Update README.md
Browse files
README.md
CHANGED
@@ -22,110 +22,102 @@ pipeline_tag: image-text-to-text
|
|
22 |
</div>
|
23 |
<hr>
|
24 |
<div align="center" style="line-height: 1;">
|
25 |
-
<a href="https://www.
|
26 |
-
<img alt="Homepage" src="https://
|
27 |
</a>
|
28 |
-
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
29 |
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
|
|
|
|
|
|
30 |
</a>
|
31 |
-
<a href="https://
|
32 |
-
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
33 |
-
</a>
|
34 |
-
</div>
|
35 |
-
|
36 |
-
<div align="center" style="line-height: 1;">
|
37 |
-
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
38 |
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
39 |
-
</a>
|
40 |
-
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
41 |
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
42 |
-
</a>
|
43 |
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
44 |
-
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-
|
45 |
</a>
|
46 |
</div>
|
47 |
|
48 |
-
<div align="center" style="line-height: 1;">
|
49 |
<a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE" style="margin: 2px;">
|
50 |
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
51 |
</a>
|
52 |
-
</div>
|
53 |
|
54 |
|
55 |
<p align="center">
|
56 |
-
<a href="https://
|
57 |
</p>
|
58 |
|
59 |
|
60 |
-
##
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
**NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.**
|
71 |
|
72 |
<p align="center">
|
73 |
<img width="80%" src="figures/benchmark.jpg">
|
74 |
-
</p>
|
75 |
-
|
76 |
-
## 2. Model Summary
|
77 |
-
|
78 |
-
---
|
79 |
-
|
80 |
-
**Post-Training: Large-Scale Reinforcement Learning on the Base Model**
|
81 |
-
|
82 |
-
- We directly apply reinforcement learning (RL) to the base model without relying on supervised fine-tuning (SFT) as a preliminary step. This approach allows the model to explore chain-of-thought (CoT) for solving complex problems, resulting in the development of DeepSeek-R1-Zero. DeepSeek-R1-Zero demonstrates capabilities such as self-verification, reflection, and generating long CoTs, marking a significant milestone for the research community. Notably, it is the first open research to validate that reasoning capabilities of LLMs can be incentivized purely through RL, without the need for SFT. This breakthrough paves the way for future advancements in this area.
|
83 |
|
84 |
-
|
85 |
-
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
**Distillation: Smaller Models Can Be Powerful Too**
|
90 |
-
|
91 |
-
- We demonstrate that the reasoning patterns of larger models can be distilled into smaller models, resulting in better performance compared to the reasoning patterns discovered through RL on small models. The open source DeepSeek-R1, as well as its API, will benefit the research community to distill better smaller models in the future.
|
92 |
-
- Using the reasoning data generated by DeepSeek-R1, we fine-tuned several dense models that are widely used in the research community. The evaluation results demonstrate that the distilled smaller dense models perform exceptionally well on benchmarks. We open-source distilled 1.5B, 7B, 8B, 14B, 32B, and 70B checkpoints based on Qwen2.5 and Llama3 series to the community.
|
93 |
-
|
94 |
-
## 3. Model Downloads
|
95 |
-
|
96 |
-
### DeepSeek-R1 Models
|
97 |
-
|
98 |
-
<div align="center">
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
-
|
111 |
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
| DeepSeek-R1-Distill-Qwen-1.5B | [Qwen2.5-Math-1.5B](https://huggingface.co/Qwen/Qwen2.5-Math-1.5B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) |
|
117 |
-
| DeepSeek-R1-Distill-Qwen-7B | [Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) |
|
118 |
-
| DeepSeek-R1-Distill-Llama-8B | [Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B) |
|
119 |
-
| DeepSeek-R1-Distill-Qwen-14B | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) |
|
120 |
-
|DeepSeek-R1-Distill-Qwen-32B | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) |
|
121 |
-
| DeepSeek-R1-Distill-Llama-70B | [Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B) |
|
122 |
|
123 |
-
|
124 |
|
125 |
-
|
126 |
-
We slightly change their configs and tokenizers. Please use our setting to run these models.
|
127 |
|
128 |
-
##
|
129 |
|
130 |
### DeepSeek-R1-Evaluation
|
131 |
For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.
