norm": 0.038086969405412674, + "learning_rate": 0.01, + "loss": 1.972, + "step": 65637 + }, + { + "epoch": 6.74060382008626, + "grad_norm": 0.06435366719961166, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 65640 + }, + { + "epoch": 6.7409118915588415, + "grad_norm": 0.12931565940380096, + "learning_rate": 0.01, + "loss": 1.9875, + "step": 65643 + }, + { + "epoch": 6.741219963031424, + "grad_norm": 0.05568262189626694, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 65646 + }, + { + "epoch": 6.741528034504005, + "grad_norm": 0.06151677295565605, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 65649 + }, + { + "epoch": 6.741836105976587, + "grad_norm": 0.05449217930436134, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 65652 + }, + { + "epoch": 6.742144177449168, + "grad_norm": 0.05131798982620239, + "learning_rate": 0.01, + "loss": 1.9909, + "step": 65655 + }, + { + "epoch": 6.74245224892175, + "grad_norm": 0.04320504143834114, + "learning_rate": 0.01, + "loss": 1.9984, + "step": 65658 + }, + { + "epoch": 6.742760320394331, + "grad_norm": 0.06800030171871185, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 65661 + }, + { + "epoch": 6.743068391866913, + "grad_norm": 0.04916686192154884, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 65664 + }, + { + "epoch": 6.743376463339494, + "grad_norm": 0.10272326320409775, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 65667 + }, + { + "epoch": 6.743684534812076, + "grad_norm": 0.03326984494924545, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 65670 + }, + { + "epoch": 6.7439926062846585, + "grad_norm": 0.03591003641486168, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 65673 + }, + { + "epoch": 6.74430067775724, + "grad_norm": 0.0768413096666336, + "learning_rate": 0.01, + "loss": 1.951, + "step": 65676 + }, + { + "epoch": 6.744608749229822, + "grad_norm": 0.04805091395974159, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 65679 + }, + { + "epoch": 6.744916820702403, + "grad_norm": 0.060281701385974884, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 65682 + }, + { + "epoch": 6.745224892174985, + "grad_norm": 0.08178987354040146, + "learning_rate": 0.01, + "loss": 1.9693, + "step": 65685 + }, + { + "epoch": 6.745532963647566, + "grad_norm": 0.047426290810108185, + "learning_rate": 0.01, + "loss": 1.9985, + "step": 65688 + }, + { + "epoch": 6.745841035120148, + "grad_norm": 0.06165017560124397, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 65691 + }, + { + "epoch": 6.746149106592729, + "grad_norm": 0.0794510692358017, + "learning_rate": 0.01, + "loss": 1.9537, + "step": 65694 + }, + { + "epoch": 6.746457178065311, + "grad_norm": 0.1278935670852661, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 65697 + }, + { + "epoch": 6.7467652495378925, + "grad_norm": 0.09933564066886902, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 65700 + }, + { + "epoch": 6.7470733210104745, + "grad_norm": 0.06581506133079529, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 65703 + }, + { + "epoch": 6.747381392483056, + "grad_norm": 0.07437628507614136, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 65706 + }, + { + "epoch": 6.747689463955638, + "grad_norm": 0.06629917025566101, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 65709 + }, + { + "epoch": 6.747997535428219, + "grad_norm": 0.04644669219851494, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 65712 + }, + { + "epoch": 6.748305606900801, + "grad_norm": 0.042347557842731476, + "learning_rate": 0.01, + "loss": 1.9564, + "step": 65715 + }, + { + "epoch": 6.748613678373383, + "grad_norm": 0.05482964962720871, + "learning_rate": 0.01, + "loss": 1.957, + "step": 65718 + }, + { + "epoch": 6.748921749845964, + "grad_norm": 0.07373082637786865, + "learning_rate": 0.01, + "loss": 1.9562, + "step": 65721 + }, + { + "epoch": 6.749229821318546, + "grad_norm": 0.08168603479862213, + "learning_rate": 0.01, + "loss": 1.9857, + "step": 65724 + }, + { + "epoch": 6.749537892791127, + "grad_norm": 0.09342950582504272, + "learning_rate": 0.01, + "loss": 1.9536, + "step": 65727 + }, + { + "epoch": 6.749845964263709, + "grad_norm": 0.05923538655042648, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 65730 + }, + { + "epoch": 6.750154035736291, + "grad_norm": 0.09214897453784943, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 65733 + }, + { + "epoch": 6.750462107208873, + "grad_norm": 0.034419383853673935, + "learning_rate": 0.01, + "loss": 1.9925, + "step": 65736 + }, + { + "epoch": 6.750770178681454, + "grad_norm": 0.05979537591338158, + "learning_rate": 0.01, + "loss": 1.9595, + "step": 65739 + }, + { + "epoch": 6.751078250154036, + "grad_norm": 0.11106430739164352, + "learning_rate": 0.01, + "loss": 1.9711, + "step": 65742 + }, + { + "epoch": 6.751386321626617, + "grad_norm": 0.04116882011294365, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 65745 + }, + { + "epoch": 6.751694393099199, + "grad_norm": 0.0603414922952652, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 65748 + }, + { + "epoch": 6.752002464571781, + "grad_norm": 0.08985871076583862, + "learning_rate": 0.01, + "loss": 1.989, + "step": 65751 + }, + { + "epoch": 6.752310536044362, + "grad_norm": 0.058961328119039536, + "learning_rate": 0.01, + "loss": 2.0145, + "step": 65754 + }, + { + "epoch": 6.752618607516944, + "grad_norm": 0.0800008699297905, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 65757 + }, + { + "epoch": 6.7529266789895255, + "grad_norm": 0.06763100624084473, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 65760 + }, + { + "epoch": 6.7532347504621075, + "grad_norm": 0.08112933486700058, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 65763 + }, + { + "epoch": 6.753542821934689, + "grad_norm": 0.03964497894048691, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 65766 + }, + { + "epoch": 6.753850893407271, + "grad_norm": 0.1308111995458603, + "learning_rate": 0.01, + "loss": 1.9561, + "step": 65769 + }, + { + "epoch": 6.754158964879852, + "grad_norm": 0.09832756221294403, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 65772 + }, + { + "epoch": 6.754467036352434, + "grad_norm": 0.08136483281850815, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 65775 + }, + { + "epoch": 6.754775107825015, + "grad_norm": 0.0976012796163559, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 65778 + }, + { + "epoch": 6.755083179297597, + "grad_norm": 0.14576563239097595, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 65781 + }, + { + "epoch": 6.755391250770178, + "grad_norm": 0.09006581455469131, + "learning_rate": 0.01, + "loss": 1.9583, + "step": 65784 + }, + { + "epoch": 6.75569932224276, + "grad_norm": 0.07345472276210785, + "learning_rate": 0.01, + "loss": 2.003, + "step": 65787 + }, + { + "epoch": 6.7560073937153415, + "grad_norm": 0.06007661297917366, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 65790 + }, + { + "epoch": 6.756315465187924, + "grad_norm": 0.07360505312681198, + "learning_rate": 0.01, + "loss": 1.991, + "step": 65793 + }, + { + "epoch": 6.756623536660506, + "grad_norm": 0.07598039507865906, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 65796 + }, + { + "epoch": 6.756931608133087, + "grad_norm": 0.09206894040107727, + "learning_rate": 0.01, + "loss": 1.986, + "step": 65799 + }, + { + "epoch": 6.757239679605669, + "grad_norm": 0.0724322646856308, + "learning_rate": 0.01, + "loss": 2.0015, + "step": 65802 + }, + { + "epoch": 6.75754775107825, + "grad_norm": 0.06573556363582611, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 65805 + }, + { + "epoch": 6.757855822550832, + "grad_norm": 0.04363197833299637, + "learning_rate": 0.01, + "loss": 1.9615, + "step": 65808 + }, + { + "epoch": 6.758163894023413, + "grad_norm": 0.03666981682181358, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 65811 + }, + { + "epoch": 6.758471965495995, + "grad_norm": 0.05076993256807327, + "learning_rate": 0.01, + "loss": 1.9997, + "step": 65814 + }, + { + "epoch": 6.758780036968576, + "grad_norm": 0.07672358304262161, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 65817 + }, + { + "epoch": 6.7590881084411585, + "grad_norm": 0.1728837937116623, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 65820 + }, + { + "epoch": 6.75939617991374, + "grad_norm": 0.14630280435085297, + "learning_rate": 0.01, + "loss": 1.9864, + "step": 65823 + }, + { + "epoch": 6.759704251386322, + "grad_norm": 0.08959884941577911, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 65826 + }, + { + "epoch": 6.760012322858904, + "grad_norm": 0.05487535893917084, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 65829 + }, + { + "epoch": 6.760320394331485, + "grad_norm": 0.05097530409693718, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 65832 + }, + { + "epoch": 6.760628465804066, + "grad_norm": 0.04289190098643303, + "learning_rate": 0.01, + "loss": 1.9502, + "step": 65835 + }, + { + "epoch": 6.760936537276648, + "grad_norm": 0.054402586072683334, + "learning_rate": 0.01, + "loss": 1.9824, + "step": 65838 + }, + { + "epoch": 6.76124460874923, + "grad_norm": 0.046257637441158295, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 65841 + }, + { + "epoch": 6.761552680221811, + "grad_norm": 0.033798422664403915, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 65844 + }, + { + "epoch": 6.761860751694393, + "grad_norm": 0.03898288682103157, + "learning_rate": 0.01, + "loss": 1.964, + "step": 65847 + }, + { + "epoch": 6.7621688231669745, + "grad_norm": 0.061388492584228516, + "learning_rate": 0.01, + "loss": 1.953, + "step": 65850 + }, + { + "epoch": 6.762476894639557, + "grad_norm": 0.03913845494389534, + "learning_rate": 0.01, + "loss": 1.9564, + "step": 65853 + }, + { + "epoch": 6.762784966112138, + "grad_norm": 0.06032055988907814, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 65856 + }, + { + "epoch": 6.76309303758472, + "grad_norm": 0.11745115369558334, + "learning_rate": 0.01, + "loss": 1.982, + "step": 65859 + }, + { + "epoch": 6.763401109057301, + "grad_norm": 0.10399042069911957, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 65862 + }, + { + "epoch": 6.763709180529883, + "grad_norm": 0.06745419651269913, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 65865 + }, + { + "epoch": 6.764017252002464, + "grad_norm": 0.036637041717767715, + "learning_rate": 0.01, + "loss": 1.9632, + "step": 65868 + }, + { + "epoch": 6.764325323475046, + "grad_norm": 0.03688213601708412, + "learning_rate": 0.01, + "loss": 1.9647, + "step": 65871 + }, + { + "epoch": 6.764633394947628, + "grad_norm": 0.041792191565036774, + "learning_rate": 0.01, + "loss": 1.9368, + "step": 65874 + }, + { + "epoch": 6.764941466420209, + "grad_norm": 0.03558392450213432, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 65877 + }, + { + "epoch": 6.7652495378927915, + "grad_norm": 0.037666697055101395, + "learning_rate": 0.01, + "loss": 1.9519, + "step": 65880 + }, + { + "epoch": 6.765557609365373, + "grad_norm": 0.03376712277531624, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 65883 + }, + { + "epoch": 6.765865680837955, + "grad_norm": 0.09008733928203583, + "learning_rate": 0.01, + "loss": 1.9788, + "step": 65886 + }, + { + "epoch": 6.766173752310536, + "grad_norm": 0.10737526416778564, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 65889 + }, + { + "epoch": 6.766481823783118, + "grad_norm": 0.12039290368556976, + "learning_rate": 0.01, + "loss": 1.9967, + "step": 65892 + }, + { + "epoch": 6.766789895255699, + "grad_norm": 0.10525926202535629, + "learning_rate": 0.01, + "loss": 1.9466, + "step": 65895 + }, + { + "epoch": 6.767097966728281, + "grad_norm": 0.11887960135936737, + "learning_rate": 0.01, + "loss": 1.9659, + "step": 65898 + }, + { + "epoch": 6.767406038200862, + "grad_norm": 0.06034785136580467, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 65901 + }, + { + "epoch": 6.767714109673444, + "grad_norm": 0.04543771967291832, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 65904 + }, + { + "epoch": 6.7680221811460255, + "grad_norm": 0.04256156459450722, + "learning_rate": 0.01, + "loss": 1.9842, + "step": 65907 + }, + { + "epoch": 6.7683302526186075, + "grad_norm": 0.04168063402175903, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 65910 + }, + { + "epoch": 6.768638324091189, + "grad_norm": 0.05196443200111389, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 65913 + }, + { + "epoch": 6.768946395563771, + "grad_norm": 0.03945057466626167, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 65916 + }, + { + "epoch": 6.769254467036353, + "grad_norm": 0.09867379069328308, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 65919 + }, + { + "epoch": 6.769562538508934, + "grad_norm": 0.03700730949640274, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 65922 + }, + { + "epoch": 6.769870609981516, + "grad_norm": 0.05173708498477936, + "learning_rate": 0.01, + "loss": 1.9516, + "step": 65925 + }, + { + "epoch": 6.770178681454097, + "grad_norm": 0.04833926633000374, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 65928 + }, + { + "epoch": 6.770486752926679, + "grad_norm": 0.05311394855380058, + "learning_rate": 0.01, + "loss": 1.9876, + "step": 65931 + }, + { + "epoch": 6.77079482439926, + "grad_norm": 0.13476112484931946, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 65934 + }, + { + "epoch": 6.771102895871842, + "grad_norm": 0.05324669927358627, + "learning_rate": 0.01, + "loss": 1.9839, + "step": 65937 + }, + { + "epoch": 6.771410967344424, + "grad_norm": 0.050452303141355515, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 65940 + }, + { + "epoch": 6.771719038817006, + "grad_norm": 0.03241961449384689, + "learning_rate": 0.01, + "loss": 1.997, + "step": 65943 + }, + { + "epoch": 6.772027110289587, + "grad_norm": 0.1082826629281044, + "learning_rate": 0.01, + "loss": 1.9622, + "step": 65946 + }, + { + "epoch": 6.772335181762169, + "grad_norm": 0.08889704197645187, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 65949 + }, + { + "epoch": 6.772643253234751, + "grad_norm": 0.08153937757015228, + "learning_rate": 0.01, + "loss": 1.9395, + "step": 65952 + }, + { + "epoch": 6.772951324707332, + "grad_norm": 0.07284180819988251, + "learning_rate": 0.01, + "loss": 1.9858, + "step": 65955 + }, + { + "epoch": 6.773259396179914, + "grad_norm": 0.049150798469781876, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 65958 + }, + { + "epoch": 6.773567467652495, + "grad_norm": 0.10383135825395584, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 65961 + }, + { + "epoch": 6.773875539125077, + "grad_norm": 0.05065099522471428, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 65964 + }, + { + "epoch": 6.7741836105976585, + "grad_norm": 0.05559004843235016, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 65967 + }, + { + "epoch": 6.7744916820702406, + "grad_norm": 0.050398439168930054, + "learning_rate": 0.01, + "loss": 1.979, + "step": 65970 + }, + { + "epoch": 6.774799753542822, + "grad_norm": 0.05198364332318306, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 65973 + }, + { + "epoch": 6.775107825015404, + "grad_norm": 0.06122811511158943, + "learning_rate": 0.01, + "loss": 1.9957, + "step": 65976 + }, + { + "epoch": 6.775415896487985, + "grad_norm": 0.09441248327493668, + "learning_rate": 0.01, + "loss": 2.0144, + "step": 65979 + }, + { + "epoch": 6.775723967960567, + "grad_norm": 0.06502705812454224, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 65982 + }, + { + "epoch": 6.776032039433148, + "grad_norm": 0.07678141444921494, + "learning_rate": 0.01, + "loss": 1.958, + "step": 65985 + }, + { + "epoch": 6.77634011090573, + "grad_norm": 0.05069658160209656, + "learning_rate": 0.01, + "loss": 1.9911, + "step": 65988 + }, + { + "epoch": 6.776648182378311, + "grad_norm": 0.11829594522714615, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 65991 + }, + { + "epoch": 6.776956253850893, + "grad_norm": 0.036905381828546524, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 65994 + }, + { + "epoch": 6.7772643253234754, + "grad_norm": 0.04046548530459404, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 65997 + }, + { + "epoch": 6.777572396796057, + "grad_norm": 0.04027654603123665, + "learning_rate": 0.01, + "loss": 1.9871, + "step": 66000 + }, + { + "epoch": 6.777880468268639, + "grad_norm": 0.044706303626298904, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 