unboundedmarket commited on
Commit
eac1103
·
verified ·
1 Parent(s): 67db6de

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +160 -0
  2. adapter_config.json +37 -0
  3. adapter_model.bin +3 -0
  4. checkpoint-203/README.md +202 -0
  5. checkpoint-203/adapter_config.json +37 -0
  6. checkpoint-203/adapter_model.safetensors +3 -0
  7. checkpoint-203/optimizer.pt +3 -0
  8. checkpoint-203/rng_state.pth +3 -0
  9. checkpoint-203/scheduler.pt +3 -0
  10. checkpoint-203/special_tokens_map.json +24 -0
  11. checkpoint-203/tokenizer.model +3 -0
  12. checkpoint-203/tokenizer_config.json +44 -0
  13. checkpoint-203/trainer_state.json +1486 -0
  14. checkpoint-203/training_args.bin +3 -0
  15. checkpoint-406/README.md +202 -0
  16. checkpoint-406/adapter_config.json +37 -0
  17. checkpoint-406/adapter_model.safetensors +3 -0
  18. checkpoint-406/optimizer.pt +3 -0
  19. checkpoint-406/rng_state.pth +3 -0
  20. checkpoint-406/scheduler.pt +3 -0
  21. checkpoint-406/special_tokens_map.json +24 -0
  22. checkpoint-406/tokenizer.model +3 -0
  23. checkpoint-406/tokenizer_config.json +44 -0
  24. checkpoint-406/trainer_state.json +2939 -0
  25. checkpoint-406/training_args.bin +3 -0
  26. checkpoint-609/README.md +202 -0
  27. checkpoint-609/adapter_config.json +37 -0
  28. checkpoint-609/adapter_model.safetensors +3 -0
  29. checkpoint-609/optimizer.pt +3 -0
  30. checkpoint-609/rng_state.pth +3 -0
  31. checkpoint-609/scheduler.pt +3 -0
  32. checkpoint-609/special_tokens_map.json +24 -0
  33. checkpoint-609/tokenizer.model +3 -0
  34. checkpoint-609/tokenizer_config.json +44 -0
  35. checkpoint-609/trainer_state.json +0 -0
  36. checkpoint-609/training_args.bin +3 -0
  37. checkpoint-812/README.md +202 -0
  38. checkpoint-812/adapter_config.json +37 -0
  39. checkpoint-812/adapter_model.safetensors +3 -0
  40. checkpoint-812/optimizer.pt +3 -0
  41. checkpoint-812/rng_state.pth +3 -0
  42. checkpoint-812/scheduler.pt +3 -0
  43. checkpoint-812/special_tokens_map.json +24 -0
  44. checkpoint-812/tokenizer.model +3 -0
  45. checkpoint-812/tokenizer_config.json +44 -0
  46. checkpoint-812/trainer_state.json +0 -0
  47. checkpoint-812/training_args.bin +3 -0
  48. config.json +47 -0
  49. merged/config.json +31 -0
  50. merged/generation_config.json +8 -0
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: openlm-research/open_llama_7b_v2
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - train_dataset.jsonl
9
+ model-index:
10
+ - name: outputs/open_llama_7b_v2_explain_contracts
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
18
+ <details><summary>See axolotl config</summary>
19
+
20
+ axolotl version: `0.6.0`
21
+ ```yaml
22
+ base_model: openlm-research/open_llama_7b_v2
23
+ # optionally might have model_type or tokenizer_type
24
+ model_type: LlamaForCausalLM
25
+ tokenizer_type: LlamaTokenizer
26
+ # Automatically upload checkpoint and final model to HF
27
+ # hub_model_id: username/custom_model_name
28
+
29
+ load_in_8bit: true
30
+ load_in_4bit: false
31
+ strict: false
32
+ push_dataset_to_hub:
33
+ datasets:
34
+ - path: train_dataset.jsonl
35
+ type: alpaca
36
+ dataset_prepared_path:
37
+ val_set_size: 0.1
38
+ adapter: lora
39
+ lora_model_dir:
40
+ sequence_len: 1024
41
+ sample_packing: false
42
+ lora_r: 8
43
+ lora_alpha: 16
44
+ lora_dropout: 0.0
45
+ lora_target_modules:
46
+ - gate_proj
47
+ - down_proj
48
+ - up_proj
49
+ - q_proj
50
+ - v_proj
51
+ - k_proj
52
+ - o_proj
53
+ lora_fan_in_fan_out:
54
+ wandb_project:
55
+ wandb_entity:
56
+ wandb_watch:
57
+ wandb_name:
58
+ wandb_log_model:
59
+ output_dir: ./outputs/open_llama_7b_v2_explain_contracts
60
+ gradient_accumulation_steps: 1
61
+ micro_batch_size: 2
62
+ num_epochs: 4
63
+ optimizer: adamw_bnb_8bit
64
+ torchdistx_path:
65
+ lr_scheduler: cosine
66
+ learning_rate: 0.0002
67
+ train_on_inputs: false
68
+ group_by_length: false
69
+ bf16: false
70
+ fp16: true
71
+ tf32: false
72
+ gradient_checkpointing: true
73
+ early_stopping_patience:
74
+ resume_from_checkpoint:
75
+ local_rank:
76
+ logging_steps: 1
77
+ xformers_attention:
78
+ flash_attention: true
79
+ gptq_groupsize:
80
+ s2_attention:
81
+ gptq_model_v1:
82
+ warmup_steps: 20
83
+ evals_per_epoch: 4
84
+ saves_per_epoch: 1
85
+ debug:
86
+ deepspeed:
87
+ weight_decay: 0.1
88
+ fsdp:
89
+ fsdp_config:
90
+ special_tokens:
91
+ bos_token: "<s>"
92
+ eos_token: "</s>"
93
+ unk_token: "<unk>"
94
+
95
+ ```
96
+
97
+ </details><br>
98
+
99
+ # outputs/open_llama_7b_v2_explain_contracts
100
+
101
+ This model is a fine-tuned version of [openlm-research/open_llama_7b_v2](https://huggingface.co/openlm-research/open_llama_7b_v2) on the train_dataset.jsonl dataset.
102
+ It achieves the following results on the evaluation set:
103
+ - Loss: 0.6394
104
+
105
+ ## Model description
106
+
107
+ More information needed
108
+
109
+ ## Intended uses & limitations
110
+
111
+ More information needed
112
+
113
+ ## Training and evaluation data
114
+
115
+ More information needed
116
+
117
+ ## Training procedure
118
+
119
+ ### Training hyperparameters
120
+
121
+ The following hyperparameters were used during training:
122
+ - learning_rate: 0.0002
123
+ - train_batch_size: 2
124
+ - eval_batch_size: 2
125
+ - seed: 42
126
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
127
+ - lr_scheduler_type: cosine
128
+ - lr_scheduler_warmup_steps: 20
129
+ - num_epochs: 4
130
+ - mixed_precision_training: Native AMP
131
+
132
+ ### Training results
133
+
134
+ | Training Loss | Epoch | Step | Validation Loss |
135
+ |:-------------:|:------:|:----:|:---------------:|
136
+ | 1.0718 | 0.0049 | 1 | 0.9605 |
137
+ | 0.7756 | 0.2512 | 51 | 0.6831 |
138
+ | 0.7316 | 0.5025 | 102 | 0.6300 |
139
+ | 0.5161 | 0.7537 | 153 | 0.5952 |
140
+ | 0.2465 | 1.0049 | 204 | 0.5775 |
141
+ | 0.3408 | 1.2562 | 255 | 0.5715 |
142
+ | 0.5834 | 1.5074 | 306 | 0.5610 |
143
+ | 0.4347 | 1.7586 | 357 | 0.5540 |
144
+ | 0.272 | 2.0099 | 408 | 0.5428 |
145
+ | 0.2509 | 2.2611 | 459 | 0.5885 |
146
+ | 0.2044 | 2.5123 | 510 | 0.5848 |
147
+ | 0.4006 | 2.7635 | 561 | 0.5771 |
148
+ | 0.2471 | 3.0148 | 612 | 0.5739 |
149
+ | 0.0865 | 3.2660 | 663 | 0.6318 |
150
+ | 0.1475 | 3.5172 | 714 | 0.6396 |
151
+ | 0.3631 | 3.7685 | 765 | 0.6394 |
152
+
153
+
154
+ ### Framework versions
155
+
156
+ - PEFT 0.14.0
157
+ - Transformers 4.47.1
158
+ - Pytorch 2.5.1+cu124
159
+ - Datasets 3.1.0
160
+ - Tokenizers 0.21.0
adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_7b_v2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "o_proj",
31
+ "down_proj",
32
+ "gate_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38e60d3476758fa95293b2a3747e66bb16d13999ffc4eaaa3cb60a4d418f866e
3
+ size 80115210
checkpoint-203/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openlm-research/open_llama_7b_v2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-203/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_7b_v2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "o_proj",
31
+ "down_proj",
32
+ "gate_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-203/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4021c85db51eb39453538e4a6e559d95fcf78ae45f521c5de716d83087cba88e
3
+ size 80013120
checkpoint-203/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a5f133bdbe52e7b6f455a3c5d3751e1449afa2b4b2b609f6f7342a6118e4da0
3
+ size 41119636
checkpoint-203/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b3ee827a7a00012c0a116546df467feee35e70376d81a7a85b1a70eb90414d3
3
+ size 14244
checkpoint-203/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:493650b039a9bed7e27fdf9325273123719714152714d719f76287852f98eade
3
+ size 1064
checkpoint-203/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-203/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-203/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "extra_special_tokens": {},
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false,
43
+ "use_fast": true
44
+ }
checkpoint-203/trainer_state.json ADDED
@@ -0,0 +1,1486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 51,
6
+ "global_step": 203,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0049261083743842365,
13
+ "grad_norm": 0.15764524042606354,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.0718,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0049261083743842365,
20
+ "eval_loss": 0.9604623317718506,
21
+ "eval_runtime": 11.0685,
22
+ "eval_samples_per_second": 4.066,
23
+ "eval_steps_per_second": 2.078,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.009852216748768473,
28
+ "grad_norm": 0.17232584953308105,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.0695,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.014778325123152709,
35
+ "grad_norm": 0.17787113785743713,
36
+ "learning_rate": 3e-05,
37
+ "loss": 0.9787,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.019704433497536946,
42
+ "grad_norm": 0.18442076444625854,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.0556,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.024630541871921183,
49
+ "grad_norm": 0.1500977873802185,
50
+ "learning_rate": 5e-05,
51
+ "loss": 0.8182,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.029556650246305417,
56
+ "grad_norm": 0.1790969967842102,
57
+ "learning_rate": 6e-05,
58
+ "loss": 0.8186,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.034482758620689655,
63
+ "grad_norm": 0.17189474403858185,
64
+ "learning_rate": 7e-05,
65
+ "loss": 0.9289,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03940886699507389,
70
+ "grad_norm": 0.21660089492797852,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.1689,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.04433497536945813,
77
+ "grad_norm": 0.202072873711586,
78
+ "learning_rate": 9e-05,
79
+ "loss": 0.8433,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04926108374384237,
84
+ "grad_norm": 0.20105081796646118,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.1257,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.054187192118226604,
91
+ "grad_norm": 0.23838526010513306,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 0.9087,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.059113300492610835,
98
+ "grad_norm": 0.28929364681243896,
99
+ "learning_rate": 0.00012,
100
+ "loss": 1.0844,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.06403940886699508,
105
+ "grad_norm": 0.26252612471580505,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 0.8561,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.06896551724137931,
112
+ "grad_norm": 0.30341705679893494,
113
+ "learning_rate": 0.00014,
114
+ "loss": 0.9649,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.07389162561576355,
119
+ "grad_norm": 0.35611552000045776,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.1053,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.07881773399014778,
126
+ "grad_norm": 0.2868112027645111,
127
+ "learning_rate": 0.00016,
128
+ "loss": 0.7479,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.08374384236453201,
133
+ "grad_norm": 0.3906789720058441,
134
+ "learning_rate": 0.00017,
135
+ "loss": 0.887,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.08866995073891626,
140
+ "grad_norm": 0.34518149495124817,
141
+ "learning_rate": 0.00018,
142
+ "loss": 0.6395,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.09359605911330049,
147
+ "grad_norm": 0.43788307905197144,
148
+ "learning_rate": 0.00019,
149
+ "loss": 0.8385,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.09852216748768473,
154
+ "grad_norm": 0.5314550399780273,
155
+ "learning_rate": 0.0002,
156
+ "loss": 0.8561,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.10344827586206896,
161
+ "grad_norm": 0.5479442477226257,
162
+ "learning_rate": 0.00019999921328248872,
163
+ "loss": 0.9136,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.10837438423645321,
168
+ "grad_norm": 0.46753960847854614,
169
+ "learning_rate": 0.0001999968531423333,
170
+ "loss": 0.8868,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.11330049261083744,
175
+ "grad_norm": 0.5541612505912781,
176
+ "learning_rate": 0.00019999291961666908,
177
+ "loss": 1.0887,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.11822660098522167,
182
+ "grad_norm": 0.5009401440620422,
183
+ "learning_rate": 0.00019998741276738754,
184
+ "loss": 0.7118,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.12315270935960591,
189
+ "grad_norm": 0.5104517936706543,
190
+ "learning_rate": 0.00019998033268113526,
191
+ "loss": 0.8755,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.12807881773399016,
196
+ "grad_norm": 0.46783849596977234,
197
+ "learning_rate": 0.0001999716794693129,
198
+ "loss": 0.745,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.1330049261083744,
203
+ "grad_norm": 0.4237991273403168,
204
+ "learning_rate": 0.00019996145326807313,
205
+ "loss": 0.9907,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.13793103448275862,
210
+ "grad_norm": 0.482265442609787,
211
+ "learning_rate": 0.00019994965423831854,
212
+ "loss": 0.8543,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.14285714285714285,
217
+ "grad_norm": 0.3490796387195587,
218
+ "learning_rate": 0.0001999362825656992,
219
+ "loss": 0.5405,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.1477832512315271,
224
+ "grad_norm": 0.450983464717865,
225
+ "learning_rate": 0.00019992133846060968,
226
+ "loss": 0.7886,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.15270935960591134,
231
+ "grad_norm": 0.46920955181121826,
232
+ "learning_rate": 0.0001999048221581858,
233
+ "loss": 0.7652,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.15763546798029557,
238
+ "grad_norm": 0.4696129858493805,
239
+ "learning_rate": 0.0001998867339183008,
240
+ "loss": 0.8397,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1625615763546798,
245
+ "grad_norm": 0.4254930317401886,
246
+ "learning_rate": 0.00019986707402556145,
247
+ "loss": 0.7488,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.16748768472906403,
252
+ "grad_norm": 0.45232057571411133,
253
+ "learning_rate": 0.0001998458427893033,
254
+ "loss": 0.6505,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.1724137931034483,
259
+ "grad_norm": 0.4483110308647156,
260
+ "learning_rate": 0.00019982304054358614,
261
+ "loss": 0.7754,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.17733990147783252,
266
+ "grad_norm": 0.40316057205200195,
267
+ "learning_rate": 0.00019979866764718843,
268
+ "loss": 0.5503,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.18226600985221675,
273
+ "grad_norm": 0.40666651725769043,
274
+ "learning_rate": 0.0001997727244836019,
275
+ "loss": 0.5926,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.18719211822660098,
280
+ "grad_norm": 0.44321340322494507,
281
+ "learning_rate": 0.00019974521146102537,
282
+ "loss": 0.7276,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.1921182266009852,
287
+ "grad_norm": 0.38087835907936096,
288
+ "learning_rate": 0.00019971612901235832,
289
+ "loss": 0.6578,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.19704433497536947,
294
+ "grad_norm": 0.479129433631897,
295
+ "learning_rate": 0.00019968547759519425,
296
+ "loss": 0.7137,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.2019704433497537,
301
+ "grad_norm": 0.5175262689590454,
302
+ "learning_rate": 0.00019965325769181325,
303
+ "loss": 0.9117,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.20689655172413793,
308
+ "grad_norm": 0.3792617619037628,
309
+ "learning_rate": 0.00019961946980917456,
310
+ "loss": 0.5606,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.21182266009852216,
315
+ "grad_norm": 0.4176344573497772,
316
+ "learning_rate": 0.0001995841144789086,
317
+ "loss": 0.687,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.21674876847290642,
322
+ "grad_norm": 0.37092089653015137,
323
+ "learning_rate": 0.00019954719225730847,
324
+ "loss": 0.5669,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.22167487684729065,
329
+ "grad_norm": 0.45256292819976807,
330
+ "learning_rate": 0.00019950870372532138,
331
+ "loss": 0.9317,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.22660098522167488,
