AIcell commited on
Commit
d285fa4
·
verified ·
1 Parent(s): e55f120

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -145
README.md CHANGED
@@ -22,110 +22,102 @@ pipeline_tag: image-text-to-text
22
  </div>
23
  <hr>
24
  <div align="center" style="line-height: 1;">
25
- <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
26
- <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
27
  </a>
28
- <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
29
  <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
 
 
 
30
  </a>
31
- <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
32
- <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
33
- </a>
34
- </div>
35
-
36
- <div align="center" style="line-height: 1;">
37
- <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
38
  <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
39
- </a>
40
- <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
41
  <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
42
- </a>
43
  <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
44
- <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
45
  </a>
46
  </div>
47
 
48
- <div align="center" style="line-height: 1;">
49
  <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE" style="margin: 2px;">
50
  <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
51
  </a>
52
- </div>
53
 
54
 
55
  <p align="center">
56
- <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf"><b>Paper Link</b>👁️</a>
57
  </p>
58
 
59
 
60
- ## 1. Introduction
61
 
62
- We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
63
- DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without supervised fine-tuning (SFT) as a preliminary step, demonstrated remarkable performance on reasoning.
64
- With RL, DeepSeek-R1-Zero naturally emerged with numerous powerful and interesting reasoning behaviors.
65
- However, DeepSeek-R1-Zero encounters challenges such as endless repetition, poor readability, and language mixing. To address these issues and further enhance reasoning performance,
66
- we introduce DeepSeek-R1, which incorporates cold-start data before RL.
67
- DeepSeek-R1 achieves performance comparable to OpenAI-o1 across math, code, and reasoning tasks.
68
- To support the research community, we have open-sourced DeepSeek-R1-Zero, DeepSeek-R1, and six dense models distilled from DeepSeek-R1 based on Llama and Qwen. DeepSeek-R1-Distill-Qwen-32B outperforms OpenAI-o1-mini across various benchmarks, achieving new state-of-the-art results for dense models.
 
 
 
 
 
 
 
 
 
69
 
70
- **NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.**
71
 
72
  <p align="center">
73
  <img width="80%" src="figures/benchmark.jpg">
74
- </p>
75
-
76
- ## 2. Model Summary
77
-
78
- ---
79
-
80
- **Post-Training: Large-Scale Reinforcement Learning on the Base Model**
81
-
82
- - We directly apply reinforcement learning (RL) to the base model without relying on supervised fine-tuning (SFT) as a preliminary step. This approach allows the model to explore chain-of-thought (CoT) for solving complex problems, resulting in the development of DeepSeek-R1-Zero. DeepSeek-R1-Zero demonstrates capabilities such as self-verification, reflection, and generating long CoTs, marking a significant milestone for the research community. Notably, it is the first open research to validate that reasoning capabilities of LLMs can be incentivized purely through RL, without the need for SFT. This breakthrough paves the way for future advancements in this area.
83
 
84
- - We introduce our pipeline to develop DeepSeek-R1. The pipeline incorporates two RL stages aimed at discovering improved reasoning patterns and aligning with human preferences, as well as two SFT stages that serve as the seed for the model's reasoning and non-reasoning capabilities.
85
- We believe the pipeline will benefit the industry by creating better models.
 
86
 
87
- ---
88
-
89
- **Distillation: Smaller Models Can Be Powerful Too**
90
-
91
- - We demonstrate that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models. The open source DeepSeek-R1, as well as its API, will benefit the research community to distill better smaller models in the future.
92
- - Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.
93
-
94
- ## 3. Model Downloads
95
-
96
- ### DeepSeek-R1 Models
97
-
98
- <div align="center">
99
 
100
- | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
101
- | :------------: | :------------: | :------------: | :------------: | :------------: |
102
- | DeepSeek-R1-Zero | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero) |
103
- | DeepSeek-R1 | 671B | 37B | 128K | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1) |
104
-
105
- </div>
106
-
107
- DeepSeek-R1-Zero & DeepSeek-R1 are trained based on DeepSeek-V3-Base.
108
- For more details regarding the model architecture, please refer to [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repository.
 
