File size: 26,403 Bytes
f5943d1 05d640e 3967d78 8ef2cad 3967d78 05d640e f5943d1 05d640e 8ef2cad 05d640e f5943d1 1ad313c 05d640e 8ef2cad 1ad313c 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 8ef2cad d8914b8 05d640e f5943d1 05d640e 8ef2cad f5943d1 05d640e f5943d1 8ef2cad 1ad313c 8ef2cad 05d640e 8ef2cad 05d640e f5943d1 05d640e f5943d1 8ef2cad f5943d1 05d640e f5943d1 05d640e f5943d1 8ef2cad f5943d1 05d640e 6214f6c 05d640e 8ef2cad 05d640e 8ef2cad f5943d1 1ad313c 8ef2cad 05d640e 8ef2cad 05d640e 1ad313c 05d640e f5943d1 05d640e 1ad313c 05d640e 1ad313c f5943d1 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 1ad313c 05d640e 8ef2cad 05d640e 3967d78 05d640e 1ad313c 3967d78 05d640e 3967d78 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 3967d78 05d640e 1ad313c 05d640e 8ef2cad 05d640e f5943d1 05d640e 8ef2cad 05d640e 1ad313c f5943d1 05d640e 8ef2cad 05d640e 1ad313c 05d640e f5943d1 05d640e c064b4c 05d640e c064b4c 05d640e 1ad313c c064b4c 05d640e 8ef2cad c064b4c 8ef2cad 05d640e 1ad313c 05d640e 1ad313c c064b4c 05d640e 8ef2cad 05d640e 1ad313c 05d640e 8ef2cad 05d640e 8ef2cad 1ad313c 05d640e 8ef2cad 05d640e c064b4c 05d640e 1ad313c 05d640e 8ef2cad 05d640e c064b4c 05d640e 8ef2cad 05d640e c064b4c 05d640e c064b4c 05d640e 1ad313c 05d640e 1ad313c 05d640e 1ad313c 05d640e 1ad313c 05d640e 8ef2cad 05d640e c064b4c 05d640e 8ef2cad 05d640e c064b4c 05d640e c064b4c 1ad313c 05d640e c064b4c 1ad313c 05d640e 1ad313c 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 8ef2cad 05d640e 1ad313c 05d640e c064b4c 05d640e 3967d78 05d640e 8ef2cad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
import torch
import torch.nn as nn
import random
from typing import Literal, Tuple, TypedDict, Union, Dict, Any, Optional, List
from PIL import Image
from dataclasses import dataclass
from tokenizers import Tokenizer
from .config import MoondreamConfig
from .image_crops import reconstruct_from_crops
from .vision import vision_encoder, vision_projection, prepare_crops, build_vision_model
from .text import build_text_model, text_encoder, lm_head, text_decoder
from .region import decode_coordinate, encode_coordinate, decode_size, encode_size
from .utils import remove_outlier_points
TextSamplingSettings = TypedDict(
"TextSamplingSettings",
{
"max_tokens": int,
"temperature": float,
"top_p": float,
},
total=False,
)
ObjectSamplingSettings = TypedDict(
"ObjectSamplingSettings",
{"max_objects": int},
total=False,
)
DEFAULT_MAX_TOKENS = 768
DEFAULT_TEMPERATURE = 0.5
DEFAULT_TOP_P = 0.3
DEFAULT_MAX_OBJECTS = 50
@dataclass(frozen=True)
class EncodedImage:
pos: int
caches: List[Tuple[torch.Tensor, torch.Tensor]]
class KVCache(nn.Module):
def __init__(self, n_heads, n_kv_heads, max_context, dim, device, dtype):
super().__init__()
cache_shape = (1, n_kv_heads, max_context, dim // n_heads)
self.register_buffer(
"k_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
)
self.register_buffer(
"v_cache", torch.zeros(*cache_shape, device=device, dtype=dtype)
)
def update(self, pos_ids, k, v):
kout, vout = self.k_cache, self.v_cache
kout[:, :, pos_ids, :] = k
vout[:, :, pos_ids, :] = v
return kout, vout
class MoondreamModel(nn.Module):
def __init__(self, config: MoondreamConfig, dtype=torch.float16, setup_caches=True):
super().__init__()
self.config = config
self.tokenizer = Tokenizer.from_pretrained(
