Upload folder using huggingface_hub
Browse files
.gitattributes
CHANGED
@@ -82,3 +82,4 @@ trained_190k_steps/rtf_test_results/test_018.wav filter=lfs diff=lfs merge=lfs -
|
|
82 |
trained_190k_steps/rtf_test_results/test_019.wav filter=lfs diff=lfs merge=lfs -text
|
83 |
trained_190k_steps/rtf_test_results/test_020.wav filter=lfs diff=lfs merge=lfs -text
|
84 |
trained_190k_steps/test.wav filter=lfs diff=lfs merge=lfs -text
|
|
|
|
82 |
trained_190k_steps/rtf_test_results/test_019.wav filter=lfs diff=lfs merge=lfs -text
|
83 |
trained_190k_steps/rtf_test_results/test_020.wav filter=lfs diff=lfs merge=lfs -text
|
84 |
trained_190k_steps/test.wav filter=lfs diff=lfs merge=lfs -text
|
85 |
+
trained_190k_steps/output_streaming.wav filter=lfs diff=lfs merge=lfs -text
|
trained_190k_steps/output.wav
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:252c4c7ef3a1623c636d83cae90aa59ca30c1089d7bbaaddd97d8cd0afa4b8dc
|
3 |
+
size 599724
|
trained_190k_steps/output_streaming.wav
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4578311c27d08e522b4bab81bc38cc85e8528e439e7b57b6794cbf48deeed36
|
3 |
+
size 499244
|
trained_190k_steps/tts_streaming.py
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
4 |
+
print('add current dir to sys.path', current_dir)
|
5 |
+
sys.path.append(current_dir)
|
6 |
+
from sparktts.models.audio_tokenizer import BiCodecTokenizer
|
7 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
8 |
+
import soundfile as sf
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
from utilities import generate_embeddings
|
12 |
+
def generate_speech(model, tokenizer, text, bicodec, prompt_text=None, prompt_audio=None,
|
13 |
+
max_new_tokens=3000, do_sample=True, top_k=50, top_p=0.95,
|
14 |
+
temperature=1.0, device="cuda:0"):
|
15 |
+
"""
|
16 |
+
生成语音的函数
|
17 |
+
|
18 |
+
Args:
|
19 |
+
model: 语言模型
|
20 |
+
tokenizer: 文本分词器
|
21 |
+
text: 要生成语音的文本
|
22 |
+
bicodec: BiCodecTokenizer 实例
|
23 |
+
prompt_text: 提示文本(可选)
|
24 |
+
prompt_audio: 提示音频数组(可选)
|
25 |
+
max_new_tokens: 最大生成token数
|
26 |
+
do_sample: 是否使用采样
|
27 |
+
top_k: top-k采样参数
|
28 |
+
top_p: top-p采样参数
|
29 |
+
temperature: 温度参数
|
30 |
+
device: 设备
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
wav: 生成的音频波形
|
34 |
+
"""
|
35 |
+
# 设置eos_token_id - 根据训练代码,eos_token_id = model.config.vocab_size - 1
|
36 |
+
eos_token_id = model.config.vocab_size - 1
|
37 |
+
print(f"EOS token ID: {eos_token_id}")
|
38 |
+
|
39 |
+
# 生成输入嵌入
|
40 |
+
embeddings = generate_embeddings(
|
41 |
+
model=model,
|
42 |
+
tokenizer=tokenizer,
|
43 |
+
text=text,
|
44 |
+
bicodec=bicodec,
|
45 |
+
prompt_text=prompt_text,
|
46 |
+
prompt_audio=prompt_audio
|
47 |
+
)
|
48 |
+
|
49 |
+
print("开始生成语音...")