|
@@ -161,89 +153,33 @@ We slightly change their configs and tokenizers. Please use our setting to run t
|
|
161 |
|
162 |
</div>
|
163 |
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
<div align="center">
|
169 |
-
|
170 |
-
| Model | AIME 2024 pass@1 | AIME 2024 cons@64 | MATH-500 pass@1 | GPQA Diamond pass@1 | LiveCodeBench pass@1 | CodeForces rating |
|
171 |
-
|------------------------------------------|------------------|-------------------|-----------------|----------------------|----------------------|-------------------|
|
172 |
-
| GPT-4o-0513 | 9.3 | 13.4 | 74.6 | 49.9 | 32.9 | 759 |
|
173 |
-
| Claude-3.5-Sonnet-1022 | 16.0 | 26.7 | 78.3 | 65.0 | 38.9 | 717 |
|
174 |
-
| o1-mini | 63.6 | 80.0 | 90.0 | 60.0 | 53.8 | **1820** |
|
175 |
-
| QwQ-32B-Preview | 44.0 | 60.0 | 90.6 | 54.5 | 41.9 | 1316 |
|
176 |
-
| DeepSeek-R1-Distill-Qwen-1.5B | 28.9 | 52.7 | 83.9 | 33.8 | 16.9 | 954 |
|
177 |
-
| DeepSeek-R1-Distill-Qwen-7B | 55.5 | 83.3 | 92.8 | 49.1 | 37.6 | 1189 |
|
178 |
-
| DeepSeek-R1-Distill-Qwen-14B | 69.7 | 80.0 | 93.9 | 59.1 | 53.1 | 1481 |
|
179 |
-
| DeepSeek-R1-Distill-Qwen-32B | **72.6** | 83.3 | 94.3 | 62.1 | 57.2 | 1691 |
|
180 |
-
| DeepSeek-R1-Distill-Llama-8B | 50.4 | 80.0 | 89.1 | 49.0 | 39.6 | 1205 |
|
181 |
-
| DeepSeek-R1-Distill-Llama-70B | 70.0 | **86.7** | **94.5** | **65.2** | **57.5** | 1633 |
|
182 |
-
|
183 |
-
</div>
|
184 |
-
|
185 |
-
|
186 |
-
## 5. Chat Website & API Platform
|
187 |
-
You can chat with DeepSeek-R1 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com), and switch on the button "DeepThink"
|
188 |
-
|
189 |
-
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/)
|
190 |
-
|
191 |
-
## 6. How to Run Locally
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
200 |
|
201 |
-
|
202 |
|
203 |
-
|
|
|
204 |
|
205 |
-
|
206 |
-
vllm serve deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --tensor-parallel-size 2 --max-model-len 32768 --enforce-eager
|
207 |
```
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
```bash
|
212 |
-
python3 -m sglang.launch_server --model deepseek-ai/DeepSeek-R1-Distill-Qwen-32B --trust-remote-code --tp 2
|
213 |
-
```
|
214 |
-
|
215 |
-
### Usage Recommendations
|
216 |
-
|
217 |
-
**We recommend adhering to the following configurations when utilizing the DeepSeek-R1 series models, including benchmarking, to achieve the expected performance:**
|
218 |
-
|
219 |
-
1. Set the temperature within the range of 0.5-0.7 (0.6 is recommended) to prevent endless repetitions or incoherent outputs.
|
220 |
-
2. **Avoid adding a system prompt; all instructions should be contained within the user prompt.**
|
221 |
-
3. For mathematical problems, it is advisable to include a directive in your prompt such as: "Please reason step by step, and put your final answer within \boxed{}."
|
222 |
-
4. When evaluating model performance, it is recommended to conduct multiple tests and average the results.
|
223 |
-
|
224 |
-
Additionally, we have observed that the DeepSeek-R1 series models tend to bypass thinking pattern (i.e., outputting "\<think\>\n\n\</think\>") when responding to certain queries, which can adversely affect the model's performance.
|
225 |
-
**To ensure that the model engages in thorough reasoning, we recommend enforcing the model to initiate its response with "\<think\>\n" at the beginning of every output.**
|
226 |
-
|
227 |
-
## 7. License
|
228 |
-
This code repository and the model weights are licensed under the [MIT License](https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE).
|
229 |
-
DeepSeek-R1 series support commercial use, allow for any modifications and derivative works, including, but not limited to, distillation for training other LLMs. Please note that:
|
230 |
-
- DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B and DeepSeek-R1-Distill-Qwen-32B are derived from [Qwen-2.5 series](https://github.com/QwenLM/Qwen2.5), which are originally licensed under [Apache 2.0 License](https://huggingface.co/Qwen/Qwen2.5-1.5B/blob/main/LICENSE), and now finetuned with 800k samples curated with DeepSeek-R1.
|
231 |
-
- DeepSeek-R1-Distill-Llama-8B is derived from Llama3.1-8B-Base and is originally licensed under [llama3.1 license](https://huggingface.co/meta-llama/Llama-3.1-8B/blob/main/LICENSE).