66003 + }, + { + "epoch": 6.77818853974122, + "grad_norm": 0.0753062292933464, + "learning_rate": 0.01, + "loss": 2.001, + "step": 66006 + }, + { + "epoch": 6.778496611213802, + "grad_norm": 0.10951106995344162, + "learning_rate": 0.01, + "loss": 1.9561, + "step": 66009 + }, + { + "epoch": 6.778804682686383, + "grad_norm": 0.053536590188741684, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 66012 + }, + { + "epoch": 6.779112754158965, + "grad_norm": 0.060393862426280975, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 66015 + }, + { + "epoch": 6.779420825631546, + "grad_norm": 0.049091193825006485, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 66018 + }, + { + "epoch": 6.779728897104128, + "grad_norm": 0.0649518296122551, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 66021 + }, + { + "epoch": 6.7800369685767095, + "grad_norm": 0.039447683840990067, + "learning_rate": 0.01, + "loss": 1.9757, + "step": 66024 + }, + { + "epoch": 6.7803450400492915, + "grad_norm": 0.04264757037162781, + "learning_rate": 0.01, + "loss": 1.9537, + "step": 66027 + }, + { + "epoch": 6.7806531115218736, + "grad_norm": 0.06174059584736824, + "learning_rate": 0.01, + "loss": 1.981, + "step": 66030 + }, + { + "epoch": 6.780961182994455, + "grad_norm": 0.05155632272362709, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 66033 + }, + { + "epoch": 6.781269254467036, + "grad_norm": 0.08351369947195053, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 66036 + }, + { + "epoch": 6.781577325939618, + "grad_norm": 0.09187694638967514, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 66039 + }, + { + "epoch": 6.7818853974122, + "grad_norm": 0.21938036382198334, + "learning_rate": 0.01, + "loss": 1.985, + "step": 66042 + }, + { + "epoch": 6.782193468884781, + "grad_norm": 0.051359206438064575, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 66045 + }, + { + "epoch": 6.782501540357363, + "grad_norm": 0.08765391260385513, + "learning_rate": 0.01, + "loss": 1.9927, + "step": 66048 + }, + { + "epoch": 6.782809611829944, + "grad_norm": 0.03909270092844963, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 66051 + }, + { + "epoch": 6.783117683302526, + "grad_norm": 0.06215377524495125, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 66054 + }, + { + "epoch": 6.783425754775108, + "grad_norm": 0.05099578574299812, + "learning_rate": 0.01, + "loss": 1.9605, + "step": 66057 + }, + { + "epoch": 6.78373382624769, + "grad_norm": 0.037330977618694305, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 66060 + }, + { + "epoch": 6.784041897720271, + "grad_norm": 0.034515704959630966, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 66063 + }, + { + "epoch": 6.784349969192853, + "grad_norm": 0.07824211567640305, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 66066 + }, + { + "epoch": 6.784658040665434, + "grad_norm": 0.13664306700229645, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 66069 + }, + { + "epoch": 6.784966112138016, + "grad_norm": 0.11008740961551666, + "learning_rate": 0.01, + "loss": 1.9748, + "step": 66072 + }, + { + "epoch": 6.785274183610598, + "grad_norm": 0.07172096520662308, + "learning_rate": 0.01, + "loss": 2.0085, + "step": 66075 + }, + { + "epoch": 6.785582255083179, + "grad_norm": 0.08354049175977707, + "learning_rate": 0.01, + "loss": 1.9607, + "step": 66078 + }, + { + "epoch": 6.785890326555761, + "grad_norm": 0.04367983713746071, + "learning_rate": 0.01, + "loss": 1.9804, + "step": 66081 + }, + { + "epoch": 6.7861983980283425, + "grad_norm": 0.03163396567106247, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 66084 + }, + { + "epoch": 6.7865064695009245, + "grad_norm": 0.0645727813243866, + "learning_rate": 0.01, + "loss": 1.991, + "step": 66087 + }, + { + "epoch": 6.786814540973506, + "grad_norm": 0.04862186312675476, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 66090 + }, + { + "epoch": 6.787122612446088, + "grad_norm": 0.035945162177085876, + "learning_rate": 0.01, + "loss": 1.9657, + "step": 66093 + }, + { + "epoch": 6.787430683918669, + "grad_norm": 0.10152018815279007, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 66096 + }, + { + "epoch": 6.787738755391251, + "grad_norm": 0.047067925333976746, + "learning_rate": 0.01, + "loss": 1.965, + "step": 66099 + }, + { + "epoch": 6.788046826863832, + "grad_norm": 0.0677446648478508, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 66102 + }, + { + "epoch": 6.788354898336414, + "grad_norm": 0.03530653938651085, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 66105 + }, + { + "epoch": 6.788662969808995, + "grad_norm": 0.04466121271252632, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 66108 + }, + { + "epoch": 6.788971041281577, + "grad_norm": 0.036109503358602524, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 66111 + }, + { + "epoch": 6.7892791127541585, + "grad_norm": 0.03432103618979454, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 66114 + }, + { + "epoch": 6.789587184226741, + "grad_norm": 0.06858955323696136, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 66117 + }, + { + "epoch": 6.789895255699323, + "grad_norm": 0.053574852645397186, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 66120 + }, + { + "epoch": 6.790203327171904, + "grad_norm": 0.0781317800283432, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 66123 + }, + { + "epoch": 6.790511398644486, + "grad_norm": 0.0939275249838829, + "learning_rate": 0.01, + "loss": 1.979, + "step": 66126 + }, + { + "epoch": 6.790819470117067, + "grad_norm": 0.1132221594452858, + "learning_rate": 0.01, + "loss": 1.9867, + "step": 66129 + }, + { + "epoch": 6.791127541589649, + "grad_norm": 0.07932759076356888, + "learning_rate": 0.01, + "loss": 1.9893, + "step": 66132 + }, + { + "epoch": 6.79143561306223, + "grad_norm": 0.04189478978514671, + "learning_rate": 0.01, + "loss": 1.961, + "step": 66135 + }, + { + "epoch": 6.791743684534812, + "grad_norm": 0.06015237420797348, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 66138 + }, + { + "epoch": 6.792051756007393, + "grad_norm": 0.05187036469578743, + "learning_rate": 0.01, + "loss": 2.0005, + "step": 66141 + }, + { + "epoch": 6.7923598274799755, + "grad_norm": 0.07512509822845459, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 66144 + }, + { + "epoch": 6.792667898952557, + "grad_norm": 0.10434945672750473, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 66147 + }, + { + "epoch": 6.792975970425139, + "grad_norm": 0.07873903959989548, + "learning_rate": 0.01, + "loss": 1.981, + "step": 66150 + }, + { + "epoch": 6.793284041897721, + "grad_norm": 0.04768504202365875, + "learning_rate": 0.01, + "loss": 1.9568, + "step": 66153 + }, + { + "epoch": 6.793592113370302, + "grad_norm": 0.09988034516572952, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 66156 + }, + { + "epoch": 6.793900184842883, + "grad_norm": 0.07220810651779175, + "learning_rate": 0.01, + "loss": 1.9664, + "step": 66159 + }, + { + "epoch": 6.794208256315465, + "grad_norm": 0.036455634981393814, + "learning_rate": 0.01, + "loss": 2.0003, + "step": 66162 + }, + { + "epoch": 6.794516327788047, + "grad_norm": 0.04097495973110199, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 66165 + }, + { + "epoch": 6.794824399260628, + "grad_norm": 0.03743165358901024, + "learning_rate": 0.01, + "loss": 1.9423, + "step": 66168 + }, + { + "epoch": 6.79513247073321, + "grad_norm": 0.14310762286186218, + "learning_rate": 0.01, + "loss": 2.0118, + "step": 66171 + }, + { + "epoch": 6.7954405422057915, + "grad_norm": 0.067170649766922, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 66174 + }, + { + "epoch": 6.795748613678374, + "grad_norm": 0.04540235176682472, + "learning_rate": 0.01, + "loss": 1.9537, + "step": 66177 + }, + { + "epoch": 6.796056685150955, + "grad_norm": 0.035935305058956146, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 66180 + }, + { + "epoch": 6.796364756623537, + "grad_norm": 0.10116109251976013, + "learning_rate": 0.01, + "loss": 1.994, + "step": 66183 + }, + { + "epoch": 6.796672828096118, + "grad_norm": 0.09814930707216263, + "learning_rate": 0.01, + "loss": 1.96, + "step": 66186 + }, + { + "epoch": 6.7969808995687, + "grad_norm": 0.04029448702931404, + "learning_rate": 0.01, + "loss": 1.9701, + "step": 66189 + }, + { + "epoch": 6.797288971041281, + "grad_norm": 0.07453613728284836, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 66192 + }, + { + "epoch": 6.797597042513863, + "grad_norm": 0.07255508750677109, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 66195 + }, + { + "epoch": 6.797905113986445, + "grad_norm": 0.07982856780290604, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 66198 + }, + { + "epoch": 6.798213185459026, + "grad_norm": 0.09988022595643997, + "learning_rate": 0.01, + "loss": 1.972, + "step": 66201 + }, + { + "epoch": 6.7985212569316085, + "grad_norm": 0.09353185445070267, + "learning_rate": 0.01, + "loss": 1.9625, + "step": 66204 + }, + { + "epoch": 6.79882932840419, + "grad_norm": 0.04059029743075371, + "learning_rate": 0.01, + "loss": 1.9812, + "step": 66207 + }, + { + "epoch": 6.799137399876772, + "grad_norm": 0.04064788296818733, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 66210 + }, + { + "epoch": 6.799445471349353, + "grad_norm": 0.052321575582027435, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 66213 + }, + { + "epoch": 6.799753542821935, + "grad_norm": 0.13621580600738525, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 66216 + }, + { + "epoch": 6.800061614294516, + "grad_norm": 0.04013410210609436, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 66219 + }, + { + "epoch": 6.800369685767098, + "grad_norm": 0.04535072669386864, + "learning_rate": 0.01, + "loss": 1.9999, + "step": 66222 + }, + { + "epoch": 6.800677757239679, + "grad_norm": 0.05595749244093895, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 66225 + }, + { + "epoch": 6.800985828712261, + "grad_norm": 0.03648608550429344, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 66228 + }, + { + "epoch": 6.801293900184843, + "grad_norm": 0.039576612412929535, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 66231 + }, + { + "epoch": 6.8016019716574245, + "grad_norm": 0.0474928542971611, + "learning_rate": 0.01, + "loss": 1.9933, + "step": 66234 + }, + { + "epoch": 6.801910043130006, + "grad_norm": 0.04102933779358864, + "learning_rate": 0.01, + "loss": 1.9754, + "step": 66237 + }, + { + "epoch": 6.802218114602588, + "grad_norm": 0.03818250820040703, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 66240 + }, + { + "epoch": 6.80252618607517, + "grad_norm": 0.038981273770332336, + "learning_rate": 0.01, + "loss": 1.9789, + "step": 66243 + }, + { + "epoch": 6.802834257547751, + "grad_norm": 0.12116497755050659, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 66246 + }, + { + "epoch": 6.803142329020333, + "grad_norm": 0.05318591371178627, + "learning_rate": 0.01, + "loss": 1.993, + "step": 66249 + }, + { + "epoch": 6.803450400492914, + "grad_norm": 0.05970082804560661, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 66252 + }, + { + "epoch": 6.803758471965496, + "grad_norm": 0.06618655472993851, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 66255 + }, + { + "epoch": 6.804066543438077, + "grad_norm": 0.05062811076641083, + "learning_rate": 0.01, + "loss": 1.9729, + "step": 66258 + }, + { + "epoch": 6.804374614910659, + "grad_norm": 0.03643089160323143, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 66261 + }, + { + "epoch": 6.804682686383241, + "grad_norm": 0.051748260855674744, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 66264 + }, + { + "epoch": 6.804990757855823, + "grad_norm": 0.029979856684803963, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 66267 + }, + { + "epoch": 6.805298829328404, + "grad_norm": 0.03129233047366142, + "learning_rate": 0.01, + "loss": 1.9617, + "step": 66270 + }, + { + "epoch": 6.805606900800986, + "grad_norm": 0.06324151903390884, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 66273 + }, + { + "epoch": 6.805914972273568, + "grad_norm": 0.13628403842449188, + "learning_rate": 0.01, + "loss": 2.0176, + "step": 66276 + }, + { + "epoch": 6.806223043746149, + "grad_norm": 0.05685223639011383, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 66279 + }, + { + "epoch": 6.806531115218731, + "grad_norm": 0.0537252239882946, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 66282 + }, + { + "epoch": 6.806839186691312, + "grad_norm": 0.11015389859676361, + "learning_rate": 0.01, + "loss": 1.9703, + "step": 66285 + }, + { + "epoch": 6.807147258163894, + "grad_norm": 0.04667497053742409, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 66288 + }, + { + "epoch": 6.8074553296364755, + "grad_norm": 0.03570316731929779, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 66291 + }, + { + "epoch": 6.8077634011090575, + "grad_norm": 0.0808587595820427, + "learning_rate": 0.01, + "loss": 1.9526, + "step": 66294 + }, + { + "epoch": 6.808071472581639, + "grad_norm": 0.10974206030368805, + "learning_rate": 0.01, + "loss": 1.9517, + "step": 66297 + }, + { + "epoch": 6.808379544054221, + "grad_norm": 0.10623728483915329, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 66300 + }, + { + "epoch": 6.808687615526802, + "grad_norm": 0.07686350494623184, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 66303 + }, + { + "epoch": 6.808995686999384, + "grad_norm": 0.0518915168941021, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 66306 + }, + { + "epoch": 6.809303758471965, + "grad_norm": 0.05631876736879349, + "learning_rate": 0.01, + "loss": 1.9879, + "step": 66309 + }, + { + "epoch": 6.809611829944547, + "grad_norm": 0.07675952464342117, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 66312 + }, + { + "epoch": 6.809919901417128, + "grad_norm": 0.05211762338876724, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 66315 + }, + { + "epoch": 6.81022797288971, + "grad_norm": 0.07859452068805695, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 66318 + }, + { + "epoch": 6.810536044362292, + "grad_norm": 0.05693339928984642, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 66321 + }, + { + "epoch": 6.810844115834874, + "grad_norm": 0.03533701226115227, + "learning_rate": 0.01, + "loss": 1.9809, + "step": 66324 + }, + { + "epoch": 6.811152187307456, + "grad_norm": 0.10251706093549728, + "learning_rate": 0.01, + "loss": 1.9536, + "step": 66327 + }, + { + "epoch": 6.811460258780037, + "grad_norm": 0.06078473851084709, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 66330 + }, + { + "epoch": 6.811768330252619, + "grad_norm": 0.0667276531457901, + "learning_rate": 0.01, + "loss": 1.9462, + "step": 66333 + }, + { + "epoch": 6.8120764017252, + "grad_norm": 0.08299112319946289, + "learning_rate": 0.01, + "loss": 2.012, + "step": 66336 + }, + { + "epoch": 6.812384473197782, + "grad_norm": 0.10200154036283493, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 66339 + }, + { + "epoch": 6.812692544670363, + "grad_norm": 0.06807447969913483, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 66342 + }, + { + "epoch": 6.813000616142945, + "grad_norm": 0.12666809558868408, + "learning_rate": 0.01, + "loss": 1.9803, + "step": 66345 + }, + { + "epoch": 6.813308687615526, + "grad_norm": 0.07474800199270248, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 66348 + }, + { + "epoch": 6.8136167590881085, + "grad_norm": 0.045581359416246414, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 66351 + }, + { + "epoch": 6.8139248305606905, + "grad_norm": 0.03591908887028694, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 66354 + }, + { + "epoch": 6.814232902033272, + "grad_norm": 0.0317840613424778, + "learning_rate": 0.01, + "loss": 1.9799, + "step": 66357 + }, + { + "epoch": 6.814540973505853, + "grad_norm": 0.12169979512691498, + "learning_rate": 0.01, + "loss": 1.987, + "step": 66360 + }, + { + "epoch": 6.814849044978435, + "grad_norm": 0.159201517701149, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 66363 + }, + { + "epoch": 6.815157116451017, + "grad_norm": 0.0912163183093071, + "learning_rate": 0.01, + "loss": 1.9631, + "step": 66366 + }, + { + "epoch": 6.815465187923598, + "grad_norm": 0.05623574182391167, + "learning_rate": 0.01, + "loss": 1.9889, + "step": 66369 + }, + { + "epoch": 6.81577325939618, + "grad_norm": 