336
+ "grad_norm": 0.47242656350135803,
337
+ "learning_rate": 0.00019946864948853935,
338
+ "loss": 0.5439,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.2315270935960591,
343
+ "grad_norm": 0.5142560601234436,
344
+ "learning_rate": 0.00019942703017718975,
345
+ "loss": 0.8644,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.23645320197044334,
350
+ "grad_norm": 0.553180456161499,
351
+ "learning_rate": 0.00019938384644612543,
352
+ "loss": 0.8806,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.2413793103448276,
357
+ "grad_norm": 0.43755683302879333,
358
+ "learning_rate": 0.00019933909897481433,
359
+ "loss": 0.8555,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.24630541871921183,
364
+ "grad_norm": 0.4272922873497009,
365
+ "learning_rate": 0.00019929278846732884,
366
+ "loss": 0.4278,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2512315270935961,
371
+ "grad_norm": 0.5655816197395325,
372
+ "learning_rate": 0.0001992449156523347,
373
+ "loss": 0.7756,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.2512315270935961,
378
+ "eval_loss": 0.6830816268920898,
379
+ "eval_runtime": 11.0415,
380
+ "eval_samples_per_second": 4.076,
381
+ "eval_steps_per_second": 2.083,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.2561576354679803,
386
+ "grad_norm": 0.435141384601593,
387
+ "learning_rate": 0.00019919548128307954,
388
+ "loss": 0.6849,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.26108374384236455,
393
+ "grad_norm": 0.49647849798202515,
394
+ "learning_rate": 0.00019914448613738106,
395
+ "loss": 0.5521,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.2660098522167488,
400
+ "grad_norm": 0.4620106518268585,
401
+ "learning_rate": 0.0001990919310176147,
402
+ "loss": 0.563,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.270935960591133,
407
+ "grad_norm": 0.461224764585495,
408
+ "learning_rate": 0.00019903781675070117,
409
+ "loss": 0.603,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.27586206896551724,
414
+ "grad_norm": 0.4303002953529358,
415
+ "learning_rate": 0.0001989821441880933,
416
+ "loss": 0.6271,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.28078817733990147,
421
+ "grad_norm": 0.46398401260375977,
422
+ "learning_rate": 0.00019892491420576261,
423
+ "loss": 0.5245,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.2857142857142857,
428
+ "grad_norm": 0.4930243492126465,
429
+ "learning_rate": 0.00019886612770418578,
430
+ "loss": 0.6301,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.29064039408866993,
435
+ "grad_norm": 0.47263646125793457,
436
+ "learning_rate": 0.00019880578560833016,
437
+ "loss": 0.6773,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.2955665024630542,
442
+ "grad_norm": 0.40455955266952515,
443
+ "learning_rate": 0.00019874388886763944,
444
+ "loss": 0.4478,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.30049261083743845,
449
+ "grad_norm": 0.587720513343811,
450
+ "learning_rate": 0.00019868043845601863,
451
+ "loss": 0.8783,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.3054187192118227,
456
+ "grad_norm": 0.5045145153999329,
457
+ "learning_rate": 0.00019861543537181867,
458
+ "loss": 0.6364,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.3103448275862069,
463
+ "grad_norm": 0.5762777328491211,
464
+ "learning_rate": 0.00019854888063782088,
465
+ "loss": 1.0393,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.31527093596059114,
470
+ "grad_norm": 0.5282868146896362,
471
+ "learning_rate": 0.00019848077530122083,
472
+ "loss": 0.7865,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.32019704433497537,
477
+ "grad_norm": 0.5349370241165161,
478
+ "learning_rate": 0.0001984111204336116,
479
+ "loss": 0.7984,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.3251231527093596,
484
+ "grad_norm": 0.4982023239135742,
485
+ "learning_rate": 0.0001983399171309674,
486
+ "loss": 0.8803,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.33004926108374383,
491
+ "grad_norm": 0.467535138130188,
492
+ "learning_rate": 0.00019826716651362585,
493
+ "loss": 0.6774,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.33497536945812806,
498
+ "grad_norm": 0.36764436960220337,
499
+ "learning_rate": 0.00019819286972627066,
500
+ "loss": 0.4467,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.3399014778325123,
505
+ "grad_norm": 0.4941648840904236,
506
+ "learning_rate": 0.00019811702793791355,
507
+ "loss": 0.6345,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.3448275862068966,
512
+ "grad_norm": 0.5048440098762512,
513
+ "learning_rate": 0.0001980396423418757,
514
+ "loss": 0.641,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.3497536945812808,
519
+ "grad_norm": 0.5182650685310364,
520
+ "learning_rate": 0.00019796071415576925,
521
+ "loss": 0.6989,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.35467980295566504,
526
+ "grad_norm": 0.504978358745575,
527
+ "learning_rate": 0.00019788024462147788,
528
+ "loss": 0.7198,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.35960591133004927,
533
+ "grad_norm": 0.5767678022384644,
534
+ "learning_rate": 0.00019779823500513745,
535
+ "loss": 0.9102,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.3645320197044335,
540
+ "grad_norm": 0.5125048756599426,
541
+ "learning_rate": 0.00019771468659711595,
542
+ "loss": 0.6646,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.3694581280788177,
547
+ "grad_norm": 0.4948768615722656,
548
+ "learning_rate": 0.00019762960071199333,
549
+ "loss": 0.7312,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.37438423645320196,
554
+ "grad_norm": 0.45587611198425293,
555
+ "learning_rate": 0.00019754297868854073,
556
+ "loss": 0.6778,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.3793103448275862,
561
+ "grad_norm": 0.49900615215301514,
562
+ "learning_rate": 0.0001974548218896993,
563
+ "loss": 0.724,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.3842364532019704,
568
+ "grad_norm": 0.533632755279541,
569
+ "learning_rate": 0.00019736513170255911,
570
+ "loss": 0.5307,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.3891625615763547,
575
+ "grad_norm": 0.5380002856254578,
576
+ "learning_rate": 0.0001972739095383369,
577
+ "loss": 0.725,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.39408866995073893,
582
+ "grad_norm": 0.6754060983657837,
583
+ "learning_rate": 0.00019718115683235417,
584
+ "loss": 1.04,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.39901477832512317,
589
+ "grad_norm": 0.674319326877594,
590
+ "learning_rate": 0.0001970868750440145,
591
+ "loss": 0.9026,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.4039408866995074,
596
+ "grad_norm": 0.5251882672309875,
597
+ "learning_rate": 0.0001969910656567805,
598
+ "loss": 0.615,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.4088669950738916,
603
+ "grad_norm": 0.5495942831039429,
604
+ "learning_rate": 0.00019689373017815073,
605
+ "loss": 0.7116,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.41379310344827586,
610
+ "grad_norm": 0.4467202425003052,
611
+ "learning_rate": 0.00019679487013963564,
612
+ "loss": 0.4405,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.4187192118226601,
617
+ "grad_norm": 0.4973738491535187,
618
+ "learning_rate": 0.0001966944870967337,
619
+ "loss": 0.6288,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.4236453201970443,
624
+ "grad_norm": 0.5494425892829895,
625
+ "learning_rate": 0.00019659258262890683,
626
+ "loss": 0.8375,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.42857142857142855,
631
+ "grad_norm": 0.6044692397117615,
632
+ "learning_rate": 0.0001964891583395557,
633
+ "loss": 0.8642,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.43349753694581283,
638
+ "grad_norm": 0.6321963667869568,
639
+ "learning_rate": 0.00019638421585599423,
640
+ "loss": 0.6427,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.43842364532019706,
645
+ "grad_norm": 0.591774046421051,
646
+ "learning_rate": 0.0001962777568294242,
647
+ "loss": 0.812,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.4433497536945813,
652
+ "grad_norm": 0.4774153232574463,
653
+ "learning_rate": 0.0001961697829349093,
654
+ "loss": 0.6251,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.4482758620689655,
659
+ "grad_norm": 0.3739103674888611,
660
+ "learning_rate": 0.00019606029587134854,
661
+ "loss": 0.4022,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.45320197044334976,
666
+ "grad_norm": 0.33491694927215576,
667
+ "learning_rate": 0.00019594929736144976,
668
+ "loss": 0.3867,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.458128078817734,
673
+ "grad_norm": 0.5062631964683533,
674
+ "learning_rate": 0.00019583678915170233,
675
+ "loss": 0.691,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.4630541871921182,
680
+ "grad_norm": 0.44269800186157227,
681
+ "learning_rate": 0.00019572277301234986,
682
+ "loss": 0.5816,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.46798029556650245,
687
+ "grad_norm": 0.5803526639938354,
688
+ "learning_rate": 0.00019560725073736226,
689
+ "loss": 0.9605,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.4729064039408867,
694
+ "grad_norm": 0.4676986038684845,
695
+ "learning_rate": 0.0001954902241444074,
696
+ "loss": 0.4847,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.47783251231527096,
701
+ "grad_norm": 0.4004145860671997,
702
+ "learning_rate": 0.0001953716950748227,
703
+ "loss": 0.5009,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.4827586206896552,
708
+ "grad_norm": 0.4633149206638336,
709
+ "learning_rate": 0.00019525166539358606,
710
+ "loss": 0.6022,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4876847290640394,
715
+ "grad_norm": 0.5013838410377502,
716
+ "learning_rate": 0.00019513013698928652,
717
+ "loss": 0.5579,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.49261083743842365,
722
+ "grad_norm": 0.42055630683898926,
723
+ "learning_rate": 0.00019500711177409454,
724
+ "loss": 0.6106,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.4975369458128079,
729
+ "grad_norm": 0.5310317873954773,
730
+ "learning_rate": 0.00019488259168373197,
731
+ "loss": 0.5404,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.5024630541871922,
736
+ "grad_norm": 0.5370813012123108,
737
+ "learning_rate": 0.0001947565786774415,
738
+ "loss": 0.7316,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.5024630541871922,
743
+ "eval_loss": 0.6300095319747925,
744
+ "eval_runtime": 11.037,
745
+ "eval_samples_per_second": 4.077,
746
+ "eval_steps_per_second": 2.084,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.5073891625615764,
751
+ "grad_norm": 0.6000672578811646,
752
+ "learning_rate": 0.0001946290747379559,
753
+ "loss": 0.8484,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.5123152709359606,
758
+ "grad_norm": 0.5001861453056335,
759
+ "learning_rate": 0.00019450008187146684,
760
+ "loss": 0.475,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 0.5172413793103449,
765
+ "grad_norm": 0.4290579557418823,
766
+ "learning_rate": 0.00019436960210759326,
767
+ "loss": 0.4866,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 0.5221674876847291,
772
+ "grad_norm": 0.6716535091400146,
773
+ "learning_rate": 0.0001942376374993494,
774
+ "loss": 0.8152,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 0.5270935960591133,
779
+ "grad_norm": 0.4558948874473572,
780
+ "learning_rate": 0.00019410419012311268,
781
+ "loss": 0.5321,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 0.5320197044334976,
786
+ "grad_norm": 0.5225330591201782,
787
+ "learning_rate": 0.00019396926207859084,
788
+ "loss": 0.5838,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 0.5369458128078818,
793
+ "grad_norm": 0.5035777688026428,
794
+ "learning_rate": 0.00019383285548878898,
795
+ "loss": 0.5303,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 0.541871921182266,
800
+ "grad_norm": 0.4841632544994354,
801
+ "learning_rate": 0.0001936949724999762,
802
+ "loss": 0.5958,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 0.5467980295566502,
807
+ "grad_norm": 0.5300568342208862,
808
+ "learning_rate": 0.00019355561528165165,
809
+ "loss": 0.5823,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 0.5517241379310345,
814
+ "grad_norm": 0.4645020067691803,
815
+ "learning_rate": 0.00019341478602651069,
816
+ "loss": 0.5323,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 0.5566502463054187,
821
+ "grad_norm": 0.5558884143829346,
822
+ "learning_rate": 0.0001932724869504101,
823
+ "loss": 0.7341,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 0.5615763546798029,
828
+ "grad_norm": 0.5705283284187317,
829
+ "learning_rate": 0.00019312872029233339,
830
+ "loss": 0.617,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.5665024630541872,
835
+ "grad_norm": 0.48577770590782166,
836
+ "learning_rate": 0.0001929834883143555,
837
+ "loss": 0.7458,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.5714285714285714,
842
+ "grad_norm": 0.5642262101173401,
843
+ "learning_rate": 0.00019283679330160726,
844
+ "loss": 0.8641,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.5763546798029556,
849
+ "grad_norm": 0.4224662780761719,
850
+ "learning_rate": 0.00019268863756223938,
851
+ "loss": 0.5858,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.5812807881773399,
856
+ "grad_norm": 0.5003111958503723,
857
+ "learning_rate": 0.0001925390234273861,
858
+ "loss": 0.6534,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.5862068965517241,
863
+ "grad_norm": 0.39336368441581726,
864
+ "learning_rate": 0.0001923879532511287,
865
+ "loss": 0.4173,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.5911330049261084,
870
+ "grad_norm": 0.5101594924926758,
871
+ "learning_rate": 0.00019223542941045817,
872
+ "loss": 0.7547,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.5960591133004927,
877
+ "grad_norm": 0.5837039351463318,
878
+ "learning_rate": 0.00019208145430523805,
879
+ "loss": 0.6629,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.6009852216748769,
884
+ "grad_norm": 0.44756221771240234,
885
+ "learning_rate": 0.00019192603035816656,
886
+ "loss": 0.5471,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.6059113300492611,
891
+ "grad_norm": 0.46749138832092285,
892
+ "learning_rate": 0.00019176916001473857,
893
+ "loss": 0.5808,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.6108374384236454,
898
+ "grad_norm": 0.5669186115264893,
899
+ "learning_rate": 0.00019161084574320696,
900
+ "loss": 0.6666,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.6157635467980296,
905
+ "grad_norm": 0.39391183853149414,
906
+ "learning_rate": 0.00019145109003454396,
907
+ "loss": 0.4012,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.6206896551724138,
912
+ "grad_norm": 0.597058892250061,
913
+ "learning_rate": 0.00019128989540240178,
914
+ "loss": 0.5815,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.625615763546798,
919
+ "grad_norm": 0.42727410793304443,
920
+ "learning_rate": 0.00019112726438307327,
921
+ "loss": 0.543,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.6305418719211823,
926
+ "grad_norm": 0.4960153102874756,
927
+ "learning_rate": 0.00019096319953545185,
928
+ "loss": 0.8382,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.6354679802955665,
933
+ "grad_norm": 0.5167288780212402,
934
+ "learning_rate": 0.00019079770344099126,
935
+ "loss": 0.6161,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.6403940886699507,
940
+ "grad_norm": 0.43096935749053955,
941
+ "learning_rate": 0.000190630778703665,
942
+ "loss": 0.446,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.645320197044335,
947
+ "grad_norm": 0.48677173256874084,
948
+ "learning_rate": 0.00019046242794992538,
949
+ "loss": 0.5953,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.6502463054187192,
954
+ "grad_norm": 0.43192002177238464,
955
+ "learning_rate": 0.00019029265382866214,
956
+ "loss": 0.6484,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.6551724137931034,
961
+ "grad_norm": 0.4542531669139862,
962
+ "learning_rate": 0.00019012145901116072,
963
+ "loss": 0.6714,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.6600985221674877,
