--- license: other library_name: peft tags: - generated_from_trainer base_model: NousResearch/Meta-Llama-3-70B model-index: - name: out/qlora-llama3-70b results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: NousResearch/Meta-Llama-3-70B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Doctor-Shotgun/no-robots-sharegpt type: sharegpt dataset_prepared_path: val_set_size: 0.05 output_dir: ./out/qlora-llama3-70b adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false lora_r: 64 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: false fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|end_of_text|> ```

# out/qlora-llama3-70b This model is a fine-tuned version of [NousResearch/Meta-Llama-3-70B](https://huggingface.co/NousResearch/Meta-Llama-3-70B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5377 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7144 | 0.02 | 1 | 1.8096 | | 1.6886 | 0.25 | 12 | 1.5367 | | 1.6174 | 0.49 | 24 | 1.5176 | | 1.5848 | 0.74 | 36 | 1.5054 | | 1.6542 | 0.98 | 48 | 1.5018 | | 1.572 | 1.21 | 60 | 1.4993 | | 1.5966 | 1.45 | 72 | 1.5007 | | 1.5643 | 1.7 | 84 | 1.4981 | | 1.6312 | 1.94 | 96 | 1.4980 | | 1.5311 | 2.16 | 108 | 1.5027 | | 1.519 | 2.41 | 120 | 1.5109 | | 1.4034 | 2.65 | 132 | 1.5165 | | 1.4658 | 2.9 | 144 | 1.5187 | | 1.5434 | 3.11 | 156 | 1.5264 | | 1.4608 | 3.35 | 168 | 1.5364 | | 1.4529 | 3.6 | 180 | 1.5377 | | 1.3893 | 3.85 | 192 | 1.5377 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0.dev0 - Pytorch 2.2.1 - Datasets 2.15.0 - Tokenizers 0.15.0