|
232 |
-
- DeepSeek-R1-Distill-Llama-70B is derived from Llama3.3-70B-Instruct and is originally licensed under [llama3.3 license](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct/blob/main/LICENSE).
|
233 |
-
|
234 |
-
## 8. Citation
|
235 |
-
```
|
236 |
-
@misc{deepseekai2025deepseekr1incentivizingreasoningcapability,
|
237 |
-
title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning},
|
238 |
-
author={DeepSeek-AI},
|
239 |
year={2025},
|
240 |
-
eprint={
|
241 |
archivePrefix={arXiv},
|
242 |
-
primaryClass={cs.
|
243 |
-
url={https://arxiv.org/abs/
|
244 |
}
|
245 |
|
246 |
-
```
|
247 |
-
|
248 |
-
## 9. Contact
|
249 |
-
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
|
|
|
22 |
</div>
|
23 |
<hr>
|
24 |
<div align="center" style="line-height: 1;">
|
25 |
+
<a href="https://www.turningpoint-ai.com/" target="_blank" style="margin: 2px;">
|
26 |
+
<img alt="Homepage" src="https://img.shields.io/badge/🐳Homepage-TurningPointAI-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
27 |
</a>
|
28 |
+
<!-- <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
29 |
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
30 |
+
</a> -->
|
31 |
+
<a href="https://huggingface.co/turningpoint-ai" target="_blank" style="margin: 2px;">
|
32 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-TurningPoint%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
33 |
</a>
|
34 |
+
<!-- <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
36 |
+
</a> -->
|
37 |
+
<!-- <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
38 |
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
39 |
+
</a> -->
|
40 |
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
41 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-TurningPoint_AI-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
42 |
</a>
|
43 |
</div>
|
44 |
|
45 |
+
<!-- <div align="center" style="line-height: 1;">
|
46 |
<a href="https://github.com/deepseek-ai/DeepSeek-R1/blob/main/LICENSE" style="margin: 2px;">
|
47 |
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
48 |
</a>
|
49 |
+
</div> -->
|
50 |
|
51 |
|
52 |
<p align="center">
|
53 |
+
<a href="https://arxiv.org/pdf/2503.05132"><b>Paper Link</b>👁️</a>
|
54 |
</p>
|
55 |
|
56 |
|
57 |
+
## 🚀 Introduction
|
58 |
|
59 |
+
The recent DeepSeek-R1 demonstrated how reinforcement learning with simple
|
60 |
+
rule-based reward can enable autonomous development of complex reasoning in
|
61 |
+
large language models, characterized by the "aha moment", in which the model
|
62 |
+
manifest self-reflection and increased response length during training. However,
|
63 |
+
attempts to extend this success to multimodal reasoning often failed to reproduce
|
64 |
+
these key characteristics. In this report, we present the first successful replication
|
65 |
+
of these emergent characteristics for multimodal reasoning on only a non-SFT
|
66 |
+
2B model. Starting with Qwen2-VL-2B and applying reinforcement learning
|
67 |
+
directly on the SAT dataset, our model achieves 59.47% accuracy on CVBench,
|
68 |
+
outperforming the base model by approximately ~30% and exceeding both SFT
|
69 |
+
setting by ~2%. In addition, we share our failed attempts and insights in attempting
|
70 |
+
to achieve R1-like reasoning using RL with instruct models, aiming to shed light on
|
71 |
+
the challenges involved. Our key observations include: (1) applying RL on instruct
|
72 |
+
model often results in trivial reasoning trajectories, and (2) naive length reward
|
73 |
+
are ineffective in eliciting reasoning capabilities. The project code is available at
|
74 |
+
https://github.com/turningpoint-ai/VisualThinker-R1-Zero
|
75 |
|
76 |
+
<!-- **NOTE: Before running DeepSeek-R1 series models locally, we kindly recommend reviewing the [Usage Recommendation](#usage-recommendations) section.**
|
77 |
|
78 |
<p align="center">
|
79 |
<img width="80%" src="figures/benchmark.jpg">
|
80 |
+
</p> -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
## 🔮 Highlights
|
83 |
+
1. We are the **first to successfully produce the emergent “aha moment” and increased response length** for multimodal reasoning on just a **non-SFT 2B model**.
|
84 |
+
2. We showed that **vision-centric** tasks could also benefit from improved reasoning capabilities.
|
85 |
|
86 |
+
Similar to DeepSeek R1, self reflection behavior is also observed during our RL training on vision-centric reasoning tasks. The model exhibits an emergent ability to rethink and correct its mistakes:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
```
|
89 |
+
. . .