968
+ "grad_norm": 0.5044397115707397,
969
+ "learning_rate": 0.00018994884619106031,
970
+ "loss": 0.5707,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.6650246305418719,
975
+ "grad_norm": 0.5109909772872925,
976
+ "learning_rate": 0.00018977481808431156,
977
+ "loss": 0.5733,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.6699507389162561,
982
+ "grad_norm": 0.408963680267334,
983
+ "learning_rate": 0.00018959937742913359,
984
+ "loss": 0.4026,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.6748768472906403,
989
+ "grad_norm": 0.4982157051563263,
990
+ "learning_rate": 0.00018942252698597113,
991
+ "loss": 0.5858,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.6798029556650246,
996
+ "grad_norm": 0.43446001410484314,
997
+ "learning_rate": 0.000189244269537451,
998
+ "loss": 0.399,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.6847290640394089,
1003
+ "grad_norm": 0.563456118106842,
1004
+ "learning_rate": 0.0001890646078883383,
1005
+ "loss": 0.609,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.6896551724137931,
1010
+ "grad_norm": 0.5484267473220825,
1011
+ "learning_rate": 0.00018888354486549237,
1012
+ "loss": 0.6773,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.6945812807881774,
1017
+ "grad_norm": 0.3881613314151764,
1018
+ "learning_rate": 0.00018870108331782217,
1019
+ "loss": 0.4737,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.6995073891625616,
1024
+ "grad_norm": 0.45160579681396484,
1025
+ "learning_rate": 0.00018851722611624164,
1026
+ "loss": 0.4898,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.7044334975369458,
1031
+ "grad_norm": 0.43751001358032227,
1032
+ "learning_rate": 0.0001883319761536244,
1033
+ "loss": 0.4106,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.7093596059113301,
1038
+ "grad_norm": 0.4221664369106293,
1039
+ "learning_rate": 0.00018814533634475822,
1040
+ "loss": 0.7008,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.7142857142857143,
1045
+ "grad_norm": 0.4563562572002411,
1046
+ "learning_rate": 0.00018795730962629917,
1047
+ "loss": 0.5083,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.7192118226600985,
1052
+ "grad_norm": 0.43079623579978943,
1053
+ "learning_rate": 0.00018776789895672558,
1054
+ "loss": 0.5056,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.7241379310344828,
1059
+ "grad_norm": 0.536952793598175,
1060
+ "learning_rate": 0.00018757710731629116,
1061
+ "loss": 0.7533,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.729064039408867,
1066
+ "grad_norm": 0.507958710193634,
1067
+ "learning_rate": 0.00018738493770697852,
1068
+ "loss": 0.6007,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.7339901477832512,
1073
+ "grad_norm": 0.5080809593200684,
1074
+ "learning_rate": 0.00018719139315245148,
1075
+ "loss": 0.6368,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.7389162561576355,
1080
+ "grad_norm": 0.43527957797050476,
1081
+ "learning_rate": 0.0001869964766980079,
1082
+ "loss": 0.6269,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.7438423645320197,
1087
+ "grad_norm": 0.5668943524360657,
1088
+ "learning_rate": 0.00018680019141053156,
1089
+ "loss": 0.6683,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.7487684729064039,
1094
+ "grad_norm": 0.4798513352870941,
1095
+ "learning_rate": 0.00018660254037844388,
1096
+ "loss": 0.6075,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.7536945812807881,
1101
+ "grad_norm": 0.4836024045944214,
1102
+ "learning_rate": 0.0001864035267116554,
1103
+ "loss": 0.5161,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.7536945812807881,
1108
+ "eval_loss": 0.5951735377311707,
1109
+ "eval_runtime": 11.0583,
1110
+ "eval_samples_per_second": 4.069,
1111
+ "eval_steps_per_second": 2.08,
1112
+ "step": 153
1113
+ },
1114
+ {
1115
+ "epoch": 0.7586206896551724,
1116
+ "grad_norm": 0.4657806158065796,
1117
+ "learning_rate": 0.00018620315354151695,
1118
+ "loss": 0.5469,
1119
+ "step": 154
1120
+ },
1121
+ {
1122
+ "epoch": 0.7635467980295566,
1123
+ "grad_norm": 0.4219043254852295,
1124
+ "learning_rate": 0.00018600142402077006,
1125
+ "loss": 0.389,
1126
+ "step": 155
1127
+ },
1128
+ {
1129
+ "epoch": 0.7684729064039408,
1130
+ "grad_norm": 0.42991775274276733,
1131
+ "learning_rate": 0.00018579834132349772,
1132
+ "loss": 0.4041,
1133
+ "step": 156
1134
+ },
1135
+ {
1136
+ "epoch": 0.7733990147783252,
1137
+ "grad_norm": 0.4750354290008545,
1138
+ "learning_rate": 0.00018559390864507418,
1139
+ "loss": 0.4167,
1140
+ "step": 157
1141
+ },
1142
+ {
1143
+ "epoch": 0.7783251231527094,
1144
+ "grad_norm": 0.470115065574646,
1145
+ "learning_rate": 0.0001853881292021148,
1146
+ "loss": 0.5946,
1147
+ "step": 158
1148
+ },
1149
+ {
1150
+ "epoch": 0.7832512315270936,
1151
+ "grad_norm": 0.4590957462787628,
1152
+ "learning_rate": 0.00018518100623242547,
1153
+ "loss": 0.3899,
1154
+ "step": 159
1155
+ },
1156
+ {
1157
+ "epoch": 0.7881773399014779,
1158
+ "grad_norm": 0.6609347462654114,
1159
+ "learning_rate": 0.00018497254299495146,
1160
+ "loss": 0.7092,
1161
+ "step": 160
1162
+ },
1163
+ {
1164
+ "epoch": 0.7931034482758621,
1165
+ "grad_norm": 0.687901496887207,
1166
+ "learning_rate": 0.00018476274276972636,
1167
+ "loss": 0.97,
1168
+ "step": 161
1169
+ },
1170
+ {
1171
+ "epoch": 0.7980295566502463,
1172
+ "grad_norm": 0.49742093682289124,
1173
+ "learning_rate": 0.00018455160885782045,
1174
+ "loss": 0.8148,
1175
+ "step": 162
1176
+ },
1177
+ {
1178
+ "epoch": 0.8029556650246306,
1179
+ "grad_norm": 0.4497315585613251,
1180
+ "learning_rate": 0.0001843391445812886,
1181
+ "loss": 0.383,
1182
+ "step": 163
1183
+ },
1184
+ {
1185
+ "epoch": 0.8078817733990148,
1186
+ "grad_norm": 0.6029507517814636,
1187
+ "learning_rate": 0.00018412535328311814,
1188
+ "loss": 0.6391,
1189
+ "step": 164
1190
+ },
1191
+ {
1192
+ "epoch": 0.812807881773399,
1193
+ "grad_norm": 0.48474130034446716,
1194
+ "learning_rate": 0.00018391023832717624,
1195
+ "loss": 0.655,
1196
+ "step": 165
1197
+ },
1198
+ {
1199
+ "epoch": 0.8177339901477833,
1200
+ "grad_norm": 0.3837825059890747,
1201
+ "learning_rate": 0.00018369380309815698,
1202
+ "loss": 0.5073,
1203
+ "step": 166
1204
+ },
1205
+ {
1206
+ "epoch": 0.8226600985221675,
1207
+ "grad_norm": 0.5352115035057068,
1208
+ "learning_rate": 0.00018347605100152802,
1209
+ "loss": 0.8059,
1210
+ "step": 167
1211
+ },
1212
+ {
1213
+ "epoch": 0.8275862068965517,
1214
+ "grad_norm": 0.37411192059516907,
1215
+ "learning_rate": 0.00018325698546347715,
1216
+ "loss": 0.3482,
1217
+ "step": 168
1218
+ },
1219
+ {
1220
+ "epoch": 0.8325123152709359,
1221
+ "grad_norm": 0.5351614952087402,
1222
+ "learning_rate": 0.00018303660993085826,
1223
+ "loss": 0.8118,
1224
+ "step": 169
1225
+ },
1226
+ {
1227
+ "epoch": 0.8374384236453202,
1228
+ "grad_norm": 0.516040027141571,
1229
+ "learning_rate": 0.00018281492787113708,
1230
+ "loss": 0.8158,
1231
+ "step": 170
1232
+ },
1233
+ {
1234
+ "epoch": 0.8423645320197044,
1235
+ "grad_norm": 0.5002651214599609,
1236
+ "learning_rate": 0.0001825919427723369,
1237
+ "loss": 0.5554,
1238
+ "step": 171
1239
+ },
1240
+ {
1241
+ "epoch": 0.8472906403940886,
1242
+ "grad_norm": 0.5356642007827759,
1243
+ "learning_rate": 0.0001823676581429833,
1244
+ "loss": 0.4798,
1245
+ "step": 172
1246
+ },
1247
+ {
1248
+ "epoch": 0.8522167487684729,
1249
+ "grad_norm": 0.5253735184669495,
1250
+ "learning_rate": 0.00018214207751204918,
1251
+ "loss": 0.6372,
1252
+ "step": 173
1253
+ },
1254
+ {
1255
+ "epoch": 0.8571428571428571,
1256
+ "grad_norm": 0.4893580675125122,
1257
+ "learning_rate": 0.0001819152044288992,
1258
+ "loss": 0.6477,
1259
+ "step": 174
1260
+ },
1261
+ {
1262
+ "epoch": 0.8620689655172413,
1263
+ "grad_norm": 0.5049504041671753,
1264
+ "learning_rate": 0.0001816870424632339,
1265
+ "loss": 0.6475,
1266
+ "step": 175
1267
+ },
1268
+ {
1269
+ "epoch": 0.8669950738916257,
1270
+ "grad_norm": 0.4409392476081848,
1271
+ "learning_rate": 0.00018145759520503358,
1272
+ "loss": 0.4051,
1273
+ "step": 176
1274
+ },
1275
+ {
1276
+ "epoch": 0.8719211822660099,
1277
+ "grad_norm": 0.49714887142181396,
1278
+ "learning_rate": 0.00018122686626450174,
1279
+ "loss": 0.581,
1280
+ "step": 177
1281
+ },
1282
+ {
1283
+ "epoch": 0.8768472906403941,
1284
+ "grad_norm": 0.4551338851451874,
1285
+ "learning_rate": 0.00018099485927200836,
1286
+ "loss": 0.54,
1287
+ "step": 178
1288
+ },
1289
+ {
1290
+ "epoch": 0.8817733990147784,
1291
+ "grad_norm": 0.4689117670059204,
1292
+ "learning_rate": 0.00018076157787803268,
1293
+ "loss": 0.4337,
1294
+ "step": 179
1295
+ },
1296
+ {
1297
+ "epoch": 0.8866995073891626,
1298
+ "grad_norm": 0.3948321044445038,
1299
+ "learning_rate": 0.00018052702575310588,
1300
+ "loss": 0.3073,
1301
+ "step": 180
1302
+ },
1303
+ {
1304
+ "epoch": 0.8916256157635468,
1305
+ "grad_norm": 0.5096619129180908,
1306
+ "learning_rate": 0.0001802912065877532,
1307
+ "loss": 0.6153,
1308
+ "step": 181
1309
+ },
1310
+ {
1311
+ "epoch": 0.896551724137931,
1312
+ "grad_norm": 0.49955296516418457,
1313
+ "learning_rate": 0.00018005412409243606,
1314
+ "loss": 0.6417,
1315
+ "step": 182
1316
+ },
1317
+ {
1318
+ "epoch": 0.9014778325123153,
1319
+ "grad_norm": 0.5724025964736938,
1320
+ "learning_rate": 0.0001798157819974934,
1321
+ "loss": 0.524,
1322
+ "step": 183
1323
+ },
1324
+ {
1325
+ "epoch": 0.9064039408866995,
1326
+ "grad_norm": 0.573061466217041,
1327
+ "learning_rate": 0.00017957618405308324,
1328
+ "loss": 0.5929,
1329
+ "step": 184
1330
+ },
1331
+ {
1332
+ "epoch": 0.9113300492610837,
1333
+ "grad_norm": 0.5818294882774353,
1334
+ "learning_rate": 0.00017933533402912354,
1335
+ "loss": 0.6464,
1336
+ "step": 185
1337
+ },
1338
+ {
1339
+ "epoch": 0.916256157635468,
1340
+ "grad_norm": 0.5145869851112366,
1341
+ "learning_rate": 0.00017909323571523294,
1342
+ "loss": 0.6867,
1343
+ "step": 186
1344
+ },
1345
+ {
1346
+ "epoch": 0.9211822660098522,
1347
+ "grad_norm": 0.4173225462436676,
1348
+ "learning_rate": 0.0001788498929206711,
1349
+ "loss": 0.3869,
1350
+ "step": 187
1351
+ },
1352
+ {
1353
+ "epoch": 0.9261083743842364,
1354
+ "grad_norm": 0.4742754101753235,
1355
+ "learning_rate": 0.00017860530947427875,
1356
+ "loss": 0.6324,
1357
+ "step": 188
1358
+ },
1359
+ {
1360
+ "epoch": 0.9310344827586207,
1361
+ "grad_norm": 0.4032367765903473,
1362
+ "learning_rate": 0.00017835948922441755,
1363
+ "loss": 0.3317,
1364
+ "step": 189
1365
+ },
1366
+ {
1367
+ "epoch": 0.9359605911330049,
1368
+ "grad_norm": 0.5449414253234863,
1369
+ "learning_rate": 0.00017811243603890934,
1370
+ "loss": 0.6642,
1371
+ "step": 190
1372
+ },
1373
+ {
1374
+ "epoch": 0.9408866995073891,
1375
+ "grad_norm": 0.3662044405937195,
1376
+ "learning_rate": 0.00017786415380497553,
1377
+ "loss": 0.4073,
1378
+ "step": 191
1379
+ },
1380
+ {
1381
+ "epoch": 0.9458128078817734,
1382
+ "grad_norm": 0.5382059812545776,
1383
+ "learning_rate": 0.0001776146464291757,
1384
+ "loss": 1.0491,
1385
+ "step": 192
1386
+ },
1387
+ {
1388
+ "epoch": 0.9507389162561576,
1389
+ "grad_norm": 0.406678169965744,
1390
+ "learning_rate": 0.0001773639178373463,
1391
+ "loss": 0.5818,
1392
+ "step": 193
1393
+ },
1394
+ {
1395
+ "epoch": 0.9556650246305419,
1396
+ "grad_norm": 0.44329485297203064,
1397
+ "learning_rate": 0.00017711197197453878,
1398
+ "loss": 0.3998,
1399
+ "step": 194
1400
+ },
1401
+ {
1402
+ "epoch": 0.9605911330049262,
1403
+ "grad_norm": 0.5197709798812866,
1404
+ "learning_rate": 0.0001768588128049576,
1405
+ "loss": 0.7085,
1406
+ "step": 195
1407
+ },
1408
+ {
1409
+ "epoch": 0.9655172413793104,
1410
+ "grad_norm": 0.4579933285713196,
1411
+ "learning_rate": 0.0001766044443118978,
1412
+ "loss": 0.5236,
1413
+ "step": 196
1414
+ },
1415
+ {
1416
+ "epoch": 0.9704433497536946,
1417
+ "grad_norm": 0.5653615593910217,
1418
+ "learning_rate": 0.00017634887049768237,
1419
+ "loss": 0.7925,
1420
+ "step": 197
1421
+ },
1422
+ {
1423
+ "epoch": 0.9753694581280788,
1424
+ "grad_norm": 0.46353796124458313,
1425
+ "learning_rate": 0.00017609209538359917,
1426
+ "loss": 0.4271,
1427
+ "step": 198
1428
+ },
1429
+ {
1430
+ "epoch": 0.9802955665024631,
1431
+ "grad_norm": 0.5367504358291626,
1432
+ "learning_rate": 0.00017583412300983776,
1433
+ "loss": 0.5715,
1434
+ "step": 199
1435
+ },
1436
+ {
1437
+ "epoch": 0.9852216748768473,
1438
+ "grad_norm": 0.470466673374176,
1439
+ "learning_rate": 0.00017557495743542585,
1440
+ "loss": 0.3894,
1441
+ "step": 200
1442
+ },
1443
+ {
1444
+ "epoch": 0.9901477832512315,
1445
+ "grad_norm": 0.6407225728034973,
1446
+ "learning_rate": 0.00017531460273816532,
1447
+ "loss": 0.6297,
1448
+ "step": 201
1449
+ },
1450
+ {
1451
+ "epoch": 0.9950738916256158,
1452
+ "grad_norm": 0.44787856936454773,
1453
+ "learning_rate": 0.00017505306301456822,
1454
+ "loss": 0.4496,
1455
+ "step": 202
1456
+ },
1457
+ {
1458
+ "epoch": 1.0,
1459
+ "grad_norm": 0.7431913018226624,
1460
+ "learning_rate": 0.0001747903423797921,
1461
+ "loss": 0.4843,
1462
+ "step": 203
1463
+ }
1464
+ ],
1465
+ "logging_steps": 1,
1466
+ "max_steps": 812,
1467
+ "num_input_tokens_seen": 0,
1468
+ "num_train_epochs": 4,
1469
+ "save_steps": 203,
1470
+ "stateful_callbacks": {
1471
+ "TrainerControl": {
1472
+ "args": {
1473
+ "should_epoch_stop": false,
1474
+ "should_evaluate": false,
1475
+ "should_log": false,
1476
+ "should_save": true,
1477
+ "should_training_stop": false
1478
+ },
1479
+ "attributes": {}
1480
+ }
1481
+ },
1482
+ "total_flos": 3.058455441781555e+16,
1483
+ "train_batch_size": 2,
1484
+ "trial_name": null,
1485
+ "trial_params": null
1486
+ }
checkpoint-203/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45bf012787e91b667ff263fbb8cf29a77de7813ddb5a7593e1b3ff73159f5131
3
+ size 6392
checkpoint-406/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openlm-research/open_llama_7b_v2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-406/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_7b_v2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "o_proj",
31
+ "down_proj",
32
+ "gate_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-406/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63d1127c7a19c867f425475908fdaf04a3878b477ceeff69c3504ac8328d567
3
+ size 80013120
checkpoint-406/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66e74f74766ae0ccf8f8e749e79917eb8f486c54cb93d875e51220d8f82ac899
3
+ size 41120084
checkpoint-406/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d245e05e72192c132e0f2edb6fdcae0c578c890f0fe912f17ec7b0bba2d38cc3
3
+ size 14244
checkpoint-406/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8275d8789703ca084468efdcc23dbf2888ef4bac867a45f55e20cd93d91bd239
3
+ size 1064
checkpoint-406/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-406/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-406/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "extra_special_tokens": {},
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false,
43
+ "use_fast": true
44
+ }
checkpoint-406/trainer_state.json ADDED
@@ -0,0 +1,2939 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.0,
5
+ "eval_steps": 51,
6
+ "global_step": 406,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0049261083743842365,
13
+ "grad_norm": 0.15764524042606354,
14
+ "learning_rate": 1e-05,
15
+ "loss": 1.0718,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0049261083743842365,
20
+ "eval_loss": 0.9604623317718506,
21
+ "eval_runtime": 11.0685,
22
+ "eval_samples_per_second": 4.066,
23
+ "eval_steps_per_second": 2.078,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.009852216748768473,
28
+ "grad_norm": 0.17232584953308105,
29
+ "learning_rate": 2e-05,
30
+ "loss": 1.0695,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.014778325123152709,
35
+ "grad_norm": 0.17787113785743713,
36
+ "learning_rate": 3e-05,
37
+ "loss": 0.9787,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.019704433497536946,
42
+ "grad_norm": 0.18442076444625854,
43
+ "learning_rate": 4e-05,
44
+ "loss": 1.0556,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.024630541871921183,
49
+ "grad_norm": 0.1500977873802185,
50
+ "learning_rate": 5e-05,
51
