yueyulin commited on
Commit
68b74fc
·
verified ·
1 Parent(s): fc99023

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -82,3 +82,4 @@ trained_190k_steps/rtf_test_results/test_018.wav filter=lfs diff=lfs merge=lfs -
82
  trained_190k_steps/rtf_test_results/test_019.wav filter=lfs diff=lfs merge=lfs -text
83
  trained_190k_steps/rtf_test_results/test_020.wav filter=lfs diff=lfs merge=lfs -text
84
  trained_190k_steps/test.wav filter=lfs diff=lfs merge=lfs -text
 
 
82
  trained_190k_steps/rtf_test_results/test_019.wav filter=lfs diff=lfs merge=lfs -text
83
  trained_190k_steps/rtf_test_results/test_020.wav filter=lfs diff=lfs merge=lfs -text
84
  trained_190k_steps/test.wav filter=lfs diff=lfs merge=lfs -text
85
+ trained_190k_steps/output_streaming.wav filter=lfs diff=lfs merge=lfs -text
trained_190k_steps/output.wav CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1b56b3b68f11fdb8539634bb27312f1346b3876ede818d311f6c89dd8b8e94dd
3
- size 499244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:252c4c7ef3a1623c636d83cae90aa59ca30c1089d7bbaaddd97d8cd0afa4b8dc
3
+ size 599724
trained_190k_steps/output_streaming.wav ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4578311c27d08e522b4bab81bc38cc85e8528e439e7b57b6794cbf48deeed36
3
+ size 499244
trained_190k_steps/tts_streaming.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ current_dir = os.path.dirname(os.path.abspath(__file__))
4
+ print('add current dir to sys.path', current_dir)
5
+ sys.path.append(current_dir)
6
+ from sparktts.models.audio_tokenizer import BiCodecTokenizer
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM
8
+ import soundfile as sf
9
+ import numpy as np
10
+ import torch
11
+ from utilities import generate_embeddings
12
+ def generate_speech(model, tokenizer, text, bicodec, prompt_text=None, prompt_audio=None,
13
+ max_new_tokens=3000, do_sample=True, top_k=50, top_p=0.95,
14
+ temperature=1.0, device="cuda:0"):
15
+ """
16
+ 生成语音的函数
17
+
18
+ Args:
19
+ model: 语言模型
20
+ tokenizer: 文本分词器
21
+ text: 要生成语音的文本
22
+ bicodec: BiCodecTokenizer 实例
23
+ prompt_text: 提示文本(可选)
24
+ prompt_audio: 提示音频数组(可选)
25
+ max_new_tokens: 最大生成token数
26
+ do_sample: 是否使用采样
27
+ top_k: top-k采样参数
28
+ top_p: top-p采样参数
29
+ temperature: 温度参数
30
+ device: 设备
31
+
32
+ Returns:
33
+ wav: 生成的音频波形
34
+ """
35
+ # 设置eos_token_id - 根据训练代码,eos_token_id = model.config.vocab_size - 1
36
+ eos_token_id = model.config.vocab_size - 1
37
+ print(f"EOS token ID: {eos_token_id}")
38
+
39
+ # 生成输入嵌入
40
+ embeddings = generate_embeddings(
41
+ model=model,
42
+ tokenizer=tokenizer,
43
+ text=text,
44
+ bicodec=bicodec,
45
+ prompt_text=prompt_text,
46
+ prompt_audio=prompt_audio
47
+ )
48
+
49
+ print("开始生成语音...")