"vikhyatk/moondream2", revision="2025-01-09"
)
self.vision = build_vision_model(config.vision, dtype)
self.text = build_text_model(config.text, dtype)
# Region Model
self.region = nn.ModuleDict(
{
"coord_encoder": nn.Linear(
config.region.coord_feat_dim, config.region.dim, dtype=dtype
),
"coord_decoder": nn.ModuleDict(
{
"fc1": nn.Linear(
config.region.dim, config.region.inner_dim, dtype=dtype
),
"fc2": nn.Linear(
config.region.inner_dim,
config.region.coord_out_dim,
dtype=dtype,
),
}
),
"size_encoder": nn.Linear(
config.region.size_feat_dim, config.region.dim, dtype=dtype
),
"size_decoder": nn.ModuleDict(
{
"fc1": nn.Linear(
config.region.dim, config.region.inner_dim, dtype=dtype
),
"fc2": nn.Linear(
config.region.inner_dim,
config.region.size_out_dim,
dtype=dtype,
),
}
),
}
)
self.region.coord_features = nn.Parameter(
torch.empty(config.region.coord_feat_dim // 2, 1, dtype=dtype).T
)
self.region.size_features = nn.Parameter(
torch.empty(config.region.size_feat_dim // 2, 2, dtype=dtype).T
)
attn_mask = torch.tril(
torch.ones(
1, 1, config.text.max_context, config.text.max_context, dtype=torch.bool
)
)
patch_w = config.vision.crop_size // config.vision.enc_patch_size
prefix_attn_len = 1 + patch_w**2
attn_mask[..., :prefix_attn_len, :prefix_attn_len] = 1
self.register_buffer("attn_mask", attn_mask, persistent=False)
# Initialize KV caches.
if setup_caches:
self._setup_caches()
def _setup_caches(self):
c = self.config.text
for b in self.text.blocks:
b.kv_cache = KVCache(
c.n_heads,
c.n_kv_heads,
c.max_context,
c.dim,
device=self.device,
dtype=self.vision.pos_emb.dtype,
)
@property
def device(self):
return self.vision.pos_emb.device
def _vis_enc(self, x: torch.Tensor):
return vision_encoder(x, self.vision, self.config.vision)
def _vis_proj(self, g: torch.Tensor, r: torch.Tensor):
return vision_projection(g, r, self.vision, self.config.vision)
def _prefill(self, x: torch.Tensor, attn_mask: torch.Tensor, pos_ids: torch.Tensor):
return text_decoder(x, self.text, attn_mask, pos_ids, self.config.text)
def _decode_one_tok(
self, x: torch.Tensor, attn_mask: torch.Tensor, pos_ids: torch.Tensor
):
hidden = text_decoder(x, self.text, attn_mask, pos_ids, self.config.text)
logits = lm_head(hidden, self.text)
return logits, hidden
def compile(self):
# TODO: vision_projection is not being compiled
self._vis_enc = torch.compile(self._vis_enc, fullgraph=True)
self._prefill = torch.compile(self._prefill, fullgraph=True)
self._decode_one_tok = torch.compile(
self._decode_one_tok, fullgraph=True, mode="reduce-overhead"
)
def _run_vision_encoder(self, image: Image.Image) -> torch.Tensor:
all_crops, tiling = prepare_crops(image, self.config.vision, device=self.device)
torch._dynamo.mark_dynamic(all_crops, 0)
outputs = self._vis_enc(all_crops)
global_features = outputs[0]
local_features = outputs[1:].view(
-1,
self.config.vision.enc_n_layers,
self.config.vision.enc_n_layers,
self.config.vision.enc_dim,
)
reconstructed = reconstruct_from_crops(
local_features,
tiling,
patch_size=1,
overlap_margin=self.config.vision.overlap_margin,
)
return self._vis_proj(global_features, reconstructed)
def encode_image(self, image: Union[Image.Image, EncodedImage]) -> EncodedImage:
if isinstance(image, EncodedImage):
return image
elif not isinstance(image, Image.Image):
raise ValueError("image must be a PIL Image or EncodedImage")