+ "loss": 0.8182,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.029556650246305417,
56
+ "grad_norm": 0.1790969967842102,
57
+ "learning_rate": 6e-05,
58
+ "loss": 0.8186,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.034482758620689655,
63
+ "grad_norm": 0.17189474403858185,
64
+ "learning_rate": 7e-05,
65
+ "loss": 0.9289,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.03940886699507389,
70
+ "grad_norm": 0.21660089492797852,
71
+ "learning_rate": 8e-05,
72
+ "loss": 1.1689,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.04433497536945813,
77
+ "grad_norm": 0.202072873711586,
78
+ "learning_rate": 9e-05,
79
+ "loss": 0.8433,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.04926108374384237,
84
+ "grad_norm": 0.20105081796646118,
85
+ "learning_rate": 0.0001,
86
+ "loss": 1.1257,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.054187192118226604,
91
+ "grad_norm": 0.23838526010513306,
92
+ "learning_rate": 0.00011000000000000002,
93
+ "loss": 0.9087,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.059113300492610835,
98
+ "grad_norm": 0.28929364681243896,
99
+ "learning_rate": 0.00012,
100
+ "loss": 1.0844,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.06403940886699508,
105
+ "grad_norm": 0.26252612471580505,
106
+ "learning_rate": 0.00013000000000000002,
107
+ "loss": 0.8561,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.06896551724137931,
112
+ "grad_norm": 0.30341705679893494,
113
+ "learning_rate": 0.00014,
114
+ "loss": 0.9649,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.07389162561576355,
119
+ "grad_norm": 0.35611552000045776,
120
+ "learning_rate": 0.00015000000000000001,
121
+ "loss": 1.1053,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.07881773399014778,
126
+ "grad_norm": 0.2868112027645111,
127
+ "learning_rate": 0.00016,
128
+ "loss": 0.7479,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.08374384236453201,
133
+ "grad_norm": 0.3906789720058441,
134
+ "learning_rate": 0.00017,
135
+ "loss": 0.887,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.08866995073891626,
140
+ "grad_norm": 0.34518149495124817,
141
+ "learning_rate": 0.00018,
142
+ "loss": 0.6395,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.09359605911330049,
147
+ "grad_norm": 0.43788307905197144,
148
+ "learning_rate": 0.00019,
149
+ "loss": 0.8385,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.09852216748768473,
154
+ "grad_norm": 0.5314550399780273,
155
+ "learning_rate": 0.0002,
156
+ "loss": 0.8561,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.10344827586206896,
161
+ "grad_norm": 0.5479442477226257,
162
+ "learning_rate": 0.00019999921328248872,
163
+ "loss": 0.9136,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.10837438423645321,
168
+ "grad_norm": 0.46753960847854614,
169
+ "learning_rate": 0.0001999968531423333,
170
+ "loss": 0.8868,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.11330049261083744,
175
+ "grad_norm": 0.5541612505912781,
176
+ "learning_rate": 0.00019999291961666908,
177
+ "loss": 1.0887,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.11822660098522167,
182
+ "grad_norm": 0.5009401440620422,
183
+ "learning_rate": 0.00019998741276738754,
184
+ "loss": 0.7118,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.12315270935960591,
189
+ "grad_norm": 0.5104517936706543,
190
+ "learning_rate": 0.00019998033268113526,
191
+ "loss": 0.8755,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.12807881773399016,
196
+ "grad_norm": 0.46783849596977234,
197
+ "learning_rate": 0.0001999716794693129,
198
+ "loss": 0.745,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.1330049261083744,
203
+ "grad_norm": 0.4237991273403168,
204
+ "learning_rate": 0.00019996145326807313,
205
+ "loss": 0.9907,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.13793103448275862,
210
+ "grad_norm": 0.482265442609787,
211
+ "learning_rate": 0.00019994965423831854,
212
+ "loss": 0.8543,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.14285714285714285,
217
+ "grad_norm": 0.3490796387195587,
218
+ "learning_rate": 0.0001999362825656992,
219
+ "loss": 0.5405,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.1477832512315271,
224
+ "grad_norm": 0.450983464717865,
225
+ "learning_rate": 0.00019992133846060968,
226
+ "loss": 0.7886,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.15270935960591134,
231
+ "grad_norm": 0.46920955181121826,
232
+ "learning_rate": 0.0001999048221581858,
233
+ "loss": 0.7652,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.15763546798029557,
238
+ "grad_norm": 0.4696129858493805,
239
+ "learning_rate": 0.0001998867339183008,
240
+ "loss": 0.8397,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1625615763546798,
245
+ "grad_norm": 0.4254930317401886,
246
+ "learning_rate": 0.00019986707402556145,
247
+ "loss": 0.7488,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.16748768472906403,
252
+ "grad_norm": 0.45232057571411133,
253
+ "learning_rate": 0.0001998458427893033,
254
+ "loss": 0.6505,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.1724137931034483,
259
+ "grad_norm": 0.4483110308647156,
260
+ "learning_rate": 0.00019982304054358614,
261
+ "loss": 0.7754,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.17733990147783252,
266
+ "grad_norm": 0.40316057205200195,
267
+ "learning_rate": 0.00019979866764718843,
268
+ "loss": 0.5503,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.18226600985221675,
273
+ "grad_norm": 0.40666651725769043,
274
+ "learning_rate": 0.0001997727244836019,
275
+ "loss": 0.5926,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.18719211822660098,
280
+ "grad_norm": 0.44321340322494507,
281
+ "learning_rate": 0.00019974521146102537,
282
+ "loss": 0.7276,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.1921182266009852,
287
+ "grad_norm": 0.38087835907936096,
288
+ "learning_rate": 0.00019971612901235832,
289
+ "loss": 0.6578,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.19704433497536947,
294
+ "grad_norm": 0.479129433631897,
295
+ "learning_rate": 0.00019968547759519425,
296
+ "loss": 0.7137,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.2019704433497537,
301
+ "grad_norm": 0.5175262689590454,
302
+ "learning_rate": 0.00019965325769181325,
303
+ "loss": 0.9117,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.20689655172413793,
308
+ "grad_norm": 0.3792617619037628,
309
+ "learning_rate": 0.00019961946980917456,
310
+ "loss": 0.5606,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.21182266009852216,
315
+ "grad_norm": 0.4176344573497772,
316
+ "learning_rate": 0.0001995841144789086,
317
+ "loss": 0.687,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.21674876847290642,
322
+ "grad_norm": 0.37092089653015137,
323
+ "learning_rate": 0.00019954719225730847,
324
+ "loss": 0.5669,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.22167487684729065,
329
+ "grad_norm": 0.45256292819976807,
330
+ "learning_rate": 0.00019950870372532138,
331
+ "loss": 0.9317,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.22660098522167488,
336
+ "grad_norm": 0.47242656350135803,
337
+ "learning_rate": 0.00019946864948853935,
338
+ "loss": 0.5439,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.2315270935960591,
343
+ "grad_norm": 0.5142560601234436,
344
+ "learning_rate": 0.00019942703017718975,
345
+ "loss": 0.8644,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.23645320197044334,
350
+ "grad_norm": 0.553180456161499,
351
+ "learning_rate": 0.00019938384644612543,
352
+ "loss": 0.8806,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.2413793103448276,
357
+ "grad_norm": 0.43755683302879333,
358
+ "learning_rate": 0.00019933909897481433,
359
+ "loss": 0.8555,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.24630541871921183,
364
+ "grad_norm": 0.4272922873497009,
365
+ "learning_rate": 0.00019929278846732884,
366
+ "loss": 0.4278,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.2512315270935961,
371
+ "grad_norm": 0.5655816197395325,
372
+ "learning_rate": 0.0001992449156523347,
373
+ "loss": 0.7756,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.2512315270935961,
378
+ "eval_loss": 0.6830816268920898,
379
+ "eval_runtime": 11.0415,
380
+ "eval_samples_per_second": 4.076,
381
+ "eval_steps_per_second": 2.083,
382
+ "step": 51
383
+ },
384
+ {
385
+ "epoch": 0.2561576354679803,
386
+ "grad_norm": 0.435141384601593,
387
+ "learning_rate": 0.00019919548128307954,
388
+ "loss": 0.6849,
389
+ "step": 52
390
+ },
391
+ {
392
+ "epoch": 0.26108374384236455,
393
+ "grad_norm": 0.49647849798202515,
394
+ "learning_rate": 0.00019914448613738106,
395
+ "loss": 0.5521,
396
+ "step": 53
397
+ },
398
+ {
399
+ "epoch": 0.2660098522167488,
400
+ "grad_norm": 0.4620106518268585,
401
+ "learning_rate": 0.0001990919310176147,
402
+ "loss": 0.563,
403
+ "step": 54
404
+ },
405
+ {
406
+ "epoch": 0.270935960591133,
407
+ "grad_norm": 0.461224764585495,
408
+ "learning_rate": 0.00019903781675070117,
409
+ "loss": 0.603,
410
+ "step": 55
411
+ },
412
+ {
413
+ "epoch": 0.27586206896551724,
414
+ "grad_norm": 0.4303002953529358,
415
+ "learning_rate": 0.0001989821441880933,
416
+ "loss": 0.6271,
417
+ "step": 56
418
+ },
419
+ {
420
+ "epoch": 0.28078817733990147,
421
+ "grad_norm": 0.46398401260375977,
422
+ "learning_rate": 0.00019892491420576261,
423
+ "loss": 0.5245,
424
+ "step": 57
425
+ },
426
+ {
427
+ "epoch": 0.2857142857142857,
428
+ "grad_norm": 0.4930243492126465,
429
+ "learning_rate": 0.00019886612770418578,
430
+ "loss": 0.6301,
431
+ "step": 58
432
+ },
433
+ {
434
+ "epoch": 0.29064039408866993,
435
+ "grad_norm": 0.47263646125793457,
436
+ "learning_rate": 0.00019880578560833016,
437
+ "loss": 0.6773,
438
+ "step": 59
439
+ },
440
+ {
441
+ "epoch": 0.2955665024630542,
442
+ "grad_norm": 0.40455955266952515,
443
+ "learning_rate": 0.00019874388886763944,
444
+ "loss": 0.4478,
445
+ "step": 60
446
+ },
447
+ {
448
+ "epoch": 0.30049261083743845,
449
+ "grad_norm": 0.587720513343811,
450
+ "learning_rate": 0.00019868043845601863,
451
+ "loss": 0.8783,
452
+ "step": 61
453
+ },
454
+ {
455
+ "epoch": 0.3054187192118227,
456
+ "grad_norm": 0.5045145153999329,
457
+ "learning_rate": 0.00019861543537181867,
458
+ "loss": 0.6364,
459
+ "step": 62
460
+ },
461
+ {
462
+ "epoch": 0.3103448275862069,
463
+ "grad_norm": 0.5762777328491211,
464
+ "learning_rate": 0.00019854888063782088,
465
+ "loss": 1.0393,
466
+ "step": 63
467
+ },
468
+ {
469
+ "epoch": 0.31527093596059114,
470
+ "grad_norm": 0.5282868146896362,
471
+ "learning_rate": 0.00019848077530122083,
472
+ "loss": 0.7865,
473
+ "step": 64
474
+ },
475
+ {
476
+ "epoch": 0.32019704433497537,
477
+ "grad_norm": 0.5349370241165161,
478
+ "learning_rate": 0.0001984111204336116,
479
+ "loss": 0.7984,
480
+ "step": 65
481
+ },
482
+ {
483
+ "epoch": 0.3251231527093596,
484
+ "grad_norm": 0.4982023239135742,
485
+ "learning_rate": 0.0001983399171309674,
486
+ "loss": 0.8803,
487
+ "step": 66
488
+ },
489
+ {
490
+ "epoch": 0.33004926108374383,
491
+ "grad_norm": 0.467535138130188,
492
+ "learning_rate": 0.00019826716651362585,
493
+ "loss": 0.6774,
494
+ "step": 67
495
+ },
496
+ {
497
+ "epoch": 0.33497536945812806,
498
+ "grad_norm": 0.36764436960220337,
499
+ "learning_rate": 0.00019819286972627066,
500
+ "loss": 0.4467,
501
+ "step": 68
502
+ },
503
+ {
504
+ "epoch": 0.3399014778325123,
505
+ "grad_norm": 0.4941648840904236,
506
+ "learning_rate": 0.00019811702793791355,
507
+ "loss": 0.6345,
508
+ "step": 69
509
+ },
510
+ {
511
+ "epoch": 0.3448275862068966,
512
+ "grad_norm": 0.5048440098762512,
513
+ "learning_rate": 0.0001980396423418757,
514
+ "loss": 0.641,
515
+ "step": 70
516
+ },
517
+ {
518
+ "epoch": 0.3497536945812808,
519
+ "grad_norm": 0.5182650685310364,
520
+ "learning_rate": 0.00019796071415576925,
521
+ "loss": 0.6989,
522
+ "step": 71
523
+ },
524
+ {
525
+ "epoch": 0.35467980295566504,
526
+ "grad_norm": 0.504978358745575,
527
+ "learning_rate": 0.00019788024462147788,
528
+ "loss": 0.7198,
529
+ "step": 72
530
+ },
531
+ {
532
+ "epoch": 0.35960591133004927,
533
+ "grad_norm": 0.5767678022384644,
534
+ "learning_rate": 0.00019779823500513745,
535
+ "loss": 0.9102,
536
+ "step": 73
537
+ },
538
+ {
539
+ "epoch": 0.3645320197044335,
540
+ "grad_norm": 0.5125048756599426,
541
+ "learning_rate": 0.00019771468659711595,
542
+ "loss": 0.6646,
543
+ "step": 74
544
+ },
545
+ {
546
+ "epoch": 0.3694581280788177,
547
+ "grad_norm": 0.4948768615722656,
548
+ "learning_rate": 0.00019762960071199333,
549
+ "loss": 0.7312,
550
+ "step": 75
551
+ },
552
+ {
553
+ "epoch": 0.37438423645320196,
554
+ "grad_norm": 0.45587611198425293,
555
+ "learning_rate": 0.00019754297868854073,
556
+ "loss": 0.6778,
557
+ "step": 76
558
+ },
559
+ {
560
+ "epoch": 0.3793103448275862,
561
+ "grad_norm": 0.49900615215301514,
562
+ "learning_rate": 0.0001974548218896993,
563
+ "loss": 0.724,
564
+ "step": 77
565
+ },
566
+ {
567
+ "epoch": 0.3842364532019704,
568
+ "grad_norm": 0.533632755279541,
569
+ "learning_rate": 0.00019736513170255911,
570
+ "loss": 0.5307,
571
+ "step": 78
572
+ },
573
+ {
574
+ "epoch": 0.3891625615763547,
575
+ "grad_norm": 0.5380002856254578,
576
+ "learning_rate": 0.0001972739095383369,
577
+ "loss": 0.725,
578
+ "step": 79
579
+ },
580
+ {
581
+ "epoch": 0.39408866995073893,
582
+ "grad_norm": 0.6754060983657837,
583
+ "learning_rate": 0.00019718115683235417,
584
+ "loss": 1.04,
585
+ "step": 80
586
+ },
587
+ {
588
+ "epoch": 0.39901477832512317,
589
+ "grad_norm": 0.674319326877594,
590
+ "learning_rate": 0.0001970868750440145,
591
+ "loss": 0.9026,
592
+ "step": 81
593
+ },
594
+ {
595
+ "epoch": 0.4039408866995074,
596
+ "grad_norm": 0.5251882672309875,
597
+ "learning_rate": 0.0001969910656567805,
598
+ "loss": 0.615,
599
+ "step": 82
600
+ },
601
+ {
602
+ "epoch": 0.4088669950738916,
603
+ "grad_norm": 0.5495942831039429,
604
+ "learning_rate": 0.00019689373017815073,
605
+ "loss": 0.7116,
606
+ "step": 83
607
+ },
608
+ {
609
+ "epoch": 0.41379310344827586,
610
+ "grad_norm": 0.4467202425003052,
611
+ "learning_rate": 0.00019679487013963564,
612
+ "loss": 0.4405,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.4187192118226601,
617
+ "grad_norm": 0.4973738491535187,
618
+ "learning_rate": 0.0001966944870967337,
619
+ "loss": 0.6288,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.4236453201970443,
624
+ "grad_norm": 0.5494425892829895,
625
+ "learning_rate": 0.00019659258262890683,
626
+ "loss": 0.8375,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.42857142857142855,
631
+ "grad_norm": 0.6044692397117615,
632
+ "learning_rate": 0.0001964891583395557,
633
+ "loss": 0.8642,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.43349753694581283,
638
+ "grad_norm": 0.6321963667869568,
639
+ "learning_rate": 0.00019638421585599423,
640
+ "loss": 0.6427,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.43842364532019706,
645
+ "grad_norm": 0.591774046421051,
646
+ "learning_rate": 0.0001962777568294242,
647
+ "loss": 0.812,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.4433497536945813,
652
+ "grad_norm": 0.4774153232574463,
653
+ "learning_rate": 0.0001961697829349093,
654
+ "loss": 0.6251,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.4482758620689655,
659
+ "grad_norm": 0.3739103674888611,
660
+ "learning_rate": 0.00019606029587134854,
661
+ "loss": 0.4022,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.45320197044334976,
666
+ "grad_norm": 0.33491694927215576,
667
+ "learning_rate": 0.00019594929736144976,
668
+ "loss": 0.3867,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.458128078817734,
673
+ "grad_norm": 0.5062631964683533,
674
+ "learning_rate": 0.00019583678915170233,
675
+ "loss": 0.691,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.4630541871921182,
680
+ "grad_norm": 0.44269800186157227,
681
+ "learning_rate": 0.00019572277301234986,
682
+ "loss": 0.5816,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.46798029556650245,
687
+ "grad_norm": 0.5803526639938354,
688
+ "learning_rate": 0.00019560725073736226,
689
+ "loss": 0.9605,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.4729064039408867,
694
