|
import logging |
|
from typing import Literal, Union |
|
from functools import partial |
|
import torch |
|
import torch.nn as nn |
|
from detectron2.modeling import Backbone |
|
|
|
try: |
|
from xformers.ops import memory_efficient_attention |
|
|
|
XFORMERS_ON = True |
|
except ImportError: |
|
XFORMERS_ON = False |
|
from .utils import ( |
|
PatchEmbed, |
|
get_abs_pos, |
|
DropPath, |
|
Mlp, |
|
) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
return_softmax_attn=True, |
|
use_proj=True, |
|
patch_token_offset=0, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) if use_proj else nn.Identity() |
|
|
|
self.return_softmax_attn = return_softmax_attn |
|
|
|
self.patch_token_offset = patch_token_offset |
|
|
|
def forward(self, x, return_attention=False, extra_token_offset=None): |
|
B, L, _ = x.shape |
|
|
|
qkv = self.qkv(x).view(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, L, -1).unbind(0) |
|
|
|
if return_attention or not XFORMERS_ON: |
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
if return_attention and not self.return_softmax_attn: |
|
out_attn = attn |
|
attn = attn.softmax(dim=-1) |
|
if return_attention and self.return_softmax_attn: |
|
out_attn = attn |
|
x = attn @ v |
|
else: |
|
x = memory_efficient_attention(q, k, v, scale=self.scale) |
|
|
|
x = x.view(B, self.num_heads, L, -1).permute(0, 2, 1, 3).reshape(B, L, -1) |
|
x = self.proj(x) |
|
|
|
if return_attention: |
|
out_attn = out_attn.reshape(B, self.num_heads, L, -1) |
|
out_attn = out_attn[ |
|
:, |
|
:, |
|
self.patch_token_offset : extra_token_offset, |
|
self.patch_token_offset : extra_token_offset, |
|
] |
|
return x, out_attn |
|
else: |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
init_values=None, |
|
return_softmax_attn=True, |
|
attention_map_only=False, |
|
patch_token_offset=0, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
drop_path (float): Stochastic depth rate. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
""" |
|
super().__init__() |
|
self.attention_map_only = attention_map_only |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
return_softmax_attn=return_softmax_attn, |
|
use_proj=return_softmax_attn or not attention_map_only, |
|
patch_token_offset=patch_token_offset, |
|
) |
|
|
|
if attention_map_only: |
|
return |
|
|
|
self.ls1 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
self.mlp = Mlp( |
|
in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer |
|
) |
|
self.ls2 = ( |
|
LayerScale(dim, init_values=init_values) if init_values else nn.Identity() |
|
) |
|
|
|
def forward(self, x, return_attention=False, extra_token_offset=None): |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
if return_attention: |
|
x, attn = self.attn(x, True, extra_token_offset) |
|
else: |
|
x = self.attn(x) |
|
|
|
if self.attention_map_only: |
|
return x, attn |
|
|
|
x = shortcut + self.drop_path(self.ls1(x)) |
|
x = x + self.drop_path(self.ls2(self.mlp(self.norm2(x)))) |
|
|
|
if return_attention: |
|
return x, attn |
|
else: |
|
return x |
|
|
|
|
|
class LayerScale(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
init_values: Union[float, torch.Tensor] = 1e-5, |
|
inplace: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.inplace = inplace |
|
self.gamma = nn.Parameter(init_values * torch.ones(dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return x.mul_(self.gamma) if self.inplace else x * self.gamma |
|
|
|
|
|
class ViT(Backbone): |
|
def __init__( |
|
self, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