0.0320771262049675, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 66372 + }, + { + "epoch": 6.816081330868761, + "grad_norm": 0.033067572861909866, + "learning_rate": 0.01, + "loss": 2.0206, + "step": 66375 + }, + { + "epoch": 6.816389402341343, + "grad_norm": 0.043655119836330414, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 66378 + }, + { + "epoch": 6.8166974738139245, + "grad_norm": 0.03852735459804535, + "learning_rate": 0.01, + "loss": 1.9829, + "step": 66381 + }, + { + "epoch": 6.817005545286507, + "grad_norm": 0.06447228044271469, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 66384 + }, + { + "epoch": 6.817313616759088, + "grad_norm": 0.1129051074385643, + "learning_rate": 0.01, + "loss": 2.0049, + "step": 66387 + }, + { + "epoch": 6.81762168823167, + "grad_norm": 0.09710655361413956, + "learning_rate": 0.01, + "loss": 1.9459, + "step": 66390 + }, + { + "epoch": 6.817929759704251, + "grad_norm": 0.13679730892181396, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 66393 + }, + { + "epoch": 6.818237831176833, + "grad_norm": 0.07610119134187698, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 66396 + }, + { + "epoch": 6.818545902649415, + "grad_norm": 0.06364092975854874, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 66399 + }, + { + "epoch": 6.818853974121996, + "grad_norm": 0.06607314199209213, + "learning_rate": 0.01, + "loss": 1.9489, + "step": 66402 + }, + { + "epoch": 6.819162045594578, + "grad_norm": 0.06625553220510483, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 66405 + }, + { + "epoch": 6.819470117067159, + "grad_norm": 0.052945904433727264, + "learning_rate": 0.01, + "loss": 1.9705, + "step": 66408 + }, + { + "epoch": 6.8197781885397415, + "grad_norm": 0.0977964773774147, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 66411 + }, + { + "epoch": 6.820086260012323, + "grad_norm": 0.09723694622516632, + "learning_rate": 0.01, + "loss": 1.9607, + "step": 66414 + }, + { + "epoch": 6.820394331484905, + "grad_norm": 0.05858434736728668, + "learning_rate": 0.01, + "loss": 1.9873, + "step": 66417 + }, + { + "epoch": 6.820702402957486, + "grad_norm": 0.09421772509813309, + "learning_rate": 0.01, + "loss": 1.9741, + "step": 66420 + }, + { + "epoch": 6.821010474430068, + "grad_norm": 0.040733322501182556, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 66423 + }, + { + "epoch": 6.821318545902649, + "grad_norm": 0.0649617463350296, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 66426 + }, + { + "epoch": 6.821626617375231, + "grad_norm": 0.10224436968564987, + "learning_rate": 0.01, + "loss": 2.0167, + "step": 66429 + }, + { + "epoch": 6.821934688847813, + "grad_norm": 0.07691013067960739, + "learning_rate": 0.01, + "loss": 1.977, + "step": 66432 + }, + { + "epoch": 6.822242760320394, + "grad_norm": 0.1012914851307869, + "learning_rate": 0.01, + "loss": 1.985, + "step": 66435 + }, + { + "epoch": 6.8225508317929755, + "grad_norm": 0.04432602971792221, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 66438 + }, + { + "epoch": 6.8228589032655576, + "grad_norm": 0.0863911360502243, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 66441 + }, + { + "epoch": 6.82316697473814, + "grad_norm": 0.0747685432434082, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 66444 + }, + { + "epoch": 6.823475046210721, + "grad_norm": 0.04725578799843788, + "learning_rate": 0.01, + "loss": 1.9782, + "step": 66447 + }, + { + "epoch": 6.823783117683303, + "grad_norm": 0.1259828805923462, + "learning_rate": 0.01, + "loss": 1.984, + "step": 66450 + }, + { + "epoch": 6.824091189155884, + "grad_norm": 0.05945250764489174, + "learning_rate": 0.01, + "loss": 1.9617, + "step": 66453 + }, + { + "epoch": 6.824399260628466, + "grad_norm": 0.03467526659369469, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 66456 + }, + { + "epoch": 6.824707332101047, + "grad_norm": 0.04494983330368996, + "learning_rate": 0.01, + "loss": 1.9891, + "step": 66459 + }, + { + "epoch": 6.825015403573629, + "grad_norm": 0.042065590620040894, + "learning_rate": 0.01, + "loss": 2.0022, + "step": 66462 + }, + { + "epoch": 6.82532347504621, + "grad_norm": 0.1278277486562729, + "learning_rate": 0.01, + "loss": 1.9866, + "step": 66465 + }, + { + "epoch": 6.8256315465187924, + "grad_norm": 0.04210862144827843, + "learning_rate": 0.01, + "loss": 1.9512, + "step": 66468 + }, + { + "epoch": 6.825939617991374, + "grad_norm": 0.10816308856010437, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 66471 + }, + { + "epoch": 6.826247689463956, + "grad_norm": 0.04535592719912529, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 66474 + }, + { + "epoch": 6.826555760936538, + "grad_norm": 0.06771806627511978, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 66477 + }, + { + "epoch": 6.826863832409119, + "grad_norm": 0.13082286715507507, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 66480 + }, + { + "epoch": 6.827171903881701, + "grad_norm": 0.06389307230710983, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 66483 + }, + { + "epoch": 6.827479975354282, + "grad_norm": 0.04055839404463768, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 66486 + }, + { + "epoch": 6.827788046826864, + "grad_norm": 0.03493233397603035, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 66489 + }, + { + "epoch": 6.828096118299445, + "grad_norm": 0.03460715711116791, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 66492 + }, + { + "epoch": 6.828404189772027, + "grad_norm": 0.04448126628994942, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 66495 + }, + { + "epoch": 6.8287122612446085, + "grad_norm": 0.14231470227241516, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 66498 + }, + { + "epoch": 6.8290203327171906, + "grad_norm": 0.13960252702236176, + "learning_rate": 0.01, + "loss": 2.0018, + "step": 66501 + }, + { + "epoch": 6.829328404189772, + "grad_norm": 0.053078074008226395, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 66504 + }, + { + "epoch": 6.829636475662354, + "grad_norm": 0.048882726579904556, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 66507 + }, + { + "epoch": 6.829944547134935, + "grad_norm": 0.052697841078042984, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 66510 + }, + { + "epoch": 6.830252618607517, + "grad_norm": 0.07299689203500748, + "learning_rate": 0.01, + "loss": 1.9554, + "step": 66513 + }, + { + "epoch": 6.830560690080098, + "grad_norm": 0.06163341924548149, + "learning_rate": 0.01, + "loss": 1.9859, + "step": 66516 + }, + { + "epoch": 6.83086876155268, + "grad_norm": 0.11083027720451355, + "learning_rate": 0.01, + "loss": 2.0029, + "step": 66519 + }, + { + "epoch": 6.831176833025262, + "grad_norm": 0.07942959666252136, + "learning_rate": 0.01, + "loss": 1.9785, + "step": 66522 + }, + { + "epoch": 6.831484904497843, + "grad_norm": 0.048363711684942245, + "learning_rate": 0.01, + "loss": 1.9661, + "step": 66525 + }, + { + "epoch": 6.8317929759704255, + "grad_norm": 0.03769001364707947, + "learning_rate": 0.01, + "loss": 1.9449, + "step": 66528 + }, + { + "epoch": 6.832101047443007, + "grad_norm": 0.03747798129916191, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 66531 + }, + { + "epoch": 6.832409118915589, + "grad_norm": 0.05700261518359184, + "learning_rate": 0.01, + "loss": 1.9723, + "step": 66534 + }, + { + "epoch": 6.83271719038817, + "grad_norm": 0.08550623804330826, + "learning_rate": 0.01, + "loss": 2.0129, + "step": 66537 + }, + { + "epoch": 6.833025261860752, + "grad_norm": 0.05213450267910957, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 66540 + }, + { + "epoch": 6.833333333333333, + "grad_norm": 0.12226033955812454, + "learning_rate": 0.01, + "loss": 1.9628, + "step": 66543 + }, + { + "epoch": 6.833641404805915, + "grad_norm": 0.06343870609998703, + "learning_rate": 0.01, + "loss": 1.9572, + "step": 66546 + }, + { + "epoch": 6.833949476278496, + "grad_norm": 0.06879778206348419, + "learning_rate": 0.01, + "loss": 1.9975, + "step": 66549 + }, + { + "epoch": 6.834257547751078, + "grad_norm": 0.04970945045351982, + "learning_rate": 0.01, + "loss": 1.979, + "step": 66552 + }, + { + "epoch": 6.83456561922366, + "grad_norm": 0.04559726640582085, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 66555 + }, + { + "epoch": 6.8348736906962415, + "grad_norm": 0.08180249482393265, + "learning_rate": 0.01, + "loss": 1.9704, + "step": 66558 + }, + { + "epoch": 6.835181762168823, + "grad_norm": 0.044129811227321625, + "learning_rate": 0.01, + "loss": 1.9591, + "step": 66561 + }, + { + "epoch": 6.835489833641405, + "grad_norm": 0.038416411727666855, + "learning_rate": 0.01, + "loss": 1.9519, + "step": 66564 + }, + { + "epoch": 6.835797905113987, + "grad_norm": 0.06428057700395584, + "learning_rate": 0.01, + "loss": 1.9855, + "step": 66567 + }, + { + "epoch": 6.836105976586568, + "grad_norm": 0.07858021557331085, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 66570 + }, + { + "epoch": 6.83641404805915, + "grad_norm": 0.07772648334503174, + "learning_rate": 0.01, + "loss": 1.9543, + "step": 66573 + }, + { + "epoch": 6.836722119531731, + "grad_norm": 0.03566915541887283, + "learning_rate": 0.01, + "loss": 1.9563, + "step": 66576 + }, + { + "epoch": 6.837030191004313, + "grad_norm": 0.04193243384361267, + "learning_rate": 0.01, + "loss": 1.9472, + "step": 66579 + }, + { + "epoch": 6.837338262476894, + "grad_norm": 0.058167651295661926, + "learning_rate": 0.01, + "loss": 1.9685, + "step": 66582 + }, + { + "epoch": 6.837646333949476, + "grad_norm": 0.12235833704471588, + "learning_rate": 0.01, + "loss": 1.951, + "step": 66585 + }, + { + "epoch": 6.837954405422058, + "grad_norm": 0.052113085985183716, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 66588 + }, + { + "epoch": 6.83826247689464, + "grad_norm": 0.0758160799741745, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 66591 + }, + { + "epoch": 6.838570548367221, + "grad_norm": 0.05963435024023056, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 66594 + }, + { + "epoch": 6.838878619839803, + "grad_norm": 0.040900785475969315, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 66597 + }, + { + "epoch": 6.839186691312385, + "grad_norm": 0.042031388729810715, + "learning_rate": 0.01, + "loss": 1.9826, + "step": 66600 + }, + { + "epoch": 6.839494762784966, + "grad_norm": 0.056323789060115814, + "learning_rate": 0.01, + "loss": 1.9528, + "step": 66603 + }, + { + "epoch": 6.839802834257548, + "grad_norm": 0.07060620188713074, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 66606 + }, + { + "epoch": 6.840110905730129, + "grad_norm": 0.05406404659152031, + "learning_rate": 0.01, + "loss": 1.9635, + "step": 66609 + }, + { + "epoch": 6.840418977202711, + "grad_norm": 0.06324061751365662, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 66612 + }, + { + "epoch": 6.8407270486752925, + "grad_norm": 0.04893625155091286, + "learning_rate": 0.01, + "loss": 2.0007, + "step": 66615 + }, + { + "epoch": 6.8410351201478745, + "grad_norm": 0.062072839587926865, + "learning_rate": 0.01, + "loss": 1.9802, + "step": 66618 + }, + { + "epoch": 6.841343191620456, + "grad_norm": 0.12954573333263397, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 66621 + }, + { + "epoch": 6.841651263093038, + "grad_norm": 0.06360910087823868, + "learning_rate": 0.01, + "loss": 1.9877, + "step": 66624 + }, + { + "epoch": 6.841959334565619, + "grad_norm": 0.0654262900352478, + "learning_rate": 0.01, + "loss": 1.9869, + "step": 66627 + }, + { + "epoch": 6.842267406038201, + "grad_norm": 0.12571407854557037, + "learning_rate": 0.01, + "loss": 1.9901, + "step": 66630 + }, + { + "epoch": 6.842575477510783, + "grad_norm": 0.09581385552883148, + "learning_rate": 0.01, + "loss": 1.9594, + "step": 66633 + }, + { + "epoch": 6.842883548983364, + "grad_norm": 0.08289510756731033, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 66636 + }, + { + "epoch": 6.843191620455945, + "grad_norm": 0.043533485382795334, + "learning_rate": 0.01, + "loss": 1.9793, + "step": 66639 + }, + { + "epoch": 6.843499691928527, + "grad_norm": 0.04672224447131157, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 66642 + }, + { + "epoch": 6.843807763401109, + "grad_norm": 0.03264494985342026, + "learning_rate": 0.01, + "loss": 1.9976, + "step": 66645 + }, + { + "epoch": 6.844115834873691, + "grad_norm": 0.10711422562599182, + "learning_rate": 0.01, + "loss": 1.9952, + "step": 66648 + }, + { + "epoch": 6.844423906346273, + "grad_norm": 0.08725102990865707, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 66651 + }, + { + "epoch": 6.844731977818854, + "grad_norm": 0.03802330791950226, + "learning_rate": 0.01, + "loss": 1.9667, + "step": 66654 + }, + { + "epoch": 6.845040049291436, + "grad_norm": 0.0540679395198822, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 66657 + }, + { + "epoch": 6.845348120764017, + "grad_norm": 0.10413230210542679, + "learning_rate": 0.01, + "loss": 1.9451, + "step": 66660 + }, + { + "epoch": 6.845656192236599, + "grad_norm": 0.07961270213127136, + "learning_rate": 0.01, + "loss": 1.9462, + "step": 66663 + }, + { + "epoch": 6.84596426370918, + "grad_norm": 0.06600063294172287, + "learning_rate": 0.01, + "loss": 1.9298, + "step": 66666 + }, + { + "epoch": 6.846272335181762, + "grad_norm": 0.10893017053604126, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 66669 + }, + { + "epoch": 6.846580406654343, + "grad_norm": 0.07856502383947372, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 66672 + }, + { + "epoch": 6.8468884781269255, + "grad_norm": 0.06285273283720016, + "learning_rate": 0.01, + "loss": 1.9413, + "step": 66675 + }, + { + "epoch": 6.8471965495995075, + "grad_norm": 0.07361593842506409, + "learning_rate": 0.01, + "loss": 1.9881, + "step": 66678 + }, + { + "epoch": 6.847504621072089, + "grad_norm": 0.07996716350317001, + "learning_rate": 0.01, + "loss": 1.985, + "step": 66681 + }, + { + "epoch": 6.847812692544671, + "grad_norm": 0.05737863853573799, + "learning_rate": 0.01, + "loss": 1.9702, + "step": 66684 + }, + { + "epoch": 6.848120764017252, + "grad_norm": 0.05021853744983673, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 66687 + }, + { + "epoch": 6.848428835489834, + "grad_norm": 0.033845316618680954, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 66690 + }, + { + "epoch": 6.848736906962415, + "grad_norm": 0.10472722351551056, + "learning_rate": 0.01, + "loss": 1.973, + "step": 66693 + }, + { + "epoch": 6.849044978434997, + "grad_norm": 0.07523515820503235, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 66696 + }, + { + "epoch": 6.849353049907578, + "grad_norm": 0.08648163080215454, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 66699 + }, + { + "epoch": 6.84966112138016, + "grad_norm": 0.05042044818401337, + "learning_rate": 0.01, + "loss": 1.9494, + "step": 66702 + }, + { + "epoch": 6.8499691928527415, + "grad_norm": 0.04480702057480812, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 66705 + }, + { + "epoch": 6.850277264325324, + "grad_norm": 0.07494408637285233, + "learning_rate": 0.01, + "loss": 1.9765, + "step": 66708 + }, + { + "epoch": 6.850585335797905, + "grad_norm": 0.061382777988910675, + "learning_rate": 0.01, + "loss": 1.9695, + "step": 66711 + }, + { + "epoch": 6.850893407270487, + "grad_norm": 0.04542558267712593, + "learning_rate": 0.01, + "loss": 1.9928, + "step": 66714 + }, + { + "epoch": 6.851201478743068, + "grad_norm": 0.039626192301511765, + "learning_rate": 0.01, + "loss": 1.9384, + "step": 66717 + }, + { + "epoch": 6.85150955021565, + "grad_norm": 0.04274001717567444, + "learning_rate": 0.01, + "loss": 1.9762, + "step": 66720 + }, + { + "epoch": 6.851817621688232, + "grad_norm": 0.16487199068069458, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 66723 + }, + { + "epoch": 6.852125693160813, + "grad_norm": 0.04666552320122719, + "learning_rate": 0.01, + "loss": 1.9914, + "step": 66726 + }, + { + "epoch": 6.852433764633395, + "grad_norm": 0.04287717863917351, + "learning_rate": 0.01, + "loss": 1.9981, + "step": 66729 + }, + { + "epoch": 6.852741836105976, + "grad_norm": 0.04304524138569832, + "learning_rate": 0.01, + "loss": 1.961, + "step": 66732 + }, + { + "epoch": 6.8530499075785585, + "grad_norm": 0.06935624033212662, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 66735 + }, + { + "epoch": 6.85335797905114, + "grad_norm": 0.06261073797941208, + "learning_rate": 0.01, + "loss": 