+ "grad_norm": 0.4676986038684845,
695
+ "learning_rate": 0.0001954902241444074,
696
+ "loss": 0.4847,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.47783251231527096,
701
+ "grad_norm": 0.4004145860671997,
702
+ "learning_rate": 0.0001953716950748227,
703
+ "loss": 0.5009,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.4827586206896552,
708
+ "grad_norm": 0.4633149206638336,
709
+ "learning_rate": 0.00019525166539358606,
710
+ "loss": 0.6022,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.4876847290640394,
715
+ "grad_norm": 0.5013838410377502,
716
+ "learning_rate": 0.00019513013698928652,
717
+ "loss": 0.5579,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.49261083743842365,
722
+ "grad_norm": 0.42055630683898926,
723
+ "learning_rate": 0.00019500711177409454,
724
+ "loss": 0.6106,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.4975369458128079,
729
+ "grad_norm": 0.5310317873954773,
730
+ "learning_rate": 0.00019488259168373197,
731
+ "loss": 0.5404,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.5024630541871922,
736
+ "grad_norm": 0.5370813012123108,
737
+ "learning_rate": 0.0001947565786774415,
738
+ "loss": 0.7316,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.5024630541871922,
743
+ "eval_loss": 0.6300095319747925,
744
+ "eval_runtime": 11.037,
745
+ "eval_samples_per_second": 4.077,
746
+ "eval_steps_per_second": 2.084,
747
+ "step": 102
748
+ },
749
+ {
750
+ "epoch": 0.5073891625615764,
751
+ "grad_norm": 0.6000672578811646,
752
+ "learning_rate": 0.0001946290747379559,
753
+ "loss": 0.8484,
754
+ "step": 103
755
+ },
756
+ {
757
+ "epoch": 0.5123152709359606,
758
+ "grad_norm": 0.5001861453056335,
759
+ "learning_rate": 0.00019450008187146684,
760
+ "loss": 0.475,
761
+ "step": 104
762
+ },
763
+ {
764
+ "epoch": 0.5172413793103449,
765
+ "grad_norm": 0.4290579557418823,
766
+ "learning_rate": 0.00019436960210759326,
767
+ "loss": 0.4866,
768
+ "step": 105
769
+ },
770
+ {
771
+ "epoch": 0.5221674876847291,
772
+ "grad_norm": 0.6716535091400146,
773
+ "learning_rate": 0.0001942376374993494,
774
+ "loss": 0.8152,
775
+ "step": 106
776
+ },
777
+ {
778
+ "epoch": 0.5270935960591133,
779
+ "grad_norm": 0.4558948874473572,
780
+ "learning_rate": 0.00019410419012311268,
781
+ "loss": 0.5321,
782
+ "step": 107
783
+ },
784
+ {
785
+ "epoch": 0.5320197044334976,
786
+ "grad_norm": 0.5225330591201782,
787
+ "learning_rate": 0.00019396926207859084,
788
+ "loss": 0.5838,
789
+ "step": 108
790
+ },
791
+ {
792
+ "epoch": 0.5369458128078818,
793
+ "grad_norm": 0.5035777688026428,
794
+ "learning_rate": 0.00019383285548878898,
795
+ "loss": 0.5303,
796
+ "step": 109
797
+ },
798
+ {
799
+ "epoch": 0.541871921182266,
800
+ "grad_norm": 0.4841632544994354,
801
+ "learning_rate": 0.0001936949724999762,
802
+ "loss": 0.5958,
803
+ "step": 110
804
+ },
805
+ {
806
+ "epoch": 0.5467980295566502,
807
+ "grad_norm": 0.5300568342208862,
808
+ "learning_rate": 0.00019355561528165165,
809
+ "loss": 0.5823,
810
+ "step": 111
811
+ },
812
+ {
813
+ "epoch": 0.5517241379310345,
814
+ "grad_norm": 0.4645020067691803,
815
+ "learning_rate": 0.00019341478602651069,
816
+ "loss": 0.5323,
817
+ "step": 112
818
+ },
819
+ {
820
+ "epoch": 0.5566502463054187,
821
+ "grad_norm": 0.5558884143829346,
822
+ "learning_rate": 0.0001932724869504101,
823
+ "loss": 0.7341,
824
+ "step": 113
825
+ },
826
+ {
827
+ "epoch": 0.5615763546798029,
828
+ "grad_norm": 0.5705283284187317,
829
+ "learning_rate": 0.00019312872029233339,
830
+ "loss": 0.617,
831
+ "step": 114
832
+ },
833
+ {
834
+ "epoch": 0.5665024630541872,
835
+ "grad_norm": 0.48577770590782166,
836
+ "learning_rate": 0.0001929834883143555,
837
+ "loss": 0.7458,
838
+ "step": 115
839
+ },
840
+ {
841
+ "epoch": 0.5714285714285714,
842
+ "grad_norm": 0.5642262101173401,
843
+ "learning_rate": 0.00019283679330160726,
844
+ "loss": 0.8641,
845
+ "step": 116
846
+ },
847
+ {
848
+ "epoch": 0.5763546798029556,
849
+ "grad_norm": 0.4224662780761719,
850
+ "learning_rate": 0.00019268863756223938,
851
+ "loss": 0.5858,
852
+ "step": 117
853
+ },
854
+ {
855
+ "epoch": 0.5812807881773399,
856
+ "grad_norm": 0.5003111958503723,
857
+ "learning_rate": 0.0001925390234273861,
858
+ "loss": 0.6534,
859
+ "step": 118
860
+ },
861
+ {
862
+ "epoch": 0.5862068965517241,
863
+ "grad_norm": 0.39336368441581726,
864
+ "learning_rate": 0.0001923879532511287,
865
+ "loss": 0.4173,
866
+ "step": 119
867
+ },
868
+ {
869
+ "epoch": 0.5911330049261084,
870
+ "grad_norm": 0.5101594924926758,
871
+ "learning_rate": 0.00019223542941045817,
872
+ "loss": 0.7547,
873
+ "step": 120
874
+ },
875
+ {
876
+ "epoch": 0.5960591133004927,
877
+ "grad_norm": 0.5837039351463318,
878
+ "learning_rate": 0.00019208145430523805,
879
+ "loss": 0.6629,
880
+ "step": 121
881
+ },
882
+ {
883
+ "epoch": 0.6009852216748769,
884
+ "grad_norm": 0.44756221771240234,
885
+ "learning_rate": 0.00019192603035816656,
886
+ "loss": 0.5471,
887
+ "step": 122
888
+ },
889
+ {
890
+ "epoch": 0.6059113300492611,
891
+ "grad_norm": 0.46749138832092285,
892
+ "learning_rate": 0.00019176916001473857,
893
+ "loss": 0.5808,
894
+ "step": 123
895
+ },
896
+ {
897
+ "epoch": 0.6108374384236454,
898
+ "grad_norm": 0.5669186115264893,
899
+ "learning_rate": 0.00019161084574320696,
900
+ "loss": 0.6666,
901
+ "step": 124
902
+ },
903
+ {
904
+ "epoch": 0.6157635467980296,
905
+ "grad_norm": 0.39391183853149414,
906
+ "learning_rate": 0.00019145109003454396,
907
+ "loss": 0.4012,
908
+ "step": 125
909
+ },
910
+ {
911
+ "epoch": 0.6206896551724138,
912
+ "grad_norm": 0.597058892250061,
913
+ "learning_rate": 0.00019128989540240178,
914
+ "loss": 0.5815,
915
+ "step": 126
916
+ },
917
+ {
918
+ "epoch": 0.625615763546798,
919
+ "grad_norm": 0.42727410793304443,
920
+ "learning_rate": 0.00019112726438307327,
921
+ "loss": 0.543,
922
+ "step": 127
923
+ },
924
+ {
925
+ "epoch": 0.6305418719211823,
926
+ "grad_norm": 0.4960153102874756,
927
+ "learning_rate": 0.00019096319953545185,
928
+ "loss": 0.8382,
929
+ "step": 128
930
+ },
931
+ {
932
+ "epoch": 0.6354679802955665,
933
+ "grad_norm": 0.5167288780212402,
934
+ "learning_rate": 0.00019079770344099126,
935
+ "loss": 0.6161,
936
+ "step": 129
937
+ },
938
+ {
939
+ "epoch": 0.6403940886699507,
940
+ "grad_norm": 0.43096935749053955,
941
+ "learning_rate": 0.000190630778703665,
942
+ "loss": 0.446,
943
+ "step": 130
944
+ },
945
+ {
946
+ "epoch": 0.645320197044335,
947
+ "grad_norm": 0.48677173256874084,
948
+ "learning_rate": 0.00019046242794992538,
949
+ "loss": 0.5953,
950
+ "step": 131
951
+ },
952
+ {
953
+ "epoch": 0.6502463054187192,
954
+ "grad_norm": 0.43192002177238464,
955
+ "learning_rate": 0.00019029265382866214,
956
+ "loss": 0.6484,
957
+ "step": 132
958
+ },
959
+ {
960
+ "epoch": 0.6551724137931034,
961
+ "grad_norm": 0.4542531669139862,
962
+ "learning_rate": 0.00019012145901116072,
963
+ "loss": 0.6714,
964
+ "step": 133
965
+ },
966
+ {
967
+ "epoch": 0.6600985221674877,
968
+ "grad_norm": 0.5044397115707397,
969
+ "learning_rate": 0.00018994884619106031,
970
+ "loss": 0.5707,
971
+ "step": 134
972
+ },
973
+ {
974
+ "epoch": 0.6650246305418719,
975
+ "grad_norm": 0.5109909772872925,
976
+ "learning_rate": 0.00018977481808431156,
977
+ "loss": 0.5733,
978
+ "step": 135
979
+ },
980
+ {
981
+ "epoch": 0.6699507389162561,
982
+ "grad_norm": 0.408963680267334,
983
+ "learning_rate": 0.00018959937742913359,
984
+ "loss": 0.4026,
985
+ "step": 136
986
+ },
987
+ {
988
+ "epoch": 0.6748768472906403,
989
+ "grad_norm": 0.4982157051563263,
990
+ "learning_rate": 0.00018942252698597113,
991
+ "loss": 0.5858,
992
+ "step": 137
993
+ },
994
+ {
995
+ "epoch": 0.6798029556650246,
996
+ "grad_norm": 0.43446001410484314,
997
+ "learning_rate": 0.000189244269537451,
998
+ "loss": 0.399,
999
+ "step": 138
1000
+ },
1001
+ {
1002
+ "epoch": 0.6847290640394089,
1003
+ "grad_norm": 0.563456118106842,
1004
+ "learning_rate": 0.0001890646078883383,
1005
+ "loss": 0.609,
1006
+ "step": 139
1007
+ },
1008
+ {
1009
+ "epoch": 0.6896551724137931,
1010
+ "grad_norm": 0.5484267473220825,
1011
+ "learning_rate": 0.00018888354486549237,
1012
+ "loss": 0.6773,
1013
+ "step": 140
1014
+ },
1015
+ {
1016
+ "epoch": 0.6945812807881774,
1017
+ "grad_norm": 0.3881613314151764,
1018
+ "learning_rate": 0.00018870108331782217,
1019
+ "loss": 0.4737,
1020
+ "step": 141
1021
+ },
1022
+ {
1023
+ "epoch": 0.6995073891625616,
1024
+ "grad_norm": 0.45160579681396484,
1025
+ "learning_rate": 0.00018851722611624164,
1026
+ "loss": 0.4898,
1027
+ "step": 142
1028
+ },
1029
+ {
1030
+ "epoch": 0.7044334975369458,
1031
+ "grad_norm": 0.43751001358032227,
1032
+ "learning_rate": 0.0001883319761536244,
1033
+ "loss": 0.4106,
1034
+ "step": 143
1035
+ },
1036
+ {
1037
+ "epoch": 0.7093596059113301,
1038
+ "grad_norm": 0.4221664369106293,
1039
+ "learning_rate": 0.00018814533634475822,
1040
+ "loss": 0.7008,
1041
+ "step": 144
1042
+ },
1043
+ {
1044
+ "epoch": 0.7142857142857143,
1045
+ "grad_norm": 0.4563562572002411,
1046
+ "learning_rate": 0.00018795730962629917,
1047
+ "loss": 0.5083,
1048
+ "step": 145
1049
+ },
1050
+ {
1051
+ "epoch": 0.7192118226600985,
1052
+ "grad_norm": 0.43079623579978943,
1053
+ "learning_rate": 0.00018776789895672558,
1054
+ "loss": 0.5056,
1055
+ "step": 146
1056
+ },
1057
+ {
1058
+ "epoch": 0.7241379310344828,
1059
+ "grad_norm": 0.536952793598175,
1060
+ "learning_rate": 0.00018757710731629116,
1061
+ "loss": 0.7533,
1062
+ "step": 147
1063
+ },
1064
+ {
1065
+ "epoch": 0.729064039408867,
1066
+ "grad_norm": 0.507958710193634,
1067
+ "learning_rate": 0.00018738493770697852,
1068
+ "loss": 0.6007,
1069
+ "step": 148
1070
+ },
1071
+ {
1072
+ "epoch": 0.7339901477832512,
1073
+ "grad_norm": 0.5080809593200684,
1074
+ "learning_rate": 0.00018719139315245148,
1075
+ "loss": 0.6368,
1076
+ "step": 149
1077
+ },
1078
+ {
1079
+ "epoch": 0.7389162561576355,
1080
+ "grad_norm": 0.43527957797050476,
1081
+ "learning_rate": 0.0001869964766980079,
1082
+ "loss": 0.6269,
1083
+ "step": 150
1084
+ },
1085
+ {
1086
+ "epoch": 0.7438423645320197,
1087
+ "grad_norm": 0.5668943524360657,
1088
+ "learning_rate": 0.00018680019141053156,
1089
+ "loss": 0.6683,
1090
+ "step": 151
1091
+ },
1092
+ {
1093
+ "epoch": 0.7487684729064039,
1094
+ "grad_norm": 0.4798513352870941,
1095
+ "learning_rate": 0.00018660254037844388,
1096
+ "loss": 0.6075,
1097
+ "step": 152
1098
+ },
1099
+ {
1100
+ "epoch": 0.7536945812807881,
1101
+ "grad_norm": 0.4836024045944214,
1102
+ "learning_rate": 0.0001864035267116554,
1103
+ "loss": 0.5161,
1104
+ "step": 153
1105
+ },
1106
+ {
1107
+ "epoch": 0.7536945812807881,
1108
+ "eval_loss": 0.5951735377311707,
1109
+ "eval_runtime": 11.0583,
1110
+ "eval_samples_per_second": 4.069,
1111
+ "eval_steps_per_second": 2.08,
1112
+ "step": 153
1113
+ },
1114
+ {
1115
+ "epoch": 0.7586206896551724,
1116
+ "grad_norm": 0.4657806158065796,
1117
+ "learning_rate": 0.00018620315354151695,
1118
+ "loss": 0.5469,
1119
+ "step": 154
1120
+ },
1121
+ {
1122
+ "epoch": 0.7635467980295566,
1123
+ "grad_norm": 0.4219043254852295,
1124
+ "learning_rate": 0.00018600142402077006,
1125
+ "loss": 0.389,
1126
+ "step": 155
1127
+ },
1128
+ {
1129
+ "epoch": 0.7684729064039408,
1130
+ "grad_norm": 0.42991775274276733,
1131
+ "learning_rate": 0.00018579834132349772,
1132
+ "loss": 0.4041,
1133
+ "step": 156
1134
+ },
1135
+ {
1136
+ "epoch": 0.7733990147783252,
1137
+ "grad_norm": 0.4750354290008545,
1138
+ "learning_rate": 0.00018559390864507418,
1139
+ "loss": 0.4167,
1140
+ "step": 157
1141
+ },
1142
+ {
1143
+ "epoch": 0.7783251231527094,
1144
+ "grad_norm": 0.470115065574646,
1145
+ "learning_rate": 0.0001853881292021148,
1146
+ "loss": 0.5946,
1147
+ "step": 158
1148
+ },
1149
+ {
1150
+ "epoch": 0.7832512315270936,
1151
+ "grad_norm": 0.4590957462787628,
1152
+ "learning_rate": 0.00018518100623242547,
1153
+ "loss": 0.3899,
1154
+ "step": 159
1155
+ },
1156
+ {
1157
+ "epoch": 0.7881773399014779,
1158
+ "grad_norm": 0.6609347462654114,
1159
+ "learning_rate": 0.00018497254299495146,
1160
+ "loss": 0.7092,
1161
+ "step": 160
1162
+ },
1163
+ {
1164
+ "epoch": 0.7931034482758621,
1165
+ "grad_norm": 0.687901496887207,
1166
+ "learning_rate": 0.00018476274276972636,
1167
+ "loss": 0.97,
1168
+ "step": 161
1169
+ },
1170
+ {
1171
+ "epoch": 0.7980295566502463,
1172
+ "grad_norm": 0.49742093682289124,
1173
+ "learning_rate": 0.00018455160885782045,
1174
+ "loss": 0.8148,
1175
+ "step": 162
1176
+ },
1177
+ {
1178
+ "epoch": 0.8029556650246306,
1179
+ "grad_norm": 0.4497315585613251,
1180
+ "learning_rate": 0.0001843391445812886,
1181
+ "loss": 0.383,
1182
+ "step": 163
1183
+ },
1184
+ {
1185
+ "epoch": 0.8078817733990148,
1186
+ "grad_norm": 0.6029507517814636,
1187
+ "learning_rate": 0.00018412535328311814,
1188
+ "loss": 0.6391,
1189
+ "step": 164
1190
+ },
1191
+ {
1192
+ "epoch": 0.812807881773399,
1193
+ "grad_norm": 0.48474130034446716,
1194
+ "learning_rate": 0.00018391023832717624,
1195
+ "loss": 0.655,
1196
+ "step": 165
1197
+ },
1198
+ {
1199
+ "epoch": 0.8177339901477833,
1200
+ "grad_norm": 0.3837825059890747,
1201
+ "learning_rate": 0.00018369380309815698,
1202
+ "loss": 0.5073,
1203
+ "step": 166
1204
+ },
1205
+ {
1206
+ "epoch": 0.8226600985221675,
1207
+ "grad_norm": 0.5352115035057068,
1208
+ "learning_rate": 0.00018347605100152802,
1209
+ "loss": 0.8059,
1210
+ "step": 167
1211
+ },
1212
+ {
1213
+ "epoch": 0.8275862068965517,
1214
+ "grad_norm": 0.37411192059516907,
1215
+ "learning_rate": 0.00018325698546347715,
1216
+ "loss": 0.3482,
1217
+ "step": 168
1218
+ },
1219
+ {
1220
+ "epoch": 0.8325123152709359,
1221
+ "grad_norm": 0.5351614952087402,
1222
+ "learning_rate": 0.00018303660993085826,
1223
+ "loss": 0.8118,
1224
+ "step": 169
1225
+ },
1226
+ {
1227
+ "epoch": 0.8374384236453202,
1228
+ "grad_norm": 0.516040027141571,
1229
+ "learning_rate": 0.00018281492787113708,
1230
+ "loss": 0.8158,
1231
+ "step": 170
1232
+ },
1233
+ {
1234
+ "epoch": 0.8423645320197044,
1235
+ "grad_norm": 0.5002651214599609,
1236
+ "learning_rate": 0.0001825919427723369,
1237
+ "loss": 0.5554,
1238
+ "step": 171
1239
+ },
1240
+ {
1241
+ "epoch": 0.8472906403940886,
1242
+ "grad_norm": 0.5356642007827759,
1243
+ "learning_rate": 0.0001823676581429833,
1244
+ "loss": 0.4798,
1245
+ "step": 172
1246
+ },
1247
+ {
1248
+ "epoch": 0.8522167487684729,
1249
+ "grad_norm": 0.5253735184669495,
1250
+ "learning_rate": 0.00018214207751204918,
1251
+ "loss": 0.6372,
1252
+ "step": 173
1253
+ },
1254
+ {
1255
+ "epoch": 0.8571428571428571,
1256
+ "grad_norm": 0.4893580675125122,
1257
+ "learning_rate": 0.0001819152044288992,
1258
+ "loss": 0.6477,
1259
+ "step": 174
1260
+ },
1261
+ {
1262
+ "epoch": 0.8620689655172413,
1263
+ "grad_norm": 0.5049504041671753,
1264
+ "learning_rate": 0.0001816870424632339,
1265
+ "loss": 0.6475,
1266
+ "step": 175
1267
+ },
1268
+ {
1269
+ "epoch": 0.8669950738916257,
1270
+ "grad_norm": 0.4409392476081848,
1271
+ "learning_rate": 0.00018145759520503358,
1272
+ "loss": 0.4051,
1273
+ "step": 176
1274
+ },
1275
+ {
1276
+ "epoch": 0.8719211822660099,
1277
+ "grad_norm": 0.49714887142181396,
1278
+ "learning_rate": 0.00018122686626450174,
1279
+ "loss": 0.581,
1280
+ "step": 177
1281
+ },
1282
+ {
1283
+ "epoch": 0.8768472906403941,
1284
+ "grad_norm": 0.4551338851451874,
1285
+ "learning_rate": 0.00018099485927200836,
1286
+ "loss": 0.54,
1287
+ "step": 178
1288
+ },
1289
+ {
1290
+ "epoch": 0.8817733990147784,
1291
+ "grad_norm": 0.4689117670059204,
1292
+ "learning_rate": 0.00018076157787803268,
1293
+ "loss": 0.4337,
1294
+ "step": 179
1295
+ },
1296
+ {
1297
+ "epoch": 0.8866995073891626,
1298
+ "grad_norm": 0.3948321044445038,
1299
+ "learning_rate": 0.00018052702575310588,
1300
+ "loss": 0.3073,
1301
+ "step": 180
1302
+ },
1303
+ {
1304
+ "epoch": 0.8916256157635468,
1305
+ "grad_norm": 0.5096619129180908,
1306
+ "learning_rate": 0.0001802912065877532,
1307
+ "loss": 0.6153,
1308
+ "step": 181
1309
+ },
1310
+ {
1311
+ "epoch": 0.896551724137931,
1312
+ "grad_norm": 0.49955296516418457,
1313
+ "learning_rate": 0.00018005412409243606,
1314
+ "loss": 0.6417,
1315
+ "step": 182
1316
+ },
1317
+ {
1318