# Run through text model in addition to the vision encoder, to minimize
# re-computation if multiple queries are performed on this image.
with torch.inference_mode():
img_emb = self._run_vision_encoder(image)
bos_emb = text_encoder(
torch.tensor([[self.config.tokenizer.bos_id]], device=self.device),
self.text,
)
inputs_embeds = torch.cat([bos_emb, img_emb[None]], dim=1)
mask = self.attn_mask[:, :, 0 : inputs_embeds.size(1), :]
pos_ids = torch.arange(inputs_embeds.size(1), dtype=torch.long)
self._prefill(inputs_embeds, mask, pos_ids)
return EncodedImage(
pos=inputs_embeds.size(1),
caches=[
(
b.kv_cache.k_cache[:, :, : inputs_embeds.size(1), :].clone(),
b.kv_cache.v_cache[:, :, : inputs_embeds.size(1), :].clone(),
)
for b in self.text.blocks
],
)
def _apply_top_p(self, probs: torch.Tensor, top_p: float):
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
probs_sum = torch.cumsum(probs_sort, dim=-1)
mask = probs_sum - probs_sort > top_p
probs_sort[mask] = 0.0
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
next_probs = torch.zeros_like(probs)
next_probs.scatter_(dim=-1, index=probs_idx, src=probs_sort)
return next_probs
def _prefill_prompt(
self, prompt_tokens: torch.Tensor, pos: int, temperature: float, top_p: float
):
with torch.inference_mode():
prompt_emb = text_encoder(prompt_tokens, self.text)
torch._dynamo.mark_dynamic(prompt_emb, 1)
mask = self.attn_mask[:, :, pos : pos + prompt_emb.size(1), :]
pos_ids = torch.arange(pos, pos + prompt_emb.size(1), dtype=torch.long)
hidden = self._prefill(prompt_emb, mask, pos_ids)
logits = lm_head(hidden, self.text)
if temperature == 0:
next_token = torch.argmax(logits, dim=-1).unsqueeze(1)
else:
probs = torch.softmax(logits / temperature, dim=-1)
probs = self._apply_top_p(probs, top_p)
next_token = torch.multinomial(probs, num_samples=1)
pos = pos + prompt_emb.size(1)
return logits, hidden, next_token, pos
def _generate_text(
self,
prompt_tokens: torch.Tensor,
pos: int,
settings: Optional[TextSamplingSettings] = None,
):
max_tokens = (
settings.get("max_tokens", DEFAULT_MAX_TOKENS)
if settings
else DEFAULT_MAX_TOKENS
)
temperature = (
settings.get("temperature", DEFAULT_TEMPERATURE)
if settings
else DEFAULT_TEMPERATURE
)
top_p = settings.get("top_p", DEFAULT_TOP_P) if settings else DEFAULT_TOP_P
_, _, next_token, pos = self._prefill_prompt(
prompt_tokens, pos, temperature, top_p
)
def generator(next_token, pos):
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
mask[:, :, :pos] = 1
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
generated_tokens = 0
# For properly handling token streaming with Unicode
token_cache = []
print_len = 0
while (
next_token_id := next_token.item()
) != self.config.tokenizer.eos_id and generated_tokens < max_tokens:
# Add token to our cache
token_cache.append(next_token_id)
# Decode all tokens collected so far
text = self.tokenizer.decode(token_cache)
# After a newline, we flush the cache completely
if text.endswith("\n"):
printable_text = text[print_len:]
token_cache = []
print_len = 0
if printable_text:
yield printable_text
# If the last token is a CJK character, we can safely print it
elif len(text) > 0 and _is_cjk_char(ord(text[-1])):
printable_text = text[print_len:]
print_len += len(printable_text)
if printable_text:
yield printable_text
# Otherwise, only print up to the last space to avoid cutting words
else:
last_space_idx = text.rfind(" ", print_len)
if last_space_idx >= print_len:
printable_text = text[print_len : last_space_idx + 1]
print_len += len(printable_text)
if printable_text:
yield printable_text
with torch.inference_mode():
next_emb = text_encoder(next_token, self.text)
mask[:, :, pos], pos_ids[0] = 1, pos
logits, _ = self._decode_one_tok(next_emb, mask, pos_ids)
pos += 1
if temperature == 0:
next_token = torch.argmax(logits, dim=-1).unsqueeze(1) # (1, 1)
else:
probs = torch.softmax(logits / temperature, dim=-1) # (1, V)
probs = self._apply_top_p(probs, top_p)
next_token = torch.multinomial(probs, num_samples=1) # (1, 1)
generated_tokens += 1
# Flush any remaining text in the cache
if token_cache:
text = self.tokenizer.decode(token_cache)
printable_text = text[print_len:]
if printable_text:
yield printable_text
return generator(next_token, pos)
def query(
self,
image: Union[Image.Image, EncodedImage],
question: str,
stream: bool = False,
settings: Optional[TextSamplingSettings] = None,
):
if self.config.tokenizer.templates["query"] is None:
raise NotImplementedError("Model does not support querying.")
image = self.encode_image(image)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["query"]["prefix"]
+ self.tokenizer.encode(" " + question).ids
+ self.config.tokenizer.templates["query"]["suffix"]
],
device=self.device,
)
def generator():
for token in self._generate_text(prompt_tokens, image.pos, settings):
yield token
if stream:
return {"answer": generator()}
else:
return {"answer": "".join(list(generator()))}
def load_encoded_image(self, encoded_image: EncodedImage):
for b, (k, v) in zip(self.text.blocks, encoded_image.caches):
b.kv_cache.k_cache[:, :, : k.size(2), :] = k
b.kv_cache.v_cache[:, :, : v.size(2), :] = v
def caption(
self,
image: Union[Image.Image, EncodedImage],
length: Literal["normal", "short", "long"] = "normal",
stream: bool = False,
settings: Optional[TextSamplingSettings] = None,
):
if self.config.tokenizer.templates["caption"] is None:
raise NotImplementedError("Model does not support captioning.")
if length not in self.config.tokenizer.templates["caption"]:
raise ValueError(f"Model does not support caption length '{length}'.")
image = self.encode_image(image)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[self.config.tokenizer.templates["caption"][length]], device=self.device
)
def generator():
for token in self._generate_text(prompt_tokens, image.pos, settings):
yield token
if stream:
return {"caption": generator()}
else:
return {"caption": "".join(list(generator()))}
def _generate_points(
self,
hidden: torch.Tensor,
next_token: torch.Tensor,
pos: int,
include_size: bool = True,
max_objects: int = DEFAULT_MAX_OBJECTS,
):
out = []