|
90 |
+
Therefore, dark brown wooden bed with white blanket is not above the doorway.
|
91 |
+
But wait! I can think of something else.
|
92 |
+
Maybe it's just higher than above the doorway, but slightly lower than above the doorway.
|
93 |
+
. . .
|
94 |
+
```
|
95 |
+
## ⚙️ Requirements and Installation
|
96 |
+
* Python >= 3.10
|
97 |
+
* Pytorch == 2.0.1
|
98 |
+
* CUDA Version >= 11.7
|
99 |
+
* Install required packages:
|
100 |
+
```bash
|
101 |
+
# install transformers
|
102 |
+
pip install git+https://github.com/huggingface/transformers
|
103 |
+
# install qwen-vl utils
|
104 |
+
pip install qwen-vl-utils
|
105 |
+
```
|
106 |
|
107 |
+
## 💻 Model Downloads and Usage
|
108 |
|
109 |
+
```
|
110 |
+
# Load model directly
|
111 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
112 |
|
113 |
+
processor = AutoProcessor.from_pretrained("turningpoint-ai/VisualThinker-R1-Zero")
|
114 |
+
model = AutoModelForImageTextToText.from_pretrained("turningpoint-ai/VisualThinker-R1-Zero")
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
# Prepare input
|
117 |
|
118 |
+
```
|
|
|
119 |
|
120 |
+
## 📰 Evaluation Results
|
121 |
|
122 |
### DeepSeek-R1-Evaluation
|
123 |
For all our models, the maximum generation length is set to 32,768 tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 64 responses per query to estimate pass@1.
|
|
|
153 |
|
154 |
</div>
|
155 |
|
156 |
+
## 🙌 Stay Connected!
|
157 |
|
158 |
+
We are always open to engaging discussions, collaborations, or even just sharing a virtual coffee. To get in touch or join our team, visit [TurningPoint AI](https://www.turningpoint-ai.com/)'s homepage for contact information.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
## 📖 Acknowledgements
|
161 |
|
162 |
+
We sincerely thank [DeepSeek](https://github.com/deepseek-ai/DeepSeek-R1), [Open-R1](https://github.com/huggingface/open-r1), [QwenVL](https://github.com/QwenLM/Qwen2.5-VL), [Open-R1-Multimodal](https://github.com/EvolvingLMMs-Lab/open-r1-multimodal), [R1-V](https://github.com/Deep-Agent/R1-V), [SAT](https://arxiv.org/abs/2412.07755), and [CV-Bench](https://cambrian-mllm.github.io/) for providing open source resources that laid the foundation of our project.
|
163 |
|
164 |
+
## 🤝 Contributors
|
165 |
|
166 |
+
Here are the key contributors from [TurningPoint AI](https://www.turningpoint-ai.com/) to this project:
|
167 |
|
168 |
+
[Hengguang Zhou](https://hengguangzhou.github.io/)<sup>1</sup><sup>* </sup>, [Xirui Li](https://xirui-li.github.io/)<sup>1</sup><sup>* </sup>, [Ruochen Wang](https://ruocwang.github.io/)<sup>1</sup><sup>† </sup>, [Minhao Cheng](https://cmhcbb.github.io/)<sup>2</sup>, [Tianyi Zhou](https://tianyizhou.github.io/)<sup>3</sup> and [Cho-Jui Hsieh](https://web.cs.ucla.edu/~chohsieh/)<sup>1</sup><sup>4</sup>
|
169 |
|
170 |
+
<sup>*</sup> Project Leads, <sup>†</sup> Main Advisor
|
171 |
+
<sup>1</sup>University of California, Los Angeles, <sup>2</sup>Penn State University, <sup>3</sup>University of Maryland and <sup>4</sup>Google Research
|
172 |
|
173 |
+
## ✏️ Citation
|
|
|
174 |
```
|
175 |
+
@misc{zhou2025r1zerosahamomentvisual,
|
176 |
+
title={R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model},
|
177 |
+
author={Hengguang Zhou and Xirui Li and Ruochen Wang and Minhao Cheng and Tianyi Zhou and Cho-Jui Hsieh},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
year={2025},
|
179 |
+
eprint={2503.05132},
|
180 |
archivePrefix={arXiv},
|
181 |
+
primaryClass={cs.AI},
|
182 |
+
url={https://arxiv.org/abs/2503.05132},
|
183 |
}
|
184 |
|
185 |
+
```
|
|
|
|
|
|