50
+ print(f"输入嵌入形状: {embeddings['input_embs'].shape}")
51
+ global_tokens = embeddings['global_tokens'].unsqueeze(0)
52
+ # 设置模型为评估模式
53
+ print(f'embeddings dtype: {embeddings["input_embs"].dtype}')
54
+ model.eval()
55
+
56
+ with torch.no_grad():
57
+ # 使用模型的generate方法
58
+ generated_outputs = model.generate(
59
+ inputs_embeds=embeddings['input_embs'],
60
+ attention_mask=torch.ones((1, embeddings['input_embs'].shape[1]),dtype=torch.long,device=device),
61
+ max_new_tokens=max_new_tokens,
62
+ do_sample=do_sample,
63
+ top_k=top_k,
64
+ top_p=top_p,
65
+ temperature=temperature,
66
+ eos_token_id=eos_token_id,
67
+ pad_token_id=tokenizer.pad_token_id if hasattr(tokenizer, 'pad_token_id') else tokenizer.eos_token_id,
68
+ use_cache=True
69
+ )
70
+ print(f"generated_outputs: {generated_outputs}")
71
+
72
+ print(f"生成的token数量: {generated_outputs.shape}")
73
+ print(f"生成的token IDs: {generated_outputs.tolist()}")
74
+
75
+ # 直接使用生成的token ID作为semantic tokens
76
+ # 注意:这里生成的token ID是模型词表中的ID,不是原始tokenizer的词表
77
+ semantic_tokens_tensor = generated_outputs[:,:-1]
78
+
79
+ print(f"Semantic tokens shape: {semantic_tokens_tensor.shape}")
80
+
81
+ #simulate streaming
82
+ target_sample_rate = bicodec.config['sample_rate']
83
+ print(f"Global tokens shape: {global_tokens.shape}")
84
+ BUF_SIZE = 25 # since 50 tokens per second, 25 tokens is 0.5 second
85
+ chunk_size = 125 # start to generate audio after 125 tokens
86
+ buffered_semantic_tokens = torch.zeros((1, 0), dtype=torch.long, device=device)
87
+ whole_wav = np.array([], dtype=np.float32)
88
+ for i in range(0, semantic_tokens_tensor.shape[1], chunk_size):
89
+ buffered_size = buffered_semantic_tokens.shape[1]
90
+ current_semantic_tokens = semantic_tokens_tensor[:, i:i+chunk_size]
91
+ print(f"generate segmant [{i}:{i+chunk_size}]: shape {current_semantic_tokens.shape}")
92
+ current_semantic_tokens = torch.cat([buffered_semantic_tokens, current_semantic_tokens], dim=1)
93
+ print(f"After concat: shape {current_semantic_tokens.shape} with buffered shape {buffered_semantic_tokens.shape}")
94
+ buffered_semantic_tokens = current_semantic_tokens[:, -BUF_SIZE:]
95
+ with torch.no_grad():
96
+ wav = bicodec.detokenize(global_tokens, current_semantic_tokens)
97
+ print(f"Generated audio shape: {wav.shape}")
98
+ wav = wav[int(target_sample_rate * buffered_size/50):]
99
+ print(f"After cut: shape {wav.shape}")
100
+ whole_wav = np.concatenate([whole_wav, wav])
101
+ print(f"Whole wav shape: {whole_wav.shape}")
102
+ return whole_wav
103
+
104
+ device = 'cuda:2'
105
+
106
+ audio_tokenizer = BiCodecTokenizer(model_dir=current_dir, device=device)
107
+
108
+ print(audio_tokenizer)
109
+
110
+ tokenizer = AutoTokenizer.from_pretrained(current_dir, trust_remote_code=True)
111
+ model = AutoModelForCausalLM.from_pretrained(current_dir, trust_remote_code=True)
112
+ print(tokenizer)
113
+ print(model)
114
+
115
+ model = model.bfloat16().to(device)
116
+ model.eval()
117
+
118
+ prompt_text = "我们并不是通过物理移动手段找到星河的。"
119
+ prompt_audio_file = os.path.join(current_dir, 'kafka.wav')
120
+ prompt_audio, sampling_rate = sf.read(prompt_audio_file)
121
+
122
+ print(f"Loaded prompt audio from {prompt_audio_file}")
123
+ print(f"Original sampling rate: {sampling_rate}Hz")
124
+ print(f"Audio shape: {prompt_audio.shape}")
125
+
126
+ target_sample_rate = audio_tokenizer.config['sample_rate']
127
+ if sampling_rate != target_sample_rate:
128
+ print(f"Resampling from {sampling_rate}Hz to {target_sample_rate}Hz...")
129
+ from librosa import resample
130
+ prompt_audio = resample(prompt_audio, orig_sr=sampling_rate, target_sr=target_sample_rate)
131
+ prompt_audio = np.array(prompt_audio, dtype=np.float32)
132
+ print(f"Resampled audio shape: {prompt_audio.shape}")
133
+ else:
134
+ print(f"Audio sampling rate already matches target ({target_sample_rate}Hz)")
135
+
136
+ text = "二房他们已经接受了老爷子安排的:大房拿企业、二房拿钱的设定。富贵闲人他们也做了。在嫡长女和国资抢股权期间不出来搅局,就连老爷子的葬礼都没有露面,安安静静坐实老爷子一辈子的完美人设。"
137
+ wav = generate_speech(model, tokenizer, text, audio_tokenizer, prompt_audio=prompt_audio, device=device)
138
+ sf.write('output_streaming.wav', wav, target_sample_rate)
139
+
140
+
141
+
142
+