import transformers from transformers import TextStreamer import torch from transformers.generation.streamers import BaseStreamer class TokenStreamer(BaseStreamer): """ Simple token streamer that prints each token with its corresponding layers used. Parameters: tokenizer (`AutoTokenizer`): The tokenizer used to decode the tokens. skip_prompt (`bool`, *optional*, defaults to `False`): Whether to skip the prompt tokens in the output. Useful for chatbots. """ def __init__(self, tokenizer, skip_prompt=True): self.tokenizer = tokenizer self.skip_prompt = skip_prompt self.next_tokens_are_prompt = True def put(self, value): """ Receives tokens and prints each one surrounded by brackets. """ if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TokenStreamer only supports batch size 1") elif len(value.shape) > 1: value = value[0] if self.skip_prompt and self.next_tokens_are_prompt: self.next_tokens_are_prompt = False return # Process each token in the received tensor for token_id in value.tolist(): token_text = self.tokenizer.decode([token_id]) print(f"={repr(token_text)}", end="\n", flush=True) def end(self): """Prints a newline at the end of generation.""" self.next_tokens_are_prompt = True print() # Print a newline at the end # model path model_id = "./" # tokenizer tokenizer = transformers.AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", trust_remote_code=True) model = transformers.AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", trust_remote_code=True ) messages = [ {"role": "user", "content": \ """ Jan has three times the number of pets as Marcia. Marcia has two more pets than Cindy. If Cindy has four pets, how many total pets do the three have? """}, ] terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] streamer = TokenStreamer(tokenizer) outputs = pipeline( messages, max_new_tokens=512, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=1.0, streamer=streamer, )