--- library_name: transformers language: - id license: mit base_model: pyannote/speaker-diarization-3.1 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - speaker-segmentation model-index: - name: speaker-segmentation-fine-tuned-datasetID-hugging_2_4_updated_02 results: [] --- # speaker-segmentation-fine-tuned-datasetID-hugging_2_4_updated_02 This model is a fine-tuned version of [pyannote/speaker-diarization-3.1](https://huggingface.co/pyannote/speaker-diarization-3.1) on the speaker-segmentation dataset. It achieves the following results on the evaluation set: - Loss: 0.4274 - Model Preparation Time: 0.0065 - Der: 0.1421 - False Alarm: 0.0214 - Missed Detection: 0.0105 - Confusion: 0.1102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 64 - seed: 100 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.15 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5722 | 1.0 | 285 | 0.5763 | 0.0065 | 0.1903 | 0.0275 | 0.0158 | 0.1470 | | 0.5001 | 2.0 | 570 | 0.5077 | 0.0065 | 0.1685 | 0.0240 | 0.0125 | 0.1319 | | 0.4846 | 3.0 | 855 | 0.4810 | 0.0065 | 0.1604 | 0.0221 | 0.0121 | 0.1261 | | 0.4441 | 4.0 | 1140 | 0.4686 | 0.0065 | 0.1577 | 0.0220 | 0.0111 | 0.1245 | | 0.447 | 5.0 | 1425 | 0.4477 | 0.0065 | 0.1494 | 0.0216 | 0.0110 | 0.1168 | | 0.4265 | 6.0 | 1710 | 0.4408 | 0.0065 | 0.1458 | 0.0217 | 0.0106 | 0.1135 | | 0.428 | 7.0 | 1995 | 0.4311 | 0.0065 | 0.1433 | 0.0215 | 0.0105 | 0.1114 | | 0.4047 | 8.0 | 2280 | 0.4291 | 0.0065 | 0.1429 | 0.0214 | 0.0105 | 0.1109 | | 0.4069 | 9.0 | 2565 | 0.4280 | 0.0065 | 0.1422 | 0.0214 | 0.0105 | 0.1103 | | 0.4133 | 10.0 | 2850 | 0.4274 | 0.0065 | 0.1421 | 0.0214 | 0.0105 | 0.1102 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1