 
 
 
 
 
 
 
 
109
 
110
- ### DeepSeek-R1-Distill Models
111
 
112
- <div align="center">
 
 
113
 
114
- | **Model** | **Base Model** | **Download** |
115
- | :------------: | :------------: | :------------: |
116
- | DeepSeek-R1-Distill-Qwen-1.5B | [Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) |
117
- | DeepSeek-R1-Distill-Qwen-7B | [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) |
118
- | DeepSeek-R1-Distill-Llama-8B | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) |
119
- | DeepSeek-R1-Distill-Qwen-14B | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) |
120
- |DeepSeek-R1-Distill-Qwen-32B | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) |
121
- | DeepSeek-R1-Distill-Llama-70B | [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) |
122
 
123
- </div>
124
 
125
- DeepSeek-R1-Distill models are fine-tuned based on open-source models, using samples generated by DeepSeek-R1.
126
- We slightly change their configs and tokenizers. Please use our setting to run these models.
127
 
128
- ## 4. Evaluation Results
129
 
130
  ### DeepSeek-R1-Evaluation
131
  For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.
@@ -161,89 +153,33 @@ We slightly change their configs and tokenizers. Please use our setting to run t
161
 
162
  </div>
163
 
 
164
 
165
- ### Distilled Model Evaluation
166
-
167
-
168
- <div align="center">
169
-
170
- | Model | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
171
- |------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------|
172
- | GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 |
173
- | Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 |
174
- | o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | **1820** |
175
- | QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 |
176
- | DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 |
177
- | DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 |
178
- | DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 |
179
- | DeepSeek-R1-Distill-Qwen-32B | **72.6** | 83.3 | 94.3 | 62.1 | 57.2 | 1691 |
180
- | DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 |
181
- | DeepSeek-R1-Distill-Llama-70B | 70.0 | **86.7** | **94.5** | **65.2** | **57.5** | 1633 |
182
-
183
- </div>
184
-
185
-
186
- ## 5. Chat Website & API Platform
187
- You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com), and switch on the button "DeepThink"
188
-
189
- We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
190
-
191
- ## 6. How to Run Locally
192
 
193
- ### DeepSeek-R1 Models
194
 
195
- Please visit [DeepSeek-V3](https://github.com/deepseek-ai/DeepSeek-V3) repo for more information about running DeepSeek-R1 locally.
196
 
197
- **NOTE: Hugging Face's Transformers has not been directly supported yet.**
198
 
199
- ### DeepSeek-R1-Distill Models
200
 
201
- DeepSeek-R1-Distill models can be utilized in the same manner as Qwen or Llama models.
202
 
203
- For instance, you can easily start a service using [vLLM](https://github.com/vllm-project/vllm):
 
204
 
205
- ```shell
206
- vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
207
  ```
208
-
209
- You can also easily start a service using [SGLang](https://github.com/sgl-project/sglang)
210
-
211
- ```bash
212
- python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2
213
- ```
214
-
215
- ### Usage Recommendations
216
-
217
- **We recommend adhering to the following configurations when utilizing the DeepSeek-R1 series models, including benchmarking, to achieve the expected performance:**
218
-
219
- 1. Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent endless repetitions or incoherent outputs.
220
- 2. **Avoid adding a system prompt; all instructions should be contained within the user prompt.**
221
- 3. For mathematical problems, it is advisable to include a directive in your prompt such as: "Please reason step by step, and put your final answer within \boxed{}."
222
- 4. When evaluating model performance, it is recommended to conduct multiple tests and average the results.
223
-
224
- Additionally, we have observed that the DeepSeek-R1 series models tend to bypass thinking pattern (i.e., outputting "\<think\>\n\n\</think\>") when responding to certain queries, which can adversely affect the model's performance.
225
- **To ensure that the model engages in thorough reasoning, we recommend enforcing the model to initiate its response with "\<think\>\n" at the beginning of every output.**
226
-
227
- ## 7. License
228
- This code repository and the model weights are licensed under the [MIT License](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE).
229
- DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that:
230
- - DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE), and now finetuned with 800k samples curated with DeepSeek-R1.
231
- - DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE).
232
- - DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE).
233
-
234
- ## 8. Citation
235
- ```
236
- @misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
237
- title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
238
- author={DeepSeek-AI},
239
  year={2025},
240
- eprint={2501.12948},
241
  archivePrefix={arXiv},
242
- primaryClass={cs.CL},
243
- url={https://arxiv.org/abs/2501.12948},
244
  }
245
 
246
- ```
247
-
248
- ## 9. Contact
249
- If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
 
