--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: roberta-Validation-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current results: [] --- # roberta-Validation-badareas-eval_FeedbackESConv5pp_CARE10pp-sweeps-current This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1276 - Accuracy: 0.9435 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.297796975425318e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---:| | 0.3889 | 1.0 | 126 | 0.1070 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3832 | 2.0 | 252 | 0.1594 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3767 | 3.0 | 378 | 0.1043 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3708 | 4.0 | 504 | 0.1306 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3657 | 5.0 | 630 | 0.1226 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3742 | 6.0 | 756 | 0.1147 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3699 | 7.0 | 882 | 0.1543 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3668 | 8.0 | 1008 | 0.1373 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3689 | 9.0 | 1134 | 0.1273 | 0.9435 | 0.0 | 0.0 | 0.0 | | 0.3687 | 10.0 | 1260 | 0.1276 | 0.9435 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 2.21.0 - Tokenizers 0.21.0