+ "epoch": 0.9014778325123153,
1319
+ "grad_norm": 0.5724025964736938,
1320
+ "learning_rate": 0.0001798157819974934,
1321
+ "loss": 0.524,
1322
+ "step": 183
1323
+ },
1324
+ {
1325
+ "epoch": 0.9064039408866995,
1326
+ "grad_norm": 0.573061466217041,
1327
+ "learning_rate": 0.00017957618405308324,
1328
+ "loss": 0.5929,
1329
+ "step": 184
1330
+ },
1331
+ {
1332
+ "epoch": 0.9113300492610837,
1333
+ "grad_norm": 0.5818294882774353,
1334
+ "learning_rate": 0.00017933533402912354,
1335
+ "loss": 0.6464,
1336
+ "step": 185
1337
+ },
1338
+ {
1339
+ "epoch": 0.916256157635468,
1340
+ "grad_norm": 0.5145869851112366,
1341
+ "learning_rate": 0.00017909323571523294,
1342
+ "loss": 0.6867,
1343
+ "step": 186
1344
+ },
1345
+ {
1346
+ "epoch": 0.9211822660098522,
1347
+ "grad_norm": 0.4173225462436676,
1348
+ "learning_rate": 0.0001788498929206711,
1349
+ "loss": 0.3869,
1350
+ "step": 187
1351
+ },
1352
+ {
1353
+ "epoch": 0.9261083743842364,
1354
+ "grad_norm": 0.4742754101753235,
1355
+ "learning_rate": 0.00017860530947427875,
1356
+ "loss": 0.6324,
1357
+ "step": 188
1358
+ },
1359
+ {
1360
+ "epoch": 0.9310344827586207,
1361
+ "grad_norm": 0.4032367765903473,
1362
+ "learning_rate": 0.00017835948922441755,
1363
+ "loss": 0.3317,
1364
+ "step": 189
1365
+ },
1366
+ {
1367
+ "epoch": 0.9359605911330049,
1368
+ "grad_norm": 0.5449414253234863,
1369
+ "learning_rate": 0.00017811243603890934,
1370
+ "loss": 0.6642,
1371
+ "step": 190
1372
+ },
1373
+ {
1374
+ "epoch": 0.9408866995073891,
1375
+ "grad_norm": 0.3662044405937195,
1376
+ "learning_rate": 0.00017786415380497553,
1377
+ "loss": 0.4073,
1378
+ "step": 191
1379
+ },
1380
+ {
1381
+ "epoch": 0.9458128078817734,
1382
+ "grad_norm": 0.5382059812545776,
1383
+ "learning_rate": 0.0001776146464291757,
1384
+ "loss": 1.0491,
1385
+ "step": 192
1386
+ },
1387
+ {
1388
+ "epoch": 0.9507389162561576,
1389
+ "grad_norm": 0.406678169965744,
1390
+ "learning_rate": 0.0001773639178373463,
1391
+ "loss": 0.5818,
1392
+ "step": 193
1393
+ },
1394
+ {
1395
+ "epoch": 0.9556650246305419,
1396
+ "grad_norm": 0.44329485297203064,
1397
+ "learning_rate": 0.00017711197197453878,
1398
+ "loss": 0.3998,
1399
+ "step": 194
1400
+ },
1401
+ {
1402
+ "epoch": 0.9605911330049262,
1403
+ "grad_norm": 0.5197709798812866,
1404
+ "learning_rate": 0.0001768588128049576,
1405
+ "loss": 0.7085,
1406
+ "step": 195
1407
+ },
1408
+ {
1409
+ "epoch": 0.9655172413793104,
1410
+ "grad_norm": 0.4579933285713196,
1411
+ "learning_rate": 0.0001766044443118978,
1412
+ "loss": 0.5236,
1413
+ "step": 196
1414
+ },
1415
+ {
1416
+ "epoch": 0.9704433497536946,
1417
+ "grad_norm": 0.5653615593910217,
1418
+ "learning_rate": 0.00017634887049768237,
1419
+ "loss": 0.7925,
1420
+ "step": 197
1421
+ },
1422
+ {
1423
+ "epoch": 0.9753694581280788,
1424
+ "grad_norm": 0.46353796124458313,
1425
+ "learning_rate": 0.00017609209538359917,
1426
+ "loss": 0.4271,
1427
+ "step": 198
1428
+ },
1429
+ {
1430
+ "epoch": 0.9802955665024631,
1431
+ "grad_norm": 0.5367504358291626,
1432
+ "learning_rate": 0.00017583412300983776,
1433
+ "loss": 0.5715,
1434
+ "step": 199
1435
+ },
1436
+ {
1437
+ "epoch": 0.9852216748768473,
1438
+ "grad_norm": 0.470466673374176,
1439
+ "learning_rate": 0.00017557495743542585,
1440
+ "loss": 0.3894,
1441
+ "step": 200
1442
+ },
1443
+ {
1444
+ "epoch": 0.9901477832512315,
1445
+ "grad_norm": 0.6407225728034973,
1446
+ "learning_rate": 0.00017531460273816532,
1447
+ "loss": 0.6297,
1448
+ "step": 201
1449
+ },
1450
+ {
1451
+ "epoch": 0.9950738916256158,
1452
+ "grad_norm": 0.44787856936454773,
1453
+ "learning_rate": 0.00017505306301456822,
1454
+ "loss": 0.4496,
1455
+ "step": 202
1456
+ },
1457
+ {
1458
+ "epoch": 1.0,
1459
+ "grad_norm": 0.7431913018226624,
1460
+ "learning_rate": 0.0001747903423797921,
1461
+ "loss": 0.4843,
1462
+ "step": 203
1463
+ },
1464
+ {
1465
+ "epoch": 1.0049261083743843,
1466
+ "grad_norm": 0.3732824921607971,
1467
+ "learning_rate": 0.0001745264449675755,
1468
+ "loss": 0.2465,
1469
+ "step": 204
1470
+ },
1471
+ {
1472
+ "epoch": 1.0049261083743843,
1473
+ "eval_loss": 0.5774902701377869,
1474
+ "eval_runtime": 11.086,
1475
+ "eval_samples_per_second": 4.059,
1476
+ "eval_steps_per_second": 2.075,
1477
+ "step": 204
1478
+ },
1479
+ {
1480
+ "epoch": 1.0098522167487685,
1481
+ "grad_norm": 0.4518275558948517,
1482
+ "learning_rate": 0.00017426137493017265,
1483
+ "loss": 0.3676,
1484
+ "step": 205
1485
+ },
1486
+ {
1487
+ "epoch": 1.0147783251231528,
1488
+ "grad_norm": 0.41071954369544983,
1489
+ "learning_rate": 0.0001739951364382884,
1490
+ "loss": 0.4175,
1491
+ "step": 206
1492
+ },
1493
+ {
1494
+ "epoch": 1.019704433497537,
1495
+ "grad_norm": 0.6320828199386597,
1496
+ "learning_rate": 0.0001737277336810124,
1497
+ "loss": 0.6605,
1498
+ "step": 207
1499
+ },
1500
+ {
1501
+ "epoch": 1.0246305418719213,
1502
+ "grad_norm": 0.5452926158905029,
1503
+ "learning_rate": 0.00017345917086575332,
1504
+ "loss": 0.5126,
1505
+ "step": 208
1506
+ },
1507
+ {
1508
+ "epoch": 1.0295566502463054,
1509
+ "grad_norm": 0.5548157691955566,
1510
+ "learning_rate": 0.00017318945221817255,
1511
+ "loss": 0.4749,
1512
+ "step": 209
1513
+ },
1514
+ {
1515
+ "epoch": 1.0344827586206897,
1516
+ "grad_norm": 0.6151676774024963,
1517
+ "learning_rate": 0.00017291858198211773,
1518
+ "loss": 0.52,
1519
+ "step": 210
1520
+ },
1521
+ {
1522
+ "epoch": 1.0394088669950738,
1523
+ "grad_norm": 0.5246535539627075,
1524
+ "learning_rate": 0.00017264656441955603,
1525
+ "loss": 0.5984,
1526
+ "step": 211
1527
+ },
1528
+ {
1529
+ "epoch": 1.0443349753694582,
1530
+ "grad_norm": 0.5412974953651428,
1531
+ "learning_rate": 0.00017237340381050703,
1532
+ "loss": 0.4845,
1533
+ "step": 212
1534
+ },
1535
+ {
1536
+ "epoch": 1.0492610837438423,
1537
+ "grad_norm": 0.4644743502140045,
1538
+ "learning_rate": 0.00017209910445297542,
1539
+ "loss": 0.4952,
1540
+ "step": 213
1541
+ },
1542
+ {
1543
+ "epoch": 1.0541871921182266,
1544
+ "grad_norm": 0.5570724010467529,
1545
+ "learning_rate": 0.00017182367066288342,
1546
+ "loss": 0.4349,
1547
+ "step": 214
1548
+ },
1549
+ {
1550
+ "epoch": 1.0591133004926108,
1551
+ "grad_norm": 0.602289617061615,
1552
+ "learning_rate": 0.00017154710677400265,
1553
+ "loss": 0.5497,
1554
+ "step": 215
1555
+ },
1556
+ {
1557
+ "epoch": 1.064039408866995,
1558
+ "grad_norm": 0.577187180519104,
1559
+ "learning_rate": 0.00017126941713788632,
1560
+ "loss": 0.4701,
1561
+ "step": 216
1562
+ },
1563
+ {
1564
+ "epoch": 1.0689655172413792,
1565
+ "grad_norm": 0.5879427194595337,
1566
+ "learning_rate": 0.00017099060612380028,
1567
+ "loss": 0.5623,
1568
+ "step": 217
1569
+ },
1570
+ {
1571
+ "epoch": 1.0738916256157636,
1572
+ "grad_norm": 0.6489105224609375,
1573
+ "learning_rate": 0.00017071067811865476,
1574
+ "loss": 0.609,
1575
+ "step": 218
1576
+ },
1577
+ {
1578
+ "epoch": 1.0788177339901477,
1579
+ "grad_norm": 0.6771227717399597,
1580
+ "learning_rate": 0.00017042963752693502,
1581
+ "loss": 0.5906,
1582
+ "step": 219
1583
+ },
1584
+ {
1585
+ "epoch": 1.083743842364532,
1586
+ "grad_norm": 0.617244303226471,
1587
+ "learning_rate": 0.00017014748877063214,
1588
+ "loss": 0.4835,
1589
+ "step": 220
1590
+ },
1591
+ {
1592
+ "epoch": 1.0886699507389164,
1593
+ "grad_norm": 0.7694700360298157,
1594
+ "learning_rate": 0.00016986423628917346,
1595
+ "loss": 0.6549,
1596
+ "step": 221
1597
+ },
1598
+ {
1599
+ "epoch": 1.0935960591133005,
1600
+ "grad_norm": 0.45222944021224976,
1601
+ "learning_rate": 0.00016957988453935276,
1602
+ "loss": 0.3017,
1603
+ "step": 222
1604
+ },
1605
+ {
1606
+ "epoch": 1.0985221674876848,
1607
+ "grad_norm": 0.6281430125236511,
1608
+ "learning_rate": 0.00016929443799526002,
1609
+ "loss": 0.4617,
1610
+ "step": 223
1611
+ },
1612
+ {
1613
+ "epoch": 1.103448275862069,
1614
+ "grad_norm": 0.5648610591888428,
1615
+ "learning_rate": 0.00016900790114821122,
1616
+ "loss": 0.4349,
1617
+ "step": 224
1618
+ },
1619
+ {
1620
+ "epoch": 1.1083743842364533,
1621
+ "grad_norm": 0.590632975101471,
1622
+ "learning_rate": 0.00016872027850667735,
1623
+ "loss": 0.4623,
1624
+ "step": 225
1625
+ },
1626
+ {
1627
+ "epoch": 1.1133004926108374,
1628
+ "grad_norm": 0.4984714686870575,
1629
+ "learning_rate": 0.00016843157459621384,
1630
+ "loss": 0.2308,
1631
+ "step": 226
1632
+ },
1633
+ {
1634
+ "epoch": 1.1182266009852218,
1635
+ "grad_norm": 0.47801119089126587,
1636
+ "learning_rate": 0.00016814179395938913,
1637
+ "loss": 0.3446,
1638
+ "step": 227
1639
+ },
1640
+ {
1641
+ "epoch": 1.1231527093596059,
1642
+ "grad_norm": 0.6627326011657715,
1643
+ "learning_rate": 0.00016785094115571322,
1644
+ "loss": 0.575,
1645
+ "step": 228
1646
+ },
1647
+ {
1648
+ "epoch": 1.1280788177339902,
1649
+ "grad_norm": 0.661377489566803,
1650
+ "learning_rate": 0.00016755902076156604,
1651
+ "loss": 0.6227,
1652
+ "step": 229
1653
+ },
1654
+ {
1655
+ "epoch": 1.1330049261083743,
1656
+ "grad_norm": 0.5839930176734924,
1657
+ "learning_rate": 0.00016726603737012529,
1658
+ "loss": 0.4468,
1659
+ "step": 230
1660
+ },
1661
+ {
1662
+ "epoch": 1.1379310344827587,
1663
+ "grad_norm": 0.660953164100647,
1664
+ "learning_rate": 0.0001669719955912942,
1665
+ "loss": 0.5003,
1666
+ "step": 231
1667
+ },
1668
+ {
1669
+ "epoch": 1.1428571428571428,
1670
+ "grad_norm": 0.48201170563697815,
1671
+ "learning_rate": 0.00016667690005162916,
1672
+ "loss": 0.4768,
1673
+ "step": 232
1674
+ },
1675
+ {
1676
+ "epoch": 1.1477832512315271,
1677
+ "grad_norm": 0.6323191523551941,
1678
+ "learning_rate": 0.00016638075539426677,
1679
+ "loss": 0.6227,
1680
+ "step": 233
1681
+ },
1682
+ {
1683
+ "epoch": 1.1527093596059113,
1684
+ "grad_norm": 0.5048434138298035,
1685
+ "learning_rate": 0.00016608356627885072,
1686
+ "loss": 0.4082,
1687
+ "step": 234
1688
+ },
1689
+ {
1690
+ "epoch": 1.1576354679802956,
1691
+ "grad_norm": 0.4962400496006012,
1692
+ "learning_rate": 0.00016578533738145868,
1693
+ "loss": 0.4486,
1694
+ "step": 235
1695
+ },
1696
+ {
1697
+ "epoch": 1.1625615763546797,
1698
+ "grad_norm": 0.5392332077026367,
1699
+ "learning_rate": 0.00016548607339452853,
1700
+ "loss": 0.3338,
1701
+ "step": 236
1702
+ },
1703
+ {
1704
+ "epoch": 1.167487684729064,
1705
+ "grad_norm": 0.5738560557365417,
1706
+ "learning_rate": 0.00016518577902678466,
1707
+ "loss": 0.4169,
1708
+ "step": 237
1709
+ },
1710
+ {
1711
+ "epoch": 1.1724137931034484,
1712
+ "grad_norm": 0.45562079548835754,
1713
+ "learning_rate": 0.00016488445900316386,
1714
+ "loss": 0.4418,
1715
+ "step": 238
1716
+ },
1717
+ {
1718
+ "epoch": 1.1773399014778325,
1719
+ "grad_norm": 0.46458548307418823,
1720
+ "learning_rate": 0.00016458211806474088,
1721
+ "loss": 0.2972,
1722
+ "step": 239
1723
+ },
1724
+ {
1725
+ "epoch": 1.1822660098522166,
1726
+ "grad_norm": 0.6105532646179199,
1727
+ "learning_rate": 0.00016427876096865394,
1728
+ "loss": 0.625,
1729
+ "step": 240
1730
+ },
1731
+ {
1732
+ "epoch": 1.187192118226601,
1733
+ "grad_norm": 0.6343269348144531,
1734
+ "learning_rate": 0.00016397439248802984,
1735
+ "loss": 0.4275,
1736
+ "step": 241
1737
+ },
1738
+ {
1739
+ "epoch": 1.1921182266009853,
1740
+ "grad_norm": 0.5875888466835022,
1741
+ "learning_rate": 0.00016366901741190882,
1742
+ "loss": 0.3788,
1743
+ "step": 242
1744
+ },
1745
+ {
1746
+ "epoch": 1.1970443349753694,
1747
+ "grad_norm": 0.5735545754432678,
1748
+ "learning_rate": 0.00016336264054516933,
1749
+ "loss": 0.4419,
1750
+ "step": 243
1751
+ },
1752
+ {
1753
+ "epoch": 1.2019704433497538,
1754
+ "grad_norm": 0.7177073955535889,
1755
+ "learning_rate": 0.00016305526670845226,
1756
+ "loss": 0.726,
1757
+ "step": 244
1758
+ },
1759
+ {
1760
+ "epoch": 1.206896551724138,
1761
+ "grad_norm": 0.6101499199867249,
1762
+ "learning_rate": 0.0001627469007380852,
1763
+ "loss": 0.3365,
1764
+ "step": 245
1765
+ },
1766
+ {
1767
+ "epoch": 1.2118226600985222,
1768
+ "grad_norm": 0.6157029271125793,
1769
+ "learning_rate": 0.00016243754748600635,
1770
+ "loss": 0.436,
1771
+ "step": 246
1772
+ },
1773
+ {
1774
+ "epoch": 1.2167487684729064,
1775
+ "grad_norm": 0.7198493480682373,
1776
+ "learning_rate": 0.00016212721181968812,
1777
+ "loss": 0.6299,
1778
+ "step": 247
1779
+ },
1780
+ {
1781
+ "epoch": 1.2216748768472907,
1782
+ "grad_norm": 0.6608026027679443,
1783
+ "learning_rate": 0.00016181589862206052,
1784
+ "loss": 0.5704,
1785
+ "step": 248
1786
+ },
1787
+ {
1788
+ "epoch": 1.2266009852216748,
1789
+ "grad_norm": 0.5983904600143433,
1790
+ "learning_rate": 0.0001615036127914345,
1791
+ "loss": 0.4425,
1792
+ "step": 249
1793
+ },
1794
+ {
1795
+ "epoch": 1.2315270935960592,
1796
+ "grad_norm": 0.5112388730049133,
1797
+ "learning_rate": 0.00016119035924142466,
1798
+ "loss": 0.4805,
1799
+ "step": 250
1800
+ },
1801
+ {
1802
+ "epoch": 1.2364532019704433,
1803
+ "grad_norm": 0.6211384534835815,
1804
+ "learning_rate": 0.00016087614290087208,
1805
+ "loss": 0.5718,
1806
+ "step": 251
1807
+ },
1808
+ {
1809
+ "epoch": 1.2413793103448276,
1810
+ "grad_norm": 0.6166737675666809,
1811
+ "learning_rate": 0.00016056096871376667,
1812
+ "loss": 0.5045,
1813
+ "step": 252
1814
+ },
1815
+ {
1816
+ "epoch": 1.2463054187192117,
1817
+ "grad_norm": 0.5174737572669983,
1818
+ "learning_rate": 0.00016024484163916952,
1819
+ "loss": 0.2844,
1820
+ "step": 253
1821
+ },
1822
+ {
1823
+ "epoch": 1.251231527093596,
1824
+ "grad_norm": 0.5628989338874817,
1825
+ "learning_rate": 0.0001599277666511347,
1826
+ "loss": 0.4168,
1827
+ "step": 254
1828
+ },
1829
+ {
1830
+ "epoch": 1.2561576354679804,
1831
+ "grad_norm": 0.5588826537132263,
1832
+ "learning_rate": 0.00015960974873863114,
1833
+ "loss": 0.3408,
1834
+ "step": 255
1835
+ },
1836
+ {
1837
+ "epoch": 1.2561576354679804,
1838
+ "eval_loss": 0.5714771747589111,
1839
+ "eval_runtime": 11.1786,
1840
+ "eval_samples_per_second": 4.026,
1841
+ "eval_steps_per_second": 2.058,
1842
+ "step": 255
1843
+ },
1844
+ {
1845
+ "epoch": 1.2610837438423645,
1846
+ "grad_norm": 0.47429361939430237,
1847
+ "learning_rate": 0.00015929079290546408,
1848
+ "loss": 0.3027,
1849
+ "step": 256
1850
+ },
1851
+ {
1852
+ "epoch": 1.2660098522167487,
1853
+ "grad_norm": 0.7338742613792419,
1854
+ "learning_rate": 0.0001589709041701962,
1855
+ "loss": 0.5326,
1856
+ "step": 257
1857
+ },
1858
+ {
1859
+ "epoch": 1.270935960591133,
1860
+ "grad_norm": 0.6908726096153259,
1861
+ "learning_rate": 0.00015865008756606904,
1862
+ "loss": 0.5045,
1863
+ "step": 258
1864
+ },
1865
+ {
1866
+ "epoch": 1.2758620689655173,
1867
+ "grad_norm": 0.7498694658279419,
1868
+ "learning_rate": 0.00015832834814092332,
1869
+ "loss": 0.5976,
1870
+ "step": 259
1871
+ },
1872
+ {
1873
+ "epoch": 1.2807881773399015,
1874
+ "grad_norm": 0.6521242260932922,
1875
+ "learning_rate": 0.00015800569095711982,
1876
+ "loss": 0.552,
1877
+ "step": 260
1878
+ },
1879
+ {
1880
+ "epoch": 1.2857142857142856,
1881
+ "grad_norm": 0.5835188031196594,
1882
+ "learning_rate": 0.00015768212109145975,
1883
+ "loss": 0.3854,
1884
+ "step": 261
1885
+ },
1886
+ {
1887
+ "epoch": 1.29064039408867,
1888
+ "grad_norm": 0.4915793836116791,
1889
+ "learning_rate": 0.0001573576436351046,
1890
+ "loss": 0.3531,
1891
+ "step": 262
1892
+ },
1893
+ {
1894
+ "epoch": 1.2955665024630543,
1895
+ "grad_norm": 0.6469236612319946,
1896
+ "learning_rate": 0.0001570322636934964,
1897
+ "loss": 0.4179,
1898
+ "step": 263
1899
+ },
1900
+ {
1901
+ "epoch": 1.3004926108374384,
1902
+ "grad_norm": 0.5294272899627686,
1903
+ "learning_rate": 0.00015670598638627706,
1904
+ "loss": 0.5197,
1905
+ "step": 264
1906
+ },
1907
+ {
1908
+ "epoch": 1.3054187192118227,
1909
+ "grad_norm": 0.8104782700538635,
1910
+ "learning_rate": 0.00015637881684720805,
1911
+ "loss": 0.5919,
1912
+ "step": 265
1913
+ },
1914
+ {
1915
+ "epoch": 1.3103448275862069,
1916
+ "grad_norm": 0.6078993082046509,
1917
+ "learning_rate": 0.0001560507602240894,
1918
+ "loss": 0.4743,
1919
+ "step": 266
1920
+ },
1921
+ {
1922
+ "epoch": 1.3152709359605912,
1923
+ "grad_norm": 0.7405218482017517,
1924
+ "learning_rate": 0.000155721821678679,
1925
+ "loss": 0.5671,
1926
+ "step": 267
1927
+ },
1928
+ {
1929
+ "epoch": 1.3201970443349753,
1930
+ "grad_norm": 0.7156871557235718,