22
  </div>
23
  <hr>
24
  <div align="center" style="line-height: 1;">
25
+ <a href="https://www.turningpoint-ai.com/" target="_blank" style="margin: 2px;">
26
+ <img alt="Homepage" src="https://img.shields.io/badge/🐳Homepage-TurningPointAI-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
27
  </a>
28
+ <!-- <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
29
  <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
30
+ </a> -->
31
+ <a href="https://huggingface.co/turningpoint-ai" target="_blank" style="margin: 2px;">
32
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-TurningPoint%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
33
  </a>
34
+ <!-- <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
 
 
 
 
 
 
35
  <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
36
+ </a> -->
37
+ <!-- <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
38
  <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
39
+ </a> -->
40
  <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
41
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-TurningPoint_AI-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
42
  </a>
43
  </div>
44
 
45
+ <!-- <div align="center" style="line-height: 1;">
46
  <a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE" style="margin: 2px;">
47
  <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
48
  </a>
49
+ </div> -->
50
 
51
 
52
  <p align="center">
53
+ <a href="https://arxiv.org/pdf/2503.05132"><b>Paper Link</b>👁️</a>
54
  </p>
55
 
56
 
57
+ ## 🚀 Introduction
58
 
59
+ The recent DeepSeek-R1 demonstrated how reinforcement learning with simple
60
+ rule-based reward can enable autonomous development of complex reasoning in
61
+ large language models, characterized by the "aha moment", in which the model
62
+ manifest self-reflection and increased response length during training. However,
63
+ attempts to extend this success to multimodal reasoning often failed to reproduce
64
+ these key characteristics. In this report, we present the first successful replication
65
+ of these emergent characteristics for multimodal reasoning on only a non-SFT
66
+ 2B model. Starting with Qwen2-VL-2B and applying reinforcement learning
67
+ directly on the SAT dataset, our model achieves 59.47% accuracy on CVBench,
68
+ outperforming the base model by approximately ~30% and exceeding both SFT
69
+ setting by ~2%. In addition, we share our failed attempts and insights in attempting
70
+ to achieve R1-like reasoning using RL with instruct models, aiming to shed light on
71
+ the challenges involved. Our key observations include: (1) applying RL on instruct
72
+ model often results in trivial reasoning trajectories, and (2) naive length reward
73
+ are ineffective in eliciting reasoning capabilities. The project code is available at
74
+ https://github.com/turningpoint-ai/VisualThinker-R1-Zero
75
 
76
+ <!-- **NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.**
77
 
78
  <p align="center">
79
  <img width="80%" src="figures/benchmark.jpg">
80
+ </p> -->
 
 
 
 
 
 
 
 
81
 
82
+ ## 🔮 Highlights
83
+ 1. We are the **first to successfully produce the emergent “aha moment” and increased response length** for multimodal reasoning on just a **non-SFT 2B model**.
84
+ 2. We showed that **vision-centric** tasks could also benefit from improved reasoning capabilities.
85
 
86
+ Similar to DeepSeek R1, self reflection behavior is also observed during our RL training on vision-centric reasoning tasks. The model exhibits an emergent ability to rethink and correct its mistakes:
 
 
 
 
 
 
 
 
 
 
 
