--- language: vi tags: - spam-detection - vietnamese - transformer license: apache-2.0 datasets: - visolex/ViSpamReviews metrics: - accuracy - f1 model-index: - name: visobert-spam-binary results: - task: type: text-classification name: Spam Detection (Binary) dataset: name: ViSpamReviews type: custom metrics: - name: Accuracy type: accuracy value: - name: F1 Score type: f1 value: base_model: - uitnlp/visobert pipeline_tag: text-classification --- # ViSoBERT-Spam-Binary Fine-tuned from [`uitnlp/visobert`](https://huggingface.co/uitnlp/visobert) on **ViSpamReviews** for **binary** spam detection. * **Task**: Binary classification (`Label`: 0 = non-spam, 1 = spam) * **Dataset**: [ViSpamReviews](https://huggingface.co/datasets/visolex/ViSpamReviews) * **Hyperparameters** * Batch size: 32 * LR: 3e-5 * Epochs: 100 * Max seq len: 256 ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("visolex/visobert-spam-binary") model = AutoModelForSequenceClassification.from_pretrained("visolex/visobert-spam-binary") text = "Đây là đánh giá tuyệt vời!" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) pred = model(**inputs).logits.argmax(dim=-1).item() print("Spam" if pred==1 else "Non-spam") ```