act_layer=nn.GELU, |
|
pretrain_img_size=224, |
|
pretrain_use_cls_token=True, |
|
init_values=None, |
|
use_cls_token=False, |
|
use_mask_token=False, |
|
norm_features=False, |
|
return_softmax_attn=True, |
|
num_register_tokens=0, |
|
num_msg_tokens=0, |
|
register_as_msg=False, |
|
shift_strides=None, |
|
cls_shift=False, |
|
num_extra_tokens=4, |
|
use_extra_embed=False, |
|
num_frames=None, |
|
out_feature=True, |
|
out_attn=(), |
|
): |
|
super().__init__() |
|
self.pretrain_use_cls_token = pretrain_use_cls_token |
|
|
|
self.patch_size = patch_size |
|
self.patch_embed = PatchEmbed( |
|
kernel_size=(patch_size, patch_size), |
|
stride=(patch_size, patch_size), |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
|
|
num_patches = (pretrain_img_size // patch_size) * ( |
|
pretrain_img_size // patch_size |
|
) |
|
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim)) |
|
|
|
self.use_cls_token = use_cls_token |
|
self.cls_token = ( |
|
nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_cls_token else None |
|
) |
|
|
|
assert num_register_tokens >= 0 |
|
self.register_tokens = ( |
|
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) |
|
if num_register_tokens > 0 |
|
else None |
|
) |
|
|
|
|
|
assert num_msg_tokens >= 0 |
|
self.num_msg_tokens = num_msg_tokens |
|
if register_as_msg: |
|
self.num_msg_tokens += num_register_tokens |
|
self.msg_tokens = ( |
|
nn.Parameter(torch.zeros(1, num_msg_tokens, embed_dim)) |
|
if num_msg_tokens > 0 |
|
else None |
|
) |
|
|
|
patch_token_offset = ( |
|
num_msg_tokens + num_register_tokens + int(self.use_cls_token) |
|
) |
|
self.patch_token_offset = patch_token_offset |
|
|
|
self.msg_shift = None |
|
if shift_strides is not None: |
|
self.msg_shift = [] |
|
for i in range(depth): |
|
if i % 2 == 0: |
|
self.msg_shift.append([_ for _ in shift_strides]) |
|
else: |
|
self.msg_shift.append([-_ for _ in shift_strides]) |
|
|
|
self.cls_shift = None |
|
if cls_shift: |
|
self.cls_shift = [(-1) ** idx for idx in range(depth)] |
|
|
|
assert num_extra_tokens >= 0 |
|
self.num_extra_tokens = num_extra_tokens |
|
self.extra_pos_embed = ( |
|
nn.Linear(embed_dim, embed_dim) |
|
if num_extra_tokens > 0 and use_extra_embed |
|
else nn.Identity() |
|
) |
|
|
|
self.num_frames = num_frames |
|
|
|
|
|
self.use_mask_token = use_mask_token |
|
self.mask_token = ( |
|
nn.Parameter(torch.zeros(1, embed_dim)) if use_mask_token else None |
|
) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
block = Block( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
init_values=init_values, |
|
return_softmax_attn=return_softmax_attn, |
|
attention_map_only=(i == depth - 1) and not out_feature, |
|
patch_token_offset=patch_token_offset, |
|
) |
|
self.blocks.append(block) |
|
|
|
self.norm = norm_layer(embed_dim) if norm_features else nn.Identity() |
|
|
|
self._out_features = out_feature |
|
self._out_attn = out_attn |
|
|
|
if self.pos_embed is not None: |
|
nn.init.trunc_normal_(self.pos_embed, std=0.02) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def forward(self, x, masks=None, guidance=None): |
|
x = self.patch_embed(x) |
|
if masks is not None: |
|
x = torch.where( |
|
masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x |
|
) |
|
|
|
if self.pos_embed is not None: |
|
x = x + get_abs_pos( |
|
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2]) |
|
) |
|
B, H, W, _ = x.shape |
|
x = x.reshape(B, H * W, -1) |
|
|
|
if self.use_cls_token: |
|
cls_tokens = self.cls_token.expand(len(x), -1, -1) |
|
x = torch.cat((cls_tokens, x), dim=1) |