1.9558, + "step": 66738 + }, + { + "epoch": 6.853666050523722, + "grad_norm": 0.07173455506563187, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 66741 + }, + { + "epoch": 6.853974121996303, + "grad_norm": 0.08861742913722992, + "learning_rate": 0.01, + "loss": 1.991, + "step": 66744 + }, + { + "epoch": 6.854282193468885, + "grad_norm": 0.05243033543229103, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 66747 + }, + { + "epoch": 6.854590264941466, + "grad_norm": 0.03281958028674126, + "learning_rate": 0.01, + "loss": 1.9917, + "step": 66750 + }, + { + "epoch": 6.854898336414048, + "grad_norm": 0.10798471421003342, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 66753 + }, + { + "epoch": 6.85520640788663, + "grad_norm": 0.10174170881509781, + "learning_rate": 0.01, + "loss": 1.9616, + "step": 66756 + }, + { + "epoch": 6.855514479359211, + "grad_norm": 0.03573278710246086, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 66759 + }, + { + "epoch": 6.8558225508317925, + "grad_norm": 0.12209411710500717, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 66762 + }, + { + "epoch": 6.8561306223043745, + "grad_norm": 0.06323892623186111, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 66765 + }, + { + "epoch": 6.856438693776957, + "grad_norm": 0.03758067637681961, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 66768 + }, + { + "epoch": 6.856746765249538, + "grad_norm": 0.0766826942563057, + "learning_rate": 0.01, + "loss": 1.974, + "step": 66771 + }, + { + "epoch": 6.85705483672212, + "grad_norm": 0.08893147110939026, + "learning_rate": 0.01, + "loss": 1.9959, + "step": 66774 + }, + { + "epoch": 6.857362908194701, + "grad_norm": 0.06650066375732422, + "learning_rate": 0.01, + "loss": 1.9714, + "step": 66777 + }, + { + "epoch": 6.857670979667283, + "grad_norm": 0.04757289960980415, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 66780 + }, + { + "epoch": 6.857979051139864, + "grad_norm": 0.0641031265258789, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 66783 + }, + { + "epoch": 6.858287122612446, + "grad_norm": 0.04178297147154808, + "learning_rate": 0.01, + "loss": 1.9613, + "step": 66786 + }, + { + "epoch": 6.858595194085027, + "grad_norm": 0.042551252990961075, + "learning_rate": 0.01, + "loss": 2.0181, + "step": 66789 + }, + { + "epoch": 6.858903265557609, + "grad_norm": 0.05980202183127403, + "learning_rate": 0.01, + "loss": 1.9742, + "step": 66792 + }, + { + "epoch": 6.859211337030191, + "grad_norm": 0.11070612818002701, + "learning_rate": 0.01, + "loss": 1.953, + "step": 66795 + }, + { + "epoch": 6.859519408502773, + "grad_norm": 0.03422870859503746, + "learning_rate": 0.01, + "loss": 1.9798, + "step": 66798 + }, + { + "epoch": 6.859827479975355, + "grad_norm": 0.04661295935511589, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 66801 + }, + { + "epoch": 6.860135551447936, + "grad_norm": 0.04450797662138939, + "learning_rate": 0.01, + "loss": 2.0017, + "step": 66804 + }, + { + "epoch": 6.860443622920518, + "grad_norm": 0.03987280651926994, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 66807 + }, + { + "epoch": 6.860751694393099, + "grad_norm": 0.0804753229022026, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 66810 + }, + { + "epoch": 6.861059765865681, + "grad_norm": 0.09321844577789307, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 66813 + }, + { + "epoch": 6.861367837338262, + "grad_norm": 0.128792867064476, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 66816 + }, + { + "epoch": 6.861675908810844, + "grad_norm": 0.0815480500459671, + "learning_rate": 0.01, + "loss": 1.9951, + "step": 66819 + }, + { + "epoch": 6.8619839802834255, + "grad_norm": 0.047995518893003464, + "learning_rate": 0.01, + "loss": 1.9672, + "step": 66822 + }, + { + "epoch": 6.8622920517560075, + "grad_norm": 0.03637409210205078, + "learning_rate": 0.01, + "loss": 1.9617, + "step": 66825 + }, + { + "epoch": 6.862600123228589, + "grad_norm": 0.03809746354818344, + "learning_rate": 0.01, + "loss": 1.978, + "step": 66828 + }, + { + "epoch": 6.862908194701171, + "grad_norm": 0.03449690714478493, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 66831 + }, + { + "epoch": 6.863216266173753, + "grad_norm": 0.09826438128948212, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 66834 + }, + { + "epoch": 6.863524337646334, + "grad_norm": 0.09669643640518188, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 66837 + }, + { + "epoch": 6.863832409118915, + "grad_norm": 0.03975251317024231, + "learning_rate": 0.01, + "loss": 1.9816, + "step": 66840 + }, + { + "epoch": 6.864140480591497, + "grad_norm": 0.045158423483371735, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 66843 + }, + { + "epoch": 6.864448552064079, + "grad_norm": 0.08310145139694214, + "learning_rate": 0.01, + "loss": 1.9594, + "step": 66846 + }, + { + "epoch": 6.86475662353666, + "grad_norm": 0.068028524518013, + "learning_rate": 0.01, + "loss": 1.9548, + "step": 66849 + }, + { + "epoch": 6.865064695009242, + "grad_norm": 0.02985006757080555, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 66852 + }, + { + "epoch": 6.865372766481824, + "grad_norm": 0.03493596985936165, + "learning_rate": 0.01, + "loss": 1.9608, + "step": 66855 + }, + { + "epoch": 6.865680837954406, + "grad_norm": 0.04760652035474777, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 66858 + }, + { + "epoch": 6.865988909426987, + "grad_norm": 0.08393906056880951, + "learning_rate": 0.01, + "loss": 1.9609, + "step": 66861 + }, + { + "epoch": 6.866296980899569, + "grad_norm": 0.05745869129896164, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 66864 + }, + { + "epoch": 6.86660505237215, + "grad_norm": 0.04294672608375549, + "learning_rate": 0.01, + "loss": 1.9912, + "step": 66867 + }, + { + "epoch": 6.866913123844732, + "grad_norm": 0.052304986864328384, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 66870 + }, + { + "epoch": 6.867221195317313, + "grad_norm": 0.04665624350309372, + "learning_rate": 0.01, + "loss": 1.9593, + "step": 66873 + }, + { + "epoch": 6.867529266789895, + "grad_norm": 0.037743669003248215, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 66876 + }, + { + "epoch": 6.867837338262477, + "grad_norm": 0.19228719174861908, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 66879 + }, + { + "epoch": 6.8681454097350585, + "grad_norm": 0.044259946793317795, + "learning_rate": 0.01, + "loss": 2.0154, + "step": 66882 + }, + { + "epoch": 6.8684534812076405, + "grad_norm": 0.03942949324846268, + "learning_rate": 0.01, + "loss": 1.981, + "step": 66885 + }, + { + "epoch": 6.868761552680222, + "grad_norm": 0.03812559321522713, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 66888 + }, + { + "epoch": 6.869069624152804, + "grad_norm": 0.03519313409924507, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 66891 + }, + { + "epoch": 6.869377695625385, + "grad_norm": 0.04644708335399628, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 66894 + }, + { + "epoch": 6.869685767097967, + "grad_norm": 0.059009701013565063, + "learning_rate": 0.01, + "loss": 1.9847, + "step": 66897 + }, + { + "epoch": 6.869993838570548, + "grad_norm": 0.08703511953353882, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 66900 + }, + { + "epoch": 6.87030191004313, + "grad_norm": 0.06761835515499115, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 66903 + }, + { + "epoch": 6.870609981515711, + "grad_norm": 0.12400759011507034, + "learning_rate": 0.01, + "loss": 1.9843, + "step": 66906 + }, + { + "epoch": 6.870918052988293, + "grad_norm": 0.13963590562343597, + "learning_rate": 0.01, + "loss": 1.9987, + "step": 66909 + }, + { + "epoch": 6.8712261244608746, + "grad_norm": 0.1004619374871254, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 66912 + }, + { + "epoch": 6.871534195933457, + "grad_norm": 0.05865470692515373, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 66915 + }, + { + "epoch": 6.871842267406038, + "grad_norm": 0.06006789952516556, + "learning_rate": 0.01, + "loss": 1.9681, + "step": 66918 + }, + { + "epoch": 6.87215033887862, + "grad_norm": 0.03859030827879906, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 66921 + }, + { + "epoch": 6.872458410351202, + "grad_norm": 0.03140386939048767, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 66924 + }, + { + "epoch": 6.872766481823783, + "grad_norm": 0.030816826969385147, + "learning_rate": 0.01, + "loss": 1.9746, + "step": 66927 + }, + { + "epoch": 6.873074553296365, + "grad_norm": 0.031165439635515213, + "learning_rate": 0.01, + "loss": 1.9777, + "step": 66930 + }, + { + "epoch": 6.873382624768946, + "grad_norm": 0.1848057508468628, + "learning_rate": 0.01, + "loss": 1.9849, + "step": 66933 + }, + { + "epoch": 6.873690696241528, + "grad_norm": 0.11120212823152542, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 66936 + }, + { + "epoch": 6.8739987677141094, + "grad_norm": 0.051300667226314545, + "learning_rate": 0.01, + "loss": 1.9601, + "step": 66939 + }, + { + "epoch": 6.8743068391866915, + "grad_norm": 0.03566049784421921, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 66942 + }, + { + "epoch": 6.874614910659273, + "grad_norm": 0.0652051493525505, + "learning_rate": 0.01, + "loss": 1.9625, + "step": 66945 + }, + { + "epoch": 6.874922982131855, + "grad_norm": 0.06834497302770615, + "learning_rate": 0.01, + "loss": 1.967, + "step": 66948 + }, + { + "epoch": 6.875231053604436, + "grad_norm": 0.058571867644786835, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 66951 + }, + { + "epoch": 6.875539125077018, + "grad_norm": 0.05274929851293564, + "learning_rate": 0.01, + "loss": 1.999, + "step": 66954 + }, + { + "epoch": 6.8758471965496, + "grad_norm": 0.044645778834819794, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 66957 + }, + { + "epoch": 6.876155268022181, + "grad_norm": 0.05121855065226555, + "learning_rate": 0.01, + "loss": 1.9773, + "step": 66960 + }, + { + "epoch": 6.876463339494762, + "grad_norm": 0.0632731169462204, + "learning_rate": 0.01, + "loss": 1.991, + "step": 66963 + }, + { + "epoch": 6.876771410967344, + "grad_norm": 0.0810575783252716, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 66966 + }, + { + "epoch": 6.877079482439926, + "grad_norm": 0.06958875060081482, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 66969 + }, + { + "epoch": 6.877387553912508, + "grad_norm": 0.06824204325675964, + "learning_rate": 0.01, + "loss": 2.0009, + "step": 66972 + }, + { + "epoch": 6.87769562538509, + "grad_norm": 0.05225484445691109, + "learning_rate": 0.01, + "loss": 1.9467, + "step": 66975 + }, + { + "epoch": 6.878003696857671, + "grad_norm": 0.05065394937992096, + "learning_rate": 0.01, + "loss": 1.9945, + "step": 66978 + }, + { + "epoch": 6.878311768330253, + "grad_norm": 0.13061989843845367, + "learning_rate": 0.01, + "loss": 1.9895, + "step": 66981 + }, + { + "epoch": 6.878619839802834, + "grad_norm": 0.12182870507240295, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 66984 + }, + { + "epoch": 6.878927911275416, + "grad_norm": 0.048450104892253876, + "learning_rate": 0.01, + "loss": 1.978, + "step": 66987 + }, + { + "epoch": 6.879235982747997, + "grad_norm": 0.055096838623285294, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 66990 + }, + { + "epoch": 6.879544054220579, + "grad_norm": 0.05567490682005882, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 66993 + }, + { + "epoch": 6.87985212569316, + "grad_norm": 0.05405956879258156, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 66996 + }, + { + "epoch": 6.8801601971657425, + "grad_norm": 0.08444008976221085, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 66999 + }, + { + "epoch": 6.8804682686383245, + "grad_norm": 0.08067743480205536, + "learning_rate": 0.01, + "loss": 1.9636, + "step": 67002 + }, + { + "epoch": 6.880776340110906, + "grad_norm": 0.042782243341207504, + "learning_rate": 0.01, + "loss": 1.9727, + "step": 67005 + }, + { + "epoch": 6.881084411583488, + "grad_norm": 0.036419086158275604, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 67008 + }, + { + "epoch": 6.881392483056069, + "grad_norm": 0.05873832479119301, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 67011 + }, + { + "epoch": 6.881700554528651, + "grad_norm": 0.06187519058585167, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 67014 + }, + { + "epoch": 6.882008626001232, + "grad_norm": 0.049339089542627335, + "learning_rate": 0.01, + "loss": 1.966, + "step": 67017 + }, + { + "epoch": 6.882316697473814, + "grad_norm": 0.037161026149988174, + "learning_rate": 0.01, + "loss": 1.9465, + "step": 67020 + }, + { + "epoch": 6.882624768946395, + "grad_norm": 0.03601270541548729, + "learning_rate": 0.01, + "loss": 1.98, + "step": 67023 + }, + { + "epoch": 6.882932840418977, + "grad_norm": 0.07066098600625992, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 67026 + }, + { + "epoch": 6.8832409118915585, + "grad_norm": 0.1363425999879837, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 67029 + }, + { + "epoch": 6.883548983364141, + "grad_norm": 0.060069505125284195, + "learning_rate": 0.01, + "loss": 1.9898, + "step": 67032 + }, + { + "epoch": 6.883857054836723, + "grad_norm": 0.08887060731649399, + "learning_rate": 0.01, + "loss": 1.9947, + "step": 67035 + }, + { + "epoch": 6.884165126309304, + "grad_norm": 0.03954588621854782, + "learning_rate": 0.01, + "loss": 1.9815, + "step": 67038 + }, + { + "epoch": 6.884473197781885, + "grad_norm": 0.04933086037635803, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 67041 + }, + { + "epoch": 6.884781269254467, + "grad_norm": 0.05626452714204788, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 67044 + }, + { + "epoch": 6.885089340727049, + "grad_norm": 0.04893886297941208, + "learning_rate": 0.01, + "loss": 1.9646, + "step": 67047 + }, + { + "epoch": 6.88539741219963, + "grad_norm": 0.10105928778648376, + "learning_rate": 0.01, + "loss": 1.971, + "step": 67050 + }, + { + "epoch": 6.885705483672212, + "grad_norm": 0.08832778036594391, + "learning_rate": 0.01, + "loss": 1.979, + "step": 67053 + }, + { + "epoch": 6.886013555144793, + "grad_norm": 0.059674110263586044, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 67056 + }, + { + "epoch": 6.8863216266173755, + "grad_norm": 0.06233122944831848, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 67059 + }, + { + "epoch": 6.886629698089957, + "grad_norm": 0.04024443402886391, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 67062 + }, + { + "epoch": 6.886937769562539, + "grad_norm": 0.03950473666191101, + "learning_rate": 0.01, + "loss": 1.9756, + "step": 67065 + }, + { + "epoch": 6.88724584103512, + "grad_norm": 0.11595027148723602, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 67068 + }, + { + "epoch": 6.887553912507702, + "grad_norm": 0.10208969563245773, + "learning_rate": 0.01, + "loss": 1.9763, + "step": 67071 + }, + { + "epoch": 6.887861983980283, + "grad_norm": 0.1006581112742424, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 67074 + }, + { + "epoch": 6.888170055452865, + "grad_norm": 0.06794067472219467, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 67077 + }, + { + "epoch": 6.888478126925447, + "grad_norm": 0.06897623836994171, + "learning_rate": 0.01, + "loss": 1.9688, + "step": 67080 + }, + { + "epoch": 6.888786198398028, + "grad_norm": 0.07438699901103973, + "learning_rate": 0.01, + "loss": 1.9884, + "step": 67083 + }, + { + "epoch": 6.88909426987061, + "grad_norm": 0.057675886899232864, + "learning_rate": 0.01, + "loss": 1.978, + "step": 67086 + }, + { + "epoch": 6.8894023413431915, + "grad_norm": 0.0770813375711441, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 67089 + }, + { + "epoch": 6.889710412815774, + "grad_norm": 0.07523828744888306, + "learning_rate": 0.01, + "loss": 1.9515, + "step": 67092 + }, + { + "epoch": 6.890018484288355, + "grad_norm": 0.11752041429281235, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 67095 + }, + { + "epoch": 6.890326555760937, + "grad_norm": 0.07361220568418503, + "learning_rate": 0.01, + "loss": 1.9475, + "step": 67098 + }, + { + "epoch": 6.890634627233518, + "grad_norm": 0.1421179324388504, + "learning_rate": 0.01, + "loss": 1.96, + "step": 67101 + }, + { + "epoch": 6.8909426987061, + "grad_norm": 0.10113172978162766, + "learning_rate": 0.01, + "loss": 1.9745, + "step": 67104 + }, + { + "epoch": 6.891250770178681, + "grad_norm": 