|
50 |
+
print(f"输入嵌入形状: {embeddings['input_embs'].shape}")
|
51 |
+
global_tokens = embeddings['global_tokens'].unsqueeze(0)
|
52 |
+
# 设置模型为评估模式
|
53 |
+
print(f'embeddings dtype: {embeddings["input_embs"].dtype}')
|
54 |
+
model.eval()
|
55 |
+
|
56 |
+
with torch.no_grad():
|
57 |
+
# 使用模型的generate方法
|
58 |
+
generated_outputs = model.generate(
|
59 |
+
inputs_embeds=embeddings['input_embs'],
|
60 |
+
attention_mask=torch.ones((1, embeddings['input_embs'].shape[1]),dtype=torch.long,device=device),
|
61 |
+
max_new_tokens=max_new_tokens,
|
62 |
+
do_sample=do_sample,
|
63 |
+
top_k=top_k,
|
64 |
+
top_p=top_p,
|
65 |
+
temperature=temperature,
|
66 |
+
eos_token_id=eos_token_id,
|
67 |
+
pad_token_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.eos_token_id,
|
68 |
+
use_cache=True
|
69 |
+
)
|
70 |
+
print(f"generated_outputs: {generated_outputs}")
|
71 |
+
|
72 |
+
print(f"生成的token数量: {generated_outputs.shape}")
|
73 |
+
print(f"生成的token IDs: {generated_outputs.tolist()}")
|
74 |
+
|
75 |
+
# 直接使用生成的token ID作为semantic tokens
|
76 |
+
# 注意:这里生成的token ID是模型词表中的ID,不是原始tokenizer的词表
|
77 |
+
semantic_tokens_tensor = generated_outputs[:,:-1]
|
78 |
+
|
79 |
+
print(f"Semantic tokens shape: {semantic_tokens_tensor.shape}")
|
80 |
+
|
81 |
+
#simulate streaming
|
82 |
+
target_sample_rate = bicodec.config['sample_rate']
|
83 |
+
print(f"Global tokens shape: {global_tokens.shape}")
|
84 |
+
BUF_SIZE = 25 # since 50 tokens per second, 25 tokens is 0.5 second
|
85 |
+
chunk_size = 125 # start to generate audio after 125 tokens
|
86 |
+
buffered_semantic_tokens = torch.zeros((1, 0), dtype=torch.long, device=device)
|
87 |
+
whole_wav = np.array([], dtype=np.float32)
|
88 |
+
for i in range(0, semantic_tokens_tensor.shape[1], chunk_size):
|
89 |
+
buffered_size = buffered_semantic_tokens.shape[1]
|
90 |
+
current_semantic_tokens = semantic_tokens_tensor[:, i:i+chunk_size]
|
91 |
+
print(f"generate segmant [{i}:{i+chunk_size}]: shape {current_semantic_tokens.shape}")
|
92 |
+
current_semantic_tokens = torch.cat([buffered_semantic_tokens, current_semantic_tokens], dim=1)
|
93 |
+
print(f"After concat: shape {current_semantic_tokens.shape} with buffered shape {buffered_semantic_tokens.shape}")
|
94 |
+
buffered_semantic_tokens = current_semantic_tokens[:, -BUF_SIZE:]
|
95 |
+
with torch.no_grad():
|
96 |
+
wav = bicodec.detokenize(global_tokens, current_semantic_tokens)
|
97 |
+
print(f"Generated audio shape: {wav.shape}")
|
98 |
+
wav = wav[int(target_sample_rate * buffered_size/50):]
|
99 |
+
print(f"After cut: shape {wav.shape}")
|
100 |
+
whole_wav = np.concatenate([whole_wav, wav])
|
101 |
+
print(f"Whole wav shape: {whole_wav.shape}")
|
102 |
+
return whole_wav
|
103 |
+
|
104 |
+
device = 'cuda:2'
|
105 |
+
|
106 |
+
audio_tokenizer = BiCodecTokenizer(model_dir=current_dir, device=device)
|
107 |
+
|
108 |
+
print(audio_tokenizer)
|
109 |
+
|
110 |
+
tokenizer = AutoTokenizer.from_pretrained(current_dir, trust_remote_code=True)
|
111 |
+
model = AutoModelForCausalLM.from_pretrained(current_dir, trust_remote_code=True)
|
112 |
+
print(tokenizer)
|
113 |
+
print(model)
|
114 |
+
|
115 |
+
model = model.bfloat16().to(device)
|
116 |
+
model.eval()
|
117 |
+
|
118 |
+
prompt_text = "我们并不是通过物理移动手段找到星河的。"
|
119 |
+
prompt_audio_file = os.path.join(current_dir, 'kafka.wav')
|
120 |
+
prompt_audio, sampling_rate = sf.read(prompt_audio_file)
|
121 |
+
|
122 |
+
print(f"Loaded prompt audio from {prompt_audio_file}")
|
123 |
+
print(f"Original sampling rate: {sampling_rate}Hz")
|
124 |
+
print(f"Audio shape: {prompt_audio.shape}")
|
125 |
+
|
126 |
+
target_sample_rate = audio_tokenizer.config['sample_rate']
|
127 |
+
if sampling_rate != target_sample_rate:
|
128 |
+
print(f"Resampling from {sampling_rate}Hz to {target_sample_rate}Hz...")
|
129 |
+
from librosa import resample
|
130 |
+
prompt_audio = resample(prompt_audio, orig_sr=sampling_rate, target_sr=target_sample_rate)
|
131 |
+
prompt_audio = np.array(prompt_audio, dtype=np.float32)
|
132 |
+
print(f"Resampled audio shape: {prompt_audio.shape}")
|
133 |
+
else:
|
134 |
+
print(f"Audio sampling rate already matches target ({target_sample_rate}Hz)")
|
135 |
+
|
136 |
+
text = "二房他们已经接受了老爷子安排的:大房拿企业、二房拿钱的设定。富贵闲人他们也做了。在嫡长女和国资抢股权期间不出来搅局,就连老爷子的葬礼都没有露面,安安静静坐实老爷子一辈子的完美人设。"
|
137 |
+
wav = generate_speech(model, tokenizer, text, audio_tokenizer, prompt_audio=prompt_audio, device=device)
|
138 |
+
sf.write('output_streaming.wav', wav, target_sample_rate)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
|