mask = torch.zeros(1, 1, 2048, device=self.device, dtype=torch.bool)
mask[:, :, :pos] = 1
pos_ids = torch.tensor([pos], device=self.device, dtype=torch.long)
with torch.inference_mode():
while (
next_token.item() != self.config.tokenizer.eos_id
and len(out) < max_objects
):
x_logits = decode_coordinate(hidden, self.region)
x_center = torch.argmax(x_logits, dim=-1) / x_logits.size(-1)
next_emb = encode_coordinate(
x_center.to(dtype=x_logits.dtype), self.region
).unsqueeze(0)
# Decode y-coordinate
mask[:, :, pos], pos_ids[0] = 1, pos
_, hidden = self._decode_one_tok(next_emb, mask, pos_ids)
pos += 1
y_logits = decode_coordinate(hidden, self.region)
y_center = torch.argmax(y_logits, dim=-1) / y_logits.size(-1)
next_emb = encode_coordinate(
y_center.to(dtype=y_logits.dtype), self.region
).unsqueeze(0)
# Decode size
if include_size:
mask[:, :, pos], pos_ids[0] = 1, pos
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids)
pos += 1
size_logits = decode_size(hidden, self.region)
# Get bin indices from the logits
w_bin = torch.argmax(size_logits[0], dim=-1)
h_bin = torch.argmax(size_logits[1], dim=-1)
# Convert from bin indices to actual size values using the inverse of the log-scale mapping
# Formula: size = 2^((bin / 1023.0) * 10.0 - 10.0)
w = torch.pow(2.0, (w_bin.float() / 1023.0) * 10.0 - 10.0)
h = torch.pow(2.0, (h_bin.float() / 1023.0) * 10.0 - 10.0)
next_emb = (
encode_size(
torch.tensor(
[w, h], device=self.device, dtype=size_logits.dtype
),
self.region,
)
.unsqueeze(0)
.unsqueeze(0)
)
# Add object
out.append(
{
"x_min": x_center.item() - w.item() / 2,
"y_min": y_center.item() - h.item() / 2,
"x_max": x_center.item() + w.item() / 2,
"y_max": y_center.item() + h.item() / 2,
}
)
else:
out.append({"x": x_center.item(), "y": y_center.item()})
# Decode next token (x-coordinate, or eos)
mask[:, :, pos], pos_ids[0] = 1, pos
logits, hidden = self._decode_one_tok(next_emb, mask, pos_ids)
pos += 1
next_token = torch.argmax(logits, dim=-1)
return out
def detect(
self,
image: Union[Image.Image, EncodedImage],
object: str,
settings: Optional[ObjectSamplingSettings] = None,
):
if self.config.tokenizer.templates["detect"] is None:
raise NotImplementedError("Model does not support object detection.")
image = self.encode_image(image)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["detect"]["prefix"]
+ self.tokenizer.encode(" " + object).ids
+ self.config.tokenizer.templates["detect"]["suffix"]
],
device=self.device,
)
_, hidden, next_token, pos = self._prefill_prompt(
prompt_tokens, image.pos, temperature=0, top_p=0
)
hidden = hidden[:, -1:, :]
max_objects = (
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
if settings
else DEFAULT_MAX_OBJECTS
)
objects = self._generate_points(
hidden, next_token, pos, include_size=True, max_objects=max_objects
)
return {"objects": objects}
def point(
self,
image: Union[Image.Image, EncodedImage],
object: str,
settings: Optional[ObjectSamplingSettings] = None,
):
if self.config.tokenizer.templates["point"] is None:
raise NotImplementedError("Model does not support pointing.")