0.07775873690843582, + "learning_rate": 0.01, + "loss": 2.0027, + "step": 67107 + }, + { + "epoch": 6.891558841651263, + "grad_norm": 0.06705240905284882, + "learning_rate": 0.01, + "loss": 1.9841, + "step": 67110 + }, + { + "epoch": 6.891866913123844, + "grad_norm": 0.09598524123430252, + "learning_rate": 0.01, + "loss": 1.9638, + "step": 67113 + }, + { + "epoch": 6.892174984596426, + "grad_norm": 0.04524253308773041, + "learning_rate": 0.01, + "loss": 1.9562, + "step": 67116 + }, + { + "epoch": 6.892483056069008, + "grad_norm": 0.041274599730968475, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 67119 + }, + { + "epoch": 6.89279112754159, + "grad_norm": 0.09016481041908264, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 67122 + }, + { + "epoch": 6.893099199014172, + "grad_norm": 0.06743042171001434, + "learning_rate": 0.01, + "loss": 1.9766, + "step": 67125 + }, + { + "epoch": 6.893407270486753, + "grad_norm": 0.08920291066169739, + "learning_rate": 0.01, + "loss": 2.0093, + "step": 67128 + }, + { + "epoch": 6.893715341959335, + "grad_norm": 0.08669997751712799, + "learning_rate": 0.01, + "loss": 1.9628, + "step": 67131 + }, + { + "epoch": 6.894023413431916, + "grad_norm": 0.03727005049586296, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 67134 + }, + { + "epoch": 6.894331484904498, + "grad_norm": 0.047707851976156235, + "learning_rate": 0.01, + "loss": 1.9626, + "step": 67137 + }, + { + "epoch": 6.894639556377079, + "grad_norm": 0.03828176483511925, + "learning_rate": 0.01, + "loss": 1.9597, + "step": 67140 + }, + { + "epoch": 6.894947627849661, + "grad_norm": 0.04043647646903992, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 67143 + }, + { + "epoch": 6.8952556993222425, + "grad_norm": 0.03885728865861893, + "learning_rate": 0.01, + "loss": 1.9679, + "step": 67146 + }, + { + "epoch": 6.8955637707948245, + "grad_norm": 0.041276995092630386, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 67149 + }, + { + "epoch": 6.895871842267406, + "grad_norm": 0.04943333566188812, + "learning_rate": 0.01, + "loss": 1.9549, + "step": 67152 + }, + { + "epoch": 6.896179913739988, + "grad_norm": 0.04476524516940117, + "learning_rate": 0.01, + "loss": 1.9485, + "step": 67155 + }, + { + "epoch": 6.89648798521257, + "grad_norm": 0.10550431907176971, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 67158 + }, + { + "epoch": 6.896796056685151, + "grad_norm": 0.09191994369029999, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 67161 + }, + { + "epoch": 6.897104128157732, + "grad_norm": 0.05506186559796333, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 67164 + }, + { + "epoch": 6.897412199630314, + "grad_norm": 0.06780190020799637, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 67167 + }, + { + "epoch": 6.897720271102896, + "grad_norm": 0.04398869350552559, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 67170 + }, + { + "epoch": 6.898028342575477, + "grad_norm": 0.05016426742076874, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 67173 + }, + { + "epoch": 6.898336414048059, + "grad_norm": 0.03760296478867531, + "learning_rate": 0.01, + "loss": 1.9833, + "step": 67176 + }, + { + "epoch": 6.898644485520641, + "grad_norm": 0.06771603971719742, + "learning_rate": 0.01, + "loss": 1.9924, + "step": 67179 + }, + { + "epoch": 6.898952556993223, + "grad_norm": 0.07435780018568039, + "learning_rate": 0.01, + "loss": 1.9733, + "step": 67182 + }, + { + "epoch": 6.899260628465804, + "grad_norm": 0.05153966695070267, + "learning_rate": 0.01, + "loss": 1.9968, + "step": 67185 + }, + { + "epoch": 6.899568699938386, + "grad_norm": 0.06906291097402573, + "learning_rate": 0.01, + "loss": 1.9666, + "step": 67188 + }, + { + "epoch": 6.899876771410967, + "grad_norm": 0.08245383203029633, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 67191 + }, + { + "epoch": 6.900184842883549, + "grad_norm": 0.06429754942655563, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 67194 + }, + { + "epoch": 6.90049291435613, + "grad_norm": 0.03510384261608124, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 67197 + }, + { + "epoch": 6.900800985828712, + "grad_norm": 0.063795305788517, + "learning_rate": 0.01, + "loss": 1.976, + "step": 67200 + }, + { + "epoch": 6.901109057301294, + "grad_norm": 0.07294676452875137, + "learning_rate": 0.01, + "loss": 1.9611, + "step": 67203 + }, + { + "epoch": 6.9014171287738755, + "grad_norm": 0.04569892957806587, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 67206 + }, + { + "epoch": 6.9017252002464575, + "grad_norm": 0.0556999109685421, + "learning_rate": 0.01, + "loss": 1.9949, + "step": 67209 + }, + { + "epoch": 6.902033271719039, + "grad_norm": 0.038515105843544006, + "learning_rate": 0.01, + "loss": 2.0006, + "step": 67212 + }, + { + "epoch": 6.902341343191621, + "grad_norm": 0.08272943645715714, + "learning_rate": 0.01, + "loss": 1.9549, + "step": 67215 + }, + { + "epoch": 6.902649414664202, + "grad_norm": 0.08796203136444092, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 67218 + }, + { + "epoch": 6.902957486136784, + "grad_norm": 0.0925317257642746, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 67221 + }, + { + "epoch": 6.903265557609365, + "grad_norm": 0.04561033099889755, + "learning_rate": 0.01, + "loss": 1.9481, + "step": 67224 + }, + { + "epoch": 6.903573629081947, + "grad_norm": 0.10068716108798981, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 67227 + }, + { + "epoch": 6.903881700554528, + "grad_norm": 0.06739984452724457, + "learning_rate": 0.01, + "loss": 1.9716, + "step": 67230 + }, + { + "epoch": 6.90418977202711, + "grad_norm": 0.05066872388124466, + "learning_rate": 0.01, + "loss": 1.9969, + "step": 67233 + }, + { + "epoch": 6.904497843499692, + "grad_norm": 0.047137267887592316, + "learning_rate": 0.01, + "loss": 1.9838, + "step": 67236 + }, + { + "epoch": 6.904805914972274, + "grad_norm": 0.10280490666627884, + "learning_rate": 0.01, + "loss": 1.9662, + "step": 67239 + }, + { + "epoch": 6.905113986444855, + "grad_norm": 0.08560338616371155, + "learning_rate": 0.01, + "loss": 1.9644, + "step": 67242 + }, + { + "epoch": 6.905422057917437, + "grad_norm": 0.13022232055664062, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 67245 + }, + { + "epoch": 6.905730129390019, + "grad_norm": 0.04727041721343994, + "learning_rate": 0.01, + "loss": 1.9905, + "step": 67248 + }, + { + "epoch": 6.9060382008626, + "grad_norm": 0.04549260064959526, + "learning_rate": 0.01, + "loss": 1.9749, + "step": 67251 + }, + { + "epoch": 6.906346272335182, + "grad_norm": 0.14286646246910095, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 67254 + }, + { + "epoch": 6.906654343807763, + "grad_norm": 0.04126777872443199, + "learning_rate": 0.01, + "loss": 1.9516, + "step": 67257 + }, + { + "epoch": 6.906962415280345, + "grad_norm": 0.04667791351675987, + "learning_rate": 0.01, + "loss": 1.9566, + "step": 67260 + }, + { + "epoch": 6.907270486752926, + "grad_norm": 0.11388275027275085, + "learning_rate": 0.01, + "loss": 1.9958, + "step": 67263 + }, + { + "epoch": 6.9075785582255085, + "grad_norm": 0.06364165991544724, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 67266 + }, + { + "epoch": 6.90788662969809, + "grad_norm": 0.09224580973386765, + "learning_rate": 0.01, + "loss": 1.9657, + "step": 67269 + }, + { + "epoch": 6.908194701170672, + "grad_norm": 0.07214430719614029, + "learning_rate": 0.01, + "loss": 1.9633, + "step": 67272 + }, + { + "epoch": 6.908502772643253, + "grad_norm": 0.04083709791302681, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 67275 + }, + { + "epoch": 6.908810844115835, + "grad_norm": 0.034071508795022964, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 67278 + }, + { + "epoch": 6.909118915588417, + "grad_norm": 0.06297708302736282, + "learning_rate": 0.01, + "loss": 1.9562, + "step": 67281 + }, + { + "epoch": 6.909426987060998, + "grad_norm": 0.0424063615500927, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 67284 + }, + { + "epoch": 6.90973505853358, + "grad_norm": 0.04424364119768143, + "learning_rate": 0.01, + "loss": 1.9686, + "step": 67287 + }, + { + "epoch": 6.910043130006161, + "grad_norm": 0.03503073751926422, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 67290 + }, + { + "epoch": 6.910351201478743, + "grad_norm": 0.04922670125961304, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 67293 + }, + { + "epoch": 6.9106592729513245, + "grad_norm": 0.0473727248609066, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 67296 + }, + { + "epoch": 6.910967344423907, + "grad_norm": 0.09901537001132965, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 67299 + }, + { + "epoch": 6.911275415896488, + "grad_norm": 0.08178123086690903, + "learning_rate": 0.01, + "loss": 1.9955, + "step": 67302 + }, + { + "epoch": 6.91158348736907, + "grad_norm": 0.06637603044509888, + "learning_rate": 0.01, + "loss": 1.978, + "step": 67305 + }, + { + "epoch": 6.911891558841651, + "grad_norm": 0.043472740799188614, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 67308 + }, + { + "epoch": 6.912199630314233, + "grad_norm": 0.03270704671740532, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 67311 + }, + { + "epoch": 6.912507701786814, + "grad_norm": 0.08558196574449539, + "learning_rate": 0.01, + "loss": 1.9978, + "step": 67314 + }, + { + "epoch": 6.912815773259396, + "grad_norm": 0.09473107755184174, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 67317 + }, + { + "epoch": 6.913123844731977, + "grad_norm": 0.041321370750665665, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 67320 + }, + { + "epoch": 6.913431916204559, + "grad_norm": 0.10107487440109253, + "learning_rate": 0.01, + "loss": 1.977, + "step": 67323 + }, + { + "epoch": 6.9137399876771415, + "grad_norm": 0.13234496116638184, + "learning_rate": 0.01, + "loss": 1.9821, + "step": 67326 + }, + { + "epoch": 6.914048059149723, + "grad_norm": 0.05052580311894417, + "learning_rate": 0.01, + "loss": 1.9625, + "step": 67329 + }, + { + "epoch": 6.914356130622305, + "grad_norm": 0.03741452470421791, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 67332 + }, + { + "epoch": 6.914664202094886, + "grad_norm": 0.03609738498926163, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 67335 + }, + { + "epoch": 6.914972273567468, + "grad_norm": 0.045461494475603104, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 67338 + }, + { + "epoch": 6.915280345040049, + "grad_norm": 0.07647386193275452, + "learning_rate": 0.01, + "loss": 1.9496, + "step": 67341 + }, + { + "epoch": 6.915588416512631, + "grad_norm": 0.0546477772295475, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 67344 + }, + { + "epoch": 6.915896487985212, + "grad_norm": 0.05500864237546921, + "learning_rate": 0.01, + "loss": 1.9853, + "step": 67347 + }, + { + "epoch": 6.916204559457794, + "grad_norm": 0.06956373900175095, + "learning_rate": 0.01, + "loss": 1.9697, + "step": 67350 + }, + { + "epoch": 6.9165126309303755, + "grad_norm": 0.13182616233825684, + "learning_rate": 0.01, + "loss": 1.9938, + "step": 67353 + }, + { + "epoch": 6.9168207024029575, + "grad_norm": 0.06322868913412094, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 67356 + }, + { + "epoch": 6.91712877387554, + "grad_norm": 0.053960807621479034, + "learning_rate": 0.01, + "loss": 1.9484, + "step": 67359 + }, + { + "epoch": 6.917436845348121, + "grad_norm": 0.03774489462375641, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 67362 + }, + { + "epoch": 6.917744916820702, + "grad_norm": 0.04947468638420105, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 67365 + }, + { + "epoch": 6.918052988293284, + "grad_norm": 0.09014926850795746, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 67368 + }, + { + "epoch": 6.918361059765866, + "grad_norm": 0.047003794461488724, + "learning_rate": 0.01, + "loss": 2.0002, + "step": 67371 + }, + { + "epoch": 6.918669131238447, + "grad_norm": 0.04293885454535484, + "learning_rate": 0.01, + "loss": 2.0253, + "step": 67374 + }, + { + "epoch": 6.918977202711029, + "grad_norm": 0.08349283039569855, + "learning_rate": 0.01, + "loss": 1.9856, + "step": 67377 + }, + { + "epoch": 6.91928527418361, + "grad_norm": 0.10643094033002853, + "learning_rate": 0.01, + "loss": 2.0004, + "step": 67380 + }, + { + "epoch": 6.919593345656192, + "grad_norm": 0.05152636021375656, + "learning_rate": 0.01, + "loss": 1.9818, + "step": 67383 + }, + { + "epoch": 6.919901417128774, + "grad_norm": 0.045483458787202835, + "learning_rate": 0.01, + "loss": 1.9808, + "step": 67386 + }, + { + "epoch": 6.920209488601356, + "grad_norm": 0.10970417410135269, + "learning_rate": 0.01, + "loss": 1.9907, + "step": 67389 + }, + { + "epoch": 6.920517560073937, + "grad_norm": 0.0620252899825573, + "learning_rate": 0.01, + "loss": 1.9623, + "step": 67392 + }, + { + "epoch": 6.920825631546519, + "grad_norm": 0.042169239372015, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 67395 + }, + { + "epoch": 6.9211337030191, + "grad_norm": 0.07429879903793335, + "learning_rate": 0.01, + "loss": 1.9528, + "step": 67398 + }, + { + "epoch": 6.921441774491682, + "grad_norm": 0.16096588969230652, + "learning_rate": 0.01, + "loss": 1.9932, + "step": 67401 + }, + { + "epoch": 6.921749845964264, + "grad_norm": 0.06262468546628952, + "learning_rate": 0.01, + "loss": 1.9846, + "step": 67404 + }, + { + "epoch": 6.922057917436845, + "grad_norm": 0.08196594566106796, + "learning_rate": 0.01, + "loss": 1.9497, + "step": 67407 + }, + { + "epoch": 6.922365988909427, + "grad_norm": 0.07014669477939606, + "learning_rate": 0.01, + "loss": 1.9577, + "step": 67410 + }, + { + "epoch": 6.9226740603820085, + "grad_norm": 0.048560310155153275, + "learning_rate": 0.01, + "loss": 1.9628, + "step": 67413 + }, + { + "epoch": 6.9229821318545905, + "grad_norm": 0.053055111318826675, + "learning_rate": 0.01, + "loss": 1.9825, + "step": 67416 + }, + { + "epoch": 6.923290203327172, + "grad_norm": 0.0406053327023983, + "learning_rate": 0.01, + "loss": 1.9764, + "step": 67419 + }, + { + "epoch": 6.923598274799754, + "grad_norm": 0.05388790741562843, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 67422 + }, + { + "epoch": 6.923906346272335, + "grad_norm": 0.03949485719203949, + "learning_rate": 0.01, + "loss": 1.9719, + "step": 67425 + }, + { + "epoch": 6.924214417744917, + "grad_norm": 0.04466044530272484, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 67428 + }, + { + "epoch": 6.924522489217498, + "grad_norm": 0.08420266211032867, + "learning_rate": 0.01, + "loss": 1.9817, + "step": 67431 + }, + { + "epoch": 6.92483056069008, + "grad_norm": 0.06232386827468872, + "learning_rate": 0.01, + "loss": 1.9781, + "step": 67434 + }, + { + "epoch": 6.925138632162662, + "grad_norm": 0.10322209447622299, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 67437 + }, + { + "epoch": 6.925446703635243, + "grad_norm": 0.04155166074633598, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 67440 + }, + { + "epoch": 6.925754775107825, + "grad_norm": 0.08774439245462418, + "learning_rate": 0.01, + "loss": 1.9807, + "step": 67443 + }, + { + "epoch": 6.926062846580407, + "grad_norm": 0.08442433178424835, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 67446 + }, + { + "epoch": 6.926370918052989, + "grad_norm": 0.0743742361664772, + "learning_rate": 0.01, + "loss": 1.9641, + "step": 67449 + }, + { + "epoch": 6.92667898952557, + "grad_norm": 0.09326713532209396, + "learning_rate": 0.01, + "loss": 1.9493, + "step": 67452 + }, + { + "epoch": 6.926987060998152, + "grad_norm": 0.05275671184062958, + "learning_rate": 0.01, + "loss": 1.9797, + "step": 67455 + }, + { + "epoch": 6.927295132470733, + "grad_norm": 0.0862322598695755, + "learning_rate": 0.01, + "loss": 1.9653, + "step": 67458 + }, + { + "epoch": 6.927603203943315, + "grad_norm": 0.06256649643182755, + "learning_rate": 0.01, + "loss": 1.9526, + "step": 67461 + }, + { + "epoch": 6.927911275415896, + "grad_norm": 0.08660640567541122, + "learning_rate": 0.01, + "loss": 1.9502, + "step": 67464 + }, + { + "epoch": 6.928219346888478, + "grad_norm": 0.05134911462664604, + "learning_rate": 0.01, + "loss": 1.9894, + "step": 67467 + }, + { + "epoch": 6.9285274183610595, + "grad_norm": 0.09808807820081711, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 67470 + }, + { + "epoch": 6.9288354898336415, + "grad_norm": 0.04677712544798851, + "learning_rate": 0.01, + "loss": 