1931
+ "learning_rate": 0.00015539200638661104,
1932
+ "loss": 0.5013,
1933
+ "step": 268
1934
+ },
1935
+ {
1936
+ "epoch": 1.3251231527093597,
1937
+ "grad_norm": 0.6963270902633667,
1938
+ "learning_rate": 0.0001550613195373149,
1939
+ "loss": 0.7078,
1940
+ "step": 269
1941
+ },
1942
+ {
1943
+ "epoch": 1.3300492610837438,
1944
+ "grad_norm": 0.6525111198425293,
1945
+ "learning_rate": 0.00015472976633393326,
1946
+ "loss": 0.3107,
1947
+ "step": 270
1948
+ },
1949
+ {
1950
+ "epoch": 1.3349753694581281,
1951
+ "grad_norm": 0.7296736836433411,
1952
+ "learning_rate": 0.00015439735199324032,
1953
+ "loss": 0.416,
1954
+ "step": 271
1955
+ },
1956
+ {
1957
+ "epoch": 1.3399014778325122,
1958
+ "grad_norm": 0.6551435589790344,
1959
+ "learning_rate": 0.00015406408174555976,
1960
+ "loss": 0.3226,
1961
+ "step": 272
1962
+ },
1963
+ {
1964
+ "epoch": 1.3448275862068966,
1965
+ "grad_norm": 0.7207363843917847,
1966
+ "learning_rate": 0.0001537299608346824,
1967
+ "loss": 0.5027,
1968
+ "step": 273
1969
+ },
1970
+ {
1971
+ "epoch": 1.3497536945812807,
1972
+ "grad_norm": 0.7445921897888184,
1973
+ "learning_rate": 0.00015339499451778364,
1974
+ "loss": 0.4475,
1975
+ "step": 274
1976
+ },
1977
+ {
1978
+ "epoch": 1.354679802955665,
1979
+ "grad_norm": 0.5955771803855896,
1980
+ "learning_rate": 0.00015305918806534082,
1981
+ "loss": 0.4876,
1982
+ "step": 275
1983
+ },
1984
+ {
1985
+ "epoch": 1.3596059113300494,
1986
+ "grad_norm": 0.5247209072113037,
1987
+ "learning_rate": 0.00015272254676105025,
1988
+ "loss": 0.4293,
1989
+ "step": 276
1990
+ },
1991
+ {
1992
+ "epoch": 1.3645320197044335,
1993
+ "grad_norm": 0.7054429054260254,
1994
+ "learning_rate": 0.00015238507590174417,
1995
+ "loss": 0.6231,
1996
+ "step": 277
1997
+ },
1998
+ {
1999
+ "epoch": 1.3694581280788176,
2000
+ "grad_norm": 0.5251216292381287,
2001
+ "learning_rate": 0.00015204678079730724,
2002
+ "loss": 0.3443,
2003
+ "step": 278
2004
+ },
2005
+ {
2006
+ "epoch": 1.374384236453202,
2007
+ "grad_norm": 0.6474141478538513,
2008
+ "learning_rate": 0.0001517076667705931,
2009
+ "loss": 0.4946,
2010
+ "step": 279
2011
+ },
2012
+ {
2013
+ "epoch": 1.3793103448275863,
2014
+ "grad_norm": 0.654502272605896,
2015
+ "learning_rate": 0.00015136773915734066,
2016
+ "loss": 0.6073,
2017
+ "step": 280
2018
+ },
2019
+ {
2020
+ "epoch": 1.3842364532019704,
2021
+ "grad_norm": 0.7839478850364685,
2022
+ "learning_rate": 0.00015102700330609,
2023
+ "loss": 0.5921,
2024
+ "step": 281
2025
+ },
2026
+ {
2027
+ "epoch": 1.3891625615763548,
2028
+ "grad_norm": 0.6912551522254944,
2029
+ "learning_rate": 0.0001506854645780983,
2030
+ "loss": 0.4686,
2031
+ "step": 282
2032
+ },
2033
+ {
2034
+ "epoch": 1.3940886699507389,
2035
+ "grad_norm": 0.6430887579917908,
2036
+ "learning_rate": 0.0001503431283472556,
2037
+ "loss": 0.5105,
2038
+ "step": 283
2039
+ },
2040
+ {
2041
+ "epoch": 1.3990147783251232,
2042
+ "grad_norm": 0.5742291212081909,
2043
+ "learning_rate": 0.00015000000000000001,
2044
+ "loss": 0.4308,
2045
+ "step": 284
2046
+ },
2047
+ {
2048
+ "epoch": 1.4039408866995073,
2049
+ "grad_norm": 0.5854840874671936,
2050
+ "learning_rate": 0.00014965608493523313,
2051
+ "loss": 0.3606,
2052
+ "step": 285
2053
+ },
2054
+ {
2055
+ "epoch": 1.4088669950738917,
2056
+ "grad_norm": 0.6118752956390381,
2057
+ "learning_rate": 0.00014931138856423502,
2058
+ "loss": 0.4141,
2059
+ "step": 286
2060
+ },
2061
+ {
2062
+ "epoch": 1.4137931034482758,
2063
+ "grad_norm": 0.6871208548545837,
2064
+ "learning_rate": 0.00014896591631057912,
2065
+ "loss": 0.4697,
2066
+ "step": 287
2067
+ },
2068
+ {
2069
+ "epoch": 1.4187192118226601,
2070
+ "grad_norm": 0.7824487686157227,
2071
+ "learning_rate": 0.00014861967361004687,
2072
+ "loss": 0.653,
2073
+ "step": 288
2074
+ },
2075
+ {
2076
+ "epoch": 1.4236453201970443,
2077
+ "grad_norm": 0.7655541300773621,
2078
+ "learning_rate": 0.0001482726659105422,
2079
+ "loss": 0.4795,
2080
+ "step": 289
2081
+ },
2082
+ {
2083
+ "epoch": 1.4285714285714286,
2084
+ "grad_norm": 0.6854352951049805,
2085
+ "learning_rate": 0.0001479248986720057,
2086
+ "loss": 0.5587,
2087
+ "step": 290
2088
+ },
2089
+ {
2090
+ "epoch": 1.4334975369458127,
2091
+ "grad_norm": 0.6824727058410645,
2092
+ "learning_rate": 0.00014757637736632898,
2093
+ "loss": 0.4207,
2094
+ "step": 291
2095
+ },
2096
+ {
2097
+ "epoch": 1.438423645320197,
2098
+ "grad_norm": 0.654896080493927,
2099
+ "learning_rate": 0.0001472271074772683,
2100
+ "loss": 0.4777,
2101
+ "step": 292
2102
+ },
2103
+ {
2104
+ "epoch": 1.4433497536945814,
2105
+ "grad_norm": 0.49683672189712524,
2106
+ "learning_rate": 0.00014687709450035837,
2107
+ "loss": 0.2947,
2108
+ "step": 293
2109
+ },
2110
+ {
2111
+ "epoch": 1.4482758620689655,
2112
+ "grad_norm": 0.47079044580459595,
2113
+ "learning_rate": 0.00014652634394282608,
2114
+ "loss": 0.2836,
2115
+ "step": 294
2116
+ },
2117
+ {
2118
+ "epoch": 1.4532019704433496,
2119
+ "grad_norm": 0.562249481678009,
2120
+ "learning_rate": 0.00014617486132350343,
2121
+ "loss": 0.3707,
2122
+ "step": 295
2123
+ },
2124
+ {
2125
+ "epoch": 1.458128078817734,
2126
+ "grad_norm": 0.5470603108406067,
2127
+ "learning_rate": 0.00014582265217274104,
2128
+ "loss": 0.411,
2129
+ "step": 296
2130
+ },
2131
+ {
2132
+ "epoch": 1.4630541871921183,
2133
+ "grad_norm": 0.48108726739883423,
2134
+ "learning_rate": 0.00014546972203232112,
2135
+ "loss": 0.27,
2136
+ "step": 297
2137
+ },
2138
+ {
2139
+ "epoch": 1.4679802955665024,
2140
+ "grad_norm": 0.6207696795463562,
2141
+ "learning_rate": 0.0001451160764553701,
2142
+ "loss": 0.5093,
2143
+ "step": 298
2144
+ },
2145
+ {
2146
+ "epoch": 1.4729064039408866,
2147
+ "grad_norm": 0.6771376729011536,
2148
+ "learning_rate": 0.00014476172100627127,
2149
+ "loss": 0.5358,
2150
+ "step": 299
2151
+ },
2152
+ {
2153
+ "epoch": 1.477832512315271,
2154
+ "grad_norm": 0.6966915726661682,
2155
+ "learning_rate": 0.00014440666126057744,
2156
+ "loss": 0.5852,
2157
+ "step": 300
2158
+ },
2159
+ {
2160
+ "epoch": 1.4827586206896552,
2161
+ "grad_norm": 0.6209229230880737,
2162
+ "learning_rate": 0.00014405090280492295,
2163
+ "loss": 0.4382,
2164
+ "step": 301
2165
+ },
2166
+ {
2167
+ "epoch": 1.4876847290640394,
2168
+ "grad_norm": 0.742935061454773,
2169
+ "learning_rate": 0.00014369445123693596,
2170
+ "loss": 0.6076,
2171
+ "step": 302
2172
+ },
2173
+ {
2174
+ "epoch": 1.4926108374384237,
2175
+ "grad_norm": 0.8368776440620422,
2176
+ "learning_rate": 0.00014333731216515028,
2177
+ "loss": 0.6199,
2178
+ "step": 303
2179
+ },
2180
+ {
2181
+ "epoch": 1.4975369458128078,
2182
+ "grad_norm": 0.7391186952590942,
2183
+ "learning_rate": 0.00014297949120891718,
2184
+ "loss": 0.3661,
2185
+ "step": 304
2186
+ },
2187
+ {
2188
+ "epoch": 1.5024630541871922,
2189
+ "grad_norm": 0.591601550579071,
2190
+ "learning_rate": 0.00014262099399831683,
2191
+ "loss": 0.4744,
2192
+ "step": 305
2193
+ },
2194
+ {
2195
+ "epoch": 1.5073891625615765,
2196
+ "grad_norm": 0.6733282208442688,
2197
+ "learning_rate": 0.00014226182617406996,
2198
+ "loss": 0.5834,
2199
+ "step": 306
2200
+ },
2201
+ {
2202
+ "epoch": 1.5073891625615765,
2203
+ "eval_loss": 0.5610231757164001,
2204
+ "eval_runtime": 11.3154,
2205
+ "eval_samples_per_second": 3.977,
2206
+ "eval_steps_per_second": 2.033,
2207
+ "step": 306
2208
+ },
2209
+ {
2210
+ "epoch": 1.5123152709359606,
2211
+ "grad_norm": 0.5315914154052734,
2212
+ "learning_rate": 0.00014190199338744887,
2213
+ "loss": 0.2892,
2214
+ "step": 307
2215
+ },
2216
+ {
2217
+ "epoch": 1.5172413793103448,
2218
+ "grad_norm": 0.6961568593978882,
2219
+ "learning_rate": 0.00014154150130018866,
2220
+ "loss": 0.6031,
2221
+ "step": 308
2222
+ },
2223
+ {
2224
+ "epoch": 1.522167487684729,
2225
+ "grad_norm": 0.44431206583976746,
2226
+ "learning_rate": 0.00014118035558439808,
2227
+ "loss": 0.3165,
2228
+ "step": 309
2229
+ },
2230
+ {
2231
+ "epoch": 1.5270935960591134,
2232
+ "grad_norm": 0.5725176334381104,
2233
+ "learning_rate": 0.00014081856192247033,
2234
+ "loss": 0.3325,
2235
+ "step": 310
2236
+ },
2237
+ {
2238
+ "epoch": 1.5320197044334976,
2239
+ "grad_norm": 0.48680877685546875,
2240
+ "learning_rate": 0.0001404561260069935,
2241
+ "loss": 0.3523,
2242
+ "step": 311
2243
+ },
2244
+ {
2245
+ "epoch": 1.5369458128078817,
2246
+ "grad_norm": 0.6941611170768738,
2247
+ "learning_rate": 0.00014009305354066137,
2248
+ "loss": 0.6243,
2249
+ "step": 312
2250
+ },
2251
+ {
2252
+ "epoch": 1.541871921182266,
2253
+ "grad_norm": 0.5704216957092285,
2254
+ "learning_rate": 0.00013972935023618318,
2255
+ "loss": 0.4025,
2256
+ "step": 313
2257
+ },
2258
+ {
2259
+ "epoch": 1.5467980295566504,
2260
+ "grad_norm": 0.6456660032272339,
2261
+ "learning_rate": 0.00013936502181619416,
2262
+ "loss": 0.5085,
2263
+ "step": 314
2264
+ },
2265
+ {
2266
+ "epoch": 1.5517241379310345,
2267
+ "grad_norm": 0.5849847197532654,
2268
+ "learning_rate": 0.0001390000740131652,
2269
+ "loss": 0.3853,
2270
+ "step": 315
2271
+ },
2272
+ {
2273
+ "epoch": 1.5566502463054186,
2274
+ "grad_norm": 0.48363542556762695,
2275
+ "learning_rate": 0.00013863451256931287,
2276
+ "loss": 0.4199,
2277
+ "step": 316
2278
+ },
2279
+ {
2280
+ "epoch": 1.561576354679803,
2281
+ "grad_norm": 0.5757195949554443,
2282
+ "learning_rate": 0.000138268343236509,
2283
+ "loss": 0.3624,
2284
+ "step": 317
2285
+ },
2286
+ {
2287
+ "epoch": 1.5665024630541873,
2288
+ "grad_norm": 0.5957686305046082,
2289
+ "learning_rate": 0.00013790157177619004,
2290
+ "loss": 0.4201,
2291
+ "step": 318
2292
+ },
2293
+ {
2294
+ "epoch": 1.5714285714285714,
2295
+ "grad_norm": 0.5736541748046875,
2296
+ "learning_rate": 0.0001375342039592667,
2297
+ "loss": 0.4718,
2298
+ "step": 319
2299
+ },
2300
+ {
2301
+ "epoch": 1.5763546798029555,
2302
+ "grad_norm": 0.5630667805671692,
2303
+ "learning_rate": 0.00013716624556603274,
2304
+ "loss": 0.3789,
2305
+ "step": 320
2306
+ },
2307
+ {
2308
+ "epoch": 1.5812807881773399,
2309
+ "grad_norm": 0.7546968460083008,
2310
+ "learning_rate": 0.0001367977023860745,
2311
+ "loss": 0.5795,
2312
+ "step": 321
2313
+ },
2314
+ {
2315
+ "epoch": 1.5862068965517242,
2316
+ "grad_norm": 0.6928917765617371,
2317
+ "learning_rate": 0.00013642858021817943,
2318
+ "loss": 0.5271,
2319
+ "step": 322
2320
+ },
2321
+ {
2322
+ "epoch": 1.5911330049261085,
2323
+ "grad_norm": 0.5510915517807007,
2324
+ "learning_rate": 0.000136058884870245,
2325
+ "loss": 0.4151,
2326
+ "step": 323
2327
+ },
2328
+ {
2329
+ "epoch": 1.5960591133004927,
2330
+ "grad_norm": 0.7442372441291809,
2331
+ "learning_rate": 0.00013568862215918717,
2332
+ "loss": 0.5533,
2333
+ "step": 324
2334
+ },
2335
+ {
2336
+ "epoch": 1.6009852216748768,
2337
+ "grad_norm": 0.7526097297668457,
2338
+ "learning_rate": 0.0001353177979108493,
2339
+ "loss": 0.5425,
2340
+ "step": 325
2341
+ },
2342
+ {
2343
+ "epoch": 1.6059113300492611,
2344
+ "grad_norm": 0.6402207016944885,
2345
+ "learning_rate": 0.00013494641795990986,
2346
+ "loss": 0.6017,
2347
+ "step": 326
2348
+ },
2349
+ {
2350
+ "epoch": 1.6108374384236455,
2351
+ "grad_norm": 0.7436459064483643,
2352
+ "learning_rate": 0.00013457448814979109,
2353
+ "loss": 0.5229,
2354
+ "step": 327
2355
+ },
2356
+ {
2357
+ "epoch": 1.6157635467980296,
2358
+ "grad_norm": 0.6757021546363831,
2359
+ "learning_rate": 0.00013420201433256689,
2360
+ "loss": 0.5225,
2361
+ "step": 328
2362
+ },
2363
+ {
2364
+ "epoch": 1.6206896551724137,
2365
+ "grad_norm": 0.5550339818000793,
2366
+ "learning_rate": 0.00013382900236887075,
2367
+ "loss": 0.3526,
2368
+ "step": 329
2369
+ },
2370
+ {
2371
+ "epoch": 1.625615763546798,
2372
+ "grad_norm": 0.6458706855773926,
2373
+ "learning_rate": 0.00013345545812780353,
2374
+ "loss": 0.3961,
2375
+ "step": 330
2376
+ },
2377
+ {
2378
+ "epoch": 1.6305418719211824,
2379
+ "grad_norm": 0.5926823019981384,
2380
+ "learning_rate": 0.0001330813874868412,
2381
+ "loss": 0.3994,
2382
+ "step": 331
2383
+ },
2384
+ {
2385
+ "epoch": 1.6354679802955665,
2386
+ "grad_norm": 0.6645280122756958,
2387
+ "learning_rate": 0.00013270679633174218,
2388
+ "loss": 0.507,
2389
+ "step": 332
2390
+ },
2391
+ {
2392
+ "epoch": 1.6403940886699506,
2393
+ "grad_norm": 0.7319492101669312,
2394
+ "learning_rate": 0.0001323316905564549,
2395
+ "loss": 0.603,
2396
+ "step": 333
2397
+ },
2398
+ {
2399
+ "epoch": 1.645320197044335,
2400
+ "grad_norm": 0.6422541737556458,
2401
+ "learning_rate": 0.00013195607606302501,
2402
+ "loss": 0.3432,
2403
+ "step": 334
2404
+ },
2405
+ {
2406
+ "epoch": 1.6502463054187193,
2407
+ "grad_norm": 0.6640862226486206,
2408
+ "learning_rate": 0.0001315799587615025,
2409
+ "loss": 0.509,
2410
+ "step": 335
2411
+ },
2412
+ {
2413
+ "epoch": 1.6551724137931034,
2414
+ "grad_norm": 0.6828907132148743,
2415
+ "learning_rate": 0.0001312033445698487,
2416
+ "loss": 0.4412,
2417
+ "step": 336
2418
+ },
2419
+ {
2420
+ "epoch": 1.6600985221674875,
2421
+ "grad_norm": 0.6668173670768738,
2422
+ "learning_rate": 0.00013082623941384325,
2423
+ "loss": 0.4453,
2424
+ "step": 337
2425
+ },
2426
+ {
2427
+ "epoch": 1.6650246305418719,
2428
+ "grad_norm": 0.600563108921051,
2429
+ "learning_rate": 0.0001304486492269907,
2430
+ "loss": 0.3716,
2431
+ "step": 338
2432
+ },
2433
+ {
2434
+ "epoch": 1.6699507389162562,
2435
+ "grad_norm": 0.6383490562438965,
2436
+ "learning_rate": 0.00013007057995042732,
2437
+ "loss": 0.3624,
2438
+ "step": 339
2439
+ },
2440
+ {
2441
+ "epoch": 1.6748768472906403,
2442
+ "grad_norm": 0.612424910068512,
2443
+ "learning_rate": 0.0001296920375328275,
2444
+ "loss": 0.3337,
2445
+ "step": 340
2446
+ },
2447
+ {
2448
+ "epoch": 1.6798029556650245,
2449
+ "grad_norm": 0.6634405255317688,
2450
+ "learning_rate": 0.0001293130279303102,
2451
+ "loss": 0.4438,
2452
+ "step": 341
2453
+ },
2454
+ {
2455
+ "epoch": 1.6847290640394088,
2456
+ "grad_norm": 0.6734313368797302,
2457
+ "learning_rate": 0.0001289335571063453,
2458
+ "loss": 0.4937,
2459
+ "step": 342
2460
+ },
2461
+ {
2462
+ "epoch": 1.6896551724137931,
2463
+ "grad_norm": 0.72150719165802,
2464
+ "learning_rate": 0.00012855363103165957,
2465
+ "loss": 0.3999,
2466
+ "step": 343
2467
+ },
2468
+ {
2469
+ "epoch": 1.6945812807881775,
2470
+ "grad_norm": 0.49467992782592773,
2471
+ "learning_rate": 0.00012817325568414297,
2472
+ "loss": 0.2655,
2473
+ "step": 344
2474
+ },
2475
+ {
2476
+ "epoch": 1.6995073891625616,
2477
+ "grad_norm": 0.614782452583313,
2478
+ "learning_rate": 0.00012779243704875444,
2479
+ "loss": 0.3216,
2480
+ "step": 345
2481
+ },
2482
+ {
2483
+ "epoch": 1.7044334975369457,
2484
+ "grad_norm": 0.6507689952850342,
2485
+ "learning_rate": 0.00012741118111742777,
2486
+ "loss": 0.4357,
2487
+ "step": 346
2488
+ },
2489
+ {
2490
+ "epoch": 1.70935960591133,
2491
+ "grad_norm": 0.6325626969337463,
2492
+ "learning_rate": 0.0001270294938889773,
2493
+ "loss": 0.4469,
2494
+ "step": 347
2495
+ },
2496
+ {
2497
+ "epoch": 1.7142857142857144,
2498
+ "grad_norm": 0.6168348789215088,
2499
+ "learning_rate": 0.00012664738136900348,
2500
+ "loss": 0.3397,
2501
+ "step": 348
2502
+ },
2503
+ {
2504
+ "epoch": 1.7192118226600985,
2505
+ "grad_norm": 0.5866071581840515,
2506
+ "learning_rate": 0.00012626484956979866,
2507
+ "loss": 0.3869,
2508
+ "step": 349
2509
+ },
2510
+ {
2511
+ "epoch": 1.7241379310344827,
2512
+ "grad_norm": 0.8230339288711548,
2513
+ "learning_rate": 0.00012588190451025207,
2514
+ "loss": 0.7113,
2515
+ "step": 350
2516
+ },
2517
+ {
2518
+ "epoch": 1.729064039408867,
2519
+ "grad_norm": 0.6938710808753967,
2520
+ "learning_rate": 0.00012549855221575542,
2521
+ "loss": 0.781,
2522
+ "step": 351
2523
+ },
2524
+ {
2525
+ "epoch": 1.7339901477832513,
2526
+ "grad_norm": 0.5978900790214539,
2527
+ "learning_rate": 0.0001251147987181079,
2528
+ "loss": 0.4472,
2529
+ "step": 352
2530
+ },
2531
+ {
2532
+ "epoch": 1.7389162561576355,
2533
+ "grad_norm": 0.6921452879905701,
2534
+ "learning_rate": 0.00012473065005542155,
2535
+ "loss": 0.5878,
2536
+ "step": 353
2537
+ },
2538
+ {
2539
+ "epoch": 1.7438423645320196,
2540
+ "grad_norm": 0.5542033314704895,
2541
+ "learning_rate": 0.0001243461122720259,
2542
+ "loss": 0.2496,
2543
+ "step": 354
2544
+ },
2545