|
|
|
if self.register_tokens is not None: |
|
register_tokens = self.register_tokens.expand(len(x), -1, -1) |
|
x = torch.cat((register_tokens, x), dim=1) |
|
|
|
if self.msg_tokens is not None: |
|
msg_tokens = self.msg_tokens.expand(len(x), -1, -1) |
|
x = torch.cat((msg_tokens, x), dim=1) |
|
|
|
|
|
extra_tokens_offset = None |
|
if guidance is not None: |
|
guidance = guidance.reshape(len(guidance), -1, 1) |
|
extra_tokens = ( |
|
(x[:, self.patch_token_offset :] * guidance) |
|
.sum(dim=1, keepdim=True) |
|
.expand(-1, self.num_extra_tokens, -1) |
|
) |
|
extra_tokens = self.extra_pos_embed(extra_tokens) |
|
x = torch.cat((x, extra_tokens), dim=1) |
|
extra_tokens_offset = -self.num_extra_tokens |
|
|
|
|
|
attn_maps = [] |
|
for idx, blk in enumerate(self.blocks): |
|
if idx in self._out_attn: |
|
x, attn = blk(x, True, extra_tokens_offset) |
|
attn_maps.append(attn) |
|
else: |
|
x = blk(x) |
|
|
|
if self.msg_shift is not None: |
|
msg_shift = self.msg_shift[idx] |
|
msg_tokens = ( |
|
x[:, : self.num_msg_tokens] |
|
if guidance is None |
|
else x[:, extra_tokens_offset:] |
|
) |
|
msg_tokens = msg_tokens.reshape( |
|
-1, self.num_frames, *msg_tokens.shape[1:] |
|
) |
|
msg_tokens = msg_tokens.chunk(len(msg_shift), dim=2) |
|
msg_tokens = [ |
|
torch.roll(tokens, roll, dims=1) |
|
for tokens, roll in zip(msg_tokens, msg_shift) |
|
] |
|
msg_tokens = torch.cat(msg_tokens, dim=2).flatten(0, 1) |
|
if guidance is None: |
|
x = torch.cat([msg_tokens, x[:, self.num_msg_tokens :]], dim=1) |
|
else: |
|
x = torch.cat([x[:, :extra_tokens_offset], msg_tokens], dim=1) |
|
|
|
if self.cls_shift is not None: |
|
cls_tokens = x[:, self.patch_token_offset - 1] |
|
cls_tokens = cls_tokens.reshape( |
|
-1, self.num_frames, 1, *cls_tokens.shape[1:] |
|
) |
|
cls_tokens = torch.roll(cls_tokens, self.cls_shift[idx], dims=1) |
|
x = torch.cat( |
|
[ |
|
x[:, : self.patch_token_offset - 1], |
|
cls_tokens.flatten(0, 1), |
|
x[:, self.patch_token_offset :], |
|
], |
|
dim=1, |
|
) |
|
|
|
x = self.norm(x) |
|
|
|
outputs = {} |
|
outputs["attention_maps"] = torch.cat(attn_maps, dim=1).reshape( |
|
B, -1, H * W, H, W |
|
) |
|
if self._out_features: |
|
outputs["last_feat"] = ( |
|
x[:, self.patch_token_offset : extra_tokens_offset] |
|
.reshape(B, H, W, -1) |
|
.permute(0, 3, 1, 2) |
|
) |
|
|
|
return outputs |
|
|
|
|
|
def vit_tiny(**kwargs): |
|
model = ViT( |
|
patch_size=16, |
|
embed_dim=192, |
|
depth=12, |
|
num_heads=3, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def vit_small(**kwargs): |
|
model = ViT( |
|
patch_size=16, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def vit_base(**kwargs): |
|
model = ViT( |
|
patch_size=16, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def dinov2_base(**kwargs): |
|
model = ViT( |
|
patch_size=14, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
pretrain_img_size=518, |
|
init_values=1, |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def dinov2_small(**kwargs): |
|
model = ViT( |
|
patch_size=14, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
mlp_ratio=4, |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
pretrain_img_size=518, |
|
init_values=1, |
|
**kwargs |
|
) |
|
return model |
|
|
|
|
|
def build_backbone( |
|
name: Literal["tiny", "small", "base", "dinov2_base", "dinov2_small"], **kwargs |
|
): |
|
vit_dict = { |
|
"tiny": vit_tiny, |
|
"small": vit_small, |
|
"base": vit_base, |
|
"dinov2_base": dinov2_base, |
|
"dinov2_small": dinov2_small, |
|
} |
|
return vit_dict[name](**kwargs) |
|
|