1.98, + "step": 67473 + }, + { + "epoch": 6.929143561306223, + "grad_norm": 0.040743302553892136, + "learning_rate": 0.01, + "loss": 1.9689, + "step": 67476 + }, + { + "epoch": 6.929451632778805, + "grad_norm": 0.04844764620065689, + "learning_rate": 0.01, + "loss": 2.0035, + "step": 67479 + }, + { + "epoch": 6.929759704251387, + "grad_norm": 0.042815107852220535, + "learning_rate": 0.01, + "loss": 1.9861, + "step": 67482 + }, + { + "epoch": 6.930067775723968, + "grad_norm": 0.040781863033771515, + "learning_rate": 0.01, + "loss": 1.9828, + "step": 67485 + }, + { + "epoch": 6.93037584719655, + "grad_norm": 0.07171075791120529, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 67488 + }, + { + "epoch": 6.930683918669131, + "grad_norm": 0.03687571734189987, + "learning_rate": 0.01, + "loss": 1.9648, + "step": 67491 + }, + { + "epoch": 6.930991990141713, + "grad_norm": 0.04326467588543892, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 67494 + }, + { + "epoch": 6.931300061614294, + "grad_norm": 0.24775917828083038, + "learning_rate": 0.01, + "loss": 1.9658, + "step": 67497 + }, + { + "epoch": 6.931608133086876, + "grad_norm": 0.09830349683761597, + "learning_rate": 0.01, + "loss": 1.9743, + "step": 67500 + }, + { + "epoch": 6.931916204559458, + "grad_norm": 0.05593564361333847, + "learning_rate": 0.01, + "loss": 1.9755, + "step": 67503 + }, + { + "epoch": 6.93222427603204, + "grad_norm": 0.05278097838163376, + "learning_rate": 0.01, + "loss": 1.9906, + "step": 67506 + }, + { + "epoch": 6.932532347504621, + "grad_norm": 0.06709492206573486, + "learning_rate": 0.01, + "loss": 1.9707, + "step": 67509 + }, + { + "epoch": 6.932840418977203, + "grad_norm": 0.08978651463985443, + "learning_rate": 0.01, + "loss": 1.983, + "step": 67512 + }, + { + "epoch": 6.933148490449784, + "grad_norm": 0.10322022438049316, + "learning_rate": 0.01, + "loss": 1.9676, + "step": 67515 + }, + { + "epoch": 6.933456561922366, + "grad_norm": 0.08842363208532333, + "learning_rate": 0.01, + "loss": 1.9886, + "step": 67518 + }, + { + "epoch": 6.933764633394947, + "grad_norm": 0.1034180223941803, + "learning_rate": 0.01, + "loss": 1.9953, + "step": 67521 + }, + { + "epoch": 6.934072704867529, + "grad_norm": 0.05395280942320824, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 67524 + }, + { + "epoch": 6.934380776340111, + "grad_norm": 0.04033922404050827, + "learning_rate": 0.01, + "loss": 1.9848, + "step": 67527 + }, + { + "epoch": 6.9346888478126925, + "grad_norm": 0.10645033419132233, + "learning_rate": 0.01, + "loss": 1.9801, + "step": 67530 + }, + { + "epoch": 6.9349969192852745, + "grad_norm": 0.03000570461153984, + "learning_rate": 0.01, + "loss": 1.9612, + "step": 67533 + }, + { + "epoch": 6.935304990757856, + "grad_norm": 0.06463263183832169, + "learning_rate": 0.01, + "loss": 1.977, + "step": 67536 + }, + { + "epoch": 6.935613062230438, + "grad_norm": 0.0651232898235321, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 67539 + }, + { + "epoch": 6.935921133703019, + "grad_norm": 0.048303090035915375, + "learning_rate": 0.01, + "loss": 1.9926, + "step": 67542 + }, + { + "epoch": 6.936229205175601, + "grad_norm": 0.09571239352226257, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 67545 + }, + { + "epoch": 6.936537276648182, + "grad_norm": 0.04778117686510086, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 67548 + }, + { + "epoch": 6.936845348120764, + "grad_norm": 0.16268859803676605, + "learning_rate": 0.01, + "loss": 1.967, + "step": 67551 + }, + { + "epoch": 6.937153419593345, + "grad_norm": 0.08549009263515472, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 67554 + }, + { + "epoch": 6.937461491065927, + "grad_norm": 0.0720728412270546, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 67557 + }, + { + "epoch": 6.937769562538509, + "grad_norm": 0.04524467885494232, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 67560 + }, + { + "epoch": 6.938077634011091, + "grad_norm": 0.0630386620759964, + "learning_rate": 0.01, + "loss": 1.9725, + "step": 67563 + }, + { + "epoch": 6.938385705483672, + "grad_norm": 0.07228325307369232, + "learning_rate": 0.01, + "loss": 2.0101, + "step": 67566 + }, + { + "epoch": 6.938693776956254, + "grad_norm": 0.0827326700091362, + "learning_rate": 0.01, + "loss": 1.9615, + "step": 67569 + }, + { + "epoch": 6.939001848428836, + "grad_norm": 0.0640362948179245, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 67572 + }, + { + "epoch": 6.939309919901417, + "grad_norm": 0.0734630599617958, + "learning_rate": 0.01, + "loss": 1.9541, + "step": 67575 + }, + { + "epoch": 6.939617991373999, + "grad_norm": 0.09056416898965836, + "learning_rate": 0.01, + "loss": 1.9831, + "step": 67578 + }, + { + "epoch": 6.93992606284658, + "grad_norm": 0.04308030381798744, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 67581 + }, + { + "epoch": 6.940234134319162, + "grad_norm": 0.038212817162275314, + "learning_rate": 0.01, + "loss": 1.9769, + "step": 67584 + }, + { + "epoch": 6.940542205791743, + "grad_norm": 0.06669415533542633, + "learning_rate": 0.01, + "loss": 1.9813, + "step": 67587 + }, + { + "epoch": 6.9408502772643255, + "grad_norm": 0.10573708266019821, + "learning_rate": 0.01, + "loss": 1.9772, + "step": 67590 + }, + { + "epoch": 6.941158348736907, + "grad_norm": 0.13396821916103363, + "learning_rate": 0.01, + "loss": 1.9422, + "step": 67593 + }, + { + "epoch": 6.941466420209489, + "grad_norm": 0.0890778973698616, + "learning_rate": 0.01, + "loss": 1.9934, + "step": 67596 + }, + { + "epoch": 6.94177449168207, + "grad_norm": 0.06729544699192047, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 67599 + }, + { + "epoch": 6.942082563154652, + "grad_norm": 0.04166124016046524, + "learning_rate": 0.01, + "loss": 1.9587, + "step": 67602 + }, + { + "epoch": 6.942390634627234, + "grad_norm": 0.06778619438409805, + "learning_rate": 0.01, + "loss": 1.9923, + "step": 67605 + }, + { + "epoch": 6.942698706099815, + "grad_norm": 0.052519191056489944, + "learning_rate": 0.01, + "loss": 1.983, + "step": 67608 + }, + { + "epoch": 6.943006777572397, + "grad_norm": 0.051862701773643494, + "learning_rate": 0.01, + "loss": 1.9657, + "step": 67611 + }, + { + "epoch": 6.943314849044978, + "grad_norm": 0.04436833783984184, + "learning_rate": 0.01, + "loss": 1.975, + "step": 67614 + }, + { + "epoch": 6.94362292051756, + "grad_norm": 0.08768297731876373, + "learning_rate": 0.01, + "loss": 1.995, + "step": 67617 + }, + { + "epoch": 6.9439309919901415, + "grad_norm": 0.10748183727264404, + "learning_rate": 0.01, + "loss": 1.9836, + "step": 67620 + }, + { + "epoch": 6.944239063462724, + "grad_norm": 0.06303614377975464, + "learning_rate": 0.01, + "loss": 2.0053, + "step": 67623 + }, + { + "epoch": 6.944547134935305, + "grad_norm": 0.0495496429502964, + "learning_rate": 0.01, + "loss": 2.0075, + "step": 67626 + }, + { + "epoch": 6.944855206407887, + "grad_norm": 0.07309143245220184, + "learning_rate": 0.01, + "loss": 1.9995, + "step": 67629 + }, + { + "epoch": 6.945163277880468, + "grad_norm": 0.09533344954252243, + "learning_rate": 0.01, + "loss": 1.9682, + "step": 67632 + }, + { + "epoch": 6.94547134935305, + "grad_norm": 0.07221339643001556, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 67635 + }, + { + "epoch": 6.945779420825632, + "grad_norm": 0.0772852674126625, + "learning_rate": 0.01, + "loss": 1.942, + "step": 67638 + }, + { + "epoch": 6.946087492298213, + "grad_norm": 0.03566101938486099, + "learning_rate": 0.01, + "loss": 1.9413, + "step": 67641 + }, + { + "epoch": 6.946395563770794, + "grad_norm": 0.0641225203871727, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 67644 + }, + { + "epoch": 6.946703635243376, + "grad_norm": 0.11845903843641281, + "learning_rate": 0.01, + "loss": 1.9814, + "step": 67647 + }, + { + "epoch": 6.9470117067159585, + "grad_norm": 0.1297493278980255, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 67650 + }, + { + "epoch": 6.94731977818854, + "grad_norm": 0.0657927542924881, + "learning_rate": 0.01, + "loss": 1.9527, + "step": 67653 + }, + { + "epoch": 6.947627849661122, + "grad_norm": 0.0618324875831604, + "learning_rate": 0.01, + "loss": 1.9936, + "step": 67656 + }, + { + "epoch": 6.947935921133703, + "grad_norm": 0.04335208609700203, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 67659 + }, + { + "epoch": 6.948243992606285, + "grad_norm": 0.03921616077423096, + "learning_rate": 0.01, + "loss": 1.9908, + "step": 67662 + }, + { + "epoch": 6.948552064078866, + "grad_norm": 0.05289353057742119, + "learning_rate": 0.01, + "loss": 1.9806, + "step": 67665 + }, + { + "epoch": 6.948860135551448, + "grad_norm": 0.037309400737285614, + "learning_rate": 0.01, + "loss": 1.97, + "step": 67668 + }, + { + "epoch": 6.949168207024029, + "grad_norm": 0.07012271881103516, + "learning_rate": 0.01, + "loss": 1.9718, + "step": 67671 + }, + { + "epoch": 6.949476278496611, + "grad_norm": 0.08038291335105896, + "learning_rate": 0.01, + "loss": 1.9542, + "step": 67674 + }, + { + "epoch": 6.9497843499691925, + "grad_norm": 0.08565990626811981, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 67677 + }, + { + "epoch": 6.9500924214417745, + "grad_norm": 0.13325315713882446, + "learning_rate": 0.01, + "loss": 1.9594, + "step": 67680 + }, + { + "epoch": 6.950400492914357, + "grad_norm": 0.06681843101978302, + "learning_rate": 0.01, + "loss": 1.9903, + "step": 67683 + }, + { + "epoch": 6.950708564386938, + "grad_norm": 0.051343731582164764, + "learning_rate": 0.01, + "loss": 2.0182, + "step": 67686 + }, + { + "epoch": 6.95101663585952, + "grad_norm": 0.031108930706977844, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 67689 + }, + { + "epoch": 6.951324707332101, + "grad_norm": 0.06201615929603577, + "learning_rate": 0.01, + "loss": 1.9724, + "step": 67692 + }, + { + "epoch": 6.951632778804683, + "grad_norm": 0.059839654713869095, + "learning_rate": 0.01, + "loss": 1.9728, + "step": 67695 + }, + { + "epoch": 6.951940850277264, + "grad_norm": 0.04882393404841423, + "learning_rate": 0.01, + "loss": 1.9678, + "step": 67698 + }, + { + "epoch": 6.952248921749846, + "grad_norm": 0.031460147351026535, + "learning_rate": 0.01, + "loss": 1.9395, + "step": 67701 + }, + { + "epoch": 6.952556993222427, + "grad_norm": 0.09777851402759552, + "learning_rate": 0.01, + "loss": 2.0074, + "step": 67704 + }, + { + "epoch": 6.952865064695009, + "grad_norm": 0.0367160402238369, + "learning_rate": 0.01, + "loss": 1.9671, + "step": 67707 + }, + { + "epoch": 6.953173136167591, + "grad_norm": 0.032731834799051285, + "learning_rate": 0.01, + "loss": 1.9556, + "step": 67710 + }, + { + "epoch": 6.953481207640173, + "grad_norm": 0.07224103063344955, + "learning_rate": 0.01, + "loss": 1.978, + "step": 67713 + }, + { + "epoch": 6.953789279112754, + "grad_norm": 0.062362559139728546, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 67716 + }, + { + "epoch": 6.954097350585336, + "grad_norm": 0.05006725341081619, + "learning_rate": 0.01, + "loss": 1.9899, + "step": 67719 + }, + { + "epoch": 6.954405422057917, + "grad_norm": 0.03857605531811714, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 67722 + }, + { + "epoch": 6.954713493530499, + "grad_norm": 0.10484008491039276, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 67725 + }, + { + "epoch": 6.955021565003081, + "grad_norm": 0.09993112832307816, + "learning_rate": 0.01, + "loss": 1.9794, + "step": 67728 + }, + { + "epoch": 6.955329636475662, + "grad_norm": 0.08906539529561996, + "learning_rate": 0.01, + "loss": 1.966, + "step": 67731 + }, + { + "epoch": 6.955637707948244, + "grad_norm": 0.04950569570064545, + "learning_rate": 0.01, + "loss": 1.9736, + "step": 67734 + }, + { + "epoch": 6.9559457794208255, + "grad_norm": 0.04009339585900307, + "learning_rate": 0.01, + "loss": 1.9712, + "step": 67737 + }, + { + "epoch": 6.9562538508934075, + "grad_norm": 0.03402652591466904, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 67740 + }, + { + "epoch": 6.956561922365989, + "grad_norm": 0.036231786012649536, + "learning_rate": 0.01, + "loss": 1.975, + "step": 67743 + }, + { + "epoch": 6.956869993838571, + "grad_norm": 0.06914620101451874, + "learning_rate": 0.01, + "loss": 1.9675, + "step": 67746 + }, + { + "epoch": 6.957178065311152, + "grad_norm": 0.12120147049427032, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 67749 + }, + { + "epoch": 6.957486136783734, + "grad_norm": 0.04155363887548447, + "learning_rate": 0.01, + "loss": 1.968, + "step": 67752 + }, + { + "epoch": 6.957794208256315, + "grad_norm": 0.03857012465596199, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 67755 + }, + { + "epoch": 6.958102279728897, + "grad_norm": 0.05268177390098572, + "learning_rate": 0.01, + "loss": 1.9617, + "step": 67758 + }, + { + "epoch": 6.958410351201479, + "grad_norm": 0.14224505424499512, + "learning_rate": 0.01, + "loss": 1.9735, + "step": 67761 + }, + { + "epoch": 6.95871842267406, + "grad_norm": 0.10331138968467712, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 67764 + }, + { + "epoch": 6.9590264941466415, + "grad_norm": 0.13701403141021729, + "learning_rate": 0.01, + "loss": 1.9779, + "step": 67767 + }, + { + "epoch": 6.959334565619224, + "grad_norm": 0.09614556282758713, + "learning_rate": 0.01, + "loss": 1.9599, + "step": 67770 + }, + { + "epoch": 6.959642637091806, + "grad_norm": 0.07385848462581635, + "learning_rate": 0.01, + "loss": 1.9619, + "step": 67773 + }, + { + "epoch": 6.959950708564387, + "grad_norm": 0.05891263857483864, + "learning_rate": 0.01, + "loss": 1.9567, + "step": 67776 + }, + { + "epoch": 6.960258780036969, + "grad_norm": 0.06532695889472961, + "learning_rate": 0.01, + "loss": 1.9592, + "step": 67779 + }, + { + "epoch": 6.96056685150955, + "grad_norm": 0.048335302621126175, + "learning_rate": 0.01, + "loss": 1.9872, + "step": 67782 + }, + { + "epoch": 6.960874922982132, + "grad_norm": 0.0490678995847702, + "learning_rate": 0.01, + "loss": 1.9964, + "step": 67785 + }, + { + "epoch": 6.961182994454713, + "grad_norm": 0.057322729378938675, + "learning_rate": 0.01, + "loss": 1.9868, + "step": 67788 + }, + { + "epoch": 6.961491065927295, + "grad_norm": 0.09200582653284073, + "learning_rate": 0.01, + "loss": 1.9913, + "step": 67791 + }, + { + "epoch": 6.961799137399876, + "grad_norm": 0.08140811324119568, + "learning_rate": 0.01, + "loss": 1.9687, + "step": 67794 + }, + { + "epoch": 6.9621072088724585, + "grad_norm": 0.08386159688234329, + "learning_rate": 0.01, + "loss": 1.9775, + "step": 67797 + }, + { + "epoch": 6.96241528034504, + "grad_norm": 0.09306125342845917, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 67800 + }, + { + "epoch": 6.962723351817622, + "grad_norm": 0.0702492967247963, + "learning_rate": 0.01, + "loss": 1.9634, + "step": 67803 + }, + { + "epoch": 6.963031423290204, + "grad_norm": 0.07399389147758484, + "learning_rate": 0.01, + "loss": 1.9792, + "step": 67806 + }, + { + "epoch": 6.963339494762785, + "grad_norm": 0.05269570276141167, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 67809 + }, + { + "epoch": 6.963647566235367, + "grad_norm": 0.0840226262807846, + "learning_rate": 0.01, + "loss": 1.9654, + "step": 67812 + }, + { + "epoch": 6.963955637707948, + "grad_norm": 0.06911315023899078, + "learning_rate": 0.01, + "loss": 1.9819, + "step": 67815 + }, + { + "epoch": 6.96426370918053, + "grad_norm": 0.04625274986028671, + "learning_rate": 0.01, + "loss": 1.9673, + "step": 67818 + }, + { + "epoch": 6.964571780653111, + "grad_norm": 0.033663198351860046, + "learning_rate": 0.01, + "loss": 1.9811, + "step": 67821 + }, + { + "epoch": 6.964879852125693, + "grad_norm": 0.035202909260988235, + "learning_rate": 0.01, + "loss": 1.9427, + "step": 67824 + }, + { + "epoch": 6.9651879235982745, + "grad_norm": 0.04282594099640846, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 67827 + }, + { + "epoch": 6.965495995070857, + "grad_norm": 0.07154384255409241, + "learning_rate": 0.01, + "loss": 2.0019, + "step": 67830 + }, + { + "epoch": 6.965804066543438, + "grad_norm": 0.09028030931949615, + "learning_rate": 0.01, + "loss": 1.9761, + "step": 67833 + }, + { + "epoch": 6.96611213801602, + "grad_norm": 0.046586085110902786, + "learning_rate": 0.01, + "loss": 1.9904, + "step": 67836 + }, + { + "epoch": 6.966420209488601, + "grad_norm": 0.03928957134485245, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 67839 + }, + { + "epoch": 6.966728280961183, + "grad_norm": 