87
 
88
+ ```
89
+ . . .
90
+ Therefore, dark brown wooden bed with white blanket is not above the doorway.
91
+ But wait! I can think of something else.
92
+ Maybe it's just higher than above the doorway, but slightly lower than above the doorway.
93
+ . . .
94
+ ```
95
+ ## ⚙️ Requirements and Installation
96
+ * Python >= 3.10
97
+ * Pytorch == 2.0.1
98
+ * CUDA Version >= 11.7
99
+ * Install required packages:
100
+ ```bash
101
+ # install transformers
102
+ pip install git+https://github.com/huggingface/transformers
103
+ # install qwen-vl utils
104
+ pip install qwen-vl-utils
105
+ ```
106
 
107
+ ## 💻 Model Downloads and Usage
108
 
109
+ ```
110
+ # Load model directly
111
+ from transformers import AutoProcessor, AutoModelForImageTextToText
112
 
113
+ processor = AutoProcessor.from_pretrained("turningpoint-ai/VisualThinker-R1-Zero")
114
+ model = AutoModelForImageTextToText.from_pretrained("turningpoint-ai/VisualThinker-R1-Zero")
 
 
 
 
 
 
115
 
116
+ # Prepare input
117
 
118
+ ```
 
119
 
120
+ ## 📰 Evaluation Results
121
 
122
  ### DeepSeek-R1-Evaluation
123
  For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.
 
153
 
154
  </div>
155
 
156
+ ## 🙌 Stay Connected!
157
 
158
+ We are always open to engaging discussions, collaborations, or even just sharing a virtual coffee. To get in touch or join our team, visit [TurningPoint AI](https://www.turningpoint-ai.com/)'s homepage for contact information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
159
 
160
+ ## 📖 Acknowledgements
161
 
162
+ We sincerely thank [DeepSeek](https://github.com/deepseek-ai/DeepSeek-R1), [Open-R1](https://github.com/huggingface/open-r1), [QwenVL](https://github.com/QwenLM/Qwen2.5-VL), [Open-R1-Multimodal](https://github.com/EvolvingLMMs-Lab/open-r1-multimodal), [R1-V](https://github.com/Deep-Agent/R1-V), [SAT](https://arxiv.org/abs/2412.07755), and [CV-Bench](https://cambrian-mllm.github.io/) for providing open source resources that laid the foundation of our project.
163
 
164
+ ## 🤝 Contributors
165
 
166
+ Here are the key contributors from [TurningPoint AI](https://www.turningpoint-ai.com/) to this project:
167
 
168
+ [Hengguang Zhou](https://hengguangzhou.github.io/)<sup>1</sup><sup>* </sup>, [Xirui Li](https://xirui-li.github.io/)<sup>1</sup><sup>* </sup>, [Ruochen Wang](https://ruocwang.github.io/)<sup>1</sup><sup>† </sup>, [Minhao Cheng](https://cmhcbb.github.io/)<sup>2</sup>, [Tianyi Zhou](https://tianyizhou.github.io/)<sup>3</sup> and [Cho-Jui Hsieh](https://web.cs.ucla.edu/~chohsieh/)<sup>1</sup><sup>4</sup>
169
 
170
+ <sup>*</sup> Project Leads, <sup>†</sup> Main Advisor
171
+ <sup>1</sup>University of California, Los Angeles, <sup>2</sup>Penn State University, <sup>3</sup>University of Maryland and <sup>4</sup>Google Research
172
 
173
+ ## ✏️ Citation
 
174
  ```
175
+ @misc{zhou2025r1zerosahamomentvisual,
176
+ title={R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model},
177
+ author={Hengguang Zhou and Xirui Li and Ruochen Wang and Minhao Cheng and Tianyi Zhou and Cho-Jui Hsieh},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
  year={2025},
179
+ eprint={2503.05132},
180
  archivePrefix={arXiv},
181
+ primaryClass={cs.AI},
182
+ url={https://arxiv.org/abs/2503.05132},
183
  }
184
 
185
+ ```