--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python base_model: - openai/gpt-oss-120b --- This tiny model is for debugging. It is randomly initialized with the config adapted from [openai/gpt-oss-120b](https://huggingface.co/openai/gpt-oss-120b). Note: This model is in BF16; quantized MXFP4 FFN is not used. ### Example usage: - vLLM ```bash vllm serve yujiepan/gpt-oss-tiny-random-bf16 ``` - Transformers ```python import torch from transformers import pipeline model_id = "yujiepan/gpt-oss-tiny-random-bf16" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="cuda" ) messages = [ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, ] outputs = pipe( messages, max_new_tokens=16, ) print(outputs[0]["generated_text"][-1]) ``` ### Codes to create this repo: ```python import json import torch from huggingface_hub import hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, AutoTokenizer, GenerationConfig, GptOssForCausalLM, pipeline, set_seed, ) source_model_id = "openai/gpt-oss-120b" save_folder = "/tmp/yujiepan/gpt-oss-tiny-random-bf16" processor = AutoProcessor.from_pretrained(source_model_id) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r') as f: config_json = json.load(f) config_json.update({ "head_dim": 32, "hidden_size": 32, # required by Mxfp4GptOssExperts codes "intermediate_size": 64, "layer_types": ["sliding_attention", "full_attention"], "num_attention_heads": 2, "num_hidden_layers": 2, "num_key_value_heads": 1, "num_local_experts": 32, "tie_word_embeddings": True, }) quantization_config = config_json['quantization_config'] del config_json['quantization_config'] with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained(save_folder) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float32) model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) # mxfp4 from transformers.quantizers.quantizer_mxfp4 import Mxfp4HfQuantizer # model = AutoModelForCausalLM.from_pretrained(save_folder, trust_remote_code=True, torch_dtype=torch.bfloat16, quantization_config=quantization_config) # model.save_pretrained(save_folder, safe_serialization=True) ```