0.04739971458911896, + "learning_rate": 0.01, + "loss": 1.9665, + "step": 67842 + }, + { + "epoch": 6.967036352433764, + "grad_norm": 0.06463371962308884, + "learning_rate": 0.01, + "loss": 1.978, + "step": 67845 + }, + { + "epoch": 6.967344423906346, + "grad_norm": 0.03283145651221275, + "learning_rate": 0.01, + "loss": 1.9722, + "step": 67848 + }, + { + "epoch": 6.967652495378928, + "grad_norm": 0.15586607158184052, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 67851 + }, + { + "epoch": 6.967960566851509, + "grad_norm": 0.08082199841737747, + "learning_rate": 0.01, + "loss": 1.9538, + "step": 67854 + }, + { + "epoch": 6.9682686383240915, + "grad_norm": 0.06927336007356644, + "learning_rate": 0.01, + "loss": 1.9578, + "step": 67857 + }, + { + "epoch": 6.968576709796673, + "grad_norm": 0.03947534039616585, + "learning_rate": 0.01, + "loss": 1.9882, + "step": 67860 + }, + { + "epoch": 6.968884781269255, + "grad_norm": 0.059715401381254196, + "learning_rate": 0.01, + "loss": 1.9768, + "step": 67863 + }, + { + "epoch": 6.969192852741836, + "grad_norm": 0.056624263525009155, + "learning_rate": 0.01, + "loss": 1.9577, + "step": 67866 + }, + { + "epoch": 6.969500924214418, + "grad_norm": 0.0887855812907219, + "learning_rate": 0.01, + "loss": 1.9986, + "step": 67869 + }, + { + "epoch": 6.969808995686999, + "grad_norm": 0.08432299643754959, + "learning_rate": 0.01, + "loss": 1.9656, + "step": 67872 + }, + { + "epoch": 6.970117067159581, + "grad_norm": 0.0985739529132843, + "learning_rate": 0.01, + "loss": 1.984, + "step": 67875 + }, + { + "epoch": 6.970425138632162, + "grad_norm": 0.0615275539457798, + "learning_rate": 0.01, + "loss": 2.0046, + "step": 67878 + }, + { + "epoch": 6.970733210104744, + "grad_norm": 0.04872935637831688, + "learning_rate": 0.01, + "loss": 1.9751, + "step": 67881 + }, + { + "epoch": 6.971041281577326, + "grad_norm": 0.04057471454143524, + "learning_rate": 0.01, + "loss": 1.9835, + "step": 67884 + }, + { + "epoch": 6.9713493530499075, + "grad_norm": 0.09079626202583313, + "learning_rate": 0.01, + "loss": 1.9851, + "step": 67887 + }, + { + "epoch": 6.97165742452249, + "grad_norm": 0.12390229851007462, + "learning_rate": 0.01, + "loss": 2.0097, + "step": 67890 + }, + { + "epoch": 6.971965495995071, + "grad_norm": 0.08013787120580673, + "learning_rate": 0.01, + "loss": 1.9916, + "step": 67893 + }, + { + "epoch": 6.972273567467653, + "grad_norm": 0.10543009638786316, + "learning_rate": 0.01, + "loss": 1.9595, + "step": 67896 + }, + { + "epoch": 6.972581638940234, + "grad_norm": 0.06962577998638153, + "learning_rate": 0.01, + "loss": 1.9368, + "step": 67899 + }, + { + "epoch": 6.972889710412816, + "grad_norm": 0.05179775133728981, + "learning_rate": 0.01, + "loss": 1.9784, + "step": 67902 + }, + { + "epoch": 6.973197781885397, + "grad_norm": 0.04999608173966408, + "learning_rate": 0.01, + "loss": 1.9589, + "step": 67905 + }, + { + "epoch": 6.973505853357979, + "grad_norm": 0.037668853998184204, + "learning_rate": 0.01, + "loss": 1.974, + "step": 67908 + }, + { + "epoch": 6.97381392483056, + "grad_norm": 0.04385687783360481, + "learning_rate": 0.01, + "loss": 1.9713, + "step": 67911 + }, + { + "epoch": 6.9741219963031424, + "grad_norm": 0.03812088444828987, + "learning_rate": 0.01, + "loss": 1.9791, + "step": 67914 + }, + { + "epoch": 6.974430067775724, + "grad_norm": 0.08592873066663742, + "learning_rate": 0.01, + "loss": 1.9476, + "step": 67917 + }, + { + "epoch": 6.974738139248306, + "grad_norm": 0.07441151887178421, + "learning_rate": 0.01, + "loss": 1.9734, + "step": 67920 + }, + { + "epoch": 6.975046210720887, + "grad_norm": 0.055950410664081573, + "learning_rate": 0.01, + "loss": 1.965, + "step": 67923 + }, + { + "epoch": 6.975354282193469, + "grad_norm": 0.07224567234516144, + "learning_rate": 0.01, + "loss": 1.9649, + "step": 67926 + }, + { + "epoch": 6.975662353666051, + "grad_norm": 0.17487280070781708, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 67929 + }, + { + "epoch": 6.975970425138632, + "grad_norm": 0.040765196084976196, + "learning_rate": 0.01, + "loss": 1.9787, + "step": 67932 + }, + { + "epoch": 6.976278496611214, + "grad_norm": 0.05561240762472153, + "learning_rate": 0.01, + "loss": 1.9699, + "step": 67935 + }, + { + "epoch": 6.976586568083795, + "grad_norm": 0.07443460822105408, + "learning_rate": 0.01, + "loss": 1.9553, + "step": 67938 + }, + { + "epoch": 6.976894639556377, + "grad_norm": 0.0669572651386261, + "learning_rate": 0.01, + "loss": 1.9887, + "step": 67941 + }, + { + "epoch": 6.9772027110289585, + "grad_norm": 0.05161336436867714, + "learning_rate": 0.01, + "loss": 1.9854, + "step": 67944 + }, + { + "epoch": 6.9775107825015406, + "grad_norm": 0.0417034886777401, + "learning_rate": 0.01, + "loss": 1.9739, + "step": 67947 + }, + { + "epoch": 6.977818853974122, + "grad_norm": 0.06474210321903229, + "learning_rate": 0.01, + "loss": 1.9796, + "step": 67950 + }, + { + "epoch": 6.978126925446704, + "grad_norm": 0.07746025174856186, + "learning_rate": 0.01, + "loss": 1.9753, + "step": 67953 + }, + { + "epoch": 6.978434996919285, + "grad_norm": 0.045474573969841, + "learning_rate": 0.01, + "loss": 1.9518, + "step": 67956 + }, + { + "epoch": 6.978743068391867, + "grad_norm": 0.03205155208706856, + "learning_rate": 0.01, + "loss": 1.9783, + "step": 67959 + }, + { + "epoch": 6.979051139864449, + "grad_norm": 0.03780858963727951, + "learning_rate": 0.01, + "loss": 1.9759, + "step": 67962 + }, + { + "epoch": 6.97935921133703, + "grad_norm": 0.04689191281795502, + "learning_rate": 0.01, + "loss": 1.9845, + "step": 67965 + }, + { + "epoch": 6.979667282809611, + "grad_norm": 0.05307697504758835, + "learning_rate": 0.01, + "loss": 1.9462, + "step": 67968 + }, + { + "epoch": 6.979975354282193, + "grad_norm": 0.19176854193210602, + "learning_rate": 0.01, + "loss": 1.9786, + "step": 67971 + }, + { + "epoch": 6.9802834257547755, + "grad_norm": 0.13577581942081451, + "learning_rate": 0.01, + "loss": 1.9874, + "step": 67974 + }, + { + "epoch": 6.980591497227357, + "grad_norm": 0.10115823894739151, + "learning_rate": 0.01, + "loss": 2.0068, + "step": 67977 + }, + { + "epoch": 6.980899568699939, + "grad_norm": 0.08148372173309326, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 67980 + }, + { + "epoch": 6.98120764017252, + "grad_norm": 0.05191081017255783, + "learning_rate": 0.01, + "loss": 1.9597, + "step": 67983 + }, + { + "epoch": 6.981515711645102, + "grad_norm": 0.06080775707960129, + "learning_rate": 0.01, + "loss": 1.978, + "step": 67986 + }, + { + "epoch": 6.981823783117683, + "grad_norm": 0.07841724157333374, + "learning_rate": 0.01, + "loss": 2.0001, + "step": 67989 + }, + { + "epoch": 6.982131854590265, + "grad_norm": 0.04652271047234535, + "learning_rate": 0.01, + "loss": 1.989, + "step": 67992 + }, + { + "epoch": 6.982439926062846, + "grad_norm": 0.10853028297424316, + "learning_rate": 0.01, + "loss": 1.9663, + "step": 67995 + }, + { + "epoch": 6.982747997535428, + "grad_norm": 0.03634324297308922, + "learning_rate": 0.01, + "loss": 1.9614, + "step": 67998 + }, + { + "epoch": 6.9830560690080095, + "grad_norm": 0.13538099825382233, + "learning_rate": 0.01, + "loss": 1.9805, + "step": 68001 + }, + { + "epoch": 6.9833641404805915, + "grad_norm": 0.06273335963487625, + "learning_rate": 0.01, + "loss": 1.9564, + "step": 68004 + }, + { + "epoch": 6.983672211953174, + "grad_norm": 0.08126869797706604, + "learning_rate": 0.01, + "loss": 2.0036, + "step": 68007 + }, + { + "epoch": 6.983980283425755, + "grad_norm": 0.05156498774886131, + "learning_rate": 0.01, + "loss": 1.9956, + "step": 68010 + }, + { + "epoch": 6.984288354898337, + "grad_norm": 0.05055593326687813, + "learning_rate": 0.01, + "loss": 1.9717, + "step": 68013 + }, + { + "epoch": 6.984596426370918, + "grad_norm": 0.04435109347105026, + "learning_rate": 0.01, + "loss": 1.9627, + "step": 68016 + }, + { + "epoch": 6.9849044978435, + "grad_norm": 0.13580620288848877, + "learning_rate": 0.01, + "loss": 1.9931, + "step": 68019 + }, + { + "epoch": 6.985212569316081, + "grad_norm": 0.03387708216905594, + "learning_rate": 0.01, + "loss": 1.9527, + "step": 68022 + }, + { + "epoch": 6.985520640788663, + "grad_norm": 0.09359924495220184, + "learning_rate": 0.01, + "loss": 1.9677, + "step": 68025 + }, + { + "epoch": 6.985828712261244, + "grad_norm": 0.09586784243583679, + "learning_rate": 0.01, + "loss": 1.958, + "step": 68028 + }, + { + "epoch": 6.986136783733826, + "grad_norm": 0.08071450144052505, + "learning_rate": 0.01, + "loss": 1.9878, + "step": 68031 + }, + { + "epoch": 6.986444855206408, + "grad_norm": 0.04609205946326256, + "learning_rate": 0.01, + "loss": 1.9778, + "step": 68034 + }, + { + "epoch": 6.98675292667899, + "grad_norm": 0.05660049244761467, + "learning_rate": 0.01, + "loss": 1.9692, + "step": 68037 + }, + { + "epoch": 6.987060998151571, + "grad_norm": 0.04224297031760216, + "learning_rate": 0.01, + "loss": 1.9708, + "step": 68040 + }, + { + "epoch": 6.987369069624153, + "grad_norm": 0.056567490100860596, + "learning_rate": 0.01, + "loss": 1.9471, + "step": 68043 + }, + { + "epoch": 6.987677141096734, + "grad_norm": 0.10390833020210266, + "learning_rate": 0.01, + "loss": 1.9526, + "step": 68046 + }, + { + "epoch": 6.987985212569316, + "grad_norm": 0.04906808212399483, + "learning_rate": 0.01, + "loss": 1.9883, + "step": 68049 + }, + { + "epoch": 6.988293284041898, + "grad_norm": 0.0763496458530426, + "learning_rate": 0.01, + "loss": 1.9625, + "step": 68052 + }, + { + "epoch": 6.988601355514479, + "grad_norm": 0.042168740183115005, + "learning_rate": 0.01, + "loss": 1.971, + "step": 68055 + }, + { + "epoch": 6.988909426987061, + "grad_norm": 0.044075168669223785, + "learning_rate": 0.01, + "loss": 1.9538, + "step": 68058 + }, + { + "epoch": 6.9892174984596425, + "grad_norm": 0.06443364918231964, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 68061 + }, + { + "epoch": 6.9895255699322245, + "grad_norm": 0.06181558594107628, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 68064 + }, + { + "epoch": 6.989833641404806, + "grad_norm": 0.061378926038742065, + "learning_rate": 0.01, + "loss": 1.9591, + "step": 68067 + }, + { + "epoch": 6.990141712877388, + "grad_norm": 0.11718502640724182, + "learning_rate": 0.01, + "loss": 1.9726, + "step": 68070 + }, + { + "epoch": 6.990449784349969, + "grad_norm": 0.10844454169273376, + "learning_rate": 0.01, + "loss": 1.9943, + "step": 68073 + }, + { + "epoch": 6.990757855822551, + "grad_norm": 0.04362885281443596, + "learning_rate": 0.01, + "loss": 1.9694, + "step": 68076 + }, + { + "epoch": 6.991065927295132, + "grad_norm": 0.04131380096077919, + "learning_rate": 0.01, + "loss": 1.969, + "step": 68079 + }, + { + "epoch": 6.991373998767714, + "grad_norm": 0.03312958776950836, + "learning_rate": 0.01, + "loss": 1.9731, + "step": 68082 + }, + { + "epoch": 6.991682070240296, + "grad_norm": 0.05648859217762947, + "learning_rate": 0.01, + "loss": 1.9942, + "step": 68085 + }, + { + "epoch": 6.991990141712877, + "grad_norm": 0.07927577197551727, + "learning_rate": 0.01, + "loss": 1.9604, + "step": 68088 + }, + { + "epoch": 6.992298213185459, + "grad_norm": 0.081300288438797, + "learning_rate": 0.01, + "loss": 1.9668, + "step": 68091 + }, + { + "epoch": 6.992606284658041, + "grad_norm": 0.08239664137363434, + "learning_rate": 0.01, + "loss": 1.991, + "step": 68094 + }, + { + "epoch": 6.992914356130623, + "grad_norm": 0.14173032343387604, + "learning_rate": 0.01, + "loss": 1.9795, + "step": 68097 + }, + { + "epoch": 6.993222427603204, + "grad_norm": 0.039897531270980835, + "learning_rate": 0.01, + "loss": 1.9652, + "step": 68100 + }, + { + "epoch": 6.993530499075786, + "grad_norm": 0.08170229941606522, + "learning_rate": 0.01, + "loss": 1.9603, + "step": 68103 + }, + { + "epoch": 6.993838570548367, + "grad_norm": 0.09108921140432358, + "learning_rate": 0.01, + "loss": 1.9484, + "step": 68106 + }, + { + "epoch": 6.994146642020949, + "grad_norm": 0.048272643238306046, + "learning_rate": 0.01, + "loss": 1.9744, + "step": 68109 + }, + { + "epoch": 6.99445471349353, + "grad_norm": 0.06137422099709511, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 68112 + }, + { + "epoch": 6.994762784966112, + "grad_norm": 0.060723815113306046, + "learning_rate": 0.01, + "loss": 1.9579, + "step": 68115 + }, + { + "epoch": 6.995070856438693, + "grad_norm": 0.11094491183757782, + "learning_rate": 0.01, + "loss": 1.9974, + "step": 68118 + }, + { + "epoch": 6.9953789279112755, + "grad_norm": 0.041866280138492584, + "learning_rate": 0.01, + "loss": 1.9696, + "step": 68121 + }, + { + "epoch": 6.995686999383857, + "grad_norm": 0.032954033464193344, + "learning_rate": 0.01, + "loss": 1.9706, + "step": 68124 + }, + { + "epoch": 6.995995070856439, + "grad_norm": 0.034947719424963, + "learning_rate": 0.01, + "loss": 1.975, + "step": 68127 + }, + { + "epoch": 6.996303142329021, + "grad_norm": 0.03938392922282219, + "learning_rate": 0.01, + "loss": 1.994, + "step": 68130 + }, + { + "epoch": 6.996611213801602, + "grad_norm": 0.1045796275138855, + "learning_rate": 0.01, + "loss": 1.9709, + "step": 68133 + }, + { + "epoch": 6.996919285274184, + "grad_norm": 0.10855524986982346, + "learning_rate": 0.01, + "loss": 1.9603, + "step": 68136 + }, + { + "epoch": 6.997227356746765, + "grad_norm": 0.08628056198358536, + "learning_rate": 0.01, + "loss": 1.9827, + "step": 68139 + }, + { + "epoch": 6.997535428219347, + "grad_norm": 0.0505918487906456, + "learning_rate": 0.01, + "loss": 1.9752, + "step": 68142 + }, + { + "epoch": 6.997843499691928, + "grad_norm": 0.04251931607723236, + "learning_rate": 0.01, + "loss": 1.9555, + "step": 68145 + }, + { + "epoch": 6.99815157116451, + "grad_norm": 0.05464445427060127, + "learning_rate": 0.01, + "loss": 1.97, + "step": 68148 + }, + { + "epoch": 6.9984596426370915, + "grad_norm": 0.04259735345840454, + "learning_rate": 0.01, + "loss": 1.9922, + "step": 68151 + }, + { + "epoch": 6.998767714109674, + "grad_norm": 0.06472709774971008, + "learning_rate": 0.01, + "loss": 1.9549, + "step": 68154 + }, + { + "epoch": 6.999075785582255, + "grad_norm": 0.0695829764008522, + "learning_rate": 0.01, + "loss": 1.9776, + "step": 68157 + }, + { + "epoch": 6.999383857054837, + "grad_norm": 0.09822755306959152, + "learning_rate": 0.01, + "loss": 1.9376, + "step": 68160 + }, + { + "epoch": 6.999691928527419, + "grad_norm": 0.10002230852842331, + "learning_rate": 0.01, + "loss": 1.9992, + "step": 68163 + }, + { + "epoch": 7.0, + "grad_norm": 0.05069267004728317, + "learning_rate": 0.01, + "loss": 1.9642, + "step": 68166 + } + ], + "logging_steps": 3, + "max_steps": 68166, + "num_input_tokens_seen": 0, + "num_train_epochs": 7, + "save_steps": 1000, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": true + }, + "attributes": {} + } + }, + "total_flos": 3.45178225692133e+21, + "train_batch_size": 18, + "trial_name": null, + "trial_params": null +} diff --git a/training_args.bin b/training_args.bin new file mode 100644 index 0000000000000000000000000000000000000000..8a53bd0e980eec7abb23165394b5d6a60a49e546 --- /dev/null +++ b/training_args.bin @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5c6d232e08c6f7ae9d3c0b2f3b7ed888effd26c203d487044bac647ce3ee8814 +size 10808 diff --git a/zero_to_fp32.py b/zero_to_fp32.py new file mode 100644 index 0000000000000000000000000000000000000000..24cc342e78d1a006c782b3a4cd68d9ce786d8fd8 --- /dev/null +++ b/zero_to_fp32.py @@ -0,0 +1,604 @@ +#!