+ {
2546
+ "epoch": 1.748768472906404,
2547
+ "grad_norm": 0.7317242622375488,
2548
+ "learning_rate": 0.0001239611914183731,
2549
+ "loss": 0.4469,
2550
+ "step": 355
2551
+ },
2552
+ {
2553
+ "epoch": 1.7536945812807883,
2554
+ "grad_norm": 0.5736520290374756,
2555
+ "learning_rate": 0.00012357589355094275,
2556
+ "loss": 0.3918,
2557
+ "step": 356
2558
+ },
2559
+ {
2560
+ "epoch": 1.7586206896551724,
2561
+ "grad_norm": 0.6014077663421631,
2562
+ "learning_rate": 0.00012319022473214632,
2563
+ "loss": 0.4347,
2564
+ "step": 357
2565
+ },
2566
+ {
2567
+ "epoch": 1.7586206896551724,
2568
+ "eval_loss": 0.5540220737457275,
2569
+ "eval_runtime": 11.2551,
2570
+ "eval_samples_per_second": 3.998,
2571
+ "eval_steps_per_second": 2.044,
2572
+ "step": 357
2573
+ },
2574
+ {
2575
+ "epoch": 1.7635467980295565,
2576
+ "grad_norm": 0.6542104482650757,
2577
+ "learning_rate": 0.00012280419103023217,
2578
+ "loss": 0.3577,
2579
+ "step": 358
2580
+ },
2581
+ {
2582
+ "epoch": 1.7684729064039408,
2583
+ "grad_norm": 0.6519327759742737,
2584
+ "learning_rate": 0.0001224177985191897,
2585
+ "loss": 0.2853,
2586
+ "step": 359
2587
+ },
2588
+ {
2589
+ "epoch": 1.7733990147783252,
2590
+ "grad_norm": 0.7503228187561035,
2591
+ "learning_rate": 0.00012203105327865407,
2592
+ "loss": 0.6344,
2593
+ "step": 360
2594
+ },
2595
+ {
2596
+ "epoch": 1.7783251231527095,
2597
+ "grad_norm": 0.581355094909668,
2598
+ "learning_rate": 0.00012164396139381029,
2599
+ "loss": 0.5612,
2600
+ "step": 361
2601
+ },
2602
+ {
2603
+ "epoch": 1.7832512315270936,
2604
+ "grad_norm": 0.6459757685661316,
2605
+ "learning_rate": 0.00012125652895529766,
2606
+ "loss": 0.4864,
2607
+ "step": 362
2608
+ },
2609
+ {
2610
+ "epoch": 1.7881773399014778,
2611
+ "grad_norm": 0.5689775943756104,
2612
+ "learning_rate": 0.00012086876205911389,
2613
+ "loss": 0.3458,
2614
+ "step": 363
2615
+ },
2616
+ {
2617
+ "epoch": 1.793103448275862,
2618
+ "grad_norm": 0.6334294080734253,
2619
+ "learning_rate": 0.00012048066680651908,
2620
+ "loss": 0.4945,
2621
+ "step": 364
2622
+ },
2623
+ {
2624
+ "epoch": 1.7980295566502464,
2625
+ "grad_norm": 0.5965712666511536,
2626
+ "learning_rate": 0.00012009224930393988,
2627
+ "loss": 0.3278,
2628
+ "step": 365
2629
+ },
2630
+ {
2631
+ "epoch": 1.8029556650246306,
2632
+ "grad_norm": 0.6973611116409302,
2633
+ "learning_rate": 0.00011970351566287333,
2634
+ "loss": 0.3529,
2635
+ "step": 366
2636
+ },
2637
+ {
2638
+ "epoch": 1.8078817733990147,
2639
+ "grad_norm": 0.5669241547584534,
2640
+ "learning_rate": 0.00011931447199979057,
2641
+ "loss": 0.4718,
2642
+ "step": 367
2643
+ },
2644
+ {
2645
+ "epoch": 1.812807881773399,
2646
+ "grad_norm": 0.6049864292144775,
2647
+ "learning_rate": 0.00011892512443604102,
2648
+ "loss": 0.2931,
2649
+ "step": 368
2650
+ },
2651
+ {
2652
+ "epoch": 1.8177339901477834,
2653
+ "grad_norm": 0.5491435527801514,
2654
+ "learning_rate": 0.00011853547909775553,
2655
+ "loss": 0.287,
2656
+ "step": 369
2657
+ },
2658
+ {
2659
+ "epoch": 1.8226600985221675,
2660
+ "grad_norm": 0.6700085997581482,
2661
+ "learning_rate": 0.00011814554211575027,
2662
+ "loss": 0.3676,
2663
+ "step": 370
2664
+ },
2665
+ {
2666
+ "epoch": 1.8275862068965516,
2667
+ "grad_norm": 0.6265245079994202,
2668
+ "learning_rate": 0.00011775531962543036,
2669
+ "loss": 0.4745,
2670
+ "step": 371
2671
+ },
2672
+ {
2673
+ "epoch": 1.832512315270936,
2674
+ "grad_norm": 0.6745122075080872,
2675
+ "learning_rate": 0.00011736481776669306,
2676
+ "loss": 0.4044,
2677
+ "step": 372
2678
+ },
2679
+ {
2680
+ "epoch": 1.8374384236453203,
2681
+ "grad_norm": 0.4890718460083008,
2682
+ "learning_rate": 0.00011697404268383141,
2683
+ "loss": 0.2473,
2684
+ "step": 373
2685
+ },
2686
+ {
2687
+ "epoch": 1.8423645320197044,
2688
+ "grad_norm": 0.5244059562683105,
2689
+ "learning_rate": 0.00011658300052543742,
2690
+ "loss": 0.2308,
2691
+ "step": 374
2692
+ },
2693
+ {
2694
+ "epoch": 1.8472906403940885,
2695
+ "grad_norm": 0.621101975440979,
2696
+ "learning_rate": 0.00011619169744430538,
2697
+ "loss": 0.3971,
2698
+ "step": 375
2699
+ },
2700
+ {
2701
+ "epoch": 1.8522167487684729,
2702
+ "grad_norm": 0.5578574538230896,
2703
+ "learning_rate": 0.000115800139597335,
2704
+ "loss": 0.4145,
2705
+ "step": 376
2706
+ },
2707
+ {
2708
+ "epoch": 1.8571428571428572,
2709
+ "grad_norm": 0.8010319471359253,
2710
+ "learning_rate": 0.00011540833314543458,
2711
+ "loss": 0.4975,
2712
+ "step": 377
2713
+ },
2714
+ {
2715
+ "epoch": 1.8620689655172413,
2716
+ "grad_norm": 0.8334612250328064,
2717
+ "learning_rate": 0.00011501628425342403,
2718
+ "loss": 0.7582,
2719
+ "step": 378
2720
+ },
2721
+ {
2722
+ "epoch": 1.8669950738916257,
2723
+ "grad_norm": 0.49707093834877014,
2724
+ "learning_rate": 0.00011462399908993797,
2725
+ "loss": 0.2228,
2726
+ "step": 379
2727
+ },
2728
+ {
2729
+ "epoch": 1.8719211822660098,
2730
+ "grad_norm": 0.6417017579078674,
2731
+ "learning_rate": 0.00011423148382732853,
2732
+ "loss": 0.3904,
2733
+ "step": 380
2734
+ },
2735
+ {
2736
+ "epoch": 1.8768472906403941,
2737
+ "grad_norm": 0.4788695275783539,
2738
+ "learning_rate": 0.0001138387446415683,
2739
+ "loss": 0.2358,
2740
+ "step": 381
2741
+ },
2742
+ {
2743
+ "epoch": 1.8817733990147785,
2744
+ "grad_norm": 0.7310598492622375,
2745
+ "learning_rate": 0.00011344578771215319,
2746
+ "loss": 0.5967,
2747
+ "step": 382
2748
+ },
2749
+ {
2750
+ "epoch": 1.8866995073891626,
2751
+ "grad_norm": 0.5737311840057373,
2752
+ "learning_rate": 0.00011305261922200519,
2753
+ "loss": 0.3213,
2754
+ "step": 383
2755
+ },
2756
+ {
2757
+ "epoch": 1.8916256157635467,
2758
+ "grad_norm": 0.5912585258483887,
2759
+ "learning_rate": 0.00011265924535737493,
2760
+ "loss": 0.4226,
2761
+ "step": 384
2762
+ },
2763
+ {
2764
+ "epoch": 1.896551724137931,
2765
+ "grad_norm": 0.6237417459487915,
2766
+ "learning_rate": 0.00011226567230774467,
2767
+ "loss": 0.4841,
2768
+ "step": 385
2769
+ },
2770
+ {
2771
+ "epoch": 1.9014778325123154,
2772
+ "grad_norm": 0.6014819741249084,
2773
+ "learning_rate": 0.00011187190626573052,
2774
+ "loss": 0.3386,
2775
+ "step": 386
2776
+ },
2777
+ {
2778
+ "epoch": 1.9064039408866995,
2779
+ "grad_norm": 0.6071181297302246,
2780
+ "learning_rate": 0.00011147795342698537,
2781
+ "loss": 0.3899,
2782
+ "step": 387
2783
+ },
2784
+ {
2785
+ "epoch": 1.9113300492610836,
2786
+ "grad_norm": 0.609453022480011,
2787
+ "learning_rate": 0.00011108381999010111,
2788
+ "loss": 0.4262,
2789
+ "step": 388
2790
+ },
2791
+ {
2792
+ "epoch": 1.916256157635468,
2793
+ "grad_norm": 0.5656450986862183,
2794
+ "learning_rate": 0.00011068951215651132,
2795
+ "loss": 0.34,
2796
+ "step": 389
2797
+ },
2798
+ {
2799
+ "epoch": 1.9211822660098523,
2800
+ "grad_norm": 0.6314427852630615,
2801
+ "learning_rate": 0.00011029503613039346,
2802
+ "loss": 0.4736,
2803
+ "step": 390
2804
+ },
2805
+ {
2806
+ "epoch": 1.9261083743842364,
2807
+ "grad_norm": 0.7153500914573669,
2808
+ "learning_rate": 0.00010990039811857156,
2809
+ "loss": 0.559,
2810
+ "step": 391
2811
+ },
2812
+ {
2813
+ "epoch": 1.9310344827586206,
2814
+ "grad_norm": 0.6263774633407593,
2815
+ "learning_rate": 0.00010950560433041826,
2816
+ "loss": 0.4973,
2817
+ "step": 392
2818
+ },
2819
+ {
2820
+ "epoch": 1.935960591133005,
2821
+ "grad_norm": 0.6896617412567139,
2822
+ "learning_rate": 0.00010911066097775735,
2823
+ "loss": 0.4341,
2824
+ "step": 393
2825
+ },
2826
+ {
2827
+ "epoch": 1.9408866995073892,
2828
+ "grad_norm": 0.636617124080658,
2829
+ "learning_rate": 0.00010871557427476583,
2830
+ "loss": 0.3414,
2831
+ "step": 394
2832
+ },
2833
+ {
2834
+ "epoch": 1.9458128078817734,
2835
+ "grad_norm": 0.6351125240325928,
2836
+ "learning_rate": 0.00010832035043787625,
2837
+ "loss": 0.4062,
2838
+ "step": 395
2839
+ },
2840
+ {
2841
+ "epoch": 1.9507389162561575,
2842
+ "grad_norm": 0.7071142792701721,
2843
+ "learning_rate": 0.00010792499568567884,
2844
+ "loss": 0.4047,
2845
+ "step": 396
2846
+ },
2847
+ {
2848
+ "epoch": 1.9556650246305418,
2849
+ "grad_norm": 0.5642038583755493,
2850
+ "learning_rate": 0.00010752951623882382,
2851
+ "loss": 0.3063,
2852
+ "step": 397
2853
+ },
2854
+ {
2855
+ "epoch": 1.9605911330049262,
2856
+ "grad_norm": 0.6832185983657837,
2857
+ "learning_rate": 0.00010713391831992323,
2858
+ "loss": 0.4548,
2859
+ "step": 398
2860
+ },
2861
+ {
2862
+ "epoch": 1.9655172413793105,
2863
+ "grad_norm": 0.7424250245094299,
2864
+ "learning_rate": 0.00010673820815345334,
2865
+ "loss": 0.4871,
2866
+ "step": 399
2867
+ },
2868
+ {
2869
+ "epoch": 1.9704433497536946,
2870
+ "grad_norm": 0.6147627830505371,
2871
+ "learning_rate": 0.00010634239196565646,
2872
+ "loss": 0.4571,
2873
+ "step": 400
2874
+ },
2875
+ {
2876
+ "epoch": 1.9753694581280787,
2877
+ "grad_norm": 0.6986880302429199,
2878
+ "learning_rate": 0.00010594647598444312,
2879
+ "loss": 0.5246,
2880
+ "step": 401
2881
+ },
2882
+ {
2883
+ "epoch": 1.980295566502463,
2884
+ "grad_norm": 0.7610223889350891,
2885
+ "learning_rate": 0.00010555046643929403,
2886
+ "loss": 0.5115,
2887
+ "step": 402
2888
+ },
2889
+ {
2890
+ "epoch": 1.9852216748768474,
2891
+ "grad_norm": 0.5143783688545227,
2892
+ "learning_rate": 0.0001051543695611621,
2893
+ "loss": 0.2487,
2894
+ "step": 403
2895
+ },
2896
+ {
2897
+ "epoch": 1.9901477832512315,
2898
+ "grad_norm": 0.4890079200267792,
2899
+ "learning_rate": 0.00010475819158237425,
2900
+ "loss": 0.2312,
2901
+ "step": 404
2902
+ },
2903
+ {
2904
+ "epoch": 1.9950738916256157,
2905
+ "grad_norm": 0.6719345450401306,
2906
+ "learning_rate": 0.00010436193873653361,
2907
+ "loss": 0.4527,
2908
+ "step": 405
2909
+ },
2910
+ {
2911
+ "epoch": 2.0,
2912
+ "grad_norm": 0.8623074293136597,
2913
+ "learning_rate": 0.00010396561725842124,
2914
+ "loss": 0.765,
2915
+ "step": 406
2916
+ }
2917
+ ],
2918
+ "logging_steps": 1,
2919
+ "max_steps": 812,
2920
+ "num_input_tokens_seen": 0,
2921
+ "num_train_epochs": 4,
2922
+ "save_steps": 203,
2923
+ "stateful_callbacks": {
2924
+ "TrainerControl": {
2925
+ "args": {
2926
+ "should_epoch_stop": false,
2927
+ "should_evaluate": false,
2928
+ "should_log": false,
2929
+ "should_save": true,
2930
+ "should_training_stop": false
2931
+ },
2932
+ "attributes": {}
2933
+ }
2934
+ },
2935
+ "total_flos": 6.123527611927757e+16,
2936
+ "train_batch_size": 2,
2937
+ "trial_name": null,
2938
+ "trial_params": null
2939
+ }
checkpoint-406/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45bf012787e91b667ff263fbb8cf29a77de7813ddb5a7593e1b3ff73159f5131
3
+ size 6392
checkpoint-609/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openlm-research/open_llama_7b_v2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-609/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_7b_v2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "o_proj",
31
+ "down_proj",
32
+ "gate_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-609/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:667de80454a64b889a2abfd9ab440b26c7c198bb1f1ff8df54b9a7a017f96c13
3
+ size 80013120
checkpoint-609/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cd9be43710e040f0309e5dd00d6028257ac83fc90faa7f8773a9d136666c564
3
+ size 41120084
checkpoint-609/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5328f04f222a66b45931d6bc246721e0747decf9d78d167903d0547a248f78f0
3
+ size 14244
checkpoint-609/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56a6f8d1291bcedaa612240eca9322bb271de106a736b44078bc91e8ae05762b
3
+ size 1064
checkpoint-609/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-609/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-609/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "extra_special_tokens": {},
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false,
43
+ "use_fast": true
44
+ }
checkpoint-609/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-609/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45bf012787e91b667ff263fbb8cf29a77de7813ddb5a7593e1b3ff73159f5131
3
+ size 6392
checkpoint-812/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openlm-research/open_llama_7b_v2
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-812/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openlm-research/open_llama_7b_v2",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": null,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "k_proj",
27
+ "q_proj",
28
+ "v_proj",
29
+ "up_proj",
30
+ "o_proj",
31
+ "down_proj",
32
+ "gate_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-812/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f7229b2312464e672dcc771b859a217bbab77a670e3828c2e6bef1a2d15ad0b
3
+ size 80013120
checkpoint-812/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e6c24391ca4eff4d8a69425f76f4a260596756888b2dd58d5a6e49fe726230c
3
+ size 41120084
checkpoint-812/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9afbf853352cfbcfea61884ff6a2ddcd2aee1ce8618589cf5b56912c1b160011
3
+ size 14244
checkpoint-812/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d603d4c8eda6dea22ff5f0991aca0dd577d01c4290f425e0e8390c8c183a3b0b
3
+ size 1064
checkpoint-812/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-812/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91b289e85fa20fd375d8b33dc12f77616f18abc6359804471d1fafcb425fecb8
3
+ size 511574
checkpoint-812/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ }
30
+ },
31
+ "bos_token": "<s>",
32
+ "clean_up_tokenization_spaces": false,
33
+ "eos_token": "</s>",
34
+ "extra_special_tokens": {},
35
+ "legacy": true,
36
+ "model_max_length": 2048,
37
+ "pad_token": "</s>",
38
+ "sp_model_kwargs": {},
39
+ "spaces_between_special_tokens": false,
40
+ "tokenizer_class": "LlamaTokenizer",
41
+ "unk_token": "<unk>",
42
+ "use_default_system_prompt": false,
43
+ "use_fast": true
44
+ }
checkpoint-812/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-812/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45bf012787e91b667ff263fbb8cf29a77de7813ddb5a7593e1b3ff73159f5131
3
+ size 6392
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "openlm-research/open_llama_7b_v2",
4
+ "architectures": [
5
+ "LlamaForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 1,
10
+ "eos_token_id": 2,
11
+ "head_dim": 128,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 4096,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 11008,
16
+ "max_position_embeddings": 2048,
17
+ "mlp_bias": false,
18
+ "model_type": "llama",
19
+ "num_attention_heads": 32,
20
+ "num_hidden_layers": 32,
21
+ "num_key_value_heads": 32,
22
+ "pad_token_id": 0,
23
+ "pretraining_tp": 1,
24
+ "quantization_config": {
25
+ "_load_in_4bit": false,
26
+ "_load_in_8bit": true,
27
+ "bnb_4bit_compute_dtype": "float32",
28
+ "bnb_4bit_quant_storage": "uint8",
29
+ "bnb_4bit_quant_type": "fp4",
30
+ "bnb_4bit_use_double_quant": false,
31
+ "llm_int8_enable_fp32_cpu_offload": false,
32
+ "llm_int8_has_fp16_weight": false,
33
+ "llm_int8_skip_modules": null,
34
+ "llm_int8_threshold": 6.0,
35
+ "load_in_4bit": false,
36
+ "load_in_8bit": true,
37
+ "quant_method": "bitsandbytes"
38
+ },
39
+ "rms_norm_eps": 1e-06,
40
+ "rope_scaling": null,
41
+ "rope_theta": 10000.0,
42
+ "tie_word_embeddings": false,
43
+ "torch_dtype": "float16",
44
+ "transformers_version": "4.47.1",
45
+ "use_cache": false,
46
+ "vocab_size": 32000
47
+ }
merged/config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openlm-research/open_llama_7b_v2",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 1,
9
+ "eos_token_id": 2,
10
+ "head_dim": 128,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 4096,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 11008,
15
+ "max_position_embeddings": 2048,
16
+ "mlp_bias": false,
17
+ "model_type": "llama",
18
+ "num_attention_heads": 32,
19
+ "num_hidden_layers": 32,
20
+ "num_key_value_heads": 32,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "rms_norm_eps": 1e-06,
24
+ "rope_scaling": null,
25
+ "rope_theta": 10000.0,
26
+ "tie_word_embeddings": false,
27
+ "torch_dtype": "float16",
28
+ "transformers_version": "4.47.1",
29
+ "use_cache": false,
30
+ "vocab_size": 32000
31
+ }
merged/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.47.1"
8
+ }