File size: 5,463 Bytes
f9561b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Union, Iterable, Tuple
import numpy as np
import torch
import cv2
from sklearn.metrics import roc_auc_score
from sklearn.metrics import average_precision_score


def auc(heatmap, onehot_im, is_im=True):
    if is_im:
        auc_score = roc_auc_score(
            np.reshape(onehot_im, onehot_im.size), np.reshape(heatmap, heatmap.size)
        )
    else:
        auc_score = roc_auc_score(onehot_im, heatmap)
    return auc_score


def ap(label, pred):
    return average_precision_score(label, pred)


def argmax_pts(heatmap):
    idx = np.unravel_index(heatmap.argmax(), heatmap.shape)
    pred_y, pred_x = map(float, idx)
    return pred_x, pred_y


def L2_dist(p1, p2):
    return np.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)


def multi_hot_targets(gaze_pts, out_res):
    w, h = out_res
    target_map = np.zeros((h, w))
    for p in gaze_pts:
        if p[0] >= 0:
            x, y = map(int, [p[0] * w.float(), p[1] * h.float()])
            x = min(x, w - 1)
            y = min(y, h - 1)
            target_map[y, x] = 1
    return target_map


def inverse_transform(tensor: torch.Tensor) -> np.ndarray:
    tensor = tensor.detach().cpu().permute(0, 2, 3, 1)
    mean = torch.tensor([0.485, 0.456, 0.406])
    std = torch.tensor([0.229, 0.224, 0.225])
    tensor = tensor * std + mean
    return cv2.cvtColor((tensor.numpy() * 255).astype(np.uint8)[0], cv2.COLOR_RGB2BGR)


def draw(data, heatmap, out_path, on_img=True):
    img = inverse_transform(data["images"])
    head_channel = cv2.applyColorMap(
        (data["head_channels"].squeeze().detach().cpu().numpy() * 255).astype(np.uint8),
        cv2.COLORMAP_BONE,
    )
    hm = cv2.applyColorMap((heatmap * 255).astype(np.uint8), cv2.COLORMAP_JET)
    heatmap = hm
    heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
    if on_img:
        img = cv2.addWeighted(img, 1, heatmap, 0.5, 1)
    else:
        img = heatmap
    # img = cv2.addWeighted(img, 1, head_channel, 0.1, 1)
    cv2.imwrite(out_path, img)


def draw_origin_img(data, out_path):
    img = inverse_transform(data["images"])
    hm = cv2.applyColorMap(
        (data["heatmaps"].squeeze().detach().cpu().numpy() * 255).astype(np.uint8),
        cv2.COLORMAP_JET,
    )
    hm[data["heatmaps"].squeeze().detach().cpu().numpy() == 0] = 0
    hm = cv2.resize(hm, (img.shape[1], img.shape[0]))
    head_channel = cv2.applyColorMap(
        (data["head_channels"].squeeze().detach().cpu().numpy() * 255).astype(np.uint8),
        cv2.COLORMAP_BONE,
    )
    head_channel[data["head_channels"].squeeze().detach().cpu().numpy() < 0.1] = 0
    hm = cv2.resize(hm, (img.shape[1], img.shape[0]))
    ori = cv2.addWeighted(img, 1, hm, 0.5, 1)
    ori = cv2.addWeighted(ori, 1, head_channel, 0.1, 1)
    cv2.imwrite(out_path, ori)


class __Image2MP4:
    def __init__(self):
        self.Fourcc = cv2.VideoWriter_fourcc(*"mp4v")

    def __call__(
        self,
        frames: Union[Iterable[np.ndarray], str],
        path: str,
        fps: float = 30.0,
        isize: Tuple[int, int] = None,
    ):
        if isinstance(frames, str):  # directory of img files
            from os import listdir, path as osp

            imgs = sorted(listdir(frames))
            frames = [
                cv2.imread(osp.join(frames, img), cv2.IMREAD_COLOR) for img in imgs
            ]

        if isize is None:
            isize = (frames[0].shape[1], frames[0].shape[0])

        output_video = cv2.VideoWriter(path, self.Fourcc, fps, isize)
        for frame in frames:
            frame = cv2.resize(frame, isize)
            output_video.write(frame)
        output_video.release()


img2mp4 = __Image2MP4()


def dark_inference(heatmap: np.ndarray, gaussian_kernel: int = 39):
    pred_x, pred_y = argmax_pts(heatmap)
    pred_x, pred_y = int(pred_x), int(pred_y)
    height, width = heatmap.shape[-2:]
    # Gaussian blur
    orig_max = heatmap.max()
    border = (gaussian_kernel - 1) // 2
    dr = np.zeros((height + 2 * border, width + 2 * border))
    dr[border:-border, border:-border] = heatmap.copy()
    dr = cv2.GaussianBlur(dr, (gaussian_kernel, gaussian_kernel), 0)
    heatmap = dr[border:-border, border:-border].copy()
    heatmap *= orig_max / np.max(heatmap)
    # Log-likelihood
    heatmap = np.maximum(heatmap, 1e-10)
    heatmap = np.log(heatmap)
    # DARK
    if 1 < pred_x < width - 2 and 1 < pred_y < height - 2:
        dx = 0.5 * (heatmap[pred_y][pred_x + 1] - heatmap[pred_y][pred_x - 1])
        dy = 0.5 * (heatmap[pred_y + 1][pred_x] - heatmap[pred_y - 1][pred_x])
        dxx = 0.25 * (
            heatmap[pred_y][pred_x + 2]
            - 2 * heatmap[pred_y][pred_x]
            + heatmap[pred_y][pred_x - 2]
        )
        dxy = 0.25 * (
            heatmap[pred_y + 1][pred_x + 1]
            - heatmap[pred_y - 1][pred_x + 1]
            - heatmap[pred_y + 1][pred_x - 1]
            + heatmap[pred_y - 1][pred_x - 1]
        )
        dyy = 0.25 * (
            heatmap[pred_y + 2][pred_x]
            - 2 * heatmap[pred_y][pred_x]
            + heatmap[pred_y - 2][pred_x]
        )
        derivative = np.matrix([[dx],[dy]])
        hessian = np.matrix([[dxx,dxy],[dxy,dyy]])
        if dxx * dyy - dxy ** 2 != 0:
            hessianinv = hessian.I
            offset = -hessianinv * derivative
            offset_x, offset_y = np.squeeze(np.array(offset.T), axis=0)
            pred_x += offset_x
            pred_y += offset_y
    return pred_x, pred_y