/usr/bin/env python + +# Copyright (c) Microsoft Corporation. +# SPDX-License-Identifier: Apache-2.0 + +# DeepSpeed Team + +# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets +# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in +# the future. Once extracted, the weights don't require DeepSpeed and can be used in any +# application. +# +# example: python zero_to_fp32.py . pytorch_model.bin + +import argparse +import torch +import glob +import math +import os +import re +from collections import OrderedDict +from dataclasses import dataclass + +# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with +# DeepSpeed data structures it has to be available in the current python environment. +from deepspeed.utils import logger +from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS, + FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES, + FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS) + + +@dataclass +class zero_model_state: + buffers: dict() + param_shapes: dict() + shared_params: list + ds_version: int + frozen_param_shapes: dict() + frozen_param_fragments: dict() + + +debug = 0 + +# load to cpu +device = torch.device('cpu') + + +def atoi(text): + return int(text) if text.isdigit() else text + + +def natural_keys(text): + ''' + alist.sort(key=natural_keys) sorts in human order + http://nedbatchelder.com/blog/200712/human_sorting.html + (See Toothy's implementation in the comments) + ''' + return [atoi(c) for c in re.split(r'(\d+)', text)] + + +def get_model_state_file(checkpoint_dir, zero_stage): + if not os.path.isdir(checkpoint_dir): + raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist") + + # there should be only one file + if zero_stage <= 2: + file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt") + elif zero_stage == 3: + file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt") + + if not os.path.exists(file): + raise FileNotFoundError(f"can't find model states file at '{file}'") + + return file + + +def get_checkpoint_files(checkpoint_dir, glob_pattern): + # XXX: need to test that this simple glob rule works for multi-node setup too + ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys) + + if len(ckpt_files) == 0: + raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'") + + return ckpt_files + + +def get_optim_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt") + + +def get_model_state_files(checkpoint_dir): + return get_checkpoint_files(checkpoint_dir, "*_model_states.pt") + + +def parse_model_states(files): + zero_model_states = [] + for file in files: + state_dict = torch.load(file, map_location=device) + + if BUFFER_NAMES not in state_dict: + raise ValueError(f"{file} is not a model state checkpoint") + buffer_names = state_dict[BUFFER_NAMES] + if debug: + print("Found buffers:", buffer_names) + + # recover just the buffers while restoring them to fp32 if they were saved in fp16 + buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names} + param_shapes = state_dict[PARAM_SHAPES] + + # collect parameters that are included in param_shapes + param_names = [] + for s in param_shapes: + for name in s.keys(): + param_names.append(name) + + # update with frozen parameters + frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None) + if frozen_param_shapes is not None: + if debug: + print(f"Found frozen_param_shapes: {frozen_param_shapes}") + param_names += list(frozen_param_shapes.keys()) + + # handle shared params + shared_params = [[k, v] for k, v in state_dict["shared_params"].items()] + + ds_version = state_dict.get(DS_VERSION, None) + + frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None) + + z_model_state = zero_model_state(buffers=buffers, + param_shapes=param_shapes, + shared_params=shared_params, + ds_version=ds_version, + frozen_param_shapes=frozen_param_shapes, + frozen_param_fragments=frozen_param_fragments) + zero_model_states.append(z_model_state) + + return zero_model_states + + +def parse_optim_states(files, ds_checkpoint_dir): + + total_files = len(files) + state_dicts = [] + for f in files: + state_dict = torch.load(f, map_location=device) + # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights + # and also handle the case where it was already removed by another helper script + state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None) + state_dicts.append(state_dict) + + if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]: + raise ValueError(f"{files[0]} is not a zero checkpoint") + zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE] + world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT] + + # For ZeRO-2 each param group can have different partition_count as data parallelism for expert + # parameters can be different from data parallelism for non-expert parameters. So we can just + # use the max of the partition_count to get the dp world_size. + + if type(world_size) is list: + world_size = max(world_size) + + if world_size != total_files: + raise ValueError( + f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. " + "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes." + ) + + # the groups are named differently in each stage + if zero_stage <= 2: + fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS + elif zero_stage == 3: + fp32_groups_key = FP32_FLAT_GROUPS + else: + raise ValueError(f"unknown zero stage {zero_stage}") + + if zero_stage <= 2: + fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))] + elif zero_stage == 3: + # if there is more than one param group, there will be multiple flattened tensors - one + # flattened tensor per group - for simplicity merge them into a single tensor + # + # XXX: could make the script more memory efficient for when there are multiple groups - it + # will require matching the sub-lists of param_shapes for each param group flattened tensor + + fp32_flat_groups = [ + torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts)) + ] + + return zero_stage, world_size, fp32_flat_groups + + +def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters): + """ + Returns fp32 state_dict reconstructed from ds checkpoint + + Args: + - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are) + + """ + print(f"Processing zero checkpoint '{ds_checkpoint_dir}'") + + optim_files = get_optim_files(ds_checkpoint_dir) + zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir) + print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}") + + model_files = get_model_state_files(ds_checkpoint_dir) + + zero_model_states = parse_model_states(model_files) + print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}') + + if zero_stage <= 2: + return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + elif zero_stage == 3: + return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters) + + +def _zero2_merge_frozen_params(state_dict, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + frozen_param_fragments = zero_model_states[0].frozen_param_fragments + + if debug: + num_elem = sum(s.numel() for s in frozen_param_shapes.values()) + print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in frozen_param_fragments.values()]) + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + state_dict[name] = frozen_param_fragments[name] + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _has_callable(obj, fn): + attr = getattr(obj, fn, None) + return callable(attr) + + +def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + + # Reconstruction protocol: + # + # XXX: document this + + if debug: + for i in range(world_size): + for j in range(len(fp32_flat_groups[0])): + print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}") + + # XXX: memory usage doubles here (zero2) + num_param_groups = len(fp32_flat_groups[0]) + merged_single_partition_of_fp32_groups = [] + for i in range(num_param_groups): + merged_partitions = [sd[i] for sd in fp32_flat_groups] + full_single_fp32_vector = torch.cat(merged_partitions, 0) + merged_single_partition_of_fp32_groups.append(full_single_fp32_vector) + avail_numel = sum( + [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups]) + + if debug: + wanted_params = sum([len(shapes) for shapes in param_shapes]) + wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes]) + # not asserting if there is a mismatch due to possible padding + print(f"Have {avail_numel} numels to process.") + print(f"Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + total_numel = 0 + total_params = 0 + for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups): + offset = 0 + avail_numel = full_single_fp32_vector.numel() + for name, shape in shapes.items(): + + unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape) + total_numel += unpartitioned_numel + total_params += 1 + + if debug: + print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ") + state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape) + offset += unpartitioned_numel + + # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and + # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex + # paddings performed in the code it's almost impossible to predict the exact numbers w/o the + # live optimizer object, so we are checking that the numbers are within the right range + align_to = 2 * world_size + + def zero2_align(x): + return align_to * math.ceil(x / align_to) + + if debug: + print(f"original offset={offset}, avail_numel={avail_numel}") + + offset = zero2_align(offset) + avail_numel = zero2_align(avail_numel) + + if debug: + print(f"aligned offset={offset}, avail_numel={avail_numel}") + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero2_merge_frozen_params(state_dict, zero_model_states) + + _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def zero3_partitioned_param_info(unpartitioned_numel, world_size): + remainder = unpartitioned_numel % world_size + padding_numel = (world_size - remainder) if remainder else 0 + partitioned_numel = math.ceil(unpartitioned_numel / world_size) + return partitioned_numel, padding_numel + + +def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states): + if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0: + return + + if debug: + for i in range(world_size): + num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values()) + print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}') + + frozen_param_shapes = zero_model_states[0].frozen_param_shapes + wanted_params = len(frozen_param_shapes) + wanted_numel = sum(s.numel() for s in frozen_param_shapes.values()) + avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size + print(f'Frozen params: Have {avail_numel} numels to process.') + print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params') + + total_params = 0 + total_numel = 0 + for name, shape in zero_model_states[0].frozen_param_shapes.items(): + total_params += 1 + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + + param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states) + state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape) + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements") + + +def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states): + param_shapes = zero_model_states[0].param_shapes + avail_numel = fp32_flat_groups[0].numel() * world_size + # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each + # param, re-consolidating each param, while dealing with padding if any + + # merge list of dicts, preserving order + param_shapes = {k: v for d in param_shapes for k, v in d.items()} + + if debug: + for i in range(world_size): + print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}") + + wanted_params = len(param_shapes) + wanted_numel = sum(shape.numel() for shape in param_shapes.values()) + # not asserting if there is a mismatch due to possible padding + avail_numel = fp32_flat_groups[0].numel() * world_size + print(f"Trainable params: Have {avail_numel} numels to process.") + print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.") + + # params + # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support + # out-of-core computing solution + offset = 0 + total_numel = 0 + total_params = 0 + for name, shape in param_shapes.items(): + + unpartitioned_numel = shape.numel() + total_numel += unpartitioned_numel + total_params += 1 + + partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size) + + if debug: + print( + f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}" + ) + + # XXX: memory usage doubles here + state_dict[name] = torch.cat( + tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)), + 0).narrow(0, 0, unpartitioned_numel).view(shape) + offset += partitioned_numel + + offset *= world_size + + # Sanity check + if offset != avail_numel: + raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong") + + print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements") + + +def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states, + exclude_frozen_parameters): + state_dict = OrderedDict() + + # buffers + buffers = zero_model_states[0].buffers + state_dict.update(buffers) + if debug: + print(f"added {len(buffers)} buffers") + + if not exclude_frozen_parameters: + _zero3_merge_frozen_params(state_dict, world_size, zero_model_states) + + _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states) + + # recover shared parameters + for pair in zero_model_states[0].shared_params: + if pair[1] in state_dict: + state_dict[pair[0]] = state_dict[pair[1]] + + return state_dict + + +def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with + ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example + via a model hub. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + + Returns: + - pytorch ``state_dict`` + + Note: this approach may not work if your application doesn't have sufficient free CPU memory and + you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with + the checkpoint. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint + # do the training and checkpoint saving + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu + model = model.cpu() # move to cpu + model.load_state_dict(state_dict) + # submit to model hub or save the model to share with others + + In this example the ``model`` will no longer be usable in the deepspeed context of the same + application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead. + + """ + if tag is None: + latest_path = os.path.join(checkpoint_dir, 'latest') + if os.path.isfile(latest_path): + with open(latest_path, 'r') as fd: + tag = fd.read().strip() + else: + raise ValueError(f"Unable to find 'latest' file at {latest_path}") + + ds_checkpoint_dir = os.path.join(checkpoint_dir, tag) + + if not os.path.isdir(ds_checkpoint_dir): + raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist") + + return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters) + + +def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False): + """ + Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be + loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed. + + Args: + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + - ``exclude_frozen_parameters``: exclude frozen parameters + """ + + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters) + print(f"Saving fp32 state dict to {output_file}") + torch.save(state_dict, output_file) + + +def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None): + """ + 1. Put the provided model to cpu + 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` + 3. Load it into the provided model + + Args: + - ``model``: the model object to update + - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``) + - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14`` + + Returns: + - ``model`: modified model + + Make sure you have plenty of CPU memory available before you call this function. If you don't + have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it + conveniently placed for you in the checkpoint folder. + + A typical usage might be :: + + from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint + model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir) + # submit to model hub or save the model to share with others + + Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context + of the same application. i.e. you will need to re-initialize the deepspeed engine, since + ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it. + + """ + logger.info(f"Extracting fp32 weights") + state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag) + + logger.info(f"Overwriting model with fp32 weights") + model = model.cpu() + model.load_state_dict(state_dict, strict=False) + + return model + + +if __name__ == "__main__": + + parser = argparse.ArgumentParser() + parser.add_argument("checkpoint_dir", + type=str, + help="path to the desired checkpoint folder, e.g., path/checkpoint-12") + parser.add_argument( + "output_file", + type=str, + help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)") + parser.add_argument("-t", + "--tag", + type=str, + default=None, + help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1") + parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters") + parser.add_argument("-d", "--debug", action='store_true', help="enable debug") + args = parser.parse_args() + + debug = args.debug + + convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, + args.output_file, + tag=args.tag, + exclude_frozen_parameters=args.exclude_frozen_parameters)