image = self.encode_image(image)
self.load_encoded_image(image)
prompt_tokens = torch.tensor(
[
self.config.tokenizer.templates["point"]["prefix"]
+ self.tokenizer.encode(" " + object).ids
+ self.config.tokenizer.templates["point"]["suffix"]
],
device=self.device,
)
_, hidden, next_token, pos = self._prefill_prompt(
prompt_tokens, image.pos, temperature=0, top_p=0
)
hidden = hidden[:, -1:, :]
max_objects = (
settings.get("max_objects", DEFAULT_MAX_OBJECTS)
if settings
else DEFAULT_MAX_OBJECTS
)
objects = self._generate_points(
hidden, next_token, pos, include_size=False, max_objects=max_objects
)
return {"points": objects}
def _detect_gaze(
self,
image: EncodedImage,
source: Tuple[float, float],
force_detect: bool = False,
):
with torch.inference_mode():
before_emb = text_encoder(
torch.tensor(
[self.tokenizer.encode("\n\nPoint:").ids], device=self.device
),
self.text,
)
after_emb = text_encoder(
torch.tensor(
[self.tokenizer.encode(" gaze\n\n").ids], device=self.device
),
self.text,
)
x_emb = encode_coordinate(
torch.tensor([[[source[0]]]], device=self.device, dtype=torch.float16),
self.region,
)
y_emb = encode_coordinate(
torch.tensor([[[source[1]]]], device=self.device, dtype=torch.float16),
self.region,
)
prompt_emb = torch.cat([before_emb, x_emb, y_emb, after_emb], dim=1)
self.load_encoded_image(image)
mask = self.attn_mask[:, :, image.pos : image.pos + prompt_emb.size(1), :]
pos_ids = torch.arange(
image.pos, image.pos + prompt_emb.size(1), dtype=torch.long
)
hidden = self._prefill(prompt_emb, mask, pos_ids)
logits = lm_head(hidden, self.text)
next_token = torch.argmax(logits, dim=-1)
pos = image.pos + prompt_emb.size(1)
hidden = hidden[:, -1:, :]
if force_detect:
next_token = torch.tensor([[0]], device=self.device)
if next_token.item() == self.config.tokenizer.eos_id:
return None
gaze = self._generate_points(
hidden, next_token, pos, include_size=False, max_objects=1
)
return gaze[0]
def detect_gaze(
self,
image: Union[Image.Image, EncodedImage],
eye: Optional[Tuple[float, float]] = None,
face: Optional[Dict[str, float]] = None,
unstable_settings: Dict[str, Any] = {},
):
if "force_detect" in unstable_settings:
force_detect = unstable_settings["force_detect"]
else:
force_detect = False
if "prioritize_accuracy" in unstable_settings:
prioritize_accuracy = unstable_settings["prioritize_accuracy"]
else:
prioritize_accuracy = False
if not prioritize_accuracy:
if eye is None:
raise ValueError("eye must be provided when prioritize_accuracy=False")
image = self.encode_image(image)
return {"gaze": self._detect_gaze(image, eye, force_detect=force_detect)}
else:
if (
not isinstance(image, Image.Image)
and "flip_enc_img" not in unstable_settings
):
raise ValueError(
"image must be a PIL Image when prioritize_accuracy=True, "
"or flip_enc_img must be provided"
)
if face is None:
raise ValueError("face must be provided when prioritize_accuracy=True")
encoded_image = self.encode_image(image)
if (
isinstance(image, Image.Image)
and "flip_enc_img" not in unstable_settings
):
flipped_pil = image.copy()
flipped_pil = flipped_pil.transpose(method=Image.FLIP_LEFT_RIGHT)
encoded_flipped_image = self.encode_image(flipped_pil)
else:
encoded_flipped_image = unstable_settings["flip_enc_img"]
N = 10
detections = [
self._detect_gaze(
encoded_image,
(
random.uniform(face["x_min"], face["x_max"]),
random.uniform(face["y_min"], face["y_max"]),
),
force_detect=force_detect,
)
for _ in range(N)
]
detections = [
(gaze["x"], gaze["y"]) for gaze in detections if gaze is not None
]
flipped_detections = [
self._detect_gaze(
encoded_flipped_image,
(
1 - random.uniform(face["x_min"], face["x_max"]),
random.uniform(face["y_min"], face["y_max"]),
),
force_detect=force_detect,
)
for _ in range(N)
]
detections.extend(
[
(1 - gaze["x"], gaze["y"])
for gaze in flipped_detections
if gaze is not None
]
)
if len(detections) < N:
return {"gaze": None}
detections = remove_outlier_points(detections)
mean_gaze = (
sum(gaze[0] for gaze in detections) / len(detections),
sum(gaze[1] for gaze in detections) / len(detections),
)
return {"gaze": {"x": mean_gaze[0], "y": mean_gaze[1]}}
def _is_cjk_char(cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF)
or (cp >= 0x2F800 and cp <= 0x2FA1F)
):
return True
return False
|